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Abstract 
 

This dissertation presents research performed in the area of data-driven systems 

engineering to address some challenges of existing sensing and modeling technologies when 

applied in the emerging field of advanced manufacturing. One major contribution of this work is 

the development of data-driven machine learning techniques utilizing novel industrial internet of 

things (IIoT) sensors and applying them to industrial manufacturing processes. The research covers 

the following three areas: an IIoT Wi-Fi based woodchip moisture estimation system for the pulp 

and paper industry, a novel feature engineering enhanced virtual metrology methodology for the 

semiconductor manufacturing industry, and a process modeling and monitoring framework 

utilizing IIoT vibration sensors for the process industries. 

In recent years, IIoT has transformed industry by changing the way industries operate from 

day to day. Specifically, the advent of tiny low-cost IIoT sensors and high bandwidth wireless 

systems means even the smallest devices can be connected, monitored, and easily communicate 

and share data with other devices. Thanks to these advancements, industries have gained access to 

vast amounts of high-frequency data, i.e., so-called big data. The use of computationally efficient 

data-driven machine learning techniques to extract valuable information from the big data has led 

to a significant advancement in the manufacturing industry, such as a more accurate view of the 

operations, enhancement in scalability and performance, and bridging the gap between production 

floors and control systems, all leading to more efficient data-informed decision-making. 

Machine learning (ML) and artificial intelligence (AI) are at the core of data-driven 

decision-making for advancement in smart manufacturing. The use of collected data through 

sensors, when processed with robust machine learning algorithms, has changed the spectrum of 
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real-time decision-making in industries. However, more often, the rote application of ML 

algorithms without considering domain knowledge leads to inadequate modeling of the process, 

such as underfitting or overfitting. These models are undesirable in production environments due 

to poor performance and/or robustness. Through this work, the author addresses these challenges 

in various industrial settings and demonstrates that the key to robust and high-performance data-

driven modeling is the synergistic integration of domain knowledge and machine learning.  

In the first part of this work (Chapter 2), the author proposes a non-destructive, economic, 

and robust woodchip moisture content (MC) sensing approach utilizing channel state information 

(CSI) from IIoT based Wi-Fi to address the limitations of the existing technologies in the pulp and 

paper industry. An experimental design and an algorithmic technique were proposed to handle the 

confounding factors. To address the challenge that the raw CSI data is very noisy and sensitive to 

woodchip packing, a feature-based classification system based on statistics pattern analysis (SPA) 

was proposed in this work, which shows the advantages of domain knowledge combined with 

machine learning instead of the rote application of ML algorithms on the raw data collected. 

Specifically, the CSI data collected through IIoT Wi-Fi-based sensors is processed through SPA 

to extract not only robust and predictive but also physically meaningful features that enable 

accurate estimation of the woodchip MC with the help of robust ML algorithms. 

In the second part of this work (Chapter 3), the author proposes a feature-based virtual 

metrology (FVM) framework to address the limitations of the existing virtual metrology (VM) 

methods. In semiconductor manufacturing, VM, also known as soft sensors, predicts wafer 

properties using process variables. The author explores how batch features can better capture 

process characteristics and dynamic behaviors than the original process variables. This work also 

demonstrates how FVM can inherently handle and avoid some of the tedious and time-consuming 



4 
 

data preprocessing steps and leads to better predictive models by extracting relevant features. In 

addition, the author shows how non-linearity and non-Gaussianity can be handled with FVM. The 

FVM based approach is compared with existing VM approaches to demonstrate its superior 

predictive ability through a simulated industrial case study and an actual industrial case study. 

In the third part of this work (Chapter 4), the author demonstrates how IIoT sensors have 

great potential in advancing manufacturing process modeling through yet another type of IIoT 

sensor - accelerometer. This is an extension to a previous work where data from a centrifugal pump 

IIoT testbed was used to predict the motor speed and water flow rate inside a pipe using machine-

learning techniques. In this work, the author compares different levels or extent of feature 

engineering and examines their impact on model performance. While the modeling of motor speed 

is relatively less challenging after appropriate feature engineering, efficiently predicting water 

flow rate requires a fusion of time-domain and frequency-domain features and relatively complex 

machine learning techniques as the relationship is not linear. This is the main contribution of this 

work. Through appropriate domain knowledge and feature engineering, superior models are 

proposed to predict the motor speed and water flow rate in comparison to the application of 

machine learning techniques on the raw data. The author demonstrates the performance of the 

predictive models for motor speed and water flow rate and shows that approaches that integrate 

feature engineering with human learning through exploration achieved superior performance. 

The contribution of this work and potential future directions are summarized in Chapter 5. 

 

 



5 
 

Acknowledgments 
 

I would like to express my deepest gratitude to my supervisor Dr. Peter He for his 

motivation and mentorship throughout my Ph.D. project and in preparation of this dissertation. He 

believed in me throughout the journey, during my failures as well, and without him, this 

dissertation would not have been possible. I would also like to express immense gratitude towards 

my co-advisor, Dr. Jin Wang. She has motivated me throughout this journey to keep moving 

forward, and I have learned so much from her. Her valuable guidance has helped me become an 

independent researcher. There were times when I faced failures during my journey, but Dr. He and 

Dr. Wang have always motivated me to look forward and taught me how to move past challenges 

and learn from previous mistakes. Their unparalleled knowledge helped me improve and thrive as 

a researcher. 

 I would like to express my sincere gratitude to my committee members as well. Dr. Zhihua 

Jiang’s advice was crucial in shaping my research, and his experience with the pulp and paper 

industry surely helped me enhance the quality of my research. Dr. Selen Cremaschi’s insightful 

suggestions and comments helped me grow and develop as a researcher. Dr. Nedret Billor has 

played a crucial role in my journey, helped me strengthen my knowledge of statistics, and 

motivated me to consider a Statistics minor. She believed in me, motivated me to explore the field 

through her courses, and that turned out crucial in shaping my research work. Dr. Bart Prorok’s 

valuable suggestions during my prelims helped me frame my future work and enhance my 

research. I would also like to thank Dr. Shiwen Mao for agreeing to serve as the University reader 

on my dissertation committee.  

 



6 
 

I would like to thank current and past members of the He lab (DE-PSE group) that include 

Jangwon, Farshad, Arrslan, Farnaz, Jisung, and Alex. Jangwon has been like a brother to me 

throughout this Ph.D., and without his constant support and motivation, this journey would not 

have been possible. I will certainly cherish those times in Auburn with you forever. I would also 

like to thank our Head of the Department, Dr. Mario Eden, for his support during this 5-year 

journey. I would also like to acknowledge the help of Elaine Manning, Karen Cochran, Naomi 

Gehling, Emma Goodlett, and Brian Schwieker from the Chemical Engineering department for 

their help in various matters. 

I would like to thank my parents and extended family for providing constant support 

throughout this journey. My deepest gratitude to my brother and friend, Dr. Raj Thakur, who has 

been with me in my ups and downs, made this journey easier, and constantly motivated me to keep 

moving forward. I would also like to thank my friend Varun. His jokes and humor made this 

journey memorable for sure. I would also like to thank my second family, Moksha, and Aaditya 

for standing with me through thick and thin. Lastly, sincere thanks to countless other friends in 

Auburn who made my time at Auburn memorable. 

Most importantly, I dedicate this to my lovely and beautiful wife Kruthika. I owe 

everything that I am today to her. Kruthika, you have been my absolute pillar of strength 

throughout these years. You helped me keep things in perspective and supported the family 

throughout my graduate studies. Thank you for being my muse, having unconditional trust in me, 

and most importantly, earning this degree right along with me. You are the best thing that happened 

to me in Auburn.  

 



7 
 

Table of Contents 

Abstract .......................................................................................................................................... 2 

Acknowledgments ......................................................................................................................... 5 

List of Tables ............................................................................................................................... 12 

List of Figures .............................................................................................................................. 13 

List of Abbreviations .................................................................................................................. 17 

1. Chapter 1. Introduction and dissertation Outline ............................................................ 21 

2. Chapter 2. Multiclass moisture classification in woodchips using IIoT Wi-Fi and 

machine learning techniques ...................................................................................................... 26 

2.1. Introduction .................................................................................................................... 27 

2.2. Channel State Information and feasibility for woodchip MC classification .................. 31 

2.2.1. Channel State Information (CSI) ............................................................................ 31 

2.2.2. Feasibility test ......................................................................................................... 33 

2.3. Experimental setup and data collection .......................................................................... 34 

2.3.1. Experimental setup.................................................................................................. 34 

2.3.2. Data collection ........................................................................................................ 35 

2.4. Feature engineering and selection .................................................................................. 38 

2.4.1. The challenges of using raw CSI data as features ................................................... 38 

2.5. Feature engineering with statistics pattern analysis (SPA) ............................................ 44 

2.6. Feature engineering with PCA ....................................................................................... 50 



8 
 

2.7. Model building ............................................................................................................... 52 

2.7.1. Linear discriminant analysis (LDA) ....................................................................... 54 

2.7.2. Support vector machine (SVM) .............................................................................. 54 

2.7.3. Artificial neural network (ANN) ............................................................................ 55 

2.7.4. Bagging ................................................................................................................... 56 

2.7.5. XGBoost ................................................................................................................. 56 

2.7.6. Hyperparameter optimization ................................................................................. 57 

2.8. Results and discussion .................................................................................................... 58 

2.9. Conclusion ...................................................................................................................... 68 

3. Chapter 3. Next-generation virtual metrology for semiconductor manufacturing: A 

feature-based framework ........................................................................................................... 70 

3.1. Introduction .................................................................................................................... 70 

3.2. Virtual Metrology (VM) ................................................................................................. 73 

3.3. Challenges ...................................................................................................................... 74 

3.4. Research objectives ........................................................................................................ 75 

3.5. A brief review of existing VM approaches .................................................................... 76 

3.5.1. Time series analysis (TSA) ..................................................................................... 77 

3.5.2. Kalman filter (KF) .................................................................................................. 78 

3.5.3. Multiple linear regression (MLR) ........................................................................... 78 

3.5.4. Principal component regression (PCR) ................................................................... 79 



9 
 

3.5.5. Partial least squares (PLS) ...................................................................................... 80 

3.5.6. Other methods ......................................................................................................... 80 

3.5.7. Recursive or adaptive VM methods ........................................................................ 81 

3.6. Data preprocessing ......................................................................................................... 81 

3.7. Feature-based Virtual Metrology (FVM) ....................................................................... 83 

3.7.1. Inclusion of features ................................................................................................ 85 

3.8. Performance measures for comparing different methods .............................................. 86 

3.9. Application to case studies ............................................................................................. 87 

3.9.1. Data application to a simulated chemical mechanical planarization process ......... 87 

3.9.2. Application to an industrial case study ................................................................... 99 

3.10. Conclusions .............................................................................................................. 104 

4. Chapter 4. Machine learning techniques for process modeling and condition monitoring 

using non-invasive IIoT vibration sensors .............................................................................. 107 

4.1. Introduction .................................................................................................................. 107 

4.2. Experimental setup ....................................................................................................... 108 

4.3. Data collection and observations .................................................................................. 111 

4.3.1. Data characteristics ............................................................................................... 113 

4.4. Data pre-processing & modeling and raw data ............................................................ 114 

4.4.1. Modeling on raw data and PLS ............................................................................. 115 

4.4.2. Outlier detection.................................................................................................... 117 



10 
 

4.5. Feature extraction in the frequency domain – Lomb-Scargle algorithm ..................... 119 

4.5.1. Modeling using PLS on frequency domain features ............................................. 121 

4.6. System engineering enhanced modeling approach ...................................................... 123 

4.6.1. Binary matrix approach – Select peak frequencies ............................................... 124 

4.6.2. Analysis of flow rate at same RPM conditions ..................................................... 125 

4.6.3. Use of coefficient of variation to select features .................................................. 126 

4.6.4. Use of domain knowledge-based features in the time domain ............................. 126 

4.6.5. Modeling based on systems engineering enhanced features ................................. 129 

4.7. Conclusions .................................................................................................................. 136 

5. Chapter 5. Summary and future work ............................................................................ 138 

5.1. Summary ...................................................................................................................... 138 

5.1.1. Moisture detection in woodchips using IIoT Wi-Fi and ML techniques .............. 138 

5.1.2. VM for semiconductor manufacturing .................................................................. 139 

5.1.3. Machine learning techniques for process modeling and condition monitoring using 

non-invasive IIoT vibration sensors .................................................................................... 140 

5.2. Potential directions for future work ............................................................................. 141 

5.2.1. Moisture detection in woodchips using IIoT Wi-Fi and ML techniques .............. 141 

5.2.2. VM for semiconductor manufacturing .................................................................. 143 

5.2.3. Machine learning techniques for process modeling and condition monitoring using 

non-invasive IIoT vibration sensors .................................................................................... 143 



11 
 

6. Bibliography ....................................................................................................................... 145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



12 
 

List of Tables  
 

Table 2.1 Statistics considered as features in this work ................................................................ 49 

Table 2.2 Overall classification accuracy of LDA when features from single or all antennas are 

used ............................................................................................................................................... 59 

Table 2.3 Overall classification accuracy when different classification techniques are used ...... 62 

Table 2.4 Comparison of classification accuracy under two hyperparameter tuning scenarios ... 68 

Table 3.1 Performance comparison of various static VM approaches in predicting MRR and 

WWNU ......................................................................................................................................... 92 

Table 3.2 Variances captured by the first three PCs of different VM approaches (Averages over 20 

MC runs) ....................................................................................................................................... 93 

Table 3.3 R2  and p-value of linear regression between MRR and individual PC for a particular 

MC run .......................................................................................................................................... 95 

Table 3.4 Performance comparison of various recursive VM approaches in predicting MRR and 

WWNU ......................................................................................................................................... 98 

Table 3.5 Comparison of different Static VM methods .............................................................. 101 

Table 3.6 : Comparison of different recursive VM methods ...................................................... 103 

Table 3.7 : Effect of feature inclusion on the performance of RFVM ........................................ 104 

Table 4.1 List of conditions and corresponding Flowrate and RPM .......................................... 112 

Table 4.2 Predictions performance of RPM and flow rate at different levels of feature engineering

..................................................................................................................................................... 137 

Table 4.3 Prediction performance comaprison for flow rate. PLS regression vs K- nieghbors 

regression with system engineering enhanced feature engineering ............................................ 137 



13 
 

 List of Figures 
 

Figure 2.1 CSI signals collected on the three receiving antennas at three different MC levels for 

amplitude....................................................................................................................................... 33 

Figure 2.2 CSI signals collected on the three receiving antennas at three different MC levels for 

phase difference ............................................................................................................................ 34 

Figure 2.3 Experimental setup for CSI data collection ................................................................. 35 

Figure 2.4  20 different MC classes/levels for experimental data collected ................................. 37 

Figure 2.5 Raw CSI data for 5 different MC levels showing 10 shuffles for each MC level for 

amplitude....................................................................................................................................... 39 

Figure 2.6 Raw CSI data for 5 different MC levels showing 10 shuffles for each MC level for 

phase difference ............................................................................................................................ 40 

Figure 2.7 Overall classification accuracy using different raw CSI data with LDA classifier based 

on 100 Monte Carlo runs. ............................................................................................................. 41 

Figure 2.8 Classification confusion matrix of 100 Monte Carlo runs when both amplitude and 

phase difference are used. Since there are 100 samples in each class (true labels), the numbers on 

diagonal represent the percentage of classification accuracy of classes ....................................... 42 

Figure 2.9 Schematic of SPA-based feature extraction for classification .................................... 46 

Figure 2.10 Auto-correlation coefficients of CSI amplitude of one antenna subcarrier over 40,000 

packets show no significant serial correlation among packets ..................................................... 47 

Figure 2.11 Cross-correlation coefficients of CSI amplitude between subcarriers of one antenna 

show high correlations, especially between consecutive subcarriers. .......................................... 48 

Figure 2.12 PCA score plots of CSI amplitude means of 70 samples at 7 different MC levels (i.e., 

10 samples at each MC level) ....................................................................................................... 52 

https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176433
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176433
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176434
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176434
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176435
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176436
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176437
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176437
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176438
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176438
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176439
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176439
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176440
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176440
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176440
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176441
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176442
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176442
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176443
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176443
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176444
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176444


14 
 

Figure 2.13 PCA score plots of CSI amplitude mean difference of consecutive subcarriers (MDCS) 

of the same 70 samples. MDCSs show much better quality as features in both maximizing between-

class variance and minimizing within-class variance ................................................................... 52 

Figure 2.14 Overall process flow diagram of woodchip MC level classification using CSI data 53 

Figure 2.15 Comparison of classification accuracy of LDA when features from different antennas 

are used ......................................................................................................................................... 58 

Figure 2.16 Comparison of classification confusion matrices when only features from antenna 3 

are used ......................................................................................................................................... 60 

Figure 2.17  Comparison of classifcation confusion matrices when all features from all three 

antennas are used .......................................................................................................................... 59 

Figure 2.18 Comparison of overall classification accuracy when different classification techniques 

are used ......................................................................................................................................... 61 

Figure 2.19 Classification confusion matrix - SVM ..................................................................... 63 

Figure 2.20 Classification confusion matrix - ANN ..................................................................... 64 

Figure 2.21 Classification confusion matrix for XGBoost ........................................................... 65 

Figure 2.22 Classification confusion matrix for Bagging with LDA as base estimator ............... 66 

Figure 2.23 Comparison of far-off misclassification of different approaches .............................. 66 

Figure 3.1 Atomic Force Microscope ........................................................................................... 71 

Figure 3.2 Current challenges in Big data .................................................................................... 72 

Figure 3.3 Schematic of VM modeling ......................................................................................... 74 

Figure 3.4 Application of Big data analytics to the Semiconductor Industry ............................... 76 

Figure 3.5 The schematic diagram of feature-based virtual metrology ........................................ 83 

Figure 3.6 Schematic of the CMP process .................................................................................... 88 

https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176445
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176445
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176445
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176446
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176447
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176447
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176448
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176448
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176449
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176449
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176450
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176450
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176451
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176452
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176453
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176454
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176455
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176456
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176457
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176458
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176459
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176460
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176461


15 
 

Figure 3.7  Baseline simulations with fixed u1, u2, and u3 indicate a decreasing trend in MRR (a), 

and an increasing trend in WWNU (b), over a polishing pad life span. ....................................... 90 

Figure 3.8 VM predicted vs measured MRR (top row) and WWNU (bottom row) based on MLR(a 

and d), PLS (b and e), and FVM (c and f) .................................................................................... 93 

Figure 3.9 Scatter plots of the normalized MRR vs. the first PC of PCR (a), PLS (b) and FVM (c).

....................................................................................................................................................... 95 

Figure 3.10 Predicted vs. measured MRR based on RPLS (a), TSA (b), and RFVM (c). ........... 97 

Figure 3.11 Schematic view of the etching process ...................................................................... 99 

Figure 3.12 A sample OES signal of several wafers .................................................................. 100 

Figure 3.13 Predicted vs. Measured Sheet resistance based on RPLS (a), TSA (b) and RFVM (c).

