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Abstract 
 

 

 The fourth industrial revolution, or Industry 4.0, is making its mark with a wave of efforts 

to digitize and digitalize data and information in manufacturing systems. Global efforts are being 

made to accelerate the adoption of advanced technologies in the manufacturing industry. Before 

Industry 4.0, continuous improvement efforts were focused on the efficient flow of physical 

products to shorten lead times, but that is no longer enough to remain viable in today’s digital 

environment. Accurate and efficient data and information will be the difference between 

companies that remain viable and those that become extinct. There is a significant amount of 

ambiguity surrounding Industry 4.0, other similar terms, its technologies, and its benefits that have 

caused confusion throughout the manufacturing industry. However, it is clear that the costs of 

poorly designed data and information flows have yet to be understood, and the opportunities for 

improvement are untapped, eating up costs that could be minimized and/or eliminated. Purposeful 

design of interoperable data and information flows to achieve value creation and a complete digital 

thread are critical to organization competitiveness, now and in the future. Currently, there is not a 

way for manufacturers to identify and eliminate data and information wastes and evaluate the 

impact on their organizations. 

This research begins to close this gap by uncovering, illuminating, and categorizing the 

non-value-added activities, or waste, in data and information flows in manufacturing systems. This 

is made possible by performing a deep dive into Lean literature to understand how Taiichi Ohno 

developed the 7 Wastes of the Toyota Production System (TPS) so that the success can be 

replicated in other domains, such as data and information flows. This work also presents the results 
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of a quantitative simulation analysis that depicts the negative impacts that data and information 

wastes can have on manufacturing production operations. 
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Chapter 1 Introduction 
 

 

1.1 Overview 

Digitalization is here, and national imperatives are popping up across the globe to assist 

manufacturers in their Industry 4.0 initiatives [1]–[6]. Manufacturers must make the decision to 

join in on the movement or they will soon become extinct [7]. Manufacturers must go beyond 

digitizing their data, which means converting data into a digital format that can be read and 

interpreted by a computer; manufacturers will need to digitalize their data and information systems 

by continuously improving them and taking advantage of advanced technologies that enable 

connectivity and interoperability [8]. The purposeful design of interoperable data and information 

flows to achieve value creation and weave a complete digital thread are critical to organization 

competitiveness, now and in the future. There is unrealized profit hiding in the ineffective and 

inefficient data and information practices [9]. Some believe that the worldwide investments in 

digitalization could return a value in the trillions of dollars by 2025 [10]. 

Currently, there are a plethora of non-value-added activities, or wastes, that can be 

identified in the flow of manufacturing data and information [11]–[13], but there is not currently 

a way to properly identify and eliminate the wastes. This research aims to fill this gap by exploring 

how Taiichi Ohno, the father of the Toyota Production System (TPS) at Toyota Motor Company 

(TMC), successfully identified wastes in production flows, so that the same mental model can be 

applied to data and information flows. Ohno’s mental model is then used to identify non-value-

added activities that do not support the right data, in the right place, at the right time, and in the 

right form to inform optimal decision-making. 
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1.2 Aims and Objectives 

There are several objectives this research aims to accomplish in the domain of data and information 

flow improvement in manufacturing systems. The successful completion of these objectives will 

contribute to the future of manufacturing continuous improvement efforts in a meaningful way. 

The objectives of this research are: 

1. Objective 1: Provide a thorough academic literature review that discloses the current state 

of improvement efforts in manufacturing data and information systems and identify the 

gap that this work fills. 

2. Objective 2: Recreate the mental model that Taiichi Ohno utilized to develop the 7 Wastes 

of the TPS so that the mental model can be replicated in other domains, such as data and 

information flows. 

3. Objective 3: Illuminate and categorize wastes in manufacturing data and information 

systems to demonstrate where improvements can be made. 

4. Objective 4: Explain the interplay between data and information and the manufacturing 

plant floor and uncover the impact that data and information can have on manufacturing 

processes. 

5. Objective 5: Provide a path forward for future research in the space of identifying and 

eliminating waste in manufacturing data and information systems so that future researchers 

can build upon the contributions of this dissertation. 
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1.3 Outline of the Dissertation 

This dissertation is organized as follows: Chapter 2 provides a background and literature review. 

In Chapter 3, the problem statement is presented along with the research gaps that this dissertation 

fills, and the hypotheses for this research are provided. Chapters 4, 5, and 6 introduce the three 

main contributions of this research. Chapter 4 contains the exploration of the mental model utilized 

by Taiichi Ohno in the development and categorization of the 7 Wastes of the Toyota Production 

System (TPS) to be applied in other domains, such as data and information flows. Chapter 5 details 

the current challenges that manufacturers face with data and information flows and introduces 

categories of waste for identifying non-value-added activities in the flow of data and information 

in manufacturing systems. Chapter 6 details the relationship between data and information flows 

and the plant floor, revealing the impact that data and information wastes can have on 

manufacturing processes. Chapter 7 draws the dissertation to a close with conclusions and future 

work. Corresponding publications of this research can be found in Appendix A. 
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Chapter 2 Background and Literature Review 
 

 

2.1 Introduction 

The case for the creation of waste categories for data and information flow in manufacturing 

operations is built from the evidence of a need to digitally transform to benefit from the fourth 

industrial revolution and other continuous improvement efforts that have not yet been applied as 

data and information flow improvement methods. This section is segmented into two main 

sections: Background (Section 2.2) and Literature Review (Section 2.3). The Background serves 

to explain the necessary context information to understand previous continuous improvement 

efforts which include the development of waste categories and the 7 Wastes of the Toyota 

Production System (TPS). The Literature review aims to achieve one of the main objectives of this 

research, which is to identify the current state of data and information flows in manufacturing 

systems and reveal gaps in the research that need to be filled. 

 

2.2 Background 

The foundation of this research is on the identification and categorization of non-value-added 

activities or wastes. A description of classification and categorization is provided, and an 

explanation is given of the highly successful waste categories, the 7 Wastes of the Toyota 

Production System (TPS) that were developed at Toyota Motor Company (TMC) by Taiichi Ohno. 

2.2.1 Categorization/Classification 

Classification is a form of knowledge organization that combines entities with similar 

distinguishing attributes. It is used as a tool for innovation, to systematically investigate topics, 

develop ideas, and reduce complex issues into manageable parts. Decomposing a complex system 
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into smaller homogenous categories assists in reducing complexity and making sense of the system 

and underlying performance issues. When classifying concepts, the resulting classifications are 

known as categories [14]. 

The human mind struggles to remember a multitude of details, but it can remember 

categories [15]. It is believed that our brains make subconscious mental categories to help us 

understand the world around us [16]. Forming categories by classifying entities based on their 

perceived relationships is one of our brain’s most basic cognitive functions [17]. Therefore, it can 

be advantageous to group concepts into categories when trying to present new information that 

needs to be recalled and used later. 

2.2.2 The 7 Wastes of the Toyota Production System (TPS) 

The 7 Wastes of the TPS are an example of a set of categories that were formed from the 

observation of inefficient practices in the flow of manufacturing products for employees to easily 

recall and identify. Through many years of experience with continuous improvement by observing 

processes, Taiichi Ohno, the individual known as the father of the TPS, identified seven categories 

of wastes, shown in Table 1 [18], [19]. The TPS is built on the idea of reducing and eliminating 

all forms of non-value-added activities, or wastes, that impede the flow of value from raw material 

to finished goods [19], [20].  

Value creation was the focus of TMC to sell more cars and make more profit. For TMC to 

achieve this goal, the customer must be pleased with the product they purchased. Any action that 

does not change the form or function of materials into a product that the customer is willing to pay 

for is classified as waste. Ohno defined waste as “the needless, repetitious movement that must be 

eliminated immediately” [19]. Shigeo Shingo, a colleague of Ohno’s, defined waste as “any 

activity that does not contribute to operations” [21]. 
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Table 1 Definitions of Ohno’s 7 Wastes. 

