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Abstract

With the rapid development of artificial intelligence, the Internet of Things (IoT) has

evolved into artificial intelligence (AIoT). The development of an effective and low-cost human

health detection system has attracted intensive research interest from both academia and indus-

trial areas, such as vital sign monitoring, indoor localization, and. To achieve low cost and high

accuracy for smart health systems, Radio Frequency Identification (RFID) based techniques

have been utilized for human vital signs measurement. In addition, the RFID system could

be used for effective indoor localization and human pose estimation. Compared with a vital

sign signal, a human pose signal, as a complicated 3-Dimensional signal, could be more chal-

lenging. With the foundation of developing these systems with multiple RF devices, we also

propose a technology-agnostic RF sensing system for human activity recognition, which could

be performed on multiple RF platforms. The dissertation includes all Radio Frequency(RF)

sensing systems we have developed during Ph.D. study.
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Chapter 1

Introduction

1.1 Background and Motivation

With the development of Artificial Intelligence of Things (AIoT), numerous Radio Frequency

sensing systems have been proposed to achieve the non-intrusive and intelligent sensing sys-

tems for human beings [1–7]. Healthcare has become an important problem [9–11]. As a key

component of healthcare, detection and monitoring of vital signs are performed in traditional

healthcare systems with dedicated equipment, such as capnography [13]. In addition, detecting

an abnormality may require considerable efforts and experience. For example, many breathing

disorders during sleep are hard to detect and diagnose because of the lacking of a suitable mon-

itoring system. One of these disorders is obstructive sleep apnea, which can cause long-term

damage on human health such as heart disease, stroke, and high blood pressure. Therefore,

autonomous, unobstructive, and low-cost vital sign monitoring systems with the abnormal-

ity identification functionality are highly desirable, which can help a person to detect sleep

disorders and reduce the danger of, e.g., sudden infant death syndrome (SIDS) for sleeping

infants [12].

Different wireless signals have been used to detect vital signs. The idea is to capture the

small signal caused by the rise and fall of the chest (or heart beats) from the received wireless

signal during breathing. For example, Radar-based systems have been developed to monitor

human respiration, such as ultra-wideband radar [30] and frequency modulated continuous

wave (FMCW) radar [14]. However, a Radar-based system requires expensive and complicated

hardware, and may operate on a wide spectrum, which may not be proper for many application
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scenarios. Other WiFi based techniques have the advantage of low-cost and easy deployment,

which can monitor human respiration and heartbeat by analyzing the received signal strength

(RSS) [16] or channel state information (CSI) [19, 20]. Although WiFi based systems can

effectively monitor human respiration, the WiFi signals are easily affected by changes in the

environment, such as movements of a person nearby, thus leading to a relatively lower accuracy

of breathing estimation and apnea detection. In a recent work [11], we developed SonarBeat,

which is a smartphone app that exploits ultrasound signals for respiration monitoring.

RFID sensing systems have drawn increasing attention recently, which have been em-

ployed for object tracking [22], drone relays [24], orientation estimation [23], and recently, for

breathing monitoring [27]. These works mainly exploit the RFID phase information, which is

collected from the low level data with an RFID reader. For example, Tagoram system leverages

phase information for real-time tracking of RFID tags with a differential augmented hologram

technique [22]. RFly uses drones as relays for battery-free networks using RFID phase in-

formation [24]. As related to our work, Tagyro calibrates phase values from all channels to

one channel for orientation estimation, where the system requires to measure the phase offset

offline [23]. In addition, Tagbreathe monitors breathing signals by grouping the signals with

the same channel index and using the calculated displacement in each channel [27]. However,

this method does not work very well for US RFID systems, which operate in the frequency

range from 902.5 MHz to 927.5 MHz with 50 channels as required by the FCC. This is because

channel hoping among 50 different frequencies will cause a considerably larger latency, which

make it much harder to obtain a breathing signal.

Driving fatigue detection is another primary component for smart health care. According

to the NHTSA report, 795 lives have been lost due to greatly reduced if an effective driving

fatigue alarm system is available. However, most drowsy driving events are hard to detect

with the existing technologies in commodity vehicles. Thus, there is a compelling demand for

an effective driving fatigue detection system, which can accurately detect driving fatigue and

alarm drivers to avoid accidents.
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Driving fatigue detection is a popular topic in the research community for quite some time,

and different types of signals have been utilized to address this issue, such as electroencephalo-

gram (EEG), video, WiFi, and ultra sound. EEG signal can achieve high fatigue detection

accuracy [48], but the driver is required to wear multiple special devices, which is not suitable

for long time driving. In contrast, computer vision based techniques only need to collect eyelid

movements using a camera [49]. Although the required hardware, i.e., a camera, is cheaper

than that in EEG based techniques, the system performance is heavily affected when the driver

wears sunglasses and may require sufficient lighting in the car. Several device-free approaches

have also been proposed. For example, WiFi signals can be used to detect driving fatigue by

extracting driver’s movements and breathing rate from channel state information (CSI) [50].

However, the WiFi signal is sensitive to the interference from surroundings, such as the move-

ments of passengers and objects outside the vehicle. Features of drowsy driving can be detected

by acoustic-based technique as well [51], but mitigating the influence of interference from pas-

sengers is still a big challenge. Since RFID is a near-field communication technique, interfer-

ence from passengers or surroundings of the vehicle can hardly affect the sensing performance.

Furthermore, the cost of the system is lower than other existing approaches. Therefore, RFID

is highly suited for driving fatigue detection within the in-car environment. However, there

are still many challenges to make RFID based driving fatigue detection work, such as the dis-

continuity in collected channel state data caused by frequency hopping, and effective feature

extraction for driving fatigue detection.

RF based indoor localization techniques is also a big topic for the RF based sensing sys-

tems. The Radio Frequency Identification (RFID) technology has been regarded as an effective

and low-cost solution for many emerging IoT applications. Existing works on RFID tag lo-

calization include received signal strength indication (RSSI) based and phase based methods.

These works mainly focus on locating a single tag, i.e., one tag is located in a time slot. For

RSSI based methods, numerous RFID reference tags are deployed at known locations. By com-

paring the RSSI data with reference tags, the position of the target tag can be determined [31].

In fact, RSSI values are raw channel information and are not stable, due to factors such as

multipath propagation, tag’s orientation, RFID reader power, etc. RSSI based methods usually
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do not achieve high accuracy in indoor localization. On the other hand, phase based methods

have been developed for estimating distance and direction of arrival (DOA) [33]. However, the

measured phase is periodic, which leads to phase ambiguity and makes it less useful. Moreover,

considerable measured phase errors are caused by the RFID reader antennas and the tag. To

address these two issues, the synthetic aperture radar (SAR) technique is proposed for DOA es-

timation by moving the RFID reader antenna around [21]. The second solution is the hologram

technique, which can compute the probability of each known position as the tag source in an

area of interest and then choose the most likely position as the tag location [22,34]. Another so-

lution is the hyperbolic based method for distance estimation, which can locate a static tag [35].

However, this solution does not achieve high localization accuracy due to the limited number

of RFID reader antennas. In addition, RFind system can obtain higher localization accuracy

with a large virtual bandwidth to estimate time-of-flight, but it requires a special hardware [91].

The sensing of human motion also contribute a lot for the development of the Artificial

intelligence of things. Compared with the vital sign signal, which is a one dimensional sig-

nal, the human pose signal could be a much more complicated signal. This is because the

signal for the human pose tracking is 3D signal, and each limb could be part of signal source

for the human pose tracking. Actually, human pose tracking has attracted great interest in

recent years, because it is useful for numerous applications such as human-computer interac-

tion, video surveillance, and somatosensory games. The advances in human pose tracking have

been mainly driven by the new developments in computer vision, from two-dimensional (2D)

systems [173] to three-dimensional (3D) realtime systems [174]. However, the vision-based

techniques often raise concerns of security and privacy. For example, many wireless security

cameras are easily hacked by malicious users [175]. The collected video data for pose tracking

could also be illegally intercepted. Several radio frequency (RF) sensing schemes have been

proposed to address the privacy concern in human pose tracking, using various RF sensing tech-

niques such as Frequency-Modulated Continuous Wave (FMCW) radar [176], millimeter wave

(mmWave) radar [177], WiFi [131, 178], and RFID [157, 179, 180]. Compared with computer

vision-based techniques, RF sensing-based human pose tracking does not require for sufficient

lighting, does not require a line-of-sight path between the subject and camera (i.e., capable of
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getting around obstacles or even through walls), and more important, the privacy of users can

be better protected.

In this dissertation, we present the AutoTag system, a recurrent variational Autoencoder

for respiration rate estimation and unsupervised detection of apnea with commercial passive

UHF RFID Tags. We also propose an RFID based system, to detect the nodding movements

of drivers, which is a key indicator of fatigue and one of the most dangerous motions during

drowsy driving. Besides, we propose a RFID based indoor localization techniques termed

Sparsetag, and the RFID based pose tracking systems termed RFID pose.The highly accurate

detection performance of the proposed system is validated by intensive experimental study.
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1.2 Literature Review

1.2.1 RF based Vital Sign Monitoring

Nowadays, many RF based systems have been proposed to monitor vital signals of human,

which are developed on different types of platforms, including Radar systems, WiFi systems,

and RFID based systems. The Radar technique is a straightforward way to identify the fluctua-

tion of human chest caused by respiration, because Radar can directly monitor the distance vari-

ation between the human chest and the device antenna. One of the representative works in this

category leverages an FMCW radar to monitor respiration rate and heart rate for multiple users

simultaneously [14]. Furthermore, other Radar based systems have also been proposed to mea-

sure human respiration, including Doppler radar [15] and ultra wideband (UWB) Radar [30].

These radar based systems can accurately detect vital signs, and the influence caused by sur-

roundings is limited. However, since the special hardware is essential to such systems, the cost

of such systems are usually high, hampering their wide deployment such as in homes.

To achieve low cost and ease of deployment for vital sign monitoring, WiFi based tech-

niques have been utilized to measure both human breathing rate and heart rate. The human

respiration and heartbeat can be extracted by analyzing variations in WiFi channels, for exam-

ple, the RSS as in Ubibreathe [16]. However, the Ubibreathe system requires the patient to

stand between the transmitter and the receiver, while some other CSI based techniques have

no such strict requirements. Different from RSS based systems, CSI can provide fine-grained

channel inforamtion, and can achieve higher resolution and sensitivity than RSS for monitoring

human vital signs. One of the CSI based techniques can leverage amplitude of CSI to monitor

breathing rate and heart rate when the patient is sleeping [17]. In addition to the amplitude, the

CSI phase information can also carry human respiration signal [18]. Furthermore, the Tensor-

Beat system can estimate respiration rates for multiple persons crowed in a small space [19],

by incorporating tensor decomposition on the collected CSI phase data. Although WiFi based

techniques can measure human vital signs with off-the-shelf WiFi devices, the accuracy is eas-

ily affected by the surrounding environment, because of broadcasting nature and long range of
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WiFi transmissions. To address this issue, some RFID based systems like TagBreathe are de-

veloped to track human respiration by analyzing the RFID response data collected at an RFID

reader [27]. Since the passive UHF RFID tags are low-cost and are easily attachable to hu-

man body, the RFID system can monitor human vital signs at a low cost and is resilient to

interference from the unstable environment.

Apart from RFID based vital sign monitoring systems, various sensing systems are pro-

posed by leveraging the data extracted from the low level protocol in RFID systems, such as

RSS and phase values, which have been utilized for many applications, e.g., indoor localiza-

tion. For RSS based methods, one of the representative techniques estimates the tag position

by comparing the RSS from the target tag with reference tags [31]. Moreover, another tech-

nique can obtain the refined tag position by utilizing the characteristics of the coupling effect

on RSS [32]. However, due to the low resolution of RSS, developing an RSS based localization

scheme with high accuracy is challenging. Thus, many phase based localization techniques are

proposed. One of the typical phase based methods has been developed for estimating distance

with direction of arrival (DOA) [33], but the result has a relatively large ambiguity because of

the periodicity of measured phase. To remove the ambiguity, some other techniques are pro-

posed to obtain the more accurate position than the typical method by leveraging the aperture

radar technique [21] and hologram technique [22, 34] [35]. Besides indoor localization, RFID

tags are also widely used for other sensing techniques such as remote control of drones [24–26],

object orientation estimation [23], remote temperature measurement [36], and gesture recogni-

tion [37].

Recently, passive RFID tags, as a kind of wearable sensors, have attracted increasing

interest because of its low-cost and easy deployment features. RFID based sensing has been

used for many applications, such as user authentication [68], material identification [69], object

orientation estimation [23], vibration sensing [70], and anomaly detection [71]. For indoor

localization [22,34,57] and gesture recognition [72,73], the RFID based techniques are mainly

focused on the analysis of low level data collected at the reader. For example, the received

signal strength (RSS) has been utilized for tag localization in [31], while the phase values have

been used to recognize different kinds of gestures [55]. In addition, vital signs can also be
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detected by the low level data. Specifically, TagBreathe is the first work to estimate breathing

rates using RFID tags [27], while TagSheet uses RFID Tags for breathing monitoring and sleep

posture recognition [74]. Even heart rate variability can be assessed with an RFID tag array

attached to the human body. However, these vital sign monitoring systems are not suitable

for detecting drowsiness in a driving environment, because the small vital sign signal could be

easily overwhelmed by vehicle vibration and driving movements. The work presented in this

paper makes a first attempt on RFID based driving fatigue detection, where commercial RFID

tags are utilized for detecting the nodding movement of the driver.

RF based health sensing systems have been developed that employ Radar, WiFi, and RFID

techniques. Radar based vital sign monitoring systems include frequency modulated continu-

ous wave (FMCW) radar [80] and Doppler Radar [81]. However, they usually require cus-

tomized hardware and operate over a wide spectrum. WiFi based systems mainly use received

signal strength (RSS) and channel state information (CSI). For example, UbiBreathe [82] and

mmVital [83] utilize WiFi RSS at 2.4 GHz and 60 GHz, respectively. To improve accuracy,

CSI based systems leverage the amplitude or phase difference information of CSI for estimat-

ing single or multiple persons’ breathing and heart rates [17, 19, 84, 85]. Moreover, several

bimodal CSI data based systems have been proposed to tackle the weak breathing signals at

some special positions [86, 87, 104].

Several RFID based breathing monitoring systems have been proposed. For example,

RFID tags have been used for breathing rate estimation in [27], breathing and heart rates es-

timation in [88], and breathing monitoring and sleeping posture recognition in [74]. Further-

more, the RF-ECG system is proposed for heart rate variability assessment using an RFID tag

array [89]. To mitigate the frequency hopping offset in FCC-compliant RFID systems, the

AutoTag system is proposed for breathing monitoring and apnea detection with a variational

autoencoder [8, 58]. However, these existing systems are designed for the indoor, static envi-

ronment; they may not be effective in the highly dynamic, highly noisy driving environment.

Recently, WiFi based [50], acoustic based [78], and UWB based [66] systems have been

developed for breath monitoring in driving environments. In fact, these existing systems are
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sensitive to the environmental interference, such as the body movements of the driver him-

self/herself and of the passengers, due to their relatively large transmission ranges.

In addition to vital sign monitoring, RFID tags have also been applied for many other

applications, such as indoor localization [22, 57], user authentication [68], material identifica-

tion [69], object orientation estimation [23], vibration sensing [70], anomaly detection [71],

and drone localization and navigation [53, 90]. To overcome the low accuracy when RSS val-

ues are used [31], recent works are mainly focused on the phase for indoor localization, which

can be used to derive the distance and direction of arrival (DOA). To solve the phase ambi-

guity problem, synthetic aperture radar (SAR) [21] and the hologram techniques [22, 34] are

proposed.

The RFind system estimates time-of-flight with a special hardware to achieve high local-

ization precision [91].

1.2.2 RF based Indoor Localization

Table 1.1: Features in Different RFID Tag Localization Techniques

Localization Technique Hardware Modification Tag Array Antenna Array Dynamic Tags or Antennas

LANDMARC No No Yes No
RF-IDraw No No Yes No
Tagoram No No No Yes
RFfind Yes No No No

SparseTag No Yes No No

With the rapid development of Internet of Things, indoor localization attracts increasing

attention in recent years. As an RFID-based indoor localization system, our work is closely

related to the RF based localization techniques in prior work. In this section we mainly focus

on WiFi based techniques and RFID based techniques.

WiFi signals are widely utilized for indoor localization because of its low-cost, wide cov-

erage, and ubiquitous deployment. Among various techniques, Angle of Arrival (AoA) is a

typical method to estimate the location of the transmitter [115], but the accurate AoA is hard

to estimate because of the multipath effect on the WiFi signal. To mitigate the multipath effect,
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antenna array-based systems are proposed to estimate the angle of multiple incoming paths of

WiFi signal and distinguish the Line-of-sight (LoS) component [116, 117]. In addition, rather

than directly calculate the AoA of the LOS path, some prior works leverage machine learning

to estimate the position of the transmitter by learning the location features from collected chan-

nel state data. For example, Radar is a WiFi fingerprinting scheme using RSS [118]. Channel

State Information (CSI) is regarded as fine-grained representation of the WiFi channel and can

achieve more accurate localization performance [119]. However, a well-trained neural network

is usually sensitive to changes in the environment, the network parameters need to be updated

once the testing environment is changed. Compared with these antenna array based systems,

our sparse tag array can achieve high resolution of angle estimation as well as having a low

cost.

The RFID technology has been regarded as an effective and low-cost solution for many

emerging IoT applications [25, 42, 54, 58, 157]. Although RFID-based systems are limited by

the short communication range, the multipath effect on RFID systems is usually much smaller

than that on WiFi systems. Thus, various RFID based localization schemes have been proposed

to achieve higher accuracy and convenient deployment than WiFi-based systems.

Existing works on RFID tag localization can be classified into received signal strength In-

dicator (RSSI)-based and phase-based methods. These works mainly focus on locating a single

tag, i.e., one tag is located at a time. For RSSI-based methods, a large number of reference tags

are deployed at known locations. By comparing the RSSI data with reference tags, the position

of the target tag can be determined [31]. In fact, RSSI values are raw channel information and

are not stable, due to the factors such as multipath propagation, tag’s orientation, RFID reader’s

transmit power, etc. RSSI based methods usually do not achieve high accuracy in indoor local-

ization. On the other hand, phase based methods have been developed for estimating distance

and direction of arrival (DOA) [33]. However, the measured phase is periodic, which leads to

phase ambiguity and makes it less useful. Moreover, considerable measured phase errors are

introduced by the reader antennas and the tag itself.

To address these issues, the synthetic aperture radar (SAR) technique is proposed for DOA

estimation by moving the reader antenna around [21]. The second solution is the hologram
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technique, which computes the probability of each known position as the tag source within an

area of interest and then chooses the most likely position as the tag location [22, 34]. Another

solution is the hyperbolic-based method for distance estimation, which locates a static tag [35].

However, this solution does not achieve high localization accuracy due to limited number of

reader antennas. In addition, the RFind system achieves higher localization accuracy using a

large virtual bandwidth to estimate time-of-flight, but it requires a special hardware [91]. The

features of different RFID tag localization techniques are further summarized in Table5.2.

1.2.3 Pose Tracking Systems With RF Devices

The RFID based human pose tracking systems are closely related to prior works on RFID

based sensing [10] and human pose estimation [186]. We mainly focus on these two classes of

systems in the following.

Recently, passive RFID tags have attracted great interest because of their easy deployment

and low-cost features [179]. The Low Level Reader Protocol used by the Reader can provide

useful low-level information such as received signal strength indicator (RSSI), phase, Doppler

frequency shift, timestamp, etc. [38]. As a result, many RFID-based sensing techniques have

been developed for many applications, such as indoor localization [21,22,34,57,91], vital sign

monitoring [8, 27, 58, 88, 89, 138, 139], user authentication [68], material identification [69],

object orientation estimation [23], vibration sensing [70], anomaly detection [71], temperature

sensing [52], and drone localization and navigation [53, 54, 90]. Particularly, the RF-wear

system [135] and RF-Kinect system [134] utilize RFID tags attached to the human joints to

estimate the movement of a particular limb, such as front arms, front legs, and thighs [134,135].

We adopt the same approach in RFID-Pose. However, these systems may not be suitable for

realtime human pose estimation, especially when multiple moving joints need to be tracked

simultaneously. These RFID based sensing systems inspire us to develop an RFID based pose

estimation system.

Prior works on human pose estimation are mainly based on computer vision techniques [186,

187]. For human pose estimation using video data, deep learning based method has been shown

effective for 2D human pose with conventional RGB cameras [173, 188], and 3D human pose

11



with RGB-Depth cameras [189] and VICON systems [190]. These camera-based techniques

can achieve high accuracy, but all require sufficient lighting condition and may raise privacy

concerns.

These limitations motivate the development of RF based pose estimation techniques, be-

cause detecting RF signals do not require any lighting [191]. Moreover, since no video is used

in the RF systems, the privacy issues are effectively addressed. However, collecting labeled

pose data from RF signals is very challenging. Therefore, several RF based techniques lever-

age vision data as labeled pose data to train the deep learning network. This approach is also

taken in the proposed RFID-Pose system. For example, RFPose is the first work to use RF

signals with an FMCW radar for 2D human pose estimation, where a teacher-student deep

learning model is utilized [176]. RFPose3D is the later version for 3D human pose estimation

with FMCW radar [191]. Moreover, mmwave Radar is also utilized for human pose estimation

with deep learning [177]. Recently, WiFi CSI has been exploited to create 2D skeletions [178]

and 3D human poses [131] using cross-modal deep learning techniques. However, Radar and

WiFi based human pose estimation are easily influenced by the environment noise and interfer-

ence, and the FMCW radar technique is limited by the relatively higher cost (e.g., implemented

with Universal Software Radio Peripherals (USRP)).

The proposed RFID-Pose system, to the best of our knowledge, is the first to apply RFID

based sensing for 3D human pose estimation. The proposed system consists of a novel and

effective solutions for cross-modal 3D human pose estimation using RFID and computer vision,

which is much more robust compared with WiFi and Radar based methods.

A strength of the traditional camera, WiFi, and radar-based systems is that they are “mark-

erless” methods, which are less intrusive. Video camera was first used to detect human poses

in [186, 187]. With deep learning models, such systems localized the coordinates of human

joints in the captured video frames, using, e.g., 2D RGB cameras [173, 188] or 3D depth cam-

eras [189]. The most accurate 3D pose tracking performance was achieved, so far, by the Vicon

system [190], which has been widely used for production of 3D movies. However, such video

based schemes usually raise privacy concerns, as discussed, and their performance is usually

limited by poor illumination, cluttered background, or poor camera angles.
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To address the privacy concerns and mitigate the dependency on lighting and background,

several RF pose tracking techniques have been proposed. Since such systems record no vision

data and the RF data is not visible, user privacy can be better preserved. Furthermore, RF

sensing systems perform well in poorly lighted environments and are able to detect human

poses through obstacles and walls [177, 191]. FMCW Radar was first utilized to construct

both 2D and 3D human poses by incorporating a vision-aided teacher-student deep learning

model [176, 191]. As another type of non-intrusive sensor, WiFi channel state information

(CSI) has also been analyzed to extract 2D and 3D human poses [131, 178]. Most existing

RF sensing systems incorporate a deep learning model with vision data supervised training.

Furthermore, due to the relatively wide transmission range of the radio signals, such systems

are susceptible to interference from the operating environment. Usually radar-based techniques

are more resistant to environmental interference than WiFi-based schemes, but their customized

hardware, e.g., the FMCW radar implemented on the Universal Software Radio Peripherals

(USRP) platform, usually incurs a higher cost.

RFID tags can serve as low-cost and light-weight wearable sensors to attach to the hu-

man body, which provides a promising solution for human pose estimation. Several RFID

sensing techniques have been developed in recent years, such as human vital sign monitor-

ing [27,88,89,139], mechanical vibration sensing [70], user authentication [68], material iden-

tification [69], and temperature sensing [52], Furthermore, RFID has also been utilized for

indoor localization [21, 34, 57, 91] and drone navigation [53, 54, 90].

Using RFID tags as wearable sensors, such systems are usually more robust to interference

from the operating environment than other RF sensing techniques (e.g., WiFi). This feature

inspires the development of several RFID based human pose tracking systems as well. For

example, RF-Wear [135] and RF-Kinect [134] were developed to track the movements of a

single human limb, while RFID-Pose [157] and Cycle-Pose [180] were developed to track 3D

human poses in realtime. However, although the near-field RFID communications are more

resilient to environmental interference, the locations of the tags and antennas still have a big

impact on how the tags are sampled by the reader, and thus on the performance of the human

pose tracking system.
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In [192], the authors presented a domain adversarial technique to adapt to changes in the

environment by utilizing a domain discriminator, which can constrain the unnecessary feature

extraction from different environments. However, the proposed learning model may not be able

to obtain the optimal variables when applied in a new RF environment, because all the training

variables are determined by the datasets from a limited number of environments.

Inspired by the existing human pose tracking systems, we propose the Meta-Pose system,

which is based on the meta-learning framework for greatly enhanced environmental adaptabil-

ity. The proposed system incorporates a novel initialization algorithm to pretrain the deep

learning model using a limited amount of training data, so that the system can be quickly fine-

tuned with a small amount of new data when applied to a new environment, while still achieving

a satisfactory performance.

1.3 Summary of Contributions

To our best knowledge, the proposed AuTotag system is the first apnea detection systems in-

corporating an enhanced recurrent variational autoencoder model. The proposed scheme is an

unsupervised learning, with the desirable advantage of not requiring costly labeled medical

data. In the system, we also propose a novel technique to address the frequency hopping offset,

which is a real-time calibration. The proposed scheme is simple but effective in mitigating the

frequency hoping offset, thus enabling many real-time sensing applications for FCC-compliant

RFID readers and tags.

The Nodtrack system is the first work that leverages passive RFID tags for driving drowsi-

ness detection under real driving settings. A specific tag deployment and several signal pro-

cessing algorithms are proposed to effectively distinguish the nodding features from the strong

environment noises and other types of driving related movements. Driving fatigue is detected

by an unsupervised LSTM autoencoder model, which does not require labeled training data of

various types of driving movements, which are hard and costly to obtain. An effective algo-

rithm is proposed to estimate, on real-time, the phase difference between two RIFD tags that are

interrogated with slotted ALOHA and under frequency hopping in commercial RFID systems.
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To the best of our knowledge, we also propose the first work on respiration monitoring in

driving environments using commodity RFID reader and tags. A prototype system is built with

commodity RFID devices, deployed in a car, and validated in both an emulated environment

and real driving environments. The experiments are conducted in various driving scenarios,

where excellent performance of the proposed system is demonstrated. We propose a tensor

completion technique to recover missing readings in collected phase data, and a tensor de-

composition approach to extract the respiration signal of the driver from phase values sampled

from multiple RFID tags. The proposed techniques are effective in combating the strong noises

caused by frequency hopping, random sampling, vehicle vibration, and other movements in the

driving movement.

We design the SparseTag system, which includes sparse array processing, difference co-

array design, DOA estimation using a spatial smoothing based method, and a localization

method. We propose a new sparse tag array design and analytically prove its superior per-

formance over the traditional ULA design. In addition, a robust channel selection method

based on the sparse tag array is proposed for mitigating the indoor multipath effect. We justify

the feasibility and advantages of utilizing a sparse tag array for DOA based indoor localization

through analysis and experiments. To the best of our knowledge, this is the first work to lever-

age sparse tag arrays for backscatter indoor localization, which does not require to move either

the tags or the antenna(s).

The proposed RFID-Pose system is the first work for 3D human pose estimation using

commodity RFID reader and tags, which can effectively monitor multiple human joints simul-

taneously in realtime. We propose a novel data preprocessing approach to mitigate the severe

RFID phase distortion and compensate the large amount of missing data in sampled raw RFID

data. The tensor completion technique is utilized for data imputation, so that phase data for

all RFID tags can be estimated. In the system we propose a vision-aided solution for training

the proposed deep kinematic neural network, to transform sensed RFID phase variations to the

spatial rotation of each limb. The proposed approach effectively addresses the challenges of

the low data rate in RFID systems, because rotation angle estimation requires much less data

than generating a joint confidence map.
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With the foundation of the RFID-pose system, we develop the Cycle-Pose system to im-

prove the subject adaptability of the system. To the best of our knowledge, this is the first

subject-adaptive 3D human pose estimation system using commodity RFID reader and tags,

which can effectively track 3D human pose without vision data in the testing stage. We pro-

pose a cycle kinematic network model and train the network with self-supervision. The pro-

posed model learns the transformation from RFID data to 3D skeleton for different subjects, to

effectively achieve subject adaptability. Besides, we propose a novel Meta-Pose initialization

algorithm based on meta-learning algorithms (i.e., model-agnostic meta-learning (MAML) and

Reptile) to pretrain the deep learning model with a limited number of training datasets sampled

from several known environments. We develop the initialization approaches based on both

Reptile and MAML.

Last but not the least, we develop TARF system, which is the first technology-agnostic

human activity identification system capable of performing generalized and accurate HAR us-

ing various RF sensing platforms. We investigate the challenges in technology-agnostic HAR

and show that they are caused by three main factors: metric disparities, heterogeneous sensi-

tivity distributions, and diverse motion feature translations. A universal RF data preprocessing

module is proposed to reduce the disparity between different RF sensing technologies. The

sensitivity diversity is addressed by remapping the signal strength measurements, and general-

ized tensor data is constructed using STFT. The DANN is utilized to categorize different types

of human activities, which further mitigates the interference from diverse RF domains.

16



Chapter 2

AutoTag: Unsupervised Detection of Apnea using Commodity RFID Tags with a Recurrent
Variational Autoencoder

2.1 Introduction

The population is aging in many parts of the worlds. Consequently, smart healthcare has at-

tracted increasing concerns [8–11]. Rather than going to hospital after getting sick, people are

intend to early detect and prevent diseases by monitoring their vital sings on daily basis. For

example, One of the breathing disorders is obstructive sleep apnea, which can imply serious

health problems in human body including high blood pressure, heart disease, and sudden infant

death syndrome (SIDS) for sleeping infants [12]. However, in traditional healthcare systems,

vital signs are measured by dedicated equipment like capnography [13], which is not conve-

nient for all-day monitoring, especially when the patient is sleeping. Moreover, the breathing

abnormality diagnosis may consume considerable efforts and experience from medical insti-

tution. Therefore, autonomous, low-cost, unobtrusive vital sign monitoring methods that can

detect abnormality are desired for IoT based smart healthcare systems, which can benefit many

people for monitoring health conditions in their daily life.

Considering the mobility and flexibility of RF devices, wireless signals are widely used

on smart healthcare systems to monitor human vital signs. Since the movement of human chest

and heart can slightly affect the propagation of RF signals, the signal of breathing and heartbeat

can be reconstructed by analyzing the change in received RF signals. Based on this basic idea,

multiple existing techniques incorporate a radar for respiration monitoring, including frequency

modulated continuous wave (FMCW) radar [14] and Doppler radar [15], but at a relatively high

cost due to the special hardware. To achieve low cost RF system, WiFi based techniques are
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developed for heath sensing with commodity WiFi devices. Rather than directly analyzing

received signals from radar, WiFi based techniques leverage either Received Signal Strength

(RSS) [16] or Channel State Information (CSI) [17–20] collected from the device driver. Al-

though the WiFi techniques are low-cost and flexible, the systems are sensitive to the noise

caused by surrounding environment, such as moving objects or persons nearby. The accuracy

of such systems is relatively low in unstable environments.

The low-cost and near-field features of passive RFID tags have triggered great interest on

apply them for health sensing. Some RFID based systems are proposed to achieve low cost

as well as reducing the influence of unstable surroundings. Multiple RFID based techniques

have been developed for object tracking [22], orientation estimation [23], drones [24–26], and

especially, for respiration monitoring [27]. Such existing works mainly make use of the RFID

phase information collected from the RFID reader on different channels. One such typical

techniques for smart healthcare is called TagBreathe, which monitors the respiration signal of a

patient by grouping the RFID responses collected from the same channel and using a estimated

displacement in each channel [27]. This method may not be well suited for operation with Ultra

High Frequency (UHF) RFID devices in the US, which all adopt frequency hopping over 50

channels, 200 ms per channel, according to FCC requirements. When the reader and tag hop

among 50 channels, it will take 10 seconds for them to return to the same channel. To collect a

sufficient amount of readings from the same channel, the delay will be considerable, making it

hard for real-time detection of abnormality (e.g., apnea).

To address this issue, we present the AutoTag system, an unsupervised recurrent vari-

ational autoencoder method for respiration rate estimation and abnormal breathing detection

with off-the-shelf RFID Tags. To mitigate the effect caused by channel hopping, we propose

a novel technique to map the RFID phase values collected from multiple different channels to

a single reference channel. Since FCC requires the RFID system to hop to a different channel

every 200 ms, a typical RFID based sensing system can hardly be applied for real-time mon-

itoring of patients’ vital signs. Rather than offline calibration employed in Tagyro [22], our

method can enable real-time phase calibration, which is amenable to dynamic environments.
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Furthermore, compared with the method used in TagBreathe, our method incurs much lower

delay, because grouping data for all channels is not needed with our technique.

Furthermore, we develop an unsupervised deep learning approach for apnea detection,

which can autonomously detect abnormality in human respiration. Recently, a recurrent varia-

tional autoencoder model has been successfully applied to sequence modeling [28] and human

motion synthesis [29]. Inspired by these works, we develop an enhanced recurrent variational

autoencoder model for detection of breathing abnormality, such as apnea. With the proposed

approach, abnormality can be detected by evaluating how similar the sampled breathing signal

and reconstructed signal using the deep learning network are. Our method is superior to the tra-

ditional energy-threshold based approach, since the testing environment may not be absolutely

stationary. Our proposed method can easily distinguish non-periodic signals from normal peri-

odic signal by learning the features of normal breathing signals, while the energy based method

only consider apnea as a relative weak signal compared with normal cases. Since the proposed

scheme is an unsupervised learning, it has the desirable advantage of not requiring labeled

medical data, which is usually costly and time-consuming to obtain.

Specifically, we present the AutoTag system, a recurrent variational Autoencoder for res-

piration rate estimation and unsupervised detection of apnea with commercial passive UHF

RFID Tags. The AutoTag system composes of three main components, including (i) the signal

extraction module, (ii) the calibration module, and (iii) the breathing monitoring module. The

phase data is firstly collected from a commodity RFID reader by the signal extraction mod-

ule. The calibration module is mainly used for calibration of the sampled breathing data, while

the respiration monitoring module is designed for estimating the patient’s respiration rate and

detecting abnormalities such as apnea. We prototype the AutoTag system using a platform of

commercial RFID tags and reader, and conduct extensive experiments in two different envi-

ronments with four volunteers. We observe superior performance achieved by the proposed

AutoTag system in these experiments. The impact of various design and environment factors

are also tested in corresponding experiments.

We summarize the three main contributions of this work as follows.
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• To our best knowledge, the AuTotag system is the first apnea detection systems incor-

porating an enhanced recurrent variational autoencoder model. The proposed scheme is

an unsupervised learning, with the desirable advantage of not requiring costly labeled

medical data.

• We also propose a novel technique to address the frequency hopping offset, which is

a real-time calibration. The proposed scheme is simple but effective in mitigating the

frequency hoping offset, thus enabling many real-time sensing applications for FCC-

compliant RFID readers and tags.

• We design and prototype the AutoTag system, which is composed with (i) signal ex-

traction, (ii) data calibration, and (iii) respiration monitoring modules, and evaluate the

system in two different representative healthcare environments. We present our experi-

mental results that validate the efficacy of the proposed AutoTag system.

The mainder of this paper is organized as follows. The preliminaries of RFID based sens-

ing is discussed in Section 2.3. The AutoTag system design is presented in detail and analyzed

in Section 2.4. The experimental performance evaluation of the proposed system is provided in

Section 2.5. After reviewing related work in Section 2.2, we conclude this paper in Section 2.6.

2.2 Related Research

The AutoTag system is mostly related to RF signal based vital sign monitoring systems and

RFID based sensing. We briefly introduce these two classes of related work in this section.

Nowadays, many RF based systems have been proposed to monitor vital signals of human,

which are developed on different types of platforms, including Radar systems, WiFi systems,

and RFID based systems. The Radar technique is a straightforward way to identify the fluctua-

tion of human chest caused by respiration, because Radar can directly monitor the distance vari-

ation between the human chest and the device antenna. One of the representative works in this

category leverages an FMCW radar to monitor respiration rate and heart rate for multiple users

simultaneously [14]. Furthermore, other Radar based systems have also been proposed to mea-

sure human respiration, including Doppler radar [15] and ultra wideband (UWB) Radar [30].
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These radar based systems can accurately detect vital signs, and the influence caused by sur-

roundings is limited. However, since the special hardware is essential to such systems, the cost

of such systems are usually high, hampering their wide deployment such as in homes.

To achieve low cost and ease of deployment for vital sign monitoring, WiFi based tech-

niques have been utilized to measure both human breathing rate and heart rate. The human

respiration and heartbeat can be extracted by analyzing variations in WiFi channels, for exam-

ple, the RSS as in Ubibreathe [16]. However, the Ubibreathe system requires the patient to

stand between the transmitter and the receiver, while some other CSI based techniques have

no such strict requirements. Different from RSS based systems, CSI can provide fine-grained

channel inforamtion, and can achieve higher resolution and sensitivity than RSS for monitoring

human vital signs. One of the CSI based techniques can leverage amplitude of CSI to monitor

breathing rate and heart rate when the patient is sleeping [17]. In addition to the amplitude, the

CSI phase information can also carry human respiration signal [18]. Furthermore, the Tensor-

Beat system can estimate respiration rates for multiple persons crowed in a small space [19],

by incorporating tensor decomposition on the collected CSI phase data. Although WiFi based

techniques can measure human vital signs with off-the-shelf WiFi devices, the accuracy is eas-

ily affected by the surrounding environment, because of broadcasting nature and long range of

WiFi transmissions. To address this issue, some RFID based systems like TagBreathe are de-

veloped to track human respiration by analyzing the RFID response data collected at an RFID

reader [27]. Since the passive UHF RFID tags are low-cost and are easily attachable to hu-

man body, the RFID system can monitor human vital signs at a low cost and is resilient to

interference from the unstable environment.

Apart from RFID based vital sign monitoring systems, various sensing systems are pro-

posed by leveraging the data extracted from the low level protocol in RFID systems, such as

RSS and phase values, which have been utilized for many applications, e.g., indoor localiza-

tion. For RSS based methods, one of the representative techniques estimates the tag position

by comparing the RSS from the target tag with reference tags [31]. Moreover, another tech-

nique can obtain the refined tag position by utilizing the characteristics of the coupling effect

on RSS [32]. However, due to the low resolution of RSS, developing an RSS based localization
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scheme with high accuracy is challenging. Thus, many phase based localization techniques are

proposed. One of the typical phase based methods has been developed for estimating distance

with direction of arrival (DOA) [33], but the result has a relatively large ambiguity because of

the periodicity of measured phase. To remove the ambiguity, some other techniques are pro-

posed to obtain the more accurate position than the typical method by leveraging the aperture

radar technique [21] and hologram technique [22, 34] [35]. Besides indoor localization, RFID

tags are also widely used for other sensing techniques such as remote control of drones [24–26],

object orientation estimation [23], remote temperature measurement [36], and gesture recogni-

tion [37].

2.3 Preliminaries of RFID Sensing

According to FCC regulations, UHF RFID readers should use channel hopping to avoid co-

channel interference. The spectrum from 902.5 MHz to 927.5 MHz is partitioned into 50

non-overlapping channels, and the reader remains on each channel for 200 ms. Usually such

frequency hopping introduces an additional phase offset in the RFID response signal, causing

large errors in RFID based sensing.

According to the manual of RFID reader, e.g., [38], the phase ϕ of the received RFID

response signal can be expressed as

ϕ(fi, d) = mod
(
2πfid

c
+ δT + δR + δTag, 2π

)
, (2.1)

where d is the total distance from the reader’s antenna to the tag and then back to the reader

antenna, fi is the frequency of channel i, c is a constant representing the speed of light, and δT ,

δR, and δTag are the phase offsets caused by the transmitter circuit, the receiver circuit, and the

tag’s reflection characteristics, respectively.

For Impinj R420, a commodity RFID reader, the phase offset between two adjacent chan-

nels that it hops to is not a constant, even though the distance d rmains the same, as found in

our experimental studies. Since the three offsets in (2.1) are irrelevant to the distance d, we

can lump the three offsets into a single variable δi for each channel i. The phase ϕ(fi, d) for
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Figure 2.1: The channel indexes used by an FCC-compliant RFID reader during a period of 30
seconds.

channel fi under round-trip distance d can thus be expressed as

ϕ(fi, d) = mod
(
2πfid

c
+ δi, 2π

)
. (2.2)

The main challenge for extracting the breathing signal from the RFID phase measurements

is how to mitigate the discontinuity in phase data, which is caused by channel hopping. One

way to eliminate the channel hopping influence, as proposed for the TagBreathe system [27],

is to group the signals collected from the same channel and to use the estimated displacement

in each channel to track the breathing signal. As discussed earlier, this method may not work

well for RFID systems in the US, since the reader must hop among 50 different frequencies,

following the FCC requirement. Fig. 2.1 plots the change of channel index in a period of 30

seconds. We can see that it takes about 10 seconds for the antenna to hop through all the

50 channels. Thus, the TagBreathe method will take a very long time to collect and group

multiple phase readings on the same channel, leading to extremely long delay in respiration

measurement with FCC-compliant readers.

To address the extremely long delay caused by channel hopping among 50 different fre-

quencies, the Tagyro system calibrates phase values collected from all channels based on one

reference channel [23]. Specifically, the Tagyro technique first measures the phase offset δi for

all the 50 channels. Then, the phase offset introduced by channel hopping can be removed by
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Figure 2.2: Calibrated phase obtained using the Tagyro method [23].

subtracting the phase offset δi in each channel. This method is suitable for a static environment;

but it may not be effective for tracking human breathing signal and apnea, where the tags are

mounted on the human body and moves as the patient breaths. This is because the wireless

channel will change if the patient moves (even slightly). The movement causes an additional

offset in δi, so that the estimated phase offset δ̂i does not match the real-time δi after the small

movement.

Fig. 2.2 plots the calibrated phase data obtained with the Tagyro method. It can be ob-

served that the breathing signal can be detected in the beginning (i.e., the first 15 seconds),

because the initial phase offset is correct. After the first 15 seconds, the breathing signal cannot

be detected, because the channel hopping effect cannot be perfectly mitigated. To continuously

eliminate the frequency hopping effect, we propose a new method in the proposed AutoTag

system, to update and remove the phase offset δi in real-time for breathing and apnea detection.

2.4 Design and Analysis of the AutoTag System

2.4.1 Design of the AutoTag System

The AutoTag system aims to measure human respiration and detect breathing abnormalities,

such as apnea, with multiple RFID tags attached to the patient’s body (i.e., clothes). As given

in (2.1), the collected phase information is indicative of the round-trip distance d between the
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Figure 2.3: The AutoTag system architecture, which includes signal extraction, data calibration,
and respiration monitoring.

reader antenna and the corresponding tag. When the patient breaths, the distance d changes

slightly with the chest movements. Thus, by analyzing the phase variations collected from the

tags attached to the human body, we can obtain the periodic signals caused by chest movements.

However, for accurately measuring the human respiration rate and precisely detecting apnea,

several challenges should be addressed, such as mitigating the channel hopping effect, the

sensitivity divergence for different tags, and dealing with the interference from surroundings.

To address these issues, we incorporate three modules in the AutoTag system, including (i)

signal extraction, (ii) data calibration, and (iii) respiration monitoring, as illustrated in Fig. 2.3.

In the signal extraction module, we extract the phase data from the received responses

from three tags attached to the human body, using a directional antenna at the reader. In the

following data calibration module, we firstly remove the influence caused by channel hopping

of the RFID reader. Then we detect whether the monitored patient is moving or not based on

a threshold based method, i.e., movement detection. After that, we remove the DC component
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from the selected signal to eliminate the impact of small movements of the patient. Then, tag

selection is implemented to choose the tag with the strongest signal strength. Finally, we apply

downsampling and filtering to obtain the final respiration signal. In the respiration monitoring

module, we adopt a recurrent variational autoencoder for detection of abnormalities such as

apnea. Our approach is an unsupervised learning, which has the great advantage of not requir-

ing labeled medical data, which is extremely costly to collect. The respiration rate can also

be estimated with a peak detection method when the patient is breathing normally. We will

introduce the detailed design of each module in the remainder of this section.

2.4.2 Signal Extraction

As shown in Fig. 2.3, the first module is used for extracting low-level phase readings from

received tag responses. The movements of the patient’s chest and abdomen induced by breath-

ing, cause the tag-reader antenna distance to vary with human respiration. The time-varying

distance translates to the time-varying phase in the tag response signal, which is indicative of

the respiration signal. To increase the sysetm’s robustness, three passive UHF RFID tags are at-

tached to the upper body of the patient. The RFID reader uses a directional antenna to transmit

RF interrogating signals to the tags and to read low-level data from the backscattered signals

from the tags, which includes time stamp, phase, received signal strength indicator (RSSI), and

Doppler shift.

For most RFID systems, the collected RSSI data usually has a very low resolution, and the

signal-to-noise ratio (SNR) of Doppler shift is usually low. Thus these two types of information

are not very helpful for detecting the respiration signal. In AutoTag, we focus on the collected

phase information from RFID responses for respiration rate estimation and apnea detection.

2.4.3 Data Calibration

The captured phase information cannot be directly used for detecting the respiration signal. In

Fig. 2.4, we plot the uncalibrated phase data received from one of the reader antennas for a

duration of 28 s. It can be observed that when the reader hops around various channels (200 ms

on each channel), the measured phase data exhibits a wide range of variations. Furthermore,
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Figure 2.4: Uncalibrated phase data collected from a tag for a duration of 28 s.

there is a large offset incurred in the phase data when the frequency hopping happens. It is thus

highly challenging to extract the weak respiration signal from such uncalibrated data. The raw

phase data should be calibrated first to facility the extraction of the respiration signal.

Mitigating the Frequency Hopping Offset

We unwrap the captured phase signal to remove the offset introduced by the modulo operation

in (2.2). With the modulo operation, a slight change in the real phase may lead to a large jump

in the received phase signal. For instance, a small change of the real phase from 0.1π to −0.1π

will cause the received phase to change from 0.1π to 1.9π. Since the sampling rate of the reader

is usually higher than 100 Hz for each tag in our system, the interarrival time of phase samples

is usually smaller than 0.01 s. Assuming that the phase value change of two back-to-back

readings is smaller than π under such a small interarrival time,±2π can be added to recover the

original phase value when the change exceeds π. Note that frequency hopping can also cause

big variations between two back-to-back phase samples, and unwrapping will only be used for

consecutive phase samples collected from the same channel. After the unwrapping operation,

the phase samples from each channel is smoothed.

