
Quality-Aware Data Crowdsourcing and Federated Learning in Wireless Networks

by

Yuxi Zhao

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 10, 2022

Keywords: Quality-aware data crowdsourcing, distributed computation, wireless federated
learning, channel-aware adaptive optimization

Copyright 2022 by Yuxi Zhao

Approved by

Xiaowen Gong, Chair, Assistant Professor of Electrical and Computer Engineering
Shiwen Mao, Professor and Earle C. Williams Eminent Scholar Chair of Electrical and

Computer Engineering
SueAnne Nichole Griffith, Assistant Professor of Electrical and Computer Engineering

Yang Zhou, Assistant Professor of Computer Science and Software Engineering
Tao Shu, Associate Professor of Computer Science and Software Engineering

Abstract

Data crowdsourcing (referred to as “crowdsourcing” for brevity) has found a wide range of

applications. In principle, crowdsourcing leverages the “wisdom” of a potentially large crowd

of workers (e.g., mobile users) for tasks. One main advantage of crowdsourcing lies in that it

can exploit the diversity of inherently inaccurate data from many workers by aggregating the

data obtained by the crowd, such that the data accuracy (referred to as “data quality”) after ag-

gregation can substantially improve. Quality-aware crowdsourcing is beneficial as it makes use

of workers’ data quality to perform task allocation and data aggregation. However, a worker’s

quality and data can be her private information that she may have incentive to misreport to the

crowdsourcing requester. Moreover, a worker’s quality and data can depend on her sensitive

information (e.g., location), which can be inferred from the outcomes of task allocation and

data aggregation by an adversary. In addition, crowdsourcing is vulnerable to data poison-

ing attacks, where the attacker reports malicious data to reduce aggregated data accuracy. We

study privacy-preserving crowdsourcing mechanisms for truthful data quality elicitation, and

malicious data attacks on dynamic crowdsourcing.

In federated learning (FL), machine learning (ML) models are trained distributively on

edge devices without transmitting data samples from a large number of devices. In such a

setting, the quality of a local model update is intimately related to the variance of the local

stochastic gradient, which depends on the mini-batch data size used to compute the update.

Wireless federated learning (WFL) can achieve collaborative intelligence in wireless edge net-

works. A general consensus is that WFL can support intelligent control and management of

wireless communications and networks, and can enable many AI applications based on wireless

networked systems.

In distributed stochastic gradient descent which is a typical method of FL, the convergence

rate of the trained machine learning model in FL depends heavily on which users participate

in the learning process, given the heterogeneous quality of their local model updates and the

ii

unique features of wireless edge networks. The quality of a local parameter update is measured

by the variance of the update, determined by the data sampling size (a.k.a. mini-batch size) used

to compute the update. It is important to observe that the quality of local updates can be treated

as a design parameter and used as a control “knob” (via the mini-batch size) to be adapted

across users and over time. Such quality-aware distributed computation can substantially im-

prove the learning accuracy of FL. To achieve a desired tradeoff between learning accuracy and

communication and computation costs, participating devices of FL in each round and their lo-

cal updates’ quality should be determined based on their impacts on the eventual training loss,

as well as devices’ channel conditions and computation costs. We characterize performance

bounds on the training loss as a function of local updates’ quality over the training process,

for IID and non-IID data with convex setting, non-convex setting, and asynchronous setting.

Based on the insights revealed by the performance bounds, we develop cost-effective dynamic

distributed learning algorithms that adaptively select participating users and their mini-batch

sizes, based on users’ communication and computation costs.

In many applications of ML (e.g., image classification), the labels of training data need to

be generated manually by human agents (e.g., recognizing and annotating objects in an image),

which are usually costly and error-prone. The labeling of training data can be seen as data

crowdsourcing. Given the strategic behavior of clients who may not make desired effort in

their local data labeling and local model computation (quantified by the mini-batch size used

in the stochastic gradient computation), and may misreport their local models to the FL server,

we study characterizing the performance bounds on the training loss and devise labeling and

computation effort and local model elicitation mechanisms which incentivize strategic clients to

make truthful efforts as desired by the server in local data labeling and local model computation,

and also report true local models to the server.

iii

Acknowledgments

My sincere appreciation goes to my major advisor Prof. Xiaowen Gong for his great

support and persevering guidance during my Ph.D. study. Based on the depth and width of his

extensive knowledge base, he inspires me on choosing research topics, formulating important

problems, and develop effective solutions. He is always passionate about research and gives

me full support when I needed help.

In addition, I would like to thank my committee members, Prof. Shiwen Mao, Prof.

SueAnne Griffith, Prof. Yang Zhou, and the university reader Prof. Tao Shu. Your advice and

support are the torch lighting up my dissertation road, and your discussions and suggestions

enrich my knowledge base and deepen my understanding of the research areas.

I would like to thank my parents Jun Zhao and Shuhua Gao, and all my family members.

They have given me endless and unconditional love. They always believe in me and are my

strongest backing. I also want to express my thankfulness to my friends: Ting Yu, Chuchu

Chen, Cuiling Wang, Junyao Xing, Yifan Ye, who support and encourage me like my sisters,

and all my friends in Auburn, especially, Nianchu Hou, the person who understands me the

most in the world. Last but not least, I thank Dr. Ruolin Zhou for motivating and encouraging

me to pursue my Ph.D..

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

1 Introduction . 1

1.1 Quality-Aware Data Crowdsourcing . 1

1.2 Federated Learning in Wireless Network . 3

1.3 Overview of the Dissertation . 4

2 Truthful Quality-Aware Data Crowdsensing for Machine Learning 7

2.1 Introduction . 7

2.2 Related Works . 10

2.3 System Model and Problem Formulation . 11

2.3.1 Crowdsensing with private worker quality 11

2.3.2 Mechanism design objective . 15

2.4 Truthful Quality and Effort Elicitation for Crowdsensing 17

2.5 Optimal Effort Assignment for Truthful Crowdsensing 21

2.6 Simulation Results . 23

2.6.1 Worker’s payoff . 23

2.6.2 Requester’s payoff . 25

2.7 Conclusion . 26

2.8 Appendix . 26

2.8.1 Proof of Lemma 2.1 . 26

v

2.8.2 Proof of Theorem 2.1 . 26

2.8.3 Proof of Lemma 2.4 . 27

2.8.4 Proof of Theorem 2.2 . 28

2.8.5 Proof of Lemma 2.5 . 28

2.8.6 Proof of Theorem 2.3 . 29

3 Privacy-Preserving Incentive Mechanisms for Truthful Data Quality in Data Crowd-
sourcing. 30

3.1 Introduction . 30

3.2 Related Work . 33

3.2.1 Privacy-preserving mechanisms for crowdsourcing 33

3.2.2 Quality-aware crowdsourcing . 34

3.2.3 Truthful mechanisms for crowdsourcing 34

3.3 System Model . 35

3.4 Problem Formulation . 38

3.4.1 Truthful Elicitation of Data Quality 38

3.4.2 Protecting Privacy of Workers’ Quality and Data 39

3.4.3 Accuracy of Aggregated Data . 40

3.5 Privacy-Preserving Mechanism for Truthful Data Quality Elicitation: Single-
Task Case . 40

3.5.1 Preliminaries of Differential Privacy 41

3.5.2 Truthful and Differentially Private Single-Task Allocation 42

3.5.3 Differentially Private Data Aggregation 44

3.5.4 Performance Analysis of S-PDQE Mechanism 45

3.6 Privacy-Preserving Mechanism for Truthful Data Quality Elicitation: Multi-
Task Case . 52

3.6.1 Truthful and Differentially Private Multi-Task Allocation 52

3.6.2 Multi-Task Differentially Private Data Aggregation 56

vi

3.6.3 Performance Analysis of M-PDQE Mechanism 56

3.7 Simulation Results . 62

3.7.1 Truthful Quality Elicitation . 62

3.7.2 Data Accuracy . 63

3.7.3 Differential Privacy . 64

3.8 Conclusion . 64

4 Data Poisoning Attacks and Defenses in Dynamic Crowdsourcing with Online Data
Quality Learning. 65

4.1 Introduction . 65

4.2 Related Work . 69

4.2.1 Quality-Aware Crowdsourcing . 69

4.2.2 Online Learning Algorithms . 69

4.2.3 Data Poisoning Attacks and Defenses 70

4.3 System Model and Problem Formulation . 70

4.3.1 Online Quality Learning Based Dynamic Crowdsourcing 72

4.3.2 Malicious Data Attack . 73

4.4 Online Quality Learning without Malicious Data Attack 74

4.5 Malicious Data Attack with Accurate Quality Learning 77

4.5.1 Effective Attack Conditions . 77

4.5.2 Effective Attack Analysis . 79

4.6 Malicious Data Attack with Online Quality Learning 81

4.6.1 Effective Attack Conditions . 81

4.6.2 Effective Attack Analysis . 84

4.7 Data Aggregation Defenses . 86

4.7.1 Median . 86

4.7.2 Maximize Influence of Estimation . 87

vii

4.8 Performance Evaluation . 92

4.8.1 Online Quality Learning Without Attack 92

4.8.2 Attack with Accurate Quality Learning 93

4.8.3 Attack with Online Quality Learning 93

4.8.4 Data Aggregation Defenses . 95

4.9 Conclusion . 96

4.10 Appendix . 96

4.10.1 Proof of Theorem 4.1 . 96

4.10.2 Proof of Theorem 4.2 . 98

4.10.3 Proof of Proposition 4.1 . 99

4.10.4 Proof of Theorem 4.4 . 99

4.10.5 Proof of Theorem 4.6 . 100

4.10.6 Proof of Theorem 4.8 . 101

4.10.7 Proof of Lemma 4.2 . 102

4.10.8 Proof of Lemma 4.3 . 103

4.10.9 Proof of Lemma 4.1 . 104

5 Quality-Aware Adaptive Computation and Device Selection for Cost-Effective Wire-
less Federated Learning. 107

5.1 Introduction . 107

5.2 Related Work . 109

5.3 Quality-Aware Computation for Wireless Federated Learning 111

5.4 Training Loss Bound . 113

5.4.1 The Case of IID Data . 113

5.4.2 The Case of Non-IID Data . 115

5.5 Cost-Effective Channel-Aware Adaptive device Selection and Mini-Batch Size
Design . 117

viii

5.5.1 The Case of IID Data . 118

5.5.2 The Case of Non-IID Data . 124

5.6 Performance Evaluation . 126

5.6.1 Evaluation Setup . 131

5.6.2 Evaluation Results . 131

5.7 Conclusion . 134

5.8 Appendix . 135

5.8.1 Proof of Theorem 5.1 . 135

5.8.2 Proof of Lemma 5.1 . 137

5.8.3 Proof of Theorem 5.2 . 137

5.8.4 Proof of Lemma 5.2 . 141

5.8.5 Proof of Theorem 5.3 . 144

6 Quality-Aware Distributed Computation for Cost-Effective Non-Convex and Asyn-
chronous Wireless Federated Learning. 145

6.1 Introduction . 145

6.2 Related Work . 147

6.3 Quality-Aware Distributed Computation for Wireless Federated Learning . . . 148

6.4 Learning Accuracy Bound Analysis . 151

6.4.1 Case of Non-Convex Learning . 152

6.4.2 Case of Asynchronous Learning . 153

6.4.3 Case of Non-Convex and Asynchronous Learning 155

6.5 Dynamic Cost-Effective User and Sampling Size Selection 156

6.5.1 Case of Non-Convex Learning . 156

6.5.2 Case of Asynchronous Learning . 159

6.6 Simulation Results . 161

6.7 Conclusion . 165

ix

6.8 Appendix . 165

6.8.1 Proof of Theorem 6.1 . 165

6.8.2 Proof of Theorem 6.2 . 166

6.8.3 Proof of Theorem 6.3 . 168

6.8.4 Proof of Lemma 6.1 . 170

6.8.5 Proof of Theorem 6.5 . 173

6.8.6 Other Omitted Proofs . 174

7 Truthful Incentive Mechanism for Federated Learning with Crowdsourced Data La-
beling. 175

7.1 Introduction . 175

7.2 Related Work . 178

7.3 System Model and Problem Formulation . 179

7.3.1 FL with Crowdsourced Data Labeling 179

7.3.2 Truthful Incentive Mechanism for FL 182

7.4 Training Loss Analysis . 184

7.5 Truthful Incentive Mechanisms for Data Labeling Effort, Local Computation
Effort, and Local Model Elicitation . 187

7.5.1 LCEME Mechanism Design . 187

7.5.2 Optimal Computation Effort Assignment 190

7.6 Simulation Results . 192

7.6.1 Impact of Clients’ Strategies on Training Loss 194

7.6.2 Impact of Truthfulness on Clients’ Payoff 195

7.6.3 Server’s Payoff . 195

7.7 Conclusion . 195

7.8 Appendix . 196

7.8.1 Proof of Theorem 7.1 . 196

x

7.8.2 Proof of Theorem 7.3 . 199

7.8.3 Proof of Theorem 7.4 . 200

8 Summary and Future Works. 201

8.1 Summary . 201

8.2 Future Works . 201

8.2.1 Non-Convex and Asynchronous FL with Non-IID Data 202

8.2.2 Heterogeneous Number of Local Iterations 202

References . 203

xi

List of Figures

2.1 Structure and procedure of the crowdsensing system. 11

2.2 Impact of reported quality q′1 . 24

2.3 Impact of actual effort e′1 . 24

2.4 Impact of the number of workers N . 25

2.5 Impact of cost c . 26

3.1 In spectrum crowdsensing, a worker’s quality for a task depends on her location
with respect to the wireless device to be observed, which can be her private
information that needs to be protected. 32

3.2 Structure and procedure of the quality and privacy aware data crowdsourcing
system. 35

3.3 Impact of reported quality q′i. 59

3.4 Impact of the number of workers n on S-PDQE. 60

3.5 Impact of the number of winners K on S-PDQE. 60

3.6 Impact of the number of workers n on M-PDQE. (ϵq = 10) 60

3.7 Impact of the number of workers n on M-PDQE. (ϵq = 25) 61

3.8 Impact of the number of winners K on M-PDQE. 61

3.9 Impact of the differential privacy parameter ϵq on S-PDQE. 61

3.10 Impact of the differential privacy parameter ϵq on M-PDQE. 62

4.1 In spectrum crowdsensing, a worker’s quality for a task depends on her location
with respect to the wireless device to be observed. Normal workers report their
true data, while malicious workers controlled by an attacker report malicious
data. 66

4.2 Structure and procedure of the crowdsourcing system based on online quality
learning under malicious data attacks. 70

4.3 Comparison of main results. 75

xii

4.4 1 malicious worker, 7 workers in total. 76

4.5 3 malicious workers, 7 workers in total. 76

4.6 Regret of the multi-task-explore online learning algorithm. 88

4.7 Impact of quality learning and attack on data accuracy with accurate quality
learning. 88

4.8 Impact of the number of malicious workers M with accurate quality learning. . 88

4.9 Impact of the number of selected workers m in exploitation with accurate qual-
ity learning. 89

4.10 Learned quality with online quality learning. 89

4.11 Learned quality with online quality learning. (real-world data) 89

4.12 Impact of the number of malicious workers M with online quality learning. . . 90

4.13 Impact of the variance of added noise a with online quality learning. 90

4.14 Impact of the number of selected workers in each exploitation m with online
quality learning. 90

4.15 Impact of the number of malicious workers M on the upper bound of a. 91

4.16 Learned quality with online quality learning under different defenses. 91

4.17 Learned quality with online quality learning under different defenses. (real-
world data) . 91

4.18 Impact of different defenses on the accumulative regret. 92

5.1 Experimental testbed of wireless federated learning consisting of a laptop as
the server connected with two smartphones as devices via a WiFi router. 126

5.2 Impact of the mini-batch size on the training loss.(Simulation) 126

5.3 Impact of the mini-batch size on the training loss.(Experiment) 127

5.4 Impact of the mini-batch size on the test accuracy.(Experiment) 127

5.5 Impact of the number of local iterations on the training loss.(Simulation) 127

5.6 Impact of the number of local iterations on the training loss.(Experiment) . . . 128

5.7 Impact of the number of local iterations on the test accuracy.(Experiment) . . . 128

5.8 Impact of the degree of non-IID of data on the training loss.(Simulation) 128

xiii

5.9 Impact of non-IID data on the training loss.(Experiment) 129

5.10 Impact of non-IID data on the test accuracy.(Experiment) 129

5.11 Channel-aware adaptive algorithm. (Homogeneous cp) 129

5.12 Channel-aware adaptive algorithm. (Heterogeneous cp and single local iteration
H = 1) . 130

5.13 Channel-aware adaptive algorithm. (Heterogeneous cp and multiple local itera-
tions H = 2) . 130

6.1 Schedule of the server’s updates and users’ computations (C) and communica-
tions (M) in asynchronous FL. 151

6.2 Impact of mini-batch size on the training loss of synchronous FL for non-
convex optimization. 162

6.3 Impact of mini-batch size on the training loss of asynchronous FL for convex
optimization. 162

6.4 Impact of maximum update delay on the training loss of asynchronous FL for
convex optimization. 162

6.5 Impact of mini-batch size on the training loss of asynchronous FL for non-
convex optimization. 163

6.6 Impact of maximum update delay on the training loss of asynchronous FL for
non-convex optimization. 164

7.1 Schedule of FL with crowdsourced data labeling based on a truthful incentive
mechanism. 178

7.2 Impact of effort level on the training loss. 192

7.3 Impact of effort level on the model accuracy. 192

7.4 Impact of model reporting coefficient on the training loss. 193

7.5 Impact of model reporting coefficient on the model accuracy. 193

7.6 Impact of clients’ behavior on the payoff. 193

7.7 Impact of computation effort allocation on server’s payoff. 194

xiv

List of Tables

3.1 Main Notation . 35

4.1 Main Notation . 71

xv

Chapter 1

Introduction

1.1 Quality-Aware Data Crowdsourcing

Data crowdsourcing is a promising paradigm that leverages the “wisdom” of a potentially large

crowd of “workers” in many application domains. The applications of crowdsourcing can be

generally categorized as physical sensing (also known as “crowdsensing”) such as spectrum

sensing [1], traffic monitoring [2], environmental monitoring [3], and human intelligence such

as image labeling and speech transcribing [4, 5]. One main advantage of crowdsourcing lies in

that it can exploit the diversity of inherently inaccurate data from many workers by aggregating

the data obtained by the crowd, such that the data accuracy (referred to as “data quality”) after

aggregation can substantially improve. With enormous opportunities and growing popularities

of data-driven technologies, crowdsourcing is a promising paradigm to harness the power of

big data via machine learning, and enable artificial intelligence in various application domains,

such as image classification [4] and indoor localization [6].

To exploit the potential of crowdsourcing, it is beneficial to allocate tasks to workers based

on their quality. A worker’s quality1 can capture the intrinsic accuracy of the worker’s data rel-

ative to the ground truth of the interested variable, and it generally varies for different workers

depending on a worker’s characteristics (e.g., location, sensors’ capabilities). For example, if

the task is to detect whether a licensed wireless device is transmitting or not (for opportunis-

tic spectrum access by unlicensed users), then the quality of a worker’s data is the probability

1We use “worker quality” and “quality” exchangeably in this paper. “Worker quality” is distinguished from
“data quality”.

1

of correct detection, which depends on the worker’s location relative to the licensed device.

Workers generally have diverse quality.

A worker’s quality is often unknown to the worker and also the requester (e.g., in spectrum

sensing, the location of the wireless device to be observed is unknown). In such situation,

there are two methods to know the workers’ quality. First, a worker can learn her quality

based on the knowledge of her characteristics, such as her location2. Second, the requester

can learn workers’ quality based on the data collected from them. In a dynamic setting of

crowdsourcing where tasks are assigned to and performed by workers sequentially (e.g., in

spectrum crowdsensing, tasks can arrive over time, where each task is to measure signals in

a particular time slot), the requester can carry out quality learning on the fly, while making

use of the learned quality information to perform task assignment and data aggregation. Such

online quality learning can improve data accuracy and cost-effectiveness of crowdsourcing and

is essential for the practical deployment of crowdsourcing services. However, both methods

can expose some issues.

When reporting the quality to the requester, a strategic worker may have incentive to mis-

report her quality to the requester, in order to benefit. While workers’ quality is useful informa-

tion for fully reaping the benefits of crowdsourcing, it may contain sensitive information about

the individual workers, which needs to be protected. Moreover, crowdsourcing is vulnerable

to data poisoning attacks, where an attacker controls malicious workers to report manipulated

data to the requester, typically with the goal of reducing the requester’s aggregated data ac-

curacy. Due to the random nature of workers’ data and unknown ground truths of tasks, it is

difficult for the requester to distinguish a malicious worker from a normal worker according to

their data.
2Alternatively, a worker can report her characteristics (e.g., location) that determines her quality to the re-

quester, so that the requester can learn the worker’s quality. In this case, reporting the worker’s quality is equivalent
to reporting her characteristics.

2

1.2 Federated Learning in Wireless Network

Federated learning (FL) is an emerging and promising ML framework, which performs training

of ML models in a distributed manner. Instead of collecting data from a potentially large num-

ber of users to a central server in the cloud for training, FL allows the data to remain at users’

end devices (such as smartphones), and trains a global ML model on the server by collecting

and aggregating model updates locally computed on each user’s device based on her local data.

One significant advantage of using FL is to preserve the privacy of individual devices’ data.

Moreover, since only local ML model updates instead of local data are sent to the server, the

communication costs can be greatly reduced. Furthermore, FL can exploit substantial compu-

tation capabilities of ubiquitous smart devices, which are often under-utilized. In particular,

when FL is used in a wireless edge network, data samples generated at individual wireless

devices can be exploited via local computation and global aggregation based on distributed

ML. As a result, wireless federated learning (WFL) can achieve collaborative intelligence in

wireless edge networks. A general consensus is that WFL can support intelligent control and

management of wireless communications and networks (such as in [7, 8, 9, 10, 11]), and can

enable many AI applications based on wireless networked systems, including connected and

autonomous vehicles, collaborative robots, multi-user virtual/mixed reality.

As is standard, learning accuracy is a key performance metric for FL. The accuracy of the

trained ML model in FL depends heavily on which devices participate in the training process

and the quality of their local model updates. Specifically, stochastic gradient descent (SGD) is a

popular method for ML training that is widely studied in the literature (e.g., in [12, 13, 14, 15]).

When SGD is used for FL, the quality of a local model update in each iteration can be measured

by the variance of the gradient, which depends on the mini-batch size used to compute the

gradient. A key observation is that the quality of local updates (determined by the mini-batch

size) can be treated as a design parameter and used as a control knob to be adapted across

devices and over time. Such quality-aware computation can substantially improve the learning

accuracy of WFL.

3

1.3 Overview of the Dissertation

In this dissertation, we aim to investigate quality-aware data crowdsourcing and federated learn-

ing in wireless networks. For quality-aware data crowdsourcing, we study truthful incentive

mechanisms that elicit workers’ private information with privacy-preserving property, and data

poisoning attacks on dynamic crowdsourcing. For WFL, we study the performance bounds on

the training loss as a function of local updates’ quality over the training process for different

FL setting, and develop cost-effective dynamic distributed learning algorithms that adaptively

select participating users and their mini-batch sizes, based on users’ costs in wireless networks.

Given the commonality of data crowdsourcing and labeling quality of the training data of FL,

we study the impact of the strategic behavior of FL clients and develop incentive mechanisms

that incentivize strategic clients to make truthful efforts as desired by the server in local data

labeling and local model computation, and also report true local models to the server.

In the first part, based on a general linear regression model of machine learning, we devise

truthful quality-aware crowdsensing mechanisms for quality and effort elicitation, which incen-

tivize workers to truthfully report their private worker quality to the requester, and make effort

as desired by the requester. The truthful design of the mechanisms overcomes the differences of

ground truths of workers’ tasks, and the coupling in the joint elicitation of workers’ quality, ef-

fort, and data. Under the mechanisms, we investigated the socially optimal and the requester’s

optimal effort assignments, and analyze their performance. We show that the requester’s op-

timal assignment is determined by the “virtual quality” rather than the highest quality among

workers, which depends on the worker’s quality and the quality’s distribution.

In the second part, we study Privacy-preserving crowdsourcing mechanisms for truthful

Data Quality Elicitation (PDQE). In these mechanisms, we design differentially private task

allocation and data aggregation algorithms to prevent the inference of a worker’s quality and

data from the outcomes of these algorithms. In the meantime, the mechanisms also incentivize

workers to truthfully report their quality and data and make desired efforts. We first focus on

the mechanisms for a single task (S-PDQE) and then extend it to the case of multiple tasks

4

(M-PDQE). We further show that both the mechanisms achieve a bounded performance gap

compared to the optimal strategy.

In the third part, we study malicious data attacks on dynamic crowdsourcing where tasks

are assigned and performed sequentially, and we explore online quality learning as a defense

mechanism against the attack by finding malicious workers with low quality. We first focus on

the asymptotic setting where workers’ quality is accurately learned by the requester, based on

which we then turn to the general non-asymptotic setting where the quality is estimated online

with errors. For each setting, we first characterize the conditions under which the attack strategy

can effectively reduce the aggregated data accuracy. Our results show that the malicious noise

variance needs to be within a certain range for the attack to be effective. Then we analyze

the harm of effective attack strategies. It reveals that the regret of the online quality learning

algorithm can be substantially increased fromO(log2 T) (upper bound) to Ω(T) (lower bound)

due to effective attacks. To further mitigate the attack, we also study median and maximum

influence of estimation based data aggregation as defense mechanisms. Our results provide

useful insights on the impacts of data poisoning attacks when online quality learning is used to

defend against the attack.

In the fourth part, we study quality-aware distributed computation for FL, which controls

the quality of users’ local updates via the sampling sizes. We first characterize the dependency

of learning accuracy bounds on the quality of users’ local updates over the learning process. It

reveals that the impacts of local updates’ quality on learning accuracy increase with the number

of rounds in the learning process. Based on these insights, we develop cost-effective dynamic

distributed learning algorithms that adaptively select participating users and their sampling

sizes, based on users’ communication and computation costs.

In the fifth part, we study quality-aware distributed computation for FL with non-convex

problems and asynchronous algorithms. We first characterize performance bounds on the train-

ing loss as a function of local updates’ quality over the training process, for both non-convex

and asynchronous settings. Our findings reveal that the impact of a local update’s quality on

the training loss 1) increases with the stepsize used for that local update for non-convex learn-

ing, and 2) increases when there are more other users’ local updates which are coupled with

5

that local update (depending on the update delays) for asynchronous learning. Based on these

useful insights, we design channel-aware adaptive algorithms that determine users’ mini-batch

sizes over the training process, based on the impacts of local updates’ quality on the training

loss as well as users’ wireless channel conditions (which determine the update delays) and

computation costs.

In the sixth part, we study FL with crowdsourced data labeling where the local data of each

participating client of FL are labeled manually by the client. We consider the strategic behavior

of clients who may not make desired effort in their local data labeling and local model compu-

tation (quantified by the mini-batch size used in the stochastic gradient computation), and may

misreport their local models to the FL server. We first characterize the performance bounds

on the training loss as a function of clients’ data labeling effort, local computation effort, and

reported local models, which reveal the impacts of these factors on the training loss. With these

insights, we devise Labeling and Computation Effort and local Model Elicitation (LCEME)

mechanisms which incentivize strategic clients to make truthful efforts as desired by the server

in local data labeling and local model computation, and also report true local models to the

server. The truthful design of the LCEME mechanism exploits the non-trivial dependence of

the training loss on clients’ hidden efforts and private local models, and overcomes the intricate

coupling in the joint elicitation of clients’ efforts and local models. Under the LCEME mech-

anism, we characterize the server’s optimal local computation effort assignments and analyze

their performance.

In the seventh part, we discuss some possible future works. One direction is to consider

non-convex and asynchronous FL where users have non-IID local data. In this case, the training

loss is heavily affected by the data heterogeneity, and the optimal mini-batch size and user

selection design can be very different from in the IID data set. Another direction is to study

the case when users perform heterogeneous numbers of local iterations. In this scenario, the

training loss is affected by the additional randomness of multiple local updates. Furthermore,

when users have non-IID local data, the learned global model may not be consistent with the

objective of FL due to heterogeneous numbers of local updates of users.

6

Chapter 2

Truthful Quality-Aware Data Crowdsensing for Machine Learning

2.1 Introduction

Data crowdsensing (referred to as “crowdsensing” for brevity) leverages the “wisdom” of a

potentially large crowd of workers who provide data in tasks that specified by the requester.

The applications are enabled by smart devices equipped with powerful sensing, networking,

and computing capabilities. The scope of these applications is expected to expand rapidly

with the emerging Internet of Things (IoT). A key advantage of crowdsensing lies in that it

can exploit the diversity of inherently inaccurate data from many workers by aggregating the

data obtained by the crowd, such that the data accuracy (also referred to as “data quality”)

after aggregation can be substantially enhanced. It has found a wide range of applications

such as spectrum sensing [16, 1], traffic monitoring [2, 17], and environmental monitoring

[18, 19, 3, 20].

Another major driving force for the popularity of crowdsensing is the recent success of

machine learning in various domains of data analytics. The massive amount of data in the era

of big data can be exploited by machine learning, which can serve as the foundation to build

artificial intelligence (AI). The power of machine learning typically relies on the availability

of training data, which can be collected from crowdsensing. One important application of

crowdsensing for machine learning is wireless indoor localization [21], which uses wireless

signals measured by mobile users as the training data.

The value of data collected in crowdsourcing heavily depends on the quality of data pro-

vided by the participating workers. A common metric of data quality is how accurate the data

7

is compared to the ground truth we aim to estimate (e.g., the difference between the data and

ground truth). The data provided by workers are usually inaccurate due to various factors (e.g.,

noise, interference, error). In general, the quality of data varies for different workers, and de-

pends on a specific worker’s characteristics or context (e.g., sensor’s capability, or location).

For example, if the task is to measure the transmit signal from a wireless device, then the sig-

nal to noise ratio (SNR) received by a worker from that device determines the worker’s data

quality, and workers generally have distinct SNRs depending on their locations.

To exploit the potential of crowdsourcing, it is imperative for the crowdsourcing requester

to know workers’ data quality. First of all, the quality of data is important context information

to determine how to use the data. For example, when data provided by different workers for the

same task are aggregated into one piece of information, it is beneficial to give larger weights to

data of higher accuracy in the data aggregation. For another instance, the data can be used as

training data for machine learning if the data accuracy exceeds some threshold, or otherwise it

will not be used. Moreover, the information of data quality can be exploited to determine which

worker(s) to use. Intuitively, it is beneficial to allocate a task to worker(s) with higher rather

than lower data quality. Therefore, quality-aware crowdsourcing can substantially improve the

value and usefulness of data in crowdsourcing.

A worker can learn its quality based on the knowledge of its characteristics, such as its

location1. However, the quality of a worker’s can be its private information, which is unknown

to and cannot be verified by the crowdsourcing requester. For example, a worker’s location is

often its private information that is unknown to the requester. As a result, a strategic worker

may have incentive to manipulate its quality revealed to the requester so as to gain an advantage.

In addition to the worker quality, the data quality of a worker is also affected by its effort

exerted in a crowdsourcing task. The data quality of a worker when it makes effort in the task

is higher than when it makes no effort. Due to the inaccurate nature of the data, a strategic

worker may report some arbitrary data to the requester without making effort in the task, while

the requester is not able to verify whether effort was actually made.

1Alternatively, a worker can report its characteristics (e.g., location) that determines its quality to the requester,
so that the requester can learn the worker’s quality. In this case, reporting the worker’s quality is equivalent to
reporting its characteristics.

8

When strategic workers with private worker quality and hidden effort, our goal is to incen-

tivize workers to truthfully reveal their worker quality, and make actual effort as desired by the

crowdsourcing requester. Such a truthful mechanism is desirable as it eliminates the possibility

of manipulation, which would encourage workers to participate in crowdsourcing. More impor-

tantly, the joint truthful elicitation of quality and effort ensures that the requester can correctly

know the data accuracy of the collected data, which is a key metric of crowdsourcing.

The joint elicitation of quality and effort calls for new truthful design that is different

from existing mechanisms. First, a worker’s payoff as a function of its quality and effort has a

different structure from that of its private participating cost. As a result, existing designs for cost

elicitation cannot work for the problem here. Second, as workers perform tasks with different

and unknown ground truths, it is highly non-trivial to design a worker’s reward function to

achieve truthful elicitation. Third, the joint elicitation of quality and effort needs to overcome

the intricate coupling therein.

The main contribution of this chapter can be summarized as follows.

• Under a quality-aware crowdsourcing framework for a general linear regression model,

we devise truthful crowdsourcing mechanisms for quality and effort elicitation. The

truthful mechanisms incentivize workers to truthfully report their private quality and

make effort as desired by the crowdsourcing requester. The truthful design of the mecha-

nisms is achieved by exploiting the intricate correlations between different ground truths

of workers’ tasks, and overcoming the non-trivial coupling in the joint elicitation of qual-

ity and effort.

• Under the truthful mechanisms, we characterize the socially optimal (SO) and the re-

quester’s optimal (RO) effort assignments, and analyze their performance. We show that

the requester’s optimal assignment is determined by the “virtual quality” rather than the

highest quality among workers, which depends on the worker’s quality and the quality’s

distribution.

• We provide simulation results which demonstrate the truthfulness of the mechanisms and

the performance of the RO and SO effort assignments.

9

The rest of this chapter is organized as follows. Section 2.2 discusses related work. In

section 2.3, we describe the machine learning linear regression model with private data quality,

which is the system model for crowdsensing, and formulate the problems of truthful mechanism

design. In Section 2.4, we proposed the mechanisms to elicit truthful quality and effort from

workers working on different tasks. In Section 2.5, we give the optimal effort assignment under

the mechanisms for single and multiple worker situations. Simulation results are presented in

Section 2.6. Section 2.7 concludes this chapter and discusses future work.

2.2 Related Works

Truthful mechanisms for data crowdsoucing. In crowdsensing, a worker’s cost on its task

can be a private information that the worker may not want to report it truthfully. There are

many mechanisms that aim to incentivize workers to reveal their costs in crowdsensing [22, 23].

However, the quality of a worker can also be a private information that needs to be elicited. As

a function of the worker’s quality, a worker’s payoff is structurally different from that of its

private cost. In addition, strategic workers can take hidden actions that are not desired by a

requester. Some recent studies have investigated this problem in the context of crowdsourc-

ing [24, 25, 26, 27, 28]. These works proposed mechanisms that can incentivize workers to

truthfully make effort, but none of them considered workers’ data quality elicitation.[28] used

peer prediction based on machine learning to incentivize workers to report their observed data

without knowing the distribution of worker’s data quality. [24] aims to jointly elicit workers’

desired efforts and true quality. Due to the intricate coupling between the elicitation of quality

and effort, it proposed mechanisms to incentivize workers to truthfully report their quality and

make efforts as desired by the requester. However, [24] assumes that workers work on the same

task, which often does not hold in the context of machine learning as usually different tasks are

assigned to workers. In this chapter, we assign different tasks to workers, and design truthful

mechanisms to elicit private quality and hidden efforts from strategic workers.

Quality-aware data crowdsoucing. The requester relies on workers’ quality to assign

tasks to the workers. However, a worker’s quality can be its private information that the

worker does not want to truthfully report. There are few works that study the quality-aware

10

announce
reward & effort

assignment

functions

report

quality

assign

effort

make effort &
observe data

report

observe data &
estimate linear parameter

data

pay
reward

crowd sensing
requester

users

Figure 2.1: Structure and procedure of the crowdsensing system.

crowdsensing. Some works have been done to learn the quality information of workers’ data

[24, 29, 30, 31, 32]. [29, 30] used the correlation of data for the same task to study the quality

information of workers. [31, 32] used online approach to learn workers’ abilities and assign

tasks. So that the requester can find the correct solution to a set of multiple labeling tasks. [24]

focused on designing truthful mechanisms to elicit workers’ private quality, where workers

perform on the same task. The mechanisms proposed in this chapter consider workers that are

assigned different tasks in the context of machine learning and elicit the private quality from

them.

2.3 System Model and Problem Formulation

A crowdsensing requester recruits a set of workers N ≜ 1, ..., N to work on a set of different

tasks. For convenience, let N+ ≜ N ∪ 0, where worker 0 represents the requester. Fig. 2.1

illustrates the structure and procedure of the crowdsensing system.

2.3.1 Crowdsensing with private worker quality

Label observation, worker quality, and work effort

The workers work on the tasks that were assigned by the requester. We consider continuous-

valued feature X = {xi|xi ∈ Rm, i ∈ N+}, which is known to the requester, where xi is a

m× 1 column vector, which means that each worker i works on m tasks. Worker i receives the

feature xi. Every feature xi follows an arbitrary prior distribution. Each worker observes label

Y = {yi|yi ∈ R, i ∈ N+} corresponding to the feature X . Here we use linear regression model

as our data model, we assume the relationship of Y and X is expressed as a linear function.

11

The reason why we use linear model is that linear regression model of machine learning is one

of the fundamental supervised machine learning algorithms due to its relative simplicity and

well-known properties[33]. In this chapter we focus on the linear regression model, and we will

study other models of machine learning in our future work. The objective of machine learning

is to infer and estimate the linear relationship between Y and X , which can be expressed with

the linear parameter a ∈ Rm. Each task has a corresponding linear parameter. Which means a

is a 1 ×m row vector. Furthermore, the observed label Y also contains independent additive

noises, which consists of a system noise and an individual worker’s observation noise [33].

Observed label Y can be expressed as

yi ≜ axi + ϵ+ ni, (2.1)

where for each task

ϵ ∼ N (0, σ), (2.2)

and

ni ∼ N (0,
qi
ei
). (2.3)

We can see the value of Y is affected not only by the linear parameter a, but also the

variance of additive noises. We assume the means of the two noises are 0 without loss of

generality (WLOG). The system noise ϵ is the intrinsic disturbance of the system (e.g., due

to fading of wireless channels). We assume the variance of each worker’s system noise is the

same. Besides the system noise, the variance of each individual worker’s noise is equal to

the ratio of the worker’s quality qi and effort ei, which is different for different workers. The

variance of the additive noise is an unknown information for the requester. However, it can be

calculated with information reported by workers, we will discuss this later.

Given worker i’s effort ei, the quality qi > 0 is a parameter that quantifies the accuracy of

label yi. The quality qi is an intrinsic coefficient that captures worker i’s capability for the task.

A smaller qi means higher quality. The value of qi varies for different workers. We assume that

every worker i ∈ N+ in the system knows its own quality, and the requester does not know it.

12

For ease of exposition, we assume that each worker’s quality is within the range of [q, q̄], which

is known to the requester. Given worker i’s quality qi, the effort ei > 0 is the parameter that

quantifies the amount of work that worker i devoted to the task, a higher ei implies the worker

is making more effort for the task. ei is inversely proportional to the noise, which means that

when the worker devotes more to the task, the accuracy of yi is higher. We assume that every

worker can fully control the amount of effort they make, and the requester can not know it.

Quality reporting and effort assignment.

We assume the crowdsensing tasks are assigned arbitrarily to the workers. The requester

assigns an effort e′i that it desires worker i to exert in the task, based on the quality of all the

workers. To this end, each worker reports its own quality q′i to the requester, which may not

be equal to its actual quality qi, because the worker can manipulate it to its own advantage.2

After the requester knows all workers’ reported quality, based on a specific effort assignment

function, the requester will assign effort to the workers. The effort that assigned to worker i

can be expressed as

e′i(q
′), (2.4)

Then the requester notifies the value of assigned effort e′i to the worker i. The requester

pre-defines and announces the effort assignment function to all the workers before workers

report their qualities. The effort assigned to worker i is determined not only by its own reported

quality q′i, but also by all the other workers’ quality. Although each worker’s assigned effort

is related to all workers’ reported quality, the assigned effort e′i varies for different workers.

After the requester has assigned the effort, the workers work on the tasks. However, workers

can decide how much effort to make, which can be different with the amount of assigned effort.

Then each worker i will collect label yi, and report it to the requester truthfully.

Data estimation for linear regression and reward payment.

The objective of linear regression is to estimate the linear parameter a, which quantifies

the linear relationship between Y and X . For the convenience of notation, in this section, we

2Alternatively, each worker can report its relevant private information (e.g., device model, location) that deter-
mines its worker quality to the requester, based on which the requester can learn the worker’s quality (e.g., using
history data of the device model, or a channel model based on the device’s location).

13

assume that m = 1, i.e., every worker works on one individual task. After workers report their

information, the requester obtains an estimation value â of the interested parameter a. WLOG,

we assume a ∼ N (0, 1) [34] (Theorem 10.3). We express the parameters in vectors as

Y = [y1, y2, ..., yN]
T, (2.5)

X = [x1, x2, ..., xN]
T. (2.6)

The additive noise (the sum of system noise and individual worker’s noise) and its variance

are

W = [ϵ+ n1, ϵ+ n2, ..., ϵ+ nN]
T, (2.7)

C = [σ +
q1
e1
, σ +

q2
e2
, ..., σ +

qN
eN

]T. (2.8)

Then the label can be expressed as

Y = aX +W. (2.9)

The estimation of the linear parameter a can be expressed as [34]

â = µa + σaX
T(XσaX

T + C)−1(Y −Xµa)

= XT(XXT + C)−1Y.

(2.10)

The estimation loss is quantified by the minimum mean square error (MMSE) of the linear

parameter a, which quantifies the utility of crowdsensing:

l(X, q, e, σ) = E[(â− a)2]

= σa − σaX
T(XσaX

T + C)−1Xσa

=
1

1 +
∑

i∈N
x2
i

σ + qi
ei

.

(2.11)

14

As we can see in (2.11), the estimation loss relies not only on all workers’ quality and

effort, but also on the value of the tasks.

We assume any worker j (j ̸= i) always truthfully reports quality and makes effort as

the requester desired. For convenience, here we use worker 1 and worker 2’s information. To

incentivize workers to truthfully behave, the requester rewards workers based on a function of

the reported quality and assigned effort, i.e.,

ri(xi, yi, x1, y1, x2, y2,
q1
e1
,
q2
e2
, ei

′, q′).

The reward function is also pre-defined by the requester and announced to all the workers

before they report their qualities. The reward function only depends on the information that

is known by the requester, i.e., X , Y , e′i, q
′, q1/e1, q2/e2. For convenience, we omit worker 1

and worker 2’s information in the expression of the reward function, then the reward function

is expressed as

ri(xi, yi, e
′
i, q

′). (2.12)

2.3.2 Mechanism design objective

After the workers have gone through the process we discussed above, they will be paid by the

requester. worker i’s payoff ui can be expressed as

ui(xi, yi, e
′
i, q

′) = ri(xi, yi, e
′
i, q

′)− ciei, (2.13)

which is the difference of the reward paid by the requester and the cost of working on the task.

Here ci is the resource (e.g., sensing time, energy) that is used by worker i for each unit of

effort they devoted to the task. The cost ciei is a linear function of the effort ei, which represents

the total resource that has been devoted to the crowdsensing task by worker i. In this chapter,

we assume that workers’ devices have similar capability to work on the tasks, and then the cost

for a unit of effort can be considered the same for all workers, i.e., c = ci for i ∈ N+. The

requester knows the cost coefficient c. This is a reasonable assumption, when workers’ smart

15

devices are working under uniform (or similar) conditions, workers are likely have the same

capability working on the tasks, so that the cost for a unit of effort is common knowledge to

the requester and workers.

After the workers work on the tasks, the requester obtain it’s payoff. The requester’s

payoff u0 can be expressed as

u0(X, Y, e′, q′, e, q, σ) = −l(X, q, e, σ)−
∑
i∈N

ri(xi, yi, ei
′, q′). (2.14)

which is the difference of the crowdsensing’s utility and the total reward paid to the workers.

Workers may behave untruthfully for their own advantage, e.g., workers may report untrue

quality and/or making less effort to get more reward from the requester. This act will not

only reduce the requester’s payoff, but also affect the utility of crowdsensing, as it can lead

to inaccurate estimation of the linear parameter a, which is a critical performance metric that

needs to be ensured in machine learning. Also, workers’ manipulation would discourage other

workers to participate in crowdsensing. For the reasons we discussed above, here we aim to

design a mechanism that can incentivize workers to report true quality and make effort as the

requester demanded. This can be achieved by defining the effort assignment function e′i(q
′) and

reward function ri(xi, yi, e
′
i, q

′). The mechanism should have the following two features:

Definition 2.1 A mechanism achieves truthful strategies of all workers as a Nash equilibrium

(NE) if, given other workers truthfully report their quality and make effort as the requester

assigned, the best strategy for worker i to maximize its payoff is to truthfully report its quality

and make effort as assigned by the requester, i.e.,

EX,Y [ui(xi, yi, e
′
i, qi, q−i)] ≥ EX,Y [ui(xi, yi, ei, q

′
i, q−i)],∀(q′i, ei), ∀q−i. (2.15)

Another aspect we should notice is that the payoff of every worker ui should be non-

negative, so that the worker will have the incentive to participate in more crowdsensing tasks.

This property is formally known as individual rationality as stated below.

16

Definition 2.2 A mechanism is individually rational (IR) if for each worker i, its expected

payoff is non-negative if it truthfully report its quality and make effort as the requester assigned,

i.e.,

EX,Y [ui(xi, yi, e
′
i, qi, q

′
−i)] ≥ 0,∀q′−i. (2.16)

2.4 Truthful Quality and Effort Elicitation for Crowdsensing

In this section, we aim to design mechanisms that satisfy the truthful and IR properties to

incentivize workers to report true quality and make effort as the requester desired.

Here we present the mechanisms as follows.

Definition 2.3 The mechanisms are defined by any effort assignment function e′i(q
′) that satis-

fies (2.17) and a reward function ri(xi, yi, e
′
i, q

′) given by (2.18) based on that e′i(q
′):

e′i(q
′
i, q

′
−i) ≥ e′i(q

′′
i , q

′
−i), q

′
i ≤ q′′i , (2.17)

ri(xi, yi, e
′
i, q

′) = c

∫ q̄

q′i

e′i(q, q
′
i)

q
dq + 2ce′i(q

′)− ce′i
2(q′)

q′i
{x2

i [E(
y2
x2

− yi
xi

)2 − q̄2
x2
2

]

− (
x2
i

x2
2

+ 1)
E(y1

x1
− y2

x2
)2 − q̄1

x2
1
− q̄2

x2
2

1
x2
1
+ 1

x2
2

}.
(2.18)

It is defined in (2.17) that if the quality of worker i improves, the worker will be assigned

more effort, given any quality of other workers. Next we will show how the mechanisms

achieve the truthful property. First, we show that the expected payoff of each worker depends

on its true quality and effort (Lemma 2.1). Second, we show that if the elicitation of true quality

is achieved, the elicitation of effort is also achieved (Lemma 2.2). Then we show that when the

worker makes optimal effort, the elicitation of its quality is also achieved (Lemma 2.3).

First we show that the expected payoff of worker i is a function of its true quality and

actual effort (2.18).

17

Lemma 2.1 Given that worker i works on its task and reports its feature xi and label yi, and

that it reports its quality q′i and makes effort ei, we can express its expected payoff as

EX,Y [ui(xi, yi, ei, q
′)] = c

∫ q̄

q′i

e′i(q, q
′
i)

q
dq + 2ce′i(q

′)− ce′2i (q
′)

q′i

qi
ei
− cei. (2.19)

The variances of the additive noises (σ and qi/ei) are unknown to the requester. However, they

can be calculated by the information that is known by the requester.