..................................................................................................................................................... 102 

Figure 4.1 Multi stage centrifugal pump setup ........................................................................... 108 

Figure 4.2ADXL 345 accelerometer sensor and Raspberry pi ................................................... 110 

Figure 4.3 IIoT enabled centifugal pump testbed (Sensors are marked in red) .......................... 111 

Figure 4.4 Schematic of testbed showing sensor location .......................................................... 111 

Figure 4.5 GPM values at 1800 RPM and corresponding Histogram ........................................ 113 

Figure 4.6 PLS model prediction performance for RPM (Raw data) ......................................... 117 

Figure 4.7 PLS model prediction performance for Flowrate (Raw data) ................................... 118 

Figure 4.8 Outlier removal in measurements and corresponding vibration signals using standard 

deviation threshold ...................................................................................................................... 119 

Figure 4.9 Schematic of outlier detection approach for vibration data and measurement data .. 120 

Figure 4.10 Full PLS model RPM prediction performance (based on frequency domain) ........ 122 

https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176462
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176462
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176463
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176463
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176464
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176464
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176465
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176466
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176467
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176468
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176468
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176469
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176470
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176471
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176472
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176473
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176474
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176475
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176476
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176476
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176477
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176478


16 
 

Figure 4.11 Full PLS model Flowrate - GPM prediction performance (Based on frequency domain)

..................................................................................................................................................... 123 

Figure 4.12 Peaks occur at fixed frequencies for a fixed RPM condition .................................. 124 

Figure 4.13Amplitude for different flowrate but same RPM conditions .................................... 125 

Figure 4.14 RPM predictions based on Systems engineering enhanced features -PLS .............. 130 

Figure 4.15 Flow rate predictions based on systems engineering enhanced features - PLS ...... 131 

Figure 4.16 Flowrate GPM predictions based on systems engineering enhanced features – K-

neighbors regression ................................................................................................................... 133 

Figure 4.17 Flowrate GPM predictions based on systems engineering enhanced features – PLS 

regression .................................................................................................................................... 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176479
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176479
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176480
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176481
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176482
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176483
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176484
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176484
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176485
https://tigermailauburn-my.sharepoint.com/personal/kbs0037_auburn_edu/Documents/Desktop/Dissertation_document_Kerul_Suthar_final.docx#_Toc75176485


17 
 

List of Abbreviations  
 

IoT Internet of things 

IIoT Industrial internet of things 

   ML Machine learning 

AI Artificial intelligence 

MC Moisture content 

CSI Channel state information 

VM Virtual metrology 

FVM Feature based virtual metrology 

RPM Rotations per minute 

GPM Gallons per minute 

M2M Machine-to-machine 

SPA Statistics pattern analysis 

PCA Principal component analysis 

PCR Principal component regression 

KF Kalman filter 

TSA Time series analysis 

CMP Chemical mechanical planarization 

OES Optical emission spectroscopy 

PLS Partial least squares 

DOE Department of energy 

CWT Cell wall thickness 

MPC Model predictive control 

ASTM American society for testing and materials 

RF Radiofrequency 

NIR Near infrared 



18 
 

NIC Network interface card 

OFDM Orthogonal frequency domain multiplexing 

MIMO Multi-input multi-output 

𝑚𝑚𝐷𝐷 Oven dry weight 

𝑚𝑚𝑇𝑇 Total mass 

𝑚𝑚𝑊𝑊 Mass of water 

LOS Line of sight 

LSTM Long short-term memory 

RNN Recurrent neural network 

RBF-NN Radial basis function – Neural Network 

SVM Support vector machine 

LDA Linear discriminant analysis 

HOS Higher order statistics 

CLT Central limit theorem 

𝜇𝜇 Mean 

𝑀𝑀𝑀𝑀𝑀𝑀 Median 

Max Maximum 

Min Minimum 

IQR Interquartile range 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Mean absolute deviation 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 Median absolute deviation 

𝐶𝐶𝑉𝑉 Coefficient of variation 

𝛾𝛾 Skewness 

𝜅𝜅 Kurtosis 

𝑅𝑅𝑥𝑥𝑥𝑥 Cross-correlation coefficient 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥 Mean difference of consecutive subcarriers 

PCS Principal component subspace 

MCVT Monte Carlo validation and testing 

ANN Artificial neural network 

XGBoost Extreme gradient boosting 

NN Neural network 



19 
 

AFM Atomic force microscope 

W2W Wafer-to-wafer 

IM Integrated metrology 

MLR Multiple linear regression 

ARMA Autoregressive moving average 

ARIMA Autoregressive integrated moving average 

SVR Support vector regression 

RPLS Recursive partial least squares 

FIFO First-in-First-out 

DTW Dynamic time warping 

DDTW Derivative dynamic time warping 

RMSE Root mean square error 

RFVM Recursive feature based virtual metrology 

MAPE Mean absolute percentage error 

R2 Coefficient of determination 

MRR Material removal rate 

WWNU Within wafer non uniformity 

MC Monte Carlo 

PC Principal components 

EWMA Exponentially weighted moving average 

Hz Hertz 

GHz Giga Hertz 

UET Unix epoch time 

NIPALS Non iterative partial least squares 

LOF Local outlier factor 

FFT Fast Fourier transform 

DFT Discrete Fourier transform 

PSD Power spectral density 

SNR Signal-to-noise ratio 

THD Total harmonic distortion 

SINAD Signal to noise and distortion ratio 



20 
 

DL Deep learning 

DNN Deep neural networks 

TPE Tree parzen estimator 

EI Expected improvement 
 

 

 

  



21 
 

1. Chapter 1. Introduction and dissertation Outline 
 

The major contribution of this work is the development of data-driven machine learning 

techniques utilizing novel industrial IIoT sensors and applying them to industrial manufacturing 

processes. IIoT refers to billions of devices around the world that are connected via internet 

collecting and sharing data. Kevin Ashton[1] first coined the term in 1999 although it took a long 

time for the technology to catch up with the vision. Due to the significant advancement in IIoT 

technologies and the ubiquity of wireless networks, it is possible to replace or augment the 

traditional sensors with IIoT sensors. Adding IIoT sensors and connecting them wirelessly 

introduce  a level of data intelligence that enables them to communicate in real-time without any 

human intervention[2]. 

IIoT brings together critical assets, advanced predictive and prescriptive analytics, and 

modern industrial workers[3].  Smart machines and real-time analytics have been proposed to take 

advantage of the massive data produced by machines or systems in a variety of industrial settings, 

which help drive business decisions faster and more accurately. This network of a multitude of 

smart devices connected by communication technologies results in a system that can monitor, 

collect, exchange, analyze, and deliver valuable insights as never before. As a result, IIoT has led 

to a significant change in the way industries operate from day to day[4]–[8]. Through the 

combination of machine-to-machine (M2M) communication and industrial data analytics, IIoT is 

driving unprecedented efficiency, productivity, and performance levels. In addition, the small size 

and low cost of IIoT devices make it possible to equip manufacturing systems in large numbers 

providing detailed spatial and temporal information that otherwise would not have been possible. 

Due to recent advancements in IIoT it has led to a significant increase in their use in the 

manufacturing industry[7], [9]. In an industrial setting, IIoT and ML are the two important aspects 
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that pave the road towards smart manufacturing (also known as advanced manufacturing, industrial 

4.0, or intelligent manufacturing). Smart manufacturing is a broad concept and a combination of 

various technologies and solutions, which, when implemented in a manufacturing ecosystem, can 

help in optimizing the entire manufacturing process and thus increase overall profits, reduce costs, 

improve efficiency, and avoid downtime[10]–[13]. Smart manufacturing is about harnessing the 

data in the most efficient way possible for smart data-driven decision-making telling users “What 

to do” and “When to do it”. Thanks to IIoT, the collection of so-called big data is easier than ever 

before.  This data can be analyzed at every step in a production process leading to efficient data-

driven decision making.  

The goal of this study is to explore the utilization of novel IIoT sensors for industrial 

applications and address the challenges in ML modeling when the traditional pure data-driven ML 

techniques are applied to model the data collected from IIoT sensors. Specifically, collecting a 

vast amount of high-frequency data via IIoT sensors is one aspect but extracting and processing 

the information within this data with the right tools is more critical to the data-driven decision-

making process to enhance and optimize operations in an industrial setting. For example, big data 

has its own challenges, and its characteristics can be summarized by 4 V’s: Variety (different types 

of data), volume (systems needs to be able to handle the massive amount of data in real-time), 

velocity (the speed at which data is generated) and veracity (trustworthiness of data in terms of 

accuracy). This study aims to provide insights into the use of IIoT devices and data-driven ML 

techniques for smart manufacturing. Specifically, this work demonstrates that processing big data 

directly through data-driven ML techniques can lead to incomplete or misleading information and 

insights. For example, when considering predictive modeling in manufacturing, this study shows 

that the use of ML techniques directly on collected data often leads to poor performance of ML 
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algorithms, and the raw data needs to be processed more efficiently through effective feature 

engineering. For example, the data collected from IIoT devices are often noisy, show no clear trend 

or relationship, and needs extensive preprocessing. The goal of this study is to demonstrate the 

synergistic integration of domain knowledge and machine learning. The author addresses existing 

challenges in various industrial business settings through IIoT and ML techniques combined with 

domain knowledge to enhance efficiency, reduce costs and downtime, increase the overall 

profitability of industrial systems, and take a step towards smart manufacturing. 

 In chapter 2, the author proposes a multiclass woodchip moisture classification approach 

using IIoT Wi-Fi and ML techniques. This chapter explains the existing problem in the pulp and 

paper industry related to the moisture estimation of woodchips and a review of existing solutions 

and their limitations. Then the author proposes IIoT based Wi-Fi sensors as a solution due to their 

favorable characteristics. The feasibility of using IIoT Wi-Fi sensors for moisture estimation is 

investigated in detail using preliminary experiments. After that, the experimental data collection 

procedure, equipment, and data characteristics are discussed, followed by the predictive modeling 

using raw data. The author discusses the drawback of using noisy raw data and the disadvantages 

when used in a process industry.  As a solution to these limitations, the author proposes a SPA 

based feature engineering approach to extract so-called smart data from the raw big data. When 

combined with robust machine learning techniques, this domain knowledge-based smart data 

provide effective moisture estimation in the pulp and paper industry. SPA is discussed in detail, 

along with a description of the features and an insight into the data using dimension reduction 

techniques such as principal component analysis (PCA). Further, different linear and non-linear 

ML approaches are considered, and their classification performance is compared. The author also 

provides a brief description of each of these ML approaches and their critical hyperparameters. 
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The work demonstrates that classification accuracy alone is not a good performance metric for 

industrial applications, and the practical implications of misclassification must also be considered. 

Lastly, the conclusions and future work are discussed. 

In chapter 3, a novel next-generation feature-based virtual metrology (FVM) framework, 

is proposed to address the existing challenges in the semiconductor industry. This work focuses 

on the prediction of wafer properties using process variables and other information available for 

process monitoring without physically conducting property measurement. The author describes 

the need for an efficient approach for predicting wafer properties without actual physical 

measurement to reduce costs and downtime, and to increase the overall efficiency of the process. 

A brief review of existing VM approaches is provided, followed by the proposed FVM. A detailed 

explanation of the approach and properties is provided. The author describes how the feature-based 

approach can eliminate some of the data pre-processing steps directly, which are common issues 

in a batch process such as a typical semiconductor process. These data pre-processing steps include 

data mismatch, trajectory shift and alignment. Then, the author discusses various performance 

metrics for different VM approaches. The author also investigates how FVM addresses process 

non-linearity inherently to achieve superior performance than other existing VM approaches. To 

evaluate the proposed approach, two different case studies are demonstrated, and their 

performance is compared with other existing approaches, including principal component 

regression (PCR), partial least squares (PLS), kalman filter (KF), time series analysis (TSA), etc. 

The first case study is a simulated dataset based on a chemical mechanical planarization (CMP) 

process. The second case study describes a real industrial dataset based on plasma etch, where 

optical emission spectroscopy (OES) signals are used to predict the wafer properties. Lastly, 

conclusions and future directions are described in the chapter. 
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In chapter 4, the study focuses on the use of non-invasive IIoT sensors such as vibration 

sensors for predictive modeling in the process industry. The process of data collection along with 

the centrifugal testbed and the sensors are described in this work. This is followed by the 

performance of approaches such as PLS on raw vibration data collected with accelerometer 

sensors. PLS is used to predict the motor speed, and the water flow inside the pipe of the system. 

This work shows how rote application of ML can lead to misleading results and fails to capture 

the relationship between the explanatory and response variables. The author describes further 

feature engineering to extract features in the frequency domain along with some data 

characteristics. Compared to modeling using raw data, the performance is significantly improved 

by integrating domain knowledge with ML algorithms. 

Further, the author describes the main contribution of this work, where a combination of 

features in the time domain (i.e., the features that describe signal behavior) and features relevant 

to peak frequency in the frequency domain are used to further improve the predictive performance. 

The author describes how the relationship between the data and RPM is easily modeled using 

approaches such as PLS while, for flowrate modeling, a relatively complex model such as k-

neighbors regression is proposed, and the performance is further improved. Here, the author again 

demonstrates how rote application of ML can lead to poor modeling performance. Lastly, the 

author discusses some limitations and some insights into future directions. 

In chapter 5, the author summarizes the contributions of this work and sheds some light on 

potential future directions in this area of research. 
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2. Chapter 2. Multiclass moisture classification in woodchips using IIoT Wi-Fi and 
machine learning techniques 

 

For the pulping process in a pulp & paper plant that uses woodchips as raw material, the MC 

of the woodchips is a major process disturbance that affects product quality and consumption of 

energy, water, and chemicals. Existing woodchip MC sensing technologies have not been widely 

adopted by the industry due to unreliable performance and/or high maintenance requirements that 

can hardly be met in a manufacturing environment. To address these limitations, we propose a 

non-destructive, economic, and robust woodchip MC sensing approach utilizing CSI from 

industrial IIoT based Wi-Fi. While these IIoT devices are small, low-cost, and rugged to stand for 

harsh environment, they do have their limitations such as the raw CSI data are often very noisy 

and sensitive to woodchip packing. To address this, SPA is utilized to extract physically and/or 

statistically meaningful features from the raw CSI data, which are sensitive to woodchip MC but 

not to packing. The SPA features are then used for developing multiclass classification models 

using various linear and nonlinear ML techniques to provide potential solutions to woodchip MC 

estimation for the pulp and paper industry. This work also demonstrates that classification 

accuracy alone is not a good performance metric for industrial applications, and the practical 

implications of misclassification must also be considered. 
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2.1. Introduction 
 

The US is one of the largest producers of pulp products and one of the largest producers of 

paper and paperboard products. The US pulp and paper industry ranks third in energy consumption 

among US industries and spends over $7 billion annually on purchased fuels and electricity [14]. 

The pulping process, which converts woodchips into pulp by displacing lignin from cellulose 

fibers, is one of the most energy-intensive processes and has been identified by the ENERGY 

STAR® and the Department of Energy (DOE) reports as a significant opportunity to improve 

energy productivity and efficiency of the industry [14]–[16]. Currently, chemical pulping 

processes produce the vast majority of the US pulp, and most of them utilize continuous Kamyr 

digesters. A Kamyr digester is a complex vertical plug flow reactor where the woodchips react 

with an aqueous solution of sodium hydroxide and sodium sulfide, also known as white liquor, at 

elevated temperatures to remove lignin. For Kamyr digesters, the incoming woodchip moisture 

content (MC) is a significant source of disturbance that affects the cooking performance, as it 

dilutes the white liquor concentration, therefore, reducing the delignification reaction rate. In this 

work, wet basis MC is used, which is defined as the following: 

𝑴𝑴𝑴𝑴 = 𝒎𝒎𝑾𝑾
𝒎𝒎𝑻𝑻

× 𝟏𝟏𝟏𝟏𝟏𝟏% = 𝒎𝒎𝑾𝑾
𝒎𝒎𝑾𝑾+𝒎𝒎𝑫𝑫

× 𝟏𝟏𝟏𝟏𝟏𝟏%  (2.1) 

where 𝒎𝒎𝑾𝑾, 𝒎𝒎𝑫𝑫, and 𝒎𝒎𝑻𝑻 represent the mass of water, dry wood, and total mass, respectively.  

Currently, the woodchip MC is not measured in real-time due to the lack of affordable, 

reliable, and easy-to-maintain sensors [17]. Instead, woodchip MC is commonly measured only 

four times per year corresponding to the four seasons and used to determine the operation 

parameters such as chemical usage and cooking temperature. Because this significant process 

disturbance is unmeasured, the performance of existing control solutions is often unsatisfactory 
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and process engineers often overcook the woodchips to ensure pulp quality, which results in 

significant loss of pulp yield, overuse of heat/energy, and chemicals. Chemical overuse also adds 

burdens to the downstream processes, such as washing and evaporation, and results in increased 

energy and chemical usages for downstream processes as well. It is worth noting that there have 

been significant efforts and advancements in the modeling and control of chemical pulping over 

the past decade [17]. In particular, progress has been made on multiscale modeling of Kraft pulping 

processes to capture the evolution of fiber morphology such as fiber length, porosity, and cell wall 

thickness (CWT) of cooked pulp [18], [19]. A recent study integrates macroscopic and microscopic 

models of the Kraft pulping process to develop an inferential model predictive control (MPC) to 

handle pulp grade transitions better[20]. These efforts have not explicitly considered the woodchip 

MC variability in a production environment, and this information, if made available, can be 

directly incorporated into these models for improved model accuracy in practical applications.  

The oven-drying method is a direct and precise method based on the weight loss after a 

drying process, with a standard defined by the American Society for Testing and Materials 

(ASTM) [21], [22]. However, it is an offline test that takes 24 hours, and is mainly used for 

validating other indirect methods. A variety of indirect sensing methods have been examined for 

measuring woodchip MC online, including technologies that are based on microwave [23], radio-

frequency (RF) [24], capacitance [25]–[27], Resonant half-wave antenna [28],  near-infrared (NIR) 

[29], [30] and X-ray [31], [32]. However, these methods have not been widely adopted by the 

industry due to poor performance and/or high maintenance requirements that can hardly be met in 

a manufacturing environment. 

To address the robustness and performance limitations of the existing methods, we propose 

a non-destructive, economic, and robust approach based on 5 GHz IIoT short-range Wi-Fi and use 
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CSI to predict MC in woodchips. CSI data have been used for moisture and mildew detections in 

wheat[33]–[35]. However, woodchip MC classification is a much more challenging task due to the 

much bigger size and significantly more heterogeneous in both size and shape of the woodchips 

than those of wheat. Because of that, the woodchip packing or arrangement in the container is 

expected to have a significant impact on the CSI data, i.e., woodchip packing is a strong 

confounding factor to MC level. There are generally three ways to address confounding variables: 

elimination, measuring, and randomization. Since woodchip packing cannot be eliminated nor 

measured, randomization is the approach taken in this work to address it. In addition, our recent 

studies have shown that IIoT sensors have their own shortcomings, including significant noise, 

missing values, and/or irregular sampling intervals, which result in messy big data and lead to low 

performing models when directly fed to machine learning algorithms [36], [37]. Because of these 

challenges, the normalized or PCA transformed raw CSI data, which were used for wheat MC 

classification, are no longer sufficient for woodchip MC classification. To address it, the SPA 

framework that we developed previously [38]–[41] is used to extract robust and predictive features 

from the raw, noisy CSI data. These features are shown to be sensitive to the MC levels but 

insensitive to the packing of the woodchips. It is worth noting that SPA features are physically 

and/or statistically meaningful while other algorithmically generated features (e.g., square, square 

root, exponential, etc.) or kernel-type features are often unintuitive. SPA also eliminates the data 

preprocessing steps (e.g., outlier detection and handling, environmental noise removal) that were 

required in previous studies[33]–[35]. These two strategies utilized for addressing a confounding 

variable and for extracting predictive and meaningful features from raw CSI data are two of the 

main contributions of this work. Another contribution of this work is the systematic study of 

different state-of-the-art linear and nonlinear classification techniques, as well as individual vs. 
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ensemble classification, for woodchip MC classification using CSI data. Finally, classification 

accuracy has been commonly used in previous studies for evaluating classifier performance. We 

show that the classification accuracy alone is not a good performance metric, and the practical 

implications (e.g., cost) of misclassification must also be considered. 

The remainder of this work is organized as follows. A brief background on CSI and 

feasibility study for using CSI in woodchip MC detection are presented in Section 2.2. Section 2.3 

outlines the experimental setup and data collection procedure. Section 2.4 discusses the challenge 

of classification using raw data and the need for feature engineering, followed by the proposed 

approach based on SPA for feature extraction. The classification approaches studies in this work 

are introduced in Section 2.5, and the hyperparameter optimization approach used in this work. In 

Section 2.6, the results from different classification techniques are discussed in terms of both 

classification accuracy and robustness. The practical implications of these results are also 

discussed. Finally, the conclusion and future work are discussed in Section 2.7. 
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2.2. Channel State Information and feasibility for woodchip MC classification 
 

2.2.1. Channel State Information (CSI) 
 

Using Wi-Fi cards such as the Intel Wi-Fi link 5300 network interface card (IWL5300 NIC), 

it is convenient to collect CSI measurements that record the channel variation during the 

propagation of wireless signals. In this work, CSI is extracted by modifying the open-source device 

drivers for IWL5300 based on CSITool [42]. Similar tools are available based on Atheros chipsets 

as well [43]. CSI amplitude and phase data are collected in this work using IWL5300 NIC by 

configuring the transmitter and receiver in injection and monitor modes, respectively. We use 

Lenovo ThinkPad systems equipped with Linux-based OS 14.02 and kernel version 4.2 due to the 

version-specific CSI tool. Both systems are equipped with IWL5300 NIC with a modified driver 

and firmware for data collection. Orthogonal frequency-division multiplexing (OFDM) is often 

utilized to deal with impairments in wireless propagation such as frequency selective fading. In 

OFDM signal modulation, a single data stream is split into multiple orthogonal subcarriers at 

different frequencies to avoid interference and crosstalk. The IWL5300 NIC used in this work 

implements an OFDM system with 56 subcarriers, out of which 30 subcarriers can be read using 

the CSItool, which is built on IWL5300 NIC using custom modified firmware and open-source 

Linux wireless drivers [42]. Each channel matrix entry is a complex number, with signed 8-bit 

resolution each for the real and imaginary parts. It specifies the gain and phase of the signal path 

between a single transmit-receive antenna pair. For example, the channel response of the ith 

subcarrier can be represented as: 

𝐶𝐶𝑆𝑆𝑆𝑆𝑖𝑖 = |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| exp{∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖}  (1.2) 

where |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| is the amplitude response of the ith subcarrier and ∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the phase response. 
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CSI can reflect indoor channel characteristics such as multipath effect, shadowing, fading, and 

delay [44]. Our hypothesis is that the water content in the woodchips has a detectable impact on 

the strength and/or the phase of the signals that are received on the receiver side. In other words, 

woodchips at different MC levels would lead to different characteristics of CSI signals in terms of 

amplitude and/or phase responses. Therefore, ML algorithms can be utilized to correlate these 

characteristics to woodchip MC levels. 