The second step is to splice the smoothed phase signals from all the 50 channels into a

single phase signal, by mitigating the frequency hopping offsets. The key is to translate the
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phase signal from the next channel that the reader hops to, to a transformed phase signal using

the previous channel as a reference with real-time calibration. As illustrated in Fig. 2.5, the

phase signal from the previous channel, e.g., channel i, can be written as

ϕ(fi, d) = mod
(
2πfid

c
+ δi, 2π

)
. (2.3)

Then the reader hops from channel i to channel (i+ 1). Similarly, for the next channel that the

reader hops to, we have

ϕ(fi+1, d) = mod
(
2πfi+1d

c
+ δi+1, 2π

)
. (2.4)

For simplifying notation, ignore the modulo operation for now. We then multiply the channel

(i+ 1) phase signal by a factor of (fi/fi+1), to have

ϕ̂(fi+1, d) = ϕ(fi+1, d)×
fi
fi+1

=
2πfid

c
+ δi+1 ×

fi
fi+1

.
=

2πfid

c
+ δi +∆δi, i = 1, 2, ..., 49. (2.5)

Therefore, we have

ϕ̂(fi+1, d) = ϕ(fi, d) + ∆δi, i = 1, 2, ..., 49, (2.6)

where

∆δi
.
= δi+1 ×

fi
fi+1

− δi, (2.7)

represents the transformed phase offset, as illustrated in Fig. 2.5, which can be easily estimated

as follows.

Note that we already know the frequency for each channel. So we first multiply the phase

ϕ(fi+1, d) collected from channel (i + 1) with a ratio fi/fi+1. The next value we need to
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Figure 2.5: Illustration of the proposed frequency hopping offset mitigation scheme.

calibrate is ∆δi as in (2.7). In AutoTag, only three tags are attached to the human body. The

overall sampling frequency of the reader is 600 Hz, and the sampling rate for each tag is more

than 100 Hz. It takes only less than 1 ms for the reader to hop from one channel to another. Due

to the high sampling rate and the small channel hopping time, it is reasonable to assume that

the antenna-to-tag distance and the surrounding environment remain the same during channel

hopping. Under this assumption, the difference between the phase data before channel hopping

and the transformed phase data after channel hoping, is all caused by ∆δi along with thermal

noise.

To mitigate the influence of thermal noise, we apply a Hampel filter to the signal read

from each channel. We choose a sliding window of 20 samples and a threshold of 0.01 for

the Hampel filter. Next, we compute the difference between (i) the average of the last 6 phase

readings in the previous channel i (denoted as ϕ(fi, d, k)), and (ii) the average of the first 6

transformed phase readings in the present channel (i + 1) (denoted as ϕ̂(fi+1, d, k)), as an

estimate for the transformed phase offset ∆δi. As shown in Fig. 2.5, and also from (2.6), we

have

∆̂δi ≈
1

6

(
Ni∑

k=Ni−5

ϕ(fi, d, k)−
5∑

k=0

ϕ̂(fi+1, d, k)

)
, (2.8)
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Figure 2.6: The resulting phase data after removing the frequency hopping offset.

where Ni is the total number of phase readings collected from channel i.

After compensating for the frequency hopping offset, the phase samples on the present

channel (i + 1) can be approximated as in (2.6). Fig. 2.6 plots the calibrated phase samples

after removing the frequency hopping offset. It can be seen that after calibration, the collected

phase data shows an visible periodic respiration signal, which is completely missing in the

uncalibrated phase data in Fig. 2.4 (for the same period of 28 seconds).

Movement Detection

After mitigating the frequency hopping offset, the next step is to detect whether the patient

is moving. Note that the breathing signal is very weak comparing to other types of body

movement. Therefore, we should only use the signals collected while patient if in a stationary

state, to avoid the interference introduced by large movements of human body.

Movement detection is accomplished with a threshold based method. In particular, a slid-

ing window is applied to the collected phase data, as showed in Fig. 2.7. For each window, we

calculate the total mean absolute deviation of the phase samples from all tags, denoted by T , as

T =
1

|W |

N∑
j=1

∑
k∈W

|ϕj(k)− E(ϕj(k))|, (2.9)
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Figure 2.7: A sliding window on phase readings from the tags.

where W represents the set of all the phase readings in the sliding window, | · | is the cardinality,

N is the number of tags, and ϕj(k) is the kth phase sample obtained from tag j. If the patient is

not stationary, the phase values will exhibit big changes (due to the large changes in d caused by

body movements). Thus, by setting a threshold on T , we can detect considerable movements of

the patient. In AutoTag, we use a threshold value of 0.9 and a window size larger than 6 seconds

for movement detection, based on our extensive experiments with various body movements.

DC Removal

Although the frequency hopping offset can be effective mitigated using a reference channel,

the initial offset on the reference channel is still a random value that introduces a random DC

component in the phase data. To remove the random DC component, as well as interference

from other movements from the environment, we pass the phase signal through a detrending

operation. Specifically, another Hampel filter is used, whose window size is 2000 and threshold

is 0.001, to obtain an estimate of the DC component (i.e., the trend). Finally, the calibrated

phase signal is obtained by subtracting the trend from the filtered signal. The calibrated signal

is ploted in Fig. 2.8 for the same period of 28 s. It can be seen that the calibrated signal is now

centered at zero, like a periodic AC signal.
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Figure 2.8: The calibrated phase signal after removing the DC component with a Hampel filter.

Tag Selection

When analyzing the experimental results, we find that each tag has a different sensitivity to the

human breathing signal from other tags, which depends on the slightly different tag parameters

and the different propagation environment (e.g., distance or angle) of each tag. In particular,

the angle between the tag and the reader antenna is a factor that causes the difference in tag’s

sensitivity. To obtain the most sensitive signal, we measure the signal strength using the average

absolute deviation within a certain window size of 6 seconds (see (2.9)). The tag with the largest

signal strength will be chosen for the remaining processing steps.

Downsampling and Filtering

Due to the high sampling frequency, i.e., about 600 Hz with one reader antenna, the signal

need to be downsampled to reduce the computational complexity. In AutoTag, the signal is

downsampled with a factor of 10 before feeding to the respiration monitoring module. In

addition, there are still some false peaks introduced by thermal noises, which affect the accuracy

of peak detection for respiration rate estimation. Note that the normal human respiration rate is

usually much lower than 0.5 Hz. Thus, we apply a low-pass filter and choose a cutoff frequency

of 0.5 Hz to the downsampled signal, in order to remove the remaining high frequency noise.

In Fig. 2.9, we plot the downsample and filtered phase signal, which is quite smooth now. It
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Figure 2.9: The finally recovered respiration signal.

is then used as input to the next module for the following apnea detection and respiration rate

estimation tasks.

2.4.4 Apnea Detection and Respiration Rate Estimation

Recurrent Variational Autoencoder for Apnea Detection

For the purpose of accurate respiration detection, we introduce a recognition model as an ap-

proximation to the intractable true posterior, where the parameters are not computed from some

closed-form expectation, but are learned from the calibrated data. To detect apnea, the main

idea of AutoTag is to incorporate a variational autoencoder to compute the difference between

the sampled signal and the reconstructed signal within a time window. Note that this is an un-

supervised learning [39,40], with the desirable advantage of not requiring labeled medical data

that is hard or costly to obtain. If the computed difference is smaller than a given threshold,

the sampled signal is regarded as a regular breathing signal, from which the respiration rate can

be estimated; otherwise, the signal sequence is regarded to be abnormal, and apnea is detected.

Since the energy based threshold has been applied for movement detection in the earlier stage

(see Section 2.4.3), small breathing signals can be detected now at this stage.

The proposed recurrent variational autoencoder for unsupervised respiration abnormality

detection is illustrated in Fig. 2.10. We first apply the variational autoencoder model to obtain
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a reconstructed version of the input signal. This model is to maximize the marginal likelihood

given below.

pθ(x) =

∫
pθ(x|z)p(z)dz, (2.10)

where x, z, and θ are the observed variables, the latent random variables, and the set of pa-

rameters, respectively; p(z) is the prior over the latent random variables z; and pθ(x|z) is the

conditional probability, representing an observation model under the parameter set. Usually

pθ(x) is intractable due to the integral operation. Although the Monte Carlo sampling method

can be used to solve the problem, it usually incurs a considerable computational cost even for

small-sized datasets. The variational autoencoder model utilizes the variational approximation

qϕ(z|x) instead of the true posterior pθ(z|x). Specifically, the variational autoencoder model

has qϕ(z|x) with parameter set ϕ as encoder and pθ(x|z) with parameter set θ as decoder. Ac-

cording to Jensen’s inequality, the variational autoencoder model can achieve the optimal values

for sets ϕ and θ. This is achieved by maximizing a lower bound on the log-likelihood, given

by [39]

maxL = −DKL(qϕ(z|x)||p(z)) + Ez∈qϕ(z|x) [pθ(x|z)] , (2.11)

where DKL represents the KL divergence. In (2.11), −DKL(qϕ(z|x)||p(z)) represents the reg-

ularization over the latent variables z, while Ez∈qϕ(z|x) [pθ(x|z)] is the autoencoder. The latent

variables z are sampled from qϕ(z|x), and the reconstructed signal x̂ can be sampled from

pθ(x|z).

To reduce the training overhead, the variational autoencoder model utilizes the reparametriza-

tion technique. With this technique, the latent vector z is computed from the mean vector µϕ(x)

and the variance vector σ2
ϕ(x), as

z = µϕ(x) + σϕ(x)⊙ ϵ, (2.12)
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Figure 2.10: Architecture of the proposed recurrent variational autoencoder for unsupervised
apnea detection.

where ϵ ∈ N (0, 1) (i.e., a standard Gaussian distribution), and ⊙ represents the element-wise

product operation. The lower bound on the log-likelihood, i.e., L, can then be approximated as

follows.

L ≈ 1

2

J∑
j=1

(
1 + log(σ2

j (x))− µ2
j(x)− σ2

j (x)
)
+

1

M

M∑
l=1

log pθ(x|zl),

where M is the number of samples in z, and J is the cardinality of z.

Next, we consider the data samples within a time window, to be processed by a long short-

term memory (LSTM) network. LSTM belongs to the class of recurrent neural networks (RNN)

that can effectively handle time series data. It can also deal with the problem of vanishing

gradient problem exists in RNN. Besides, consider that the major difference between normal

breathing signal and apnea signal can be reflected by both periodicity and the shape of signal,

which can be considered as long range dependency and short range dependency, respectively.

These long range dependencies can be effectually captured by LSTM, because the data in a time

series can be stored or deleted by a non-linear gate in each unit. Thus, in the proposed AutoTag
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system, the LSTM network is utilized to encode the respiration signal sequence within a time

window. Then its outputs are used to obtain estimations for the mean vector µϕ(x) and the

variance vector σ2
ϕ(x) using two linear modules, respectively. The sampled z is fed to another

LSTM network for decoding the estimated mean and variance vectors. Eventually we obtain a

reconstructed respiration signal for the same time window.

Once the reconstructed respiration signal is obtained, we propose a KL divergence based

method for apnea detection. Specifically, we first normalize both the original signal and the

reconstructed signal in the same time window, in order to ensure that both the apnea signal and

the respiration signal are within the same amplitude range. The similarity between the original

signal and the reconstructed signal is then calculated in the form of KL divergence. Since

the proposed neural network is well trained by a large amount of normal breathing signal, the

KL divergence between input signal and reconstructed signal is very small when the signal is

sampled during normal breathing. In contrast, the KL divergence is very large when the input

signal includes abnormal respiration (apnea), because the network didn’t know the features of

these abnormalities. Finally, we collected the values of KL divergence calculated for normal

breathing and apnea respectively, and a threshold λ is properly chosen to determine whether the

signal in this time window is for apnea or normal respiration. Specifically, if the KL divergence

is greater than the threshold, apnea is detected in this time window; otherwise, the signal is for

normal respiration.

The proposed deep learning based approach has two desirable features. First, the recur-

rent variational autoencoder is an unsupervised learning. Therefore, there is no need to collect

labeled data for regular and abnormal respiration signals, which could be costly and time con-

suming. Second, the proposed method can learn the periodic features of respiration signal in

offline training, rather than simply detecting the strength of the breathing signal. Therefore, this

method is superior to the energy threshold based method, especially when the patient moves.

Peak Detection for Breathing Rate Estimation

Finally, the peak detection technique [18] is used to estimate the interval between two neigh-

boring peaks, when a regular respiration signal is detected. Although most of the noise coming
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from the environment have been removed at this stage, some false peaks may still exist. False

peaks are usually relatively smaller than the peaks of the respiration signal, but they still could

affect the accuracy of peaks detection.

To mitigate the influence of such false peaks, we execute the peak detection algorithm

with a small sliding window of data points, instead of on the entire sampled signal sequence.

In AutoTag, a window size of 11 data points are used. Only if the center data point of the

sliding window is the maximum among all the data points within the window, the center data

point will be identified as a peak. Then the mean value of all the peak intervals is calculated to

approximate the period of the respiration signal τ . Finally, the respiration rate can be computed

as 60/τ breaths per minute (bpm).

2.5 Prototyping, Experiments, and Discussions

2.5.1 Prototyping and Experimental Environments

To evaluate the proposed AutoTag system, we adopt Impinj R420 as the RFID reader to collect

phase information from ALN-9740 tags. To be FCC-compliant, the circular polarized antenna

equipped in our system hops among 50 channels ranging from 902.5 MHz to 927.5 MHz, and

remains on each channel for 200 ms. The user interface and the signal processing is imple-

mented with an MSI laptop equipped with a Nvidia GTX1080 GPU and an Intel(R) Core(TM)

i7-6820HK CPU. A software is also implemented in our system to collect data from the reader

using the Low-level Reader Protocol (LLRP), which can extract useful low-level data from

received tag responses, including time stamp, Doppler shift, RSSI, and phase value.

We carry out extensive experiments that involve four volunteers. The experimental results

in two different environments are presented in this section. The test settings include a 5.6 m

× 7.5 m lab, which is cluttered with tables, chairs, and computers, and a 2.4 m × 20.0 m

empty corridor with no moving persons in Broun Hall in the Auburn University Campus. In

the lab setting, the multipath effect is obviously larger than that in the corridor setting. All the

volunteers are tested in three cases: (i) sitting in a chair and breathing normally, (ii) sitting in

the chair and holding breath, and (iii) moving randomly while breathing normally.
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Figure 2.11: Experimental environments for validating the performance of AutoTag: (i) a clut-
tered computer laboratory; (ii) an empty corridor.

For respiration rate estimation, we obtain the cumulative distribution function (CDF) of

estimation errors for performance validation. For apnea detection, the following two perfor-

mance metrics are used:

• True Negative (TN) rate: this is the success rate when a regular respiration signal is

successfully detected;

• True Positive (TP) rate: this is the success rate when apnea is correctly detected.

2.5.2 Experimental Results and Discussions

For normal breathing scenario, we evaluate the accuracy of respiration rate estimation under

the two settings. We also use the NEULOG Respiration Belt sensor wrapped on the volunteer’s

chest to measure the ground truth. The CDFs of estimation errors are plotted in Fig. 2.12 for the

lab and corridor experiments. We find the maximum errors are 0.462 bpm and 0.326 bpm, while

the median errors are 0.105 bpm and 0.093 bpm, for the lab and corridor settings, respectively.
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Figure 2.12: CDFs of estimated breathing rates in the computer lab and corridor scenarios.

The maximum and median errors in the lab setting are both larger than the corresponding error

in the corridor setting. In addition, more than 50% estimation errors obtained in the corridor

setting are smaller than that obtained in the lab setting. These indicate that the multipath effect

does affect the accuracy of respiration rate estimation. Furthermore, it can be seen that the

median error in the lab and corridor tests are 0.104 bpm and 0.0925 bpm, respectively. The

close median errors indicate that the effect of multipath is not substantial. Since a directional

antenna is used by the reader, the backscattered tag response in the line-of-sight (LOS) path

is the dominant component. Thus, the respiration rate estimation in the two settings are both

accurate.

We also study the influence of various factors on the estimation precision of our system.

Fig. 2.13 plots the impact of the distance between two adjacent tags. We test the system with a

tag array attached to the human chest with different distances between adjacent tags. The figure

shows that when the distance between two tags is 1 cm, the estimation error is 0.265 bpm, which

is relatively large. This is because when tags are too close to each other, they will suffer from

stronger mutual coupling effect. The measured phase will be distorted by mutual coupling, and

thus the estimated respiration rate will also be affected. Fortunately, the figure also reveal that

when the tags are more than 2 cm apart, the error will become smaller than 0.124 bpm, which
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Figure 2.13: Evaluating the effect of the distance between two neighboring RFID tags.

indicates the influence of mutual coupling is negligible in these cases. Therefore, we deployed

the tags with a 3 cm tag-interval in the AutoTag system.

Fig. 2.14 presents the influence of the number of tags used in AutoTag. We test the system

with an increased number of tags from 1 to 5, while the tag distance is set to 3 cm. As can

be seen in the figure, the estimation error is higher than 0.307 bpm when only one tag is used.

When 3 or more tags are used, the error becomes smaller than 0.134 bpm. This is because

the sensitivity of the single tag is more susceptible to the propagation environment, such as

different surroundings and human postures. When multiple tags are used, we select the most

sensitive tag to measure the human respiration, which increases the sensitivity of the system.

Based on the results showed in Fig. 2.14, we adopt 3 tags on the volunteers to increase the

accuracy of our system.

We also experiment by placing tags on different parts of the human body. Fig. 2.15 shows

that, the estimation error is large when the tags are placed on the arms and neck of the volun-

teers, which are 0.637 bpm and 0.304 bpm, respectively. When the tags are placed on the chest

and abdomen, the error becomes lower than 0.119 bpm. This is because respiration directly

causes the chest and abdomen to move. When the tags are placed on the neck and arms, the
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Figure 2.14: Evaluating the effect of the number of attached RFID tags.
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Figure 2.15: Evaluating the effect of different measuring positions.

strength of the movement, and thus the phase signal is not strong enough for effectively ex-

traction of respiration signal, although the backscattered signal is also reflected from the chest.

In addition, the arm movements generate a large noise, which also affect the accuracy of the

system. Therefore, all the tags are attached to the human chest or abdomen in the AutoTag

system.
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Figure 2.16: Evaluating the effect of the distance between the patient chest and reader antenna.

Next, the effective rage of our system is evaluated, and the results are presented in Fig. 2.16

and Fig. 2.17. Fig. 2.16 presents the estimation errors at different distances between the patient

and the antenna. We find that the respiration rate error is less than 0.112 bpm when the distance

is shorter than 3.5 m. The error increases drastically when the distance becomes larger than 4

m. To evaluate the impact of the angle of the directional antenna, we measure the respiration

rate at a fixed distance with various relative orientation angles between the patient and the di-

rectional antenna: where 0◦ means the antenna directly faces the patient. As show in Fig. 2.17,

the estimation error is smaller than 0.127 bpm when the angle is between -20◦ and 20◦. The

error increases to be larger than 0.678 bpm when the angle is beyond ±60◦. This is because

the received power of the backscattered signal is different at different radiation angles for the

directional antenna. According to the results presented in Figs. 2.16 and 2.17, we conclude that

the distance between the patient and the antenna should be less than 3 m and the orientation

angle of the antenna should be within ±20◦.

We also study the proposed AutoTag system by comparing with an energy based baseline

method [41] under two different settings. In the first setting, the patient sits quietly with no

other movements than breathing; in the second setting, the patient is allowed to move slightly,

such as moving legs and hands, and twisting neck. Fig. 2.18 provides the TN and TP rates

42



-60 -40 -20 0 20 40 60

Angle of Directional Antenna (degree)

0

0.2

0.4

0.6

0.8

1

E
st

im
at

io
n
 E

rr
o
r 

(b
p
m

)

Figure 2.17: Evaluating the effect of the angle of the directional reader antenna.
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Figure 2.18: True Negative rate and True Positive rate obtained in a stable setting.

obtained with the proposed method and the baseline method in the stationary setting. When

there are no body movements, the TN rates are both over 94% for the proposed and baseline

schemes. Furthermore, the TP rates are 88% and 92% for the proposed and baseline schemes,

respectively. These results indicate that both AutoTag and the energy based baseline method

can achieve considerably high TN and TP rates when the patient does not make slight moves.

When the patient moves slightly, however, the situation becomes quite different. The re-

sults under slight body movements are given in Fig. 2.19. We find the TP rate of the energy
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Figure 2.19: True Negative rate and True Positive rate obtained when there are small body
movements.

based baseline scheme drops to 56%, but the TP rate of AutoTag is still as high as 92%. Un-

der the disturbance of small body movements, the energy of the apnea signal can be greatly

increased. It is therefore challenging to choose a suitable threshold for apnea detection in the

baseline scheme. In contrast, AutoTag detects respiration abnormality by matching the shapes

of the original and reconstructed signals; it does not rely on the signal’s energy level. Con-

sequently, AutoTag is resilient to the energy disturbance caused by small body movements in

this setting. Furthermore, as shown in Fig. 2.19, the TN rates achieved by AutoTag and the

baseline scheme are both above 91%, which are only slightly less than the TN rates achieved

in the stationary setting (although the body movements also distort the shape of the respiration

signal). We conclude that AutoTag system can accurately detect apnea and normal respiration

signals in the two settings.

2.6 Conclusions

This paper presented the AutoTag system for unsupervised respiration rate estimation and de-

tection of apnea in real-time with commodity RFID Tags. The AutoTag system incorporated a

novel technique to effectively address the effect of frequency hopping offset for RFID systems
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that comply to FCC regulations, and thus can be used for many RFID applications with real-

time requirements. The proposed system also incorporated an unsupervised learning, thus has

the desirable advantage of not requiring labeled medical data, making it low-cost and easy to

deploy. The superior performance of the AutoTag system is demonstrated by extensive experi-

ments in typical healthcare environments.
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Chapter 3

Unsupervised Drowsy Driving Detection with RFID

3.1 Introduction

Driving fatigue is now considered as a primary cause of traffic accidents. It is reported by the

National Highway Traffic Safety Administration (NHTSA) that, over 72,000 reported crashes

involved drowsy driving from 2009 to 2013, and 16.5% of fatal crashes are caused by driving

fatigue [43]. Human lives are at high risk in such accidents caused by drowsy driving. The

situation is even worse with the increasing popularity of autonomous driving [44]. Such risks

and losses can be greatly reduced if an effective driving fatigue alarm system is in place. How-

ever, most drowsy driving events are hard to detect with existing technologies in commodity

vehicles. Thus, there is a compelling demand for an effective driving fatigue detection system,

which can accurately detect driving fatigue and alarm drivers to avoid accidents [45–47].

Driving fatigue detection is a popular topic in the research community in recent years,

and various types of signals have been exploited in prior works, such as electroencephalogram

(EEG) [48], video camera [49], WiFi [50], and ultra sound [51]. As a straightforward signal

from human brain, EEG signal can achieve an excellent performance on fatigue detection [48].

However, because of the complex equipment required, the EEG system is currently not suitable

for practical use in cars. As a non-intrusive approach, vision based techniques can detect the

driving fatigue by recognizing eyelid movements [49]. The required hardware of vision based

system, i.e., a camera, is much cheaper than that in EEG based techniques, but the system re-

quires sufficient lighting inside the vehicle, and the performance could be heavily affected if the

driver wears sunglasses. Without the lighting requirements, radio frequency (RF) and acoustic

46



signals are also leveraged to detect driving drowsiness. For example, channel state information

(CSI) of WiFi signals can be used to detect driving fatigue by detecting the respiration rate and

movements of the driver [50]. Unfortunately, due to the large range, the WiFi signal is sensitive

to the interference from surroundings, such as the movements of the driver and passengers, and

of objects outside the vehicle. The same challenge also exits for the current acoustic-based

techniques [51], which detects drowsy-driving with the embedded microphone and speaker in

smartphones.

RFID sensing has drawn considerable attention recently, with interesting new applications

for remote temperature sensing [52], drone navigation [24,53,54], gesture recognition [55,56],

localization [57], and breathing monitoring [8,27,58]. The passive RFID tags can be directly at-

tached to the target object. Due to the near-field nature, the interference of surrounding noises

can be effectively mitigated. Furthermore, the cost of tags is low and the performance can

hardly be affected by the lighting condition inside the vehicle. However, there have only been

very limited work on application of RFID in vehicles, which are mostly focused on localiza-

tion [59–61]. There are many challenges to build a highly accurate RFID based driving fatigue

detection system, such as effectively extracting driving drowsiness features and the discontinu-

ity in collected phase data as caused by frequency hopping.

In this paper, a driving drowsiness detection system is proposed to fully exploit advanced

machine learning and RFID based sensing [62]. We firstly introduce the collected phase model

in commodity RFID systems, as well as the challenges caused by channel hopping, such as the

discontinuity of the sampled phase and the cumulative error caused by the frequency hopping

offset. We then introduce the design of the proposed system, which is composed of four main

components, including data sensing, movement feature extraction, offline training, and online

drowsiness detection. Specifically, to effectively detect the nodding features with RFID tags

in a driving environment, we deploy two RFID tags on a hat worn by the driver, and employ

the phase difference between two RFID tags to mitigate the noise caused by vehicle vibration.

According to the FCC policy, phase data of both tags are sampled sequentially, while the reader

hops among various channels. A novel algorithm is proposed to estimate the phase difference

between two RFID tags. With an analysis of the collected phase data, the cumulative error
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caused by the channel hopping offset will also be eliminated by a novel differentiation process

of collected phase difference. Finally, to avoid the high cost of collecting labeled data from

driving environments, an unsupervised LSTM autoencoder model is proposed to distinguish

the nodding movement from other driving movements. This is achieved by measuring the di-

vergence between the input and reconstructed signal from the well trained autoencoder model.

We have implemented the proposed system using commodity RFID tags and readers, and car-

ried out extensive emulations and experiments in real driving settings, e.g., parked, city street

driving, and high way driving, to validate the performance of the proposed system.

The main contributions made in this paper can be summarized as follows.

• To the best of our knowledge, this is the first work that leverages passive RFID tags for

driving drowsiness detection under real driving settings.

• A specific tag deployment and several signal processing algorithms are proposed to ef-

fectively distinguish the nodding features from the strong environment noises and other

types of driving related movements. An effective algorithm is proposed to estimate, on

real-time, the phase difference between two RIFD tags that are interrogated with slotted

ALOHA and under frequency hopping in commercial RFID systems.

• We analyze the cumulative error caused by the frequency hopping offset in FCC-compliant

UHF RFID systems, and propose a differentiation based method to mitigate the influence

of cumulative error.

• Driving fatigue is detected by an unsupervised LSTM autoencoder model, which does

not require labeled training data of various types of driving movements, which are hard

and costly to obtain.

• A prototype system is built with commodity RFID devices, deployed in a car, and vali-

dated in both an emulated environment and real driving environments. The experiments

are conducted in various driving scenarios, where excellent performance of the proposed

system is demonstrated.
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In the rest of this paper, the related works are discussed in Section 3.2. The preliminaries

are introduced in Section 3.3. We present the system design in Section 3.4 and performance

evaluation in Section 3.5. Section 3.6 summaries this paper.

3.2 Related work

This work is highly relevant to the prior work on driving fatigue detection and RFID based sens-

ing systems. Driving safety is a hot topic for recent years, and several techniques are proposed

to detect drowsy driving to prevent drivers from falling asleep when driving [46]. For example,

physiological signals, such as electrooculograms (EOG) and cephalography (EEG), are used

to detect driving fatigue [48, 63]. Compared with EEG, EOG is more robust to noise because

of its higher amplitude values. Drowsiness can be effectively detected when the physiological

signal is labeled correctly. These systems usually have the highest sensitivity to drowsiness,

because of they directly monitor the human brain. However, the EOG and EEG equipment are

expensive and not suitable for deployment in vehicles.

Other types of systems are also proposed to achieve higher flexibility and reduce cost.

Various types sensors, such as video camera, smartphone, and RF devices, are used. Different

from physiological sensors, such sensors detect driving drowsiness by analyzing the movement

of drivers, such as blinking, yawning, and nodding. Camera based systems could detect the eye

location or eyelid movement [49,64]. However, the accuracy of the system is highly dependent

on the lighting condition inside the vehicle. It may also raise concerns of violating the privacy

of drivers.

In addition, vital signs can also be effective indicators of drowsiness, which has been used

in RF based techniques. Since drowsiness is closely related to respiration rate [65], respiration

rate monitoring in driving environment becomes a promising approach. To this end, ultra-

wideband (UWB) radar has been adopted to detect the breathing rate of drivers [66]. WiFi has

also been utilized for this purpose [50]. Movements of the driver’s chest could be captured

by the chest reflected WiFi signal, and by examining the Channel State Information (CSI), the

respiration rate can be estimated. One shortcoming of this approach is that the RF signals are

sensitive to environment interference, such as the movements of the driver and passengers, as
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well as the movements outside the car. It is a big challenge to mitigate the impact of such strong

interference.

Smartphones are considered as a type of multifunctional platform for sensing because of

its embedded sensors, such as video camera, microphone, and gyroscope, which enable numer-

ous smartphone based sensing system designs. With the embedded video camera, smartphone

can also be used to detect driving fatigue by capturing eye movements [67]. By incorporating

the microphone and speaker, acoustic systems have also been developed to detect the move-

ments of the driver, such as yawning, steering, and nodding [51]. High flexibility and low-cost

are the two key benefits of smartphone based acoustic systems. However, acoustic signals are

also very sensitive to the movements of the driver and passengers, as well as vehicle vibration,

which may hurt the performance of such systems.

Recently, passive RFID tags, as a kind of wearable sensors, have attracted increasing in-

terest because of its low-cost and easy deployment features. RFID based sensing has been

used for many applications, such as user authentication [68], material identification [69], ob-

ject orientation estimation [23], vibration sensing [70], and anomaly detection [71]. For indoor

localization [22,34,57] and gesture recognition [72,73], the RFID based techniques are mainly

focused on the analysis of low level data collected at the reader. For example, the received

signal strength (RSS) has been utilized for tag localization in [31], while the phase values have

been used to recognize different kinds of gestures [55]. In addition, vital signs can also be

detected by the low level data. Specifically, TagBreathe is the first work to estimate breathing

rates using RFID tags [27], while TagSheet uses RFID Tags for breathing monitoring and sleep

posture recognition [74]. Even heart rate variability can be assessed with an RFID tag array

attached to the human body. However, these vital sign monitoring systems are not suitable

for detecting drowsiness in a driving environment, because the small vital sign signal could be

easily overwhelmed by vehicle vibration and driving movements. The work presented in this

paper makes a first attempt on RFID based driving fatigue detection, where commercial RFID

tags are utilized for detecting the nodding movement of the driver. The proposed system con-

sists of several novel techniques to effectively deal with the strong noisy driving environment,

as will be elaborated in Section 3.4
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3.3 Preliminaries and Challenges

3.3.1 Measured Phase at an RFID Reader

To distinguish different types of head movements, we need to detect and analyze the variation

of the distance between the reader and the tags attached to the driver’s hat. Such changes

are captured by the phase values collected by the RFID reader. According to the low level

reader protocol (LLRP), the reader can provide low level data, such as Received Signal Strength

Indicator (RSSI), RF phase, and Doppler Shift, for each received tag response [38].

The received phase value can be written as [8]

Φ = mod
(
2π(2L)

λ
+ ΦR + ΦT + Φtag, 2π

)
, (3.1)

where L is the distance between the reader antenna and the target tag, λ is the wavelength

of the signal, ΦR and ΦT represent the phase offsets caused by the receiver and transmitter,

respectively, and Φtag is the phase shift caused by the refection circuit of the target tag. Since λ,

ΦR, ΦT , and Φtag are constant when the reader operates on a given channel, the collected phase

value Φ varies along with the change in the tag-to-reader distance L (i.e., chest movements).

3.3.2 Frequency Hopping Offset and Cumulative Error

According to FCC regulations, Ultra High Frequency (UHF) RFID readers should adopt fre-

quency hopping to benefit from the maximum reader transmitted power allowances. When

interrogating tags, the reader periodically hops among 50 different channels from 902 MHz

to 928 MHz. Since the values of λ, ΦR, ΦT , and Φtag in (3.1) are all related to the operation

frequency, the measured phase is affected by both the tag-to-reader distance and the current

occupied channel.

The measured phase from a channel k can be written as

Φ(fk, L) = mod
(
4πLfk

c
+ Φk, 2π

)
, (3.2)
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Figure 3.1: Raw phase data collected by the RFID reader.

where c is the speed of light, fk is carrier frequency of channel k, and Φk represents the initial

phase offset on channel k due to ΦR, ΦT , and Φtag.

Fig. 3.1 shows the raw phase data collected by the reader. It can be seen that the reader

hops 50 times in a period of 10 seconds and the frequency hopping offset causes considerable

discontinuity in the measured phase data. Thus, the variation of L, which represents the useful

signal, is hard to be detected from the raw phase data. To address this issue, two solutions have

been proposed in recent works. The Tagyro system adopts a calibration process of 10 seconds

to estimate the initial phase offset for each channel, and then subtract it from the measured

phase data [23]. This method works well in a static environment; but it is not suitable for

RFID systems in a noisy driving environment. This is because the movements of the driver and

vehicle vibrations could hurt the accuracy of the calibration process. In the respiration monitor-

ing system Autotag [8, 58], a real-time method is proposed to mitigate the frequency hopping

effect. Rather than estimating the initial phases on all channels with a calibration phase, the Au-

totag system focuses on mapping the phase data sampled in the current channel to the previous

channel, by removing the frequency hopping offset between two adjacent channels.

The proposed method in [8,58] can eliminate most of the frequency hopping offset for re-

altime sensing applications. However, there is still some residual error remains each time when

the reader hops to another channel, and the error will accumulate to become larger and larger
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Figure 3.2: An example of the cumulative error in calibrated phase signal.

as the reader hops among more and more channels. For the respiration rate monitoring problem

considered in [8, 58], such cumulative error can be effectively removed with a detrending pro-

cess, because breathing rate detection only concerns the periodicity of the signal. However, for

the driving fatigue detection problem considered in this paper, the information of head move-

ments is also embedded in the low frequency components of the signal. If a detrending process

is applied as in [8, 58], the useful nodding signal will also be removed.

In Fig. 3.2, we plot the phase data collected from a tag attached to an object (i.e., a book)

in a stationary state. The sampled phase data are calibrated by the proposed method in [8, 58].

It can be seen that although the object is static, the calibrated phase still exhibits large varia-

tions. For the first 10 seconds, the error accumulates to 0.76 rad, which will greatly affect the

accuracy of phase measurements. This is because the residual error in estimating the initial

phase offset for each channel happens every 0.2 second (when the reader hops to a new chan-

nel), and the error starts to accumulate over time. On the other hand, if we only use the phase

data collected from the same channel, it will take 10 seconds for the reader to return to the

same channel, making it unsuitable for realtime sensing applications. In order to detect head

movement features from the calibrated phase data from all channels, accurate phase data should

be firstly estimated. Thus, extracting movement features from the calibrated phase signal with

cumulative error is a big challenge.
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Figure 3.3: Architecture of the proposed system.

3.4 System Design for Drowsy Driving Detection

3.4.1 System Overview

The proposed unsupervised driving fatigue detection system is illustrated in Fig. 3.3. Our sys-

tem is composed of four main modules, including data sensing, movement feature extraction,

offline training, and online drowsiness detection. In the data sensing module, head movement

could be captured by received phase values from the tags attached to the driver’s hat. Then,

the nodding features are distinguished from other head movements in the movement feature

extraction module. The phase difference between two RFID tags are estimated to mitigate the

influence of vehicle vibration. Derivative calculation is proposed to remove the cumulative

error caused by the realtime frequency hopping. Finally, an unsupervised learning model is

proposed to learn the nodding features, and the online nodding detection is executed with the

well-trained model. Nodding will be detected by calculating the divergence between the input

and output signals of the autoencoder model. The detailed design of the proposed system will

be elaborated in the remainder of this section.

3.4.2 Nodding Feature Extraction

In many machine learning systems, offline training requires a large amount of featured data.

However, it’s a big challenge to learn the features of normal driving based on head movements,

because drivers may randomly rotate their head to the left or right to check side-view mirrors
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or traffic conditions in different lanes. Such head movements during normal driving are usually

unpredictable. In contrast, nodding is a typical symptom of driving fatigue, which can be

easily labeled simply from collected data. Therefore, we use the features of nodding from

collected data for training the model. There are still some challenges remaining. First, drivers

may change their posture or move their head forward or backward during driving, and thus the

head movements include both 3-D rotations and position shifts. It is difficult to separate the

head shifting signal from the collected signal, because phase value is affected by both types

of movements. Second, nodding features are hard to distinguish from head rotation. This is

because both movements can be considered as a round-trip rotation of the head, which makes

the resulting phase variations very similar. Finally, as discussed in Section 3.3, the cumulative

error caused by the channel hopping offset is still a big problem. In the following subsections,

we address all these challenges and show how to effectively extract the nodding features.

Phase Difference Calculation

To mitigate the impact of driver’s body movements and vehicle vibration on collected data,

we calculate the phase difference between two tags rather than directly utilizing the calibrated

phase data. Since the driver is buckled up, the body movement is usually constrained, and the

typical head movements include shifting, rotation, and nodding.

Fig. 3.4 illustrates the three types of typical head movements when driving. All types of

movements generate phase variation of RFID tags. It is hard to differentiate them with a single

RFID tag; so we leverage two tags to sense the head movement. We find that, although head

shifting and vibration affect the phase value of each tag, the influence on the phase difference

between the two tags could be negligible [92]. This is because both head vibration and head

shifting generate the same alteration of tag-to-reader distance for both tags, resulting in similar

phase shifts that are canceled when calculating phase difference. In contrast, both nodding and

head rotation could cause different alterations in the tag-to-reader distances of the two tags,

resulting in a large phase difference change. Thus, in order to mitigate the influence of head

shifting and vibration, phase difference is more suited for extracting nodding features than

phase values collected from a single tag.
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Figure 3.4: Three types of head movements.

Algorithm 1: Phase Difference Calculation Algorithm
1 Input: Phase collected from two RFID tags (Tag A and Tag B) from the same channel,

denoted by P a
n and P b

n, n = 1, 2, ..., N , and the timestamp for each data frame, denoted by
T a
n and T b

n, n = 1, 2, ..., N ;
2 Output: Phase difference between two tags P d

n , n = 1, 2, ..., N ;
3 //Search for the nearest sample ;
4 for n = 1 : N do
5 Set T ab

previous = |T a
n − T b

1 | ;
6 for m = 2 : M do
7 T ab

current = |T a
n − T b

m| ;
8 if T ab

current > T ab
previous then

9 P d
n = P a

n − P b
m−1 ;

10 break ;
11 else
12 T ab

previous = T ab
current ;

13 end
14 end
15 end

Unfortunately, following the RFID anti-collision protocol, the communications between

the tags and reader are based on slotted ALOHA protocol, which means only one tag can send

its EPC and low level data to the reader in every time slot. The slotted ALOHA based trans-

mission determines that the phase values are sampled sequentially. Therefore, it is impossible

to obtain the phase values from both tags at the same time to calculate the phase difference. To

address this issue, we propose an effective algorithm to estimate the phase difference on each

individual channel, as shown in Algorithm 1.
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First, we collect the phase sequences sampled from two tags on the same channel, which

are denoted by P a
n and P b

m, respectively, together with their corresponding time stamps T a
n and

T b
n. Second, for each phase sample in P a

n , we search for the nearest Tag b phase sample by

calculating the difference between two time stamps as |T a
n − T b

m|. In the algorithm, we scan

the phase sequence P b
m from 1 to M following the sampling order. Since the phase data is

sampled continuously, the timestamp value for each tag is always increasing. Once the current

time difference |T a
n − T b

m| is larger than the previous one, the following calculated difference

will keep on increasing. Thus, the previous sample P b
m−1 right before T ab

current > T ab
previous will

be the nearest sample with the minimum time difference. Finally, the phase difference sample

sequence P d
n will be calculated by subtracting each of the sampled phase data in P a

n from the

selected, nearest phase sample in P b
m.

Tag Deployment and Data Collection

After the influence from head shifting is successfully mitigated, we next distinguish nodding

from head rotation. Fig. 3.5 shows the calibrated phase data from a single tag after frequency

hopping offset mitigation. The data is sampled when the driver nods and looks around (i.e.,

head rotation) sequentially, as marked in the figure. However, it is hard to differentiate nodding

from head rotation based on the calibrated phase data, because both movements generate sharp

peaks in phase values. For the purpose of extracting unique nodding features, we adopt a simple

solution with a specific tag deployment. As shown in Fig. 3.6, the tags are attached to the back

side of the head horizontally (i.e., on a hat). When the driver looks around to check traffic, the

head movement can be approximately considered as a horizontal rotation. Such a head rotation

causes similar changes in the tag-to-reader distance for the two tags, so that the change in phase

difference is negligible. In contrast, during nodding, one tag moves closer to the reader while

the other tag moves away from the reader. Hence the phase difference between the tags will

increase sharply.

Fig. 3.7 shows the calibrated phase difference between two tags placed horizontally on

the back side of the head. The data is sampled when the driver nods and rotates the head se-

quentially, as marked in the figure. We find that the data sampled during nodding is sufficiently
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Figure 3.5: Measured phase data from a single RFID tag when the driver looks around and
nods sequentially.

Figure 3.6: A special tag deployment scheme with two tags horizontally attached to the back
of head (e.g., on a hat).

different from that sampled in the rotation period; head rotation does not generate sharp peaks

on the calibrated phase difference. Thus nodding features can be effectively extracted from the

phase difference between the two tags deployed as shown in Fig. 3.6.

Mitigating the Cumulative Error

To further improve the feature extraction performance, the cumulative error due to frequency

hopping should be addressed, because the calibrated phase difference may be significantly
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Figure 3.7: Calibrated phase difference between two horizontally attached tags when the driver
looks around and nods sequentially.

distorted after a long period of driving. To address this issue, we first provide an analysis of

the cumulative error. According to (3.2), the raw collected phase difference can be simply

obtained by subtracting the phase value from one tag (with distance Lb) from the phase value

from another tag (with distance La), as

∆Φ(La, Lb) = mod
(
4π(La − Lb)fk

c
+∆Φk, 2π

)
, (3.3)

where La and Lb are the tag-to-reader distance from Tag 1 and Tag 2, respectively, ∆Φk is the

initial phase offset difference between the two tags. Note that our analysis is mainly focused on

the influence of the initial phase offset. So we neglect the multipath effect and mutual coupling

between the two tags, and assume the phase difference is only affected by the tag-to-reader

distances (i.e., La and Lb) and frequency hopping (i.e., ∆Φk).

We calibrate the data by mapping all phase difference data on the current channel to the

previous reference channel [8], such that all the calibrated data can be considered as sampled

from the same reference channel (i.e., to the first channel f1 used when the measurement starts,

as a reference channel). With the translation, all ∆Φk’s will be converted to ∆Φk−1 + δ1,

where δ1 is the estimation error caused by each conversion. Although the estimation error δi

is negligible for each ith conversion, it will accumulate overtime. After i times of frequency
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hopping, ∆Φk will be converted to ∆Φ1 +
∑

i δi. Thus, the calibrated phase difference after i

hops is given by

∆Φ(La, Lb) = mod
(
4π(La − Lb)f1

c
+∆Φ1 +

∑
iδi, 2π

)
(3.4)

where f1 and ∆Φ1 are the frequency and initial phase offset difference on the first (i.e., refer-

ence) channel, respectively, δi represents the estimation error generated by the ith frequency

hopping.

In (3.4),
∑

i δi is hard to estimate from collected data, because we do not know the accurate

values of La, Lb, and ∆Φ1. However, if we differentiate both sides of (3.4), the constant ∆Φ1

will be removed from the equation. The derivative of the estimation error, δ′, only remains in

the first sample for each channel, so the error accumulation over time is effectively stopped.

Suppose channel hopping starts from channel 1. When the system hops to channel k, it collects

nk samples (i.e., calibrated phase difference data) on channel k. The derivative of the channel

k samples at time n, n ∈ {1, 2, ..., nk}, can be derived as:

∆Φ′
n(La, Lb) (3.5)

=


4πf1
c
(L′

a − L′
b) + δ′k−1, n = 1

4πf1
c
(L′

a − L′
b), n = 2, 3, ..., nk,

where L′
a and L′

b are the derivative of the tag-to-reader distances of Tag 1 and Tag 2, respec-

tively, and δ′k is the derivative of δk with δ′0 = 0. We can see from (3.5) that although estimation

error still remains in the derivative of the first sample when the system hops to a new channel,

it has been removed from the derivatives of the remaining samples on the new channel.

Unfortunately, we find that the derivative of phase difference cannot be directly used to

extract nodding features because of the large noise. To demonstrate this observation, in Fig. 3.8,

we plot the derivative of the signal plotted in Fig. 3.7. We find that the nodding features, which

are quite obvious in Fig. 3.7, however, are completely overwhelmed by the white noise. This

is because the differentiation operation can be considered as a high pass filter applied to the
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Figure 3.8: Derivative of the calibrated phase difference data given in Fig. 3.7.

calibrated signal. For convenience, we first assume that all phase differences are sampled at the

same sampling rate of 55Hz (as tested in our experiments). Then the differentiation operation

can be transformed into a convolution between the input signal and a vector [F,−F ], where

F is the sampling frequency. To get more data in the frequency domain, we zero padding the

vector by adding N − 2 zeros after −F . Thus we could obtain a vector with length N , and the

Discrete Fourier transform (DFT) result of the vector can be expressed as

Γk =
N−1∑
n=0

fn · e
i2knπ

N , n ∈ {0, 1, ..., N − 1}, k ∈ {0, 1, ..., N − 1},

where fn represent the nth sample in the vector before DFT. Since we have f0 = −F and

f1 = F , while fn = 0, n = 2, 3, ..., N − 1, Γk can be written as

Γk = −Fe
i2π
N

k·0 + Fe
i2π
N

k·1

= F cos

(
i2πk

N

)
− F + i sin

(
i2πk

N

)
. (3.6)

The system gain in the frequency domain can be represented as the modulo of Γk. From (3.6),

we find that the gain equals to 0 when k = 0, which means the 0 Hz component is removed

by the differentiation operation. In contrast, when k = N/2, which represents F/2 Hz, the
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Figure 3.9: The differentiation effect in the frequency domain.

gain reaches its maximum value of 2F . With F = 55 Hz used in the system, we can map Γk

for different frequencies ranging from −27.5Hz to 27.5Hz. The result is shown in Fig. 3.9,

which shows that differentiation leads to extremely large gains at high frequencies (higher than

10 Hz), while significantly suppressing the signals below 5 Hz. However, when we analyze

the frequency domain response of calibrated phase difference signal plotted in Fig. 3.10, we

can see that the power of the signal mostly concentrate in the low frequency region, ranging

from −5Hz to 5Hz. Thus, we can conclude that both nodding movements and other driv-

ing movements are mostly composed of low frequency signals, which is highly attenuated by

the differentiation operation. Besides, the white noise existing in the high frequency region

will be considerably amplified. Consequently, only the high frequency noise remain after the

differentiation operation, as shown in Fig. 3.8.

