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Abstract 
 

 
 This research is a collection of 3 papers on the use of machine learning methods to detect 

and classify transit media fraud using passenger transaction data.  Academically, this work is an 

extension of machine learning research into the largely unexplored area of transit media fraud.   

The implication for industry, is a series of tested and highly effective methods of fraud detection 

that can be implemented to mitigate the millions of dollars lost in transit fraud each year.  

 

Paper 1 - Public transit systems lose millions of dollars each year to fraud.  The primary types of 

transit fraud are fare evasion and fare media fraud.  The lack of research around fare media fraud 

and the associated obstacles are presented, and a transit fraud framework is introduced.  Using this 

framework as a foundation, an unsupervised machine learning approach to fraud is demonstrated 

utilizing principal component analysis and k-means clustering.  The findings reveal that higher 

levels of bus activity, lower levels of rail use, and disparities between tapping in and out of the 

system appropriately are key variables in the detection of fraud.  During testing, high concentration 

clusters (greater than 75% fraud or not-fraud) were achieved, accounting for as much as 46% 

percent of the total records. 

 
Paper 2 - Globally, public transit provides billions of rides each year.  The scale of transit related 

fraud is estimated to be in the hundreds of millions annually.  In this research the significant 

challenges in transit fraud research of access to data, constantly evolving fraud techniques, and 

coping with the highly imbalanced nature of fraud data are presented and addressed.  Using 

supervised machine learning methods (logistic regression, k-nearest neighbor, Naïve Bayes, & 

random forests) coupled with SMOTE to account for data imbalance, transit fraud classification 
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model accuracy rates varied from approximately 80-97%.  Corresponding ROC AUC scores 

ranged from approximately 75-87%.  The highest performing models were KNN and random 

forests using bi-weekly and monthly data sets.   

 

Paper 3 - The scale of both public transit and transit related financial losses are enormous.  Billions 

of passenger trips are provided annually by public transit systems that are heavily dependent on 

revenue collections via passenger revenues.  Transit media fraud costs authorities millions of 

dollars per year and has thus far been largely unexplored in academic research.  This research 

describes the difficulties associated with transit research fraud and then addresses them via a 

demonstration of data techniques (SMOTE & ADASYN) and machine learning methods (deep 

learning).  A series of 10 deep learning model variations, pretreated with SMOTE, are tested with 

the highest performing model achieving approximately 93% accuracy.  These results represent 

compelling findings for both transit fraud researchers and public transit authorities 
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Introduction 

 
This dissertation follows the 3-paper style and is comprised of 3 independent but related 

studies.  The overarching theme is the use of machine learning techniques to detect transit related 

fraud.  The components and perspectives of the papers are as follows: 

Paper 1 2 3 

Research 
Question(s) 

Can public transit 
transaction details be 
used to effectively 
identify transit media 
fraud? 

Can machine learning 
models effectively classify 
transit fare media fraud? 

Can a deep learning 
approach to transit 
fraud detection 
accurately categorize 
transactions? 

Research 
Framework 

Transit Fraud Framework 

Theoretical 
Support 

Fraud Triangle  
Theory 

General Deterrence 
Theory 

Routine Activity 
Theory 

Machine 
Learning 
Approach 

Unsupervised Supervised Supervised 

Method/ 
Algorithm 

(1) Principal Component 
Analysis (PCA) 
(2) K-means clustering 

(1) Logistic regression 
(2) KNN 
(3) Naïve Bayes 
(4) Random Forests 

Deep Learning 

Data 
 15-day samples of 
unlabeled transit 
transaction data  

Transit record samples of 
daily, weekly, biweekly, 
and monthly time periods 

14-day samples of 
labeled transit 
transaction data 

 
Table 1: Overview of 3 Paper Dissertation 

The goal of utilizing a variety of support theories, machine learning approaches, 

methods/algorithms, and data sets is to increase the generalizability and transferability of the work. 
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Paper 1: Utilizing Clustering Techniques to Classify Transit Fraud 
 
Abstract – Public transit systems lose millions of dollars each year to fraud.  The primary types 
of transit fraud are fare evasion and fare media fraud.  The lack of research around fare media 
fraud and the associated obstacles are presented, and a transit fraud framework is introduced.  
Using this framework as a foundation, an unsupervised machine learning approach to fraud is 
demonstrated utilizing principal component analysis and k-means clustering.  The findings reveal 
that higher levels of bus activity, lower levels of rail use, and disparities between tapping in and 
out of the system appropriately are key variables in the detection of fraud.  During testing, high 
concentration clusters (greater than 75% fraud or not-fraud) were achieved, accounting for as much 
as 46% percent of the total records.   
 
Keywords -   Public transit, fraud, fare media, Fraud Triangle, machine learning, clustering   

1.1 Introduction 
 
Public Transit   

Public transit is typically understood to be locally operated systems of buses and/or trains 

for public transportation use.  A more formal definition provided by the American Public 

Transportation Authority (APTA) is “Transportation by bus, rail, or other conveyance, either 

publicly or privately owned, which provides to the public general or special service on a regular 

and continuing basis. Also known as 'mass transportation', 'mass transit', and 'transit'." (APTA, 

2007).  The public transit industry has evolved over centuries from simple ferry operations in 

ancient times, to public buses in Paris during the 1600’s, to public trains in England during the 

1800’s, and finally to high-speed rail in modern times (Mass Transit Network, 2020).   

Transit systems can be found in varying degrees of size, composition, and complexity in 

most modern cities.  Globally, billions of trips are provided each year.   APTA reports that average 

annual U.S. transit ridership exceeded 10 billion trips per year over the last decade and passenger 

fare revenues were approximately $16 billion in 2018 (APTA, 2020).  However, transit companies 

lose millions of dollars annually to various forms of fraud.  While pinpointing exact fraud totals is 

difficult, estimates at the agency level are often provided by industry publications, local/national 
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news agencies, or law enforcement representatives as byproducts of stories/investigations.  U.S. 

examples include estimates in Washington, D.C. of $40 million in 2019 (Wagner, 2019), New 

York, NY $300 million (Nguyen, 2019), and San Francisco, CA $25 million (May, 2019). 

 
Transit Fraud 

As evidenced by its scale, fraud is a significant issue for public transportation authorities.  

Two primary categories of transit fraud are fare evasion and fare media fraud.  The Bureau of 

Transportation Statistics defines fare evasion as "the unlawful use of transit facilities by riding 

without paying the applicable fare" (BTS, 2017).  Examples of fare evasion include forcing gates 

(prying open closed gates), jumping turnstiles, gate surfing (entering behind a paying customer 

before the gate closes), and simply sneaking aboard without paying.   

Media fraud is the abuse or manipulation of fare media such that it negatively or illegally 

impacts one or more of the transaction participants.  Typically, media fraud precludes the transit 

authority from receiving the full fare value of a provided trip, or the cost of the trip is illegally 

purchased or transferred to another party via media theft, media forgery, or credit card fraud.  

Examples of fare media fraud include the use or production of counterfeit or altered media, 

unauthorized card sharing, and buying/selling stolen or illegally purchased media.     

While the two forms of fraud are sometimes commingled in the research, perhaps the 

easiest way to distinguish between them is by the nature of the interaction between a deviant 

customer and the transit system.  Fare evasion can be best characterized as exhibiting a behavior 

that is intended to go undetected or unrecorded, such as forcing open a gate or boarding a train 

without purchasing a ticket. The actor in this scenario is attempting to cheat the system while 

simultaneously avoiding discovery.  Alternatively, fare media fraud entails the user intentionally 

interacting with the system to create a transaction record under the false pretense of lawful payment 
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and conduct.  From an observer standpoint, a fraudulent fare media transaction would appear 

completely legitimate. 

Because fare evasion and fare media fraud involve inherently different forms of interaction 

with transit systems, the associated detection and deterrence strategies are necessarily different.  

Since the goal of fare evasion is essentially to avoid interaction with the payment system, a typical 

mitigation strategy is centered around higher rates of customer monitoring.  Customer monitoring 

levels are typically increased by employing additional personnel to check tickets and guard entry 

points, or by expanding the use of security camera systems.   

Since fare media fraud involves interacting with the system directly, albeit under the false 

premise of legitimacy, transaction records are generated.  The migration of transit authorities to 

automated fare collection and monitoring systems means details for every transaction are logged 

and archived regularly.  This environment of large, frequently updated datasets requires a different 

fraud mitigation approach than fare evasion.  In the case of fare media fraud, data-centric 

approaches are more viable and offer authorities the potential to implement solutions that rely less 

on increased personnel and more on data analysis.  However, these data driven approaches present 

their own set of challenges.   

Transit Fraud Research Challenges 

Fraud research in a public transit setting presents a unique set of challenges. Chief among 

these challenges are the lack of a general framework to assist in the development and comparison 

of transit fraud research, access to data, and the evolving nature of fraud.  

The first obstacle in transit fraud research is the lack of a unifying framework.  While 

researchers can draw from a number of popular fraud frameworks, none of the current options are 

oriented specifically toward transit fraud.  Typically, researchers draw from criminology, 
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psychology, or sociology theories to provide context for fraud research.  The use of a standardized 

framework augments the effort to contrast/compare research while providing perspective and 

context to readers outside of the public transit and/or fraud domains. 

Once a research perspective is developed, the next step is to consider the data.  Transit 

officials are often reluctant to disclose fraud levels for fear of encouraging additional criminal 

activity.  High levels of reported fraud can also potentially damage bond ratings, negatively impact 

ridership, and/or damage political interest in expanding the system to neighboring communities.  

For these reasons and others, one of the most significant issues researchers face is access to 

appropriate data.  While research on fare evasion exists, the majority of transit fare media fraud 

information must be constructed from piecemeal news and law enforcement reports.  The data is 

typically restricted to the number of tickets seized, estimated value of the counterfeit tickets 

produced/sold, and arrest details.  To gather fraud data independently, researchers are largely 

reduced to conducting general surveys or the use of the Delphi method to poll experts.  These 

methods are limited in terms of the of volume, breadth, and precision of the data they provide.  

Given that transit agencies collect and store enormous amounts of detail-rich data, the best source 

is information derived directly from transit operations records. 

Once the data has been acquired, researchers must account for the tendency of criminals to 

continually reshape fraud methods to avoid detection.  Transit fraud has experienced an evolution 

consistent with other types of fraud.  Beginning with relatively simple methods, techniques have 

gradually evolved into highly complex schemes to commit fraud.   

An excellent example of the extreme ranges in complexity of fare media fraud is the 

progression from slugs to advanced counterfeit ticket operations.  In early systems that used 

tokens, dishonest riders would utilize slugs to fool terminals and enter the system.  Slugs are simple 
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counterfeit coins or tokens, usually made from inexpensive materials, to simulate the size and 

weight of a legitimate coin/token.  This is in stark contrast to modern transit systems, which use 

contactless smartcards to store customer information and digital media.  Counterfeit smartcards 

can now be created via near-field communication (NFC) or radio-frequency identification (RFID) 

signal interception.  This illustration of counterfeiting complexity growth, from simple token slugs 

to vastly more complicated smartcard duplication, is a prime example of the fraud evolution 

challenge faced by researchers.  

The variety and complexity of transit fraud practices require the use of flexible detection 

solutions capable of identifying new methods.  Machine learning techniques have been used to 

effectively classify some types of fraud with a high degree of accuracy.  Of specific relevance, 

supervised learning methods have been used to identify factors of fare evasion.  However, the 

inherent biases that often make supervised learning so effective at classifying known fraud, may 

also limit its effectiveness when encountering new types of fraud.  By concentrating on deviations 

within the data set, unsupervised machine learning techniques offer the ability to account for the 

variations and new approaches introduced to frustrate fraud detection efforts.   

Given the relative abundance of fare evasion research compared to the scarcity of fare 

media fraud studies, this paper concentrates on the latter.  The objective is to establish a replicable 

research approach to fare media fraud that is academically and practically relevant using the best 

available data.  As a potential solution to developing detection solutions for new/undocumented 

types of transit media fraud, the objective is to determine which available variables act as the best 

indicators for possible transit fraud.  In doing so, this research can contribute to a standardized 

method of researching transit fraud and lay the foundation for a centralized repository for the inter-

authority comparison of transit fraud.  
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Research question:   

Can public transit transaction details be used to effectively identify transit media fraud? 
 
 The remainder of this paper presents a review of relevant literature and the proposed 

framework, a discussion on the proposed methods, an introduction to the data, an examination of 

the results, and the research conclusions. 

 

1.2 Literature Review 
 
Fraud 

In academic settings, fraud is typically defined within the context of the occurrence.  For 

example, telecommunications fraud deals with subscription scams wherein the perpetrator 

subscribes to services using a false identity with no intention of paying.  This is radically different 

from medical prescription fraud where the perpetrator submits drug subscription claims for 

fictional or deceased patients (Bolton & Hand, 2002).  Even when considering a specific subset of 

fraud such as financial fraud, a wide variety of fraud types exist.  Examples of financial fraud 

include financial statement fraud, money laundering, credit card fraud, insurance fraud, auction 

fraud, and insider trading. 

In terms of transit fraud, the major fraud categories are fare evasion and fare media fraud.  

Fare evasion has been and continues to be studied extensively.  Barabino, Lai, & Olivo used 113 

publications on fare evasion to produce a review of literature on the subject.  The compiled body 

of work included 62 journal articles, 33 conference proceedings, 9 technical reports, 5 

dissertations, 2 book chapters, and 2 working papers.  In addition to the volume of research 

reported, they also showed that fare evasion research is a growing area of academic interest (Figure 
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1) (Barabino, Lai, & Olivo, 2020).  

 

 

Figure 1: Fare Evasion Publications 

(Adopted from Barabino, Lai, & Olivo, 2020) 

 

Alternatively, fare media fraud research is scarce.  This is attributable to the lack of 

researcher access to transaction records of transit authorities.  Fürst & Herold (2018) comment 

repeatedly on of the lack of ticket forgery data and associated research. The limited examples of 

fare media fraud research that do exist include an application of neural network analysis to counter 

RFID transit card cloning efforts (DÜZENLİ, 2015), a tangentially related proposal to integrate 

fingerprint-based technology in the reservation / ticket booking system of the 2nd largest rail 

transit authority in India (Merja & Shah, 2013), and smart card attack and security research 
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(Markantonakis, Tunstall, Hancke, Askoxylakis, & Mayes, 2009).  The scarcity of directly relevant 

transit fraud research clearly warrants attention from the academic research community. 

Criminology Influences 

As a theoretical underpinning for the proposed transit fraud framework, the fraud triangle 

theory is well represented in academic literature.  The Fraud Triangle was originally introduced 

by Cressey (1953), who described the three contributing factors of fraud as pressure, 

rationalization, and opportunity (see Figure 1). In Cressey’s words: 

 Pressure – “Trust violators, when they conceive of themselves as having a financial 

problem which is non-shareable…” 

 Opportunity – “… and have knowledge or awareness that this problem can be 

secretly resolved by violation of the position of financial trust.”  

 Rationalization – “Also they are able to apply to their own conduct in that situation 

verbalizations which enable them to adjust their conceptions of themselves as 

trusted persons with their conceptions of themselves as users of the entrusted funds 

or property.” (Cressey, 1953). 

 

Rationalization Pressure 

Opportunity 

Fraud  
Triangle 

Figure 2: Fraud Triangle 
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In a 2009 international instructor survey of fraud examination and forensic accounting 

classes, the fraud triangle was found to be the most frequently taught fraud framework.  A total of 

111 faculty members at four-year institutions participated from the USA, UK, Australia, Hong 

Kong, and Lebanon (Smith & Crumbley, 2009).   

A sample of notable works that modified the shape of the fraud triangle include Wolfe & 

Hermanson (2004) who expanded the triangle to a diamond by adding a fourth leg for “capability”, 

Cieslewics (2010) who introduced a square by adding “societal influences”, and Marks (2009) 

who added “arrogance” and “competence”.  These extensions of the fraud triangle focus primarily 

on customer features.  Since the basis for this research is transaction data, these extensions are 

outside the scope of this paper. 

   In 2002, the fraud triangle became the foundation for the American Institute of 

Certified Public Accountants (AICPA) Statement on Auditing Standards (SAS) No. 99 (AICPA, 

2002).  The AICPA represents the interests of U.S. Certified Public Accounts (CPAs).  The fraud 

triangle also appears in the auditing standards for the Public Company Accounting Oversight 

Board (PCAOB) and in the revised Internal Control—Integrated Framework (2013) and Risk 

Management Guide (2016) of the Committee of Sponsoring Organizations (COSO) of the 

Treadway Commission (Mintchik & Riley, 2019). 