In this work, two laptops equipped with IWL5300 NIC and modified drivers with specific 

Linux kernels are used to collect CSI data. One is set in injection mode while the other is set in 

monitor mode to collect 5 GHz CSI amplitude and phase data. One antenna is used on the 

transmitter side, while three antennas are used on the receiver side to take advantage of the 

multiple-input multiple-output (MIMO) systems for improving the diversity of signals [44], [45]. 

This diversity is exploited in this work to improve the multiclass classification performance. In 

addition, it is desirable to focus the RF energy in one direction as the woodchips are placed in an 

airtight box between the transmitter and receiver. Therefore, unidirectional antennas are selected 

over omnidirectional antennas. As the gain of the directional antennas increase, the coverage 

distance also increases in that direction. Also, directional antennas for point-to-point connection 

reduce interferences from other sources. In this work, panel antennas ALFA (ALFA Network, 

Taiwan) with 66° horizontal beam-width and 16° vertical beam-width are used. 
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2.2.2. Feasibility test 
 

To test the technical feasibility of CSI to classify woodchips based on MC levels, we collect 

CSI for woodchips at three distinctively different MC levels (i.e., 52.34%, 20.40%, and 11.93%). 

Figure 2.1 and Figure 2.2  show the CSI amplitude and phase difference for the 15th subcarrier 

respectively. As shown in Figure 2.1 and Figure 2.2, there are distinctive differences in amplitude 

and phase differences of different MC levels from all three antennas. This preliminary feasibility 

test indicates that it is possible to develop a data-driven model to correlate CSI data with the 

woodchip MC level. Note that the confounding factor of woodchip packing is not considered here. 

 

Figure 2.1 CSI signals collected on the three receiving antennas at three different MC levels for 
amplitude 
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2.3. Experimental setup and data collection 
 

2.3.1. Experimental setup 
 

With the results from the feasibility test in Section II, we design an experimental setup with 

antenna positions fixed on an acrylic sheet. The experimental setup is shown in Figure 2.3, where 

two Lenovo T400s systems equipped with IWL5300 NIC are set 3 m apart. The woodchips at 

different MC levels are placed at the center (i.e., 1.5 m from transmitting and receiving antennas) 

Figure 2.2 CSI signals collected on the three receiving antennas at three different MC levels for phase 
difference 
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in an acrylic container with an air-tight lid to avoid any changes in MC while the data are being 

collected. 

 
2.3.2. Data collection 
 

In previous studies, a maximum of 5 MC levels have been studied with a minimum difference 

of 0.7% in MC [34]. However, this is not nearly sufficient for woodchip MC levels because 

woodchips are usually stored outdoors, which introduces significant MC variations due to daily 

weather conditions, and seasonal temperature and humidity changes. In this work, data are 

collected for 20 different MC classes or levels ranging from 53.39 % to 11.81% on the wet basis 

(see Eqn (2.1)). Total mass (𝑚𝑚𝑇𝑇) is measured during each experiment and oven drying method 

[21], [22] was performed after all experiments were conducted to determine the oven-dry weight 

Figure 2.3 Experimental setup for CSI data collection 
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(𝑚𝑚𝐷𝐷). 𝑚𝑚𝑇𝑇 and 𝑚𝑚𝐷𝐷 are then used to determine the mass of water (𝑚𝑚𝑊𝑊) and MC according to Eqn. 

(1.1). The 20 different MC levels are plotted in Figure 2.4. There are two gaps in the tested MC 

levels, one around 45% and the other around 25%. This is due to the overnight exposure of the 

woodchips to air in the lab, which should be avoided if a model to be developed for accurate 

estimation of any MC level in the entire range. Nevertheless, this does not affect our methodology 

development, nor the conclusions drawn based on the results obtained. This is because there are 

three regions where MC levels are reasonably separated as shown in Figure 2.4. In addition, MC 

levels are narrowly separated at the high MC region and even more so at the low MC region. The 

minimum difference between MC levels is 0.05%. If a model can correctly classify MC levels with 

such narrow difference, we expect it to work if more MC levels were included in the middle range 

with wider difference such as 1%, which is sufficient for pulping process optimization and control. 
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As discussed previously, the woodchip packing or arrangement in the container is expected to 

have a significant impact on CSI data. Based on the principle of randomization for addressing this 

confounding factor, the woodchips within the air-tight box are shuffled 10 times for each MC level. 

In other words, for each MC level, 10 datasets (i.e., samples) are collected corresponding to 10 

shuffles. Therefore, the experiments generate totally 200 samples for all 20 MC levels. For each 

sample, 10,000 packets were sent from the transmitter (setup in injection mode) to the three 

receiver antennas (setup in monitoring mode). Data are collected only for the line of sight (LOS) 

scenario, i.e., the woodchip container is placed in the middle of the center line between the 

transmitter and the receivers. 

 

Figure 2.4  20 different MC classes/levels for experimental data collected 
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2.4. Feature engineering and selection 
 

For wheat MC classification, normalized raw data were used in long short-term memory 

(LSTM) recurrent neural network (RNN) [34] and Radial basis function-neural network (RFB-

NN) [46], while principal component scores from normalized raw data were used in support vector 

machines (SVM) [35]. In the next section, we show that raw data are poor features for woodchip 

MC classification due to the challenges discussed previously in Sec. 2.1. In addition, the Wi-Fi 

packets are independent from each other (i.e., serially uncorrelated) as evidenced by the close-to-

zero autocorrelation coefficients beyond lag 0. Therefore, there is no reason to use an RNN such 

as LSTM to account for the serial dependency or dynamics of packets.  

2.4.1. The challenges of using raw CSI data as features 
 

As discussed in the previous section, for each MC level we shuffle the woodchips 10 times 

and collect CSI data for each shuffle to address the confounding factor of woodchip arrangement 

or packing. Figure 2.6 and Figure 2.5 show the raw CSI data of amplitude and phase difference for 

woodchips at five distinctively different MC levels with 10 shuffles at each MC level. The five 

MC levels are 53.29%, 41.24 %, 32.57 %, 20.47 % and 11.81 %, in that order where they are 

plotted in Figure 2.5 and Figure 2.6. For the sake of better visualization and easier interpretation, 
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only 100 packets from the 10th subcarrier for each shuffle are plotted. From Figure 2.5 and Figure 

2.6, the impact of shuffling can be seen in both amplitude and phase difference, although it is more 

obvious in the phase difference. The observation confirms our earlier suspicion that packing or 

woodchip arrangement is a significant confounding factor to MC level. In addition to packing, 

another challenge is the significant noises presented in both amplitude and phase difference. 

Finally, Figure 2.5 and Figure 2.6 show no clear trend or pattern in amplitude or phase difference 

that correlates with MC levels. All these factors present significant challenges to model MC level 

with raw CSI data. As an illustrative example, we use linear discriminant analysis (LDA) to 

Figure 2.5 Raw CSI data for 5 different MC levels showing 10 shuffles for each MC level for 
amplitude 
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perform classification using the raw CSI data, with either amplitude, or phase difference, or both. 

For training, 9 samples are randomly selected from 10 shuffled samples at each of the 20 MC 

levels, which results in 180 training samples. The remaining one shuffled sample from each MC 

level is used for testing after the classification model is trained. This process is repeated 100 times, 

resulting in 100 Monte Carlo runs and the classification results are shown in Figure 2.7. 

 

Figure 2.6 Raw CSI data for 5 different MC levels showing 10 shuffles for each MC level for 
phase difference 
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Figure 2.7 Overall classification accuracy using different raw CSI data with LDA classifier based on 
100 Monte Carlo runs. 
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For performance evaluation, the classification accuracy of class 𝑖𝑖 is defined as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖

           (2.2) 

 

Figure 2.8 Classification confusion matrix of 100 Monte Carlo runs when both 
amplitude and phase difference are used. Since there are 100 samples in each class 
(true labels), the numbers on diagonal represent the percentage of classification 
accuracy of classes 
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The overall accuracy of all classes is defined as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑝𝑝𝑖𝑖𝐶𝐶
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖𝐶𝐶
𝑖𝑖=1

= ∑ 𝑝𝑝𝑖𝑖𝐶𝐶
𝑖𝑖=1
𝑁𝑁

         (2.3) 

where 𝐶𝐶 denotes total number of classes, 𝑛𝑛𝑖𝑖 true/known number of samples in class 𝑖𝑖, 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝐶𝐶
𝑖𝑖=1  

total number of samples, and 𝑝𝑝𝑖𝑖 number of correctly predicted samples in class 𝑖𝑖. Figure 2.7 

compares the overall classification accuracy of all classes when different components of the CSI 

data were used. The comparison indicates that LDA classifier using both amplitude and phase 

difference performs the best with 86.15% classification accuracy, followed by LDA classifier 

using phase difference with 83.85% classification accuracy, while the LDA classifier using 

amplitude alone results in the lowest classification accuracy of 76.10%. Figure 2.8 plots the 

confusion matrix for the best LDA classifier using CSI amplitude and phase difference, which 

allows us to dig deeper into the classification results. It is worth noting that the dimensionality is 

extremely high in this case i.e., 720,000 features and 200 samples. LDA inherently performs 

dimensional reduction via singular value decomposition. As can be seen from Figure 2.8, the 

classification accuracy of individual classes ranges from 15% to 100%. It can also be seen that 

classification accuracy alone is not a good performance indicator. For example, classification 

accuracy alone would not be able to distinguish the following two scenarios: (1) the actual scenario 

of misclassifying ten 53.38% MC level samples (class 0 in Figure 2.8) to 16.52 % MC level (class 

12); (2) a hypothetical scenario of misclassifying ten 53.38% MC level (class 0) to 51.59 % MC 

level (class 1). Both scenarios have a classification accuracy of 90%, but with drastically different 

implications in this application. For example, if MC level is used to control the chemical usage, 

the former would lead to a significantly worse outcome than the latter. With this point in mind, we 
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see from Figure 2.8 that the classification results using raw CSI data are poor as there are samples 

misclassified far off their actual classes. In this work, when the predicted class of a sample is off 

its true class by more than one level, we term it “far-off misclassification” to distinguish it from 

the scenario of “nearest-neighbor misclassification”, where the predicted class is off true class by 

one level (either above or below). Based on this definition, there are totally 478 misclassified 

samples, of which 30 are far-off misclassifications. 

2.5. Feature engineering with statistics pattern analysis (SPA) 
 

To address the shortcoming of raw CSI features that lead to not only low classification 

accuracy but also far-off misclassifications, in this work, SPA is utilized to generate more robust 

and predictive features. SPA was proposed to supplement the traditional multivariate modeling 

approaches that directly utilize process variables (e.g., temperature, pressure, etc.) for monitoring, 

control, and inference purposes. In SPA, the statistics of the process variables, instead of the 

process variables themselves, are used for modeling. The statistics capture the characteristics of 

each individual variable (e.g., mean and variance), the interactions among different variables (e.g., 

covariance), the dynamics (e.g., auto-, cross-correlations), as well as process nonlinearity and 

process data non-Gaussianity (e.g., skewness, kurtosis, and other higher-order statistics or HOS).   

SPA is based on the hypothesis that these statistics are sufficient and even better in capturing 

process characteristics (e.g., static properties and dynamic behaviors) than original process 

variables. This hypothesis has been supported in various applications, including  fault detection 

[38], [40], [47], [48], fault diagnosis [40], [49], and virtual metrology or soft sensor [39], [50]–

[52]. Due to the fact that statistics are computed using a set of observations, they are less affected 

by noises. In addition, there are robust statistics that are insensitive to outliers. Finally, due to the 

central limit theorem (CLT), these statistics are asymptotically normally distributed. For these 
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reasons, SPA is selected in this work to extract robust and predictive features from raw CSI data. 

It is worth noting that SPA does not require preprocessing of the CSI data (i.e., outlier detection 

and handling, noise removal/reduction) that has been required in previous studies [33]–[35]. The 

schematic diagram of SPA-based classification is shown in Figure 2.9. In the first step, various 

statistics are extracted from the CSI amplitude and phase data. 

ℙ:𝑿𝑿⟶ 𝑭𝑭         (2.4) 

Where ℙ denotes the operator that maps the 3D CSI data array 𝑿𝑿 𝜖𝜖 𝑅𝑅𝑁𝑁×𝑅𝑅×𝐾𝐾  containing N samples, 

R amplitudes and phase differences of all subcarriers from K packets into a feature matrix 𝑭𝑭 𝜖𝜖 𝑅𝑅𝑁𝑁×𝑆𝑆   

containing N samples with each sample now characterized by S statistics, such as mean, standard 

deviation, skewness, and kurtosis of the amplitude of each subcarrier calculated over K packets. 

Note that K does not have to be the same across different samples, as long as it is sufficiently large 

to obtain reliable statistics. This is convenient if different number of packets were received for 

different samples. For between-variable statistics, between-subcarrier differences are considered, 

but between-packet statistics are not considered, as packets are independent of each other. In 

Figure 2.9,  𝒀𝒀 𝜖𝜖 𝑅𝑅𝑁𝑁×1 denotes the MC levels for N samples. In the second step, a classification 

model is developed to capture the relationships between the sample features (i.e., statistics) and 

the response (i.e., MC levels). The SPA framework is a flexible method as different statistics can 

be added or removed based on how well they capture the relationships between the predictors and 

the response variables or classes.  
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Based on the SPA framework, we extracted 13 statistics (listed in Table 2.1) of 90 

amplitude variables (i.e., 3 antennas, each with 30 subcarriers) and 60 phase difference variables 

(i.e., 2 independent antenna pairs, each with 30 subcarriers). All statistics are computed over 

40,000 observations for each of the 200 samples (i.e., 10 samples/shuffles for each of the 20 MC 

levels). Autocorrelations are not considered because the packets are independent of each other, as 

evidenced in Figure 2.10, where the sample autocorrelation coefficient of the CSI amplitude from 

one subcarrier of one antenna is shown, which resembles the pattern of a typical random signal. 

For cross-correlations, only cross-correlations between subcarriers of the same antenna with lag 0 

are considered due to the absence of serial correlation between lags. Figure 2.11 shows the cross-

correlation coefficient of CSI amplitude among subcarriers of the same antenna. It can be seen that 

CSI amplitude (and phase difference, not shown) from different subcarriers are highly correlated,  

Figure 2.9 Schematic of SPA-based feature extraction for classification 
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especially the neighboring subcarriers. Because of this observation, we also considered mean 

difference between consecutive subcarriers. The idea is to capture the relationships between 

consecutive subcarriers in a more quantitative way than cross-correlation coefficient between 

them. In this way, the overall shape of the CSI amplitude or phase difference across subcarriers 

can be captured. 

 

 

 

Figure 2.10 Auto-correlation coefficients of CSI amplitude of one antenna subcarrier 
over 40,000 packets show no significant serial correlation among packets 
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Figure 2.11 Cross-correlation coefficients of CSI amplitude between subcarriers of one 
antenna show high correlations, especially between consecutive subcarriers. 
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Table 2.1 Statistics considered as features in this work 

Statistics Definition Statistics per 
sample 

Mean 𝜇𝜇(𝑥𝑥) = 1
𝐾𝐾
∑ 𝑥𝑥𝑖𝑖𝐾𝐾
𝑖𝑖=1 , where 𝑥𝑥 is a CSI amplitude or phase difference 

variable 
150 

Median 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = 1

2
�𝑥⃑𝑥⌊(𝐾𝐾+1) 2⁄ ⌋ + 𝑥⃑𝑥⌈(𝐾𝐾+1) 2⁄ ⌉� where 𝑥⃑𝑥 denotes sorted 𝑥𝑥 in 

ascending order; ⌊∙⌋ and ⌈∙⌉ denote the floor and ceiling functions, 
respectively 

150 

Maximum 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = 𝑥⃑𝑥𝐾𝐾 150 
Minimum 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = 𝑥⃑𝑥1 150 
Interquartile 
range 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥) = 𝑄𝑄3(𝑥𝑥) − 𝑄𝑄1(𝑥𝑥), where 𝑄𝑄3(𝑥𝑥) and 𝑄𝑄1(𝑥𝑥) are the upper 
and lower quartiles of 𝑥𝑥 150 

Standard 
Deviation 𝑠𝑠(𝑥𝑥) = �

1
𝐾𝐾 − 1

�(𝑥𝑥𝑖𝑖 − 𝜇𝜇(𝑥𝑥))2
𝐾𝐾

𝑖𝑖=1

 150 

Mean absolute 
deviation 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) =

1
𝐾𝐾
�|𝑥𝑥𝑖𝑖 − 𝜇𝜇(𝑥𝑥)|
𝐾𝐾

𝑖𝑖=1

 150 

Median absolute 
deviation 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) =

1
𝐾𝐾
�|𝑥𝑥𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)|
𝐾𝐾

𝑖𝑖=1

 150 

Coefficient of 
variation 𝐶𝐶𝑉𝑉(𝑥𝑥) =

𝑠𝑠(𝑥𝑥)
𝜇𝜇(𝑥𝑥)

 150 

Skewness 𝛾𝛾(𝑥𝑥) =
1
𝐾𝐾∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇(𝑥𝑥))3𝐾𝐾

𝑖𝑖=1

𝑠𝑠(𝑥𝑥)3
 150 

Kurtosis 𝜅𝜅(𝑥𝑥) =
1
𝐾𝐾∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇(𝑥𝑥))4𝐾𝐾

𝑖𝑖=1

𝑠𝑠(𝑥𝑥)4
 150 

Cross-
correlation 
coefficient (lag 
0) 

𝑅𝑅𝑥𝑥𝑥𝑥 =
1
𝐾𝐾∑ [(𝑥𝑥𝑖𝑖−𝜇𝜇(𝑥𝑥))(𝑦𝑦𝑖𝑖−𝜇𝜇(𝑦𝑦))]𝐾𝐾

𝑖𝑖=1

𝑠𝑠(𝑥𝑥)𝑠𝑠(𝑦𝑦)
 , where 𝑥𝑥 and 𝑦𝑦 are two CSI 

amplitude variables of the same antenna or phase difference 
variables of the same antenna pair 

1
2
(30 × 29) × 3

+ 1
2
(30 × 29)

× 2 = 2175 

Mean difference 
of consecutive 
subcarriers 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥 =  𝜇𝜇(𝑦𝑦) −  𝜇𝜇(𝑥𝑥), where 𝑥𝑥 and 𝑦𝑦 are CSI amplitude or 
phase difference variables of two consecutive subcarriers of the 
same antenna 

29 × 3
+ 29 × 2
= 145 

Table 2.1 shows that there are 3,970 feature candidates for each sample, which is a rather large 

feature pool considering that we only have 200 samples. Therefore, a feature selection is desired 
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before modeling to avoid over-fitting. There are many feature selection methods available. In this 

work we employ principal component analysis (PCA) for its simplicity and easy visualization, 

which is detailed in the next section. 

2.6. Feature engineering with PCA 
 

The goal of feature selection is to find features that maximize between-class variance (i.e., the 

distinct difference for samples of different MC levels) while minimizing within-class variance 

(i.e., high similarity for samples of the same MC level). For simplicity and robustness of features, 

we compare features by types listed in Table 2.1. This is conducted via unsupervised learning of 

PCA on each feature type and project them onto low-dimensional principal component subspace 

(PCS). Each feature was normalized to zero mean unit variance across all 200 samples prior to 

PCA. It is worth noting that features are selected from potential candidates based on how well they 

minimize the within-class variance while maximizing the between-class variance through data 

exploration and visualization. The results are illustrated in Figure 2.12 and Figure 2.13, where the 

87 CSI amplitude mean difference of consecutive subcarriers (MDCSs) of 70 samples were 

projected onto the first three principal component directions to obtain the three “score” plots 

(Figure 2.13). For comparison, the score plots of 150 CSI amplitude means of the same 70 samples 

were also generated (Figure 2.12). As can be seen from Figure 2.13, MDCSs show not only 

significant between-class differences (i.e., samples from different MC levels are far apart in one 

or multiple score plots) but also significant within-class similarities (i.e., samples from the same 

MC level but different shuffles form a compact cluster). In contrast, the mean of CSI amplitude is 

much more sensitive to woodchip packing, indicated by the wide scattering of samples from the 

same MC level but different shuffles. In addition, compared to CSI amplitude MDCS, the CSI 

amplitude mean is less sensitive to MC levels, indicated by the less separation of samples from 
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different MC levels. As mean directly resembles raw data behavior, this is an indication of 

potentially poor performance for classification using raw data, which was verified in the previous 

section. Through this comparison of all feature types listed in Table 2.1, it was found that the 

MDCSs of CSI amplitude are the best feature candidates and therefore were selected as the final 

features for developing classification models. In this way, we reduce the feature space from 3,970 

to 87. It is worth noting that further feature selection can be conducted to use MDCSs of selected 

subcarriers instead of all 30 subcarriers. It is also worth noting that classification performance is 

expected to improve if more systematic feature selection is conducted, such as combining features 

from different types. These will be our future work to further improve the technology. However, 

in this work, we try to strike a balance that leans more towards simplicity and robustness than 

numerical performance. 
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2.7. Model building  
 

Figure 2.12 PCA score plots of CSI amplitude means of 70 samples at 7 different MC levels (i.e., 
10 samples at each MC level) 

Figure 2.13 PCA score plots of CSI amplitude mean difference of consecutive subcarriers 
(MDCS) of the same 70 samples. MDCSs show much better quality as features in both 
maximizing between-class variance and minimizing within-class variance 
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Once the 87 CSI amplitude MDCSs are selected as the features, the next step is to develop 

classification models. In this work, we compare various state-of-the-art machine learning 

classification techniques in classifying woodchip MC levels using these features. The procedure 

is outlined in Figure 2.14. For each classification model, 9 samples are randomly selected from 10 

shuffled samples at the same MC level for each of the 20 MC levels, which results in 180 training 

samples. The remaining one shuffled sample from each MC level is used for independent testing, 

which results in a total of 20 testing samples. Due to the limited number of samples, a Monte Carlo 

validation and testing (MCVT) procedure [51] is followed to repeat the random sample selection 

and model training and testing procedure 100 times. In addition to the mean and standard deviation 

of the overall classification accuracy (Eqn. 2.4) of 100 such MCVTs, the confusion matrix resulted 

from the same MCVTs is also used to evaluate the performance of different classification models. 

