
Hardware Acceleration for Pedestrian Dead Reckoning in Embedded Systems

by

Benjimen Tucker Johnston

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 7, 2022

Keywords: Hardware, Acceleration, GPU, PDR, Kalman, Navigation, IMU

Copyright 2022 by Benjimen Tucker Johnston

Approved by

Christopher Harris, Chair, Assistant Professor of Electrical and Computer Engineering
Spencer K. Millican, Assistant Professor of Electrical and Computer Engineering

John Y. Hung, Professor of Electrical and Computer Engineering

Abstract

Hardware acceleration within embedded systems can potentially allow algorithms to

meet real time requirements in devices where it was previously impossible. Though many

algorithms have been developed targeting embedded systems, their ability to meet the target

environment’s real time demands is often unclear.

The primary focus of this thesis is the effects of GPU acceleration on a pedestrian dead

reckoning system (PDR) targeting processing environments representative of the current

wearable market. A software PDR system was developed from components used popularly

within research. The system was validated by evaluating accuracy of results from each com-

ponent against ground truth data. The validated system was simulated on several processors

to generate a set of baseline execution times relative to the host processor. The most com-

putationally intense component was selected based on profiling results and accelerated using

a GPU. The computational speedup of the system was then used to determine expected

execution time relative to each processor baseline execution time.

This research was the first to apply hardware acceleration techniques to an embedded

PDR system. The results showed a 86% speedup of the accelerated system’s CPU execu-

tion but no decrease in overall system computation time. Additionally, the benefits of this

change were shown to allow certain particularly low performance processors to meet real

time requirements. This shows that GPU acceleration can be applied to accelerate embed-

ded algorithms to allow for smaller and cheaper processing systems to be used compared to

those used previously.

ii

Acknowledgments

I would like to thank my advisor and committee chair, Dr. Christopher Harris, for his

guidance while I was a graduate student. His help was invaluable in the completion of this

work.

I would like to thank Dr. John Hung and Dr. Spencer Millican for their support and

evaluation of my work.

I would like to thank Paul Atilola for his support as a sounding board for solving issues

in the development of this system.

I am thankful for the support of my family during this work and particularly during the

final weeks of study.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

1 Introduction . 1

2 Background . 3

2.1 Review of the Kalman Filter . 3

2.1.1 Predict Stage . 4

2.1.2 Update Stage . 5

2.2 Unscented Transform of Kalman filter - Unscented Kalman Filter 6

2.2.1 UKF Sigma Points . 7

2.2.2 UKF Predict . 8

2.2.3 UKF Update . 8

2.2.4 Cholesky Decomposition . 9

2.3 GPU acceleration . 10

2.3.1 CPU vs. GPU Architecture . 10

2.3.2 Acceleration . 11

2.3.3 CUDA . 13

2.4 Program Profiling . 14

2.4.1 Callgrind . 15

2.4.2 Cachegrind . 15

3 Pedestrian Dead Reckoning System Design . 17

3.1 System Architecture . 17

iv

3.2 Step Detection . 19

3.2.1 Step Detection Implementation . 19

3.3 Stride Length Estimation . 21

3.3.1 SLE Implementation . 23

3.4 Heading Estimation . 24

3.4.1 Fingerprinting . 25

3.4.2 Magnetic North . 25

3.4.3 Heading Estimation Implementation 27

4 Acceleration of the Unscented Kalman Filter . 33

4.1 Profiling Results . 33

4.2 Target Architecture . 35

4.2.1 GPU Memory Architecture . 36

4.3 Software Restructuring . 39

4.4 Acceleration . 42

4.4.1 Thread Geometry . 42

4.4.2 Matrix Multiplication . 45

4.4.3 Sigma Point Creation . 47

4.4.4 State Transition Iteration and State Estimation 48

4.4.5 Error Covariance . 50

4.4.6 Measurement Model . 52

4.4.7 Matrix Inversion . 53

4.4.8 Measurement Noise . 54

4.4.9 Remaining Operations . 55

5 Experimental setup and procedure . 56

5.1 Input Data Set . 56

5.2 System Validation . 57

5.2.1 Step Detection . 58

v

5.2.2 Stride Length Estimation . 59

5.2.3 Heading Estimation . 61

5.3 Acceleration Test Setup . 62

5.4 Simulation of Other Platforms . 63

5.4.1 Platform Selection . 65

6 Results and Discussion . 68

6.1 Acceleration Results . 68

6.2 Platform Simulation Results . 71

6.3 Future Work . 72

6.4 Conclusion . 73

Bibliography . 75

vi

List of Figures

2.1 A model of how UKF’s sigma points are used to obtain a more accurate result. . 6

2.2 CPU vs. GPU architectures . 12

2.3 Execution flow of coherent and diverging GPU blocks. 13

3.1 System Architecture for Integrating PDR Components 18

3.2 Points of interest in the step detection algorithm. 20

3.3 The RMS error of SLE over a long series of steps with and without a single missed

step. 22

3.4 Convergence of the LMS algorithm for several trials. The plotted values are a 5

step rolling average for six different trials. 24

3.5 Heading implementation . 26

4.1 NVIDIA’s Jetson Nano Architecture[22] . 36

4.2 NVIDIA’s Maxwell Architecture[21] . 37

4.3 The memory organization of NVIDIA’s Jetson Nano. 38

3.1 System Architecture for Integrating PDR Components 39

4.4 The PDR system after restructuring to decouple the CPU and GPU 40

4.5 The UKF Iterate block broken between CPU and GPU. 41

vii

4.6 Mapping of a block of 2x9 threads to a block of 4x4 threads. 43

4.7 A special case of a divergent GPU block which can be utilized to effectively

deactivate threads. 45

4.8 A description of matrix multiplication highlighting its parallelism. 46

4.9 The results solved for in each step of the Cholesky decomposition 47

5.1 Distribution of percent error from 66 step detection trials. 59

5.2 Distribution of RMS error from 19 step detection trials. Three trials failed to

converge. 60

5.3 RMS heading error distribution from 16 step detection trials. One trial failed to

track. 61

viii

List of Tables

4.1 The top Callgrind results sorted by their inclusive cost. SLE and step detection
costs are included for reference. 34

4.2 PDR Execution Time for GPU port with discrete kernel call per equation. . . . 44

5.1 Variables solved for to more accurately model clock cycles. 65

5.2 Platforms Selected for Comparison . 66

6.1 Impact of Acceleration on System Performance. All time values listed are for
total run time in seconds . 69

6.2 The simulation of other platforms’ execution time for a three minute data trial.
The seconds value for Jetson is its actual run time. 71

ix

Chapter 1

Introduction

Within embedded systems, there are some algorithms which would be useful to run

in a low resource environment but are too computationally intensive. They cannot meet

the requirements to run real time or drain power too quickly to be of substantial use in a

practical implementation. This is particularly true in the case of wearable systems which,

ideally, the user can forget they are wearing due to the small size and weight. Hardware

acceleration techniques can be applied to these algorithms to both distribute computational

intensity and reduce power consumption to meet the real time requirements and decrease

power consumption. This work investigates the application of GPU acceleration to one such

case to improve execution time of algorithms for personal tracking of an individual.

Global navigation satellite systems (GNSS) are a technology which has allowed for

accurate positioning services on a global scale since the United States Department of Defense

gave public access to its GPS system in 1983. This and other GNSS have given rise to

popular use of location-based services (LBS) in a plethora of commercial applications. LBS

are applied in areas from car navigation systems to mobile video gaming and each area

comes with its own additional challenges. In the case of systems which are related to the

tracking of an individual person, terrain and buildings often interfere with or completely

block communication with GNSS. GNSS are then often frequently inadequate for precise

tracking of an individual.

This is where pedestrian dead reckoning (PDR) can be of use. PDR aims to provide

accurate positional tracking of an individual in cases where GNSS signals become inaccurate

or useless. This is accomplished by using an initial trusted reference position from GNSS or

some other external source and extrapolating position using only on-board sensors. When a

1

system’s GNSS signal becomes unreliable, a PDR system could take over until such a time

as the connection is reestablished.

PDR, however, is far from a solved problem. Many different approaches have been

proposed that rely on technologies like neural networks[1][10], sensor signal analysis[6], and

Kalman filtering[2][4]. While there are systems which achieve a high degree of accuracy, there

is little evidence they can run in real time[13] in an embedded environment. Conversely,

systems which can run in real time show a lower degree of accuracy[13] or are not complete

PDR systems[12].

The technologies relied upon by these high accuracy systems generally carry a high

degree of hardware exploitable parallelism. Therefore, hardware acceleration techniques

can be applied to improve the performance of these systems and potentially allow them to

operate in real time. While neural networks[14] and signal analysis have been accelerated

many different ways, including with field programmable gate arrays (FPGAs)[16][17] and

GPUs[14][15], the various small dimension Kalman filters have not received much attention

for acceleration. Though the techniques used to perform signal analysis on input signals tend

to show high degrees of parallelism, each approach generally looks substantially different from

a programming perspective. This prevents hardware acceleration that can be easily used by

a variety of approaches. This leaves Kalman filtering as a viable candidate for acceleration as

its different variations are used similarly in many different approaches and their acceleration

has not been investigated substantially.

The remaining chapters of this thesis are arranged as follows. Chapter 2 covers back-

ground information relating to the algorithm accelerated, GPU acceleration for our target

architecture, and the profiling tools used. Chapter 3 discusses the standard design of a PDR

system and the somewhat standard approaches used for this work. Chapter 4 describes the

initial data collected and the resulting acceleration work. Chapter 5 describes the results of

the acceleration and simulations of selected processors. Chapter 6 analyzes the results and

summarizes the accomplishments of this work.

2

Chapter 2

Background

This chapter begins by covering the theory behind the algorithms selected for acceler-

ation. It then covers computer architecture information related to accelerating CPU code

with a GPU. The chapter concludes with a description of the profiling tools used by this

work.

2.1 Review of the Kalman Filter

In this work, the Kalman filter is used to combine separate sets of measurements to

produce a more accurate reading in a process referred to as sensor fusion. This is done

in such a way that the complimentary features of each measurement source can offset the

other’s shortcomings. For example, accelerometer data is unstable from reading to reading

but its average over time is highly accurate. On the other hand, a gyroscope’s readings are

precise from reading to reading but exhibit a large drift over time. The Kalman filter allows

them to be combined such that the result has the gyroscope’s moment to moment stability

and the accelerometer’s stability over time but little of either’s instability.

The Kalman filter is a mean square optimal linear estimation algorithm that combines

multiple measurements to produce an estimate of system state. This algorithm depends on

a complete model of the system dynamics, or its estimate will have high error. The filter

minimizes the mean square error of the estimation in the presence of Gaussian noise. The

estimates tend to be closer to the true state than can be obtained from any measurement

alone. In other words, the Kalman filter combines the measurements from multiple sources

to produce an estimate of a system’s state. This estimate is more accurate than one that

can be derived from any measurement alone.

3

The discrete-time implementation of the Kalman filter can be broken into the predict

stage and update stage. The predict stage uses a model of the system dynamics, the previous

state of the system, the error covariance of the previous state, and an optional control input to

predict the next state and provide a prediction error covariance. These are formally referred

to as a priori values and denoted with subscript k|k − 1. The update stage uses the state

prediction, covariance of the state prediction, and a measurement to produce an estimate

of the true state and error covariance matrix. These are referred to as a posteriori values

and denoted with subscript k − 1|k − 1. The Kalman estimate values fall between the value

from its prediction and the value obtained from measurement. The noise associated with the

system model and with the measurement values determines which value the estimate falls

closer to. This allows for the tuning of the estimator to closer fit the true state values.

2.1.1 Predict Stage

The predict stage calculates the state prediction, x̂k|k−1, and the error covariance of the

state prediction, Pk|k−1. The state prediction is calculated by finding how the state model

predicts change from the previous true state. If there is a control input, it is weighted by

the control-input matrix and added to the updated state. The equations for state prediction

and error covariance are respectively:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (2.1)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2.2)

here x̂ and P describe the state and error covariance matrix. The matrix Fk describes the

state-transition model of the system. Matrices Bk and uk describe the control-input model

and the control input respectively, and Qk describes the covariance of the process noise or

the noise associated with the control input.

4

As stated in section 2.1, the Kalman filter is commonly used to combine the measure-

ments from multiple separate sources. This is normally accomplished by using one measure-

ment as the control input uk with an appropriately designed B matrix. Alternatively, the

measurement be an input of Fk such that the state-transition model varies from step to step.

2.1.2 Update Stage

The update stage uses the measurement input zk to correct the estimate according to

the calculated Kalman gain matrix, Kk. The Kalman gain represents how the difference

between prediction and measurement is weighted and controls how the error covariance

matrix is updated. The observation space output of the system is obtained by multiplying

the measurement model with the state

ŷk = Hkx̂k|k (2.3)

where Hk represents the measurement model. The equations for the update stage are given

as

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.4)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (2.5)

Pk|k = (I −KkHk)Pk|k−1 (2.6)

where Kk is the Kalman gain. The measurement model is represented by Hk and maps the

state space into the observed space. The measurement noise associated with the measurement

is Rk. The external input to the update stage is zk which is the measurement in the observed

space. Equation 2.4 is used to calculate the Kalman gain matrix. Equations 2.5 and 2.6 are

for state update and error covariance update respectively.

5

Figure 2.1: A model of how UKF’s sigma points are used to obtain a more accurate result.

2.2 Unscented Transform of Kalman filter - Unscented Kalman Filter

While the Kalman filter performs well for systems with a linear or nearly linear system

model and measurement model, it suffers from higher error with higher degrees of non-

linearity. The unscented transform attempts to eliminate this accumulation of error.

Instead of propagating the state and error covariance through linearized models, the

unscented transform picks a statistically representative set of sigma points spread around

the state. These sigma points are selected such that the mean and covariance of the set

is equal to the state and error covariance. Once propagated through the non-linear state-

transition and measurement models, the mean of these sigma points is a more accurate

representation of the true state.