Cressey theorized that mitigating any one of the three central factors would lessen the total 

impact of fraud.  Pressure, while originally proposed in financial terms, can also be rooted in time 

constraints (e.g., the customer is late and ticket lines are long) or social influence (e.g., peer 

pressure to disobey transit rules).  Rationalization deals with a person's inner dialog and how he/she 

justifies deviant behavior.  From a fraud prevention perspective, pressure and rationalization are 

difficult to influence due to their intangible natures.  Conversely, and to varying extents, 
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opportunity can be more directly impacted.  By implementing system controls aimed at reducing 

fraud opportunities, transit authorities can proactively mitigate fraud.  Examples of anti-fraud 

controls include inspection agents, surveillance camera systems, purchase limits, credit card 

verification protocols (e.g., use of PIN code or zip code), and transaction monitoring rules (e.g., 

velocity checking). 

Transit Fraud Factors 

 As previously established, the majority of transit fraud research is centered around fare 

evasion.  However, some of the contributing factors for fare evasion may also be applicable to fare 

media fraud.  In 2007, a study of light rail fare evasion in 18 major European cities was published.  

The research considered the impacts of open vs. closed platforms, inspection factors (roving vs. 

permanent inspectors as well as overall inspection rates), flat vs. zone fare systems, fare media 

types, and the severity of fraud penalties.  Findings included system recommendations of straight 

forward fare and use policies, closed system architectures (requires a ticket to enter), high customer 

contact levels (for fare inspections), use of smart cards, and an emphasis on system reliability 

(Dauby & Kovacs, 2007).   

A study of Chilean bus fare evasion identified the level of inspection, proximity to a station, 

bus occupancy levels, time of day, location, and volume of passengers (boarding and alighting) at 

each bus stop to be significant factors in the likelihood of fare evasion occurrence (Guarda, Galilea, 

Handy, Muñoz & de Dios Ortúzar, 2016).  A subsequent study of the same system analyzed fare 

levels, level of local employment, and the number of monthly fare inspections.  Evasion rates were 

found to be positively correlated to fare levels and negatively correlated to unemployment.  

Inspection rates were found to be a poor indicator of fare evasion (Troncoso & de Grange, 2017).  
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 In 2014, a qualitative fare evasion study of the Melbourne, Australia public transit 

system focused on consumer attitudes and motivations.  Participant variables included gender, age, 

frequency of public transit utilization, and frequency of self-admitted fare evasion.  The authors 

presented transit fraud as a spectrum of behavioral segments and intent levels.  Findings showed a 

wide range of fraud occurrence rates, intentions, feelings, and fare evaders views based on 

participant rationale of fare evasion (Delbosc & Currie, 2016).  

 While these research examples are informative and cover a broad range of factors 

associated with fare evasion, fare media fraud and the associated transaction level details are 

noticeably absent.  The proposed transit fraud framework addresses research perspectives (e.g., 

customer, system controls, and authority) that include these factors and more.  

 Transit Fraud Framework 

Researchers have previously recognized the need for a central framework for specific 

categories of fraud research.  Abbasi et al. (2012), developed a meta-learning framework of layered 

machine learning techniques to identify financial fraud (Abbasi, Albrecht, Vance, & Hansen, 

2012).  In 2018 a group of researchers from Belgium developed the SCARFF (Scalable Real-time 

Fraud Finder) framework for the detection of credit card fraud (Carcillo, Dal Pozzolo, Le Borgne, 

Caelen, Mazzer, & Bontempi, 2018). 

 The adoption of a comprehensive transit fraud framework encourages the development of 

research that can be readily compared and contrasted.  By creating a defined research perspective, 

other academics and practitioners are encouraged to offer improvements, rebuttals, and/or 

additions.  The proposed framework assumes a modern transit authority capable of detailed 

transaction logging.  This is a reasonable standard given the percentage of U.S. transit systems 

utilizing smart cards has increased from 12% in 2009 to 48% as of 2019 (APTA, 2020).  The 
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essential elements of the framework are the data, a designated perspective, and the analytical 

approach that will be utilized.  The proposed framework components are as follows: 

 Legitimate & Fraudulent Activity - As transactions are recorded there is little initial 

indication regarding their proclivity toward legitimacy or fraud.  Transactions are stored by the 

transit authority for further analysis.  Transactions are ultimately evaluated based on the transit 

fraud factors.   

 Government/External– Several potentially important factors exist beyond the span of 

control of the parent transit authority.  Examples include the unemployment rate, community crime 

rates, law enforcement presence, and the severity of punishment and enforceability of anti-fraud 

statutes.  Unemployment has been shown to be correlated with higher rates of fare evasion (Salis, 

Barabino, & Useli, 2017).  Several criminology theories include elements that address how the 

opportunity to effectively commit a crime, the cost/benefit considerations of being caught, and the 

deterrence effects of punishment impact unlawful behavior.   

Transactions– Access to transactional data is likely the prevailing reason behind the 

shortage of transit fraud research.  Modern transit operations produce enormous collections of 

digital records that log every detail of electronic interactions between users and the system.  The 

level of detail captured likely varies between systems, with dozens to hundreds of variables being 

available in a modern transit system’s automated fare collection system.  This study utilizes 

transactional data to demonstrate a viable transit fraud detection method.    

 System Controls – Enhanced ticketing, improved barriers and fare gates, installation of 

security cameras, uniformed and undercover enforcement agents, and enhanced security software 

are typical areas of concentration.  An upgrade to these components is typically the first response 

of transit systems when fraud becomes an issue.  APTA reports that 78% of buses now have 
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security cameras (APTA, 2020).  Cameras are also common aboard trains. Controls can by 

physical, digital, and/or policy based.  

Customer– Consideration of customer factors covers a broad range of qualitative and 

quantitative variables including typical demographic data, income levels, value systems, cultural 

influences, access to private transportation, tolerance for risk, perception of public transit etc.  

Some research has been published on demographic fare evasion factors.  For instance, young males 

with public transit ridership experience are a higher risk for fare evasion (Cools, Fabbro, & 

Bellemans, 2018). 

 Authority – Public transit systems take a variety of forms and offer a range of transportation 

options.  The characteristics of transit systems warrant review when considering fraud.  System 

settings (rural vs urban), location, size, complexity of use, brand, age, pricing structures, policy 

decisions on frequency of fare increases, customer service effectiveness, service levels, and 

technology adoption are all potential factors in transit fraud.   

 Media – Media considerations include the type of media (e.g., cash, tokens, magnetic 

tickets, smart cards, mobile phone apps etc.), the individual features of the media (smart cards use 

a variety of digital security protocols), and the various models of media.  This media could also 

include the fare type (e.g., daily pass, weekly pass, monthly pass, single trip, multi-trip, stored 

value etc.). 

Analysis – The analysis portion of the framework includes the examination of data using the tools, 

techniques, models, etc. selected by the researcher.  The nature of each study will necessitate the 

type of analysis that is most effective and appropriate.  The example demonstrated in this study 

utilizes an unsupervised machine learning approach consisting of principal component analysis 

and k-means clustering. 
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 SME Evaluation - Use of experts to help interpret the findings is key (Cheeseman & Stutz, 

1996).  Subject matter experts must be involved in the transaction vetting process because decision 

makers may not be entirely comfortable with an analysis based solely on technical and statistical 

modeling.  Subject matter experts provide a level of comfort and familiarity to the transit operator 

and can bridge the gap between the technical and the business sides of the fraud evaluation process. 

They may also be able to explain data anomalies and unexpected transaction phenomenon. 

 Business Decision – Ultimately transit operators must decide how to proceed with the 

recommendations provided by analysis and expert evaluations. Potential business decision 

outcomes include adopting an updated rule-based process, conducting case-by-case reviews, 

investing in system security upgrades (gates, cameras, security personnel, software etc.), 

deactivating the suspect media, updating policies regarding the involvement of law enforcement 

or direct punitive action (banning repeat offenders), and lobbying local, state, and/or federal 

lawmakers for stricter enforcement/punishment mandates. 
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Figure 3: Transit Fraud Framework 

 

 

1.3 Methodology 
 
Model 

 The model for this study is derived from the Transit Fraud Framework introduced 

previously.  The focus will be on transactions and specifically the transaction variable categories. 
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Figure 4: Research Methodology 

 
 
Research Methodology 

Supervised vs. Unsupervised Learning 

Much of the general fraud research being conducted relies on the existence of labeled data 

to help researchers apply a variety of supervised machine learning techniques.  A particularly 

relevant example is a study in 2018 using logistic regression to conduct fare evasion factor 

analysis. Factors identified included socio-demographics, transportation characteristics, 

perceptions of tariffs, presence/absence of fare inspectors, fines associated with fare evasion, 

behavior of acquaintances, nationality, weather, length of trip, and satisfaction with the public 

transportation service (Cools, Fabbro, & Bellemans, 2018).  These factors were explored using a 

supervised learning technique. 

While effective, the dependency on labeled data to identify factors may mitigate the 

effectiveness of these models at detecting new types of fraud. Unsupervised learning attempts to 

generalize data without the use of an initial underlying function.  This notion is implemented by 

allowing the data to effectively self-organize into groups with high similarity for members and 

Fraudulent  
Activity 

Legitimate 
Activity 

Analysis 
(Unsupervised learning –  
PCA & K-means clustering) 

Categories 
• Use Type  
• Operator Type 
• Metadata 

Transactions 
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maximized dissimilarity for non-members.  This study utilizes unsupervised learning to avoid any 

labeling bias and to maximize the potential for discovering new fraud methods. 

Clustering 

Because new approaches to fraud are always being introduced, unsupervised learning 

techniques that leave a degree of flexibility for pattern discovery are better suited for this research.  

With that principle in mind, clustering is a logical place to begin. Clustering techniques have been 

used in academic research to detect corporate fraud, credit card fraud, money laundering, financial 

reporting fraud, online auction fraud, stock market fraud and accounting fraud (Ngai et al, 2011), 

(Sabau, 2012).  The intent of clustering techniques is to group data into natural groups such that 

homogeneity within clusters is maximized while simultaneously maximizing the heterogeneity 

between clusters (Thakare & Bagal, 2015).   

K-means clustering is an unsupervised method in which data is assigned to k clusters based 

on the nearest cluster mean.  Beginning with k clusters, each of which contains a single random 

point, an additional point is introduced and assigned to the cluster with the nearest mean (least 

squared Euclidian distance), and the centroid of the cluster is recalculated.  This process repeats 

until the algorithm converges and cluster assignments stabilize (Wagstaff, Cardie, Rogers, & 

Schrödl, 2001).  The iteration and convergence processes are demonstrated in the appendix (Figure 

2).  

Examples of k-means clustering success are prevalent in the literature.  A comparison study using 

benchmark datasets from the UCI machine learning repository for Iris, Wine, Vowel, Ionosphere, 

and Crude Oil shows the flexibility of k-means clustering.  See Table 8 in the appendix for 

additional details.  Researchers found that across a variety of data sets and with varying cluster 
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count parameters, k-means clustering had an average recognition rate of over 83%.  Examples of 

k-means used specifically in fraud research can be found in Table 1. 

Fraud Type Reference 

Medical claims fraud (Wakoli, 2014) 

Refund fraud /financial fraud (Issa et al., 2011) 

Healthcare insurance fraud (Thiprungsri et al., 2011) 

Money laundering (Liu et al., 2011) 

Credit card fraud (Wu et al., 2010) 

Money laundering (Le Khac et al., 2010) 

Online auction fraud (Chang et al., 2010) 

Insurance fraud (Jurek et al., 2008) 

Accounting fraud (Virdhagriswaran et al., 2006) 

Insider trading fraud (Donoho, 2004) 

Table 2: Financial Fraud Examples 

 

The methodological approach employed is a logical progression of data collection, preparation, 

and modeling.  The intent was to gather the most relevant features from the available data, treat 

the data to optimize the model performance, optimize and execute the models, and report the 

findings.  Using principal component analysis (PCA) and k-means clustering techniques, public 

transit transaction records were analyzed for clues that certain categories of variables were more 

predictive than others. 
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Figure 5: Research Methodology 

 
 

1.4 Data 
 
Source 

The data for this research is based on transaction records from the Metropolitan Atlanta 

Rapid Transit Authority (MARTA) from 2018.  MARTA is representative of modern transit 

systems and is a top 10 public transit authority in the U.S.  The dataset includes 12,790 records of 

aggregated 15-day samples of transaction records for a random set of transit users.  No customer 

identifying data was collected or reported.  Each record represents the total number of transactions 

for the fare media across the various features.  The data represents approximately 182,000 total 

transactions.  

 
Variable Selection / Creation 

Data features were extracted from several categorical types including use type, transaction 

status, operator, rider class, fare instrument category, and a variety of aggregated metadata 

features.  Dummy variables were used to convert categorical data into numerical values.  Dummy 

variables expanded the data to 160 features across 6 categories, but during the data preparation it 
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was determined that many of the features were either partially or completely unpopulated in the 

dataset.  Non-value-added features were removed, and the resulting dataset was reduced to 20 fully 

populated features across 3 categories. 

Category Original Features Reduced Features 

Use Type 19 5 

Operator Provider 9 4 

Metadata 6 11 

Total 160 20 

Table 3: Research Categories and Feature Summary 

 
 

Category Feature Description 

Use Type   

 ENT_EXT_RATIO Entries minus exits 

 ENTRIES_PER_DAY Total entries divided by 15 

 ENTRY_TAG_ON Entries (gates or buses) 

 EXIT_TAG_OFF Exits (gates or buses) 

 EXITS_PER_DAY Total exits divided by 15 

Operator Type   

 BUS_RATIO Percentage of transactions that were bus related 

 MARTA_BUS Bus related transactions 

 MARTA_RAIL Rail related transactions 

 RAIL_RATIO Percentage of transactions that were rail related 

Metadata   

 CATEGORIES_PER_DAY Total categories divided by 15 

 DEVICES Total devices utilized 

 DEVICES_PER_DAY Total devices divided by 15 

 FACILITIES Total facilities visited 

 FACILITIES_PER_DAY Total facilities divided by 15 

 FI_CATEGORIES Total fare categories utilized 

 MODES Total modes utilized 

 MODES_PER_DAY Total modes divided by 15 

 TRANSIT_DAYS Total days with transactions 

 TRANSIT_DAYS_RATIO Total days with transactions divided by 15 

 USES Total uses 
Table 4: Variable Details 
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Data Sampling & Scaling 

Like most fraud research, the dataset being tested is highly imbalanced in its native form.  

For the transit dataset, the imbalance equates to approximately 400 legitimate transactions for each 

fraudulent transaction.  To avoid constructing a classifier that simply selects the majority class to 

achieve an optimal accuracy rate of 99.75%, the classes need to be balanced.  Several balancing 

methods exist including oversampling the minority class, undersampling the majority class, and 

use of a synthetic sample generator.  Because this study is the first, or at the very least one of the 

first, to use actual transit transaction data, it is important to maintain as much data integrity as 

possible.  For that reason, use of a synthetic generator was eliminated from consideration.  If fraud 

samples were sparse and collecting more was not an option, the synthetic route would be more 

appealing.  Use of a synthetic resampler like SMOTE does not create records outside of the bounds 

of the existing data.  Instead, data density is increased to support the classifier.  Rather than create 

additional uninformative samples, a combination of random majority undersampling and minority 

oversampling was employed.  The minority class was resampled 6 times get a sufficiently high 

number of records to be representative of the population.  This resulted in a total of 6,395 

fraudulent transactions for consideration.  For the majority class, a random number was assigned 

to each record, the records were shuffled thoroughly, and the first 6,395 records were selected for 

use.  This provided a balanced dataset for the cluster analysis.  No synthetic samples were utilized 

because of the abundance of available fraudulent records.   

To mitigate the impact of scale variations, clusters variables were standardized by 

subtracting the mean and dividing by the standard deviation.  The standard score of a sample x is 

calculated as:                  

       z = (x - u) / s 
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where u equals the mean of the training samples and s is the standard deviation of the 

training samples (Minitab, 2019). 

 
Principal Component Analysis 

Records were transformed using principal component analysis (PCA) to reduce 

dimensionality and provide legible plots.  PCA combines existing high-dimension variables into 

new low-dimension combinations of linear variables.  PC1 is plotted on the X-axis to exhibit 

direction of the highest variation in the data and PC2 is plotted along the Y-axis and indicates the 

direction of the next-highest level of variation. Component counts were determined by mapping 

the eigenvalues of the factors in a scree plot, then using the "elbow" method to identify a range of 

interest.  This was further supported by the Kaiser criterion which limits the components based on 

eigenvalues of greater than 1.  A PC count of 4 meets both criteria and accounts for approximately 

90% of the cumulative variation in the dataset. 