Waste Category Definition 

Overproduction Producing a greater quantity of parts than required by the customer 

Time on hand (waiting) People or parts are delayed until a specific action occurs 

Transportation The unnecessary movement of people or parts between processes 

Processing itself (over-processing) Processing beyond the standard required by the customer 

Stock on hand (inventory) Excess of raw materials, work in progress, or finished goods 

Movement (motion) The movement of people, parts, or machines within a process or work cell 

Defective products (defects) The result of incorrectly producing the product to customer expectations the first time 

 

The 7 Wastes are used by many organizations, not just manufacturers, in an attempt to 

reduce non-value-added activity, improve their systems, and reduce costs [22]. However, many 

fail to grasp the underlying logic that makes the 7 Wastes a successful approach [23]–[28]. Wastes 

are hardly ever identified within one category. Wastes can be classified into several categories but 

there is usually one that is the dominant category of non-value-added activity. 

(1) Overproduction: Ohno described the waste of overproduction as TMC’s “worst enemy” 

because it is a waste that helps hide other wastes [19]. Overproduction occurs when more product 

is being made than required by the customer. Overproduction can be seen between processes as a 

buildup of inventory. However, the waste of overproduction can easily be mistaken for work 

because workers are being utilized to produce products. The workers appear to be busy, but they 

are performing unnecessary work which is costly [19]. 

(2) Time on hand (waiting): The waste of waiting can be easy to identify if an operator is 

not performing work. However, waiting can be hidden if a worker begins to do other work during 
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the time they have on hand while waiting for their next task. If an operator has extra time on hand 

that is not utilized to perform value-added work, it should be considered waste [19]. 

(3) Transportation: The waste of transportation is the movement of product from one 

location to another without changing the product in any way. Fundamentally improving the layout 

of a facility can minimize or eliminate the need for transportation [21]. Transportation does not 

add value to the product, and therefore, it is unnecessarily costly. 

(4) Processing itself (over-processing): The waste of processing itself, or over-processing, 

is excess actions that do not add value to the final product. Removing over-processing starts by 

asking “why we make a given product and use a given processing method” [21]; more efficient 

and cost-effective methods likely exist to produce the product. 

(5) Stock on hand (inventory): According to Ohno, “the greatest waste of all is excess 

inventory” [19]. Excess inventory causes a ripple effect of waste creating more waste. When there 

is stock on hand, it must be handled, transported, and stored. This also causes a need for an 

increased number of workers, managers, and equipment. Simply having too much stock on hand 

quickly becomes costly. A business should “procure only what is needed when it is needed and in 

the amount needed” to avoid the waste of inventory, which also generates the waste of 

overproduction [19]. Inventory can also lead to a waste of defective products which is a costly loss 

[19]. 

(6) Movement (motion): The waste of movement or motion is defined as needless 

movement to perform a job or task. It is movement that does not add value to the process by 

“actually advancing the process toward completing the job” [19]. Just because a worker is moving, 

does not mean they are performing value-added work. Therefore, movements should be 
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categorized into those that add value and further the completion of the job and those that do not 

add value and are wasteful motions/movements. According to Ohno, “Working means that 

progress has been made, that a job is done with little waste and high efficiency” [19]. 

(7) Defective products (defects): The waste of defective products is mostly self-defined. It is 

wasteful to create products with qualities and characteristics that do not meet customer 

requirements or expectations. Products with defects should not continue down the production line; 

the line should stop, and the defective product should return to an earlier process. The waste of 

defects can lead to several other wastes because defects involve excess movement of the product 

to return it to a previous process (transportation), excess processing to correct the defect (over-

processing), time on hand for the operators down the line that are waiting for the defective product 

to be fixed, and overproduction and scrap if the part cannot be fixed [19]. 

Like all of Ohno’s actions at TMC to create the TPS, the creation of the 7 Wastes originated 

from need. TMC needed to remove excess manpower and repurpose it for more effective and 

efficient use. By utilizing the 7 Wastes to “trim excess capacity,” TMC significantly increased its 

operating efficiency. According to Ohno, “eliminating waste must be a business’s first objective” 

[19]. 

 

2.3 Literature Review 

The following review of literature presents the current state of data and information flow issues 

and improvements in the manufacturing industry. A description of Industry 4.0 is used to set the 

stage for the need and urgency for digitalization in manufacturing. An explanation is then given of 

how Industry 4.0 is converging with former continuous improvement movements, such as Lean 
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manufacturing. Previous work in the domain of data and information flow is presented to 

demonstrate the work that has already been completed and the needed future work. Previous work 

includes the formation of visualization techniques, such as mapping and simulation and metrics 

for data and information flows in manufacturing systems. 

2.3.1 Industry 4.0 

Manufacturing is currently undergoing a fourth industrial revolution, or Industry 4.0. The term 

“Industry 4.0” was first coined in Germany as “Industrie 4.0.” The promotion of the term began in 

2011 by three engineers: Henning Kagermann (physicist and one of the founders of SAP), 

Wolfgang Wahlster (professor of artificial intelligence (AI)), and Wold-Dieter Lukas (physicist 

and senior official at the German Federal Ministry of Education and Research) [29]. SAP, a leading 

provider of software for the management of business processes, described Industry 4.0 as the use 

of nine innovative technologies to “bridge the physical and digital worlds and make smart and 

autonomous systems possible:” (1) Big Data and AI analytics, (2) Horizontal and vertical 

integration, (3) Cloud computing, (4) Augmented reality (AR), (5) Industrial Internet of Things 

(iIoT), (6) Additive manufacturing and three-dimensional (3D) printing, (7) Autonomous robots, 

(8) Simulation and digital twins, and (9) Cybersecurity [30]. Many definitions are available for 

Industry 4.0, which adds to the ambiguity of the term and creates confusion throughout the 

manufacturing industry [31]–[34]. Most definitions agree that the fourth industrial revolution aims 

to increase automation and connectivity through the use of smart technologies. 

To achieve the levels of automation and connectivity that Industry 4.0 requires, 

manufacturers must digitize and digitalize their data and information flows [35]. In manufacturing, 

the terms “digitization” and “digitalization” are often used interchangeably, but they are not the 

same [8]. Digitization is the computerization of analog data, turning analog data into binary zeros 
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and ones so that it can be read and understood by a computer. Digitalization, on the other hand, is 

the continual improvement of the data’s digitized form through the use of technologies that enable 

automation and connectivity [7], [35]–[40]. From these definitions, it can be noted that digitization 

is a prerequisite to digitalization. In other words, data cannot be digitalized without it first being 

digitized. However, to remain competitive in today’s market, manufacturers cannot stop at simply 

digitizing their data and information flows. They must seek to digitally transform their operations 

and data and information systems [7]. The need to digitize and digitalize processes is not something 

of the future; it is happening now. 

National initiatives to support manufacturers in their digital transformations are popping 

up all over the globe. Some of the most notable initiatives are South Korea’s Creative Economy 

Initiatives [2], China’s Made in China 2025 program [1], and the United Kingdom’s National 

Adoption Programme [3]. South Korea launched demonstration factories to promote digital 

innovation to increase the adoption levels of tens of thousands of South Korean manufacturing 

companies [4]; China’s program utilized direct subsidies to increase the adoption of digital 

technologies; and the United Kingdom put on a Manufacturing Made Smarter Challenge, a 

£30million competition to boost manufacturing productivity and agility. All of these initiatives 

have one main theme in common: accelerate the national adoption of digital manufacturing. 

