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Dissertation Abstract

Hamilton Decompositions of Graphs with Primitive Complements

Sibel Ozkan

Doctor of Philosophy, May 10, 2007
(B.S., Bogazici University, 2003)

53 Typed Pages

Directed by Chris A. Rodger

A k-factor of a graph G is a k-regular spanning subgraph of G. A Hamilton cycle is

a connected 2-factor. A graph G is said to be primitive if it contains no proper factors.

A Hamilton decomposition of a graph G is a partition of the edges of G into sets, each

of which induces a Hamilton cycle. In this dissertation, by using a graph homomorphism

technique called amalgamation, we find necessary and sufficient conditions for the existence

of a 2x-regular graph G on n vertices which:

1. has a Hamilton decomposition, and

2. has a complement in Kn that is primitive.

This extends the conditions studied by Hoffman, Rodger and Rosa [7] who considered

maximal sets of Hamilton cycles and 2-factors. It also sheds light on construction approaches

to the Hamilton-Waterloo problem.

We also give sufficient conditions, by using amalgamation technique, for the existence

of 2x-regular graph G on mp vertices which:

1. has a Hamilton decomposition, and
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2. has a complement in Kp
m that is primitive.
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Chapter 1

Introduction

1.1 Definitions

Let’s start with giving some definitions. A complete graph on n vertices, denoted by

Kn, is a simple graph in which there is an edge between every pair of its vertices. A complete

multipartite graph Kp
m is the graph with p parts, each of size m, in which there is an edge

between any pair of its vertices if and only if they are in different parts.

Figure 1.1: K5 Figure 1.2: K2
4

A k-factor of a graph G is a spanning k-regular subgraph of G. In other words, it is

a subgraph of G which uses all the vertices of G, and the degree of each of its vertices is

k. G is said to be primitive if it contains no k-factors with 1 ≤ k < ∆ (∆ is the maximum

degree of G). A Hamilton cycle in a graph G is a spanning cycle in G. So, we can consider

Hamilton cycles as connected 2-factors.

A graph which has a Hamilton cycle is called Hamiltonian, and a Hamilton decom-

position of a graph G is a partition of the edges of G into sets, each of which induces a

Hamilton cycle. A set S of Hamilton cycles in G is said to be maximal if G−E(S) contains
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Figure 1.3: A 2-factor in a given graph G

no Hamilton cycles. Similarly, a set S of edge-disjoint k-factors in G is said to be maximal

if G− E(S) contains no k-factors. In either case, the spectrum is the set that contains the

integer s if and only if such a maximal set of size s exists.

Figure 1.4: A Hamilton decomposition of K7

In this dissertation, graphs may have multiple edges and loops, with each loop con-

tributing 2 to the degree of the incident vertex. The number of edges between w and v in G

is denoted by mG(w, v) or simply by m(w, v). If G has an edge-coloring, then let G(i) be the

subgraph of G induced by the edges colored i, and let ω(G) be the number of components

in G. An edge-coloring of G is said to be equitable if for each pair of colors i and j and for

each v ∈ V (G), |dG(i)(v) − dG(j)(v)| ∈ {0, 1}, and called evenly-equitable if for each pair of

colors i and j and for each v ∈ V (G), dG(i)(v) is even and |dG(i)(v)− dG(j)(v)| ∈ {0, 2}.
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1.2 History

The popularity of Hamilton cycles rises from optimization problems like the Traveling

Salesman Problem: Given a number of cities and the costs of traveling from any city to any

other city, what is the cheapest round-trip route that visits each city exactly once and then

returns to the starting city? Solution to this problem is equivalent to finding a Hamilton

cycle with the least weight in a weighted complete graph. Although finding a Hamilton

cycle in a graph is an NP-complete problem, the literature contains classic results which

give necessary and sufficient conditions for a graph to be Hamiltonian; some also exist for

the decomposition of certain graphs into Hamilton cycles.

In 1847, Kirkman [10] solved the existence and the spectrum problem for 3-cycle sys-

tems of Kn. Since then, cycle decomposition has been an interesting problem and many

results have appeared on this subject. Hamilton decompositions, where each cycle in the

system needs to be a spanning cycle, also dates back to at least 19th century. In 1894,

Walecki [12] determined the spectrum for Hamilton decompositions of Kn, and in 1976,

Laskar and Auerbach [11] determined this spectrum for complete multipartite graphs.

In 1982, A.J.W. Hilton [5] wrote a gem of a paper, giving necessary and sufficient

conditions for an edge-colored copy of Kn to be embedded in an edge-colored copy of Kv

in such a way that each color class induces a Hamilton cycle. In so doing, he demonstrated

the power of using graph homomorphisms to construct graph decompositions, calling them

amalgamations. The flexibility of his technique has been demonstrated over the next 25

years in a variety of settings, and this dissertation uses it too!

In 1993, Hoffman, Rodger, and Rosa [7] determined the spectrum for maximal sets

of Hamilton cycles of Kn by using amalgamations. They also determined the complete
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spectrum for maximal sets of 2-factors of Kn by using Tutte’s f -factor Theorem, proving

the following result.

Theorem 1.1 ([7]) There exists a maximal set S of x edge-disjoint 2-factors in Kn if and

only if

1. x = n−1
2 if n is odd, and

2. n−√n
2 ≤ x ≤ n−2

2 if n is even.

This result stands at the other end to an avenue of research in the literature, setting

limits on results that seek to extend sets of edge-disjoint 2-factors of one kind to a (complete)

2-factorization of Kn in which the added 2-factors have another property. For example,

Buchanan [4], in his dissertation written under the supervision of A.J.W. Hilton, used

amalgamations to show that Kn −E(U) has a Hamilton decomposition for any odd n and

for any 2-factor U of Kn in 1997. This result and extensions of it have now also been proved

using difference methods [3, 17].

Another such example of research in the literature is the Hamilton-Waterloo problem:

For which values of s, t, and z does there exist a 2-factorization of Kn (or of Kn − F , the

spouse avoiding version of the problem where n is even and F is a 1-factor) in which z of

the 2-factors consist entirely of s-cycles, and the rest consist of t-cycles? Horak, Nedela,

and Rosa [8] recently addressed this problem, making progress in the case when s = n (so

these 2-factors are Hamilton cycles) and t = 3. Results also address the situation where

both s and t are small (see [1] for example).

Here we continue the tradition begun by A.J.W. Hilton by finding necessary and suffi-

cient conditions on (x, n) to be able to partition E(Kn) into 2 sets, one of which induces a
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2x-regular graph that has a Hamilton decomposition, the other of which induces a primitive

graph. Not only is this an interesting graph decomposition, but it also has the appeal of

setting limits on results like those addressed by Horak, Nedela, and Rosa and by Buchanan

described above. The results proved here show that when n is even, one could select x

edge-disjoint Hamilton cycles for any x ≥ n−√n
2 and be left with no 2-factors of any type

in the complement.

In Chapter 5, we extend the results for the graphs that have primitive complements in

complete multipartite graphs Kp
m.

5



Chapter 2

Primitive graphs

If d is even, then Petersen’s Theorem [16] precludes any non-trivial primitive d-regular

graphs. It is known that there exist primitive regular graphs for every odd degree d [7].