To mitigate such negative influence caused by the differentiation process, we firstly incor-

porate a low-pass filter with a 5 Hz cutoff frequency to filter the calibrated phase signal before

applying differentiation. After filtering, the low frequency component will be amplified while

the high frequency noise will be greatly suppressed, so that the movement related components

could remain after differentiation. The final results after filtering and differentiation are plotted

in Fig. 3.11. The figure shows that the high frequency noise is effectively removed, and there
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Figure 3.10: Phase difference in the frequency domain.
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Figure 3.11: Derivative of the filtered phase difference.

is no cumulative error remaining in the signal anymore. The nodding features can be clearly

distinguished from other remaining noises.

3.4.3 Driving Fatigue Detection

We utilize an unsupervised LSTM variational autoencoder to learn the nodding features from

sampled, calibrated data during driving. After the model is well trained, the input signal can
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Figure 3.12: The recurrent variational autoencoder for driving fatigue detection.

be well reconstructed by the autoencoder if it is sampled during nodding. Otherwise, the re-

constructed signal will contain high distortion. Thus, we can detect nodding by calculating the

divergence between the input signal and the reconstructed signal. The details of the training

model and divergence calculation are presented in the following.

The Learning Model and Training

The learning model adopted for offline training is composed of an LSTM-based variational au-

toencoder [8], which is an unsupervised learning model as shown in Fig. 3.12. As we known,

drivers could have numerous types of driving movements, which introduce two challenges.

First, it is hard to distinguish the nodding movement from all types of other driving movements

with a simple threshold-based method. Thus, a learning-based method could be a better choice

for nodding detection. Second, training the network with labeled data for all movement types

(which could be many) is challenging and costly. To address the problems, we intend to collect

and learn the features of nodding instead of learning all kinds of driving movements. In this

case, autoencoder is a good choice because, as an effective unsupervised learning algorithm,

no labeled data is required for the training process. Furthermore, compared with deep learn-

ing models, autoencoder has a simpler model structure and lower complexity, which translate

to shorter training time. Thus, we propose the unsupervised LSTM variational autoencoder

model for nodding detection, which can effectively reduce the cost of collecting labeled data

for various driving movements.

64



Consider that all the data are sampled as a time sequence, and nodding causes an obvious

change of calibrated phase difference, as shown in Fig. 3.11, LSTM is an effective model for

capturing the nodding features, because LSTM can better learn the long-range dependency in

data than traditional recurrent neural networks. Then, the variational autoencoder model is

applied to reconstruct the input signal. The goal is to maximize the marginal likelihood given

below.

pθ(x) =

∫
pθ(x|Z)p(Z)dz, (3.7)

where x, θ, and z are the observed variables, the set of parameters, and the latent random

variables, respectively; p(Z) is the prior over the latent random variables Z; and pθ(x|Z) is the

posterior conditional probability, representing an observation model under the parameter set.

Usually pθ(x) is hard to estimate because of the integral operation. The computation usu-

ally introduces considerable complexity, even though the size of the dataset is small. To reduce

the computational cost for training, the autoencoder leverages the variational approximation

qϕ(Z|x), rather than calculating the true conditional probability pθ(x|Z). Thus, the autoen-

coder model has ϕ as encoder to approximate qϕ(Z|x), and set θ as the parameter for pθ(x|Z)

in the decoder. The reparametrization technique is implemented in the autoencoder model to

mitigate the training overhead. The latent vector Z is computed by the mean vector µϕ(x) and

the variance vector σ2
ϕ(x) generated by the two linear modules from the LSTM outputs as

Z = µϕ(x) + σϕ(x)⊙ ϵ, (3.8)

where ϵ represents a Gaussian noise and ⊙ represents the element-wise product operation.

Based on the latent vector, the variance vector σ2
ϕ(Z) and mean vector µϕ(Z) for the recon-

structed signal can be decoded from the LSTM network. Eventually, the input signal can be

reconstructed as the output of the decoder.

In the proposed LSTM autoencoder network, the dimension of the LSTM layer is set to

20, and 10 units are used in the latent Z layer. The offline training process aims to learn the
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features of nodding, so all training data is sampled when the volunteers are nodding their heads.

Specifically, the volunteers are sitting in a parked car and nodding their heads randomly when

the reader is interrogating the RFID tags attached to the hat. To achieve a high success rate

for nodding detection, we collected 3000 nodding samples from three volunteers. We use 2400

samples from the collected data for training, and the other 600 samples for testing.

Online Drowsiness Detection

After offline training, the newly collected signal in realtime can be fed into the autoencoder,

and the autoencoder will generate the reconstructed signal. Fig. 3.13 and Fig. 3.14 show the

reconstructed signals when the input is a nodding signal and a normal driving signal, respec-

tively. We can see that the nodding signal is well reconstructed by the autoencoder, while the

reconstructed normal driving signal is quite different from the input signal. The input signal

is flat, while the reconstructed signal has large variations similar to nodding features. This is

because our LSTM-autoencoder model has been trained by nodding features. Therefore, the

new signals sampled during nodding can be better reconstructed than the signals sampled dur-

ing other types of head movements (as well as when there are no head movements). Thus, we

can detect if the driver is nodding or not, by calculating the divergence between the input signal

and the reconstructed signal.

We adopt a sliding window with 2 second duration to extract the input signal from cali-

brated phase difference, in order to guarantee that all nodding movement can be captured in the

window. The divergence is calculated in the form of Mean Absolute Error (MAE), given by

MAE =
1

n

n∑
i=1

|yi − yri |, (3.9)

where n is the total number of samples in the sliding window, yi is the ith sample of the input

signal, and yri is the ith sample of the reconstructed signal. Then we group the MAEs from

nodding and normal driving, respectively, and plot all the errors in the form of cumulative

distribution function (CDF) in Fig. 3.15. The figure shows that 91.26% MAEs of the nodding

signal is lower than the minimum error of the reconstructed normal driving signal, which is
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Figure 3.13: The reconstructed signal when the input to the autoencoder is a nodding signal
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Figure 3.14: The reconstructed signal when the input to the autoencoder is a normal driving
signal.

0.21. Thus, we conclude that nodding movement can be effectively distinguished by MAE

from other types of head movements.

To further investigate the most suitable threshold of MAE, we test the system accuracy

with different MAE thresholds. The True Positive (TP) and True Negative (TR) rates are com-

puted, where the TP rate indicates the accuracy of nodding detection, and the TN rate represents

the accuracy of normal driving recognition. Fig. 3.16 shows that the TN rate is 98.8% when
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Figure 3.16: Detection accuracy with different MAE thresholds.

the threshold is set to 0.21, but the TP rate is low, which is 82.58%, in this setting. When

the threshold is set to 0.25, although the TP rate is as high as 94.31%, the TN rate decreases

significantly to 60.03%. This is because, a smaller threshold makes the signal more likely to

be considered as normal diving, which makes it harder to recognize the nodding movements.

Thus, an appropriate threshold should be set to achieve a tradeoff. Finally, we set the threshold

of MAE to 0.23 for the proposed drowsiness detection system.
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Figure 3.17: Detection accuracy for different values of sampling threshold α.

However, if an alarm is sent whenever a divergence lower than the threshold is detected,

there could be many false alarms triggered. This is because the calculated divergence could

have fake peaks, which could cause a false alarm. To avoid the effect of the sharp peaks and

detect the nodding pattern accurately, we leverage a simple counting algorithm. Only when the

divergence is larger the threshold and remains there for over α samples, will the current driver

movement be considered as nodding. To investigate the appropriate number of samples for

nodding detection, we test the system with different sample threshold values. The results are

shown in Fig. 3.17. It can be seen that both the TP rate and TN rate are lower than 80% when

the threshold is set to 5 samples. However, the TP rate becomes 85.02% when the threshold is

25. This is because the duration of nodding movement is usually very short, and 25 samples

literally means 0.45 second given the 55 Hz sampling frequency, which is too long for nodding

detection. Finally, the sample threshold is set to 15 to achieve highest accuracy.
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3.5 Experimental Study

3.5.1 Experiment Configuration

To evaluate the proposed driving fatigue detection system, we build a prototype system with

commercial RFID devices, and test it in both an emulated environment and real driving environ-

ments. The volunteers are required to wear a hat, with two passive RFID tags of the ALE-9470

type are attached to the back side. All tags are scanned by a commodity RFID reader of the Im-

pinj R420 model, which is equipped with a polarized S9028PCR antenna. Following the FCC

rules, the reader hops every 0.2 second among 50 channels from 902MHz to 928MHz. Low-

level data, such as RSSI, phase, and timestamp will be sampled by the reader and processed in

an MSI laptop with an Intel Core i7-6820HK CPU and a Navidia GTX 1080 GPU. One possi-

ble limitation of the current prototype system is the relatively higher cost compared with other

driving fatigue detection systems, such as smartphone-based system, WiFi-based system, and

camera-based system. Fortunately, the overall system cost could be reduced by using cheaper

readers. For example, since only one antenna is required in our system, one port reader like

Impinj R120 can be used. Further, medium range readers, such as Feig MRU102-PoE, will

be another low-cost option, because the interrogate range for car environment monitoring is

not demanding. Finally, the cost of the future commercial system could be further reduced, if

customized readers are used and mass produced.

The system is firstly tested in an emulated environment, which is in a 8.8m × 4.5m lab-

oratory. The volunteer is seated on a chair and nod or rotate his/her head naturally when the

reader is scanning the RFID tags. The antenna is placed on a shelf behind the volunteer. All

data sampled will be transmitted to the laptop for data calibration and nodding detection. The

system is also evaluated in real driving environments. Specifically, the system is deployed in

a BMW 328i vehicle made in 2014, as shown in Fig. 3.18. The polarized antenna is placed

on the back of the driver chair to continuously interrogate the two tags, which are attached to

the back side of the hat. The driver is required to drive naturally in different scenarios, such as

on a highway, in a parking lot, and in city streets, all the nodding movements happens during

driving are recorded as the ground truth.
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Figure 3.18: The system setup in a BMW 328i car in our experiments.

3.5.2 Results and Discussions

Overall Performance

Experimental results of our drowsiness detection system are presented in Fig. 3.19. The figure

shows the TP and TN rates in two different scenarios in the emulated environment. Recall

that the TP rate means the accuracy of nodding detection, and the TN rate is the accuracy of

normal driving recognition. In the first scenario, the volunteer is asked not to rotate his/her

head, but only nod occasionally during the test. In the other scenario, the volunteer can move

his/her head and body casually (i.e., to generate large interference). The results show that our

system can achieve a 97.23% TP rate and a 96.72% TN rate when no other head movements

present. The achieved TP rate and TN rate are 91.48% and 95.38%, respectively, even though

the drivers rotate or shift their heads during the experiment. The high detection accuracy in

different scenarios proves that our system can effectively mitigate the influence of head rotation

and shifting during driving, as well as the other large noises in the driving environment.
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Figure 3.19: Detection accuracy in two scenarios: TP rates and TN rates.

Fig. 3.20 shows the accuracy of our system for all the volunteers involved in the experi-

ments. The TP rate is 95.08% and the TN rate is 92.61% for the the 5th driver, which is the

highest among them. In contrast, the accuracy of nodding detection for the second driver is the

lowest. The difference in detection accuracy is mainly due to the different driving and nodding

movements of different drivers. In addition, the height of the driver also affects the relative lo-

cation between the antenna and the tags, and thus the sensitivity of nodding feature extraction.

Fortunately, we find that all the TP rates and TR rates are higher than 90.33% and 89.01%.

respectively. We can thus conclude that the accuracy of nodding detection is sufficiently high

and robust for different drivers.

To compare the system accuracy with different existing driving fatigue systems, we sum-

marize the average driving fatigue detection accuracy values that are provided in the related

papers [49–51] in Table 3.1. From the table, we can observe that the average detection accu-

racy of the proposed RFID based system is 92.8%, which is sufficiently higher than the vision-

based and WiFi-based systems. The average accuracy of our system is only 0.5% lower than

the acoustic-based system, which is implemented with a smartphone. However, as a broadcast

signal, both WiFi signal and acoustic signal are sensitive to the movement of passengers, es-

pecially for the passenger next to the driver. The acoustic approach could also be interfered
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Figure 3.20: Detection accuracy for different drivers.

Table 3.1: Average Detection Accuracy Comparison of Different Driving Fatigue Detection
Systems

System Average Detection Accuracy

Video Camera [49] 88.9%
WiFi Device [50] 89.6%
Smartphone (Acoustic-based) [51] 93.3%
RFID Tags and Reader 92.8%

surrounding noise in the same frequency when driving in traffic. Thus, we conclude that the

RFID based system is more suitable for the noisy driving environment.

Impact of Model Parameter

Since the nodding features are carried in a data sequence rather than single samples of data, a

sliding window is utilized to extract the data sequence. To investigate the suitable size for the

sliding window, we test the system performance under different window sizes ranging from 0.5

s to 5 s. Fig. 3.21 represents the TP and TN rates when the data is trained with different window

sizes. It can be observed that, when the window size is larger than 3.5 s, the TN rate and TP

rate are lower than 85.24% and 74.64%, respectively. When the window size is smaller than

1.5 s, the TN rate is lower than 83.51% and the TP rate is lower than 79.67%. The observations

show that the system performance is sensitive to the sliding window size. The highest detection
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Figure 3.21: Impact of the window size used for training.

accuracy requires a suitably set sliding window size for learning and detection. Based on the

result shown in the figure, the sliding window of our system is set to 2 s for the highest accuracy.

Different Driving Scenarios

To investigate the influence of vehicle vibration on the detection accuracy, we evaluate the

system in three different scenarios, including (i) driving on a highway, (ii) driving in city streets,

and (iii) parked. Fig. 3.22 shows that the system can achieve the highest accuracy of a 96.78%

TP rate and a 95.78% TN rate when the vehicle is parked. For highway driving, the TP rate

and TN rate are 93.67% and 94.66%, receptively, which means the influence of the vehicle

vibration is negligible in this case. This is because the vibration generates similar variation on

the phase data for both tags, which can be effectively mitigated by using the phase difference.

However, for the city street driving scenario, the accuracy decreases obviously to a 87.47%TN

rate and a 84.75%TP rate. We also present the corresponding false alarm rate in different driv-

ing scenarios in Fig. 3.23. The figure shows that the false alarm ratio is lower than 5.34% when

driving on the highway and when parked; but the false alarm ratio increases to 12.53% in the

in-town driving scenario. It can be concluded that the detection accuracy is considerably de-

graded by the more extensive driving movements for in-town driving (e.g., checking for traffic

conditions, finding directions, and turning the steering wheel for turning at street corners). In
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Figure 3.22: Accuracy in different driving scenarios.

addition, when the vehicles stops and restarts at traffic light or stop signs, the driver may also

nod his/her head because of inertia and acceleration. These movements generate large inter-

ference and cannot be effectively distinguished from the normal nodding due to drowsiness.

Fortunately, drowsy driving usually does not happen in the city street driving case, where the

drivers turning wheels or stop/restart the vehicle frequently. The high accuracy in the differ-

ent real driving scenarios has proved that the system can effectively detect driving drowsiness,

especially when driving on highways.

Impact of Passengers

Finally, Fig. 3.24 shows the impact of various numbers of passengers in the car, whose move-

ments also generate interference to driver nodding detection. The experiments are conducted

to evaluate if the system can still achieve high accuracy under the interference from an unstable

testing environment. As an in-car RF-based sensing system, the performance could be affected

by the surroundings because of the multipath effect. A noisy testing environment could intro-

duce considerable variation to the wireless channel, which affects the sampled phase value at

the RFID reader. Since the movements of other passengers mainly contribute to the environ-

mental noise in the driving environment, more passengers could generate larger interference in
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Figure 3.23: False alarm rate in different driving scenarios.

the system. Thus, we test the system with different number of passengers, increased from 1 to

4.

In the experiments, the passengers move naturally in the vehicle. We can see that the

system achieves the highest TN rate when there is only one passenger in the car. With more

passengers, the system can still achieve high accuracy such as a 91.75% TP rate and a 91.99%

TN rate. The false alarm ratios shown in Fig. 3.25 are all lower than 8.01% even when four

passengers are in the vehicle. The results verify that the influence of passengers can be effec-

tively mitigated by the proposed system. This is because the range of the polarized antenna is

limited, so the multipath effect is limited for transmissions between the tags and reader. Thus,

the movements of passengers can hardly affect the phase information sampled by the reader,

and drowsiness detection is robust even when multiple passengers are loaded in the vehicle.

3.6 Conclusions

In this paper, we proposed a driving drowsiness detection system by detecting the nodding

movements of drivers. The nodding movements were detected by using the received phase val-

ues in RFID tag responses. We proposed a tag deployment scheme to effective deal with the

high noisy driving environment. To mitigate the influence of vehicle vibration during driving,
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Figure 3.24: Accuracy with different number of passengers in the vehicle.
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Figure 3.25: False alarm rate with different number of passengers in the vehicle.

the phase difference of the two tags were estimated by a proposed algorithm. An unsupervised

LSTM autoencoder model was incorporated to learn the nodding features, which can effec-

tively reduce the cost of collecting labeled data for various types of driving movements. The

high detection accuracy of the proposed system was demonstrated by experiments in both an

emulated environment and real driving scenarios with commercial tags and readers.
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Chapter 4

Respiration Monitoring with RFID in Driving Environments

4.1 Introduction

Vehicles play a critical role in our society. With the drastic increase of the number of vehicles

as well as driving time, driving safety has become ever more important than before. Driving

fatigue is one of the primary causes of car accidents, which takes many lives every year [75]. It

has been reported that there are on average 6 million car accidents in the U.S. every year [76],

and more than 90 lives are lost every day. Such car accidents could be effectively avoided and

human lives could be saved, if drivers are warned when they become sleepy.

Drowsy driving can be indicated by multiple features of the driver, such as eyelid move-

ments, driving movements, and human vital signs. Among various types of vital signs, respi-

ration rate is a useful indicator of driver’s fatigue state. It has been shown that the breathing

rate usually decreases notably (i.e., for about 3 breaths per minute (bpm)) before the driver falls

asleep [65]. Thus, accurately monitoring the respiration of the driver is a promising way, and

the first step, to prevent drowsy driving.

However, respiration monitoring for drivers is challenging, due to the highly strong noises

in the driving environment, such as vehicle vibration and movements of the driver and passen-

gers. Several techniques have been proposed for respiration monitoring using different types of

signals, including video, ultra sound, and RF signals. Vision based methods detect respiration

by analyzing the chest movements captured by a video camera [77], but it may not work well

when lighting is poor (e.g., driving at night) and may raise privacy concerns. RF signals, such

as WiFi [50] and UWB radar [66], have also been exploited, with the advantage of not requiring
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sufficient lighting inside the vehicle. However, due to the mutipath effect, such non-invasive

RF sensors may be easily affected by the movements of driver and passengers. Recently, ultra

sound signals generated by smartphones have been considered in [78]. Acoustic signals are

shown to be effective to capture the human breathing signal [11], but as RF signals, they are

also sensitive to the strong noises in the driving environment.

To this end, radio frequency identification (RFID) provides a promising alternative solu-

tion. RFID based sensing has become a hot problem area recently. Unlike other contact-free

sensors, RFID tags are much cheaper and can be easily attached to the target object. As a

near-field communication technology, it is more robust to surrounding noises. However, to

exploit commodity RFID (rather than customized hardware) for respiration monitoring, many

challenges should be addressed. For example, frequency hopping, as required by the Federal

Communications Commission (FCC), causes large phase offsets, making received phase data

useless. With the Slotted ALOHA medium access control protocol, the tags are sampled ran-

domly, and it is common that the readings from the same tag are sparse (many are missing).

There have been several recent works employing RFID for respiration monitoring [8, 27, 58],

but all the existing schemes work in a static indoor environment. The strong interference from

the driving environment prevents their application for driver respiration monitoring.

In this paper, we address the above challenges with novel, effective solutions, and pro-

pose an RFID based respiration monitoring system for the driving environment. Specifically,

we propose to attach multiple tags to the driver’s seat belt, which allow us to exploit the tag

diversity. Although the same respiration signal is sampled by all the tags, the reader collected

data is of high diversity as resulted from the multiple independent sampling. We also develop

an effective tensor completion technique to mitigate the effect of frequency hopping and ran-

dom sampling. The recovered phase difference by tensor completion helps to combat the effect

of vehicle vibration and driver/passenger body movements. Finally we apply tensor Canonical

Polyadic Decomposition (CPD) to separate the small respiration signal from strong noises. The

idea of increasing the dimension of data is essential to detect the weak respiration signal from

noisy and sparse samples.
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Specifically, we first provide an analysis of the sampled phase data that is used in the

proposed system, and investigate the impact of frequency hopping offset as well as the chal-

lenges of respiration monitoring in driving environments. The proposed system is designed

with several novel components to address these challenges, including data collection, data pre-

processing, CPD, and respiration signal estimation. With multiple tags attached to the seat

belt, the breathing signal can be effectively embedded in the phase data captured by the reader.

However, the sampled phases are sparse due to random sampling, and are greatly distorted by

channel hopping, vehicle vibration, and body movements. To combat such noises, we propose

a High Accuracy Low Rank Tensor Completion (HaLRTC) based technique to estimate the

phase difference between each pair of tags in each time slot, and to eliminate the frequency

hopping effect simultaneously [146]. To extract a clean breathing signal, we leverage a CPD

based technique to decompose the tensor data constructed by the previous estimated phase

difference. Finally, the breathing signal is recovered from decomposed tensor data, and the

breathing rate can be estimated with a peak detection algorithm.

The main contributions of this paper are summarized below.

• To the best of our knowledge, this is the first work on respiration monitoring in driving

environments using commodity RFID reader and tags.

• We propose a tensor completion technique to recover missing readings in collected phase

data, and a tensor decomposition approach to extract the respiration signal of the driver

from phase values sampled from multiple RFID tags. The proposed techniques are ef-

fective in combating the strong noises caused by frequency hopping, random sampling,

vehicle vibration, and other movements in the driving movement.

• We develop a prototype system with commodity RFID devices and test the system in real

driving environments. Extensive experiments are conducted to evaluate the system per-

formance in various driving scenarios, such as parked, in city streets, and on a highway,

and system configurations, where a highly accurate and robust performance is demon-

strated.
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In the following, we review related work in Section 4.2 and present the preliminaries and

system overview in Section 4.3. The detailed system design is introduced and analyzed in

Section 4.4. We present our experimental performance evaluation in Section 4.5 and conclude

this paper in Section 4.6.

4.2 Related Work

This work is closely related to RF based vital sign monitoring and RFID based sensing. We

mainly review these two classes of systems in this section.

RF based health sensing systems have been developed that employ Radar, WiFi, and RFID

techniques. Radar based vital sign monitoring systems include frequency modulated continu-

ous wave (FMCW) radar [80] and Doppler Radar [81]. However, they usually require cus-

tomized hardware and operate over a wide spectrum. WiFi based systems mainly use received

signal strength (RSS) and channel state information (CSI). For example, UbiBreathe [82] and

mmVital [83] utilize WiFi RSS at 2.4 GHz and 60 GHz, respectively. To improve accuracy,

CSI based systems leverage the amplitude or phase difference information of CSI for estimat-

ing single or multiple persons’ breathing and heart rates [17, 19, 84, 85]. Moreover, several

bimodal CSI data based systems have been proposed to tackle the weak breathing signals at

some special positions [86, 87, 104].

Recently, several RFID based breathing monitoring systems have been proposed. For ex-

ample, RFID tags have been used for breathing rate estimation in [27], breathing and heart rates

estimation in [88], and breathing monitoring and sleeping posture recognition in [74]. Further-

more, the RF-ECG system is proposed for heart rate variability assessment using an RFID tag

array [89]. To mitigate the frequency hopping offset in FCC-compliant RFID systems, the

AutoTag system is proposed for breathing monitoring and apnea detection with a variational

autoencoder [8, 58]. However, these existing systems are designed for the indoor, static envi-

ronment; they may not be effective in the highly dynamic, highly noisy driving environment.

Recently, WiFi based [50], acoustic based [78], and UWB based [66] systems have been

developed for breath monitoring in driving environments. In fact, these existing systems are
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sensitive to the environmental interference, such as the body movements of the driver him-

self/herself and of the passengers, due to their relatively large transmission ranges.

In addition to vital sign monitoring, RFID tags have also been applied for many other

applications, such as indoor localization [22, 57], user authentication [68], material identifica-

tion [69], object orientation estimation [23], vibration sensing [70], anomaly detection [71],

and drone localization and navigation [53, 90]. To overcome the low accuracy when RSS val-

ues are used [31], recent works are mainly focused on the phase for indoor localization, which

can be used to derive the distance and direction of arrival (DOA). To solve the phase ambi-

guity problem, synthetic aperture radar (SAR) [21] and the hologram techniques [22, 34] are

proposed. The RFind system estimates time-of-flight with a special hardware to achieve high

localization precision [91].

This work, to the best of our knowledge, is the first to apply RFID based sensing for mon-

itoring breathing signals in a driving environment. The proposed system consists of novel and

effective solutions for noise and movement interference removal and breathing signal separa-

tion. The tensor based approach in this work has been analyzed and proven to be effective for

the noisy driving environment.

4.3 Challenges and System Overview

4.3.1 Phase of the RFID Signal

To detect the breathing signal from received phase values from multiple RFID tags, we should

firstly know how these phase samples are collected by the RFID reader. In RFID systems, phase

information is one type of low level data, which is collected when the RFID reader receives the

Electronic Product Code (EPC) from interrogated tags. When the multipath effect is negligible,

the measured phase sample can be written as [38]

φ = mod (2π(2D) · f/c+ φtag + φT + φR, 2π) , (4.1)

where D is the distance between the sampled RFID tag and the reader antenna, f is the

frequency of the currently occupied channel, and c represents the speed of light. Moreover,
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φtag, φT , and φR are the additional phase rotation for the tag, the transmitter, and the receiver,

respectively. These additional phase rotations are mainly caused by the circuits in the reader and

tag hardware. Furthermore, different reflection characteristics of these devices also contribute

to the phase distortion.

This model implies that we could use phase values to detect the changes in the distance

between the antenna and the tag. When the tag is attached to the human chest, the phase

changes are indicative of the breathing signal. However, in addition to D, the other parameters,

i.e., f , φtag, φT , and φR, are all susceptible to the current channel used by the reader. Thus,

the measured phase value will have a different phase offset when the system hops to a new

channel. Following FCC regulations, the Ultra-High Frequency (HUF) RFID system should

hop among 50 channels within 10 seconds, so the sampled phase data will be heavily corrupted

by frequency hopping. The frequency hopping effect poses a big challenge for extracting the

respiration signal.

4.3.2 Respiration Monitoring in Driving Environments

To capture the respiration of a driver, we attach RFID tags on the seat belt, as illustrated in

Fig. 4.1. Since the seat belt is bonded on the driver’s body, it (and the tags) moves along with

the rise and fall of the chest. Such movements are carried in the sampled phase values of each

tag (see (4.1)), which will be captured by the RFID reader placed on the ceiling above the driver

seat. A big challenge is that, the seat belt/tag movements are no only caused by breathing, but

also affected by other environmental factors in the car.

Fig. 4.1 presents the sampled phase signal from a single RFID tag collected in different

scenarios. For better illustration, the plotted phase data has already been preprocessed by re-

moving the frequency hopping effect (to be discussed in Section 4.4.1). Theoretically, without

the influence of channel hopping, the phase samples should exhibit the periodicity of human

respiration. In fact, the collected phase signal, when the car is parked, exhibits strong period-

icity. However, the sampled phase values in a moving vehicle, as shown in the second subplot

in Fig. 4.1, are highly random, i.e., far from a periodic signal. This is because that respiration
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Figure 4.1: Illustration of the respiration monitoring mechanism.

monitoring in a driving environment is very different from other respiration monitoring scenar-

ios, in which the user is usually in a relative stable state, such as sleeping or sitting [8,18,19,58].

This assumption does not hold true in driving environments. First, the vehicle vibrates when

moving fast on the road, which makes the seat belt vibrate along with the car. Second, drivers

do not remain completely still. For example, the arms move when the driver turns the steer-

ing wheel, and the head moves when the drive looks around to check traffic conditions, which

will cause additional movements to the tags. Such environmental movements also cause time-

varying multipath interference by reflecting the RFID signal. Accordingly, how to mitigate

the impact of vehicle vibration and body movements poses another challenge (in addition to

frequency hopping), to be addressed in our system.

4.3.3 System Architecture Overview

To overcome the above challenges, we develop a tensor based breath monitoring system with

an architecture shown in Fig. 4.2. The proposed system consists of four modules, including

data collection, breathing data preprocessing, tensor decomposition, and respiration signal es-

timation.
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Figure 4.2: Architecture of the proposed system.

In the data collection module, the reader keeps on interrogating the RFID tags attached

to the seat belt and collecting phase samples from each tag. The data preprocessing module is

to remove the channel hopping offset and to mitigate the noise from the driving environment.

Since the raw phase data is corrupted by frequency hopping, it cannot be directly employed

for breathing signal extraction. Fortunately, the phase variation within each individual channel

is not affected by channel hopping; this fact is leveraged in our system to recover the phase

data for a certain channel (see next section). Vehicle vibration mitigation is accomplished by

calculating the recovered phase difference between a pair of tags. Since the vibration has a

similar impact on the two tags, subtracting the phase data from the two tags can effectively

85



mitigate the vehicle vibration noise. However, the challenge is that, the phase data is not

sampled simultaneously from all the tags; there is only one phase reading from one of the tags

in each time slot. To calculate the phase difference between two tags in each time slot, the

missing phase sample(s) in the same time slot should be accurately estimated. To this end,

we leverage a compressed sensing technique named HaLRTC to estimate the missing phase

data [146], so that we can calculate accurate phase difference for each pair of tags.

Next, we hankelize all calculated phase difference values to construct a tensor for the

following tensor decomposition module. After the phase difference tensor is constructed, we

leverage CPD to extract the components related to driver’s respiration. Finally, we recover

the respiration signal of the driver by fusing all breathing related components and estimate

the breathing rate with a peak detection algorithm. The system design will be elaborated and

analyzed in the next section.

4.4 System Design and Analysis

4.4.1 Combating Frequency Hopping Offset

The FCC regulation requires frequency hopping for UHF RFID systems. The phase offset gen-

erated by frequency hopping should be firstly removed in signal preprocessing. We rewrite (4.1)

for the phases sampled from the 50 channels as

φ = mod (4πDfK/c+ φK , 2π) , K = 1, 2, ..., 50, (4.2)

where K is the channel index, fK represents the frequency of channel K, and φK is the sum

of φtag, φT and φR, because all these values are irrelevant to D but are affected by frequency

hopping. From (4.2), we can see that the phase offset due to channel hopping is actually caused

by fK and φK .

Several techniques have been proposed to remove the effect of these two factors. For

example, in AutoTag [8], the phase offset between two adjacent channels is estimated by the

difference between the mean value near the end of the previous channel and that at the begin-

ning of the next channel. This technique achieves a very good performance when the number
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of interrogated RFID tags is no more than 3. However, as the number of tags is increased, it

would be hard to guarantee that enough samples can be collected from all the tags, which are

needed for calculating the mean values. In addition, Tagyro leverages a full channel scan and

calibration to measure φK in each channel [23]. The technique is suitable for RFID systems

with more tags. In a driving environment, however, the estimated φK could be greatly affected

by vehicle vibration and driver’s body movement.

Since our system needs to interrogate at least 4 tags for tag diversity (see Section 4.4.2),

we propose a novel approach to remove the channel hopping effect. If we subtract the sampled

phase φn from the previous sampled phase data φn−1, as given in (4.2), we can obtain the nth

phase variation on channel K as

vn = 4πfK(Dn −Dn−1)/c, (4.3)

where vn represents the phase variation between the current and the previous phase sample, Dn

is the antenna-tag distance in the nth sample. We find that the phase variations on the same

channel are not related to the initial phase offset φK . With (4.3), we can easily translate the

variations from all channels to a reference channel R by multiplying a factor fR/fK . In fact,

the reference channel can be any one of the 50 channels. In our system, we set R = 1 to make

channel 1 the reference channel for convenience.

However, when the nth sample and the (n − 1)th sample are not from the same channel,

Eq. (4.3) should be updated as

vn = 4π(fKDn − fK−1Dn−1)/c+ φK − φK−1. (4.4)

Eq. (4.4) shows that when two adjacent phase samples are not collected from the same

channel, the phase variation is still affected by the initial phase offsets of the two different

channels. To mitigate the frequency hopping offset, we should drop these distorted phase vari-

ations. Fortunately, since only a single phase variation is affected once the system hops to a

new channel, most of the remaining data are still usable. Such results are illustrated in Fig. 4.3.
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Figure 4.3: Raw phase and the filtered phase variation signal.

We calculate the phase variation from the raw, sampled phase data, and delete the distorted

phase variations when hopping to a new channel. It can be observed that although the phase is

corrupted by frequency hopping (the upper plot), the phase variation is confined within [-0.15

rad, 0.1 rad]. This result shows that most of the phase variations are not affected by channel

hopping.

4.4.2 Recovering Phase for Each Time Slot

To combat vehicle vibration, we propose to leverage the phase difference between two tags.

However, following the Gen2 protocol [38], when one tag is sending its EPC to the reader, all

other tags should remain silent to avoid collision. The random sampling details are illustrated

in Fig. 4.4, which shows the phase data sampled by the reader from multiple tags. A colored

square indicates that a valid phase value is sampled from the tag, a blank square means the

tag is not sampled in that time slot, and all the same colored squares are sampled from the

same channel. Because the entire transmitting process is based on slotted ALOHA, the tags are

sampled randomly. That is, phase can be collected from only one tag in each time slot, and the

sampling interval for each tag is random.
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Figure 4.4: Slotted ALOHA based random sampling in RFID systems.

Because calculating phase difference between two tags requires to sample phase data from

both tags in the same time slot, we need to estimate the missing phase data of all tags in every

time slot, i.e., the blank squares in Fig. 4.4. Several compressed sensing approaches have been

shown to achieve a good performance on recovering the missing RFID phase data [92, 93],

where the number of deployed tags are less than 3. For example, in [92], a missing phase is

estimated from neighboring sampled phase values with a Blackman window, where a pair of

tags are used. However, these existing techniques are not suitable for our system, where more

tags are deployed. When there are more tags, the sparsity of data becomes higher, thus resulting

in a lower recovering accuracy.

Tensor completion is another powerful tool of compressed sensing, which has been adopted

to recover missing data in RFID systems in our recent work [52]. We propose a tensor comple-

tion based method to recover the phase sequences for all tags in every time slot. Rather than

directly recovering the phase sequence as in [52], we recover the sequence of phase variation

for each tag, and then calculate phase by integrating the recovered phase variation. This is

motivated by the fact that phase variation is not affected by frequency hopping, as proven in

Section 4.4.1.
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We first define the ideal matrix we aim to recover, given by

VT
.
=



v1t1 v1t2 v1t3 . . . v1tn

v2t1 v2t2 v2t3 . . . v2tn
...

...
...

...
...

vmt1 vmt2 vmt3 . . . vmtn


, (4.5)

where m is the tag index, tn is the nth time slot, and vmtn is the real phase variation of tag

m at time tn. Due to slotted ALOHA, only one value in each column of VT can be sampled.

The goal is to estimate a matrix V̂T , such that V̂T ≈ VT , based on collected sparse samples.

We first build a sampled matrix V̄T , which is of the same size as VT , but all the missing data

elements are set to 0. We then filter out thermal noise from the phase variation signal using a

low-pass filter with a 15 Hz cutoff frequency, and map the signal to the sampled elements in

V̄T . Moreover, all the distorted phase variations in V̄T that satisfy (4.4), are also set to 0 (i.e.,

dropped) to avoid the influence of frequency hopping.

In the proposed system, 4 to 8 tags are attached to the seat belt and the frequency of time

slots is about 220 Hz, which means the sparsity of V̄T is higher than 75%, and the number of

columns is much larger than the number of rows. Because of the high sparsity and the limited

number of rows, the traditional singular value decomposition (SVD) based matrix completion

method would not be effective for such V̄T , Therefore, we transform the data into a tensor form

and apply tensor completion to estimate the missing data. Specifically, we reshape each row

into a generalized Hankel matrix as the frontal slice of the tensor, which has the same format of

Hankel matrix but is not square. The sparse matrix V̄T is thus transformed into a tensor, given

by

V̄(:,:,m)
.
=



vmt1 vmt2 . . . vmt(n−r+1)

vmt2 vmt3 . . . vmt(n−r+2)

...
...

...
...

vmtr vmt(r+1)
. . . vmtn


, (4.6)
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where r denotes the number of rows of the generalized Hankel matrix. Note that a large row

number in Hankelization will lead to high complexity, while a small number of rows (i.e., less

than 10) could considerably affect the recovering accuracy. Thus, we set r = 20 in our system

(see Section 4.5.2).

Since thermal noise is filtered before tensor construction, the ideal tensor V , which is

constructed by the ideal phase variation matrix VT , can be considered as low rank data. Thus,

V can be estimated from the sampled sparse tensor V̄ by low-rank tensor completion, which is

accomplished by solving the following optimization problem [168]:

min
V̂
∥V̂∥∗, s.t. Ω ∗ V̂ = Ω ∗ V̄ , (4.7)

where V̂ is an estimate of the ideal tensor V , and Ω is a tensor of 0 and 1 elements, where

Ωijk = 1 when V̄ijk is sampled, and Ωijk = 0 otherwise. ∥.∥∗ denotes the trace norm of

tensor [168].

We adopt the HaLRTC algorithm for tensor completion, which can solve the optimization

problem (4.7) with the Augmented Lagrange Multiplier Method (ADMM) [146]. Compared

with other tensor completion algorithms, HaLRTC usually achieves a higher accuracy at an

acceptable complexity. A comparison of HaLRTC and a classic matrix completion method on

phase variation recovery is shown in Fig. 4.5.

To make the comparison, we interrogate a single tag for 10 s, and repeat for 5 times as

if there were 5 virtual tags. Since there is only one tag being interrogated each time, no data

will be missing in VT . We thus obtain the ideal phase variation data VT as ground truth, and

then remove some elements in VT according to the slotted ALOHA protocol to obtain V̄T .

The remaining elements used for recovery are marked with ⋄ in Fig. 4.5. Since there are 5

virtual tags in the emulated data, the sparsity is higher than 80%. Fig. 4.5 shows the first 500

samples recovered by tensor completion and matrix completion, respectively. It can be seen

that the recovered signal by HaLRTC is very similar to the original signal, while the recovered

signal by matrix completion is not good. Many values recovered by matrix completion are still

very close to 0. This is because there are only 5 rows in V̄T , but the number of columns is
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Figure 4.5: Recovered signals using HaLRTC and Matrix Completion.

now 500. SVD based matrix completion cannot obtain sufficient singular values for accurate

estimation. In contrast, although tensor completion also requires singular values for estimation,

the unfolding process can provide a sufficient matrix size for decomposing singulars values.

Once V̂T is successfully recovered by HaLRTC, we can easily recover the phase sequence

of each tag for all time slots by integrating the corresponding phase variations. Furthermore,

the recovered phase data will not be affected by frequency hopping, because all the distortion

related phase variations are deleted when building V̄T .

4.4.3 Dealing with Vehicle Vibration and Body Movements

Interference caused by vehicle vibration and body or environment movements is another big

challenge for breath monitoring in driving environments, which should be mitigated before

tensor decomposition. The driving movement could have different impacts for different tags,

because the tags are deployed at different parts of the seat belt. Fortunately, most of the driving

related body movements are not fast, and the resulting interference can be considered as a direct

current (DC) component (with frequencies around 0) in the recovered phase signal. We thus

apply a Hampel filter with a windows size of 3 s and a threshold of 0.001 to extract the DC

component and then subtract it from the original signal.
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Figure 4.6: Recovered phase after DC removal.

The filtered signals from 4 tags are illustrated in Fig. 4.6. We find that the DC components

are successfully removed, but the respiration signal is still hard to see. This is because the

phase signals are also influenced by vibration of the moving vehicle. The noise generated by

vibration is hard to be estimated, because both strength and frequency of the noise are related

to road conditions and speed of the car.

However, since all the tags are attached to the seat belt, the noise generated by vibration

has a similar effect on them. With filtered recovered phase variation signal, we can obtain the

phase difference for each tag pair in each time slot. The resulting phase difference is plotted in

Fig. 4.7, where most phase difference curves exhibit strong periodicity, meaning the influence

of vibration has been effectively mitigated.

4.4.4 CPD based Respiration Signal Separation

Tensor Data Construction with Hankelization

Extracting a clean respiration signal from the calibrated phase difference data for different tag

pairs, as shown in Fig. 4.7, is still challenging, because the periodicity strength of different tag

pairs could vary with the movements of the driver and in the driving environment. It means no

such tag pairs that could always reveal the highest periodicity, and the worst pairs could have no
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Figure 4.7: Phase difference for each pair of RFID tags.

periodicity in the estimated phase difference. Some traditional signal processing techniques,

such as discrete wavelet transform (DWT), can extract the respiration signal from the signal

with sufficient periodicity, but the performance could be poor when DWT is applied to noisy

signals.

However, since the respiration signal captured by phase difference is the same for all

tag pairs, each phase difference sequence can be considered as the same respiration signal

corrupted by different noises. Rather than employing signal processing techniques for each

individual tag pairs, we can analyze the entire group of estimated phase difference data. Tensor

decomposition is widely used to separate a correlated signal from multiple datasets [19, 95].

For example, in TensorBeat [19], CPD is used to separate multiple breathing signals from WiFi

phase difference data.

We can decompose the breathing signal from noises in driving environments using a CPD

tensor decomposition method. The detailed process of respiration signal extraction is shown in

Fig. 4.8.

As Fig. 4.8 shows, the respiration signal is extracted from the separated signals from CPD,

so that the breathing rate could be estimated based on the interval of the detected signal peaks.
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Figure 4.8: Flow-chart of the CPD based respiration extraction method.

Before decomposing the data with CPD, we transform the phase difference matrix into a ten-

sor structure, by reshaping each phase difference sequence into a generalized Hankel matrix.

Hankelization is essential before CPD decomposition is applied, because its special structure

helps to separate a periodic signal (i.e., the breathing signal) from the data. We summarize the

relationship between periodic signals and the proposed Hankel matrix in Theorem 4.1. The

proof is provided in Appendix 4.7.

Theorem 4.1. If the generalized Hankel matrixH with r rows is constructed from a sinusoidal

wave with length n, it can be decomposed as: H =
∑2

i=1 αi · βT
i , where both αi ∈ Rr,1 and

βi ∈ R(n−r+1),1 represent sinusoidal signals with the same frequency as the original signal.

Theorem 4.1 provides the theoretical underpinning for estimating respiration rate from the

generalized Hankel matrix derived from the phase difference sequence. It also determines the

number of sinusoidal components to be decomposed from the generalized Hankel matrix. In

our system, we build the generalized Hankel matrix with 30 s of data and leverage 10 s of data

to build each column of the matrix. This is because 10 s of data can guarantee that at least one

full period of the breathing signal can be decomposed in αi.

CPD Based Breathing Signal Separation

With the tensor constructed by Hankelization, denoted by Γ, the respiration signal can be sep-

arated from noise by applying CPD, which decomposes the tensor into a sum of the outer
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products of three vectors as [96]

Γ ∈ RI,J,K ≈
M∑

m=1

a⃗m ◦ b⃗m ◦ c⃗m, (4.8)

where M is the tensor rank used for CPD, which also indicates the number of components in

the decomposition result; a⃗m, b⃗m, c⃗m are the vectors at the mth position for the three dimen-

sions, respectively. We have a⃗m ∈ RI,1 ,⃗bm ∈ RJ,1, c⃗m ∈ RK,1, and (⃗am ◦ b⃗m ◦ c⃗m)(i, j, k) =

a⃗m(i)⃗bm(j)c⃗m(k), for all i, j, k. According to the definition of outer product, we can con-

struct the matrix from the vectors for each dimension. For example, matrix A is defined as

[⃗a1, a⃗2, ..., a⃗M ], and matricesB and C are defined similarly with b⃗m and c⃗m, respectively.

The process of CPD is implemented by solving the following optimization problem.

min
A,B,C

∥Γ−
M∑

m=1

a⃗m ◦ b⃗m ◦ c⃗m∥2F . (4.9)

Although the above problem is not convex, CPD leverages the Alternating Least Squares (ALS)

algorithm to optimize one matrix while fixing the other two. With the ALS algorithm, the

optimization problem can be reduced to a linear least squares problem, and the three matrices

can be finally estimated.

In CPD, the number of components M should be prescribed, which is determined by

the target signal and the uniqueness of the decomposition. Thus, we propose Theorem 4.2 to

determine the range of M , which is proved in Appendix A.

Theorem 4.2. The tensor rank used for CPD in the proposed system should satisfy 2 ⩽ M ⩽ 4

and the CPD is unique.

The noise in the tensor is usually considerably large in driving environments (i.e., much

larger than the respiration signal). Some other noise components could also be decomposed. To

separate noise and precisely extract the respiration signal, we set M = 4 for CPD. The decom-

posed matrix B is illustrated in Fig. 4.9. We can see that two sinusoidal signals with the same

period are decomposed by CPD (i.e., the 3rd and 4th components), while the other components

(i.e., the first and 2nd components) are for the residual noise after data preprocessing.
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Figure 4.9: Decomposed signals by CPD.

4.4.5 Breathing Rate Estimation

With the respiration signal separated by CPD, we can estimate the breathing rate using a peaks

detection algorithm. However, we still need to differentiate the periodic signal from all decom-

posed signals before we estimate the breathing rate. Thus, we leverage a frequency spectrum

based method to figure out which decomposed signal is for the breathing signal. We first calcu-

late the proportion of the power spectrum between 0.2 Hz and 0.5 Hz in the frequency domain,

which is the range of normal human breathing. Then, we search for the two signals with the

first two largest proportions and fuse them to obtain the final breathing signal. The fused signal

is illustrated in Fig. 4.10. It can be seen that the respiration signal is precisely extracted and

the noises from vehicle vibration and other movements in the driving movement are effectively

removed. The intervals τ between each pair of adjacent peaks are calculated and the breathing

rate F is determined by the average interval τave as F = 60/τave.
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Figure 4.10: Signal fused by all breathing related components.

4.5 System Performance Evaluation

4.5.1 Experiment Configuration

To evaluate the performance of our respiration monitoring system in the driving environment,

we implement a prototype system with an Impinj R420 reader equipped with a polarized an-

tenna S9028PCR.1 The setup up of the system is illustrated in Fig. 4.11. As the figure shows,

multiple ALE-9470 RFID tags are attached to the seat belt of the driver. The size of the polar-

ized antenna utilized in the system could be smaller, because many small-sized antennas have

been developed, such as Keonn Advantenna-p11 and Thingmagic EL6E.