In the United States, the Hollings Manufacturing Extension Partnership (MEP) based at 

the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland is one of 

the leading efforts to accelerate the adoption of technologies in manufacturing. In 2021, the MEP 

interacted with 34,307 manufacturers through its public-private partnership with MEP centers 

across all 50 states and Puerto Rico. Their efforts resulted in $1.5 billion in cost savings and $14.4 

billion in sales [5]. On a smaller scale, institutes like Manufacturing x Digital (MxD, pronounced 
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Manufacturing times Digital) are partnering with government, academia, and manufacturing to 

increase manufacturing productivity and strengthen the United States’ manufacturing industry as 

a whole [6]. 

The benefits of digitalization are not expected to plateau any time soon. The opportunities 

and benefits are boundless with the potential being valued in the trillions of dollars [7], [10], [41]. 

A 2021 article states that the full potential of digital transformations could reach $100 trillion by 

2025 [10]. Companies will see benefits such as new business opportunities, value co-creation 

(value created across company networks), increased innovation, heightened competitive 

advantage, increased resources and knowledge, and decreased costs [42]. It is also likely that there 

are benefits that have even been realized yet [7].  

As mentioned earlier, there is a significant amount of ambiguity surrounding Industry 4.0 

and what it entails. This is in part due to the number of terms that have arisen to describe it such 

as Digital Manufacturing, Digital Transformation, and Smart Manufacturing. Digital 

Manufacturing is a broader term to describe the aims of Industry 4.0. Though it has many 

definitions, for the most part, there is mutual agreement that digital manufacturing involves the 

application of digital technologies to plan and operate a manufacturing system that utilizes the 

right data, in the right place, and at the right time to perform optimal decision making [43], [44]. 

2.3.2 Industry 4.0 Adoption 

The adoption of new technologies typically follows a set of five stages: (1) Knowledge, (2) 

Persuasion, (3) Decision, (4) Implementation, and (5) Confirmation (Figure 1) [45]. Based on 

mainstream media, it could be assumed that the majority of the industry is in the decision stage, 

where they are determining which technologies to implement. However, studies show that the 
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majority of manufacturers are actually closer to the first stage, knowledge, where they are still 

learning what Industry 4.0 is and what technologies it entails [46]. 

 

Figure 1 The 5 Stages of Technology Adoption [45], [47]. 

In 2019 and 2021 survey reports [48], [49], ToolsGroup studied the adoption stages of 

approximately 200 companies (Table 2). ToolsGroup used slightly different adoption stages than 

the five listed previously, but the stages are rather similar. 

Table 2 ToolsGroup Industry Adoption Stages [48], [49]. 

  Adoption Stages 
  Not Pursuing Exploring Evaluating Gaining 

Organization-
al Support 

Executing Reaping 
Benefits 

Y
ea

r 2019 N/A 32% 26% 8% 27% 7% 

2021 10% 22% 17% 11% 28% 12% 

 

When looking at the revenue of the respondents from the ToolsGroup reports, 64% and 

59%, in 2019 and 2021 respectively, of the respondents maintain an annual revenue of over $100 

million [48], [49]. Considering that small and medium-sized manufacturers (SMMs) make up over 

90% of the United States supply chain with less than $100 million in annual sales and less than 

500 employees [50], these percentages presented by ToolsGroup are likely skewed based on larger, 

higher revenue companies and not representative of the manufacturing industry as a whole. There 

is a widening gap between Small- and Medium-sized Manufacturers (SMMs) and large 

Knowledge Persuasion Decision Implementation Confirmation

ASSESSED
Industry Majority

ASSUMED
Industry Majority
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manufacturers that needs to be addressed if digitalization is to be fully integrated into the industrial 

base [46]. Reports from countries globally indicate that SMMs demonstrate a lack of awareness of 

the need for digitalization [51]–[56]. 

2.3.3 The Convergence of Industry 4.0 and Lean 

A globally known and implemented method for identifying improvement opportunities in 

production systems is the Toyota Production System (TPS). The TPS began its formation with the 

TMC in the 1940s. ‘Lean Manufacturing’ (or ‘Lean’ for short) is the American term for the Toyota 

Production System (TPS). The term ‘Lean’ was first coined by John F. Krafcik in 1988 in his 

article, Triumph of the Lean Production System in the Sloan Management Review [57], [58]. 

Deloitte [59] and Bain [60] propose the idea of digital lean improving on traditional Lean. 

They explain how the implementation of Industry 4.0 technologies such as quality sensing & 

detection, factory asset intelligence, factory dynamic scheduling, augmented workforce, plant 

energy management, big data, Internet of Things (IoT), robotics, and analytics can enhance the 

identification and mitigation of the 7 Wastes of the TPS. These articles address the importance of 

introducing new technologies to improve upon traditional Lean by increasing the ability to identify 

and eliminate the 7 Wastes of the TPS; this can easily be confused with identifying and eliminating 

data and information wastes, but it is not the same. When discussing a digital lean environment, 

authors also mention that a key enabler is integrating Information Technology (IT) (technologies 

for information processing) and Operational Technology (OT) (hardware and software for 

equipment control) [61]–[64]. This demonstrates the lack of interoperability that exists in today’s 

manufacturing systems. Before Industry 4.0, IT and OT were often viewed as separate entities, 

with little to no connectivity [59]. 
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Another approach to converging Industry 4.0 and Lean has been identifying digital waste. 

Romero et al. define “digital waste” as “any non-value adding digital activity to women/men, 

materials, machines, method and measurements (5M) in the Digital Lean Enterprise” [64]. 

Researchers have taken various approaches to identify and define digital waste(s) with some 

authors grouping digital wastes [64], some converting the 7 Wastes of the TPS into their digital 

counterparts [13], and others creating new waste categories for data and information processes in 

manufacturing systems [11]. 

  Romero et al. [64] categorized digital wastes into three groups: the elimination of physical 

waste (the 7 Wastes of the TPS), the avoidance of passive digital waste (missing digital 

opportunities), and the prevention of active digital wastes (the right amount of information is not 

provided at the right time to the right person, machine, or system for decision-making). In a follow-

up article, Romero et al. [65] discussed the vicious cycle of three types of waste: muda (waste, 

including the 7 Wastes of the TPS), mura (unevenness), and muri (overburden) and how these 

wastes also exist in a digital environment, and an example was given of how digital wastes can 

lead to other digital wastes. 

 Roh et al. [13] propose wastes for data and information flows by converting the 7 Wastes 

of the TPS into their digital counterparts. The proposed definitions are shown in Table 3. 
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Table 3 Roh et al.’s Proposed Wastes for Data and Information [13]. 

Waste Category Definition 
Overproduction Overproduction is the generation and the provision of too many and hence irrelevant 

information and data. 
 

(Unnecessary) Motion Unnecessary motion is the procedure of employees or IT systems to search for 
information and the need to combine them from different systems/sources. 
 

Transporting Transporting is the transmission process of information between different media, which 
can be wasteful, if not transferred on a direct path. 
 

Waiting Waiting is the time wasted to receive relevant information, e.g. download time from a 
server. 
 

Extra processing Extra processing is the needless (manual) editing of information. 
 

(Unnecessary) Inventory Unnecessary inventory is the saving of non-used and hence unrequired data and the 
saving in different forms/media, such as paper and on a server, for example for wasteful 
redundancy (double saving). 
 

Defects Defects in the context of information streams can be interpreted as incorrect, 
incomprehensible, or incomplete information transmissions. 
 

 

Hicks et al. [12] studied information issues of ten organizations. The study resulted in 180 

information issues that were summarized in 18 categories [11] and ultimately reduced to four, 

shown in Table 4. 