Figure 2.1 is graphical representation of the unscented transform’s impact where the

top left represents the initial data and sigma points. The top right represents a non-linear

transition model and the bottom right represents the result of this model. The ovals represent

6

covariance and dots represent data points. Black represents the initial information and the

UKF result. The red oval and red and blue dots represent the sigma points and the covariance

respectively. The blue represents the result without the unscented transform applied.

This modification results in a new version of the Kalman filter known as the Unscented

Kalman filter (UKF).

2.2.1 UKF Sigma Points

The equations for sigma point selection are shown below.

λ = α ∗ α ∗ L− L (2.7)

χi =

x̄, i = 0

x̄+
√
(L+ λ)P , i = 1 : L

x̄−
√
(L+ λ)P , i = L+ 1 : 2L

(2.8)

where L is the dimension of the state vector and α is some small value controlling the spread

of sigma points. The reference state and error covariance matrix are represented by x̄ and P

respectively. Once these sigma points are propagated through the appropriate models, they

are recombined with weights totaling to one.

The weights are calculated according to the following:

Wm
0 =

λ

L+ λ
(2.9)

W c
0 =

λ

L+ λ
+ (1− α2 + β) (2.10)

Wm
i = W c

i =
1

2(L+ λ)
, i = 1 : 2L (2.11)

where Wm
i are the first order weights and W c

i are the second order weights. The constant β

is generally set to 2 to represent a Gaussian noise.

7

2.2.2 UKF Predict

The modified version of the prediction stage equations 2.1 and 2.2 become:

χ̂k|k−1 = Fk[χ̂k−1|k−1] +Bkuk (2.12)

x̂k|k−1 =
2L∑
i=0

Wm
i χi,k|k−1 (2.13)

Pk|k−1 =
2L∑
i=0

W c
i [χ̂k|k−1 − x̂k|k−1][χ̂k|k−1 − x̂k|k−1]

T +Qk (2.14)

where χ̂k|k−1 represents the sigma points after being propagated through the state-transition

model F . The weighted values are summed over to produce the state prediction. The

prediction is subtracted from each element in χ̂k|k−1 to find the center of the sigma points.

This center is multiplied by its transpose, weighted, summed and then added to Qk to

produce the error covariance of the prediction.

2.2.3 UKF Update

The Kalman filter measurement model equation 2.3, after the transform, becomes:

yk|k−1 = Hk[χ̂k|k−1] (2.15)

ŷk|k−1 =
2L∑
i=0

Wm
i yi,k|k−1 (2.16)

8

where yk|k−1 represents the sigma points after propagation through the state-transition

model, Fk, and the measurement model, Hk. The result in the observed space is repre-

sented by ŷk|k−1. The update equations, 2.4 - 2.6, become:

Pȳkȳk =
2L∑
i=0

W c
i [yi,k|k−1 − ŷk|k−1][yi,k|k−1 − ŷk|k−1]

T +Rk (2.17)

Px̄kȳk =
2L∑
i=0

W c
i [χi,k|k−1 − x̂k|k−1][yi,k|k−1 − ŷk|k−1]

T (2.18)

Kk = Px̄kȳkP
−1
ȳkȳk

(2.19)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (2.20)

Pk|k = Pk|k−1 −KkPȳkȳkK
T
k (2.21)

where yk represents the measurement in the observed space. Once this transformation is

complete, the error covariance is no longer propagated through the models but is instead

regenerated during each predict stage.

2.2.4 Cholesky Decomposition

During the generation of sigma points, the square root of the scaled error covariance

matrix must be found. This square root can most easily be found by taking the Cholesky

decomposition of the matrix. The algorithm only works on a Hermitian positive-definitive

matrix and produces the result in a triangular matrix. The initial condition can be guar-

anteed in the UKF provided the noise matrices Qk and Rk are diagonal positive definite

matrices. This is because adding two Hermitian positive definite matrices produces another

Hermitian positive definite matrix and multiplying any matrix by its conjugate transpose also

produces a positive-definite Hermitian matrix. The solution for the Cholesky decomposition

9

of a four by four matrix is shown in equation 2.22

√
a11 0 0 0

a12
l11

√
a22 − l221 0 0

a13
l11

a23−l21l31
l22

√
a33 − l231 − l232 0

a14
l11

a24−l21l41
l22

a34−l31l41−l32l42
l33

√
a44 − l241 − l242 − l243

(2.22)

where aij represents an element in the original matrix and lij represents an element in the

result.

Each element of the result in this decomposition is dependent on the results to its left

and above as well as the element on the diagonal in its column. The focus will now change

to information related to GPU acceleration.

2.3 GPU acceleration

This section will cover differences in CPU and GPU architectures and goals of each.

It will then cover the general approach to GPU acceleration and the associated costs. The

section ends with a discussion the software libraries used for acceleration.

2.3.1 CPU vs. GPU Architecture

In a CPU, a processor is generally made up of one or several cores each with a complex

control block, a single arithmetic logic unit (ALU), and a unified cache or discrete caches for

instructions and data. All of these cores generally share a larger unified cache. This results

in an architecture where the bulk of the silicon is dedicated to controlling or supporting a

relatively small section which can perform a series of computations quite quickly.

In computing, a thread is a series of instructions which are executed in order by an

ALU. Threads are only aware of the data they manage and memory they access. A CPU

core can normally manage several threads at once by working on one thread while others

are waiting on memory accesses to complete. Programs can sometimes be accelerated on

10

a CPU by breaking them into multiple independent threads such that the CPU can work

on one part of the program while another is delayed by memory. When program tasks do

not depend on each other and can be processed in this manner it is referred to task level

parallelism.

GPUs, on the other hand, are constructed to use single-instruction multiple-data par-

allelism to leverage cases where the same operation needs to be performed repeatedly on

different sets of data. This results in an architecture where each core has a single smaller

control block, a set of smaller ALUs, and a cache shared by everything in the core. This

means a much larger percentage of the silicon is dedicated to computation instead of merely

supporting computation.

Figure 2.2 shows the differences between the two architectures. Control blocks, ALUs,

and caches are colored yellow, orange, and green respectively. The CPU has only a small

portion of its space dedicated to ALUs while the GPU dedicates most of its space to com-

putation. Though GPUs are generally clocked at a somewhat slower rate, they more than

make up for it with the quantity of work done during each clock.

2.3.2 Acceleration

A section of code which must perform the same operation repeatedly on independent

data likely will see a speed up from exporting the work to a GPU. This is because the GPU

can operate on all of the data simultaneously in multiple threads instead of one set at a

time. Though code may run faster on a GPU there are certain additional cost associated

with offloading work to the GPU.

The CPU cost of sending relevant data and initiating code on the GPU may offset any

performance gains from moving it to the GPU. This copy cost can sometimes be amortized

by performing a batch of operations on the GPU at once. This way the CPU only incurs the

copy and code setup costs a single time but can run a series of operations. This, however,

may not be possible if the CPU is dependent on the GPUs result. Then the CPU code may

11

Figure 2.2: CPU vs. GPU architectures

require restructuring in order to remove the dependency and allow for concurrent CPU and

GPU operation.

Code to be run on a GPU can normally be written in much the same way as code on

a CPU but certain considerations must be made. In the case of a conditional where only

some of the ALUs within a block meet the condition, there will necessarily be some loss in

speedup over the code which is diverging. This is due to all of the ALUs being controlled

by a single control unit. As illustrated in Figure 2.3, all ALUs must execute all code on

each diverging branch and trash the results they do not need. Green blocks represent code

blocks where the calculation occurs and results are used. Red blocks represent code which is

executed but the results are not used by divergent threads in a block. If these conditionals

are nested, the loss in speedup can reach the point of single threaded performance and result

12

All
Threads

Condition

Path 1

All
Threads

All
Threads

Condition

All
Threads

CPU & Coherent
GPU Block

Divergent
GPU Block

Path 2

Path 1 O
n Threads

Path 1 O
ff Threads

Path 2 O
n Threads

Path 2 O
ff Threads

Figure 2.3: Execution flow of coherent and diverging GPU blocks.

in substantially slower execution than a CPU executing the same code. As such, care must

be taken to minimize the number of diverging conditions within a single core.

Data management also changes when writing code for GPUs. Once a result is calculated

in one ALU that is needed by a second ALU, the data can only be passed to the second

ALU through the shared cache. This can result in delays between instructions which would

not exist in a CPU.

2.3.3 CUDA

NVIDIA has developed a robust set of application program interfaces (APIs), collec-

tively called Compute Unified Device Architecture (CUDA)[20], for general purpose GPU

programming. CUDA has its own terminology for describing how a function will map to

the data parallel processing units of a GPU. It refers to a function which runs on the GPU

13

as a Kernel, a set of ALUs managed by one control unit as a Block, and the code context

on each ALU as a Thread. CUDA has a plethora of features and many are unique to its

architecture. However, the features relevant to this work are standard for other GPU APIs

such as OpenGL[27] and AMD’s HIP[28].

The most important of these features is the async library. This library contains asyn-

chronous versions of CUDA’s standard library calls which do not hold control of a CPU

thread while the operation completes. This means that the CPU and GPU can run con-

currently instead of one at a time. While this works somewhat seamlessly for kernel calls,

memory transfers require a bit more work. In CUDA, memory transfers can only occur asyn-

chronously via direct access media (DMA) controllers if the CPU side memory is in page

locked memory. Otherwise, the CPU performs the memory transfer to ensure the relevant

memory is not paged out to the hard drive.

Memory in computers is generally stored in groups which go by different names in

different memory levels. When the memory groups are in global memory, the name used is

”page”. When a page has not been accessed recently by the CPU and more space is needed,

the page can be offloaded, or ”paged”, out to the hard drive to make room. In CUDA, this

type of memory is only allocated through the cudaMallocHost() function.

Another important feature is CUDA’s ability to collect work into discrete streams. This

forces all work placed into a stream to happen sequentially but for work in different streams

to occur in parallel. While this explicit synchronization is the only option in simpler GPU

architectures, it guarantees that memory isn’t transferred before it is ready and that kernels

do not begin operation until its memory is ready to be used. This also allows for unrelated

work to be sent to the GPU and reduce the number of idle ALUs.

2.4 Program Profiling

Valgrind[23] is a suite of tools which each analyze different aspect of a program’s mem-

ory usage and thread synchronization. Of particular interest are the tools Callgrind and

14

Cachegrind. Together, these two tools allow for in depth analysis of code efficiency and

bottlenecks on system’s architecture or a system with a different cache architecture.

2.4.1 Callgrind

Callgrind[26] is a tool which assigns a cost to each function within a program. By

default, the tool collects information about caller-callee function pairs and the number of

assembly instructions executed by the callee. It can be told to collect a deeper call stack for

specific functions, all functions, or recursive functions. It can also optionally be turned on

and off to only profile costs for specific regions of code.

The output file can be digested by a companion program kcachegrind which builds a

call graph of the functions and lists both the cost of each function and the cumulative cost of

each function and its child functions. This allows for easy digestion of the costs and how they

are distributed in code. The information collected by default is the instruction calls and data

reads. It is naive about the impact of memory architecture on program efficiency. However,

Callgrind is built such that it can integrate with information obtained from Cachegrind.

This allows for analysis which can look at an estimate of the actual clock cycle cost of each

function instead of merely the number of instructions called.

2.4.2 Cachegrind

Cachegrind[26] works by intercepting all memory accesses from a program in software.

This allows for the tool to build a virtual cache to simulate how a program interacts with

a different cache hierarchy. A designer can observe how a program may be causing memory

issues and see opportunities for streamlining memory usage. When this program is paired

with Callgrind, it allows a full stack simulation of program costs on systems with different

cache architectures. This work will use this capability to simulate program performance on

different boards to observe the usefulness of acceleration in different contexts.

15

The following chapter first describes a generic system level architecture of a PDR system.

It then describes the selection representative components to implement the system level

description.

16

Chapter 3

Pedestrian Dead Reckoning System Design

A PDR system can be broken easily into three separate components: Step Detection,

Stride Length Estimation (SLE), and Heading Estimation. In a typical PDR system, step

detection iterates every time new sensor information is available. Once it detects a step from

the data, it triggers the SLE algorithm. The SLE algorithm analyzes the sensor data from

the time range specified by step detection to produce an estimate of the distance moved

in that step. Once the distance traveled is calculated, the heading values accumulated by

heading detection are combined to produce a heading for that step. The heading and stride

length estimate values are then combined with the previous position to produce the current

position.

Each of these components has a plethora of proposed implementations, but all can be

narrowed based on sensor placement. The common sensor placements include foot mounted

sensors, carried, or pocketed like a cellphone, and in a chest pocket or backpack. This work

targets a case that is the least intrusive to the user and provides the best performance for

each of the three components of PDR. To this end, a chest mounted system was chosen. This

provides a higher correlation between user walking motion and sensor detected motion than

cellphone models and a higher stability for heading detection than foot mounted sensors.

This positioning is also most convenient for a wearable sensor. It could be easily placed in

a shirt pocket or worn like a badge.

3.1 System Architecture

The chart in Figure 3.1 shows a high level map of how the discrete PDR components

are integrated into a coherent system in this work. As the sample rate of the accelerometer

17

and gyroscope in the test system is much faster than the sample rate of the magnetometer,

the UKF only iterates when there is new magnetometer data available. The UKF output is

not needed immediately so it is time stamped and stored for later.

Figure 3.1: System Architecture for Integrating PDR Components

Once the system iterates the heading components appropriately, the new acceleration

data is passed to the step detection component. If the step detection does not detect a step,

it normally would dump the acceleration data point. However, SLE requires all acceleration

data points to find the step length. So, the data is instead time stamped and collected.

If a step is detected, the system must perform a series of tasks to update its position

relative to the starting point. The system first averages all of the heading values that occurred

during the step and dumps all of those data points. The SLE component then calculates the

length of the step and dumps all of the data it used. The heading and stride length are then

combined to produce the new position. This update is always slightly behind as determined

by α from equation 3.1. This is because the step detection is sure it has detected the correct

peak only after it exits the prediction window from equation 3.1.