In fact, there exists a primitive regular graph of order n and odd degree d if and only if

n ≥ (d + 1)2 and n is even. We now define a family of such graphs. For each d ≥ 3 (d odd)

and each n ≥ (d + 1)2, define a set of d-regular graphs on n vertices G(n, d) as follows:

G ∈ G(n, d) if and only if

(a) G contains a cut-vertex v such that G−v has a partition into d subgraphs C1, C2, . . . , Cd,

where C1, C2, . . . , Cd−1 are components of G−v, and Cd is the union of the remaining

components of G− v,

(b) Each of C1, C2, . . . , Cd−1 contains exactly d + 2 vertices, exactly one of which is adja-

cent to v,

(c) Cd has n− (d− 1)(d + 2)− 1 vertices, exactly one of which is adjacent to v, and

(d) G is d-regular.

Note that (c) is implied by the other conditions.

In this dissertation it is easily shown that any G ∈ G(n, d) is primitive, and then the

amalgamation technique is used to show that Kn−E(G) has a Hamilton decomposition for

some G ∈ G(n, d). This shows that the spectrum of edge-disjoint Hamilton cycles that have
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primitive complements is equal to the spectrum of maximal sets of 2-factors. Computing

this first spectrum is the main result of Chapter 4.

Lemma 2.1 For each odd d ≥ 3 and even n ≥ (d + 1)2, any G ∈ G(n, d) is primitive.

Proof Note that, by construction, each of C1, . . . , Cd in G−v has an odd number of vertices.

Suppose there exists a proper d′-factor F . Since d′ < d, there would be two of C1, . . . , Cd,

say Ci and Cj , such that F contains the edge joining Ci to v but does not contain the edge

joining Cj to v. But then in the components induced by V (Ci) and V (Cj) in F − v, the

number of vertices of odd degree differs by 1. So, one of the components has an odd number

of vertices of odd degree, which is a contradiction.

Figure 2.1: The only graph in G(16, 3)
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Figure 2.2: One graph in G(42, 5): Cd does not need to be connected
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Chapter 3

Amalgamations and preliminary results

Informally, an amalgamation of a graph H is a new graph A, formed by partitioning

the vertices of H and representing each element p of the partition P with a single vertex

in A, where edges incident with this single vertex are in one-to-one correspondence with

the edges incident with original vertices of H in P ; so edges in H joining two vertices in p

correspond to loops in A. In other words, for each edge {u, v} in H, if u ∈ p1 and v ∈ p2,

then we add an edge {p1, p2} in A (edges between two vertices in the same element of the

partition correspond to loops in A).

Formally, an amalgamation A of a graph H is formed by a graph homomorphism

f : V (H) → V (A), where each vertex v of A represents η(v) = |f−1(v)| vertices of H.

η(v) is called the amalgamation number of v, and f is called the amalgamation function of

H. Notice that any edge coloring of H naturally induces an edge-coloring of A under the

homomorphism f . In an edge coloring of A, A(k) represents the subgraph of A induced by

the edges colored k.

So, how do we use amalgamations? Given a graph A with amalgamation numbers,

one could try to find graphs which have A as an amalgamation. Conceptually, this could

be achieved by taking each vertex v with η(v) > 1 and “peeling out” vertices one by one,

at each stage producing a graph H for which A is an amalgamation. H is said to be a

disentanglement of A. So, every disentanglement H of A has an associated amalgamation

function f of H. Furthermore, if A is edge-colored, then this disentanglement naturally

induces an edge-coloring of H.

9



Figure 3.1: An amalgamation of K5 in which vertices have been partitioned into three parts:
circle, square, and triangle

A disentanglement H of A is said to be regular if each color class of H is regular, and

a disentanglement H of A is said to be final if η(h) = 1 for all h ∈ V (H).

In Chapter 4, we want to color the edges of an amalgamation of Kn so that when we

disentangle the amalgamation, color class 0 will induce a primitive graph and each other

color class will induce a Hamilton cycle. In Chapter 5, we use the same technique for

complete multipartite graphs. The crucial tool for the proofs is Theorem 3.3, which says

that we can disentangle the amalgamation of Kn and that the colored edges incident to a

vertex in the amalgamation will split up evenly among the corresponding vertices in the

disentanglement. What we need to do is to show that the conditions of Theorem 3.3 hold.

Now, let n and d be fixed. For every graph G ∈ G(n, d), let K(G) be a 2-edge colored

copy of Kn with colors 0 and α in which the edges colored 0 induce a copy of G (in a later

proof, the edges colored α will be partitioned into several color classes).

Notice that given n and d, any two graphs in G(n, d)

(a) have the same number of edges in Ci, for 1 ≤ i ≤ d, and

10



 
17 loops 17 loops 32 loops

η(a5) = 13
a5a4a3a1

v

a2

η(a1) = 7 η(a2) = 7 η(a3) = 7 η(a4) = 7

Figure 3.2: An amalgamation of all graphs in G(42, 5) in which vertices of the same com-
ponent are amalgamated together

(b) have the same number of edges joining the cut-vertex v to the vertices in Ci, for

1 ≤ i ≤ d.

Let K ′(G) be the amalgamation formed from K(G) using the partition {{v}, V (C1), . . . ,

V (Cd)}. Properties (a) and (b) imply that for any two graphs G1, G2 ∈ G(n, d), the amalga-

mations K ′(G1) and K ′(G2) are isomorphic. Thus, we let K(n, d) be the unique edge-colored

amalgamated graph formed like this. Note that V (K(n, d)) = {ai | 0 ≤ i ≤ d}, and that

η(ai) =





1 if i = 0,

d + 2 if 1 ≤ i ≤ d− 1, and

n− (d− 1)(d + 2)− 1 if i = d.

(∗)

Then K(n, d) has the following properties:

11



(a′) There are no edges colored 0 joining ai and aj , for 1 ≤ i < j ≤ d,

(b′) There is exactly one edge colored 0 joining ai and a0, for 1 ≤ i ≤ d,

(c′) dA(0)(ai) = η(ai)d, for 0 ≤ i ≤ d, and

(d′) dA(α)(ai) = (n− 1− d)η(ai), for 0 ≤ i ≤ d.

Lemma 3.1 Every regular final disentanglement H of K(n, d) has the property that H(0) ∈

G(n, d).

Proof Let H be a regular final disentanglement of K(n, d). We check to see that H satisfies

properties (a)− (d) in the definition of G(n, d). By (a′), there are no edges colored 0 joining

ai and aj , for 1 ≤ i < j ≤ d, so there is a cut-vertex in H(0) and this satisfies (a). By (∗) and

(b′), each of C1, . . . , Cd−1 contains exactly d+2 vertices and Cd contains n−(d−1)(d+2)−1

vertices; in each case exactly one vertex of which is adjacent to cut-vertex v. This proves

(b) and (c).

By (c′), dA(0)(ai) = η(ai)d. Since H is regular and it is a final disentanglement, η(h) = 1

for each h ∈ H. This says that H(0) is d-regular, proving (d). Hence, H(0) ∈ G(n, d).

We will use the following two results. We will color the edges with colors 0, 1, . . . , `

and s = ` + 1 in Chapter 4 and with colors 0, 1, . . . , `, α and s = ` + 2 in Chapter 5. So, we

state the results here for s-edge-colorings.

Lemma 3.2 ([13]) Let H ∼= Kn be an s-edge-colored graph where each color class i is

di-regular, and let f : V (H) → V (G) be an amalgamation function with amalgamation

numbers given by the function η : V (G) → N. The following conditions hold for any pair of

vertices w, v ∈ V (G) :

12



(1) d(w) = η(w)(n− 1),

(2) the number of edges between w and v is m(w, v) = η(w)η(v) if w 6= v,

(3) w has η(w)(η(w)− 1)/2 loops, and

(4) dG(i)(w) = η(wi)di for each color i ∈ {0, 1, . . . , `}.