K-Means 

Clustering was applied on both raw data and PCA scores using a range of k-means values.    

Based on the results, cluster values between 3 and 6 were explored. 
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1.5 Results 
 

 
Figure 6: Scree Plot 

 
 
 
 Eigenanalysis of the Correlation Matrix   

Eigenvalue 11.661 2.964 1.776 1.553 0.742 0.520 0.345 0.275 0.098 0.048 

Proportion 0.583 0.148 0.089 0.078 0.037 0.026 0.017 0.014 0.005 0.002 

Cumulative 0.583 0.731 0.820 0.898 0.935 0.961 0.978 0.992 0.997 0.999 

Table 5: Eigenanalysis for PCA 
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Principal Component Analysis 

 
Figure 7: PCA Component Importance 

 
 

Components % Variance Cumulative % Variance 
1 0.583 0.583 
2 0.148 0.731 
3 0.089 0.82 
4 0.078 0.898 
5 0.037 0.935 
6 0.026 0.961 
7 0.017 0.978 
8 0.014 0.992 
9 0.005 0.997 

10 0.002 0.999 
11 0.001 1 
12 0 1 

13…20 …0 …1 
Table 6: PCA Cumulative Variance 
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PCA Component Weights 

Variable PC1 PC2 PC3 PC4 
UT_ENTRY_TAG_ON 0.268 0.132 -0.175 -0.055 
UT_EXIT_TAG_OFF 0.252 -0.211 -0.154 -0.044 
UT_ENT_EXT_RATIO 0.095 0.469 -0.075 -0.029 
OP_MARTA_RAIL 0.26 -0.183 -0.16 -0.049 
OP_MARTA_BUS 0.23 0.264 -0.029 0.041 
OP_BUS_RATIO -0.01 0.506 0.093 -0.005 
OP_RAIL_RATIO 0.017 -0.516 -0.079 0.016 
MD_MODES 0.179 -0.009 0.448 0.363 
MD_DEVICES 0.279 0.032 -0.02 0.046 
MD_FACILITIES 0.251 -0.088 0.164 0.199 
MD_FI_CATEGORIES 0.136 -0.044 0.406 -0.559 
MD_TRANSIT_DAYS 0.261 0.064 -0.147 -0.079 
MD_TRANSIT_DAYS_RATIO 0.261 0.064 -0.147 -0.079 
MD_USES 0.285 -0.001 -0.124 -0.016 
MD_MODES_PER_DAY 0.179 -0.009 0.448 0.363 
MD_DEVICES_PER_DAY 0.279 0.032 -0.02 0.046 
MD_FACILITIES_PER_DAY 0.251 -0.088 0.164 0.199 
MD_CATEGORIES_PER_DAY 0.136 -0.044 0.406 -0.559 
UT_ENTRIES_PER_DAY 0.268 0.132 -0.175 -0.055 
UT_EXITS_PER_DAY 0.252 -0.211 -0.154 -0.044 

Table 7: PCA Component Weights 
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Fraud Plot 

 

 
Figure 8: Fraud Plot 
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K-Means Plots 

 
 

K-means = 3 

Cluster by Count  Cluster by Fraud Label % 

Cluster 0 1 Total  Cluster 0 1 Total 

1  2,097   825   2,922   1 32.79% 12.90% 22.85% 

2  3,633   5,313   8,946   2 56.81% 83.08% 69.95% 

3  665   257   922   3 10.40% 4.02% 7.21% 

Total  6,395   6,395   12,790   Total 100.00% 100.00% 100.00% 

         

Cluster by Row %  Cluster by Total % 

Cluster 0 1 Total  Cluster 0 1 Total 

1 71.77% 28.23% 100.00%  1 16.40% 6.45% 22.85% 

2 40.61% 59.39% 100.00%  2 28.41% 41.54% 69.95% 

3 72.13% 27.87% 100.00%  3 5.20% 2.01% 7.21% 

Total 50.00% 50.00% 100.00%  Total 50.00% 50.00% 100.00% 
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K-means = 4 

Cluster by Count  Cluster by Fraud Label % 

Cluster 0 1 Total  Cluster 0 1 Total 

1  1,456   439   1,895   1 22.77% 6.86% 14.82% 

2  3,038   4,450   7,488   2 47.51% 69.59% 58.55% 

3  458   181   639   3 7.16% 2.83% 5.00% 

4  1,443   1,325   2,768   4 22.56% 20.72% 21.64% 

Total  6,395   6,395   12,790   Total 100.00% 100.00% 100.00% 

         

Cluster by Row %  Cluster by Total % 

Cluster 0 1 Total  Cluster 0 1 Total 

1 76.83% 23.17% 100.00%  1 11.38% 3.43% 14.82% 

2 40.57% 59.43% 100.00%  2 23.75% 34.79% 58.55% 

3 71.67% 28.33% 100.00%  3 3.58% 1.42% 5.00% 

4 52.13% 47.87% 100.00%  4 11.28% 10.36% 21.64% 

Total 50.00% 50.00% 100.00%  Total 50.00% 50.00% 100.00% 
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K-means = 5 

Cluster by Count  Cluster by Fraud Label % 

Cluster 0 1 Total  Cluster 0 1 Total 

1  1,381   404   1,785   1 21.59% 6.32% 13.96% 

2  2,457   1,875   4,332   2 38.42% 29.32% 33.87% 

3  433   174   607   3 6.77% 2.72% 4.75% 

4  654   2,605   3,259   4 10.23% 40.73% 25.48% 

5  1,470   1,337   2,807   5 22.99% 20.91% 21.95% 

Total  6,395   6,395   12,790   Total 100.00% 100.00% 100.00% 

         

Cluster by Row %  Cluster by Total % 

Cluster 0 1 Total  Cluster 0 1 Total 

1 77.37% 22.63% 100.00%  1 10.80% 3.16% 13.96% 

2 56.72% 43.28% 100.00%  2 19.21% 14.66% 33.87% 

3 71.33% 28.67% 100.00%  3 3.39% 1.36% 4.75% 

4 20.07% 79.93% 100.00%  4 5.11% 20.37% 25.48% 

5 52.37% 47.63% 100.00%  5 11.49% 10.45% 21.95% 

Total 50.00% 50.00% 100.00%  Total 50.00% 50.00% 100.00% 
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K-means = 6 

Cluster by Count  Cluster by Fraud Label % 

Cluster 0 1 Total  Cluster 0 1 Total 

1  881   49   930   1 13.78% 0.77% 7.27% 

2  2,386   1,875   4,261   2 37.31% 29.32% 33.32% 

3  426   162   588   3 6.66% 2.53% 4.60% 

4  635   2,593   3,228   4 9.93% 40.55% 25.24% 

5  1,108   1,338   2,446   5 17.33% 20.92% 19.12% 

6  959   378   1,337   6 15.00% 5.91% 10.45% 

Total  6,395   6,395   12,790   Total 100.00% 100.00% 100.00% 

         

Cluster by Row %  Cluster by Total % 

Cluster 0 1 Total  Cluster 0 1 Total 

1 94.73% 5.27% 100.00%  1 6.89% 0.38% 7.27% 

2 56.00% 44.00% 100.00%  2 18.66% 14.66% 33.32% 

3 72.45% 27.55% 100.00%  3 3.33% 1.27% 4.60% 

4 19.67% 80.33% 100.00%  4 4.96% 20.27% 25.24% 

5 45.30% 54.70% 100.00%  5 8.66% 10.46% 19.12% 

6 71.73% 28.27% 100.00%  6 7.50% 2.96% 10.45% 

Total 50.00% 50.00% 100.00%  Total 50.00% 50.00% 100.00% 
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Cluster Findings 

  Fraud % by Cluster 
 

 Categories 1 2 3 4 5 6 % Of Total* 

K-means=3 

UT, OP, & MD 28.23% 59.39% 27.87% NA NA NA NA 

OP & MD 41.53% 58.64% 25.74% NA NA NA NA 

UT & OP 74.80% 40.91% 21.64% NA NA NA 13.51% 

UT & MD 30.63% 59.61% 26.07% NA NA NA NA 

UT  64.11% 53.12% 18.53% NA NA NA 12.45% 

OP 78.11% 38.12% 28.06% NA NA NA 32.15% 

MD 46.96% 56.62% 24.18% NA NA NA 12.90% 

        

 

K-means=4 

UT, OP, & MD 23.17% 59.43% 28.33% 47.87% NA NA 14.82% 

OP & MD 22.44% 58.98% 29.17% 49.64% NA NA 14.57% 

UT & OP 75.26% 41.70% 33.81% 18.29% NA NA 46.39% 

UT & MD 24.18% 59.48% 27.51% 47.94% NA NA 15.17% 

UT  67.63% 54.44% 22.74% 20.75% NA NA 17.97% 

OP 80.83% 37.12% 28.26% 43.28% NA NA 28.14% 

MD 10.06% 57.94% 31.89% 53.67% NA NA 9.71% 

        

 

K-means=5 

UT, OP, & MD 22.63% 43.28% 28.67% 79.93% 47.63% NA 39.44% 

OP & MD 27.65% 60.90% 29.40% 23.66% 49.64% NA 8.33% 

UT & OP 62.02% 40.24% 30.90% 16.85% 76.31% NA 42.70% 

UT & MD 23.96% 59.74% 29.57% 38.67% 48.05% NA 11.49% 

UT  66.01% 44.02% 30.68% 16.84% 56.17% NA 10.68% 

OP 48.79% 37.50% 23.47% 43.17% 82.98% NA 33.63% 

MD 10.06% 60.27% 27.95% 35.00% 55.28% NA 9.79% 

        

 

K-means=6 

UT, OP, & MD 5.27% 44.00% 27.55% 80.33% 54.70% 28.27% 32.51% 

OP & MD 6.49% 80.82% 27.20% 41.79% 55.09% 35.13% 34.88% 

UT & OP 64.92% 41.96% 14.30% 27.13% 76.87% 33.73% 38.20% 

UT & MD 11.30% 60.58% 25.98% 51.66% 54.14% 27.98% 8.16% 

UT  66.47% 57.89% 16.24% 22.16% 54.56% 39.81% 16.95% 

OP 48.00% 41.23% 32.15% 44.40% 83.16% 12.20% 34.89% 

MD 10.12% 61.88% 23.89% 28.24% 55.20% 43.43% 14.20% 
Table 8: Fraud by Cluster 

 
* Percentage of records that fall in 1st or 4th quartile 
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Category Findings 

 Fraud % by Cluster  
Categories 1 2 3 4 5 6 % Of Total* 

UT, OP, & MD 28.23% 59.39% 27.87% NA NA NA NA 
UT, OP, & MD 23.17% 59.43% 28.33% 47.87% NA NA 14.82% 
UT, OP, & MD 22.63% 43.28% 28.67% 79.93% 47.63% NA 39.44% 
UT, OP, & MD 5.27% 44.00% 27.55% 80.33% 54.70% 28.27% 32.51% 

        
OP & MD 41.53% 58.64% 25.74% NA NA NA NA 
OP & MD 22.44% 58.98% 29.17% 49.64% NA NA 14.57% 
OP & MD 27.65% 60.90% 29.40% 23.66% 49.64% NA 8.33% 
OP & MD 6.49% 80.82% 27.20% 41.79% 55.09% 35.13% 34.88% 

        
UT & OP 74.80% 40.91% 21.64% NA NA NA 13.51% 
UT & OP 75.26% 41.70% 33.81% 18.29% NA NA 46.39% 
UT & OP 62.02% 40.24% 30.90% 16.85% 76.31% NA 42.70% 
UT & OP 64.92% 41.96% 14.30% 27.13% 76.87% 33.73% 38.20% 

        
UT & MD 30.63% 59.61% 26.07% NA NA NA NA 
UT & MD 24.18% 59.48% 27.51% 47.94% NA NA 15.17% 
UT & MD 23.96% 59.74% 29.57% 38.67% 48.05% NA 11.49% 
UT & MD 11.30% 60.58% 25.98% 51.66% 54.14% 27.98% 8.16% 

        
UT  64.11% 53.12% 18.53% NA NA NA 12.45% 
UT  67.63% 54.44% 22.74% 20.75% NA NA 17.97% 
UT  66.01% 44.02% 30.68% 16.84% 56.17% NA 10.68% 
UT  66.47% 57.89% 16.24% 22.16% 54.56% 39.81% 16.95% 

        
OP 78.11% 38.12% 28.06% NA NA NA 32.15% 
OP 80.83% 37.12% 28.26% 43.28% NA NA 28.14% 
OP 48.79% 37.50% 23.47% 43.17% 82.98% NA 33.63% 
OP 48.00% 41.23% 32.15% 44.40% 83.16% 12.20% 34.89% 

        
MD 46.96% 56.62% 24.18% NA NA NA 12.90% 
MD 10.06% 57.94% 31.89% 53.67% NA NA 9.71% 
MD 10.06% 60.27% 27.95% 35.00% 55.28% NA 9.79% 
MD 10.12% 61.88% 23.89% 28.24% 55.20% 43.43% 14.20% 

Table 9: Fraud by Category 

* Percentage of total records that fall in 1st or 4th quartile 
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1.6 Discussion 
 
PCA Findings 

PCA was used to offset the high dimensionality impact of the dataset.  By combining 

variables into a two-dimensional scatter plot using the first two principal components, the data was 

made suitable for visualization and interpretation.  Based on an interest in examining a range of 

cluster values for comparison, k-means values between 3 and 6 were evaluated.  The breakdown 

of principal components included variables from all three categories.  Variables from Use Type 

and Operator Type groups were more uniform in terms of coefficient average and range.  Metadata 

variable coefficients showed the greatest amount of variability and were notably lower in PC2. 

PC2 was heavily impacted by three variables in the first two categories.  UT_ENT_EXT_RATIO 

and OP_BUS_RATIO had strong positive correlations of .469 and .506 respectively.  

OP_RAIL_RATIO had the strongest negative correlation and the highest absolute value of any 

variable in either of the first two principal components.  

 

Plots and K-means Findings 

 To give a point of reference to the k-means clustering plots, an initial plot of Fraud vs. Not 

Fraud points was provided.  While all modeling was performed without labels, the context of the 

research question requires that the labels be considered when determining the efficacy of the k-

means clustering results.  The fraudulent data points display a complex relationship with legitimate 

values when viewed as a 2-dimensional plot.  It appears that from the perspective of PC1 and PC2 

fraud does not form highly differentiated clusters, but rather overlaps the legitimate transactions 

with concentrated groups forming as the cluster count increases.  There are plot areas that are 

clearly more likely to be fraud and areas that show clear tendencies toward non-fraudulent data 

points.  
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 K-means =3 revealed a simple plot of ostensibly vertically banded data points.  While the 

graph itself is of limited value, the concentration in cluster 2 is clear with 70% of the transactions 

and 83% of the total fraud being located there.  This concentration is consistent across all 4 cluster 

quantities tested.  Each cluster quantity shows a spread concentration around primarily negative 

values of PC1 where the majority of both overall data points and fraudulent data points are 

clustered.  When k-means=4 the concentration shifts to 59% of the sample population and 70% of 

the fraud.  For k=5 and k=6 the concentration splits into separate clusters but when combined still 

total 59% and 70% for population and fraud percentages respectively. 

 The area with the most ambiguity is centered at approximately the origin.  For k=3 the 

clusters are insufficiently defined to capture a fraud differential in this region.  However, when 

cluster values reach 4 and 5 the regions become more legible and show distributions of 52% for 

non-fraud.  When 6 clusters are used this area is approximately 45% non-fraud.  These clusters 

range from 20-22% of the total data point volume for k values of 4,5, & 6.   This region offers the 

most difficulty in estimating whether a new data point should be labeled fraud or non-fraud. 

 The data also indicates clusters with higher concentrations of non-fraudulent data points.  

Mid-level values for PC1 were consistently clustered into groups that ranged between 72% for k=3 

to 81% for k=6 for percentage of non-fraudulent transactions.  While these points were clustered 

into a single group for k values 3-5, k=6 split this group into two clusters that when combined gave 

the approximately 81% non-fraud total.  For data points with the highest values along the PC1 axis 

the 4 k-means variables consistently formed a cluster which was both the smallest cluster in terms 

of total data point volume and ranged from 71-72% non-fraudulent.   
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 Excluding Use Type category variables caused the clusters to become less distinct when 

viewed from a fraud vs. non-fraud perspective.  The k=3 cluster that previously accounted for 83% 

of fraud softened to 70%.   