• information exchange 

• manual systems and data entry 

• monitoring, control, and costing 

• information flow from customers and/or sales 

• functionality of information systems 

• information storage 

• numbering and traceability of machines, assemblies, and parts 

• information availability and accessibility 

• information identification, location, and organization 
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• information completeness and accuracy 

• information duplication 

• information currency 

• end-user developed applications over commercial off-the-shelf (COTS) information 

systems 

• paper systems over COTS information systems 

• information systems use and maintenance 

• information systems implementation and customization 

• implementation and operation of quality systems 

• information systems strategy and planning 

Table 4 Hicks et al.’s Proposed Waste Categories for Data and Information [11]. 

Waste Category Definition 
Failure demand This includes the resources and activities that are necessary to overcome a lack of 

information. This may include generating new information and/or acquiring additional 
information. 
 

Flow demand This concerns the time and resources spent trying to identify the information elements 
that need to flow. 
 

Flow excess This relates to the time and the resources that are necessary to overcome excessive 
information i.e. information overload. 
 

Flawed flow This includes the resources and activities that are necessary to correct or verify the 
information. It also includes the unnecessary or inappropriate activities that result from 
its use. 
 

 

Each of these approaches shares a common theme of identifying ineffective and inefficient 

data and information flows in manufacturing systems with a Lean perspective. However, the 

approach of Romero et al. [64] did not define wastes that are easily identified; passive and active 

wastes are not waste categories that can be visualized, and visualization is a key component of 

waste identification. The approach by Roh et al. [13] built on the already developed 7 Wastes of 
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the TPS. The waste categories can be used to identify wastes in data and information flows which 

is a positive outcome, but the approach did not consider creating waste categories that were derived 

from an understanding of the current issues in data and information flows. Roh et al. took the 7 

Wastes of the TPS and changed their definitions to fit data and information wastes, but this is 

force-fitting wastes into categories that were not originally meant for data and information 

systems. Hicks et al. [12] began with an approach of identifying the current data and information 

issues in manufacturing, and the end result was four categories. Hicks et al.’s [12] approach has a 

similar issue to Romero et al.’s [64] approach- the categories are not easily identifiable; it is not 

clear how to identify failure demand, flow demand, flow excess, and flawed flow. 

2.3.4 Visualizing Data and Information Flows 

Manufacturers not only need a method to identify non-value-added activities, but they also need a 

way to visualize and communicate data and information flows. Authors have taken an approach to 

visualize data and information flows in manufacturing systems through mapping [13] and 

simulation [66], [67]. Making non-value-added activities, or wastes, visible was instrumental to 

Ohno’s success in developing the 7 Wastes of the TPS [19]. Value Stream Mapping (VSM) is a 

mapping technique that has been used to identify and eliminate wastes in part production processes 

for decades [68]. A generic value stream map (Figure 2) includes two types of flows: (1) 

Information Flows and (2) Material Flows. 
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Figure 2 Generic Value Stream Map. 

Though VSM has proven to be highly successful in visualizing and analyzing physical 

waste in manufacturing production systems, VSM does not provide enough transparency to elicit 

improvement opportunities in non-physical processes, such as data and information flow [13]. As 

shown in Figure 2, value stream maps present a high level of detail about material flows. However, 

the top half of the value stream map provides very little information about the data and information 

that supports production [66]. These data flows are drastically simplified and not reflective of 

reality in which data goes through time-consuming processes of being created, debated, modified, 

and delivered. The time and costs associated with these activities are not shown or considered in a 

value stream map. In addition, VSM does not address several indispensable data flows, such as 

work instructions, travelers/routers, authorizations/approvals, or machine code, to name a few, all 

of which go through multiple processes before reaching the operator on the plant floor. However, 

VSM can serve as a baseline for developing a new mapping approach specifically for data and 

information wastes. This is what Roh et al.’s [13] attempted with their creation of “Value Stream 
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Mapping 4.0”, a proposed mapping technique for visualizing waste in data and information flows. 

However, this mapping technique loses connectivity with the material flows on the plant floor and 

therefore, loses the ability to understand the impact that data and information flows can have on 

plant floor operations. 

Thiede et al. [69] present an approach to simulate information flows in support of 

digitalization and the increasing complexity of dynamic IT architectures. The simulation in the 

case study modeled information streams to machines in an electronics manufacturing plant. The 

authors state that it would be beneficial to also show the relationships between information flows, 

material flows, and energy flows; this was also just mentioned previously as a deficiency in Roh 

et al.’s data mapping technique [13]. The work of Thiede et al. was limited to the modeling of 

information flows to reduce complexity. Other articles stress the importance and difficulty of 

merging highly-detailed data and information flows with material flows into one mapping or 

simulation [66], [70]. 

2.3.5 Metrics for Data and Information Flows 

Roh et al. propose metrics for data and information flows [13]. The authors present five 

performance indicators: (1) level of automation, (2) centrality index, (3) real-time capability index, 

(4) media disruption index, and (5) first pass yield of information. An explanation and equation 

are provided for each of the five performance indicators in Table 5 [13].  

Each of the metrics is aligned with one of the 7 Wastes of the TPS, (1) level of automation 

with unnecessary motion, (2) centrality index also with unnecessary motion, (3) real-time 

capability index with transportation, (4) media disruption index also with transportation, and (5) 

first pass yield of information with defects. A performance indicator is not given for the other 

wastes: overproduction, waiting, over-processing, and inventory. The metrics are not tied to costs. 
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In developing the TPS, Ohno insisted that all actions and metrics must be tied to cost reduction 

because cost reduction is the ultimate goal when identifying and eliminating wastes [19]. 

Table 5 Roh et al.’s Proposed Metrics for Data and Information Flows [13]. 

Performance Indicator Equation 
 

Explanation 

(1) Level of automation 
 

𝑙𝑎 =
Σ𝑖!

Σ𝑖! + 	Σ𝑖"!
=	
Σ𝑖!
𝑖  

where, 
𝑙𝑎 equals the level of automation, 
𝑖!, an automized information transfers 
𝑖!", a non-automized information transfer. 
Note, that the sum of 𝑖! and 𝑖"! is the total number of information 
transfers 𝑖. 
 

“The level of automation is defined as the 
ratio of the number of fully automated 
information transfers to the total number of 
information transfers.” 

(2) Centrality index 
 

𝑐𝑖 =
Σ𝑖#
𝑖  

where, 
𝑐𝑖 equals the centrality index, 
𝑖#, information transfers pointing to a central IT-system 
𝑖, the total number of information transfers. 
 

“The new method defines the centrality 
index as the quotient of the information 
transfers to a central IT system and the total 
number of information transfers.” 
 
 

(3) Real-time capability index 
 

𝑟𝑡𝑐𝑖 = 1 −
Σ𝑖"$
𝑖  

where, 
𝑟𝑡𝑐𝑖 equals the real-time capability index, 
𝑖"$, non-real-time capable information transfers 
𝑖, the total number of information transfers. 
 

“The real-time capability index is defined as 
the quotient of the number of information 
transfers in real-time divided by the total 
number of information transfers.” 
 

(4) Media disruption index 
 

𝑚𝑑𝑖 =
Σ𝑖%→' + Σ𝑖(→'

𝑖  
where, 
𝑚𝑑𝑖 equals the media disruption index, 
𝑖%→', information transfers from digital to paper-based 
𝑖(→', information transfers from oral to paper-based 
𝑖, the total number of information transfers. 
 

“Media disruption index is defined, based on 
Ref. [23], as the sum of information transfers 
with a transition from a digital medium to a 
paper-based and from oral to a paper-based 
medium, divided by the total number of 
information transfers.” 

(5) First pass yield index 
 

𝑓𝑝𝑦) = 1 −
Σ𝑖*
𝑖  

where, 
𝑓𝑝𝑦) equals the first pass yield for information, 
𝑖*, information transfers where a query is needed 
𝑖, the total number of information transfers. 
 