Although the cost of the RFID reader used in the prototype system is not very low, some

other cheaper readers could be adopted for reduced cost. For example, since only one antenna

is required in our system, one port reader like Impinj R120 can be used. Furthermore, medium

range readers, such as Feig MRU102-PoE, will be another low-cost option, because the inter-

rogate range for car environment monitoring is not demanding. Furthermore, our system is

1Although we used such commodity RFID devides in our proof-of-concept prototyping and experiments, the
size of the system can be greatly reduced by using smartphones with an attached reader, e.g., made by Zebra.
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Figure 4.11: Illustration of the system setup in a car in our experiments.

currently composed of multiple commodity devices. The cost of the future system could be

further reduced, if customized readers are used and mass produced.

The channel used by the reader hops every 0.2 s among 50 channels from 902 MHz to

928 MHz when interrogating RFID tags. The processor used for signal processing is an MSI

laptop with a Navidia GTX 1080 GPU and Intel Core i7-6820HK CPU. The model of the test

vehicle is BMW 328i. Five volunteers (1 female and 4 males) are tested with our prototype

system. The breathing rates of the volunteers are also estimated by a NEULOG sensor, which

is considered to be the ground truth in our experimental result analysis.

4.5.2 Results and Discussions

Overall Accuracy for Different Rates

Our system is tested by five volunteers with different breathing rates. The cumulative distribu-

tion function (CDF) of estimation errors is presented in Fig. 4.12. The figure shows that the

median errors for the three ranges of breathing rates are 0.11 bpm, 0.12 bpm, and 0.14 bpm, re-

spectively, which are all very close to each other. However, the maximum error for the 10 ∼ 15

bpm range is 0.33 bpm, which is much smaller than that for the 16 ∼ 23 bpm range and that

for the 24 ∼ 30 bpm range. This implies that the accuracy of the system is higher when the
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Figure 4.12: System performance for different breathing rates.

driver breaths slowly. This is because breathing rate is calculated by F = 60/τave, where τave

is estimated by peak detection. As the driver’s breathing gets faster, τave will become smaller,

and the estimation error in τave will be amplified in F .

We next compare with the traditional RFID based method presented in [8,58] in Fig. 4.13,

when the driver is driving on a highway (i.e., interstate I-85). Other RFID based respiration

monitoring techniques, such as Tagbreathe [27], can achieve high accuracy in a stationary test-

ing environment. However, the Tagbreathe system is not well suited for operation with Ultra

High Frequency (UHF) RFID devices in the US, which requires frequency hopping. Thus, we

only provide the experimental result of the RFID breathing monitoring system in a station-

ary environment proposed in [8, 58] to illustrate the robustness of our system in noisy driving

environments.

The CDFs of estimation errors achieved by the traditional and proposed methods are pre-

sented in Fig. 4.13. We find that the median error of the traditional method is 1.71 bpm and

36.11% data has an estimation error larger than 2 bpm. In contrast, the median error of our pro-

posed method is 0.12 and the maximum error is 0.36 bpm. From the results, we can conclude

that the performance of the traditional method is quite limited in driving environments, because

of the considerable interference caused by the vehicle, driver, and passengers. However, due

100



0 1 2 3 4 5 6
Estimation Error (bpm)

0

0.2

0.4

0.6

0.8

1

C
D

F

Proposed Method

Traditional Method

Figure 4.13: System performance compared with a traditional RFID based respiration sensing
technique for stationary environments [8, 58].

to effective noise mitigation, our proposed method can achieve high accuracy in respiration

monitoring in such noisy environments.

To compare the accuracy of breathing rate estimation for different types of systems, we

summarize the mean estimation error as provided in related papers [66, 77] in Table 4.1 (note

that we compare mean error rather than median error here, since those are provided in the two

related papers). As shown in the table, the video camera based method and UWB radar based

method have higher estimation errors, which are 0.79 bpm and 0.31 bpm, respectively. The

mean estimation error of the proposed system is 0.11 bpm, which is much lower than the other

two. This is because RFID tags can provide high accuracy as wearable sensors, and the effect

of interference from other passengers is limited too. Moreover, with measured phase from

multiple RFID tags, the CPD based approach can effectively mitigate the influence of vehicle

vibration and other noises in driving movements.

Accuracy in Different Driving Scenarios

The system is evaluated in 3 different scenarios, including (i) driving on a highway, (ii) driving

in a city street, and (iii) parked. The CDF of errors for the three scenarios are plotted in
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Table 4.1: Comparison of Different Breathing Rate Monitoring Systems for the Driving Envi-
ronment

Employed Device Mean Estimation Error

Video Camera (Kinect) 0.79 bpm
UWB Radar 0.31 bpm
RFID Tags and Reader 0.11 bpm
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Figure 4.14: System performance for different driving scenarios.

Fig. 4.14. The median error is 0.11 bpm for the parked scenario and 0.12 bpm for the two

driving scenarios. It proves that the influence of the driving environment is effectively mitigated

by the proposed scheme. The figure also shows that the maximum error for in-town driving is

0.48 bpm, which is the highest among the three scenarios. This is because the driver needs to

turn the wheel frequently and stops from time to time when driving in town, and the influence

of the driving movements cannot be completely eliminated.

Impact of Passenger Movement

We also test the performance of our system when there are different numbers of passengers. In

these experiments, all the passengers are asked to move naturally. As Fig. 4.15 shows, when no

passenger is present, the median error is 0.09 bpm, which is the smallest among all the cases.
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Figure 4.15: System performance with different numbers of passengers.

The error increases to 0.11 bpm when there is one passenger in the car. The movement of the

passenger does affect the sampled phase data, although the impact is small. The median error is

not obviously affected by increased number of passengers, and the maximum errors are almost

the same for the different cases. This result shows that the performance of our system is not

sensitive to the movement of passengers, because the tags are only attached to the seat belt of

the driver as well as the near-field nature of RFID communications.

Impact of Antenna Position

We try different antenna deployment in our experiments to identify the most suitable way to

place the antenna. The first scenario is to attach the antenna on the ceiling above the driver

seat, as shown in Fig. 6.12. The second deployment is to attach the antenna to the front control

panel of the vehicle. The third scenario is to bond the antenna on the side of the back of the

co-pilot seat. The CDF results are plotted in Fig. 4.16. It can be seen that the deployment of the

antenna has a considerable impact on the system performance. The median error is 0.73 bpm

when the antenna is placed on the side of the diver, because the phase changes caused by the

movement of human chest is harder to detect. The accuracy is also not high when the antenna

is attached to the front panel, with a median error of 0.28 bpm. This is because the range of the
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Figure 4.16: System performance under different deployment locations of the polarized an-
tenna.

polarized antenna is limited, and some of the tags cannot be scanned by the antenna. Thus, we

conclude that the best deployment position of the antenna is the ceiling, which can guarantee

full-tag interrogation and high sensitivity of detecting the respiration signal.

Impact of Number of Tags and Coupling Effect

We next evaluate the accuracy of our system with different numbers of tags. Since we need to

calculate phase difference between tag pairs and build the tensor data, the minimum number

of tags is 3 in our system. Fig. 4.17 shows the accuracy under different numbers of tags. The

mean error is relatively high when only 3 tags are deployed, which is 0.45 bpm. This is because

the 3 tags can only generate 3 phase difference sequences for CPD. The respiration signal is

hard to be decomposed from the small tensor constructed by 3 tags. We also observe that when

5 or more tag are deployed, the error is reduced to 0.11 bpm. However, the error becomes 0.21

when 9 tags are used, because the error in recovering the missing samples becomes large with

9 tags. Moreover, more time will be consumed in data recovering and tensor decomposition

when more tags are used. We use 5 tags on the seat belt in our system.
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Figure 4.17: Estimation error for different numbers of deployed tags.

Fig. 4.17 also shows that the accuracy of the system is not seriously affected by the cou-

pling effect, because the estimation error remains small (around 0.11 bpm) even when 8 tags

are used. With 8 tags attached to the seat belt, the density of RFID tags is quite high, which

generates large mutual coupling among these tags. Fortunately, the coupling effect only affects

the phase value received by the reader [23], while the breathing rate estimation is dependent on

the periodicity of the signal. Thus the system is robust to the mutual coupling effect. The figure

also shows that, the error increases a little (to 0.2 bpm) when 9 tags are deployed. This is be-

cause the considerable larger mutual coupling effect may introduce low backscattering power

from the tags in this case. Since the reader uses a power threshold for receiving tag response,

tags with low backscattering power will hardly be interrogated by the reader. To make sure that

all tags can provide enough information to the reader, we conclude that 8 tags are the maximum

number of tags for the prototype system.

Complexity Reduction

Since the system requires solving two optimization problems for data recovery and tensor de-

composition, the complexity of the algorithm could be a problem that needs to be investigated.

We aim to reduce the complexity of HaLRTC and CPD by reducing the size of the tensors and
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Figure 4.18: Impact of Hankelization size on HaLRTC complexity and recovering accuracy.

by downsampling. For phase recovery, we can reduce the size of the tensors by adjusting the

number of rows in Hankelization. We utilize the 20 s data used in Fig. 4.5 to test the influence

of the number of rows on complexity and accuracy. The results are shown in Fig. 4.18. We can

see that as the number of rows is increased, the consumed time increases exponentially, while

the Root Mean Square Error (RMSE) decreases exponentially. To trade off between accuracy

and complexity, we choose 20 as the row number for building generalized Hankel matrix.

Downsampling is not implemented in the phase recovering process, because the sparsity

of the data is very high and downsampling could considerably affect the recovery performance.

However, downsampling is an effective way to reduce the complexity of CPD. Following The-

orem 4.1, the rows of the generalized Hankel matrix in CPD should be large enough, or the

periodicity of the signal can hardly be revealed in αi. Thus, we fix the number of rows and test

the performance of CPD with different downsampling indices. As Fig. 4.19 shows, when the

index is larger than 12 the consumed time by CPD is shorter than 0.82 s, and the estimation

error is smaller than 0.2 bpm when the index is smaller than 14. When the downsampling in-

dex gets higher, the accuracy decreases sharply, because the remaining data is not enough for

CPD to precisely separate the breathing signal. To achieve high accuracy with an acceptable

complexity, we downsample the data by 12 before constructing the tensor input for CPD.
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Figure 4.19: Impact of downsampling on CPD complexity and system performance.

In conclusion the total time consumed for data processing in our system is about 2 s.

Since drowsy driving is a relatively long, slowly developing process (i.e., people do not fall

asleep suddenly), such a latency should be sufficient to warn the driver in advance (e.g., the

safe distance to the vehicle ahead of one’s car is 2 or 3 s). In addition, the processing speed

can be improved by specific embedded hardware. The complexity of the prototype system is

acceptable.

4.6 Conclusions

In this paper, we proposed an RFID based respiration rate monitoring system for the driving

environment. The proposed system included several novel components, including data collec-

tion, breathing data preprocessing, CP tensor decomposition, and respiration signal estimation,

to combat the strong noise caused by frequency hopping, random sampling, vehicle vibration,

and other movements in the environment. The proposed system was implemented with com-

modity RFID tags and reader, and was evaluated under real driving scenarios. Our experiments

showed that the tensor completion and CPD approaches were effective for respiration monitor-

ing in driving environments.
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4.7 Proof and discussion of the theorems in CPD processing

4.7.1 Proof of Theorem 4.1

Proof. To analyze the features of the generalized Hankel matrix, we first assume the original

signal is a noise-free, discrete sinusoidal signal sampled at a constant period t, which is given

by y(n) = a sin(wtn+ φ0), where a, w, and φ0 are the amplitude, frequency, and initial phase

offset of the sinusoidal signal, respectively.

For convenience, we define

S⃗q
p
.
= [sin(wtp+ φ0), sin(wt(p+ 1) + φ0), ..., sin(wtq + φ0)],

and rewrite the generalized Hankel matrix as

H = a ·
[
S⃗
(n−r+1)
1 , S⃗

(n−r+2)
2 , · · · , S⃗n

r

]T
. (4.10)

We also define

C⃗q
p
.
= [cos(wtp+φ0), cos(wt(p+1)+φ0), ..., cos(wtq+φ0)].

Since sin(wt(n+1)+φ0) = sin(wtn+φ0) cos(wt) + cos(wtn+φ0) sin(wt), we can convert

the time-shift of Hankelization to a summation format. The generalized Hankel matrix H can

be rewritten as

H = a·



S⃗
(n−r+1)
1 cos(0) + C⃗

(n−r+1)
1 sin(0)

S⃗
(n−r+1)
1 cos(wt) + C⃗

(n−r+1)
1 sin(wt)

S⃗
(n−r+1)
1 cos(w2t) + C⃗

(n−r+1)
1 sin(w2t)

· · ·

S⃗
(n−r+1)
1 cos(w(r−1)t)+C⃗

(n−r+1)
1 sin(w(r−1)t)


.

Note that both vectors [cos(0), cos(wt), ..., cos(w(r − 1)t)] and [sin(0), sin(wt), ..., sin(w(r −

1)t)] are discrete sinusoidal signals with the same period w. Thus, we can rewrite H as H =
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ψT
1 ·ψ2, where ψ1 = [α1, α2]

T given by

ψ1 = 1 ·

cos(0), cos(wt), ..., cos(w(r − 1)t)

sin(0), sin(wt), ..., sin(w(r − 1)t)

 , (4.11)

and ψ2 = [β1, β2]
T given by

ψ2 = a ·
[
S
(n−r+1)
1 , C

(n−r+1)
1

]T
, (4.12)

where each row of ψ1 and ψ2 is a sinusoidal signal with period w. Therefore, both αi and βi

are sinusoidal signals with the same period w.

4.7.2 Discussion of Theorem 4.2

Since only the driver’s breathing signal is captured by the phase difference sequence, the mod-

ified Hankel matrices can be regarded to be generated by a single sinusoidal signal (i.e., the

breathing signal) plus noises from the driving environment. Following Theorem 4.1, the two

related components should be decomposed, and thus we have M ⩾ 2.

Next we consider the upper bound of M to satisfy the uniqueness requirement of CPD.

It is given that the output of CPD is unique only when RA + RB + RC ≥ 2M + 2 [96],

where RA, RB, and RC are the number of independent rows in matrix A, B, and C. In the

constructed tensor, RC is determined by the number of independent signals, while RA and

RB are determined by the sampled signal used for hankelization. In our system, each tag

can be considered as an independent sensor. So RC equals to the number of deployed tags,

which means RC ⩾ 4 (since 4 to 8 tags are used). In addition, we have RA = RB ⩾ 3

because the breathing signal itself takes 2 rows and the noise in sampled data occupies at least

one independent row. Therefore, to satisfy the uniqueness condition of CPD, we should have

2M + 2 ⩽ min{RA} + min{RB} + min{RC} = 3 + 3 + 4 = 10, i.e., M ⩽ 4. Thus, we

conclude that the tensor rank used for CPD in the proposed system should satisfy 2 ⩽ M ⩽ 4

and the CPD is unique.
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Chapter 5

SparseTag: RFID Tag Localization with a Sparse Tag Array

5.1 Introduction

With the rapid growth of the Internet of Things (IOT), the Radio Frequency Identification

(RFID) technology has been regarded as an effective and low-cost solution for many emerging

IoT applications. In addition to the wide adoption in traditional identification applications in

various fields, such as retailing, sports, library, manufacturing, and supply chain management,

positioning of RFID tags has attracted increasing interest from researchers in recent years.

Rather than reading the stored Electronic Product Code (EPC) from RFID tags, the low level

data of the RFID channel, such as received signal strength indication (RSSI) and phase, can be

collected from the received tag responses and leveraged for tag localization.

RSSI-based technique has been proposed to localize RFID tags [31], but the accuracy of

such systems is usually limited by the low resolution and randomness of the RSSI data. Active

RFID tags have been adopted in prior works, which usually has a much higher cost than the

passive tags. For passive tag based localization, phase angle has been widely utilized because

of its high resolution and stability. However, due to the wide beam of polarized reader antenna

and the multipath effect, high-accuracy positioning of passive tags is still a big challenge. To

achieve narrow beams of the reader antenna for high-accuracy localization, multiple antennas

can be utilized [33, 35], but at a higher cost. Systems with a single moving antenna or moving

RFID tags are then proposed for reduced cost [21, 22, 34], which generate additional virtual

antennas instead of using real ones. These techniques can achieve high localization accuracy,
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but the moving the antenna or tag incurs time delay and requires careful calibration of the

system.

Recently, RFID tag array has been leveraged to improve the accuracy and the robustness

of RFID-based sensing systems [98]. For example, Tagyro uses a hologram-based method

to transform phase offset to orientation of the tag array [23] for tracking the 3D orientation

of passive objects. RF-Wear is developed for orientation estimation with a uniform linear

array (ULA) for body-frame tracking [99]. The accuracy of direction of arrival (DOA) based

localization techniques can be improved by utilizing more antennas. Thus leveraging a tag

array with more RFID tags is an effective way to achieve high positioning accuracy. Compared

with the systems with multiple polarized antennas, the cost of building a passive RFID tag array

is negligible.

However, the technical challenges still exist for tag array-based localization, such as how

to mitigate the multipath effect from the propagation environments and the phase distortion

caused by mutual coupling between RFID tags. To deal with the influence of multipath effect,

some existing techniques leverage a mobile antenna to localize a tag array in different posi-

tions [100,101]. Although the mobile antenna can reduce the cost, the specialized mobile shelf

and motor incur additional cost. For DOA based localization, the multipath effect could be

effectively mitigated by utilizing an RFID tag array with sufficient number of tags.

However, when the traditional ULA tag array is used, the tag density could be high when

many tags are placed on a small surface of the object, such as a book or a small package. In such

scenarios, the accuracy will be influenced by the strong mutual coupling effect, which intro-

duces additional frequency offset as well as amplitude offset of the resonance peak [102, 103].

It has been proved by several existing systems that mutual coupling generates considerable

interference to the collected phase angle of RFID tags, which degrades the localization per-

formance [105, 106]. Furthermore, the backscattered signal from RFID tags may not be suffi-

ciently strong to be detected by the antenna, because the strength of the signal is also affected

by mutual coupling. Thus, a special tag array with a lower density than ULA is needed, to be

resilient to mutual coupling and deliver accurate DOA estimation.
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In this paper, we propose a novel sparse RFID tag array for tag localization [57]. We

first an analysis of the mutual coupling effect and prove that the phase difference from pairs

of tags used in our system is independent to the coupled voltage and mutual impedance. Next,

we present the SparseTag system, i.e., a Sparse RFID Tag array system for high-precision

backscatter indoor localization, which comprise a sparse tag array and an RFID reader with

two antennas. We analyze our sparse array processing for DOA estimation, which is quite

different from the traditional MUSIC algorithm based methods using a ULA [107]. The key

idea is to obtain a new signal vector with a different co-array, which is a longer array whose

antenna locations are not evenly spaced. In addition, we design a new sparse RFID tag array,

which has a symmetric structure and is effective for mitigating the mutual coupling effect. We

derive its difference co-array and prove its several important properties, such as its hole-free

feature, degrees of freedom (DOF), and weight function. We analytically show why the pro-

posed sparse tag array can outperform ULA on DOA estimation. Then, we develop a DOA

estimation scheme using the difference co-array of the proposed sparse tag array with a spa-

tial smoothing method. Finally, we provide a localization method based on the two estimated

DOAs, while a robust channel selection method is proposed for mitigating the multipath effect.

We implement SparseTag with off-the-shelf RFID tags and reader, and evaluate its performance

in two environments, including a computer laboratory and an anechoic chamber, where supe-

rior DOA estimation and location performance over the ULA-based benchmark scheme are

demonstrated.

Compared with the brief introduction in the previous work, we have greatly enhanced the

description and presentation in the current journal version, and extensive new experimental

results were added to demonstrate the superiority of the proposed tag array. In section 5.2,

we have newly conducted an experiment to validate the influence of different types of tags on

mutual coupling. Besides, a new theorem 5.2 is added to show the drawbacks of the normal

ULA tag array and analyze the influence of mutual coupling on the back-propagating power.

Furthermore, multiple figures are newly added to illustrate the extensive addition experimental

results.

The main contributions made in this paper are summarized as follows.
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• We justify the feasibility and advantages of utilizing a sparse tag array for DOA based

indoor localization through analysis and experiments. To the best of our knowledge, this

is the first work to leverage sparse tag arrays for backscatter indoor localization, which

does not require to move either the tags or the antenna(s).

• We design the SparseTag system, which includes sparse array processing, difference co-

array design, DOA estimation using a spatial smoothing based method, and a localization

method. We propose a new sparse tag array design and analytically prove its superior

performance over the traditional ULA design. In addition, a robust channel selection

method based on the sparse tag array is proposed for mitigating the indoor multipath

effect.

• We implement SparseTag with off-the-shelf RFID tags and reader, and evaluate its per-

formance in two indoor environments, including a computer laboratory and an anechoic

chamber, with extensive experiments. The experimental results verify the effectiveness

and strengths of the proposed SparseTag system.

The remainder of this paper is organized as follows. We analyze the mutual coupling

effect on RFID phase difference and the success rate of sampling in Section 5.2. The proposed

SparseTag system is presented in Section 5.3 and its performance is evaluated in Section 5.4.

Section 5.5 discusses related work and Section 5.6 concludes this paper.

5.2 Analysis of Mutual Coupling

5.2.1 Phase Angle and Phase Difference

The FCC requires frequency hopping to avoid interference for readers. The readers use the

spectrum between 902.5 MHz and 927.5 MHz, which is divided into 50 channels. The reader

uses the Low-Level Reader Protocol (LLRP) to interrogate the tags, which can provide the RF

phase angle, Doppler frequency, and Peak RSSI of the RFID channel [38]. In particular, the
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phase angle, denoted by ϕ, can be written as

ϕ = mod
(
2π · 2l

λ
+ θt + θr + θtag, 2π

)
, (5.1)

where l is the distance between the tag and the reader antenna, λ is the wavelength of the signal,

and θt, θr, and θtag are the offsets introduced by the reader’s transmitting circuit, the reader’s

receiving circuit, and the RFID tag’s backscattering circuit, respectively. The challenge for

RFID-based sensing techniques is how to translate the measured phase ϕ to distance l, under

strong interference from the phase offsets and frequency hopping.

To mitigate the impact of phase offsets, we propose to adopt an RFID tag array. Rather

than using the phase angle from each individual tag, the difference between a pair of neighbor-

ing tags is used. Following (5.1), the phase difference between Tags 1 and 2 is given by

∆ϕ1,2 = mod
(
2π · 2(l1 − l2)

λ
+ θtag1 − θtag2 , 2π

)
, (5.2)

where l1 and l2 are the distances from Tags 1 and 2 to the reader antenna, respectively; and

θtag1 and θtag2 are the phase offsets due to Tags 1 and 2’s circuit, respectively. It can be seen

that the phase offsets introduced by the reader’s circuits, i.e., θt and θr, are canceled in (5.2). In

addition, the incident wave from the reader antenna is similar to a plane wave if the tag-antenna

distance is sufficiently long. In this case, the phase difference can be translated to the DOA, if

the pair of tags are placed closer than λ/4 [106].

5.2.2 The Mutual Coupling Effect

When a tag array is deployed, the mutual coupling effect becomes a limiting factor of the

sensing performance. The inductive coupling of neighboring RFID antennas causes transfer

of energy between closely placed tags, which usually affect the measured phase angles and

the received signal strength at the reader. In the remainder of this section, we will provide an

analysis of the effects of mutual coupling on phase difference and sampling effectiveness.
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Impact on Phase Angle and Phase Difference

The Gen 2 protocol is adopted for the interrogation process to avoid collision of simultaneous

responses to a query from multiple tags [108]. With this protocol, among the tags that respond

to the reader’s query with their RN16 (a 16-bit random number), only one tag, to which the

reader echoes with its RN16, will be activated to send its EPC to the reader in every round of

interrogation.

In Fig. 5.1, we present the corresponding circuit models of two tags under mutual cou-

pling [109]. The upper plot is for the case when Tag 1 is activated, and the lower plot is for the

case when Tag 2 is activated. In the circuit models, V1 and V2 represent the source voltages,

and I1 and I2 are the source currents, when Tag 1 or Tag 2 is activated, respectively; RL1 and

RL2 are the impedance of the microchip, and RA1 and RA2 are the impedance of the antenna

input, of the two tags, respectively.

Theorem 5.1. Consider two RFID tags under strong mutual coupling. If the tags have identical

chip impedance and antenna input impedance, i.e., RL1 = RL2 and RA1 = RA2, the ratio of

their equivalent source currents equals to the ratio of their equivalent source voltages. That is,

we have I1/I2 = V1/V2.

Proof. Consider the case when Tag 1 is activated by the reader. Due to induced coupling of the

two tags’ antennas, Tag 1’s current I1 will trigger a coupled voltage V21 = R21 · I1 in Tag 2.

Here R21 is the mutual impedance of Tag 2 with respect to Tag 1. The coupled voltage V21 will

then induce a current Im2 in Tag 2, which next produces a coupled voltage V12 = R12 · Im2 back

at Tag 1, Here R12 is the mutual impedance in Tag 1 with respect to Tag 2. Assuming the two

tags are of the same type, it follows that

I1 · (RL1 +RA1) = I1 ·R0 = V1 +R12 · Im2 (5.3)

Im2 · (RL2 +RA2) = Im2 ·R0 = R21 · I1, (5.4)
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(a) When Tag 1 is activated.

(b) When Tag 2 is activated.

Figure 5.1: The equivalent circuit model of two tags under mutual coupling.

where R0 = RL1+RA1 = RL2+RA2 is a constant. Assume the two tags have identical mutual

impedance [109], i.e., R12 = R21 = Rm. Then current I1 can be written as

I1 =
V1

R0 −R2
m/R0

. (5.5)

We can drive the same relationship for the case when Tag 2 is activated, as

Im1 · (RL1 +RA1) = Im1 ·R0 = R12 · I2 (5.6)

I2 · (RL2 +RA2) = I2 ·R0 = V2 +R21 · Im1 , (5.7)
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where Im1 is the induced current in Tag 1 by the coupling voltage V12. We can solve for the

current I2 in Tag 2 as

I2 =
V2

R0 −R2
m/R0

, (5.8)

Then we conclude from (5.5) and (5.8) that I1/I2 = V1/V2.

Rewrite the complex current and voltages as Ii = |Ii|∠Ii and Vi = |Vi|∠Vi, i = 1, 2,

where |·| is the amplitude and ∠ is the phase angle. According to Theorem 5.1, we have

∠I1 − ∠I2 = ∠V1 − ∠V2. (5.9)

The measured phase angle by the reader is determined by the distance and the phase of the

current that generates the tag response signal [72]. But the measured phase difference will be

independent to the coupling voltage and mutual impedance. That is, mutual coupling has a

negligible impact on the phase difference, although the phase angle itself is highly susceptible

to the coupling effect, as shown in (5.5) and (5.8). Theorem 5.1 and the following analysis

justify the feasibility of leveraging tag arrays for DOA estimation in the presence of mutual

coupling effect.

We designed three experiments to validate the above analysis. The first experiment is to

measure the phase angle from a tag, while placing another tag next to it at various distances.

To assess the interference induced by mutual coupling, we also measure the ground truth phase

angle when the second tag is absent. The measured phase errors (i.e., the difference between

with or without the second tag) are presented in the upper plot of Fig. 5.2 for various distances

between the two tags. It can be seen from the plot that the phase errors are all quite big until

the second tag is placed at a large distance, e.g., 16 cm, from the target tag. Therefore, in order

to avoid the large phase interference induced by mutual coupling, the tags should be placed at

least 16 cm away from each other.

The second experiment is to measure the phase difference by placing the two tags in par-

allel on the same plane at various distances. The experiment is conducted as illustrated in
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Figure 5.2: Impacts of mutual coupling on measured phase angle (the upper plot) and phase
difference (the lower plot).

Fig. 5.3. In the first part of the experiment, we place Tag 1 at each of the locations, which are

separated 2 cm apart. The phase angles from Tag 1 is measured at each of these locations. Then

the ground truth phase difference is calculated by subtracting the phase angle at the left-most

position from that measured at any other locations. This approach allows us to obtain the phase

differences at various tag-tag distances without the mutual coupling effect. In the second part

of the experiment, two tags are deployed: Tag 1 is fixed at the left-most location, while Tag 2

is put at each of the other locations. The phase differences under mutual coupling is then mea-

sured at different tag-tag distances and are plotted in the lower plot of Fig. 5.2. It can be seen

that the phase difference errors are all smaller than 0.1 radian except when the distance is 10

cm. The phase difference errors are mainly due to the multipath effect and random noise; the

impact of mutual coupling on phase difference is much weaker than the case of phase angles.

This experiment validates Theorem 5.1.

It is worth noting that the above two experiments are different from the Tagyro scheme [23],

where the change of phase difference is measured when a tag rotates around another fixed tag.
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2cm

16cm

Tag1 Tag2

Figure 5.3: The setup of the second experiment for assessing the impact of mutual coupling on
measured phase difference.

The relative orientation of the pair of tags has a big impact on the mutual impedance. Thus

the mutual coupling effect of Tagyro varies with the different rotation angles of the tags. Due

to this reason, Tagyro requires careful calibration with a hologram-based approach in order to

translate phase offset into the tag array’s orientation.

Due to the imperfections in tag production, the impedance of different tag could still be

different even if the tags are of the same type and produced by the same manufacturer. We

design the third experiment to assess the impact of different tag types and different tags of the

same type on phase difference measurement. Specifically, we repeat the same experiment with

three different types of tags and three different groups of tags of each type. The average phase

difference error is summarized in Table 5.1. It can be observed from the table that, although

tags used in each group are of different types, the phase difference error of each group are

similar. This experiment validates that the effect of imperfect tag production is negligible on

phase difference measurements.

Impact on the Success Rate of Sampling

Consider, for example, a ULA tag array. The reader keeps on interrogating the tags in the array

for a certain period of time. Let ni be the number of phase angle samples read from tag i in
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Table 5.1: Impact of Different Types of Tags on Phase Difference Error
Type of RFID tag Group A Group B Group C

ALN-9740 0.08 rad 0.06 rad 0.08 rad
SMARTRAC DogBone 0.11 rad 0.08 rad 0.09 rad
SMARTRAC ShortDipole 0.08 rad 0.07 rad 0.07 rad

the array. The success rate of sampling of tag i is defined as the ratio of ni over the maximum

number of samples collected from any of the tags in the ULA, i.e.,

ξi =
ni

maxi{ni}
. (5.10)

To measure the mutual coupling effect on tags’ success rate of sampling, let Pr denote the

received power at the reader, given by [110]

Pr =

(
λ

4πl

)4

PrG
2
rG

2
t

4R2
A

(RL +RA)2 + (XL +XA)2
, (5.11)

where Pr is the reader’s transmit power, Gt and Gr are the antenna gains of the tag and the

reader, respectively, RA and XA are tag antenna’s radiation resistance and reactance, respec-

tively, and RL and XL are tag chip’s radiation resistance and reactance, respectively. To

get a valid sample, the received power Pr should exceed the detection threshold Pth, i.e.,

Pr ≥ Pth [110]. Otherwise, the tag cannot be detected by the reader.

Theorem 5.2. Assume the tag chip’s impedance RL is constant. If the tag antenna and chip’s

reactance satisfy XA = −XL, the received power at the reader Pr will be an increasing func-

tion of RA when the tag-reader distance l is fixed.

Proof. If the tag antenna’s and chip’s reactances satisfy XA = −XL (assuming perfect tag

production), we have from (5.11) that

Pr =

(
λ

4πl

)4

PrG
2
rG

2
t

4

(RL/RA + 1)2
.
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It can be easily verified that the received power Pr is an increasing function of RA, when all

other parameters are fixed.

When the two tags are placed closer, the tag antenna’s radiation resistance RA will be-

come smaller due to the mutual coupling effect [110]. According to Theorem 5.2, the reader’s

received power will be lower if the two tags are placed closer to each other. On the other hand,

with mutual coupling, (XA + XL)
2 will not be zero anymore [110], which also reduces the

received power as given in (5.11). In the tag array, mutual coupling could reduce the received

powers of some tags, leading to a low success rate of sampling for such affected tags.

Fig. 5.4 presents the success rates of sampling of a ULA comprising five tags, placed at

2.1 m away from the reader antenna. We find that the success rates of sampling of all the tags

are over 90% when the distance between tags is 6 cm, and the success rates of sampling of all

tags are higher than 70% at a 4 cm tag intervals. However, when the tags are placed at 2 cm

apart, the success rate of sampling of Tag 2 becomes lower than 10%. That is, this tag cannot

be effectively detected on most channels, which generally happens for a tag placed at the center

of the ULA, because the mutual coupling effect caused by the tags on both sides are strong. To

ensure that all tags in the array be effectively sampled by the reader, the density of the tag array

should not be too high. This observation motivates us to design a sparse array for localization.

5.3 The SparseTag System

5.3.1 Overview

Fig. 5.5 provides an overview of the proposed SparseTag system, where an RFID tag array and

a reader with two antennas are utilized. We assume the position of the tag array is unknown

(i.e., to be detected), while the locations of the two reader antennas are known as a prior. The

main idea of the SparseTag design is to utilize a sparse tag array to detect the DOAs at the

center of the array from both antennas. Then the position of the center of the array will be

solved from the known locations of the two antennas and the estimated DOA values.

In typical applications, the tag array is attached to, or even woven into, a small object (e.g.,

a book, a tablet, or a shirt). The key challenge in the design of SparseTag is how to accurately
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Figure 5.4: Impact of mutual coupling on the success rate of sampling, when five tags are
placed at 2 cm, 4 cm, and 6 cm intervals.

Figure 5.5: An overview of the proposed SparseTag system, comprising of a sparse tag array
and a reader with two antennas. The antenna locations are known and the center of the tag array
is to be localized.

estimate the DOAs by leveraging the sparse tag array. With a traditional ULA, the sensor

element spacing should be smaller than half of the wavelength, while the MUSIC algorithm
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can be applied to estimate the DOA [107]. As discussed in Section 5.2, a ULA may not be

suitable for positioning a small object. This is because, for RFID systems operating in the 900

MHz band, half of a wavelength is already 16 cm. Furthermore, with an N -element ULA, the

MUSIC algorithm only estimates up to (N − 1) DOAs. Usually, spatial smoothing is adopted

to decorrelate uncorrelated sources, which takes half of the elements and consequently, the

maximum number of estimated DOAs will be halved [116]. In this paper, a novel sparse RFID

tag array structure is proposed to achieve high success rate of sampling for the tags in the array,

while the minimum spacing of the tags can be as small as λ/16. Since usually a tag, e.g., an

ALN-9740 tag, is about 1 cm wide, the minimum spacing of the tags should be no smaller than

1 cm such that the tags will not overlap with each other. Consequently, the minimum spacing

of the proposed array structure is set to λ/16, which is roughly 2 cm for the 900 MHz band.

Moreover, we derive the difference co-array of the sparse tag array, which can provide a higher

DOA resolution for more accurate localization performance.

The proposed SparseTag system mainly comprises four modules, i.e., (i) Sparse Array Pro-

cessing, (ii) Co-array Design, (iii) DOA Estimation, and (iv) Location estimation. We describe

the design of each of the modules in the following.

5.3.2 Sparse Array Design

In order to adopt tag arrays to localize small objects, the number of tags, as well as the tag

spacing, cannot be too big. To address these issues, we propose to adopt a sparse array that

comprises of N tags with a nonuniform linear placement, which is quite different from the

traditional ULA plus MUSIC approach [107].

Let the steering vector for direction α be denoted by a⃗(α), with elements exp{j 2π
λ
di sinα},

where di is the location of tag i and λ is the wavelength of the carrier frequency. Assume there

are D multipath components from the propagation environment, each having direction αi and
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power σ2
i , i = 1, 2, ..., D. The received signal at time t can be written as

g⃗[t] =
D∑
i=1

a⃗(αi)si[t] + n⃗[t] (5.12)

= As⃗[t] + n⃗[t],

where A = [⃗a(α1), a⃗(α2), ..., a⃗(αD)] denotes the array manifold matrix, s⃗[t] = [s1[t], s2[t], ..., sD[t]]
T

denotes the source signal vector, and n⃗[t] is the additive white noise vector. Assuming the

multipath components are temporally uncorrelated, the source autocorrelation matrix will then

assume a diagonal structure. Considering the second-order information of the received signal

g⃗(t), its covariance matrix, denoted by Rgg, can be derived as

Rgg = E[⃗g(t)g⃗(t)H ] (5.13)

= ARssA
H + σ2

nI

=
D∑
i=1

σ2
i a⃗(αi)⃗a(αi)

H + σ2
nI.

We next vectorize the Rgg in (5.13) to derive the measurement vector, which is given by

z⃗ = vec(Rgg) (5.14)

= vec

[
D∑
i=1

σ2
i a⃗(αi)⃗a(αi)

H

]
+ σ2

n1⃗n

= (A∗ ⊙A)p⃗+ σ2
n1⃗n,

where p⃗ = [σ2
1, σ

2
2, ..., σ

2
D]

T , 1⃗n = [e⃗T1 , e⃗
T
2 , ..., e⃗

T
N ]

T , and e⃗i is a column vector whose ith element

is “1” and all other elements are “0.” Here the measurement vector is regarded as the signal

received at an array with a manifold of (A∗ ⊙ A) [111], where ⊙ represents the Khatri-Rao

(KR) product. The matrix (A∗ ⊙A) can be regarded as the manifold of a longer array, whose

antenna positions are determined by the different values in the set {x⃗i− x⃗j}, 1 ≤ i and j ≤ N ,

where x⃗i is the location vector of Tag i. This new array is termed the difference co-array [111].
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In SparseTag, DOA is estimated with the difference co-array, which can effectively exploit the

second-order statistics of received signal for an increased DOF.

5.3.3 Difference Co-array Design

In the following, we first present several basic definitions related to the difference co-array. We

then present the design of the difference co-array for the sparse tag array used in SparseTag.

Definitions

Definition 1. (Difference Co-Array). Consider a sparse, N -element tag array. Let x⃗i be the

location vector of Tag i. The difference co-array of the sparse array is defined as [111]

D = {x⃗i − x⃗j, 1 ≤ i, j ≤ N} . (5.15)

The difference co-array can be regarded as a new array, where the tags are placed at the

locations given in the set D. In addition, the values of the cross correlation elements in the

covariance matrix of the received signal by the sparse tag array are determined by the number

of elements in the difference co-array, which is helpful to improve the number of estimated

DOAs.

Definition 2. (Restricted Array). A sparse, N -element tag array is a restricted array if its

difference co-array is hole-free [112].

If the difference co-array is hole-free, it is also a ULA. Therefore, the traditional subspace

based MUSIC algorithm can be employed to estimate DOA using a hole-free difference co-

array. For instance, the tags are placed at the positions given by the set S, which is given

by

S = {m · d, m = 1, 2, 4} . (5.16)
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where d is the minimum spacing between tags. The corresponding difference co-array can be

derived as

D =
{
−3⃗,−2⃗,−1⃗, 0⃗, 1⃗, 2⃗, 3⃗

}
. (5.17)

Although the position 3d is missing in this sparse array (see (5.16)), there is no missing vector

in the difference co-array set D (i.e., it includes all the vectors from −3⃗ to 3⃗, see (5.17)).

Consequently, this array is still useful for DOA estimation using the MUSIC algorithm.

Definition 3. (Degree of Freedom (DOF): The DOF of a sparse array is the cardinality of its

difference co-array D [111].

The DOF of a sparse array can be derived by the cardinality of its difference co-array D,

which indicates the maximum number of DOAs that can be estimated.

Definition 4. (Weight Function). For a sparse, N -element tag array, its weight function w(d⃗)

is defined as the number of tag pairs that can achieve the difference co-array element d⃗. The

weight function is given by [111]

w(d⃗) =
∣∣∣{(x⃗i, x⃗j)|x⃗i − x⃗j = d⃗

}∣∣∣ , d⃗ ∈ D. (5.18)

The weight function indicates the how serious the mutual coupling effect is, which is

helpful for our proposed sparse tag array.

Difference Co-array

Assume N is an odd number. Then the tag placement in the N -element sparse tag array are

given in the set S, which is

S = {m · d, m = 1, ..., (N + 1)/2− 1,

(N + 1)/2 + 1, (N + 1)/2 + 3, ..., N + 2} , (5.19)
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where the tag minimum spacing is set to d = λ/16; such small spacing allows us to use a

small-sized tag array to localize small objects. The proposed sparse tag array has a symmetric

structure; its left and right halves have the same tag spacing arrangement. In addition, the gaps

from the two tags placed at positions (N+1
2
− 1)d and (N+1

2
+3)d to the tag placed at the center

of the array (i.e., at position (N+1
2

+ 1)d) is both 2d. Thus the proposed array is a sparse array.

The sparse tag array used in SparseTag has the following three key advantages. First,

its symmetric structure helps to suppress the mutual coupling effect, which usually limits the

performance of traditional tag arrays. The reduced mutual coupling leads to less interference

in measured phase difference and thus, higher accuracy in the estimation of DOAs. Second,

the sparse structure also helps to mitigate the degradation of the success rate of sampling of

the tags in the array, specifically, the tag at the center of the array. Third, it allows us to use

tag arrays with a smaller physical dimension. Such smaller-sized tag arrays help to improve

the DOA resolution and are easier to deploy, such as attached to small objects or woven into

clothing.

The difference co-array corresponding to the proposed sparse array is given by the follow-

ing placement set Sd.

Sd = {m · d, m = −(N + 1),−N, ..., N, (N + 1)}. (5.20)

Theorem 5.3. The proposed sparse array is a restricted array. That is, it is a hole-free differ-

ence co-array.

Proof. The difference co-array of the proposed sparse array is a ULA. It is easy to verify that

it is a hole-free difference co-array, with the given placement set Sd. Thus we conclude that it

is a restricted array.

Corollary 5.3.1. The proposed sparse array’s co-array is the same as that of an (N +2) ULA.

Proof. The proposed sparse array has the same left-most and right-most tag positions at d and

(N+2)d, respectively, as that of an (N+2) ULA. In addition, both arrays are restricted arrays.

Therefore, we conclude that the proposed sparse array has the same co-array as that of the

(N + 2)-element ULA.
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Theorem 5.4. The DOF of the sparse N -element array is 2N + 3.

Proof. The proposed sparse array is given by the position set S , and the cardinality of its

difference co-array Sd is 2N + 3. Therefore we conclude that the DOF of the sparse array is

2N + 3 according to Definition 3.

Theorem 5.5. The weight function of the proposed N -element sparse array is w(d⃗ = 0⃗) = N

and w(d⃗ = 1⃗) = N − 3.

Proof. When x⃗i = x⃗j , we have the case d⃗ = 0⃗. This case occurs N times for an N -element

array, i.e., when i = j = 1, 2, ..., N . Therefore we have w(d⃗ = 0⃗) = N according to Defini-

tion 4.

Furthermore, consider two different subarrays given by sets Sl = {m·d,m = 1, 2, ..., N+1
2
−

1} and Sr = {m · d,m = N+1
2

+ 3, N+1
2

+ 4, ..., N + 2}, respectively. The case d⃗ = 1⃗

takes place for (N+1
2
− 2) times in each subarray. Furthermore, for the subarray given by set

Sc = {m · d,m = N+1
2
− 1, N+1

2
+ 1, N+1

2
+ 3}, the case d⃗ = 1⃗ does not arise at all. It follows

that w(d⃗ = 1⃗) = (N+1
2
− 2) ∗ 2 = N − 3.

We make the following observations from the above theorems and corollary.

• The proposed N -element sparse array has the same DOF as an (N + 2)-element ULA.

Using the proposed sparse array, we can achieve a higher maximum number of estimated

DOAs than using a ULA with the same amount of tags and the MUSIC algorithm.

• Using the proposed sparse array can achieve a higher sampling rate of the tags. This is

because its weight function, i.e., w(d⃗ = 1⃗) = N − 3, is smaller than that of an (N + 2)-

element ULA. In Fig. 5.6, we compare a 7-tag ULA with a 5-tag proposed sparse array. In

each figure, the upper plot shows the placement of the tags, while the lower plot presents

the corresponding weight function w(n). It can be seen that the 5-tag sparse array has

the same DOF, i.e., 13, as the 7-tag ULA, since they share the same difference co-array.

Furthermore, it shows that w(⃗1) = 2 for the 5-tag sparse array and w(⃗1) = 6 for the 7-tag

ULA.
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• There are other types of sparse arrays, e.g., the co-prime array [113], nested array [111],

and super nested array [114], which can also achieve a larger DOF than the proposed

sparse array. However, such arrays may not be suitable for the deployment of tag arrays.

This is because such arrays all require a relatively larger physical space, which may

not be available for small objects. Moreover, such arrays’ structures are not symmetric.

Therefore, they may incur more serious mutual coupling among the tags, leading to large

interference in the RFID phase and phase difference samples.

5.3.4 Estimation of DOA

The difference co-array of the proposed sparse array is then leveraged for DOA estimation. A

spatial smoothing based method is employed, which is different from the existing approach

that utilizes spatial smoothing to mitigate correlated sources [111]. The SparseTag approach

constructs an observation matrix for the difference co-array, which does not require using high-

order cumulative signals.

Specifically, we first derive the array manifold (A∗ ⊙ A) following (5.14), which has a

dimension N2 ×D. According to Theorem 5.4, we next construct a matrix B with dimension

(2N + 3) × D by removing the repeated rows from the array manifold. Next, we sort this

constructed matrix to ensure that row i corresponds to the tag position (−N − 1 + i)d in the

proposed difference co-array. Then we obtain a new vector y⃗, which is written as

y⃗ = Bp⃗+ σ2
ne⃗, (5.21)

where e⃗ ∈ ℜ(2N+3)×1 is a vector whose (N +1)th element is “1” and all other elements are “0.”

Following the placement set (5.20), we divide the co-array into (N+1) overlapping subar-

rays, each having (N +1) elements, while the ith subarray is given by the following placement

set:

S(i) = {(−i+ 1 +m) · d, m = 0, 1, ..., N}. (5.22)
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(a) A 7-tag ULA and its weight function w(n). Upper: antenna sign is 1 means
a tag is placed at the corresponding location; Lower: the weight function.
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(b) A 5-tag sparse array and its weight function w(n). Upper: antenna sign is 1
means a tag is placed at the corresponding location; Lower: the weight function.

Figure 5.6: A 7-tag ULA versus a 5-tag sparse array.

Let y⃗(i) be a new vector for subarray i that comprises the same elements of y⃗ ranging from the

(N + 1− i+ 1)th element to the (2N + 1− i+ 1)th element:

y⃗(i) = B(i)p⃗+ σ2
ne⃗(i), (5.23)
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where B(i) is a matrix with dimension (N + 1)×D, comprising the same rows of B ranging

from the (N + 1− i + 1)th row to the (2N + 1− i + 1)th row; and e⃗(i) is a vector whose ith

element is “1” and all other elements are “0.” Consequently, the spatially smoothed matrix Rs

is obtained as

Rs =
1

N + 1

N+1∑
i=1

y⃗(i)y⃗(i)H . (5.24)

We then utilize Rs to estimate DOA. With our approach, N DOAs can be estimated,

which is considerably larger than what can be obtained with the MUSIC plus ULA approach

(i.e., (N − 1)/2). SparseTag incorporates a directional antenna for increased range. The line-

of-sight (LOS) component is dominant and a strong incident wave. The proposed sparse array

can achieve a higher angle resolution than the existing approach.