 

Figure 2.14 Overall process flow diagram of woodchip MC 
level classification using CSI data 
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The machine learning classification techniques studied in this work include linear 

discriminant analysis (LDA), support vector machine (SVM), artificial neural network (ANN), as 

well as ensemble modeling of bagging with LDA, and ensemble boosting method XGBoost. These 

methods are briefly reviewed in the following sections. 

2.7.1. Linear discriminant analysis (LDA) 
 

LDA is a robust supervised learning technique for multiclass classification. It is a 

generalization of Fisher’s linear discriminant, which find a linear combination of features to 

separate multiples classes in the dimensional space. Scikit-learn Python library [53] is used to 

implement LDA in this work, which fits a Gaussian density to each class and estimates the class 

conditional distribution of data for each class 𝑘𝑘 using Bayes’ theorem: 

𝑃𝑃(𝑦𝑦 = 𝑘𝑘|𝒙𝒙) = 𝑃𝑃�𝒙𝒙�𝑦𝑦 = 𝑘𝑘�𝑃𝑃(𝑦𝑦=𝑘𝑘)
𝑃𝑃(𝒙𝒙) = 𝑃𝑃(𝒙𝒙|𝑦𝑦=𝑘𝑘)𝑃𝑃(𝑦𝑦=𝑘𝑘)

∑ �𝑃𝑃�𝒙𝒙�𝑦𝑦 = 𝑙𝑙�𝑃𝑃(𝑦𝑦=𝑙𝑙)�𝐶𝐶
𝑙𝑙=1

           (2.6) 

where 𝒙𝒙 ∈ 𝑅𝑅𝑑𝑑 is a sample feature vector of dimension 𝑑𝑑, 𝑦𝑦 is the class label of that sample, 𝐶𝐶 is 

the total number of classes. LDA makes predictions by estimating the probability of a new sample 

belonging to each class. Based on the class with the highest probability, the new sample is assigned 

to that class. More information on multiclass LDA can be found in [54]. 

2.7.2. Support vector machine (SVM) 
 

Support vector machine (SVM) is a supervised machine learning technique. In linear SVM 

classification of two classes, classification is performed by finding a hyperplane that maximizes 

the separation or margin between the two classes. If the two classes are not linearly separable, the 

input vectors can be nonlinearly mapped to a high-dimensional feature space through a kernel 

function that presumably makes the separation easier in the kernel space. In this application, it was 
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found that linear SVM performs better than nonlinear kernels (e.g., radial basis function (RBF) 

and sigmoid kernels) based SVMs. This is consistent with the preliminary finding in the previous 

section, where a subset of 7 classes was shown to be linearly separable (Figure 2.13). More 

information on SVM can found in [55]–[57]. In this work, multiclass classification is carried out 

using scikit-learn [53] with the “one-versus-one” approach where 190 (i.e.,(20 × 19) 2⁄ ) 

classifiers are constructed. 

2.7.3. Artificial neural network (ANN) 
 

Artificial neural network (ANN), or simply neural network (NN), was developed with the 

idea of mimicking human brains, which now form the foundation of many deep learning 

techniques. A neural network consists of several layers, including an input layer that takes input 

data, one or more hidden layers depending on the complexity of the problem and the 

representations to be learned, and an output layer that outputs either discrete or continuous values 

depending on the type of problem, i.e., classification or regression. The constructed ANN 

represents interconnected input and out units or nodes (called neurons), in which each connection 

(called an edge) has an associated weight. The training of an ANN for classification is to adjust 

these weights to optimize the prediction of correct classes for the training data (e.g., through 

minimizing a cost function such as classification error). Once trained, the ANN takes a new set of 

similar data and makes class predictions based on the trained model. Keras is used for ANN 

implementation in this work. Because of the likely linear separability of this particular application, 

one hidden layer is used in this work. Other hyperparameters, including the number of neurons in 

the hidden layer, optimizer, activation function in the hidden layer, initialization, epochs, and batch 

size, are optimized using random search followed by Bayesian optimization. More information on 

ANN can be found in [58]–[61]. 
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2.7.4. Bagging  
 

Bagging is a bootstrap ensemble method that creates individual models for its ensemble by 

training each classifier on a random distribution of the training data. Each classifier’s training set 

is generated by random sampling, with or without replacement from all the samples available for 

training. Individual predictions of each classifier are aggregated based on a voting scheme (hard 

voting or soft voting) to form a final prediction. Each base classifier can be trained in parallel with 

the subsamples generated with random sampling. Bagging is known to reduce overfitting or high 

variance by voting. Different base estimators can be used within bagging. In this work, LDA 

classifier is used due to the linear separability of the classes. Scikit-learn is used to implement 

bagging. The hyperparameters, including the number of base classifiers, bootstrapping samples 

and/or features, and the sample/feature size, are optimized using random search followed by 

Bayesian optimization. More information on bagging can be found in [62]–[65]. 

2.7.5. XGBoost  
 

Another ensemble method that constructs multiple regression trees is boosting. In comparison 

to bagging, boosting approaches combine weak learners into strong learners iteratively by 

optimizing a cost function along the negative gradient direction. XGBoost is one of the most 

successful boosting approaches under the gradient boosting framework. The XGBoost algorithm 

objective combines training loss and regularization terms for a trade-off on bias and variance. 

Python library xgboost is used for implementation. The hyperparameters, include the number of 

base learners (i.e., regression trees), learning rate, updater, feature selector, and regularization 

parameters, are optimized using random search followed by Bayesian optimization. More 

information on XGBoost can be found in [66]. 
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2.7.6. Hyperparameter optimization  
 

Hyperparameter optimization is very important in training ML models as the model 

architecture directly affects the model performance. There are three major approaches for 

hyperparameter optimization, including grid search, random search [67], [68], and Bayesian 

optimization [69], [70]. Grid search can be quite effective when dealing with a small 

hyperparameter space. In general, however, random search and Bayesian optimization are more 

efficient than grid search. For complex models with large parameter spaces, such as XGBoost and 

ANN, the time required for grid search could be prohibitive. In these cases, random search or 

Bayesian optimization is preferred. Random search samples random parameter combinations 

based on certain statistical distributions. The idea is that, provided enough iteration, random search 

can find an optimum or close to optimum in lesser time than grid search, although random search 

does not guarantee a global optimum. Both grid search and random search find optimal 

hyperparameters in an isolated way without considering past evaluations. In contrast, Bayesian 

optimization considers past hyperparameter values that minimize the cost function by building a 

surrogate model based on past evaluation results. The surrogate model is presumably 

computationally cheaper to optimize than the original objective function, so the next input values 

are selected by applying criteria, such as expected improvement (EI), to the surrogate model. In 

this work, random search is utilized to explore the hyperparameter space. The final 

hyperparameters are determined by Bayesian optimization with Tree Parzen Estimator (TPE) using 

EI as the criterion. The Scikit-learn library is used for random search, while hyperopt [69] is used 

for Bayesian optimization. 
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2.8. Results and discussion 

In this section, we discuss our findings of woodchip MC level classification using the 87 

features extracted following the SPA framework. The classification results from the five different 

classification methods discussed in the previous section are compared. As discussed previously, 

due to the limited number of samples, 100 MCVT simulations are conducted. For every 

classification technique in each MCVT simulation, hyperparameters are optimized using stratified 

10-fold cross-validation. The trained model is used for evaluation on the set-aside testing set. The 

average and standard deviation of classification accuracy of 100 such runs (100 different test sets) 

are used to evaluate the performance of each classification method. In addition, the overall 

classification confusion matrix from 100 MCVTs is used to visualize and detect the far-off 

misclassifications where the predicted class is off its true class by more than one MC level. 

 

 

 

Figure 2.15 Comparison of classification accuracy of LDA when features 
from different antennas are used 
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Table 2.2 Overall classification accuracy of LDA when features from single or all antennas are 
used 

 

 

 

 

 

 

Data used Classification accuracy 

Antenna 1 93.05 ± 5.17 

Antenna 2 92.6 ± 5.97 

Antenna 3 96.35 ± 3.40 

All 97.55 ± 2.89 

Figure 2.16  Comparison of classifcation confusion matrices when all features 
from all three antennas are used 
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We first investigate effect of antennas using LDA. The mean and standard deviation of overall 

classification accuracy is shown in Table 2.2 and Figure 2.15. It can be seen that when a single 

antenna (i.e., with 29 out of 87 features) is used, antenna 3 provides the best information for 

classification. The best results, in both mean and standard deviation of classification accuracy, are 

obtained when all three antennas (i.e., with all 87 features) are used. 

Another advantage of using all three antennas is observed when comparing the confusion 

matrix of different scenarios. Figure 2.16 and Figure 2.17  compares the confusion matrices of 

using only antenna 3 with that of using all three antennas. It can be seen that there are 29 far-off 

misclassifications when only antenna 3 is used. When all three antennas are used, there is no far-

Figure 2.17 Comparison of classification confusion matrices when only features from 
antenna 3 are used 
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off misclassification occur. Therefore, for the remainder of this work, all 87 features from all three 

antennas are used. 

Next, using all 87 features from all three antennas, we compare performance of different 

classification methods. The results are shown in Figure 2.18 and Table 2.3, which indicate that all 

methods perform well and all achieve greater than 95% overall classification accuracy.  

 

 

 

Figure 2.18 Comparison of overall classification accuracy when 
different classification techniques are used 
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Table 2.3 Overall classification accuracy when different classification techniques are used 

 

 

 

 

 

 

 

 

SVM performs the worst among all methods in terms of mean classification accuracy. ANN 

performs slightly better than SVM in mean classification accuracy but with a slightly higher 

standard deviation, indicating lower consistency when different training and testing samples are 

used. However, an analysis into the confusion matrices shows that SVM results in seven far-off 

misclassifications while all other methods result in zero far-off misclassification (Figure 2.19, 

Figure 2.20,Figure 2.21 and Figure 2.22). XGBoost performs slightly better than ANN and SVM 

but not as good as LDA. This result is somewhat surprising as XGBoost has outperformed other 

techniques in many Kaggle competitions on real-world datasets and a variety of applications. 

However, as shown earlier in Figure 2.13, this application is more of a linearly separable case with 

the features selected, which explains the good performance of LDA. The results also demonstrate 

the robustness of LDA when dealing with linearly separable cases. Nevertheless, bagging can still 

improve a base classifier such as LDA in this work. As shown in Table 2.3 Overall classification 

accuracy when different classification techniques are used, bagging of LDA provides the best 

performance with the highest average overall classification accuracy of 98.75% and the smallest 

standard deviation of 2.29% from 100 MCVT’s. The confusion matrices of all methods indicate 

 

Method Classification accuracy 

SVM 95.50 ± 3.79 

ANN 95.85 ± 4.15 

XGBoost 96.40 ± 3.70 

LDA 97.55 ± 2.89 

Bagging (LDA) 98.75 ± 2.29 
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that only SVM results in far-off misclassifications while all other methods only result in nearest-

neighbor misclassification. The specific number of the two types of misclassifications are 

compared in Figure 2.23, where the LDA on raw CSI amplitude data is used as the reference. 

Figure 2.23 shows that feature engineering and selection play a key role in this application, and all 

methods based on the 87 CSI amplitude MDCS features easily outperform LDA with raw CSI 

amplitude data as features. 

 

 

Figure 2.19 Classification confusion matrix - SVM 
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Figure 2.20 Classification confusion matrix - ANN 
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Figure 2.21 Classification confusion matrix for XGBoost 
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Figure 2.22 Classification confusion matrix for Bagging with LDA as base 
estimator 

Figure 2.23 Comparison of far-off misclassification of different 
approaches 
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We also compared the following two scenarios of hyperparameter tuning: 

A) A set of hyperparameters are optimized for each MCVT run using the selected training 

samples, and that set of hyperparameters are used for evaluation on the corresponding test 

set. Therefore, different MCVT runs could potentially have different hyperparameter 

values. 

B) The optimal hyperparameters from 100 MCVT’s of Scenario A are stored, and the mode 

of each hyperparameter (i.e., the value that appears most frequently) is selected to construct 

a universal set of hyperparameters. The universal hyperparameter set is used for model 

training and testing of the same 100 sets of training and testing samples as in Scenario A. 

One potential issue with Scenario B is that a test sample in one MCVT is potentially used as a 

training sample in other MCVT’s. When the hyperparameters from all MCVT’s are pooled 

together to determine the mode, essentially all samples have been used as training samples for 

hyperparameter tuning, and there are no independent samples left for testing. This is confirmed by 

the comparison of the classification accuracy of the two scenarios. As shown in Table 2.4, except 

LDA, all other methods tuned following Scenario B slightly outperform their counterparts tuned 

following Scenario A. Therefore, the results reported previously in this work are all based on 

Scenario A for fair evaluation of all methods with independent test samples. 
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Table 2.4 Comparison of classification accuracy under two hyperparameter tuning scenarios 

 

Method Scenario A Scenario B 

SVM 95.50 ± 3.79 96.40 ± 3.63 

ANN 95.85 ± 4.15 96.35 ± 3.61 

XGBoost 96.40 ± 3.70 96.40 ± 3.34 

LDA 97.55 ± 2.89 97.55 ± 2.89 

Bagging (LDA) 98.75 ± 2.29 99.35 ± 1.69 

2.9. Conclusion 

 

In this section, for the pulp and paper industry in the U.S., the pulping process has been 

identified as a major opportunity for improving energy efficiency and productivity. However, the 

implementation of model-based optimization, control, and other advanced manufacturing 

technologies has been hindered by the lack of real-time sensing of woodchip MC under the harsh 

manufacturing environment. To overcome this bottleneck, we investigate the potential of an IIoT 

short-range Wi-Fi-based woodchip MC sensing technology. The proposed technology takes the 

advantages of IIoT devices (e.g., toughness, connectivity, low-cost, small-size, etc.) while 

overcoming their shortcomings (e.g., the machine learning challenges of messy big data) by SPA-

based feature engineering. Specifically, this work demonstrates that woodchip packing is a strong 

confounding factor to woodchip MC level, evidenced by its significant impact on both amplitude 

and phase of the collected CSI data. Although randomization is a good strategy to mitigate this 

confounding factor, it is not sufficient by itself. As a validation, we demonstrated that classification 

using raw CSI data results in not only low classification accuracy but also many far-off 

misclassifications where the predicted MC class is off its true class by more than one level. The 
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result also illustrates that classification accuracy alone is not a good performance metric, and the 

practical implications (e.g., cost) of misclassification must also be considered. We show that the 

SPA-based feature engineering framework is a systematic approach for generating physically and 

statistically meaningful features compared to other kernel-type or algorithmically generated (e.g., 

square, square root, exponential, etc.) features that are often unintuitive. Through simple feature 

selection such as PCA, the mean difference of consecutive subcarriers (MDCSs) of CSI amplitude 

were found to be robust features that are not only highly sensitive to MC levels but also highly 

insensitive to woodchip packing. Using MDCSs as features, we demonstrated the superior 

classification performance of using CSI data collected off all three antennas compared to that of 

using any single antenna. Finally, using MDCSs from all three antennas, we investigate the 

representative state-of-the-art classification techniques, including LDA, SVM, ANN and ensemble 

learning methods including bagging with LDA and gradient boosting with XGBoost. The results 

showed that LDA and its bagging extension perform the best among all methods, achieving overall 

classification accuracy of 98~99%. In addition, when MDCSs are used as features, only SVM 

results in far-off misclassifications, while all other methods only result in nearest-neighbor 

misclassifications, which is a significant improvement compared to when raw CSI data were used 

as features. 
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3.  Chapter 3. Next-generation virtual metrology for semiconductor manufacturing: A 
feature-based framework 

 

In semiconductor manufacturing, VM is the prediction of wafer properties using process 

variables and other information available for the process and/or the product without physically 

conducting property measurement. VM has been utilized in semiconductor manufacturing for 

process monitoring and control for the last decades. In this work, we demonstrate the shortcomings 

of some of the commonly used VM methods and propose a feature-based VM (FVM) framework. 

Unlike existing VM approaches where the original process variables are correlated to metrology 

measurements, FVM correlates batch features to metrology measurements. We argue that batch 

features can better capture semiconductor batch process characteristics and dynamic behaviors. As 

a result, they can be used to build better predictive models for predicting metrology measurements. 

FVM naturally addresses some common challenges that cannot be readily handled by existing VM 

approaches, such as unequal batch lengths and/or unsynchronized batch trajectories. Simulated 

and industrial case studies are used to demonstrate the effectiveness of the proposed FVM method. 

We discuss how to generate and select features systematically and demonstrate how feature 

selection affects FVM performance using a case study. Finally, the capabilities of FVM in 

addressing process nonlinearity are investigated in great detail for the first time, which helps 

establish the theoretical foundations of the proposed framework for the semiconductor industry.  

 

3.1. Introduction  
 

In semiconductor manufacturing, a wafer undergoes hundreds of different steps to yield the 

final product. After a processing step, typically, a few (1–3) wafers within a lot are measured at 

the metrology station, and this sampled metrology data represent the whole lot. Tools such as 
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ellipsometer and Atomic Force Microscope (AFM) as shown in Figure 3.1 are used for offline 

metrology to ensure the quality of the product manufactured is on par with the standards and the 

process is on target. However, this methodology using the traditional offline metrology tools 

becomes insufficient when the device dimensions continue to decrease and the lot-to-lot process 

control is being increasingly replaced with the wafer-to-wafer (W2W) control. In addition, there 

has been a tremendous increase in the throughput due to the rising demands for products. 

Performing offline metrology after each step on the wafers to ensure the quality leads to a very 

high cost as well as a significant time delay. W2W control requires metrology measurements of 

every wafer, and it has been proposed to use the integrated metrology (IM) sensors at the 

processing tool to provide such measurements[71]. However, issues such as the impact on 

throughput, increase in cycle time, and higher cost make IM less attractive in many process 

environments.  

 

Figure 3.1 Atomic Force Microscope 
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As a solution to the existing approach, Virtual Metrology (VM) technology (also known as 

the soft sensor in process industry) has been proposed for 100% wafer measurement to support 

W2W control[72][49][73]. Frequent sampling is the key for better control to the manufacturing 

processes. Because machine data are usually sampled much more frequently compared to 

metrology data, and machine data are instantly available compared to delays often associated with 

metrology tools, an accurate VM can significantly improve process monitoring and control 

performance by providing real-time predicted metrology data. 

In addition, in today’s industrial scenario, the rate at which information is available, it is 

impossible to process information and extract useful findings with traditional tools available. This 

is one of the major focus areas for the next round of transformation in advanced manufacturing. 

Big data analytics opens up new horizons for managing significantly larger amounts of 

information. Big data has its own challenges and its characteristics can be summarized by 4 V’s: 

Variety (different types of data), Volume (systems needs to be able to handle the massive amount 

of data in real-time), Velocity (the speed at which data is generated) and Veracity (trustworthiness 

•Uncertainty 
of Data

•Rate of 
data 
generation

•Different 
forms of 
Data

•Scale of 
Data

Volume Variety

VeracityVelocity

Figure 3.2 Current challenges in Big data 
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of data in terms of accuracy)[74], as shown in Figure 3.2. Acting on it with analytics for improved 

diagnostics and prognostics would lead to significant advancements in the field. The goal is to be 

proactive instead of being reactive, regardless of the volume of data. 

3.2. Virtual Metrology (VM) 
 

VM is the process of predicting the product properties based on the relationship between 

the metrology data of quality variable and process data without physical measurements. The main 

objective of Virtual Metrology is to achieve total quality management and run-to-run control. The 

major advantages of Virtual metrology include reduced cost, reduced production time due to no 

delays pertaining to metrology measurement, predictive maintenance, and detection of faults at 

faster rates.  Figure 3.3 describes the schematic of a typical virtual metrology model[75]. Large 

volumes of high-frequency machine data and metrology measurements obtained through 

metrology equipment available are used to build models with very high prediction accuracy. These 

models, in turn, are used for an online application where newly available machine data for wafers 

produced is used to predict their product properties thereby, ensuring the process is on target. It is 

also worth noting that, in semiconductor industry, the use of big data analytics tools is not only 

limited to prediction of product properties but can also be used fault detection and diagnosis, and 

process control as well as shown in Figure 3.4. However, this work investigates the use of big data 

tools in predicting product properties. 