   For PC1 values less than 0 with PC2 values ±1.5 units from the origin, the likelihood of 

fraud is very high.  Plotted points closer to the origin are roughly evenly distributed in the sample 

data.  As PC1 axis values increase, the likelihood of fraud diminishes.  PC1 values are largely 

driven by total transaction levels over the test period with a lesser impact for daily transaction 

levels.  As PC2 values increase so does the probability of fraud.  Given that PC2 is largely driven 

by Operator Type, it can be inferred that greater OP_BUS_RATIO values result in elevated levels 

of fraud.   

 To address the impact of variable categories and their individual impacts on the 

effectiveness of clustering, each category/cluster combination was modeled and analyzed.    

Because of the binary nature of the fraud, effectiveness is signaled by substantially higher or lower 

values of fraud concentration while middling values indicate ambiguous clusters with less 

delineation between fraud/non-fraud records. A quartile approach was adopted to simplify the 

findings.  K-means values and variable categories were screened for cluster fraud concentrations 

of less than 25% or greater than 75%.  The results were consolidated into 2 tables (Tables 8 & 9).   

The highlighted cells indicate clusters that returned fraud percentages in the 1st or 4th quartiles (i.e., 

less than 25% or greater than 75%).  These clusters present business stakeholders with more 

actionable data in terms of how to allocate resources for additional analysis and/or institute 

mitigation responses for factor combinations that are historically more fraudulent.  The tables also 

provide the total percentage of records that fall into these high-risk clusters. 
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The highest percentages of population by k-means value were 46.39%, 42.70%, and 

38.20% for k=4-6 respectively when considering Use Type and Operator Provider categories only.  

On average, k-means=4 provided the highest percentage of population across all category 

combinations.  This is consistent with the PCA component weights which indicated that the top 3 

factors of PCA2 were part of the Use Type and Operator Provider categories.  To simplify, fare 

media with a history of high bus activity, low rail activity, and high entrance to exit ratios are the 

highest risk group for fraud. 

1.7 Limitations & Future Research 
 

The most significant limitation to this research is the imperfect nature of the dependent 

variable.  Because Hotlisting is the only data marker provided for fraud in the transit data, 

researchers are forced to utilize it despite its shortcomings.  The most troubling aspect of Hotlisting 

is that it is applied for effect as opposed to explanation.  Hotlisting a card/ticket is the current 

method of disabling the media.  Fare media can be disabled for several reasons including reported 

lost media, canceled promotional fare media, irregular transactions, fare stock control (i.e., 

sunsetting aging media), remote media replacement, and suspected/known fraud.  Without a more 

directed approach to labeling fraud, any research centered on Hotlisted media will necessarily 

include some quantity of false positives.   

A second concern of using Hotlisting is the impact on transactional data.  During the course 

of this research, it was revealed that many of the fare media attributes available in the automated 

fare collection system are nullified when a card/ticket is Hotlisted.  While meaningful data is still 

collected, a substantial amount of data is purged once the fare media is Hotlisted.  This lost data 

could potentially be used to improve models to assist in the detection of current and future methods 

of fraud. 
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Other limitations of this research include that it was limited to a single transit authority for 

a specific window of time.  With consideration of the transit fraud framework, multiple transit 

authorities are a prerequisite for exploring the varying impact of External Factors, Customer 

Factors, Transit Authority, and System Controls.  New insights might be made using other public 

transit systems and/or for longer periods of time.  Lastly there are additional unsupervised learning 

techniques that should be tested and compared to the k-means approach used in this research. 

The difficulty of determining which transactions are legitimate vs fraudulent is 

compounded by the transactional overlap of the two record types.  Transit fraud has a variety of 

forms such as counterfeit tickets, stolen tickets/cards, and altered media.  Some of these forms may 

exhibit identical transactional behavior to legitimate fare media.  This is illustrated in Figure 8, 

where both record types are shown to mingle and overlap across a broad spectrum of variable 

values.  While this research focused on transaction records, some types of fraud may only be 

detectable by investigating the details of their creation, distribution, and/or purchase.   

1.8 Conclusion 
 

Unlike previous works, this study used actual transaction data from a U.S. top 10 transit 

authority to explore variable categories for determining transit fare media fraud.  Additionally, a 

novel framework was introduced to provide a guide for future transit fraud research.  

Based on a tolerance threshold of less than 25% or greater than 75%, this research showed 

that almost half of sample population could be effectively grouped into fraudulent vs. non-

fraudulent clusters using k-means clustering.  A k-mean value of 4 coupled with variable categories 

Use Type and Operator Provider generated the most fraud-differentiated clustering.  By allowing 

investigators and analysts to quickly determine particularly high or low risk clusters, resources can 

be directed toward records with the highest probability of fraud. 
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These findings support the contention that unsupervised machine learning is suitable for 

producing meaningful transit fraud classification models based on transactional data.  Transit fraud 

classification modeling offers transit systems a direct and effective means to mitigate the impacts 

of fare media fraud. 
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1.10 Appendix 
 
K-means clustering convergence 

 
Figure 9: K-means Clustering Convergence 

(Adopted from Kalmár, Öllös, & Vida, 2011) 
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K-means clustering results  
 

Dataset Recognition Rate (%) 
Number of clusters formed 

3 5 10 14 16 

Iris 89.33 98 98 99.33 99.33 

Wine 69.6 72.64 75 75.87 79.74 

Vowel - - 70.72 72.02 72.44 

Ionosphere 81.58 84.41 88.07 88.34 90.01 

Crude Oil 61.4 78.33 85.64 89.47 92.1 
Table 10: K-means Clustering Results 

(Adopted from Thakare & Bagal, 2015) 
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Paper 2: Classification of Transit Fraud via Supervised Machine 
Learning 
 
Abstract –Globally, public transit provides billions of rides each year.  The scale of transit related 
fraud is estimated to be in the hundreds of millions annually.  In this research the significant 
challenges in transit fraud research of access to data, constantly evolving fraud techniques, and 
coping with the highly imbalanced nature of fraud data are presented and addressed.  Using 
supervised machine learning methods (logistic regression, k-nearest neighbor, Naïve Bayes, & 
random forests) coupled with SMOTE to account for data imbalance, transit fraud classification 
model accuracy rates varied from approximately 80-97%.  Corresponding ROC AUC scores 
ranged from approximately 75-87%.  The highest performing models were KNN and random 
forests using bi-weekly and monthly data sets. 
 
Keywords -   Public transit, fraud, fare media, machine learning, supervised learning   
 

2.1 Introduction 
The transit industry has experienced explosive levels of growth during the last 50 years.  

During this period of growth, public transportation has evolved from simple bus lines to highly 

automated mass transit organizations.  Like any industry, public transit suffers from the effects of 

those who seek to defraud the system.  The scale, methods, and complexity of transit fraud vary 

widely both within and between systems.  To mitigate criminal efforts, researchers have proposed 

and tested a variety of anti-fraud methods.  Some of the most promising solutions involve machine 

learning, which is well-suited to address the unique challenges of transit fraud.  To understand the 

motivation behind transit fraud research, it is important to establish the scale of public transit, the 

prevalence of transit fraud, and the estimated impacts of transit fraud.  Once this context has been 

established, the data obstacles, relevant criminology considerations, and the roles of classification 

and machine learning can be more fully appreciated. 

Scale of Public Transit 

Public transit authorities consist of a variety of transportation modes.  The largest segments 

of land-based systems are rail and bus.  To better understand the definition and scope of the 
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components, the International Association of Public Transport (UITP) defines a metro (rail) system 

as follows:  

“Metropolitan railways are urban, electric transport systems with a high capacity and a high 

frequency of service.  Metros are totally independent from other traffic, roads or pedestrians.  They 

are consequently designed for operations in tunnels, viaducts or on surface level but with physical 

separation.  Metropolitan railways are the optimal public transport mode for a high capacity line 

or network service.  Some systems run on rubber-tires but are based on the same control-command 

principles as steel-wheel systems.  In different parts of the world metro systems are also known as 

the underground, subway or tube.” (ERRAC & UITP, 2014).  

 

In 2017, the metro/rail portion of public transit systems were operating in 56 countries, 178 cities, 

and carried upwards of 53 billion passengers per year.  This segment experienced a 19.5% growth 

rate between 2012 and 2017 (UITP, 2018).   

Complementing these rail systems are bus systems comprised of a variety of buses, vans, 

trolleys etc. of different capacities and vehicle lengths that use existing roads.  In the case of bus 

rapid transit systems, vehicles are sometimes afforded dedicated lanes and preferential traffic 

signal arrangements.  A 39-country survey in 2015 revealed that the annual modal distribution of 

trips for participating systems was heavily dominated by bus with 63% of all trips and an estimated 

153 billion trips provided (UITP, 2017).   

To support such massive transit operations, an enormous amount of public funding is 

necessary.  Total public funding for transit in the U.S. in 2015, was $24 billion with approximately 

$12.2 billion each from federal and state funds (Bureau of Transportation Statistics, 2015).  This 

funding is augmented by passenger fares, other transit authority revenues, and local assistance.  

The total funding for U.S. public transportation in 2015 was approximately $68.3 billion.  Total 
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revenues generated from passenger fares for the same period was $15.9 billion (Hughes-Cromwick 

& Dickens, 2018).   

Because passenger fares afford the greatest opportunity for transit agencies to directly 

impact revenues, it is critical that fare capture rates are high.  The farebox recovery ratio is the 

percentage of a trip's direct cost that is recovered via passenger fares (NTD, 2019).  The recovery 

ratio varies by mode of transportation, but according to NTD findings, never reaches 100%.  In 

2018, the highest recovery rate by mode was vanpools at 73.6% while heavy rail and commuter 

bus were only 61.1% and 47.9% respectively (NTD, 2019).  Given that revenues are substantially 

lower than operating expenses and that passenger revenues are the most direct route to close the 

revenue deficit, fare capture is critical to public transit sustainability.  Even relatively moderate 

levels of transit fraud can undermine the financial viability of a transit system. 

Impact of fraud  

Transit fraud is committed by fare evasion or fare media fraud.  Fare evasion is the act of 

avoiding detection, and consequently payment, while entering or riding the transit system.  Fare 

media fraud is entering or riding the system under seemingly legitimate means while actually using 

theft related, modified, or counterfeit media.  Typical transit operator responses to transit fraud 

include increased or enhanced physical controls (i.e., updated gates/turnstiles), upgraded ticketing 

systems, use of ticket inspectors, increased fine levels and/or fine enforcement, and attempts to 

optimize fare levels, service levels, and customer satisfaction (Delbosc & Currie, 2019). 

While the scale of transit fraud varies widely between systems, an international survey of 

31 systems in 18 countries found an average fare evasion rate of greater than 4% (Bonfanti 

&Wagenknecht, 2010).  Some systems report fraud levels as high as 25% or more (Troncoso & de 

Grange, 2017).  The economic impact of transit fraud is extensive, and the scale can be shocking.  
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A 2011 study of New York City Transit, excluding certain customer types and using an adjusted 

fare average method, estimated losses at greater than $23 million per year (Reddy, Kuhls, & Lu, 

2011).  A more recent report on New York based MTA (Metropolitan Transit Authority), estimates 

that fare evasion in 2018 resulted in a $240 million loss (WABC, 2019).   

Table 11 shows examples of reported transit fraud (fare evasion and fare media fraud) as 

published by a variety of news outlets and transit industry publications.  These values are often 

submitted as an educated guess when a transit official or law enforcement representative is 

questioned about the estimated impact of fraud involved in recent or ongoing investigations.  While 

all forms of fraud effect the governing authority, some forms also directly impact other customers 

(e.g., using stolen credit cards to buy fare media).  Some research even asserts that fare evasion 

increases the customer perception that transit is unsafe (Reddy, Kuhls, & Lu, 2011).  The result 

can be the catalyst for a general distrust of public transit and brand erosion.   

Fare evasion is inherently difficult to track and estimate because of the lack of recorded 

transaction details (Reddy, Kuhls, & Lu, 2011).  Alternatively, fare media fraud involving theft, 

counterfeiting, data manipulation etc. potentially leaves the necessary digital clues for detection 

and countermeasure development.  Despite the superior data trails produced by fare media fraud, 

it is far less commonly studied than fare evasion.  Locating a transit authority willing to provide 

access to the necessary data is just one of several difficulties common to fraud research.   

Transit System Year Estimated Fraud Losses 
New York 2019 $300,000,000  
New York 2018 $240,000,000  
London 2019 $200,000,000  
Paris 2015 $97,000,000  
Toronto 2020 $75,000,000  
Paris 2019 $68,000,000  
Washington D.C. 2020 $40,000,000  
Melbourne 2005-2011 $24,000,000  
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New York 2011 $23,000,000  
London 2019 $21,000,000  
San Francisco 2018 $19,000,000  
Barcelona 2018 $10,000,000  
Helsinki 2020 $9,700,000  
Bern 2018 $7,600,000  
Toronto 2014 $5,000,000  
New Jersey 2012 $3,000,000  
Dallas 2002 $2,200,000  
Gold Coast 2018 $1,400,000  
Santiago 2016 $1,000,000  
Guangzhou 2019 $564,000  
San Francisco 2011-2016 $500,000  
Beijing 2019 $61,000  

Table 11: Transit Fraud Examples 

Challenges in Fraud Research 

 Fraud research typically encounters one or more fraud-specific data obstacles.  Three of 

the most common issues are gaining access to the data, dealing with evolving fraud techniques, 

and coping with the highly imbalanced nature of fraud data.  Gaining access to detailed transaction 

data can be difficult as companies seek to safeguard customer transaction details and suppress 

news involving operational fraud.  Major data breaches are often widely reported and closely 

followed by the public.  Backlash against companies who compromise customer data can be 

significant.  Recent breaches include Yahoo (2016), Marriott (2018), LinkedIn (2012), Equifax 

(2017), and eBay (2014) and totaled 3.8 billion compromised records (Privacy Rights 

Clearinghouse, 2019).  In most instances, the standard practice is to not discuss or release to the 

public any details related to ongoing criminal investigations.  The concern is that any information 

divulged may inadvertently damage the case, generate additional negative attention from 

customers/stakeholders, or provide future fraud perpetrators information that assists their efforts 

to defraud the company and/or avoid detection.   
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In addition to scarcity of data, fraud methods are constantly refined in an attempt to 

frustrate detection techniques.  Van Vlasselaer et al. (2016), note that fraud is time-evolving, well-

considered, and organized.  Jenson (1997), calls criminals "intelligent adversaries" and warns that 

they are highly adaptive and can quickly change tactics to avoid detection systems.  Effective 

solutions for detecting fraud in complex and shifting environments require a level of adaptability 

that exceeds traditional rule-based methods which can be difficult to implement and maintain (Kou 

et al. 2004). 

The third challenge is shared with other research areas (e.g., medical diagnosis, intrusion 

detection, text classification, and risk management), and deals with imbalanced data (Chawla, 

Japkowicz, & Kotcz, 2004).  Imbalanced data refers to a set of records where two or more classes 

of observation occur at different rates.  Typically, the minority class is the focus.  This is true for 

essentially all types of fraud research.  In a normal system, fraud occurs at a fraction of the rate of 

legitimate transactions.  The resulting classes are therefore highly skewed.  As the balance of data 

begins to reach more extreme levels, some detection methods begin to suffer.   

Criminology Considerations 

A review of criminology research can help explain some of the factors that contribute to 

fraud.  By understanding how variables rooted in psychology, sociology, and criminology interact 

and intersect with conditions that cause or accelerate fraud, researchers can work to build 

mitigating factors.  Because of the variety of transportation modes and the assortment of 

infrastructure elements represented within those modes, it is difficult to create universal transit 

fraud countermeasures.  The Fraud Triangle Theory proposed by Donald Cressey is commonly 

referenced in discussions around fraud detection methodologies.  The Fraud Triangle Theory states 
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that pressure, rationalization, and opportunity combine to influence the rate of fraud.  Another 

significant contributor from the criminology discipline, is the General Deterrence Theory.  

The General Deterrence Theory (GDT) is based on the principle that rational actors attempt 

to maximize their individual satisfaction while simultaneously avoiding risk and/or negative 

consequences.  The GDT suggests that if the punishment for a crime is applied quickly, severely, 

and with enough certainty, a rational person will weigh the benefits vs. rewards and opt not to 

commit the crime.   Deterrence theory is rooted in the collective works of Thomas Hobbs (1588-

1678), Cesare Beccaria (1738-1794), and Jeremy Bentham (1748-1832) (Hobbes, 2010).  Based 

on these principles, developing techniques that produce higher rates of severity, likelihood of 

detection, or detection speeds will increase the compliance rate.  Creating fraud countermeasures 
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that satisfy as many of these criteria as possible increases the effectiveness of the solution.  One 

promising solution is classification via machine learning. 