Theorem 3.3 ([13]) Let A be an s-edge-colored graph satisfying conditions (1) − (4) of

Lemma 3.2 for the function η : V (A) → N. Then there exists a disentanglement H of A

with amalgamation function f(H) such that H ∼= Kn and the following two conditions hold:

(i) For any z ∈ V (A), degree dH(i)(u) ∈ {
⌊

dA(i)(z)

η(z)

⌋
,
⌈

dA(i)(z)

η(z)

⌉
} for all i ∈ 0, . . . , ` and all

u ∈ f−1(z), and

(ii) If dA(i)(z)

η(z) is an even integer for all z ∈ V (A), then ω(A(i)) = ω(H(i)).

This result will be used in the following way in Chapter 4: We will color the edges of

K(n, d) with 2 colors; 0 and α. Then, we will recolor the edges colored α with (n−d−1)/2

colors in such a way that each color class produces a Hamilton cycle in Kn when Theorem

3.3 is applied to the recolored graph. To do this, we will need Lemma 3.4. It will also

be clear that the edges colored 0 in Kn induce a copy of G for some G ∈ G(n, d). An

edge-coloring of G is said to be evenly-equitable if for each pair of colors i and j and for

each v ∈ V (G), dG(i)(v) is even and |dG(i)(v)− dG(j)(v)| ∈ {0, 2}.

Lemma 3.4 ([6]) For each m ≥ 1, each finite eulerian graph has an evenly-equitable edge-

coloring with m colors.

13



Chapter 4

Hamilton decompositions of graphs with primitive complements

In this chapter, we will give a proof to the following theorem.

Theorem 4.1 There exists a set S of x edge-disjoint Hamilton cycles in Kn such that

Kn − E(S) is primitive if and only if

1. x = n−1
2 if n is odd, and

2. n−√n
2 ≤ x ≤ n−2

2 if n is even.

We begin by proving the following theorem, which implies the sufficiency for even n.

Theorem 4.2 For each odd d ≥ 3 and each even n ≥ (d + 1)2, there exists a G ∈ G(n, d)

such that Kn − E(G) has Hamilton decomposition.

Proof We begin with the 2-edge-colored graph K(n, d) on d + 1 vertices, which is an

amalgamation of Kn and has the amalgamation numbers given in (∗).

Let A = K(n, d) for convenience. By multiplying the amalgamation numbers in (∗) by

(n− 1), we get:

dA(a0) = n− 1,

dA(ai) = (d + 2)(n− 1) for 1 ≤ i ≤ d− 1, and

dA(ad) = (n− 1)(n− (d− 1)(d + 2)− 1),

where a0 ∈ V (A) corresponds to the cut-vertex v in G ∈ G(n, d), and ai ∈ V (A) corresponds

to the vertices in Ci for 1 ≤ i ≤ d.

14



 

ad

a0 = v

a2a1 a3

Figure 4.1: A = K(n, d)

Next, we recolor the edges of A(α) with colors 1, . . . , ` = (n−d−1)/2 so that, for each

color k ∈ {1, 2, . . . , `} and each vertex z ∈ V (A):

(a) A(k) is connected, and

(b) dA(k)(z) = 2η(z) (we already know dA(0)(z) = dη(z)).

Then, we can apply Theorem 3.3 to obtain the graph H ∼= Kn satisfying

(i) for all u ∈ f−1(z), dH(k)(u) = dA(k)(z)

η(z) =





2 for 1 ≤ k ≤ `,

d for k = 0,

15



 

ad

a0 = v

a2a1 a3

Figure 4.2: A(α) after we removed the edges of the primitive graph

(ii) for 1 ≤ k ≤ `, H(k) is connected (since dA(k)(z)

η(z) = 2 is even for all z ∈ V (A)).

Notice that (i) and (ii) imply that, for each color k ∈ {1, 2, . . . , `}, the color class H(k)

induces a Hamilton cycle. By Lemma 3.1, the edges colored 0 in H induce a primitive

graph. We only need to specify the (` + 1)-edge-coloring of A.

We now start recoloring the edges of A(α). In the first step, we will guarantee the

connectivity of each color class. In the second step, we will boost the degree of each vertex

ai in each color class to 2η(ai).

16



 

a1

a0 = v

a2 a3 ad

Figure 4.3: First step in recoloring: recolor 2 edges between ai and ad with k, for 1 ≤ k ≤ `,
and 1 ≤ i ≤ d− 1

First, for 1 ≤ i ≤ d − 1 and for 1 ≤ k ≤ `, recolor two edges joining vertices ai and

ad with color k. To do this, we should check if there are at least 2` = n − d − 1 edges

colored α between ai and ad to ensure this first step is possible. Suppose 1 ≤ i ≤ d − 1.

All the edges between ai and ad are in A(α). Since A is an amalgamation of Kn, there

are η(ai)η(ad) = (d + 2)(n − d2 − d + 1) edges between ai and ad. So, we now show that

(d + 2)(n− d2 − d + 1) ≥ n− d− 1.

17



Recall that by the hypothesis, n ≥ (d + 1)2 and d ≥ 3. So,

n(d + 1) ≥ (d + 1)3 = d3 + 3d2 + 3d + 1

> d3 + 3d2 − 3, since d ≥ 3.

Therefore,

(d + 2)(n− d2 − d + 1) = nd− d3 − d2 + d + 2n− 2d2 − 2d + 2

= nd + n + n− d3 − 3d2 − d + 2

= (n− d− 1) + nd + n− d3 − 3d2 + 3

= (n− d− 1) + n(d + 1)− (d3 + 3d2 − 3)

> n− d− 1.

Hence, we have enough edges in A(α) to recolor two edges between ai and ad with color k,

for each color k ∈ {1, 2, . . . , `} and each i ∈ {1, 2, . . . , d− 1}.

Now, in our second step, we recolor the remaining edges colored α with the same `

colors. Let Ā(α) be a graph induced by the remaining edges. Then, Ā(α) is connected since

for each i ∈ {1, 2, . . . , d− 1}, vertex ai is joined to ad with (d+2)(n−d2−d+1)−(n−d−1) > 0

edges and the degree dĀ(α)(ai) is even:

dĀ(α)(ai) =





2` for i = 0,

η(ai)2`− 2` for 1 ≤ i ≤ d− 1, (∗∗)

η(ai)2`− 2`(d− 1) for i = d.

So, Ā(α) is eulerian and, by Lemma 3.4 we can give Ā(α) an evenly equitable edge-coloring

with ` colors. So, for each ai ∈ V (Ā(α)), and each 1 ≤ k ≤ `, dA(k)(ai) is either 2
⌊

dĀ(α)(ai)

2`

⌋

18



or 2
⌈

dĀ(α)(ai)

2`

⌉
. Since 2` is a factor of dĀ(α)(ai) for each vertex ai ∈ V (Ā(α)), we have

dA(k)(ai) = 2
⌊

dĀ(α)(ai)

2`

⌋
= 2

⌈
dĀ(α)(ai)

2`

⌉
=

dĀ(α)(ai)

` .

Substituting from (∗∗), we get

dA(k)(ai) =





2 for i = 0,

2(η(ai)− 1) for 1 ≤ i ≤ d− 1,

2(η(ai)− d + 1) for i = d.

For 1 ≤ i ≤ d − 1, and for 1 ≤ k ≤ `, ai is incident with two edges colored k that were

recolored in step 1 and is incident with 2η(ai)−2 edges colored k that were recolored in step

2; ai is incident with 2η(ai) edges colored k, as required by (b). Similarly, dA(k)(ai) = 2η(ai)

for i ∈ {0, d}.