When m = 1,
y1
x1

− y2
x2

= (
ϵ

x1

+
n1

x1

)− (
ϵ

x2

+
n2

x2

). (2.20)

Letq̄i = qi
ei

, then we have

E(
y1
x1

− y2
x2

)2 =
σ

x1
2
+

q̄1
x1

2
+

σ

x2
2
+

q̄2
x2

2
,

E(
y1
x1

− yi
xi

)2 =
σ

x1
2
+

q̄1
x1

2
+

σ

xi
2
+

q̄i
xi

2
.

Then we can express σ and q̄i as

σ =
E(y1

x1
− y2

x2
)2 − q̄1

x1
2 − q̄2

x2
2

1
x1

2 +
1

x2
2

, (2.21)

q̄i =
qi
ei

= xi
2[E(

y1
x1

− yi
xi

)2 − σ

x1
2
− q̄1

x1
2
− σ

xi
2
]

= xi
2[E(

y2
x2

− yi
xi

)2 − q̄2
x2

2
]− (

xi
2

x2
2
+ 1)

E(y1
x1
− y2

x2
)2 − q̄1

x1
2 − q̄2

x2
2

1
x1

2 +
1

x2
2

.

(2.22)

When m > 1, let

Xk = [x(k−1)m+1, x(k−1)m+2, ..., xkm],

Yk = [y(k−1)m+1, y(k−1)m+2, ..., ykm],

Nk = [n(k−1)m+1, n(k−1)m+2, ..., nkm],

18

where Xk is a m×m dimension matrix, k = 1, 2, Yk and Nk are 1×m row vectors. Then

we have
YkX

−1
k = aXkX

−1
k +NkX

−1
k + [ϵ, ϵ, ..., ϵ]X−1

k

= a+NkX
−1
k + [ϵ, ϵ, ..., ϵ]X−1

k .

Using worker 1 and worker 2’s information we have

Y1X
−1
1 − Y2X

−1
2 = N1X

−1
1 −N2X

−1
2 + [ϵ, ϵ, ..., ϵ](X−1

1 −X−1
2). (2.23)

Then we can calculate the variances of workers’ noises, σ and qi/ei. Based on the infor-

mation that is known by the requester, the expected payoff of worker i is a function of its true

quality and actual effort, and the worker can only affect it by its reported quality and actual

effort.

Lemma 2.2 The elicitation of true quality leads to the elicitation of effort. Given that worker i

reports quality q′i, its optimal effort can be expressed as

ei =

√
qi
q′i
e′i(q

′). (2.24)

Note that when worker i reports its true quality, its optimal effort is equal to the effort that

assigned by the requester. This shows that if worker i wants to maximize its payoff when it

reports its true quality, it needs to make effort as the requester assigned. Then the expected

payoff of worker i is

c

∫ q̄

q′i

e′i(q, q
′
i)

q
dq + 2ce′i(q

′)− 2c

√
qi
q′i
e′i(q

′). (2.25)

In (2.25) we can see that worker i can only affect its payoff by its reported quality q′i. In

the next lemma, we will show that worker i’s optimal reported quality q′i is its true quality,

under the condition (2.17) on the effort assignment function [24].

Lemma 2.3 Given that worker i reports its feature xi, label yi, and makes its optimal effort ei

as in (2.24), its optimal reported quality q′i is its true quality qi.

19

As we discussed in Lemmas 1, 2, and 3, when worker i reports its true quality q′i = qi, and

makes the optimal effort ei = e′i, its expected payoff can be expressed as

c

∫ q̄

qi

e′i(q, q
′
−i)

q
dq. (2.26)

The equation satisfies the IR property, since (2.26) is nonnegative due to the fact that e′i(q
′) ≥

0,∀q′ [24].

Theorem 2.1 The mechanisms satisfy truthful and IR properties.

Property 2.1 Here we discuss the rationale of the mechanisms. The requester’s aim is to

incentivize workers to report true quality q and make actual effort e as the requester assigned.

Thus, worker i’s reward function ri should be a function of its true quality qi and actual effort

ei. Otherwise, workers will deceive the requester to gain more reward, and the efficiency of

the crowdsensing system will be affected. However, the requester can only use the information

which known by itself (i.e., X , Y , q′, e′i) to define the reward function. Using (2.22), we can

design the reward function as a function of the true quality qi and actual effort ei (as in Lemma

1 and (2.19)). In refined function, worker i’s optimal effort equals to its assigned effort e′i

when worker i reports its true quality (as in Lemma 2 and (2.24)). Given that the actual effort

is optimized, worker i’s payoff only depends on q′i, e
′
i, and qi (as in (2.25)). Next we further

design the function such that, to make the reward function to be maximized, worker i’s reported

quality q′i should equal to its true quality qi when other parameters are fixed (as in Lemma 3).

Property 2.2 From (2.26) we can see, given the assigned effort e′i(q
′) and workers’ qualities

q, as the upper bound of quality q̄ increases, the payoff of worker i increases, and the payoff

of the requester decreases. When the lower bound is fixed, a lower upper bound means the

range of qualities is smaller. This is a benefit for the requester because the level of uncertainty

of workers’ quality is lower. Assume that workers have the same quality, i.e., qi = q̄,∀i, then

worker i’s payoff would be 0, which means that the mechanism is fully “efficient” for the

requester’s interest.

20

2.5 Optimal Effort Assignment for Truthful Crowdsensing

In the above sections, we have shown that the mechanisms can achieve truthful and IR proper-

ties. In this section, we will show how the requester assigns efforts to maximize its payoff and

system efficiency.

We assume that workers report true qualities q′ = q and make efforts as the requester

assigned e = e′. Thus, for convenience, we use q and e instead of q′ and e′, respectively. We

further assume that worker i’s task xi follows a normal prior distribution N (0, 1), workers’

qualities follow independent and identical uniform distributions over the interval [q, q̄].

Definition 2.4 The effort assignment function e(q) that can maximize the requester’s expected

payoff is the crowdsensing requester’s optimal (CO) effort assignment eco(q), i.e.,

{eco(q), ∀q} ≜ max
e(q)

EX,Y [u0(X, Y, e, q, σ)]. (2.27)

We first consider the case where at most one worker is assigned effort. The advantage

of this single-worker assignment is that it simplifies the implementation of crowdsensing: the

requester needs to collect data from only one worker rather than potentially many workers.

Also, the result of this case provides useful insights for the general case.

Theorem 2.2 For the case of single-worker assignment, the requester’s optimal effort assign-

ment is given by

ecoi = max{ qi
σ + x2

i

(xi

√
1

α(qi)
− 1), 0}, (2.28)

where

α(qi) = c(
F (q)

f(q)
+ qi), ∀i (2.29)

which is the virtual quality of a worker.

We can see that the virtual quality depends on worker i’s quality and the distribution of

quality F (q) and f(q). f(q) and F (q) are the probability density function (PDF) and cumulative

density function (CDF) of each worker’s quality, respectively.

21

Next we consider the general case where multiple workers can be assigned effort. We can

show the following useful fact.

Lemma 2.4 The requester’s expected payoff, i.e., EX,Y [u0(X, Y, e, q, σ)], is a convex function

of effort e.

Based on Lemma 2.4, for the case of multi-worker assignment, to find the optimal effort

assignment that maximizes the requester’s payoff, we can use the barrier method to solve the

following convex optimization problem:

min − EQ[ū0(e(Q))]

subject to ei ≥ 0.

(2.30)

Next we study the social welfare v of the system, which is the difference between the

crowdsensing’s utility and the total cost for all workers, to quantify the system efficiency. The

social welfare v can be expressed as

v(e(q)) ≜ −E[l(X, q, e, σ)]−
∑
i∈N

ciei. (2.31)

Definition 2.5 The effort function e(q) that maximizes the social welfare is the socially optimal

(SO) effort assignment eso(q), i.e.,

{eso(q),∀q} ≜ max
e(q)

v(e(q)). (2.32)

We first have the following result for the case of single-worker assignment.

Theorem 2.3 For the case of single-worker assignment, the socially optimal effort assignment

is given by

esoi = max{ qi
σ + x2

i

(
xi√
cqi
− 1), 0}. (2.33)

As we can see in (2.28) and (2.33), given the workers’ quality, the variance of system

noise, and the probability distribution of quality, the optimal effort assignment is determined

22

by the feature xi of the task, which is determined before the requester assigns the effort. This is

because the requester’s expected payoff and social welfare both depend on the estimation loss

l, which is a function of the task’s feature.

We can show the following fact for the general case of multi-worker assignment.

Lemma 2.5 The social welfare v, i.e., v(e(q)), is a convex function of e and q.

Similar to the requester’s optimal effort assignment, to obtain the optimal effort assign-

ment that maximizes social welfare, it is equivalent to solve the following convex optimization

problem:

min − E[v(e(q))]

subject to ei ≥ 0.

(2.34)

2.6 Simulation Results

In this section, we prove the truthful and IR properties have been achieved, and discuss the

performance of the optimal effort assignments under different conditions.

2.6.1 Worker’s payoff

To demonstrate the truthful and IR properties, we compare a worker’s expected payoff when

it reports its true quality and makes actual effort with that when it reports quality untruthfully

and/or does not make effort as the requester assigned. We use the CO effort assignment e∗i (q)

for the mechanisms and set the system parameters as follows: N = 1, m = 1, c = 0.3,

qi ∈ [0.5, 3.5], q1 = 1.2.

Fig.2.2 illustrates the worker’s expected payoff when the worker makes assigned effort

e∗1(q
′
1), or optimal effort

√
q1
q′1
e∗1(q

′
1), as its reported quality q′ varies. By making either assigned

effort or optimal effort, the expected payoff of the worker can reach the maximum value, which

is the payoff when the worker reports true quality and makes effort as the requester assigned

simultaneously. When the worker untruthfully reports its quality, the payoff of the worker is

always no greater than that when it reports its true quality. When it reports more untruthfully,

23

0.5 1 1.5 2 2.5 3 3.5

Reported quality

0.015

0.02

0.025

0.03

0.035

0.04

0.045

U
s
e
r

p
a
y
o
ff

truthful effort

optimal effort

truthful quality&effort

Figure 2.2: Impact of reported quality q′1

0.5 1 1.5 2

Actual effort

-0.8

-0.6

-0.4

-0.2

0

0.2

U
s
e
r

p
a
y
o
ff

truthful quality

optimal quality

truthful quality&effort

Figure 2.3: Impact of actual effort e′1

the worker’s expected payoff keeps decreasing. We can see that the truthful property has been

achieved by the mechanisms so that workers have the incentive to behave truthfully.

Fig.2.3 shows that when the worker reports its true quality or the optimal quality, the

worker’s expected payoff varies with the actual effort the worker made. We can see when

the worker makes effort as the requester assigned, its expected payoff is maximized. Besides,

when the worker truthfully reports its quality, its expected payoff is always higher than that

when it reports the highest quality. Also, from fig.2.2, and fig.2.3 we can see that the payoff is

non-negative when the worker truthfully reports its quality and makes the effort desired by the

requester, which confirms that the IR property is achieved by the mechanisms.

24

0 5 10 15 20 25 30 35 40 45 50

Number of users

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
e

g
a

ti
v
e

 s
o

c
ia

l
w

e
lf
a

re
/r

e
q

u
e

s
te

r
p

a
y
o

ff

CP-CP

SW-CO

SW-SO

Figure 2.4: Impact of the number of workers N

2.6.2 Requester’s payoff

To prove the system efficiency of the CO effort assignment, we compare the expected re-

quester’s payoff (CP) attained by the CO effort assignment (CP-CO) with the expected social

welfare (SW) attained by the SO effort assignment (SW-SO), and the expected SW attained

by the CO effort assignment (SW-CO). We set the system parameters as follows: N ∈ [1, 50],

m = 1, c = 0.5, qi ∈ [0.5, 3.5]. For convenience, we illustrate the negative of social welfare or

the requester’s payoff in all figures.

Fig.2.4 gives the tendency of CP-CO, SW-CO, and SW-SO when the number of workers

varies. We can see that with the increase of the number of workers, all three curves are de-

creasing. It is because that when there are more workers working on the tasks, the estimation

loss will decrease. After the number of workers reaches a certain number, the trend of the

curves becomes gentle, which means that it may not be the more workers the better, since more

workers means more occupation of social resource.

Fig.2.5 illustrates the impact of the cost on each unit of effort c on the performance of

CP-CO, SW-CO, and SW-SO. As shown in the figure, all three values increase as the cost c

increases. When the cost c is small, the gap between social welfares is small, and it increases

with c grows. This is because when the cost is large, tasks are assigned to the workers whom

have better qualities.

25

0.2 0.4 0.6 0.8 1 1.2 1.4

Cost coefficient

0.4

0.5

0.6

0.7

0.8

0.9

1

N
e

g
a

ti
v
e

 s
o

c
ia

l
w

e
lf
a

re
/r

e
q

u
e

s
te

r
p

a
y
o

ff

CP-CO

SW-CO

SW-SO

Figure 2.5: Impact of cost c

2.7 Conclusion

In this chapter, to provide high quality data for machine learning, we devised the truthful mech-

anisms to elicit private quality from strategic workers that work on different tasks and to incen-

tivize workers to make efforts as the requester desires. Under the mechanisms, we investigated

the optimal effort assignments that maximize the requester’s payoff and social welfare, which

are the functions of the linear parameter’s estimation error.

2.8 Appendix

2.8.1 Proof of Lemma 2.1

We have shown in (2.22) and (2.23) that the unknown ratio of quality qi and effort ei can be

expressed by the information known by the requester (feature X , label Y , q1/e1, q2/e2) no

matter how many tasks worker i works on.

2.8.2 Proof of Theorem 2.1

The IR property has been proved by (2.26), from Lemma 2 and Lemma 3 we can know that

given worker j (j ̸= i) reports its true quality and make effort as the requester assigned, when

the worker truthfully reports its quality and makes optimal effort, it can maximize its payoff,

then the truthful property has been proved.

26

2.8.3 Proof of Lemma 2.4

From (2.10) and (2.11) we have the estimation of the linear parameter a and the expression of

the estimation loss l(X, q, e, σ). When worker i reports its true quality and makes actual effort,

its reward can be expressed by (2.26), then we have the expected requester’s payoff, which is

given by

E[u0(X, yi, e
′, q′, e, q, σ)]

= −l(X, q, e, σ)−
∑
i∈N

ri(xi, yi, ei
′, q′)

= − 1

1 +
∑ x2

i

σ+
qi
ei

−
∑
i∈N

α(qi)
ei
qi
.

(2.35)

Where

α(qi) = c(
F (qi)

f(qi)
+ qi), (2.36)

it is given by [24]. For convenience, we express E[u0(X, yi, e
′, q′, e, q, σ)] as E[u0(e(q))].

Given a function f(x) : Rn → R, if all the second partial derivatives of f exist and

continuous over the domain of f , the Hessian matrix of f can be expressed as

H =

∂2f

∂x2
1

∂2f

∂x1∂x2

· · · ∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x1∂xn
...

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2

· · · ∂2f

∂x2
n

(2.37)

The element on jth row and kth column of E[u0(e)]’s hessian matrix H is given by

Hj,k =
∂2E[u0(e(q))]

∂ej∂ek

=
qjqkejek

(1 +
∑

i∈N
x2
i

σ+
qi
ei

)4(σej + qj)2(σek + qk)
,

∀j, k ∈ N .

(2.38)

By calculation we have |H| ≥ 0, the expected requester’s payoff function is convex.

27

2.8.4 Proof of Theorem 2.2

From Lemma 4 we have the expected requester’s payoff function is convex. From (2.35) we

have the expected requester’s payoff can be expressed as

EX,Q[ū0(e(Q))] = EX,Q[−
1

1 +
∑ x2

i

σ+
qi
ei

−
∑
i∈N

α(qi)
ei
qi
]. (2.39)

For single-worker assignment, we find the optimal solution by solving

∂[EX,Q[ū0(e(Q))]]

∂ei
=

∂[− 1

1 +
x2
i

σ+
qi
ei

− α(qi)
ei
qi
]

∂ei
= 0, (2.40)

which yields

ecoi = max{ qi
σ + x2

i

(xi

√
1

α(qi)
− 1), 0}. (2.41)

2.8.5 Proof of Lemma 2.5

Same as Lemma 4, the expected social welfare E[v(e(q))] is given by

E[v(e(q))] = −E[l(X, q, e, σ)]−
∑
i∈N

ciei

= − 1

1 +
∑ x2

i

σ+
qi
ei

−
∑
i∈N

ciei.
(2.42)

The element on jth row and kth column of E[v(e(q))]’s Hessian matrix H is given by

Hj,k =
∂2E[v(e(q))]

∂ej∂ek

=
qjqkejek

(1 +
∑

i∈N
x2
i

σ+
qi
ei

)4(σej + qj)2(σek + qk)
,

∀j, k ∈ N .

(2.43)

By calculation we have |H| ≥ 0, the expected social welfare function is convex.

28

2.8.6 Proof of Theorem 2.3

From Lemma 5 we have the expected social welfare function is convex. From (2.42) we have

the expression of the expected social welfare.

For single-worker assignment, we find the optimal solution by solving

∂[EX,Q[v(e(q))]]

∂ei
=

∂[− 1

1 +
x2
i

σ+
qi
ei

− cei]

∂ei
= 0, (2.44)

which yields

esoi = max{ qi
σ + x2

i

(
xi√
cqi
− 1), 0}. (2.45)

29

Chapter 3

Privacy-Preserving Incentive Mechanisms for Truthful Data Quality in Data Crowdsourcing.

3.1 Introduction

Data crowdsourcing (referred to as “crowdsourcing” for brevity) has found a wide range of ap-

plications. The applications of crowdsourcing can be generally categorized as physical sensing

(also known as “crowdsensing”) such as spectrum sensing [1], traffic monitoring [2], environ-

mental monitoring [3], and human intelligence such as image labeling and speech transcrib-

ing [4, 5]. In principle, crowdsourcing leverages the “wisdom” of a potentially large crowd

of workers (e.g., mobile users) for tasks. One main advantage of crowdsourcing lies in that it

can exploit the diversity of inherently inaccurate data from many workers by aggregating the

data obtained by the crowd, such that the data accuracy (referred to as “data quality”) after

aggregation can substantially improve. With enormous opportunities and growing popularities

of data-driven technologies, crowdsourcing is a promising paradigm to harness the power of

big data via machine learning, and enable artificial intelligence in various application domains,

such as image classification [4] and indoor localization [6].

To exploit the potential of crowdsourcing, it is beneficial to allocate tasks to workers based

on their quality. A worker’s quality1 can capture the intrinsic accuracy of the worker’s data rel-

ative to the ground truth of the interested variable, and it generally varies for different workers

depending on a worker’s characteristics (e.g., location, sensors’ capabilities). For example, if

the task is to detect whether a licensed wireless device is transmitting or not (for opportunistic

spectrum access by unlicensed users), then the quality of a worker’s data is the probability of
1We use “worker quality” and “quality” exchangeably in this chapter. “Worker quality” is distinguished from

“data quality”.

30

correct detection, which depends on the worker’s location relative to the licensed device. Work-

ers generally have diverse quality. A worker can learn her quality based on the knowledge of

her characteristics, such as her location2 (as in Fig. 3.1).

Although quality-aware crowdsourcing is promising, the quality of a worker can be her

private information, which is unknown to and cannot be verified by the crowdsourcing re-

quester. For example, a worker’s location is often her private information that is unknown to

the requester. As a result, a strategic worker may have incentive to misreport her quality to the

requester, in order to benefit. For example, a worker of low quality may pretend to have high

quality in the hope of receiving a high reward for providing high quality data. In addition to

the worker quality, the effort exerted by a worker in the task can also be her hidden action that

cannot be observed by the requester. Therefore, a strategic worker may make no effort in the

task while the requester is not able to verify whether an effort is made. Furthermore, the data

obtained by a worker from performing the task could also be her private information that she

can misreport in favor of herself.

On the other hand, while workers’ quality is useful information for fully reaping the bene-

fits of crowdsourcing, it may contain sensitive information about the individual workers, which

needs to be protected. For example, as a worker’s location can determine her quality, the loca-

tion can be inferred from the quality, which can be further used to infer the worker’s identity.

Although the quality of a worker would not be directly revealed to other workers, it may be

inferred from the outcome of the task allocation process, which depends on workers’ quality.

Moreover, the data reported by a worker can also be her sensitive information that should not be

disclosed. As an example, the data obtained by a worker can also depend on her location, which

can be inferred from the data. However, even a worker only reports her data to the requester, it

may be inferred from the result aggregated from all workers’ reported data.

In the presence of strategic workers with private quality and data, and hidden effort, we aim

to incentivize workers to truthfully reveal their quality and data, and make efforts as desired by

the requester. The joint truthful elicitation of quality, effort, and data ensures that the requester

2Alternatively, a worker can report her characteristics (e.g., location) that determines her quality to the re-
quester, so that the requester can learn the worker’s quality. In this case, reporting the worker’s quality is equivalent
to reporting her characteristics.

31

Figure 3.1: In spectrum crowdsensing, a worker’s quality for a task depends on her location
with respect to the wireless device to be observed, which can be her private information that
needs to be protected.

can know the true accuracy of the aggregated data, which is an important performance metric

of crowdsourcing. More importantly, for privacy-aware workers with sensitive quality and data

information, the incentive mechanism should protect a worker’s quality and data from being

inferred by other workers based on the outcomes of the mechanism. This privacy-preserving

mechanism resolves workers’ privacy concerns and thus encourage their participation.

The design and analysis of the privacy-preserving mechanisms for truthful data quality

elicitation need to address challenges that are quite different from existing works. First, to pro-

tect the privacy of workers’ quality and data, the mechanism needs to randomize the processes

of both task allocation and data aggregation. This complication affects the truthful design of

the mechanism, and also the efficiency of the mechanism (in terms of the accuracy of aggre-

gated data). Second, due to the stochastic dependency of a worker’s private data on her private

quality and hidden effort, the joint elicitation of quality, effort, and data needs to overcome the

coupling therein.

The main contributions of this chapter can be summarized as follows.

• Under a quality-aware crowdsourcing framework, we devise Single-task and Multi-task

Privacy-preserving crowdsourcing mechanisms for truthful Data Quality Elicitation (S-

PDQE and M-PDQE). S-PDQE incentivizes strategic workers to truthfully reveal their

private quality and data, and make hidden efforts as desired by the crowdsourcing re-

quester when there is a single task to be assigned to workers. M-PDQE achieves the

32

truthful properties when there are multiple tasks to be assigned to different workers. The

truthful design of the mechanisms overcomes the lack of ground truth and the coupling

in the joint elicitation of a worker’s private quality and data and hidden effort.

• In both mechanisms, we design differentially private task allocation and data aggregation

algorithms that prevent the inference of a worker’s quality and data from the outcomes

of these algorithms. The design of the task allocation algorithm addresses the coupling

between the privacy-preserving design and the truthful design. We also provide a bound

on the performance gap of the mechanisms in terms of the data accuracy compared to

the optimal strategies. To the best of our knowledge, this is the first paper that studies

crowdsourcing incentive mechanisms for truthful data quality while protecting workers’

quality and data privacy.

• We use simulations based on real-world data to evaluate the performance of M-PDQE

and S-PDQE. The results show that both mechanisms achieve the desired truthfulness,

individual rationality, and differentially private properties, alongside near-optimal data

accuracy.

The remainder of this chapter is organized as follows. Section 3.2 reviews related work. In

Section 3.3 and Section 3.4, we describe the system model of quality-aware crowdsourcing and

formulate the problem of designing truthful and privacy-preserving mechanisms. In Section

3.5 and 3.6, we introduce the design of S-PDQE and M-PDQE and analyze the properties of

the mechanisms in terms of truthfulness, differential privacy, and performance gap with respect

to the optimal strategies, respectively. Simulation results are presented in Section 3.7. Section

3.8 concludes this chapter and discusses future work.

3.2 Related Work

3.2.1 Privacy-preserving mechanisms for crowdsourcing

Privacy-preserving mechanisms for crowdsourcing have been studied in many works. While a

few works have used cryptographic techniques to protect workers’ privacy [35, 36, 37], most

33

studies have used the concept of differential privacy [38]. Many of these studies have focused

on preventing a worker’s bid (typically its participating cost) from being inferred by other

workers [39, 40, 41, 42]. Some studies have considered protecting workers’ data privacy from

each other [43, 44]. On the other hand, some works have focused on protecting workers’ cost

or data privacy from the crowdsourcing requester [45, 46, 42]. Location privacy has also been

studied in a few works [47, 48]. Different from these prior works, this paper aims to protect the

privacy of workers’ quality and data, while achieving truthful data quality elicitation.

3.2.2 Quality-aware crowdsourcing

Data quality in crowdsourcing has been studied in a few works [29, 49, 50, 43, 51]. One

interesting line of works [50, 43, 51] in this direction have studied truthful mechanisms for

quality-aware crowdsourcing where workers have private participating costs. Some other works

have focused on learning data quality of workers, e.g., by exploiting the correlation of their

data [29, 30], or allocating tasks on the fly [49, 52]. Different from these works, this pa-

per focuses on the situation where quality is a worker’s private information that is unknown

to the requester. A few recent works [24, 53] have designed truthful mechanisms for qual-

ity elicitation in quality-aware crowdsourcing. Compared to these works, this paper studies

privacy-preserving and truthful mechanisms that not only achieves data quality elicitation, but

also protect the privacy of workers’ quality and data.

3.2.3 Truthful mechanisms for crowdsourcing

There have been a lot of research on truthful mechanisms for crowdsourcing [22, 25, 45, 54, 55].

Most of these mechanisms have focused on incentivizing workers to truthfully reveal their pri-

vate participating costs. Different from these works, this paper studies the situation where

workers have private data quality that they can misreport. As a result, existing mechanisms for

cost elicitation (such as the classical VCG auction and the characterization of truthful mecha-

nisms [56, Theorem 9.36]) cannot work for quality elicitation. Furthermore, this paper aims at

joint elicitation of quality, effort, and data, which is more challenging than elicitation of cost or

quality only.

34

Workers

Announce task and
reward function

1

Report quality2

Randomly select
winners and assign
the task

3

Observe and Report
data

4

Pay reward5

Publish perturbed
data

Aggregate and
perturb data

Requester Community

6

7

Figure 3.2: Structure and procedure of the quality and privacy aware data crowdsourcing sys-
tem.

Table 3.1: Main Notation
Symbol Description
qi True quality of worker i
di True data of worker i
ei Actual effort of worker i
q′i Reported quality of worker i
d′i Reported data of worker i
e′i Desired effort of worker i
q Workers’ true quality
d Workers’ true data
e Workers’ actual effort
q′ Workers’ reported quality
d′ Workers’ reported data
e′ Workers’ desired effort
q−i Workers’ true quality other than worker i’s
d−i Workers’ true data other than worker i’s
e−i Workers’ actual effort other than worker i’s
q′
−i Workers’ reported quality other than worker i’s

d′
−i Workers’ reported data other than worker i’s

e′−i Workers’ desired effort other than worker i’s

There have also been some studies on truthful mechanisms for crowdsourcing where work-

ers have hidden efforts [26, 25, 57, 58] and private data [26, 25, 57]. This paper is different

from these works as our goal is not only to jointly elicit workers’ private data, quality, and

hidden effort, but also to protect the privacy of workers’ quality and data.

3.3 System Model

In this section, we describe the quality-aware crowdsourcing system studied in this paper. We

consider a crowdsourcing system that consists of a requester (also referred to as worker 0) and

a set of available workers U = {1, 2, · · · , n}. Fig.3.2 illustrates the structure and procedure of

the crowdsourcing system with following key elements.

Data observation. The requester aims to estimate an unknown variable X of a crowd-

sourcing task by recruiting the workers to observe X . For ease of exposition, we assume that

35

the variable X takes a binary value from {−1,+1}. After performing the task, worker i ob-

tains data Di and reports it to the requester. The accuracy of data Di is measured by the correct

probability pi, which is the probability that Di is equal to the ground truth of X , given by

pi = PrX|Di(qi,ei) (di) = qiei + q̂(1− ei). (3.1)

Here pi depends on the quality qi of worker i and the effort ei exerted by worker i in the

task, and q̂ denotes the correct probability when the worker makes no effort (e.g., using the

prior distribution of X).

Worker quality. Given that worker i makes an effort in the task, the quality qi ∈ [1/2, 1]

of worker i is her correct probability pi. The quality of a worker is an intrinsic coefficient that

captures the worker’s capability for the task. A larger qi means higher quality. We assume that

each worker knows her quality, which is unknown to the requester. For ease of exposition, we

assume that each worker’s quality is within the range of [q, q], which is known to the requester.

Worker effort. The effort ei represents whether worker i makes an effort in the task,

where ei = 0 and ei = 1 indicate making and not making an effort, respectively. If worker i

makes an effort, then pi is equal to worker i’s quality qi; if not, pi is equal to q̂. To ensure that

making effort is meaningful, we assume that qi > q̂.

Task allocation. The requester allocates the task to workers by assigning effort e′i to each

worker i based on their quality. If worker i is selected as a winner, then her assigned effort is

e′i = 1, otherwise it’s e′i = 0. To this end, each worker reports her quality q′i to the requester.

Since the true quality qi is worker i’s private information, she may misreport her quality such

that q′i ̸= qi. Based on the workers’ reported quality profile q′ = {q′i : i ∈ U}, the requester

allocates the task to a subset S ⊂ N of workers where 2 ≤ |S| ≤ n, and determines each

worker’s reward ri according to a reward function. The reward function is predefined by the

requester and announced to all workers before they report their quality. Note that the reward

function can only depend on the information that is known to the requester, i.e., q′, e′, and

d′. In the design of the reward paid to worker i, we will also use another worker j’s (j ̸= i)

information.

36

Data aggregation. After the requester collects the data from workers, it uses a weighted

data aggregation method to calculate an estimate x0 of the unknown variable X based on the

collected data, given by

x0 (q
′, e′,d′) = sign

(∑
i∈S

αid
′
i

)
,

where di is a sample realization of the random data Di, d′i is worker i’s reported data, and

αi = (2q′i − 1)2 is worker i’s data weight [59], which depends on worker i’s reported quality.

Based on the aggregation method, the utility of crowdsourcing is measured by the accuracy pc

of the aggregated data x0, i.e.,

pc (q
′, e′,d′) = EX|d(q,e)

[
1X=x0(q′,e′,d′)

]
. (3.2)

Note that the expectation is taken over the posterior distribution X|d conditioned on workers’

true data, and d (q, e) implies that workers’ data is determined by workers’ quality and effort.

If the task is not assigned to any worker (i.e., S = ∅), the accuracy pc is defined to be 0.

Worker payoff. Each worker i’s payoff is the difference between the reward paid by the

requester and her cost in the task, given by

ui (q
′, e′i, ei, d

′
i, dj) = ri (q

′, e′i, d
′
i, dj)− ciei, (3.3)

where the cost coefficient ci captures the resources consumed by worker i if she makes an

effort ei = 1 in the task. If worker i make no effort ei = 0, it incurs no cost. Here we

assume that workers have the same cost coefficient (i.e., c = ci, ∀i ∈ U) which is known to the

requester. This assumption is reasonable when the cost of performing a task is determined by

a uniform market price (e.g., $0.5 for each task). We can also relax the restrict of the uniform

cost coefficient, though the analysis becomes more complicated. The detailed reward function

will be given in section 3.5.

37

3.4 Problem Formulation

In this section, based on the quality-aware crowdsourcing framework described in Section 3.3,

we formulate the problem of mechanism design with three objectives as follows.

3.4.1 Truthful Elicitation of Data Quality

Since the workers have private quality and data and make hidden effort, if any worker manipu-

lates her reported quality, reported data, or exerted effort, then the estimate of the ground truth

x0 can be incorrect, i.e.,

x0 (q
′, e′,d′) ̸= x0(q, e,d).

More importantly, an incorrect estimate will affect the accuracy of aggregated data, i.e.,

pc (q
′, e′,d′) ̸= pc(q, e,d).

This means that untruthful workers would result in the requester’s incorrect knowledge of the

data accuracy. This is undesirable since the data accuracy is a key performance metric for

crowdsourcing, and the requester may need the correct data accuracy to make decisions. Thus

motivated, our mechanism should incentivize workers to behave truthfully. Therefore, a pri-

mary mechanism design objective is to achieve the truthfulness property defined below.

Definition 3.1 A mechanism achieves truthful strategies of all workers as a Nash equilibrium

(NE) in expectation if, given other workers truthfully report their quality and data and make

desired effort, the optimal strategy for each worker i to maximize her expected payoff is to

truthfully report her quality and data and make desired effort. i.e.,

EDj |di(qi,ei)
[
ui

(
qi, q−i, e

′
i, e

′
i, di, dj

)]
≥

EDj |di(qi,ei)
[
ui

(
q′i, q−i, e

′
i, ei, d

′
i, dj

)]
,∀(q′i, ei, d′i),

where dj (j ̸= i) is worker j’s data.

38

Note that in the above inequality, corresponding to the right side, the two e′is on the left

side have meanings as following: the first e′i denotes worker i’s assigned effort, and the second

e′i denotes the actual effort made by worker i which equals to the requester’s desired effort

ei = e′i.

To incentivize workers to participate in crowdsourcing, the payoff of each worker i should

be non-negative. This property is formally known as individual rationality as stated below.

Definition 3.2 A mechanism is individually rational (IR) if for each worker i, given that she

truthfully reports her quality and data and makes the desired effort, her expected payoff is

non-negative, i.e.,

EDj |di(qi)
[
ui

(
qi, q

′
−i, e

′
i, e

′
i, di, dj

)]
≥ 0,∀q′

−i.

3.4.2 Protecting Privacy of Workers’ Quality and Data

As our mechanism incentivizes a worker to truthfully report her private quality and data, these

may be the worker’s sensitive information that needs to be protected. For example, a worker’s

identity can be inferred from her location, which can be further inferred from her quality or data

reported to the requester. On the other hand, it is possible for a curious worker (or an adversary)

to infer another worker’s private quality and/or data from the outcomes of the mechanism. This

leakage of privacy would discourage workers from participating in crowdsourcing.

We use the following example to illustrate how quality information leakage can happen.

Consider a crowdsourcing system where the requester selects 3 winners from 5 workers to

perform the task. Assume that the workers’ quality profile is q = {0.65, 0.7, 0.8, 0.75, 0.85}.

Thus the optimal winner set is {5, 3, 4}. Suppose worker 2 intends to infer other workers’

quality, and her quality is changed from 0.7 to 0.8 while the other workers’ quality remains the

same. Then the new winner set is {5, 2, 3}. As a result, worker 2 can conclude that worker

4’s quality is between 0.7 and 0.8. After several rounds, worker 2 can narrow down worker 4’s

quality range, or even infer the exact value.

Motivated by the discussions above, another important goal of this paper is to design a

differentially private mechanism that can protect workers’ quality privacy and data privacy.

The formal definition is as below:

39

Definition 3.3 A mechanismM is ϵ-differential privacy if for any two input setsA and B with

a single input difference, and for any set of outcomes O ⊆ Range (M):

Pr [M (A) ∈ O] ≤ exp (ϵ)× Pr [M (B) ∈ O] ,

where ϵ is a small positive constant and Range (M) is the outcome space of mechanismM.

Another relevant concept is approximate differential privacy, which is a relaxation of differen-

tial privacy, defined as follows.

Definition 3.4 A mechanismM is (ϵ, δ)-differential privacy if for any two input sets A and B

with a single input difference, and for any set of outcomes O ⊆ Range (M):

Pr [M (A) ∈ O] ≤ exp (ϵ)× Pr [M (B) ∈ O] + δ.

3.4.3 Accuracy of Aggregated Data

Besides the properties of truthfulness and differential privacy, another important objective of

our mechanism is to improve the accuracy pc of the aggregated data. Recall that we use a

weighted aggregation method to calculate the estimate x0 of the target variable X . According

to [59], the optimal weight that maximizes the expected accuracy is given by αi = (2q′i − 1)2,

which leads to a lower bound of the expected accuracy:

E[pc] ≥ 1− exp

(
−1

2

∑
i∈S

αi

)
. (3.4)

In the rest of this paper, we use
∑

i∈S αi instead of pc as an approximate metric of the accuracy.

This is reasonable since when the lower bound of E[pc] meets some threshold requirement, the

accuracy E[pc] also meets that requirement.

3.5 Privacy-Preserving Mechanism for Truthful Data Quality Elicitation: Single-Task Case

In this section, to achieve the objectives formulated in Section 3.4, we present the design of

a Single-Task Privacy-preserving mechanism for truthful Data Quality Elicitation (S-PDQE).

40

S-PDQE consists of a differentially private task allocation algorithm and a differentially private

data aggregation algorithm.

3.5.1 Preliminaries of Differential Privacy

We first introduce some basics of differential privacy which will be used in the mechanism

design later.

We use the exponential mechanism [60] to achieve differential privacy for workers’ qual-

ity. It is a general mechanism to design privacy-preserving mechanisms, which uses a score

function f(A, o) to map the input set A and an outcome o ∈ O to a real-valued score. The

better the outcome o is for the input set A, the higher the score associated with the outcome o.

The probability of outcome o increases exponentially with its score getting higher. The concept

of the exponential mechanism is defined as follows.

Definition 3.5 Given an outcome space O, an input set A, a score function f(A, o) and a

constant ϵq, the exponential mechanism ϵ
ϵq
f (A) chooses an outcome o ∈ O with probability

Pr
[
ϵ
ϵq
f (A) = o

]
∝ exp(ϵqf(A, o)).

We define Λ to be the largest possible difference in the score function when applied to two

inputs that differ in one value. We will use two properties of the exponential mechanism as

follows.

Proposition 3.1 [61] The exponential mechanism achieves (2ϵqΛ)-differential privacy.

Proposition 3.2 [60] For any α ≥ 0, the exponential mechanism which achieves (2ϵqΛ)-

differential privacy ensures that

Pr[f
(
A, ϵϵqf (A)

)
< maxo f(A, o)− ln (|O|/ |O∗|) /ϵq

−α/ϵq] ≤ exp(−α)
,

where O∗ is the subset of O that achieves f(A, o) = maxo f(A, o).

41

Proposition 3.3 [61] The sequential application of exponential mechanism Mi, each giving

ϵi-differential privacy, yields
∑

i ϵi-differential privacy.

To provide differential privacy for workers’ data, we use the randomized response mech-

anism [62]. This mechanism randomizes each bit independently by flipping it with a certain

probability, with the definition given below.

Definition 3.6 Given a set B = (b1, b2, · · ·), in which bi ∈ {−1, 1}, ∀i, and a constant ϵd, let

R(b) denote a Bernoulli random variable with Pr(R(bi) = bi) =
eϵd

eϵd+1
and Pr(R(bi) = −bi) =

1
eϵd+1

. The randomized response mechanism outputs (R(b1), R(b2), · · ·).

Proposition 3.4 The randomized response mechanism achieves ϵd-differential privacy.

3.5.2 Truthful and Differentially Private Single-Task Allocation

Next we present the differentially private task allocation algorithm of the S-PDQE mechanism

in detail. We will show how this algorithm achieves the desired properties of the mechanism

later in this section.

Design Overview. The task allocation algorithm integrates the exponential mechanism

with a truthful incentive mechanism to achieve truthfulness and differential privacy. The win-

ners are selected iteratively in this algorithm. In each iteration, each worker is assigned a prob-

ability to be selected. The requester selects one winner based on the probability distribution in

each iteration. The process repeats until K winners are selected. In the end, the requester pays

each winner according to the reward function.

Algorithm Design.

• Phase I: Winner selection. The mechanism assigns each worker i ∈ R a probability of

being selected as follows. The requester first calculates each worker’s contribution αi

to data accuracy, which is determined by each worker’s reported quality. Each worker’s

contribution αi is given by

αi = (2q′i − 1)
2
,

42

Algorithm 1: Task allocation with reward payments
Input: The set of users U ; Number of winners K; Quality profile q; differential

privacy parameter ϵq and δ ∈ (0, 1
2
].

Output: A set of winners S and winners’ reward profile r.
1 S ← ∅,R ← U ;
2 // Phase I;
3 foreach i ∈ U do
4 ri ← 0, ei ← 0;

5 while |S| < K do
6 foreach i ∈ R do
7 Calculate the probability Pri

(
q′i, q

′
−i

)
of each worker being selected as a

winner according to the score function;

8 Select one worker randomly, denoted by i′, according to the computed probability
distribution;

9 S ← S ∪ {i′} ,R ← R \ {i′} , e′i ← 1 ;

10 // Phase II;
11 foreach i ∈ S do
12 calculate ri according to (3.6);

13 return S and r˙

which is also the weight in data aggregation. It is obvious that αi is an increasing function

of worker i’s reported quality q′i. To apply the exponential mechanism, we take f(qi) =

αi as the score function, for any worker i ∈ R. The probability Pri of worker i to be

selected as a winner in each iteration is

Pri
(
q′i, q

′
i−1

)
=

exp(ϵ′ αi

αmax
)∑

j∈R
exp(ϵ′

αj
αmax

)
, if i ∈ R

0, otherwise
(3.5)

where ϵ′ = ϵqαmax/(4e∆ ln(e/δ)) and ∆ = q − q. We also normalize αi as αi

αmax
to

ensure that the value of the score function is non-negative. The score function ensures

that a worker who makes more contribution to the accuracy will have a higher probability

to be selected as a winner.

43

• Phase II: Reward determination. The requester pays each winner i (i ∈ S) a reward,

which can be expressed as

ri
(
q′i, q

′
−i, e

′
i, d

′
i, dj

)
= k

[
1dj=di + qj − 1

2qj − 1
− q′i

]
+

∫ q′i
q
kqPri

(
q, q′

i−1

)
dq + ce′i

Pri
(
q′i, q

′
i−1

) ,

(3.6)

where qj is worker j’s quality, k is any constant that satisfies

k ≥ c

(q − q̂)Pr(q)
,

and 1A is the indicator function that is equal to 1 if condition A is true and 0 otherwise.

A worker receives no reward if she is not selected as a winner.

3.5.3 Differentially Private Data Aggregation

Next we present the differentially private data aggregation algorithm of S-PDQE. We use the

randomized response mechanism to protect workers’ data privacy. The details are given in

Algorithm 2.

Algorithm 2: Data perturbation
Input: Aggregated data x0; differential privacy parameter ϵd.
Output: Perturbed data x̂0.

1 Generate R(x0) using the randomized response mechanism in Definition 6;
2 x̂0 ← R(x0);
3 return x̂0˙

Here R(x0) is defined in Definition 3.6. Algorithm 2 takes the aggregated data and dif-

ferential privacy parameter ϵd as inputs. For each aggregated data, the algorithm performs the

randomized response mechanism on it. The tradeoff between privacy and data accuracy is

controlled by the differential privacy parameter ϵd.

44

3.5.4 Performance Analysis of S-PDQE Mechanism

In this section, we provide thorough performance analysis of S-PDQE. It shows that the mech-

anism achieves the properties of computational efficiency, truthfulness, individual rationality,

differential privacy, and bounded approximation gap.

First we show that the task allocation algorithm of S-PDQE is computational efficiency.

Theorem 3.1 The complexity of the task allocation algorithm of S-PDQE isO(Kn), where K

is the number of winners, and n is the number of workers.

Proof: We can see that the outer while-loop (Line 6-12) runs K rounds, and the inner

for-loop (Line 7-9) runs at most n rounds. Thus, the total computational complexity of the task

allocation algorithm is O(Kn).

Then we prove the truthful and individually rational properties.

Theorem 3.2 The task allocation algorithm of S-PDQE with the reward payments is truthful

and individually rational.

Proof: From (3.3) and (3.6), we can express worker i’s expected payoff as

E[ui(q
′, e′i, ei, d

′
i, dj)]

= Pri
(
q′i, q

′
i−1

)
× ri(q

′, e′i, d
′
i, dj) + (1− Pri

(
q′i, q

′
i−1

)
)× 0− cei

= k

[
1dj=di + qj − 1

2qj − 1
− q′i

]
Pri
(
q′i, q

′
i−1

)
+

∫ q′i

q

kqPri
(
q, q′

i−1

)
dq + ce′i − cei.

Next we use three lemmas to prove that, given that each worker aims to maximize her

expected payoff, 1) her optimal reported data is her true data d′i = di; 2) her optimal effort is

the desired effort ei = e′i; 3) her optimal reported quality is her true quality q′i = qi.

Lemma 3.1 Given that worker i reports any quality q′i and makes any effort ei, her optimal

reported data is her true data d′i = di.

45

The proof is similar to that of Lemma 1 in [24], and is thus omitted here. Next we express

worker i’s expected payoff when she reports her true data d′i = di. Since

Edj |di(qi,ei)
[
1dj=di

]
= Prdj |di(qi,ei) (di)

= qj PrX|di(qi,ei) (di) + (1− qj)
(
1− PrX|di(qi,ei) (di)

)
= (2qj − 1) PrX|di(qi,ei) (di) + 1− qj,

we have

Edj |di(qi,ei)

[
1dj=di + qj − 1

2qj − 1

]
= PrX|di(qi,ei) (di) . (3.7)

Thus, from (3.1) and (3.7), worker i’s expected payoff is given by

Edj |di(qi,ei)[ui(q
′, e′i, ei, di, dj)]

= k[q̂ + (qi − q̂)ei − q′i]Pri
(
q′i, q

′
i−1

)
+

∫ q′i

q

kqPri
(
q, q′

i−1

)
dq + ce′i − cei.

(3.8)

For convenience, we define

E[ui(q
′, qi, e

′
i, ei)] = Edj |di(qi,ei)[ui(q

′, e′i, ei, di, dj)].

Lemma 3.2 Given that worker i reports any quality q′i and truthfully reports her data di, her

optimal actual effort is the desired effort ei = e′i.

Proof: Using (3.8), when worker i is selected as a winner, i.e., e′i = 1, we have

E[ui(q
′, qi, 1, 1)]− E[ui(q

′, qi, 1, 0)]

= k(qi − q̂)Pri
(
q′i, q

′
i−1

)
− c ≥ 0.

Hence the optimal effort to make for a winner is ei = e′i = 1. When worker i is not a winner, it

can be easily seen that the optimal effort is ei = e′i = 0. □

Lemma 3.3 Given that worker i reports her true data di and makes the desired effort e′i, her

optimal reported quality is her true quality q′i = qi.

46

Proof: It suffices to show that E[ui(qi, q
′
−i, e

′
i)] ≥ E[ui(q, q

′
−i, e

′
i)], ∀q ̸= qi. Let q′i ≥ qi.

As Pri
(
q′i, q

′
i−1

)
is an increasing function of qi, we have

E[ui(qi, q
′
−i)]− E[ui(q

′
i, q

′
−i)]

= k(qi − qi)Pri
(
q′i, q

′
i−1

)
+

∫ qi

q

kqPri
(
q, q′

i−1

)
dq

− (k(qi − q′i)Pri
(
q′i, q

′
i−1

)
+

∫ q′i

q

kqPri
(
q, q′

i−1

)
dq)

= k(q′i − qi)Pri
(
q′i, q

′
i−1

)
−
∫ q′i

qi

kqPri
(
q, q′

i−1

)
dq

≥ k(q′i − qi)Pri
(
q′i, q

′
i−1

)
− k(q′i − qi)Pri

(
q′i, q

′
i−1

)
= 0.