 



74 
 

 

3.3. Challenges 
 

One of the most important factors that need to be considered when implementing any VM for 

industrial applications is the level of data pre-processing required. Data pre-processing has a direct 

and significant impact on the deployment and maintenance of the VM. Fewer data pre-processing 

steps and/or more automated data pre-processing steps lead to a more sustainable method in a 

production environment.  

Another important factor is the prediction accuracy of the VM approach used in predicting the 

properties of interest of a wafer. Semiconductor processes often need to eliminate or reduce the 

effect of process noise, measurement noise, and unexpected drifts in the process. These problems 

often degrade the quality of control as well as the quality of a product. Hence, these are the main 

barriers that hamper the development of an accurate VM model. Dealing with these challenges 

would lead to a better and accurate VM system for semiconductor manufacturing. Through our 

Figure 3.3 Schematic of VM modeling 
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work, we aim to get a step closer towards an ideal VM model by addressing both the existing 

challenges mentioned above.  

3.4. Research objectives 
 

To address the existing challenges in semiconductor manufacturing, we propose a feature-

based VM (FVM) framework based on the SPA process modeling and monitoring framework we 

proposed previously[38], [47]. The most significant difference between the proposed VM 

approach and other existing approaches is that instead of extracting correlations between process 

variables and metrology measurements, the proposed method extracts the correlations between 

process features and metrology measurements to build VM models. By doing so, the proposed 

method can not only eliminate most data pre-processing steps but also provide superior prediction 

performance. SPA for a virtual metrology framework has been tested previously[49]. However, in 

that work, the features were limited to process variable statistics, and the mechanisms behind SPA 

were not explored. One major contribution of the present work is to extend and generalize the 

method to include any features, not just statics, but also non-statistical process features, such as 

process knowledge-based landmark features[76]; profile-driven features[77]; geometry-based 

features[78]. A detailed study on how the features are generated, selected systematically, and how 

feature selection affects FVM performance is presented. Finally, the capabilities of FVM in 

addressing process nonlinearity are investigated in great detail for the first time, which helps 

establish the theoretical foundations of the proposed framework for the semiconductor industry.   
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3.5. A brief review of existing VM approaches 
 

As discussed previously, VM is not unique to the semiconductor industry, which 

essentially serves the same purposes as the soft sensor, a term often used in the process industry. 

VM or soft sensor makes use of secondary variables that are measured online frequently to predict 

the product quality variables that are not measured online or measured infrequently. VM can be 

developed using either model-based approaches or data-driven approaches. For industrial 

processes, data-driven approaches are usually easier to develop and to implement online; therefore 

they are potentially more attractive. Due to the limited space, only some of the data-driven VM 

approaches applied to semiconductor manufacturing processes are reviewed in this work.  

Figure 3.4 Application of Big data analytics to the Semiconductor Industry 
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Among data-driven approaches, the commonly used ones are time series analysis (TSA), 

Kalman filter (KF), multiple linear regression (MLR), principal component regression (PCR), 

partial least squares (PLS), and other nonlinear methods such as those based on artificial neural 

networks (ANNs).  

3.5.1. Time series analysis (TSA) 
 

Because the metrology data are generally sequential in time, autoregressive moving 

average (ARMA) or autoregressive integrated moving average (ARIMA) models can be 

identified, e.g., following the procedure proposed by [79]. Once the model structure is 

determined, and parameters are estimated using the historical metrology data, the model can be 

used to predict the future values of the metrology data. Non-seasonal ARMA models are usually 

denoted by ARMA( p,q ) in the following form that combines AR and MA models. 

𝑦𝑦𝑡𝑡 − 𝛼𝛼1𝑦𝑦𝑡𝑡 − 1 −⋯  −  𝛼𝛼𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 = ∈𝑡𝑡+ 𝜃𝜃1 ∈𝑡𝑡−1+ ⋯+ 𝜃𝜃𝑞𝑞 ∈𝑡𝑡−𝑞𝑞                                     (3.1) 

where yt, yt-1 ··· yt-q are present (at time t ) and past metrology data. Parameters p and q are non-

negative integers, p is the order (number of time lags) of the autoregressive model, and q is the 

order of the moving-average model. ARMA model assumes that the time series is stationary and 

it is recommended to difference non- stationary series one or more times to achieve stationary, 

which results in a more general ARIMA( p, d, q ) model where d is the degree/time of 

differentiation.  
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3.5.2.  Kalman filter (KF) 
 

Kalman filter was proposed in the early 1960s and has been extensively used for the state 

estimation of dynamic systems[80][81]. It has also been formulated for VM[72]. 

 

𝐾𝐾 = 𝑃𝑃𝑑𝑑𝑑𝑑𝐶𝐶𝑇𝑇(𝐶𝐶𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑇𝑇 + 𝑅𝑅)−1                                                   (3.2) 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐾𝐾(𝑦𝑦 − 𝐶𝐶𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)                                                   (3.3) 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 −  𝐾𝐾(𝐶𝐶𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜)                                                        (3.4) 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛                                                                              (3.5) 

 

Where K is the Kalman gain, P the state error covariance matrix, R the measurement noise 

covariance matrix, x the independent or process variables, the dependent or metrology variable. 

 

 

3.5.3. Multiple linear regression (MLR) 
 

Multiple linear regression (MLR) aims to model the relationship between multiple 

explanatory or independent variables from machine data and a response or dependent variable of 

metrology data by fitting a linear equation to the historical data, which takes the following form:  

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + ∈                                (3.6) 

where X  is the independent variable matrix; y  is a vector of metrology measurements 

and ∈ is the random error or residual. The coefficient vector b is estimated by minimizing the sum 

of squares of the differences between the actual and modeled metrology measurements, and the 

obtained model is used to predict metrology measurement when a new set of process variables are 
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available. In our work, traditional batch wise unfolding is used to convert the 3-dimensional matrix 

into a 2-dimensional matrix. The potential issue with MLR for VM is that the process variables 

are quite often (highly) correlated, and the collinearities among xi can cause severe problems for 

MLR - the estimated coefficients 𝒃𝒃� Can be very unstable, which makes predictions by the 

regression model unstable or poor.  

 

3.5.4. Principal component regression (PCR) 
 

Principal component regression (PCR) is an alternative to MLR, which addresses 

independent variable collinearities. PCR is a regression analysis technique based on principal 

component analysis (PCA)[82], [83][84]. In PCR, the matrix of raw data X K is decomposed 

as follows 

𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝑋𝑋�             (3.7) 

Where T L and P L are the score and loading matrices, respectively.  𝑿𝑿 �  is the residual matrix 

containing mainly the noise. Then y is related to T: 

𝑦𝑦 = 𝑇𝑇𝑇𝑇                (3.8) 

which can be solved as 

𝑏𝑏 = (𝑇𝑇𝑇𝑇𝑇𝑇)−1𝑇𝑇𝑇𝑇𝑦𝑦                (3.9) 

In short, instead of regressing the dependent variable (i.e., the metrology measurements) on 

the explanatory or independent variables (i.e., the process variables) directly as in MLR, the 

principal components (PCs) or scores of the explanatory variables are used as regressors in PCR. 

Compared to MLR, PCR has the advantage of addressing the multicollinearity problem. In 
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addition, PCR handles noisy process variables better as usually only a subset of all the PCs are 

used to build the model. However, the PCs are derived without any reference to the dependent 

variables. In other words, PCs explain the most variation in X, which may not be (highly) related 

to the variation in y. Due to this reason, the performance of PCR for VM is not guaranteed. 

3.5.5. Partial least squares (PLS) 
 

Partial least squares (PLS)[85] has all the benefits of PCR while also taking the variation 

of dependent variables into account. Mathematically, 

𝑋𝑋 = 𝑇𝑇 𝑃𝑃𝑇𝑇 +  𝑋𝑋�                     (3.10) 

y = UbT +  y�                       (3.11) 

where U L and the decompositions of X and y are made so as to maximize the covariance 

between T and U. In other words, PLS models the inner relation that correlates the scores of 

independent variables with the scores of dependent variables. Therefore, PLS usually has better 

prediction performance than PCR, which explains why PLS and its variants are the most 

commonly used VM methods in industrial applications.  

 

3.5.6. Other methods 
 

Besides the classical VM methods discussed above, driven by the rapid development of 

machine learning and artificial intelligence in the past few years, other methods have been 

proposed. For example, RBFNN has been proposed as a VM to predict the film thickness of a 

chemical vapor deposition (CVD) process[86]. Support vector regression (SVR) has been applied 

for VM as well[87]. However, these methods have seen few applications because of the complexity 
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involved in implementation and maintenance. In addition, it has been shown that these kernel-

based or NN-based non-linear methods may not necessarily outperform linear methods in soft 

sensor. 

 

3.5.7. Recursive or adaptive VM methods 
 

For all the VM methods discussed in the previous subsections, some of them are 

intrinsically recursive or adaptive methods such as TSA and KF, while the others can be 

straightforwardly extended to recursive or adaptive variants such as recursive PLS (RPLS). For 

PCR or PLS-based methods, there are various adaptation schemes. In this work, adaptation is 

achieved by a first-in-first-out (FIFO) window-based approach wherein each step, and the latest 

sample is included in model training while dropping the oldest sample. This is for the sake of 

simplicity, not computation efficiency or adaptation performance, as neither is the focus of this 

work. 

It is worth noting that due to the high dimensionality of the process variables, in this work, 

TSA only utilizes the metrology data for model building and prediction, while the process data 

are completely ignored. For KF based VM, to reduce the model size, x is the batch-mean of process 

variables. In addition, because KF is developed for dynamics systems, its good performance relies 

on continuous updates of the model parameters. Therefore, TSA and KF are included only as 

recursive VM methods. 

 

3.6. Data preprocessing 
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For MLR, PCR, and PLS, the traditional batch-wise unfolding is employed to convert 

the 3-D matrix into a 2-D matrix of X. In other words, the data matrix X K contains N batches 

with K variables where K = V × M with V denoting number of variables being measured, and M 

denoting the number of measurements taken during a batch. For the simulated CMP process, M 

is the same for all the batches. Therefore, the unfolding process is straightforward. For the 

industrial plasma etch case study, different batches have different durations and hence different 

M. In this work, instead of using more complicated dynamic time warping (DTW) or derivative 

DTW (DDTW)[88]. , we use a simple cut based on the duration of the shortest batch to remove 

the last few measurements for longer batches. After that, the batches are unfolded into 2-D matrix 

X.  

From the above discussion, we see that all existing VM methods discussed previously make 

predictions by extracting linear or nonlinear correlations between process variables and 

metrology measurements. One drawback of utilizing process variables is that some data 

preprocessing steps are usually required. This is due to the characteristics associated with batch 

processes, such as unequal batch and/or step length and unsynchronized or misaligned batch 

trajectories. These preprocessing steps add complexities to VM implementation and 

maintenance. In addition, studies have suggested that there could be information loss or 

distortion caused by data manipulation during preprocessing, which could lead to performance 

deterioration[47]. To address this limitation, in the following section, we present the proposed 

feature-based VM framework, where batch statistics and other features are used as the regressors 

to predict metrology measurements, which naturally handles unequal batch/step lengths and/or 

unsynchronized batch/step trajectories. In addition, we show that the feature-based VM 
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framework provides superior prediction performance compared to the traditional VM methods 

using industrial and simulated cases. 

 

3.7. Feature-based Virtual Metrology (FVM) 
 

The feature-based VM (FVM) framework is developed based on SPA, a process-

monitoring framework we proposed previously. In SPA, various statistics are used to quantify 

process characteristics, and these statistics, instead of process variables themselves, are modeled 

for process monitoring. SPA has been applied for fault detection[38], [47], fault diagnosis[89], and 

virtual metrology[90]. In this work, we extend the features to not just statistics but also other 

features such as process knowledge-based landmark features[76], profile-driven features[77], 

geometry-based features[78]. In the FVM framework, framework, we hypothesize that the batch 

behavior can be better characterized by the process features than by the process variables. 

Therefore, in the FVM framework, process features instead of process variables are used as input 

variables to build the VM model. 

 

Figure 3.5 The schematic diagram of feature-based virtual metrology 
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Figure 3.5 provides a schematic diagram of the FVM framework, which consists of two steps. In 

the first step. Various features ate extracted from batch trajectories:  

𝑃𝑃 ∶ 𝑋𝑋 →  𝐹𝐹                    (3.12) 

where P denotes the operator that maps the process or machine data matrix X K containing N 

batches with K variables into a feature matrix F S containing N batches with each batch now 

characterized by S features. The S features can be anything that characterizes the process 

behavior, such as various statistics that characterize individual variables (such as the mean, 

variance, autocorrelation), the interactions among different variables (such as the cross-

correlations), as well as other features that characterize the process (such as batch and step 

durations, the time integrals of power input). The features can also be extracted from each step 

or phase of the batch instead of lumping all steps or phases together.  

In the second step, a regression method, such as PLS used in this work, is utilized to 

extract the relationships between the features and the metrology measurements 

𝐹𝐹 = 𝑇𝑇𝑃𝑃𝑇𝑇   +   𝐹𝐹�              (3.13) 

𝑦𝑦 = 𝑈𝑈𝑏𝑏𝑇𝑇 +  𝑦𝑦�                 (3.14) 

where U L and the decompositions of F and y are made so as to maximize the covariance 

between T and U, similar to the regular PLS. As seen in Figure 3.5, unequal batch (or batch step) 

length and unsynchronized batch (or batch step) trajectories will have no effect on the FVM 

framework. In other words, the data preprocessing steps that are required by most existing 

methods, including trajectory alignment/warping and data unfolding, are eliminated by FVM. 
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3.7.1. Inclusion of features  
 

The inclusion of features (i.e., what features to be retained in the mapping of Eq. (3.12) ) 

depends on the process. FVM is a flexible framework, and feature inclusion is carried out through 

cross-validation to optimize the VM based on the performance measures to be introduced in the 

next section. Based on our experiences, the following are some general guidelines that can help 

with the feature inclusion process:  

(1) In general, the means and standard deviations of all variables are included due to their general 

importance in characterizing a process.  

(2) Features such as correlations, auto/cross-correlations are added based on the significance of 

the correlations and dynamics that exhibit between variables in the process. 

(3) Higher-order statistics (HOS) such as skewness and kurtosis measure the extent of process 

nonlinearity and process data non-Gaussianity. Their inclusion will enhance VM performance if 

such characteristics are present in the process.  

(4) Other non-statistical features, such as process profile, or knowledge, or geometry-based 

features, can also be included. 

One example is given in the industrial case study, where it shows that the more features 

included, the better performance of the FVM model. It is worth noting that the regression methods 

such as PCR and PLS can naturally handle collinearity among features. Therefore, feature 

redundancy is usually not an issue for FVM. Although feature selection is out of the scope of this 

work, it has been shown that variable or feature selection can sometimes improve the performance 

of the regression methods. Therefore, any feature selection methods can be used as a 

preprocessing step for FVM if further performance improvement is desired.  
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As discussed in [91], the ever-increasing prevalence of big data with 4V challenges, i.e., 

Volume, Velocity, Variety, and Veracity [92], has necessitated the transition from the original 

variable space monitoring paradigm to the feature space monitoring paradigm. Therefore, we 

argue that the next generation VM will shift from the original variable space to the feature space 

as well.  

3.8. Performance measures for comparing different methods 
 

In this work, we compare the proposed FVM with the following static VM approaches 

MLR, PCR, and PLS. Because FVM utilizes PLS to correlate features with metrology, it can be 

straightforwardly extended to recursive VM by deploying recursive PL S (RPLS), which is termed 

recursive FVM or RFVM. We compare RFVM with some existing recursive VM approaches, 

including TSA, KF, and RPLS.  The prediction performance of the VM methods are quantified 

by root-mean-square error (RMSE), the coefficient of determination (R2), and the mean absolute 

percentage error (MAPE) is defined below. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                     (3.15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
�𝑁𝑁

𝑖𝑖=1  × 100 %             (3.16) 

Where n is the total number of samples,  𝒚𝒚𝒊𝒊 the actual metrology value of the output, and  𝒚𝒚�𝒊𝒊 The 

VM predicted value of the output. 

𝑅𝑅2 = 1 −  𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

                                              (3.17) 

Where  𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒆𝒆 =  ∑ (𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏 ,𝑺𝑺𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 =  ∑ (𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊)𝟐𝟐𝑵𝑵

𝒊𝒊=𝟏𝟏  , and  𝒚𝒚� =  𝟏𝟏
𝑵𝑵
∑ 𝒚𝒚𝒊𝒊𝑵𝑵
𝒊𝒊=𝟏𝟏 . 
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All methods are optimized using cross-validation by minimizing RMSE whenever applicable. PLS 

and RPLS were used as regression methods for static and recursive FVM methods.  

 

 

3.9. Application to case studies 
 

3.9.1. Data application to a simulated chemical mechanical planarization process 
 

3.9.1.1. Chemical mechanical planarization simulation 
 

Chemical mechanical planarization (CMP) is a widely used semiconductor manufacturing 

process to planarize and smooth semiconductor wafers. In CMP, as shown in Figure 3.6[93] , a 

wafer is held by a rotating wafer carrier, and a downforce (a.k.a. back-pressure) is applied on the 

wafer carrier to press the wafer face-down against a rotating polishing pad. The slightly corrosive 

colloidal slurry containing fine abrasive particles is released onto the pad surface[94]. The 

polishing pad, which is made of porous material that can hold the abrasive particles in the slurry, 

plays a key role by distributing slurry under the wafer so chemical and mechanical processes can 

occur. The material removal occurs as a result of a combination of chemical reaction (between the 

slurry chemicals and the wafer surface) and the repeated mechanical interaction (between the wafer 

surface and the polishing pad) under an applied down force[94]. Polishing pads can last from about 

twenty to forty hours and can complete hundreds to even thousands of wafers depending on the 

particular process[94], [95]. 
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In this work, the product characteristics of concern are material removal rate and within-

wafer non-uniformity. The material removal rate (MRR) is determined by measuring film 

thickness before and after polish at each of nine sites on the wafer, and then the difference is 

divided by the polish time. The removal rate is the average of the nine sites on a wafer. The within-

wafer non-uniformity (WWNU) is computed for each wafer as the standard deviation of the 

amount removed over the nine sites on the wafer, divided by the average amount removed over 

the nine sites, times 100[94], [96]. It is well recognized that MRR and WWNU are difficult to 

predict and control due to several reasons, including poor understanding of the process, 

degradation or wear out of polishing pads, inconsistency of the slurry, variation in physical pad 

properties, and the lack of in-situ sensors[96]. 

Figure 3.6 Schematic of the CMP 
process 
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In this work, we adopt an industrial three-input, two-output quadratic CMP process model 

with linear drift[97][98] as below. 

𝑦𝑦1 = 2756.5 + 547.6 𝑢𝑢1 + 616.3𝑢𝑢2 − 126.7 𝑢𝑢3 − 1109.5𝑢𝑢12 − 286.1 𝑢𝑢22 + 989.1𝑢𝑢32 −

52.9𝑢𝑢1𝑢𝑢2 − 156.9𝑢𝑢1𝑢𝑢3 − 550.3𝑢𝑢2𝑢𝑢3 − 10𝑡𝑡 + ∈1𝑡𝑡                                    (3.18) 

𝑦𝑦2 = 746.3 + 62.3 𝑢𝑢1 + 128.6𝑢𝑢2 − 152.1 𝑢𝑢3 − 289.7𝑢𝑢12 − 32.1𝑢𝑢22 + 237.7𝑢𝑢32 − 28.9𝑢𝑢1𝑢𝑢2 −

122.1𝑢𝑢1𝑢𝑢3 − 140.6𝑢𝑢2𝑢𝑢3 + 1.5𝑡𝑡 + ∈2𝑡𝑡                                                       (3.19) 

where the two outputs y 1 and y 2 are MRR and WWNU, respectively. The three inputs u1, u2, and 

u3 are wafer carrier downforce applied on the wafer, platen speed, and slurry concentration, 

respectively. u1, u2, and u3 are normalized to the (−1, 1) range. t is time, which is also normalized 

to ( −1, 1) based on the lifetime of the polishing pad, which is set as 100 wafers in this work. 

∈1𝑡𝑡  ~ 𝑁𝑁(0, 602) 𝑎𝑎𝑎𝑎𝑎𝑎 ∈2𝑡𝑡  ~ 𝑁𝑁(0, 302) are white noises. To illustrate the linear drifts of the CMP 

process, we perform baseline simulations by fixing all the inputs. Figure 3.7 shows that over the 

life span of a polishing pad, MRR decreases over time while WWNU increases over time (after 

filtering out the measurement noises), which are consistent with experimental observations[96]. 
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To test various VM approaches, in this work, we simulate open-loop runs without process 

control. To simulate the fluctuations of the inputs u1, u2, and u3, integrated moving average 

(IMA) models were used. The sampling interval is one second and the processing time for each 

wafer is 1 min, i.e., 60s. To mimic production data, it is assumed that only the end of processing 

values of y1 and y2 are available, i.e., one MRR and one WWNU per wafer. The data is generated 

for 10,000 wafers (i.e., 100 batches with 100 wafers per batch).  