5.3.5 Location Estimation with DOAs

The proposed SparseTag system comprises a tag array and a reader with two directional anten-

nas, each of which operates on 50 channels in the 900 MHz band and samples phase angle of

the received tag response. Some channel information may not be reliable due to the multipath

propagation.

Fig. 5.7 presents the phase angles collected from a five-tag sparse array from the 50 chan-

nels. It can be seen the phase difference of two adjacent tags on most channels are similar. This

is due to the small distance between the pair of tags (e.g., 2 cm or 4 cm); and the 0.5 MHz

change of channel frequency caused by channel hopping can hardly cause a sufficient change

in phase. We also find from Fig. 5.7 that the phase difference collected from some channels

are highly different from others. Such difference is caused by the multipath effect on differ-

ent channels. Some channels are more susceptible to the multipath effect; so the phase angles

collected from such channels should be filtered out before DOA estimation.

To address this issue, SparseTag adopts a channel selection procedure. Denote ϕ(i,fm)(t)

as the phase angle sampled from Tag i on channel fm at time t. The phase difference between
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Figure 5.7: Phases angles sampled from a 5-tag sparse array over 50 channels (each line corre-
sponds to a different channel).

Tag i and Tag i+ 1 at time t, denoted by ∆(i,fm)(t), is given by

∆(i,fm)(t) = ϕ(i+1,fm)(t)− ϕ(i,fm)(t), i = 1, 2, ..., N − 1. (5.25)

We select the medium value of all the phase differences from all the channels for robustness,

since in many cases only a few channels are impaired. After selecting the right channel, we

recalculate the phase angles of all the tags in the array. Using the Tag 1 phase angle as a

reference and assuming ϕ(1,fm)(t) = 0 at time t, the phase value of Tag i is

ϕ(i,fm)(t) = ϕ(i−1,fm)(t) + ∆(i−1,fm)(t), i = 2, 3, ..., N. (5.26)

The received signal is next reconstructed as

ĝ(t) = [e(j(2π−ϕ(1,fm)(t))), ..., e(j(2π−ϕ(N,fm)(t)))]. (5.27)

Note that we have the terms (2π − ϕ(i,fm)(t)) in (5.27) due to the reader operation of the phase

angle. Two DOAs are estimated using multiple snapshots of received signal (each comprising

samples from all the 50 channels and each tag), one for each reader antenna. In Fig. 5.8, we plot

132



-100 -50 0 50 100

Angle  (degree)

-25

-20

-15

-10

-5

0

S
p
ec

tr
u
m

 F
u
n
ct

io
n
  
(d

B
)

ULA

SparseTag

Figure 5.8: DOA estimation results obtained using SparseTag and ULA. The red vertical dashed
line marks the ground truth of 28◦.

the power spectrum density obtained by SparseTag and ULA arrays from the same experimental

setting. The ground truth of DOA is marked by the red vertical line in the figure, which indicates

28◦. Fig. 5.8 shows that the peak of the SparseTag curve is considerably sharper and closer to

the ground truth than the peak of the ULA curve obtained using the MUSIC algorithm. DOA

estimation with SparseTag is more accurate than with ULA, because SparseTag achieves larger

DOFs than ULA.

The center of the tag array can be derived from the two estimated DOAs and the known

coordinates of the two antennas. Consider a coordinate system where the direction of the tag

array is the x-axis and the y-axis be perpendicular to the tag array. Assume (xi, yi) is the known

coordinates of antenna i, i = 1, 2, and let (xc, yc) denote the coordinates of the center of the tag

array. The two DOAs and the coordinates satisfy the following conditions (see Fig. 5.5).

cot(α1) =
yc − y1
xc − x1

(5.28)

cot(α2) =
yc − y2
xc − x2

. (5.29)

The cotangent function in (5.28) and (5.29) is given by cot(α) = cos(α)/ sin(α). We then

solve (5.28) and (5.29) for the coordinates of the center position of the RFID tag array (xc, yc),
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which is given by

xc =
x1 cot(α1)− x2 cot(α2) + y2 − y1

cot(α1)− cot(α2)
(5.30)

yc =
(x1− x2) cot(α1) cot(α2) + y2 cot(α1)− y1 cot(α2)

cot(α1)− cot(α2)
. (5.31)

5.4 Experimental Validation

5.4.1 System Implementation and Experiment Setup

We develop an implementation of SparseTag using a commodity Impinj R420 RFID reader

equipped with two circular polarized antennas and different types of RFID tags. When scanning

the tags, the reader hops among 50 channels in the range of 902.5 MHz to 927.5 MHz, as

required by the FCC. A Lenovo Thinkpad S3 laptop is used to control the reader and process

the collected data. The RFID reader samples channel related data from received tag responses

such as time stamp, phase angle, RSSI, and Doppler shift using a Low-level Reader Protocol

(LLRP) [38]. Furthermore, we build the RFID tag arrays using three different types of passive

tags, including ALN-9740, SMARTRAC DogBone, and SMARTRAC ShortDipole.

Extensive experiments are conducted in two different environments, including a 7.5× 5.6

m2 computer laboratory and an 8× 2.4 m2 anechoic chamber, which are illustrated in Fig. 5.9.

The computer lab is a more cluttered environment with computers and furniture, which cause

the multipath propagation of RFID signals. We also try to introduce more severe multipath

effect by placing chairs in the LOS path between the tag array and antennas. In the anechoic

chamber setup, most multipath effects are eliminated due to the special absorbing material

mounted on the wall, ceiling, and floor. In the experiments, we mark various positions on the

floor, which are considered as ground-truth. The tagged object (e.g., a book) is held by an

easel to be in the same horizontal plane as the two reader antennas. As discussed, the target of

localization is the center of the tag array. The same experiments are conducted using the ULA

tag array with identical hardware and environment setup to assess the strengths of the proposed

sparse tag array.
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(a) The computer lab setup. (b) The anechoic chamber setup.

Figure 5.9: The setup of two experimental scenarios for SparseTag performance evaluation.

5.4.2 Evaluation in Different Localization Scenarios

We conduct experiments in both the lab and anechoic chamber environments. In Fig. 5.10 and

Fig. 5.11, we plot the cumulative distribution function (CDF) of the DOA and location errors

obtained by SparseTag with a 5-tag sparse array. The median error of DOA estimation in the

anechoic chamber scenario is 1.125◦, while the median error in the computer lab scenario is

1.872◦. Fig. 5.10 also shows that the maximum error in an anechoic chamber is only 4.024◦.

The angle estimation accuracy is higher when the system is tested in the anechoic chamber

than the computer lab experiments, because the multipath effect is eliminated in the anechoic

chamber setup. Fig. 5.11 also shows that the location error in the anechoic chamber scenario is

smaller than that in the computer lab scenario. The median location error in the anechoic cham-

ber environment is 3.419 cm, and the median location error in the computer lab environment is

5.012 cm.

To validate the performance of SparseTag in an environment with stronger multipath ef-

fect, we place some chairs as obstacles in the LOS path between the tag array and the reader

antennas. The mean localization errors of all the three scenarios are plotted in Fig. 5.12, where

both the SparseTag errors and the ULA errors are provided. It is shown in the figure that, the

mean estimation error of the 5-tag SparseTag array in the rich multipath environment is 5.637

cm, while the mean error in the typical Computer Lab environment is 5.158 cm. For the 5-tag
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Figure 5.10: CDFs of DOA errors achieved by SparseTag with a 5-tag sparse array in the
computer lab and anechoic chamber scenarios.
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Figure 5.11: CDFs of localization errors achieved by the 5-tag SparseTag in the computer
laboratory and anechoic chamber scenarios.

ULA array, the errors in the same environments increase to 8.967 cm and 7.450 cm, respec-

tively. These results validate that the proposed spare array is more robust to the multipath effect

than the ULA array with the same number of tags.

5.4.3 Comparison with Baseline Scheme

To validate the strengths of the proposed sparse tag array, we conduct more experiments to com-

pare SparseTag with the traditional ULA plus MUSIC localization system [99, 107]. Fig. 5.13
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Figure 5.12: Mean localization errors achieved by the 5-tag ULA array and SparseTag array in
three different scenarios.

presents a comparison of SparseTag with ULA in the computer lab environment. The CDFs

of DOA errors obtained with a 5-tag ULA and a 5-tag SparseTag systems are plotted. We find

that the maximum estimated DOA error of ULA is 9.198◦, while the maximum DOA error of

SparseTag is 6.161◦. The median errors for ULA and SparseTag are 2.909◦ and 1.831◦, re-

spectively. In addition, 90% of SparseTag estimated DOA errors are below 5◦. We conclude

that SparseTag is more accurate for DOA estimation than ULA, because SparseTag achieves a

higher angle resolution than ULA. With the spatially smoothed matrix Rs in (5.24), the number

of estimated DOAs is more than that of ULA with the same number of tags, which means the

sparse tag array performs better in rich multipath environments than the ULA array.

Fig. 5.14 presents the CDFs of localization errors obtained with the 5-tag SparseTag and

5-tag ULA. The same localization estimation method is used with the two different tag arrays

in the same environment. We find that the median error of SparseTag is 4.985 cm, while the

median error of ULA is 7.611 cm. Usually an UHF passive tag is about 10 cm long. For in-

stance, the ALN-9740 tag used in our experiments is 98.2 mm × 12.3 mm. The SparseTag’s

median error is about half of the tag length; therefore it is sufficiently accurate for many prac-

tical applications. Fig. 5.14 also shows that the maximum error of SparseTag is 10.114 cm,
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Figure 5.13: CDFs of DOA errors achieved by a 5-tag SparseTag and a 5-tag ULA in the
computer lab experiment.
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Figure 5.14: CDFs of localization errors achieved by a 5-tag SparseTag and a 5-tag ULA in the
computer lab experiment.

which is much smaller than the ULA’s maximum error. Thus it is validated that SparseTag can

achieve a higher accuracy of localization than ULA.

We also compare the proposed system with an existing RFID tag array based localization

technique using a mobile antenna [100] in the same rich multipath environment where the

results in Fig. 5.12 are obtained. Rather than leveraging two antennas, a single mobile antenna

is utilized for positioning of 5-tag ULA array and the sparse array. The mean estimation errors

are presented in Fig. 5.15. As the figure shows, the ULA’s localization error decreases from
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Figure 5.15: Mean localization errors obtained by the 5-tag ULA array and the SparseTag array
with two stationary antennas and with a single mobile antenna.

8.967 cm to 5.666 cm, when the mobile antenna is leveraged in the system. This is because,

the mobile antenna can be considered as multiple virtual antennas, which help to mitigate the

multipath effect. However, for SparseTag, the improvement in accuracy brought about by the

use of the mobile antenna is not obvious. This experiment result indicates that the multipath

effect has already been effectively mitigated by using the proposed 5-tag sparse array, so use

of the mobile antenna does not further improve the localization accuracy. We thus conclude

that the proposed SparseTag system achieves high accuracy without using moving antennas,

making it easier to deploy and more adaptable.

5.4.4 Impact of System Design Factors

To further assess the proposed system, we conduct more experiments on the influence of several

design factors. Since directional antennas are used in our experiments, we also evaluate how

the relative angle of the directional antenna affects the estimation results. Fig. 5.16 shows the

estimation errors for different antenna angles, including -30◦, -15◦, 0◦, 15◦, and 30◦, where 0◦

means the antenna directly faces the tag array. From Fig. 5.16, we can see that the estimation

errors at different angles are all around 2◦, and the error does not increase as the angle of the
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Figure 5.16: Impact of the angle of the directional antenna.

antenna is changed. This experiment shows that the estimated DOA is not seriously affected

by the relative angle of the directional antenna.

We also examine the effect of the number of snapshots on DOA estimation. Recall that

each snapshot comprises samples from all the 50 channels and from each tag. Fig. 5.17 shows

that the DOA error obtained by one to 10 snapshots. It can be seen that when there are less

than three snapshots, the DOA error is about 3◦, while the error remains at about 2◦ with five

or more snapshots. This is because only one or two snapshots cannot effectively remove the

white noise in the RFID signals. If the number of snapshots is larger than nine, the effect of

noise can be mostly removed using a spatial smoothing based method. As a result, we choose

10 snapshots in our SparseTag system.

Fig. 5.18 illustrates the impact of the difference between the heights of the reader antennas

and the tag array. The height difference is represented by the angle between the horizontal plan

and the line connecting the antenna and the center tag, as illustrated in Fig. 5.19. When the

sparse tag array is not on the same horizon plane as the antennas, the DOA estimation error

will increase quickly. This is because SparseTag mainly focuses on 2D localization; when

the antennas are at a different height from the tag array, an additional phase offset will be

introduced. The phase offset is related to the height difference, and so the DOA error will

increase as the height difference becomes larger.
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Figure 5.17: Impact of the number of snapshots.
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Figure 5.18: Impact of the height difference between the tag array and the antennas, which is
represented by the angle as shown in Fig. 5.19.

Figure 5.19: The height difference between the tag array and the antennas is represented by the
angle between the horizontal plan and the line connecting the antenna and the center tag.
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Figure 5.20: Impact of different array types on DOA estimation error. The first and second
arrays are ULA with 3 and 5 tags, respectively, while the third and fourth arrays are sparse tag
arrays, with 5 tags at positions (0, d, 3d, 5d, 6d), and 7 tags at positions (0, d, 2d, 4d, 6d, 7d,
8d), respectively.

Fig. 5.20 presents the estimated DOA errors obtained using different types of arrays. In

our experiments, we evaluate the DOA estimation accuracy of 4 types of tag arrays. The first

and the second arrays are ULA with 3 and 5 tags, respectively, while the third and the fourth

arrays are sparse tag arrays, which consist of 5 tags at positions (0, d, 3d, 5d, 6d), and 7 tags

at positions (0, d, 2d, 4d, 6d, 7d, 8d), respectively. From Fig. 5.20, we can see that the angle

errors of ULA are both higher than 3◦, while both sparse tag arrays achieve lower errors about

2◦. This is because the sparse tag array achieves a higher angle resolution than ULA with the

same number of tags. Fig. 5.20 also shows that the errors of the 5-tag sparse array is close but

lower than that of the 7-tag sparse array. The 5-tag sparse array is sufficient to estimate DOA

accurately.

5.4.5 Evaluation of the Near-field Effect

According to the FCC regulation on transmit power, the distance between the reader antenna

and the tag array is usually not large. The tag array is placed within 3 m from the polarized

antennas in all our experiments. Otherwise, the tag array can hardly be detected by the reader

due to extremely weak RSS. The MUSIC algorithm is adopted for DOA estimation, which
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Figure 5.21: Illustrate the error introduced by the near-field measurements.

assumes the incident wave to the array is a plane wave. Such an assumption may not be rigorous

in near-field communications scenarios, and will cause extra estimation errors. Fig. 5.21 shows

an antenna and a simple 2-tag array, where the tags are placed d apart from each other. The

tag-to-reader distances are L1 and L2 for Tag 1 and Tag 2, respectively. Here αm is the DOA

to be estimated. If we assume the incident wave to Tag 1 and the wave to Tag 2 are along two

parallel lines (i.e., the plane wave assumption holds true), (L1−L2) can be consider as an edge

of the right angled triangle as shown in the figure. Thus αm can be easily computed as:

αm = arcsin

(
d

L1 − L2

)
, (5.32)

where (L1 − L2) can be estimated from the phase difference of the two tags. However, when

the two tags are close to the antenna, the two incident waves will not be parallel and the rela-

tionship (5.32) will not hold true, which leads to additional DOA errors.

To evaluate the influence of such near-field effect, we conduct two experiments to find out

the effective range of the SparseTag system. We first test the influence of the distance between

the tag array and the antennas. We estimate DOAs under different tag-to-reader distances,

ranging from 0.5 m to 2.5 m, and the results are presented in Fig. 5.22. We find that when the

distance is 0.5 m or lower, the DOA error will be higher than 3.6◦. When the distance is 1 m
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Figure 5.22: Impact of the distance between the tag array and the antennas.

or larger, the DOA error will be lower than 3◦. These results show that the influence of the

tag-to-antenna distance is not strong since in typical applications the tag array will placed more

than 1 m away from the antenna.

The second experiment examines the influence of different measuring angle on DOA error.

We place the tag array at a fixed distance (e.g., 2 m) from the reader, and estimate the DOA

from different relative antenna-tag array positions, where the ground truth DOA ranges from

−75◦ to 75◦. The estimation errors are presented in Fig. 5.23. We find that the DOA error is

lower than 3.5◦ when the tag array is place between−60◦ and 60◦. However, the error becomes

considerably large when the DOA is over 75◦. This is because when the angle is too large, the

polarized antenna can hardly collect phase values from all the channels and from each tag in

the array. From these two experiments, we conclude that the effective range of our proposed

system is from 0.5 m to 2.5 m and the effective range of estimated DOA should be between

-75◦ and 75◦.

5.5 Related Work

With the rapid development of Internet of Things, indoor localization attracts increasing atten-

tion in recent years. As an RFID-based indoor localization system, our work is closely related
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Figure 5.23: Impact of different ground truth DOA values.

Table 5.2: Features in Different RFID Tag Localization Techniques

Localization Technique Hardware Modification Tag Array Antenna Array Dynamic Tags or Antennas

LANDMARC No No Yes No
RF-IDraw No No Yes No
Tagoram No No No Yes
RFfind Yes No No No

SparseTag No Yes No No

to the RF based localization techniques in prior work. In this section we mainly focus on WiFi

based techniques and RFID based techniques.

WiFi signals are widely utilized for indoor localization because of its low-cost, wide cov-

erage, and ubiquitous deployment. Among various techniques, Angle of Arrival (AoA) is a

typical method to estimate the location of the transmitter [115], but the accurate AoA is hard

to estimate because of the multipath effect on the WiFi signal. To mitigate the multipath effect,

antenna array-based systems are proposed to estimate the angle of multiple incoming paths of

WiFi signal and distinguish the Line-of-sight (LoS) component [116, 117]. In addition, rather

than directly calculate the AoA of the LOS path, some prior works leverage machine learning

to estimate the position of the transmitter by learning the location features from collected chan-

nel state data. For example, Radar is a WiFi fingerprinting scheme using RSS [118]. Channel
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State Information (CSI) is regarded as fine-grained representation of the WiFi channel and can

achieve more accurate localization performance [7]. However, a well-trained neural network

is usually sensitive to changes in the environment, the network parameters need to be updated

once the testing environment is changed. Compared with these antenna array based systems,

our sparse tag array can achieve high resolution of angle estimation as well as having a low

cost.

The RFID technology has been regarded as an effective and low-cost solution for many

emerging IoT applications [25, 42, 54, 58, 157]. Although RFID-based systems are limited by

the short communication range, the multipath effect on RFID systems is usually much smaller

than that on WiFi systems. Thus, various RFID based localization schemes have been proposed

to achieve higher accuracy and convenient deployment than WiFi-based systems.

Existing works on RFID tag localization can be classified into received signal strength In-

dicator (RSSI)-based and phase-based methods. These works mainly focus on locating a single

tag, i.e., one tag is located at a time. For RSSI-based methods, a large number of reference tags

are deployed at known locations. By comparing the RSSI data with reference tags, the position

of the target tag can be determined [31]. In fact, RSSI values are raw channel information and

are not stable, due to the factors such as multipath propagation, tag’s orientation, RFID reader’s

transmit power, etc. RSSI based methods usually do not achieve high accuracy in indoor local-

ization. On the other hand, phase based methods have been developed for estimating distance

and direction of arrival (DOA) [33]. However, the measured phase is periodic, which leads to

phase ambiguity and makes it less useful. Moreover, considerable measured phase errors are

introduced by the reader antennas and the tag itself.

To address these issues, the synthetic aperture radar (SAR) technique is proposed for DOA

estimation by moving the reader antenna around [21]. The second solution is the hologram

technique, which computes the probability of each known position as the tag source within an

area of interest and then chooses the most likely position as the tag location [22, 34]. Another

solution is the hyperbolic-based method for distance estimation, which locates a static tag [35].

However, this solution does not achieve high localization accuracy due to limited number of

reader antennas. In addition, the RFind system achieves higher localization accuracy using a
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large virtual bandwidth to estimate time-of-flight, but it requires a special hardware [91]. The

features of different RFID tag localization techniques are further summarized in Table5.2.

5.6 Conclusions

In this paper, we investigated the problem of localizing an RFID tag array. The proposed sys-

tem was termed SparseTag, i.e., a sparse RFID tag array system for high accuracy backscatter

indoor localization. The SparseTag system comprised four key components: (i) sparse ar-

ray processing, (ii) difference co-array design, (iii) DOA estimation using a spatial smoothing

method, and (iv) a DOA-based localization method. We implemented the SparseTag system

using off-the-shelf RFID tags and reader, and assessed its performance with extensive exper-

iments in two settings. The experimental results validated the effectiveness and high location

accuracy of the proposed SparseTag system.
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Chapter 6

RFID-Pose: Vision-aided 3D Human Pose Estimation with RFID

6.1 Introduction

In recent years, human pose tracking becomes an important topic in computer vision, evolv-

ing from 2D [173] to 3D poses [174]. The accuracy of human pose tracking technique is

continuously improved by more advanced hardware and machine learning (i.e., deep learn-

ing) techniques. Camera-based techniques have been shown effective for human pose tracking.

However, such vision-based techniques also raise security and privacy concerns. It is usually

annoying if one is being watched by a video camera all day. It is reported that millions of wire-

less security cameras deployed around the world are at risk of being hacked [175]. The video

data used for pose tracking could be intercepted and illegally used by hackers. The privacy

issue draws increasing concerns in the age of Internet of Things (IoT), where eHealth based

on IoT is an important part. Many techniques have been proposed to improve the privacy and

reliability of the IoT [124–126].

With rapid development of machine learning, deep learning has been highly promising for

improving the safety and reliability of personal software and the IoT, which usually relies on

sufficient and high-quality data [127–129]. If the human pose data is obtained without using a

camera, people will no longer worry about their privacy being threatened. To address this issue,

several radio frequency (RF) sensing based schemes have been proposed for human pose esti-

mation, such as WiFi [131,178], Frequency-Modulated Continuous Wave (FMCW) radar [176],

and mmWave radar [177]. Unlike camera-based techniques, such RF sensing based schemes
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estimate the human joints from a confidence map constructed by RF signals, so the user’s pri-

vacy will be preserved. For example, channel state information (CSI) is utilized in WiFi based

systems [131], and the human pose can be estimated with a deep neural network such as a

convolutional neural network (CNN). However, due to the multipath effect, WiFi signals are

highly sensitive to interference (e.g., movements) in the surrounding environment. Although

FMCW radar is more robust to the environment interference than WiFi based systems, the cost

of the system is higher than commodity WiFi, which hinders its wide deployment.

To this end, radio frequency identification (RFID) provides a promising solution for human

pose estimation. Compared with the above contact-free RF sensing systems, RFID tags can be

used as wearable sensors because of their small size. The interference caused by the multipath

effect is much smaller in the RFID system. Furthermore, the cost of RFID systems is lower

than the advanced radar based systems such as the FMCW radar. However, because of the

low data rate in RFID systems, generating a joint confidence map for all joints, as in other RF

based systems, is highly challenging. Consequently, the existing RFID based pose tracking

systems are focused on monitoring the movements of one particular limb using the phase data

sampled from multiple tags [134, 135]. When multiple joints are moving simultaneously, the

performance could be affected by the disturbance of other RFID tags (e.g., the mutual coupling

effect) or the inter-tag collisions. Thus, tracking the entire body with RFID tags is still a

challenging and open problem.

In this paper, we address the challenges in human pose estimation using RFID tags with

a novel vision-aided, deep learning solution. We propose the RFID-Pose system for tracking

the movements of multiple human limbs in realtime. In the proposed system, RFID tags are

attached to the target human joints. The movement of the tags are captured by the phase varia-

tions in the responses from each tag. We propose a vision-aided solution to help the proposed

deep learning model to learn the features of tag phase variations, rather than localizing these

tags with traditional tag localization techniques [57]. The collected RFID phase data is firstly

preprocessed to improve the quality of the raw sampled data, in particular, to mitigate the phase

distortion and estimate the large amount of missing samples. Then, we leverage a deep kine-

matic neural network to learn the features of RFID phase data, where a Kinect 2.0 is used to
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obtain the ground truth (i.e., labeled data for training). With the assistance of vision data, the

deep learning model transforms the phase variation into the spatial rotation angle of each hu-

man joint. Since the spatial rotation angle estimation does not require generating a confidence

map, the low data rate limitation of RFID systems is no longer an issue. In realtime estimation,

human pose is reconstructed by estimated rotation angles from RFID data and the initial human

skeleton. The vision data will not be needed anymore in this stage, and so the user’s privacy

can be well protected.

The main contributions of this paper are summarized as follows.

• To the best of our knowledge, this is the first work for 3D human pose estimation using

commodity RFID reader and tags, which can effectively monitor multiple human joints

simultaneously in realtime.

• We propose a novel data preprocessing approach to mitigate the severe RFID phase dis-

tortion and compensate the large amount of missing data in sampled raw RFID data. The

tensor completion technique is utilized for data imputation, so that phase data for all

RFID tags can be estimated. The greatly improved data quality leads to more effective

learning for human pose estimation.

• We propose a vision-aided solution for training the proposed deep kinematic neural net-

work, to transform sensed RFID phase variations to the spatial rotation of each limb. The

proposed approach effectively addresses the challenges of the low data rate in RFID sys-

tems, because rotation angle estimation requires much less data than generating a joint

confidence map.

• We develop a prototype system with commodity RFID devices and Kinect 2.0, to evaluate

the system performance. Our experimental study validates that the proposed RFID-Pose

system can effectively track the human pose with different types of motions in realtime.

In the following, we review related work in Section 6.2 and present the RFID-Pose system

overview in Section 6.3. The challenges and solutions to RFID data preprocessing are presented

in Section 6.4. The challenges and solutions to RFID based pose estimation are analyzed and
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introduced in Section 6.5. We present our prototype system evaluation in Section 6.6 and

conclude this paper in Section 6.7.

6.2 Related Work

This work is closely related to prior works on RFID based sensing [10] and human pose esti-

mation [186]. We mainly focus on these two classes of systems in the following.

Recently, passive RFID tags have attracted great interest because of their easy deployment

and low-cost features [179]. The Low Level Reader Protocol used by the Reader can provide

useful low-level information such as received signal strength indicator (RSSI), phase, Doppler

frequency shift, timestamp, etc. [38]. As a result, many RFID-based sensing techniques have

been developed for many applications, such as indoor localization [21,22,34,57,91], vital sign

monitoring [8, 27, 58, 88, 89, 138, 139], user authentication [68], material identification [69],

object orientation estimation [23], vibration sensing [70], anomaly detection [71], temperature

sensing [52], and drone localization and navigation [53, 54, 90]. Particularly, the RF-wear

system [135] and RF-Kinect system [134] utilize RFID tags attached to the human joints to

estimate the movement of a particular limb, such as front arms, front legs, and thighs [134,135].

We adopt the same approach in RFID-Pose. However, these systems may not be suitable for

realtime human pose estimation, especially when multiple moving joints need to be tracked

simultaneously. These RFID based sensing systems inspire us to develop an RFID based pose

estimation system.

Prior works on human pose estimation are mainly based on computer vision techniques [186,

187]. For human pose estimation using video data, deep learning based method has been shown

effective for 2D human pose with conventional RGB cameras [173, 188], and 3D human pose

with RGB-Depth cameras [189] and VICON systems [190]. These camera-based techniques

can achieve high accuracy, but all require sufficient lighting condition and may raise privacy

concerns.

These limitations motivate the development of RF based pose estimation techniques, be-

cause detecting RF signals do not require any lighting [191]. Moreover, since no video is used

in the RF systems, the privacy issues are effectively addressed. However, collecting labeled
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pose data from RF signals is very challenging. Therefore, several RF based techniques lever-

age vision data as labeled pose data to train the deep learning network. This approach is also

taken in the proposed RFID-Pose system. For example, RFPose is the first work to use RF

signals with an FMCW radar for 2D human pose estimation, where a teacher-student deep

learning model is utilized [176]. RFPose3D is the later version for 3D human pose estimation

with FMCW radar [191]. Moreover, mmwave Radar is also utilized for human pose estimation

with deep learning [177]. Recently, WiFi CSI has been exploited to create 2D skeletions [178]

and 3D human poses [131] using cross-modal deep learning techniques. However, Radar and

WiFi based human pose estimation are easily influenced by the environment noise and interfer-

ence, and the FMCW radar technique is limited by the relatively higher cost (e.g., implemented

with Universal Software Radio Peripherals (USRP)).

The proposed RFID-Pose system, to the best of our knowledge, is the first to apply RFID

based sensing for 3D human pose estimation. The proposed system consists of a novel and

effective solutions for cross-modal 3D human pose estimation using RFID and computer vision,

which is much more robust compared with WiFi and Radar based methods.

6.3 RFID-Pose System Overview

In this paper, we propose an RFID based sensing system, termed RFID-Pose, to estimate and

track 3D human pose in realtime. The RFID-Pose system can sense the 3D positions of all

the RFID tags attached to the human body by exploiting the phase data collected at the reader

antennas. The training process of the system is supervised by the labeled vision data collected

by a Kinect2.0 device, but only RFID data will be required for online human skeleton estima-

tion. Human pose can be effectively constructed by mapping the positions of the attached RFID

tags into 3D coordinates. The overview of the RFID-Pose system architecture is presented in

Fig. 6.1, which is mainly composed of four components, including (i) RFID phase data col-

lection, (ii) Kinect skeleton data collection, (iii) RFID data preprocessing, and (iv) Skeleton

reconstruction using a deep kinematic neural network.
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Figure 6.1: Overview of the RFID-Pose system architecture.

6.3.1 RFID Phase and Kinect Pose Data Collection

In the proposed system, training data is sampled by both the RFID antennas and the Kinect

2.0 device simultaneously. The collected RFID data will be used as the input to the deep

kinematic neural network, and the Kinect 3D pose data will be used as labeled data for the

supervised training. To collect RFID data, we attach passive RFID tags on the 12 joints of the

human body. Three reader antennas are used to collect the phase and timestamp data from all

the attached RFID tags. Kinect 2.0 is a depth camera widely used for capturing 3D poses in

interactive video games. The 3D position of each human joint is estimated by both the RGB

camera and the infrared sensors, and all measured joint positions are stored as 3D coordinates.

6.3.2 RFID Data Preprocessing

Since the sampled RFID raw phase data suffers from considerable distortion caused by chan-

nel hopping and phase wrapping, the RFID phase calibration must be applied to cleanse the

data before using it to train the deep neural network. We first calibrate the phase variation

to mitigate the influence of channel hopping and phase wrapping. Next, we downsample the

calibrated RFID data and synchronize it with the 3D pose time sequence obtained by Kinect.

However, because of the slotted ALOHA-like transmission in the RFID system, tags are not

evenly interrogated by the antennas. In order to synchronize the RFID data with the collected
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pose data from Kinect, we should obtain the phase for all tags corresponding to each Kinect

data frame. To this end, we propose to employ low rank tensor completion to estimate the

missing phase values from the tags. Finally, the calibrated phase data is used as input to train

the deep neural network for human skeleton reconstruction.

6.3.3 Human Skeleton Reconstruction with a Deep Kinematic Neural Network

In RFID-Pose, we incorporate the deep kinematic neural network to learn the features of the

RFID phase data. Unlike monitoring one particular limb movement as in traditional RFID

based skeleton tracking systems [134, 135], the deep kinematic neural network is designed to

simultaneously estimate the spatial rotation of all human joints relative to their parent joints.

Once the initial human skeleton (i.e., the length of the limbs of target) is given, the network

could effectively learn the features of calibrated RFID tensor data, and reconstruct the positions

of human joints with estimated rotation angles. In RFID-Pose, the Kinect pose data is only

used as benchmark for evaluating the accuracy of 3D pose reconstruction in the online testing

process.

6.4 Challenges and Solutions: RFID Phase Distortion Mitigation and Data Imputation

The proposed RFID-Pose system reconstructs 3D human pose from RFID phase data with a

deep kinematic neural network. However, the raw RFID phase data cannot be directly used for

training and testing. The raw phase dataset from one of the tags sampled by a reader antenna

in 500 time slots is plotted as diamond in Fig. 6.2. The figure shows that the collected RFID

phase data is severely interfered during transmission by channel hopping and phase wrapping.

Furthermore, there are many samples with a 0 value, which means the tag is not successfully

sampled in the time slot. This is due to the Slotted ALOHA transmission in RFID systems; only

one tag is allowed to respond to the reader’s query in each time slot. Such sparse, low quality

RFID data makes the RFID based 3D pose tracking highly challenging unless an appropriate

data preprocessing is conducted.

Therefore, we propose the following RFID data preprocessing for the sampled RFID phase

data, as illustrated in Fig. 6.3. In the preprocessing procedure, we first calibrate the overall
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Figure 6.2: Raw phase sampled from one of the RFID tags by a single Reader antenna.

Figure 6.3: Flow chart of RFID data preprocessing.

phase interference in the raw data and then synchronize the RFID phase data with the collected

Kinect data (used as labels for training) Next, the RFID data is used to construct a 3rd-order

tensor, where the element at location (x, y, z) is the data collected from antenna x in time slot

y from RFID tag z. We leverage High Accuracy Low Rank Tensor Completion (HaLRTC) to

recover the missing samples and form the input data tensor, which is fed into the deep kinematic

neural network for training and inference. More details are provided in the following.

155



6.4.1 Combating Collected Phase Interference

Frequency Hopping Offset Mitigation

In the proposed system, we leverage an RFID reader to extract the phase data from received

RFID tag responses using the Low Level Reader Protocol, which is indicative of the tag-to-

antenna distance [38]. The phase value is obtained when the RFID reader receives the Elec-

tronic Product Code (EPC) from the interrogated tag. The sampled phase value can be written

as:

Φ = mod
(
4πSf

c
+ Φtag + Φa, 2π

)
, (6.1)

where S denotes the distance between the interrogated tag and the reader antenna; and Φtag

and Φa represent the phase offset caused by the circuits in the RFID tag and the reader antenna,

respectively; f is the center frequency of the channel; and c is the speed of light. The equation

shows that the phase value is indicative of the variation of the tag-to-antenna distance S, but it

is also affected by the phase offset caused by the tag Φtag and the antenna Φa.

According to the FCC regulations, the Ultra-High Frequency (UHF) RFID system should

hop among 50 channels during operation to avoid collisions among multiple RFID readers.

In (6.1), the sum phase offset Φα = Φtag,α + Φa,α is determined by both the hardware and the

current frequency fα used for the interrogation. So a considerable phase offset will be generated

each time when the system hops to a new channel. As shown in Fig. 6.2, the severe phase offset

is caused by channel hopping, which leads to considerable interference in the collected phase

data. To mitigate the interference, we first rewrite the sampled phase in (6.1) from each channel

α as:

Φ = mod
(
4πSfα

c
+ Φα, 2π

)
, α = 1, 2, ..., 50, (6.2)

where α is the RFID channel index ranging from 1 to 50. The equation shows that the channel

hopping offset is a constant value for each particular channel, which can be canceled by sub-

tracting two phase samples on the same channel. Thus, rather than using the RFID phase data,
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we calculate the RFID phase variation on the same channel to mitigate the interference caused

by the channel hopping offset.

The phase variation is calculated by subtracting a sampled phase data from the previous

one on the same channel α, as:

ϕ = mod
(
4π(Sn − Sn−1)fα

c
, 2π

)
, α = 1, 2, ..., 50, n = 2, 3, ..., (6.3)

where Sn represents the tag-to-antenna distance for the nth sampled data on the current channel.

It can be seen that the phase variation in (6.3) is not affected by the phase offset anymore.

Since (Sn − Sn−1) is the change of distance relative to the previous sample, phase variation is

also suitable for tracking the movement of RFID tags. Therefore, to mitigate the interference

caused by the frequency hopping offset, the input RFID data to the deep kinematic network is

composed of the phase variation calculated for each RFID channel.

Phase Data Unwrapping

After calculating the phase variation for each channel, the phase distortion caused by channel

hopping will be effectively mitigated. However, as shown in Fig. 6.2, since the sampled phase

is wrapped in [0, 2π] rad, the wrapped phase data also leads to severe interference in calculated

phase variation. For example, if the phase changes from 0.1 rad to −0.1 rad, calculated phase

variation will be 2π − 0.2 rad, but the real phase variation is only −0.2 rad. To avoid the

influence of phase wrapping, we apply a simple algorithm to unwrap the phase variation.

Considering that the frequency range of the reader antenna is 902MHz–928MHz with a

wavelength about 33cm, we assume that all the tag position variations between two adjacent

samples is smaller than 16.5cm (half of the weave length), which is reasonable given the 110Hz

sampling rate. Thus, we calibrate the calculated phase variation when its absolute value is larger

than π as follows:

ϕ′ = ϕ− 2π
ϕ

|ϕ|
, if |ϕ| > π. (6.4)
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Figure 6.4: Calibrated phase variation data from one of the RFID tags (the raw data is plotted
in Fig. 6.2).

In (6.4), ϕ/|ϕ| returns the sign of ϕ. Then depending on whether the phase variation is positive

or negative, a −2π or a 2π offset is added to ϕ. The calibrated phase variation, for the raw

phase data shown in Fig. 6.2, is presented as diamonds in Fig. 6.4. We can see that, the channel

hopping offset is eliminated in the calibrated data, as well as the phase distortion caused by

phase wrapping. Notice that there are still missing data samples, which should be addressed.

Otherwise, the input data still contains too many empty units (i.e., it is still highly sparse).

6.4.2 RFID Data Imputation

Following FCC regulations, the communications between the RFID reader and tags are based

on Slotted ALOHA. It means the back propagation data of all the tags are received randomly,

and only one tag can respond to the reader in each time slot (i.e., only one phase sample can

be collected from one of the tags at a time). In RFID-Pose, we employ a commodity RFID

reader with three antennas to scan the 12 tags attached to the human joints. The sampling rate

for each tag is thus very low. From the calibrated phase variation data in Fig. 6.4, we can see

that this antenna only collects 38 samples for that tag in 500 time slots, while ideally we expect

500 samples. This means more than 90% of the data are missing for this tag. Learning features
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from such sparse datasets is highly challenging, and we should estimate the missing samples

for more effective learning.

Downsampling and Synchronization

With Np antennas and Nq tags, we can create a Np × Nq phase variation matrix for all the

tags and antennas and extend it into an order-3 tensor structure for various time slots. The data

tensor for Np antennas, Nq tags, and Nt time slots is constructed as:

ψ(:, :, q) =



ϕ1
q1 ϕ1

q2 . . . ϕ1
qNt

ϕ2
q1 ϕ2

q2 . . . ϕ2
qNt

...
...

...
...

ϕ
Np

q1 ϕ
Np

q2 . . . ϕ
Np

qNt


, q = 1, 2, ..., Nq.

In the data tensor, ϕp
qt represents the calibrated phase variation data from tag q sampled by

antenna p in time slot t. Note that only one phase variation can be sampled in eachψ(:, t, :). So

only up to Nt samples are non-empty in this Np ×Nt ×Nq tensor, i.e., it is highly sparse. The

RFID-Pose system utilizes 12 tags and 3 antennas. Thus the sparsity of the data tensor is as high

as 97.22%, which leads to poor learning performance. However, such highly sparse tensors are

very hard to be accurately completed with traditional compressed sensing techniques.

Fortunately, since the frame rate of the Kinect data is 30 fps, we can compress the RFID

data in multiple adjacent time slots to match the corresponding, single Kinect data frame. Fur-

thermore, since the requirement on the frame rate is not very high for human pose tracking

(which mostly involve slow body movements), we can further downsample the Kinect data so

that more slices in the sparse tensor can be grouped into one. If we compress tensor ψ into Ψ

with ratio ξ, the new tensor after synchronization could be denoted as:

Ψ(:, :, q) =



ϕ̄1
q1 ϕ̄1

q2 . . . ϕ̄1
qNT

ϕ̄2
q1 ϕ̄2

q2 . . . ϕ̄2
qNT

...
...

...
...

ϕ̄
Np

q1 ϕ̄
Np

q2 . . . ϕ̄
Np

qNT


, q = 1, 2, ..., Nq,
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where NT is the number of synchronized time slots for RFID data, which is the same as the

number of downsampled Kinect data units. As the equation shows, for each unit Ψ(np, nt, q)

in the tensor, the first coordinate np represents the index of the sampling antenna, the second

coordinate nt indicates the index of the time slot, and the third coordinate q is the index of the

attached RFID tag. The tensor structure is also illustrated in the right-hand-side of Fig. 7.2.

In addition, ϕ̄p
q,T is the mean phase variation from tag q sampled by antenna p in synchronized

time slot T , which is calculated for the ξ adjacent values in ψ as:

ϕ̄p
qT =

1

ξ

T+ξ−1∑
t=T

ϕp
qt. (6.5)

After the downsampling process, the sampling period is also multiplied by ξ. Since phase

variation represents the velocity of the overall phase changes, the mean value calculation still

keeps the phase variation velocity unchanged. With downsampling and synchronization, the

sparsity of the RFID data will be greatly reduced, as illustrated in Fig. 6.5, which is obtained

with ξ = 50 from the calibrated phase variation data shown in Fig. 6.4. As the figure shows,

there are now 38 valid data units in 70 time slots. Compared to the original data in Fig. 6.4,

the sparsity is effectively reduced. However, there are still intervals of time with no effective

sampled data, which will be addressed next.

High Accuracy Low Rank Tensor Completion (HaLRTC)

The commodity RFID reader used in RFID-Pose has three antennas. To accurately learn the

RFID phase variation features, all tags should be sampled by all antennas in each time slot in

the ideal case. However, the phase variations collected from different antennas could be treated

as different samples from the same signal source (i.e., tag movement). Since the number of

signal sources equals to the number attached RFID tags, the sparse tensor Ψ can be considered

as a low-rank tensor, which can be recovered by low-rank tensor completion. This task is

accomplished by solving the following optimization problem [168]:

min
Ψ̂
∥Ψ̂ s.t.:Ω ∗ Ψ̂ = Ω ∗Ψ, (6.6)
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Figure 6.5: Downsampled and synchronized RFID phase variation from one RFID tag with
ξ = 50.

where Ψ̂ is an estimation of the ideal tensor data Ψideal, which is composed of all the ideal

phase variation data; and Ω is a tensor of 0 and 1 elements, where ΩIJK = 1 when ΨIJK is

sampled, and ΩIJK = 0 otherwise. In (6.6), ∥·∥∗ denotes the trace norm of tensors.

During the optimization procedure, the trace norm of the 3rd-order tensor Ψ is calculated

with the combination of its unfolded matrix in different modes. The optimization problem is

represented as [168]:

min
Ψ̂,M i

3∑
i=1

hi||M i(i)||∗ (6.7)

s.t.: Ω ∗ Ψ̂ = Ω ∗Ψ,

Ψ̂ =M i, i = 1, 2, 3,

where hi’s are constants satisfying
∑3

i=1 hi = 1, M i is a tensor with the same size as Ψ̂, and

M i(i) is the matrix unfolded from tensor M i in mode i. The equation shows that the trace

norm of a tensor is a convex combination of norms for all matrices unfolded along each mode.

In HaLRTC, the optimization problem (6.7) is solved with the Augmented Lagrange Multiplier
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Method (ADMM) [146] with the augmented Lagrangian function defined as:

Lρ(Ψ̂,M i,Y i) =
3∑

i=1

hi||M i(i)||∗ +
〈
Ψ̂−M i,Y i

〉
+

ρ

2
||M i − Ψ̂||2F ,

where ⟨·, ·⟩ represents the inner product of two tensors and || · ||F is the Frobenius norm of

the tensor; Y i is a zero tensor with the same size as Ψ̂, and ρ > 0 is the penalty factor in the

algorithm. In our system we set ρ = 1e−4. Rather than iterate recursively to optimize the target

tensor Ψ̂. ADMM literately updates multiple variables, i.e.,M i, Ψ̂, and Y i as follows.

(i) M ′
i = (M i) : Lρ(Ψ̂,M i,Y i)

(ii) Ψ̂′ = (Ψ̂) : Lρ(Ψ̂,M ′
i,Y i)

(iii) Y ′
i = Y i − ρ(M ′

i − Ψ̂′).

These functions converge when the update between two adjacent iteration is sufficiently

small. Thus, the update threshold is set to determine whether Ψ̂ is successfully estimated or

not. To balance the data imputation performance and the convergence rate of the algorithm,

we set the convergence threshold to 1e−6 to make sure the data is effectively recovered with

an acceptable convergence rate. Compared with other low-rank tensor completion algorithms,

HaLRTC can solve the optimization problem (4.7) more accurately with a lower complexity.

The entire tensor completion process in our system only takes less than 0.1 second to execute

because the downsampling reduces the input tensor size. As illustrated in Fig. 6.6, all the

missing data can be effectively estimated by HaLRTC. So the reconstructed tensor Ψ̂ can be

used by the deep learning model for 3D human pose estimation.

To evaluate the performance of the HaLRTC algorithm, we compare compare it with a

conventional interpolation method, i.e., the bilinear interpolation technique. Fig. 6.7 shows one

slice of phase variation data in tensor Ψ̂, which represents the synchronized phase variation

data for all tags sampled by one antenna. As the figure shows, there are still many samples of

value 0, indicating that most data are still missing after downsampling, especially for tags 6,

10, 11, and 12. Both HaLRTC and bilinear interpolation techniques are used to interpolate the
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Figure 6.6: The missing data are estimated by HaLRTC.

Figure 6.7: Sparse RFID phase variation matrix collected from one antenna.

miss samples, and the results are presented in Figs. 6.8 and 6.9, respectively. From Figs. 6.8

and 6.9, it can be seen that the phase variation data estimated by tensor completion shows

high consistency among all tags, while sharp variations are generated by bilinear interpolation.

Especially for the tags with high sparsity, e.g., tags 11 and 12, significant distortions have been

introduced by bilinear interpolation, which will cause considerable skeleton estimation errors.

The superior performance of tensor completion in data imputation is mainly because the

data is not evenly sampled in the RFID system. The sampled data from different tags usually

163



Figure 6.8: Phase variation matrix completed by HaLRTC.