Now let q′i ≤ qi. Then we have

E[ui(qi, q
′
−i)]− E[ui(q

′
i, q

′
−i)]

= k(qi − qi)Pri
(
q′i, q

′
i−1

)
+

∫ qi

q

kqPri
(
q, q′

i−1

)
dq

− (k(qi − q′i)Pri
(
q′i, q

′
i−1

)
+

∫ q′i

q

kqPri
(
q, q′

i−1

)
dq)

=

∫ qi

q′i

kqPri
(
q, q′

i−1

)
dq − k(qi − q′i)Pri

(
q′i, q

′
i−1

)
≥ k(qi − q′i)Pri

(
q′i, q

′
i−1

)
− k(qi − q′i)Pri

(
q′i, q

′
i−1

)
= 0.

Given that worker i reports her true quality, her expected payoff is given by

E[ui(qi, q
′
−i)] =

∫ qi

q

kqPri
(
q, q′

i−1

)
dq.

As Pri
(
qi, q

′
i−1

)
≥ 0 and it is increasing with qi, it can be easily seen that individual rationality

is achieved. □

Next we show that the mechanism achieves differential privacy for workers’ quality.

Theorem 3.3 For any constants ϵq > 0 and δ ∈
(
0, 1

2

]
, the task allocation algorithm of S-

PDQE achieves (ϵq(e− 1)/e, δ)-differential privacy for workers’ quality, where e is the base of

the natural logarithm.

47

Proof: We use q and q′ denote two quality profiles that only differ in one worker d’s

quality. Let M(q) and M(q′) be the sequences of winners selected by our algorithm with

inputs q and q′, respectively. In our proof, we show that our score function achieves differential

privacy when an arbitrary sequence of workers W = i1, i2, · · · , il with any length l is selected.

Given quality profiles q and q′, from (3.10) we can have the relative probability of our algorithm

is

Pr[M(q) = W]

Pr[M(q′) = W]
=

l∏
j=1

exp

ϵ′
(2qij−1)

2

(2qmax−1)2

∑

i∈Uj
exp

ϵ′

(
2q′

ij
−1

)2

(2qmax−1)2

exp

ϵ′

(
2q′

ij
−1

)2

(2qmax−1)2

∑

j∈Uj
exp

ϵ′

(
2q′

ij
−1

)2

(2qmax−1)2

=
l∏

j=1

exp

(
ϵ′
(2qij−1)

2

(2qmax−1)2

)
exp

(
ϵ′

(
2q′ij

−1
)2

(2qmax−1)2

) × l∏
j=1

∑
j∈Uj

exp

(
ϵ′

(
2q′ij

−1
)2

(2qmax−1)2

)
∑

i∈Uj
exp

(
ϵ′
(2qij−1)

2

(2qmax−1)2

) ,

where Uj = U \ {i1, i2, · · · , ij−1}. Then, we discuss two cases of this equation. When qd > q′d,

we have (2qd − 1)2 > (2q′d − 1)2, then

l∏
j=1

∑
j∈Uj

exp

(
ϵ′

(
2q′ij

−1
)2

(2qmax−1)2

)
∑

i∈Uj
exp

(
ϵ′
(2qij−1)

2

(2qmax−1)2

) ≤ 1.

48

Therefore, we have

Pr[M(q) = W]

Pr[M(q′) = W]
≤

exp
(
ϵ′ (2qd−1)2

(2qmax−1)2

)
exp

(
ϵ′

(2q′d−1)
2

(2qmax−1)2

)
= exp

(
ϵ′
(2qd − 1)2 − (2q′d − 1)2

(2qmax − 1)2

)
= exp

(
ϵ′
4(qd − q′d)(qd + q′d − 1)

(2qmax − 1)2

)
≤ exp

(
4ϵ′

qd − q′d
(2qmax − 1)2

)
≤ exp

(
ϵ′

4∆

(2qmax − 1)2

)
.

Now let qd < q′d,we have (2qd − 1)2 < (2q′d − 1)2, then

l∏
j=1

exp

(
ϵ′
(2qij−1)

2

(2qmax−1)2

)
exp

(
ϵ′

(
2q′ij

−1
)2

(2qmax−1)2

) ≤ 1.

Therefore, we have

Pr[M(q) = W]

Pr[M(q′) = W]
≤

l∏
j=1

∑
j∈Uj

exp

(
ϵ′

(2q′d−1)
2

(2qmax−1)2

)
∑

i∈Uj
exp

(
ϵ′ (2qd−1)2

(2qmax−1)2

)

=
l∏

j=1

∑
i∈Uj

exp

(
ϵ′
(2q′d−1)

2
−(2qd−1)2

(2qmax−1)2
+ϵ′ (2qd−1)2

(2qmax−1)2

)
∑

i∈Uj
exp

(
ϵ′ (2qd−1)2

(2qmax−1)2

)
=

l∏
j=1

Ei∈Uj

[
exp

(
ϵ′
(2q′d − 1)2 − (2qd − 1)2

(2qmax − 1)2

)]

≤
l∏

j=1

Ei∈Uj

[
exp

(
4ϵ′

(qd − q′d)

(2qmax − 1)2

)]
.

For all ϵ′ ≤ (2qmax − 1)2 /4∆, we have

l∏
j=1

Ei∈Uj

[
exp

(
4ϵ′

(qd − q′d)

(2qmax − 1)2

)]
≤

l∏
j=1

Ei∈Uj

[
1 +

4(e− 1)ϵ′(qd − q′d)

(2qmax − 1)2

]

≤ exp

(
4(e− 1)ϵ′

(2qmax − 1)2

l∑
j=1

Ei∈Uj
[qd − q′d]

)
.

49

Note that Pr
[∑l

j=1 Ei∈Uj
[qd − q′d] > ∆ ln(e/δ)

]
⩽ δ [60]. Let W be the outcome space,

where W ∈ W is a sequence of winners. Let W ′ = {W ∈ W|
∑l

j=1Ei∈Uj
[qd − q′d] >

∆ ln(e/δ)}, andW ′′ =W \W ′, i.e.,W ′ ∩W ′′ =W . Then we have

Pr[M(q) ∈ W]

=
∑
W∈W

Pr[M(q) = W]

=
∑

W∈W ′

Pr[M(q) = W] +
∑

W∈W ′′

Pr[M(q) = W]

≤
∑

W∈W ′

exp

(
4(e− 1)ϵ′

(2qmax − 1)2
∆ ln(e/δ)

)
Pr[M(q′)=W]

+ δ

≤ exp

(
4(e− 1)ϵ′

(2qmax − 1)2
∆ ln(e/δ)

)
Pr[M(q′) ∈ W] + δ

= exp (ϵq(e− 1)/e) Pr[M(q′) ∈ W] + δ

□

Next we show that the task allocation algorithm achieves a bounded gap from the optimal

task allocation strategy.

Theorem 3.4 With a probability at least 1− 1/nO(1), the task allocation algorithm of S-PDQE

ensures that the aggregated data accuracy pc is at least 1−exp(−1
2

∑
i∈S∗ αi+O(ln(n))), where

S∗ is the optimal winner set, which is the set of the K workers with the highest quality.

Proof: We note that S∗ is the optimal solution to our problem. Recall that the winner set

selected by our mechanism is S. We use a sequenceW of winners to represent the order that

the winners are selected, i.e.,W = w1, w2, · · · , wK .

For each optimal winner in S∗ and randomly selected winner inW that in the same posi-

tion, according to Proposition 3.2, we have

Pr[αwi
≥ αi −O(ln(n))] ≥ 1− 1

nO(1)
.

50

It implies that ∑
i∈S∗

αi ≤
∑
wi∈W

αwi
+O(ln(n))

with a probability at least 1− 1
nO(1) . Then we have

exp(−1

2

∑
i∈S∗

αi) ≥ exp(−1

2

∑
wi∈W

αwi
) exp(−O(ln(n)))

with a probability at least 1− 1
nO(1) . According to (3.2) and (3.4) we can have

pc ≥ 1− exp(−1

2

∑
wi∈W

αwi
)

≥ 1− exp(−1

2

∑
i∈S∗

αi +O(ln(n)))

with a probability at least 1− 1/nO(1). □

Next we show that the mechanism achieves differential privacy for the aggregated data.

Theorem 3.5 The data perturbation algorithm of S-PDQE achieves ϵd-differential privacy for

the aggregated data, where ϵd > 0 is a constant.

Theorem 3.5 can be easily proven according to the property of the randomized response

mechanism that is given in Proposition 3.4.

Overall, according to the sequential composition of differential privacy, the S-PDQE mech-

anism achieves (ϵq(e−1)/e+ ϵd, δ)-differential privacy for workers’ quality and ϵd-differential

privacy for workers’ data.

Next we show that the performance loss due to data perturbation is bounded.

Theorem 3.6 The data perturbation algorithm of S-PDQE ensures that the accuracy of the

perturbed data is at least 1
eϵd+1

+ eϵd−1
eϵd+1

pc, where pc is the accuracy of aggregated data before

perturbation.

Proof: The accuracy after data perturbation p′c is

p′c = Pr(R(x0) = x0)pc + Pr(R(x0) = −x0)(1− pc)

= pc
eϵd

eϵd + 1
+ (1− pc)

1

eϵd + 1

=
1

eϵd + 1
+

eϵd − 1

eϵd + 1
pc.

51

□

Based on the above result, we can conclude that the data accuracy of the mechanism has a

bounded gap from the optimal strategy.

Corollary 3.1 S-PDQE ensures that, with a probability at least 1 − 1/nO(1), the overall ac-

curacy is at least 1
eϵd+1

+ eϵd−1
eϵd+1

(
1− exp(−1

2

∑
i∈S∗ αi +O(ln(n)))

)
, where S∗ is the optimal

winner set, which is the set of K workers with the highest quality, and n is the number of

workers.

3.6 Privacy-Preserving Mechanism for Truthful Data Quality Elicitation: Multi-Task Case

In this section, we consider a multi-task quality-aware crowdsourcing system, where the re-

quester has a set of m tasks, denoted as T = {1, 2, . . . ,m}. A worker has diverse quality for

different tasks (e.g., because the distances between a worker and the tasks are different). A

worker can be assigned to at most one task, but a task can be assigned to multiple workers.

The utility of the multi-task crowdsourcing system is measured by the total accuracy of all the

tasks, i.e., ∑
j∈T

pj (q
′, e′,d′) =

∑
j∈T

EXj |dj(q,e)

[
1Xj=xj(q′,e′,d′)

]
, (3.9)

where j denotes task j.

In the following, we present the design and analysis of a Multi-task Privacy-preserving

mechanism for truthful Data Quality Elicitation (M-PDQE) that works for the multi-task setting

above. M-PDQE has the same design objectives with S-PDQE, and it consists of a differentially

private multi-task allocation algorithm and a differentially private data aggregation algorithm.

3.6.1 Truthful and Differentially Private Multi-Task Allocation

We first present the differentially private multi-task allocation algorithm of M-PDQE.

Design Overview. Compared with S-PDQE, since all the tasks share the same pool of

workers and at most one task can be allocated to a worker, the task allocation algorithm of

M-PDQE needs to be carefully designed so that the utility of crowdsourcing can be optimized.

52

The task allocation algorithm of M-PDQE integrates the exponential mechanism with a

truthful incentive mechanism to achieve truthfulness and differential privacy. The winners

are selected iteratively in this algorithm. In each iteration, each reported task-quality pair q′ij

(i ∈ U , j ∈ T ′) is assigned a probability to be selected. The requester selects one winner for

a task based on the probability distribution in each iteration until Kj winners are selected for

task j, ∀j ∈ T , where Kj is determined by the requester according to the accuracy requirement

for each task j. Since the tasks are allocated independently, it is possible that more than one

tasks are assigned to a worker. Thus the conflict elimination process is performed to ensure

that at most one task is assigned to each winner. The process repeats until all the tasks are

assigned with no conflict. In the end, the requester pays each winner according to the reward

function. The detailed task allocation algorithm is presented by Algorithm 3, in which, for ease

of expression, we assume Kj = 1, ∀j ∈ T . We can extend the algorithm to the case of Kj > 1

by simply copying task j to Kj identical tasks.

Algorithm Design.

• Phase I: Winner selection. The exponential mechanism assigns each task-quality pair qij ,

i ∈ R, j ∈ T ′, a probability of being selected. We take f(qij) = q′ij as the score function

for any worker i ∈ R and any task j ∈ T ′. The probability Prji of selecting worker i as

the winner of task j is

Prji
(
q′ij
)
=

exp

(
ϵ′

q′ij
q
j
max

′

)
∑

a∈U exp

(
ϵ′

q′
aj

q
j
max

′

) , if i ∈ U

0, otherwise

(3.10)

where ϵ′ = 1
2
ϵ/(e∆ ln(e/δ)), ∆ = q−q, and qjmax = max{qij,∀i ∈ U}. We normalize qij

as qij

qjmax
to ensure that the value of the score function is non-negative. The score function

ensures that a task-quality pair that makes more contribution to the total accuracy will

have a higher probability to be selected. We call the worker who reported the selected

task-quality pair as a winner.

53

Algorithm 3: Multi-task allocation with reward payments
Input: The set of users U ; The set of tasks T ; Quality profile q; differential privacy

parameter ϵq and δ ∈ (0, 1
2
].

Output: Winner set S = {sj,∀j ∈ T } and winners’ reward profile r.
1 q′ ← q, T ′ ← T ;
2 // Phase I;
3 foreach i ∈ U do
4 ri ← 0, wi ← 0, e′ij = 0, ∀j ∈ T ;

5 foreach j ∈ T ′ do
6 foreach i ∈ U do
7 Calculate the probability Prji

(
q′ij
)

of each worker being selected as a winner
of each task according to the score function;

8 Select one worker randomly, denoted by i′, according to the computed probability
distribution;

9 wi′ ← j, sj ← i′, ei′wi′
← 1 ;

10 // Phase II;
11 while ∃j ̸= j′ s.t. sj = sj′ do
12 Perform conflict elimination;

13 // Phase III;
14 foreach i ∈ S do
15 calculate ri;

16 return S and r˙

54

• Phase II: Conflict elimination. The conflict elimination process ensures that at most one

task is assigned to each winner without sacrificing the differential privacy provided by

the exponential mechanism. The main idea is, when worker i wins for more than one

task, we keep one of the winning tasks for worker i and re-assign the remaining tasks

with the objective of maximizing the total accuracy. The conflict elimination process is

repeated until exactly one task is assigned to each winner.

We use an example to explain the process of conflict elimination. Suppose task 1 and

task 2 are assigned to worker i in Phase I, i.e., s1 = s2 = i. According to the probability

calculated from the score function, two different winners s′1 and s′2 are selected for task

1 and task 2, respectively. Then there are two possible conflict elimination situations for

worker i:

v1 : s1 = i, s2 = s′2,

v2 : s1 = s′1, s2 = i.

We compare the sum of reported quality of the winners in each situation and select the

situation that has the highest sum. Note that a conflict elimination process may generate

another conflict, and the process will be iteratively performed until there is no conflict.

• Phase III: Reward determination. The requester pays each winner i (i ∈ S) a reward for

performing task wi, which can be expressed as

rwi
i

(
q′iwi

, q′
−iwi

, e′iwi
, d′iwi

, d0wi

)
= k

[
1d0wi

=diwi
+ q0wi

− 1

2q0wi
− 1

− q′iwi

]

+

∫ q′iwi
q

lqPrwi
i

(
q, q′

−iwi

)
dq

Prwi
i

(
q′iwi

, q′
−iwi

) +
ce′iwi

Prwi
i

(
q′iwi

, q′
−iwi

) ,
(3.11)

where wi ∈ T is worker i’s winning task, q0wi
and d0wi

are the requester’s quality and

data of task wi respectively, e′iwi
is the effort that worker i exerted in task wi, l is a small

55

positive number, and k is any constant that satisfies

k ≥ c

(q − q̂)Pr(q)
.

A worker receives no reward for the tasks that are not assigned to her.

3.6.2 Multi-Task Differentially Private Data Aggregation

Next we present the differentially private data aggregation algorithm of M-PDQE. We use the

randomized response mechanism (as in S-PDQE) to protect workers’ data privacy. The details

are given in Algorithm 4.

Algorithm 4: Multi-task data perturbation
Input: Aggregated data {x1, . . . , xm}; differential privacy parameter ϵd.
Output: Perturbed data {x̂1, . . . , x̂m}.

1 Generate R(x1), . . . , R(xm) using the randomized response mechanism in Definition
6;

2 foreach j ∈ T do
3 x̂j ← R(xj);

4 return {x̂1, . . . , x̂m}˙

Here R(xj) is defined in Definition 3.6. Algorithm 4 takes the aggregated data of tasks

{x1, . . . , xm} and differential privacy parameter ϵd as inputs. For the aggregated data of each

task, the algorithm applies the randomized response mechanism to it. The tradeoff between

privacy and data accuracy is controlled by the differential privacy parameter ϵd.

3.6.3 Performance Analysis of M-PDQE Mechanism

Next we use thorough performance analysis to show that M-PDQE achieves computational

efficiency, truthfulness, individual rationality, differential privacy, and bounded approximation

gap.

First we show that the task allocation algorithm of M-PDQE is computational efficiency.

Theorem 3.7 The complexity of the task allocation algorithm of M-PDQE is O(Kmaxmn +

m2n), where Kmax is the largest number of winners a task can select, and m and n are the

number of tasks and workers, respectively.

56

Proof: First, we can see that the outer for-loop (Line 6-12) runs at most Kmaxm rounds,

and the inner for-loop (Line 7-9) runs at most n rounds. Thus, the computational complexity

of obtaining the winner set without the conflict elimination is O(Kmaxmn). Next, for each

winner with conflicts exist, the conflict elimination performs at most O(Kmaxmn) (all tasks

are re-assigned). Since there are at most Kmaxm winners, the computational complexity of

conflict elimination is O(K2
maxm

2n). Therefore, the total complexity of the task allocation

algorithm of M-PDQE is O(Kmaxmn+m2n).

Then we prove the truthful and individual rational properties. In this section, we assume

that each user is interested in manipulating her reported quality and data and actual effort for

her winning task to improve her expected payoff for that task, rather than jointly manipulating

her actions for all tasks to improve her total expected payoff of all tasks. This is because the

latter case requires the worker to know other workers’ quality, which is difficult to achieve for

the worker. The next result shows that our mechanism is truthful for the former case.

Theorem 3.8 The multi-task allocation algorithm with the reward payment is truthful for each

worker’s quality, effort, and data for her winning task, and is individually rational.

Proof: The detailed proof of truthfulness is omitted here since it’s similar with that of

Theorem 3.2. Worker i’s expected payoff for her winning task wi can be expressed as

E[uwi
i (q′

wi
, e′iwi

, eiwi
, d′iwi

, d0wi
)]

= k

[
1d0wi

=diwi
+ q0wi

− 1

2q0wi
− 1

− q′iwi

]
Priwi

(
q′iwi

)
+∫ q′iwi

q

lqPriwi

(
q, q′

−iwi

)
dq + ce′iwi

− ceiwi
.

From Lemma 3.1, 3.2, and 3.3, we can get worker i’s expected payoff for task wi, given that

worker i reports her true data, quality, and makes the desired effort, can be expressed as

E[uwi
i (qiwi

, q′
−iwi

)] =

∫ qiwi

q

kqPrwi
i

(
q, q′

−iwi

)
dq.

As Prwi
i (qiwi

, q′
−iwi

) ≥ 0 and it is increasing with qiwi
, it can be easily seen that individual

rationality is achieved. □

57

Then we show that the mechanism achieves differential privacy of workers’ quality.

Theorem 3.9 For any constants ϵq > 0 and δ ∈
(
0, 1

2

]
, the multi-task allocation algorithm

achieves 2mϵq-differential privacy for workers’ quality, where e is the base of the natural loga-

rithm.

Proof: According to Theorem 3.3, for each task the multi-task allocation algorithm achieves

2ϵq-differential privacy. Since the tasks are assigned iteratively, the multi-task allocation algo-

rithm is a sequential combination of the single-task allocation algorithms. Thus according

to Proposition 3.3, the multi-task allocation algorithm achieves 2mϵq-differential privacy for

workers’ quality, where m is the number of tasks. □

Next we show that the task allocation algorithm achieves a bounded gap from the optimal

task allocation strategy when Kj = 1, ∀j ∈ T .

Theorem 3.10 With a probability at least 1− 1/nO(1), the multi-task allocation algorithm en-

sures that the total data accuracy of all tasks
∑

j∈T pj is at least
∑

i∈S∗ qiwi
−O(ln(n)), where

S∗ is the optimal winner set.

Proof: For each winner in the optimal solution S∗ and randomly selected winner in S that

in the same position, according to Proposition 3.2, we have

∑
i∈S∗

qiwi
≤
∑
i∈S

qiwi
+O(ln(n))

with a probability at least 1− 1
nO(1) , which lead to the conclusion that

∑
j∈T

pj ≥
∑
i∈S∗

qiwi
−O(ln(n))

with a probability at least 1 − 1
nO(1) , where pj is task j’s accuracy, i.e.,

∑
j∈T pj =

∑
i∈S qiwi

.

□

Next we show that the mechanism achieves differential privacy for data aggregation.

Theorem 3.11 The multi-task data perturbation algorithm achieves ϵd-differential privacy for

aggregated data, where ϵd > 0 is a constant.

58

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Reported quality

-0.5

0

0.5

U
s
e
r

p
a
y
o
ff

True quality & Effort & Data

True effort & Data

Effort = 0 & True data

Effort = 1 & Untrue data

Figure 3.3: Impact of reported quality q′i.

Theorem 3.11 can be easily proven according to the property of the randomized response

mechanism that is given in Proposition 3.4. Next we show that performance loss due to the data

perturbation is bounded.

Theorem 3.12 The multi-task data perturbation algorithm ensures that the accuracy of per-

turbed data is at least m
eϵd+1

+ eϵd−1
eϵd+1

∑
j∈T pj , where m is the number of tasks.

Proof: From Theorem 3.6, the expected accuracy of task j after data perturbation p′j is

p′j =
1

eϵd + 1
+

eϵd − 1

eϵd + 1
pj.

The summation of the expected task’s accuracy can be expressed as

∑
j∈T

p′j =
∑
j∈T

(
1

eϵd + 1
+

eϵd − 1

eϵd + 1
pj

)
=

m

eϵd + 1
+

eϵd − 1

eϵd + 1

∑
j∈T

pj.

□

Based on the above result, we can conclude that the data accuracy has a bounded gap from

the optimal strategy.

Corollary 3.2 M-PDQE ensures that, with a probability at least 1−1/nO(1), the total accuracy

of all the tasks is at least m
eϵd+1

+ eϵd−1
eϵd+1

(∑
i∈S∗ qiwi

−O(ln(n))
)
, where S∗ is the optimal winner

set, n is the number of workers, and m is the number of tasks.

59

0 50 100 150 200 250 300

Number of Workers n

0.94

0.96

0.98

1

C
o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

Optimal algorithm

Figure 3.4: Impact of the number of workers n on S-PDQE.

0 20 40 60 80 100

Number of Winners k

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

optimal algorithm

Figure 3.5: Impact of the number of winners K on S-PDQE.

0 50 100 150 200

Number of Workers n

0.75

0.8

0.85

A
v
e
ra

g
e
 C

o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

Optimal algorithm

Figure 3.6: Impact of the number of workers n on M-PDQE. (ϵq = 10)

60

0 50 100 150 200

Number of Workers n

0.76

0.78

0.8

0.82

0.84

0.86

0.88

A
v
e
ra

g
e
 C

o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

Optimal algorithm

Figure 3.7: Impact of the number of workers n on M-PDQE. (ϵq = 25)

5 6 7 8 9 10

Number of Winners k on each task

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
v
e
ra

g
e
 C

o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

Optimal algorithm

Figure 3.8: Impact of the number of winners K on M-PDQE.

0 50 100 150 200

Privacy Parameter
q

0.96

0.97

0.98

0.99

1

C
o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

optimal algorithm

Figure 3.9: Impact of the differential privacy parameter ϵq on S-PDQE.

61

0 50 100 150 200 250 300

Privacy Parameter
q

0.78

0.79

0.8

0.81

0.82

0.83

0.84

A
v
e
ra

g
e
 C

o
rr

e
c
t
p
ro

b
a
b
ili

ty
 p

c

Randomized algorithm

Optimal algorithm

Figure 3.10: Impact of the differential privacy parameter ϵq on M-PDQE.

3.7 Simulation Results

In this section, we evaluate the performance of S-PDQE and M-PDQE mechanisms in terms of

various metrics using simulation results. For S-PDQE, we compare it with the optimal strategy

which selects the K workers with the highest quality to perform the task, without any privacy-

preserving mechanism. For M-PDQE, we compare it with a greedy task allocation algorithm

without a privacy-preserving mechanism. The simulation results are based on a real dataset [63]

which consists of the locations of taxis scattered in the center of Rome. The crowdsourcing task

is to detect whether a licensed wireless device is transmitting or not. The tasks are distributed

over the area. We consider the taxis as workers. The quality of a worker for a task is calculated

as a function of the worker’s distance to the wireless device, with a smaller distance indicating

higher quality.

3.7.1 Truthful Quality Elicitation

The system parameters are set as follows: n = 20, K = 100, c = 0.4, qi ∈ (1/2, 1), ϵq = 10,

δ = 0.5, the worker’s true quality qi = 0.86. As we can see in Fig. 3.3, a worker can maximize

her payoff when she truthfully reports her quality and data and makes her effort. When the

worker reports untruthfully, her payoff is always no greater than that when she reports truthfully.

This shows that the worker’s optimal strategy is to behave truthfully. Also, we can see that the

payoff is non-negative when the worker truthfully reports her quality, which confirms that the

individual rationale property is achieved by the mechanism.

62

3.7.2 Data Accuracy

S-PDQE. We compare the accuracy pc of the randomized task allocation algorithm with that

of the optimal algorithm when the number of workers changes. We set the system parameters

as follows: n ∈ [30, 300], K = 30, ϵq = 10, δ = 0.5. The impact of number of workers on

the accuracy is shown in Fig. 3.4. We can see that the accuracy of the randomized algorithm

is lower than that of the optimal algorithm. This is because as the S-PDQE mechanism selects

winners randomly, it cannot always select workers that have the most contributions to the accu-

racy. However, as the number of workers increases, the accuracy of each algorithm increases.

This is because with more workers, the algorithm can find more workers with higher quality to

perform the task.

We also compare the accuracy of these two algorithms when the number of winners

changes. We set the system parameters as follows: n = 300, K ∈ [10, 100], ϵq = 10, δ = 0.5.

From Fig. 3.5, we can see that the accuracy of the randomized algorithm is lower than that of

the optimal algorithm. The reason is the same as discussed earlier for Fig. 3.4. We also observe

that as the number of winners increases, the accuracy gap between the two algorithms becomes

smaller. The reason is that when more winners are selected, the difference between the winner

sets of the randomized algorithm and the optimal algorithm becomes smaller.
M-PDQE. For M-PDQE, we evaluate the average correct probability on each task. We

first compare the accuracy of the greedy algorithm and the randomized algorithm when the

number of workers changes. We set the system parameters as follows: n ∈ [30, 200], m = 10,

δ = 0.5. Fig. 3.6 and Fig. 3.7 give the results when the differential privacy parameter are

ϵq = 10 and ϵq = 25. We see that the accuracy of the randomized is lower than that of the

optimal algorithm. The reason is the same as discussed earlier for Fig. 3.4. We can also see

that the accuracy of the randomized algorithm in Fig. 3.7 is growing faster than that in Fig. 3.6.

This is because the higher the differential privacy parameter is, the less privacy is provided by

the mechanism, and the higher probability that a worker with better quality is chosen. We also

compare the accuracy of the two algorithms when the number of winners on each task changes.

We set the system parameters as follows: n = 300, K ∈ [45, 70], ϵq = 0.4, δ = 0.5. We observe

that when there are more workers working on the same task, the average accuracy increases.

63

The reason is obvious since we use the weighted average rule to aggregate the data, and from

Fig. 3.8 we have the expected accuracy increases when the number of winner increases.

3.7.3 Differential Privacy

We evaluate the impact of the differential privacy level on the data accuracy. We set the system

parameters as follows:

n m k ϵq δ
S-PDQE 300 1 30 [0,200] 0.5
M-PDQE 100 10 1 [20,300] 0.5

From Fig. 3.9 and Fig. 3.10, we observe that as the privacy parameter ϵq increases, the

performance of the randomized algorithm improves, and the gap between the two algorithms

becomes smaller. This is because as ϵq increases, the winner set found by the randomized

algorithm becomes closer to the optimal winner set.

3.8 Conclusion

In this chapter, we devise two privacy-preserving mechanisms for truthful data quality elicita-

tion for quality-aware crowdsourcing. For both S-PDQE mechanism and M-PDQE mechanism,

we develop a task allocation algorithm which achieves truthful elicitation of workers’ quality,

effort, and data, and differential privacy of workers’ quality. We also develop the data aggrega-

tion algorithm which achieves differentially privacy of workers’ data. Besides truthfulness and

differential privacy, the mechanisms also achieve approximate data accuracy maximization. We

also use real data based simulations to demonstrate the desired properties of the mechanisms.

64

Chapter 4

Data Poisoning Attacks and Defenses in Dynamic Crowdsourcing with Online Data Quality
Learning.

4.1 Introduction

Data crowdsourcing (referred to as “crowdsourcing” for brevity) leverages the “wisdom” of a

potentially large crowd of workers who provide data in tasks that specified by the requester.

It has found a wide range of applications including mobile sensing (such as spectrum sens-

ing [16, 1], traffic monitoring [2, 17], environmental monitoring [18, 19, 3, 20]), and human

annotation for machine learning [21] based data analytics (such as image annotation, named en-

tity recognition). Many of these applications are enabled by smart devices with powerful sens-

ing, networking, and computing capabilities, and the scope of these applications is expected to

expand rapidly with the emerging Internet of Things (IoT). A key advantage of crowdsourcing

lies in that it can exploit the diversity of inherently inaccurate data from many workers by ag-

gregating the data obtained by the crowd, such that the data accuracy (also referred to as “data

quality”) after the aggregation can be substantially enhanced.

The value of crowdsourced data is determined by the quality of data collected from par-

ticipating workers. A worker’s data quality (referred to as “quality” for brevity) captures the

accuracy of the worker’s data relative to the ground truth to be estimated, and workers generally

have diverse quality depending on a worker’s characteristics and contexts (e.g., location, sen-

sors’ capabilities). For example, in spectrum sensing, a typical task is to measure the transmit

signal from a wireless device. Then the signal to noise ratio (SNR) received by a worker from

that device determines the worker’s data quality, and workers generally have distinct SNRs de-

pending on their locations (as illustrated in Fig. 4.1). To exploit the potential of crowdsourcing,

65

Attacker

: Normal Worker : Malicious Worker

Figure 4.1: In spectrum crowdsensing, a worker’s quality for a task depends on her location
with respect to the wireless device to be observed. Normal workers report their true data, while
malicious workers controlled by an attacker report malicious data.

it is imperative for the crowdsourcing requester to know workers’ data quality. In particular,

with the knowledge of workers’ quality, the requester can assign the tasks to the workers with

higher quality rather than with lower quality, so that the accuracy of collected data can be

substantially improved. Thus, it is beneficial to achieve quality-aware crowdsourcing.

A worker’s quality is often unknown to the worker and also the requester (e.g., in spectrum

sensing, the location of the wireless device to be observed is unknown). In this case, the

requester can learn workers’ quality based on the data collected from them. In a dynamic setting

of crowdsourcing where tasks are assigned to and performed by workers sequentially (e.g., in

spectrum crowdsensing, tasks can arrive over time, where each task is to measure signals in

a particular time slot), the requester can carry out quality learning on the fly, while making

use of the learned quality information to perform task assignment and data aggregation. Such

online quality learning can improve data accuracy and cost-effectiveness of crowdsourcing and

is essential for the practical deployment of crowdsourcing services.

However, crowdsourcing is vulnerable to data poisoning attacks, where an attacker con-

trols malicious workers to report manipulated data to the requester, typically with the goal of

reducing the requester’s aggregated data accuracy. Due to the random nature of workers’ data

and unknown ground truths of tasks, it is difficult for the requester to distinguish a malicious

worker from a normal worker according to their data. It is important to note that, in order

to reduce the aggregated data accuracy, malicious workers’ data should deviate from normal

66

workers’ data, so that malicious workers’ quality should be lower than that of normal workers.

Thus motivated, quality learning can be leveraged to find malicious workers whose quality is

lower than that of the other workers, and thus exclude these malicious workers in task assign-

ment and data aggregation.

In this chapter, we study data poisoning attacks on dynamic crowdsourcing where tasks

are assigned to and performed by workers sequentially. In the presence of malicious workers,

we exploit online quality learning to not only find normal workers with high quality, but more

importantly to find malicious workers with low quality, as a defense mechanism against the

data poisoning attack. In particular, we seek fundamental understandings of whether and how

much harm can be made by malicious data when online quality learning is used as a defense.

The design and analysis of the attacker’s data poisoning strategy is highly non-trivial. First

of all, the attacker needs to judiciously determine the malicious noise added to her reported

data: too much noise can result in low estimated quality which prevents malicious workers’

data from being used, while too little noise directly reduces the harm on the aggregated data

accuracy. Therefore, the attacker should strike a desired balance between those two effects,

in order to increase the overall harm of the attack. Moreover, the design of the attack strategy

is complicated by the fact that the attacker lacks information of normal workers’ data and

also their quality. Furthermore, the effect of the attack strategy depends on both normal and

malicious workers’ estimated quality, which is time-varying and inaccurate according to the

online quality learning algorithm. To further mitigate the attack, we also study the median and

maximum influence of estimation based data aggregation as two defense mechanisms.

The main contributions of this chapter are summarized as follows:

• We consider malicious data attacks on dynamic crowdsourcing where tasks are assigned

and performed sequentially, and propose online quality learning as a defense mechanism

against the attack. We first focus on the asymptotic setting of online quality learning

where workers’ quality is accurately learned by the requester. In this case, we charac-

terize the conditions under which the attack can effectively reduce the requester’s aggre-

gated data accuracy. Our analysis copes with intricate coupling between malicious work-

ers’ actual quality (which determines their data accuracy) and their quality estimated by

67

the requester (which determines whether they are assigned to a task). The results show

that the malicious noise variance needs to be within a certain range for the attack to be

effective. Based on these conditions, we analyze the harm of effective attacks.

• Based on the results in the asymptotic setting, we then study the attack in the general

non-asymptotic setting, where workers’ quality is inaccurately estimated over time. We

first characterize the conditions under which the attack is effective. Then we analyze the

online quality learning algorithm under effective attacks, which reveals that the regret can

be increased substantially from O((log T)2) (upper bound) to Ω(T) (lower bound). Our

analysis takes into account workers’ dynamic and inaccurate estimated quality based on

the online quality learning algorithm. Our findings provide useful insights on the impacts

of data poisoning attacks when online quality learning is used as a defense mechanism.

• To further mitigate the attack, we propose median and maximum influence of estima-

tion based data aggregation for the online quality learning algorithm, and analyze their

performance in the asymptotic setting.

• We evaluate the proposed attack strategies and defense mechanisms using simulations

based on real-world data, which demonstrate the efficacy of the attacks and defenses,

and the impacts of various parameters on their performance.

The remainder of this chapter is organized as follows. Section 4.2 reviews related work.

In Section 4.3, we describe a data crowdsourcing system based on online quality learning, and

present malicious data attacks against this system. In Section 4.4, we propose an online quality

learning algorithm and analyze its regret. In Section 4.5 and Section 4.6, we study malicious

data attacks in the asymptotic regime and non-asymptotic regime of the online quality learning

algorithm. In section 4.7, we propose median and maximum influence of estimation based

data aggregation defenses and analyze their performance in the asymptotic regime. Simulation

results are presented in Section 4.8. Section 4.9 concludes this chapter.

68

4.2 Related Work

4.2.1 Quality-Aware Crowdsourcing

The quality of workers’ data in crowdsourcing has been studied in a few works [29, 49, 50,

43, 51]. One interesting line of works [50, 43, 51] in this direction have studied truthful

mechanisms for crowdsourcing where workers have private participating costs. A few recent

works [24, 64, 53] have designed truthful mechanisms for quality elicitation in quality-aware

crowdsourcing. Some other works have focused on learning data quality of workers, e.g., by

exploiting the correlation of their data [29, 30], or assigning tasks on the fly [49, 52]. Data

poisoning attacks have been studied in [65] for crowdsourcing using offline quality learning

that does not consider task assignment. It also assumes that normal workers’ data are known

to the attacker. Different from these works, this paper studies data poisoning in crowdsourcing

based on online quality learning that learns workers’ quality on the fly while assigning tasks

based on workers’ estimated quality. Moreover, we consider a more practical setting where the

attacker does not know normal workers’ data, which is more challenging.

4.2.2 Online Learning Algorithms

Online learning algorithms are generally concerned with learning some unknown parameters

from past observations on the fly, while making use of the learned information to take better

actions in the future. These algorithms have been used in a wide range of applications, such

as the dynamic control of systems [66]. A classic branch of these algorithms are for the multi-

armed bandit (MAB) problems [67]. Online data poisoning for MAB has been studied in

[68], in which the attacker hijacks the behavior of MAB algorithms by manipulating selected

arms’ rewards. Compared to MAB algorithms such as [68, 69, 70], a key difference of the

online quality learning algorithm studied here is that the learner cannot observe workers’ data

quality which measures the data accuracy, because the ground truth of the task is unknown

to the learner. A few works [49, 52] have studied online quality learning for crowdsourcing,

for which a central issue studied is the tradeoff between exploration (i.e., learning the unknown

parameter) and exploitation (i.e., utilizing the learned information). Different from these works,

69

Malicious
Workers

Requester

Assign task t1

Observe & report
true/manipulated
data

2

3
Estimate quality and
assign task t+1 to: all
the workers (explore) /m
workers with best estima-
ted quality (exploit)

I. Observe data

Normal
Workers

2

2
II. Manipulate data
by adding
malicious noise

Attacker

Figure 4.2: Structure and procedure of the crowdsourcing system based on online quality learn-
ing under malicious data attacks.

this paper studies malicious data attacks on crowdsourcing with the online quality learning

based defense, which has not been studied before.

4.2.3 Data Poisoning Attacks and Defenses

Data poisoning is a widely used attack for machine learning [71, 72, 73, 74]. There are a few

works studying data poisoning attacks on MAB algorithms [69, 70, 68], where the attacker

manipulates the rewards generated from the bandit environment so that a target arm is pulled

with a high probability. Online data poisoning attacks on MAB algorithms have been stud-

ied in [70, 68], in which the attacker eavesdrops on the decision of the bandit algorithm and

makes an attack by manipulating the reward. Data poisoning attacks have also been studied for

crowdsourcing [65, 75, 76, 77], where colluding workers aim to degrade the performance of

crowdsourcing by reporting malicious data. Besides the data poisoning attack, there are also a

few works on defenses against these attacks in crowdsourcing. The work most related to ours is

[78], where data poisoning attacks and defenses are studied in an offline manner. Compared to

these works, this paper focuses on data poisoning attacks in dynamic crowdsourcing with the

online quality learning based defense. The online learning setting makes the problem studied

here very different from prior works.

4.3 System Model and Problem Formulation

In this section, we first describe a dynamic crowdsourcing system, and propose an online qual-

ity learning algorithm as a defense mechanism against malicious data attacks. Then we present

70

Table 4.1: Main Notation
Symbol Description
N Number of normal workers
M Number of malicious workers
m Number of workers being selected in

exploitation
E(t) Set of exploration time steps up to time

step t
Di(t) Random data observed by worker i at time t
D(t) Malicious workers’ data before adding noise
D′(t) Malicious workers’ data after adding noise
X(t) Ground truth at time t
X ′(t) Estimated ground truth by learner at

time t without the attack
Xa(t) Estimated ground truth by learner at

time t with the attack
X∗(t) Estimated ground truth by attacker

with malicious workers’ data at time t
pi Data quality of worker i
p̂i Estimated quality of worker i using

the actual ground truth without the attack
p̃i Estimated quality of worker i using

the estimated ground truth without the attack
p̃′i Estimated quality of worker i using

the estimated ground truth with the attack
p̂∗ Estimated quality of malicious worker using

the actual ground truth without the attack
p̃∗ Estimated quality of malicious workers using

the estimated ground truth without the attack
p̃∗′ Estimated quality of malicious workers using

the estimated ground truth with the attack

71

malicious data attacks on the above system. The crowdsourcing system under the attack is

illustrated in Fig. 4.2.

4.3.1 Online Quality Learning Based Dynamic Crowdsourcing

Dynamic Crowdsourcing.

We consider a crowdsourcing requester recruiting a set of workers N = {1, 2, . . . , N}

to perform a sequence of crowdsourcing tasks. The crowdsourcing system operates in discrete

time steps and a crowdsourcing task is allocated to and performed by workers in each time step.

Data Quality. At each time step t, a crowdsourcing task is considered, and the requester

aims to estimate an unknown variable X(t) by assigning a number of workers to observe X(t).

The variable X(t) takes a continuous real value within a bounded range which is known to the

requester, i.e., X(t) ∈ [Xa, Xb], and Xb − Xa ≜ ∆X . If worker i is selected to perform the

task, she observes random data Di(t), which is the sum of the interested variable X(t) and an

independent noise Wi(t), i.e.,

Di(t) = X(t) +Wi(t),

where Wi(t)’s mean is 0, and its variance pi ∈ [p, p] is unknown to the requester with p− p ≜

∆p.

The quality of worker i captures the accuracy of its data compared to the ground truth X(t)

and is quantified by the variance pi of Wi(t). The quality of a worker is an intrinsic coefficient

that captures the worker’s capability for the task. Note that a lower pi means higher quality.

Requester’s Utility. The requester’s crowdsourcing utility for task t is the estimation loss

of her estimate X ′(t) compared to the ground truth X(t), which is quantified by the mean

squared error (MSE):

U(S(t)) = −EX′(t)|X(t),{pi}i∈S(t)
[(X ′(t)−X(t))2] = −

∑
i∈S(t) pi

|S(t)|2
, (4.1)

where S(t) is the set of selected workers at time t. Note that the utility U(S(t)) is affected by

the quality of the workers selected to perform task t.

Online Quality Learning Algorithm.

72

In each time step, the algorithm performs one of two functions: exploration or exploitation.

In the exploration steps, to address the lack of ground truths, tasks are repeatedly assigned to

all the workers in order to obtain a good estimate of the ground truth of the tasks. Specifically:

(1) In each exploration step: the requester first obtains the data from all workers and

makes an estimate X ′(t) of the interested variable X(t) using the simple average rule 1. Then

the requester estimates each worker’s quality p̃i based on the estimated ground truth X ′(t). A

worker’s estimated quality is given by

p̃i =

∑
t∈E(t) (Di(t)−X ′(t))2

|E(t)|
,

where E(t) is the set of exploration time steps up to time step t.

(2) In each exploitation step: the requester assigns a new task to the m workers who have

the best estimated worker quality over the past exploration steps and makes an estimate of X(t).

In each time step t, whether to perform exploration or exploitation is determined by a

threshold function h(t): if |E(t)| < h(t), then the algorithm explores; otherwise, the algo-

rithm exploits. The threshold function h(t) balances the accuracy of quality learning and the

number of performed tasks by controlling the learning algorithm either performs exploration

or exploitation. The detailed online quality learning algorithm and its regret analysis are given

in Section 4.4.

4.3.2 Malicious Data Attack

Given the crowdsourcing system, we consider an attacker who controls a set of malicious work-

ersM = {1, 2, . . . ,M}, which along with the set of normal workersN forms the set of work-

ers recruited by the requester. In each time step, the attacker estimates the ground truth X(t)

as X∗(t) using the data observed by malicious workers. The quality of X∗(t) is

p∗ =

∑
i∈M pi

M2
.

1The requester may use other data aggregation rules (e.g., weighted average, median) to estimate the interested
variable, which will be discussed in Section 4.7.

73

The attacker knows p∗ as she knows malicious workers’ quality. After obtaining X∗(t), the

attacker adds an artificial noise ∆d(t) to it and let all malicious workers report data as

D′(t) = X∗(t) + ∆d(t).

where the noise ∆d(t) has a bounded range of an interval ∆D, and the mean and variance of

∆d(t) are 0 and a, respectively. The attacker’s objective is to to determine the variance a of

the noise ∆d(t), in order to reduce the requester’s utility as much as possible, i.e., make as

much harm as possible. In this chapter, we focus on the attacker’s strategy that uses the same

malicious noise level for all malicious workers and the same noise variance over time. This is a

relatively simple but reasonable strategy: without knowing normal workers’ data and quality, it

is difficult for a strategic attacker to increase the harm by using more complex attack strategies

(such as a time-varying noise variance). Moreover, the attack strategy above leads to non-trivial

analysis, and provides useful insights for the attacks and defenses.

4.4 Online Quality Learning without Malicious Data Attack

In this section, we present the detailed online quality learning algorithm for dynamic crowd-

sourcing, and, as a benchmark, analyze its regret when the malicious data attack is absent.

The online learning algorithm here is an extension of that in our earlier work [52]. The

major difference here is that multiple different tasks rather than the same single task (as in [52])

are assigned to workers in exploration time steps, which is more efficient in utilizing workers.

We denote the set of tasks that have been performed in exploration steps up to time t as K(t)

and the set of time steps that task k ∈ K(t) is assigned as Nk(t). The algorithm perform

exploration when either one of the following events occurs:

E1 : |K(t)| ≤ B1(t),

E2 : ∃k ∈ K(t), s.t., |Nk(t)| ≤ B2(t),

74

R
eq

u
es

te
r’

s
u

ti
lit

y
U
(S
(t
))

in
 a

n

ex
p

lo
it

at
io

n
 s

te
p

Time t

1. Asymptotic regime, w/o attack

3. Online quality learning w/o attack
(lower bound)

4. Online quality learning w/ effective attack
(upper bound)

2. Asymptotic regime, w/ effective attack

Figure 4.3: Comparison of main results.

where

B1(t) =
1

(ϵ
|S| − 2ϵ∆X)2

log t,

B2(t) =
1

ϵ2
log t,

|S| = m is the number of selected workers in exploitation steps, and 0 < ϵ < ∆min

2
is a

bounded constant. E1 denotes the event that an insufficient number of exploration tasks have

been assigned up to time t, and E2 denotes the event that there exists an exploration task(s) that

has been assigned for insufficient times in exploration steps. From the above equations, we

have that the threshold function is given by h(t) ≜ B1(t)B2(t). The online quality learning

algorithm is described in Algorithm 5 in detail. In particular, in each exploitation step, we

assign the task to the optimal set of workers based on workers’ estimated quality.

Next we analyze the accumulated regret for the requester’s utility.

Theorem 4.1 The regret of the online quality learning algorithm can be bounded uniformly in

time (the gap between Line 1 and Line 3 in Fig. 4.3):

R(T) ≤
∑N

i=1 pi∈A′ log2 T

N2ϵ2
(

ϵ
|S| − 2ϵ∆X

)2 +∆max

T∑
t=1

∑
S⊆N

|S|
(
3

t2

)
,

where A′ is the worker set that gives the largest requester’s utility other than the optimal worker

set.