 

3.9.1.2. Static VM approach comparison 
 

Data from 25 batches (i.e., 2500 wafers) are used for building VMs. 25 batches are used 

for validation, and the rest 50 batches are used for testing. For a fair comparison, 20 Monte Carlo 

(MC) runs are carried out to select random batches for training, validation, and testing. Since 

there is no clear correlation between MRR and WWNU, separate MRR and WWNU models 

Figure 3.7  Baseline simulations with fixed u1, u2, and u3 indicate a decreasing trend in MRR 
(a), and an increasing trend in WWNU (b), over a polishing pad life span. 
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based on different approaches are trained, validated, and tested. The unfolded original process 

variables (i.e., u1 - u3 and t) are used as X for MLR, PCR, and PLS, while MRR or WWNU is the 

metrology data. For FVM of both MRR and WWNU, the following eight types of features are 

included: mean ( mn ), standard deviation ( st ), skewness ( sk ), kurtosis ( ku ), auto- and cross-

correlations with zero to one lag ( xc ), and time integral ( it ) of u1-u3 , the mean of pair-wise 

products among u1-u3 ( mn2 ), the wafer index in the batch ( id ). Table 3.1compares the average 

R2, MAPE and RMSE over 20 MC runs for the two models developed based on different 

approaches. For PCR, PLS, and FVM, the optimal number of PCs used for prediction are also 

listed in Table 3.1 , which are obtained through validation during each MC run. The optimal 

number of PCs may vary from run to run due to the change of training, validation, and testing 

samples.     

As can be seen from Table 3.1, MLR based VM performs the worst among all approaches. 

PCR and PLS perform similarly with reasonably high R 2 and MAPE for both MRR and WWNU. 

RMSE is harder to judge as it is unit or scale dependent. FVM significantly outperforms MLR, 

PCR, and PLS in this case study with ∼0.98 R 2 and ∼1% MAPE for both MRR and WWNU. 

These results are visualized in Figure 3.8 where the predicted and measured MRR and WWNU 

are plotted for MLR, PLS, and FVM. Figure 3.8 (c) and (f) demonstrates the superior performance 

of FVM where the predicted MRR and WWNU values agree with the measurements very well. 

To investigate what factors contribute to the superior performance of FVM, the variances 

of X and y captured by the first three principal components (PCs) are examined. Since MRR and 

WWNU models behave similarly as indicated by the consistent trends in Table 3.1, only MRR 

models are examined. As shown in Table 3.2, among the three methods, PCR captures the most 

variance in X with 3 PCs, which makes sense as PCs in PCR are determined solely based on X 
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without considering y (i.e., MRR). On the other hand, although PLS based VM captures slightly 

less variance in X, it captures more variance in MRR, which is consistent with its compromising 

mechanism that maximizes covariance between X and MRR. However, this higher variance of y 

captured by PLS does not translate into better VM performance in this case study. Compared to 

PCR and PLS, FVM captures significantly less variance in X. Since FVM X consists of features 

instead of the original variables, the captured variance in X cannot be directly compared to those 

of PCR and PLS. However, the variance captured in MRR can be directly compared, and it shows 

that with 3 PCs, FVM captures 96.0% of the total variance in MRR, which is significantly higher 

than PCR and PLS. This might explain the significantly better performance of FVM in predicting 

MRR than PCR and PLS, which also means that many included features are probably not relevant 

to MRR. This suggests that feature selection may further improve the performance of FVM.  

Table 3.1 Performance comparison of various static VM approaches in predicting MRR and 
WWNU 

 MRR    WWNU    

Approach # of PC R2 MAPE (%) RMSE # of PC R2 MAPE (%) RMSE 

MLR - 0.413 5.59 205.9 - 0.087 5.32 52.34 

PCR 4-5 0.592 4.58 176.2 3-5 0.462 3.97 42.59 

PLS 1-3 0.584 4.64 177.9 1-3 0.453 3.99 42.90 

FVM 7 0.980 1.16 38.5 7 0.977 0.98 8.70 
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Table 3.2 Variances captured by the first three PCs of different VM approaches (Averages over 
20 MC runs) 

Approach  Variance captured in X by first 

3 PCs (%)  

Variance captured in y 1 (i.e.,  

MRR) by first 3 PCs (%)  

PCR  78.4  58.6  

PLS  75.0  67.3  

FVM  39.2  96.0  

 

Figure 3.8 VM predicted vs measured MRR (top row) and WWNU (bottom row) based on MLR(a 
and d), PLS (b and e), and FVM (c and f) 
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Another way to compare different VM approaches is to check the linearity between PCs 

and MRR. Here linear regressions are performed to fit MRR to each individual PC, then R2 of the 

linear regression and p-value of the F -test on the significance of the coefficient is examined. 

Generally speaking, R2 measures how well the model explains the data. In this case, because the 

models are linear, R2 quantifies the fraction of the variance in MRR explained by the model. The 

p-value measures if there is a statistically significant (linear) relationship between MRR and a 

particular PC. These results are listed in Table 3.3, indicates that for PCR, the PC directions may 

not be related to the variability in MRR at all. For example, although the first PC captures the 

most variance in X, it only captures 5.8% of the variance in MRR. On the other hand, PC 3 

captures the most variance in MRR among the first 3 PCs. Once again, this is attributed to the fact 

that the PCs are determined solely based on X, and their relationship to MRR is established 

afterward. For PLS, because of its mechanism of considering the covariance between X and MRR, 

its first PC naturally captures the most variance in MRR, and this amount decreases monotonically 

with PC order. In this case, only the first PC is useful, while the other two PCs do not contribute 

much in capturing variance in MRR. For FVM, since it is PLS applied on features, it follows the 

decreasing trend of R 2 with PC order. Here it shows that the first PC of the features can capture 

over 80% of the variance in MRR while the second PC also contributes to 12.6% of the total 

variance in MRR. Since PCs are orthogonal to each other, these R2 values add up to the total 

variances in MRR captured by the first 3 PCs. Table 3.3 indicates that the features extracted from 

the original process variables have significantly improved the linear relationship with MRR. This 

is validated by the scatter plots of PC 1 and MRR for different approaches, as shown in Figure 

3.9. 
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Figure 3.9 (a) indicates that PC 1 of PCR has the weakest linear relationship with MRR 

(normalized). PC 1 of PLS has much improved the linear relationship with MRR as shown in 

Figure 3.9(b). However, a clear curvature of the scatter plot indicates the noticeable nonlinearity 

between PLS PC 1 and MRR. In comparison, PC1 of FVM shows the strongest linear relationship 

with MRR as shown in Figure 3.9(c).  

Table 3.3 R2  and p-value of linear regression between MRR and individual PC for a particular 
MC run 

 R2   p value of 

F-test 

  

Approach PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 

PCR 0.058 0.211 0.392 < 0.001 < 0.001 < 0.001 

PLS 0.699 0.004 < 0.001 < 0.001  < 0.001 0.707 

FVM 0.806 0.126 -0.037 < 0.001 < 0.001 < 0.001 

Figure 3.9 Scatter plots of the normalized MRR vs. the first PC of PCR (a), PLS (b) and FVM 
(c). 
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In summary, despite the clear nonlinearity between X and MRR (also WWNU) as indicated by the 

process models (i.e., Eqs. (18) and (19) ) and illustrated in Figure 3.9(b), the features extracted 

show much improved linearity, which in our view, contributes the most to the much improved 

performance of FVM compared to other existing approaches 

 

3.9.1.3. Recursive VM approach comparison 
 

In this section, we compare the recursive VM approaches. Because MLR performs the 

worst in static VM comparison, it is not included in the comparison of recursive methods. In 

addition, since PCR and PLS perform similarly in the static case, only RPLS is included. As 

discussed in the Recursive and adaptive VM methods section. TSA and KF are recursive in nature, 

they are included in comparison to recursive FVM (RFVM). The same features used in the static 

FVM are used for RFVM. For every method, parameter tuning/optimization is done through 

validation similar to the static case, where the first 25 batches are used for training, the next 25 

batches for validation and the remaining 50 batches for testing. One difference is that 20 MC runs 

are used in the static case to get the average performance of different static approaches, which is 

not implemented for the comparison of recursive approaches due to the online nature (i.e., the 

time sequence must be followed) of recursive approaches. The comparison results are listed in 

Table 3.4 in terms of R2, MAPE, and RMSE for two separate models of MRR and WWNU. As 

discussed above, because Table 3.4 is obtained based on a particular composition of training, 

validation and test samples (i.e., they are divided sequentially in time), the results in Table 3.4 

cannot be directly compared to those in Table 3.1, which are the average of 20 MC runs with 

randomly selected training, validation and test samples. Table 3.4 shows that RPLS and KF 

perform similarly, which is consistent with our previously established theoretical equivalency 
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between RPLS and KF in state estimation[99]. TSA performs significantly better than KF and 

RPLS while RFVM performs the best in both MRR and WWNU predictions. To further 

investigate the performance metrics in Table 3.4 , we plot the measured vs. predicted MRR for 

RPLS, TSA, and RFVM in Figure 3.10. 

 

 

Figure 3.10 (b) shows that TSA predicted MRRs follow measurements closely. However, 

the zoomed-in view of a small segment in the insert of Figure 3.10 (b) shows that there is a clear 

one-step delay in prediction, indicating that the prediction is predominantly determined by the last 

measurement, which makes sense given the nature of the ARIMA models without input(s). Figure 

3.10(a) shows that RPLS does not have such one-step delay in prediction, but the discrepancies 

between predictions and measurements are significant at places. It is worth noting that the simple 

FIFO window-based scheme is used to implement RPLS in this work, which means that the latest 

Figure 3.10 Predicted vs. measured MRR based on RPLS (a), TSA (b), and RFVM (c). 
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measurement weighs as much as the oldest measurement in the training data. If a weighting 

mechanism (e.g., exponentially weighted moving average or EWMA) is employed, we expect 

much-improved performance from RPLS. Similar to RPLS, RFVM does not have a one-step delay 

in prediction since it makes use of the current process variable (i.e., xt) in the model. In addition, 

the model predictions agree with the measurements very well. Since RFVM is implemented using 

RPLS, the performance of RFVM could be further improved if, for example, EWMA is 

implemented instead of FIFO.  

Table 3.4 Performance comparison of various recursive VM approaches in predicting MRR and 
WWNU 

 MRR    WWNU    

Approach # of PC R2 MAPE (%) RMSE # of PC R2 MAPE (%) RMSE 

RPLS 3 0.607 5.35 191.0 3 0.409 4.59 46.4 

KF - 0.608 5.25 190.8 - 0.413 4.45 46.2 

TSA - 0.934 2.05 78.2 - 0.923 1.69 16/7 

RFVM 11 0.984 1.16 38.5 13 0.979 0.99 8.7 
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3.9.2. Application to an industrial case study  
 

In this section, a dataset collected from a plasma etch system at one of Texas Instruments’ 

wafer fabs[72] is used to compare the proposed feature-based VM and other VM methods. The 

dataset contains the recorded values of 18 Optical Emission Spectroscopy (OES) signals collected 

every 0.1 s for 1121 wafers. The dataset also contains the metrology measurement values of the 

sheet resistance, which is one of the most important electrical- test parameters used in the 

semiconductor manufacturing industry to assess the electrical quality of a product. Figure 3.11 

shows a schematic of a typical etching Plasma etch process. 

The goal of VM is to predict the end-of-batch sheet resistance using the OES signals. Sheet 

resistance is defined as the resistance of a square sheet of material with current flowing parallel 

to the plane formed by the square sides. One OES signal of several wafers is plotted in Figure 

3.12, which shows the typical characteristics of a semiconductor machine data: unequal batch 

length or process duration; large variations between wafers and unsynchronized trajectories. To 

apply traditional VM methods such as PLS on this type of data, several data pre-processing steps 

have to be taken, including trajectory alignment or time warping to make trajectories equal length, 

Figure 3.11 Schematic view of the etching process 
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and trajectory unfolding to flatten the 3-D structure into a 2-D matrix. As discussed in the Data 

pre-processing section, for simplicity, we use a simple cut based on the duration of the shortest 

batch to remove the last few measurements for longer batches. After that, the batches are unfolded 

into 2-D matrix X following the traditional batch-wise unfolding as described in the Data pre-

processing section.  

 

3.9.2.1. Static VM approach comparison.’ 
 

 

In this subsection, the static FVM is applied to the dataset discussed previously to predict 

the sheet resistance using the OES data. 

 

 

Figure 3.12 A sample OES signal of several wafers 
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Table 3.5 Comparison of different Static VM methods 

Model  # of PC  R2  MAPE (%)  RMSE  

MLR  – 0.049  10.27  0.0313  

PCR  21  0.396  8.55  0.0253  

PLS  50  0.437  8.12  0.0245  

FVM  18  0.718  5.94  0.0173  

 

The features used in FVM include: time integral of the OES signals ( it ), univariate 

statistics including mean ( mn ), standard deviation ( st ), skewness ( sk ) and kurtosis ( ku ), as 

well as the means of pair-wise products ( mn2 ) of all 18 variables. The performance is compared 

with other VM methods. For all VM methods, 70% of the data (784 wafers) are utilized for model 

building and the rest 30% of the data (337 wafers) are used for testing. Table 3.5 compares R2, 

MAPE, and RMSE of FVM to those of MLR, PCR, and PLS. MLR performs poorly due to the 

high dimensionality of the independent variables after unfolding and the multicollinearity among 

them. In this industrial case study, PLS performs slightly better than PCR while FVM significantly 

outperforms all other methods in terms of R2, MAPE, and RMSE.  

 

3.9.2.2.  Recursive VM approach comparison 
 

In this subsection, RFVM is applied to the dataset and its performance is compared with 

those of other recursive VM methods. The initial VM model is built based on the training data of 

784 wafers and is updated when new data becomes available. The same features used in the static 

FVM are used for RFVM. The comparison results are summarized in Table 3.6. RPLS and KF 
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perform similarly, which resembles the simulated case study. TSA performs better than RPLS and 

KF without the use of the inputs (i.e., the OES measurements).  

 

Figure 3.13 shows the comparison of measured vs. predicted sheet resistances of RPLS, 

TSA, and RFVM.  Figure 3.13 (b) reveals a persistent one-step delay in the prediction of TSA. 

This is again similar to the simulated case study, indicating that TSA prediction is predominantly 

determined by the last measurement. RPLS and RFVM do not have this phenomenon, as shown in  

Figure 3.13 (a) and (c). Both  Figure 3.13 and Table 3.6 demonstrate the superior performance of 

FVM compared to RPLS, KF, and TSA. 

 

 

 

Figure 3.13 Predicted vs. Measured Sheet resistance based on RPLS (a), TSA (b) and RFVM (c). 
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Table 3.6 : Comparison of different recursive VM methods 

Model  # of PC  R 2  MAPE (%)  RMSE  

RPLS  15  0.689  5.73  0.0182  

KF  – 0.697  5.31  0.0179  

TSA  – 0.776  4.20  0.0154  

FVM  72  0.855  3.77  0.0124  

 

To investigate the effect of feature inclusion on the performance of FVM, we performed 

RFVM by including different sets of features in RFVM. Table 3.7 lists the features included, the 

number of principal components determined or optimized through validation, and the resulted 

performance measures of RFVM. By comparing  Table 3.6 and Table 3.7, it can be seen that by 

including mn alone, RFVM achieves good performance similar to RPLS. By including mn, st and 

HOS (i.e., sk and ku ), RFVM outperforms RPLS and KF, which demonstrates the importance of 

including HOS as features in FVM. By including mn and mn2, RFVM outperforms all other VM 

methods listed in Table 3.6 , which indicates that the process nonlinearity is significant. In 

addition, although the nature of the non-linearity is unknown due to the complexity of the plasma 

etch process, the means of pair-wise products ( mn2 ) provide a good capture of its nonlinearity. 

Finally, by using all features, including mn, st, sk, ku, mn2, as well as it (the time integral of the 

OES signals as a measure of total power input at different frequencies) of all 18 variables, RFVM 

provides the best performance among all cases listed in Table 3.7.  Table 3.7 indicates that the 

more features included, the better the performance of RFVM. This is generally true based on our 
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experiences and can be explained by the fact that PLS can naturally handle collinearities among 

features. In other words, including more features can add process information to the model while 

feature redundancy poses no issue for FVM. It is worth noting that variable or feature selection 

can sometimes improve the performance of the regression methods. Therefore, any feature 

selection methods can be used as a preprocessing step for FVM if further performance 

improvement is desired. This subject is outside the scope of this work. Further investigation is 

worth pursuing and feature selection can be integrated as part of the FVM framework.  

Table 3.7 : Effect of feature inclusion on the performance of RFVM 

Features in RFVM  # of PCs  R 2  MAPE (%)  RMSE  

Mn  11  0.607  6.57  0.0204  

mn, st  16  0.627  6.22  0.0199  

mn, st, sk  13  0.685  5.88  0.0183  

mn, st, sk, ku  19  0.725  5.45  0.0171  

mn, st, sk, ku, it  55  0.797  4.65  0.0147  

mn, mn2  63  0.802  4.55  0.0145  

mn, st, sk, ku, it, mn2  72  0.855  3.77  0.0124  

 

 

3.10. Conclusions 
 

A FVM framework and its recursive/adaptive variant RFVM are proposed in this work to 

address the challenges presented in semiconductor VM applications, such as unequal batch/step 

duration and/or unsynchronized trajectories; and a large number of variables caused by data 
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unfolding. Because FVM does not require any data preprocessing steps, it is uniquely suited for 

automatic online applications. The performances of FVM and RFVM are compared with several 

commonly used VM approaches using a simulated and an industrial case study.  

Among static or off-line VM approaches, both simulated and industrial case studies 

demonstrate that MLR is not a good VM approach, especially where there are many independent 

variables (e.g., partly due to batch unfolding) and there exists multicollinearity among them. We 

have also demonstrated that PCR could be problematic for VM as the selected PCs are based on 

their capabilities in capturing variance among the independent variables, which may not be 

relevant to the variance of the metrology data. In the simulated case study, the first PC only 

captures 5.8% of the variance in MRR while PC 3 captures 39.2%, the most among the first 3 

PCs. PLS models the inner relation that correlates the scores of independent variables with the 

scores of dependent variables, which theoretically to enable PLS to have better performance than 

PCR. Although this point is not shown in the simulated case study, PLS does perform better than 

PCR in the industrial case study. The proposed FVM approach performs the best in both 

simulated and industrial cases studies. The analyses reveal that when there exists nonlinearity 

between independent and dependent variables, the extracted features show much-improved 

linearity, which enables FVM to capture a significantly larger amount of variance in the 

dependent variable(s) with only the first few PCs. This point, in our view, contributes the most 

to the much-improved performance of FVM compared to other existing VM approaches.  

Among recursive or online VM approaches, KF performs similarly to RPLS. This is 

expected as the theoretical equivalency between RPLS and KF in state estimation has been 

established. TSA performs surprisingly well, even without any consideration of any input, in 

both simulated and industrial case studies. Analysis reveal that this is due to the fact that the 
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metrology data in both cases are highly autoregressive time series, and the TSA prediction is 

predominantly determined by the last measurement. The performance of TSA without input is 

not guaranteed if metrology time series are not significantly autoregressive. RFVM outperforms 

all existing recursive VM approaches in both simulated and industrial case studies and its 

performance can be potentially further improved if a weighting mechanism such as EWMA is 

implemented instead of FIFO for highly autoregressive metrology measurements such as the 

ones in this study.  
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4. Chapter 4. Machine learning techniques for process modeling and condition monitoring 
using non-invasive IIoT vibration sensors 

 

4.1. Introduction 
 

Centrifugal pumps and compressors are one of the most important types of equipment in the 

process industry and are used for the transfer of oil and gases from one location to another. The 

goal of this work is to predict important properties using non-conventional, non-invasive IIoT 

sensors.  Data-driven soft sensors have been used to capture many complex relationships[100], 

[101] between process information, such as product quality, and other process properties, which 

are easier to measure. Soft sensors aid the data-driven decision-making process, so that faster and 

more informed control actions can be taken in an industrial process. For this work, a centrifugal 

testbed with IIoT sensors was used. A centrifugal pump is a system with several interacting parts, 

and one of the most commonly known sources of information in any such piece of equipment are 

the vibrations being produced. The application of vibration data for condition monitoring of 

machinery or structure has been well documented [102]–[104], such as the detection of faults or 

defects in gears, rotors, shafts bearings and couplings. However, their applications for information 

such as rotor speed and fluid flow rate has not been reported. Therefore, for this work it was 

decided to collect vibration data from different parts of the pump in the hope that information 

regarding different operating stages of a pump will captured and in turn be successfully modeled. 

The centrifugal pump setup can be seen in Figure 4.1 below. 

It is worth noting that this work is an extension to this previous work[50]. The motor speed, 

i.e., RPM and the water flow inside the pipe of the system, i.e., flowrate are important properties 

of a centrifugal pump, and predicting them can provide useful insights into the condition of the 
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centrifugal pump. The goal of this work is to build a model that can predict the RPM and flow 

rate for any existing condition using the vibration data collected for the centrifugal test bed with 

the help of IIoT sensors.  