Hence, we have the desired (` + 1)-coloring of K(n, d). So, Theorem 3.3 provides an

(` + 1)-edge-coloring of Kn where color 0 induces a primitive graph G and each of colors 1

to ` induces a Hamilton cycle in Kn − E(G).

Now, we prove the converse.

Theorem 4.3 If there exists a set S of x edge-disjoint Hamilton cycles such that Kn−E(S)

is primitive, then x ≥ (n−√n)/2 when n is even, and x = (n− 1)/2 when n is odd.

Proof If Kn − E(S) is primitive, then it must be regular; say it is d-regular. We consider

the cases when n is odd and when n is even.

If n is odd and x < (n−1)/2, then since Kn−E(S) is regular of even degree, Petersen’s

Theorem [16] guarantees that it contains a 2-factor. Hence Kn − E(S) is not primitive.
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If n is even, then Hoffman et al. [7] showed that Kn − E(S) can be primitive with

degree d if and only if d is odd and n ≥ (d + 1)2. So,
√

n − 1 ≥ d. Since S contains

x = (n− 1− d)/2 edge-disjoint Hamilton cycles, substituting for d gives us:

x ≥ n− 1−√n + 1
2

=
n−√n

2
.

Hence, we are done.

Theorem 4.2 and Theorem 4.3 together prove Theorem 4.1.

We conclude this chapter with the following avenue for future research! Let G′(n, d) be

the more general family of graphs defined by all the properties of graphs in G(n, d) except

that properties (b) and (c) are relaxed to allow C1, ..., Cd to contain any odd number of

vertices. It is easy to see that graphs in G′(n, d) are primitive.

Conjecture: There exists a Hamilton decomposition of Kn−E(G) for all G ∈ G′(n, d).
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Chapter 5

Hamilton decompositions with primitive complements in Kp
m

In this chapter, we give sufficient conditions to find a set of edge-disjoint Hamilton

cycles in Kp
m where the complement is primitive. Let’s start with giving the preliminary

results we will use in the proof of the main theorem.

We will use the following results to partition the vertices of the primitive graph into p

parts, each of size m, then use it as the vertex set for Kp
m. A vertex coloring c of a graph

G is said to be equitable if |ci − cj | ≤ 1 for all colors 1 ≤ i, j ≤ p, where ci is the number of

vertices in G colored i.

Theorem 5.1 ([18]) If G is a graph satisfying ∆(G) ≤ r, then G has an equitable (r +1)-

coloring.

Lemma 5.2 Let d ≥ 3 be odd and n = mp ≥ (d + 1)2 be even, for some odd m. For

p ≥ d + 1, we can give any G ∈ G(n, d) an equitable p-vertex coloring which induces an

equitable vertex coloring in Cd and satisfying |X1| = |X2| = . . . = |Xp| = m , where Xk is

the set of vertices in G colored k, for 1 ≤ k ≤ p.

Proof By Theorem 5.1, we know that if G is a graph satisfying ∆(G) ≤ r, then G has an

equitable (r + 1)-coloring.

Let G ∈ G(n, d). Since Cd is d-regular, ∆(Cd) = d. Then, for p ≥ d + 1, we can give

Cd an equitable p-coloring. Since G − Cd is also d-regular, similarly we can give G − Cd

an equitable p-coloring. Since in G these two subgraphs are joined buy a cut-edge, the

colors can be named so that the union of these two colorings gives us an equitable p-vertex
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coloring of G with all color classes of size bn
p c or dn

p e. But p divides n = mp and the size of

all color classes is bn
p c = dn

p e = m. Hence, we are done.

The next Lemma will help us in the proof of the main result.

Lemma 5.3 For any graph G, if d∆(G)−δ(G)
k e = 1, then in any equitable edge-coloring of

G with k-colors, |ci(u)− ci(v)| ≤ 2 for any u, v ∈ G, and any color i, 1 ≤ i ≤ k.

Proof Let c : E(G) 7−→ {1, 2, . . . , k} be an equitable k-edge-coloring of G. Then, for any

a ∈ V (G), and any i ∈ {1, 2, . . . , k}

|ci(a)| = ddG(a)
k

e or bdG(a)
k

c

Then, for any u, v ∈ V (G) and any i ∈ {1, 2, . . . , k},

|ci(u)− ci(v)| ≤ ddG(u)
k e − bdG(v)

k c

≤ d∆(G)
k e − b δ(G)

k c

= d∆(G)
k e − d δ(G)

k e+ d δ(G)
k e − b δ(G)

k c

≤ d∆(G)−δ(G)
k e+ 1

= 2

We will use Tutte’s f -factor Theorem in the proof of Theorem 5.5. Before stating

Tutte’s f -factor Theorem, let’s give necessary definitions. To assist the reader, throughout

the section we adopt Tutte’s notation [20].

The valency of a vertex x in a graph G is the degree of x in G and is denoted by

val(G, x). If f is a function from the vertex set V (G) of G into the set of integers, define
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another function f ′ by the rule f ′(x) = val(G, x)− f(x) for each vertex x of G. Given such

a function f , an f -factor is a spanning subgraph F of G satisfying val(F, x) = f(x) for each

vertex x of G.

A G-triple is an ordered triple (S, T, U) where {S, T, U} partitions V (G). For any

subset S of V (G), f(S) =
∑

v∈S f(v). For any disjoint subsets S and T of V (G), λ(S, T )

denotes the number of edges of G joining S to T (in other sections this would be represented

by m(S, T )).

If B = (S, T, U) is a G-triple and C is any component of U in G, then define

J(B, f, C) = f(C) + λ(V (C), T ).

We say that C is an ODD component if J(B, f, C) is an odd integer. Note that we use

capital letters to distinguish it from “odd component” where the number of vertices in the

component is odd. The number of ODD components of U in G with respect to B and f

is denoted by h(B, f). Now, we define the deficiency δ(B, f) of the G-triple B = (S, T, U)

with respect to f , as follows:

δ(B, f) = h(B, f)− f(S)− f ′(T ) + λ(S, T ).

An f-barrier of G is a G-triple B = (S, T, U) such that δ(B, f) > 0. We can now state

Tutte’s f -factor Theorem.

Theorem 5.4 ([20]) Given G and f , exactly one of the following statements is true:

(1) G has an f-factor.
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(2) G has an f-barrier.

In other words, if we let f be a vertex-function of a graph G, then G has an f -factor or

there exists a G-triple B = (S, T, U) of G with δ(B, f) > 0, but not both.

Now, we can state our theorem which is a generalization of the Erdős-Gallai Theorem.

A multigraph is a graph in which multiple edges between two vertices are allowed, and a

degree sequence is called λ-multigraphic if there is a multigraph of index λ with this degree

sequence.

Theorem 5.5 A sequence π = (d1, d2, . . . , dp) of non-negative integers with d1 ≥ d2 ≥

. . . ≥ dp and an even sum is multigraphic with multiplicity at most λ if and only if

k∑

i=1

di ≤ λk(k − 1) +
p∑

i=k+1

min{di, λk} , for every k, 1 ≤ k ≤ p.

Proof Let’s first assume that the sequence π = (d1, d2, . . . , dp) of non-negative integers

with d1 ≥ d2 ≥ . . . ≥ dp and an even sum is multigraphic with multiplicity at most λ and

let G be a graph realizing this degree sequence. Then for any set S of k vertices in G, the

total degree of the vertices in S is equal to the twice the number of edges in S plus the

number of edges between the sets S and G−S. The maximum number of edges in S is
(
λk
2

)

and the maximum number of edges between S and G − S is
∑p

i=k+1 min{di, λk}. Hence,
∑k

i=1 di ≤ λk(k − 1) +
∑p

i=k+1 min{di, λk} follows for every k, 1 ≤ k ≤ p.