75

Algorithm 5: Online quality learning for dynamic crowdsourcing
1 Initialization at t = 1: denote the first task as k, set K(t) = {k} and Nk(t) = {1};
2 At each time step t when task t arrives;
3 if |K(t)| ≤ B1(t) or ∃k ∈ K(t), s.t., |Nk(t)| ≤ B2(t) then
4 The algorithm explores ;
5 if ∃k ∈ K(t), s.t., |Nk(t)| ≤ B2(t) then
6 Randomly select one task in K(t), denote it by k;
7 Assign k to all workers N ;
8 Nk(t) = Nk(t) ∪ {t};
9 else

10 Assign a new task to all workers N , denote it by k;
11 K(t) = K(t) ∪ {k};

12 Estimate the ground truth as X ′(t) =
∑N

i=1 Di(t)

N
;

13 Update the estimation of ground truth as

X ′
k(t) =

∑
t∈Nk(t)

X ′(t)

|Nk(t)|
;

Update each worker’s estimated quality as

p̃i =

∑
k∈K(t)(Di(t̂)−X ′

k(t))
2

|K(t)|
,

where t̂ is the time that k is last performed;
14 else
15 The algorithm exploits;
16 Allocate a new task to the optimal workers set based on the updated estimated

quality p̃i ;

Worker1 Worker2 Worker3 Worker4 Worker5 Worker 6 Malicious
Worker

𝑋(𝑡)

𝑋𝑎
′ (𝑡)

Normal Workers

Estimated quality w/o attack

Estimated quality w/ attack

Actual quality

𝑋′(𝑡)

Malicious worker’s reported data
Workers’ true data

Figure 4.4: 1 malicious worker, 7 workers in total.

Worker1 Worker2 Worker3 Worker4 Worker5 Worker6

Malicious Workers

𝑋(𝑡)

𝑋𝑎
′ (𝑡)

Normal Workers

𝑋′(𝑡)

Worker7

Figure 4.5: 3 malicious workers, 7 workers in total.

76

4.5 Malicious Data Attack with Accurate Quality Learning

In this section, we focus on malicious data attacks in the asymptotic setting of the online quality

learning algorithm (i.e., when there have been infinitely many exploration time steps), where

data quality of workers is learned accurately. This setting serves as a basis and also a benchmark

for the general non-asymptotic setting studied in the next section. We first investigate the

conditions under which the attack strategy is effective in reducing the requester’s aggregated

data accuracy. Based on these conditions, we then analyze the harm of effective attacks.

4.5.1 Effective Attack Conditions

To make harm to the requester, the attack strategy should have two objectives as follows.

• Malicious workers’ estimated quality in exploration steps should be high in relative to

that of normal workers, so that they can be selected in exploitation steps and thus their

data are used by the requester.

• Meanwhile, malicious workers’ actual quality should be low so that the requester’s ag-

gregated data accuracy is low.

Based on the objectives above, we provide two conditions of the attack strategy under

which it can reduce the requester’s data accuracy compared to the case without the attack (we

say the attack is “effective” in this case).

1) Each malicious worker’s estimated quality is better than the threshold worker’s estimated

quality, i.e., E(p̃∗′) ≤ E(p̃′th), where the threshold worker is the normal worker who has

the worst quality among those selected workers in exploitation steps.

2) Each malicious worker’s actual quality is worse than the worst worker in the optimal

worker set, i.e., p∗ + a ≥ pm, where a is the variance of the malicious noise ∆d(t) and

pm is the quality of mth best normal worker.

Recall that m is the number of selected workers in an exploitation step. Note that pm is

a normal worker’s actual quality and is unknown to the attacker. We can see that as malicious

77

workers have the same estimated quality and the same actual quality after adding the malicious

noise, condition 1) is a necessary condition for the attack to be effective, and condition 2) is a

sufficient condition for the attack to be effective.

In Fig. 4.4 and 4.5, we use two examples to illustrate how malicious data affects workers’

estimated quality in one exploration step, when the number of malicious workers varies. In

both figures, most of the normal workers’ estimated quality with the malicious data attack

is worse than that without the attack. Fig. 4.4 shows that the malicious worker’s estimated

quality when she reports malicious data is worse than when she reports true data, while Fig.

4.5 shows the opposite. This is because when malicious workers‘ number is much less than

normal workers’, the malicious noise’s influence on the estimated ground truth is too small,

such that the malicious workers’ estimated quality is reduced after adding the malicious noise.

As a result, the attack in Fig. 4.4 does not satisfy condition 1). We can see that Fig. 4.5 satisfies

both conditions 1) and 2).

Next we characterize the conditions of the malicious noise under which the conditions of

the attack strategy above are satisfied, and show that it is a effective attack. We show the design

steps in the proof of the theorem.

Theorem 4.2 In the asymptotic setting, the malicious data attack is effective if the malicious

noise variance satisfies the following bounds:

a ≤

(N+M−2)pth

N−M
− p∗, if M < N,

∞, otherwise,
(4.2)

and

a ≥ pm − p∗, (4.3)

where pth = pmax{m−M,1}, and pmax{m−M,1} is the quality of the max{m−M, 1}th best normal

worker.

Note that the attacker does not know normal workers’ actual quality but knows its prob-

ability distribution. Thus she can infer a worker’s expected quality and use it to calculate the

bounds of a.

78

To ensure that there exists some a that satisfies (4.2) and (4.3) when M < N , the bounds

of a should meet
(N +M − 2)pth

(N −M)
≥ pm. (4.4)

Next, we show that the above inequality holds with a guaranteed probability. For ease of

exposition, We assume that each worker’s quality is uniformly distributed over [p, p]. Our

result can be easily extended to other distributions.

Proposition 4.1 When the following condition is satisfied:

N +M − 2

N −M
(E(pth)− φ) ≥ E(pm) + φ, (4.5)

where E(pi) = p+ i
N
∆p, the condition in (4.4) holds with a probability at least 1− 2 exp −2φ2

∆p2

(where φ is any positive constant).

When the condition in (4.4) does not hold, the malicious data attack fails for any malicious

noise since there is no such value of a that satisfies both conditions 1) and 2).

Proposition 4.2 When there are more normal workers than malicious workers (i.e., N > M),

the upper bound of a increases with the number of malicious workers M .

Proposition 4.2 directly follows from (4.2).

Remark 4.1 The above result shows that when N > M , as the number of malicious workers

increases, the attacker can use higher noise to make harm. When M > N , according to (4.2),

the attacker can use arbitrarily high noise to make harm. This is because, with more malicious

workers, the attacker can control the learning algorithm by dominating estimated ground truths

such that malicious workers always have higher estimated quality than normal workers, so that

it can use higher noise without violating condition 1).

4.5.2 Effective Attack Analysis

Since under the considered attack strategy, all malicious workers are selected in exploitation

steps when the attack is effective, the selected worker set at time t consists of all the malicious

79

workers and max{m −M, 1} normal workers with the best quality. We sort normal workers’

quality in ascending order as w1, w2, . . . , wN , then we have the regret in exploitation steps:

Rx(T) =
∑

t∈e(T)

(U (S∗)− U(Sa))

=
∑

t∈e(T)

−
m∑
i=1

wi

m2
+

∑
i∈M

(p∗ + a) +
∑max{m−M,1}

i=1 wi

m2

=
∑

t∈e(T)

(
M (p∗ + a)−

∑m
i=max{m−M,1}+1wi

m2

)
,

(4.6)

where Sa is the selected worker set with effective attacks, and e(T) is the set of exploitation

steps up to time T .

Theorem 4.3 In the asymptotic setting, compared to the online learning algorithm without

attacks (Fig. 4.3. Line 1), the online learning algorithm with effective attacks (Fig. 4.3. Line

2) has an expected regret of Ω(T).

Proof: The regret consists of the regret in exploration and in exploitation: R(T) =

Re(T) + Rx(T), and we simply bound the regret in exploration as Re(T) > 0. We also

have |e(T)| ≥ T − h(T) from the definition of |e(T)|.

Then from (4.3) and (4.6), we can bound the regret as

R(T) ≥ |e(T)|

(
Mwm −

∑m
i=max{m−M,1}+1wi

m2

)
= Ω(T).

□

Remark 4.2 We note from the above analysis that the regret in exploitation steps is given by

(4.6). It is obvious that as the variance a increases, the regret increases. This implies that the

attacker can increase the requester’s estimation loss by increasing a. Therefore, this harm is

maximized when a takes the upper bound value in (4.2). Thus we obtain the maximum harm

by substituting the upper bound in (4.2) into (4.6).

80

Remark 4.3 We have from Proposition 4.2 that the upper bound of a increases as the number

of malicious workers M increases. Therefore, based on (4.6), with more malicious workers,

the attacker can increase the harm by using a higher noise variance a. At the same time, we see

that the regret increases as M increases. This means that more harm can be made with more

malicious workers even if a stays the same.

Remark 4.4 Besides the malicious noise and the number of malicious workers, another factor

that affects the regret is the number of selected workers m in exploitation steps. From (4.6), we

can see that the regret decreases as m increases because more normal workers are selected. As

a result, the proportion of malicious workers in the selected worker set decreases, so that the

influence of the attack is reduced.

4.6 Malicious Data Attack with Online Quality Learning

In this section, based on the results for the asymptotic setting in the previous section, we study

the attack strategy in the general non-asymptotic setting of the online quality learning algo-

rithm.

4.6.1 Effective Attack Conditions

To achieve effective attacks in the non-asymptotic setting, the attack strategy should satisfy the

following conditions:

1) Malicious workers’ estimated quality is better than that of the threshold worker, i.e.,

p̃∗′ ≤ p̃′th.

2) Malicious workers’ actual quality is worse than the the worst worker in the optimal

worker set, i.e., p∗ + a ≥ pm.

We can see that the difference of the conditions above compared to those in the asymp-

totic setting in Section 4.5 is that the inaccurately estimated quality instead of the accurately

estimated quality of a malicious worker should be better than that of the threshold worker. The

inaccurate and dynamic nature of the estimated quality poses a non-trivial challenge for the

design and analysis of an effective attack strategy, as will be shown in the rest of this section.

81

We first provide the conditions under which an attack strategy is effective. Then we present

the major steps in the proof of the result. Note that the proof has non-trivial differences from

that of Theorem 1, due to the inaccurate and dynamic estimated quality of workers.

Theorem 4.4 The malicious data attack is effective with a probability at least Q if the mali-

cious noise variance satisfies the following bounds:

a ≤

(N+M−2)pth

N−M
− p∗ − N2+M2

N2−M2 ϵ0−
(N+M)2

N2−M2 (ϵ1 + 2ϵ2 + ϵ3 + ϵ4 + ϵ5), if M < N,

∞, otherwise,

(4.7)

and

a ≥ pm − p∗, (4.8)

where pth = pmax{m−M,1}, ϵ0, ϵ1, ϵ2, ϵ3, ϵ4, and ϵ5 are any positive constants, and

Q ≜ max{ω1 + ω2 − 1, 0}, (4.9)

where

ω1 ≜1− exp (−2|K(t)|ϵ20
∆D2

))− exp (−2|K(t)|ϵ21
∆X2

))

− exp (− 2|K(t)|ϵ22
∆X2∆D2

))− exp(−2|K(t)|ϵ23
∆p2

))

and

ω2 ≜1− exp (−2|K(t)|ϵ20
∆D2

)− exp (− 2|K(t)|ϵ22
∆X2∆D2

)

− exp(−2|K(t)|ϵ24
∆p2

)− exp(−2|K(t)|ϵ25
∆X2

)).

To ensure that the upper bound of a is higher than its lower bound when M < N , the

bounds of a should satisfy the condition below:

(N +M − 2)pth
N −M

− N2 +M2

N2 −M2
ϵ0 −

(N +M)2

N2 −M2
(ϵ1 + 2ϵ2 + ϵ3 + ϵ4 + ϵ5) ≥ pm. (4.10)

82

Next, we show that the above inequality holds with a guaranteed probability.

Proposition 4.3 When the following condition is satisfied:

(N +M − 2)(E(pth)− φ)

N −M
− N2 +M2

N2 −M2
ϵ0

− (N +M)2

N2 −M2
(ϵ1 + 2ϵ2 + ϵ3 + ϵ4 + ϵ5) ≥ E(pm) + φ,

the condition in (4.10) holds with a probability at least 1− 2 exp −2φ2

∆p2
.

The proof of Proposition 4.3 is omitted since it’s similar to the proof of Proposition 4.1.

Proposition 4.4 When there are more normal workers than malicious workers (i.e., N > M),

the upper bound of the variance a increases with the number of malicious workers M .

The proof of Proposition 4.4 is omitted here since it directly follows from (4.7). We can

also make similar comments on Proposition 4.4 as those on Proposition 4.2 in Remark 4.1.

Proposition 4.5 When (4.10) holds, the lower bound Q of the probability that the malicious

attack is effective increases with time and converges to 1. The upper bound of a converges to

that in the asymptotic setting.

Proposition 4.5 directly follows from the definition of Q.

Remark 4.5 The above results shows that as the number of tasks performed in exploration

|K(t)| increases with time, the lower bound Q of the probability that the attack is effective

increases and eventually converges to 1. This is because as time goes, the estimated quality

becomes more accurate, such that the state (including a worker’s estimated quality, the set of

selected workers in an exploitation step, and the requester’s utility in the exploitation step) of

the online quality learning algorithm becomes closer and converges to the state in the asymp-

totic setting in Section 4.5.

83

4.6.2 Effective Attack Analysis

Next we compare the regret of the online learning algorithm with effective attack in the non-

asymptotic state to that in the asymptotic state in Section 4.5 (Theorem 4.5). Then we compare

the regret of the online learning algorithm with effective attack to that without attacks in the

asymptotic state (Theorem 4.6).

Theorem 4.5 With effective attacks, the online learning algorithm (Fig. 4.3. Line 4) has an

expected regret of O(1) compared to in the asymptotic setting (Fig. 4.3. Line 2).

Proof: Since the regret in exploration steps is the same in both the asymptotic and the

non-asymptotic states, we only need to compare the regret in exploitation steps. The regret gap

is given by

G(T) =
∑

t∈e(T)

(U(S(t))− U(Sa)) ≤ ∆maxE(
∑

t∈e(T)

1S(t)̸=Sa), (4.11)

where ∆max ≜ maxS(t)[U(S∗)− U(S(t))].

For ease of exposition, we use |S| to express |S(t)| in the rest of the proof. According to

[52], we can further bound the gap by

G(T) ≤ ∆max

T∑
t=1

∑
S(t)

∑
i∈S(t)

Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
). (4.12)

Lemma 4.1 Each term in (4.12) can be bounded as

Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
) ≤ 8

t2
,∀i ∈ N ∪M.

Therefore, we can bound the gap between requester’s utility in the asymptotic state and in

the non-asymptotic state as

G(T) ≤ ∆max

∑T

t=1

∑
S(t)
|S| 8

t2
= O(1). (4.13)

□

84

Remark 4.6 In the proof of Theorem 4.5, we can see from (4.13) that the upper bound on

the regret gap in an exploitation step decreases with time and converges to 0. This is because

as time goes, a worker’s estimated quality becomes more accurate, and converges to the exact

quality learned in the asymptotic setting (note that this is not the worker’s actual quality but

the quality learned from workers’ data in the requester’s view). As a result, the set of selected

workers is more likely to be the same as that in the asymptotic setting (which with effective

attacks includes all malicious workers). Therefore, the regret gap in an exploitation step also

decreases and converges to 0 as time goes. Moreover, this decrease with time is sufficiently

fast, such that the total utility gap G(T) over all exploitation steps up to time T is in the order

of O(1), which means it is upper bounded by a constant independent of time.

Theorem 4.6 Compared to the online learning algorithm in the asymptotic setting without

attacks (Fig. 4.3. Line 1), the online learning algorithm with effective attacks (Fig. 4.3 Line 4)

has an expected gap of Ω(T).

Remark 4.7 From Theorem 4.4, we can see that all malicious workers are selected in exploita-

tion steps with a probability greater than Q. Thus we can have

R(T) ≥
∑

t∈e(T)

(U(S∗)− U(S(t))) ≥ ∆minE(
∑

t∈e(T)

1S(t)̸=S∗)

≥∆min(Q− 2 exp (−2φ2))(T − h(T)),

where
∆min ≜ min

S(t)
[U (S∗)− U(S(t))] = U (S∗)− U(Sa)

= U (S∗) + (M(p∗ + a) +

max{m−M,1}∑
i=1

wi)/m
2.

It is obvious that as a increases, ∆min increases. We can also see that the lower bound of

the regret increases with ∆min. This means that the attacker can make more harm by increasing

a (as long as a is no greater than its upper bound).

Remark 4.8 As in Fig. 4.3, compared to the offline optimal strategy (Line 1), the upper bound

on the regret of the requester’s utility is increased from O(log2 T) (Line 3) to Ω(T) (Line 4),

85

as a result of effective attacks. This is essentially due to that in the asymptotic setting, the

requester’s utility in an exploitation step is reduced by a constant (from Line 1 to Line 2).

The above observation shows that malicious attacks can make substantial harm, despite that

workers’ quality is estimated with errors for online quality learning.

4.7 Data Aggregation Defenses

The online quality learning algorithm serves as a defense mechanism against the data poisoning

attack, as it learns workers’ quality and finds malicious workers with low quality. Note that the

data aggregation rule used in the online quality learning algorithm has substantial impacts on

the quality learning results (as it affects the estimated ground truth and thus the estimated qual-

ity). In this section, we integrate median and maximize influence estimation (MIE) based data

aggregation for the online quality learning algorithm, and analyze their effects in the asymptotic

setting. We will evaluate their performance in the non-asymptotic setting in Section 4.8.

4.7.1 Median

In the online quality learning algorithm, instead of using simple average based data aggregation,

the requester takes the median value of submitted data as the estimated value of the ground truth

as in (2), i.e., the estimated ground truth at time t is

X ′(t) = Median {Di(t), i ∈ S(t)} . (4.14)

Theorem 4.7 With the median-based data aggregation, the malicious data attack is effective

with any malicious noise variance a if the number of malicious workers is greater than that of

normal workers (i.e., M ≥ N).

Proof: It is intuitive that when the number of malicious workers is greater than that of normal

workers, i.e. M ≥ N , the estimated ground truth (median) constantly equals the malicious data

since all malicious workers submit the same data value. Thus, malicious workers’ empirical

variances are always the lowest among all workers and estimated quality is always the highest.

Therefore, the attacker can use an arbitrarily high malicious noise to make harm. □

86

When the number of malicious workers is less than that of normal workers (M < N), it is

difficult to characterize the impacts of malicious data on the estimated ground truths X ′(t) and

estimated quality of workers. We will use simulation result to analyze this case in Section 7.6.

4.7.2 Maximize Influence of Estimation

Next we study the malicious data attack under the maximize influence of estimation (MIE)

based defense proposed in [78]. The general idea of MIE defense is to find the workers with

the maximum influence on the estimated ground truth and exclude them when selecting work-

ers in exploitation steps. MIE uses a greedy influential worker selection algorithm to detect the

influential worker set which contains the workers with the maximum influence on the estimated

ground truth. We follow the assumption in [78] that the requester knows the number of mali-

cious workers. We first present the greedy influential worker selection algorithm in Algorithm

6. Then we analyze the effectiveness of the attack under the MIE defense in the asymptotic

setting.

Algorithm 6: Greedy influential worker selection
1 Input: Workers’ data in exploration Di(t) for i ∈ N ∪M, t ∈ E(t), number of

malicious workers M ;
2 Initialize the influential worker set A = ∅;
3 while |A| < M do
4 Select i = argmaxi∈M\A φ(i,K(t));
5 A ← A∪ {i};
6 return Influential worker set A.

The influence of worker i is defined as follows:

φ(i,K(t)) ≜

∑
t∈E(t)

(∑
j∈N∪M

Dj(t)

N+M
−

∑
j∈N∪M\{i}

Dj(t)

N+M−1

)2

|E(t)|
(4.15)

Theorem 4.8 Under the MIE defense, the malicious data attack is effective if the malicious

noise variance satisfies the bounds given by (4.2) and (4.3).

87

0 500 1000

Time steps T

0

10

20

30

40

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t
R

(T
)

0 500 1000

Time steps T

0.02

0.04

0.06

0.08

0.1

0.12

A
v
e
ra

g
e
 r

e
g
re

t
R

(T
)/

T

Figure 4.6: Regret of the multi-task-explore online learning algorithm.

0 50 100 150 200

Time steps

0.04

0.06

0.08

0.1

A
v
e
ra

g
e
 e

s
ti
m

a
ti
o
n
 l
o
s
s

w/ learning w/o attack

w/ learning and attack

w/o learning w/ attack

Figure 4.7: Impact of quality learning and attack on data accuracy with accurate quality learn-
ing.

0 100 200 300 400 500

Time steps T

0

2

4

6

8

10

12

14

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t
R

(T
)

w/o attack

w/ attack, M=15, a=1.8

w/ attack, M=20, a=1.8

w/ attack, M=20, a=2

Figure 4.8: Impact of the number of malicious workers M with accurate quality learning.

88

0 100 200 300 400 500

Time steps T

0

5

10

15

A
c
c
u
m

u
lit

iv
e
 R

e
g
re

t
R

(T
)

w/o attack, m=20

w/ attack, m=20

w/o attack, m=25

w/ attack, m=25

Figure 4.9: Impact of the number of selected workers m in exploitation with accurate quality
learning.

0 10 20 30 40 50 60

Worker

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

E
s
ti
m

a
te

d
 q

u
a
lit

y

true quality

w/o attack, simple average

w/ attack, simple average

Figure 4.10: Learned quality with online quality learning.

0 5 10 15

Workers

0

0.1

0.2

0.3

0.4

E
s
ti
m

a
te

d
 q

u
a
lit

y

w/o attack

w/ attack

threshold quality

Malicious workersNormal workers

Figure 4.11: Learned quality with online quality learning. (real-world data)

89

0 100 200 300 400 500

Time steps T

0

1

2

3

4

5

6

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t
R

(T
)

w/o attack

w/ attack, M=15

w/ attack, M=20

w/ attack, M=25

Figure 4.12: Impact of the number of malicious workers M with online quality learning.

0 100 200 300 400 500

Time steps T

0

2

4

6

8

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t
R

(T
)

w/o attack

w/ attack, a=1.8

w/ attack, a=2.0

Figure 4.13: Impact of the variance of added noise a with online quality learning.

0 200 400 600 800

Time steps T

0

5

10

15

20

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t
R

(T
)

w/o attack, m=20

w/ attack, m=20

w/o attack, m=25

w/ attack, m=25

Figure 4.14: Impact of the number of selected workers in each exploitation m with online
quality learning.

90

10 15 20 25 30 35 40

Number of malicious workers M

1

2

3

4

5

6

U
p
p
e
r

b
o
u
n
d
 o

f
a

Figure 4.15: Impact of the number of malicious workers M on the upper bound of a.

0 10 20 30 40 50 60

Worker

1

1.5

2

2.5

E
s
ti
m

a
te

d
 q

u
a
lit

y

true quality

w/o attack

w/ attack, simple average

w/ attack, weighted average

w/ attack, median

w/ attack, MIE

w/ attack, Dynamic-TD

Figure 4.16: Learned quality with online quality learning under different defenses.

0 5 10 15

Worker

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
s
ti
m

a
te

d
 q

u
a
lit

y

w/o attack

w/ attack,simple average

w/ attack,weighted average

w/ attack,median

w/ attack,MIE

threshold quality

Figure 4.17: Learned quality with online quality learning under different defenses. (real-world
data)

91

0 100 200 300 400 500 600

Time steps

0

5

10

15

20

A
c
c
u
m

u
la

ti
v
e
 r

e
g
re

t

w/o attack

w/ attack, simple average

w/ attack, weighted average

w/ attack, median

w/ attack, MIE

Figure 4.18: Impact of different defenses on the accumulative regret.

4.8 Performance Evaluation

In this section, we use simulations based on both synthetic data and real-world data to evaluate

the performance of the attack strategies and defense mechanisms. In the synthetic dataset,

the quality of normal workers is linearly distributed over [1, 2], and the quality of malicious

workers is uniformly distributed over [1, 2]. There are 500 tasks of which the ground truth

values X(t) are uniformly distributed over [1, 2]. The data of worker i for task t follows a

normal distribution Di(t) ∼ N (X(t), pi), where pi is worker i’s quality. The real-world data is

Weather, which contains the weather data on 30 major USA cities from 18 websites every 45

minutes on a day in Mar, 2010. We use 224 data samples from each of 16 websites, respectively,

as 224 tasks and 16 workers.

4.8.1 Online Quality Learning Without Attack

We first evaluate the online quality learning algorithm proposed in Section 4.4. The crowd-

sourcing system parameters using synthetic data are set as follows: N = 30, m = 20, ϵ = 0.4.

Fig. 4.6 illustrates the algorithm’s accumulative regret and average regret versus time steps.

We can see that the accumulative regret increases as a logarithmic function with time steps and

the average regret converges to zero. These observations conform our theoretical results.

92

4.8.2 Attack with Accurate Quality Learning

We evaluate the impact of online quality learning and the malicious data attack on crowdsourc-

ing data accuracy. We study the requester’s estimation loss under three circumstances: online

quality learning without the attack, online quality learning with the attack, and no quality learn-

ing with the attack (the requester randomly select workers in exploitation). The crowdsourcing

system parameters using synthetic data are set as follows: N = 30, M = 15, m = 25, ϵ = 0.4.

The variance of additive noise a takes the value of its upper bound when the attack is applied.

We can see in Fig. 4.7 that, as online quality learning is used, the requester’s estimation loss is

larger with the attack, which demonstrates that the attack makes harm. However, we can also

observe that, when the system is attacked, the requester’s estimation loss with online quality

learning is always smaller than that without online quality learning, which shows that online

quality learning can mitigate the attack.

We evaluate the impact of the number of malicious workers M , the variance of additive

noise a, and the number of selected workers m in each exploitation step on the accumulative

regret in the asymptotic regime of the online quality learning algorithm. The crowdsourcing

system parameters using synthetic data are set as follows: N = 30, M = 15, m = 20, ϵ = 0.4.

Fig. 4.8 shows the regret when the attacker takes different attack strategies. We can observe that

the regret increases as either the number of malicious workers M or the variance of additive

noise a increases, which agrees with Remarks 4.2 and 4.3. In Fig. 4.9, we can see that the

regret always decreases as the number of selected workers m increases. This is because the

utility loss decreases when more workers work on a task. We also see that the accumulative

regret with the attack is always higher than that without the attack.

4.8.3 Attack with Online Quality Learning

We first investigate the impact of the data poisoning attack on the estimated quality of work-

ers. The crowdsourcing system parameters using synthetic data are set as follows: N =

{1, 2, . . . , 50},M = {51, 52, . . . , 65}, m = 20, ϵ = 0.55, ϵ0 = 0.2, ϵ3 = ϵ4 = 0.1, a = 2. The

crowdsourcing system parameters using synthetic data are set as follows: N = {1, 2, . . . , 10},

93

M = {11, 12, . . . , 16}, m = 10, ϵ = 0.4, a = 7. Both simulation results using synthetic data

(Fig. 4.10) and real-world data (Fig. 4.11) show that malicious workers’ estimated quality is

good enough to be selected in exploitation steps. For both settings, we compare the data accu-

racies of tasks with and without the malicious data attack, respectively. The data accuracy is

calculated as

Accuracy =

∑
k |X ′

k −Xk|∑
k Xk

,

where k is the task index, X ′
k and Xk are the estimated ground truth and the actual ground

truth of task k, respectively. For synthetic data simulation, the data accuracies with and without

the malicious data attack are 0.47 and 0.14 respectively. Since the actual ground truths of

tasks are not provided in the real-world dataset, we use the average of all workers’ data as the

“actual ground truth”. For real-world data simulation, the data accuracies with and without the

malicious data attack are 0.007 and 0.004 respectively. We can see that the data accuracies

decrease with the attacks. Although both data accuracies with and without the malicious data

attack seem good. However, this is because we do not have the actual ground truth, i.e., Xk, for

the real-world data and use the average of all workers’ data as the “actual ground truth”. Since

X ′
k and Xk are obtained from the same dataset with different numbers of data samples, the data

accuracies seem good and close. If we calculate the data accuracy using actual ground truth,

the data accuracy values can be worse than the presented results. Moreover, our result shows

that the data accuracy with the malicious attack is almost twice of that without the malicious

attack. Thus, this result demonstrates that the malicious data attack is effective.

We also compare the accumulative regret of the online learning algorithm while the attack

strategy takes a various number of malicious workers M (Fig. 4.12), a different variance of the

added noise a (Fig. 4.13), and a various number of selected workers m in each exploitation

steps (Fig. 4.14), respectively, using synthetic data. The crowdsourcing system parameters are

set as follows: N = 30, M = 20, m = 25, ϵ = 0.55, ϵ0 = 0.2, ϵ3 = ϵ4 = 0.1, a = 2.

In Fig. 4.12, we compare the accumulative regret of the online learning algorithm while the

number of malicious workers M varies. We can observe that the accumulative regret is linear

and increases as the number of malicious workers increases with the attack. In Fig. 4.13, we

94

can see that the attacker can make more harm by increasing the variance of added noise a. In

Fig. 4.14, we observe that the regret reduces as more workers are selected in each exploitation

step. From the three figures we mentioned above, we can conclude that the attack strategy is

effective, and the attack can make more harm to the online learning algorithm by recruiting

more malicious workers and/or increasing the variance of added noise (as long as a is lower

than its upper bound). We also study the upper bound of added noise a of an effective attack

that is shown in Fig. 4.15. It shows that the upper bound increases as the number of malicious

workers increases.

4.8.4 Data Aggregation Defenses

We evaluate the impact of malicious attacks when different defenses are used for the crowd-

sourcing system. We compare the estimated quality and regret when using simple average

aggregation, weighted average aggregation, median aggregation, MIE in the online quality

learning algorithms, respectively. The estimated ground truth using weighted average aggrega-

tion is X ′(t) = 1
p̃i
Di(t)/

∑
i∈S(t)

1
p̃i
. The crowdsourcing system parameters are set as the same

as evaluating the malicious data attack with online quality learning. Fig. 4.16 and Fig. 4.17

shows the estimated quality after learning when performing different defenses using synthetic

data and real-world data. We observe from both figures that with the malicious data attack,

compared to using simple average aggregation, using weighted average aggregation can mit-

igate the attack, using MIE defense gives the same result as the simple average aggregation,

and using median aggregation can aggravate the attack. In Fig. 4.16, We also compare the

estimated quality when using defenses in this chapter and the defense (Dynamic-TD) proposed

in [79]. We observed that the result of Dynamic-TD is close to that of the MIE defense in

this chapter. The same results are shown in Fig. 4.18, where we compare the accumulative

regret when using different defenses. The reasons for the above results are as follows. 1) Since

the weighted aggregation rule uses the reciprocal of workers’ estimated quality as weights, as

the learned quality converges to the actual quality, estimated ground truths of tasks are more

accurate compared to using simple average aggregation. Thus, with more accurate estimated

95

ground truths, learned quality is closer to the actual quality than using simple average aggre-

gation. 2) For MIE defense, a worker’s influence is determined by the deviation from her data

to the average of other workers’ data, which uses the same idea as the online quality learning

algorithm estimates workers’ quality. Thus, the order of workers’ influences is the same as the

order of workers’ estimated quality, such that malicious workers are still selected in exploita-

tion steps. 3) When using the median aggregation rule, since malicious workers’ data are the

same, the median shifts towards malicious workers’ data. Thus, malicious workers’ estimated

quality is better when using median aggregation than when using simple average aggregation.

More importantly, the estimated ground truths are more inaccurate compared to using simple

average aggregation. Hence, using median aggregation can aggravate the attack.

4.9 Conclusion

In this chapter, we explore the malicious data attack on the online quality learning algorithm

in data crowdsourcing. We first study the design of the malicious data attack in the asymp-

totic regime and non-asymptotic regime of the online quality learning algorithm and discuss

the impacts of various parameters on the effect of the attack. We show that the requester’s

accumulative regret of online quality learning can be increased from O(log2 T) to Ω(T) due to

the attack. We use simulation to evaluate the proposed malicious data attack and the impact of

various parameters.

4.10 Appendix

4.10.1 Proof of Theorem 4.1

We use several steps to prove the above theorem.

Step 1: The regret consists of two parts: regret in exploration and regret in exploitation:

R(T) = Re(T) +Rx(T).

Step 2: Using union bound we have the following bound for Re(T) and Rx(T) respec-

tively at time T :

96

The regret from the exploration steps is bounded by

Re(T) ≤ −U(A′)D1(T)D2(T),

where D1(T)D2(T) is the upper bound of the number of exploration steps.

According to [52], the regret from the exploitation steps is bounded by

Rx(T) ≤ ∆max

T∑
t=1

∑
S⊆N

∑
i∈S

Pr(|p̃i − pi| >
ϵ

|S|
). (4.16)

Step 3: We further bound the regret from exploitation steps. Consider each term in (4.16),

Pr(|p̃i − pi| >
ϵ

|S|
) =

Pr(|p̃i − pi| >
ϵ

|S|
|X ′

k(t)−X(t) ≤ ϵ)︸ ︷︷ ︸
Term 1

Pr(X ′
k(t)−X(t) ≤ ϵ)

+ Pr(|p̃i − pi| >
ϵ

|S|
|X ′

k(t)−X(t) > ϵ) Pr(X ′
k(t)−X(t) > ϵ)︸ ︷︷ ︸

Term 2

,

where k and X(t) are the task performed at time step t and its ground truth.

For Term 1, under the condition that X ′
k(t) − X(t) ≤ ϵ, we have the difference of the

estimated quality when compare worker’s data with the ground truth p̂i and with the estimated

ground truth p̃i is

|p̂i − p̃i| = |

∑
k∈K(t)

(Di(t)−X(t))2 − (Di(t)−X ′
k(t))

2

|K(t)|
|

= |

∑
k∈K(t)

(2Di(t)−X(t)−X ′
k(t))(X

′
k(t)−X(t))

|K(t)|
|

≤ 2∆Xϵ.

(4.17)

97

Thus, from (4.17) and Hoeffding’s inequality, we have

Term 1Pr(X ′
k(t)−X(t) ≤ ϵ)

≤ Pr(|p̃i − p̂i|+ |p̂i − pi| >
ϵ

|S|
|X ′

k(t)−X(t) ≤ ϵ)× Pr(X ′
k(t)−X(t) ≤ ϵ)

≤ Pr(|p̂i − pi| >
ϵ

|S|
− 2∆Xϵ)

≤ 2 exp (
−2(ϵ

|S| − 2∆Xϵ)2|K(t)|
∆p2

) ≤ 2

t2
.

For Term 2, we have

Pr(X ′
k(t)−X(t) > ϵ) ≤ exp(

−2ϵ2|Nk(t)|
∆X2

) ≤ 1

t2
.

Summing up, we can bound (4.16) as

Rx(T) ≤ ∆max

T∑
t=1

∑
S⊆N

|S| 3
t2
.

4.10.2 Proof of Theorem 4.2

First we can see that (4.3) follows from condition 2). Next we use 3 steps (Steps 1, 2, and 3) to

show that (4.2) achieves condition 1).

Step 1: We need to find the threshold that can ensure all malicious workers to be selected

in exploitation, which determines the upper bound for malicious workers’ estimated quality.

First, the expected estimated quality of a normal worker i with the attack is

E (p̃′i) =
∑

t∈K(t)

E
(
(Di(t̂)−Xa(t))

2
)
/|K(t)|

= pi
N +M − 2

N +M
+

∑
j∈N∪M pj

(N +M)2
+ a

(
M

N +M

)2

.

(4.18)

From the equation above we have that E(p̃′i) < E(p̃′j), if pi < pj . This means that all

malicious workers can be selected in exploitation steps if their estimated quality is better than

that of the max{m − M, 1}th best normal worker. Thus we set the threshold worker as the

98

max{m−M, 1}th best normal worker. We express condition 1) as:

E(p̃∗′) ≤ E(p̃′th) = E(p̃′max{m−M,1}). (4.19)

Step 2: Similar as (4.18), for a malicious worker, we have

E (p̃∗′) = (p∗ + a)
N −M

N +M
+

∑
j∈N∪M pj

(N +M)2
+ a

(
M

N +M

)2

. (4.20)

Step 3: By substituting (4.18) and (4.20) into (4.19), we have that the attack meets condi-

tion 1) when a is bounded by (4.2).

4.10.3 Proof of Proposition 4.1

Since workers’ quality follows the uniform distribution, the expected quality of the ith best

worker is E(pi) = p+ i
N
∆p.

From Hoeffding’s inequality, we know that event {ζ1 : pth < E(pth) − φ} is true with a

probability at most exp(−2φ2

∆p2
), and so is event {ζ2 : pm > E(pm)+φ}. Thus from De Morgan’s

laws and Boole’s inequality, we have

Pr(ζ ′1 ∩ ζ ′2) = 1− Pr(ζ1 ∪ ζ2) ≥ 1− 2 exp(−2φ2/∆p2),

where ζ ′1 and ζ ′2 are the complement events of ζ1 and ζ2, respectively. Therefore, when (4.5) is

true, the condition in (4.4) holds with a probability at least 1− 2 exp(−2φ2

∆p2
).

4.10.4 Proof of Theorem 4.4

First we can see that (4.8) follows from condition 2). Next we use 3 steps (Steps 1, 2, and 3) to

show that (4.7) achieves condition 1).

Step 1: Similar as Theorem 4.2, we express condition 1) as:

p̃∗′ ≤ p̃′max{m−M,1} = p̃′th, ∀i ∈M. (4.21)

99

Step 2: To achieve (4.21), we give the following two lemmas.

Lemma 4.2 For a normal worker’s estimated quality based on the estimated ground truth p̃′i

and her actual quality pi, we have that

p̃′i ≥
N +M − 2

N +M
pi +

∑
j∈N∪M pj

(N +M)2
+

(
M

M +N
)2(

a

|Nk(t)|
− ϵ0)− ϵ1 − 2ϵ2

M

N +M
− ϵ3

(4.22)

holds with a probability greater than ω1.

Lemma 4.3 For a malicious worker’s estimated quality based on the estimated ground truth

p̃∗′ and her actual quality p∗, we have that

p̃∗′ ≤N −M

N +M
p∗ +

∑
j∈N∪M pj

(N +M)2
+

(
N

N +M
)2(

a

Nk(t)
+ ϵ0) + 2ϵ2

N

N +M
+ ϵ4 + ϵ5

(4.23)

holds with a probability greater than ω2.

Step 3: By substituting (4.22) and (4.23) into (4.21), and from |Nk(t)| ≥ 1, we have

when the noise variance a is bounded by (4.7), the attack strategy is effective with a probability

greater than Q.

4.10.5 Proof of Theorem 4.6

From Theorem 4.3 and 4.5, we have

R(T) ≥
∑

t∈e(T)
(U(S∗)− U(S(t)))

=
∑

t∈e(T)
((U(S∗)− U(Sa))− (U(S(t))− U(Sa)))

= Ω(T)−O(1) = Ω(T)

100

4.10.6 Proof of Theorem 4.8

According to (4.15), worker i’s influence is

φ(i,K(t))

=

∑
t∈E(t)

(∑
j∈N∪M

Dj(t)

N+M
−

∑
j∈N∪M\{i}

Dj(t)

N+M−1

)2

|E(t)|

=
1

|E(t)|
∑
t∈E(t)

(N +M)(
∑

j∈N∪M
Dj(t)−

∑
j∈N∪M\{i}

Dj(t))

(N +M)(N +M − 1)

−

∑
j∈N∪M

Dj(t)

(N +M)(N +M − 1)

2

=
1

|E(t)|
∑
t∈E(t)

Di(t)−
∑

j∈N∪M
Dj(t)

N+M

N +M − 1

2

=

∑
t∈E(t) (Di(t)−Xa(t))

2

|E(t)|(N +M − 1)2
.

Thus, we have worker i’s expected influence is

E(φ(i,K(t))) =

∑
t∈E(t) (Di(t)−Xa(t))

2

|E(t)|(N +M − 1)2

=
E(p̃′i)

(N +M − 1)2
.

(4.24)

We can see that a worker’s expected influence is proportional to her expected estimated quality

from the online quality learning algorithm. Thus, the worker selection result according to the

influence is the same as that according to the estimated quality. We have proved in Theorem

4.2 that the malicious data attack is effective if the variance of the malicious noise satisfies the

upper bound and lower bound given by (4.2) and (4.3). Hence, the malicious data attack is

effective by adding the same noise under the MIE defense.

101

4.10.7 Proof of Lemma 4.2

From Hoeffding’s inequality and (4.18), we have

p̂i(t)− p̃i(t) ≤ E(p̂i(t)− p̃i(t)) + ϵ1

≤ pi − E(p̃i(t)) + ϵ1

≤ 2

N +M
pi −

∑
j∈N∪M pj

(N +M)2
+ ϵ1

(4.25)

with a probability greater than 1− exp (−2|K(t)|ϵ21
∆X2).

We also have the following two inequalities:

1) with a probability greater than 1− 2 exp(−2|K(t)|ϵ20
∆D2),

|
∑

k∈K(t)(
∑

t∈Nk(t)
M

M+N
∆d(t)

|Nk(t)|
)2

|K(t)|
− a

|Nk(t)|
| ≤ ϵ0; (4.26)

2) with a probability greater than 1− exp(− 2|K(t)|ϵ22
∆X2∆D2),

∑
t∈K(t)

∑
t∈Nk(t) ∆d(t)

|Nk(t)|
(Di(t)−X ′(t))

|K(t)|

≤

∑
t∈K(t)

E(
∑

t∈Nk(t) ∆d(t)

|Nk(t)|
(Di(t)−X ′(t)))

|K(t)|
+ ϵ2 ≤ ϵ2.

(4.27)

Next we bound the difference of the estimated quality before and after the attack. From

(4.26), (4.27), and the definition of workers’ estimated quality, we have

p̃i − p̃′i =

∑
k∈K(t)

(Di(t̂)−X ′
k(t))

2 − (Di(t̂)−Xa(t))

|K(t)|

=

∑
k∈K(t)

(2Di(t̂)−X ′
k(t)−Xa(t))(Xa(t)−X ′

k(t))

|K(t)|

=

∑
k∈K(t) 2(

∑
t∈Nk(t)

M
M+N

∆d(t)

|Nk(t)|
)(Di(t)−X ′(t))

|K(t)|
−
∑

k∈K(t)(
∑

t∈Nk(t)
M

M+N
∆d(t)

|Nk(t)|
)2

|K(t)|

≤ (
M

M +N
)2(ϵ0 −

a

|Nk(t)|
) + 2ϵ2

M

N +M

(4.28)

102

with a probability greater than 1 − exp (−2|K(t)|ϵ20
∆D2) − exp (− 2|K(t)|ϵ22

∆X2∆D2). From Hoeffding’s in-

equality, we bound the difference of a worker’s actual quality pi and its estimated quality using

the actual ground truth p̂i without the attack:

Pr(pi − p̂i ≤ ϵ3) ≥ 1− exp(−2|K(t)|ϵ23
∆p2

). (4.29)

Thus, from (4.25), (4.28), and (4.29), we can have that, for a normal worker, (4.22) is true

with a probability greater than ω1.

4.10.8 Proof of Lemma 4.3

First, similar as (4.25), we have

p̃∗ − p̂∗ ≤ − 2M

M +N
p∗ +

∑
j∈N∪M pj

(N +M)2
+ ϵ5 (4.30)

with a probability greater than 1− exp (−2|K(t)|ϵ25
∆X2).

Next we bound the difference of the estimated quality before and after the attack similar

as (4.28):

p̃∗′ − p̃∗

=

∑
t∈K(t)((D(t̂)−Xa(t))

2 − (D′(t̂)−X ′
k(t))

2)

|K(t)|

≤ (
N

M +N
)2(

a

|Nk(t)|
+ ϵ0) + 2ϵ2

N

N +M
(4.31)

with a probability greater than 1 − exp (−2|K(t)|ϵ20
∆D2) − exp (− 2|K(t)|ϵ22

∆X2∆D2). We further bound p̂∗

using Hoeffding’s inequality as follows:

Pr(p̂∗ − p∗ ≤ ϵ4) ≥ 1− exp(−2|K(t)|ϵ24
∆p2

). (4.32)

Thus, from (4.30), (4.31), and (4.32) we have, for a malicious worker, (4.23) is true with

a probability greater than ω2.

103

4.10.9 Proof of Lemma 4.1

First, for a normal worker, we have the following two inequalities: 1) from (4.26) and (4.27),

we have

|p̃′

i − p̃i| ≤ (a+ ϵ0)(
M

N +M
)2 + 2

M

N +M
ϵ2 ≜ β1 (4.33)

with a probability greater than 1−2 exp (−2|K(t)|ϵ20
∆D2)−2 exp (− 2|K(t)|ϵ22

∆X2∆D2), note that this inequal-

ity also works for malicious workers; 2) from (4.25), we have

|p̃i − p̂i| ≤
2

N +M
pi +

∑
i∈N∪M pi

(N +M)2
+ ϵ1 ≜ γ1 (4.34)

with a probability greater than 1 − 2 exp (−2|K(t)|ϵ21
∆X2). Considering each term in (4.12), for a

normal worker,

Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
)

≤ Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
| |p̃′

i − p̃i| ≤ β1, |p̃i − p̂i| ≤ γ1)︸ ︷︷ ︸
Term 1

Pr(|p̃′

i − p̃i| ≤ β1, |p̃i − p̂i| ≤ γ1)

+ Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
| |p̃′

i − p̃i| > β1, |p̃i − p̂i| ≤ γ1)

Pr(|p̃′

i − p̃i| > β1, |p̃i − p̂i| ≤ γ1)︸ ︷︷ ︸
Term 2

+ Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
| |p̃i − p̂i| > γ1) Pr(|p̃i − p̂i| > γ1)︸ ︷︷ ︸

Term 3

.

(4.35)

From (4.18), (4.33), and (4.34), we have that, for Term 1,

Term 1 ≤ Pr(|p̃′

i − p̃i|+ |p̃i − p̂i|+ |p̂i − pi|+ |pi − E(p̃
′

i)| >
ϵ

|S|
|

|p̃′

i − p̃i| ≤ β1, |p̃i − p̂i| ≤ γ1)

≤ Pr(|p̂i − pi| >
ϵ

|S|
− 2pi − 2

∑
i∈N∪M

pi

(N +M)2
− 2

M

N +M
ϵ2−

(2a+ ϵ0)(
M

N +M
)2 − ϵ1 | |p̃

′

i − p̃i| ≤ β1, |p̃i − p̂i| ≤ γ1).

(4.36)

104

Then from Hoeffding’s inequality, we can have the bound

Term 1Pr(|p̃′

i − p̃i| ≤ β1, |p̃i − p̂i| ≤ γ1)

≤ Pr(|p̂i − pi| >
ϵ

|S|
− 2pi −

2
∑

i∈N∪M pi

(N +M)2
− 2Mϵ2

N +M
− (2a+ ϵ0)(

M

N +M
)2 − ϵ1)

≤ 2 exp(−2|K(t)|(ϵ

|S|
− 2ϵ∆X)2) =

2

t2
, (4.37)

where

2(pi +

∑
i∈N∪M

pi

(N +M)2
+

Mϵ2
N +M

) +
(2a+ ϵ0)M

2

(N +M)2
+ ϵ1 ≥ ϵ1 ≥ 2ϵ.

From (4.33), we have that, for Term 2,

Term 2 ≤ Pr(|p̃′

i − p̃i| > β1)

≤ 1− (1− 2 exp (−2|K(t)|ϵ20
∆D2

)− 2 exp (− 2|K(t)|ϵ22
∆X2∆D2

))

≤ 2 exp (−2|K(t)|ϵ20
∆D2

) + 2 exp (− 2|K(t)|ϵ22
∆X2∆D2

) ≤ 4

t2
,

(4.38)

where | ϵ|S| − 2ϵ∆X| ≤ min{ϵ0, ϵ2}. From (4.34), we have that, for Term3,

Term 3 ≤ 2 exp (−2|K(t)|ϵ21
∆X2

) ≤ 2

t2
. (4.39)

Thus, from (4.37), (4.38), and (4.39), we have that, for a normal worker,

Pr(|p̃′

i − E(p̃
′

i)| >
ϵ

|S|
) ≤ 8

t2
.