18

3.2 Step Detection

Solutions to PDR step detection vary from straightforward analysis of gyroscope and

accelerometer signals to an in-depth analysis of the mechanics of human motion as it relates

to a particular sensor placement[5][6]. Most combine some of zero cross detection, peak

detection, and threshold detection of the gyroscope and acceleration signals with some more

advanced signal analysis. Most of high accuracy step detection literature focuses techniques

which use foot mounted sensors[18]. Those which utilized a chest mounted sensor provided no

opportunity for new hardware acceleration. Additionally, some approaches were eliminated

because they depend on knowledge of the user’s anatomy[3]. So, selection criteria changed

to ease of implementation with an adequate accuracy.

In this work we chose to implement the step detection approach proposed in [1] which

uses a combination of zero-cross detection and peak detection with peak prediction on the

accelerometer data to achieve an accuracy of 97.9%. Zero crossing works by finding the

vector length of the accelerometer data, subtracting out a constant acceleration from gravity,

and then detecting when two consecutive points straddle zero. While this is quite easy to

implement, there are often false positives clumped around the true zero cross when the system

is experiencing additional dynamics. For this reason, peak detection was applied to choose

the zero cross closest to the midpoint of a valley and the following peak. This narrows the zero

crosses to a single point on the ascending slope of the acceleration signal. Peak prediction

works to eliminate false peaks by only looking for a peak in a narrow window. The window

is centered on a sample n+ 1 time steps ahead of the most recently detected peak where n

is the number of samples between the previous two peaks. Algorithm operation is shown in

Figure 3.2. In the case depicted, four false zeroes are eliminated with peak detection.

3.2.1 Step Detection Implementation

To operate correctly, the algorithm must know about the two previous peaks. To find

these two peaks, a brute force initialization stage is used which combines peak detection and

19

−2

−1

0

1

2

3
Prediction

Window

Detected Peak

or Valley

False Zeros

True Zero

Time

A
cc
el
er
at
io
n

Step Detection Operation

Figure 3.2: Points of interest in the step detection algorithm.

thresholding. When the acceleration rises above a threshold, the highest value seen before

falling back below the threshold is considered the first peak. The same approach is used

for the second peak. Until the second peak is detected, the lowest acceleration value seen

is tracked and each zero cross is collected and time stamped. Once the second peak occurs,

the midpoint in time between the valley and new peak is found. The zero point closest to

this value is considered the start of the step. The time between the two peaks is used to

find the window where the next peak should appear. Equation 3.1 is used to calculate the

prediction window

Wk+1 = tk + (tk − tk−1)(1± α) (3.1)

where Wk+1 represents the bounds of the prediction window and α is a value controlling the

width of the window. The α chosen in this case is 0.4. This was selected as it resulted in a

high reliability for step detection across the trials in our data set.

20

The algorithm continues in a similar fashion to the brute force approach. Except now

the peaks checked are within the prediction range instead of above an arbitrary threshold.

This can be seen in Figure 3.2. Additionally, if the time between peaks is longer than a

chosen time, the step data is dumped, and the algorithm reverts to its initial brute force

operation until a new peak is detected. This prevents abnormal data being given to SLE

and producing an impossibly long step.

Due to how this algorithm is initialized, the first zero cross detected is the endpoint of

the first step. This means that the data for the first step in a series can’t be sent to SLE and

position isn’t updated. This is considered an acceptable simplification as the error measure

is displacement error divided by distance traveled. So, the error from this missed step will

be trivial at the end of the trial. This was verified comparing a trial with the missed step

included and a trial with the missed step omitted from the reference. The root mean square

(RMS) error of the position was calculated after each step. The results, shown in Figure 3.3,

show that the difference in the RMS errors approaches zero over the course of the trial.

3.3 Stride Length Estimation

SLE solutions are almost exclusively based on examining attributes of the accelerometer

signal over the course of a step. Common attributes examined are step frequency[5][1], the in-

tegral of the acceleration curve[6], difference between peak and valley acceleration[7][5][3][1],

and acceleration sample variance during the step[3][1]. In cases where more than one of the

attributes is used, the attributes are combined as a weighted linear combination[1][3]. These

weights are normally trained via least mean squares(LMS) training or chosen as a function

of some physical attribute, such as leg length[5][6]. Some approaches train multiple sets of

weights for different modes of locomotion such as walking, running, marching, etc.[1][10] In

this case, the appropriate set of weights is selected by using a neural network to classify the

mode of movement.

21

50 100 150 200 250

0

0.1

0.2

Steps

R
M
S
E
rr
or

in
m
et
er
s

Step Detection Operation

Missed Step RMS
No Missed Step RMS

RMS Difference

Figure 3.3: The RMS error of SLE over a long series of steps with and without a single
missed step.

Though the solutions which use neural networks provide ample opportunity for hardware

acceleration, neural network acceleration is well researched. As such, neural networks were

ignored as a consideration when selecting a SLE solution. The remaining approaches are

all fairly comparable in computation requirements so the approach for estimating stride

length from walking from [1] was selected. The neural network to distinguish between the

modes of locomotion was omitted. As the neural network acceleration is not of interest for

this work and the data set used for testing only contains trials of walking, the SLE was

reduced to only consider sensor data consistent with walking. This approach was selected

due to its high accuracy and that it is from the same source from which the step detection

algorithm was selected. This eased integration of data from the step detection into the

selected implementation.

22

3.3.1 SLE Implementation

The equations describing implementation are shown in equations 3.2 through 3.5. The

solution uses the difference between peak and valley acceleration, the frequency of the step,

and the variance of acceleration to calculate the stride length with an error of approximately

3%. Equation 3.2 describes how the value for the different in peak and valley acceleration is

calculated. Equation 3.3 describes how the frequency of a step is calculated. Equation 3.4

describes how the variance of acceleration signals during a step is calculated. Each of these

step attributes is selected due to evidence that their values correlate to some degree with

the length of a person’s stride. Equation 3.5 describes how the values for each attribute are

weighted and added to produce and estimate of a stride length.

dk =
4
√
amax,k − amin,k (3.2)

fk =
1

tk+1 − tk
(3.3)

vk =
1

Nk

tk+1∑
t=tk

(at − āk)2 (3.4)

L = βdk + γfk + ϵvk (3.5)

Where a represents an acceleration sample from the step. The starting time of step k is

represented by tk. The number of samples in a given step is Nk. The fourth root of the

peak to valley difference, the step frequency, and step variance are represented by dk, fk, and

vk respectively. The constants β, γ, and ϵ are the values trained by the least mean square

(LMS) algorithm. The LMS algorithm trains as shown below

βk

γk

ϵk

 =

βk−1

γk−1

ϵk−1

+ j ∗ (Lk − L̂k) ∗

dk

fk

vk

 (3.6)

23

5 15 25 35 45 55 65
0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

Step Number

5
S
te
p
R
M
S
E
rr
or

A
ve
ra
ge

LMS Training Convergence

Figure 3.4: Convergence of the LMS algorithm for several trials. The plotted values are a 5
step rolling average for six different trials.

where L is the true stride length and L̂ is the calculated stride length. The learning rate

of the algorithm is represented by j. This controls how fast the algorithm converges as

well as the accuracy of the final weights. Figure 3.4 shows the convergence behavior of six

trials when the learning rate is set to 0.01. The results tend to reach convergence after

approximately 50 steps.

3.4 Heading Estimation

Heading estimation is the process of determining the direction of travel in some global

coordinate system. The approaches to heading detection can be largely broken into head-

ing relative to magnetic north[4][2] and heading within some pre-mapped or fingerprinted

region[19].

24

3.4.1 Fingerprinting

The fingerprinting approach to heading estimation works by first mapping a region’s

magnetic field or some signal network and storing it in the device. This map is then traversed

using the readings from the appropriate sensor and heading is determined based on calculated

travel along the map. Though this approach achieves a high degree of accuracy in research,

it suffers from a couple major pitfalls.

The most obvious is that the heading algorithm is useless outside of the bounds of the

mapped area. While this is acceptable in a narrow use case where the user only relies on

PDR in a few particular regions, it is not a generally applicable approach.

The other pitfall is the reliance on an internal map. Though accurate shortly after

creation, the topology of the map can see large changes after seemingly minor real-world

disturbances. A system relying on fingerprinting must have a mechanism for regularly up-

dating its internal map or it will become less accurate over time. This usually means a

manual remapping and update of the stored map or a fixed based system which can con-

tinuously update the map. Both of these options are expensive and time consuming which

would greatly hinder real-world adoption and further narrow PDR’s use case.

3.4.2 Magnetic North

The other popular approach is to use readings from the accelerometer and gyroscope

to orient and stabilize the magnetometer. The magnetometer provides reading which al-

low for the system to be globally oriented with regards to magnetic north. However, the

readings from the sensor are in the device coordinate frame and subject to interference.

The accelerometer readings can be used to determine the direction of gravity within the de-

vice coordinates and can therefore be used to rotate the magnetometer data into the global

coordinate frame.

Though the accelerometer is stable over time, its moment to moment readings are quite

noisy. This means that rotationally correcting the magnetometer with just acceleration

25

data introduces the same moment to moment noise into the magnetometer readings. If the

gyroscope’s moment to moment stability is first combined with the accelerometer’s stability

over time in a Kalman filter, the magnetometer is effectively shielded from the accelerometer’s

noise. The rotationally corrected magnetometer data can then be used as a heading.

The reading from the magnetometer can still be influenced by nearby magnetic inter-

ference. By once again introducing the gyroscope’s stability in a Kalman filter, this can be

alleviated. This sensor fusion then produces a magnetometer based heading which is in the

global coordinate frame and robust to short term interference.

The variety of Kalman filter chosen in this case is important as the system can be quite

non-linear. The UKF[4] in particular shines as it accounts for the non-linearity just as well

as a particle filter with much less calculation. This system in shown in Figure 3.5.

Figure 3.5: Heading implementation

This doesn’t have quite the same initial accuracy of a fingerprinting approach, but

it doesn’t suffer from any of the glaring pitfalls and limitations either. In light of these

advantages, this approach was chosen for the PDR system. The system presents opportunity

for hardware acceleration which has received little attention in the literature despite the

popularity of various Kalman filters for PDR in particular and embedded systems in general.

26

3.4.3 Heading Estimation Implementation

The first choice made in the designs of the UKF and Kalman filter was how to most

easily represent three dimensional orientation. Quaternions were selected over Euler angles to

represent system orientation in both filters’ state. Euler angles are a set of three angles which

represent orientation as quantities of rotation relative to a particular axis. However, Euler

angles suffer from singularities which appear along each axis and present complications for

computation. A quaternion is also a way to represent three dimensional orientation but with

four components. The first component, qw, is a scalar and the remaining three components,

qx, qy, and qz, represent a vector. Each vector element represents a distance along a set

of three orthogonal axis in the same manner as complex numbers. Quaternions are used

because they avoid the singularities of Euler angles.

However, Euler angles are much easier to understand than quaternions. For this reason,

Euler angles were chosen as the output of both the Kalman filter and UKF. The Kalman

filter produces only a pitch and roll angle. As a PDR user can be assumed to remain in the

same general orientation while walking, Euler angles’ singularities do not impact the output.

In the case of the UKF, the output produced is a heading value. While this does have a

singularity, the value is only used for sin() and cos() operations which are not affected by

singularities.

The conversions from Euler angles to quaternions and from quaternions to Euler angles

are respectively

qw

qx

qy

qz

=

cos(ϕ/2)cos(θ/2)cos(ψ/2) + sin(ϕ/2)sin(θ/2)sin(ψ/2)

sin(ϕ/2)cos(θ/2)cos(ψ/2)− cos(ϕ/2)sin(θ/2)sin(ψ/2)

cos(ϕ/2)sin(θ/2)cos(ψ/2) + sin(ϕ/2)cos(θ/2)sin(ψ/2)

cos(ϕ/2)cos(θ/2)sin(ψ/2)− sin(ϕ/2)sin(θ/2)cos(ψ/2)

(3.7)

27

ϕ

θ

ψ

 =

atan2(2(qwqx + qyqz, 1− 2(q2x + q2y))

asin(2(qwqy − qzqx))

atan2(2(qwqz + qxqy, 1− 2(q2y + q2z))

 (3.8)

where ϕ, θ, and ψ represent pitch, roll, and yaw as Euler angles. Additionally, for a quater-

nion used for orientation to be considered valid, it must satisfy:

1 =
√
q2w + q2x + q2y + q2z (3.9)

Kalman Filter

The Kalman filter is implemented to perform sensor fusion of the acceleration and gyro-

scope values. This allows the stability over time of the accelerometer and the measurement

to measurement stability of the gyroscope to be combined. For the predict stage, the gy-

roscope inputs are used to build the state-transition model Fk used in equations 2.1 and

2.2

Fk =
1

2

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

(3.10)

where ω represents the rotation measured by the gyroscope around each axis since the last

iteration. The previous state x̂k−1|k−1 is also used as the input uk. The control-input model

matrix Bk is simply the identity matrix. The noise matrix Qk is defined as a diagonal matrix

of the noise of the gyroscope.

For the correct stage the acceleration Euler angles are obtained by

atan2(ay,

√
a2x + a2z)

atan2(−ax, az)

0

 (3.11)

28

where the ax, ay, and az are the magnitudes measured by the accelerometer along each axis.

These are converted to a quaternion using equation 3.7 to generate the measurement input

zk. The measurement model Hk is simply the identity matrix.

Hk =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(3.12)

The measurement noise matrix, Rk, is a diagonal matrix of the noise associated with the

accelerometer. The new state estimate, x̂k|k is normalized to meet the requirement set in

equation 3.9. The output Euler angles can be obtained by applying equation 3.8 to the state.