Now, assume the inequality
∑k

i=1 di ≤ λk(k− 1)+
∑p

i=k+1 min{di, λk} holds for every

k, 1 ≤ k ≤ p. We want to show that H = λKp has an f -factor with f(vi) = di for all vi ∈ H.

We will use Tutte’s f -factor Theorem and show that δ(B, f) ≤ 0 for all B = (S, T, U), where

{S, T, U} is a partition of V (H).
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The value of δ(B, f) = h(B, f)−f(S)−f ′(T )+λ(S, T ) is greater when f(S) and f ′(T )

are smaller. We can make f(S) small by putting the vertices with the smallest f value in S

and we can make f ′(T ) small by putting the vertices with greatest f value in T . Since our

integer sequence is in a decreasing order, there exist two numbers t = |T | and s = |S| such

that δ takes its maximum value when T = {v1, . . . , vt} and S = {vp−s+1, . . . , vp}. Then,

letting h = h(B, f) and δ = δ(B, f) we get

δ = h−∑p
i=p−s+1 di − λt(p− 1) +

∑t
i=1 di + λts

≤ h−∑p
i=p−s+1 di − λt(p− 1) + λt(t− 1) +

∑p
i=t+1 min{di, λt}+ λts (1)

= h−∑p
i=p−s+1 di − λt(p− t− s) +

∑p−s
i=t+1 min{di, λt}+

∑p
i=p−s+1 min{di, λt}

= h− λt(p− t− s) +
∑p−s

i=t+1 min{di, λt}+
∑p

i=p−s+1(min{di, λt} − di)

≤ h (since −λt(p− t− s) +
∑p−s

i=t+1 min{di, λt} ≤ 0 (2)

and
∑p

i=p−s+1(min{di, λt} − di) ≤ 0)

≤ 1 (since H[U ], being a subgraph of λKp, is connected, so h ∈ {0, 1}) (3)

with δ = 1 if and only if

(4)
∑t

i=1 di = λt(t− 1) +
∑p

i=t+1 min{di, λt} (from (1)), and

(5)
∑p−s

i=t+1 min{di, λt} − λt(p− t− s) = 0 (from (2)), and

(6)
∑p

i=p−s+1(min{di, λk} − di) = 0 (from (2)), and

(7) h = 1 (from (3)).

So the result is proved unless (4)-(7) all hold. Now, we will show that if (4)-(6) are

true, then h = 0.
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Condition (4) implies λt(p − t − s) =
∑p−s

i=t+1 min{di, λt}. Note that this also implies

that di ≥ λt for i ∈ {t + 1, . . . , p − s}. Condition (5) implies
∑p

i=p−s+1 min{di, λt} =
∑p

i=p−s+1 di.

We know
∑p

i=1 di = f(T ) + f(U) + f(S) is even. We have

∑p
i=1 di = f(T ) + f(U) + f(S)

=
∑t

i=1 di + f(U) + f(S)

= λt(t− 1) +
∑p

i=t+1 min{di, λt}+ f(U) + f(S)

= λt(t− 1) +
∑p−s

i=t+1 min{di, λt}+
∑p

i=p−s+1 min{di, λt}+ f(U) + f(S)

= λt(t− 1) + λt(p− t− s) +
∑p

i=p−s+1 min{di, λt}+ f(U) + f(S)

= λt(t− 1) + λt(p− t− s) +
∑p

i=p−s+1 di + f(U) + f(S)

= λt(t− 1) + λt(p− t− s) + 2f(S) + f(U).

Since all of λt(t − 1), 2f(S), and the left hand side are even, λt(p − t − s) + f(U) =

λ(U, T ) + f(U) is even, so U is EVEN. Therefore h = 0. Hence, we have δ ≤ 0 for every

case and H = λKp has an f -factor where f(vi) = di for all vi ∈ H.

We will use the Theorem 5.5 in the proof of the following lemma.

Lemma 5.6 Let p be even. Suppose π = (d1, d2, . . . , dp) is a sequence of integers with

6 ≥ d1 ≥ d2 ≥ . . . ≥ dp ≥ 1, satisfying

(i) d1 − dp ≤ 4,

(ii)
∑p

i=1 di is even, and

(iii) d1 ≤
∑p

i=2 di.
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Then π is λ-multigraphic, where λ can be chosen to satisfy

λ =





2 if p ≥ 6

3 if p = 6 and π : (5, 5, 1, 1, 1, 1)

4 if p = 4

Proof Case 1: First, let p = 4 and λ = 4. It is enough to show that we have

k∑

i=1

di ≤ 4k(k − 1) +
4∑

i=k+1

min{di, 4k} , for every k, 1 ≤ k ≤ 4

by Theorem 5.5. We will denote the left hand side of the inequality by LHS and right hand

side of the inequality by RHS for simplicity. We will proceed case by case for each k:

k = 4: LHS ≤ 24 since each vertex may have degree at most 6. RHS ≥ 4.4.3 = 48 > 24.

k = 3: Similarly, LHS ≤ 18 and RHS ≥ 4.3.2 + min{d4, 12} > 24 > 18.

k = 2: LHS ≤ 12. Clearly RHS ≥ 4.2 + (1 + 1) = 10, so we only need to consider the

case where LHS ≥ 11 but this means at least one of the vertices has degree 6. Since the

difference between the degrees can not be more than 4, all other vertices must have degrees

at least 2, implying that RHS ≥ 4.2 + (2 + 2) = 12.

k = 1: Since each vertex has degree at most 6, LHS ≤ 6. We will analyze this case in

two subcases.

If di ≤ 4 for i ∈ {2, 3, 4}, then
∑4

i=2 min{di, 4k} =
∑4

i=2 di ≥ d1 by condition (iii).

Hence LHS ≤ RHS.

If there is at least one di > 4 for i ∈ {2, 3, 4}, then since other 2 vertices have degree

at least 1, RHS ≥ 7 ≥ LHS.

In all cases when p = 4, we have shown that the above inequality holds.
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Case 2: Now, let λ = 3, p = 6, and the degree sequence be (5,5,1,1,1,1).

The below figure gives a realization of this degree sequence with λ = 3.

Figure 5.1: A graph with degree sequence (5, 5, 1, 1, 1, 1)

Case 3: Now, let λ = 2, p ≥ 6, and π 6= (5, 5, 1, 1, 1, 1).

It is enough to show that we have

k∑

i=1

di ≤ 2k(k − 1) +
4∑

i=k+1

min{di, 2k} , for every k, 1 ≤ k ≤ p

by Theorem 5.5. We will again proceed case by case for each k.

k ≥ 4: Since each vertex has degree at most 6, we have LHS ≤ 6k. Also, RHS ≥

2k(k − 1) = k(2k − 2) ≥ 6k for k ≥ 4.

k = 3: LHS ≤ 18.

If there is at least one vertex with degree 6, there can not be any vertices with degree

1. So, RHS ≥ 2.3.2 + 3.2 = 18 since p ≥ 6. If there is no vertex with degree 6, then LHS

≤ 15, and RHS ≥ 2.3.2 + (1 + 1 + 1) = 15.

k = 2: LHS ≤ 12.

If there is at least one vertex with degree 6, there can not be any vertices with degree

1. So, RHS ≥ 2.2.1 + (2 + 2 + 2 + 2) = 12 since p ≥ 6.
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Suppose d1 ≤ 5; So, LHS ≤ 10.