Figure 6.9: Phase variation matrix completed by the bilinear interpolation method.

have highly different sparsity (e.g., tag 1 versus tag 11 or 12 in Fig. 6.7). The traditional

interpolation method is not suitable for this significant uneven sparsity situation. However,

by solving the optimization problem (4.7), the missing samples can be interpolated based on

the low rank components of the tensor data, which indicates the movement of the subject. In

addition, the tensor completion process in our system only takes less than 0.1 second to execute

because the downsampling has reduced the input tensor size. Thus, HaLRTC is a well-suited

method for phase variation data imputation in RFID-Pose.
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6.5 Challenges and Solutions: Human Pose Reconstruction with RFID Data

6.5.1 Challenges in RFID-based Human Pose Tracking

Tracking multiple joints of a human subject simultaneously with RFID tags is highly chal-

lenging, because the data rate of RFID systems is extremely low comparing to other wireless

systems. According to the RFID Gen2 protocol, the medium access control (MAC) in RFID

system follows the Slotted ALOHA protocol, which means only one tag can respond to the

reader in each time slot. Such a transmission scheme makes the data rate of RFID much lower

than other sensing systems such as video camera [173], WiFi [178], and FMCW radar [176]. In

these RF-based skeleton tracking system, the human skeleton is extracted from the confidence

map of the target joints, which is usually generated by a neural network. The RFID system’s

sampling rate is about 110Hz for each antenna. In order to generate a 100 × 100 confidence

map to localize the joint positions at a rate of 5 fps(frames/second), only 22 phase data samples

can be obtained for each frame. Recovering a map with 10000 data samples with only 22 phase

data samples is a severely ill-posed problem, which is extremely challenging to solve even with

advanced deep learning techniques.

The above ill-posed problem implies that the confidence map method may not be suitable

to estimate the 3D pose of the human body. Consequently, the existing RFID based techniques

mostly focus on estimating the movement of a particular limb movement, such as the front arm,

the front leg, and thighs [134, 135]. Although, theoretically, the entire body movement could

be reconstructed by combing all the limb movements, these systems may not be effective for

realtime human pose estimation, especially when multiple moving joints need to be tracked

simultaneously.

In RF-wear [135], two RFID tag arrays are attached to the two adjacent limbs of the

subject, which are then used to estimate the rotation angle of human limbs with good accuracy.

However, when tracking multiple limbs simultaneously, every limb should be attached with

an RFID array. In this scenario, there will be a large number of tags to be interrogated by

the RFID reader. The severe mutual coupling effect and considerable inter-tag collisions will

cause a lot of missing samples and some tags may even be hardly sampled by the reader.
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Similarly, in the RF-Kinect system [134], the rotation angle of one particular limb is estimated

by the RF hologram technique [22]. Unfortunately, since the angle estimation is based on the

probability distribution map built on the phase value of all attached tags, the accuracy of angle

estimation could be affected when multiple tags are moving together. Moreover, the generation

of the probability distribution map for each joint requires phase measurements for all possible

rotation angles, which entail heavy calibration work.

Studying existing RFID based pose tracking systems, we found that, although generating

the skeleton confidence map is challenging, the rotation angles of all human limbs could be

relatively easily estimated from the scarce RFID data. This is because, when the limb’s length is

known, the system only needs to generate three angle values to reconstruct the particular limb’s

movement. That is, only 3n angle values need to be estimated when tracking n joints, which

is considerably less than the number of samples required for confidence map generation, and

is highly suited for RFID based sensing systems with constrained sampling rates. Accordingly,

our goal is to estimate the rotation angle of each limb and leverage the forward kinematic

technique to reconstruct the human skeleton with the estimated rotation angles.

6.5.2 Forward Kinematics

The technique to generate human 3D pose from limb rotation angles is Forward Kinematics,

which is widely used in robotics and 3D animation [193]. An example of forward kinematic

is shown in Fig. 6.10. The left-hand-side figure shows a human skeleton with a “T” pose, and

the 12 joints with marked numbers are the target joints to track in our RFID-pose system. In

forward kinematics, the 3D position of a joint is generated by (i) the rotation angle of the limb

connecting the two joints; and (ii) the length of the limb, (iii) the position of its parent joint,

which is defined as the rotation anchor. For example, in Fig. 6.10, the subject puts down his/her

arms. Then joints 8, 9, 11, and 12 all move downward. Since joint 7 (i.e., the left shoulder)

is the rotation anchor of the left upper arm, it is considered as the parent joint of joint 8 (i.e.,

the left elbow). The position of joint 8 can be calculated with the length of the upper arm

and the 3D rotation angle. Similarly, the locations of joints 9, 11, and 12 can be estimated

from their corresponding parent joints 8, 10, and 11, and the 3D rotation angles, respectively.
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Figure 6.10: Example of limb rotation in the human skeleton.

Accordingly, once the initial skeleton is given (i.e., the original locations of all joints and the

lengths of all limbs), each joint can be localized recursively based on the position of its parent

joint and rotation angles.

The recursive rotation for the nth joint in time slot T can be expressed as:

P⃗ T
n = P⃗ T

parent(n) +RT
n P⃗

0
relative(n), (6.8)

where P⃗ T
n represents the position of joint n of time slot T , P⃗ T

parent(n) denotes the position of joint

n’s parent joint, RT
n ∈ SO(3) represents the corresponding rotation matrix (SO(3) denotes the

3D rotation group), and P⃗ 0
relative(n) is the 3D offset of joint n relative to its parent joint, given

by:

P⃗ 0
relative(n) = P⃗ 0

n − P⃗ 0
parent(n), (6.9)

where P⃗ 0
n and P⃗ 0

parent(n) represent the positions of joint n and its parent joint in the initial

3D skeleton, respectively. From (6.8), we can see that, with the initial skeleton data, all joint

positions can be calculated by the corresponding rotation matrix RT
n .

According to Euler’s rotation theorem, a 3D rotation can be represented as a unit quater-

nion in the system with format:

ℓ+ xi+ yj + zk. (6.10)
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In the unit quaternion ℓ, x, y, and z are real numbers, and i, j, and k are quaternion units.

Given a 3D position vector represented as ai+ bj + ck and a 3D rotation with unit quaternion

rℓ + rxi+ ryj + rzk. The rotation matrix R is derived as:

R = (6.11)
1− 2(ry

2 + rz
2) 2(rxry + rzrℓ) 2(rxrz − ryrℓ)

2(rxry − rzrℓ) 1− 2(rx
2 + rz

2) 2(ryrz + rxrℓ)

2(rxrz + ryrℓ) 2(ryrz − rxrℓ) 1− 2(rx
2 + ry

2)

 .

The new position vector, after the 3D rotation, can be calculated as


a′

b′

c′

 = R


a

b

c

 . (6.12)

The rotation matrix R is used in the Forward Kinematic (FK) layer of the learning model

in the RFID-Pose system, which is to reconstruct the human 3D pose with the initial skeleton

and the corresponding spatial rotations.

6.5.3 Deep Kinematic Neural Network

To reconstruct 3D human pose, we leverage a deep kinematic neural network to learn the

features of RFID phase variation collected when the subject is moving. The structure of the

learning model is illustrated in Fig. 6.11. The offline training goal is to learn the relationship

between the RFID phase variation and the rotation of the human limbs. The 3D pose ground

truth obtained from Kinect is in the form of 3D coordinates for the human joints. The initial

target skeleton is required for each training dataset to transform the estimated rotation angle to

the 3D positions through forward kinematic.

As Fig. 6.11 shows, the deep kinematic neural network is mainly composed of two parts,

i.e., the Recurrent Autoencoder and the forward kinematic layer. The Recurrent Neural Net-

work (RNN) is suitable for learning the features of phase variation sampled in a time sequence,
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Figure 6.11: The deep kinematic neural network incorporated in RFID-Pose.

while the Autoencoder is a simple but effective learning model to extract the features of RFID

phase data [58, 138]. The input training data is the RFID phase variation sequence and the 3D

pose data sequence, which are synchronized after data preprocessing (see the previous section).

The Recurrent Autoencoder consists of two key parts, an encoder and a decoder. In each

time slot, the features in the input RFID phase data is firstly extracted by the Recurrent Encoder

and stored in the hidden layers, which consist of 256 gated recurrent units (GRU). Because

of the recurrent structure, the hidden layer outputs in the previous time slot are also fed to

the following Encoder. Thus, the Recurrent encoder can extract feature of the RFID phase

data from both the current time slot and previous time slots. Then the Recurrent Decoder is

leveraged to transfer the extracted feature stored in the Encoder hidden layer to 3D rotation

data. Since the limb length data is required for the 3D rotation estimation from extracted RFID

feature, the initial human skeleton should be added as another input to the Decoder. Moreover,

the recurrent structure also feeds the previous hidden layer outputs to the current Decoder for

learning the features in the output data sequence. The unit quaternion QT for each joint is

obtained by normalizing the Recurrent Decoder output.

Next, with the initial skeleton and QT , the forward kinematic layer leverages the rotation

matrix R to generate 3D coordinates for the subject, which are in the same format as the Kinect
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ground truth data. With the error calculated between the estimated pose and the ground truth,

the weights in the Recurrent Autoencoder will be trained by using error backpropagation.

6.6 Implementation and Evaluation

6.6.1 System Implementation

To evaluate the performance of the RFID-pose system, we develop a prototype system with

an off-the-shelf Impinj R420 reader equipped with three S9028PCR polarized antennas. The

RFID tags used for tracking human joint movements are ALN-9634 (HIGG-3). The vision data

used for training supervision and test accuracy evaluation is collected with an Xbox Kinect 2.0

device. The sampling rate of the RFID phase data is around 110 Hz, and the frame rate of

the Kinect 2.0 is 30 fps. All data is downsampled to 7.5 Hz after preprocessing and synchro-

nization. The length of the RFID input tensor NT is set to 30 during the experiments, which

represents 4 seconds motion data.

The setup of the system is illustrated in Fig. 6.12. As the figure shows, we attach RFID

tags to the 12 joints of the human body, which are the pelvis, neck, left hip, left knee, right

hip, right knee, left shoulder, left elbow, left wrist, right shoulder, right elbow, and right wrist.

To each joint, one passive RFID tag is attached to monitor the joint movement. The head and

feet are omitted in our prototype system because of the limited scanning range of the RFID

antenna used. The antennas are placed at different altitude positions to ensure that the antennas

can interrogate all the tags. If we want to scan all the joints from head to feet, more antennas

should be used in the system. However, the pose with the 12 joints is sufficient to monitor

human behavior in most cases.

An MSI laptop with a Nvidia GTX 1080 GPU and an Intel Core i7-6820HK CPU is used

as the processor for data training and signal processing. The frequency used by the prototype

system hops among 50 channels from 902 MHz to 928 MHz, and it remains on a channel for

0.2 second.
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Figure 6.12: Illustration of the system setup for 3D pose estimation.

6.6.2 Performance Evaluation and Results

Overall Accuracy for Different Motions

We train the proposed deep kinematic neural network with different types of motions. The first

type of motions is simple motion, which is only involved with the movement of a single-limb.

The second type of motions is complicated motion, which is composed of movements of the

entire body, such as body twisting, deep squat, boxing, and walking. Two examples of the

motions are illustrated in Fig. 6.13. The left-hand-side figure shows a subject simply standing

still, and the right-hand-side figure shows the subject is walking. The estimation results for

these two examples are presented in Figs. 6.14 and 6.15, respectively, where the estimated pose

is marked with red lines, and the Kinect obtained ground truth is marked with blue lines. We

also present the estimation results for other complicated motions, including squat, twisting,

and kicking, in Figs. 6.16, 6.17, and 6.18, respectively. From these figures, we can see that the

estimated poses are all highly close to the ground truth collected by Kinect. These example

results show that the RFID-Pose system can adequately estimate the 3D human pose whether

the subject is moving or not.

The overall accuracy of human pose estimation is presented in the form of cumulative

distribution function (CDF) of estimation errors in Fig. 6.19. The mean error of all the 12

joints for each time slot T is calculated as follows.

ϵ(T ) =
1

12

12∑
n=1

||P̂ T
n − Ṗ T

n ||, (6.13)
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Figure 6.13: Illustration of two example poses: (Left) standing still; (right) Walking.

Figure 6.14: Pose estimation when the subject is standing still.

where P̂ T
n denotes the estimated position and Ṗ T

n is the ground truth position collected by the

Kinect in the 3D space for joint n at time T ; and ||P̂ T
n − Ṗ T

n || is the Euclidean distance between

these two 3D vectors. From the CDF curves, we can see that the median estimation error is

2.83cm for the single-limb motion test and 3.75cm for the complicated motion test. The results

show that the estimation accuracy of the entire body motion is lower than one-limb motion,

because more moving joints need to be reconstructed in the former case. However, RFID-

Pose still achieves very high accuracy for all the complicated motions, and the largest error

among all the tests is 8.12cm, which is smaller than the maximum estimation error reported in

the existing RFID pose estimation system (i.e., 10cm) [134]. The estimation results validates
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Figure 6.15: Pose estimation when the subject is walking.

Figure 6.16: Pose estimation when the subject is squatting.

that the proposed RFID-Pose system can estimate the joints position more accurately and can

effectively reconstruct the pose of the entire moving body through RFID phase data.

Accuracy for Different Motions

To evaluate the estimation performance for different motions, we plot the accuracy for all the

specific movements in Fig. 6.20, including body twisting, squat, waving hands, kicking, walk-

ing, boxing, and standing still. As the figure shows, the pose estimation accuracy is different
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Figure 6.17: Pose estimation when the subject is twisting.

Figure 6.18: Pose estimation when the subject is kicking.

for different motions, where the highest accuracy 1.81cm is achieved when the human is in a

stable state (i.e., standing still). This is because no joint is moving when the subject stands still,

and thus no joint movements need to be estimated in this case.

We also notice that the squat and walking motions have a worse estimation accuracy than

others, which are 5.44cm and 4.12cm, respectively. The pelvis joint position variation is the

main cause for the limited performance. Note that our network is designed for learning the

spatial rotation of each joint relative to the parent joint. As a root joint of the human skeleton,

174



0 1 2 3 4 5 6 7 8

Estimation Error (cm)

0

0.2

0.4

0.6

0.8

1

C
D

F

One-Limb Motion

Complicated Motion

Figure 6.19: Overall pose estimation accuracy in forms of CDF of estimation errors.

Twisting Squat Waving Kicking Walking Boxing Standing
0

1

2

3

4

5

6

7

8

E
st

im
at

io
n
 E

rr
o
r 

(c
m

)

Figure 6.20: Estimation errors for different types of motions.

the pelvis position estimation does not benefit from the forward kinematic layer. Thus, the

pelvis joint’s position is not as accurate as the rotation angle for each human limb, which also

leads to higher errors in all other joints. That is the reason for the lower accuracy when the

pelvis joint frequently varies during the monitoring process. Nevertheless, the error 5.44cm is

still acceptable for most pose based applications, such as video gaming and motion recognition.
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Accuracy for Different Joints

The estimation error for each of the 12 joints is presented in Fig. 6.21. The joint index map is

shown in Fig. 6.10. From joint 1 to joint 12, the joints are: pelvis, neck, left hip, left knee, right

hip, right knee, left shoulder, left elbow, left wrist, right shoulder, right elbow, and right wrist.

As the figure shows, RFID-Pose achieves high estimation accuracy for joints 1, 2, 3, 5, 7, and

10, where the estimation errors are all lower than 3.55cm. The estimation errors for the other

joints are all higher than 4.36cm. This is because the joints in the first group are on or close

to the human torso, while the other joints are on the limbs (i.e., arms and legs). The relatively

worse limbs tracking performance is mainly due to two reasons. First, since the joints of the

limbs are tracked based on the torso joints with the forward kinematic technique, the estimation

errors of the parent joints on the torso will be accumulated and affect the accuracy of tracking

the limb joints. However, the pelvis localization in each time slot is independent, and the

estimation error of the pelvis in previous time slots will not be accumulated in the present time

slot. Second, since human limbs usually move at a larger extent than the torso joints, there are

usually fewer RFID samples for these joints, which leads to a higher estimation error. However,

notice that even the wrist estimation error, the highest one, is lower than 5.28cm. Such results

prove that the RFID-Post system can accurately estimate the human pose with the vision-aided

technique.

6.6.3 More Experiments under Different Scenarios

In addition to evaluating the overall accuracy, we conduct several additional experiments to

test the system performance under different scenarios, including different subjects, different

environments, and different standing positions in front of the antennas. We also discuss the

generalization issue based on the experimental results.

Different Subjects

We conduct experiments with five different subjects to examine the impact of different initial

skeletons. The training dataset includes three different subjects, while the other two subjects
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Figure 6.21: Estimation errors for different joints.

Table 6.1: Performance Evaluation For Different Subjects
Subject Index Estimation Error

Subject 1 (trained) 3.72cm
Subject 2 (trained) 4.55cm
Subject 3 (trained) 3.58cm
Subject 4 (untrained) 5.32cm
Subject 5 (untrained) 8.17cm

are not trained but for testing only. The mean estimation errors are presented in Table 6.1. As

the table shows, the estimation errors for all the trained subjects are lower than 4.55cm, which

means the system can estimate the human skeleton for different subjects. However, when the

trained system is used to test the untrained subjects, i.e., subjects 4 and 5, the performance

becomes worse but still acceptable. Furthermore, we find that the accuracy for subject 4 is

higher than subject 5 because the initial skeleton of subject 4 is similar to trained subject 2. It

implies that the performance of testing untrained subject could be improved when the network

is trained with more subjects with different skeleton patterns.

Different Environments and Standing Positions

The influence of different environments and standing positions are also investigated. The ex-

periments are conducted in four different environments, including two different locations in the
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Figure 6.22: Different deployment environments and standing positions.

lab, a corridor, and a living room. The first three environments are illustrated in Fig. 6.22. As

the figure shows, the first two locations are selected in the same lab but have highly different

deployments, to introduce different environmental interference. The other two locations are

selected in the corridor and living room, respectively, which also suffers from quite different

multipath effects. As Table 6.2 shows, the estimation error in different environments changes

from 3.75cm to 4.03cm, which means the influence of the environments is limited. This is be-

cause the received RFID signal is dominated by the line-of-sight component; the other reflected

signals are very weak. Thus, the multipath effect from the environment is not strong and does

not affect much the performance of RF-Pose.

The interference of different stand positions is also investigated in our experiments. As

illustrated in Fig. 6.22, we compare the system performance for six different positions in the

2.5m×1.5m scanning area in the Lab scenario. Data collected in positions 1, 2, and 3 are used

to train the system, while the data collected in positions 4, 5, and 6 are only used for testing.
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Table 6.2: Performance Evaluation under Different Environments
Testing Environments Estimation Error

Computer Lab-1 3.83cm
Computer Lab-2 3.90cm
Corridor 4.03cm
Living Room 3.75cm

Table 6.3: Performance Evaluation for Different Standing Positions
Position Index Estimation Error

Position 1 (Trained) 4.53cm
Position 2 (Trained) 3.82cm
Position 3 (Trained) 4.75cm
Position 4 (Untrained) 8.38cm
Position 5 (Untrained) 5.71cm
Position 6 (Untrained) 9.14cm

The estimation errors are presented in Table 6.3. As the table shows, the estimation errors for

the three untrained positions 4, 5, and 6 are all higher than 5.71cm, while the errors for the three

trained positions 1, 2, and 3 are all lower than 4.75cm. The results show that the estimation

accuracy degrades when the subject stands in an untrained position, especially the untrained

position near the border of the scanning area. Fortunately, the high accuracy for the trained

standing positions shows that the accuracy of untrained positions could be improved by adding

more training data sampled from different training positions. Due to limited scanning range of

the polarized antennas, six different standing positions for training are sufficient to combat the

influence of untrained standing positions.

Remarks on Generalization

Since the initial subject skeleton is needed in the training process, the performance of the

proposed system could be affected when testing the subject with an untrained subject or the

subject is tested in a different standing position/environment. In RFID-Pose, the initial skeleton

is also necessary to address the ill-posed problem caused by the low data rate of RFID systems.

This paper is mainly focused on the fundamental problem of transferring sparse RFID data

to 3D human skeleton. However, the experiment results shown in Tables 8.1 and 6.3 also
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demonstrate that the generalization issue could be mitigated by extending the training dataset

for different subjects and standing positions. We will further tackle the generalization problem

of RFID based pose monitoring systems in our future work.

6.7 Conclusions

In this paper, we proposed a vision-aided, realtime 3D pose estimation and tracking system

named RFID-Pose. A preprocessing module was proposed to effectively mitigate the influence

of phase distortion and missing samples in the RFID data. The proposed system then leveraged

a deep kinematic network to estimate human postures in realtime from RFID phase data, which

was trained with the assistance of computer vision data as labels collected by Kinect 2.0. The

RFID-pose system was prototyped with commodity RFID devices. Its high accuracy and real-

time operation were demonstrated in our experimental study using Kinect 2.0 as a benchmark.
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Chapter 7

Cycle-Pose: Subject-adaptive Skeleton Tracking with RFID

7.1 Introduction

With the rapid development of computer vision, tracking of human poses has become an impor-

tant problem area in recent years, evolving from 2D [173] to 3D poses [174]. Although camera-

based techniques have been shown effective for human pose tracking, such vision-based tech-

niques frequently raise security and privacy concerns. For example, it is reported that millions

of wireless security cameras deployed around the world are at risk of being hacked [175];

the video data used for pose tracking could be intercepted and illegally used by hackers. To

address this issue, several radio frequency (RF) sensing based schemes have been proposed,

such as WiFi [131, 178], Frequency-Modulated Continuous Wave (FMCW) radar [176], and

mmWave radar [177].

To this end, radio frequency identification (RFID) provides a promising solution for hu-

man pose estimation [157, 179]. Compared with existing contact-free RF sensing systems,

RFID tags can be used as wearable sensors because of their small size. Furthermore, the in-

terference caused by the multipath effect is much lower in the RFID system and the cost of

RFID systems is lower than the advanced radar based systems. However, because of the low

data rate (i.e., the sampling rate) in RFID systems, generating a joint confidence map for all the

joints, as in other RF based systems, is highly challenging. Consequently, the existing RFID

based pose tracking systems are focused on monitoring the movement of one particular limb

using the phase data sampled from multiple tags [134, 135]. When multiple joints are moving
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simultaneously, the performance could be affected by the disturbance from other RFID tags

(e.g., the mutual coupling effect) or inter-tag collisions.

Subject adaptability is another challenge for RF based human pose tracking. Different

people have different skeleton forms, but most of the neural networks incorporated in RF based

pose tracking systems are trained with a limited number of subjects [131, 157]. The untrained

subjects could be considered as a new data domain in machine learning. When testing in the

new domain, the performance of the trained model will be degraded. Transfer learning is a

possible solution to address the new domain issues [159, 160], but the trained model needs to

be updated by a light-weight training for the new domain. The light-weight training requires

new vision data of the untrained subject, which, again, leads to privacy concerns. The domain

discriminator proposed in recent works [192, 217] could address the domain-adaptive issue,

which, however, only works for the classification problem so far. The model structure may not

be suitable for data sequence estimation as in human pose tracking.

In this paper, we address the challenges in human pose estimation using RFID with a

novel vision-aided, deep learning based solution. We propose the Cycle-Pose system to track

the movements of multiple human limbs in realtime. In Cycle-Pose, RFID tags are attached to

the target human joints. The movements of the tags are captured by the phase variations when

the tags are interrogated by the reader. A vision-aided solution is proposed to help the deep

learning model transform tag phase variations to human limb rotations, rather than localizing

them with traditional tag localization techniques [57]. Furthermore, we also proposed a novel

cycle consistent adversarial network model to achieve subject adaptability. The proposed cycle

kinematic network model is trained without the restriction of requiring paired RFID and vision

data, such that the network can learn to transform RFID data into a human skeleton for any

subject. Thus, the system achieves higher subject adaptability than traditional schemes when

generating human pose for untrained subjects. In Cycle-Pose, the 3D human pose is recon-

structed by estimated rotation angles of human limbs from RFID data and any given initial

human skeleton in realtime. A specific benefit is that vision data will not be needed anymore in

the inference stage, and thus the user’s privacy can be well protected. The main contributions

of this paper are summarized as follows.
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• To the best of our knowledge, this is the first subject-adaptive 3D human pose estimation

system using commodity RFID reader and tags, which can effectively track 3D human

pose without vision data in the testing stage.

• We propose a cycle kinematic network model and train the network with self-supervision.

The proposed model learns the transformation from RFID data to 3D skeleton for differ-

ent subjects, to effectively achieve subject adaptability.

• We develop a prototype system with commodity RFID tags/devices and Kinect 2.0, to

evaluate the system performance and compare it with the traditional technique RFID-

Pose [157]. Our experimental study validates that the proposed Cycle-Pose system can

effectively track the human pose for different subjects with subject adaptability.

In the following, we present the system overview in Section 7.2. The challenges and our

proposed solutions are discussed in Section 7.3. Our prototype implementation and perfor-

mance study are presented in Section 7.4. Section 7.5 summaries this paper.

7.2 System Overview

An overview of the proposed Cycle-Pose system is shown in Fig. 7.1, which consists of four

main modules: (i) Data Collection, (ii) Data Preprocessing, (iii) Cycle Kinematic Network, and

(iv) 3D Skeleton Generation.

(i) Data Collection: The Cycle-Pose system aims to generate a 3D human skeleton from col-

lected RFID data. Both RFID data and vision data should be sampled for the training process.

The RFID data is collected from 12 RFID tags attached to the human joints by three polarized

antennas, and is used as input to the proposed cycle kinematic network. The vision data is

sampled by Kinect 2.0 for the same subject and action simultaneously. Kinect 2.0 is a depth

camera. It captures 3D human movements by both the RGB camera and infrared sensor. 3D

movements of each human joint are generated by processing the Kinect data with MATLAB

and stored in the form of 3D coordinates for offline training supervision and used as benchmark

in the testing phase.
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Figure 7.1: The Cycle-Pose system architecture.

(ii) Data Preprocessing: However, the collected raw RFID data cannot be directly used for

3D skeleton tracking. It should be calibrated first before analyzed by the proposed neural

network model. The collected RFID phase is severely distorted by channel hopping and phase

wrapping of the RFID system. It should be firstly calibrated to mitigate such distortion. After

that, since the sampling rates of RFID device and Kinect 2.0 are highly different, the sampled

RFID data is downsampled and synchronized with the vision data. Because of the slotted

ALOHA-like transmissions in RFID systems, the phase data is not evenly sampled; there is at

most one sample in each time slot and most RFID phase samples are missing. Thus, we employ

the tensor completion technique, High Accuracy Low-Rank Tensor Completion (HaLRTC), to

estimate the missing RFID data.

(iii) User-adaptive 3D Skeleton Generation with the Cycle Kinematic Network: We propose

a cycle kinematic network to generate 3D pose data from calibrated RFID phases. Unlike

monitoring only one particular limb’s movements as in traditional RFID based pose tracking

systems [134, 135], the proposed system estimates the 3D coordinates of all the joints simulta-

neously. Moreover, the proposed cycle kinematic network achieves subject adaptability, which

is missing in prior systems [131, 157]. This is because the cycle kinematic network is trained

with unpaired RFID data and vision data, which is sampled from a different moving subject.
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Figure 7.2: Flowchart of RFID data preprocessing.

Thus, the trained network can achieve better adaptability when transforming RFID data to 3D

coordinates for a different, untrained subject.

7.3 Challenges and Solutions

7.3.1 RFID Phase Data Calibration

The first challenge in human 3D skeleton generation from RFID data is the poor quality of

RFID data. As discussed, the raw RFID data suffers from severe phase distortion and large

amount of missing samples. Thus, the RFID data should be well-calibrated before being used

to train the neural network. Fig. 7.2 presents the flowchart of the proposed RFID preprocessing

procedure. As shown in the figure, the passive tags are attached to 12 joints of the human body.

RFID phase data is collected by the reader using the low-level protocol when interrogating the

tags [38, 138].

Phase Distortion Mitigation

The collected phase value indicates the distance between the reader antenna and the tag [38];

so the sampled phases captures the movement of the RFID tags attached to the human body.

According to the FCC regulation, the frequency of the channel is not fixed but hops among 50

different channels, which generates a different phase offset for each different channel. Conse-

quently, the phase value is also determined by the current channel used for RFID interrogation.
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The phase ϕs on channel s can be written as [139]:

ϕs = mod
(
2π2Lfs

c
+ ϕ0

s, 2π

)
, s = 1, 2, ..., 50, (7.1)

where L is the distance between the tag and antenna, c is the speed of light, and fs and ϕ0
s

represent the frequency and initial phase offset of channel s, respectively. According to (7.1),

if we want to track the variation of the tag-to-antenna distance L, the impact of the channel

phase offset ϕ0
s should be firstly mitigated. Fortunately, the phase offset ϕ0

s is a constant for

each channel s. If we use the variation between two adjacent phase samples on the same

channel, the identical channel phase offset in the two samples will be canceled. The phase

variation ηns for each channel s is:

ηns = mod
(
4π(Ln

s − Ln−1
s )fs

c
, 2π

)
, s = 1, 2, ..., 50, n = 2, 3, ..., (7.2)

where Ln
s represents the tag-to-antenna distance for the nth sample on channel s. It can be seen

that the phase offset ϕ0
s is removed in (7.2), while the movement Ln

s −Ln−1
s remains. The phase

distortion caused by channel hopping is effectively mitigated this way.

In addition, phase distortion is also caused by the modulo operation in (7.1) and (7.2).

Since the collected phase data ϕ is rounded to the range [0, 2π] rad, sharp phase changes are

usually generated by the modulo operation when the phase crosses 0 rad or 2π rad. Thus, the

calculated phase variation should be unwrapped to remove such distortion. Given the 110Hz

sampling rate used in the RFID system, we assume that the phase variation between two adja-

cent samples, η, should be no larger than π or smaller than −π. We use the following scheme

to unwrap the sampled phase variation data η.

η′ =

 η − 2π η
|η| , if |η| > π

η, otherwise.
(7.3)
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which automatically determines whether the value should be unwrapped by adding or subtract-

ing 2π. After the unwrapping process, all sharp phase changes will be smoothed out, and the

calibrated phase variation data can effectively represent the movements of the RFID tags now.

Data Imputation

In addition to distortion, missing phase samples is another challenge caused by the Slotted

ALOHA-like transmission used in RFID communications. In each time slot, only one tag can

send its EPC and low-level data to the reader. In the Cycle-Pose system, although we attach

12 tags to the human body, only one tag can be sampled at a time. In the input data tensor

illustrated in Fig. 7.2, there is only one sample in each slice (12 tags × 3 antennas). Thus, the

sparsity of the phase data tensor is 35/36, which is way too high for pose estimation. In order to

learn the relationship between RFID data and 3D skeleton data obtained from Kinect, we need

to (i) deal with the high sparsity issue in the tensor data and (ii) synchronize the phase data

(i.e., the input to the deep learning model) and the vision data (i.e., the labels). To solve these

problems, we first downsample the RFID data from 110Hz to 30Hz to match the 30fps sampling

rate of Kinect. Then, we synchronize the RFID and vision data based on the timestamps when

the RFID and vision data samples are simultaneously collected for the same subject. Note that

we cannot synchronize the data from different subjects because the RFID data and vision data

are not sampled simultaneously in this case.

After synchronizing the two types of data, the input tensor to the deep learning model can

be expressed as:

H(:, :, t) =



η1t,1 η1t,2 . . . η1t,nG

η2t,1 η2t,2 . . . η2t,nG

...
...

...
...

ηnA
t,1 ηnA

t,2 . . . ηnA
t,nG


, t = 1, 2, ..., Nt, (7.4)

where t means the tth time slot, nA and nG are the numbers of antennas and tags, respectively,

and ηnA
t,nG

represents the calibrated phase variation from tag nG sampled by antenna nA in time

slot t. To address the high sparsity of the tensor, we leverage tensor completion to estimate the
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missing samples inH . The algorithm used in the system is HaLRTC [139], which can achieve

high accuracy in data imputation at a relatively high speed.

7.3.2 Skeleton Generation from RFID Data

Three-dimension human skeleton generation with RFID data is highly challenging also because

of the extremely low sampling rate restriction in RFID systems. Most of the existing human

pose tracking system is based on the confidence map generated from collected signals, such as

camera [173], WiFi [178], and FMCW radar [176]. The human features is first captured and

shown on the confidence map, so the human skeleton can be further constructed based on the

map. However, this technique is not suitable for RFID based systems, because the sampling

rate of the RFID system is much lower than that of video camera, WiFi, and FMCW radar. This

is because the RFID system is designed to interrogate RFID tags one at a time, which means

no matter how many tags are used in the system, the maximum data rate is fixed by one sample

per time slot. If we want to generate a confidence map video with 10fps from RFID data with

110Hz sampling rate, only the 11 phase samples (i.e., sampled at the same time as one video

frame or 11 pixels) can be used for map generation. Even if we reduce the map resolution to

100× 100, transforming the 11 samples to 10,000 pixels is a severely ill-posed problem, which

is challenging for training the deep learning model.

In this paper, we employ the forward Kinematic technique to tackle the ill-posed problem,

which is widely used in robotics and 3D animation [193]. With a given initial skeleton (i.e.,

the original locations of all joints and the lengths of all limbs), forward kinematic can estimate

the joint position based on the relative space rotation and its parent joint position. For example,

when the right elbow position is given, the right-hand position of the subject can be calculated

by the length of the front arm and the relative rotation between the hand and elbow. In the

proposed cycle Kinematic network, a 3D rotation is represented in a unit quaternion format

based on Ruler’s rotation theorem, expressed as:

r + xα⃗ + yβ⃗ + zγ⃗, (7.5)

188



where r, x, y, and z are real numbers, and α⃗, β⃗, and γ⃗ are the quaternion units related to the

three coordinates, respectively. Given the 3D position of a joint, represented as aα⃗ + bβ⃗ + cγ⃗,

and a 3D rotation with unit quaternion r+xα⃗+ yβ⃗+ zγ⃗. The rotation matrix Ω can be derived

as:

Ω = (7.6)
1− 2(y2 + z2) 2(xy + zr) 2(xz − yr)

2(xy − zr) 1− 2(x2 + z2) 2(yz + xr)

2(xz + yr) 2(yz − xr) 1− 2(x2 + y2)

 .

The updated position of the joint, a′α⃗ + b′β⃗ + c′γ⃗, will be calculated as:


a′

b′

c′

 = Ω


a

b

c

 . (7.7)

With the forward kinematic technique, the current human pose is determined by the pre-

vious human pose and the 3D rotation for each body joint. To estimate the positions of the 12

human joints, only 48 parameters are required. Compared with the traditional approach of gen-

erating a 10,000-pixel map, the proposed technique effectively reduces the problem complexity

and can improve the accuracy as well.

7.3.3 Dealing with Subject Adaptability

The forward Kinematic technique can effectively address the ill-posed problem. However, the

initial skeleton of the subject is still needed, which limits the adaptability of the trained model

to different untrained subjects. People have different skeleton forms. To make sure that the

deep learning model can successfully generate 3D skeleton for different subjects, the training

dataset should include all kinds of human skeletons, which leads to a significantly high cost on

collection of labeled training data. If the network is trained with a limited amount of skeletons,

the performance of the network could be poor when testing for a subject with a new skeleton
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Figure 7.3: Different structures for pose generation training.

not included in the training dataset [131]. This is because the traditional training process is

performed with the same source initial skeleton and target initial skeleton, which is illustrated

in the left-hand-side graph in Fig. 7.3. In the figure, SKn represents the source initial skeleton

for subject n in the RFID data, while TKn represents the target initial skeleton in the vision

data with TKn = SKn. The traditional training structure is focused on learning the relationship

between 3D skeleton coordinates and the RFID data for the same skeleton. Thus, the training

results is suitable for these n specific skeletons included in the training data, but the well-trained

model may not perform well when it is used to test a new skeleton.

Cross-skeleton Learning Structure

To improve the subject adaptability of the learning model, the network should be designed to

learn the relationship between different source and target skeletons, so that the system could

effectively transform RFID data to 3D skeleton no matter the given subject skeleton is included

in the training dataset or not. Thus, we propose a new network structure as illustrated in the

right-hand-side graph of Fig. 7.3. As shown in the figure, the training is not only focused

on learning with paired skeletons, but also leaning with different source skeletons and target

skeletons. For example, for a specific movement type such as kicking, all RFID data and vision

data are utilized in training, no matter the movement data is sampled from the same subject or

not. Thus, the network can learn how to transfer RFID data to human 3D pose with different

initial skeletons, such as Sk1, Sk2, ..., and Skn. Since the network is not trained with a specific
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Figure 7.4: Labeled pose data sampled by Kinect for different subjects. The first row is for
Subject 1 and the second row is for Subject 2.

initial skeleton, the well-trained model can achieve higher subject adaptability compared with

the traditional network structure.

Unfortunately, training with different SKs and TKs is challenging because there is a

significant variance in training data between two different subjects. Although performing the

same movement, different subjects could have very different speeds and scales, as illustrated in

Fig. 7.4. Their limbs have different lengths and it is also hard to guarantee that each RFID tag

will be attached at exactly the same location. Fig. 7.4 shows the skeleton obtained by Kinect

when two different subjects perform the same action (i.e., arm waving), sampled at the same

frame rate. As shown in the figure, both the hand moving speed and the latitude of the arm are

very different between the two data sequences shown in the first row (for Subject 1) and the

second row (for Subject 2).

The considerable difference shown in Fig. 7.4 indicates that the network should not be

directly trained with the position loss between estimated pose and vision pose for different sub-

jects. A self-supervised network should be designed for cross-skeleton learning with unpaired

initial skeletons.
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Cycle Kinematic Network

Cycle-Consistent Adversarial Network is an advanced neural network structure, which is pro-

posed to solve the image-to-image translation with unpaired training datasets [181]. The cycle

consistent network has also been employed to solve the temporal video alignment problem of

two different video streams [171]. The cycle consistent network can generate fake input data

from the output data, so the network can be trained with self-supervision between the real input

data and the generated fake input data. Thus, the requirement on paired, labeled data is lower

than that in traditional neural networks.

Observing the strength of cycle consistent adversarial network, we propose a Cycle Kine-

matic Network to deal with the challenges in training for cross-skeleton learning, which is

presented in Fig. 8.2. As shown in the figure, the RFID phase variation sequence feature is first

extracted by a recurrent encoder termed recurrent encoder-Forward (or, recurrent encoder-F).

With additional input of the source initial skeleton of the subject, the recurrent decoder-Forward

(or, recurrent decoder-F) translates the human movement features captured by RFID phase

variations to unit quaternion, which represents the 3D rotation of the subject’s joints. Then,

the unit quaternion is employed by the forward Kinematic algorithm to generate 3D human

skeleton with a given target initial skeleton. The cycle consistent network is used to recover the

RFID data from the estimated quaternion, which is also constructed by the recurrent encoder-

Backward and decoder-Backward (or, recurrent encoder-B and recurrent decoder-B). If the

translation from RFID phase variation to 3D limb rotation exists, the inverse transformation

could be performed using recurrent autoencoder-B. With the fake RFID data, the network can

be trained with self-supervision, and the ground truth of vision data does not need to be strictly

paired with the input RFID data.

Loss Function for Training

The loss function used for the training the proposed cycle kinematic network is composed of

three parts as illustrated in Fig. 7.5, including the position loss, the adversarial loss, and the

cycle consistency loss. When the training step is set to K, we define the calibrated RFID
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Figure 7.5: Overview of the proposed cycle kinematic network model.

phase variation sequence as F1:K and the reconstructed fake RFID data as F̂1:K . The estimated

skeleton by the neural network is represented as V̂1:K , and the vision data sequence used for

supervision is denoted by V1:K . The position loss between the estimated 3D skeleton and the

ground truth is calculated with the estimated skeleton and the vision skeleton ground truth as:

Lossp = ||V̂1:K − V1:K ||22. (7.8)

However, for the unpaired training data collected from different skeletons, Lossp also

includes the error caused by the asynchronous training dataset. We can calculate the cycle

consistency loss as:

Lossc = ||F̂1:K − F1:K ||22. (7.9)
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Since the cycle consistency loss is calculated with the fake RFID data obtained by the cycle

consistent network, the influence of unpaired data can be mitigated by merging the cycle con-

sistency loss and position loss as:

Lossall = Qp · Lossp +Qc · Lossc, (7.10)

with suitable positive coefficients Qp and Qc, satisfying Qp+Qc = 1. With the loss function of

the generator Lossall, the network can be effectively trained whether the RFID data and vision

data are sampled from the same subject or not. In this paper, we set Qp = 0.6 and Qc = 0.4.

The adversarial loss is used to determine if the network is well trained or not, which is

represented as a realism score calculated by a discriminator network D [193], as:

SD = D(V̂2:K − V̂1:K−1, V2:K − V1:K−1). (7.11)

The equation shows that the input of the discriminator is not the position loss but the variation

between the previous frame and the current frame in V and V̂ , respectively. Although V and

V̂ are unpaired data sequences, the discriminator can determine if the movements performed

by the two subjects are the same or not. This is because, for the same movement type, the

variations of all the joints between two adjacent data sequences are still similar, no matter the

two subject movements are synchronized or not. We set a realism score threshold to balance the

discriminator and the generator (i.e., recurrent encoder-F and recurrent decoder-F). When the

generator can successfully fool the discriminator, the network will effectively transform RFID

data to 3D skeleton data.

7.4 Implementation and Evaluation

7.4.1 Prototype System Implementation

To evaluate the performance of Cycle-Pose, we develop a prototype system with an off-the-

shelf Impinj R420 reader equipped with three S9028PCR polarized antennas. The RFID tags

used in Cycle-Pose are ALN-9634 (HIGG-3). The vision data, used for training supervision
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Figure 7.6: RFID tag deployment and motion sampling.

as well as the ground truth for test accuracy evaluation, is collected with an Xbox Kinect 2.0

device.

We attach 12 RFID tags to the human body joints as shown in Fig. 7.6, including the left

shoulder, left elbow, left wrist, right shoulder, right elbow, right wrist, neck, pelvis, left hip,

left knee, right hip, and right knee. Head and feet are omitted in our prototype system because

of the limited scanning range of the RFID antenna used in Cycle-Pose. More antennas can

be added to scan the entire body, but the skeleton constructed with the 12 joints is sufficient

to monitor human activities in most cases. With the three antennas placed at different altitude

positions, every RFID tag can be scanned by at least one of the antennas.

As Fig. 7.6 shows, RFID phase data is collected when the subject is standing in front of

the antennas and performing specific motions repeatedly. Different motions are sampled for
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Figure 7.7: Overall accuracy when testing with trained subjects.

training the cycle kinematic network with two different types. The first type includes sim-

ple motions, which only involve single-limb movement. The other type includes compound

motions, composed of movements of the entire human body, such as boxing, walking, body

twisting, and deep squatting.

7.4.2 Experimental Results and Analysis

To evaluate the performance of Cycle-Pose, we compare it with the traditional neural network

model used in RFID-Pose [157], which only trains the network with paired RFID and vision

data. The dataset used for training and testing is the same for both models, and the overall

accuracy is shown in Fig. 7.7 and Fig. 7.10. The overall estimation error Eall used in our

evaluation is calculated between the estimated 3D pose data and the ground truth vision data

as:

Eall =
1

12

12∑
n=1

||P̂n − Ṗn||, (7.12)

where P̂n denotes the estimated position of joint n, Ṗn is the ground truth position collected by

Kinect for joint n in the 3D space, and ||P̂n − Ṗn|| is the Euclidean distance between the two

3D coordinates.
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Figure 7.8: Comparison results when the untrained subject is squatting.

Fig. 7.7 presents the cumulative distribution functions (CDF) of the estimation errors for

both methods when the testing subjects are involved in the neural network training. The CDF

curves show that the median estimation error for the traditional network is 3.83cm, while the

median error for Cycle-Pose is 4.44cm. The maximum error for Cycle-Pose is 8.64cm, which

is slightly higher than that of the traditional method (i.e., 8.09cm). These results show that

the accuracy of Cycle-Pose is slightly lower than the traditional method when testing a trained

skeleton. This is because the Cycle-Pose system not only learns the translation from RFID

data to 3D skeleton, but also learns the transformation from different source skeletons to target

skeletons. The additional learning task affects the system performance for specific skeletons.

However, the decrease of the accuracy is acceptable in most skeleton tracking applications,

such as video gaming and human motion recognition.

The strengths of the Cycle-Pose system become obvious when testing with untrained sub-

jects. Figs. 7.8 and 7.9 illustrate the comparison between two networks when an untrained

subject is squatting and walking, respectively. From the figures, it can be seen that the human

poses reconstructed by the Cycle-Pose system are highly similar to the corresponding ground

truth, while the skeletons generated by the traditional method show higher estimation errors.

The accuracy results are presented in Fig. 7.10. As the CDF results show, the median

estimation error of the Cycle-Pose system is 4.88cm, while the median error of the traditional
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Figure 7.9: Comparison results when the untrained subject is walking.
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Figure 7.10: Overall accuracy when testing with untrained subjects.

system is 7.66cm, which are both higher than that in Fig. 7.7. The traditional network is only

trained by paired RFID and vision data for the same subject. The training domain is restricted

to the specific initial skeletons. When testing with an untrained subject with a different initial

skeleton, the traditional network exhibits poorer subject adaptability than the Cycle-Pose sys-

tem. In summary, although the accuracy of the Cycle-Pose system is slightly lower than that of

the traditional RFID pose tracking technique when testing with a known subject, the proposed

model achieves high subject adaptability when testing untrained subjects.
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7.5 Conclusions

In this paper, we proposed a subject-adaptive, realtime 3D pose estimation and tracking system

named Cycle-Pose. A preprocessing module was proposed to effectively mitigate the influence

of phase distortion and missing RFID data samples. The proposed system then leveraged a

novel cycle kinematic network to estimate human postures in realtime from RFID phase data,

which was trained with unpaired RFID and vision data sampled from different subjects. The

Cycle-Pose system was implemented with commodity RFID tags/devices and compared with a

traditional RFID based technique RFID-Pose in our experimental study. Its high subject adapt-

ability ability and accuracy were demonstrated in our comparison experimental study using

Kinect 2.0 as ground truth.
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Chapter 8

Meta-Pose: Environment Adaptive RFID based 3D Human Pose Tracking with a
Meta-learning Approach

8.1 Introduction

Human pose tracking has attracted great interest in recent years, because it is useful for numer-

ous applications such as human-computer interaction, video surveillance, and somatosensory

games. The advances in human pose tracking have been mainly driven by the new devel-

opments in computer vision, from two-dimensional (2D) systems [173] to three-dimensional

(3D) realtime systems [174]. However, The vision-based techniques often raise concerns of

security and privacy. For example, many wireless security cameras are easily hacked by ma-

licious users [175]. The collected video data for pose tracking could also be illegally inter-

cepted. Several radio frequency (RF) sensing schemes have been proposed to address the pri-

vacy concern in human pose tracking, using various RF sensing techniques such as Frequency-

Modulated Continuous Wave (FMCW) radar [176], millimeter wave (mmWave) radar [177],

WiFi [131,178], and RFID [157,179,180]. Compared with computer vision-based techniques,

RF sensing-based human pose tracking does not require for sufficient lighting, does not require

a line-of-sight path between the subject and camera (i.e., capable of getting around obstacles or

even through walls), and more important, the privacy of users can be better protected.

In RF sensing-based systems, deep learning has been widely adopted to translate captured

RF data to human poses. However, such techniques usually have the generalization problem,

i.e., the inference performance usually degrades greatly when applying a well-trained deep

learning model to a new, un-trained environment. Since RF signals propagate in the open air,

the received RF signal is usually highly sensitive to the specifics of the deployed environment,
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such as the placement of the antennas, the layout (e.g., walls) of the room, the obstacles in the

surroundings, and the movement of objects and/or subjects nearby. When there are variations

in the environment, the same human subject performing the same activity could generate con-

siderably different RF features. It has become a great challenge to develop human pose tracking

schemes that are adaptive to the environment.