4.2. Experimental setup 
 

The pump assembly contains a variable drive motor, pump impeller, impeller casing, 

coupling, electrical connections, and knobs for changing the pump RPM. The motor shaft and 

impeller shaft are connected by a coupling. The pump sucks water from a reservoir and pumps it 

back to the reservoir and has both a suction valve and a discharge valve, but no bypass. There is 

one flow meter at the pump discharge. The pump RPM can be adjusted by turning the physical 

knob. Pump flow can be changed independently either by opening or closing the pump discharge 

valve or by changing pump RPM. The pump RPM and flow rate are continuously indicated and 

will be used as a base value for building predictive models. The pump is operated in the RPM 

range of 1500-2500. For the discharge valve, the minimum flow at 1500 RPM, and the minimum 

Figure 4.1 Multi stage centrifugal pump setup 
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discharge opening is 5 gallon per minute (GPM) as measured by the flow meter.  Also, maximum 

flow rate can be achieved at 2500 RPM, which is about 16 GPM. 

 

Digital accelerometers were used in this work to collect vibration data. These digital 

accelerometers have an advantage over analog accelerometers due to the fact that analog 

accelerometers have more manual connection points, thus increasing the sensor failure points 

while increasing the size of overall sensor setup.  

It was decided to use ADXL345 tri-axis digital accelerometer in adafruit breakout board. 

Major advantages of using this particular sensor are, it measures components of vibrations in three 

directions (x, y & z) which provides more information for data analytics, it can use both two wire 

I2C or SPI (3 or 4 wire) protocol for communicating with any computing device, its sensitivity is 

adjustable (+-2g, +-4g or +- 8g), its sampling rate is adjustable (800 Hz, 1600 Hz, or 3200 Hz), it 

has built-in low pass filters for lower sampling rates, as well as a wider temperature range (-40oC 

to 85oC), a smaller size (3mm X 5mm X 1mm), and strong community support[105]. Raspberry 

Pi is used as a master device to control each sensor based on user requirement, as well as allow 

data tracking and labeling to increase productivity and save time. Raspberry PI has extremely low 

power drawing, small form factor, no moving parts resulting in a smaller chance of failure and 

can work with multiple types of sensors and devices. More details on Raspberry Pi can be found 

in here[106]–[108].  
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5 ADXL345 sensors are used in the data collection process. Sensor locations were selected 

keeping in mind the properties of interest, i.e., RPM and flow rate, so variations within the system 

could be well captured. Sensors were mounted on the motor casing, impeller casing, coupling joint 

motor, impeller, the pipe fitting, and the loose end of the pipe. The sensors were fitted with 

maximum contact to ensure data quality. Figure 4.3 below shows the sensors marked on the 

experimental setup. 

Figure 4.2ADXL 345 accelerometer sensor and Raspberry pi 
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Also, the Figure 4.4 below shows the schematic of the testbed with sensor location for better 

understanding.  

4.3. Data collection and observations 
 

The goal of this work was to develop a monitoring framework by estimating process 

information such as RPM & flowrate with the help of vibration signals obtained from non -invasive 

IIoT sensors. The relationship between RPM and vibration signals was identified first, followed 

by flow rate in the previous work. As mentioned before, the goal of this work is to develop a  model 

using knowledge-based feature engineering to predict the RPM and flow rate of the system. As 

Figure 4.3 IIoT enabled centifugal pump testbed (Sensors are marked in 
red) 

Figure 4.4 Schematic of testbed showing sensor location 
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flow rate of the system can be independently controlled with pump discharge valve or RPM knob, 

the relationship between vibration signals & flow rate can be different for distinct setting of 

discharge valve and RPM. 

Keeping the above-mentioned considerations in mind, the vibration signal data was collected 

for different combination of conditions. First, RPM of the pump is fixed and then vibration signals 

are collected at different flow rates. This process was carried out at different RPM values covering 

entire range of pump operation. Each unique combination of RPM & flowrate is considered a 

condition. A list of the conditions can be seen in Table 4.1. 

Table 4.1 List of conditions and corresponding Flowrate and RPM 

Sr. 

No. 
Conditions Approx. RPM Approx. flow (GPM) 

1 3 1500 5, 7, 9 

2 3 1600 5, 7, 9 

3 4 1700 5, 7, 9, 11 

4 4 1750 5, 7, 9, 11 

5 4 1800 5, 7, 9, 11 

6 4 1850 5, 7, 9, 11 

7 4 1900 6, 8, 10,12 

8 4 1950 6, 8, 10,12 

9 5 2000 5, 7, 9, 11, 13 

10 5 2050 5, 7, 9, 11, 13 

11 5 2100 6, 8, 10, 12, 14 

12 5 2150 6, 8, 10, 12, 14 

13 5 2200 6, 8, 10, 12, 14 

14 5 2250 6, 8, 10, 12, 14 

15 5 2300 7, 9, 11, 13, 15 

16 5 2350 7, 9, 11, 13, 15 

17 5 2400 7, 9, 11, 13, 15 

18 5 2450 7, 9, 11, 13, 15 

19 5 2500 8,10,12,14, max (~15.9) 

    Sum          85 
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Table 4.1 indicates the approximate values of flow rate around which the pump drifts for an 

RPM value. 10-minute data were collected for each condition. For example, for an RPM value of 

1500, the flow rate is set to 5 GPM, and the vibration data is collected for a duration of 10 minutes. 

This constitutes data collected for a single condition. Microsecond version Unix epoch time (UET) 

was used to synchronize the time of all sensors. It was observed that, on average the flowrate value 

changes every half second, so the sampling frequency of RPM & flowrate values were fixed at 3 

Hz. 

 

4.3.1. Data characteristics 
 

As seen in the Figure 4.5, RPM values deviate due to drifting in the pump over a minute 

range. This behavior is observed for all RPM conditions, with lower drift in the low RPM 

Figure 4.5 GPM values at 1800 RPM and corresponding Histogram 
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conditions. The Figure 4.5 also shows the histogram for flowrate values measured at 1800 RPM. 

The flow measurement clearly shows a gaussian distribution. This can be due to the drift in the 

pump as well as noisy response from the flowmeter. Vibration sensors were tested for a couple of 

sampling rates. For experimental data collection, 1600 Hz was selected instead of 3200 due to less 

noisy characteristics. 

 

The data also shows some typical big data characteristics such as extremely noisy high 

frequency data, unequally spaced real-time data, large sections of missing data, non-periodic and 

non-stationary symbols, etc. More information can be found in the previous work here [109]. 

 

4.4. Data pre-processing & modeling and raw data 
 

As discussed before, the data is extremely noisy and needs to be cleaned and pre-processed. 

Also, the sampling frequency of the measurements, i.e., RPM and Flowrate, is 3 Hz and that of the 

vibration signals is 1600 Hz. Vibration data from sensor-4 is used throughout this work as it is 

most relevant for predictive modeling of RPM and Flowrate. Sensor 4 is located on the coupling. 

UET was used to synchronize the vibration signals with the measurements, i.e., RPM and flowrate. 

For a UET in measurement as a reference point, the closest point in the vibration signals was 

detected. Further, 400 points before and 400 points after the detected point were considered as 

samples corresponding to the reference measurement. This way, each measurement corresponding 

to a particular condition will have 800 samples in the X, Y, and Z direction for the data collected 

from ADXL345. For example, if a condition had 1800 samples corresponding to an RPM and 

Flowrate with deviations within the range, the corresponding raw data would be 1800x800x3 in 
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dimension. Out of all the conditions, data collected for 10 different RPM conditions were used for 

model building starting from 1500 RPM - 2500 RPM with intervals of 100 RPM. 80% of the 

samples from a condition set were considered for training, while the last 20% in chronological 

order from each condition were considered for testing. In an industrial application, the data 

collected in real-time is used to predict the condition, so it makes sense to use the later 20% of the 

data for testing. 

4.4.1. Modeling on raw data and PLS 
 

We use PLS to build a baseline model. In condition monitoring, it is highly unlikely that the 

raw time-domain data can extract relevant information and can be used to predict the properties of 

interest. However, PLS will be used in later stages to compare performance of various scenarios 

after feature engineering. PLS regression is a well-established approach for regressing 

independently measured variables which are highly correlated, have high measurement noise and 

have high dimensionality. PLS regression first extract orthogonal variables and then using 

Ordinary Least Squares (OLS), relationships are extracted between the orthogonal variable and the 

measurement variables, in this case RPM and Flowrate. We use PLS based on Nonlinear -iterative 

partial least squares (NIPALS) algorithm developed by Wold et al. More information can be found 

in here[110]. The execution is carried out in python via Scikit-learn[53]. 

PLS is one of multivariate statistical techniques to find the relationship between predictor 

variables and response variables. PLS aims to extract the PLS components that satisfy three 

objectives; (1) the best explanation of the X matrix (predictor variables); (2) the best explanation 

of the Y matrix (response variables); (3) the greatest relationship between X matrix and Y matrix. 

Nonlinear-iterative partial least square (NIPALS) developed by Wold [111] is a popular algorithm 
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to implement PLS. More information on the algorithm and its properties are discussed in [112]–

[115]. 

 𝑿𝑿𝑛𝑛×𝑚𝑚 denotes the predictor matrix, which consists of 𝑛𝑛 samples and 𝑚𝑚 predictor variables; 

𝒀𝒀𝑛𝑛×𝑙𝑙 denotes 𝑙𝑙 response variables for the 𝑛𝑛 samples. The regression equations are the following: 

𝑿𝑿𝑛𝑛×𝑚𝑚 =  𝑻𝑻𝑛𝑛×𝑝𝑝𝑷𝑷𝑚𝑚×𝑝𝑝
𝑇𝑇 + 𝑬𝑬𝑛𝑛×𝑚𝑚  (4.1) 

𝒀𝒀𝑛𝑛×𝑙𝑙 =  𝑼𝑼𝑛𝑛×𝑝𝑝𝑸𝑸𝑙𝑙×𝑝𝑝
𝑇𝑇 +  𝑭𝑭𝑛𝑛×𝑙𝑙   (4.2) 

where 𝑝𝑝 is the number of principal components; 𝑻𝑻𝑛𝑛×𝑝𝑝 and 𝑸𝑸𝑙𝑙×𝑝𝑝
𝑇𝑇  are the score matrices; 𝑷𝑷𝑚𝑚×𝑝𝑝 and 

𝑸𝑸𝑙𝑙×𝑝𝑝 are the loading matrices; 𝑬𝑬𝑛𝑛×𝑚𝑚 and 𝑭𝑭𝑛𝑛×𝑙𝑙 are the error or residual matrices, respectively. The 

PLS model maximizes the covariance between 𝑻𝑻 and 𝑼𝑼.  

The training set is further divided into training and validation data for hyperparameter 

optimization, in this case, the number of orthogonal components or PCs. Root mean square error 

(RMSE) is used as a performance metric and is defined as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                (4.3) 

Where N= number of samples. Figure 4.6 shows the predictions of RPM using PLS. The RMSE 

of the test set is 190.97, and 25 PCs are selected using Cross-validation. It is seen clearly that PLS 

on raw vibration data in the time domain fails to capture any relationship between the predictors 

and RPM.  
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Similarly for Flowrate, the predictions using PLS on raw data can be seen in the Figure 

4.7. The results are extremely poor as expected. The RMSE on test set is 2.94 and 20 different PCs 

were selected using Cross validation. 

It is clear at this point that the raw vibration data cannot be used to predict RPM and flow 

rate. The data needs to be processed to extract meaningful information or features that can aid the 

prediction process. We extract features in frequency domain to extract meaningful information 

that can be modeled. Before extract features in frequency domain, we perform Outlier detection as 

well to refine the data further to remove extremely noisy data points. 

4.4.2. Outlier detection 
 

The local outlier factor (LOF) is a technique that attempts to harness the idea of nearest 

neighbors for outlier detection. Each example is assigned a scoring of how isolated or how likely 

it is to be outliers based on the size of its local neighborhood. Those examples with the largest 

Figure 4.6 PLS model prediction performance for RPM (Raw data) 
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score are more likely to be outliers. More information can be found in here[116]. For LOF, we 

used scikit-learn[53] in python to remove the outliers from the data. 

A simple schematic of the approach can be seen in Figure 4.9 below. We use a two-step 

approach for outlier detection. First, data for each condition is filtered for outliers using LOF. LOF 

is chosen because of its inherent nature to cluster nearest neighbors. We already know the 

conditions and any deviations outside the conditions, i.e., RPM and GPM are due to abrupt changes 

in the system and noise and can be filtered out. This way each condition vibration data is filtered 

separately for outliers. Further, samples for which the measurement data exceeds by 3 standard 

deviation thresholds are removed as they are samples that are noisy or appear due to relatively 

larger fluctuations in the system. 

Corresponding vibration data samples are removed as well. Figure 4.8 shows an example of 

points that lie outside the 3 standard deviations region and are due to relatively larger fluctuations 

Figure 4.7 PLS model prediction performance for Flowrate (Raw data) 
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during data collection for the 1500 RPM and 5 GPM conditions. A similar approach is used to 

remove outliers from all conditions considered for modeling. 

Further, as mentioned before, the initial 80% of the data each condition is used for testing 

while the rest of the data is used for testing using different ML approaches for predicting the flow 

rate and RPM. After outlier removal within each condition, the data for all the conditions are used 

together for training and testing as the goal of this work is to use a universal model for the 

prediction of RPM and Flowrate. 65563 samples are used in training and 16388 samples in testing 

the proposed approach.  

4.5. Feature extraction in the frequency domain – Lomb-Scargle algorithm 
 

Fourier analysis or fast Fourier transform (FFT) is a widely used approach that converts a 

signal from its original domain (often time or space) to a representation in the frequency 

Figure 4.8 Outlier removal in measurements and corresponding 
vibration signals using standard deviation threshold 
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domain and vice versa. The discrete Fourier transform (DFT) is obtained by decomposing 

a sequence of values into components of different frequencies.  More information on the FFT can 

be found here[117]. However, FFT works when the signals are equally spaced. FFT fails when the 

data points are unequally spaced and cannot give a reliable spectrum. 

To deal with this limitation, Lomb-Scargle’s algorithm is used in our work. The output of 

Lomb-Scargle’s algorithm is the power spectrum density (PSD) of the signal under consideration. 

Lomb-Scargle’s algorithm does not require the samples to be equally spaced. This approach is 

widely used in astronomy. The Lomb-Scargle periodogram (after Lomb and Scargle) is a 

commonly used statistical tool designed to detect periodic signals in unevenly spaced 

observations. More information can be found here[118]–[120]. We use astropy package in python 

to implement the algorithm. The raw vibration signals in all 3 directions, X, Y, and Z that are 

collected from ADXL345, are used to extract the frequency domain features. For each direction, 

frequency spectrum was obtained from 1-800 Hz with a resolution of 0.2 Hz, i.e., amplitude values 

at 3996 frequencies. When features from all 3 directions are augmented together, the new feature 

Figure 4.9 Schematic of outlier detection approach for vibration data and measurement data 
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dimension is 11988. Hence, the training dataset after outlier removal and frequency domain 

extraction has 65563 samples and 11988 features and the testing data comprises of 16388 samples 

and 11988 features. 

4.5.1. Modeling using PLS on frequency domain features 
 

Even though the feature dimension is very high, PLS is used, as it is a robust approach for 

feature dimension reduction and can deal with multicollinearity inherently.  As mentioned earlier, 

again the training set is split into calibration and validation to train the hyperparameters, i.e., the 

number of PCs. 

Shown in Figure 4.10  below is the performance of PLS for prediction of RPM using 

Frequency domain data. The RMSE for the test set is 11.35 and 80 PCs were selected based on 

Cross validation. This is a huge improvement over modeling using Raw data in time domain. 

This shows how frequency domain analysis can help establish a meaningful relationship to 

predict the RPM. The results demonstrate the RPM range is predicted well and the 10 different 

levels are predicted well with no or very few test samples predicted out of the RPM class range. 

This shows the robustness of our proposed approach. 
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Similarly, Figure 4.11  shows the performance of PLS in predicting the flow rate using one 

single model for all flow rate conditions. It is worth noting that for different RPM conditions, data 

has been collected for the same flow rate levels making the prediction significantly challenging. 

As mentioned earlier, the goal of our approach is to create a model that can predict the flow rate 

and RPM with the least error possible. For the features based on the frequency spectrum, the RMSE 

of the test set is 0.73, which is a significant improvement when raw data was used. However, the 

predictions are still poor, and the error in predicting flow rates is relatively higher. 

Figure 4.10 Full PLS model RPM prediction performance (based on frequency domain) 
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4.6. System engineering enhanced modeling approach 
 

In the previous work[109], taking advantage of the system knowledge, physics, pump 

operations, and data modeling techniques, a binary matrix approach was proposed to accurately 

identify pump RPM. Our work incorporates the binary matrix approach along with domain 

knowledge-based time domain and frequency domain features, which are used to predict the RPM 

and flow rate with high accuracy using a single set of features.  

 

 

 

 

 

Figure 4.11 Full PLS model Flowrate - GPM predicition performance (Based on 
frequency domain) 
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4.6.1. Binary matrix approach – Select peak frequencies 
 

 

The binary matrix approach is based on the idea of identifying the max frequencies that are 

related to corresponding RPM conditions. Figure 4.12 shows how RPM stages are linked to distinct 

frequencies, and there is a relation between them. 

We have plotted several data samples for 4 different RPM conditions. As seen above, for a 

fixed condition, the samples are related to frequencies. Thus, peak frequencies can be utilized well 

for predicting the accurate RPM. Also, most of these peaks occur at low frequencies, and thus all 

for our binary matrix approach, only the spectrum from 1-100 Hz is considered to extract the peak 

frequencies and amplitude. 

Figure 4.12 Peaks occur at fixed frequencies for a fixed RPM condition 
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In the binary matrix approach, we use a zero vector of length 1x500, and instead of using the 

peak frequency directly, we in our work replace the index related to the frequency having the 

highest amplitude as 1. 10 variables, 5 on either side are also replaced with 1s to reduce the effect 

of noise. This procedure is carried out for all samples to form the binary feature matrix with 0s and 

1s. It was observed that information from the X and Z direction was more relevant, and hence Y 

direction information was not considered in this work. 

 

4.6.2. Analysis of flow rate at same RPM conditions 
 

Figure 4.13 shows how the amplitude corresponding to peak frequencies shows different 

behavior for the same RPM but different Flowrate conditions. Keeping this in mind, we include 

corresponding Amplitudes for the peak frequency as well as features in predicting the RPM and 

flow rate. It is worth mentioning that prediction of Flow rate is extremely challenging, but RPM 

is explicitly related to the peak frequencies. Also, for the different RPM conditions, data is 

Figure 4.13Amplitude for different flowrate but same RPM conditions 
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collected for similar flow rate ranges as well and a robust model would be able to distinguish these 

conditions clearly. 

4.6.3. Use of coefficient of variation to select features 
 

The coefficient of variation (CV) is a statistical measure of dispersion of data points in a data 

series around mean. It represents the ratio of standard deviation to the mean and is a useful statistic 

for comparing the degree of variation.  

Coefficient of variation is as follows: 

𝐶𝐶𝑉𝑉(𝑥𝑥) = 𝑠𝑠(𝑥𝑥)
𝜇𝜇(𝑥𝑥)

                       (4.4) 

As CV shows the extent of variability of data in a population, we in our work use CV to filter 

out the features extracted after Lomb-Scargle algorithm. The hypothesis is that the higher the CV 

the higher the dispersion and the higher the variability explained by any frequency within the 

spectrum 1-100Hz. We use a threshold of 3 that is set empirically using training data set to filter 

out those frequencies that have a higher explained variability and use it to predict the RPM and 

flow rate as well. Following this procedure, 16 features are selected from the X direction, and 32 

features/frequencies related data are selected from the Z direction. These features are augmented 

to the binary matrix and the peak frequencies and amplitude data. 

4.6.4. Use of domain knowledge-based features in the time domain 
 

Numerous statistical functions can be used for monitoring vibration data. We, in our work, 

use certain features in the time domain that can be used to predict the RPM and flow rate of the 

system. Thus, our proposed approach is a fusion of time domain as well as feature domain feature 

using system knowledge. Features based on vibration signals are statistical metrics, and changes 
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in these features can indicate the status of a system. Basic statistics include mean, standard 

deviation, root mean square (RMS), and shape factor. In addition, we use higher-order statistics 

due to the fact that they provide an insight into the system behavior through the fourth moment, 

i.e., kurtosis and third moment i.e., skewness of the vibration signal. These statistical features 

have been used in literature for fault detection and condition monitoring, but this is the first 

attempt to predict the RPM and flow rate using accelerometer vibration signals to the best of 

authors knowledge. Impulsive metrics such as peak value, impulse factor, crest factor and 

clearance factor are also incorporated. Impulsive metrics define properties of the vibration signal 

related to the peaks of the signal.  Last but not the least, signal-processing metrics that consist of 

distortion measurement functions have been used in our work as well. The hypothesis behind 

using signal processing metrics is that abrupt or changes in system behavior can cause an increase 

in noise, changes in harmonics relative to fundamentals or both at once. Signal-to-noise ratio 

(SNR), total harmonic distortion (THD) and signal to noise and distortion ratio (SINAD) are the 

signal processing metrics used in our work. A detailed description of each of these features can 

be found below. 

Shape factor: It is the ratio of RMS divided by the mean of the absolute value. Shape factor is 

dependent on the signal shape and does not depend on the signal dimensions. 