 

 

Figure 10: General Deterence Theory 

 
 
 
 
Classification / Machine Learning 

In its simplest sense, a classification model attempts to draw on labeled observations to 

determine which of the identified categories or classes new data points are most likely to be.  In 

the case of fraud, labeled observations (fraud vs. legitimate) are loaded into the model along with 

a group of independent variables.  Depending on the model selected, various statistical/ 
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mathematical techniques are applied to produce the most likely classification of “fraud” or “not 

fraud”.   

Machine learning can be described as the search among eligible solutions, with input from 

training experience, to optimize the given performance metric (Jordan & Mitchell, 2015).  There 

is a rich body of research focused on the application of machine learning methods to detect credit 

card and electronic fraud (Bolton & Hand, 2001), (Brause, Langsdorf, & Hepp, 1999).   

Advances in transit related technology have resulted in intelligent transportation systems 

utilizing smart cards and detailed transaction logging.  These systems produce and store large 

repositories of data highly suited to the application of machine learning classification techniques.  

Fare media known or suspected to be associated with fraud or theft can be labeled in the system 

using a method called Hotlisting.  When a fare media product is flagged as Hotlisted in the system, 

the next interaction with a system component (e.g., station gate, vending machine, or bus payment 

terminal) will result in the card being deactivated.  Thus, Hotlisting is functionally comparable to 

a bank deactivating a reported stolen or lost credit card.  Because of the cataloged transaction 

details, the Hotlisted media has been simultaneously deactivated and labeled, thus becoming an 

ideal candidate for supervised learning classification methods.   

While the fluid nature of fraud makes it difficult to detect, it also makes it a highly suitable 

candidate for machine learning methods.  Unlike rule-based detection methods, which rely on a 

catalog of static trigger scores or events, machine learning techniques offer a means to utilize new 

training data to frequently update classifiers.  Many modern transit authorities utilize fully 

networked systems that log highly detailed transactions records.  As trends in fraud shift over time, 

these records would allow machine learning methods to continuously recalibrate model parameters 

and training data sets to maintain the model's efficacy.  Examples of appropriate classification 
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methods for transit fraud includes logistic regression, k-nearest neighbor, Naïve Bayes, and 

random forest classifiers. 

Research Goal  

A wide variety of machine learning models have been studied from a fraud 

detection/classification perspective.  This study seeks to extend the existing body of fraud and 

machine learning research by specifically exploring how machine learning classification models 

perform from a public transit perspective.  Machine learning options address some of the principal 

components of well-established criminology theories.  Two of these components are the certainty 

of being caught and the speed of discovery.  Prior research shows that machine learning models 

can achieve accuracy scores of greater than 90% when predicting some types of fraud.  The 

learning aspect also shortens the effectiveness timespan of new fraud techniques.  Considering the 

well documented financial impacts of fraud, and because lost fares are unrecoverable, it is essential 

to detect fraud as early and accurately as possible.  This research focuses specifically on the under-

represented area of transit media fraud.  Emphasis is placed on solutions that meet the joint 

requirements of effectiveness and timeliness.  This work seeks to identify which models yield the 

strongest results when classifying fraud in a transit setting.   

Research question 1.  Can machine learning models effectively classify transit fare media fraud? 
 

2.2 Literature Review 
 

The following sections discuss the relevant research on the definition and impact of fraud, 

imbalanced data, and machine learning models. 

Fraud  
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A review of the literature reveals a number of definitions for fraud.  Hill describes fraud as 

“the intentional use of deceit, a trick or some dishonest means to deprive another of his/her/its 

money, property or a legal right” (Hill, 2005).  Black’s Law Dictionary defines it as “a knowing 

misrepresentation of the truth or concealment of a material fact to induce another to act to his or 

her detriment” (Garner, 2004).  In 2002, the Auditing Standards Board of the American Institute 

of Certified Public Accountants issued a statement of auditing standards for fraud.  Commonly 

referred to as SAS 99, the statement emphasizes the difference between error and fraud as the 

presence of intent (AICPA, 2002).  The Federal Bureau of Investigation defines fraud as “the 

intentional perversion of the truth for the purpose of inducing another person or other entity in 

reliance upon it to part with something of value or to surrender a legal right. Fraudulent 

conversion and obtaining of money or property by false pretenses. Confidence games and bad 

checks, except forgeries and counterfeiting, are included”.  The common elements in these and 

other popular definitions are the inclusion of intent and deceit.   These characteristics are evident 

in transit fraud.  

Private and public interests in fraud detection/prevention create pressure that ensures fraud 

research will be produced frequently and in high volumes.  In a review of fraud research as a subset 

of academic publishing, it was found that the number of published fraud related articles increased 

from 140 in 1995 to 910 in 2016 (Gantman & Zinoviev, 2017).  Several literature reviews and 

research surveys have focused on the associated detection methodologies and techniques.  As 

machine learning techniques have grown in popularity and applicability, their emphasis in 

academic literature has also grown.   

At the individual level, the scale of fraud can be surprisingly large.  The Federal Trade 

Commission reports that in 2019 there were approximately 1.7 million consumer reports of fraud 
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totaling $1.9 billion in total fraud losses.  This total indicated a $300 million increase from the 

2018 totals.  Identity theft, imposter scams, and telephone/mobile services were the top 3 reported 

categories (FTC, 2020).  At the corporate level, the impact of fraud can be shocking.   

PwC’s Global Economic Crime and Fraud Survey is an annual corporate survey of 5,000+ 

participants, the majority of participants are C-suite members in companies with greater than $10M 

in global revenues.  Their 2020 survey found that U.S. losses were approximated at $42B and were 

most commonly either customer fraud, cybercrime, asset misappropriation, or bribery/corruption 

(PwC, 2020).    

Bolton & Hand (2002), reviewed several subsets of fraud where statistical and data analytic 

tools were used effectively.  A summary of the research and techniques was described for credit 

card fraud, money laundering, telecom fraud, computer intrusion and medical & scientific fraud 

(Bolton & Hand, 2002).  Due in part to a recent increase in large scale financial fraud, extensive 

overviews of financial fraud were conducted by Nqai et al. (2011), Hogan et al. (2008), and 

Trompeter et al. (2013).  Phua et al. (2010), produced an exhaustive review of fraud literature 

including analysis of sample sizes, performance measures, and methods/techniques by fraud 

category. They critiqued their findings for a shortage of examples of implemented research, studies 

utilizing temporal or spatial information, and research utilizing faster but simpler algorithms.   

Machine learning has been incorporated into many instances of fraud detection and 

deterrence research.  Sharma & Panigrahi (2013), reviewed the literature on financial accounting 

fraud.  They reported that neural networks, decision trees, Bayesian networks, k-nearest neighbor, 

support vector machines, logistical regression, and other techniques were represented in the fraud 

literature between 1995 and 2011.   Likewise, a review of over 50 fraud studies between 2004-

2014 revealed techniques including Bayesian belief networks, genetic algorithms, text mining, 
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response surface methodology, neural networks, logistic regression, group method of data 

handling, support vector machines, decision trees, hybrid methods, self-organizing maps, fuzzy 

logic, and artificial immune systems to detect credit card and financial statement fraud (West & 

Bhattacharya, 2016).  Despite the widespread and well documented use of machine learning in 

other domains, insufficient research has been conducted around its use in public transit fraud 

studies.   

Fraud research involves numerous challenges for researchers including the use of 

private/sensitive information, the changing nature of fraud, and the use of imbalanced data.  Bolton 

& Hand (2002), note that advances in fraud detection are inhibited by the reluctance of firms to 

share data for fear that criminals will exploit the information to further enhance their capabilities 

to commit fraud.  Reluctance to publicize sensitive information, the need to maintain consumer 

confidence, and a desire to safeguard market value for stakeholders, combine to create a scarcity 

of fraud test data for researchers.  This was reiterated in later research that noted that a chief 

criticism of fraud detection research is the scarcity of publicly available data (Phua, Lee, Smith, & 

Gayler, 2010).  While even general transit fraud research is scarce, those based on publicly 

available transit fraud data sets suitable for machine learning studies are especially rare. 

Imbalanced Data 

Imbalanced data is understood to be data that exhibits high levels of skewness or unequal 

distribution among classes.  Fraud detection is focused on identifying relatively few instances of 

deviant behavior among thousands or even millions of legitimate transactions.  This imbalance of 

classes can create misleading results from machine learning techniques, as choosing the majority 

class as the default prediction will often produce highly accurate if not precise results.  To achieve 

this goal, a variety of statistical techniques can be employed.   



 

 69

Several classification methods, including decision trees, backpropagation neural networks, 

Bayesian classification, support vector machines, association classification, and k-nearest 

neighbor, have been shown to exhibit suboptimal performance when applied to imbalanced 

datasets (Sun, Wong, & Kamel, 2009).  He and Garcia (2009), detail a number of techniques for 

dealing with imbalanced data, including sampling methods, cost-sensitive methods, kernel-based 

methods, and active learning methods (He & Garcia, 2009). 

Over-sampling the minority class while simultaneously under-sampling the majority class 

was explored by Ling & Li (1998).  Under-sampling the majority class is common approach to 

dealing with imbalanced data.  While there may be redundant data points in the majority class, 

there can be disadvantages to removing the data.  In the case of support vector machines, which 

rely on support points near the decision boundary, under-sampling risks omitting key data points 

(He & Garcia, 2009). 

SMOTE (Synthetic Minority Over-sampling Technique) is one popular resampling 

technique.  A 2002 study of imbalanced data introduced SMOTE, which over-samples the minority 

class by creating synthetic examples (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  In SMOTE, 

the minority class is over-sampled by taking each sample and introducing synthetic examples along 

the line segments joining any/all of the k minority class nearest neighbors.  Depending upon the 

amount of over-sampling required, neighbors from the k nearest neighbors are randomly chosen 

(Chawla et al., 2002).  The majority class is simultaneously undersampled so that a balanced 

dataset is produced. 

Machine Learning Models 

This section reviews the various models utilized and examples of associated academic work.  

The following table provides a brief description of the models selected and examples of associated 



 

 70

fraud research.  It is important to note the absence of transit related fraud research being conducted 

with these models. 
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Model Definition Fraud Research Examples 

Logistic 
Regression 

Logistic regression is a mathematical modeling 
approach that can be used to describe the 
relationship of several X’s to a dichotomous 
dependent variable (Kleinbaum, Dietz, Gail, 
Klein, & Klein, 2002). 

Bell & Carcello (2000) – Fraudulent financial reporting 
Spathis (2002) – Fraudulent financial statements 
Spathis et al., (2002) – Factors of fraudulent financial statements 
Owusu-Ansah et al. (2002) – Corporate fraud detection in New Zealand 
Guoxin et al. (2007) – Accounting fraud detection 
Yuan et al. (2008) – Impacts of compensation and competition on fraud 
Perols (2011) – Financial statement fraud detection 

K Nearest 
Neighbor 

Unclassified data points are assigned to the 
class represented by a majority of its k nearest 
neighbors in the training set (Fix & Hodges, 
1951). 

Kotsiantis et al., (2006) – Fraudulent financial statements 
Yeh (2009) – Credit card default prediction 
Senator et al., (1995) – Money laundering 
He, Graco, & Yao (1999) – Medical fraud 

Naïve 
Bayes 

Most likely class is assigned to a data point 
described by its feature vector.  To simplify the 
calculation an assumption of feature 
independence is made (though the reality is 
often very different).  Highly successful in 
application even when compared to more 
complicated techniques.  (Rish, 2001). 

Viane et al., (2004) – Insurance claim fraud 
Balaniuk (2012) – Government audit 
Phua (2004) – Fraud detection 
Yeh (2009) – Credit card defaults 
Panigrahi (2009) – Credit card fraud detection 

Random 
Forest 

Random Forest is a meta estimator that fits a 
given number of decision tree classifiers on 
various sub-samples of the dataset and uses 
averaging to improve the predictive accuracy 
and control over-fitting (scikit-learn 
documentation). 

Liu, Chan, Kazmi, & Fu (2015) – Financial fraud detection 
Bhattacharyya et al., (2011) – Credit card fraud 
Whiting et al., (2012) – Management fraud 
Patel et al., (2019) – Financial statement manipulation 
Carneiro et al., (2017) – Credit card fraud in e-tail 

Table 12: Machine Learning Fraud Research 
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2.3 Methodology 
 
Model 

The research model for this study is based on the Transit Fraud Framework and the primary 

emphasis is on variable selection, testing length impacts, and model performance. 

Transit fraud framework 

 

 

Figure 111: Transit Fraud Framework 
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Figure 122: Research Model 

 
Research Methodology  

Testing was conducted by training a series of machine learning models to classify records 

as predicted “fraud” or “not fraud”.  Predictions were compared to labeled data to generate 

accuracy values for each model.  The research strategy was to develop a binary classifier (“fraud”, 

“not fraud”) using a supervised learning approach.  Accuracy, precision, recall, F1-score, and ROC 

AU are calculated for each modeling technique and time span and presented for comparison.   
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Figure 133: Research Methodology 

2.4 Data 
Source 

 Data for this study was gathered from transaction logs of the Metropolitan Atlanta Rapid 

Transit Authority (MARTA).  MARTA is a top 10 U.S. transit authority and meets the Transit 

Fraud Framework assumption of a modern operation utilizing smart cards as the primary form of 

fare media.  Using a set of 20 numeric variables, testing lengths of daily, weekly, biweekly, and 

monthly data sets were generated.   

Variable Selection / Creation 

 Variables were selected based on previous findings (paper 1), that indicate they offer 

predictive potential regarding fraudulent vs. legitimate classification.  Native variables include 
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ENTRY_TAG_ON, EXIT_TAG_OFF, MARTA_BUS, MARTA_RAIL, DEVICES, 

FACILITIES, FI_CATEGORIES, MODES, and USES. All other variables were derived.  Time 

spans were in increments of 1, 7, 14, and 30 days for the daily, weekly, biweekly, and monthly 

data sets respectively.  

Feature Description 
ENT_EXT_RATIO Entries minus exits 
ENTRIES_PER_DAY Total entries divided by time span 
ENTRY_TAG_ON Entries (gates or buses) 
EXIT_TAG_OFF Exits (gates or buses) 
EXITS_PER_DAY Total exits divided by time span 
BUS_RATIO Percentage of transactions that were bus related 
MARTA_BUS Bus related transactions 
MARTA_RAIL Rail related transactions 
RAIL_RATIO Percentage of transactions that were rail related 
CATEGORIES_PER_DAY Total categories divided by time span 
DEVICES Total devices utilized 
DEVICES_PER_DAY Total devices divided by time span 
FACILITIES Total facilities visited 
FACILITIES_PER_DAY Total facilities divided by time span 
FI_CATEGORIES Total fare categories utilized 
MODES Total modes utilized 
MODES_PER_DAY Total modes divided by time span 
TRANSIT_DAYS Total days with transactions 
TRANSIT_DAYS_RATIO Total days with transactions divided by time span 
USES Total uses 

Table 133: Data Variables 

Scaling 

To avoid issues of scale, where features using larger variable values might be assigned 

disproportionate impact, variables were preprocessed using the sklearn StandardScaler.  Features 

were standardized by subtracting the mean and dividing by the standard deviation.  The standard 

score of a sample x is calculated as:      

z = (x - u) / s 
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Where u equals the mean of the training samples and s is the standard deviation of the training 

samples (sklearn ref). 

 
Imbalanced Data 

 The dataset beginning totals and ratios are shown in table 14.  The average ratio of non-

fraudulent to fraudulent records across all time spans was approximately 415 to 1.  The dataset 

was split into training (80%) and testing (20%) portions, and the imbalance was addressed utilizing 

SMOTE. 