If d1 = d2 = 5, then since we exclude the case where the sequence is (5, 5, 1, 1, 1, 1),
∑p

i=3 min{di, 2} ≥ 5. But we can not have odd number of vertices with odd degree, implying

that
∑p

i=3 min{di, 2} ≥ 6. So, RHS ≥ 2.2.1 + 6 = 10 = LHS.

If LHS = 9 with d1 = 5, again since we can not have odd number of vertices with odd

degree,
∑p

i=3 min{di, 2} ≥ 5. So, RHS ≥ 2.2.1 + 5 = 9. If LHS ≤ 8, RHS ≥ 2.2.1 + (1 +

1 + 1 + 1) = 8 since we have at least 6 parts, and each vertex has degree at least 1.

k = 1: LHS ≤ 6 since each vertex has degree at most 6.

If d1 = 6, then the rest of the vertices must have degree at least 2. So, RHS ≥

0 + (2 + 2 + 2 + 2 + 2) = 10 > 6. If d1 ≤ 5, then RHS ≥ 0 + (1 + 1 + 1 + 1 + 1) = 5 ≥ LHS.

For all the cases we have shown that the inequality holds. Hence, we are done.

We are now ready to prove an important technical result, which is used to obtain

memorable corollaries. We first define a graph Γ′ that will eventually be shown to be an

amalgamation of Hamilton cycles in Kp
m.

Let G ∈ G(n, d). By Lemma 5.2, we can give G a proper p-vertex coloring c in

which |X1| = |X2| = . . . = |Xp| = m where Xi is the set of vertices colored i. Now, let

H(G, c) = Kp
m − E(G) and X1, X2, . . . , Xp be the parts of Kp

m.

Recall from Chapter 2 that if G ∈ G(n, d), then G has a cut-vertex v; one subgraph Cd

of G− v may be larger than the other components. Let X = V (Cd), Y = V (G(n, d))−X,

and ε = |E(H(G, c)[Y ])|. Let Γ′(T ′, B) be the multigraph formed from H(G, c) by applying
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the amalgamation function

f(v) =





ti if v ∈ X ∩Xi

bi if v ∈ Y ∩Xi

where T ′ =
⋃p

i=1 ti and B =
⋃p

i=1 bi (think of ti and bi as top and bottom vertices respec-

tively colored i).

By using Lemma 5.2 to color the vertices of G, it follows immediately that η(ti) ∈

{b |X|p c, d |X|p e} and η(bi) ∈ {b |Y |p c, d |Y |p e}.

Let Γ(T = T ′ ∪ {∞}, B) be formed from Γ′(T ′, B), by

1. deleting the edges joining two vertices in X, then

2. adding a new vertex ∞ to T ′, deleting each edge {bi, bj}, and joining both bi and bj

to ∞ with an edge instead.

So,

dΓ(v) ≤ dΓ′(v) for all v ∈ T ′,

dΓ(v) = dΓ′(v) for all v ∈ B, and

dΓ(∞) = 2e(Γ′B).

(∗)

Now, Γ(T,B) is a bipartite graph. Let Γ = Γ(T,B), ΓT = Γ(T,B)[T ], and ΓB = Γ(T,B)[B]

for simplicity.

The following result will be used in the proof of Theorem 5.8, and it is also a vital tool

used in proving Theorem 3.3.

Theorem 5.7 ([19]) Every bipartite multigraph has an equitable k-edge-coloring for all

k ≥ 1.
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We are now ready to prove the main result. The following builds upon Γ′ and H(G, c)

defined above.

Theorem 5.8 Let m and d ≥ 3 be odd, and p ≥ d + 1 be even such that mp ≥ (d + 1)2.

Then there exists a set S of ` Hamilton cycles in Kp
m such that Kp

m −E(S) is primitive, if





` ≥ ε,

η(ti)η(tj) ≥ λ` + 2b `
p−1c for any ti, tj ∈ T ′, and

∆(ΓT ′ )−δ(ΓT ′ )
2 ≤ `,

where λ ≤ 4 when p = 4, λ ≤ 3 when p = 6, and λ = 2 when p ≥ 8.

Proof Since n = mp ≥ (d + 1)2, there exists a primitive graph G ∈ G(n, d) with m, p, and

d as assumed. Let H(G, c), Γ, and Γ′ be as described in the previous paragraphs. We need

to give an `-edge-coloring to the edges of H(G, c) where each color induces an Hamilton

cycle. This is done in 3 steps:

(1) the edges of Γ′ except for the ones joining two vertices in T are equitably colored;

(2) the remaining edges in Γ′ are colored in 3 steps:

(i) color some edges with to boost the degree of each vertex to an even number

in each color class; then

(ii) ensure each color class is connected; and thirdly

(iii) color the remaining edges;

(3) Γ′ is disentangled.
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In order for each color class eventually induce a Hamilton cycle, we need each color k,

1 ≤ k ≤ ` to appear 2η(v) times at each vertex v ∈ T ′ ∪ B in Γ′. Since Γ is bipartite, by

Theorem 5.7 we can begin with an equitable 2`-edge-coloring of the edges of Γ (i.e: using

twice as many colors as we end up with). By (∗), we have dΓ(∞) = 2ε. Also, the assumption

` ≥ ε implies 2` ≥ 2ε. This implies that every color k, 1 ≤ k ≤ 2`, appears on at most one

of the edges incident with ∞, and appears on exactly η(B) edges in Γ (by Theorem 5.7).

Now, define a coloring of the edges of Γ′ from Γ as follows:

(a) for each edge {bi, bj} in Γ′, if {∞, bi} and {∞, bj} are colored t and k respectively,

then color {bi, bj} with t and recolor all edges colored k with t;

(b) arbitrarily pair the remaining colors and recolor the edges joining the vertices of T to

the vertices of B one of the paired colors.

This completes step (1). Notice that, for 1 ≤ k ≤ `, the number of edges colored k

joining vertices in T ′ to the vertices in B is





2η(B)− 2 if k is a color on an edge incident with ∞ in Γ, and

2η(B) otherwise.

Now we can start step (2) in coloring edges of Γ′. Since we assumed ∆(ΓT ′)− δ(ΓT ′) ≤

2`, for any vertex ti, tj ∈ T ′ and for any color k, 1 ≤ k ≤ 2`, in the 2`-edge coloring

of Γ we have |ck(ti) − ck(tj)| ≤ 2 by Lemma 5.3. So, in the `-edge coloring of Γ′ we get

|ck(ti)−ck(tj)| ≤ 4. For any color 1 ≤ k ≤ ` and any vertex ti ∈ T ′, let ck = max{ck(ti)}p
i=1,
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and define

dk =





ck + 3 if ck is odd and p = 4,

ck + 2 if ck is even, and

ck + 1 otherwise.

Then define a function DIFk(ti) = dk − ck(ti). To boost each vertex ti ∈ T ′ to have even

degree in each color class, the edges of a subgraph with degree sequence {DIFk(ti)}p
i=1 are

colored k for 1 ≤ k ≤ `. First, we need to show (DIFk(t1), DIFk(t2), . . . , DIFk(tp)) is

a degree sequence by using Lemma 5.6. We can relabel the vertices so that DIFk(t1) ≥

DIFk(t2) ≥, . . . ,≥ DIFk(tp).

Since, for each k,
∑p

i=1 ck(ti) is equal to 2η(B) or 2η(B) − 2, this sum is even. So,

there are even number of vertices with odd ck(ti). Clearly DIFk(ti) is odd if ck(ti) is odd,

implying that there are also even number of odd DIFk(ti)’s, and so
∑p

i=1 DIFk(ti) is even

as well. So, Lemma 5.6 (ii) is satisfied.