“The first pass yield of information, i.e. the 
query quota, is defined as one minus the 
quotient of the amount of information 
transfers for which a query is needed, and the 
total amount of information transfers.” 
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One paper was identified that formed metrics for contributors that affect the flow of data 

and information in manufacturing systems [70]. The metrics gauge the visibility of information, 

the visibility of the need for information, the feeling of empowerment by employees, 

communication barriers, the perception of risk, and human-to-human communication. The first 

three metrics listed are considered to be information flow promoters, while the last three are 

considered information flow inhibitors [70]. Once again, these metrics are not tied to costs or a 

return on investment (ROI) of implementing digital technologies or enabling digitalization. 

Therefore, it will be hard for manufacturers to utilize these metrics as a business case for 

digitalization. The metrics also are not tied to the impact of improved accuracy, efficiency, or 

effectiveness of data and information flow. This is an indicator that there is little understanding of 

the costs and effects of poorly designed information flows in manufacturing [9]. 

2.3.6 Other Advancements in the Field of Data and Information 

Model-based Enterprise (MBE), Model-based Systems Engineering (MBSE), and Model-based 

Definition (MBD) are other terms that are often used when discussing data and information flow 

improvements in manufacturing systems. MBE and MBD refer to the translation of two-

dimensional (2D) manually created drawings to 3D models in computer-aided design (CAD) 

software, which can eliminate the need for recreating models and information that were previously 

developed [8], [71]. An example of a 2D drawing and its corresponding 3D model is shown in 

Figure 3 with the 2D drawing on the left and the 3D model on the right [72]. The related data and 

information, called Product Manufacturing Information (PMI), for a part is contained and stored 

within its model. 
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Figure 3 Example of 2D Drawing to 3D Model [72]. 

MBE supports the concept of a “digital thread.” The term digital thread portrays the idea 

that data throughout a product’s lifecycle (from its design to the finished part to its retirement) is 

connected so that data is traceable and easily accessible [72]. The Air Force Research Laboratory 

first used the term, “digital thread,” in 2007 to describe a framework for the organization of data 

throughout the lifecycle of a product [73]. Achieving a digital thread and MBE requires that data 

that was once paper based be digitized because the data will be captured in a digital format.  
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Chapter 3 Problem Statement 
 

 

3.1 Problem Statement 

As a part of Industry 4.0, manufacturers are being compelled to digitally transform [7]. It will no 

longer be sufficient to digitize data by converting data into a digital format [35], [74]. 

Manufacturers must digitalize their data and information system by continuously improving 

connectivity and flow. Digitalization is not just something of the future; it is here now, and 

manufacturers must join the movement to remain viable in today’s competitive market [7]. 

Manufacturers have mostly ignored data and information flow improvements while focusing on 

physical processes and the day-to-day tasks of getting products out the door. However, there is 

significant profit locked away in ineffective and inefficient exchange and flow of data and 

information [9]. The costs of data and information system inefficiency, wrapped up in overhead, 

are hidden and difficult to expose without a highly detailed breakdown of overhead costs, and even 

then, waste is not obvious. It is imperative in today’s Industry 4.0 environment that this must 

change. Manufacturers will be unable to compete in the world marketplace and will soon be out 

of business if they do not digitally transform [7]. It is critical to understand where improvements 

can be made so that manufacturers can identify and eliminate their non-value-added activities, or 

wastes, in their data and information systems. A disciplined and structured approach for identifying 

and eliminating wastes in manufacturing data and information systems currently does not exist. 

 

3.2 Research Gaps 

The 7 Wastes of the TPS, a known and accepted method for identifying and eliminating wastes in 

manufacturing processes, is not applicable to other domains, such as data and information flows, 
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and there is a lack of understanding behind the creation of the categories. Extensive research has 

been conducted on the application of the 7 Wastes, but a deep dive into how the 7 Wastes were 

created is necessary if their success is to be replicated in other domains. Secondly, attempts have 

been made to translate the 7 Wastes of the TPS into data and information wastes or digital wastes, 

but many of the current methods attempt to force fit each of the 7 Wastes of the TPS into digital 

counterparts, and the fit is questionable at best. By trying to simply use the same physical waste 

categories, an opportunity is missed to start from the ground up and follow Ohno’s mental model 

to create wastes that are formed with the intention of identifying and eliminating data and 

information wastes. The current waste categories that have been made specifically for data and 

information flows lack the ability for manufacturing employees to easily identify and visualize the 

issues that are taking place. In a manufacturing environment, it is crucial to make wastes visible 

and easily identifiable so that the proper elimination methods can be deployed to eradicate the 

wastes. 

 

3.3 Research Questions 

This research aims to answer the following questions. The questions are organized by research 

objectives (as presented in Section 1.2). 

• Objective 1: 

o What are the current and future states of data and information flow improvements 

in manufacturing systems? 

• Objective 2: 

o What was Taiichi Ohno’s mental model while identifying and categorizing wastes 

in the flow of manufacturing processes? 
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• Objective 3: 

o What are the data and information flows that are common amongst most 

manufacturing facilities? 

o What are the issues and challenges that manufacturers face with data and 

information flows? 

o What metrics could be utilized to evaluate the impact of ineffective and inefficient 

data and information flows in manufacturing systems? 

• Objective 4: 

o How do data and information wastes manifest themselves in manufacturing 

operations? 

o What is the potential impact of data and information waste on manufacturing 

processes? 

• Objective 5: 

o How can future researchers utilize the work presented in this dissertation to build 

upon the contributions of this work?  
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Chapter 4 A Generalized Framework for Continuous Improvement 
 

 

4.1 Introduction 

It is important to understand how to apply proven continuous improvement approaches to data and 

information flows in a manufacturing environment. The work performed by Taiichi Ohno in the 

development of the 7 Wastes of the TPS was critical to the overall success of the TPS. 

Categorization allows for the development of improvement tools that can be used to reduce entire 

classes of waste. Therefore, the first effort in this research is to understand how Ohno developed 

his classes of wastes so that a similar approach can be applied to data and information flows in the 

manufacturing setting. To achieve this goal, this research will deconstruct and analyze Ohno’s 

mental model, utilize psychology tools for a novel approach to evaluating a manufacturing process 

improvement model, and create a generalized framework for identifying and eliminating physical 

and non-physical wastes in a system. 

 

4.2 Background 

To form Ohno’s mental model for identifying and eliminating wastes in the manufacturing process 

flow, it is imperative to understand the environment in which it was developed, the history of the 

Toyota Motor Company (TMC), and Ohno’s background. The history of the TMC provides insight 

into the sense of need that sparked the creation of the TPS. Ohno’s background presents the context 

that enabled Ohno’s efforts to envision and execute such a successful production system. 

4.2.1 Toyota Motor Company (TMC) History 

The timeline of the Toyota Motor Company (TMC) and Ohno’s career at TMC are shown in Figure 

4. In August of 1945, two years after Ohno started with TMC, Japan surrendered to the Allies to 
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end World War II. The war was mostly responsible for the weakening of Japan’s economy. With 

a devastated infrastructure, few raw materials, and little to no domestic demand, TMC had to find 

a way to become a profitable enterprise. In hindsight, Ohno believed the war’s end marked a new 

beginning for TMC [19], [75]. 

 Following the war, Kiichiro Toyoda, the President of TMC from 1941 to 1950, established 

the goal to “catch up with America in three years” [19], [76]. This became a rallying cry and mantra 

for TMC. However, in 1950, seven years after Ohno began working at TMC, Japan was still in a 

devastated economic state and lacked essential natural resources, leading to a labor dispute in 1950 

with a layoff of a quarter of the total workforce and the resignation of President Toyoda. This state 

of turmoil left TMC with no choice but to find a different way to achieve its goals [19], [76], [77].  