 
Records Fraud Fraud % Ratio 

Daily       108,078  244 0.23%  443:1  

Weekly       274,475  566 0.21%  485:1  

Bi-weekly       373,571  983 0.26%  380:1  

Monthly       653,843  1,865 0.29%  351:1  

Table 144: Fraud Ratio 
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Figure 144: SMOTE Balanced Data 

2.5 Results 

 The models were first trained and tested using the original unbalanced data.  Each model 

was tested for accuracy and ROC AUC scores using each of the testing time frames (i.e., daily, 

weekly, biweekly, & monthly).  These two criteria were selected to help demonstrate the 

misleading impact of unbalanced data on the models.  The traditional accuracy calculation is 

calculated by summing the True Positives and True Negatives and dividing by the total number of 

predictions. The ROC AUC score plots the True Positive Rate against the False Positive Rate.  The 

benefits of ROC AUC have been thoroughly explored (Huang & Ling, 2005).  For this paper, the 

primary applicable advantage of ROC AUC is that it considers both true and false predictions to 

provide a more meaningful model score.  
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Unbalanced Data Accuracy Scores 

 
LR KNN NB RF 

Daily 0.9978 0.9978 0.8735 0.9980 

Weekly 0.9977 0.9979 0.9225 0.9979 

Biweekly 0.9975 0.9978 0.9278 0.9976 

Monthly 0.9970 0.9976 0.9463 0.9977 

Average Score: 0.9975 0.9978 0.9175 0.9978 

Table 155: Imbalanced Accuracy Scores 

 
Unbalanced Data ROC AUC Scores 

 
LR KNN NB RF 

Daily 0.5000 0.5000 0.6980 0.5434 

Weekly 0.5000 0.5420 0.6509 0.5587 

Biweekly 0.5027 0.6110 0.7116 0.5970 

Monthly 0.5000 0.6580 0.6455 0.6899 

Average Score: 0.5007 0.5778 0.6765 0.5973 

Table 166: Imbalanced ROC AUC Scores 

 In the second phase, each model was retested using the SMOTE based balanced data.  

Again, each model was tested for accuracy and ROC AUC for each of the timeframes. 

 
Balanced Data Accuracy Scores 

 
LR KNN NB RF 

Daily 0.8039 0.9133 0.8317 0.9209 

Weekly 0.8379 0.9577 0.8748 0.9602 

Biweekly 0.8690 0.9517 0.8896 0.9628 

Monthly 0.8962 0.9641 0.9071 0.9719 

Average Score: 0.8518 0.9467 0.8758 0.9540 

Table 177: Balanced Accuracy Scores 
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Balanced Data ROC AUC Scores 

 
LR KNN NB RF 

Daily 0.7716 0.7722 0.7855 0.7543 

Weekly 0.7594 0.7818 0.7528 0.7494 

Biweekly 0.8650 0.8705 0.8366 0.8262 

Monthly 0.8458 0.8680 0.7877 0.8226 

Average Score: 0.8105 0.8231 0.7907 0.7881 

Table 188: Balanced ROC AUC Scores 

2.6 Discussion 

In this section the impact of balancing the data, feature importance ranking, impact of the 

various timeframes, model interpretation via partial dependence plots (PDP), and managerial 

implications will be examined.   

Balancing impact 

Testing with unbalanced data resulted in the expected model bias toward the majority class.  

Logistic regression and KNN were most severely impacted by unbalanced datasets.  Logistic 

regression initial testing resulted in an average 99.75% majority class prediction rate across all 

timeframes.  While all of the tested models showed a marked decrease in accuracy rates calculated 

on unbalanced data, they also saw substantial improvement in their ROC AUC scores. Naïve Bayes 

appeared least impacted by the unbalanced data.  While Naïve Bayes scores for accuracy and ROC 

AUC weren’t the highest of the models, they did show the least amount of change when SMOTE 

was utilized to balance the datasets.   

High impact variables 
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Feature importance testing based on coefficient values revealed that 

UT_EXIT_TAG_OFF, EXITS_PER_DAY, UT_ENTRY_TAG_ON, ENTRIES_PER_DAY, & 

OP_MARTA_BUS scored highest respectively.  Interestingly, the identified variables are all based 

on use counts of various kinds.  None of the fare category, fare type, device based, or ratios based 

on these features scored high in terms of feature importance.   

 

Figure 15: Feature Importance 

Timeframes 

Monthly and Biweekly timeframes were found to be consistently superior across all models 

in terms of ROC AUC scores.  This was also true for accuracy scores with the one exception of 

KNN where the weekly score (.09577) was marginally higher than the biweekly score (0.9517).  

Accuracy was consistently highest for all models using the monthly timeframe.  Conversely, the 

ROC AUC scores were highest for the biweekly testing period. 

Managerial Implications  

 To gauge the impact of these findings from a management perspective, subject matter 

experts from the participating transit authority were asked to give an assessment of the findings.  

With the exception of logistic regression, they were uniformly unfamiliar with the machine 
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learning models being used.  They agreed that transactional variables, especially those associated 

with use type, should be the focus of future analysis based on the feature importance findings.  

There was debate about how the model scores should be used to determine an optimum timeframe.  

The two predominant opinions were largely based on focusing either on saving money or 

minimizing impact on customers.  The first view suggested using shorter time frames, despite their 

lower model scores, to deactivate suspicious fare media earlier and mitigate the fraud based 

financial losses.  The second view was that the highest scoring combination of model and 

timeframe should be used, despite allowing longer periods of potentially fraudulent activity, to 

minimize the likelihood of false positives that would negatively impact the customer experience.  

The discussion was essentially reduced to a decision on which party should bear the burden.  The 

transit authority continues to lose money by Hotlisting media later based on the monthly model, 

while the customer is potentially impacted by a greater number of false positives by Hotlisting 

media based on the biweekly timeframe. 

2.7 Limitations and Future Research 

This research is subject to several challenges and constraints.  Limitations include the study 

being conducted with data from a single transit authority, samples limited to identifiable instances 

of fraud, initial data considered only 20 features, and a wide range of classification techniques still 

to be explored.   

Future research should explore the minimum required transaction history to increase the 

practical application of the research.  From a loss prevention perspective, emphasis on early 

detection and Hotlisting is key.  Once the card has been fraudulently used to enter the system there 

is no mechanism for the transit authority to recoup the lost fare value.  Regarding Hotlisting, a 
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certain amount of data noise is inherent because the technique is not strictly used for fraud.  There 

are some instances where Hotlisting is related to card defects, media reported as lost, etc.  By 

applying a fraud specific marker to deactivated media most of this could be eliminated.   

 It would also be beneficial to explore specific types of fraud associated with each instance 

of labeled fraud.  Different types of media fraud (e.g., media purchased with a stolen credit card, 

counterfeit media, media tampering etc.) are likely suited to a variety of models vs. an attempt to 

create a one-size-fits-all approach to detection.  Better data labeling would assist transit 

professionals to see where security gaps may exist and researchers to determine optimal 

approaches to those fraud categories. 

2.8 Conclusion 
 

There are several research implications of this study.  One outcome of this work is that it is 

possibly the first of its kind.  As discussed earlier, it is difficult to gain access to fraud records for 

research purposes.  This research benefited by being able to directly access system transactions to 

include labeled fraud data.  Secondly, this work explores a new application of the general 

deterrence theory as it applies to transit fraud.  Lastly, it supports the growing body of research 

around the use of machine learning techniques as fraud classifiers.  The fast, flexible, and updatable 

nature of machine learning models makes them especially adept at accurately classifying the type 

of fraud seen in public transit. 

The primary practice implication of this work relates to the scale of financial losses being 

considered.  The transit authority used in this study comprises approximately 1% of the ridership 

of the top 20 North American transit authorities.  Recalling that fraud related chargebacks are 

accumulating at approximately $200k per year, the extrapolated total for the top 20 could be 
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approaching $20M per year. While this figure is a crude approximation, it does help to demonstrate 

the potential scale of the issue.  To further illustrate this point, consider how $200k per year at one 

agency scales when considering that there are over 920 transit authorities of various sizes just in 

the U.S. 

It has been demonstrated that machine learning in the form of logistic regression, KNN, Naïve 

Bayes, and random forests can be effective classification techniques for transit fraud transactions.  

All of the selected models performed well, with an approximate 91% accuracy rate and an ROC 

AUC score of 0.80.  The challenge of unbalanced data was effectively overcome by the application 

of SMOTE to balance the datasets. 

It is evident that machine learning can classify transit-based fraud with a high degree of 

efficacy.  Based on supporting sociology/criminology theories (e.g., the fraud triangle theory and 

the general deterrence theory) which emphasize the correlation between positive detection rates 

and negative crime rates, machine learning based detection systems should be considered a 

mitigating response to transit fraud. 

 

  



 

 84

2.9 References 
 
American Institute of Certified Public Accountants. Auditing Standards Board. (2002). 

Consideration of Fraud in a Financial Statement Audit:(supersedes Statement on Auditing 
Standards No. 82, AICPA, Professional Standards, Vol. 1, AU Sec. 316; and Amends SAS No. 
1, Codification of Auditing Standards and Procedures, AICPA, Professional Standards, Vol. 1, 
AU Sec. 230," Due Professional Care in the Performance of Work," and SAS No. 85, 
Management Representations, AICPA, Professional Standard, Vol. 1, AU Sec 333). American 
Institute of Certified Public Accountants. 

 
Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud detection. Credit 
Scoring and Credit Control VII, 235-255. 
 
Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical science, 235-

249. 
 
Bonfanti, G., & Wagenknecht, T. (2010). Human factors reduce aggression and fare evasion. 

Public Transport International, 59(1). 
 
Brause, R., Langsdorf, T., & Hepp, M. (1999). Neural data mining for credit card fraud detection. 

In Tools with Artificial Intelligence, 1999. Proceedings. 11th IEEE International Conference 
on (pp. 103-106). IEEE. 

 
Bureau of Transportation Statistics. (2015). Federal and State Funding of Public Transit, 2015. 

Retrieved January 8, 2020, from https://www.bts.gov/content/federal-and-state-funding-public-
transit-2015 

 
Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced 

data sets. ACM SIGKDD explorations newsletter, 6(1), 1-6.  
 

Delbosc, A., & Currie, G. (2019). Why do people fare evade? A global shift in fare evasion 
research. Transport Reviews, 39(3), 376-391.  
 

ERRAC & UITP. (2014, June 6). Metro, light rail and tram systems in Europe. Retrieved from 
http://www.uitp.org/metro-light-rail-and-tram-systems-europe 
 

Federal Trade Commission. (2020, April 15). Consumer Sentinel Infographic. Retrieved April 20, 
2020, from https://public.tableau.com/profile/federal.trade.commission#!/vizhome/ 
ConsumerSentinel/Infographic 

 
Fix, E., Hodges, J.L. Discriminatory analysis, nonparametric discrimination: Consistency 

properties. Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas, 
1951. 

 
Gantman, S., & Zinoviev, D. (2017). Conceptual Structure of Fraud Research and Its Dynamics. 
 



 

 85

Garner, B. A. (2004). Black's law dictionary. 
 
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge 

and data engineering, 21(9), 1263-1284.  
 
Hill, G. N. (2005). The people's law dictionary.  

 
Hobbes, T. Early Classical Philosophers of Deterrence Theory. Criminology, 41(1), 99-130. 
 
Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE 

Transactions on knowledge and Data Engineering, 17(3), 299-310. 
 
Hughes-Cromwick, M., & Dickens, M. (2018). APTA 2017 Public Transportation Fact Book. 
 
Jensen, D. (1997, July). Prospective assessment of ai technologies for fraud detection: A case 

study. In AAAI Workshop on AI Approaches to Fraud Detection and Risk Management (pp. 
34-38). 

 
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. 

Science, 349(6245), 255-260. 
 
Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic regression. New 

York: Springer-Verlag.  
 
Kou, Y., Lu, C. T., Sirwongwattana, S., & Huang, Y. P. (2004, March). Survey of fraud detection 

techniques. In IEEE International Conference on Networking, Sensing and Control, 2004 (Vol. 
2, pp. 749-754). IEEE.  
 

Lee, J. (2011). Uncovering San Francisco, California, Muni's proof-of-payment patterns to help 
reduce fare evasion. Transportation research record, 2216(1), 75-84. 

 
NTD. (2019, October 17). 2018 National Transit Summaries and Trends (NTST). Retrieved 

August 15, 2020, from https://www.transit.dot.gov/node/134401 
 
Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-based 

fraud detection research. arXiv preprint arXiv:1009.6119. 
 
Privacy Rights Clearinghouse. (2019). Retrieved August 1, 2020, from 

https://privacyrights.org/data-breaches. 
 
PwC. (2020). Fighting fraud: A never-ending battle. Retrieved April 20, 2020, from 
https://www.pwc.com/gx/en/forensics/gecs-2020/pdf/global-economic-crime-and-fraud-survey-
2020.pdf 
 



 

 86

Reddy, A. V., Kuhls, J., & Lu, A. (2011). Measuring and controlling subway fare evasion: 
improving safety and security at New York City transit authority. Transportation Research 
Record, 2216(1), 85-99. 

 
Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop 

on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46). 
 
Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on 

data mining techniques. arXiv preprint arXiv:1309.3944. 
 
Sun, Y., Wong, A. K., & Kamel, M. S. (2009). Classification of imbalanced data: A review. 
International journal of pattern recognition and artificial intelligence, 23(04), 687-719. 
 
Troncoso, R., & de Grange, L. (2017). Fare evasion in public transport: A time series approach. 

Transportation Research Part A: Policy and Practice, 100, 311-318. 
 
UITP. (2017, October 31). Urban Public Transport in the 21st Century. Retrieved from        

https://www.uitp.org/urban-public-transport-21st-century 
 
UITP. (2018, October 23). World Metro Figures 2018. Retrieved from 

https://www.uitp.org/world-metro-figures-2018 
 
Van Vlasselaer, V., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens, B. (2016). Gotcha! 

Network-based fraud detection for social security fraud. Management Science. 
 
WABC-TV. (2019, June 17). MTA getting 500 additional officers to fight fare evasion, worker 

assaults. ABC7 New York. https://abc7ny.com/traffic-transit-mta-subway-riders/5349988/. 
 
West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. 

Computers & security, 57, 47-66. 
  



 

 87

Paper 3: Employing Deep Learning to Detect Transit Fraud 

 

3.1 Introduction 

Abstract – The scale of both public transit and transit related financial losses are enormous.  
Billions of passenger trips are provided annually by public transit systems that are heavily 
dependent on revenue collections via passenger revenues.  Transit media fraud costs authorities 
millions of dollars per year and has thus far been largely unexplored in academic research.  This 
research describes the difficulties associated with transit research fraud and then addresses them 
via a demonstration of data techniques (SMOTE & ADASYN) and machine learning methods 
(deep learning).  A series of 10 deep learning model variations, pretreated with SMOTE, are tested 
with the highest performing model achieving approximately 93% accuracy.  These results 
represent compelling findings for both transit fraud researchers and public transit authorities. 
 
Keywords – Public transit, deep learning, neural networks 
 
Public Transit 

The American Public Transportation Association defines public transportation (also 

referred to as transit, public transit, or mass transit) – as “transportation by a conveyance that 

provides regular and continuing general or special transportation to the public” (APTA, 2020).  In 

2019 there were approximately 6,800 public transportation organizations operating in the U.S.  

Located in every state, and in both urban and rural areas, they provided 9.97 billion passenger 

trips.  These trips were conducted via a variety of modes including bus systems, paratransit service 

(for passengers with disabilities), bus-rapid transit, light rail, commuter rail, heavy rail, and water-

based systems (APTA, 2021).  Figure 16 is a map produced by the Bureau of Transportation 

Statistics that shows transit agency headquarters (for participating agencies) in the U.S.  This visual 

helps demonstrate the volume and geographical dispersion of domestic transit systems.   

Scale /Growth 
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Globally, approximately 168 million people utilize mass transit each day.  Metropolitan 

transit systems currently operate in 56 countries and 178 cities with systems being added and/or 

expanded each year (UITP, 2018).   Ridership numbers are predicted to continue to grow for the 

foreseeable future. 

 

 

Figure 16: Transit Agency Headquarters 

 (Bureau of Transportation Statistics, 2021) 

Unique features of transit business model  

Transit authorities operate on a unique business model.  They enjoy a geographically 

captive market to whom they can largely dictate both the price of service and the choice of payment 

methods.  This allows them to control payment technology adoption rates (Quibria, 2008).  Transit 
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authorities use an array of fare media including paper tickets, tokens, magnetic stripe cards, and 

smart cards. One of the most significant ways they influence customer behavior is by controlling 

electronic fare media.  Electronic fare media is “any portable media that contains the ability to 

store and retrieve data in a non-volatile manner by a method of electronically reading, writing, or 

both”. (Trends in Electronic Fare Media Technology, 2004).   