Next we study the bound of each term in (4.12) for a malicious worker. Similarly, we first

give the following inequality: from (4.30), we have

|p̃∗ − p̂∗| ≤ 2M

N +M
p∗ +

∑
i∈N∪M pi

(N +M)2
+ ϵ5 ≜ γ2 (4.40)

with a probability greater than 1 − 2 exp (−2|K(t)|ϵ25
∆X2). For a malicious worker, each term in

(4.12) can be bounded similarly as in (4.35). Thus, similar to (4.37), (4.38), and (4.39), we

105

bound the three terms. From (4.20), (4.33), and (4.40), we have

Term 1Pr(|p̃∗′ − p̃∗| ≤ β1, |p̃∗ − p̂∗| ≤ γ2) ≤
2

t2
, (4.41)

Term 2 ≤ Pr(|p̃∗′ − p̃∗| > β1) ≤
4

t2
, (4.42)

Term 3 ≤ 2 exp (−2|K(t)|ϵ25
∆X2

) ≤ 2

t2
. (4.43)

Thus, from (4.41), (4.42), and (4.43), we have

Pr(|p̃∗′ − E(p̃∗
′
)| > ϵ

|S|
) ≤ 8

t2
. (4.44)

106

Chapter 5

Quality-Aware Adaptive Computation and Device Selection for Cost-Effective Wireless
Federated Learning.

5.1 Introduction

Federated learning (FL) [80] is an emerging and promising ML paradigm, which performs the

training of ML models in a distributed manner. Instead of transmitting data from a potentially

large number of devices to a central server in the cloud for training, FL allows the data to remain

at devices (such as smartphone), and trains a global ML model on the server by collecting and

aggregating model updates locally computed on each device based on her local data. One sig-

nificant advantage of using FL is to preserve the privacy of individual devices’ data. Moreover,

since only local ML model updates instead of local data are sent to the server, the commu-

nication costs can be greatly reduced. Furthermore, FL can exploit substantial computation

capabilities of ubiquitous smart devices, which are often under-utilized. In particular, when FL

is used in a wireless edge network, data samples generated at individual wireless devices can

be exploited via local computation and global aggregation based on distributed ML. As a re-

sult, wireless federated learning (WFL) can achieve collaborative intelligence in wireless edge

networks. A general consensus is that WFL can support intelligent control and management

of wireless communications and networks (such as in [7, 8, 9, 10, 11]), and can enable many

AI applications based on wireless networked systems, including connected and autonomous

vehicles, collaborative robots, multi-user virtual/mixed reality.

As is standard, learning accuracy is a key performance metric for FL. The accuracy of the

trained ML model in FL depends heavily on which devices participate in the training process

and the quality of their local model updates. Specifically, stochastic gradient descent (SGD) is a

107

popular method for ML training that is widely studied in the literature (e.g., in [12, 14]). When

SGD is used for FL, the quality of a local model update in each iteration can be measured by the

variance of the gradient, which depends on the mini-batch size used to compute the gradient.

A key observation is that the quality of local updates (determined by the mini-batch size) can

be treated as a design parameter and used as a control knob to be adapted across devices and

over time. Such quality-aware computation can substantially improve the learning accuracy of

WFL.

In this chapter, we study quality-aware computation for WFL, aiming to maximize the

learning accuracy, while taking into account the costs and constraints of devices’ computation

and communication resources. In particular, we investigate how to adaptively select participat-

ing devices and determine their mini-batch sizes over the training process. To this end, several

significant challenges need to be addressed: 1) The quality (determined by the mini-batch size)

of local stochastic gradient updates can be heterogeneous across devices and varying over the

training process, which has non-trivial impacts on the accuracy of the final learnt model and

also devices’ computation costs. 2) The unique features of wireless edge networks, including

time-varying wireless channels and computation costs of devices, should be taken into account.

To achieve a desired tradeoff between learning accuracy and communication and computa-

tion costs, participating devices of FL in each round and their local updates’ quality should be

determined based on their impacts on the eventual training loss, as well as devices’ channel

conditions and computation costs.

The main contributions of this chapter are summarized as follows:

• We propose quality-aware computation for FL in wireless edge networks, which con-

trols the quality of devices’ local model updates via the mini-batch sizes. Our goal is

to improve the learning accuracy of FL while taking into account the computation and

communication costs of participating devices.

• We characterize performance bounds on the training loss as a function of devices’ lo-

cal updates’ quality (quantified by the variances of local stochastic gradients) over the

training process, for both cases when devices have IID data and have non-IID data. Our

108

findings rigorously show that a more recent local update has a larger impact on the train-

ing loss, which implies that it is beneficial to use larger mini-batch sizes in a later round

(given the total mini-batch size of devices over all rounds).

• With the obtained insights, we develop channel-aware adaptive algorithms that select

participating devices and determine their mini-batch sizes for each round of the FL al-

gorithm, based on their impacts on the training loss as well as their wireless channel

conditions and computation costs. We characterize the optimal device selection (for the

case of homogeneous computation capabilities) and the optimal mini-batch sizes. Our

results show that it is more beneficial to select more participating devices (for the case

of IID data) and use larger mini-batch sizes in a later round. For the case of IID data

and single local iteration per round, we show that the proposed greedy device selection

algorithm can achieve a guaranteed approximation ratio, by exploiting the non-monotone

submodular property of the problem.

• We evaluate the proposed quality-aware adaptive algorithms using both simulations and

testbed-based experiments for the popular MNIST-based hand-written digit recognition.

The results demonstrate that these algorithms outperform existing methods in terms of

learning accuracy and cost-effectiveness.

The remainder of this chapter is organized as follows. Section 5.2 reviews related work.

In Section 5.3, we present a framework of quality-aware computation for WFL. Under this

framework, we characterize performance bounds for the training loss in Section 5.4. Based on

the training loss bounds, in Section 5.5, we investigate adaptive device selection and mini-batch

size design. Simulation results are provided in Section 5.6. Conclusion is discussed in Section

5.7.

5.2 Related Work

Distributed Machine Learning. With rapid advances in ML and AI technologies, distributed

ML has also received substantial research activities in the past decade [81, 82, 83, 84, 14,

15]. In many of the existing studies, participating devices are owned and operated by a single

109

organization (e.g., used by Google or Facebook on computer clusters in their data centers),

and are powerful computers interconnected by high-speed networks (often wired networks).

There have recently been some works on algorithm design for distributed ML while taking

into account computation and/or communication costs (in terms of delay, energy consumption,

bandwidth use, etc) of carrying out distributed learning. In particular, communication-efficient

distributed learning has garnered a lot of attention [85, 86, 87, 88, 89, 90, 91, 92]. Many of these

works used data compression to reduce the size of local models and thus the communication

workloads [86, 89, 91, 93]. Some other works [84, 94] studied the optimal communication

frequency of local model updates. However, most of the studies above do not consider the

setting of wireless edge networks.

Wireless Federated Learning. FL has emerged as a disruptive computing paradigm for ML

by democratizing the learning process to potentially many individual devices. For WFL, wire-

less edge networks have salient features, including heterogeneous and time-varying computing

and communication resources that need to be accounted for. Recent studies on FL made effort

to take into account these issues [95, 96, 97, 98, 99, 100, 101, 102]. For example, Tran et

al [95] studied FL in wireless networks for devices with heterogeneous computation and com-

munication capabilities. In [103], Tu et al studied computation offloading based distributed

learning where devices have diverse computing and communication resources. Xu et al [98]

used numerical experiments to show that devices participating in a later round in the training

process of FL would have more effect on learning accuracy than in an earlier round. Besides,

[104] showed that geometrically increasing mini-batch size in the training process can achieve

better convergence performance in centralized ML. However, all these existing works do not

explore mini-batch size to control the quality of local model updates in the context of WFL.

Note that the analysis of mini-batch sizes’ impacts on the training loss for FL is significantly

different from the case of centralized ML (e.g., in [104]), due to devices’ non-IID data, hetero-

geneous and time-varying mini-batch sizes, and multiple local iterations in the FL setting. In

this paper, we characterize training loss bounds as a function of mini-batch sizes for the general

110

case of multiple local iterations per round for both IID and non-IID cases. Moreover, we de-

vise adaptive device selection and mini-batch design algorithms that can achieve a performance

guarantee compared to the optimal solution.

5.3 Quality-Aware Computation for Wireless Federated Learning

In this section, we present the system model of quality-aware computation for FL in wireless

edge networks.

Consider the setting where the distributed learning process of FL is carried out by a set of

wireless devices. The server of FL can reside in the cloud or at the edge (e.g., access point or

base station of a wireless network), and the devices are connected to the FL server via wireless

links. A device incurs a computation cost (measured by the computation time, energy consump-

tion, etc) for computing a local model update, which depends on the computation capability of

the device and the mini-batch size used to compute the update. Let cip,t be device i’s cost of

computing her local update using one data sample in round t. Besides the computation cost,

a device also incurs communication cost for communicating local updates to the server (mea-

sured by the communication time, energy consumption, etc), which depends on the device’s

wireless channel condition. Let cim,t be device i’s communication cost in round t.

Consider the following FL problem:

min
w

F (w) ≜
N∑
i=1

Di

D
Fi(w),

where Fi(w) is defined by

Fi(w) ≜
1

Di

Di∑
m=1

fi(w; ξim),

fi(·) is the per-sample loss function of device i, N is the number of devices,Di = {ξi1, ξi2, . . . , ξiDi
}

is device i’s local dataset for updating the model parameter, and D ≜
∑N

i=1 Di.

In each round of FL, K out of N devices are selected from the device set N to compute

local updates, communicate their local updates to the server, and receive the updated global

model from the server.

111

In round t,1 each selected device i receives the global model wt−1 from the server, sets

wi
t,0 = wt−1, and then performs H local iterations of SGD. In the hth local iteration, device i

computes the average gradient git,h−1 of the loss function using a mini-batch of Di
t data samples

randomly drawn from her local dataset Di. Then device i updates her local model as

wi
t,h = wi

t,h−1 − ηgit,h−1,

where

git,h−1 ≜
1

Di
t

Di
t∑

j=1

∇f(w, ξi,jt,h),

η is the step size, and ξi,jt,h is the jth data sample randomly drawn from device i’s local dataset

Di. After H local iterations, device i sends her local update wi
t,H for round t to the server. For

ease of exposition, we assume that devices’ number of local iterations H does not change over

rounds, and the mini-batch size Di
t for a local iteration of device i in round t does not change

over the H local iterations in round t (but can change over rounds). Our results in this chapter

can be extended to the case where these assumptions are relaxed.

At the end of round t, the server aggregates K devices’ local models and updates the

global model as

wt =
K∑
i=1

Di
t

Dt

wi
t,H ,

where Dt ≜
∑K

i=1D
i
t.

Due to the randomness of data sampling for computing the update in SGD, the computed

gradient of a device git,h deviates from the expected gradient E[git,h], and thus slows down the

convergence of the global model. The quality of a device’s local update is captured by the

variance of the update, given by

qi ≜ E
[∥∥git,h − ḡit,h

∥∥2] ,
1In this chapter, we use t as the index of communication rounds and h as the index of local iterations. The

subscript {t, h} denotes the hth local iteration in round t.

112

where ḡit,h ≜ E[git,h]. Assume that the loss function f satisfies E ∥∇fi (wt, ξ
i
m)−∇Fi (wt)∥

2 ≤

σ2, ∀t. It can be shown that [105]

E
[∥∥git,h − ḡit,h

∥∥2] ≤ σ2

Di
t

.

Note that a local update’s quality is determined by the mini-batch size Di
t used to compute the

local update, such that a local update computed with larger mini-batch sizes has higher quality.

In this chapter, we focus on the SGD method where a mini-batch of data samples are randomly

drawn with replacement from a device’s local dataset, for the sake of technical tractability.

Such SGD based on sampling with replacement has been widely studied as a popular method

in the literature (e.g., in [14, 105, 13, 15]), as it allows for tractable theoretical analysis and

thus provides performance guarantees for ML algorithms. On the other hand, this method

is different from the version of SGD that is often used in practice, where a mini-batch of data

samples are randomly drawn without replacement from the local dataset (a.k.a. the epoch-based

SGD). This without-replacement based SGD method has been much less studied [106, 107]),

although it can achieve better empirical performance than with replacement.

5.4 Training Loss Bound

In this section, under the framework presented in the previous section, we study the learning

accuracy of FL, measured in terms of the training loss. We will first characterize performance

bounds on the training loss as a function of devices’ mini-batch sizes. Based on this result, we

then discuss the impacts of mini-batch sizes and other system parameters on the training loss.

5.4.1 The Case of IID Data

We first analyze the training loss for the case when devices have IID local data.

Before we discuss the training loss bound, we define a virtual sequence w̄t,h that is given

by

w̄t,h =
∑
i∈St

Di
t

Dt

wi
t,h,∀t, h, (5.1)

113

where St is the set of devices selected to participate in round t, and Dt =
∑

i∈St
Di

t is the total

mini-batch size of the selected devices in one local iteration. Note that w̄t,h is not accessible

when the participating devices have not completed H local iterations (i.e., h < H), and wt =

w̄t,H .

Theorem 5.1 Suppose F is L-smooth and µ-strongly convex, and ∥∇Fi (wt)∥2 ≤ B2 and

E ∥∇fi (wt, ξ
i
m)−∇Fi (wt)∥

2 ≤ σ2, ∀i, t. Suppose that the step size η ≤ 1
2L

. Then the

training loss for the case of IID data is bounded above by:

E[F (wT)− F (w∗)] ≤ L

2
(1− µη)TH∥w0 −w∗∥2+

L

2

T∑
t=1

H∑
h=1

(
(1− µη)TH−(t−1)H−h

(
η2σ2

Dt

+ 4Lη3(H − 1)2(
σ2|St|
Dt

+B2)

))
.

(5.2)

Note that the assumption of bounded gradient E ∥∇Fi (wt)∥2 ≤ B2 is common in con-

vergence analyses for FL [14, 15]. The detailed proofs for theorems are given in the Appendix.

Remark 5.1 Theorem 5.1 shows that the training loss bound consists of two terms. The first

term decreases geometrically with the total number of local iterations TH , and is due to that

SGD in expectation makes progress towards the optimal solution. The second term of the bound

is caused by the randomness of data sampling in SGD for computing local updates, which

depends on the total mini-batch size Dt of participating devices in each round t. Observe that

a larger total mini-batch size Dt reduces the training loss. Also note that as there are multiple

local iterations and only one update aggregation in a round, the randomness of data sampling

accumulates over the local iterations. This implies that reducing the local iteration number H

(which is equivalent to increasing the communication frequency) can improve the training loss.

Remark 5.2 In the second term in (5.2), σ2

Dt
is the upper bound of the variance of the (virtual)

global model update w̄t,h, which is determined by the variances of participating devices’ local

model updates. Thus the coefficient (1 − µη)TH−(t−1)H−hη2 of the variance bound σ2

Dt
of the

global update quantifies the impact of mini-batch sizes on the training loss. Note that this

114

coefficient increases with the round index t as 1− µη < 1. Therefore, the mini-batch sizes in a

later round have a larger impact on the training loss (the second term in (5.2)) than in an earlier

round. This observation has an important implication: Given a total number of mini-batch sizes

of all participating devices over all rounds
∑T

t=1Dt, an increasing total mini-batch size Dt over

rounds results in a lower training loss than a constant or decreasing total mini-batch size.

Remark 5.3 Compared to the case where devices perform a single local iteration in each

round [108], the result given in Theorem 5.1 includes an additional term which is the accu-

mulative error due to multiple local iterations. First note that when devices perform a single

local iteration per round (i.e., H = 1), the training loss bound given in Theorem 5.1 is the same

as in Theorem 1 in [108]. When devices perform multiple local iterations per round, the ad-

ditional error compared to the previous case (the last term in (5.2)) increases with the number

of rounds T . This is because, in the single iteration case, a device i updates its local model

in each round based on the global model obtained from aggregating all participating devices’

local models in the previous round (whose variance is determined by the total mini-batch size

Dt). However, when a device performs H number of local iterations, there are H − 1 times

when it updates its local model based on its local model only (whose variance is determined

by the mini-batch size Di
t which is less than Dt). Thus, with less communications, FL with

multiple local iterations suffers a larger training loss due to more randomness of local updates.

5.4.2 The Case of Non-IID Data

In many practical situations, devices’ local data is non-IID due to various reasons (e.g., location,

device, user behavior, etc). Note that in the case when devices have non-IID data, we have

E[Fi(w
∗)] ̸= E[Fi(w

∗
i)], ∀i ∈ N , where w∗ and w∗

i are the models that minimize the loss

function when using all devices’ data and only device i’s data, respectively. Furthermore, it

has been proved that when devices perform different total numbers of local iterations, the final

global model is inconsistent with the solution to the FL problem, i.e., the aggregated model

is biased. One way to solve this problem is selecting devices randomly and re-weight devices

according to their participating probabilities. In this subsection, we study the training loss

115

bounds for the non-IID data case when each device participates with a probability ait (0 < ait ≤

1) in each round t.

First, we give the adjusted aggregation weight that ensures unbiased model aggregation.

Lemma 5.1 When each device participates with a probability ait, the aggregated model is un-

biased, i.e., ESt [wt] = w̃t, if the server updates the global model as

wt = wt−1 +
∑
i∈St

pi
ait
(wi

t,H −wt−1), (5.3)

where pi, ∀i ∈ N , is the original aggregation weight, and w̃t is the global model with full

device participation in round t.

The next result presents training loss bounds for the non-IID data case.

Theorem 5.2 Suppose F is L-smooth and µ-strongly convex, and E ∥∇fi (wt, ξ
i
m)−∇Fi (wt)∥

2 ≤

σ2
i , and E ∥∇fi (wt, ξ

i
m)∥

2 ≤ C2, ∀i, t. Suppose that the step size η ≤ 1
2L

. Then the training

loss for the case of non-IID data is bounded above by

E[F (wT)− F (w∗)]

≤L

2
(1− µη)THE ∥w0 −w∗∥2 + Lη2

2

T∑
t=1

H∑
h=1

[
(1− µη)TH−(t−1)H−h

∑
i∈N

(pi
2 σ

2
i

Di
t

+ pi(6Ldi + 2(H − 1)2C2) + p2i
1− ait
ait

C2

]
,

(5.4)

where Di
t is device i’s mini-batch size if she is selected to participate in round t, and di ≜

E[Fi(w
∗)]− E[Fi(w

∗
i)] quantifies the heterogeneity degree of the data held by device i [15].

Remark 5.4 Theorem 5.2 shows that, similar to the case of IID data, the training loss for the

case of non-IID data is also affected by mini-batch sizes (as shown in the second term in (5.4)),

and the training loss reduces when the mini-batch sizes increase (due to that the variances of

local stochastic gradients decrease). Also note that as the coefficient (1− µη)TH−(t−1)H−h of a

local model’s variance σ2
i

Di
t

increases with the round index t, the mini-batch size in a later round

has a larger impact on the training loss than in an earlier round, similar to the observation in

the IID data case.

116

Compared to the IID data case, one key difference of the result here is that it depends not

merely on the total mini-batch size of devices in a round, but on each device’s individual mini-

batch size in the round, as well as devices’ local datasets’ weights {pi}, participation probability

{ait}, and the degrees of heterogeneity {di}. We observe that, to ensure the convergence of un-

biased FL model, each device should have a participation probability larger than 0. Otherwise,

the training loss bound tends to infinity even with large number of rounds T . Furthermore,

similar to the observation on mini-batch sizes, as the coefficient (1−µη)TH−(t−1)H−h increases

with the round index t, the participation probabilities in a later round has a larger impact on the

training loss. This observation has an important implication: Given a devices expected total

participating rounds
∑T

t=1 a
i
t, ∀i ∈ N , an increasing participation probability ait over rounds

results in a lower training loss than a constant or decreasing participation probability.

From the definition of di, we can see that for the case of IID data, the degree of hetero-

geneity of each device’s data is 0. In the case of non-IID data, as devices’ data are not drawn

from the same distribution, we have E[Fi(w
∗)] ̸= E[Fi(w

∗
i)], ∀i ∈ N , and di ̸= 0. Due to the

non-zero di, the second term in (5.4) does not converge to 0 as the mini-batch sizes increase.

Moreover, as the coefficients of a local model’s variance σ2
i

Di
t

is pi, the mini-batch size of a device

with a higher weight pi has a larger impact on the training loss than with a lower weight pi.

5.5 Cost-Effective Channel-Aware Adaptive device Selection and Mini-Batch Size Design

In the previous section, we study the impacts of devices’ mini-batch sizes used to compute local

model updates on the training loss in various settings, by characterizing training loss bounds

as a function of mini-batch sizes. In this section, we study how to select participating devices

and their mini-batch sizes in each round to minimize the training loss bound, while taking into

account devices’ communication and computation costs. Note that we consider continuous-

valued mini-batch sizes Di
t in our theoretical analysis, which can be converted back to the

nearest integer values when used in practice.

117

We aim to minimize the system cost which consists of the FL training loss and devices’

total communication and computation cost. The optimization problem can be formulated as

min
S,D

γE[F (wT)− F (w∗)] + (1− γ)
T∑
t=1

∑
i∈St

(Hcip,tD
i
t + cim,t),

s.t. Di
t ≤ Di

B,∀i, t,

(5.5)

where S = {S1, · · · , ST} consists of the sets of participating devices in all rounds, D =

{Di
t|∀i ∈ St,∀t} is the set of mini-batch sizes of participating devices in all rounds, cip,t is

device i’s unit computation cost in round t, cim,t is the communication cost of device i in round t,

Di
t is the mini-batch size for one local iteration that is assigned to device i in round t2, γ ∈ (0, 1]

is the weight that balances the training loss and the cost, and Di
B is the maximum mini-batch

size that device i can compute in one local iteration. Note that problem (5.5) involves multi-

objective optimization of learning accuracy and learning cost: By controlling the weight γ,

any Pareto-optimal solution of these two objectives can be reached by solving problem (5.5). A

variant formulation of problem (5.5) is a constrained optimization problem, where the objective

function is the training loss bound while devices’ total communication and computation cost is

subject to a constraint (or vice versa). The solution of this variant problem can be derived from

that of problem (5.5).

5.5.1 The Case of IID Data

We first focus on problem (5.5) for the case of IID data, aiming to minimize the training loss

upper bound given by (5.2), plus the communication and computation costs in (5.5). Since

the first term of the bound is not related to devices’ mini-batch sizes Di
t, it suffices to find the

mini-batch sizes that minimize the second term. Thus, we can rewrite (5.5) as
2Recall that we assume that the mini-batch size Di

t for a local iteration of device i in round t does not change
over the H local iterations, but can change over communication rounds.

118

min
S,D

T∑
t=1

J1(St, Dt)

=
T∑
t=1

(
H∑

h=1

(
γLη2σ2

2
(1− µη)TH−(t−1)H−h

(
1

Dt,h

+4Lη(H − 1)2(
|St|
Dt,h

+
B2

σ2
)

))

+(1− γ)
∑
i∈St

(Hcip,tD
i
t + cim,t)

)
,

s.t. Di
t ≤ Di

B, ∀i, t.
(5.6)

We can see that the problem can be decomposed into the minimization problems in each

round. Thus, we aim to find the optimal St and Dt for a single round t. Moreover, since each

minimization problem in a round is a mixed integer programming problem, we decompose it

using the concept of generalized Benders decomposition. The problem is decomposed into

two subproblems, namely mini-batch size design and device selection. First, given the selected

device set in round t, the mini-batch size design problem is solved. Further, based on the

optimal mini-batch size design, we solve the device selection problem.

The Case of Single Local Iteration (H = 1).

To obtain some useful insights, we first study the case where devices perform a single

local iteration in each round. In this case, the error caused by multiple local iterations does not

exist. The results for this setting will serve as the basis for the case of multiple local iterations.

Optimal Mini-Batch Size. Given the selected device set, the optimal mini-batch sizes can

be obtained as follows. Given the selected device set, the total communication cost is the sum

of the communication costs of selected devices, and can be seen as a constant. With the same

mini-batch size, a device with a lower computation cost contributes more than with a higher

computation cost. Hence, the optimal mini-batch sizes are determined in the ascending order

of devices’ computation costs until the minimum value of J1 is reached. It can be shown that

J1 is a convex function of Di
t when other devices’ mini-batch sizes are given. The following

result characterizes devices’ optimal mini-batch sizes.

Proposition 5.1 Let devices in St be ordered as c1p,t ≤ c2p,t ≤ · · · ≤ c
|St|
p,t . Then the opti-

mal mini-batch sizes of devices are determined iteratively in this order, where the ith device’s

119

optimal mini-batch size is given by

Di
t

∗
(St) = min{Di

B,max{ησ

√
Lγωt

2(1− γ)cip,t
−

i−1∑
j=1

Dj
t

∗
, 0}}, (5.7)

where ωt = (1− µη)T−t.

Note that the optimal mini-batch size is a function of the Lipschitz constant L of the loss

function, which can be estimated given the specific loss function. Proposition 5.1 shows that

a device’s optimal mini-batch size is larger in a later round. This is because the coefficient

ωt in the training loss bound increases with the round index t. As a result, the optimal total

mini-batch size in a round also increases with the round index.

Device Selection. With the optimal mini-batch size design, the device selection problem

in round t can be rewritten as

min
St

J1(St, D
∗
t (St)) = γ

(
Lωtη

2σ2

2
∑

i∈St
Di∗

t (St)

)
+ (1− γ)

∑
i∈St

(cip,tD
i∗

t (St) + cim,t). (5.8)

To obtain some useful insights, we first study the optimal device selection when devices

have homogeneous computation capabilities (i.e., the same computation unit cost cp and max-

imum mini-batch size DB). In this case, it follows from Proposition 5.1 that the optimal mini-

batch sizes are given by Di
t
∗
(St) = min{DB,max{ησ

√
Lγωt

2(1−γ)cp
− (i− 1)DB, 0}},∀i. We can

see that device selection does not affect the training loss and the total computation cost but only

the total communication cost. Thus, the optimal device selection in round t is given as follows.

Proposition 5.2 For the case of homogeneous computation capabilities, the optimal device

selection algorithm selects devices in the increasing order of their communication costs (i.e.,

c1m,t ≤ c2m,t ≤ · · · cNm,t), with each selected device’s mini-batch size set to be as much as

possible (up to the maximum mini-batch size DB), until the total mini-batch size of selected

devices reaches the optimal level ησ
√

Lγωt

2(1−γ)cp
.

Based on the result above, we can see that the optimal set of selected devices for problem

(5.8) increases with the round number t. Therefore, in a later round of the FL algorithm, it is

optimal to not only use larger mini-batch sizes, but also to select more devices.

120

Next we consider the general case where devices have heterogeneous computation unit

costs and maximum mini-batch sizes. First note that problem (5.8) can be cast as the maxi-

mization problem of −J1(St, D
∗
t (St)). Then we have the following property of the problem,

of which the proof is given in the appendix.

Lemma 5.2 −J1(St, D
∗
t (St)) is a negative non-monotone submodular function.

Note that it is difficult to solve a negative non-monotone submodular maximization prob-

lem with performance guarantee (e.g., with an approximation ratio). To overcome this chal-

lenge, we transform the above problem into a non-negative non-monotone submodular maxi-

mization problem.

First, we find the maximum value of J1(St, D
∗
t (St)). From the optimal mini-batch size

design, we can see that there exists some device j, such that for any device j′ ∈ St that has

cj
′

p,t ≥ cjp,t, we have Dj′∗
t (St) = 0. The objective function J1 decreases as devices’ optimal

mini-batch sizes are determined iteratively according to Proposition 5.1 until device j, and does

not change when the optimal mini-batch sizes of devices after j are determined. Therefore,

given a selected device set St, J1 is maximized when only one device’s mini-batch size is

non-zero. Thus, for any S ⊆ N , the maximum value of J1 is given by

J1,max =
γLη2σ2

2
+ (1− γ)(cp,maxDB,max +Ncm,max),

where cp,max = max{cip,t|∀i, t}, DB,max = max{Di
B|∀i}, and cm,max = max{cim,t|∀i, t}.

Based on the maximum value of J1(St, D
∗
t (St)), we define a new function G(St) and

rewrite the device selection problem in round t as

max
St

G(St) ≜

 −J1(St, D
∗
t (St)) + J1,max, if St ̸= ∅

0, if St = ∅.

Note that in each round t of the FL algorithm, at least one device is selected (i.e., |St| > 0)

with a positive mini-batch size (i.e., Dt > 0). This is because when St = ∅, the global model

is not updated so that round t should not be counted as a round of the FL algorithm. Thus, we

can define that G(∅) ≜ 0. We can see that the above two problems are equivalent since J1,max

121

Algorithm 7: Device selection for the case of IID data and single local iteration per
round
1 X0 ← ∅, Y0 ← N ;
2 for i = 1, 2, · · · , N do
3 ai ← G (Xi−1 ∪ {i})− G (Xi−1);
4 bi ← G (Yi−1 \ {i})− G (Yi−1);
5 if ai ≥ bi then
6 Xi ← Xi−1 ∪ {i} , Yi ← Yi−1;
7 else
8 Xi ← Xi−1, Yi ← Yi−1 \ {i};

9 St ← XN ;
10 return St.

is a constant. Next, we focus on finding the solution that maximizes G(St). From Lemma 5.2,

it follows directly that G(St) is a non-negative non-monotone submodular function.

Next, we can apply the DeterministicUSM Algorithm [109] to solve the device selection

problem, which is given in Algorithm 7. The approximation ratio of DeterministicUSM is

given by the following lemma.

Lemma 5.3 [109] Algorithm DeterministicUSM is a 1
3
-approximation algorithm for maximiz-

ing function G(St).

Given the result above, we then show the approximation ratio of Algorithm 7 for our

problem, under the optimal mini-batch size design given in Proposition 5.1. The proof of the

following result is given in the appendix.

Theorem 5.3 Under the optimal mini-batch size design, with the device selection given by

Algorithm 1, the system loss is bounded above by

T∑
t=1

J1(St, D
∗
t (S(t))) ≤

1

3
OPT +O(T), (5.9)

where OPT is the system loss of the optimal device and mini-batch size selection.

The Case of Multiple Local Iteration (H > 1).

Following the results for the case of single local iteration per round, we first study devices’

optimal mini-batch size in each round. It can be shown that J1 is a convex function of Di
t when

122

Algorithm 8: Device selection for the case of IID data and multiple local iterations
per round
1 u← argi minJ1({i}, D∗

t ({i}));
2 k ← 1,X0 ← {u},Y0 ← N ;
3 for k < N do
4 i′ ← argiminM1(Xk−1, i);
5 if M1(Xk−1, i

′) < 0 then
6 Xk ← Xk−1 ∪ {i′},Yk ← Yk−1 \ {i′};
7 k ← k + 1;
8 else
9 Break for;

10 St ← Xk−1;
11 return St.

other devices’ mini-batch size are given. Devices’ optimal mini-batch size for the case of

multiple local iterations can be given as follows.

Proposition 5.3 Let devices in St be ordered as c1p,t ≤ c2p,t ≤ · · · ≤ c
|St|
p,t . Then the devices’

optimal mini-batch sizes are determined iteratively in this order, where the ith device’s optimal

mini-batch size for one local iteration is given by

Di
t

∗
(St) = min

{
Di

B,max{0, ησ

√
Lγϕt (1 + 4Lη(H − 1)2|St|)

2(1− γ)cip,tH
−

i−1∑
j=1

Dj
t

∗}

}
,

where ϕt =
H∑

h=1

(1− µη)(T−t+1)H−h.

Similar to Proposition 5.1, Proposition 5.3 implies that a device’s optimal mini-batch size is

larger in a later round. We can also show that a device’s optimal mini-batch size increases

as the number of local iterations H increases. This is because a local update’s quality can be

improved by using a larger mini-batch size, and thus reduce the error caused by performing

multiple local iterations.

Since we aim to find the selected device set St for a single round t, for ease of expression,

we omit the subscript t in the device selection algorithm. Given the optimal mini-batch size

design in Proposition 5.3, we select devices greedily according to their marginal contribution

123

which is defined by

M1(S, i) = J1(S ∪ {i}, D∗
t (S ∪ {i}))− J1(S,D

∗
t (S)), (5.10)

where S is the selected device set. The detailed device selection algorithm in each round is

given in Algorithm 8. It can be shown that the objective function given the optimal mini-batch

size is not a submodular function. Therefore, it is in general difficult to find an approximation

ratio for Algorithm 8.

5.5.2 The Case of Non-IID Data

Next we study the optimal device selection and mini-batch size design when devices’ data

are non-IID. Since devices are selected randomly in non-IID case, we aim to find the optimal

participation probability {ait}, ∀i, t, instead of the deterministic device selection, and minimize

the expected system cost. According to the training loss upper bound given in (5.4), the problem

can be formulated as

min
a,D

T∑
t=1

E[J2(St, Dt)]

=
T∑
t=1

(
Lγη2

2

(
H∑

h=1

(1− µη)(T−t+1)H−h

∑
i∈N

(p2i
σ2
i

Di
t

+ 2pi(H − 1)2C2 + 6Lpidi + p2i
1− ait
ait

C2)

)

+(1− γ)
∑
i∈N

ait(Hcip,tD
i
t + cim,t)

)
,

s.t. Di
t ≤ Di

B, ∀i, t,

(5.11)

where a = {ait|∀i, t}.

We first solve the optimal mini-batch size D given devices’ participation probability a,

then determine the devices’ optimal participation probability a. It can be shown that the ob-

jective function above is a convex function of Di
t given devices’ participation probability. By

utilizing the first order condition, the following result characterizes a device’s optimal mini-

batch size in a round.

124

Proposition 5.4 Given devices’ participation probability a, the optimal mini-batch size for

device i in round t is given by

Di
t

∗
(a) = min{Di

B, σiηpi

√
Lγϕt

2(1− γ)aitHcip,t
}. (5.12)

Remark 5.5 Proposition 5.4 shows that, similar to the case of IID data, a device’s optimal

mini-batch size increases with the round index t. Furthermore, the optimal mini-batch size

increases as the device’s participation probability ait in the round decreases. This means that,

when a device participates with a small probability ait, she should be allocated a larger mini-

batch size to remedy for the bias caused when she does not participate, so as to ensure that the

final global model is unbiased.

Given the optimal mini-batch size design in Proposition 5.4, we substitute Di
t
∗
(a) into the

object function E[J2(St, Dt)]. Then, we can rewrite the problem as

min
a

T∑
t=1

E[J2(St, {Di
t

∗
(a)})]

=
T∑
t=1

∑
i∈N

(
1

2
piησi

√
2aitLϕtγ(1− γ)Hcip,t

+Lγη2ϕt

(
1

2

1− ait
ait

p2iC
2 + 2pi(H − 1)2C2 + 3Lpidi

)
+ (1− γ)aitc

i
m,t

)
.

We can show that the above problem is convex in ait, ∀i, t. Thus, the optimal participating

probability ait
∗ is unique and can be obtained based on the first order condition.

Proposition 5.5 The optimal participating probability ait
∗ of device i in round t satisfies

2ait
∗2
(1− γ)cim,t + ait

∗ 3
2piησi

√
2Lϕtγ(1− γ)Hcip,t − Lγη2ϕtp

2
iC

2 = 0.

Although the optimal participating probability’s closed form is complicated, we can get

some useful insights from the above equation.

125

Figure 5.1: Experimental testbed of wireless federated learning consisting of a laptop as the
server connected with two smartphones as devices via a WiFi router.

10 15 20 25 30 35 40 45

Number of rounds

0

0.5

1

1.5

2

2.5

3

3.5

4

A
c
tu

a
l
tr

a
in

in
g

 l
o

s
s

D
t
=t

D
t
=50-t

D
t
=25

Figure 5.2: Impact of the mini-batch size on the training loss.(Simulation)

Remark 5.6 From Proposition 5.5 and 5.4, we can see that when a device has larger com-

putation or communication costs, her optimal participating probability ait
∗ is smaller, and her

optimal mini-batch size Di
t
∗ is larger. This result is intuitive, since a smaller ait

∗ can reduce the

computation and communication costs, and a larger Di
t
∗ can reduce the training loss. We also

observe that ait
∗ ̸= 0, ∀i, t, which ensures that the FL model is unbiased.

5.6 Performance Evaluation

In this section, we conduct both simulations and testbed-based experiments to validate the theo-

retical findings and evaluate the proposed quality-aware adaptive algorithms. We first describe

the simulation and experiment setups, and then we present the evaluation results and their anal-

yses.

126

0 20 40 60 80 100

Number of rounds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

in
in

g
 l
o

s
s

D(t)=6t

D(t)=300

D(t)=500-4t

D(t)=0.09t
2

Figure 5.3: Impact of the mini-batch size on the training loss.(Experiment)

20 40 60 80 100

Number of rounds

0

0.2

0.4

0.6

0.8

1

T
e

s
t

A
c
c
u

ra
c
y

D(t)=6t

D(t)=300

D(t)=500-4t

D(t)=0.09t
2

Figure 5.4: Impact of the mini-batch size on the test accuracy.(Experiment)

10 15 20 25 30 35 40 45

Number of rounds

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

T
ra

in
in

g
 l
o

s
s

H=1

H=2

H=4

Figure 5.5: Impact of the number of local iterations on the training loss.(Simulation)

127

0 20 40 60 80 100

Number of rounds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
ra

in
in

g
 L

o
s
s

H=1

H=2

H=3

H=4

Figure 5.6: Impact of the number of local iterations on the training loss.(Experiment)

0 20 40 60 80 100

Number of rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e

s
t

A
c
c
u

ra
c
y

H=1

H=2

H=3

H=4

Figure 5.7: Impact of the number of local iterations on the test accuracy.(Experiment)

10 20 30 40 50

Number of rounds

0

0.5

1

1.5

2

2.5

3

3.5

4

T
ra

in
in

g
 l
o

s
s

d
1
=d

2
=0 (iid)

d
1
=d

2
= 1

d
1
=d

2
= 4

Figure 5.8: Impact of the degree of non-IID of data on the training loss.(Simulation)

128

10 20 30 40 50 60 70 80 90 100 110

Number of rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

T
ra

in
in

g
 l
o

s
s

IID Data

Non-IID Data with balanced samples and labels

Non-IID Dataset with unbalanced labels

Non-IID Dataset with unbalanced data samples

Figure 5.9: Impact of non-IID data on the training loss.(Experiment)

10 20 30 40 50 60 70 80 90 100 110

Number of rounds

0.5

0.6

0.7

0.8

0.9

T
ra

in
in

g
 a

c
c
u

ra
c
y

IID Data

Non-IID Data with balanced samples and labels

Non-IID Dataset with unbalanced labels

Non-IID Dataset with unbalanced data samples

Figure 5.10: Impact of non-IID data on the test accuracy.(Experiment)

10 20 30 40 50 60 70 80 90 100

Number of rounds

4.4

4.6

4.8

5

5.2

5.4

5.6

S
y
s
te

m
 l
o

s
s

D
t
* and S

t
*

D
t
* and S

t
(random)

D
t
=2t and S

t
*

D
t
=2t and S

t
(random)

Figure 5.11: Channel-aware adaptive algorithm. (Homogeneous cp)

129

0 20 40 60 80 100

Number of rounds

3.5

4

4.5

5

5.5

6

6.5

S
y
s
te

m
 l
o

s
s

D
t
i* and S

t
*

D
t
i* and S

t
(random)

D
t
i* and S

t
(heuristic)

D
t
=2t and S

t
(greedy)

Figure 5.12: Channel-aware adaptive algorithm. (Heterogeneous cp and single local iteration
H = 1)

0 20 40 60 80 100

Number of rounds

3.5

4

4.5

5

5.5

6

6.5

S
y
s
te

m
 l
o

s
s

D
t
i* and S

t
(heuristic)

D
t
i* and S

t
(random)

D
t
=2t and S

t
(greedy)

Figure 5.13: Channel-aware adaptive algorithm. (Heterogeneous cp and multiple local itera-
tions H = 2)

130

5.6.1 Evaluation Setup

Platforms. We build a testbed of wireless FL in edge networks consisting of a laptop as as the

FL server connected with two smartphones as devices (as illustrated in Fig. 5.1). The server

and devices are connected via a wireless router based on WiFi. During the experiments, the

wireless router is placed 4.2 meters away from all devices. For simulations, we also implement

a simulated system consisting of a virtual server and a number of virtual devices.

Datasets and Models. We use a real dataset for experiments on the wireless FL testbed

and synthetic datasets for simulations on Matlab. For real data experiments, we use the widely

used MNIST dataset [110] which contains 60000 pictures as training data, and 10000 pictures

as test data. Each training element is a 28*28 pixel handwritten digit picture which represents

numbers from 0 to 9. For synthetic data simulations, we generate 10000 data samples according

to the linear model, i.e., y = wTx, and use the mean square error function as the loss function,

i.e., f(w, ξ) = 1
2
∥y −wTx∥2, where ξ = (x, y) is a data sample.

5.6.2 Evaluation Results

Impact of Mini-Batch Size Distribution. We compare the training loss while using time-

invariant, descending and ascending mini-batch sizes to update the global model over rounds

when devices perform single local iteration. The average mini-batch size over all rounds are

the same for above three distributions to achieve fair comparison. We conduct simulations for

50 global rounds, with the mean of mini-batch size over all rounds as 25. For the experiment,

we divide 2000 data samples (randomly sampled from 60000 data samples) among 2 smart

phones in a non-IID fashion with each device containing a balanced number of 1000 samples

of 2 digits labels. We use time-invariant, descending and ascending mini-batch sizes to update

the global model over rounds with the mean of the mini-batch size over all rounds as 300.

Fig. 5.2 and Fig. 5.3 show that although the average mini-batch sizes over time of three

distributions are the same, different distributions of the mini-batch size result in different train-

ing loss at the end of training for both cases of IID data and non-IID data. The case of ascend-

ing mini-batch size has the worst learning accuracy in beginning rounds and results in the best

131

learning accuracy in ending rounds. We can see that in Fig. 5.2, the training loss while using

time-invariant and descending mini-batch sizes are similar to each other. This is because that

the training model used in the simulation is simple, and the training performance can be good

by using just a few data samples to update the model in one round. From Fig. 5.4, we observe

that the model accuracies for three distributions also show the expected result. With the same

mean of mini-batch size, the setting of ascending mini-batch size achieves the highest model

accuracy in ending rounds. This conforms the result from Theorem 5.1 that the update in a later

round has a larger impact on the learning accuracy. The results in the experiment also show

that, for real applications, the ascending mini-batch size should be used to improve the learning

accuracy.

Impact of the Number of Local Iterations. We compare the training loss while devices

perform uniform numbers of multiple local iterations (H ∈ {1, 2, 3, 4}). For the simulation,

we simulate for 50 local iterations in total, with the mini-batch size in each local iteration set

as 25. For the experiment, we divide 2000 data samples (randomly sampled from 60000 data

samples) among 2 smartphones in a non-IID fashion with each device holds 1000 samples of 2

digits labels.

From Fig. 5.5 and Fig. 5.6, we can see that when devices perform single local iteration

(H = 1), the system suffers the lowest training loss. The training loss increases as the number

of local iterations increases. Fig. 5.7 shows the test accuracy for different number of local

iterations. The result shows that the test accuracy when devices perform single local iteration

is always the highest. From the figures we can see that the experiment results are consistent

with the result given in Theorem 5.1. FL suffers a larger error caused by the randomness of

data with less communication rounds.

Impact of Non-IID Datasets. We evaluate the impact of the degree of non-IID data on

the training loss while devices perform single local iteration. For the simulation, we use three

kinds of set ups for devices’ datasets. The first set up is that devices’ data follows IID (i.e.,

di = 0). The second set up is that devices’ data is unbalanced (non-IID), which contains two

kinds of datasets and their heterogeneity degrees are set as d1 = d2 = 1. The third set up is

132

also unbalanced, which contains two kinds of datasets with higher heterogeneity degrees that

are set as d1 = d2 = 4.

For the experiment, we use four kinds of set ups for devices’ datasets which are set as

follows: 1) we divide 3000 data samples in an IID fashion where each device holds a balanced

number of 1500 data samples of 10 digits labels (which means either smart phone holds 150

data samples for each label); 2) we divide 3000 data samples (randomly sampled from 60000

data samples) among 2 smart phones in a non-IID fashion with each device holding 1500 data

samples of 5 digits labels (which means for each label, either smart phone holds 300 data

samples); 3) we set two edge devices hold the same amount of data samples in a non-IID fashion

with one device holds data samples of 5 digit labels and another device holds data samples of

4 digit labels, respectively; 4) we set one device holds 2000 data samples and another device

holds 200 data samples, respectively, in a non-IID fashion with each device holds data samples

of 5 digit labels.

From Fig. 5.8, we can see that the case of IID data always has the lowest training loss,

and for the two settings with non-IID datasets, the greater the degree of non-IID, the higher

the training loss that FL suffers, which conforms to the result given in Theorem 5.2. From

Fig. 5.9 and Fig 5.10, we can see that the case of IID data always has the lowest training loss

and the highest test accuracy. In the cases of non-IID data, the case that devices’ data samples

and labels are balanced has the best training loss and test accuracy, and the case that devices’

data samples are unbalanced has the worst training loss and test accuracy. This implies that the

degree of heterogeneous is higher when both devices’ data and labels are unbalanced compared

to that when only devices’ labels are unbalanced.

Cost-Effective Channel-Aware Adaptive Algorithm. We also evaluate the cost-effective

channel-aware adaptive device selection and mini-batch size design algorithms proposed in

Section 5.5 for the case of IID data.

We first evaluate the case where devices perform single local iteration and have homoge-

neous computation capabilities. We compare the system loss of 4 device selection and mini-

batch size designs with the same average mini-batch sizes over time: 1) the optimal device

133

selection (Proposition 5.2) and mini-batch size design (Proposition 6.4); 2) random device se-

lection and the optimal mini-batch size design (Proposition 6.4); 3) the optimal device selection

(Proposition 5.2) and linearly increasing mini-batch size; 4) random device selection and lin-

early increasing mini-batch size. We observe from Fig. 5.11 that the proposed channel-aware

adaptive algorithm results in the lowest system loss, which confirms the effectiveness of the

proposed algorithm.

Then, we evaluate the case where devices perform single local iteration and have het-

erogeneous computation capabilities. We compare the system loss of 4 device selection and

mini-batch size designs with the same average mini-batch sizes over time: 1) the device se-

lection given by Algorithm 1 and optimal mini-batch size design (Proposition 6.4); 2) random

device selection and the optimal mini-batch size design (Proposition 6.4); 3) the heuristic de-

vice selection where devices are selected according to their marginal contribution (Algorithm

2 with H = 1) to the system loss and the optimal mini-batch size design (Proposition 6.4); 4)

greedy device selection where devices with the lowest communication cost are selected and lin-

early increasing mini-batch size. From Fig. 5.12, we observe that the proposed channel-aware

adaptive algorithm and the heuristic device selection algorithm result in the lowest system loss.

The result confirms the effectiveness of the proposed algorithm. Besides, we can see that al-

though the approximation ratio of the heuristic algorithm is hard to find, it can achieve the same

performance as the proposed channel-aware adaptive algorithm under some conditions.