To survive in the early 1950s, TMC had to turn the production of cars into cash quickly 

[78]. Ohno firmly believed that every improvement originates from a need. The economic crisis 

created a widespread sense of need. Instead of being viewed as a crutch, the economy of Japan 

was considered an open door to widespread improvement opportunities, which would be crucial 

to economic turnaround [19].  

In June of 1950, with increasing product demand due to the Korean War, a time of 

economic growth ensued that helped expand the Japanese automobile industry [19]. In support of 

South Korea, the U.S. Army Procurement Agency became a significant customer for TMC with a 

requirement for quick production with high quality. Ramping up production without the financial 

ability needed for this effort was a challenge that forced new and creative ways of thinking. 

Between 1945 and 1955 TMC increased annual production from 3,275 total units to 22,786 total 

units, a 595% increase [79]. With the new demand and financial support of the U.S. Army 
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contracts, Ohno and TMC focused on continuous improvement in operations and created the 

culture behind the TPS.  

 

Figure 4 Timeline of Relevant Events. 

In the 1960s, TMC’s largest Japanese competitor was Nissan [80]. After Nissan received 

the Deming Prize in 1960, the highest honor for quality in Japan, TMC responded by implementing 
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Deming’s Total Quality Control (TQC) approach in 1961 and received the Deming Prize in 1965 

[81], [82]. TMC’s efforts to compete on both the local and global scale demonstrate the 

organization’s desire to become the world’s most profitable automotive manufacturer. 

Aside from economic factors, Japan’s culture also influenced Ohno and enabled his 

success. Japan is historically a hierarchical society that creates many followers and few leaders. In 

Japanese culture, employees are team players that are hired as fixed assets and typically remain 

loyal to one company for their lifetime [83]. The Japanese culture allowed Ohno to form a learning 

and teaching culture at TMC. This learning culture is often noted as the reason TMC became so 

successful, and the lack of this learning culture is one of the reasons other companies do not 

successfully implement TMC’s philosophy [24]. 

4.2.2 Taiichi Ohno Background 

Ohno graduated from Nagoya Technical High School’s mechanical technology program in the 

spring of 1932. It can be assumed that Ohno’s mechanical technology education can be reflective 

of today’s mechanical engineering focus at a high school or technical college level. Ohno did not 

pursue higher education by attending a college or university [19]. 

After high school, he began work at Toyoda Spinning and Weaving (TS&W). Ohno 

leveraged the knowledge gained at TS&W to identify shortcomings at TMC [19], [76]. While at 

TS&W, Ohno taught himself standard work and said later that his experience with standard work 

at TS&W laid the foundation for 35 years of work on the TPS [19]. TS&W is also where Ohno 

learned about autonomous systems and quality. TS&W was his primary source of industry 

experience and served as a pivotal point in his career [19]. 
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When Ohno compared the TS&W system to automobile production, he was using what we 

term today as critical thinking skills. He noted that his work began by challenging the old system 

[19]. To make drastic improvements, Ohno had to think of new and creative approaches. Ohno 

lived by the mindset of “there is always another way,” which will make TMC a more profitable 

company [21]. He strived to “avoid being entrapped by a single way of thinking” [19], [84]. He 

looked at every system with an eye for improvement and believed observation was the key to 

gaining insight into what is happening [19], [76]. 

From Ohno’s experience with standard work, he learned the best way to improve a job is 

to be at the process. The importance of learning by seeing developed his “plant-first principle,” in 

which the focus was on helping the operators do their jobs better through observation [19], [76]. 

Ohno viewed his employees as a set of eyes to identify ways to improve and reduce waste [23], 

[84]. According to Ohno, “people don’t go to Toyota to ‘work’; they go there to think” [85]. He 

did not simply provide solutions; he guided his employees by asking questions that would enhance 

their critical thinking skills. He wanted the operators to see the value of their work and show them 

they could improve their work. Ohno was known to show great support to plant floor employees 

but could be extremely hard on management. He made management responsible for encouraging 

employees to learn. He would scold his managers if they were not out on the floor, helping improve 

the operators’ jobs [76]. 

Ohno had the drive to make improvements, and he did not give up. A quote from Ohno 

himself best describes the work ethic he fostered: “People got so tired of hearing me rant that they 

gave me a machining shop to try out my ideas” [76]. Ohno was eager to make changes to see if 

they resulted in cost reduction and improved productivity. He was a supporter of the scientific 
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method, trial-and-error, and not waiting for a perfect solution. Ohno referred to this as “the mood 

to get things done”. He urged others to match his work ethic [76]. 

Ohno’s ideas for improvement did not come from just his own thinking. Ohno often 

borrowed ideas from other influential leaders of his time. The Union of Japanese Science and 

Engineering (JUSE) brought quality experts, Dr. W. Edwards Deming and Dr. Joseph M. Juran, 

to Japan in 1950 and 1954, respectively. Ohno was likely influenced by their teachings through 

the JUSE emphasis on quality and productivity improvement [78], [86]. Many parallels can be 

drawn between Ohno and Deming’s works. Ohno and Deming shared the quality first idea of 

“doing it right the first time” [78]. Like Deming, Ohno made everyone responsible for 

improvement efforts. They also shared the concept that the employees on the plant floor are more 

important than management because they are the individuals adding value. It is also possible that 

Ohno’s idea to eliminate waste came from Deming because Deming often used the word “waste” 

in his works. They also shared the idea that anything the consumer is not willing to pay for should 

be considered waste [19], [21], [78], [84].  

When searching for improvement ideas, Ohno looked to the American automotive industry. 

Ohno first visited Ford, General Motors, and American supermarkets in 1956. He wanted to 

understand Ford’s strategies and determine what was applicable for TMC, and what was not useful 

[19], [75]. It is also likely that Ohno found value in General Motors’ focus to produce money, not 

cars [26], since TMC faced the requirement of turning products into cash quickly. However, he 

took General Motors’ aim further by focusing on quality and cost reduction as a means to make 

money [19], [84], [87]. Ohno not only drew his ideas from the automobile industry, but also from 

how American supermarkets operated [88]. The supermarket method caught Ohno’s attention in a 

1954 report on how a Lockheed aircraft plant used the supermarket method to produce to customer 
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demand. The supermarket method established Ohno’s concepts of inventory management and 

overproduction, which are 2 of the 7 Wastes [19]. 

 

4.3 Methodology 

The problem this research addresses is that of understanding the mental model behind the creation 

of the 7 Wastes of the TPS, which is not described in the literature. According to Senge [15], 

“‘mental models’ determine not only how we make sense of the world, but how we take action.” 

The relationships between a mental model, one’s behavior, and the result are shown in Figure 5 

[89]. For Ohno, his mental model is not known, but the result is known (the creation of the 7 

Wastes for manufacturing processes). 

 

Figure 5 Relationships Between Mental Model, Behavior, and Result [89]. 

Other researchers, such as Thomas and Patterson [90], explained how they studied the 

mental models of individuals that led to their ultimate results. Thomas and Patterson also verify 

the usefulness of shared mental models. They mentioned benefits such as enhanced system 

understanding, improved communication between parties, and collaborative decision making and 

engineering of systems. Therefore, creating a mental model that can be shared by an organization 
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is beneficial in a new system design. In the case for Ohno, having a mental model that can be used 

to identify and eliminate waste will assist in designing new data and information processes for 

manufacturing systems. 

To recreate Ohno’s mental model, it is important to identify and analyze Ohno’s behavior 

and actions (results). For this analysis, researchers thoroughly studied the TPS, Lean literature, 

and Ohno’s personal writings. Evaluation of primary sources such as content written by Ohno and 

those that knew Ohno in a work environment is of primary focus. 