Since |ck(ti) − ck(tj)| ≤ 4 and we add at most 2 to the ck(ti)’s for p ≥ 6, the largest

possible value of DIFk(ti) is 6 when p ≥ 6.

Suppose p ≥ 6 and there is at least one vertex tj with DIFk(tj) = 6. Then
∑p

i=1 DIFk(ti)−

max{DIFk(ti)}p
i=1 ≥ 10 ≥ 6 since the DIFk(ti) ≥ 2 for each vertex. Therefore

∑p
i=1 DIFk(ti)−

max{DIFk(ti)}p
i=1 ≥ max{DIFk(ti)}p

i=1, and so Lemma 5.6 (iii) is satisfied.

Next suppose p ≥ 6 and max{DIFk(ti)}p
i=1 ≤ 5. Then we have

∑p
i=1 DIFk(ti) −

max{DIFk(ti)}p
i=1 ≥ 5 since the DIFk(ti) ≥ 1 for each vertex. Again, this implies that

∑p
i=1 DIFk(ti)−max{DIFk(ti)}p

i=1 ≥ max{DIFk(ti)}p
i=1, so Lemma 5.6 (iii) is satisfied.

Similarly, for p = 4 and odd ck, the largest possible DIFk(ti) is 7 since we add 3 to

the ck. So, we have
∑p

i=1 DIFk(ti) − max{DIFk(ti)}p
i=1 ≥ 9 since the DIFk(ti) ≥ 3 for
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each vertex. Therefore
∑p

i=1 DIFk(ti)−max{DIFk(ti)}p
i=1 ≥ max{DIFk(ti)}p

i=1 since the

DIFk(ti) ≤ 7 for each vertex. For even ck the largest possible DIFk(ti) is 6 since we add 2

to the ck. So, max{DIFk(ti)}p
i=1 ≤ 6, implying

∑p
i=1 DIFk(ti) −max{DIFk(ti)}p

i=1 ≥ 6;
∑p

i=1 DIFk(ti) − max{DIFk(ti)}p
i=1 ≥ max{DIFk(ti)}p

i=1. Therefore Lemma 5.6 (iii) is

satisfied for every case. Hence, (DIFk(t1), DIFk(t2), . . . , DIFk(tp)) is a λ-multigraphic

degree sequence.

Since we assumed that η(ti)η(tj) > λ` for every ti, tj ∈ T ′, we have enough edges

between any ti, tj ∈ T to realize this degree sequence with multigraph of index λ, for each

color k, 1 ≤ k ≤ `. So, for each 1 ≤ i ≤ p and 1 ≤ k ≤ `, we can increase the degree of ti in

the k’th color class from ck(ti) to dk by adding this graph. This completes step 2-(i).

Next, to ensure that each color class is connected, we add an Hamilton cycle on p

vertices to Γ′T ′ for each color k, for 1 ≤ k ≤ `. Since p is even, there are p − 1 Hamilton

cycles in a Hamilton decomposition of 2Kp. Since we need one Hamilton cycle for each

color class, we need to have b `
p−1c copies of 2Kp to have enough Hamilton cycles to ensure

each of the ` color class is connected. The condition η(ti)η(tj) ≥ λ` + 2b `
p−1c guarantees

there are still enough edges between every ti, tj ∈ T ′ to do that. Now, the degree of each

ti ∈ T ′ at each color class is dk + 2, and step 2-(ii) is completed.

By the assumption that m and d are odd and p is even, the degree of each vertex in

Kp
m − E(G) is m(p − 1) − d = 2` is even, so the degree of each vertex ai of Γ′, namely

η(ai)2`, is also even. If we take out the colored edges from Γ′, the degree of each vertex in

the new graph Γ̄ is 



η(ai)2`− `(dk + 2) for ai ∈ T , and

0 for ai ∈ B.
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Since dk is even, dΓ̄(ti) = η(ai)2` − `(dk + 2) is even. So, the graph Γ̄ is eulerian. By

Lemma 3.4, we can give Γ̄ an evenly equitable edge coloring with ` colors. So, for each

ti ∈ T ′, and each 1 ≤ k ≤ `, dΓ̄(k)(ti) is either 2
⌊

dΓ̄(ti)
2`

⌋
or 2

⌈
dΓ̄(ti)

2`

⌉
. But dk is even, so 2`

divides dΓ̄(ti). Therefore, for each ai ∈ V (Γ′),

dΓ̄(k)(ai) =





2η(ai)− dk − 2 for ai ∈ T ′, and

0 for ai ∈ B.

We now gather together all we know. For all ti ∈ T ′ and 1 ≤ k ≤ `, ti is incident with

ck edges colored with color k in step 1, DIFk +2 edges colored with color k in step 2-(i) and

2-(ii), and 2η(ti)− (ck +DIFk(ti)+2) = 2η(ti)− (dk +2) edges colored with color k in step

2-(iii). So now, when we add them up, each vertex ti is incident with 2η(ti) edges colored

with k. Because of step 2-(ii), each color class is connected. Similarly, dΓ̄(k)(bi) = 2η(bi)

for each bi ∈ B.

Now, for 1 ≤ i ≤ p we can add
(
η(ai)

2

)
loops to each ai ∈ V (Γ′) and η(ti)η(bi) edges

between ti ∈ T ′ and bi ∈ B, coloring the new edges and loops with color α. Also, add the

edges colored 0 corresponding to E(G), the edges in the primitive graph G ∈ G(n, d). Now

we have the amalgamated graph A described in the Lemma 3.2 where for 1 ≤ k ≤ `

(a) A(k) is connected, and

(b) dA(k)(ai) = 2η(ai), for all ai ∈ A

where A(k) is the subgraph of A induced by the edges colored k, and dA(k)(ai) is the degree

of ai in A(k).

We can now apply Theorem 3.3 to obtain the graph H, satisfying
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(i) H ∼= Kn

(ii) for all u ∈ f−1(ai),

dH(k)(u) =
dA(k)(ai)

η(ai)
=





2 for 1 ≤ k ≤ `

m− 1 for k = α

(iii) for 1 ≤ k ≤ `, H(k) is connected, since dA(k)(ai)

η(ai)
= 2 is even for all ai ∈ V (A).

Hence, we have the desired s = ` + 2 coloring, in which

(1) removing the edges colored α converts Kmp to Kp
m,

(2) the edges colored 0 induce a graph in G(n, d), and

(3) each of the other colors induces a Hamilton cycle.

Theorem 5.8 leads to the following Corollary.

Corollary 5.9 Let p be fixed. Then there exists a set S of ` Hamilton cycles in Kp
m for all

m ≥ md such that Kp
m − E(S) is primitive, where md is a function of d.

Proof We will show that for fixed p there exists a constant md for each d such that the

conditions of the Theorem 5.8 are satisfied for all m ≥ md.

Let’s first consider the condition ` ≥ ε. We can write it as ` − ε = m(p−1)−d
2 − ε ≥ 0.

Then f(m) = m(p−1)−d
2 − ε is an increasing function of m since ε is fixed for a fixed d, and

f is linear on m with positive coefficient since p ≥ 4. So, there exists a constant m1 such

that f(m) ≥ 0 for all m ≥ m1.

Now, let’s consider the second condition, η(ti)η(tj) ≥ λ` + 2b `
p−1c for any ti, tj ∈ T ′.