Researchers have proposed several solutions to address the environment adaptation chal-

lenge. The most straightforward approach is to simply increase the size and variety of the

training dataset, i.e., to train the deep learning model with vast amounts of data measured in

many types of environments. When applying the trained model to a new environment, it is

likely that new environment will be similar to an environment that exists in the training dataset,

and thus the inference performance would not degrade much. However, this approach requires

considerable efforts and incurs high costs in collecting large amounts of training data. In addi-

tion, more sophisticated schemes leverage the idea of adversarial learning to improve feature

extraction [181, 217]. Rather than training using data collected from numerous RF environ-

ments, adversarial learning incorporates a domain discriminator to distinguish features from

different environments (i.e., domains). When the model is trained such that it is capable of

fooling the discriminator, the features that are common to all the domains will be extracted.

The domain adversarial network can effectively reduce the requirement on training data.

Alternatively, when applying the well-trained (or, pretrained) model to a new, unknown

domain, we can fine-tune the model by further training it with new data collected from the

new environment, such that the pretrained model can better capture the specific features of the

new domain. The fine-tuning technique has been shown effective to address the generalization

problem found in other deep learning applications [183]. Fine-turning still requires new data

measured from the unknown domain. However, such new data should be as few as possible;

otherwise, it will still incur great efforts and a high cost, which hinder the easy deployment of

the technique in practice. To this end, meta-learning, a.k.a. “learning to learn” [184], provides

an effective solution. Meta-learning optimizes the deep learning model using different learning

tasks or datasets [185], so that the model will be appropriately initialized and be amenable to

adapt to new domains. When applied to a new RF environment, the meta-learning model will
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only require a few training examples from the new environment for fine-tuning (i.e., few-shot

fine-tuning), while still achieving a satisfactory performance.

In this paper, we tackle the environment/domain adaptation challenge with a meta-learning

approach. We propose a novel environment-adaptive, RFID based 3D human skeleton tracking

system termed Meta-Pose. As in our prior work RFID-Pose [157], RFID tags are attached to

the human body and interrogated by an RFID reader, such that the movements of human joints

will be captured by analyzing the phase information in received RFID responses. Meta-Pose is

also a vision-assisted scheme, where Kinect captured video data of the same human activity is

used for supervised training. Note that the vision data will only be used for training the deep

learning model; it will not be needed in the inference stage. Therefore the use of Kinect does

not cause privacy concerns. To address the generalization problem, we first analyze the main

causes for the divergence of RFID data in different RF environments. Based on the analysis,

we then propose a novel Meta-Pose initialization algorithm to pretrain the model with RFID

data sampled from a few different environments. With few-shot fine-tuning, the Meta-Pose

system will be able to accurately track 3D human skeleton in a new, unknown environment.

Extensive experiments are conducted to validate the high environment adaptation ability and

high accuracy of the proposed Meta-Pose system.

The main contributions of this paper are summarized in the following.

• To the best of our knowledge, Meta-Pose is the first environment-adaptive system for

3D human pose tracking, which is designed using off-the-shelf RFID reader and tags.

Meta-Pose can be easily deployed to estimate and track 3D human poses with RFID data

in different RF environments.

• We analyze the divergence of RFID data measured in different propagation environments

and identify the main challenges to the generalization problems, including sensitivity

divergence of RFID tags and phase distortion in different sampling environments.

• We propose a novel Meta-Pose initialization algorithm based on meta-learning algo-

rithms (i.e., model-agnostic meta-learning (MAML) and Reptile) to pretrain the deep

learning model with a limited number of training datasets sampled from several known
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environments. We develop the initialization approaches based on both Reptile and MAML.

A domain fusion technique is incorporated to generate more synthesized (or, fake) en-

vironments for model pretraining, to allow the pretrained model be quickly adapted to a

new environment.

• We develop a prototype with off-the-shelf RFID tags and reader, and use Kinect 2.0 to

measure the ground truth data for training the model and for performance evaluation. The

performance of Meta-Pose is validated with extensive experiments as well as a compari-

son study with a baseline scheme termed RFID-Pose developed in our prior work [157].

The experimental results show that the proposed Meta-Pose system can accurately track

3D human poses while achieving high environmental adaptability simultaneously.

In the remainder of this paper, Section 8.3 briefly summarizes and contrasts with related

works. The background of the proposed system is presented in Section 8.3. Section 8.4 exam-

ines the challenges of the domain adaptation problem. Section 8.5 presents our meta-learning

based solution to these challenges. Our implementation and experimental study are presented

in Section 8.6. Section 8.7 summaries this paper.

8.2 Related Work

In this section, we examine the related work on human pose estimation and tracking, which

can be roughly classified into video camera-based schemes, WiFi-based schemes, radar-based

schemes, and RFID-based schemes.

8.2.1 Traditional Pose Tracking Systems

A strength of the traditional camera, WiFi, and radar-based systems is that they are “marker-

less” methods, which are less intrusive. Video camera was first used to detect human poses

in [186, 187]. With deep learning models, such systems localized the coordinates of human

joints in the captured video frames, using, e.g., 2D RGB cameras [173, 188] or 3D depth cam-

eras [189]. The most accurate 3D pose tracking performance was achieved, so far, by the Vicon

system [190], which has been widely used for production of 3D movies. However, such video
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based schemes usually raise privacy concerns, as discussed, and their performance is usually

limited by poor illumination, cluttered background, or poor camera angles.

To address the privacy concerns and mitigate the dependency on lighting and background,

several RF pose tracking techniques have been proposed. Since such systems record no vision

data and the RF data is not visible, user privacy can be better preserved. Furthermore, RF

sensing systems perform well in poorly lighted environments and are able to detect human

poses through obstacles and walls [177, 191]. FMCW Radar was first utilized to construct

both 2D and 3D human poses by incorporating a vision-aided teacher-student deep learning

model [176, 191]. As another type of non-intrusive sensor, WiFi channel state information

(CSI) has also been analyzed to extract 2D and 3D human poses [131, 178]. Most existing

RF sensing systems incorporate a deep learning model with vision data supervised training.

Furthermore, due to the relatively wide transmission range of the radio signals, such systems

are susceptible to interference from the operating environment. Usually radar-based techniques

are more resistant to environmental interference than WiFi-based schemes, but their customized

hardware, e.g., the FMCW radar implemented on the Universal Software Radio Peripherals

(USRP) platform, usually incurs a higher cost.

8.2.2 RFID-based Pose Estimation Systems

RFID tags can serve as low-cost and light-weight wearable sensors to attach to the human body,

which provides a promising solution for human pose estimation. Several RFID sensing tech-

niques have been developed in recent years, such as human vital sign monitoring [27, 88, 89,

139], mechanical vibration sensing [70], user authentication [68], material identification [69],

and temperature sensing [52], Furthermore, RFID has also been utilized for indoor localiza-

tion [21, 34, 57, 91] and drone navigation [53, 54, 90].

Using RFID tags as wearable sensors, such systems are usually more robust to interference

from the operating environment than other RF sensing techniques (e.g., WiFi). This feature

inspires the development of several RFID based human pose tracking systems as well. For

example, RF-Wear [135] and RF-Kinect [134] were developed to track the movements of a

single human limb, while RFID-Pose [157] and Cycle-Pose [180] were developed to track 3D
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human poses in realtime. However, although the near-field RFID communications are more

resilient to environmental interference, the locations of the tags and antennas still have a big

impact on how the tags are sampled by the reader, and thus on the performance of the human

pose tracking system.

In [192], the authors presented a domain adversarial technique to adapt to changes in the

environment by utilizing a domain discriminator, which can constrain the unnecessary feature

extraction from different environments. However, the proposed learning model may not be able

to obtain the optimal variables when applied in a new RF environment, because all the training

variables are determined by the datasets from a limited number of environments.

Inspired by the existing human pose tracking systems, we propose the Meta-Pose system in

this paper, which is based on the meta-learning framework for greatly enhanced environmental

adaptability. The proposed system incorporates a novel initialization algorithm to pretrain the

deep learning model using a limited amount of training data, so that the system can be quickly

fine-tuned with a small amount of new data when applied to a new environment, while still

achieving a satisfactory performance.

8.3 Preliminaries of RFID-based Human Pose Tracking

The Meta-Pose system is proposed to estimate 3D human pose with RFID data collected from

the passive RFID tags attached to the human subject. An overview of the Meta-Pose system is

shown in Fig. 9.2. The Meta-Pose system comprises three key components, i.e., (i) RFID phase

data collection, (ii) RFID phase preprocessing, and (iii) a deep neural network.

8.3.1 RFID Phase Data Collection and Preprocessing

In the RFID pose tracking system, the human pose is learned from RFID phase data, which

is obtained by interrogating the tags attached to the human body using the RFID Low Level

Reader Protocol (LLRP) [38]. The received RFID signal on a channel c can be written as [38]:

H =
M∑

m=1

αme
j{ 2π2Rmfc

v
+Θc}, (8.1)
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Figure 8.1: Overview of the proposed RFID pose tracking system.

where v represents the speed of light, M is the total number of RF signal propagation paths, αm

and Rm represent the signal strength and distance of each multipath component, respectively,

fc is the current channel frequency, and Θc is the initial phase offset caused by the circuit of

both the antenna and the tag on channel c. Due to limitation of the Gen2 protocol used in the

current commodity RFID systems, only one phase value of H could be directly sampled by

the system. Due to the multipath effect, deriving the phase value of the line-of-sight (LOS)

component from (8.1) is difficult. The reported phase value may not accurately depict the

relationship between propagation distance and received phase. Fortunately, the polarized reader

antenna operates as both the transmitter and receiver, and the interference caused by multipath

reflections is not strong. Thus, we can assume that each propagation environment has at least

one dominant path, and the received phase is given by:

Θ =
2π2Rfc

v
+Θc, c = 1, 2, ..., 50, (8.2)

where R is the distance of the dominant path between the reader antenna and tag. while the

channel index c changes from 1 to 50 for every 200ms on each channel following the FCC

regulation [38].

The LOS typically contributes significantly to the received signal for the following two

reasons. First, in a passive RFID system, the only source of power utilized to send a response

to the RFID reader is the tag antenna. The signal strength from reflection paths is typically
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much weaker than that of the LOS path. Additionally, the RFID reader uses a power threshold

for packet detection, which means that if there is no LOS path between the antenna and the

tags, the interrogation is likely to fail. Second, the RFID phase data shall be prepossessed to

mitigate the impact of the randomness in Θc on different channels. To this end, using the phase

variation Φ between two adjacent samples from the same channel would be effective to cancel

most of the randomness, which is given by:

Φ(n) = Θ(n)−Θ(n− 1) (8.3)

=
2π2(R(n)−R(n− 1))fc

v
, c = 1, 2, ..., 50, n > 1,

where n is the sample index on each channel and R(n) is the propagation distance corre-

sponding to the nth sample on channel c. As (8.3) shows, the impact of the random channel

hopping offset Θc (see (8.1)) is effectively canceled, except for the first sample on each chan-

nel (which is discarded). The phase variation only depends on the changes in the range of the

dominant propagation path ∆R(n) = R(n) − R(n − 1). Therefore, the sequence of phase

variations {Φ2,Φ3, ..., } can be translated into a sequence of antenna-tag distance variations

{∆R1,∆R2,∆R3, ..., }, which captures the realtime movements of the RFID tags. Conse-

quently, with the RFID phase variations for the attached tags can be leveraged to reconstruct

the human skeleton and track 3D human poses in realtime.

8.3.2 Multi-modal Deep Neural Network

Although phase variation can effectively capture the movements of the tags attached to human

body, the translation from phase variation data to 3D human pose is still a challenge. In the

few existing RFID based human pose tracking systems, the transformation is mostly accom-

plished using deep learning techniques [157, 180], which is mainly composed of a recurrent

autoencoder and a forward kinematic layer. The brief structure of the deep learning model is

presented in Fig. 8.2. As the figure shows, the network is designed to generate a sequence of

3D human poses, consisting of coordinate data of the RFID tags extracted from received RFID

phase data. Specifically, the recurrent encoder is to extract both long-term and short-term
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Figure 8.2: Structure of the deep learning model used in RFID based 3D human pose tracking.

features from the RFID phase data sequence, which are then fed into the following recurrent

decoder. With a given initial skeleton, the decoder layer will transfer the features of the RFID

data sequence to a quaternion sequence. Finally the Forward Kinematics module will construct

the human pose sequence using the quaternion sequence, which is a widely used technique in

robotics and 3D animation [193].

Rather than using RF signals to generate a confidence map for human skeleton reconstruc-

tion as in prior works [173, 178], our RFID-based human pose tracking system is designed to

estimate human pose with the forward kinematic technique, which has been widely used in

robotics and 3D animation [193]. This is because the information rate (or, the sampling rate) of

the RFID system is too low to generate a useful confidence map with an acceptable resolution.

However, the forward kinematic technique only requires the quaternions of the human skeleton

joints, which indicates the 3D rotation angle of each human limb. Compared with AoA based

localization techniques, the output human pose does not contain the global position of each
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human joint, but the location relative to the root joint (pelvis). The ambiguity in AoA based lo-

calization techniques is not an issue because continuous human pose estimation mainly focuses

on monitoring the relative movement of human limbs. As a tradeoff, the additional constraint

is that the initial human skeleton should be the input to the system, which contains the length

of each human limb, so that the the precise relative joint location can be estimated based on

rotation angles.

As in RFID-Pose [157] and Cycle-Pose [180], vision data collected by a Kinect 2.0 camera

is used as labels for supervised training of the deep learning model. The model is trained with

a loss function that computes the difference between the estimated pose and the labeled vision

data sampled simultaneously when the RFID data is collected, so the well-trained network can

effectively transform RFID data sequence to a sequence of 3D human poses [157].

8.4 Challenges in Domain Adaptation

RF-based systems can better protect users’ privacy and do not require sufficient lighting, com-

pared to vision based approaches. However, they also bring about several unique challenges.

Unlike vision data, the RF signal is usually sampled with unrelated noise from the system itself

and the environment, which is hard to mitigate. The same test subject performing the same

activity could generate very different RF data when being sampled in different environments,

making it hard to reconstruct poses using a model well trained offline. To improve the adapt-

ability of the system to different environments, generalization of the deep learning model is a

big challenge needs to be addressed.

To analyze the influence of the environment, we use the term data domain to denote a

specific wireless propagation environment in this paper. Since the tags are attached to the

human body, a different data domains could be generated by the following ways. First, we fix

the antennas and change the position of the subject. Second, we fix the subject position but

change the antenna deployment. Finally, we could change the surrounding around the subject

or the antenna. The wireless propagation environment depends on the characteristics of all the

propagation paths, which could be significantly different in a different data domain.
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Figure 8.3: Illustration of data domains in RFID sensing systems.

However, the passive tags are merely powered by the incident signal from the reader,

while the reader has a threshold for received power needed for a successful tag interrogation.

Following FCC regulations, the effective radiated power of RFID should be less than 1watt.

Therefore, we usually need to ensure that all tags are within 5 meters from the antenna. Com-

pared to other long-range systems, e.g., WiFi and Radar, the RFID system is considered as a

near-field system, and the environmental interference is relatively weaker. The data domain of

RFID sensing systems is mainly determined by the relative position between the subject (i.e.,

the tags) and the reader antenna. As shown in the left plot in Fig. 8.3, when the subject stands

at different positions, i.e., P1 or P2, the sampled phase data will come from two different data

domains denoted by Dp1 and Dp2, respectively.

The divergence of different data domains is mainly caused by: (i) the divergence in suc-

cessful interrogation probability, and (ii) the distortion in RFID phase data, which are analyzed

in the rest of this section.

8.4.1 Successful Interrogation Probability Divergence

The first cause of data divergence in different domains is the variation in Successful Interroga-

tion Probability. When multiple tags are scanned by a reader, some tags are more likely to be

detected, while some others may hardly be scanned. We define Successful Interrogation Prob-

ability as the probability for a tag to be successfully interrogated by the reader, which mainly

depends on the received power strength from the tag.
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Following the Friis transmission model, the received power Sr from a passive RFID tag

can be written as [194]:

Sr = GAnGTagγ

(
λc

4πR

)4

St, (8.4)

where St is the reader’s transmit power; GAn and GTag are the gains of the transmit antenna

and the tag, respectively; γ represents the aggregated attenuation coefficient, accounting for the

losses incurred in the antenna cable and polarization, etc. during the transmission process; λc is

the wavelength of the current channel c; and R is the LOS path range as in (8.2). Eq. (8.4) shows

that with the same antenna and tag, the received power strength is degraded by an increased

LOS path distance R and the attenuation loss γ, as:

Sr = Kcγ

(
1

R

)4

St, (8.5)

where Kc is the product of all other coefficients other than γ and R, which takes different values

in different tag and antenna deployment scenarios.

For example, see Fig. 8.3. When the subject is in the P1 position, the LOS path distances

for Tag 1 and Tag 2 satisfy R1 > R2. Because of the limited scanning range of the polarized

antenna, the polarization loss γ of Tag 1 is also higher than that of Tag 2. Referring to (8.5),

on the same channel c, the received power from Tag 1, denoted by STag1
r , should be smaller

than that from Tag 2, denoted by STag2
r . However, when the subject is sampled in position P2,

we will have STag1
r > STag2

r . In RFID systems, tags with a higher Sr are more likely to be

successfully interrogated than tags with a lower Sr, especially when multiple tags are scanned

by a single antenna. Consequently, when multiple tags are attached to the human body, the

sensitivity of the tags could be very different in different data domains.

The influence of Success Integration Probability divergence in different data domains

could be considerable for RFID based pose tracking using an deep learning model. Since

the tags with a higher sensitivity are more likely to be sampled, the training dataset will be

mostly composed of the data from such tags. Thus, the training variables in the deep learning
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Figure 8.4: Phase distortion in RFID data collected in two different data domains.

model will be mostly trained by the data from the tags with higher sensitivity. When applying

a trained deep learning model to a different data domain, the inference performance could be

poor, since the Success Integration Probability in the new data domain could be very different

from that where the model was originally trained.

8.4.2 Phase Distortion in Different Data Domains

The second cause of data domain divergence is the phase distortion caused by different antenna

deployment scenarios. As (8.2) shows, the phase data of each tag is determined by the LOS

propagation path distance R, which is the length of the space vector R⃗. For the tags attached

to a moving human body, we can consider the overall space vector as the sum of two subspace

vectors as: R⃗ = R⃗s + R⃗d, where R⃗s is the static vector determined by the deployment scenario

and R⃗d is the dynamic vector generated by the subject’s movements.

Fig. 8.4 plots 30 sequentially received phase data from 10 RFID tags attached to the hu-

man body, where the phase value is represented by different colors. Two antennas are used

to interrogate the tags simultaneously. We change the antenna deployment positions to create

two different data domains. From the figure, we can observe considerable divergence in the

collected phase values from the two data domains.
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According to (8.2), the sampled phase Θ is affected by both R⃗s and R⃗d as:

Θ =
2π2|R⃗s + R⃗d|fc

v
+Θc, c = 1, 2, ..., 50. (8.6)

Even if we have an identical R⃗d in the two data domains (i.e., the same subject and the same

movement), the sampled phase could still be very different when the antennas are deployed dif-

ferently (which leads to a different R⃗s). Consequently, different antenna deployment scenarios

will have an impact on the RFID phase distortion, causing considerable divergence between the

datasets sampled from different environments.

Unlike Success Interrogation Probability divergence, a change in the operating environ-

ment usually causes considerable phase distortions in all sampled phase data. Thus, the model

variables in the deep learning network should be trained and optimized to combat such phase

distortion. Given all kinds of possible deployment environments, it is a big challenge to gener-

ate a well-optimized deep learning model, which is generalizable to all different environments.

8.5 Meta-learning based Solutions

8.5.1 Meta-learning for Domain Adaptation

The adaptation problem to new data domains or new tasks has been investigated in prior works.

On one hand, researchers try to optimize the model variables, so that the network can achieve

good adaptation in different data domains. The most straightforward approach is to train the

model using datasets from more and more data domains. However, to achieve a good gen-

eralization performance, the training data should cover numerous data domains, incurring an

overly high cost on obtaining labeled training data. To address this issue, the adversarial learn-

ing approach has been proposed to improve network adaptability by training using a limited

number of data domains with the generative adversarial network (GAN) model [181, 217]. A

domain discriminator is leveraged to constrain the loss function of the neural network, in order

to combat the unrelated features from different data domains. The advantage of this approach

is that the network does not need to be trained again when applied to a new data domain, but
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the network variables are not well optimized when only considering the specific known data

domains.

On the other hand, the network variables can be fine-tuned in the new data domain. Rather

than addressing the data divergence issues in the well-trained network, this approach relies on

additional training data for fine-tuning. The purpose is to let the network be further optimized

in the specific new domain with a small amount of new training data sampled from the new

domain. For typical pose tracking applications, e.g., video gaming or long-term pose monitor-

ing, such light calibration is usually acceptable. Therefore, fine-tuning has been recognized as

a promising way to improve generalization. With this approach, the network variables should

first be well initialized in the pretraining stage, and then the fine-tuning process will be per-

formed quickly with only a few additional data from the new data domain.

Meta-learning has been proved to be an effective technique for model pretraining so that

a pretrained model can be quickly adapted for a new data domain [184]. In the case of the

RFID based pose tracking, when data is sampled from an untrained domain, the performance

of the previously trained model will usually degrade. New training data sampled from the new

data domain is necessary to fine-tune the model for the new domain. The MAML algorithm is

a representative meta-learning algorithm to pre-train the model for a satisfactory initialization

before fine-tuning [185]. The Reptile algorithm [195] is another representative meta-learning

algorithm for model pretraining, which has been shown to achieve a similar performance as

MAML but at a lower computational complexity. We leverage these two algorithms in Meta-

Pose to adapt the model to a new, unknown environment with few-shot fine-tuning using a few

new training data.

In the Meta-Pose system, we implement both meta-learning algorithms for network ini-

tialization, and then fine-tune the pretrained network for a new data domain using only a few

data examples.

These three key components are presented in the remainder of this section.
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8.5.2 Meta-learning Framework with Domain Fusion

The objective of meta-learning is to determine the satisfactory initial model variables through

network initialization, which can then be adapted to a new data domain with a few training

examples. With appropriately trained initial variable x, the network loss for data domain D

should be minimized after few steps of fine-tuning. Thus, the optimization problem for network

initialization can be formulated as:

min
X

ED[L(U
k
D(X))], (8.7)

where L(·) denotes the loss function of the network, and Uk
D(X) denotes the gradient descent

operation that updates variables X for k times using the data sampled from D, which is the

Adam algorithm.

Equation (8.7) shows that, the meta learning algorithm considers the gradient descent

process as optimization target. Thus, rather than the normal training process based on the gra-

dient of the loss function ∆L(X), meta-learning calculates the gradient of the gradient descent

∆L(Uk
D(X)) in each training step. From the equation we can see that the performance of meta-

learning can be determined by the amount of training data domain in D. However, it is highly

costly to directly sample a large amount of human pose data from numerous data domains.

Therefore we develop a domain fusion based meta-learning algorithm for model pretraining.

The domain fusion algorithm randomly select samples from the four known domains to form

new domains, in order to increase the number of known domains for pretraining.

Figure 8.5 represents the brief structure of the training procedure of the proposed Meta-

Pose system, which consists of network initialization and fine-tuning in a new domain. As

shown in the figure, the deep learning model is first pretrained using datasets from a few (e.g.,

four) known data domains, which are sampled when the subject is standing at four different

positions. The the network is pretrained with two different meta-learning algorithms. Since the

second-order gradient ∆L(Uk
D(X)) is hard to calculate in practice, we leverage the first-order

approximation instead to update the training variables. Based on the divergence in the first-

order approximation, we develop two different initialization approaches based on Reptile and
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Figure 8.5: Training framework of the proposed Meta-Pose system.

Algorithm 2: Reptile based Initialization Algorithm
1 Input: Sampled data sets from the four known data domains (denoted by D1, D2, D3, and

D4);
2 Output: Optimally initialized variables Xt for the pretrained network.
3 Randomly initialize the training variable as X;
4 for i = 1 : n do
5 Generate di by randomly sampling from D1, D2, D3, and D4;
6 Randomly sample k batches from di;
7 Set the inner loop training variables: Xin ← X;
8 for j = 1 : k do
9 Update the variables in Xin with loss function L as: X ′

in = U1
di
(Xin),

Xj = X ′
in −Xin, Xin ← X ′

in;
10 end
11 Calculate the outer loop gradient as: Ŵi =

∑k
j=1Wj ;

12 Update the outer loop variables X as: X ← X + ϵŴi;
13 end
14 Set Xt ← X;

MAML algorithms, respectively. When transferring the learning task to a target data domain

Dt, we only need to collect very few examples in the target domain to fine-tune the generalized

network.

8.5.3 Reptile-based Network Initialization

In the Reptile-based algorithm, we first fuse the four data domains (i.e., D1, D2, D3, and D4)

into a larger number of fused data domains (i.e., d1, d2, ..., dn). Specifically, each di contains
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40 batches of data randomly sampled from D1, D2, D3, and D4. To solve the optimization

problem (8.7), we need to find the gradient of any fused data domain ∆L[Uk
di
(X)], so the

gradient descent algorithm can be applied to find X by recursive updating. With the Reptile

learning algorithm [195], we first calculate ∆L[U1
di
(X)] for each iteration in the inner loop as:

∆L[U1
di
(Xin)] = U1

di
(Xin)−Xin (8.8)

= X ′
in −Xin,

where Xin is the set of variables used in the inner loop. In the algorithm, denote the one-step

gradient ∆L[U1
di
(Xin)] as Wj . The overall gradient after k iterations is calculated as:

∆L[Uk
di
(X)] =

m∑
j=1

Wj. (8.9)

∆L[Uk
di
(X)] is denoted as Ŵi for each data domain di. In the algorithm, we set k = 8 for

effective training in each data domain. With gradient Ŵi, we solve problem (8.7) by recursively

training variable X in the outer loop iterations as:

X ← X + ϵŴi, (8.10)

where ϵ is the learning rate, which is set to 0.1 in the system. We repeat the updating process for

5,000 times (i.e., setting n = 5,000), so the final training result Xt could satisfy the initialization

requirement of problem (8.7).

8.5.4 MAML-based Network Initialization

With MAML based initialization, we leverage the same method to generate fused data domains

di for each iteration in the outer loop updates. Unlike the Reptile algorithm, ∆L(Uk
D(X))

is approximated by two-step training [185]. Thus, for each iteration, we firstly sample two

batches of data B1 and B2 from the fused data domain di and update the variables Xi with

one-step gradient descent using batch data B1 to obtain X ′
in. In the MAML-based learning
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Algorithm 3: MAML based Initialization Algorithm
1 Input: Sampled data sets from the four data domains (denoted by D1, D2, D3, and D4);
2 Output: Optimally initialized variables Xt for the pretrained network.
3 Randomly initialize the training variables as X;
4 for i = 1 : n do
5 Generate di by randomly sampling from D1, D2, D3, and D4;
6 Randomly sample 2 batches B1 and B2 from di;
7 Set the inner loop training variables: Xin ← X;
8 Update the variables in Xin with loss function L and dataset B1 as: X ′

in = U1
di
(Xin);

9 Update the variables in X ′
in with loss function L and dataset B2 as: X ′′

in = U1
di
(X ′

in);
10 Calculate the outloop gradient as: Ŵi = X ′′

in −X ′
in;

11 Update variables X as: X ← X + ϵŴi;
12 end
13 Set Xt ← X;

algorithm, we set k = 1 to reduce the training complexity. So the outer loop gradient can be

approximated by:

∆L[U1
di
(X)] = ∆L[X ′

in] (8.11)

= U1
di
(X ′

in)−X ′
in.

We next update X ′
in by one more step of gradient descent using another batch data B2 and

generate X ′′
in = U1

di
(X ′

in). Accordingly, the outer loop gradient is estimated as the gradient of

the second step training, which is calculated by X ′′
in −X ′

in. With the outer loop gradient found

by the MAML based algorithm, the training variables X is initialized by recursively updating

it in the outer loop following (8.10), where the learning rate ϵ is also set to 0.1. The update

is also iterated for 5,000 times, so a large number of fake data domains will be used in model

pretraining. After initialization training, the network will be able to be quickly fine-tuned using

a few shots of data sampled from a new data domain.

8.5.5 Few-shot Fine-tuning

After an appropriate initialization of X , the fine-tuning process only requires a very small

dataset from the new data domain. Since the training data are all in the form of data sequences,

including RFID phase data and Kinect vision data [180], the data shots are defined specifically

218



in the Meta-Pose system. We divide the data sequence into small segments during the training

process, each consisting of 30 consecutive data samples sampled within a window of 6s. We

consider one such data batch as a shot in Meta-Pose, and less than 5 shots of data from the

new data domain will be leveraged for fine-tuning. We also find that the type of activities also

affects the fine-tuning performance and will discusses this further in Section 8.6.

8.6 Implementation and Evaluation

8.6.1 System Implementation

To evaluate the performance of Meta-Pose, we develop a prototype system using an off-the-

shelf Impinj R420 reader, which is equipped with three S9028PCR polarized antennas, as

shown in Fig. 8.6. ALN-9634 (HIGG-3) RFID tags are used in Meta-Pose operating in the

Ultra High Frequency (UHF) band. The vision data, used for training supervision as well as

ground truth for evaluating the precision of inference, is collected using an Xbox Kinect 2.0

device. As shown in the figure, we attach 12 RFID tags to the 12 joints of the subject, includ-

ing neck, pelvis, left hip, left knee, right hip, right knee, left shoulder, left elbow, left wrist,

right shoulder, right elbow, and right wrist. With the three reader antennas placed at differ-

ent positions with different heights, every RFID tag can be interrogated by at least one of the

antennas.

Environment adaption is validated using RFID data collected from eight different data

domains, which are generated by specific deployments of the subject and antennas as illustrated

in Fig. 8.7. Seven data domains are sampled in a computer lab, and the eighth data domain is

sampled in an empty corridor. Each domain is a 0.6×0.6 m2 square area, where the subject shall

stand inside performing certain activity during data collection. With the 900 MHz frequency

and 0.33 m wavelength used in the proposed RFID system, a 0.6 m interval is sufficient to

generate considerable divergence to create different data domains.

Among these domains, D1 to D4 are used for model pretraining, where 70% of the sampled

data from each domain is used for training, and the rest 30% is used for testing. D5 to D8 are
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Figure 8.6: Experiment configuration of the Meta-Pose system.

considered as new data domains for evaluating the generalization performance, where 50% of

the data from each of these domains is used for fine-tuning, and the rest 50% is used for testing.

RFID phase data is collected when the subject stands in front of the antennas and re-

peatedly performs specific activities. Different types of activities are sampled in all the data

domains, such as walking, body twisting, deep squatting, and moving a single limb. Five sub-

jects participate in the experiments for sufficient data diversity, including one female and four

males. The sampling rate of the antenna is 110 Hz. However, due to the collision avoidance

protocol, when the reader is interrogating multiple tags, only one randomly chosen tag could

respond to the reader at a time. The sampling rate for each tag of a multi-tag system is not

even nor constant, depending on the relative location of each tag, interference, and the mutual

coupling effect [57]. To deal with the low sampling rate and sparse RFID data, we firstly con-

struct a tensor with the sampled raw data, and then leverage tensor completion to interpolate

the missing data. Finally, the calibrated data fed to the neural network is downsampled to 5 Hz

for processing in realtime.
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Figure 8.7: Illustration of the data domains used in the Meta-Pose experiments.

Table 8.1: Performance Evaluation for Different Subjects
Subject Index Estimation Error

Subject 1 3.62cm ± 0.24cm
Subject 2 4.35cm ± 0.34cm
Subject 3 3.78cm ± 0.22cm
Subject 4 5.12cm ± 0.37cm
Subject 5 4.17cm ± 0.31cm

8.6.2 Overall Performance Evaluation

To demonstrate the overall system performance, we use the 3D human pose data collected by

Kinect 2.0 as ground truth. For each video frame, we calculate the mean error Ψall of all the 12

joints as:

Ψall =
1

12

12∑
n=1

||T̂n − Ṫn||, (8.12)

where T̂n represents the estimated 3D position of joint n, Ṫn is the ground truth, and ||T̂n− Ṫn||

is the Euclidean distance between the two 3D positions.

The overall performance (i.e., mean error) of the fine-tuned network for all the eight data

domains is presented in Fig. 8.8. Recall that only the first four data domains are used for model

221



D1 D2 D3 D4 D5 D6 D7 D8
0

1

2

3

4

5

6

7

8

M
e
a
n
 E

st
im

a
ti

o
n
 E

rr
o
r 

(c
m

)

Pretrained Network

Fine-tuned Network

Figure 8.8: Overall performance in terms of mean estimation error in the eight different data
domains.

pretraining, while the other four domains are used for testing. In addition, we also present

the accuracy of the pretrained network in the figure (i.e., without fine-tuning using additional

data from the new data domain). As shown in the figure, the maximum error of the fine-tuned

network is 4.83 cm achieved in D6, while the minimum error is 3.46 cm achieved in D8. The

minimum pretraining error for the new data domain (i.e., D5 to D8) is 4.91 cm in D8, which is

higher than that of all the pretrained domains (i.e., D1 to D4). The higher pretained errors imply

the large divergence between the known and new data domains. However, with few-shot fine-

tuning, the mean error for all the four new data domains is reduced to 3.98cm, which is very

similar to that of the known data domains. The considerable error reduction in D5, D6, D7, and

D8 is due to the Meta-Pose initialization algorithm. With the well optimized training variables,

the deep learning model can be effectively fine-tuned for new data domains. Compared to the

height of the subject and range of motions, the 3D human pose estimation errors are all small

and negligible. These results demonstrate the high adaptability of the Meta-Pose system.

8.6.3 Fine-tuning for the Two Pretrain Algorithms

For most effective fine-tuning, we conduct experiments to investigate the impact of the number

of shots and the type of activities on different initialization algorithms. Fig. 8.9 illustrates the

accuracy of human pose tracking in the four new data domains with Reptile initialization, which
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Figure 8.9: Fine-tuning performance of Reptile based initialization using different shots of new
data.

are fine-tuned with different numbers of data shots ranging from 1 to 5. Fig. 8.10 shows similar

fine-tuning results but with MAML based initialization. As defined earlier, one-shot of data in

Meta-Pose is defined as a consecutive data sequence within a time window of 6 s. It can be seen

that, after 5-shot fine-tuning after Reptile initialization, the minimum error 3.49 cm is achieved

in D8, while the error in D6 is the highest (i.e., 4.68 cm). For MAML based initialization, the

minimum error 3.53 cm is achieved in D7, and the max error is 4.34cm achieved in D6. From

the performance of different data domains shown in Figs. 8.9 and 8.10, it can be seen that both

Reptile and MAML are able to compute satisfactory initial learning variables. Both models can

be adapted to different new data domains within five shots of fine-tuning.

In addition, although the final estimation accuracy is different in the four data domains, the

performance of fine-tuning is generally improved as more data shots are used. However, as the

figure shows, the improvement becomes not obvious beyond four shots of data for both algo-

rithms. Thus, four-shot fine-tuning will be sufficient when the Meta-Pose system is transferred

to a new environment.

We also examine the impact of different types of activities based on the accuracy of track-

ing different types activities. In Fig. 8.11, we present the n-shot fine-tuning results of Reptile

based initialization in the specific data domain D5 with different types of activities, including
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Figure 8.10: Fine-tuning performance of MAML based initialization using different shots of
new data.

Walking Twisting Standing Still Arm Waving
0

1

2

3

4

5

6

7

M
ea

n
 E

st
im

at
io

n
 E

rr
o
r 

(c
m

)

1-Shot

2-Shot

3-Shot

4-Shot

5-Shot

Figure 8.11: Fine-tuning performance of Reptile based initialization for different activities in
new data domain D5.

walking, body twisting, standing still, and arm waving. we also provide the n-shot fine-tuning

result of MAML initialization in Fig. 8.12 for comparison purpose.

Figure 8.11 shows that, after 5-shot fine-tuning, the minimum error 4.04 cm of Reptile

based initialization is achieved when the system is fine-tuned for the walking activity, while

standing has the maximum error of 5.41 cm. For MAML based initialization, the the minimum

error 3.94 cm is also achieved by the walking activity. We also find that fine-tuning is not as

effective for arm-waving and standing for both initialization algorithms. This is because simple
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Figure 8.12: Fine-tuning performance of MAML based initialization for different activities in
new data domain D5.
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Figure 8.13: Fine-tuning performance of the domain fusion algorithm and typical meta-learning
algorithm.

activities, such as standing and arm waving, contain less information than the more complicated

activities, such as walking. Generally, fine-tuning will be more effective when more informa-

tion is carried in the new data shots. Thus, we conclude that fine-tuning is more effective for

more complicated activities, no matter which algorithm is used for network pretraining.
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Figure 8.14: Pretraining comparison with the baseline method RFID-Pose [157] without fine-
tuning.

8.6.4 Effect of the Domain Fusion Algorithm

The superiority of the domain fusion algorithm used in meta-learning based pretraining is

demonstrated by the next experiment. As shown in Fig. 8.5, we randomly sample training

data from the four known data domains to generate more virtual data domains, i.e., the di’s,

to enhance the performance of the meta-learning algorithms. Fig. 8.13 illustrates the fine-

tuning performance of the domain fusion algorithm and the two representative meta-learning

algorithms. The figure presents the four-shot fine-tuning results with different initialization

algorithms for all the four untrained data domains. As the figure shows, without the domain

fusion algorithm, the minimum estimation error is 5.51 cm, and the maximum estimate error is

7.93 cm, which are quite high for 3D human pose tracking. In contrast, with the domain fusion

algorithm, the minimum error is reduced to 3.36 cm while the maximum error is only 4.83 cm

now. Thus, the greatly reduced errors prove that, the domain fusion algorithm could effectively

enhances the model pretraining and reduce the cost of obtaining training data.

8.6.5 Comparison with a Baseline Scheme

Finally, we conduct a comparison study using our recent RFID based pose tracking system

RFID-Pose as a baseline scheme [157]. As in Meta-Pose, we leverage the same training dataset
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Figure 8.15: Comparison results for a pretrained data domain D4.

Figure 8.16: Comparison results after four-shot fine-tuning for a new data domain D5.

collected from D1 to D4 to pretrain the RFID-Pose model. The estimation error for all the

domains are presented in Fig. 8.14 without fine-tuning. The figure validates that both systems

achieve a good, comparable performance for the known domains (i.e., D1 to D4). However,

RFID-Pose has relative larger errors when applied to the four unknown domains (i.e., D5 to

D8). The maximum error of RFID-Pose is 8.84 cm and the mean error of all the new data

domains is 7.21 cm. In contrast, the mean error of Meta-Pose for the unknown domains is 6.12

cm without fine-tuning. These results indicate that the Meta-Pose initialization algorithm finds

better initial model variables for the new data domains than RFID-Pose.

The superiority of the Meta-Pose initialization algorithm is further demonstrated with the

fine-tuned results. Fig. 8.15 illustrates examples of estimated poses obtained by Meta-Pose and

RFID-Pose for a pretrained data domain D4. The ground truth shown on the left is generated

by Kinect. The middle and the right poses are estimated by RFID-Pose and Meta-Pose after
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Figure 8.17: Fine-tuning performance of the baseline method RFID-Pose in different data do-
mains.

pretraining, respectively. Fig. 8.16 depicts the estimated poses for an unknown data domain

D5 following a four-shot fine-tuning. As demonstrated in these two examples, for a pretrained

data domain, the predicted human poses by RFID-Pose and Meta-Pose are both similar to the

ground truth. However, for the new data domain, the Meta-Pose generated pose is still close

to the ground truth, while the traditional method generated pose looks obviously different from

the ground truth.

Fig. 8.17 illustrates the performance of RFID-Pose for the untrained data domains (D5 ∼

D8), while different numbers of data shots are used for fine-tuning. The figure shows that

the traditional system requires considerably more data for adaptation to new environments.

For example, at least 300 data shots are needed for fine-tuning when adapting RFID-Pose to

new untrained data domain D5, while D6 and D7 require 250 and 200 data shots, respectively.

However, as illustrated in Fig. 8.9 and Fig. 8.10, four data shots are sufficient for Meta-Pose. As

defined before, one-shot data consists of 6s of consecutive data samples, and so four data shots

mean the system needs to collect 24 seconds of training data for a new data domain. However,

with 200 training data shots for D7, the traditional system requires at least 20 minutes of new

training data for domain adaptation, while D5 and D6 need 30 and 25 minutes of new training

data, respectively. The large difference in the amount of training data show that Meta-Pose

effectively reduces the expense of new environmental adaption.
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Table 8.2: Performance Comparison after Fine-tuning
Domain RFID-Pose Meta-Pose (Reptile) Meta-Pose (MAML)

D5 6.72cm 4.23cm 4.55cm
D6 7.62cm 4.83cm 3.91cm
D7 5.46cm 3.57cm 3.30cm
D8 4.62cm 3.36cm 4.24fcm

Dall 6.27cm 3.97cm 4.03cm

The Cumulative distribution functions (CDF) of the estimation errors of the two systems

are plotted in Fig. 8.18. The figure presents the estimation error after four-shot fine-tuning for

all untrained data domains. The figure shows that the median estimation error of RFID-Pose is

3.94cm, whereas the median error of Meta-Pose is 6.87cm. Furthermore, we observe that the

overall estimation error of RFID-Pose is considerably higher than the Meta-Pose system.

Table 8.2 presents the mean estimation error for each untrained data domain. As the table

shows, the mean error of RFID-Pose for all the new data domains is 6.27 cm, while the mean

errors of Meta-Pose with Reptile and MAML based pretraining are 3.97 cm and 4.03 cm,

respectively. We find that the RFID-Pose error is also reduced by fine-tuning, but its estimation

error for new data domains is still quite high.

The experiments show that larger datasets sampled in the new environments are needed for

RFID-Pose to achieve a satisfactory fine-tuning performance, which considerably increases the

training data collection effort and cost. In contrast, the error of Meta-Pose can be effectively

reduced by few-shot fine-tuning, because the meta-learning-based algorithms have suitably

initialized the model variables based on the known data domains. Meta-Pose is able to quickly

optimize its training variables for untrained data domains with a few data examples. Through

these experiments, we demonstrate that Meta-Pose can better adapt to unknown environments

compared with the baseline scheme. Thus it can be easily deployed in practice in different

application environments.
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Figure 8.18: The CDF curves of the four-shot fine-tuning results of RFID-Pose and Meta-Pose.

8.7 Conclusions

In this paper, we proposed an RFID based realtime 3D pose tracking system, termed Meta-Pose,

that is environment-adaptive. A novel Meta-Pose initialization algorithm was proposed to pre-

train the network with several known data domains, and few-shot fine-tuning was then utilized

to adapt to unknown data domains. The Meta-Pose system was developed with two different

meta-learning algorithms, i.e., Reptile and MAML. The Meta-Pose system was implemented

using off-the-shelf RFID reader and tags. Extensive experiments were conducted with ground

truth provided by Kinect 2.0 vision data. Meta-Pose’s high accuracy and adaptability to new

environments were demonstrated by our experimental results and a comparison study with a

state-of-the-art baseline scheme.
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Chapter 9

TARF: Technology-agnostic RF Sensing for Human Activity Recognition

9.1 Introduction

Human activity recognition (HAR) has been recognize as one of the most important technol-

ogy for many Internet-of-Things (IoT) applications, such as smart homes, safety surveillance,

and health-care monitoring [196]. Video cameras and wearable sensors, such as smart watches

and gyroscopes embedded in smartphones, are mostly used in traditional HAR solutions [197].

However, vision based HAR is usually constrained by the lighting condition and interference

from the background, and may raise privacy concerns, while wearable sensors are uncomfort-

able for prolonged usage. As a result, several RF-based HAR solutions, such as WiFi [19,198],

Radio Frequency Identification (RFID) [192], and various types of radars [199], have been

developed to overcome such constraints. By incorporating deep learning algorithms, these RF-

based HAR approaches were shown effective to distinguish various types of human activities.

However, the existing solutions are each closely designed and tailored for a specific RF

technology or platform. In the growing trend towards smart IoT systems, various RF sens-

ing technologies are emerging. The limitation of being tied up with a specific technology or

platform will hinder the development of large-scale, and easy-to-deploy HAR systems. It will

be highly desirable to develop a HAR solution that can work with different types of RF tech-

nologies. First, such a technology-agnostic solution will greatly reduce the cost and overcome

the barrier of wide deployment of HAR systems. For example, an existing RFID-based solu-

tion, e.g., [192], does not work with WiFi or radar. However, a user that does not have access
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to RFID can still make use of a technology-agnostic system with whatever RF sensing plat-

form that is available, e.g., WiFi, without needing to acquire an RFID system. In addition, a

technology-agnostic system can be used both in the lab, where both radar and RFID are avail-

able, and in the home, where there is only WiFi. Such a technology-agnostic solution will be

of great value to users in such scenarios. Second, due to the different frequency band, wire-

less communication protocols, and hardware design, various RF platforms have their unique

strengths and weaknesses in specific deployment environments. WiFi-based techniques, for

example, can cover a large area, but are also susceptible to interference from the surrounding

environment. RFID, on the other hand, is more resistant to interference from the environment,

but is restricted by the shorter interrogation range, and the collisions and the mutual coupling

effect induced by crowded tags. A technology-agnostic approach that utilizes the diverse, and

sometimes complementary RF sensing technologies will lead to generalized and more robust

HAR systems.

Obviously, this is a highly challenging problem given the variety of frequency bands, pro-

tocols, and hardware used in different RF sensing systems. The same propagation environment

will become very different wireless channels and the same human activity will be transformed

into very diverse RF representations. For example, Fig. 9.1 presents the RF data captured by

Frequency-Modulated Continuous Wave (FMCW) radar, RFID, and WiFi for the same kicking

and running activities, respectively. The same human activities are translated into very different

RF data, due to the different channel frequency, Physical layer (PHY) protocols, and hardware

used in these three RF sensing technologies. Not only the metrics used to describe such mea-

surements are very different, but also the characteristics as indicated by the measurements for

the same human activity exhibit a high degree of diversity. It is a great challenge and open

problem to develop a technology-agnostic system to detect the original human activity from

such diverse representations.

In this paper, we propose a novel generalized, technology-agnostic RF sensing system,

termed TARF, for flexible and accurate human activity recognition utilizing a wide range of
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Figure 9.1: Raw RF signals sampled by different RF devices.

different RF sensing technologies. We first investigate the causes of the barriers between var-

ious RF technologies and find that the diversity is mostly caused by three factors: metric di-

versity, measurement sensitivity, and distinct translation of human activity to RF features. To

address these problems, we first calibrate the RF data from different RF sensing technologies

to represent them in a unified format. We then propose a signal preprocessing module that uses

the Short Time Fourier Transform (STFT) to generate a generalized RF feature tensor, which

can limit the interference of metric diversity and sensitivity diversity of different RF sensing

technologies. In addition, we propose a Domain Adversarial Neural Network (DANN) to com-

pensate for the discrepancy in RF signal translation. The domain discriminator of the DANN is

to optimize the training variables in the feature extractor, thus allowing the network to concen-

trate on learning the generalized motion features, and ignore the technology-specific features

for HAR.