The Kalman filter should be initialized such that

x̂0 =

[
1 0 0 0

]T
(3.13)

P0 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(3.14)

UKF

The UKF is implemented to combine the rotationally correct magnetometer heading

and the gyroscope data. For the predict stage, Fk is

Fk = cos(v) ∗ I + sin(v)

v
∗ 1
2

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

(3.15)

29

v =

√
w2
x + w2

y + w2
z

2
(3.16)

where v is half the length of the rotation vector and wx, wy, and wz are the gyroscope

measured rotation since the last UKF step. The control is not used so Bk can be treated as

zeros. The weights Wm
i are calculated according to equations 2.9 and 2.11 with β as 2 and

α as 0.1. The noise matrix Qk is

Qk =

−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

σ2
wx 0 0

0 σ2
wy 0

0 0 σ2
wz

−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

T

(3.17)

where the q values are taken from the a priori state, x̂k−1|k−1.

For the update stage, the magnetometer data can be rotationally corrected with the

Euler outputs of the Kalman filter

Hx

Hy

Hz

 =

cosϕkf sinϕkfsinθkf −sinϕkfcosθkf

0 cosθkf sinθkf

sinϕkf −sinθkfcosϕkf cosϕkfcosθkf

hx

hy

hz

 (3.18)

where hx, hy, and hz are the magnitudes measured by the magnetometer and Hx, Hy, and

Hz are the rotationally corrected magnitudes. The values ϕkf and θkf are obtained from the

Kalman filter. The magnetometer heading input, yk, is then obtained by:

yk =

0

0

atan2(Hy, Hx)

 (3.19)

30

The measurement model, Hk, is simply equation 3.8. The process to obtain the measurement

noise, Rk, is

Mϕθ =

 0 az
a2y+a

2
z

− ay
a2y+a

2
z

−
√
a2y+a

2
z

a2x+a
2
y+a

2
z

axay

(a2x+a
2
y+a

2
z)
√
a2y+a

2
z

axaz
(a2x+a

2
y+a

2
z)
√
a2y+a

2
z

 (3.20)

where ax, ay, and az are the accelerometer readings and Mϕθ is an intermediate value used

to clarify equations. The covariance of pitch and roll can be found as

σ2
ϕθ =Mϕθ

σ2
ax 0 0

0 σ2
ay 0

0 0 σ2
az

MT
ϕθ (3.21)

where σax , σay , and σaz are the variance of each accelerometer axis. The variance of the

magnetometer based heading can be found as

Mψ =

[
− Hy

H2
x+H

2
y

Hx

H2
x+H

2
y

]cosθkf sinθkfsinϕkf cosϕkfsinθkf

0 cosθkf sinθkf

 (3.22)

σ2
ψ =Mψ

σ2
hx

0 0

0 σ2
hy

0

0 0 σ2
hz

MT
ψ (3.23)

where Hx and Hy are from equation 3.18 and θkf and ϕkf are from the Kalman filter Euler

output. The value Mψ is an intermediate value used to clarify equations. The variance of

noise along each magnetometer output are represented as σ2
hx
, σ2

hy
, and σ2

hz
. Measurement

noise matrix, Rk, can finally be generated

Rk =

σ2
ϕθ[1][2] 0 0

0 σ2
ψ 0

0 0 σ2
C

 (3.24)

31

where σ2
C is set to 10−5. The variable σ2

ϕθ[1][2] represents either of the opposite diagonal

elements of σ2
ϕθ. The filter is initialized to

x̂0 =

[
1 0 0 0

]T
(3.25)

P0 =

10−5 0 0 0

0 10−5 0 0

0 0 10−5 0

0 0 0 10−5

(3.26)

The following chapter discusses the collection of initial profiling information collected

and its analysis. It then describes the architecture targeted during acceleration. It then

describes the low level steps taken to accelerate the chosen PDR component. It concludes

with the system level restructuring done to remove data dependencies between the CPU and

GPU.

32

Chapter 4

Acceleration of the Unscented Kalman Filter

This chapter first covers the results of profiling the software implementation of PDR

with Valgrind tools. The architecture targeted by the Valgrind simulations and GPU code

design is discussed. Its memory architecture determines the scale of the overheads incurred

by the CPU when starting a job on the GPU. The memory architecture of the GPU and

arrangement of its cores impact the degree of parallelism achievable and the way data is

handled within the UKF kernel.

4.1 Profiling Results

The first step in determining what portions of a program to accelerate is to analyze

it with a software profiler. To this end, the PDR system code was run through Callgrind

with Cachegrind enabled. For the purpose of hardware acceleration, the inclusive cost of a

function is the metric of interest. This is the number of CPU clock cycles spent inside of a

function and each of its child functions.

The top results by inclusive cost are shown in Table 4.1. The values for step detection

and SLE are also included to show their relative impact on performance. Immediately clear

from table is that heading estimation consumes 83.75% of the processor’s clock cycles. Most

of this is spent within the UKF. Additionally, most UKF cycles are spent in the state

transition and measurement functions which implement equations 3.15 and 3.8 respectively.

With these results in mind, the UKF is the clear choice to investigate for acceleration.

The bulk of the operations performed in the UKF are matrix multiplications. These accel-

erate well as each element of the result can be calculated independently of each other with

33

Function Name % of Total Cost # of Executions Component

UKF 48.43 63,909 Heading
Kalman filter 35.32 261,999 Heading
UKF::Predict 23.26 63,909 Heading
UKF::Correct 18.97 63,909 Heading

UKF::StateTransitionFunction 16.45 575,181 Heading
UKF::MeasurementFunction 9.28 575,181 Heading

ReadSensors 9.06 1,763,721 System
UKF::CalculateR 2.92 63,909 Heading
UKF::SigmaPoints 2.47 127,818 Heading
Step Detection 0.69 261,999 Step Detection

SLE 0.6 997 SLE

Table 4.1: The top Callgrind results sorted by their inclusive cost. SLE and step detection
costs are included for reference.

an identical series of operations. This means that, each of these elements can be calculated

in parallel on the GPU by leveraging their data parallelism. The state transition function

will map nicely to the GPU as it operates independently on each sigma point. Once the Fk

matrix is constructed, each element of each sigma point can also be calculated independently.

The measurement function operates on each sigma point independently like the state transi-

tion function, but the process to calculate each element within a sigma point is substantially

different. So, data parallelism cannot be exploited within a particular sigma point but can

between discrete sigma points. If handled carefully, the matrix inversion from equation 2.19

can be calculated completely in parallel.

Overall, the UKF maps quite well to a GPU except for the calculation for Rk. This

calculation appears to contain many matrix operations but the reduced form of each of its

elements shows the minimum required operations exhibit no data level parallelism.

In order to run correctly with Callgrind, the code was compiled with the flags -g -O1.

The flag -g adds in code for debugging. This slows down the code for normal runs, but also

allows Callgrind to determines what instructions belong to which functions. The -O1 flag is

used to perform a small amount of optimization. Generally, this optimization is not required

34

to use Callgrind effectively. Due to some unknown quirk with the CPU architecture, the

results were unusable if this was not included.

4.2 Target Architecture

To take an informed approach to our selection of hardware acceleration strategies, we

first examine our target architecture. For the purpose of development, NVIDIA’s Jetson

Nano was selected. The Jetson uses NVIDIA’s X1 system on a chip (SoC). This means the

CPU and GPU are on the same piece of silicon which allows for faster communication than

a typical architecture. The Jetson’s CPU is made up of four ARM Cortex -A57 cores, each

with a 48KB L1 instruction cache and 32KB L1 data cache, and a unified 2MB L2 cache. Its

GPU is an implementation of NVIDIA’s Maxwell architecture with four regions of 32 cores.

A diagram of the full SoC can be seen in Figure 4.1. The CPU complex is shown in purple

while the GPU is shown in green.

The internal layout of the Maxwell GPU is shown in Figure 4.2. The light green blocks

are compute cores which handle up to single precision or 32-bit floating point operations. The

dark green blocks are load store units which handle interaction with the memory hierarchy.

The green blocks are special function units (SFU) which perform operations like sin() and

cos() on 32-bit floating point values. The light blue blocks are data caches, instruction

caches, instruction buffers, and 96KB shared memory in order of first appearance from top

to bottom. The dark grey represents the 32-bit registers associated with a block. The orange

and dark orange blocks handle instruction scheduling and dispatching. These are equivalent

to the control units from Figure 2.2. The yellow block is the Polymorph Engine which is

designed specifically for graphics rendering tasks and is irrelevant to this work. The dark

blue blocks are texture units which are designed to wrap textures onto 3D meshes and are

also irrelevant for this work.

35

Figure 4.1: NVIDIA’s Jetson Nano Architecture[22]

Each of the four regions in the GPU can manage up to 8 computational blocks at a

time. So, the SoC’s GPU can support up to 32 blocks of up to 32 parallel threads at once.

For the purpose of this work, the 32 threads per block is the more important limit.

4.2.1 GPU Memory Architecture

Several types of data memory exist within the X1 SoC GPU’s memory model. From

highest to lowest these are the register file, shared memory, L1 Cache, and global memory

where higher means a shorter access time. This is described in Figure 4.3.

The register file is the working space for the cores. Each thread is assigned some block

within the register file where it can store its local variables. Values within the register file

36

Figure 4.2: NVIDIA’s Maxwell Architecture[21]

cannot be shared with other threads without first being transferred to a lower memory level.

So, it is advantageous to design threads such that they maximize the work done before

needing to share memory with other threads.

The shared memory is the working space for a block of threads. Shared memory is

designed to allow for parallel access by threads in a block without generating conflicts. This

is the fastest memory accessible across threads but data cannot be shared across blocks of

threads without first being transferred to a lower memory. Kernels should be designed to

complete as much work in shared memory as possible before sharing across blocks.

The L1 cache is equally as fast as shared memory but is restricted to storing data

which is declared as constant. This is not useful to a system like PDR without substantial

architectural changes to the design described in Figure 3.1.

37

Global Memory

Register
File

L1 Cache

L2 Cache

Register
Block

Shared Memory L1 Cache

ALU

ALU ALU ALU ALU

Register
Block

Register
Block

Register
Block

GPU Block

Register File

CPU GPU

Figure 4.3: The memory organization of NVIDIA’s Jetson Nano.

Global memory is the highest level of memory which is accessible by both the GPU

and CPU. Regions within this level are assigned to be accessible by the GPU or CPU but

not both. For data to be transferred between the CPU and GPU, it must be copied from a

region owned by one into a region owned by the other. This copy, combined with the cost of

sending memory up and down the two memory hierarchies, is the source of a large overhead

for GPU kernels.

By default, CUDA forces the CPU to handle data transfers between discrete regions of

global memory. This prevents the memory manager from sending, or ”paging”, the CPU data

out to the hard drive during a copy operation. However, this also prevents the CPU from

doing any useful work while the memory is being copied and further exaggerates the overhead

of copying memory between processors. This explains the importance of transferring memory

with page locked CPU regions which are allocated with cudaMallocHost(). The CPU can

then continue doing work while the DMA controllers handle the memory copy.

38

4.3 Software Restructuring

If the program were left structured the same as described in Figure 3.1, which is repeated

below, the CPU would still be required to wait for data to be copied to the GPU, the GPU

to evaluate the UKF, and the resulting output to be copied back to the CPU. In order to

remove this dependence, the software architecture was changed at a system level. Figure 4.4

shows the system level results of the restructuring. The chart is segregated into CPU and

GPU tasks with asynchronous DMA memory transfers bridging the gap.

Figure 3.1: System Architecture for Integrating PDR Components

The Iterate UKF block described in Figure 4.4 can be seen in Figure 4.5. This shows the

divide between the calculation for Rk and the rest of the UKF. The numbers in parenthesis

correspond to the equations which are evaluated in the block. The left side is iterated over

in the CPU until a step is detected. The data is then copied to the global memory for the

GPU to use. The GPU then iterates over the right side until no data remains.

To accomplish this, the rotationally corrected magnetometer heading from 3.19, the

gyroscope readings, and the diagonal of the measurement noise matrix, Rk, were stored in

39

Read Sensor
Data

Iterate Kalman
Filter

Yes

No

New
Magnetometer

Data?

Calculate
Magnetometer
heading and Rk

No

Yes

Step Detected?

Read previous
step heading

Calculate and
store new Step

Length

Delete Used
Data

Store and Time
Stamp UKF

inputs

Collect and Time
Stamp

Acceleration

Queue Data
copies and UKF

Kernel

Update position
from previous

step data

Read UKF
Inputs

Iterate UKF

Store Output

Yes

No

Data
Remaining?

Rotationally
correct and

average outputs

DMA Copy Input
Data

DMA Copy
Output Heading

CPU GPU

Figure 4.4: The PDR system after restructuring to decouple the CPU and GPU

CPU page locked memory when the UKF would originally have been iterated. When a step

is detected, all the values are copied asynchronously to the GPU and the ones corresponding

to the step are deleted from CPU memory. A modified version of the UKF kernel is queued

followed by a copy of the step’s heading into CPU memory. After these are queued, the CPU

continues while the GPU concurrently iterates the UKF. The output of the SLE algorithm is

stored instead being used as the heading for the step is still being calculated in the GPU. The

next time a step is detected, the heading from the previous step is waiting in CPU memory

due to the asynchronous memory copy. This value is then combined with the previous SLE

output to update the position. This restructuring means there is an additional single step

delay in the update in position.