Kurt Lewin’s equation for human behavior, Eq. (1)., which represents a person’s 

psychological situation, provided validity by which inferences could be made about Ohno’s 

behavior based on his environment and personal experiences. Lewin proposes that human behavior 

is a function of the person and their environment. Lewin stated that “One can hope to understand 

the forces that govern behavior only if one includes in the representation the whole psychological 

situation” [91]. By collecting events from Ohno’s life, researchers can accurately observe the 

correlation between Ohno’s actions and behavior. 

 B = f (P, E) 
 
Where: 
𝐵 represents human behavior, 
𝑃 person, and 
𝐸 environment. 
 
 

(Eq. 1) 

In Eq. (1)., variables such as attitude, personality, and skills, are attributes of the person 

(𝑃). A person’s environmental variables (𝐸) include workplace environment, culture, and 

economic state. Environmental variables tend to fluctuate often, impacting one’s behavior. Lewin 

believed the relationships between personal and environmental variables affect the resulting 
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human behavior [91]. Examples of personal and environmental variables specific to Ohno and his 

life experiences that were presented earlier are shown in Table 6. A list of key attributes such as 

attitude, personality traits, and skills (𝑃) are shown in the first column of Table 6. A list of key 

attributes such as characteristics of the workplace, culture, and economic state (𝐸) are shown in 

the second column of Table 6. Lewin’s equation provides a guide for understanding how Ohno 

behaved and made decisions, which is related to his mental model as shown in Figure 5. 

Researchers such as Hedberg et al. [92] have proposed utilizing an extended version of 

Lewin’s equation to manage decisions for creativity, development, and change, which is similar 

to our goal of understanding Ohno’s mental model for future change. Hedberg et al. [92] proposed 

𝐼 = 𝑓(∑𝑃! , 𝐸	 ∈ 𝑂) in which innovation (I) is a function of the personal variables (P) of the 

individuals (i) in the organization (O) and the environmental variables (E). This means that 

encouraging creativity at the personal level will support innovation at the organizational level. This 

applies to Ohno and the TMC. Ohno fostered creativity and encouraged others to join him in 

developing his innovative ideas and solutions. Ohno was an innovator that created a team of 

innovators. Hedberg et al. showed how Lewin’s equation (personal and environmental variables) 

can help explain innovation. 

While studying Ohno’s life, researchers considered multiple psychology perspectives to 

ensure a complete analysis. Personality psychology was considered in determining the motivations 

and personality traits that made Ohno unique [93]. Social psychology placed attention on how 

Ohno behaved in a group setting, how his attitudes and beliefs were formed, and how he perceived 

his social environment [94]. An industrial-organizational (I-O) psychology perspective sought to 

understand Ohno’s behavior in a workplace environment [95]. Each of these psychology 
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perspectives provided insight into Ohno and helped in understanding his reasoning for identifying 

and classifying waste in a process. 

Table 6 Personal and Environmental Variables that Formed Ohno’s Behavior. 

PERSON ENVIRONMENT 
a. Education- graduated from the mechanical 

technology department of Nagoya Technical High 
School [19] 

b. Work at TS&W- taught himself standardization, 
learned about autonomous systems and quality, later 
compared TMC to his work at TS&W [19] 

c. Mindset- challenged the old system [19], always 
believed there was a better method [21] 

d. Thinking- utilized critical thinking and “logic 
escape” [19], [76], [84] 

e. Learned by observation [19], [76] 
f. Comparison of systems- compared seemingly 

unrelated systems to automobile production to 
derive improvement ideas (e.g. American 
supermarkets, the human body, baseball games) 
[19], [76], [88] 

g. Likely influenced by the teachings of others- shared 
Deming’s ideas of “doing it right the first time”, 
eliminating waste (or anything the consumer is not 
willing to pay for) [78] 

h. Treatment of others- treated plant floor employees 
with high regard [19], [76], but was known to be 
harsh on managers [76] 

i. Personality- self-driven, strong work ethic, always 
in “the mood to get things done” [76] 
 

j. World War II- weakened Japan’s economic state, 
devastated infrastructure, few raw materials, little to 
no domestic demand [19], [75] 

k. Goal-TMC President conveyed the goal to “catch up 
with America in three years” [19], [76] 

l. 1950 Labor dispute- layoff of a quarter of the 
workforce, state of turmoil, no money, fewer people, 
high expectations [19], [76], [77] 

m. Sense of need [19], [78], [84] 
n. Korean War- sparked economic growth, ramped up 

production without the ability to purchase new 
equipment or hire new employees [19], [79] 

o. Competition- TMC’s largest competitor was Nissan. 
Nissan won the Deming Prize in 1960. TMC 
implemented Deming’s TQC approach in 1961 and 
received the Deming Prize in 1965. [81], [82] 

p. Japanese Culture- a hierarchical society in which 
employees are hired as fixed assets [83] 
 

BEHAVIOR 
1. Reducing and eliminating non-value-added activities, or wastes [19] 
2. Categorized wastes into seven categories [18], [19] 
3. Formed a learning and teaching culture [24] 

 

 

A timeline of nearly 100 events was created to capture any event that may have influenced 

Ohno’s life and his work. The timeline included historical events for TMC, shown in Figure 4 (36 

events), historical events for Japan (11 major events), milestones in Ohno’s life (13 events), and 

events in the lives of people that potentially influenced Ohno (21 events). Events from the timeline 

and personal and environmental variables from Table 6 were used to form a diagram of potential 

influences on Ohno, shown in Figure 6. Figure 4 and Figure 6 are reduced in complexity to 



   
 

 55 

emphasize important content. Figure 6 resembles a neural network and a process diagram. The 

connectivity between the circular elements represents the relationships between the influential 

factors in Ohno’s life. The outputs are the characteristics of Ohno’s work and the 7 Wastes of the 

TPS (the variable of interest). 

To obtain the characteristics of Ohno’s work, 15 primary sources that were written by 

Ohno, those who knew Ohno, and those who could have potentially influenced Ohno were 

collected. In the analysis, characteristics of Ohno’s work that have influenced the identification of 

waste were documented. A total of 118 characteristics of Ohno’s life were collected and grouped 

based on their similarities, resulting in 16 major influential elements and 20 characteristics of 

Ohno’s work (Figure 6). Connections were identified and documented between the influential 

factors and characteristics of Ohno’s work, resulting in the 7 Wastes. The characteristics that 

enabled Ohno to create the 7 Wastes were combined into eight elements that recreate Ohno’s 

mental model. 

Key elements of Ohno’s personality and situation were determined by evaluating the 

common themes found in the literature. These themes were analyzed by asking two questions: (1) 

“Could this have enabled Ohno to identify and eliminate waste?” and (2) “If so, how?” This 

recursive analysis resulted in the discovery of eight specific elements of the mental model that led 

Ohno to strive for improving the Toyota system, resulting in the creation of the TPS. 
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Figure 6 Influential Factors on Ohno’s Life and Work. 

 

4.4 Results 

The eight elements of Ohno’s mental model are presented removing references that are specific to 

TMC to form a generalized framework for identifying and eliminating waste in systems. This 

creation of Ohno’s mental model serves as the basis of the framework presented in this research 

for identifying non-value-added activities in any domain. Without Ohno’s mental model, it is not 

possible to fully grasp the philosophy behind the TPS and determine the principles that made 

Ohno’s efforts successful. 
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Figure 7 depicts which attributes of Ohno’s personality and environment impacted the eight 

elements of the resulting mental model. The italicized letters in the parentheses are the letters that 

correspond to the personal and environmental variables in Table 6. Ohno was as successful as he 

was in developing the 7 Wastes because of his personal and environmental variables. If you 

removed a combination of personal and/or environmental variables, the outcomes could have been 

different. For example, the Toyota Production System emerged solely out of necessity. The lack 

of resources and capital following WWII forced TMC to think critically and come up with new, 

more cost-effective production methods. It can be argued that Ohno’s situation was the driving 

force behind everything that he did. The situation coupled with his background prepared him for 

the success that can be seen today as the TPS. 