Since η(ti)η(tj) ≥ bV (Cd)
p c2, it is enough to show g(m) = bV (Cd)

p c2 − λ` − 2b `
p−1c is an

increasing function.
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g(m) = bV (Cd)
p c2 − λ`− 2b `

p−1c

= bmp−d2−d+1
p c2 − λm(p−1)−d

2 + 2bm(p−1)−d
p−1 c

= bm− (d2+d−1)
p c2 − λm(p−1)−d

2 + 2bm− d
p−1c

Obviously, g is a quadratic function on m and concave up. So, there exists a m2 such that

g(m) ≥ 0 for all m ≥ m2.

Lastly, let’s consider ∆(ΓT ′ )−δ(ΓT ′ )
2 ≤ `. We will show that h(m) = 2`−∆(ΓT ′)+δ(ΓT ′)

is an increasing function on m. Since we partitioned the vertices into p parts by giving

an equitable p-vertex coloring to Cd and an equitable p-vertex coloring to the rest of the

vertices of the primitive graph on mp vertices, if we let a = b |V (C1)∪V (C2)∪···∪V (Cd−1∪v)|
p c,

then η(bi) is either a or a + 1 for all bi ∈ B. So, for all ti ∈ T ′, η(ti) is either m − a or

m− a− 1. If we let b = |V (C1) ∪ V (C2) ∪ · · · ∪ V (Cd−1 ∪ v)|, we get

∆(ΓT ′) = (m− a)(b− a)− (m− a)d

= mb−ma− ab− a2 −md + ad

and

δ(ΓT ′) = (m− a− 1)(b− a− 1)− (m− a− 1)d

= mb−ma−m− ab + a2 + 2a− b + 1−md + ad + d.

So,

h(m) = 2`−∆(ΓT ′) + δ(ΓT ′)

= m(p− 1)−m + 2a− b + 1

= m(p− 2) + 2a− b + 1.
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Since a and b do not depend on m, and p and d are fixed, h(m) is a linear function of

m. Also since p ≥ 4, (p − 2) is positive. Therefore, there exists a constant m3 such that

h(m) ≥ 0 for all m ≥ m3.

Hence, for fixed p, there exists a constant md = max{m1,m2,m3} for each d so that

for all m ≥ md all three conditions of Theorem 5.8 is satisfied.

The following corollary is an example of the use of Corollary 5.9, specifically evaluating

md in some cases.

Corollary 5.10 Let p = 6. Then there exists an Hamilton decomposition of a graph G on

mp vertices with primitive complement in Kp
m for all m ≥ md where

md =





15 if d = 3, and

113 if d = 5.

Proof First, let d = 3:

We will first show that f(m) ≥ 0 for all m ≥ 15, where f(m) = m(p−1)−d
2 − ε. For p = 6

and d = 3, we have ε = 34, and so we have f(m) = 5m−3
2 − 34. f(15) = 36 − 34 = 2 ≥ 0

and since f is an increasing function we have f(m) ≥ 0 for all m ≥ 15.

Second, we will show that g(m) ≥ 0 for all m ≥ 15, where

g(m) = bV (Cd)
p c2 − λ`− 2b `

p−1c

= bmp−d2−d+1
p c2 − λm(p−1)−d

2 + 2bm(p−1)−d
p−1 c.

Since λ ∈ {2, 3} for p = 6, and b = 11 for d = 3, we have g(m) = b6m−11
6 c2 − (5m−3

2 )3 −

2b5m−3
10 c. So, g(15) = 132 − 108 − 14 = 47 and g(13) = 112 − 117 − 12 = 16. Since g is
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quadratic on m with positive coefficient where g(15) > g(13) it is increasing around 15.

Hence, g(15) ≥ 0 implies that g(m) ≥ 0 for all m ≥ 15.

Next, let’s show h(m) ≥ 0 for all m ≥ 15, where

h(m) = 2`−∆(ΓT ′) + δ(ΓT ′)

= m(p− 1)−m + 2a− b + 1

= m(p− 2) + 2a− b + 1.

For p = 6 and d = 3 we have a = 1 and b = 11. So, we have h(m) = 4m+2−11+1 = 4m−8

and h(15) = 52 ≥ 0. Since h is an increasing function, we can say h(m) ≥ 0 for all m ≥ 15.

Hence, we are done with the d = 3 case.

Now, for d = 5, we can proceed similarly.

For p = 6 and d = 5, we have a = 4, b = 29, and ε = 278. So, we have f(m) =

5m−5
2 − 278. f(113) = 280− 278 = 2 ≥ 0 and f is increasing.

Next, we have g(m) = b6m−29
6 c2− (5m−5

2 )3− 2b5m−5
10 c. Also, g(113) = 1082− (280)3−

(52)2 = 10, 712 and g(111) = 1062 − (275)3 − 2(55) = 10, 311. Since g is quadratic,

g(113) > g(111), and g(113) ≥ 0, g(m) ≥ 0 for all m ≥ 113.

Lastly, we have h(m) = m(p − 2) + 2a − b + 1. For p = 6 and d = 5, we have

h(m) = 4m + 8 − 29 + 1 = 4m − 20. So, h(113) = 432. Since h is an increasing function,

we have h(m) ≥ 0 for all m ≥ 113.

Hence, we are done.

Remark: Notice that f(md − 2) < 0 in both cases, so we can not lower md with this

approach.
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Chapter 6

Conclusion

In this dissertation, we used a very powerful graph homomorphism tool called amalga-

mation. Also the results of Leach and Rodger [13] we mentioned in Chapter 3 are used in

proving our technical results.

In Chapter 4, the problem of Hamilton decompositions of graphs with primitive com-

plements in Kn was completely solved by the following result.

Theorem 4.1 There exists a set S of x edge-disjoint Hamilton cycles in Kn such that

Kn − E(S) is primitive if and only if





x = n−1
2 if n is odd,and

x ≥ n−√n
2 if n is even.

And at the and of the Chapter 4, we conjectured that if some conditions on G(n, d)

are relaxed to allow another family of primitive graphs G′(n, d), then there still exists a

Hamilton decomposition of Kn − E(G) for all G ∈ G′(n, d).

In Chapter 5, we worked on Hamilton decompositions of graphs with primitive com-

plements in complete multipartite graphs Kp
m. We proved that Erdős-Gallai Theorem can

be modified for multigraphs. Then, we proved the following theorem.
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Theorem 5.8 Let m and d ≥ 3 be odd, and p ≥ d+1 be even such that mp ≥ (d+1)2.

Then there exists a set S of ` Hamilton cycles in Kp
m such that Kp

m −E(S) is primitive, if





` ≥ ε

η(ti)η(tj) ≥ λ` + 2b `
p−1c for any ti, tj ∈ T ′, and

∆(ΓT ′ )−δ(ΓT ′ )
2 ≤ `

where λ ≤ 4 when p = 4, λ ≤ 3 when p = 6, and λ = 2 when p ≥ 8.

Theorem 5.8 leaded us stronger results for multipartite graphs with p fixed and n large

enough.

This work also leads us other interesting questions; since the chromatic number of the

primitive graph is important to partition its vertices, it would be interesting to know what

the smallest primitive graph with given chromatic number is. This is an open question that

is likely to be challenging to solve. It is one that needs to be addressed if one is to tackle

the case where p ≤ d.
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Holland, London, 1970.

[19] D. de Werra, Equitable colorations of graphs, Revue Franqaise d’Informatique et de
Recher-. che Oprationnelle, R-3 (1971), 3–8.

[20] W.T. Tutte, Graph factors, Combinatorica 1, (1981), 79–97.

43