The UKF kernel was modified to iterate over all of the data instead of terminating after

a single iteration. The output from each iteration is stored in global memory instead of

shared memory because CUDA does not allow allocation of shared memory of a dynamic

40

Rotationally Correct
Magnetometer Data

(3.18)

Kalman Output Gyroscope Data

Accelerometer
Data

Calculate Rk
(3.24)

UKF Update
(2.15) - (2.21)

Next State
(2.20)

Heading for
time step k

(2.15)

Magnetometer
Data

Next Covariance
(2.21)

Previous
Covariance Previous StateGyroscope Data

Calculate Qk
(3.17)

Next State
Estimate

(2.13)

Covariance of
State Estimate

(2.14)

Next State
Estimate Sigma

Points
(2.12)

UKF Predict

Calculate Fk
(3.15)

Magnetometer
Data and Rk

G
lo

ba
l M

em
or

y

CPU GPU

Figure 4.5: The UKF Iterate block broken between CPU and GPU.

size. After all iterations are complete, the outputs are rotationally corrected in parallel to

match the orientation of the first UKF iteration. They are then summed and averaged in

a binary fashion similar to the process used to average sigma points. Once this averaging

is complete, the resulting state is stored in global memory to be copied to the CPU. This

modification has the additional benefit of allowing intermediate state and error covariance

data to be kept in shared memory instead of global memory after each iteration.

The next chapter will begin by describing how performance gain from the GPU acceler-

ation was collected. The results will then be listed and discussed. The process of simulating

the original CPU code for other embedded processing systems will be described and results

41

analyzed. An argument will be made for the usefulness of this work for the simulated systems

in light of differences in GPU design.

4.4 Acceleration

Inspection of the generic equations for a UKF, equations 2.12 through 2.21, and the

chosen implementation, equations 3.15 through 3.24, shows that most operations are matrix

multiplication and addition. These types of operations exhibit a high degree of data level

parallelism, so they tend to map nicely to a GPU. Additionally, the state transition and

measurement models are both evaluated nine times over a different sigma point each time

they appear. This presents an added layer of exploitable data level parallelism.

4.4.1 Thread Geometry

In order to decide on the quantity and arrangement of threads, the maximum amount of

data parallelism in the UKF was found. The propagation of sigma points through the state

transition function is the step where this occurs. This operation exhibits 36 way parallelism

as the calculation of each element of each sigma point is data independent from all other

elements. The choice was made to exploit only half of this parallelism in order to keep all

calculation within a single 32 thread block. This way costs from data synchronization can

be restricted to the shared memory. We elect to split the parallelism through the sigma

points. In other words, the first two elements of each sigma point are calculated first, and

the second two elements are calculated second. This results in an arrangement of two rows

of nine threads.

This arrangement presents a problem when producing a matrix which has fewer than 18

elements but is larger than two in each dimension. If the matrix has a dimension of size one

or two, then the thread row number can be used as that dimension’s index and the thread

column number can be used as the index for the other dimension. If both dimensions are

larger than two, the use of thread indices becomes more complex. Every case in which this

42

occurs produces a matrix with, at most, length of four in its longest dimension. To deal

with this case, the threads were mapped into the elements of a four by four matrix using

Algorithm 1 where i2x9 and j2x9 represent the original thread row and column indices. The

Algorithm 1 Thread Mapping
i4x4 ← i2x9 ∗ 2
j4x4 ← j2x9 (mod 4)
if j2x9 ≥ 4 then

i4x4 ← i4x4 + 1

variables i4x4 and j4x4 represent the thread row and column indices in their transformed

arrangement. This operation is shown visually in Figure 4.6. Now, i4x4 and j4x4 can be used

1

2

3

4

1 2 3 4

1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

1 2 3 4

5 6 7 8

10 11 12 13

14 15 16 17

18

9

9

18

j4x4

1 2 3 4 5 6 7 8 9

1

2

j2x9

j4x4

i2x9

Figure 4.6: Mapping of a block of 2x9 threads to a block of 4x4 threads.

within the threads to simulate the indices of a four by four thread arrangement. Care must

43

Measurement Period CPU Only GPU Acceleration % Slower

Average Per Step (ms) 0.29301 1.5901 442.68%
Total Time (s) 18.73 101.62 442.55%

Table 4.2: PDR Execution Time for GPU port with discrete kernel call per equation.

be taken to when using these as the fifth column and last column of threads map to the

same set of indices.

The degree of leveraged parallelism in the UKF varies from step to step. Normally,

this is largely handled by creating a separate kernel each time this occurs. For the UKF,

this would mean a separate kernel for each equation queued sequentially by the CPU with

memory transfers at the beginning and end of the series. Each of these queues in the CUDA

API comes with a CPU overhead that together take more time than the CPU performing

the UKF calculations itself. This is shown in Table 4.2 where the first column represents the

execution time of PDR without the GPU code and the second is of GPU code with discrete

calls. The third column shows that the cost of several kernel calls per UKF iterations make

this approach impossible.

In order to deal with this problem, IF statements were used to effectively disable un-

needed threads within one kernel. This traded the overhead from each CPU kernel call per

UKF iteration for the overhead of executing an IF statement on the GPU. The one remain-

ing kernel call for each UKF iteration was further removed by the system reorganization

discussed in the previous section.

While conditionals can cause execution path divergence when not all threads take the

same execution path, a single IF statement can be considered a special case. When divergence

occurs, the different execution paths are each iterated over sequentially. Since a single IF

statement normally simply skips ahead when the condition is not met, there is no other

divergent path to concatenate with the path taken by the other threads. Figure 4.7 shows

Figure 2.3 modified to include this special case of thread divergence. Some threads execute

along the first path ignoring their results like before, but there is no additional execution path

44

All
Threads

Condition

Path 1

All
Threads

All
Threads

Condition

All
Threads

CPU & Coherent
GPU Block

Divergent
GPU Block

Path 2

Path 1 O
n Threads

Path 1 O
ff Threads

Path 2 O
n Threads

Path 2 O
ff Threads

All
Threads

IF

All
Threads

O
n Threads

O
ff Threads

IF Special
Case

Figure 4.7: A special case of a divergent GPU block which can be utilized to effectively
deactivate threads.

that must also be traversed. This allows for functionally changing the number of threads

depending on how much parallelism is present.

4.4.2 Matrix Multiplication

Due to the quantity of matrix operations and the computational similarity of each, it was

advantageous to take a generalized approach to their implementation. Though certain special

cases exist which can be leveraged to further optimize computation, this approach applies to

most cases. As illustrated in Figure 4.8, each element in the result of a matrix multiplication

is independent and only needs a single row or column from each operand matrix. So, one

thread is assigned to calculate each result element of the matrix and remaining threads are

deactivated. Shared memory’s parallel data loading can be leveraged to access operands

simultaneously as well as write the final results simultaneously.

45

Left input matrix

Right input matrix

Result matrix

Figure 4.8: A description of matrix multiplication highlighting its parallelism.

A technique commonly used for loop acceleration in CPUs called loop unrolling is also

used here and throughout the UKF acceleration. When the number of iterations of a loop

is known, the cost of checking the loop condition and jumping to the beginning of the loop

can be removed by calling the loop body repeatedly. This works well for our case as the

number of multiplications performed for each result element is known. This can be seen in

Algorithm 3 where each multiplication is performed separately instead of in a loop.

A library exists within CUDA called cuSolver for generalized matrix operations on

the GPU for all NVIDIA GPU architectures. The library also performs tasks such as data

validation and work segmentation which are not required for this use case. For these reasons,

it was decided that this library should not be used. Each of the features listed constitutes a

substantial overhead for this implementation. An implementation of the matrix operations

in a single kernel also allows for all matrix results to be kept in shared memory instead of

global memory.

46

4.4.3 Sigma Point Creation

The first step in UKF is to calculate the sigma points from the state and error covariance

according to equation 2.8, which is repeated here for reference.

χi =

x̄, i = 0

x̄+
√
(L+ λ)P , i = 1 : L

x̄−
√
(L+ λ)P , i = L+ 1 : 2L

(2.8)

To do this, the Cholesky decomposition of the scaled error covariance must be calculated.

As mentioned in section 2.2.4, each element in the result depends on each result to its left

and above as well as the diagonal value in its column. So, the decomposition can be found

by having each thread in a column calculate the diagonal value. The thread corresponding

to the diagonal is deactivated and the columns calculate their respective values. The whole

column then stores its result. The algorithm proceeds from left to right to solve for each

consecutive column. Every thread in a column calculates the diagonal value to avoid needing

to pass data through the shared memory. Figure 4.9 shows which elements of the result are

solved for in each step of the algorithm. This illustrates the peak degree of parallelism seen

is three.

1

2 3

2 4 5

2 4 6 7

Figure 4.9: The results solved for in each step of the Cholesky decomposition

The four by four grid of threads then adds or subtracts the results in parallel according

to equation 2.8 to produce a 4x9 matrix of sigma points, χ̂, in shared memory.

47

The quaternions produced for each sigma point after propagation through the state

transition model do not satisfy the constraint stated in equation 3.9. However, the statistical

properties of the sigma points would be distorted or destroyed through normalization. So,

to preserve these properties, quaternion normalization is only applied to the sigma points

before the conversion to Euler angles in the measurement model and to the a posteriori

state, x̂k|k.

4.4.4 State Transition Iteration and State Estimation

In order to propagate the sigma points through the state transition function in equation

2.12, the Fk matrix must be first constructed in shared memory according to equation 3.15.

These are repeated below for reference.

χ̂k|k−1 = Fk[χ̂k−1|k−1] +Bkuk (2.12)

Fk = cos(v) ∗ I + sin(v)

v
∗ 1
2

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

(3.15)

In order to accomplish this in parallel, the arrangement of the gyroscope data sent to the

GPU was changed to allow for convenient parallel access. The new ordering, [0, wx, wy, wz, wy, wx]

enables each thread to access the correct value for the Fk matrix by simply summing their

4x4 indices. The value v is calculated separately in each thread according to equation 3.16.

The full algorithm for generating matrix Fk is described in Algorithm 2. The value d rep-

resents the input gyroscope data for each axis where wx, wy, and wz are the gyroscopes

measurements around each respected axis. The variable v represents the length of the rota-

tion vector. The variable F represents the state transition model, Fk being constructed.

48

Algorithm 2 Constructing Fk
Require: d = [0, wx, wy, wz, wy, wx]

v =
√
d[1]× d[1] + d[2]× d[2] + d[3]× d[3]

F [i4x4][j4x4]← d[i4x4 + j4x4]× sin(v)÷ v ÷ 2
if (j4x4 = i4x4 − 1) & j4x4 ̸= 0 then

F [i4x4][j4x4]← −F [i4x4][j4x4]
if i4x4 = j4x4 then

F [i4x4][j4x4] = cos(v)

Now the sigma points can be state transitioned by simply multiplying the Fk matrix

by the χ̂k−1|k−1 matrix of sigma points. As described previously, the first two elements of

each point are calculated in parallel followed by the second two elements. This process is

shown in Algorithm 3 with the loops unrolled. The F array represents the state transition

model just constructed. The arrays χ̂k−1|k−1 and χ̂k|k−1 represent the matrix of sigma points

before and have propagation though the model. The variable acc simply accumulates the

intermediate result.

Algorithm 3 State Transition

acc = F [i2x9][0]× χ̂k−1|k−1[0][j2x9]
acc = acc+ F [i2x9][1]× χ̂k−1|k−1[1][j2x9]
acc = acc+ F [i2x9][2]× χ̂k−1|k−1[2][j2x9]
χ̂k|k−1[i2x9][j2x9] = acc+ F [i2x9][3]× χ̂k−1|k−1[3][j2x9]
acc = F [i2x9 + 2][0]× χ̂k−1|k−1[0][j2x9]
acc = acc+ F [i2x9 + 2][1]× χ̂k−1|k−1[1][j2x9]
acc = acc+ F [i2x9 + 2][2]× χ̂k−1|k−1[2][j2x9]
χ̂k|k−1[i2x9 + 2][j2x9] = acc+ F [i2x9 + 2][3]× χ̂k−1|k−1[3][j2x9]

The state estimate is then weighted and accumulated in a binary fashion. In other

words, the same element of each sequential pair if sigma points are weighted according to

Wm, summed, and stored in shared memory. Then half the threads are deactivated and each

pair of the results are summed and stored in shared memory. This continues until all values

have been accumulated into a single vector representing the a priori state estimate x̂k|k−1.

49

4.4.5 Error Covariance

Calculating the a priori error covariance involves equations 2.14 and 3.17 which are

repeated for reference.

Pk|k−1 =
2L∑
i=0

W c
i [χ̂i,k|k−1 − x̂i,k|k−1][χ̂k|k−1 − x̂k|k−1]

T +Qk (2.14)

Qk =

−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

σ2
wx 0 0

0 σ2
wy 0

0 0 σ2
wz

−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

T

(3.17)

The value Qk would be quite cumbersome to obtain through building each of its base

matrices and multiplying them together. Instead, the symbolic form of QK was solved for

and examined for exploitable patterns. When the variance of gyroscope noise on each axis

is set equal, two cases appear can be described as:

Qij,k =

−σ2

wx̂i,k−1|k−1x̂j,k−1|k−1 : i ̸= j

σ2
w(|x̂k−1|k−1|2 − x̂2i,k−1|k−1) : i = j

(4.1)

This can alternately be represented as

σ2
w

(
I × x̂Tk−1|k−1 × x̂k−1|k−1 − x̂k−1|k−1 × x̂Tk−1|k−1

)
(4.2)

where x̂k−1|k−1 is a column vector, I is the identity matrix, and σ2
w is the noise associated

with all gyroscope axes.

A similar approach to the one used with Qk was taken to clarify the calculation of

the summation in equation 2.14. First the state estimate, x̂k|k−1, was subtracted from each

column of χ̂k|k−1 and the result placed into shared memory. When one thread is assigned

50

to each result element of the error covariance matrix, their indices determine which two

rows of χ̂k|k−1 they multiply together. So, the four by four thread arrangement was used

to iterate down the sigma point matrix and weight vector W c. Each iteration the values

from the appropriate two rows and the weight vector were added together and accumulated.

The results after completing the iterations were stored back into shared memory. The final

computation for the error covariance is shown in Algorithm 4. The Gaussian noise for

each axis of rotation is represented by σ2
w. The variables x̂k−1|k−1 and x̂k|k−1 represent

previous state and state estimate respectively. The center point of the sigma points after

propagation through the state transition model are represented as χc. The second order

weights determined at initialization are represented by W c. The variable acc accumulates

the value of a particular result in the error covariance of the estimate matrix, P .