The smart card utilizing radio frequency identification (RFID) has emerged as the fare 

media of choice for modern transit authorities.  APTA reports that smart card adoption rates rose 

from 12% in 2009 to 47% in 2020 (APTA, 2021).  RFID can generally be defined as any method 

of identifying unique items using radio waves. Typically, a reader (also called an interrogator) 

communicates with a transponder, which holds digital information in a microchip (RFID Journal, 

2017).  In the case of transit, the chip is embedded into a smart card.  Smart cards are typically 

RFI enabled, credit card shaped, plastic cards with an imbedded computer chip.  The chip 

maintains data regarding trips or stored value which are adjusted during transit use by interacting 

with card reader/writers at gates and on buses.  Additional trips or value can be added using transit 

media vending machines or web applications. 

Smart card systems offer several advantages over traditional fare media, including 

simplified customer transactions, cash replacement options, lower operating costs, enhanced 

revenue management capabilities, and remote access to fare media (Smart Card Alliance, 2003).  

Smart card implementation has been linked to reduced maintenance costs while simultaneously 

enhancing data collection and reporting capabilities.  Smart cards offer transit authorities the 

ability to store and analyze customer transaction data.  This allows for a better understanding of 

both system complexities and user travel behaviors (Gokasar et al. 2015).   
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Smart cards also offer a means for transit authorities to remotely edit the stored value, add 

or remove products, or completely disable an individual card.  The process of disabling a card is 

called “Hotlisting” and is utilized when a card is reported lost, stolen, or is associated with 

suspicious/fraudulent transactions.  Hotlisting is a common control mechanism used throughout 

the banking and financial services industries.  When the system encounters a ticket/card that has 

been Hotlisted, the fare media is automatically deactivated, and the card holder is forced to 

purchase a new ticket/card or contact customer service to continue utilizing the transit system. 

Transit fraud 

Like most industries, public transit is impacted by fraud.  As it relates to transit, fraud can 

be considered an umbrella term that includes the extremely simple (e.g., token slugs and turnstile 

hopping) to the much more complex (e.g., counterfeit media or credit card fraud).  One description 

of fraud that highlights the complexities of preventing and identifying fraud, is "Fraud is an 

uncommon, well-considered, time-evolving, carefully organized and imperceptibly concealed 

crime which appears in many different types and forms." (Van Vlasselaer et al. 2016).  As the 

transit customer base increases and familiarity grows with both systems controls and the various 

forms of transit media, the frequency and complexity of fraud continues to grow. 

Characteristics 

There are two primary forms of fraud in public transit, fare evasion and fare media fraud.  

Fare evasion is primarily physical in nature and is focused on avoiding detection while not paying 

the fare.  It includes climbing over turnstiles, forcing open gates, gate surfing (entering illegally 

behind a paying customer), and sneaking onto unattended buses.  This type of fraud is prevalent 

because it requires no equipment, little skill, and no specialized system information.  Alternatively, 

fare media fraud attempts to fool the system into accepting a transaction based on counterfeit, 
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stolen, illegally purchased, or illegally altered fare media.  While fare media fraud is less frequent 

it includes the use of a wide range of equipment, skills, and system security information.   

 

 

Characteristics Fare Evasion Fare Media Fraud 

Difficulty 
Easily executed, low skill 
activity 

Varies, high-end fraud requires 
significant technical skill 

Frequency 
High, present in most 
transit systems 

Low, but with strong indications of 
growth 

Fiscal Impact 
Individual instances are 
negligible, cumulative 
impact is substantial 

Individual instances vary widely 
from hundreds to millions of 
dollars each 

Table 19: Transit Fraud Characteristics 

The complexity of counterfeiting fare media is primarily dictated by the individual transit 

system.  Systems utilizing low-tech paper tickets can be circumvented using paper copies of 

authentic tickets (primarily in systems that rely on transit employees to visually inspect a 

customer’s ticket).   In more modern systems, fare media counterfeits may be produced using 

stolen data or illegally produced tickets/cards.   

 
Scale 

Because of a general lack of access to transit operational data, and specifically data related 

to fraud, little academic research has been conducted in this area.  By default, news media becomes 

the best source for examples of transit fraud scale.  The Toronto Transit Commission estimated in 

2008 that it was losing as much as $400,000 per month to counterfeit ticketing operations (CTV 

News, 2008). In the U.S., a 2011 counterfeit ticket scheme conducted by a transit industry 

contractor was uncovered with an estimated $5M loss to the MBTA (Massachusetts Bay 

Transportation Authority) (Moskowitz, 2011).  New Jersey transit police made over 200 arrests in 
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2010-2011 related to counterfeit ticketing (Medina, 2012).  In 2012, Italian authorities seized 2 

million counterfeit train tickets worth $35M (Natanson, 2012).  In a reported 10-year review by a 

public advocate in New York, 3,300 arrests were made for “swiping”.  “Swiping” is the illegal act 

of selling individual train station entries from a monthly card.  The perpetrator buys a monthly 

unlimited card and sells entries for $2 each.  Interviewed participants claimed that they made 

hundreds of dollars per day and a New York Transit Police spokesman claimed that stolen swipes 

are part of the millions of dollars lost to illegal “fare-beating” crimes (Stewart, 2018).  In 2017, 

the Transit for London (Tfl) reported that each year fare evasion (includes fraudulent tickets) costs 

Londoners approximately £70million per year (roughly $96.4 million) (Hall, 2019).  Additional 

examples exist in news archives, but these samples illustrate the scale of transit media fraud. 

Transit fraud challenges 

Effectively researching transit fraud requires solutions for several complexities.  Three 

issues of particular concern are the availability/complexity of the data, the imbalanced nature of 

the data, and the evolution rate of fraud.  Operational data is rarely distributed in the transit 

community.  In modern transit authorities, customer and transaction data is recorded in minute 

detail.  The result is a mix of static and time-stamped data with a range of several dozen to hundreds 

of data fields and variables.  Data that includes Hotlisted media suspended for suspected fraud is 

even less accessible.  Understandably, companies prefer not to share details of how their system 

controls failed to stop or detect fraud.  There is also a common concern that any attention given to 

information involving fraud will expose system weaknesses and/or encourage more fraudulent 

activity.  The complexity of the dataset requires complex models to attempt to classify unlabeled 

transactions as either fraudulent or legitimate.  Related to the complexity issue, but significant 

enough to warrant a separate discussion, is the fact that fraud data is inherently imbalanced.   
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Imbalanced data is simply data that contains highly skewed data.  In the context of transit 

fraud, the vast majority of transactions are entirely legitimate.  Only a fraction of the overall 

transaction population will ultimately be associated with fraud.  This heavy skewing of the data 

causes issues when researchers attempt to build classification models to help categorize 

transactions as fraud or not fraud.  To overcome the issue of imbalanced data, methods of 

oversampling minority classes, undersampling majority classes, and creating synthetic samples 

have been developed. 

A third obstacle when dealing with fraud is the elusive and evolving nature of fraud.  By 

design, fraud is an intentional attempt to deceive the victim.  As victims discover the fraud and 

begin adapting and establishing new controls, offenders continue to strengthen existing techniques 

and develop new methods to commit fraud.  Any detection or deterrent method developed by 

victims must account for shifting methodologies of attack and increasingly sophisticated attempts 

to commit fraud.  An example of evolving fraud is the slug.    

 

 

Figure 17: Subway Slugs from 1953 Until 2003 at the New York Transit Museum 
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Many public transit systems use or have used tokens to represent converted monetary value 

into transit value.  Simply put, each token purchased can be redeemed for a trip.  A slug is a 

counterfeit coin (or token in this example).  Slugs attempt to approximate the shape, size, and 

weight of the actual coin or token using low-cost material.  The photo in Figure 17 shows an array 

of slugs collected by the New York Transit Authority.  As the authority shifted designs to defeat 

known slugs, fare evaders simply updated their slugs to continue bypassing the need to pay for 

tokens.  The variety of materials as well as alterations to change the weight and shape demonstrate 

the resourcefulness and tenaciousness of committed fare evaders.    

Psychology of Fraud 

 When exploring fraud and fraud detection related material, it is common to reference 

psychology, sociology, or criminology theories to help explain the underlying motivations and/or 

causes of offender behavior.  Many criminology theories approach the issue of crime from an 

offender perspective.  They focus on social factors (e.g., biological tendencies, social learning, 

labeling theories etc.) to explain why an offender commits crime.  An alternative approach 

emphasizes the concept of opportunity.  These theories, collectively labeled rational choice 

theories, emphasize the intersection of capability and opportunity to explain crime.   

 An example of the latter approach is routine activity theory. Routine activity theory adopts 

the perspective of crimes as individual events that rely on the convergence of a motivated offender, 

a suitable target, and the absence of a capable guardian (Felson & Cohen, 1980).  A motivated 

offender is a person or group with both the willingness and the capability to commit an illegal act.  

When the offender encounters a situation (constant or temporary) wherein an attractive opportunity 

is presented, a rational determination will determine if a crime is attempted.  If the offender 

determines that there is a weak or non-existent crime deterrent, there is some degree of likelihood 
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that a crime will be committed.   If the offender lacks the capability to commit the offense without 

being detected or punished, there is a smaller chance that the offense will occur. 

 
Figure 18: Routine Activity Theory 

 

While there is very little that a transit authority can do to mitigate an offender’s willingness 

to commit a crime, they can institute system controls to make it more difficult to avoid fraud 

detection and/or punishment.  Based on the three-pillar premise of the routine activity theory, by 

demonstrating a more robust detection system the occurrence of crime (i.e., fraud) will decrease. 

There is evidence that higher detection and enforcement rates do have an inverse relationship with 

crime rates for theft and fraud (Bandyopadhyay, 2011), (Harbaugh, Mocan, & Visser, 2013).    

Research 

With the advent of intelligent transit systems, public transit authorities generate, record, 

and analyze massive amounts of customer transaction data.  Facing growing concerns around fraud 

and counterfeit ticketing, public transportation companies have realized that conventional purchase 

security standards (e.g., spending limits and velocity checking) are insufficient to adequately 

Motivated 
offender 

Absence of a 
capable 
guardian 

Suitable 
target 
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address the level of associated risk.  Transit systems offer a semi-controlled environment where 

research variables can be more readily tracked and controlled, and findings can be tested.  

 This study seeks to extend the fraud detection literature by focusing on transit related fraud 

classification.  Recalling the scope of public transit and the scale of transit fraud, practical 

application of these findings to real-world settings could have significant financial and operational 

impacts.  By overcoming the challenges presented earlier (e.g., availability of data, imbalanced 

datasets, and complex/evolving methods of fraud), and while considering fraud motivations and 

business concerns, this research will demonstrate a replicable and practical research methodology.  

Research question:   

RQ:  Can a deep learning approach to transit fraud detection accurately categorize 
transactions? 
 

Layout  

 The following sections of this paper will highlight relevant research and explain the choice 

of research model and classification method.  A review of the data will follow, as well as the results 

of the modeling exercise.  A detailed discussion of the findings and the practical implications of 

the work will be delivered.  Next, a list of limitations and potential future studies will be examined.  

Finally, conclusions of the research will be presented along with references and an appendix. 
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3.2 Literature Review 
Fraud 

Fraud is an umbrella term that can be difficult to adequately define.  In Weiss v. United 

States in 1941, court proceedings note that “the law does not define fraud; it needs no definition; 

it is as old as falsehood and as versable as human ingenuity” (Weiss v. United States, 1941). This 

reinforces the view that fraud is complex and evolving.  Fraud is often opportunistic.  As goods, 

services, or systems change and adapt to new demands, restraints, and technologies, associated 

methods of fraud often develop in parallel.  Viewing fraud from a historical perspective helps to 

highlight the speed of adaptation.  Ancient examples include false weights for measuring 

agricultural goods and insurance fraud.  Modern instances include 15th century forged art, 17th 

century coin counterfeiting, 18th century share price manipulation, and 19th century patent 

medicines and real estate fraud.  In the 20th and 21st centuries an explosion of fraud variations is 

well documented, including con artists, phone scams, data breaches, Ponzi schemes, credit card 

fraud, cryptocurrency fraud, falsified accounting, healthcare fraud, bank and wire fraud, identity 

theft, invoice fraud, and disaster fraud (Trulioo, 2020). 

A comprehensive review of fraud detection research conducted in 2010 listed the general 

types of fraud reviewed in over 50 published papers.  The categories of fraud were loosely grouped 

into management, employee, home insurance, crop insurance, automobile insurance, medical 

insurance, credit application, credit transactional, telecom subscription, and telecom superimposed 

(Phua, Lee, Smith, & Gayler, 2010).   It is particularly noteworthy that the current body of fraud 

research is largely devoid of transit fraud studies.   

In terms of fraud, transit media fraud can be most directly associated with credit card fraud.  

Credit card fraud is the illegal use of credit card information either physically or virtually 
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(Zarepoor et al. 2012).  Credit card fraud costs to all U.S. retailers was approximately $23 billion 

and $32 billion for 2013 and 2014 respectively (Insider, 2015).  Credit card fraud is committed in 

transit by using stolen credit cards to purchase fare media online or at point-of-sale devices.  When 

victims discover the charges, they typically contact the card issuer (Visa, MasterCard, Discover, 

etc.) and initiate a chargeback. A chargeback is a reversal of transferred funds back to the customer 

without the return of the merchandise to the merchant.  This is typically accompanied by a 

chargeback fee to the merchant who can contest the process (Zilenovski, 2017).  Once a 

chargeback has been initiated against a transit related charge there is little recourse for the transit 

authority.  When dealing with credit/debit transactions, the semi-anonymous, intangible, and 

consumable nature of public transit service requires that providers collect payments and provide 

service based on the assumption that payment is legitimate.   

The Metropolitan Atlanta Rapid Transit Authority (MARTA) lost an estimated $1 million 

during the period of 2014-2018 due to credit card chargebacks, which are primarily due to 

instances of stolen credit cards used to buy fare media for unauthorized resale. 

Transit Fraud 

Public transit systems lose millions of dollars per year to fraud.   Of the limited number of 

available transit fraud studies, most focus on fare evasion because of both the scale of the issue 

and the ease of collecting relevant data.  A 2009 study conducted at the San Francisco Municipal 

Transit Authority reported an estimated fraud loss of approximately $19 million annually (Lee, 

2011).  A similar 6-year study conducted at a Melbourne Australia transit authority reported an 

average annual loss of over $24 million (converted from Australian dollars at today's rates) 

between 2005-2011 (Currie & Delbosc, 2016).   
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Narrowing the focus to fare media fraud significantly reduces the already small pool of 

transit fraud studies and relies more heavily on news sources rather than academic studies.  

Examples of transit fare media fraud show the diversity of both techniques and the size/maturity 

of the impacted transit authorities.  For instance, a study in San Fracisco based on passenger 

surveys estimated that approximately 10% of passengers could not provide valid proof-of-

payment.  Of those passengers approximately 36% were using media that was expired, invalid, 

were a misuse of age/disability-based passes, or were counterfeit media (Lee, 2010).   In a case of 

ticket counterfeiting, New Jersey Transit police arrested more than 200 transit card counterfeiters 

between 2000 and 2002.  Officials used an ultraviolet scanner to detect fraudulent tickets and 

voiced concerns that ticket fraud was a growing issue (Mass Transit, 2012).  While fraud might be 

expected in larger transit systems it can also be found in smaller operations.  The Tri Delta Transit 

authority is a very modest operation of approximately 100 buses and vans in the Bay Area of 

California.  Tri Delta approved a $1.1 million upgrade of ticketing systems to offset the $500,000 

they estimate they lost to ticket fraud in the preceding 5 years.  A year over year comparison 

showed that fare box revenues rose by approximately $200,000 in the first 8 months (Bay Area 

News Group, 2016).  Evidence that transit operations are the target of fraud regardless of size or 

location highlights the need for effective fraud countermeasures. 

 
Classification 

One well documented method for detecting fraud is binary classification modeling.  Binary 

classification assigns datapoints to one of two classes.  In the case of transit fraud, datapoints are 

evaluated and classified as either “fraud” or “not fraud”.  Subsequent datapoints are then compared 

to the members of these groups to evaluate similarity and a determination is made regarding to 

which group the datapoint most likely belongs.  There are several methods available for binary 
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classification.  They include support vector machines, Naïve Bayes, nearest neighbor, decision 

trees, logistic regression, and artificial neural networks.     

Artificial neural networks (ANN) are particularly interesting based on their capacity to 

extract meaning from complex and oftentimes incomplete data.  Advantages of ANNs include a 

high level of adaptive learning, the ability to self-organize, appropriateness for real-time 

operations, and their potential for high fault tolerance (Maind & Wankar, 2014).  ANNs have been 

used extensively in fraud detection.  Examples showcasing the variety of applications for ANNs  

include credit card fraud (Aleskerov, Freisleben & Rao, 1997), management fraud (Fanning & 

Cogger, 1998), financial reporting fraud (Lin, Hwang, & Becker, 2003), online transaction fraud 

(Zhang, Zhou, Zhang, Wang & Wang, 2018), and insurance fraud (Yan, Li, Liu & Qi, 2020).  