Last, we evaluate the case where devices perform multiple local iterations (H = 2) and

have heterogeneous computation capabilities. We compare the system loss of the last 3 device

selection and mini-batch size designs for the case where devices perform single local iterations.

From Fig. 5.13, we can see that the proposed channel-aware adaptive algorithm results in the

lowest system loss, which confirms the effectiveness of the proposed algorithm.

5.7 Conclusion

In this chapter, we study performance bounds on the learning accuracy of FL as a function of

devices’ mini-batch sizes in each local iteration. The results show that the impact of devices’

quality increases with the learning process. We also develop cost-effective dynamic distributed

134

learning algorithms which optimize the learning accuracy by adaptively selecting devices and

their mini-batch sizes. Simulations based on both synthetic data and real data are demonstrated

to evaluate the proposed algorithms.

5.8 Appendix

5.8.1 Proof of Theorem 5.1

From (5.1), We have

∥w̄t,H −w∗∥2 (5.13)

= ∥w̄t,H−1 −w∗ − ηgt,H−1 − ηḡt,H−1 + ηḡt,H−1∥2 (5.14)

= ∥w̄t,H−1 − ηḡt,H−1 −w∗∥2︸ ︷︷ ︸
A1

+ ∥ηḡt,H−1 − ηgt,H−1∥2︸ ︷︷ ︸
A2

(5.15)

+ 2 ⟨w̄t,H−1 −w∗ − ηḡt,H−1, ηḡt,H−1 − ηgt,H−1⟩︸ ︷︷ ︸
A3

. (5.16)

Note that E[A3] = 0. We next focus on bounding A1. Since F is L-smooth and µ-strongly

convex, we have

A1 = ∥w̄t,H−1 −w∗∥2 + η2ḡ2t,H−1 − 2η ⟨w̄t,H−1 −w∗, ḡt,H−1⟩

= ∥w̄t,H−1 −w∗∥2 + η2ḡ2t,H−1 − 2η
∑
i∈St

Di
t,H

Dt,H

〈
w̄t,H−1 −w∗, ḡit,H−1

〉
≤ ∥w̄t,H−1 −w∗∥2 + 2η2L (F (w̄t,H−1)− F (w∗))

− 2η
∑
i∈St

Di
t,H

Dt,H

〈
w̄t,H−1 −wi

t,H−1 +wi
t,H−1 −w∗, ḡit,H−1

〉
,

≤ ∥w̄t,H−1 −w∗∥2 + 2ηL
∑
i∈St

Di
t,H

Dt,H

∥∥w̄t,H−1 −wi
t,H−1

∥∥2
+ 2η

∑
i∈St

Di
t,H

Dt,H

((
ηL− 1

2

)(
F
(
wi

t,H−1

)
− F (w∗)

)
− µ

2

∥∥wi
t,H−1 −w∗∥∥2) .

135

Next, we bound

E
∥∥w̄t,H−1 −wi

t,H−1

∥∥2
=E

∥∥wi
t,H−1 −wt,1 − (w̄t,H−1 −wt,1)

∥∥2
≤E

∥∥wi
t,H−1 −wt,1

∥∥2
=η2E∥

H−1∑
h=1

git,h∥2

≤2η2
[
E∥

H−1∑
h=1

(git,h − ḡt,h)∥2 + E∥
H−1∑
h=1

ḡt,h∥2
]

≤2(H − 1)η2

[
H−1∑
h=1

E∥(git,h − ḡt,h)∥2 +
H−1∑
h=1

E∥ḡt,h∥2
]

≤2(H − 1)2η2(
σ2

Di
t

+B2),

(5.17)

where the last inequality follows from the definition of a user’s quality.

For η ≤ 1
4L

and by the convexity of a (F (w)− F (w∗)) + b ∥w −w∗∥2 for a, b ≥ 0, we

have

E ∥w̄T,H −w∗∥2

≤ (1− µη) ∥w̄T,H−1 −w∗∥2 − η

2
(F (w̄T,H−1)− F (w∗))

+
η2σ2

DT

+ 2ηL
∑
i∈ST

Di
T

DT

∥∥w̄T,H−1 −wi
T,H−1

∥∥2
≤ (1− µη) ∥w̄T,H−1 −w∗∥2 + η2σ2

DT

+ 4Lη3
∑
i∈ST

(H − 1)2(
σ2

DT,H

+
Di

T

DT,H

B2)

≤ (1− µη)TH ∥w0 −w∗∥2 +
T∑
t=1

H∑
h=1

(
(1− µη)TH−(t−1)H−h

(
η2σ2

Dt

+ 4Lη3
∑
i∈St

(H − 1)2(
σ2

Dt

+
Di

t

Dt

B2)

))
.

136

Thus we have

E[F (wT)− F (w∗)]

≤ L

2
(1− µη)TH∥w0 −w∗∥2 + L

2

T∑
t=1

H∑
h=1

(
(1− µη)TH−(t−1)H−h

(
η2σ2

Dt

+ 4Lη3(H − 1)2(
σ2|St|
Dt

+B2)

))
.

5.8.2 Proof of Lemma 5.1

By taking expectation over the selected device set St, we have

ESt [wt] =wt−1 + ESt

[∑
i∈N

1{i ∈ St}
pi
ait
(wi

t,H −wt−1)

]

=wt−1 +
∑
i∈N

ait
pi
ait
(wi

t,H −wt−1)

=wt−1 +
∑
i∈N

pi(w
i
t,H −wt−1)

=w̃t,

where 1{·} is a indicator function.

5.8.3 Proof of Theorem 5.2

First, we bound ∥wt −w∗∥2 as in (5.16), then we bound the terms A1, A2, and A3 therein. For

A1, we have

A1 = ∥w̄t,H−1 −w∗∥2 + η2∥ḡt,H−1∥2︸ ︷︷ ︸
B1

− 2η ⟨w̄t,H−1 −w∗, ḡt,H−1⟩︸ ︷︷ ︸
B2

. (5.18)

By the convexity of ∥·∥2 and the L-smoothness of Fi, we have

B1 = η2∥ḡt,H−1∥2 ≤ η2
∑
i∈N

pi
∥∥ḡit,H−1

∥∥2
≤ 2Lη2

∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i)).

(5.19)

137

Next we bound B2, we have

B2 = −2η⟨w̄t,H−1 −w∗, ḡt,H−1⟩

= −2η
∑
i∈N

pi⟨w̄t,H−1 −w∗, ḡit,H−1⟩

= −2η
∑
i∈N

pi⟨w̄t,H−1 −wi
t,H−1, ḡ

i
t,H−1⟩

− 2η
∑
i∈N

pi⟨wi
t,H−1 −w∗, ḡit,H−1⟩.

We use Cauchy-Schwarz inequality and AM-GM inequality to bound the first term:

− ⟨w̄t,H−1 −wi
t,H−1, ḡ

i
t,H−1⟩ ≤

1

η

∥∥w̄t,H−1 −wi
t,H−1

∥∥2 + η
∥∥ḡit,H−1

∥∥2 . (5.20)

Then we use the µ-strong convexity of Fi to bound the second term:

−
〈
wi

t,H−1 −w∗, ḡit,H−1

〉
≤ −

(
Fi

(
wi

t,H−1

)
− Fi (w

∗)
)
− µ

2

∥∥wi
t,H−1 −w∗∥∥2 . (5.21)

Substituting (5.19), (5.20), and (5.21) into (7.13), we have

A1 ≤ ∥w̄t,H−1 −w∗∥2 + 2Lη2
∑
i∈N

pi(Fi(w
i
t−1)− Fi(w

∗
i))

+
∑
i∈N

pi

(∥∥w̄t,H−1 −wi
t,H−1

∥∥2 + η2
∥∥ḡit,H−1

∥∥2)
− 2η

∑
i∈N

pi

(
Fi(w

i
t,H−1)− Fi(w

∗) +
µ

2

∥∥wi
t,H−1 −w∗∥∥2)

≤ (1− µη) ∥wt,H−1 −w∗∥2 +
∑
i∈N

pi
∥∥w̄t,H−1 −wi

t,H−1

∥∥2
+ 4Lη2

∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i))− 2η

∑
i∈N

pi
(
Fi(w

i
t,H−1)− Fi(w

∗)
)

︸ ︷︷ ︸
C1

,

138

in which C1 can be bounded as

C1 =4Lη2
∑
i∈N

pi(Fi(w
∗)− Fi(w

∗
i))− 2η(1− 2Lη)

∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗))

≤4Lη2
∑
i∈N

pidi − 2η(1− 2Lη)
∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗))︸ ︷︷ ︸
D

.

Next, we bound D.

D =
∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w̄t,H−1) + Fi(w̄t,H−1)− Fi(w

∗))

≥
∑
i∈N

pi⟨∇Fi(w̄t,H−1),w
i
t,H−1 − w̄t,H−1⟩+

∑
i∈N

pi(Fi(w̄t,H−1)− Fi(w
∗))

≥− 1

2

∑
i∈N

pi

(
η ∥∇Fi(w̄t,H−1)∥2 +

1

η

∥∥wi
t,H−1 − w̄t,H−1

∥∥2)+
∑
i∈N

pi(Fi(w̄t,H−1)− Fi(w
∗))

≥−
∑
i∈N

pi

(
ηL (Fi(w̄t,H−1 − Fi(w

∗
i)) +

1

2η

∥∥wi
t,H−1 − w̄t,H−1

∥∥2)
+
∑
i∈N

pi(Fi(w̄t,H−1)− Fi(w
∗)).

Then we can bound C1 as

C1 ≤4Lη2
∑
i∈N

pidi − 2η(1− 2Lη)

(
−
∑
i∈N

pi(
ηL (Fi(w̄t,H−1 − Fi(w

∗
i)) +

1

2η

∥∥wi
t,H−1 − w̄t,H−1

∥∥2)+
∑
i∈N

pi(Fi(w̄t,H−1)− Fi(w
∗))

)

≤4Lη2
∑
i∈N

pidi − 2η(1− 2Lη)

(
−
∑
i∈N

pi ((ηL− 1) (Fi(w̄t,H−1)− Fi(w
∗))

−ηLdi +
1

2η

∥∥wi
t,H−1 − w̄t,H−1

∥∥2))
=2η(1− 2Lη)(ηL− 1)

∑
i∈N

pi (Fi(w̄t,H−1 − Fi(w
∗
i))

+ (4Lη2 + 2Lη2(1− 2Lη))
∑
i∈N

pidi + (1− 2Lη)
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2
≤6Lη2

∑
i∈N

pidi +
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2 .

139

Thus we can further bound A1 as

E[A1]

≤(1− µη) ∥w̄t,H−1 −w∗∥2 + 6Lη2
∑
i∈N

pidi +
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2 (5.22)

Next we bound A2. Let ĝt,h denote
∑

i∈N (wi
t,h −wi

t,h−1). We have

A2 = η2 ∥ḡt,H−1 − ĝt,H−1 + ĝt,H−1 − gt,H−1∥2

=η2 ∥ḡt,H−1 − ĝt,H−1∥2 + η2 ∥ĝt,H−1 − gt,H−1∥2 ,
(5.23)

where the second equality comes from Lemma 5.1.

From the definition of the quality of a device, we have

η2E ∥ḡt,H−1 − ĝt,H−1∥2 ≤ η2
∑
i∈N

pi
2 σ

2
i

Di
t

. (5.24)

We also have

ESt ∥ĝt,H−1 − gt,H−1∥2 = ESt

∥∥∥∥∥∑
i∈N

pig
i
t,H−1 −

∑
i∈St

pi
ait
git,H−1

∥∥∥∥∥
2

=ESt

∥∥∥∥∥∑
i∈St

pi
ait
git,H−1

∥∥∥∥∥
2

+ E

∥∥∥∥∥∑
i∈N

pig
i
t,H−1

∥∥∥∥∥
2

− 2ESt⟨
∑
i∈St

pi
ait
git,H−1,

∑
i∈N

pig
i
t,H−1⟩

=ESt

∥∥∥∥∥∑
i∈St

pi
ait
git,H−1

∥∥∥∥∥
2

− E

∥∥∥∥∥∑
i∈N

pig
i
t,H−1

∥∥∥∥∥
2

=E

∥∥∥∥∥∑
i∈N

1{i ∈ St}
pi
ait
git,H−1

∥∥∥∥∥
2

− E

∥∥∥∥∥∑
i∈N

pig
i
t,H−1

∥∥∥∥∥
2

=
∑
i∈N

p2i
ait
E
∥∥git,H−1

∥∥2 +∑
i ̸=j

aita
j
tE⟨

pi
ait
git,H−1,

pj

ajt
gjt,H−1⟩ − E

∥∥∥∥∥∑
i∈N

pig
i
t,H−1

∥∥∥∥∥
2

=
∑
i∈N

p2i
ait
E
∥∥git,H−1

∥∥2 −∑
i∈N

p2iE
∥∥git,H−1

∥∥2 ≤∑
i∈N

p2i
1− ait
ait

C2

(5.25)

140

Note that E[A3] = 0. Combining (5.16), (7.19), (7.14), and (7.20), we have

E ∥w̄T,H −w∗∥2

≤ (1− µη)E ∥w̄T,H−1 −w∗∥2 + η2
∑
i∈N

pi
2 σ

2
i

Di
T

+
∑
i∈N

(6Lη2pidi + 2η2pi(H − 1)2C2 + η2p2i
1− ait
ait

C2)

≤ (1− µη)THE ∥w0 −w∗∥2 + η2
T∑
t=1

H∑
h=1

[
(1− µη)TH−(t−1)H−h

∑
i∈N

(pi
2 σ

2
i

Di
t

+ 6Lpidi + 2pi(H − 1)2C2 + p2i
1− ait
ait

C2)

]
.

Thus we have

E[F (wT)− F (w∗)] ≤ L

2
(1− µη)THE ∥w0 −w∗∥2+

Lη2

2

T∑
t=1

H∑
h=1

[
(1− µη)TH−(t−1)H−h

∑
i∈N

(pi
2 σ

2
i

Di
t

+ 6Lpidi + 2pi(H − 1)2C2 + p2i
1− ait
ait

C2)

]
.

5.8.4 Proof of Lemma 5.2

First, we have that −J1(St, D
∗
t (St)) is a non-monotone function, since its first term increases

with |St| and its second term decreases with |St|.

Next, we prove that −J1(St, D
∗
t (St)) is a submodular function. For ease of expression,

we write −J1(St, D
∗
t (St)) as −J1(St) in the following proof.

We can see that a user’s optimal data sampling size has three possible values which are 0,

ησ
√

Lγat
2(1−γ)cip,t

−
∑i−1

j=1D
i
t
∗, and Di

B. From Theorem 6.4, we know that for any selected user

set S1 ⊂ S2, ∑
i∈S1

Di
t

∗
(S1) ≤

∑
i∈S2

Di
t

∗
(S2). (5.26)

We also know that after reordering users, the optimal data sampling size of user j′ is

always no greater than that of user j for any j′ > j. Thus we have, for any selected user set

S1 ⊂ S2 and any user x ∈ S2, there are four possible combinations of Dx
t
∗(S1 ∪ {x}) and

Dx
t
∗(S2 ∪ {x}):

141

1) Dx
t
∗(S1 ∪ {x}) = Dx

t
∗(S2 ∪ {x});

2) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = ησ

√
Lγat

2(1−γ)cxp,t
−
∑x−1

i=1 Di
t
∗
(S2);

3) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = 0;

4) Dx
t
∗(S1 ∪ {x}) = ησ

√
Lγat

2(1−γ)cxp,t
−
∑x−1

i=1 Di
t
∗
(S1) and Dx

t
∗(S2 ∪ {x}) = 0.

We also give the definition of submodular functions.

Definition 5.1 A set function f on S is submodular if and only if

f(S1 ∪ {x})− f(S1) ≥ f(S2 ∪ {x})− f(S2)

for each S1 ⊂ S2 ⊆ S and x ∈ S \ S2.

For any round t, selected user set St and user x /∈ St, we have

− J (St ∪ {x})− (−J (St))

= −γ

 Latη
2σ2

2
∑

i∈St∪{x}
Di∗

t (St ∪ {x}))

+ γ

 Latη
2σ2

2
∑
i∈St

Di∗
t (St)

− (1− γ)

∑
i∈St∪{x}

(cip,tD
i
t

∗
(St ∪ {x}) + cim,t) + (1− γ)

∑
i∈St

(cip,tD
i
t

∗
(St) + cim,t)

=
γLatη

2σ2

2

 Dx
t
∗(St ∪ {x})∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)
(
cxp,tD

x
t
∗(St ∪ {x}) + cxm,t

)
(5.27)

Then, for each combination of Dx
t
∗(S1∪{x}) and Dx

t
∗(S2∪{x}), we prove that−J (S1∪

{x}) + J (S1) ≥ −J (S2 ∪ {x}) + J (S2).

1) Dx
t
∗(S1 ∪ {x}) = Dx

t
∗(S2 ∪ {x}):

142

From (5.26) and (5.27), we have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

=
γLatη

2σ2

2

 Dx
t
∗(S1 ∪ {x})∑

i∈S1

Di∗
t (S1)

∑
i∈S1∪{x}

Di∗
t (S1 ∪ {x})

− γLatη

2σ2

2

 Dx
t
∗(S2 ∪ {x})∑

i∈S2

Di∗
t (S2)

∑
i∈S2∪{x}

Di∗
t (S2 ∪ {x})

≥ 0.

2) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = ησ

√
Lγat

2(1−γ)cip,t
−
∑

i∈S2
Di

t
∗:

We have

Dx
B < ησ

√
Lγat

2(1− γ)cxp,t
−
∑
j∈S1

Di
t

∗
(S1)

and

Dx
B > ησ

√
Lγat

2(1− γ)cxp,t
−
∑
j∈S2

Di
t

∗
(S2).

Thus we have

γLatη
2σ2/(1− γ)

2(Dx
B +

∑
i∈S1

Di∗
t (S1))2

≤ cxp,t ≤
γLatη

2σ2/(1− γ)

2(Dx
B +

∑
i∈S2

Di∗
t (S2))2

. (5.28)

From (5.27) and (5.28), we have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

≥ γLatη
2σ2

2

 Dx
B∑

i∈S1

Di∗
t (S1)(Dx

B +
∑
i∈S1

Di∗
t (S1))

−
ησ
√

Lγat
2(1−γ)cip,t

−
∑

i∈S2
Di

t
∗
(S2)∑

i∈S2

Di∗
t (S2)(Dx

B +
∑
i∈S2

Di∗
t (S2))

−

Dx
B

(Dx
B +

∑
i∈S1

Di∗
t (S1))2

+

ησ
√

Lγat
2(1−γ)cip,t

−
∑
i∈S2

Di
t
∗
(S2)

(Dx
B +

∑
i∈S2

Di∗
t (S2))2

=

Dx
B
2∑

i∈S1

Di∗
t (S1)(Dx

B +
∑
i∈S1

Di∗
t (S1))2

−
(ησ
√

Lγat
2(1−γ)cip,t

−
∑

i∈S2
Di

t
∗
(S2))

2∑
i∈S2

Di∗
t (S2)(Dx

B +
∑
i∈S2

Di∗
t (S2))2

≥ 0.

143

3) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = 0:

Since Dx
t
∗(S2 ∪ {x}) = 0, we have −J (S2 ∪ {x}) + J (S2) = −(1− γ)cxm,t. Thus, we

have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

=
γLatη

2σ2

2

 Dx
B∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)
(
cxp,tD

x
B)
)

≥ γLatη
2σ2

2

 ησ
√

Lγat
2(1−γ)cip,t

−
∑
i∈S1

Di
t
∗
(S1)∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)

[
cxp,t(ησ

√
Lγat

2(1− γ)cip,t
−
∑
i∈S1

Di
t

∗
(S1))

]
= 0.

4) Dx
t
∗(S1 ∪ {x}) = ησ

√
Lγat

2(1−γ)cip,t
−
∑

i∈S1
Di

t
∗
(S1) and Dx

t
∗(S2 ∪ {x}) = 0:

We omit the proof of this combination since it is similar with that of combination 2).

5.8.5 Proof of Theorem 5.3

We have for any round t,

G(St) ≥
1

3
G(OPT t),

where OPT t is the optimal user set in round t.

Then, we have for any round t,

J1(St, D
∗
t (St)) + J1,max ≥

1

3
(J1(OPT t, D

∗
t (OPT t)) + J1,max).

Thus, the system loss over T rounds is bounded by

T∑
t=1

J1(St, D
∗
t (St)) ≥

T∑
t=1

(
1

3
J1(OPT t, D

∗
t (OPT t)) +

2

3
J1,max)

≥ 1

3
OPT +O(T).

144

Chapter 6

Quality-Aware Distributed Computation for Cost-Effective Non-Convex and Asynchronous
Wireless Federated Learning.

6.1 Introduction

One significant advantage of using FL is to preserve the privacy of individual users’ data. More-

over, since only the local ML model parameters, instead of the local data, are sent to the server,

the communication costs can be greatly reduced. Furthermore, FL can exploit ubiquitous smart

devices with substantial computing capabilities, which are often under-utilized. In particular,

when FL is used in a wireless edge network, the data samples generated at individual wireless

devices can be exploited via local computation and global aggregation based on distributed

ML. As a result, wireless federated learning (WFL) can achieve collaborative intelligence in

wireless edge networks. A general consensus is that WFL can support intelligent control and

management of wireless communications and networks (such as in [7, 8, 9]), and can enable

many AI applications based on wireless networked systems.

As is standard, learning accuracy is a key performance metric for FL. The accuracy of

the trained machine learning model in FL depends heavily on which users participate in the

learning process and the quality of their local model updates. Specifically, when distributed

stochastic gradient descent (SGD) is used for FL, the quality of a local stochastic gradient in

each iteration can be measured by the variance of the gradient, which depends on the mini-

batch size used to compute the gradient. It is important to observe that the quality of local

updates can be treated as a design parameter and used as a control “knob” (via the mini-batch

size) to be adapted across users and over time. Such quality-aware distributed computation can

substantially improve the learning accuracy of WFL.

145

In this chapter, we study quality-aware distributed computation for WFL, with the fo-

cuses on non-convex problems and asynchronous algorithms. The training problem of many

practical ML models (e.g., deep neural networks) involves a non-convex loss function. Such

a non-convex optimization problem is more difficult to solve than the convex version, due to

suboptimal local minima. In addition, asynchronous learning algorithms are usually more effi-

cient than their synchronous counterparts in utilizing users’ computing capabilities, as it allows

devices to keep computing without waiting for the global update received from the server as in

the synchronous algorithms. This benefit of asynchronous learning is more so in a wireless set-

ting, as there can be strong communication stragglers due to heterogeneous and time-varying

wireless channels.

Our goal is to minimize the training loss while taking into account costs and constraints

of computation and communication resources. In particular, we investigate how to adaptively

determine participating users’ mini-batch sizes over the learning process. To this end, several

significant challenges need to be addressed: 1) The quality (determined by the mini-batch size)

of local stochastic gradient updates can be heterogeneous across users and time-varying, and

it is non-trivial to quantify the impacts of local updates’ quality on the accuracy of the final

learnt model over the learning process. 2) The non-convex and asynchronous settings of FL

require new analysis different from their convex and synchronous counterparts. 3) The unique

features of wireless edge networks, including time-varying wireless channels, should be taken

into account. To achieve a desired tradeoff between the training loss and the training cost, local

updates’ quality should be determined based on the impacts of local updates on the training

loss as well as users’ wireless channel conditions and computation costs.

The main contributions are summarized as follows:

• We propose quality-aware distribute computation for FL in wireless edge networks, which

controls the quality of users’ local model updates via the mini-batch sizes used to com-

pute the updates, for non-convex problems and asynchronous algorithms. Our goal is to

minimize the training loss as well as users’ computation and communication costs in the

training process.

146

• We characterize performance bounds on the training loss as a function of users’ local

updates’ quality (and thus the mini-batch sizes) over the training process, for both non-

convex and asynchronous settings. Our findings reveal that the impact of a user’s local

update’s quality on the training loss 1) increases with the stepsize used that local update

for non-convex learning, and 2) increases when there are more other users’ local updates

which are coupled with that local update for asynchronous learning, depending on the

update delays.

• Based on the obtained insights above, we develop channel-aware adaptive algorithms

that determine users mini-batch sizes over the training process for both non-convex and

asynchronous learning, based on the impacts of local updates’ quality on the training

loss as well as users’ wireless channel conditions (which determine the update delays)

and computation costs. We characterize the optimal mini-batch sizes, which shows that

it is optimal to use larger mini-batch sizes when the local updates’ impacts are larger.

For the non-convex setting, we also develop a greedy algorithm that selects participating

users, which achieve an approximation ratio by exploiting the non-monotone submodular

property of the problem.

• We evaluate the proposed quality-aware adaptive algorithms using simulations. The re-

sults demonstrate that these algorithms outperform existing schemes in terms of the train-

ing loss.

The remainder of this chapter is organized as follows. Section 6.2 reviews related work.

In Section 6.3, we describe quality-aware distributed computation for federated learning. In

Section 6.4 and Section 6.5, we study learning accuracy bounds, and dynamic user selection

and mini-batch size design based on the training loss bounds, respectively. Simulation results

are provided in Section 6.6.

6.2 Related Work

Wireless Federated Learning. FL has emerged as a disruptive computing paradigm for ML

by democratizing the learning process to potentially many individual users using their end

147

devices. For WFL, the computing and networking environments have salient features, in-

cluding heterogeneous and time-varying computing and communication resources that need

to be accounted for. Recent studies on FL have made effort to take into account these is-

sues [95, 97, 100, 111, 98, 99, 101, 102]. For example, Tran et al [95] studied FL in wireless

networks for devices with different computing and communication capabilities. In [103], Tu

et al studied computation offloading based distributed learning where devices have different

computing and communication resources. However, all these works have not exploited mini-

batch sizes to control the quality of users’ local model updates, and have not considered the

impacts of diverse and dynamic local updates’ quality on learning accuracy. A very recent

work [112] has studied quality-aware distributed computation for WFL with convex problems

and synchronous algorithms. However, it has not considered the non-convex and asynchronous

settings which are very different and is the focus of this chapter.

Non-Convex and Asynchronous Distributed Learning. With rapid recent advances in ML/AI,

distributed ML has also seen substantial research activities in the past decade [81, 83, 14]. Many

prior works have studied various settings of distributed ML [113, 114, 115, 116, 117, 118], in-

cluding for non-convex problems and asynchronous algorithms. As many ML optimization

problems are non-convex, the convergence of non-convex distributed learning has been studied

[114, 115, 116]. Along a different avenue, asynchronous distributed learning [117, 118, 119,

120, 121] has received more attention due to its high efficiency for large-scale distributed learn-

ing. However, most existing works on non-convex and asynchronous distributed learning have

focused on the impacts of learning rate and delay on the convergence of the learning algorithm.

In this chapter, we theoretically study the impacts of local updates’ quality (quantified by the

variance and determined by the mini-batch size) on learning accuracy, and the mini-batch size

design, which is very different from the prior works.

6.3 Quality-Aware Distributed Computation for Wireless Federated Learning

In this section, we present the system model of quality-aware distributed computation for FL

in a wireless edge network.

148

Quality-Aware Distributed Computation for FL. Consider the setting where the dis-

tributed learning process of FL is carried out by a set of wireless users. The server of FL can

reside in the cloud or at the edge (e.g., access point or base station of a wireless network), and

the users are connected to the FL server via wireless links.

We consider the following FL problem:

min
w

F (w) ≜
N∑
i=1

Di

D
Fi(w), (6.1)

where Fi(w) is the prediction loss of the model parameter w based on user i’s local dataset, N

is the number of users, Di = {ξi1, ξi2, . . . , ξiDi
} is user i’s local dataset for updating the model

parameter, and D ≜
∑N

i=1Di. User i’s local loss function Fi(w) is defined by

Fi(w) ≜
1

Di

Di∑
m=1

fi(w; ξim),

where f(·) is the per-sample loss function. In each round of FL, K out of N users are selected

from the user set N to compute local updates, communicate their local updates to the server,

and receive the updated global model from the server. At round t, a selected user i computes

the average gradient git−1 of the loss function using a set of Di
t data samples randomly drawn

from her local dataset Di, based on the global model wt−1 received from the previous round

t− 1, and update her local model as

wi
t = wt−1 − ηgit,

where

git ≜
1

Di
t

Di
t∑

j=1

∇f(w, ξi,jt),

η is the stepsize, and ξi,jt is the jth data sample randomly drawn from user i’s local dataset

Di. At the end of round t, the server aggregates K users’ local models and updates the global

149

model as

wt =
K∑
i=1

Di
t

Dt

wi
t, (6.2)

where Dt ≜
∑K

i=1D
i
t.

The quality of a user’s local update is captured by the variance of the local stochastic

gradient, given by

qi ≜ E
[∥∥git − ḡt

∥∥2] , (6.3)

where ḡt ≜ E[git]. Assume that the loss function f satisfies E ∥∇fi (wt, ξ
i
m)− E[∇fi (wt)]∥

2 ≤

σ2, ∀t. It can be shown that [105]

E
[∥∥git − ḡt

∥∥2] ≤ σ2

Di
t

.

Note that a user’s quality is determined by the mini-batch size Di
t used to update her local

model. Thus, a local update computed with a larger mini-batch size has higher quality.

In this chapter, we assume that users’ local data are IID. Our results in the following

sections (including the training loss bounds, adaptive mini-batch size design and user selection)

can be extended to the case of non-IID data, and will be studied in our future work.

Asynchronous FL. The Fl algorithm can be carried out in an asynchronous manner de-

scribed as follows. In this case, the learning process consists of rounds, each lasting for a time

period of the same length. At the beginning of each round, the server broadcasts the global

model. At the end of each round, the server updates the global model using the local models

received in the round as (6.2) (as illustrated in Fig. 6.1). Note that a user’s local update can

be received by the server in a round different from the round when the user receives the global

model from the server for computing that local update. The update delay τi quantifies the dif-

ference between the round when user i receives the global model from the server and the round

when user i’s local update computed from that global model is received by the server. Note

that τi is an integer, where τi = 1 means there is no update delay, and τi > 1 means there is an

update delay. The computation time (Ci) is the time it takes for user i to compute (update) her

local model, and the communication time (Mi) is the time it takes for user i to communicate

150

C1

C2

C3

C4

Server

User 1

User 2

User 3

User 4

Round t Round t+1 Round t+2

update𝐰𝑡 update𝐰𝑡+1 update𝐰𝑡+2update𝐰𝑡−1

… …

𝜏1 = 1

𝜏2 = 2

𝜏3 = 3

𝜏4 = 2

M1

M3

M4

M2

Figure 6.1: Schedule of the server’s updates and users’ computations (C) and communications
(M) in asynchronous FL.

(upload) her updated local model to the server. For example, in Fig. 6.1, user 2 receives the

global model and starts to update her local model at the beginning of round t. After computing

the local model, user 2 starts to uploads her local model to the server. Then the server receives

user 2’s local model w2
t+1 in round t + 1 and updates the global model as wt+1 = w2

t+1 at the

end of round t+ 1.

FL in Wireless Edge Network. A user incurs a computation cost (measured by the com-

putation delay, energy consumption, etc) for computing a local update, which depends on the

computation capability of the user’s device and the mini-batch size used to compute the update.

Let cip,t be user i’s cost of computing her local update using one data sample in round t. Besides

the computation cost, a user also incurs communication cost for communicating local updates

to the server (measured by the communication delay, energy consumption, etc), which depends

on the user’s wireless channel condition. Let cim,t be user i’s communication cost in round t.

Note that the computation cost cip,t and the computation cost cim,t generally vary across users

and over rounds of the FL algorithm.

6.4 Learning Accuracy Bound Analysis

In this section, under the quality-aware FL framework of the previous section, we study the

training loss bounds for three settings: 1) non-convex problems; 2) asynchronous algorithms; 3)

non-convex problems and asynchronous algorithms. We will first characterize the performance

bounds as functions of users’ mini-batch sizes over the training process. Based on the obtained

151

results, we then discuss the impacts of mini-batch sizes and other system parameters (including

stepsize) on the training loss.

6.4.1 Case of Non-Convex Learning

We first analyze the training loss bound for non-convex problems with synchronous algorithms.

For non-convex optimization, the metrics for convex optimization (e.g., F (wT) − F (w∗)) are

not suitable, since it is hard to find the global optimum for non-convex optimization problems.

Thus, we analyze the ergodic convergence [115], where we randomly select an index t̃ from

{1, 2, . . . , T} with probability {ηt/
∑T

t=1 ηt}, and use wt̃ as the final model of the training

process. The expected squared gradient norm ∥ḡt̃∥2 of wt̃ can be upper bounded as follows.

Theorem 6.1 Suppose F is L-smooth, and E ∥∇fi (wt, ξ
i
m)− E[∇fi (wt)]∥

2 ≤ σ2, ∀i, t, take

the stepsize ηt ≤ 1
L

, ∀t, the ergodic convergence is given by

1∑T
t=1 ηt

T∑
t=1

ηt∥ḡt∥2 ≤
2E(F (w0)− F (w∗)) +

∑T
t=1 Lη

2
t
σ2

Dt∑T
t=1 ηt

, (6.4)

where Dt ≜
∑

i∈St
Di

t, and Di
t is the mini-batch size of user i in round t.

Remark 6.1 In (6.4), σ2

Dt
is the upper bound of the variance of the global model update wt,

which is determined by the variances of participating users’ local model updates. Thus the

weight Lη2t /
∑T

t=1 ηt of the variance σ2

Dt
of the global update captures the impact of the quality

of local updates on the training loss. We also know that a larger stepsize results in a larger

change of the model. Thus, given the total number of rounds T and the sum of stepsizes∑T
t=1 ηt, the larger the stepsize of the round, the larger the impact of local updates’ quality on

the training loss. Also observe that with any sequence of {ηt} such that
∑T

t=1 ηt diverge and∑T
t=1 η

2
t converge (e.g., ηt = 1/t), and with any non-decreasing mini-batch size, the bound

converges to 0 as T →∞.

Taking a closer look at Theorem 6.1, we can properly choose the stepsize and total mini-

batch size in each round and obtain the following convergence rate:

152

Proposition 6.1 Suppose F is L-smooth, E ∥∇fi (wt, ξ
i
m)− E[∇fi (wt)]∥

2 ≤ σ2, and E ∥∇Fi (wt)∥2 ≤

B2, ∀i, t, take any mini-batch size {Dt} and a constant stepsize η =
√
Dmin

L
√
T
, where Dmin ≜

min{Dt}, the ergodic convergence is given by

1

T

T∑
t=1

∥ḡt∥2 ≤
2LE(F (w0)− F (w∗)) + σ2

√
DminT

. (6.5)

Proposition 6.1 shows that when the stepsize is small enough, the convergence rate achieves

O(1/
√
DminT), which is consistent with the result obtained in [114], Corollary 1.

6.4.2 Case of Asynchronous Learning

We then analyze the training loss bound when asynchronous algorithms are used for convex

problems. In this subsection, for ease of exposition, we focus on using a constant stepsize. Our

results can be extended to using a time-varying stepsize.

Theorem 6.2 Suppose F is L-smooth and µ-strongly convex, E ∥∇fi (wt, ξ
i
m)− E[∇fi (wt)]∥

2 ≤

σ2, and E ∥∇Fi (wt)∥2 ≤ B2, ∀i, t, take the stepsize η ≤ 1
L

, then the training loss is bounded

by

E[F (wT)− F (w∗)] ≤ (1− µη)T (F (w0)− F (w∗))

+
T∑
t=1

[
(1− µη)T−t

(
L2η3

∑
i∈Mt

Di
t

Dt

(
t−1∑

t′=t−τi+1

σ2

Dt′

+Γ(τi − 1)B2) +
η

2

σ2

Dt

)]
,

(6.6)

where Mt is the set of users who update at time t, Γ is the maximum update delay.

Remark 6.2 Theorem 6.2 shows that the training loss bound consists of two terms. The first

term decreases geometrically with the number of rounds T , and is due to that SGD in expecta-

tion makes progress towards the optimal solution. The second term of the bound is caused by

the randomness of data sampling for computing the update in SGD. Compared to the training

loss in the case of synchronous learning [112], each term in the second term not only depends on

the total mini-batch size Dt of users who finish uploading their local models in the current round

153

t, but also the total mini-batch size Dt′ of each past round t′ such that t′ ∈ {t−τi+1, . . . , t−1},

where i ∈ Mt. For example, in Fig. 6.1, the training loss in round t + 1 not only depends on

user 2’s mini-batch size, but also on user 1’s mini-batch size. This implies that in each round,

the larger update delays of users, the worse the training loss.

Remark 6.3 According to (6.6), the training loss due to users’ update delays in each round is∑
i∈Mt

Di
t

Dt
(
∑t−1

t′=t−τi+1
σ2

Dt′
+Γ(τi−1)B2). When there is no update delay, i.e., τi = 1,∀i ∈Mt,

this term is 0, and the training loss bound degenerates to the case of synchronous learning in

[112]. When update delays exist, this term decreases as the mini-batch sizes of users who

upload their local models in the past rounds increase.

To obtain some useful insights, we next focus on the special case where only one user

uploads her local model in a round. Let user t be the user who uploads her local model in round

t. Then, using Theorem 6.2, the training loss bound is given by

E[F (wT)− F (w∗)] ≤ (1− µη)T (F (w0)− F (w∗))+

T∑
t=1

[
(1− µη)T−t

(
L2η3(

t−1∑
t′=t−τt+1

σ2

Dt′
+ Γ(τt − 1)B2) +

η

2

σ2

Dt

)]
.

(6.7)

To analyze the impact of user t on the training loss, we find the terms determined by Dt and τt

in (6.7) as follows.

It =(1− µη)T−t

(
L2η3(

t−1∑
t′=t−τt+1

σ2

Dt′
+ Γ(τt − 1)B2)

+
σ2

Dt

(
η

2
+ L2η3

Γ∑
τ ′=1

1τt+τ ′≥τ ′(1− µη)−τ ′

))
,

(6.8)

where 1 is an indicator function such that 1 = 1 when the user who uploads her local model in

round t+ τ ′ receives the global model from the server before round t, and 1 = 0 otherwise.

Remark 6.4 From (6.8), we can see that when user t’s update delay τt is independent of her

mini-batch size Dt, It decreases as Dt increases and/or τt decreases. This implies that in a

given round, a user with a larger mini-batch size or a smaller update delay reduces the training

154

loss. Also observe that user t’s mini-batch size affects some later rounds such that users who

uploads their local models in those rounds receive the global models before round t.

Remark 6.5 In (6.8), the weight of user t’s impact on the training loss is (1−µη)T−t. Note that

this weight increases with the round number t as 1− µη < 1. Therefore, the update delay and

mini-batch size in a later round have larger impacts on the training loss than in an earlier round.

This observation has important implications: it is better for a user to have a larger mini-batch

size or a smaller update delay in a later round rather than an earlier round to reduce the training

loss.

6.4.3 Case of Non-Convex and Asynchronous Learning

Next, we analyze the training loss bound for non-convex problems and asynchronous algo-

rithms.

Theorem 6.3 Suppose F is L-smooth and E ∥∇fi (wt, ξ
i
m)− E[∇fi (wt)]∥

2 ≤ σ2, ∀i, t, take

the stepsize ηt ≤ 1
L

, ∀t, the ergodic convergence is given by

1∑T
t=1 ηt

T∑
t=1

ηt∥ḡt∥2 ≤
2E(F (w0)− F (w∗))∑T

t=1 ηt

+

∑T
t=1(Lη

2
t
σ2

Dt
+ 2L2ηt

∑
i∈Mt

Di
t

Dt

∑t−1
t′=t−τi+1 η

2
t′

σ2

Dt′
)∑T

t=1 ηt
,

(6.9)

where the stepsize satisfies Lηt + L2Γηt
∑Γ−1

t′=1 ηt+t′ ≤ 1, ∀t.

Remark 6.6 From (6.9), we can see that the convergence rate for the combined non-convex

and asynchronous setting shows similar properties as that for each of the two settings. First, the

convergence rate not only depends on the total mini-batch size Dt used in the current round t,

but also on the mini-batch sizes used in several past rounds. Second, given the total number of

rounds T and the sum of stepsizes
∑T

t=1 ηt, the larger the stepsize of the round, the larger the

impact of local updates’ quality on the training loss. Also observe that the impact of the quality

σ2

Dt
of the local updates in round t is captured not only by the stepsize ηt in round t but also by

the stepsizes in several later rounds.

155

6.5 Dynamic Cost-Effective User and Sampling Size Selection

In this section, we study how to design users’ mini-batch sizes over the training process to

minimize the training loss bound for non-convex and asynchronous FL, respectively. For the

non-convex setting, we also investigate how to select participating users. In the meanwhile,

we take into account users’ computation and communication costs. Note that we consider

continuous-valued mini-batch size Dt in our theoretical analysis, which can be converted back

to the nearest integer values when used in practice.

6.5.1 Case of Non-Convex Learning

First we study the optimal user selection and mini-batch size design for non-convex problems

with synchronous algorithms. We aim to minimize the sum of the training loss and users’ total

communication and computation cost. The optimization problem can be formulated as

min
{St},{Dt}

γ
1∑T
t=1 ηt

T∑
t=1

ηt∥ḡt∥2 + (1− γ)
T∑
t=1

∑
i∈St

(cip,tD
i
t + cim,t),

s.t. Di
t ≤ Di

B,∀i, t,

where {St} is the set of selected users in all rounds, {Dt} is the set of assigned mini-batch

sizes of users in all rounds, Dt is the mini-batch size of the user who updates her local model

in round t, γ ∈ (0, 1] is the weight that balances the training loss and the cost, which can be

determined according to the server’s concern, and Di
B is user i’s maximum possible mini-batch

size.

From (6.4), we rewrite the problem as follows:

min
{St},{Dt}

T∑
t=1

J1(St, Dt) = γ
T∑
t=1

Lη2t
σ2

Dt∑T
t=1 ηt

+ (1− γ)
T∑
t=1

∑
i∈St

(cip,tD
i
t + cim,t),

s.t. Di
t ≤ Di

B, ∀i, t,

Since
∑T

t=1 ηt is given, we can see that the problem above can be decomposed into T

independent problems, each for one of the T rounds. Thus, we focus on finding the optimal

156

St and Dt for a single round t. Moreover, we decompose the problem in round t into two

subproblems: 1) we first study the optimal mini-batch size design given any user selection; 2)

then we study the optimal user selection given the optimal mini-batch size design.

Optimal Mini-Batch Size Design. Given any set of selected users, since the total commu-

nication cost is fixed, a user with a lower computation cost is preferred over one with a higher

computation cost. Hence, the optimal mini-batch sizes are determined in the ascending order

of users’ computation costs until the minimum value of J1 is reached. It can be shown that J1

is a convex function of Di
t when other users’ mini-batch sizes are given. The following result

characterizes users’ optimal mini-batch sizes.

Theorem 6.4 Let users in St be ordered as c1p,t ≤ c2p,t ≤ · · · ≤ c
|St|
p,t . Then the users’ optimal

mini-batch sizes are determined iteratively in this order, where the ith user’s optimal mini-batch

size is given by

Di
t
∗(St) = min{Di

B,max{
√

Lγη2t σ
2

(1− γ)cip,t
∑T

t−1 ηt
−

i−1∑
j=1

Dj
t
∗, 0}}.

User Selection Algorithm With the optimal mini-batch size design, the user selection problem

in round t can be rewritten as

min
St

J1(St, D
∗
t (St)) = γ

(
Lη2t σ

2∑
i∈St

Di
t
∗(St)

∑T
t=1 ηt

)
+ (1− γ)

∑
i∈St

(cip,tD
i
t
∗(St) + cim,t).

(6.10)

First note that problem (6.10) can be cast as the maximization problem of −J1(St, D
∗
t (St)).

Then we have the following property of the problem.

Lemma 6.1 −J1(St, D
∗
t (St)) is a negative non-monotone submodular function.

Note that it is difficult to solve a negative non-monotone submodular maximization prob-

lem with performance guarantee (e.g., with an approximation ratio). To overcome this chal-

lenge, we transform the above problem into a non-negative non-monotone submodular maxi-

mization problem.

157

First, we find the maximum value of J1(St, D
∗
t (St)). From the optimal mini-batch size

design, we can see that there exists some user j, such that for any user j′ ∈ St that has cj
′

p,t ≥

cjp,t, we have Dj′∗
t (St) = 0. The objective function J1 decreases as users’ optimal mini-batch

sizes are determined iteratively according to Proposition 6.4 until user j, and does not change

when the optimal mini-batch sizes of users after j are determined. Therefore, given a selected

user set St, J1 is maximized when only one user’s mini-batch size is non-zero. Thus, for any

S ⊆ N , the maximum value of J1 is given by

J1,max =
γLη2maxσ

2∑T
t=1 ηt

+ (1− γ)(cp,maxDB,max +Ncm,max),

where ηmax = max{ηt|∀t}, cp,max = max{cip,t|∀i, t}, DB,max = max{Di
B|∀i}, and cm,max =

max{cim,t|∀i, t}.

Based on the maximum value of J1(St, D
∗
t (St)), we define a new function G(St) and

rewrite the user selection problem in round t as

max
St

G(St) ≜

 −J1(St, D
∗
t (St)) + J1,max, if St ̸= ∅

0, if St = ∅

Note that in each round t of the FL algorithm, at least one user is selected (i.e., |St| > 0)

with a positive mini-batch size (i.e., Dt > 0). This is because when St = ∅, the global model

is not updated so that round t should not be counted as a round of the FL algorithm. Thus, we

can define that G(∅) ≜ 0. We can see that the above two problems are equivalent since J1,max

is a constant. Next, we focus on finding the solution that maximizes G(St). From Lemma 6.1,

it follows directly that G(St) is a non-negative non-monotone submodular function.

Next, we can apply the DeterministicUSM Algorithm [109] to solve the user selection

problem, which is given in Algorithm 9. The approximation ratio of DeterministicUSM is

given by the following lemma.

Lemma 6.2 [109] Algorithm DeterministicUSM is a 1
3
-approximation algorithm for maximiz-

ing function G(St).

158

Algorithm 9: Approximate optimal user selection
1 X0 ← ∅, Y0 ← N ;
2 for i = 1, 2, · · · , N do
3 ai ← G (Xi−1 ∪ {i})− G (Xi−1);
4 bi ← G (Yi−1 \ {i})− G (Yi−1);
5 if ai ≥ bi then
6 Xi ← Xi−1 ∪ {i} , Yi ← Yi−1;
7 else
8 Xi ← Xi−1, Yi ← Yi−1 \ {i};

9 St ← XN ;
10 return St.

Given the result above, we then show the approximation ratio of Algorithm 9 for our

problem, under the optimal mini-batch size design given in Proposition 6.4. The proof of the

following result is given in the appendix.

Theorem 6.5 Under the optimal mini-batch size design, with the user selection given by Al-

gorithm 9, the system loss is upper bounded by

T∑
t=1

J1(S
∗
t , D

∗
t (S

∗(t))) ≤ 1

3
OPT +O(T),

where OPT is the system loss of the optimal user and mini-batch size selection.

6.5.2 Case of Asynchronous Learning

We next study the case of asynchronous algorithms for convex problems. In this chapter, we

assume that the update delays1 of users are fixed, regardless of the mini-batch sizes used to

compute the local updates. This is a reasonable assumption when the communication times of

local updates are relatively large compared to their computation times. The case where update

delays depend on the mini-batch sizes is a very challenging problem, and will be studied in

our future work. For ease of exposition, in this subsection, we also assume that only one user

uploads her local model in one round.