Algorithm 4 Error Covariance
acc← 0

▷ Find Q
acc← −σ2

w × x̂k−1|k−1[i4x4]× x̂k−1|k−1[j4x4]
if i4x4 = j4x4 then

while itr1 ≤ 4 do
acc← acc+ x̂k−1|k−1[itr1]

2

▷ Find ”Center” of sigma points
χc[i2x9][j2x9]← χk|k−1[i2x9][j2x9]− x̂k|k−1[i2x9]
χc[i2x9 + 2][j2x9]← χk|k−1[i2x9 + 2][j2x9]− x̂k|k−1[i2x9 + 2]

▷ Accumulate Error Covariance
while itr2 ≤ 9 do

acc← acc+W c[itr2]× χc[i4x4][itr2]× χc[j4x4][itr2]
P [i4x4][j4x4]← acc

51

4.4.6 Measurement Model

Equation 3.8 describes the measurement model of the UKF implementation. This is

repeated for reference.

ϕ

θ

ψ

 =

atan2(2(qwqx + qyqz, 1− 2(q2x + q2y))

asin(2(qwqy − qzqx))

atan2(2(qwqz + qxqy, 1− 2(q2y + q2z))

 (3.8)

Unlike most of the calculations in the UKF, the rows in the result are each calculated

substantially different from each other. Though some similarity between the calculations does

exist, no easy way was found to create a data access pattern to enable parallel computation

between rows. So, for propagating the sigma points through the measurement model, the

decision was made to calculate each row in parallel with a set of nine parallel threads. Though

code could have been written to attempt to exploit the inter-row calculation similarity, the

added complexity of data access would have likely offset most or all of the potential speedup.

When the initial state is near ±π radians in any axis in the measurement space, an

additional step must be taken to rotationally correct the results. Otherwise, computational

problems arise. Though the points are close in space, the result of the measurement model

conversion may place one at −π radians and the others at +π radians. This discrepancy

between reality and the numerical representation causes substantial impact primarily when

the difference between predicted heading, ŷk|k−1, and measured heading, yk, is found in

equation 2.21. To correct this potential error, the result of the central sigma point, y0,k|k−1,

is loaded into all threads. If a discrepancy greater than π exists, the output value found by

that thread is corrected by a full rotation of 2π in the appropriate direction.

So to calculate the measurement model output, each sigma point is loaded into a thread

and normalized to produce accurate Euler angles. Then the thread calculates and stores

each element of the result in shared memory. This result is then compared to the central

52

sigma point and rotationally corrected as appropriate. The results are then accumulated

using the same binary approach described at the end of section 4.4.4 to find x̂k|k−1.

4.4.7 Matrix Inversion

To find the Kalman gain, Kk, as described in equation 2.19, the inverse of the three by

three matrix Pȳkȳk must be found. The standard approach is to set the matrix to be inverted

equal to the identity matrix. Then identical row operations are performed on both sides

until original matrix is in the form of the identity matrix. The matrix which began as the

identity matrix is now the inverse of the original matrix.

The row operations for the inverse process can be described in a standard way. The

elements in the first row, or reference row, are all divided by the first element in the row.

This produces the first ”one” of the final identity matrix. The reference row is then scaled

and subtracted from the other rows to produce zeros in the remaining elements of the first

column. This series of operations is repeated with each row as the reference row until the

inverted matrix is produced.

As the matrix to be inverted is always three by three, the operation can easily be

parallelized to initially use all 18 available threads. Each thread is assigned a location

within the original matrix or result matrix. The elements of all rows are divided by the

first element from its row. Every thread in a row which is not the reference row multiplies

its value by the element in its column from the reference row. All of the results are then

stored in shared memory and column one’s threads are disabled. This is repeated with

row two as the reference and then column two is deactivated. Then finally with row three

as the reference row. Algorithm 5 describes this full process. The matrix Inv represents

the initial matrix concatenated horizontally with the identity matrix to produce a matrix

with three rows and six columns. The variable val represents the intermediate results to be

stored at each location. The indices i and j represent a mapping of thread IDs to a three by

53

six arrangement such that an independent thread is assigned a unique location in the Inv

matrix.

Algorithm 5 3x3 Matrix Inversion

Ensure: Inv[3][6]← [Pȳkȳk , I]
val← Inv[i][j]÷ Inv[i][1]
if i > 1 then

val← Inv[i][j]− val × Inv[1][j]
Inv[i][j]← val
if j ̸= 1 then

val← Inv[i][j]÷ Inv[i][2]
if i ̸= 2 then

val← Inv[i][j]− val × Inv[2][j]
Inv[i][j]← val
if j ̸= 2 then

val← Inv[i][j]÷ Inv[i][3]
if i ̸= 3 then

val← Inv[i][j]− val × Inv[3][j]
Inv[i][j]← val

4.4.8 Measurement Noise

The measurement noise matrix, Rk, presents a series of matrix operations in equations

3.20 through 3.24 which appear to provide ample opportunity for data parallelism. To

determine if this is actually the case, the elements of Rk were solved for symbolically with

the variance noise values assumed to be the same for each axis in a sensor. The results are

shown in equations 4.3 and 4.4.

σ2
θϕ =

(azayax − azay)σ2
a(

a2z + a2y
) (
a2z + a2y + a2x

)√
a2z + a2y

(4.3)

σ2
ψ =

Hyσ
2
h

H2
x +H2

y

(
cos2 (θ) + sin2 (θ) + sin2 (ϕ) sin2 (θ) + sin2 (ϕ) cos2 (θ) + cos2 (ϕ)

)
(4.4)

This reveals that there is little exploitable data parallelism in either of these element’s

calculations. So, mapping these operations to the GPU would likely result in a loss in

54

performance. This portion of code was left to the CPU to calculate but was modified from

the original series of equations to their reduced form.

4.4.9 Remaining Operations

With the exception of Rk, the remaining equations, 2.17 through 2.21, were solved

using the matrix multiplication approach already described. Equations 2.17 and 2.18 were

solved using the same approach described in section 4.4.5for error covariance but without

the construction of matrix Qk.

Equation 2.20 was solved for x̂k|k using the matrix multiplication strategy where the right

matrix is simply a column vector. Each element of this column vector is first obtained by

subtracting the measurement estimate, ˆyk|k−1, from the rotationally corrected magnetometer

heading, yk. Then the result of the multiplication is added to x̂k|k−1 and normalized to find

the a posteriori state, x̂k|k.

Equation 2.21 is solved by applying the matrix multiplication strategy twice and sub-

tracting the result from Pk|k−1 to find the a posteriori error covariance matrix, Pk|k.

Next chapter will cover the testing setup used to validate and profile PDR system

code. It will examine the results of acceleration and make performance predictions for other

platforms more suited for a real-world PDR platform.

55

Chapter 5

Experimental setup and procedure

This section will describe the testing configurations used and present their relevant in-

termediate results. First, the data set and the data preprocessing steps are described. Then,

the validation process for each PDR component and the system as a whole will be discussed.

The chapter concludes with a description of accelerated code testing and a simulation of

other platforms of interest.

5.1 Input Data Set

The tests in this chapter were performed using the RuDaCoP[9] data set which was

created specifically for development of pedestrian navigation systems. Each trial in this set

was collected from a unique participant with sensors worn or carried in a variety of ways.

Each participant walks a unique closed loop path in one of several different flat environments.

The ground truth data was collected from a pair of foot mounted inertial measurement units

(IMUs) and was used to generate the ground truth trajectory information. Each trial is closed

loop such that the end point is the same as the starting point. In addition to this ground

truth data, two sets of accelerometer, gyroscope, and magnetometer data were collected from

smartphones placed in a variety of positions consistent throughout the run. Trials selected

for use from this data set were limited to those which are from smartphones carried in a

backpack and include trajectory data rated as high accuracy.

Sensor data was preprocessed according to each component’s source[1][4]. For step

detection and stride length estimation, the gravitational acceleration was subtracted from

56

the magnitude of acceleration

at =
√
a2x,t + a2y,t + a2z,t − g (5.1)

where a2x,t, a
2
y,t, and az,t are the accelerometer readings and g is gravitational acceleration.

This was then smoothed with a fourth order Butterworth digital low-pass filter of cutoff

frequency 0.2π. For heading detection, five levels of wavelet decomposition were applied to

each output of the gyroscope and accelerometer to eliminate high frequency noise[11] for

heading estimation.

Magnetometer data was preprocessed to approximate a hard iron calibration. A true

hard iron calibration requires rotating the sensor at least one full rotation along each axis.

The midpoint of the two outer most calibration readings is then used as a constant offset for

every new reading. In these trials, only the two horizontal axes go through a full revolution,

so they can be calibrated in two dimensions. The axis orthogonal to the ground was still

calibrated in this manner without a full revolution to prevent its value from dominating the

rotational correction step of heading estimation.

5.2 System Validation

In order to determine if the PDR system was implemented correctly, the performance

of each component was validated followed by the system as a whole. A component was

considered validated if it performed above some performance threshold for the majority of

randomly selected trials.

Information from the data set regarding ground truth and sensor synchronization was

inadequate to ensure perfect synchronization for all components to be tested independently.

As such, the trials used for evaluation of SLE and heading are the subset of trials for which

step detection detected the same number of steps as the ground truth. A subset of the trials

57

was constructed from those which met the performance threshold for all three components.

The system was considered validated if it performed well in most of this subset of trials.

5.2.1 Step Detection

For each trial used in testing, the SLE algorithm was first trained on the data until

convergence. While an ideal case would include unique trials for training and evaluation,

each participant only contributes one trial to the data set. This led to a focus on trials

including many more steps than the 50 typically required for convergence. A set of 74 trials

were selected from runs which contained data from a smartphone placed in a backpack.

Step detection performance was evaluated as the difference between detected steps and

steps which appear in the reference. The threshold of < 1.5% from the ground truth data

was chosen. This is represented as

|SR − SD|
SR

< 1.5% (5.2)

where SR and SD are the number of steps in the reference and from the step detection

algorithm respectively. The trials which converged make up 66 of the original 74. The

percent error of these trials are shown in Table 5.1. This distribution shows that 78% of trials

were above the threshold set. As this is a clear majority of the trials, the implementation of

the step detection algorithm was considered correct.

The trials which did not meet the threshold were examined for explanations for the

higher error. Each of these trials had regions of the acceleration signal which was not

consistent with a natural gait or the rest of the signal in the trial. These either occurred

often enough to prevent convergence or cause the prediction window to fall on a peak two

or more steps ahead. Once this poor prediction occurs, the algorithm is unlikely to recover

and tends to predict peaks progressively further into the future.

58

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40
36

10

6

3 4 4

1 0
2

Percent Error %

N
u
m
b
er

of
T
ri
al
s

Figure 5.1: Distribution of percent error from 66 step detection trials.

5.2.2 Stride Length Estimation

SLE performance was evaluated as RMS error of the difference in calculated step length

and the ground truth position displacement during a step. The error threshold was chosen

as < 0.02 RMS error and the convergence criteria chosen as three consecutive steps within

4% of ground truth. This was only calculated for the steps which occurred after the LMS

training reached convergence. This can be described as

√√√√ N∑
n=1

P+
n − P−

n − Ln

N
< 2% (5.3)

where P−
n and P+

n represent the starting and ending positions of the step, Ln represents the

SLE calculation for the step, and N represents the number of steps.

59

Of the trials used to validate step detection, 19 counted the correct number of steps.

These trials are used for SLE validation as they are the most likely to perform as well as

ground truth data. The results, shown in Figure 5.2, show that 63% of the trials converged

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 >0.045
0

1

2

3

4

5

6

7

4

5

3

0

1

0 0

1 1 1

RMS Error in Meters

N
u
m
b
er

of
T
ri
al
s

Figure 5.2: Distribution of RMS error from 19 step detection trials. Three trials failed to
converge.

within the accuracy threshold. Though the results were less than stellar, they were deemed

adequate to prove the algorithm works.

Three of the trials did not converge during training. The error for two of the trials never

stabilized which is likely due an erratic walking pattern caused by terrain. These could be

rectified with a looser convergence criterion. The third trial began exponential divergence

shortly after the trail began. This could potentially be fixed by further tuning the learning

rate or introducing a decaying learning rate. However, this was not the primary focus of

research so was left for potential future work.

60

5.2.3 Heading Estimation

Heading estimation performance was evaluated as RMS error between headings averaged

over a step and the direction of displacement over the step. This approximation is made to

match the implementation from the PDR system. The threshold for correctness was chosen

as < 0.03. This can be described as√√√√ N∑
n=1

(
atan2 (−∆Py,n,−∆Px,n)−

∑Hn

i=1 hi
Hn

)2

N
< 3% (5.4)

where N and n represent the total step count and step number. The values for ∆Py,n, and

∆Px,n represent the change in y and x position over step n. The number of heading samples

in step n is represented by Hn and a particular heading sample is represented by hi.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 >0.08
0

1

2

3

4

5

6

7

2

5

3 3

0

1 1

0

RMS Error in Radians

N
u
m
b
er

of
T
ri
al
s

Figure 5.3: RMS heading error distribution from 16 step detection trials. One trial failed to
track.

61

5.3 Acceleration Test Setup

To find the speed-up of the system after acceleration, timing functions were introduced

into the code. These timing functions were placed to measure the time spent on each

component but exclude the reading from and writing to data files. The timing information for

the heading component was collected in two sections. One section includes the magnetometer

heading and UKF blocks of Figure 3.5, while the other section surrounds the remaining

blocks. The timing block for SLE also includes the portion which handles the system level

combination of heading readings and stride length when a step is detected.