𝑋𝑋𝑆𝑆𝑆𝑆 =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟
1
𝑁𝑁∑ |𝑋𝑋𝑖𝑖|𝑁𝑁

𝑖𝑖=1
                                 (4.5) 

Kurtosis: Defines how outlier prone the signal is. The changes in the RPM directly affect the 

vibration signals and therefore can lead to an increase in the kurtosis metric. 

𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =  
1
𝑁𝑁∑ |𝑋𝑋𝑖𝑖−x̄|4𝑁𝑁

𝑖𝑖=1
1
𝑁𝑁∑ |𝑋𝑋𝑖𝑖−x̄|2𝑁𝑁

𝑖𝑖=1
2                        (4.6) 
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Skewness: Defines the asymmetry of a signal distribution. Changes in RPM and flowrate can 

impact the distribution symmetry. 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
1
𝑁𝑁∑ |𝑋𝑋𝑖𝑖−x̄|3𝑁𝑁

𝑖𝑖=1

�1𝑁𝑁∑ |𝑋𝑋𝑖𝑖−x̄|2𝑁𝑁
𝑖𝑖=1

3/2
�
                      (4.7) 

 

Peak value: Maximum absolute value of a signal and is used to calculate other Impulse metrics. 

𝑋𝑋𝑝𝑝 =  max |𝑋𝑋𝑖𝑖|        (4.8) 

Impulse factor: Compare the height of the peak to the mean level of the signal. 

𝑋𝑋𝐼𝐼𝐼𝐼 =  𝑋𝑋𝑝𝑝
1
𝑁𝑁∑ |𝑋𝑋𝑖𝑖|𝑁𝑁

𝑖𝑖=1
          (4.9) 

Crest factor: Peak value divided by RMS. The crest factor can represent changes in the system. 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑋𝑋𝑝𝑝

�1
𝑁𝑁∑ 𝑋𝑋𝑖𝑖

2𝑁𝑁
𝑖𝑖=1

        (4.10) 

Clearance factor: Peak value divided by the squared mean value of the square roots of absolute 

amplitudes. 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑋𝑋𝑝𝑝
1
𝑁𝑁∑ �|𝑋𝑋𝑖𝑖|2𝑁𝑁

𝑖𝑖=1
        (4.11) 

Signal-to-noise ratio (SNR): Ratio of signal power to noise power. 



129 
 

Total harmonic distortion (THD): Ratio of total harmonic component power to fundamental 

power. 

Signal to noise and distortion ratio (SINAD): Ratio of total signal power to total noise plus 

distortion power. 

4.6.5. Modeling based on systems engineering enhanced features 
 

After considering all the features together, we have 244 features in total that are used to build 

our model that can predict the RPM and flow rate. The relationship between RPM and explanatory 

features is defined well by Partial least squares approach as mentioned in the previous section. 

Also, keeping the interpretability of models in mind we use PLS to predict the RPM based on 

system engineering-enhanced features. The 244 features include the features mentioned in the 

above sections incorporating the binary matrix, coefficient of variation and features based on 

vibration signals in the X and Z direction. 
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Figure 4.14 below shows the prediction of RPM based on PLS model. As seen the predictions are 

extremely accurate and can identify RPM correctly based on the proposed features. 20 PCs were 

chosen based on cross-validation. The dimensions of training data are 65563x244 and the 

dimensions of the test data are 16388x244. The RMSE of prediction for RPM dropped from 11.35 

to 1.52. This is a huge gain considering the new set of features, and as seen in Figure 4.14 above, 

the predictions are extremely accurate. To sum it up, the RMSE of predictions based on raw data 

was 190.97. After extracting all the data from raw vibration data into the frequency domain using 

Lomb’s Scargle algorithm, the RMSE dropped to 11.35, but the feature space was 11988. Further, 

after systems engineering enhanced feature engineering, the RMSE dropped to 1.53, and 244 

features are used. This clearly shows how feature engineering plays a key role in developing 

successful data-driven ML models for predicting key process information in this IIoT testbed. 

  

Figure 4.14 RPM predictions based on Systems engineering enhanced features -PLS 
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Figure 4.16 below shows the prediction for flow rate using PLS model. As seen, PLS fails 

to capture the relationship between the predictors and flow rate. The RMSE is 0.60 which is an 

improvement over the case where 11988 features extracted from Lomb-Scargle algorithm were 

used. This demonstrates that knowledge-based feature engineering aids the prediction of RPM 

and flow rate. However, the relationship is not linear for flow rate and hence linear models such 

as PLS fails to capture the relationship. This requires the need of a model that can capture a non-

linear relationship well. The use of kernel versions of PLS or other models such as k-neighbors 

regression can be considered for flow rate predictions. 

Figure 4.15 Flow rate predictions based on systems engineering enhanced features - PLS 
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 As mentioned earlier, the modeling of flowrate is extremely challenging in comparison to 

the modeling of RPM. While the PLS model captures the linear relationship between the 

predictors and RPM well, it fails to do so for the prediction of flow rates. To model this complex 

relationship between the explanatory variables and flow rate, the k-neighbors regression is used 

in our work. Regression using this ML algorithm is based on nearest neighbors, and the target is 

predicted by local interpolation of targets associated with the nearest neighbors in the training set. 

Nearest neighbors’ regression can be used in cases similar to this work where the data labels are 

continuous rather than discrete variables. The label assigned to a query point is computed based 

on the mean of the labels of its nearest neighbors. The implementation of k-neighbors regression 

is performed in scikit-learn [53]. The parameters under consideration to tune the performance 

using cross-validation are the number of neighbors, the algorithm used to compute the nearest 

neighbors, and the weights to decide the weight function used in prediction. A combination of 

random search and Bayesian optimization is used to tune the hyperparameters in our work.  

It is worth noting that the sampling frequency of measurements was 3 Hz. That means 3 

samples are collected every second. Generally, in a process industry, a prediction horizon over a 

couple of seconds is considered to predict the properties. In our work, we consider a span of 10 

seconds to predict the flow rate of the system. We divided the 10-minute data for each condition 

to training and testing using a  80-20 split i.e., approximately 8 minutes of data is used for training 

while the last 2 minutes of data are used for testing. For our predictions, we consider an 

aggregation (e.g., average or median) of multiple measurements or random sampling with multiple 

instances and consider the aggregate. The flow rate is assumed to be constant over a period of 10 

seconds in a industrial scenario. Thus, this is equivalent to considering multiple measurements 

within a time window and considering an aggregate of those sampling instances. We use median 
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in our work, as an aggregation function due to the fact that mean is relatively more sensitive to 

some faults or abrupt changes in the system. Our predictions should be less sensitive to those 

abrupt changes as such changes or spikes generally represent some fault reading or outlier. If it 

prevails for a longer time, it does indicate a fault in the system. 

 Hence for our work, we divide the predictions into equal 10 second chunks considering 

them as multiple sampling instances with the hypothesis that the system fluctuation is minimal in 

that time span. We report the median of such multiple test samples. Thus, for each condition i.e., 

a fixed RPM and GPM, we have multiple test samples. The predictions of flow rate based on K-

neighbors regression are shown in the Figure 4.16 below. 10 neighbors are selected based on 

Figure 4.16 Flowrate GPM predictions based on systems engineering enhanced features – k-
neighbors regression 
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hyperparameter optimization. The RMSE of prediction is 0.12, which is a significant 

improvement over the previous predictions based on raw data and the data based on Lomb- 

Scargle algorithm. Thus, even with a single model for flowrate, we were able to predict the 

flowrate with minimal error even though the modeling for flowrate is extremely challenging due 

to the fact that different RPM levels have the same flowrate values, which is quite common in the 

process industry. 

Similar to k-neighbors regression predictions over 10 second interval, the predictions from 

PLS are also shown in Figure 4.17  for a fair comparison. There is a clear difference between the 

predictions in  Figure 4.16 and Figure 4.17. The median predictions over 10 second interval was 

poor for PLS and deviate a lot from their actual measured flow rate in comparison to the 

predictions from K-neighbors regression. The RMSE for K-neighbors regression is 0.12 while the 

RMSE for PLS predictions is 0.45, which is substantially higher than the former one.  
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 It is worth noting here that Deep learning (DL) models are known to capture non-linear 

and complex relationships well, given ample data and enough computation power. These two 

conditions are satisfied in our work, but the interpretation of DL models is extremely difficult, 

and relatively simpler models are more desirable in process industries for interpretation.  

 

Thus, it is again demonstrated through flowrate predictions that knowledge-based feature 

engineering combined with ML plays a key role in the prediction of process properties in 

comparison to rote application of ML models. 

 

Figure 4.17 Flowrate GPM predictions based on systems engineering enhanced features – PLS 
regression 
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4.7. Conclusions 
 

Table 4.2 compares the performance of RPM and flow rate at different levels of feature 

engineering. The results show that feature engineering is the key to successful modeling of RPM 

and flow rate for data collected from this IIoT testbed. In the first step, there is a significant 

improvement when considering the vibration data in the frequency domain in comparison to when 

raw vibration data in the time domain is used. Further, we extract relevant information using 

domain-based feature engineering. The RPM at different conditions have a strong relationship 

with different frequencies which is expected since at different RPM levels, the vibrations will be 

completely different leading to peaks at different frequencies which is shown in Section 4.6.1. In 

addition, to the best of authors’ knowledge, this is the first attempt to avoid a hierarchical approach 

for prediction of flow rate. A fusion of features extracted in the time domain and knowledge-

guided features in the frequency domain are used to enhance the performance further. It is worth 

noting that with RPM values distributed in such a wide range, an RMSE of 1.53 with knowledge 

guided feature engineering is quite accurate. For flow rate, the modeling is challenging given the 

complex relationship and no clear trend. Thus, linear models such as PLS fail to predict the flow 

rate accurately and we use k-neighbors regression to predict the flow rate. The comparison 

between the performance of PLS and k-neighbors regression is shown in Table 4.3. The RMSE 

for PLS is substantially higher than k-Neighbors regression. As shown in Figure 4.16, the 

predictions significantly improve and capture the trend well with few exceptions while in Figure 

4.17, the predictions deviate significantly from their measured flow rate values. 

The use of neural network models such as ANN and DNN can be considered for future work. 

They are known to capture nonlinear and complex relationship well, but the interpretation remains 

and issue, when using these models in industrial systems. 
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Table 4.2 Predictions performance of RPM and flow rate at different levels of feature 
engineering 

Features used Dimension of 
features RMSE - RPM RMSE – Flow rate 

Raw vibration data – Time 
series 

2400 190.97 2.94 

Lomb-Scargle algorithm – 
Frequency domain data 

11988 11.35 0.73 

System engineering enhanced 
features – Fusion of features 

in time domain plus 
frequency domain 

244 1.53 0.60 

 

Table 4.3 Prediction performance comparison for flow rate. PLS regression vs K- neighbors 
regression with system engineering enhanced feature engineering 

Features used Dimension of 
features 

RMSE –flow rate 
PLS regression 

RMSE – flow rate 
K-Neighbors 

regression 
System engineering enhanced 
features – Fusion of features 

in time domain plus 
frequency domain – Average 
of samples collected over 10 

seconds 

244 0.45 0.12 
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5. Chapter 5. Summary and future work 
 

The dissertation addresses several existing challenges in a variety of industrial processes to 

move towards advanced manufacturing. The major contribution areas include woodchip moisture 

content estimation using IIoT Wi-Fi sensors and ML for the pulp and paper industry; feature-based 

virtual metrology framework for the semiconductor industry; and process modeling and condition 

monitoring using IIoT vibration sensors and ML for process industries. 

5.1. Summary 
 

In this work, the author aims to explore the utilization of novel non-invasive IIoT sensors, 

including accelerometers and 5G Wi-Fi, for industrial applications. The author also investigates 

the challenges and limitations in ML modeling when the traditional pure data-driven ML 

techniques are directly applied to model the data collected from IIoT sensors. The author shows 

how modeling big data directly with data-driven ML techniques lead to incomplete or misleading 

information and insights. The author investigates how extracting and processing the information 

within the data collected from IIoT sensors with the right tools is more critical to the data-driven 

decision-making process to enhance and optimize operations in an industrial setting.  

 

5.1.1. Moisture detection in woodchips using IIoT Wi-Fi and ML techniques 
 

 

The US pulp and paper industry is an energy intensive sector, and the pulping process is one 

of the most critical process with substantial room for improvement. For the pulping process, the 

incoming woodchip MC is a significant source of disturbance, and this disturbance is unmeasured 

due to the lack of affordable, reliable and easy to maintain sensors, which leads to significant loss 
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in pulp yield, overuse of heat, energy and chemicals. As a solution, the author proposes a non-

destructive, economic, and robust woodchip MC sensing approach using CSI from IIoT based Wi-

Fi sensors. 

An experimental design and an algorithmic technique were proposed to handle the 

confounding factors. Specifically, to address the challenge that raw CSI data are very noisy and 

sensitive to woodchip packing, the author proposes a feature-based classification system based on 

SPA. The author investigates two different aspects of CSI data and shows how amplitude is critical 

to smart sensing, while phase difference of CSI data is less reliable given the heterogeneous 

woodchip structure. Effects of diversity in a multi-antenna receiving system are also investigated 

and it is shown that information utilized from more than one antenna on the receiving side aid the 

MC estimation in woodchips. The drawbacks of modeling on raw data are discussed. Through 

detailed investigation and robust modeling, the author shows that the key to smart sensing is the 

synergistic integration of domain knowledge and ML techniques. Different linear and non-linear 

ML classification techniques are reviewed, and their performances are also compared in this work. 

5.1.2. VM for semiconductor manufacturing 
 

In semiconductor manufacturing, a wafer undergoes hundreds of steps to yield the final 

product. After a processing step, typically, a few wafers from a lot are measured at the metrology 

station and they represent the whole lot. In this work, the author proposes a novel next-generation 

feature-based virtual metrology (FVM) framework, to address the challenges and limitations of 

existing VM techniques in the semiconductor industry. FVM also targets wafer-to-wafer control, 

which is replacing lot-to-lot process control at an increasing pace. It is shown in this work how an 

efficient approach for predicting wafer properties without physically conducting measurement can 

reduce costs and downtime and increase the overall efficiency of the process. 
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The author provides a detailed description of the proposed FVM approach in this work. It is 

shown in detail how the proposed FVM approach can eliminate some of the data pre-processing 

steps such as data mismatch, trajectory shift and alignment inherently. These pre-processing steps 

are a common issue in modeling batch processes such as a typical semiconductor manufacturing 

process. The author demonstrates how different statistics can be used to achieve superior 

performance and can capture process characteristics including non-linearity and non-Gaussianity. 

The superior performance of FVM based approach is evaluated based on two case studies i.e., a 

simulated CMP dataset and a real industrial plasma etch dataset. Both static and recursive 

modeling approaches are explored and investigated to mimic the industrial scenario.. 

 

5.1.3. Machine learning techniques for process modeling and condition monitoring using 
non-invasive IIoT vibration sensors 

 

A chemical process of manufacturing plant can be considered a warehouse of data where many 

process measurements are collected and stored every second. However, often, these measurements 

are not available due to the lack of reliable sensors or due to the nature of the process. Incorporation 

of IIoT sensors along with robust analytics has a potential to mitigate such problems and enable 

smarter manufacturing processes. This work focuses on the use of non-invasive IIoT sensors such 

as accelerometers or vibration sensors, for predictive modeling and condition monitoring in the 

process industry. 

This work is an extension to a previous work and the major focus of this work is to accurately 

predict the motor speed and the flow rate of fluid in the system using vibration data collected 

through non-invasive IIoT sensors.  Data collected from a centrifugal pump testbed with multiple 

IIoT sensors are used in this work for predictive modeling of RPM and flow rate. The performance 
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of ML techniques such as PLS on unprocessed data are shown and investigated. The author 

demonstrates how rote application of ML fails to capture the relationship between explanatory and 

response variables. To address the poor performance, the author proposes feature engineering to 

extract features relevant to the peak frequency in the frequency domain and the time domain. 

Different levels of feature engineering and their performance based on ML approaches such as 

PLS and k-neighbors regression are compared. The author also shows, how modeling the flow rate 

is challenging and linear approaches such as PLS fail. As a solution, the author proposes the use 

of complex approaches such as k-neighbors regression to accurately predict the flow rate of the 

system. 

5.2. Potential directions for future work 
 

In this section, the author sheds some light on potential future directions in the areas of this 

research and thus enhance these proposed approaches further. 

5.2.1. Moisture detection in woodchips using IIoT Wi-Fi and ML techniques 
 

It is worth noting that although woodchip packing has a significant impact on the collected 

CSI data (both amplitude and phase responses), its impact on MC classification is eliminated after 

we selected SPA features that are completely insensitive to packing. Although the randomization 

is done by shaking the same woodchips within a given volume - which means the volume density 

of the sample is about the same, the linear density (i.e., linear void/packing fraction) varies 

significantly. If we assume linear paths of the Wi-Fi signal propagation, shuffling even the same 

woodchips can introduce significant variations to the linear void (or packing) fraction along the 

straight lines between the injector and the three receivers, as evidenced by the significant changes 

in the amplitude and phase responses of the CSI data. However, our results show that the selected 
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SPA features (i.e., mean difference of consecutive subcarriers of CSI amplitude) are insensitive to 

the shuffling, as evidenced by the high classification accuracy of independent (i.e., differently 

shuffled) testing samples. Therefore, we can conclude that the selected SPA features are insensitive 

to the void fraction (or packing density) of the woodchips. This is particularly convincing when 

we consider the excellent performance of the technology at the low MC range where there is only 

0.05% change in MC level but significant change in linear void fraction along the Wi-Fi 

propagation paths due to shuffling. Nevertheless, it is desirable to test woodchips with different 

sizes to further validate the technology. We envision that, when implemented in real industrial 

applications, some form of random sampling can be implemented to obtain multiple MC 

estimations, and some form of aggregation (e.g., average) of different measurements can be used 

to obtain a reliable estimation of the MC level for a large number of woodchips. 

It is also worth noting that this work only establishes the feasibility of this technology in the 

lab using a box. Whether the technology can be applied in more flexible settings, such as 

woodchips not in a box but in a pile on a fixed or moving surface (e.g., a conveyor belt), requires 

further investigation. There is no doubt that the problem will be more challenging than what has 

been studied in this work, which is under a much better controlled environment in a lab. In addition, 

this work only demonstrates the success of classification-based woodchip MC estimation, while 

the preliminary results have shown that the regression-based MC estimation is much more 

challenging for this application. This is due to the fact that, although MDCSs of CSI amplitude 

enables linear separation of different MC levels, the functional relationship between CSI data and 

woodchip MC values is actually much more complicated and research in this area is a potential 

suggested area worth investigating. 
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5.2.2. VM for semiconductor manufacturing 
 

It is worth noting that there are other nonlinear VM approaches as discussed in this work 

such as kernel-based or ANN-based approaches. Although FVM uses features, they are different 

from features extracted using kernel-based methods because they have clear physical and/or 

statistical meanings. Similarly, although ANN-based methods can extract the nonlinear 

relationship between independent and dependent variables, the interpretation of the relationship 

is challenging. In other words, it is difficult if not impossible to find which variable/feature 

contributes how much to the output. In addition, the author suggests the use certain feature 

selection approaches to further explore each of the proposed features and their contribution to 

superior prediction performance as a part of future work. 

These are also areas of FVM and RFVM that are worth further investigation, such as different 

recursive or adaptive schemes to further improve their performances and are a potential direction 

of research. 

5.2.3. Machine learning techniques for process modeling and condition monitoring using 
non-invasive IIoT vibration sensors 

 

The major goal and contribution of this work are to predict the flow rate and RPM by 

investigating a set of feature engineering approaches to improve the modeling of the relationship 

between vibration data collected from IIoT sensors and flow rate and RPM. In contrast to a 

hierarchical approach proposed in the previous work to predict the flow rate from each RPM stage, 

a single model is proposed in this work to predict the RPM with minimal error using a fusion of 

time domain and frequency domain-based features selected using domain knowledge. While the 

relationship between vibration data and RPM is linear and can be modeled with methods such as 
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PLS, modeling the relationship with flow rate is challenging, and complex models such as k-

neighbors regression are used to achieve the required prediction performance. 

This work demonstrates that feature engineering, once again, plays a key role in developing 

successful data-driven machine learning models for predicting key process information, and rote 

application of ML algorithms without considering domain knowledge leads to poor predictions. 

The performance is compared at different levels or extent of feature engineering. It is seen that 

statistical approaches combined with feature engineering that involve extensive human learning 

showed superior performance. However, Deep Neural Networks (DNN) or Deep Learning (DL) 

approaches are known to model complex relationships relatively well and have been researched 

extensively in recent years. However, these models require high computation and relatively more 

data to model the relationship efficiently. Although the interpretability of DNN or DL approaches 

remains an issue, this area of research is a potential direction to investigate further. The author 

believes that there is undeniable potential for DL in process systems engineering applications and 

is worth exploring.  

Systematic feature selection on the systems engineering enhanced features proposed in this 

work is another suggested research direction for the future. Different feature selection approaches 

can be used to select a subset of features and can potentially improve the process modeling and 

monitoring performance further.  
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