1Note that the update delay is an integer and is not the total computation and communication time of the local
update.

159

As discussed earlier, the impact of each user t’s mini-batch size on the training loss de-

pends on the set of other users’ computation and communication periods during which user

t uploads her local model. We need to take into account this coupling of users’ updates in

terms of their impacts on the training loss, based on the update delays over the training process.

Thus, we develop an adaptive algorithm that determines the mini-batch size for each user’s

each update, based on the delay information of only Γ number of updates in the future.

When users’ update schedules are given2, the total communication cost is fixed. Thus it

suffices to minimize the sum of the training loss bound and users’ total computation cost:

min
{Dt}

γE[F (wT)− F (w∗)] + (1− γ)
T∑
t=1

cp,tDt,

s.t. Dt ≤ Dt
B,∀t,

(6.11)

where Dt
B is user t’s maximum possible mini-batch size. Since the first term of the training loss

bound given in (6.7) does not depend on users’ mini-batch sizes {Dt}, it suffices to minimize

the second term. Furthermore, we rewrite the second term of (6.6) as the sum of terms that are

determined by user t’s update delay and mini-batch size. Thus, from (6.7), we rewrite (6.11) as

min
{Dt}

T∑
t=1

J2(Dt) =
T∑
t=1

(
γ(1− µη)T−t

(
L2η3Γ(τt − 1)B2

+
η

2

σ2

Dt

+ L2η3
σ2

Dt

Γ∑
τ ′=1

1τt+τ ′≥τ ′(1− µη)−τ ′

)

+(1− γ)cp,tDt) ,

s.t. Dt ≤ Dt
B,∀t.

(6.12)

where τt+τ ′ , ∀τ ′ ∈ {1, . . . ,Γ} are known. Thus, for user t who uploads her local model in

round t, the server can find the value of
∑Γ

τ ′=1 1τt+τ ′≥τ ′(1− µη)−τ ′ based on the update delays

of users who upload their local models in next Γ rounds.

2Note that the training loss depends heavily on users’ update schedules. We focus on the design of users’
mini-batch size given users’ update schedules here and will study the joint design of user selection and mini-batch
size in future work.

160

Note that problem (6.12) can be decomposed into T independent problems, each for one

of the T users. Thus, we focus on finding the optimal Dt that minimizes J2(Dt) for a single

user t. It can be shown that J2(Dt) is a convex function of Dt. Thus the optimal mini-batch

size D∗
t can be found as the local minimum of J2(Dt), given as below.

Theorem 6.6 Given users’ update schedules and their update delays, the optimal mini-batch

size for each user t who uploads her local model in round t is given by

D∗
t = min{

√
γvtσ2

(1− γ)cp,t
, Dt

B},

where vt = (1− µη)T−t(η
2
+ L2η3

∑Γ
τ ′=1 1τt+τ ′≥τ ′(1− µη)−τ ′).

Theorem 6.6 shows that the optimal mini-batch size D∗
t is larger in a later round. This

is because the weight (1 − µη)T−t of an update on the training loss bound increases with the

round number t, so that D∗
t also increases with the round number. Also note that D∗

t increases

as the number of users who receive the global models before round t and finish uploading their

local models after round t increases. This is because the impact of the mini-batch size of user

t on the training loss increases when there are more of those users.

6.6 Simulation Results

In this section, we conduct synthetic data simulations to validate the theoretical findings. We

implement a simulated system consisting of a virtual server and a number of virtual users. For

convex optimization problem, we generate 10000 data samples according to the linear model,

i.e., y = wTx, and use the mean square error function as the loss function, i.e., f(w, ξ) =

1
2
∥y −wTx∥2, where ξ = (x, y) is a data sample. Each data point consists of 10 features and

1 label. For non-convex optimization problems, we generate 10000 data samples for a binary

linear classification model of which the data is generated according to Pr(y = 1|x = x) =

λ(⟨w, x⟩) [122], where λ(⟨w, x⟩) = (1 + e−λ)−1. Each data point consists of 10 features and

1 label. The stepsize η is set as a constant for all settings.

161

0 50 100 150 200 250 300

Number of rounds

0

0.005

0.01

0.015

0.02

0.025

D
t
=t

D
t
=150

D
t
=300-t

Figure 6.2: Impact of mini-batch size on the training loss of synchronous FL for non-convex
optimization.

10 15 20 25 30 35 40 45

Number of rounds

0.6

0.7

0.8

0.9

1

1.1

T
ra

in
in

g
 l
o
s
s

D
t
=t

D
t
=25

D
t
=50-t

Figure 6.3: Impact of mini-batch size on the training loss of asynchronous FL for convex
optimization.

0 10 20 30 40 50

Number of rounds

1

1.5

2

2.5

3

3.5

4

T
ra

in
in

g
 l
o
s
s

=1

=4

=8

Figure 6.4: Impact of maximum update delay on the training loss of asynchronous FL for
convex optimization.

162

0 50 100 150 200

Number of rounds

0

0.01

0.02

0.03

0.04

0.05

D
t
=10t

D
t
=1000

D
t
=2000-10t

Figure 6.5: Impact of mini-batch size on the training loss of asynchronous FL for non-convex
optimization.

We first evaluate the performance of the case of non-convex loss function with synchronous

learning. We compare the training loss using time-invariant, descending and ascending mini-

batch sizes to update the global model over rounds. The average mini-batch size over all rounds

are the same for above three distributions to achieve fair comparison. Fig. 6.2 shows that al-

though the mini-batch sizes over time of three distributions are different, they result in the same

training loss at the end of training. The case of ascending mini-batch size has the worst learning

accuracy in beginning rounds, and the case of descending mini-batch size has the best learn-

ing accuracy in beginning rounds. This is because, in beginning rounds, the case of descending

mini-batch size uses more data to update the FL model. In our theoretical result, we have shown

that using larger mini-batch to update implies better quality and leads to a lower training loss.

Moreover, since the weight of local updates’ quality (stepsize η) is the same in all rounds, the

impact of local updates’ quality on the training loss is the same. In ending rounds, as the total

mini-batch size over rounds converges to the same for three cases, the training loss converges

to the same value.

We next evaluate the performance of the case of convex loss function with asynchronous

learning. We first compare the training loss using time-invariant, descending and ascending

mini-batch sizes to update the global model. Different from the case of non-convex loss func-

tion with synchronous learning, Fig. 6.3 shows that although the average mini-batch sizes over

time of three distributions are the same, different distributions of the mini-batch size result in

163

0 50 100 150 200

Number of rounds

0

0.005

0.01

0.015

0.02

=1

=4

=8

Figure 6.6: Impact of maximum update delay on the training loss of asynchronous FL for non-
convex optimization.

different training loss at the end of training. The case of ascending mini-batch size has the

worst learning accuracy in beginning rounds and results in the best learning accuracy in ending

rounds. This conforms the result from Theorem 6.2 that the update in a later round has a larger

impact on the learning accuracy. We also compare the training loss while users’ maximum

update delays are different (Γ ∈ {1, 4, 8}). We simulate for 50 local iterations in total, with

the mini-batch size in each local iteration set as 25. From Fig. 6.4, we can see that when users

update without delay (Γ = 1), the system suffers the lowest training loss. The training loss

increases as the maximum update delay Γ increases. we can see that the simulation result is

consistent with the result given in Theorem 6.2. FL suffers a larger error caused by the delay

of users’ updates.

Lastly, we evaluate the training loss of the case of non-convex loss function with asyn-

chronous learning. Same as the other two cases, we first compare the training loss using

time-invariant, descending and ascending mini-batch sizes to update the global model when

the maximum update delay Γ = 4. Fig. 6.5 shows that even with the update delay, the three

distributions result in the same training loss at the end of training which is the same as the case

of non-convex loss function with synchronous learning. We then compare the training loss

while users’ maximum update delays are different (Γ ∈ {1, 4, 8}). In Fig. 6.6, we can see that

the result is similar to that of the case of convex loss function with asynchronous learning.

164

6.7 Conclusion

In this chapter, we have studied quality-aware distributed computation for WFL with non-

convex problems and asynchronous algorithms. We have characterized the performance bounds

on the training loss as a function of users’ local updates’ quality over the training process,

for both non-convex and asynchronous settings. The results show that the impact of a local

update’s quality 1) increases with the stepsize used in the round for non-convex learning, and

2) increases when there are more other users’ local updates (depending on the update delays)

which are coupled with that local update for asynchronous learning. We have also developed

channel-aware adaptive algorithms that select participating users and determine their mini-

batch sizes. Simulations have been used to evaluate the proposed algorithms.

6.8 Appendix

6.8.1 Proof of Theorem 6.1

First, we have

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

(git − ḡt)

∥∥∥∥∥
2

=
∑
i∈St

Di
t
2

D2
t

E
∥∥git − ḡt

∥∥2≤∑
i∈St

Di
t
2

D2
t

σ2

Di
t

=
σ2

Dt

, (6.13)

where the inequality follows from (6.3).

165

Suppose that St is the selected user set in round t, we have

E (F (wt)− F (wt−1))

⩽ −ηtE

〈
∇F (wt−1) ,

∑
i∈St

Di
t

Dt

ḡit

〉
+

Lη2t
2

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

git

∥∥∥∥∥
2

⩽ −ηtE

〈
∇F (wt−1) ,

∑
i∈St

Di
t

Dt

ḡit

〉
+

Lη2t
2

∥∥∥∥∥∑
i∈St

Di
t

Dt

(git − ḡt)

∥∥∥∥∥
2

+
Lη2t
2

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

ḡit

∥∥∥∥∥
2

⩽ −η2t
2

∥ḡt∥2 +
∥∥∥∥∥∑
i∈St

Di
t

Dt

ḡit

∥∥∥∥∥
2

−

∥∥∥∥∥ḡt −∑
i∈st

Di
t

Dt

ḡit

∥∥∥∥∥
2
+

Lη2t
2

σ2

Dt

+
Lη2t
2

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

ḡit

∥∥∥∥∥
2

= −η2t
2
∥ḡt∥2 +

(
Lη2t
2
− ηt

2

)∥∥∥∥∥∑
i∈St

Di
t

Dt

ḡit

∥∥∥∥∥
2

+
Lη2t
2

σ2

Dt

⩽ −η2t
2
∥ḡt∥2 +

Lη2t
2

σ2

Dt

Thus we have

ηt ∥ḡt∥2 ≤ −2 (E (F (wt)− F (wt−1))) + Lη2t
σ2

Dt

.

Summing over t ∈ {1, . . . , T} and dividing both sides by
∑T

t=1 ηt yields (6.4).

6.8.2 Proof of Theorem 6.2

First, we have

E (F (wt)− F (w∗))

≤F (wt−1)− F (w∗)− ηE

〈
∇F (wt−1) ,

∑
i∈Mt

Di
t

Dt

∇Fi (wt−τi)

〉
+

Lη2

2
E

∥∥∥∥∥∑
i∈Mt

Di
t

Dt

∇Fi (wt−τi)

∥∥∥∥∥
2

≤F (wt−1)− F (w∗) +
η

2
E

∥∥∥∥∥∇F (wt−1)−
∑
i∈Mt

Di
t

Dt

∇Fi (wt−τi)

∥∥∥∥∥
2

︸ ︷︷ ︸
A

−η

2
E ∥∇F (wt−1)∥2 ,

where Mt is the set of users who update their local model in round t.

166

Next we focus on bounding A.

A

=E

∥∥∥∥∥∇F (wt−1)−
∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi)) +
∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))−
∑
i∈Mt

Di
t

Dt

∇Fi (wt−τi)

∥∥∥∥∥
2

≤E

∥∥∥∥∥∇F (wt−1)−
∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

+ E

∥∥∥∥∥∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))−
∑
i∈Mt

Di
t

Dt

∇Fi (wt−τi)

∥∥∥∥∥
2

≤E

∥∥∥∥∥∇F (wt−1)−
∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

+
∑
i∈Mt

Di
t
2

D2
t

E ∥E(∇Fi (wt−τi))−∇Fi (wt−τi)∥
2

≤
∑
i∈Mt

Di
t

Dt

L2 ∥wt−1 −wt−τi∥
2 +

σ2

Dt

.

(6.14)

Then we bound each term

∥wt−1 −wt−τi∥
2 ≤

∥∥∥∥∥∥
t−1∑

t′=t−τi+1

η
∑

i′∈Mt′

Di′

t′

Dt′
∇Fi

(
wt′−τi′

)∥∥∥∥∥∥
2

=2η2

∥∥∥∥∥∥
t−1∑

t′=t−τi+1

∑
i′∈Mt′

Di′

t′

Dt′
(∇Fi

(
wt′−τi′

)
− E(∇Fi

(
wt′−τi′

)
))

∥∥∥∥∥∥
2

+ 2η2

∥∥∥∥∥∥
t−1∑

t′=t−τi+1

∑
i′∈Mt′

Di′

t′

Dt′
E(∇Fi

(
wt′−τi′

)
)

∥∥∥∥∥∥
2

≤2η2
t−1∑

t′=t−τi+1

∥∥∥∥∥∥
∑

i′∈Mt′

Di′

t′

Dt′
(∇Fi

(
wt′−τi′

)
− E(∇Fi

(
wt′−τi′

)
))

∥∥∥∥∥∥
2

+ 2η2Γ
t−1∑

t′=t−τi+1

∥∥∥∥∥∥
∑

i′∈Mt′

Di′

t′

Dt′
E(∇Fi

(
wt′−τi′

)
)

∥∥∥∥∥∥
2

≤2η2
t−1∑

t′=t−τi+1

σ2

Dt′
+ 2η2Γ(τi − 1)B2.

(6.15)

167

Thus we have

E (F (wT)− F (w∗)) ≤ F (wT−1)− F (w∗)

+ L2η3
∑
i∈MT

Di
T

DT

(
T−1∑

t′=T−τi+1

σ2

Dt′
+ Γ(τi − 1)B2

)
− η

2
E ∥∇F (wT−1)∥2 +

η

2

σ2

DT

≤(1− µη)(F (wT−1)− F (w∗))

+ L2η3
∑
i∈MT

Di
T

DT

(
T−1∑

t′=T−τi+1

σ2

Dt′
+ Γ(τi − 1)B2

)
+

η

2

σ2

DT

≤(1− µη)T (F (w0)− F (w∗))

+
T∑
t=1

[
(1− µη)T−t

(
L2η3

∑
i∈Mt

Di
t

Dt

(
t−1∑

t′=t−τi+1

σ2

Dt′
+Γ(τi − 1)B2) +

η

2

σ2

Dt

)]

6.8.3 Proof of Theorem 6.3

First, we have

E (F (wt)− F (wt−1))

⩽− ηtE

〈
∇F (wt−1) ,

∑
i∈St

Di
t

Dt

ḡit

〉
+

Lη2t
2

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

git

∥∥∥∥∥
2

=− ηt
2

∥E(∇Fi (wt−1))∥2 +

∥∥∥∥∥∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

+

∥∥∥∥∥E(∇Fi (wt−1))−
∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

︸ ︷︷ ︸
A1

+
Lη2t
2

E

∥∥∥∥∥∑
i∈St

Di
t

Dt

git

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

.

From (6.14) and (6.15), A1 can be bounded as

A1 ≤
∑
i∈Mt

Di
t

Dt

L2 ∥wt−1 −wt−τi∥
2

≤2L2
∑
i∈Mt

Di
t

Dt

(
t−1∑

t′=t−τi+1

η2t′
σ2

Dt′
+ Γ

t−1∑
t′=t−τi+1

η2t′

∥∥∥∥∥∥
∑

i′∈Mt′

Di′

t′

Dt′
E(∇Fi

(
wt′−τi′

)
)

∥∥∥∥∥∥
2 .

168

Next, we bound A2.

A2

=E

∥∥∥∥∥∑
i∈St

Di
t

Dt

(∇Fi (wt−τi)− E(∇Fi (wt−τi)) + E(∇Fi (wt−τi)))

∥∥∥∥∥
2

=E

∥∥∥∥∥∑
i∈St

Di
t

Dt

(∇Fi (wt−τi)− E(∇Fi (wt−τi)))

∥∥∥∥∥
2

+ E

∥∥∥∥∥∑
i∈St

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

≤σ2

Dt

+ E

∥∥∥∥∥∑
i∈St

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

,

where the inequality follows (6.13).

Thus, we have

E (F (wt)− F (wt−1))

≤− ηt
2

∥E(∇Fi (wt−1))∥2 +

∥∥∥∥∥∑
i∈Mt

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2

+ 2L2
∑
i∈Mt

Di
t

Dt

(
t−1∑

t′=t−τi+1

η2t′
σ2

Dt′

+ Γ
t−1∑

t′=t−τi+1

η2t′

∥∥∥∥∥∥
∑

i′∈Mt′

Di′

t′

Dt′
E(∇Fi

(
wt′−τi′

)
)

∥∥∥∥∥∥
2+

Lη2t
2

σ2

Dt

+ E

∥∥∥∥∥∑
i∈St

Di
t

Dt

E(∇Fi (wt−τi))

∥∥∥∥∥
2
 .

Summing over t ∈ {1, . . . , T} we have

E (F (wt)− F (w0)) ≤

T∑
t=1

−ηt
2
∥ḡt∥2 +

T∑
t=1

(Lη2t
2
− ηt

2
+ L2Γη2t

Γ∑
t′=1

ηt+t′

)∥∥∥∥∥∑
i∈Mt

Di
t

Dt

E(∇F (wt−τi))

∥∥∥∥∥
2

+
T∑
t=1

(
ηtL

2
∑
i∈Mt

Di
t

Dt

t−1∑
t′=t−τi+1

η2t′
σ2

Dt′
+

Lη2t
2

σ2

Dt

)

≤
T∑
t=1

−ηt
2
∥ḡt∥2 +

T∑
t=1

(
ηtL

2
∑
i∈Mt

Di
t

Dt

t−1∑
t′=t−τi+1

η2t′
σ2

Dt′
+

Lη2t
2

σ2

Dt

)
,

where the last inequality follows Lηt + L2Γηt
∑Γ−1

t′=1 ηt+t′ ≤ 1.

169

Then we have

T∑
t=1

ηt ∥ḡt∥2 ≤2E (F (w0)− F (w∗))

+
T∑
t=1

(
2ηtL

2
∑
i∈Mt

Di
t

Dt

t−1∑
t′=t−τi+1

η2t′
σ2

Dt′
+ Lη2t

σ2

Dt

)
,

Dividing both sides by
∑T

t=1 ηt yields (6.9).

6.8.4 Proof of Lemma 6.1

First, we have that −J1(St, D
∗
t (St)) is a non-monotone function, since its first term increases

with |St| and its second term decreases with |St|.

Next, we prove that −J1(St, D
∗
t (St)) is a submodular function. For ease of expression,

we write −J1(St, D
∗
t (St)) as −J1(St) in the following proof.

From (6.4), we can see that a user’s optimal data sampling size has three possible values

which are 0, ηtσ
√

Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑i−1

j=1 D
j
t
∗, and Di

B. From Theorem 6.4, we know that for

any selected user set S1 ⊂ S2,

∑
i∈S1

Di∗
t (S1) ≤

∑
i∈S2

Di∗
t (S2). (6.16)

We also know that after reordering users, the optimal data sampling size of user j′ is

always no greater than that of user j for any j′ > j. Thus we have, for any selected user set

S1 ⊂ S2 and any user x ∈ S2, there are four possible combinations of Dx
t
∗(S1 ∪ {x}) and

Dx
t
∗(S2 ∪ {x}):

1) Dx
t
∗(S1 ∪ {x}) = Dx

t
∗(S2 ∪ {x});

2) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = ηtσ

√
Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑x−1

i=1 Di
t
∗(S2);

3) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = 0;

4) Dx
t
∗(S1 ∪ {x}) = ηtσ

√
Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑x−1

i=1 Di
t
∗(S1) and Dx

t
∗(S2 ∪ {x}) = 0.

We also give the definition of submodular functions.

170

Definition 6.1 A set function f on S is submodular if and only if

f(S1 ∪ {x})− f(S1) ≥ f(S2 ∪ {x})− f(S2)

for each S1 ⊂ S2 ⊆ S and x ∈ S \ S2.

For any round t, selected user set St and user x /∈ St, we have

− J (St ∪ {x})− (−J (St))

=
γLη2t σ

2∑T
t=1 ηt

 Dx
t
∗(St ∪ {x})∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)
(
cxp,tD

x
t
∗(St ∪ {x}) + cxm,t

)
(6.17)

Then, for each combination of Dx
t
∗(S1∪{x}) and Dx

t
∗(S2∪{x}), we prove that−J (S1∪

{x}) + J (S1) ≥ −J (S2 ∪ {x}) + J (S2).

1) Dx
t
∗(S1 ∪ {x}) = Dx

t
∗(S2 ∪ {x}):

From (6.16) and (6.17), we have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

=
γLη2t σ

2∑T
t=1 ηt

 Dx
t
∗(S1 ∪ {x})∑

i∈S1

Di∗
t (S1)

∑
i∈S1∪{x}

Di∗
t (S1 ∪ {x})

− γLη2t σ

2∑T
t=1 ηt

 Dx
t
∗(S2 ∪ {x})∑

i∈S2

Di∗
t (S2)

∑
i∈S2∪{x}

Di∗
t (S2 ∪ {x})

≥ 0.

2) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = ηtσ

√
Lγ

(1−γ)cip,t
∑T

t−1 ηt
Di

t
∗:

From (6.4), we have

Dx
B < ηtσ

√
Lγ

(1− γ)cip,t
∑T

t−1 ηt
−
∑
j∈S1

Di
t
∗(S1)

171

and

Dx
B > ηtσ

√
Lγ

(1− γ)cip,t
∑T

t−1 ηt
−
∑
j∈S2

Di
t
∗(S2).

Thus we have

γLη2t σ
2/(1− γ)

∑T
t=1 ηt

(Dx
B +

∑
i∈S1

Di∗
t (S1))2

≤ cxp,t ≤
γLη2t σ

2/(1− γ)
∑T

t=1 ηt
(Dx

B +
∑
i∈S2

Di∗
t (S2))2

. (6.18)

From (6.17) and (6.18), we have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

≥ γLη2t σ
2∑T

t=1 ηt

 Dx
B∑

i∈S1

Di∗
t (S1)(Dx

B +
∑
i∈S1

Di∗
t (S1))

−
ηtσ
√

Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑

i∈S2
Di

t
∗(S2)∑

i∈S2

Di∗
t (S2)(Dx

B +
∑
i∈S2

Di∗
t (S2))

−

Dx
B

(Dx
B +

∑
i∈S1

Di∗
t (S1))2

+

ηtσ
√

Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑
i∈S2

Di
t
∗(S2)

(Dx
B +

∑
i∈S2

Di∗
t (S2))2

=

Dx
B
2∑

i∈S1

Di∗
t (S1)(Dx

B +
∑
i∈S1

Di∗
t (S1))2

−
(ηtσ

√
Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑

i∈S2
Di

t
∗(S2))

2∑
i∈S2

Di∗
t (S2)(Dx

B +
∑
i∈S2

Di∗
t (S2))2

≥ 0.

3) Dx
t
∗(S1 ∪ {x}) = Dx

B and Dx
t
∗(S2 ∪ {x}) = 0:

172

Since Dx
t
∗(S2 ∪ {x}) = 0, we have −J (S2 ∪ {x}) + J (S2) = −(1− γ)cxm,t. Thus, we

have

− J (S1 ∪ {x}) + J (S1)− (−J (S2 ∪ {x}) + J (S2))

=
γLη2t σ

2∑T
t=1 ηt

 Dx
B∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)
(
cxp,tD

x
B)
)

≥ γLη2t σ
2∑T

t=1 ηt

ηtσ
√

Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑
i∈S1

Di
t
∗(S1)∑

i∈St

Di∗
t (St)

∑
i∈St∪{x}

Di∗
t (St ∪ {x})

− (1− γ)

[
cxp,t(ηtσ

√
Lγ

(1− γ)cip,t
∑T

t−1 ηt
−
∑
i∈S1

Di
t
∗(S1))

]

= 0.

4) Dx
t
∗(S1 ∪ {x}) = ηtσ

√
Lγ

(1−γ)cip,t
∑T

t−1 ηt
−
∑

i∈S1
Di

t
∗(S1) and Dx

t
∗(S2 ∪ {x}) = 0:

We omit the proof of this combination since it is similar with that of combination 2).

6.8.5 Proof of Theorem 6.5

From Lemma 6.2, we have for any round t,

G(St) ≥
1

3
G(OPT t),

where OPT t is the optimal user set in round t.

Then, we have for any round t,

J1(St, D
∗
t (St)) + J1,max ≥

1

3
(J1(OPT t, D

∗
t (OPT t)) + J1,max).

173

Thus, the system loss over T rounds is bounded by

T∑
t=1

J1(St, D
∗
t (St)) ≥

T∑
t=1

(
1

3
J1(OPT t, D

∗
t (OPT t)) +

2

3
J1,max)

≥ 1

3
OPT +O(T).

6.8.6 Other Omitted Proofs

Proposition 6.1 directly follows from Theorem 6.1 by replacing the time-varying stepsize with

the constant stepsize.

Theorem 6.4 can be obtained by solving J ′
1(Dt) = 0, where J ′

1(Dt) is the first derivative of

J1(Dt).

Theorem 6.6 can be obtained by solving J ′
2(Dt) = 0, where J ′

2(Dt) is the first derivative of

J2(Dt).

174

Chapter 7

Truthful Incentive Mechanism for Federated Learning with Crowdsourced Data Labeling.

7.1 Introduction

Federated learning (FL) [80] is an emerging and promising ML paradigm, which performs the

training of ML models in a distributed manner. Instead of transmitting data from a potentially

large number of devices to a central server in the edge or cloud for training, FL allows the

data to remain at devices (such as smartphone), and trains a global ML model on the server by

collecting and aggregating model updates locally computed on each device based on her local

data. One significant advantage of using FL is to preserve the privacy of individual device’s

data. Moreover, since only local ML model updates, instead of local data, are sent to the server,

the communication costs can be greatly reduced. Furthermore, FL can exploit the substantial

computation capabilities of ubiquitous smart devices, which are often under-utilized. As a

result, FL can achieve collaborative intelligence, which can enable many AI applications based

on networked systems, such as connected and autonomous vehicles, collaborative robots, multi-

user virtual/mixed reality.

Recent studies on FL typically focus on supervised learning, which requires a large amount

of training data with data labels in the learning process. In many applications of ML, data

labels have to be generated manually by human users. For example, for image classification,

the object in an image should be recognized and annotated by a human user as the label of the

image data. Therefore, as FL does not allow a client to share her local data with the server or

other clients, to participate in FL, a client needs to manually label her local data (e.g., images),

before she can compute local model updates from her locally labeled data.

175

However, data labels generated by human clients of FL are subject to errors. For example,

a client may misclassify a dog as a cat. As a result, this incorrect data label will lead to error

in the local model, and thus error in the global model obtained by the FL server. Moreover,

the labeling error rate of a client generally varies for different clients, depending on the client’s

knowledge level of the data labeling task. For example, a client who is familiar with dogs will

have a lower labeling error rate than another client who is not. Furthermore, the accuracy of

data labels is also affected by a client’s effort made in the data labeling task. The data label

error rate will be low when the client makes much effort in labeling the data, and otherwise

is high when the client makes little or no effort. For example, a client may make no effort in

image classification by randomly guessing the object in an image without actually recognizing

the object.

While a client’s effort impacts the accuracy of her data labels, the effort can be her hidden

action that is only known by the client herself and cannot be observed by the FL server. Due

to the inaccurate nature of data labels, a strategic client may label her local data arbitrarily

without making effort in data labeling, while the server will not be able to verify whether effort

is actually made or not. Moreover, the effort made by a client in computing her local model

update, which can be quantified by the mini-batch size used by the client in stochastic gradient

descent, can also be the client’s hidden action that cannot be verified by the server. As a result,

a client may have incentive to compute her local update with a small mini-batch size so as to

reduce her resources used in local computation. Furthermore, the local model computed by a

client from her local data can also be her private information that she can manipulate in favor

of herself, e.g., a client may increase or decrease her true local model and report it to the server.

In the presence of such strategic clients with hidden data labeling and local computation

efforts and private local models, our goal is to incentivize the clients to make truthful efforts as

desired by the FL server and reveal their true local models. Such a truthful incentive mechanism

is desirable as it eliminates the possibility of manipulation, which would encourage clients to

participate in FL. More importantly, the truthful elicitation of clients’ efforts and local models

ensures that the FL server can obtain a global model with high and guaranteed accuracy from

the learning process, which is a key performance metric of FL.

176

The joint elicitation of data labeling effort, local computation effort, and local models for

FL calls for new design that is very different from existing truthful mechanisms. First, the

training loss of the global model obtained from FL has a non-trivial dependence on clients’

exerted efforts and reported models. As a result, existing incentive mechanisms for effort and

data elicitation do not work for the problem here. Second, due to the complex relation between

the impacts of labeling effort, computation effort, and local models on the training loss, the

joint elicitation of effort and models needs to overcome the coupling therein. Third, given the

truthful incentive mechanism for effort and model elicitation, the FL server needs to determine

how much effort should be made by each client, in order to maximize the server’s payoff.

The main contributions of this chapter can be summarized as follows.

• We propose an FL framework with crowdsourced data labeling based on a truthful in-

centive mechanism, where the labels of a client’s local training data for FL are manually

generated by the human client and are subject to errors. We consider strategic clients

whose actual efforts in data labeling and local model computation as well as actual local

models cannot be verified by the FL server.

• We first characterize the performance bounds on the training loss as a function of clients’

data labeling effort, local computation effort (quantified by the mini-batch size), and re-

ported local models. It shows that the labeling and computation efforts as well as the

reported models have non-trivial impacts on the training loss. Based on the obtained

insights, we develop the Labeling and Computation Effort and Local model Elicitation

(LCEME) mechanism which incentivize clients to truthfully make efforts in data labeling

and local computation, and report local models. The truthful design of the LCEME mech-

anism overcomes the intricate coupling in the joint elicitation of labeling effort, compu-

tation effort, and local models. Based on the LCEME mechanism, we then characterize

the optimal computation effort assignment for maximizing the FL server’s payoff.

• We evaluate the proposed FL with crowdsourced data labeling using the popular MNIST-

based hand-written digit recognition problem. The results demonstrate that the proposed

177

FL server
announce

reward function &
effort assignment

report local
models

(some
rounds of
iterations)

……

aggregate
local models

test global
model pay

reward

data
labeling

local
computation

broadcast
global model

local
computation

aggregate
local models

FL clients

Figure 7.1: Schedule of FL with crowdsourced data labeling based on a truthful incentive
mechanism.

algorithms outperform the methods that do not consider data labeling errors or do not use

an incentive mechanism.

The remainder of this chapter is organized as follows. Section 7.2 reviews the related

work. In Section 7.3, we describe the system model and formulate the problem of incentive

mechanism design. In Section 7.4, we study the performance bound on the training loss. In

Section 7.5, we devise the LCEME mechanism and the server’s optimal effort allocation. Sim-

ulation results are presented in Section 7.6. Section 7.7 concludes this chapter.

7.2 Related Work

Incentive Mechanism for Federated Learning. FL has emerged as a disruptive computing

paradigm for ML by democratizing the learning process to potentially many individual devices.

Most existing studies on FL have focused on algorithm design for FL, such as for reducing the

local model drifts across non-IID clients and participating clients selection. Meanwhile, there

have been several recent works on computation and communication resource allocation for

FL [95, 96, 97, 98, 99, 100, 101, 102]. On the other hand, a few recent work studied incen-

tive mechanisms [123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133] for FL that take into

account participating clients’ strategic behavior. In particular, most of these work considered

compensating clients’ communication and computation costs with an economic approach, such

as Stackelberg game [127], auction theory [128], cooperative game [129, 130], and contract

theory [131, 132]. However, all these prior works have focused on either incentivizing clients’

participation via cost compensation, or truthfully eliciting clients’ participation costs. [133]

178

proposed VCG-based mechanisms that incentivize clients to truthfully report their local mod-

els. In contrast, this paper studies incentive mechanisms for truthful elicitation of clients’ local

models as well as their efforts in data labeling and local computation.

Truthful Incentive Mechanism for Effort and Data Elicitation. There have been a lot of

research on incentive mechanisms for various applications of data collection and processing,

particularly for data crowdsourcing [76, 22, 23, 134, 135, 136, 25, 45, 54, 55]. Many incentive

mechanisms incentivize agents to truthfully reveal their participating cost, where the cost is

considered to be private for a agent that may not be revealed truthfully without appropriate

incentive. There have been recent studies on truthful mechanism design for hidden efforts in

the economics literature [137], which is concerned with strategic agents that can make hidden

efforts not desired by a principal who recruits the agents to work on a task. A few recent works

have studied this problem in the context of crowdsourcing [138, 26, 25, 57, 139]. Mechanism

design for truthful elicitation of strategic agents’ data (e.g., opinions) has been extensively

studied in various applications (e.g., [140]), more recently for crowdsourcing [138, 25, 58, 57,

139]. The data of an agent can be its private information that the agent can manipulate in

favor of her benefit. Different from existing works, in this paper, we focus on FL and aim to

design truthful mechanisms that jointly elicit clients’ hidden efforts in data labeling and local

computation and their private local models. The truthful mechanism design here is non-trivially

different from existing works, due to 1) complex dependence of the training loss on clients’ data

labeling and local computation efforts and local models; 2) intricate coupling in joint elicitation

of the clients’ efforts and models.

7.3 System Model and Problem Formulation

In this section, we first describe a FL system with crowdsourced data labeling based on a

truthful incentive mechanism (as illustrated in Fig. 7.1), and then present the design objectives

for truthful incentive mechanisms.

7.3.1 FL with Crowdsourced Data Labeling

Consider the following FL problem:

179

min
w

F (w) ≜
N∑
i=1

piFi(w), (7.1)

where Fi(w) is defined by

Fi(w) ≜
1

D̃i

D̃i∑
m=1

f(w; ξim),

f(·) is the per-sample loss function of client i, N ≜ |N | is the number of clients, pi is the

weight of client i,
∑

i∈N pi ≜ 1, Di = {ξi1, ξi2, . . . , ξiD̃i
} is client i’s local dataset for updating

the model parameter, and D ≜
∑N

i=1 D̃i. Without loss of generality, for ease of exposition, we

assume that all clients have the same per-sample loss function f(·).

Data Labeling. To participate in FL tasks, each client needs to maintain a local dataset Di.

In this chapter, we assume that the FL clients collaboratively train for classification ML tasks,

and each client needs to observe class labels corresponding to the feature information that she

holds. After observing the labels, each client i in the client set N obtains a dataset Di.

The labeling effort ei ∈ {0, 1} represents whether client i makes effort in labeling her data,

where ei = 1 and ei = 0 indicate making and not making effort, respectively. If client i makes

effort, then the labels in her dataset are correct; otherwise, the labels are randomly selected

from all possible classes without considering the corresponding features. We know that an

ML model trained on a correctly labeled dataset is more likely to make useful predictions than

a model trained on incorrectly labeled data. Therefore, making effort ei = 1 means higher

accuracy of the trained model than not making effort (We prove this intuition in Section 7.3.).

We assume that every client can fully control the amount of effort they make, and the server

does not have such information.

Local Model Computation. In each round of FL, clients communicate their local updates to

the server, and receive the updated global model from the server. In round t,1 each client i

receives the global model wt−1 from the server, sets wi
t,0 = wt−1, and then performs H local

iterations of SGD. In the hth local iteration, client i computes the average gradient git,h−1 of the

loss function using a mini-batch of Di data samples randomly drawn from her local dataset Di.

Then client i updates her local model as

1We use t and h as the index of communication rounds and local iterations, respectively. The subscript (t, h)
denotes the hth local iteration in round t.

180

wi
t,h = wi

t,h−1 − ηgit,h−1,

where

git,h−1 ≜
1

Di

Di∑
j=1

∇f(w, ξi,jt,h),

η is the step size, and ξi,jt,h is the jth data sample randomly drawn from client i’s local dataset

Di. After H local iterations, client i sends her local update wi
t,H for round t to the server.

The computation effort Di represents the mini-batch size client i uses to update her local

model in each round. Due to the randomness of data sampling for computing the update in

SGD, the computed gradient of a client could deviate from the expected gradient, and thus

slow down the convergence of the FL global model. It has been proved that the larger the mini-

batch size Di, the lower the variance of her local update [105]. Thus, a local update computed

with a larger mini-batch size benefits the FL training.

At the end of round t, the server aggregates clients’ local models and updates the global

model as

wt =
N∑
i=1

piw
i
t,H .

Effort Assignment. Before data labeling and local computation, the server assigns the labeling

effort e′i and computation effort D′
i to each client i and notifies client i of e′i and D′

i. The la-

beling effort e′i ∈ {0, 1} indicates whether the server desires client i to make effort in labeling,

and the computation effort D′
i indicates the mini-batch size that the server desires client i to use

to update her local model in each round. Clients’ effort assignments generally vary for differ-

ent clients due to their diverse characteristics (e.g., weight in model aggregation, computation

capability).

After being assigned effort e′i, each client i generates labels for the local dataset by making

actual effort ei. Since ei is a hidden action of client i, it is possible that client i manipulates ei

against the assignment e′i to her own advantage such that ei ̸= e′i.

Furthermore, a client incurs a computation cost (measured by the computation time, en-

ergy consumption, etc.) for computing a local model update, which depends on the computation

capability of the client and the mini-batch size used to compute the update. Thus, client i may

181

also have incentive to manipulate Di against the assignment D′
i to her own advantage such that

Di ̸= D′
i.

Local Model Reporting. When reporting the local model to the server, a client i may have

incentive to misreport her local model to her own advantage, i.e.,

wi
t = wt−1 − γiηg

i
t−1,

where γi ≥ 0, ∀i ∈ N is the model reporting coefficient, which is the multiple of gradient that

client i uses to update her local model2. When γi = 1, client i reports the actual local model to

the server, which is desired by the FL server. When γi ̸= 1, the gradient is reduced or increased.

In this case, the trained model of FL will be affected, and thus the training loss F (w).

7.3.2 Truthful Incentive Mechanism for FL

After the training process, the FL server tests the trained global model of FL to a data sample

ξ randomly drawn from a testing dataset D0. It is commonly assumed in existing studies that

the FL server can test the trained FL model (e.g., [131]). Then the server can determine each

client’s reward based on the testing loss f(wT , ξ) observed for the testing data sample ξ. Note

that the server only needs to test the trained model to a single random data sample fromD0. For

example, the testing can be performed when the server applies the trained model to an unseen

data sample for inference/prediction and observes its true label later.

Based on the testing loss f(wT , ξ), the server pays a reward ri to each client i, according

to a certain reward function:

ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ)), (7.2)

where e′
−i, D

′
−i, and γ ′

−i are other clients’ assigned data labeling and computation effort, and

model reporting coefficient, respectively. The reward function is pre-defined by the server, and

announced to all clients before they participate in FL. We can see that the reward depends on

2In this chapter, we assume that clients’ strategies do not change in FL training. We will study the case of
time-varying strategies in future work.

182

not only the assigned efforts and model reporting coefficient, but also the testing loss of the

final global model.

Each client i’s payoff is the difference between the reward paid by the server and her cost

in data labeling and computing her local model, given by

ui(ei, e
′, Di,D

′, γi,γ
′) ≜

ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))− cilei −

T∑
t=1

cipDi,
(7.3)

where e′, D′, and γ ′ are all clients’ assigned data labeling effort, computation effort, and model

reporting coefficient, respectively. The data labeling cost coefficient cil captures the resources

consumed by client i if she makes an effort, i.e., ei = 1, in data labeling, and the computation

cost coefficient cip is client i’s cost of computing her local update using one data sample. If

client i makes no effort, i.e., ei = 0, there incurs no cost. Here we assume that clients have the

same data labeling cost coefficient (i.e., cl = cil, ∀i ∈ N), and the labeling and computation cost

coefficients are known to the server. This assumption is reasonable when the costs of labeling

a client’s dataset and computing using a data sample are determined by uniform market prices

(e.g., in Amazon Mechanical Turk, a usual reward for labeling an image is $0.1). We can

also relax the restriction of the uniform labeling cost coefficient. Since a client i can only

affect the training loss through her actual ei, Di, and γi, we omit the loss function f(wT , ξ)

in the expression of client i’s utility ui. The detailed reward function design will be given in

Section 7.5.

The server’s payoff u0 is the negative training loss minus the total reward paid to the

clients, i.e.,

u0(e
′,D′,γ ′, f(wT , ξ)) ≜ −f(wT , ξ)−

∑
i∈N

ri. (7.4)

Since clients may manipulate their actual efforts and report untruthful local models, the

global model may be different from that when clients do not behave truthfully, i.e.,

wT |e′,D′,γ′ ̸= wT |e,D,γ .

183

This means that the final global model obtained with efforts and reported local model manipu-

lation cannot solve the FL problem given in (7.1). Nevertheless, the training loss of FL is also

affected, i.e.,

F (wT)|e′,D′,γ′ ̸= F (wT)|e,D,γ .

Furthermore, some clients’ manipulation would discourage other clients to participate in

FL. For the reasons we discussed above, here we aim to design a mechanism that can incentivize

clients to make data labeling and computation efforts as the server desired and upload their

actual local models. This can be achieved by properly defining the reward function ri. The

truthful mechanism should have the following features:

Definition 7.1 A mechanism achieves truthful strategies of all clients as a Nash equilibrium

(NE) if, given that all other clients truthfully make data labeling and computation effort as the

server desired and upload their actual local models, the best strategy for client i to maximize

her payoff is to behave truthfully, i.e.,

E[ui(e
′
i, e

′
−i,D

′
i,D

′
−i, γ

′
i,γ

′
−i)] ≥

E[ui(ei, e
′
−i, Di,D

′
−i, γi,γ

′
−i)],∀ei, Di, γi.

(7.5)

Another aspect we should notice is that the payoff of each client i should be non-negative,

so that the client will have the incentive to participate in the FL. This property is formally

known as individual rationality as stated below.

Definition 7.2 A mechanism is individually rational (IR) if for each client i, its expected pay-

off is non-negative if she behaves truthfully, i.e.,

E[ui(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i)] ≥ 0,∀ei, Di, γi. (7.6)

7.4 Training Loss Analysis

In this section, we characterize the performance bounds on the training loss as a function of

clients’ data labeling effort, local computation effort, and reported local models, which reveal

the impacts of these factors on the training loss.

184

We first make the following general assumptions on the loss functions F1, . . . , FN , ∀i ∈

N .

Assumption 7.1 F1, . . . , FN are L-smooth.

Assumption 7.2 F1, . . . , FN are µ-strongly convex.

Assumption 7.3 The variance of the stochastic gradient of a data sample in a device is bounded:

E ∥∇f (wt, ξ
i
m)−∇Fi (wt)∥

2 ≤ σ2
i , ∀i ∈ N , ∀t.

Assumption 7.4 The variance of the stochastic gradient of a data sample when the client

makes no effort on labeling is bounded: E
∥∥∇f (wt, ξ

i
m)−∇f

(
wt, ξ

i
m

′)∥∥2 ≤ β, ∀i ∈ N ,

∀t.

Assumption 7.5 The expected squared norm of stochastic gradients is bounded: E ∥∇Fi (wt)∥2 ≤

G2, ∀i ∈ N , ∀t.

In Assumption 4, we assume that the variance of the stochastic gradient of a data sample

when the client makes no labeling effort is upper bounded, and the bound β is known by the

server. The server can calculate the bound using the loss function and the range of the value of

data samples. Next, we use a simple example to demonstrate how to obtain the bound β. We

use a simple linear regression model to illustrate the convergence problem. Assume that the

loss function is given by

f
(
w, ξim

)
=

1

2
∥xi

mw − yim∥2, ∀i ∈ N .

A data sample with correct label is denoted as ξim = (xi
m, y

i
m). A data sample with incorrect

label is denoted as ξim
′
= (xi

m, y
i
m

′
).

The variance of the stochastic gradient of a data sample is

E
∥∥∥∇f (w, ξim

)
−∇f

(
w, ξim

′
)∥∥∥2

=∥(xi
mw − yim)x

i
m − (xi

mw − yim
′
)xi

m∥2

=∥(yim
′ − yim)x

i
m∥2 ≤ 2Y X,

185

where yim
2 ≤ Y and ∥xi

m∥2 ≤ X . Then we have β = 2Y X .

Theorem 7.1 Suppose Assumptions 1 to 5 hold, and the step size η ≤ 1
2L

. Then the FL training

loss is bounded above by:

E[F (wT)− F (w∗)] ≤ L(1− µη)THE ∥w0 −w∗∥2

+ 2Lη2
T∑
t=1

H∑
h=1

(1− µη)TH−(t−1)H−h

∑
i∈N

(
pi

2 σ
2
i

Di

+ 6Lpidi + pi(1− ei)β

+2pi
(
(γi − 1)2 + (H − 1)2

)(
G2 +

σ2
i

Di

+ (1− ei)β

))
,

(7.7)

where di ≜ E[Fi(w
∗)] − E[Fi(w

∗
i)] quantifies the heterogeneity degree of the data held by

client i [15].

The first term of the training loss bound decreases geometrically with the total number of

local iterations TH , and is due to that SGD in expectation makes progress towards the optimal

solution. The bound is also affected by other factors, i.e., the randomness of data sampling in

SGD for computing local updates p2i
σ2
i

Di
, the data heterogeneity of clients’ data pidi, the data

labeling effort level of each client pi(1− ei)β, the local model misreporting γi, and the number

of local iterations per round H . We can see that any γi ̸= 1 increases the training loss bound.

Thus, it is desired that all clients report their actual local model (i.e., γi = 1, ∀i ∈ N) to

minimize the training loss. Moreover, as the coefficients in the training loss bound depend on

the aggregation weight pi, a client with a higher weight pi has a larger impact on the training

loss than that with a lower weight pi.

The randomness of data sampling in SGD for computing local updates affects the training

loss, which depends on each clients’ mini-batch size Di in each iteration (i.e., computation

effort). We can observe that a larger mini-batch size Di reduces the training loss. The terms

involving ei depend on by the data labeling effort of each client. If client i makes effort in data

labeling, these terms equal to 0; otherwise, if client i makes no effort in data labeling, these

186

terms equal to piβ. Thus, it is desirable that all clients make data labeling effort (i.e., ei = 1,

∀i ∈ N) to minimize the training loss.

7.5 Truthful Incentive Mechanisms for Data Labeling Effort, Local Computation Effort, and

Local Model Elicitation

In this section, we first propose the LCEME mechanism that satisfy the truthful and IR prop-

erties to incentivize clients to make efforts as the server desired and report actual local models.

Then, we find the optimal computation effort assignment under the LCEME mechanism that

maximizes the server’s payoff.

7.5.1 LCEME Mechanism Design

We first present the design of LCEME mechanism.

Definition 7.3 Given the data labeling effort assignment e′i = 1, the model reporting coeffi-

cient assignment γ′
i = 1, and any computation effort assignment D′

i, the LCEME mechanism’s

reward function for client i, ∀i ∈ N , is given by

ri(e
′
i,e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))

= Ω(D′)− Φ(D′
i)f(wT , ξ) + cl,

(7.8)

where
Ω(D′) = Φ(D′

i)
(
L(1− µη)THE ∥w0 −w∗∥2 +

A
∑
i∈N

(6Lpidi + pi
2 σ

2
i

D′
i

+ 2pi(H − 1)2(G2 +
σ2
i

D′
i

))

)
+ TcipD

′
i,

e′ = 11×N , γ ′ = 11×N , Φ(D′
i) =

D′
i
2cipT

Aσ2
i pi(pi+2(H−1)2)

, A = 2Lη 1−(1−µη)TH

µ
, and the assigned

computation effort D′
i satisfies D′

i ≥ σi

√
clpi(pi+2(H−1)2)
βcipT (1+2(H−1)2)

.