In the accelerated form of the code, the UKF block is replaced by code which evaluates

to find the measurement noise matrix, Rk, and stores it in memory alongside the other UKF

inputs. The timed region for stride length estimation has the system level heading code

replaced with the retrieval of the previous heading from memory and queuing of CUDA

tasks. The system level code refers to the portion responsible for rotational correction and

averaging of UKF heading outputs. This is no longer required as it is handled within the

kernel.

The choice to exclude data files in analysis was made because the way data is accessed in

a file is different than how it would be accessed in a real system. In a real system, sensor data

is always accessed in the same way and takes the same number of clock cycles to retrieve.

As mentioned in section 2.3.3, data in memory is moved quite differently. Instead of being

moved a single piece at a time, it is moved in varying sized blocks. So, when the sample

data is accessed in a file, a large chunk is paged into global memory. Then, a smaller section

is moved from there up to the L2 cache from which a small section is moved into L1 cache.

Finally, the requested piece of data is moved into a register for use. However, when the

next data point is accessed, it likely was already moved into the L1 cache which means a

substantially shorter access time. The result is an access time for the data point which is

orders of magnitude faster than the previous one. As these two access patterns are quite

62

different, the timing information from testing would not be analogous to reality and would

only hinder analysis of other system components.

Once these modifications were complete, the code was compiled with only the optimiza-

tion flag, -O1, to be consistent with the code used for Callgrind simulations. The compilation

did not include the debug flag, -g, as it would needlessly slow execution and was accounted

for by Callgrind.

The original system and accelerated system were run several times to account for the

potential effects of the system running interfering with results. The execution time of the

CUDA kernel was found by using NVIDIA’s nvprof profiling tool with its default settings.

The tool simply tracks calls through the CUDA APIs to measure and average execution

times.

5.4 Simulation of Other Platforms

This section will discuss the modeling of performance for boards which are more appro-

priate for our targeted use case than the Jetson Nano. The Jetson Nano is approximately 7

cm by 9 cm and has an order of magnitude greater performance in both CPU and GPU than

what is required for real time operation. Because the target use case is something worn on

the torso, a device with a much smaller footprint and lower system performance is desirable

in a real system.

In order to predict the performance on different systems, a simulation model needs to be

generated and validated for accuracy. For this purpose, Callgrind with Cachegrind is used to

simulate the Jetson board and its cache system. The relevant results of this simulation are

the inclusive clock cycle count estimates for each component of the full PDR system. From

this estimate and knowledge of the board’s clock frequency, we can produce an estimate of

total run time. This can be compared with the actual measured run time. If these results are

sufficiently similar, the simulation can then be used to estimate the cycle count on systems

with the same or similar processing architecture but different cache arrangements.

63

Unfortunately, the initial run time calculated for the Jetson was about 10 seconds longer

than the actual 36 second run time. In order to generate a model which accurately predicts

the Jetson run time from simulation, several changes had to be made to the assumed values

which Callgrind provides. The equation used by default to estimate clock cycles is

Cest = Ir + 10× L1mr + 100× LLmr (5.5)

where Cest represents the clock cycle estimate and Ir represents the functions fetched. The

miss rate of the level one and last level cache are represented as L1mr and LLmr respectively.

The cache miss penalties are assumed to be 10 for the first level cache and 100 for the second

by the simulator. Because the number of instructions called and the miss rates are known for

each software component, a new set of penalties can be solved for in a system of equations

to model the memory system. These can be set equal to an estimate of the clock cycles

generated from the times runs and a knowledge of the processor operating frequency.

Clock cycles are estimated by assuming a single instruction is executed for each clock

cycle. Immediately apparent when first attempting to solve these equations, is that just the

instruction requests are too high to operate as fast as the processor. So, the simplifying

assumption was changed in light of how the processor handles pre-emptively loading instruc-

tions and that the A57 core can execute more than instructions simultaneously in limited

circumstances. Though the details of how this is accomplished are well beyond the scope of

this work, a variable representing a scaling factor was added to the Ir in order to solve for

an approximation of this behavior. The result is a set of functions of the form

Cest =
Ir
x0

+ x1 × L1mr + x2 × LLmr (5.6)

where Cest is now an the experimentally gathered estimate of the clock and x0, x1, and

x2 represent the constants to be solved for. As a system of four equations but only three

64

variables were generated, a small fudge variable, f0, was added to the equation for SLE to

represent system code not associated with it by Callgrind.

A new set of values was solved for which generated an accurate measurement without

violating any of the rules implicit from the system being modeled. The variables found are

shown in Table 5.1.

x0 1.3
x1 15
x2 150
f0 800, 000

Table 5.1: Variables solved for to more accurately model clock cycles.

5.4.1 Platform Selection

The Jetson’s processor ARM Cortex A57 based which uses the ARMv8 instruction set

architecture (ISA). The ISA is the set of instructions and other attributes the processor is

proscribed to implement. Each successive ARM processor which implements the ARMv8

ISA represents some improvements to the performance of the data path. So, the assumption

is made that older members of the ARMv8 family of processor will perform worse than or

equal to a newer member for a given program. Additionally, the ARMv7 ISA is a reduced

version of ARMv8 which only has 13 general purpose registers for computation compared

to the ARMv8’s 31 registers. This necessitates more time be spent interacting with cache

compared to ARMv8 and, consequentially, a decrease in performance if all other things are

held equal. For this reason, we consider all ARMv7 processors as generally performing equal

to or worse than the Jetson’s processor.

These two assumptions of relative performance are important when considering platform

selection. When code is run in Cachegrind, it runs as normal on the processor except

that Cachegrind intercepts any memory interactions for its own calculations. Because the

65

way code runs is not modified, the results can be still generalized in light of our relative

performance assumptions.

Systems selected for comparison are restricted to those ARM ARMv8 processor which

are older than the Jetson’s Cortex A57 and those processors which implement ARMv7. These

choices only allow for processors whose simulated cycle count will represent a lower bound

on the cycles required by the real system. In other words, the real systems are expected to

perform worse than the simulations according to the assumptions described. The selected

platforms are summarized in Table 5.2. The Pi-Zero W 2 was selected primarily due to its

Board Frequency ISA Core DataCS InstrCS L2 Cache

Jetson 1430 MHz ARMv8 A57 32 KB 48 KB 2 MB
Pi-Zero W 2 1000 MHz ARMv8 A53 32 KB 32 KB 512 KB

MVF50NN151CMK40 500 MHz ARMv7 A5 32 KB 32 KB -
SVF532R2K2CMK4 400 MHz ARMv7 A5 32 KB 32 KB 512 KB
Qualcomm 2100 Wear 1000 MHz ARMv7 A7 16 KB 16 KB 256 KB

STM32MP157C 800 MHz ARMv7 A7 32 KB 32 KB 256 KB
AM5718xxD 500 MHz ARMv7 A15 32 KB 32 KB 512 KB

Table 5.2: Platforms Selected for Comparison

small form factor of 6.5x3 cm. This board allows for the creation of a wearable PDR system

with both a low weight and size. The Qualcomm 2100 Wear processor was selected as it

was designed specifically with wearable devices in mind and has been used in devices such

as smart watches. The L1 cache size information is not publicly available, so values were

chosen as 16 KB for each cache. This is because the STM32 processor was already simulated

as having 32 KB caches for the same core. Additionally, 64 KB is a full quarter of the L2

cache size which makes an unlikely candidate for the designers to choose. The remaining

processors were chosen as representations of the types of processors used in internet of things

(IoT) applications.

All have small scale SIMD processors with a minimum of four degrees of parallelism in

their equivalent of a CUDA block. While the degree of parallelism that can be leveraged

66

within a block is not as high as in this work, the architectures do allow for easier distribu-

tion of threads over multiple thread blocks. In this manner, a set of threads can perform

calculation while another waits for data to be available. Additionally, the PDR architecture

proposed by this work leverages the ability of a GPU to process independently from a CPU.

Due to this, we can expect the same speedup from the perspective of the CPU.

All of the platforms selected were simulated while processing the same extended data

trial. The Jetson’s performance limit during simulation is its small RAM size which Callgrind

overflows quite quickly. In order to performs simulations effectively, the duration of the

simulations was limited to 350 steps. While this can be analyzed in a matter of seconds

outside of Callgrind, when under simulation the process takes hours. The results of the

simulation are then used to construct an estimate of processing time by combining clock

frequency of the board and the cycles count from the simulation.

67

Chapter 6

Results and Discussion

This chapter will discuss the results observed from testing and discuss their implications.

The author’s recommendations for next steps are listed and discussed. A synopsis of the

work done and the conclusions which can be drawn from the data then concludes this work.

6.1 Acceleration Results

The results of independent trials repeated over the same data were combined in Table

6.1 to show impact of the acceleration on the relevant components. The top five trials

represent the code before acceleration while the bottom represent acceleration. The results

of each set of five trials are combined into an average for easier comparison. The final two

rows represent the speedup relative to the original code. The values for speedup are the

original execution time divided by the new execution time minus one as shown below.

Speedup % =
Original Execution Time

New Execution time
− 1 (6.1)

Due to the large relative negative impact on SLE from the system level rearranging, the

speedup value for its column instead represents a loss of speed. The execution times for

step detection are not included as they were nearly identical in each set of trials. Their

value is still included in the total execution time column. The percentage found for CUDA

speedup is relative to the baseline UKF values. The timing for the Kalman filter is shown

but speedup is not as no significant change occurred in its execution time.

The bottom two rows represent the results of speedup calculations performed according

to equation 6.1. The second row represents speedups which directly impact the execution

68

Kalman Heading UKF
UKF CUDA Filter Detect SLE SLE CPU Total

Trial 1 16.34 - 12.43 28.77 0.0036 16.34 28.87 28.87
Trial 2 15.8 - 12.26 28.06 0.0034 15.8 28.16 28.16

CPU Trial 3 16.31 - 12.29 28.6 0.0036 16.31 28.7 28.7
Only Trial 4 15.95 - 12.32 28.27 0.0035 15.96 28.37 28.37

Trial 5 16.55 - 12.58 29.13 0.0035 16.55 29.23 29.23
Average 16.19 - 12.38 28.57 0.0035 16.19 28.67 28.67
Trial 1 2.31 10.6786 12.87 15.19 0.38 2.69 15.64 26.31

GPU Trial 2 2.26 10.9512 12.62 14.89 0.39 2.66 15.36 26.31
& Trial 3 2.28 10.7384 12.69 14.96 0.38 2.65 15.42 26.16

CPU Trial 4 2.25 10.758 12.5 14.76 0.37 2.63 15.2 25.96
Trial 5 2.26 10.6718 12.61 14.87 0.37 2.63 15.32 25.99
Average 2.27 10.76 12.66 14.93 0.38 2.65 15.39 26.15

Speedup Theoretical 612% 29% - 91% -x107 - - 10%
Realized - - - - - 511% 86% -

Table 6.1: Impact of Acceleration on System Performance. All time values listed are for
total run time in seconds

time of the CPU and do not depend on the speedups from other components to be fully

understood. These are the ones which are most useful to know when determining speedup

of this particular system.

The speedup for the SLE and UKF columns are useful for quantifying the cost and

benefit of offloading code to the GPU, however, neither can be used effectively to describe

the larger system in the absence of the other. In the same way, the speedup for heading

detection is interesting to see the scale of the benefit on the particular component, but it is

still useless without factoring in the associated costs. The speedup for the CUDA kernel is

useful as a metric for determining how effectively the code maps to the GPU but will only

impact the CPU directly if it is not completed before another step is detected.

The first pair of columns in table 6.1 represent the effects of acceleration on the UKF.

The left represents the speedup within the UKF block from the perspective of the CPU.

This is the portion of code which handles the rotational correction of magnetometer data,

calculation of RK , and storing of UKF inputs. The right represents the execution times plus

69

memory copy times of the CUDA kernel in each trial. However, the speedup value is the

old minus the new UKF averages then divided by CUDA average time. These two numbers

collectively tell us that code ported to the GPU saw a 29% total speedup, but the CPU saw

the speed up as 612% due to the asynchronous computation.

The next two columns describe how the rest of the heading detection algorithm is

impacted by this large speedup. The Kalman filter, of course, sees no cost or benefit from

the change. its inputs are still the gyroscope and accelerometer, and its output is still to

the stripped down UKF code. The impact on the heading detection algorithm as a whole,

however, is much more substantial. With the execution time of the UKF cut to nearly a

sixth, heading detection as a whole sees an 91% speedup. Unfortunately, this speedup cannot

be considered on its own so is largely meaningless.

The third pair of columns describes the interaction between the SLE and UKF com-

ponents. The SLE algorithm takes a slow down of 107 times its original speed due to its

new responsibilities. While this number is quite large, the SLE component initially had the

smallest associated cost. In order to determine the actual impact of GPU acceleration, we

must combine the slow down to the SLE and speedup from UKF. After combining the initial

and final averages from each component before using equation 6.1, we find the true impact

of acceleration is a speedup of 511% on the code impacted.

The most important values in this table, however, are the total speedup of the system

and the total calculation time. The last two columns describe these in detail. The column

labeled CPU tracks the time spent by the CPU in all of the components of PDR. Even

though step detection time is not in this table, it is included in the CPU time. The final

column describes the total time spent in computation and data transfer for both CPU and

GPU. From this we see the system actually spends slightly more time overall than before

the acceleration. While this is not ideal, it doesn’t mean that nothing was accomplished by

performing the acceleration. The 86% speed up seen by the processor frees up clock cycles

for it to perform other tasks which cannot be mapped to the GPU.

70

6.2 Platform Simulation Results

Each row presented in Table 6.2 represents the simulated clock cycle requirements for

each PDR component and the predicted execution time of PDR for a particular platform.

The first two columns, KF and UKF, represent the clock cycles associated with the Kalman

filter and UKF respectively. The next three columns, Heading, StepD, and SLE, represent

the clock cycles associated with heading estimation, step detection, and SLE. The last two

columns, Total and Predicted Time, represent the total cycle cost of PDR and its predicted

execution time.