The main contributions of this paper include the following.

• To the best of our knowledge, the TARF system is the first technology-agnostic human

activity identification system capable of performing generalized and accurate HAR using

various RF sensing platforms.

233



• We investigate the challenges in technology-agnostic HAR and show that they are caused

by three main factors: metric disparities, heterogeneous sensitivity distributions, and

diverse motion feature translations.

• A universal RF data preprocessing module is proposed to reduce the disparity between

different RF sensing technologies. The sensitivity diversity is addressed by remapping

the signal strength measurements, and generalized tensor data is constructed using STFT.

The DANN is utilized to categorize different types of human activities, which further

mitigates the interference from diverse RF domains.

• We develop a prototype of TARF to demonstrate the robustness of human activity recog-

nition when data collection and testing are conducted using four different RF sensing

technologies, including FMCW radar, WiFi in 2.4GHz and 5GHz bands, and RFID. The

proposed system is compared with the traditional Convolutional Neural Network (CNN)-

based technique, and the results validate that the proposed TARF system is resilient to

technology-agnostic human activity recognition.

The remainder of this paper is organized as follows. We first review the related work on

RF-based HAR and adversarial domain adaptation in Section 9.2, We then introduce the pre-

liminaries and the problem statement in Section 9.3. Section 9.4 provides an overview of the

proposed TARF system, and Section 9.5 presents the detailed design of the key TARF compo-

nents. Section 9.6 presents the experimental evaluation of the TARF system and Section 9.7

concludes this paper.

9.2 Related Work

The prior works on human activity recognition can be roughly categorized as camera-based,

sensor-based, and wireless-based techniques [200]. In this paper, we mainly focus on RF-based

human activity recognition, including Radar-based, WiFi channel state information (CSI)-

based, and RFID-based methods. We will review such related work, as well as the recent

works on adversarial domain adaptation for wireless human activity recognition in this section.
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9.2.1 RF-based Human Activity Recognition

Several radar systems have been utilized for human activity recognition, such as the Frequency-

Modulated Continuous Wave (FMCW) radar, Doppler radar, and Ultra Wide-band (UWB)

radar [201]. FMCW radar was first employed for human activity monitoring, e.g., through-

wall monitoring [202], 3D passive human tracking [203], and vital sign monitoring [80], by

measuring the distance and velocity of body movement. However, these works require special

hardware (e.g., Universal Software Radio Peripheral (USRP)) to implement the RF sensing sys-

tem (usually operating at 5.46–7.25 GHz), thus incurring a higher cost. Commodity mmWave

radars (e.g., IWR1443BOOST from Texas Instruments) operating at 77 GHz have also been

utilized for various RF sensing tasks, such as human activity recognition [199], user authen-

tication [204], and vital sign monitoring [205]. In [206], vision data captured by the Vicon

motion capture system was used for supervised training of the deep learning model, which

constructs 3D human meshes from sparse point clouds. Doppler radar can detect the velocity

and direction of the subject, and has also been utilized for human activity recognition [201].

Low-cost UWB devices have been shown useful for vital sign monitoring [207] and human

activity recognition [208], where meta-learning was used to adapt to different deployment sce-

narios.

As a dominant wireless communications technology, there has been great interest in uti-

lizing WiFi for human activity recognition. Several open-source tools have been developed to

extract channel state information (CSI) from the Orthogonal frequency division multiplexing

(OFDM) channel, such as for Intel 5300 cards [209], the ESP32 WiFi microcontroller [210], the

nexmon CSI Extractor for Broadcom and Cypress WiFi chips [211], the Atheros CSI tool [212],

and the openwifi tool [213]. CSI amplitude and phase difference data have been used in ap-

plications for activity recognition, vital sign monitoring, and gesture recognition [19, 198]. In

addition, deep learning techniques have great potential for achieving high recognition accu-

racy [10]. For example, long short-term memory (LSTM), a recurrent neural network (RNN)

architecture, outperformed the traditional model-based method on human activity recognition
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using WiFi CSI amplitude data [214]. Generative adversarial networks (GAN) have been uti-

lized to augment training data for human activity classification [215]. As in [206], high pre-

cision 3D skeletons captured by the Vicon motion capture system were used to supervise the

training of the deep learning model that works with WiFi CSI data [131].

RFID is a near-field communication system originally developed for identifying tags at-

tached to objects. Low-cost and lightweight RFID tags can be attached to the human body

as wearable sensors for activity monitoring. Commodity RFID readers (e.g., the Impinj R420

reader) can extract RF phase angle, Doppler frequency, and Peak RSSI from received signals,

which can be used to estimate the range between the tag and the reader antenna. RFID-based

sensing is usually more resilient to environmental interference than other RF sensing methods

(e.g., radar and WiFi) due to the short range. RFID sensing techniques have been developed

vital sign monitoring [139], driver fatigue detection [138], activity recognition [192], and 3D

human pose estimation [157].

9.2.2 Adversarial Domain Adaptation for RF Sensing

Although deep learning has a great potential for RF sensing applications, it still faces great

challenges for real-world applications. This is because different deployment environments,

different users, or different wireless devices will lead to different data distributions, i.e., do-

main (or distributional) shift will occur between the source domain and target domain. A well

trained deep learning model may fail when applied to unseen data. To address this challenge,

generative adversarial network (GAN) [215], meta-learning [208,216], and adversarial domain

adaptation [217] have been proposed to adapt a trained deep learning model in the source do-

main to the new RF data in the target domain. In the following, we review several related works

on adversarial domain adaptation methods for human activity monitoring.

Adversarial domain adaptation comprises feature learning, classifier learning, and domain

adaptation, where adversarial training is leveraged to address the domain adaptation problem.

The goal is to obtain an effective feature representation, which is discriminating for the learning

tasks but invariant for the domain classifier. For example, the conditional domain adaptation

architecture was used for radar-based sleep stage classification in different indoor scenarios,
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which was focused on supervised tasks [218]. In [217], unlabeled data was used in adversarial

training for human activity classification, where four wireless devices were adopted to remove

the environment and subject specific information. Furthermore, multi-view deep learning was

introduced to improve the classification accuracy in different environments by fusing different

wireless data [219], while multi-adversarial domain adaptation was proposed for WiFi based

in-Car activity recognition [220]. All the above related works were focused on environment and

user adaptation using adversarial domain adaptation. Unlike the related works, in this paper, we

develop a novel technology-agnostic human activity recognition framework utilizing different

wireless techniques such as radar, WiFi, and RFID.

9.3 Towards Technology-agnostic Generalization

9.3.1 Preliminaries of the Wireless Technologies

To develop the generalized technology-agnostic approach for RF-based human activity sensing,

we first present the preliminaries of RF sensing with different RF technologies.

FMCW Radar

Frequency-Modulated Continuous Wave (FMCW) radar is a useful technology to provide both

distance and velocity measurements. With the FMCW radar, the transmitted signal is modu-

lated in the form of chirps [221], whose frequency keeps on increasing periodically. In each

period, the signal frequency fM is modulated as:

fM(t) = f0 +
Bt

Tc

, 0 ≤ t ≤ Tc, (9.1)

where f0 is the starting frequency, B is the bandwidth of the channel, and Tc is the duration of

each period. The reflected chirp signal is received by the radar and fused with the transmitted

signal. Based on (9.1), the fused signal SFMCW (t) at time t is given by [222]:

SFMCW (t) = A exp

{
−j2π

(
f0τ +

Bτt

Tc

− Bτ 2

2Tc

)}
, (9.2)
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where A is the gain of the signal and τ represents the propagation delay of the backscattered

signal. Eq. (9.2) indicates that the frequency of the fused signal, Bτ/Tc, is determined by the

propagation delay of the signal τ . By multiplying the speed of light, τ will be translated to

the distance between the reflecting object and radar. Taking Fourier Transform on the fused

signal, the power spectrum can therefore reveal the reflected signal strengths from various

distances, which is referred to as the range profile [222]. When a person moves inside the radar

detecting range, the gathered range profile will change with the body movements. As a result,

the received range profile can be leveraged to distinguish between different movement types.

Commodity 2.4GHz and 5GHz WiFi

The WiFi technology has also been explored as a promising solution to non-intrusive RF sens-

ing of human activity. Compared to FMCW radar, WiFi is quite accessible due to the wide

deployment of the infrastructure and the low-cost commodity devices. Recent WiFi sensing

techniques mostly utilize the Channel State Information (CSI) extracted from the device driver,

which provides a fine-grained representation of the orthogonal frequency-division multiplexing

(OFDM) channel.

Considering the multipath effect of signal propagation, the CSI of a channel c can be

written as [212]:

SWiFi(c) =

Nc(t)∑
n=1

An exp {−j2π(fcτn + ϕc)} , (9.3)

where Nc(t) is the total number of propagation paths, fc is the central frequency of channel

c, ϕc is the phase offset of channel c, and An and τn are the gain and the propagation delay

of the nth path, respectively. It can be seen that the channel offset largely determines the

received CSI for all propagation paths. Human activity is captured in the CSI because, as a part

of the propagation environment (or, the WiFi channel), moving human body parts can create

considerable variations in most propagation paths, such as the gain An, the propagation delay

τn, and even the total number of paths Nc(t). As a result, both CSI amplitude and phase can be

leveraged for learning human activity.
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RFID

RFID devices have also been utilized in recent years for human activity monitoring. As wear-

able sensors, RFID tags are more resistant to environmental interference than broadband sys-

tems such as WiFi. Furthermore, RFID systems’ low power consumption makes them a suitable

RF sensing technology for the Internet of Things (IoT). The line-of-sight (LOS) path usually

contributes to the dominant component in the received signal, and hence the received signal on

a channel c can be written as:

SRFID = Ac exp {−j2π(fcτ + ϕc)} , (9.4)

where Ac, fc, and ϕc are the gain, frequency, and phase on channel c, respectively, and τ is the

propagation delay. With the Low Level Reader Protocol (LLRP) [38] used in RFID systems,

the phase value of signal SRFID can be extracted for sensing of human activities. By attaching

tags to the human body, the propagation delay τ of each tag changes along with the movements

of body parts. Thus, human activities can be captured by the variations in phase values of the

attached tags.

9.3.2 Problem Statement

Developing the technology-agnostic approach for human activity recognition is highly chal-

lenging. So we need to formulate the problem and figure out the mechanism to integrate the

RF based techniques. Following the Fourier expansion, we can write the source signal S(t) of

body movement as a combination of different periodical components, as

S(t) =
M∑
n=1

Kn cos(Wnt+ ϕn), (9.5)

where Wn is the frequency of the sinusoidal signal, Kn denotes the coefficient, ϕn represents

the initial phase of each component, and M is the total number of periodic components. The

set of parameters, i.e., {Wn, Kn, ϕn,M}, represent the unique features of the corresponding

human activity. The received signal reflected from the human body is dynamically distorted by
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the moving human body, and the distortion is mainly due to the prorogation path changed by

the activity S(t). Therefore, the reflected signal can be written as

R(t) = AT exp

{
−j
(
2π

D + S(t)

λ
+ ϕT

)}
, (9.6)

where D is the average distance of the propagation path, λ denotes the wavelength of the trans-

mitted signal, and AT and ϕT represent the amplitude and the initial phase of the signal, respec-

tively. Eq. (9.6) indicates that the human activity introduces an offset on the phase component

∠R(t). The relationship between ∠R(t) and the source signal S(t) can be further investigated

in the frequency domain. Taking Fourier transform on ∠R(t), we have

Γ(ω) =

∫ ∞

−∞

{(
2π

D + S(t)

λ
+ ϕT

)}
e−jωt dt (9.7)

= ϕcδ(0) +
π

λ

M∑
n=1

Kn[e
jϕnδ(ω −Wn) + e−jϕnδ(ω +Wn)],

where δ(ω) is the Dirac function, and ϕc is a constant given by ϕc = 2πD/λ + ϕT . The

expression of Γ(ω) illustrates the mapping from the source signal S(t) to the phase of the

reflected signal ∠R(t). The phase is determined by the unique features of the human activity,

i.e., {Wn, Kn, ϕn,M}.

The challenge in many RF sensing applications is, accurate phase angle of the reflected

signal is usually hard to obtain due to the multipath effect. The mapping from the human ac-

tivity signal to the received phase sample becomes highly complex. Traditional RF HAR based

systems employ various signal preprocessing techniques to combat the interference caused by

the complex mapping, to extract useful features for motion classification. Unfortunately, a

specific preprocessing method developed for one RF technology is usually not applicable to

other RF technologies, due to their different frequency bands, different communication proto-

cols, and different types of hardware. To address this challenge, the primary objective of our

technology-agnostic approach TARF is to learn the generalized features of the human activity

signal S(t) from various RF technologies, which will facilitate the accurate classification of

different human activities.
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9.4 System Overview

9.4.1 Main Challenges

Each existing RF sensing based activity recognition system is closely tailored for the specific

technology and has its unique advantages and certain limitations. Such a system designed

for one RF technology usually does not work for a different technology (e.g., FMCW radar

vs. RFID). Given the availability of various RF technologies in our daily lives, a technology-

agnostic approach would be highly desirable to achieve better adaption to different sensing

scenarios, as well as greatly reduce the barrier to deploying the system.

However, pursuing a generalized approach that works with very different RF technologies

is a great challenge due to two main reasons. First, different RF technologies are established

on different frequency bands. For example, the Ultra High Frequency (UHF) RFID systems

operate on the 900 MHz band, WiFi works on the 2.4GHz or 5GHz bands, and the FMCW

radar used in our experiments is on the 76 ∼ 81 GHz millimeter wave (mmWave) band. Even

deployed in the same environment, different RF technologies see different propagation channels

and different signal characteristics. Second, due to their different physical layer and medium

access control layer protocols, as well as different device drivers that are available, the RF data

collected by different RF devices are highly diverse. It is extremely challenging to develop a

generalized approach to accurately detect human activities from such diverse RF data.

9.4.2 System Architecture

To address the above challenges, we design a novel system TARF that is generalizable to di-

verse RF data measured with different RF sensing technologies to perform technology-agnostic

human activity recognition. Fig. 9.2 provides an overview of the system architecture of TARF,

which is composed of three main components, including (i) RF signal collection, (ii) general-

ized RF signal preprocessing, and (iii) domain adversarial deep neural network based activity

recognition. In the RF signal collection module, raw RF signals are sampled by several dif-

ferent RF sensing platforms. According to (9.7), we are interested in the phase angle ∠R(t)

of the collected signals. Thus, we use the phase signal from the RFID system, and the phase
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Figure 9.2: Architecture of the proposed technology-agnostic RF sensing system TARF.

difference signal from 2.4GHz and 5GHz WiFi systems. For FMCW radar, phase is not a good

indicator of human activity because of the modulated frequency. Instead, we leverage the range

profile from the FMCW radar as an input signal, which is indicative the propagation distance

of the signal and is readily available from the device.

In the proposed technology-agnostic TARF system, the signal will be treated using the

same generalized signal preprocessing module, no matter which RF technology is used for

sensing. Generalization to multiple RF technologies should begin with a standardized RF data

format. We propose a generalized RF data preprocessing module for different RF sensing

systems, where the input signal is treated as a group of different observations of the same

source signal S(t) and is converted to a generalized input data matrix. Then the general back-

ground removal is implemented with Hampel filters, where the interference from the common

static background is removed. Finally, the observations are reordered according to their signal

strengths to mitigate the sensitivity diversity across different RF devices.

Then, generalized feature tensors will be constructed and fed into a domain adversarial

deep neural network for activity classification. In comparison to a traditional convolutional
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neural network, the domain adversarial neural network is able to acquire more generalized fea-

tures of diverse human activities by combating characteristics gained from other domains. The

details of the signal preprocessing and the domain adversarial deep neural network structure

will be elaborated in Section 9.5.

9.5 Design of the Technology-Agnostic System

In this section, we present the detailed design of the proposed TARF system. We will examine

the challenges in diverse RF data, generalized feature remapping, and activity recognition with

domain adversarial neural networks, and then present our proposed solutions to address these

challenges.

9.5.1 Metric Generalization

Challenge: Diversity in Measured Data

The first challenge of generalization arises from the use of very different types of channel data.

Fig. 9.3 illustrates the raw data collected for the same human activity sampled by three different

RF sensing platforms over a 4-second period. For convenience, we have normalized the data

from each platform. In these “temperature” plots, a lighter color, e.g., yellow, indicates larger

values or higher strengths, while a darker color, e.g., dark blue, represents smaller values. Each

plot in Fig. 9.3 presents a different type of sampled data. Specifically, Fig. 9.3(a) shows the raw

range profile sampled by an FMCW radar, where the 2-dimensional data (or, matrix) consists

of the signal strengths sampled over time for different ranges from 1 m to 5 m. The RFID data,

plotted in Fig. 9.3(b), comprises the phase values sampled from 12 RFID tags. The WiFi data,

plotted in Fig. 9.3(c), consists of the phase differences, i.e., the difference of phases from a pair

of WiFi antennas, sampled from 30 subcarriers.

It is obvious that such RF data are very different, each with their unique features, making it

extremely hard to handle with a generalized model. In particular, for the three RF technologies,

the range profile of FMCW radar is measured in decibel (dB) typically ranging from 20 dB to

120 dB. The phase values sampled from the RFID tags, as well as the phase differences from

243



0 1 2 3 4
Time (s)

1

2

3

4

5

R
an

g
e 

(m
)

(a) Range profile sampled by the FMCW radar.
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(b) Phase values from different RFID tags.
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(c) Phase difference from 30 WiFi subcarriers.

Figure 9.3: Raw data sampled by different RF technologies for the same human activity over a
4-second period.

the 30 subcarriers of the WiFi channel, vary from 0 to 2π rad. The different metrics incur

considerable diversity in the scale of data measurement. Moreover, such RF data with different

metrics cannot be directly generalized into a normalized format.

Proposed Solution

The first step in data preprocessing is to remove the disparity in metrics of different RF hard-

ware platforms. We begin by defining the generalized data matrix in order to gather raw data

from different kinds of RF platforms. The generalized data matrix has the following format:

SG =



F 1
1 F 1

2 . . . F 1
Nt

F 2
1 F 2

2 . . . F 2
Nt

...
... . . . ...

FNF
1 FNF

2 . . . FNF
Nt


, (9.8)

where F represents a RF data measurement for human activities and NF denotes the total

number of measurements. The integer Nt denotes the number of time frames captured by the

RF device. The sampling frequency of all RF platforms is set to 10 Hz in (9.8), therefore the

length of the x-axis Nt is given by Nt = 10×t. Meanwhile, the amount of measurements taken

by different RF platforms determines the size of the y-axis dimension. Each measurement is

regarded as an observation of the source signal S(t), which is generated by the human activity.

With FMCW radar, the subject performs activities within its range and the range profile in

the form of power spectrum is obtained by 256-point fast Fourier transform (FFT). Therefore
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we have NF = 256 for the FMCW platform. With WiFi, a transmitter sends packets to a

receiver, with the subject in the middle. The receiver has three antennas and each can extract

phase data from 30 subcarriers, which results in 90 RF measurements for each received packet.

For RFID based sensing of human activities, we attach 12 tags to the joints of the subject,

including neck, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist,

pelvis, left hip, right hip, left knee, and right knee. Three RFID readers are used to interrogate

the tags, while phase data is collected from received responses. Unfortunately, because of the

Slotted-Aloha-like collision avoidance protocol, only one phase measurement can be collected

by the reader at a time. We employ an effective tensor completion based data interpolation

method [157] to augment the sparse RFID phase data. After tensor completion, each time

frame has 36 phase samples (i.e., from 3 antenna and 12 tags). With the generalized data matrix

employed in the system, we can remove the diversity in metrics of the diverse RF platforms.

9.5.2 Generalized Feature Remapping

Challenge: Diversity in Sensitivity

No matter which RF technique is employed, a number of measurements are gathered at the

same time. However, the sensitivity of these measurements to human activity may be highly

different. For example, in Fig. 9.3(a), the signal strength around 2.5 m is more sensitive to the

human movements, because this is the average distance between the subject and the FMCW

radar. As a result, measurements taken at a distance of 2.5 m should contribute more to the

correct extraction of motion features. When it comes to the RFID technology, however, the

situation is completely different. The sensitivity, as shown in the measurements, is strongly

dependent on the limb where the RFID tags are attached, since the received phase value is

determined by the movements of the RFID tags. The high-sensitivity data should be be more

emphasized for accurate activity detection. Such diverse sensitivity of different RF platforms

also poses a challenge to the development of a general technology-agnostic approach.
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Proposed Solution

To deal with the diverse sensitivity in measured RF data, we should remap the RF measure-

ments from different wireless technologies into a generalized order, so that the same human

action introduces a comparable distribution of measurements. Since the wireless propagation

environment has a great impact on the measured signals, the environment influence should be

firstly removed before the remapping process. Thus, we measure component corresponding to

the impact of the static background, and eliminate it from the sampled signal. Such a back-

ground removal operation is performed on each row of matrix SG using two separate Hampel

filters. The first filter has a window size of 4 for thermal noise reduction, while the other has

a window size of 15 for extracting the background component. To extract the component cor-

responding to the human activity, we subtract the signal filtered by the Hampel filter with the

larger window size from the signal filtered by the Hampel filter with the smaller window size.

After removing the background component, we remap all the rows in SG according to the signal

strength.

The signal strength for row i, denoted by Pi, is computed by the variance of the time

sequence as follows:

Pi =
1

Nt

Nt∑
t=1

(F i
t − µi)

2, (9.9)

where µi represents the mean value of each row. Since the background component has been

removed, the variance of the signal indicates its strength. The new matrix is sorted in descend-

ing order of signal strength. We always choose the first NP rows of data for human activity

recognition. The reordered matrix SR is given by:

SR =



F 1
1 F 1

2 . . . F 1
Nt

F 2
1 F 2

2 . . . F 2
Nt

...
... . . . ...

FNP
1 FNP

2 . . . FNP
Nt


, (9.10)
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Figure 9.4: Examples of the calibrated generalized feature matrix SR measured from the kick-
ing activity. Left: sampled with FMCW radar; Right: sampled with 5GHz WiFi.

where NP is the number of the most powerful signals chosen for activity recognition.

In Fig. 9.4, we present the examples of the reordered matrix SR of the data collected by

FMCW radar and 5GHz WiFi devices, where NP = 30 for a period of four seconds. It can

be seen from the figures that the dimensions of the two signals are equivalent for the same

sampling period. Furthermore, since the background component has been eliminated and the

samples are reordered according to their strength, the overall sensitivity distributions of the two

different RF technologies are now similar to each other.

With the metric generalization and the generalized feature remapping process, regardless

of the physical meaning of the raw sampled data, all RF data measurements could be con-

verted to a generalized data tensor for human activity recognition. Thus, the TARF system

could implement the same signal preprocessing framework for different wireless technologies,

which means the system is also adaptable to RF technologies other than the four technologies

illustrated in the paper.

9.5.3 Activity Recognition with Domain Adversarial Neural Network

Challenge: Diversity in Motion Feature Translation

Since different RF technologies utilize different protocols and frequency bands, the transla-

tion from received RF measurement to the target activity is highly diverse. Although the same

source signal is generated by the same activity, it is transformed into very different RF data by
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the different protocols, frequency bands, and hardware. For example, with the RFID system,

the human activity directly changes the positions of the RFID tags attached to the body. Fol-

lowing (9.4), the change of tag position will introduce significant variation in the propagation

delay τ . However, with the WiFi system, the human activity only affects part of the propagation

paths of the OFDM channel as shown in (9.3). Furthermore, Eqns. (9.3) and (9.4) show that the

different channel frequencies used in RFID and WiFi also generate large diversity in measured

RF data. The considerable frequency diversity (i.e., 900 MHz in RFID and 2.4 GHz and 5

GHz in WiFi) causes large variation on the motion feature transformation in the raw sampled

signals. Since such translation diversity is highly complicated and nonlinear, we propose a two-

step solution to deal with this challenge, i.e., (i) time-frequency (TF) domain transformation

and tensorization, and (ii) a domain adversarial neural network model.

Proposed Solution Step 1: TF Domain Transformation and Tensorization

Given that human activity can be seen as a mixture of distinct periodic components [223], the

characteristics recorded in the frequency domain are more universal than that in the time do-

main. To extract the generalized features from the remapped matrix SR, we perform Short Time

Fourier Transform (STFT) on the remapped matrix to convert each row to a Time-Frequency

(TF) domain matrix, and then construct a TF tensor with NP slices. The TF domain data in-

corporates both frequency domain properties and variations over time. Fig. 9.5 presents one

slice of the generalized TF tensor data, when the window size used in STFT is set to 16. The

examples show that, although sampled by two different RF technologies, i.e., FMCW radar

and 5GHz WiFi, the TF domain data is well generalized with the proposed approach. Thus the

same human activity will produce similar features as shown in the generalized feature tensor.

Deep learning models can then be applied to classify different activities using such generalized

TF tensor data.

Proposed Solution Step 2: Domain Adversarial Neural Network

We propose to use a domain adversarial deep neural network [224] to recognize human activ-

ities using the generalized feature tensors. Compared with the traditional CNN models, the
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Figure 9.5: Examples of one slice of the generalized feature tensor for the kicking activity.
Left: sampled with FMCW radar; Right: sampled with 5GHz WiFi.

Figure 9.6: Structure of the domain adversarial deep neural network used in the TARF system.

domain adversarial neural network can further optimize the feature extractor with the domain

discriminator. The network structure used in TARF is shown in Fig. 9.6, which is composed of

the CNN based feature extractor, the activity predictor, and the domain discriminator.

a) Feature Extraction with CNN: The feature extractor used in the deep neural network is

based on CNN. As a classic neural network structure, CNN could effectively extract the feature

from all the slices in the generalized tensor. As Fig. 8.2 shows, the CNN feature extractor

consists of two convolution layers, where the convolutional kernels used for feature extraction

all have a size of 5 × 5. Each convolution layer is connected to a 2 × 2 max pooling layer to

downsample the extracted feature.

The final feature is formalized as a one-dimensional vector, which is used for the follow-

ing activity predictor and domain discriminator. The generalized tensor used as the input is

sampled every five seconds and transformed by 64-dot STFT. We only use data in the positive
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frequency domain, including 0 Hz, so the dimension of each slice is 33 × 50. The slice num-

ber is determined by Np, which is equal to 30. We find the CNN-based feature extraction for

all data slices may generate too many training variables, making the training time-consuming.

Thus, we downsample the data tensor from 30 slices to 5 slices to reduce the complexity of

network training. After the two feature extraction layers, the final feature is reshaped into a

vector of 5616 elements.

b) Motion Identifier with Domain Discriminator: After extracting features using the CNN, the

activity predictor and domain discriminator are applied, which consist of two fully connected

layers. The final classification probability is calculated by the Softmax function. The loss func-

tion of the activity label predictor, denoted by Lα, is calculated by the cross entropy between

the Softmax output and the activity label as:

Lα =
1

Nb

Nb∑
b=1

Na∑
k=1

ŷbk log
(
ybk
)
, (9.11)

where Nb is the number of training data in a batch, Na is the number of classes of human

activities, ŷbk denotes the estimated probability for class k with data sample b, and ybk is the

class label which is either 0 or 1. Lα represents the accuracy of human activity prediction, and

the deep neural network is trained by minimizing Lα using the gradient descent algorithm.

In addition to the activity predictor, the domain adversarial neural network also employs

a domain discriminator to combat the diversity between different domains, i.e., different RF

technologies. The loss function of the domain discriminator, denoted by Lβ , is calculated

similarly as Lα.

Lβ =
1

Nb

Nb∑
b=1

Nd∑
q=1

ŷbq log
(
ybq
)
, (9.12)

where Nd indicates the number of RF technologies for data sampling and ŷbq denotes the esti-

mation probability for the qth RF technology in the bth sample in the batch. Unlike the normal

gradient descent learning algorithm used for maximizing Lβ , the domain adversarial neural

network performs a reversal gradient update for minimizing Lβ , and the training variables of
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the network are updated as [224]:

X̂γ = Xγ − ξ

(
∂Lα

∂Xγ

− Cr
∂Lβ

∂Xγ

)
(9.13)

X̂α = Xα − ξ
∂Lα

∂Xα

(9.14)

X̂β = Xβ − ξCr
∂Lα

∂Xβ

, (9.15)

where Xγ denotes the training variables in the feature extractor; Xα and Xβ represents the

training variables for the label predictor and the domain discriminator, receptively; ξ denotes

the learning rate; and Cr is the combating rate. The training goal for the feature extractor is

to maximize Lβ and minimize Lα, hence the feature extractor will be trained to ignore the

domain-related features. Accordingly, the network will learn the generalized human activity

related features and abandon the features associated with different RF technologies.

9.6 Implementation and Evaluation

9.6.1 Experiments Setup

Hardware Platforms

To evaluate the proposed technology-agnostic human activity recognition system, we develop

a prototype using several RF technologies, including FMCW radar, 2.4GHz WiFi, 5GHz WiFi,

and the UHF RFID system. The hardware platforms are shown in Fig. 9.7. The FMCW radar

employed in the system, as shown in the figure, is an IWR1843 BOOST single-chip FMCW

mmWave sensor that operates at 76 ∼ 81 GHz. The WiFi devices are integrated with a standard

Intel 5300 network interface card (NIC), which operates at either 2.4 GHz or 5 GHz. The RFID

platform consists of three S9028PCR polarized antennas, one Impinj R420 reader, and ALN-

9634 (HIGG-3) passive RFID tags. An MSI laptop with an NVIDIA GTX 1080 GPU and an

Intel Core i7-6820HK CPU are used for signal processing, model training, and inference.

251



Figure 9.7: RF platforms used in our implementation and experiments.

Figure 9.8: Human activity data sampling for different RF platforms.

Dataset Collection

RF data has been collected by sampling activities performed by a subject in front of the RF

sensing platforms. The individual conducts seven types of different activities, including stand-

ing still, walking, running, squatting, body twisting, kicking, and hand waving. The data is

sampled when the subject continuously repeats the activities. During the data acquisition using

WiFi devices, the WiFi transmitter is set to the injection mode while the receiver is set to the
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Figure 9.9: The environment of Human activity data sampling

monitor mode [212]. Two industrial, scientific and medical (ISM) bands, 2.472 GHz and 5.3

GHz, are used for the WiFi system, which allows us to examine the impact of different bands

with the same WiFi protocol. RFID-based sampling is carried out with 12 passive RFID tags

attached to the 12 joints on the subject’s body, including neck, left shoulder, right shoulder,

left elbow, right elbow, left wrist, right wrist, pelvis, left hip, right hip, left knee, and right

knee. Three polarized antennae are used to interrogate these tags to ensure that each RFID

tag is covered by at least one antenna. The FMCW radar employed in the investigations is a

well-developed commodity mmWave sensor that produces range profiles for the scanned area.

Each of these four RF technologies can independently sample human activities and the

data is processed by the proposed TARF framework.

The detailed deployment for different platforms and experiments configuration are illus-

trated in Fig. 9.8 and Fig. 9.9. As the figure shows, the experiments are conducted in an office

lab. The subject performs different activities in the selected 2m× 4m scanning area illustrated

in Fig. 9.9. In the experiments, we emulate three different usage scenarios for the RF-based

HAR demonstration application, which includes LOS monitoring, NLOS monitoring, and dy-

namic environment monitoring. The LOS monitoring is implemented with cleaning space in the

scanning area, while the NLOS monitoring is conducted by adding chairs between the subject

and the RF platforms. Although the LOS propagation is not entirely eliminated, the obstacle,

like chairs, we used in the experiments could effectively mitigate the signal strength of the LOS

component. In addition, the dynamic environment is introduced by moving people around the
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Figure 9.10: Confusion matrix of human activity recognition with a single RF technology (i.e.,
the FMCW radar). Left: the CNN baseline scheme; Right: TARF.
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Figure 9.11: Confusion matrix of human activity recognition obtained using TARF.

testing subject when the RF data is being collected. In our experiments, 90% of the sampled

data is used for the network training, and the remaining 10% is used for testing.

9.6.2 Performance with Different RF Technologies

To analyze the experimental results, we define the number of correctly classified data samples

as the true positive number (TP), and the number of mistakenly recognized results as the false

negative number (FN). The true positive rate (TPR) and false negative rate (FNR) are calculated
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as:

TPR =
TP

TP + FN
(9.16)

FPR =
FN

TP + FN
. (9.17)

The overall evaluation result is presented in the confusion matrix format, which is composed

of the TPRs and FPRs for all the seven types of activities. The overall accuracy η is calculated

by:

η =

∑7
i=1 TPi∑7

i=1(TPi + FNi)
, (9.18)

where TPi and FNi denotes the true positive number and false negative number for target activ-

ity i, respectively. For convenience, we label different activities with the following acronyms:

standing still–ST, walking–WA, running-RU, squatting–SQ, body twisting–BT, kicking–KI, and

hand waving–WH.

To demonstrate the performance of the TARF system, we evaluated it using different com-

binations of the RF platforms, ranging from using a single RF technology to using all four

RF technologies. The baseline for comparison is the traditional CNN based classification net-

work [225]. The CNN network is composed of the same feature extractor and activity predictor

as in TARF, but without the domain discriminator or reversal gradient update. Fig. 9.10 presents

the confusion matrices obtained with a single RF technology (i.e., the FMCW radar). The left

confusion matrix is the result obtained by the traditional CNN based approach, and the right

confusion matrix is generated by the proposed technology-agnostic TARF system. The overall

accuracy is 90.86% for the baseline CNN method and 91.00% for the proposed TARF approach.

These results demonstrate that both CNN and TARF can effectively distinguish the seven types

of human activity. This is because, when there is only one data domain, the influence of the

domain discriminator could be ignored. Therefore, the performance of domain adversarial deep

neural network is equivalent to that of the traditional CNN model.
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Figure 9.12: T-NSE illustration of human activity recognition from four RF technologies ob-
tained using CNN baseline scheme.

We next examine the case when all the four RF sensing technologies are used for data

acquisition. Fig. 9.11 presents the confusion matrices when all four technologies are utilized

for human activity recognition. The confusion matrix on the left is obtained with the CNN

baseline method, whose accuracy is significantly reduced from 90.86% in Fig. 9.10 to 60.40%

here. The TPR of identifying body twisting and kicking is mostly affected, which drop to 34.3%

and 39.5%, respectively. The confusion matrix shows that, with the data sampled with four

different RF technologies, the CNN method fails to effectively learn the generalized features of

different human activities.

The confusion matrix obtained with the proposed TARF approach is presented on the

right side of Fig. 9.11. In contrast, TARF still achieves an overall accuracy of identification of

81.11%, although still affected by using the more diverse RF data collected from four different

platforms. Such robustness to diverse RF data is achieved by the domain discriminator used in

TARF. The domain discriminator can prevent the network to learn the domain-related features,

and thus the technology-agnostic learning approach is quite effective to adapt to different RF

technologies.

We also perform T-distributed Stochastic Neighbor Embedding (T-SNE) on the tested data

for the CNN baseline scheme and proposed TARF system. T-SNE is an effective approach for

visualizing high dimensional data introduced by the feature extractor, which could illustrate all
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Figure 9.13: T-NSE illustration of human activity recognition from four RF technologies ob-
tained using TARF .

tested RF data on a two-dimensional map. As illustrated in Fig. 9.12 generated by CNN base-

line, the data collected same activity is not grouped effectively. Except for a few activities like

standing still and running, the feature of other human activities are not satisfactorily extracted

due to interference from various RF technologies. In contrast, as shown in Fig. 9.13 obtained

by TARF , the data from different human behaviors are better grouped in the 2D map. Although

there is some overlap between data groups from body-twisting, squatting, and kicking, the RF

data sampled from different human activities are effectively grouped. The visualization data

obtained from T-SNE could intuitively demonstrate that the domain discriminator could opti-

mize the activity feature extractor by mitigating the interference from RF technology diversity.

The superiority of the TARF system is further demonstrated by Fig. 9.14, which shows

the variations in accuracy as the number of RF technologies is increased from one to four. The

figure shows that both CNN based scheme have similar classification accuracy when single

RF technology is involved in the system, which are 90.86% and 91.00% respectively. The

figure also illustrates that using more RF technologies will introduce increased diversity of the

acquired data, which affects the classification performance. However, compared with the CNN

baseline, the proposed TARF is effective in combating such diversity and adapting to different

data domains.

257



1 2 3 4
Number of RF Technologies

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

CNN Baseline

TARF

Figure 9.14: Accuracy performance with different combination of RF technologies (1: RFID
only; 2: RFID and 2.4GHz WiFi; 3: RFID, 2.4GHz WiFi, and 5GHz WiFi; 4: RFID, 2.4GHz
and 5GHz WiFi, and FMCW radar).
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Figure 9.15: Accuracy performance in LOS testing scenario.

9.6.3 System Evaluation with Different Scenarios

We also evaluate the proposed TARF system in different scenarios and compare it with the

HAR system trained by RF data from single RF technologies. In the experiments, we intend

to investigate system performance with three different usage scenarios, such as LOS testing

scenario, NLOS testing scenario, and dynamic RF environment testing scenarios. The NLOS

environment is emulated by adding obstacles between the subject and the RF platforms, and

the dynamic RF environments are emulated by moving people around. We trained the network
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Figure 9.16: Accuracy performance in NLOS testing scenario.
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Figure 9.17: Accuracy performance in dynamic RF environment testing scenario.

with RF data from a single RF platform to generate the corresponding technology-specific sys-

tem baseline, while the technology-generalized schemes are trained with data from all four RF

technologies. Fig. 9.15 illustrates the activity recognition accuracy of different systems in LOS

testing scenarios. The figure shows that all technology-specific schemes can achieve satisfac-

tory activity recognition accuracy in the LOS testing scenario, which are all over 89.37%. The

performance of technology-generalized systems, such as CNN baseline and TARF, is worse

than the technology-specific system. However, as a generalized system, the accuracy of TARF

is also much higher than the CNN baseline. Although TARF could not outperform the single
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RF technology scheme, a trained technology-agnostic system could achieve satisfactory accu-

racy for any RF technology. For example, the lowest recognition accuracy 80.34% is achieved

when tested with WiFi 5G, and the highest accuracy is 82.73% tested with RFID.

However, the LOS testing scenario is too ideal for the practical application, so we also

evaluate the system in the NLOS scenario and dynamic, noisy environment. Fig. 9.16, and

Fig. 9.17 illustrate the system accuracy when the test data is sampled from NLOS and dynamic

RF environment, respectively. From the figures, we could observe that the interference of the

NLOS environment varies between different RF technologies. Among these four RF technolo-

gies, WiFi-based schemes, such as 2.4GHz and 5GHz, could still achieve high accuracy, but

the accuracy of FMCW and RFID-based systems descend to 81.77% and 71.22%, respectively.

This is because the WiFi signal is wide broadcasting, so the NLOS component could also con-

vey informative features of human activities. In contrast, due to the limited scanning range

of the FMCW radar and RFID system, the LOS component contributes dominant information

for human activity recognition. Especially for the RFID system, most tags are not normally

interrogated because of the blockage of the obstacle.

When it comes to dynamic RF environments, the performance of these sigle RF systems is

changed. As Fig. 9.17 shows, the accuracy of the two WiFi schemes is significantly attenuated

by the noise generated by the moving person. The accuracy of the WiFi-specific schemes

decreases to 75.05% and 71.44% for 2.4GHz and 5GHz, respectively. However, the accuracy

of the RFID system remains relatively high accuracy as 89.38%. This is because the RFID

tags attached to the subject clothes could convey reliable human movement features, which are

more robust to the dynamic environment than WiFi-based schemes.

The results in Fig. 9.16, and Fig. 9.17 imply that single RF technology can not be adapt-

able to all kinds of testing environments. Therefore, an effective technology-agnostic system

could incorporate all accessible RF technologies so that different RF technologies could com-

plement the shortcomings of other RF technologies. Table 9.1 illustrate the accuracy of all

single RF technology schemes, CNN baseline, and TARF system. The table shows that, when

all accessible RF technologies are involved in the generalized system, TARF could achieve

81.24% and 80.18% activity recognition accuracy for NLOS and dynamic environment, which
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Table 9.1: Accuracy comparison with different testing scenarios

Testing Environment
WiFi

2.4GHz
WiFi

2.4GHz
FMCW RFID

CNN
Baseline

TARF

LOS 91.86% 89.37% 91.22% 90.73% 63.41% 82.73%
NLOS 90.76% 88.71% 81.77% 74.22% 61.29% 81.24%

Dynamic Environment 75.05% 71.44% 79.29% 89.38% 62.54% 80.18%
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Figure 9.18: Performance comparison between the generalized matrix-based approach and the
proposed STFT tensor-based approach.

is comparable to the accuracy in the ideal LOS testing scenario. The experiments result shown

in the table demonstrate that, as a technology-agnostic system, TARF could be performed on

various RF technologies and achieve robust HAR performance for different testing scenarios.

9.6.4 Impact of the Generalized Feature Tensor

We also conduct experiments to examine the benefit of utilizing the extended STFT feature

tensor, and to establish the most appropriate tensor-related parameters. The accuracy perfor-

mance of human activity recognition is presented in Fig. 9.18, where the blue bars are the

results obtained by just utilizing the generalized matrix SR as input to the deep neural network.

It can be seen that using the generalized matrix can achieve a 90.86% recognition accuracy

in a single-technology situation, but the accuracy drops dramatically to 71.32% when all the

four technologies are used. The proposed STFT tensor-based technique results are represented

by the green bars, which degrades from 91.00% to 81.11% instead, and is more resilient to
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Figure 9.20: Activity recognition accuracy when different sliding window sizes are used.

the influence from various sensing technologies. The robustness demonstrated by these re-

sults validates that that the proposed STFT feature tensor can successfully extract the general

characteristics of human behavior from diverse RF data collected by different RF technologies.

We also conduct experiments to explore appropriate parameter setting for the proposed

TARF system. Fig. 9.19 and Fig. 9.20 show the impacts of the measurement number NP and

size of the sliding window, respectively. As Fig. 9.19 shows, the accuracy increases when more

measurements are used for feature extraction. In the single-technology scenario, the accuracy

is over 90% when NP ≥ 25, and the highest accuracy 91.62% is achieved when NP = 30.
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Similarly, In the four-technology scenario, the highest accuracy is achieved when 30 measure-

ments are used for tensor generation. Fig. 9.20 shows the accuracy when different sliding

window sizes are employed for STFT. The figure shows that in both scenarios, high accuracy

is achieved when the sliding windows is 6 seconds. However, we notice that when the window

size is 5 seconds, the accuracy in the two scenarios are 91.00% and 81.11%, respectively, which

is sufficiently high for human activity recognition. Thus, to reduce the training complexity, we

choose the smallest sliding window size which still achieves an acceptable system accuracy for

STFT. As a result, we set NP to 30 and the window size to 5 seconds. Although the STFT

tensor requires 5 seconds of the RF data, the sliding window structure makes the system could

perform activity recognition for each newly sampled RF data. Furthermore, since the classifi-

cation of the trained DANN is processed very fast, the proposed TARF system is suitable for

the realtime tracking of human activities.

9.7 Conclusion

In this paper, we proposed a generalized approach to human activity recognition, termed TARF,

to mitigate the impact of technology-agnostic data acquisition. A novel signal preprocessing

solution was proposed to combat the diversity caused by different RF sensing platforms.

The generalized tensor construction method was proposed to break the barriers of RF data

collected from different RF technologies and extract the generalized features related to human

activities. We then utilize a domain adversarial neural network to address the diversity issue

of motion feature translation in different RF platforms. The experiments results demonstrate

that the TARF system could be effectively implemented in various RF devices so that different

RF technologies could complement each other. The technology-agnostic scheme could achieve

robust HAR performance in different scenarios by incorporating all accessible RF technologies.
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Chapter 10

Summary and Future Work

In my Ph.D. study, we propose several RF sensing techniques in Artificial Intelligence of

Things, such as Indoor localization, Vital sign monitoring, human pose tracking, etc. For the

RF based respiration monitoring systems, we propose effective RF vital sign monitoring sys-

tems in both static environments and more challenging dynamic environments. For the indoor

localization system, we investigated the problem of localizing an RFID tag array. The proposed

system was termed SparseTag, i.e., a sparse RFID tag array system for high accuracy backscat-

ter indoor localization. The SparseTag system comprised four key components: (i) sparse ar-

ray processing, (ii) difference co-array design, (iii) DOA estimation using a spatial smoothing

method, and (iv) a DOA-based localization method. In addition, we prototype RFID-Pose, a

vision-aided 3D human pose tracking system with RFID data. Based on the RFID-Pose, we ex-

tend the system by improving subject adaptability with a cross-skeleton learning methodology.

We also combat Data Divergence in different environments with Meta-Learning algorithms.

10.1 Intelligent Disease Precaution System

With the human chest movement monitoring, the Phasebeat system can detect the apnea and

other details of the respiration when the user is sleeping. These respiration details can reflect

the health condition of the user, and certain apnea can represent the possibility of some special

disease. The intelligent disease precaution system can record the sleeping data and evaluate the

user health condition with learning algorithm.
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10.2 Online Multiple Users Monitoring

With advanced signal processing technique, the system can also separate the breathing signals

corresponding to different persons with blind signal separation. However, this kind of technique

should need data from a long period of time, and long-time calculation is also necessary. With

multiple antennas or other some other devices like RFID tags, the system can separate the

different users breathing signals with low calculation time. We plan to extend the system with

more devices, so that the system can monitor users respiration data in real-time.

10.3 Vital Signs Monitoring in Noisy Environment

Traditionally, RF signal based health monitoring system is very sensitive to the environment.

It is very hard to do the vital signs monitoring when in driving environment, especially when

the user is driving the vehicle. Large movement will generate large noise in the received sig-

nal, which is hard to be separated because the vital signal is usually small signal. Besides,

vehicle vibration could also overwhelm the small vital sign signal. In the future, we will pro-

pose to make the system can resist the noise coming from user’s large body movement. Since

the breathing rate is also an indicator of human drowsiness, respiration monitoring in driving

environment could be a effective way to detect the driving fatigue.

10.4 Data Augmentation for the vision-aided training supervision

In this dissertation, we have proposed the vision-aided approach to achieve the RFID based

human pose estimation system. However, the data collection for the vision-aided supervised

training is a extremely high cost process. This is because, the synchronized RF data and Kinect

data sampling consumes a lot of time. In addition, the since we intend to improve high subject

adaptability and environment adaptability for the system. The data should be collected in dif-

ferent environment and with different subject, which is considerable high cost on time. Thus, a

data augmentation approach should be proposed to achieve an inexpensive data collection for

the model training. With an effective training data augmentation approach, the network could

be trained with a limited real sampled data and corresponding generated fake training data.
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