Note that the reward function depends on the testing loss which is observed by the server.

In this paper, for ease of exposition, we assume that the expected testing loss is equal to the

training loss. This assumption is reasonable: in practice, the entire training dataset of FL (i.e.,

∪Ni=1Di) is often a good representation of the testing dataset D0, so that the expected testing

187

loss is well approximated by the training loss. Based on this assumption, the expected payoff

of client i is given by:

Eξ[ui(ei, e
′
−i, Di,D

′
−i, γi,γ

′
−i)]

= Eξ[ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))]− clei − TcipDi

= Ω(D′)− Φ(D′
i)F (wT) + cl − clei − TcipDi

(7.9)

where ξ is a random data sample drawn from the testing dataset D0.

Next, based on Theorem 7.1, we approximate the expected training loss F (wT) in terms of

the optimal training loss F (w∗) plus the upper bound on the training loss gap given in the right-

hand-side of (7.7). Then we assume that each client uses ûi as her expected payoff function,

where ûi is defined as (7.9) with F (wT) replaced by the right-hand-side of (7.7) (the optimal

training loss term F (w∗) is omitted as it does not affect the truthful mechanism design). This

is a reasonable assumption since 1) a client cannot find the expected training loss F (wT), but

can find the upper bound in (7.7); 2) using the upper bound on the training loss gap can capture

the worst case of the client’s expected payoff. Therefore, in the rest of this paper, each client

determines her strategic behavior for maximizing the payoff function ûi.

In the following, we use two theorems to prove that the LCEME mechanism satisfies the

truthful and IR properties defined in Definition 7.1 and 7.2, with respect to the clients’ payoff

functions ûi.

Theorem 7.2 The LCEME mechanism is truthful.

We show how the LCEME mechanism achieves the truthful property using three lemmas.

Lemma 7.1 Under the LCEME mechanism, given that client i makes any data labeling effort

ei and computation effort Di, her optimal reported local model is her true local model, i.e.,

γi = 1.

It can be shown that the expected payoff of client i is a convex function of γi. We can

obtain the result of Lemma 7.1 by calculating the partial derivative of the expected payoff of

client i with respect to γi and letting the derivative equal to 0.

188

Using Lemma 7.1, we can express client i’s approximated expected payoff ûi as

ûi(ei, Di, D
′
i) = Φ(D′

i)A(pi
2 σ

2
i

D′
i

+ 2pi(H − 1)2
σ2
i

D′
i

) + TcipD
′
i

− Φ(D′
i)A

(
p2i

σ2
i

Di

+ pi(1− ei)β

+2pi(H − 1)2(
σ2
i

Di

+ (1− ei)β)

)
+ cl − clei − TcipDi.

Lemma 7.2 Under the LCEME mechanism, given that clients report their optimal local models

γi = 1, ∀i ∈ N , and client i makes any computation effort, client i’s optimal actual effort is

the desired effort, i.e., ei = 1.

Then, we show that, when client i makes any labeling effort, her expected payoff is always

lower than that when she makes effort:

ûi(1, Di, D
′
i)− ûi(ei, Di, D

′
i)

=
D′

i
2cipT (1 + 2(H − 1)2)

σ2
i p

2
i (pi + 2(H − 1)2)

pi(1− ei)β − cl + clei

=(
D′

i
2cipT (1 + 2(H − 1)2)β

σ2
i pi(pi + 2(H − 1)2)

− c)(1− ei)

≥(c− c)(1− ei) ≥ 0,

where the inequality follows from the constraint on D′
i.

Using Lemma 7.1 and Lemma 7.2, we can express client i’s approximated expected payoff

ûi as

ûi(Di, D
′
i) =− Φ(D′

i)A(p
2
i

σ2
i

Di

+ 2pi(H − 1)2
σ2
i

Di

)− TcipDi

+ Φ(D′
i)A(pi

2 σ
2
i

D′
i

+ 2pi(H − 1)2
σ2
i

D′
i

) + TcipD
′
i.

Lemma 7.3 Given that clients report their optimal local models γi = 1 and make effort in data

labeling ei = 1, ∀i ∈ N , client i’s optimal actual computation effort is the desired computation

effort, i.e., Di = D′
i.

Now that the expected payoff is a convex function of client i’s actual computation effort

Di, we can obtain client i’s optimal actual computation effort Di by calculating the partial

189

derivative of the expected payoff of client i with respect to Di and letting the derivative equal

to 0, which is the desired computation effort D′
i.

Given the definition of truthful mechanisms (Definition 7.1), the LCEME mechanism is

truthful. □

Theorem 7.3 The LCEME mechanism is IR.

Here we discuss the rationale of the LCEME mechanism. The server’s goal is to incen-

tivize clients to make actual data labeling and computation effort as desired by the server and

report their true local models. Thus, client i’s reward function ri should be a function of her

actual efforts (ei and Di) and model report coefficient (γi). Otherwise, clients can deceive the

server to gain more rewards. Thus, we design the reward function as a function of the training

loss, which has been proved to be determined by clients’ actual efforts and model reporting

strategies in Theorem 7.1. In the refined reward function, client i’s optimal strategy to max-

imize her expected payoff is to make data labeling and computation efforts as desired by the

server and report her actual local model.

7.5.2 Optimal Computation Effort Assignment

A desirable objective for the server is to find the optimal assignment that maximizes her ex-

pected payoff.

Definition 7.4 The server’s optimal assignment D∗ for LCEME mechanism is the assignment

function D′ that maximizes the server’s payoff, i.e.,

D∗ ≜ argmax
D′

E[u0(D
′, f(wT , ξ))]

s.t. D∗
i ≥

√
clσ2

i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)
, ∀i ∈ N .

(7.10)

The constraint in (7.10) is to make sure that the LCEME mechanism is truthful.

190

The problem given in (7.10) is equivalent to the problem:

D∗ ≜ argmin
D′

{
F (wT)− F (w∗) +

∑
i∈N

ri

}
,

s.t. D∗
i ≥

√
clσ2

i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)
,∀i ∈ N ,

(7.11)

where F (w∗) can be seen as a constant.

From the above problem formulation, we observe that there exists a tradeoff between the

FL training loss and the server’s payment to clients. We know that the training loss reduces

when clients use larger mini-batch sizes to compute their local updates from Theorem 7.1.

However, using larger mini-batch sizes increases the server’s payment. Therefore, we aim to

find the optimal computation effort (in the form of mini-batch size) assignment for each client

to maximize the server’s payoff.

Theorem 7.4 The server’s optimal computation effort allocation is given by

D∗
i = max

{√
A(p2iσ

2
i + 2pi(H − 1)2)

cipT
,√

clσ2
i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)

}
,∀i ∈ N .

From Theorem 7.4, we can see that the server’s optimal computation effort for a client i

increases with her weight pi and gradient variance σ2
i . This is because when client i has a larger

pi and/or σ2
i , the effect of the randomness of her SGD computation per data sample on the global

model will be larger. From Theorem 7.1, we know that a larger mini-batch size Di reduces the

randomness of data sampling in SGD. Thus, assigning a larger computation effort for client i

can reduce the training loss. We also see that D∗
i decreases as client i’s computation cost cip

increases. This is because a larger computation cost increases the reward paid by the server.

When a client’s computation cost is large, the server prefers to allocate a smaller mini-batch

size to the client to reduce the payment. We can also show that a client’s optimal mini-batch

size increases as the number of local iterations H increases. This is because a local update’s

191

0 5 10 15 20 25 30

Number of rounds

0

1

2

3

4

5

6

7

8

T
ra

in
in

g
 lo

ss

D
i
=50, e

i
=1

D
i
=100, e

i
=1

D
i
=50, e

i
=0, i [1,N/5], e

i
=1,i [N/5+1,N]

Figure 7.2: Impact of effort level on the training loss.

0 5 10 15 20 25 30

Number of rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
o

d
e

la
cc

u
ra

cy

D
i
=50, e

i
=1

D
i
=100, e

i
=1

D
i
=50, e

i
=0, i [1,N/5], e

i
=1,i [N/5+1,N]

Figure 7.3: Impact of effort level on the model accuracy.

quality can be improved by using a larger mini-batch size, and thus reduce the error caused by

performing multiple local iterations.

7.6 Simulation Results

In this section, we conduct real data based simulations to validate the theoretical findings and

evaluate the LCEME mechanism. We first describe the simulation setups, and then we present

the evaluation results and analyses.

We implement a simulated system consisting of a server and 10 clients. We use the widely

used MNIST dataset [141] for simulations in Matlab. Each training element is a handwritten

digit picture that represents numbers from 0 to 9. Each client conducts one layer of CNN for

one local iteration in each round (H = 1). We denote the heterogeneity degree of a client’s

dataset as the percentage of data with labels the same as the last digit of the client’s index.

192

0 5 10 15 20 25 30

Number of rounds

0

1

2

3

4

5

6

7

8

.
i
=1

.
i
=0, i2 [1,N/5]; .

i
=1, i2 [1+N/5,N];

.
i
=2, i2 [1,N/5]; .

i
=1, i2 [1+N/5,N];

Figure 7.4: Impact of model reporting coefficient on the training loss.

0 5 10 15 20 25 30

Number of rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.
i
=1

.
i
=0, i2 [1,N/5]; .

i
=1, i2 [1+N/5,N];

.
i
=2, i2 [1,N/5]; .

i
=1, i2 [1+N/5,N];

Figure 7.5: Impact of model reporting coefficient on the model accuracy.

20 40 60 80 100

Computation effort

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
lie

n
t

p
a

yo
ff

e
1
=1,r

1
=1

e
1
=0,r

1
=1

e
1
=1,r

1
=2

e
1
=0,r

1
=2

Figure 7.6: Impact of clients’ behavior on the payoff.

193

1 1.5 2 2.5 3 3.5 4

Number of total rounds

-20

-18

-16

-14

-12

-10

-8

-6

S
e

rv
e

r
p

a
yo

ff

D
i
=D

i
*

D
i
=mean(D

i
*)

D
i
=100

Figure 7.7: Impact of computation effort allocation on server’s payoff.

For the remaining data of the client, we uniformly draw the training data samples from the

entire training set. Unless otherwise specified, client i’s heterogeneity degree is 0.4, and the

mini-batch size is Di = 50.

7.6.1 Impact of Clients’ Strategies on Training Loss

We first compare the training loss while clients’ data labeling and computation efforts changes.

From Figs. 7.2 and 7.3, we can see that the training loss decreases and the model accuracy

increases as Di increases. We also observe that when there exist clients make no effort in data

labeling, the training loss increases and the model accuracy decreases. The observations con-

form to our theoretical result in Theorem 7.1. We also compare the training loss while clients

report local models with different model reporting coefficients and truthfully make efforts. We

observe from Figs. 7.4 and 7.5 that the training loss is minimized when all clients report their

actual local model. When there exist clients report local model untruthfully, the training loss

increases and the model accuracy decreases. This conforms to the result in Theorem 7.1 that

the more clients truthfully report local models, the lower the training loss. We also observe

that, although the training loss bounds are the same when γi = 0 and γi = 1, the training loss

is lower when γ = 0. Figs. 7.2, 7.3, 7.4, and 7.5 demonstrates that, when clients truthfully

make efforts and report local models, the training loss is minimized and the model accuracy is

maximized.

194

7.6.2 Impact of Truthfulness on Clients’ Payoff

We compare a client’s payoff while making the desired data labeling effort e1 = 1 or not

e1 = 0, and reporting the actual local model γ1 = 1 or not γ1 ̸= 1, as the computation effort

D1 changes. The assigned computation effort D′
1 = 60. We let other clients behave truthfully.

We observe from Fig. 7.6 that a client’s payoff, when she makes data labeling and computation

effort as the server desired and reports actual local model, is always higher than that when

her behavior is untruthful. Furthermore, we also observe that the client’s payoff is positive

when she behave truthfully. The simulation results demonstrate that the LCEME mechanism is

truthful and achieves the IR property.

7.6.3 Server’s Payoff

We compare the server’s payoff while clients make different computation efforts. From Fig.

7.7, we can see that the server’s payoff is maximized when clients make the server’s optimal

computation effort. When clients do not make the optimal computation effort, the server’s pay-

off is lower even if the total computation effort of clients is the same as the optimal computation

effort allocation. This is because, in the former case, the computation effort allocation does not

care about clients’ heterogeneous computation cost and thus causes higher computation costs.

We also simulate the case where clients’ computation effort Di = 100 is always higher than

the optimal computation effort. We observe that among three cases, this case results in the

lowest server’s payoff. This is because clients’ computation costs are ignored when assigning

Di, resulting in an increase in the server cost.

7.7 Conclusion

In this paper, we studied FL with crowdsourced data labels, where the local data of each par-

ticipating client are labeled manually by the client. We characterized the performance bounds

on the training loss as a function of clients’ data labeling effort, local computation effort, and

reported local models. We then devised truthful incentive mechanisms which motivate strategic

195

clients to make truthful efforts as desired by the server in data labeling and local model compu-

tation, and also report true local models to the server based on the derived performance bound.

Simulations based on real data are demonstrated the efficacy of the proposed algorithms.

7.8 Appendix

7.8.1 Proof of Theorem 7.1

We define a virtual sequence w̄t,h, given by w̄t,h =
∑

i∈N piw
i
t,h,∀t, h. Note that w̄t,h is not

accessible when clients have not completed H local iterations (i.e., h < H), and wt = w̄t,H .

∥w̄t,H −w∗∥2 =

∥∥∥∥∥w̄t,H−1 −w∗ − η
∑
i∈N

γipig
i
t,H−1

′

∥∥∥∥∥
2

≤

2 ∥w̄t,H−1 − ηḡt,H−1 −w∗∥2︸ ︷︷ ︸
A1

+2

∥∥∥∥∥ηḡt,H−1 − η
∑
i∈N

γipig
i
t,H−1

′

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

(7.12)

where git,h
′ is the gradient when client i makes any data labeling effort, ḡt,h ≜

∑
i∈N piḡ

i
t,h ≜∑

i∈N piE[git,h], and git,h is the gradient when client i makes data labeling effort.

A1 = ∥w̄t,H−1 −w∗∥2 + η2∥ḡt,H−1∥2︸ ︷︷ ︸
B1

− 2η ⟨w̄t,H−1 −w∗, ḡt,H−1⟩︸ ︷︷ ︸
B2

. (7.13)

For B2, we have

B2 = −2η
∑
i∈N

pi⟨w̄t,H−1 −wi
t,H−1, ḡ

i
t,H−1⟩ − 2η

∑
i∈N

pi⟨wi
t,H−1 −w∗, ḡit,H−1⟩.

We use the convexity of ∥·∥2 and the L-smoothness of Fi to bound B1, the Cauchy-Schwarz

inequality and AM-GM inequality to bound the first term of B2, and the µ-strong convexity of

196

Fi to bound the second term of B2. We have

A1 ≤ ∥w̄t,H−1 −w∗∥2 + 2Lη2
∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i))

+
∑
i∈N

pi

(∥∥w̄t,H−1 −wi
t,H−1

∥∥2 + η2
∥∥ḡit,H−1

∥∥2)
−2η

∑
i∈N

pi

(
Fi(w

i
t,H−1)− Fi(w

∗) +
µ

2

∥∥wi
t,H−1 −w∗∥∥2)

≤ (1− µη) ∥wt,H−1 −w∗∥2 +
∑
i∈N

pi
∥∥w̄t,H−1 −wi

t,H−1

∥∥2
+ 4Lη2

∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i))

−2η
∑
i∈N

pi
(
Fi(w

i
t,H−1)− Fi(w

∗)
)
,

in which we denote the last two lines as C1.

C1 = 4Lη2
∑
i∈N

pi(Fi(w
∗)− Fi(w

∗
i))

− 2η(1− 2Lη)
∑
i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗))

≤4Lη2
∑
i∈N

pidi − 2η(1− 2Lη)

(
−
∑
i∈N

pi

(ηL (Fi(w̄t,H−1 − Fi(w
∗
i)) +

1

2η

∥∥wi
t,H−1 − w̄t,H−1

∥∥2 + Fi(w̄t,H−1)− Fi(w
∗))

)
.

≤2η(1− 2Lη)(ηL− 1)
∑
i∈N

pi (Fi(w̄t,H−1 − Fi(w
∗
i))

+ (4Lη2 + 2Lη2(1− 2Lη))
∑
i∈N

pidi + (1− 2Lη)
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2
≤6Lη2

∑
i∈N

pidi +
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2 .
Thus we can further bound A1 as

E[A1] ≤ (1− µη) ∥w̄t,H−1 −w∗∥2

+ 6Lη2
∑
i∈N

pidi + 2
∑
i∈N

pi
∥∥wi

t,H−1 − w̄t,H−1

∥∥2 . (7.14)

197

Next, we bound

∑
i∈N

piE
∥∥w̄t,h −wi

t,h

∥∥2 ≤∑
i∈N

piE
∥∥wi

t,h −wt,1

∥∥2
≤η2

∑
i∈N

piE∥
H−1∑
h=1

git,h
′∥2 ≤ η2(H − 1)

∑
i∈N

pi

H−1∑
h=1

E∥git,h
′∥2.

(7.15)

Using Assumption 7.4, we have

E∥git,h − git,h
′∥2 = E∥ 1

Di

∑
j

(∇fi(wt,h, ξ
i,j
t)−∇fi(wt,h, ξ

i,j
t

′
))∥2

≤ 1

Di

∑
j

Eξi,jt
′|ξi,jt

[
∥(∇fi(wt,h, ξ

i,j
t)−∇fi(wt,h, ξ

i,j
t

′))∥2
]

≤ (1− ei)β.

(7.16)

From [105], we have

E
∥∥ḡit,h − git,h

∥∥2 ≤ σ2
i

Di

. (7.17)

From (7.16), (7.17), and Assumption 5, we have

E
∥∥∥git,h′∥∥∥2 = E

∥∥∥git,h′ − git,h + git,h − ḡit,h + ḡit,h

∥∥∥2
≤2E

∥∥∥git,h′ − git,h

∥∥∥2 + 2E
∥∥git,h − ḡit,h

∥∥2 + 2E
∥∥ḡit,h∥∥2

≤2(1− ei)β +
2σ2

i

Di

+ 2G2.

(7.18)

Thus we can bound (7.15) as

∑
i∈N

piE
∥∥w̄t,h −wi

t,h

∥∥2
≤2η2(H − 1)2

∑
i∈N

pi((1− ei)β +
σ2
i

Di

+G2).

(7.19)

198

Next, we bound A2. From (7.17) and (7.18), we have

E[A2] =

∥∥∥∥∥ηḡt,H−1 − η
∑
i∈N

γipig
i
t,H−1

′

∥∥∥∥∥
2

=η2E

∥∥∥∥∥ḡt,H−1 − gt,H−1 + gt,H−1 +
∑
i∈N

γipig
i
t,H−1

′

∥∥∥∥∥
2

≤2η2E ∥ḡt,H−1 − gt,H−1∥2 + 2η2E
∥∥g′t,H−1 − gt,H−1

∥∥2
+ 2η2

∑
i∈N

pi(γi − 1)2E
∥∥∥git,H−1

′
∥∥∥2

≤2η2
∑
i∈N

(pi
2 σ

2
i

Di

+ pi(1− ei)β

+ 2pi(γi − 1)2(G2 +
σ2
i

Di

+ (1− ei)β)).

(7.20)

Combining (7.12), (7.14), (7.19), and (7.20), we have

E ∥wT,H −w∗∥2

≤2(1− µη) ∥wT,H−1 −w∗∥2 + 12Lη2
∑
i∈N

pidi

+ 4η2
∑
i∈N

(pi
2 σ

2
i

Di

+ pi(1− ei)β)

+ 4η2
∑
i∈N

pi((γi − 1)2 + 2(H − 1)2)(G2 +
σ2
i

Di

+ (1− ei)β).

Using induction and the smoothness of F , we have (7.7).

7.8.2 Proof of Theorem 7.3

Given that all users behave truthfully, the expected payoff of user i, ∀i is given by

E[ui] = Ω(D′)− Φ(D′
i)F (wT) + cl − cle

′
i − TcipD

′
i.

≥Φ(D′
i)(F (wT)− F (w∗)) + TcipD

′
i

− Φ(D′
i)(F (wT)− F (w∗)) + cl − cle

′
i − TcipD

′
i = 0.

199

7.8.3 Proof of Theorem 7.4

The total expected reward paid by the server is bounded by
∑

i∈N ri ≥
∑

i∈N (cl + TcipDi).

Using (7.7), we have

F (wT)− F (w∗) +
∑
i∈N

ri ≤ L(1− µη)THE ∥w0 −w∗∥2

+
∑
i∈N

(A(pi
2 σ

2
i

Di
t

+ 6Lpidi + 2pi(H − 1)2
σ2
i

Di
t

) + cl + TcipDi).

It can be shown that the above upper bound is a convex function of Di. The optimal mini-

batch size Di
∗ can be obtained by calculating the partial derivative of the bound with respect to

Di and letting the derivative equals to 0.

200

Chapter 8

Summary and Future Works.

8.1 Summary

In this dissertation, we have studied quality-aware data crowdsourcing and federated learning

in wireless networks. For quality-aware data crowdsourcing, we study truthful incentive mech-

anisms that elicit workers’ private information with privacy-preserving property, and data poi-

soning attacks on dynamic crowdsourcing. For WFL, we first study quality-aware distributed

computation for FL, which controls the quality of users’ local updates via the sampling sizes.

We study the performance bounds on the training loss as a function of local updates’ quality

over the training process for different FL setting, and develop cost-effective dynamic distributed

learning algorithms that adaptively select participating users and their mini-batch sizes, based

on users’ costs in wireless networks. We first study IID and non-IID cases for convex setting.

Then, we investigate non-convex setting and asynchronous setting with IID data. Given the

commonality of data crowdsourcing and labeling quality of the training data of FL, we study

the impact of the strategic behavior of FL clients and develop incentive mechanisms that incen-

tivize strategic clients to make truthful efforts as desired by the server in local data labeling and

local model computation, and also report true local models to the server.

8.2 Future Works

In this Section, we discuss some possible future work directions following the works in previous

chapters.

201

8.2.1 Non-Convex and Asynchronous FL with Non-IID Data

One direction is to consider non-convex and asynchronous FL where users have non-IID local

data. In many practical situations, users’ local datasets are non-IID due to various reasons (eg,

location, device, user behavior, etc). From the training loss analysis of convex synchronous

FL with non-IID data, we observer that users’ data heterogeneity slows down the convergence

of the global model of FL and can not be eliminated by increasing the mini-batch sizes or

decreasing the learning rates. It is worthwhile to study how the training loss of non-convex and

asynchronous FL is affected by the data heterogeneity. Furthermore, based on the new training

loss bound, the optimal mini-batch size and user selection design for channel-aware adaptive

algorithms can be very different from in the IID data set.

8.2.2 Heterogeneous Number of Local Iterations

Another direction is to study the case when users perform multiple numbers of local iterations.

Different from the setting where users perform a single iteration of local SGD and send their

local updates to the server for global aggregation in each round t, users can perform multiple

local iterations of SGD before global aggregation at the server. In this case, the server updates

the global model only in the rounds when users send in their local updates. When users perform

multiple numbers of local iterations, the training loss is affected by the additional randomness

of multiple local updates.

Furthermore, when users perform heterogeneous numbers of local iterations and have non-

IID local data, the learned global model may not be consistent with the objective of FL. Due to

the heterogeneity in the local learning process at each client, the actual learned FL model may

deviate from some users’ local optimal model, which is not the purpose of FL. In this situation,

it is important to know the difference between the actual learned FL model and the initial FL

objective and study how to make use of the bias to achieve better performance.

202

References

[1] OpenSignal: 3G and 4G LTE Cell Coverage Map. [Online]. Available: https:

//opensignal.com/

[2] Google Maps. [Online]. Available: https://maps.google.com/

[3] Atmos: Crowd sensing weather platform. [Online]. Available: http://beja.m-iti.org/web/

?q=node/1

[4] “Amazon Mechanical Turk is a marketplace for work.” [Online]. Available:

https://www.mturk.com/

[5] “reCAPTCHA: Easy on humans, tough on bots.” [Online]. Available: http:

//www.google.com/recaptcha

[6] “Crowdin: A localization project management platfom and translation tool.” [Online].

Available: https://crowdin.com

[7] B. Zhu, J. Wang, L. He, and J. Song, “Joint transceiver optimization for wireless commu-

nication phy using neural network,” IEEE Journal on Selected Areas in Communications,

vol. 37, no. 6, pp. 1364–1373, 2019.

[8] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless scheduling,” IEEE

Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1248–1261, 2019.

[9] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple access for het-

erogeneous wireless networks,” IEEE Journal on Selected Areas in Communications,

vol. 37, no. 6, pp. 1277–1290, 2019.

203

[10] X. Tao, Y. Duan, M. Xu, Z. Meng, and J. Lu, “Learning qoe of mobile video transmission

with deep neural network: A data-driven approach,” IEEE Journal on Selected Areas in

Communications, vol. 37, no. 6, pp. 1337–1348, 2019.

[11] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement learning for

real-time optimization in nb-iot networks,” IEEE Journal on Selected Areas in Commu-

nications, vol. 37, no. 6, pp. 1424–1440, 2019.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceed-

ings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[13] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine

learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[14] S. U. Stich, “Local sgd converges fast and communicates little,” in International Con-

ference on Learning Representations (ICLR), 2019.

[15] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of FedAvg on

non-IID data,” in International Conference on Learning Representations (ICLR), 2020.

[16] G. Ding, J. Wang, Q. Wu, L. Zhang, Y. Zou, Y.-D. Yao, and Y. Chen, “Robust spectrum

sensing with crowd sensors,” IEEE Transactions on Communications, vol. 62, no. 9, pp.

3129–3143, 2014.

[17] Waze: Outsmarting traffic, together. [Online]. Available: https://www.waze.com/

[18] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard,

R. West, and P. Boda, “PEIR, the personal environmental impact report, as a platform

for participatory sensing systems research,” in ACM International Conference on Mobile

systems, applications, and services (MobiSys), 2009.

[19] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-phone: An end-to-

end participatory urban noise mapping system,” in ACM/IEEE International Conference

on Information Processing in Sensor Networks (IPSN), 2010.

204

[20] SmartRoadSense: A crowd sensing application for the continued mon-

itoring of road quality. [Online]. Available: http://informatica.uniurb.it/

smartroadsense-crowdsensing-civico/

[21] X. Wang, X. Wang, and S. Mao, “CiFi: Deep convolutional neural networks for indoor

localization with 5GHz Wi-Fi,” in IEEE International Conference on Communications

(ICC), 2017.

[22] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: Incentive

mechanism design for mobile phone sensing,” in ACM Annual International Conference

on Mobile Computing and Networking (MobiCom), 2012.

[23] I. Koutsopoulos, “Optimal incentive-driven design of participatory sensing systems,” in

IEEE International Conference on Computer Communications (INFOCOM), 2013.

[24] X. Gong and N. Shroff, “Truthful mobile crowdsensing for strategic users with private

qualities,” in International Symposium on Modeling and Optimization in Mobile, Ad

Hoc, and Wireless Networks (WiOpt), 2017.

[25] Y. Luo, N. B. Shah, J. Huang, and J. Walrand, “Parametric prediction from parametric

agents,” in The 10th Workshop on the Economics of Networks, Systems and Computation

(NetEcon), 2015.

[26] Y. Cai, C. Daskalakis, and C. H. Papadimitriou, “Optimum statistical estimation with

strategic data sources,” in Conference on Learning Theory (COLT), 2015.

[27] Y. Liu and Y. Chen, “A bandit framework for strategic regression,” in Advances in Neural

Information Processing Systems, 2016, pp. 1821–1829.

[28] ——, “Machine-learning aided peer prediction,” in ACM Conference on Economics and

Computation (EC), 2017.

[29] D. R. Karger, S. Oh, and D. Shah, “Budget-optimal crowdsourcing using low-rank ma-

trix approximations,” in IEEE Annual Allerton Conference on Communication, Control,

and Computing (Allerton), 2011.

205

[30] D. Lee, J. Kim, H. Lee, and K. Jung, “Reliable multiple-choice iterative algorithm for

crowdsourcing systems,” in ACM International Conference on Measurement and Mod-

eling of Computer Systems (SIGMETRICS), 2015.

[31] G. Bianchi, C. Carusi, and L. Bracciale, “An online approach for joint task assignment

and worker evaluation in crowd-sourcing,” in 2017 International Symposium on Net-

works, Computers and Communications (ISNCC). IEEE, 2017, pp. 1–8.

[32] Y. Bachrach, T. Graepel, T. Minka, and J. Guiver, “How to grade a test without know-

ing the answers—a bayesian graphical model for adaptive crowdsourcing and aptitude

testing,” arXiv preprint arXiv:1206.6386, 2012.

[33] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer

series in statistics New York, 2001.

[34] S. M. Kay, “Fundamentals of statistical signal processing, volume i: Estimation theory,”

1993.

[35] M. Xiao, J. Wu, S. Zhang, and J. Yu, “Secret-sharing-based secure user recruitment pro-

tocol for mobile crowdsensing,” in IEEE International Conference on Computer Com-

munications (INFOCOM), 2017.

[36] C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian, “A lightweight privacy-preserving truth

discovery framework for mobile crowd sensing systems,” in IEEE International Confer-

ence on Computer Communications (INFOCOM), 2017.

[37] X. Tang, C. Wang, X. Yuan, and Q. Wang, “Non-interactive privacy-preserving truth dis-

covery in crowd sensing applications,” in IEEE International Conference on Computer

Communications (INFOCOM), 2018.

[38] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Founda-

tions and Trends in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.

206

[39] H. Jin, L. Su, B. Ding, K. Nahrstedt, and N. Borisov, “Enabling privacy-preserving in-

centives for mobile crowd sensing systems,” in IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), 2016.

[40] X. Jin and Y. Zhang, “Privacy-preserving crowdsourced spectrum sensing,” in IEEE

International Conference on Computer Communications (INFOCOM), 2016.

[41] J. Lin, D. Yang, M. Li, J. Xu, and G. Xue, “Frameworks for privacy-preserving mobile

crowdsensing incentive mechanisms,” IEEE Transactions on Mobile Computing, vol. 17,

no. 8, pp. 1851–1864, 2017.

[42] Z. Wang, J. Li, J. Hu, J. Ren, Z. Li, and Y. Li, “Towards privacy-preserving incentive for

mobile crowdsensing under an untrusted platform,” in IEEE International Conference

on Computer Communications (INFOCOM), 2019.

[43] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “INCEPTION: Incentivizing privacy-

preserving data aggregation for mobile crowd sensing systems,” in ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2016.

[44] L. Yang, M. Zhang, S. He, M. Li, and J. Zhang, “Crowd-empowered privacy-preserving

data aggregation for mobile crowdsensing,” in International Symposium on Mobile Ad

Hoc Networking and Computing (MobiHoc). ACM, 2018, pp. 151–160.

[45] W. Wang, L. Ying, and J. Zhang, “The value of privacy: Strategic data subjects, incen-

tive mechanisms and fundamental limits,” in ACM International Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS), 2016.

[46] J. Wang, J. Tang, D. Yang, E. Wang, and G. Xue, “Quality-aware and fine-grained in-

centive mechanisms for mobile crowdsensing,” in IEEE International Conference on

Distributed Computing Systems (ICDCS), 2016.

[47] Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi, “Personalized privacy-

preserving task allocation for mobile crowdsensing,” IEEE Transactions on Mobile

Computing, vol. 18, no. 6, pp. 1330–1341, 2018.

207

[48] W. Jin, M. Xiao, M. Li, and L. Guo, “If you do not care about it, sell it: Trading loca-

tion privacy in mobile crowd sensing,” in IEEE International Conference on Computer

Communications (INFOCOM), 2019.

[49] Y. Liu and M. Liu, “An online learning approach to improving the quality of crowd-

sourcing,” in ACM International Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS), 2015.

[50] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information aware incentive

mechanisms for mobile crowd sensing systems,” in ACM International Symposium on

Mobile Ad Hoc Networking and Computing (MobiHoc), 2015.

[51] H. Jin, L. Su, and K. Nahrstedt, “CENTURION: Incentivizing multi-requester mobile

crowd sensing,” in IEEE International Conference on Computer Communications (IN-

FOCOM), 2017.

[52] X. Zhang and X. Gong, “Online data quality learning for quality-aware crowdsens-

ing,” in IEEE International Conference on Sensing, Communication and Networking

(SECON), 2019.

[53] Y. Zhao and X. Gong, “Truthful quality-aware data crowdsensing for machine learn-

ing,” in IEEE International Conference on Sensing, Communication and Networking

(SECON), 2019.

[54] L. Pu, X. Chen, J. Xu, and X. Fu, “Crowdlet: Optimal worker recruitment for self-

organized mobile crowdsourcing,” in IEEE International Conference on Computer Com-

munications (INFOCOM), 2016.

[55] H. Zhang, B. Liu, H. Susanto, G. Xue, and T. Sun, “Incentive mechanism for proximity-

based mobile crowd service systems,” in IEEE International Conference on Computer

Communications (INFOCOM), 2016.

[56] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory.

Cambridge University Press, 2007, vol. 1.

208

[57] Y. Liu and Y. Chen, “Learning to incentivize: Eliciting effort via output agreement,”

International Joint Conference on Artificial Intelligence (IJCAI), 2016.

[58] H. Jin, L. Su, and K. Nahrstedt, “Theseus: Incentivizing truth discovery in mobile crowd

sensing systems,” in ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc), 2017.

[59] C.-J. Ho, S. Jabbari, and J. W. Vaughan, “Adaptive Task Assignment for Crowdsourced

Classification,” p. 9.

[60] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar, “Differentially private combi-

natorial optimization,” in Proceedings of the twenty-first annual ACM-SIAM symposium

on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2010, pp.

1106–1125.

[61] F. McSherry and K. Talwar, “Mechanism design via differential privacy.” in FOCS,

vol. 7, 2007, pp. 94–103.

[62] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in

private data analysis,” Journal of Privacy and Confidentiality, vol. 7, no. 3, pp. 17–51,

2016.

[63] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi, “CRAW-

DAD dataset roma/taxi (v. 2014-07-17),” Downloaded from https://crawdad.org/roma/

taxi/20140717, Jul. 2014.

[64] X. Gong and N. Shroff, “Incentivizing truthful data quality for quality-aware mobile data

crowdsourcing,” in ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc), 2018.

[65] C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, “Towards data poisoning at-

tacks in crowd sensing systems,” in Proceedings of the Eighteenth ACM International

Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2018, pp. 111–120.

209

[66] E. D. Klenske and P. Hennig, “Dual control for approximate Bayesian reinforcement

learning,” Journal of Machine Learning Research, vol. 17, no. 8, pp. 1–30, 2016.

[67] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation indices. John

Wiley Sons, 2011.

[68] F. Liu and N. Shroff, “Data poisoning attacks on stochastic bandits,” arXiv preprint

arXiv:1905.06494, 2019.

[69] Y. Ma, K.-S. Jun, L. Li, and X. Zhu, “Data poisoning attacks in contextual bandits,” in

International Conference on Decision and Game Theory for Security. Springer, 2018,

pp. 186–204.

[70] K.-S. Jun, L. Li, Y. Ma, and J. Zhu, “Adversarial attacks on stochastic bandits,” in Ad-

vances in Neural Information Processing Systems, 2018, pp. 3640–3649.

[71] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector ma-

chines,” arXiv preprint arXiv:1206.6389, 2012.

[72] Y. Wang and K. Chaudhuri, “Data poisoning attacks against online learning,” arXiv

preprint arXiv:1808.08994, 2018.

[73] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks on factorization-

based collaborative filtering,” in Advances in neural information processing systems,

2016, pp. 1885–1893.

[74] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against autoregressive mod-

els,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[75] C. Miao, Q. Li, L. Su, M. Huai, W. Jiang, and J. Gao, “Attack under disguise: An

intelligent data poisoning attack mechanism in crowdsourcing,” in Proceedings of the

2018 World Wide Web Conference. International World Wide Web Conferences Steering

Committee, 2018, pp. 13–22.

210

[76] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand, “Incentive

mechanisms for smartphone collaboration in data acquisition and distributed comput-

ing,” in IEEE International Conference on Computer Communications (INFOCOM),

2012.

[77] Z. Qin, Q. Li, and G. Hsieh, “Defending against cooperative attacks in cooperative spec-

trum sensing,” IEEE Transactions on Wireless communications, vol. 12, no. 6, pp. 2680–

2687, 2013.

[78] M. Fang, M. Sun, Q. Li, N. Z. Gong, J. Tian, and J. Liu, “Data poisoning attacks and

defenses to crowdsourcing systems,” in WWW’21: Proceedings of The Web Conference

2021. The Web Conference, 2020.

[79] S. Zhi, F. Yang, Z. Zhu, Q. Li, Z. Wang, and J. Han, “Dynamic truth discovery on

numerical data,” in 2018 IEEE International Conference on Data Mining (ICDM), 2018,

pp. 817–826.

[80] B. McMahan and D. Ramage, “Federated learning: Collaborative machine learning

without centralized training data,” Google Research Blog, vol. 3, 2017.

[81] O. Shamir and N. Srebro, “Distributed stochastic optimization and learning,” in 2014

52nd Annual Allerton Conference on Communication, Control, and Computing (Aller-

ton). IEEE, 2014, pp. 850–857.

[82] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant empirical

loss,” in International Conference on Machine Learning, 2015, pp. 362–370.

[83] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neural networks

over the cloud, the edge and end devices,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 328–339.

[84] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “When

edge meets learning: Adaptive control for resource-constrained distributed machine

211

learning,” in International Conference on Computer Communications (INFOCOM).

IEEE, 2018, pp. 63–71.

[85] Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient algorithms for

statistical optimization,” in Advances in Neural Information Processing Systems, 2012,

pp. 1502–1510.

[86] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-

efficient sgd via gradient quantization and encoding,” in Advances in Neural Information

Processing Systems, 2017, pp. 1709–1720.

[87] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate descent under more realistic

assumptions,” in Advances in Neural Information Processing Systems, 2017, pp. 6182–

6190.

[88] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed mean estimation

with limited communication,” in Proceedings of the 34th International Conference on

Machine Learning-Volume 70. JMLR. org, 2017, pp. 3329–3337.

[89] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad: Ternary

gradients to reduce communication in distributed deep learning,” in Advances in neural

information processing systems, 2017, pp. 1509–1519.

[90] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated gradient for

communication-efficient distributed learning,” in Advances in Neural Information Pro-

cessing Systems, 2018, pp. 5050–5060.

[91] Y. H. Oh, Q. Quan, D. Kim, S. Kim, J. Heo, S. Jung, J. Jang, and J. W. Lee, “A portable,

automatic data qantizer for deep neural networks,” in Proceedings of the 27th Interna-

tional Conference on Parallel Architectures and Compilation Techniques. ACM, 2018,

p. 17.

[92] M. I. Jordan, J. D. Lee, and Y. Yang, “Communication-efficient distributed statistical

inference,” Journal of the American Statistical Association, pp. 1–14, 2018.

212

[93] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work: Flexible commu-

nication compression for energy efficient federated learning over heterogeneous mobile

edge devices,” in International Conference on Computer Communications (INFOCOM).

IEEE, 2021.

[94] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective federated learn-

ing design,” in International Conference on Computer Communications (INFOCOM).

IEEE, 2021.

[95] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong, “Federated learning over

wireless networks: Optimization model design and analysis,” in International Confer-

ence on Computer Communications. IEEE, 2019, pp. 1387–1395.

[96] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for federated

learning in wireless networks,” IEEE Transactions on Communications, vol. 68, no. 1,

pp. 317–333, 2019.

[97] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and commu-

nications framework for federated learning over wireless networks,” IEEE Transactions

on Wireless Communications, 2020.

[98] J. Xu and H. Wang, “Client selection and bandwidth allocation in wireless federated

learning networks: A long-term perspective,” Transactions on Wireless Communica-

tions, 2020.

[99] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling and resource

allocation for latency constrained wireless federated learning,” IEEE Transactions on

Wireless Communications, vol. 20, no. 1, pp. 453–467, 2020.

[100] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling for cellular federated

edge learning with importance and channel awareness,” IEEE Transactions on Wireless

Communications, vol. 19, no. 11, pp. 7690–7703, 2020.

213

[101] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and C. G. Brinton, “De-

vice sampling for heterogeneous federated learning: Theory, algorithms, and imple-

mentation,” in International Conference on Computer Communications (INFOCOM).

IEEE, 2021.

[102] J. Zhang, N. Li, and M. Dedeoglu, “Federated learning over wireless networks: A band-

limited coordinated descent approach,” in International Conference on Computer Com-

munications (INFOCOM). IEEE, 2021.

[103] Y. Tu, Y. Ruan, S. Wang, S. Wagle, C. G. Brinton, and C. Joe-Wang, “Network-aware

optimization of distributed learning for fog computing,” in International Conference on

Computer Communications, 2020.

[104] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic methods for data

fitting,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1380–A1405, 2012.

[105] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online pre-

diction using mini-batches,” The Journal of Machine Learning Research, vol. 13, pp.

165–202, 2012.

[106] O. Shamir, “Without-replacement sampling for stochastic gradient methods,” Advances

in neural information processing systems, vol. 29, pp. 46–54, 2016.

[107] D. Nagaraj, P. Jain, and P. Netrapalli, “Sgd without replacement: Sharper rates for

general smooth convex functions,” in International Conference on Machine Learning.

PMLR, 2019, pp. 4703–4711.

[108] Y. Zhao and X. Gong, “Quality-aware distributed computation and user selection for

cost-effective federated learning,” in International Conference on Computer Commu-

nications (INFOCOM) Workshop on Distributed Machine Learning and Fog Networks

(FOGML). IEEE, 2021.

[109] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, “A tight linear time

(1/2)-approximation for unconstrained submodular maximization,” in 2013 IEEE

214

54th Annual Symposium on Foundations of Computer Science. Los Alamitos,

CA, USA: IEEE Computer Society, oct 2012, pp. 649–658. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/FOCS.2012.73

[110] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [On-

line]. Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[111] Z. Yang, M. Chen, W. Saad, C. S. Hong, M. Shikh-Bahaei, H. V. Poor, and S. Cui, “De-

lay minimization for federated learning over wireless communication networks,” arXiv

preprint arXiv:2007.03462, 2020.

[112] Y. Zhao and X. Gong, “Quality-aware distributed computation and user selection for

cost-effective federated learning,” in IEEE INFOCOM 2021-IEEE Conference on Com-

puter Communications Workshops (INFOCOM WKSHPS). IEEE, 2021.

[113] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on

non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[114] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and less

communication: Demystifying why model averaging works for deep learning,” in Pro-

ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.

5693–5700.

[115] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex

stochastic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368,

2013.

[116] H. Yu and R. Jin, “On the computation and communication complexity of parallel sgd

with dynamic batch sizes for stochastic non-convex optimization,” in International Con-

ference on Machine Learning. PMLR, 2019, pp. 7174–7183.

[117] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient for

nonconvex optimization,” in Proceedings of the 28th International Conference on Neural

Information Processing Systems-Volume 2, 2015, pp. 2737–2745.

215

[118] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” arXiv preprint

arXiv:1903.03934, 2019.

[119] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free approach to paralleliz-

ing stochastic gradient descent,” arXiv preprint arXiv:1106.5730, 2011.

[120] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous parallel algo-

rithms for nonconvex optimization,” Mathematical Programming, pp. 1–34, 2019.

[121] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel stochas-

tic gradient descent,” in International Conference on Machine Learning. PMLR, 2018,

pp. 3043–3052.

[122] S. Mei, Y. Bai, A. Montanari et al., “The landscape of empirical risk for nonconvex

losses,” Annals of Statistics, vol. 46, no. 6A, pp. 2747–2774, 2018.

[123] R. H. L. Sim, Y. Zhang, M. C. Chan, and B. K. H. Low, “Collaborative machine learning

with incentive-aware model rewards,” in International Conference on Machine Learn-

ing. PMLR, 2020, pp. 8927–8936.

[124] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and Q. Yang, “A sustain-

able incentive scheme for federated learning,” IEEE Intelligent Systems, vol. 35, no. 4,

pp. 58–69, 2020.

[125] P. Sun, H. Che, Z. Wang, Y. Wang, T. Wang, L. Wu, and H. Shao, “Pain-fl: Personalized

privacy-preserving incentive for federated learning,” IEEE Journal on Selected Areas in

Communications, vol. 39, no. 12, pp. 3805–3820, 2021.

[126] M. Zhang, E. Wei, and R. Berry, “Faithful edge federated learning: Scalability and pri-

vacy,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3790–

3804, 2021.

[127] S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor, and C. S. Hong, “A crowd-

sourcing framework for on-device federated learning,” IEEE Transactions on Wireless

Communications, vol. 19, no. 5, pp. 3241–3256, 2020.

216

[128] Y. Jiao, P. Wang, D. Niyato, B. Lin, and D. I. Kim, “Toward an automated auction

framework for wireless federated learning services market,” IEEE Transactions on Mo-

bile Computing, vol. 20, no. 10, pp. 3034–3048, 2020.

[129] K. Donahue and J. Kleinberg, “Model-sharing games: Analyzing federated learning un-

der voluntary participation,” in AAAI Conference on Artificial Intelligence, 2021.

[130] ——, “Optimality and stability in federated learning: A game-theoretic approach,” Ad-

vances in Neural Information Processing Systems, vol. 34, 2021.

[131] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reliable

federated learning: A joint optimization approach to combining reputation and contract

theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.

[132] N. Ding, Z. Fang, and J. Huang, “Optimal contract design for efficient federated learning

with multi-dimensional private information,” IEEE Journal on Selected Areas in Com-

munications, vol. 39, no. 1, pp. 186–200, 2020.

[133] M. Zhang, E. Wei, and R. Berry, “Faithful edge federated learning: Scalability and pri-

vacy,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3790–

3804, 2021.

[134] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “Trac: Truthful auction for

location-aware collaborative sensing in mobile crowdsourcing,” in IEEE International

Conference on Computer Communications (INFOCOM), 2014.

[135] A. Tarable, A. Nordio, E. Leonardi, and M. A. Marsan, “The importance of being earnest

in crowdsourcing systems,” in IEEE International Conference on Computer Communi-

cations (INFOCOM), 2015.

[136] N. B. Shah and D. Zhou, “Double or nothing: Multiplicative incentive mechanisms for

crowdsourcing,” in Conference on Neural Information Processing Systems (NIPS), 2015.

[137] P. Bolton and M. Dewatripont, Contract theory. MIT press, 2005.

217

[138] A. Dasgupta and A. Ghosh, “Crowdsourced judgement elicitation with endogenous pro-

ficiency,” in International World Wide Web Conference (WWW), 2013.

[139] Y. Liu and Y. Chen, “Sequential peer prediction: Learning to elicit effort using posted

prices.” in AAAI Conference on Artificial Intelligence (AAAI), 2017.

[140] D. Prelec, “A Bayesian truth serum for subjective data,” Science, vol. 306, no. 5695, pp.

462–466, 2004.

[141] THE MNIST DATABASE (http://yann.lecun.com/exdb/mnist/). [Online]. Available:

http://yann.lecun.com/exdb/mnist/

218