The clock cycle count for heading is then divided between Kalman filter and UKF

columns. The UKF cycles make up the portion of the magnetometer heading and iteration

of the UKF from Figure 3.5. The Kalman filter cycles make up the remaining blocks in the

figure. The counts for SLE, of course, represent the cost for SLE but they also include the

system level costs of combining components to produce a new position.

Cycles in Billions of Instructions Seconds
Board KF UKF Heading StepD SLE Total Predicted Time

Jetson 8.074 11.287 19.362 0.176 0.013 19.55 13.67/13.65
Pi-Zero 8.105 11.236 19.341 0.228 0.013 19.582 19.58

2100 Wear 10.748 14.181 24.928 0.388 0.013 25.329 25.33
STM32MP 9.704 12.566 22.27 0.392 0.013 22.675 28.34
AM5718x 8.604 11.743 20.347 0.202 0.013 20.562 41.12
SVF532R 8.246 11.411 19.657 0.212 0.013 19.882 49.71
MVF50NN 19.731 29.338 49.07 0.705 0.013 49.788 99.58

Table 6.2: The simulation of other platforms’ execution time for a three minute data trial.
The seconds value for Jetson is its actual run time.

Though most of the platforms do not require PDR acceleration to run real time, they

all do see some performance loss compared to the Jetson due to a combination of slower

clock rates and smaller cache hierarchies. As mentioned in section 5.4.1, these results likely

represent an upper bound on performance as they were generated with their respective cache

hierarchies but also have the benefit of the Jetson’s better data path.

71

The processor with the worst performance is the MVF50NN with a predicted execution

time of just under two minutes to completely process the three minutes of data in the trial.

This board is likely incapable of running just the PDR algorithm in a real scenario. In this

situation, proposed system architecture would allow the primary CPU to offload nearly half

of the computation requirements of onto its SIMD processor.

For the processors remaining processor, the ability to offload portions or all of a program

has several additional benefits beyond those of a standard computing system. As the PDR

system seeks to allow for high accuracy personal tracking, there will necessarily be other

programs which need CPU time to make the position data useful. The ability to offload

a large portion of CPU burden will free up computation time and cache space for other

processes to operate concurrently and more efficiently.

6.3 Future Work

There are several changes to the system architecture which could be made to improve

system performance. The first would be to change how information collected for a UKF

kernel is stored on the CPU. The current arrangement uses an in place queue instead of a

rolling one. The result is the SLE estimation must wait for memory to be copied to the GPU

before proceeding. It then must copy the content of the buffer forward in memory so at to

prevent overflowing out of the back. A rolling buffer would eliminate all of the unnecessary

waiting and copying which caused the bulk of the penalties incurred by porting to GPU.

Another clear next step would be to try to offload the Kalman filter to the GPU as well.

The basic form of the kalman filter has less data dependency between different equations in a

given stage. If arranged carefully, discrete matrix operations could be performed in parallel

in a single block. The result could potentially be a GPU block which is operating at near

thread capacity for the entire duration of the kernel instead of one which peaks at half like

this work’s UKF implementation. A carefully designed kernel could even begin work on the

next stage before half the result from the previous stage is complete.

72

Another way the system could see drastic performance improvement is to attempt to

interface GPU memory directly with the sensor outputs without the data having to first go

to through the CPU. This would allow for kernels which are launched by the CPU and run

indefinitely processing data.

One major shortcoming discovered in the approach used for heading detection is per-

formance when the sensing device is not vertical. The magnetometer data is rotationally

corrected but the gyroscope data is not. It appears that, when the discrepancy is too large,

the UKF heading values seem to exhibit behavior similar to gyroscope drift. An investigation

into the source would potentially be beneficial for overall system performance.

As the UKF didn’t map as well to the GPU as hoped, an investigation of other data

level parallel accelerators would be a reasonable next step. All of the comparison chips

simulated also have a SIMD ISA extension called NEON for performing operations with four

degrees of parallelism. Some initial work was done in this respect, but time did not allow for

substantive progress. Another possibility for investigation would be implementation in an

embedded FPGA. This would allow for total control over the flow of data and would likely

perform quite well.

An investigation into the impact of hardware acceleration on the simulated MVF pro-

cessor would be beneficial. It would potentially provide a real-world use case for this work.

6.4 Conclusion

GNSS systems allow for precise geolocation, but their accuracy tends to degrade or

disappear in areas where buildings or terrain are tall enough to interfere with the signal.

Systems which rely on a precise GNSS reading often need a fallback system when such a

signal is unavailable. In order to accomplish this task, sensors must be used to implement a

form of tracking until such a time the GNSS signal returns.

PDR technologies seek to provide a solution for pedestrians in such a situation as GNSS

is often unreliable in cities and hilly terrain. These are usually on embedded systems with

73

power and computation resources. Leveraging computational parallelism can ease the strain

on a system and decrease power consumption.

The primary goal of this work was to assess the applicability of GPU acceleration to

a PDR system. To that end, a full PDR system was built using representative approaches,

validated for correctness, and profiled. The subsystem for determining heading uses a UKF

for fusion of discrete headings into a single one with a higher degree of accuracy. This

component took up half of the computation resources of the system and exhibited a high

degree of parallelism

The UKF was rewritten in CUDA for the Jetson Nano’s architecture to leverage the

parallelism present in computation with some success. The system structure was then rear-

ranged to minimize overheads associated with GPU acceleration and decouple the UKF as

much as possible from the rest of the system.

The unmodified and accelerated systems were both analyzed with respect to the amount

of time spent on computation and the results compared. The system managed to achieve

a 86% system level speedup on the CPU but the total duration of computation remained

essentially unchanged. This showed that enough parallelism exists within a four dimensional

UKF to allow for an equivalent execution time on a GPU but not enough to see a benefit or

loss in reducing consumed processing time for the target board.

A sampling of other processors and boards with fewer resources were simulated to predict

their performance in running the program design implemented. Most of the systems are

predicted to be able to run with a comfortable margin, but one particular case was discussed

which may become capable of meeting real time criteria only after the proposed hardware

acceleration.

74

Bibliography

[1] Y. Yao, L. Pan, W. Fen, X. Xu, X. Liang and X. Xu, ”A Robust Step Detec-
tion and Stride Length Estimation for Pedestrian Dead Reckoning Using a Smart-
phone,” in IEEE Sensors Journal, vol. 20, no. 17, pp. 9685-9697, 1 Sept.1, 2020, doi:
10.1109/JSEN.2020.2989865.

[2] Z. Xiao, H. Wen, A. Markham and N. Trigoni, ”Robust pedestrian dead reck-
oning (R-PDR) for arbitrary mobile device placement,” 2014 International Confer-
ence on Indoor Positioning and Indoor Navigation (IPIN), 2014, pp. 187-196, doi:
10.1109/IPIN.2014.7275483.

[3] A. Wang, X. and B. Wang, ”Improved Step Detection and Step Length Es-
timation Based on Pedestrian Dead Reckoning,” 2019 IEEE 6th International
Symposium on Electromagnetic Compatibility (ISEMC), 2019, pp. 1-4, doi:
10.1109/ISEMC48616.2019.8986071.

[4] A. Poulose, B. Senouci and D. S. Han, ”Performance Analysis of Sensor Fusion Tech-
niques for Heading Estimation Using Smartphone Sensors,” in IEEE Sensors Journal,
vol. 19, no. 24, pp. 12369-11070, 15 Dec.15, 2019, doi: 10.1109/JSEN.2019.2940071.

[5] W. Beibei, C. Tao and Z. Zhao, ”An Improved in Stride Estimation Algorithm
of Pedestrian Dead Reckoning,” 2017 9th International Conference on Measur-
ing Technology and Mechatronics Automation (ICMTMA), 2017, pp. 154-157, doi:
10.1109/ICMTMA.2017.0046.

[6] K. Lan and W. Shih, ”Using simple harmonic motion to estimate walking distance for
waist-mounted PDR,” 2012 IEEEWireless Communications and Networking Conference
(WCNC), 2012, pp. 2445-2450, doi: 10.1109/WCNC.2012.6214207.

[7] N. Strozzi, F. Parisi and G. Ferrari, ”A Novel Step Detection and Step Length
Estimation Algorithm for Hand-held Smartphones,” 2018 International Confer-
ence on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 1-7, doi:
10.1109/IPIN.2018.8533807.

[8] Yang, Depeng & Sun, Junqing & Lee, JunKu & Liang, Getao & Jenkins, David &
Peterson, Gregory & Li, Husheng. (2010). Performance Comparison of Cholesky De-
composition on GPUs and FPGAs.

[9] A. Bayev, I. Chistyakov, A. Derevyankin, I. Gartseev, A. Nikulin and M. Pikhletsky,
”RuDaCoP: The Dataset for Smartphone-based Intellectual Pedestrian Navigation,”

75

2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
2019, pp. 1-8, doi: 10.1109/IPIN.2019.8911823.

[10] B. Shin et al., ”Indoor 3D pedestrian tracking algorithm based on PDR using smarth-
phone,” 2012 12th International Conference on Control, Automation and Systems, 2012,
pp. 1442-1445.

[11] Vadim Bistrov, ”Performance Analysis of Alignment Process of MEMS IMU”, Interna-
tional Journal of Navigation and Observation, vol. 2012, Article ID 731530, 11 pages,
2012. https://doi.org/10.1155/2012/731530

[12] M. N. Muhammad, Z. Salcic and K. I. Wang, ”Real-time PDR based on resource-
constrained embedded platform,” 2015 9th International Conference on Sensing Tech-
nology (ICST), 2015, pp. 779-784, doi: 10.1109/ICSensT.2015.7438502.

[13] S. Urmat and M. E. Yalçın, ”Design and implementation of an ARM based
embedded system for pedestrian dead reckoning,” 2015 9th International Confer-
ence on Electrical and Electronics Engineering (ELECO), 2015, pp. 885-889, doi:
10.1109/ELECO.2015.7394520.

[14] T. Fukagai et al., ”Speed-Up of Object Detection Neural Network with GPU,” 2018
25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 301-305,
doi: 10.1109/ICIP.2018.8451814.

[15] N. singh and S. P. Panda, ”Enhancing the Proficiency of Artificial Neural Network on
Prediction with GPU,” 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), 2019, pp. 67-71, doi: 10.1109/COMIT-
Con.2019.8862440.

[16] L. Liu, J. Luo, X. Deng and S. Li, ”FPGA-based Acceleration of Deep Neural Net-
works Using High Level Method,” 2015 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2015, pp. 824-827, doi: 10.1109/3PG-
CIC.2015.103.

[17] T. Xiao and M. Tao, ”Research on FPGA Based Convolutional Neural Net-
work Acceleration Method,” 2021 IEEE International Conference on Artifi-
cial Intelligence and Computer Applications (ICAICA), 2021, pp. 289-292, doi:
10.1109/ICAICA52286.2021.9498022.

[18] W. Zhang, D. Wei, H. Yuan and G. Yang, ”Cooperative Positioning Method of Dual
Foot-Mounted Inertial Pedestrian Dead Reckoning Systems,” in IEEE Transactions
on Instrumentation and Measurement, vol. 70, pp. 1-14, 2021, Art no. 8502114, doi:
10.1109/TIM.2021.3066173.

[19] M. Zhou, Y. Wei, Z. Tian, X. Yang and L. Li, ”Achieving Cost-Efficient Indoor Fin-
gerprint Localization on WLAN Platform: A Hypothetical Test Approach,” in IEEE
Access, vol. 5, pp. 15865-15874, 2017, doi: 10.1109/ACCESS.2017.2737651.

76

[20] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

[21] Harris, M. (2020, August 25). Maxwell: The most advanced CUDA
GPU ever made. NVIDIA Technical Blog. Retrieved April 22, 2022, from
https://developer.nvidia.com/blog/maxwell-most-advanced-cuda-gpu-ever-made/

[22] DATA SHEET NVIDIA Tegra X1 Series Processors. Nvidia De-
veloper. (2015, November). Retrieved April 22, 2022, from
https://developer.download.nvidia.com/assets/embedded/secure/jetson/TX1/docs/TegraX1 Embedded DataSheet DS07224007v1.0.pdf?F8XapAAJMQf5QNZfkoZYdH ohskEuPbyEprJ -
DkwVcvPnseQcFBgvjTS12w0BLTBFZj7oQw1J94VNWN3tvn-
8qV6uqVDu8TWTgXeKAEOoDp9DwB0DuKo79onvosZ0sPxtsFxAoHkJotTnSYhy9achqVyK1wUICTvJXt0l8XMJ yR72N9sLJO2rzTotgUNbew89d&t=eyJscyI6InJlZiIsImxzZCI6IlJFRi1kdWNrZHVja2dvLmNvbVwvIn0

[23] Valgrind user manual. Valgrind. (n.d.). Retrieved April 11, 2022, from
https://valgrind.org/docs/manual/manual.html

[24] Nethercote, N., Walsh, R., & Fitzhardinge, J. (2006, October). IISWC-2006 tu-
torial building workload ... - valgrind. Valgrind. Retrieved April 11, 2022, from
https://valgrind.org/docs/iiswc2006.pdf

[25] Cachegrind user manual. Valgrind. (n.d.). Retrieved April 11, 2022, from
https://valgrind.org/docs/manual/cg-manual.html

[26] Callgrind user manual. Valgrind. (n.d.). Retrieved April 11, 2022, from
https://valgrind.org/docs/manual/cl-manual.html

[27] Segal, M., Akeley, K. (2019, October 22). OpenGL 4.6 (core profile) - octo-
ber 22, 2019 - Khronos Group. Khronos.org. Retrieved April 18, 2022, from
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf

[28] RadeonOpenCompute. (2021, December). ROCm Documentation/hip-guide.rst at mas-
ter · RadeonOpenCompute/rocm documentation. GitHub. Retrieved April 18, 2022,
from https://github.com/RadeonOpenCompute/ROCm Documentation/blob/master
/Programming Guides/HIP-GUIDE.rst

77