 Deep learning is a more complex extension of the traditional artificial neural network.  By 

expanding the ANN from a single input, output, and hidden layer to multiple layers, deep learning  

reaches higher levels of functionality and flexibility.  Nested hierarchies of concepts and 

representations are “defined in relation to simpler concepts, and more abstract representations 

computed in terms of less abstract ones” (Goodfellow, Bengio, & Courville, 2016).   Examples of 

deep learning applied to fraud research include money laundering (Paula, Ladeira, Carvalho & 

Marzagao, 2016), credit card fraud (Roy, Sun, Mahoney, Alonzi, Adams, & Beling, 2018), 

insurance fraud (Wang & Xu, 2018), electricity fraud (Hu, Guo, Shen, Sun, Wu, & Xi, 2019), and 

financial statement fraud (Craja, Kim & Lessmann, 2020).   

Imbalanced Data 

Deep learning has also been proven to be effective in imbalanced dataset situations.  A 

review of 15 studies published between 2015 and 2018 explored the issue of imbalanced data and 

demonstrated a variety of effective techniques available to deep learning neural networks (Johnson 
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& Khoshgoftaar, 2019).  Common approaches to dealing with unbalanced data include over-

sampling, under-sampling, and synthetic over-sampling.  Over-sampling uses duplicate samples 

from the minority class to balance the training dataset, under-sampling randomly drops samples 

from the majority group, and synthetic sampling is the creation of new datapoints (typically 

between two existing minority points).   

Synthetic Minority Over-Sampling Technique (SMOTE) is a well-documented technique 

that creates synthetic instances in the minority class at a random distance between two existing 

minority instances.  This is done via a k-nearest neighbor approach for selecting the beginning 

minority points (Chawla et al., 2002).  Examples of SMOTE used in fraud detection include social 

security fraud (Van Vlasselaer et al., 2013), chargeback fraud (Seo & Choi, 2016), credit card 

fraud (Sisodia et al., 2017), and auction fraud (Anowar & Sadaoui, 2020). 

Another popular and well-documented technique for dealing with imbalanced data is the 

adaptive synthetic sampling (ADASYN) approach.  Influenced in part by the success of SMOTE, 

ADASYN is also an over-sampling technique.  A primary component of ADASYN is the use of a 

density distribution to determine the quantity of synthetic samples based on their level of learning 

difficulty.  This approach helps reduce the bias in imbalanced data sets by creating more synthetic 

points for difficult examples (He et al., 2008).  Examples of ADASYN used in fraud research 

include insurance fraud (Subudhi & Panigrahi, 2018), medicare fraud (Bauder et al., 2018), credit 

card fraud (Ba, 2019), and telecom fraud (Lu et al., 2020). 

In this study, the identified challenges of data access, imbalanced datasets, and 

complex/evolving fraud methods will be addressed via a replicable and practical process.  

Transactional data from a major U.S. transit authority will be sampled directly from the source.  

The data imbalance issue will be overcome by use of SMOTE and ADASYN to determine which 
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approach offers the best results. And finally, a deep learning model will be used to overcome data 

complexity concerns and to create a model capable of adapting to new fraud threats.   

3.3 Methodology/Model 
 
Research model 

 To assist with the continuity of future studies and industry applications, a broad transit 

fraud framework is pictured below.  A targeted research methodology is also included to 

demonstrate how the specific research plan fits into the landscape of the transit fraud framework. 

              

 

Figure 19: Transit Fraud Framework 
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The transit fraud framework is a generalized approach for transit fraud studies.  Based on 

sample data consisting of both fraudulent and legitimate transit data, a research perspective is 

selected.  Perspectives include governmental/external, transactions, system controls, customer, 

authority, and media-based approaches.  The data, along with any perspective-based variables, are 

selected and analyzed.  Analysis methods vary based on the type of study and data selected (e.g., 

time-studies, surveys, supervised learning, unsupervised learning etc.).  The findings are then 

presented to transit professionals/experts to check for appropriateness and relevance.  The transit 

authority is then in a position to determine appropriate business steps to address the findings (e.g., 

increase employee presence, modify fare media, deactivate media involved in suspected fraud, 

etc.).  

 The research methodology is a subset of the framework and includes the data, perspective, 

and analytical approaches that will be used.   

 

 
Figure 20: Research Methodology 
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3.4 Data 

The Metropolitan Atlanta Rapid Transit Authority (MARTA) is a top 10 U.S. transit 

agency operating in Atlanta, GA.  MARTA operates a system that includes 338 rail cars and 38 

rail stations located on 5 major rail lines centered roughly in downtown Atlanta.  It also operates 

723 buses and vans to service approximately 100 fixed routes (MARTA at a Glance, 2021).  First 

quarter ridership totals for FY21 had an average forecasted total of 8.8 million combined bus and 

rail boardings per month (MARTA, 2021).  The data for this study comes directly from the 

transaction records of MARTA. 

The data consists of a 14-day window of fare media transaction data.  It includes a labeled 

field for Hotlisted media as well as 20 additional fields with potential value for determining fraud 

classification.  Each record is a specific piece of fare media and the system interactions associated 

with it over the 14-day period.  The data fields are a mix of counts, calculated differences between 

2 fields, or 14-day averages.  The data includes 373,571 unique fare cards/tickets and their 

associated 5.4 million uses during the sample period.  The 2-week sample size was selected as a 

compromise between gathering sufficient data to accurately classify transactions and mitigating 

the financial damage of allowing fraudulent media to continue to operate in the system.  

The data set includes 372,588 legitimate and 983 fraud samples respectively.  This yields 

the expected unbalanced dataset with a ratio 379:1 or a fraud rate of approximately .26%.  The 

data was split into 80% training and 20% test sets.  To rectify the imbalance SMOTE and 

ADASYN were applied.   
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Feature Description 
ENT_EXT_RATIO Entries minus exits 
ENTRIES_PER_DAY Total entries divided by time span 
ENTRY_TAG_ON Entries (gates or buses) 
EXIT_TAG_OFF Exits (gates or buses) 
EXITS_PER_DAY Total exits divided by time span 
BUS_RATIO Percentage of transactions that were bus related 
MARTA_BUS Bus related transactions 
MARTA_RAIL Rail related transactions 
RAIL_RATIO Percentage of transactions that were rail related 
CATEGORIES_PER_DAY Total categories divided by time span 
DEVICES Total devices utilized 
DEVICES_PER_DAY Total devices divided by time span 
FACILITIES Total facilities visited 
FACILITIES_PER_DAY Total facilities divided by time span 
FI_CATEGORIES Total fare categories utilized 
MODES Total modes utilized 
MODES_PER_DAY Total modes divided by time span 
TRANSIT_DAYS Total days with transactions 
TRANSIT_DAYS_RATIO Total days with transactions divided by time span 
USES Total uses 

Table 20: Data Fields 

 
 
 

3.5 Results 
 
   Both SMOTE and ADASN were tested as solutions to the issue of imbalanced data.  

Without addressing the data imbalance, the models exhibited the anticipated behavior of selecting 

the majority group (i.e., “not fraud”) for each prediction, thereby creating a useless predictor.  

Models utilizing SMOTE to address data imbalance marginally outperformed ADASYN in testing, 

so the results shown are for models employing the SMOTE method. 

 The deep learning models were tuned to test a variety of parameter values for hidden layer 

counts, optimizers, and loss functions.  Static parameter settings included batch size (100), epochs 
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(5), learning rate (.001), and activation function (Relu).  In total, 10 model variations were tested 

with the metrics summarized in Table 21.  The highest scores for accuracy and AUC were 

highlighted in bold.   

 
Figure 21: Treatment of Imbalanced Data 
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Model Optimizer Activation Function Loss Function Hidden Layers  Recall   Precision   Sensitivity   Specificity   F-measure   Accuracy   AUC  

1 Adam Relu BCE 1     0.9067          0.9064          0.9067          0.9067          0.9064          0.9064          0.9067  

2 Adam Relu BCE 3     0.9259          0.9247          0.9259          0.9259          0.9246          0.9247          0.9259  

3 Adam Relu BCE 5     0.9322          0.9313          0.9322          0.9322          0.9312          0.9313          0.9322  

4 Adagrad Relu BCE 10     0.9229          0.9228          0.9229          0.9229          0.9228          0.9228          0.9229  

5 Adamax Relu BCE 10     0.9336          0.9329          0.9336          0.9336          0.9329          0.9329          0.9336  

6 Adam Relu Hinge 10     0.5000          0.5000          0.5000          0.5000          0.6667          0.5000                   -    

7 Adam Relu Square Hinge 10     0.5000          0.5000          0.5000          0.5000          0.6667          0.5000                   -    

8 Adam Relu MSE 10      0.9362         0.9353          0.9362          0.9362          0.9353          0.9353          0.9362  

9 Adam Relu BCE 10     0.9345          0.9335          0.9345          0.9345          0.9334          0.9335          0.9345  

10 SGD Relu MSE 10     0.9354        0.9344       0.9354        0.9354       0.9343        0.8952        0.8955  

Table 21: Deep Learning Model Metrics 

*BCE – Binary cross entropy 
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3.6 Discussion 
 
Results 

Regarding the treatment for imbalanced data, no hard conclusion was formed.  Both 

SMOTE and ADASYN outperformed non-treated models.  This is consistent with findings from 

Brandt & Lanzén (2021) where no consistent advantage was identified between SMOTE and 

ADASYN in testing. 

The deep learning models proved to be highly effective at accurately categorizing 

transactions into fraud or not-fraud classifications.  The highest performing model tested used an 

optimization function of Adam, an activation function of Relu, a loss function of MSE (mean 

squared error), and 10 hidden layers.  It is worth noting that while Adam, which is an extension of 

and therefore often compared to SGD (stochastic gradient descent), did perform better in testing, 

there is some evidence that SGD generalizes more effectively in some instances (Zhang, 2018).  A 

direct comparison varying only the optimizer, yielded accuracy scores of 93.53% and 89.52% for 

the models using Adam and SGD respectively.  Additional research will be necessary to determine 

which optimizer generalizes better from a transit fraud classification perspective.   

SME Evaluation & Business Decision 

 A round table discussion was held with public transit staff members to discuss the models 

and outcomes.  Participants agreed that the models were substantially more complex than 

analytical methods currently be utilized.  While they agreed that the complexity of the techniques 

was somewhat off-putting, they were pleased with the high degree of accuracy demonstrated 

across the various iterations.   When polled about the possibility of utilizing the models as the basis 

for an automated response to fraud (i.e., automatically disabling media flagged as fraud by the 

model), there was a mixed response.  The minority group voted that the accuracy rate was sufficient 
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to support an automatic response without supervision.  However, the majority of participants felt 

that media flagged by the model(s) should be reviewed by transit personnel prior to media 

deactivation.  The most common reason cited was a desire to avoid false positives that would 

inconvenience the customer.  There was consensus that with adequate time to conduct tests and 

sustained positive results, an automated response might be instituted.   

3.7 Limitations and Future Research 
 
 The primary limitation of this research is the use of a single transit system.  To adequately 

test the generalizability of the findings it is recommended that multiple systems be tested.  Because 

transit systems utilize different system controls, media types, fare products, etc., a wider sample 

of systems is suggested.   

The feature selection would also be improved by adding variables for details associated 

with initial purchase transactions.  Traditional credit/debit card transaction controls include 

purchase limits, velocity checking, and user verification requests (e.g., zip codes, card security 

numbers, etc.).  This is a clear indication that banks believe collecting and/or monitoring these 

details provides value.  Features of interest include the time of day the purchase was made, the 

frequency of use for individual credit/debit card numbers, and purchase history details to determine 

if a particular purchase was consistent with historical activity.  By following the lead of mature 

participants in credit/debit security screening, transit authorities may reap some of the associated 

benefits without having to independently develop and test new fraud detection methods. 

Finally, future transit fraud research should include studies from the additional elements 

identified in the transit fraud framework (government/external factors, system controls, customer 

factors, authority, and media).  In many instances the transit industry produces rich data sets that 

may be used to solve transit related issues.   
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3.8 Conclusion 
 

The goal of this research was three-fold.  The first goal was to illustrate the scale of public 

transit and transit related fraud.  This was accomplished by documenting transit metrics and 

examples of transit fraud to allow the reader to fully appreciate the magnitude of the issue.  

Secondly, the objective was to highlight the major obstacles facing transit fraud researchers 

and to demonstrate an effective solution to those challenges.  The 3 major issues of access to scarce 

data, imbalanced data sets, and a complex and evolving fraud environment were discussed.  The 

research presented used actual transit data, addressed the data imbalance issue using both SMOTE 

and ADASYN, and utilized deep learning neural networks as a method robust and flexible enough 

to deal with the evolving and complex nature of fraud. 

Finally, a range of deep learning model parameters were tested to determine their 

effectiveness as a transit fraud classification tool.  Several model variations had accuracy scores 

greater than 93%.   Using deep learning models, early detection of transit fraud may have a 

substantial financial impact for public transit operations.  Transit officials now have a viable tool 

to reliably detect fraud and mitigate financial losses. 
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Appendix 
 
Appendix A.  SQL to generate dataset 

SELECT  
    afc_daily_use_detail_fact_v.SERIAL_NBR, 
    afc_daily_use_detail_fact_v.HOTLISTED_FLAG, 
    afc_fare_instrument_dim_v.MEDIA_TYPE_DESC, 
    afc_fare_instrument_dim_v.RC_DESC, 
    Count(Distinct afc_daily_use_detail_fact_v.TRANSIT_MODE_ID)AS MODES, 
    Count(Distinct afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY)AS USE_TYPES, 
    Count(Distinct afc_daily_use_detail_fact_v.DEVICE_ID)AS DEVICES, 
    Count(Distinct afc_daily_use_detail_fact_v.FACID)AS FACILITIES,     
    Count(Distinct afc_fare_instrument_dim_v.INSTRUMENT_TYPE_DESC) AS    
FARE_INTRUMENTS, 
    Count(Distinct afc_fare_instrument_dim_v.FARE_INST_CATEGORY_DESC) AS 
FARE_CATEGORIES, 
    SUM(To_NUMBER(Case When afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY=9 THEN 1 
ELSE 0 END))  
    AS ENTRIES, 
    SUM(To_NUMBER(Case When afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY=10 THEN 1 
ELSE 0   END)) AS EXITS, 
    SUM(TO_NUMBER((Case When afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY=9 THEN 1 
ELSE 0   END)-(Case When afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY=10 THEN 1 ELSE 0 
END))) AS     ENT_EXT_RATIO 
 
FROM  
    marta_dw.afc_daily_use_detail_fact_v LEFT JOIN marta_dw.afc_fare_instrument_dim_v ON     
marta_dw.afc_daily_use_detail_fact_v.SK_FARE_INSTRUMENT_KEY 
=marta_dw.afc_fare_instrument_dim_v.SK_FARE_INSTRUMENT_KEY  
    LEFT JOIN marta_dw.afc_device_dim_v ON marta_dw.afc_daily_use_detail_fact_v.SK_DEVICE_KEY 
=marta_dw.afc_device_dim_v.SK_DEVICE_KEY  LEFT JOIN marta_dw.afc_transaction_status_dim_v ON     
marta_dw.afc_daily_use_detail_fact_v.SK_TS_KEY =marta_dw.afc_transaction_status_dim_v.SK_TS_KEY  
    LEFT JOIN marta_dw.afc_use_type_dim_v ON marta_dw.afc_daily_use_detail_fact_v.SK_USE_TYPE_KEY 
=marta_dw.afc_use_type_dim_v.SK_USE_TYPE_KEY 
 
WHERE  
    CALD_ID BETWEEN 32295 AND 32308 --BETWEEN 32143 AND 32508 FOR 2016  
    AND RIDER_CLASS <>131 --Employee Card 
    AND afc_daily_use_detail_fact_v.HOTLISTED_FLAG=1  

GROUP BY  
    afc_daily_use_detail_fact_v.SERIAL_NBR, 
    afc_fare_instrument_dim_v.MEDIA_TYPE_DESC, 
    afc_fare_instrument_dim_v.RC_DESC, 
    afc_daily_use_detail_fact_v.HOTLISTED_FLAG 
      

ORDER BY  
    afc_daily_use_detail_fact_v.SERIAL_NBR 