Descriptions of how Ohno’s personal and environmental variables align with his mental 

model can be found below. Each of the eight components of Ohno’s mental model are listed with 

the corresponding variable(s) that influenced the creation of each component. 

 

Figure 7 Attributes that Impacted Ohno's Mental Model. 
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4.4.1 Know the goals 

Knowing the goals is most directly related to the goal and sense of need environmental variables 

(variables k and m from Table 6). Ohno’s actions came from a clear understanding of the goals 

from both the TMC and customer perspectives. In 1945, two years after Ohno began working for 

TMC, Toyoda announced the goal to “catch up with America in three years” [19], [76]. Toyoda 

was able to motivate the organization towards improvement which provided the opportunity for 

Ohno to develop his continuous improvement mindset. Ohno stated that “cost reduction is the 

goal,” and “all we are doing is looking at the timeline, from the moment the customer gives us an 

order to the point when we collect the cash. And we are reducing that timeline by removing the 

non-value-added wastes” [19]. These statements describe the tactics used to achieve the goal. The 

actual goal was to make money by turning products into cash quickly while maintaining high 

quality. This goal was also a subset of their broader aim to become the most profitable automobile 

manufacturer in the world. These goals were rather lofty for a company faced with a devastated 

economy and limited resources following World War II. Ohno understood the need and used that 

understanding to create a successful strategy for TMC [19]. 

4.4.2 Understand the system 

Understanding the system is most directly related to Ohno’s personal variable of learning by 

observation (variable e from Table 6). Ohno understood the system of manufacturing automobiles 

by spending time observing what was happening. Ohno believed the most valuable place to learn 

was the “gemba,” which is Japanese for the real place in which the work happens. He knew this 

was the plant floor with the operators, and he is known for telling managers and engineers to go to 

the gemba to learn. Before making changes to a system, he stressed that you must first understand 

every detail of how the system works, including each of its components, their interactions, and 
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where the value is created. Ohno expected managers to be able to answer all questions about the 

plant floor operations. If they were unable to answer a question, Ohno sent them back to the plant 

floor to find the answer. They were not supposed to return to him until they fully understood the 

purpose of each component of the system [76], [84]. 

4.4.3 Focus on value-creating resources 

Focusing on value-creating resources is most directly related to the personal variables of thorough 

observation and the possible influence of Deming’s teachings (variables e and g from Table 6). 

One of the fundamental motivations of the TPS is identifying and creating value. Value is defined 

by the customer [96]. Value-added activities are those that transform the product and add value 

from the customer’s perspective. Activities that do not add value but are necessary should be 

minimized. Activities that are non-value-added and not necessary are wastes and should be 

eliminated. Emphasis should be placed on activities and resources that create value [97]. Ohno 

knew that the operators were the primary value-creating resource because they knew the system 

the best from performing the tasks. This knowledge enabled employees to also see their value and 

understand their role as a part of the system, which created an increase in the number of people 

searching for improvement opportunities. 

4.4.4 Assume a better way 

Assuming a better way is most directly related to the personal variable of constantly challenging 

systems, comparing systems, and Ohno’s personality of being in “the mood to get things done” 

(variables c, f, and i from Table 6). Ohno believed there was always another way that would result 

in more profit for TMC. He looked at existing resources and systems as if they were unacceptable 

in their current state and thus had the opportunity for improvement [76]. Productivity 

improvements were not achieved by hiring more people or purchasing new equipment; he did not 
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have the capital to do so. Instead, he focused on better utilizing the employees he already had 

through the elimination of waste. He searched for successful methods and then sought to make 

them more profitable [19]. 

4.4.5 Identify non-value 

Identifying non-value is most directly related to the personal variable of being influenced by other 

teachings and the behavior of identifying wastes (variable g and behavior 1 from Table 6). There 

are three categories of activities. There are value-added, non-value-added, and non-value-added 

but necessary activities [97]. Ohno focused on eliminating waste or “muda,” which is Japanese for 

unnecessary or non-value-added activity. With an understanding that the customer determines 

value, Ohno identified actions that did not create the value the customer desired. Ohno sought to 

eliminate or reduce costs and increase profit. He looked for activities that did not occur in the right 

place, at the right time, in the right amount, or in the right form. He then categorized these 

unnecessary activities into seven categories, known as the 7 Wastes (Table 1) [19]. 

4.4.6 Apply critical thinking 

Applying critical thinking is most directly related to Ohno’s personal variables of his education 

and methods of thinking (variables a and d from Table 6). Ohno was “fond of thinking about a 

problem over and over” to create a new and more profitable solution. Using his past experiences, 

Ohno sought out unique ways to improve systems. For example, he used his experience from 

TS&W to adapt standard work and the concept of autonomous systems to the TPS. He also 

analyzed unrelated systems to gather improvement ideas, such as applying American supermarket 

methods to the principle of producing automobiles to the rate of the customer pull. Ohno would 

not have been as successful without using ideas from systems outside of the automobile 

manufacturing industry [19]. 
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4.4.7 Try and try again 

Trying and trying again is most directly related to Ohno’s self-driven personality (variable i from 

Table 6). As an advocate of trial-and-error methods, Ohno did not wait for the perfect solution. He 

motivated everyone to be in “the mood to get things done” by taking action and analyzing the 

outcomes quickly. He made sure to be quick to admit when he was wrong and fixed his mistakes 

promptly. His enthusiasm for improvement eventually gave him the opportunity to run a machine 

shop to try to prove that his ideas would be successful [76]. 

4.4.8 Foster a thinking culture 

Fostering a thinking culture is most directly related to the way in which Ohno treated others and 

the Japanese culture, which Ohno utilized to create a teaching culture (variables h and p and 

behavior 3 from Table 6). The ability to learn and teach was instrumental in Ohno’s success. He 

trained the workforce to view their jobs as roles to think, not simply to work. He refined his critical 

thinking skills while also developing those of his employees. By teaching the operators, Ohno was 

able to create a large number of problem solvers on a mission to eliminate non-value-added 

activities. The development of an inquisitive mindset helped employees find value in their work. 

This overarching element of Ohno’s mental model is something he did throughout each of the 

previous steps. He fostered a thinking culture by encouraging others to view systems as an 

opportunity for improvement. Ohno thought of himself as a co-worker that helped the operators 

rather than a leader who enforced his ideas. He valued the employees and their contribution to the 

system, and he encouraged them to be engaged, fostering a mental model that included the 

principles of continuous improvement and respect for people [19], [76]. 
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4.5 Discussion 

Ohno’s mental model serves as the basis for the identification and classification of physical wastes 

in a manufacturing system. The first four steps and the overarching thinking culture create a 

foundation for the identification of wastes in the system. The effort to eliminate waste begins in 

Step 5 by identifying non-value-added activities in the system. Understanding the goals of TMC 

and the customer, Ohno was able to recognize what actions support the goals of the organization. 

Understanding the system allowed him to determine which processes were essential because he 

understood the purpose that each activity served. By going to the gemba, he was able to perceive 

which activities added value. 

Ohno recognized that non-value-added activities have a ripple effect. This ripple effect can 

cause one waste to be hidden within another, which creates difficulty in identifying root causes. A 

clear step-by-step mindset is essential to determine the underlying issues that create waste and the 

resulting inefficiencies. Ohno utilized a systematic mental model that allowed him to identify and 

classify the wastes of a manufacturing system successfully. 

4.5.1 Creation of the Generalized Framework 

Successfully eliminating waste in any system can be a difficult task. The 7 Waste classifications 

were created by Ohno for a manufacturing system, which is a physical system where waste can be 

observed. The 7 Wastes have been applied in many other domains besides manufacturing. 

However, not all 7 Wastes will be applicable, especially in a system that is not solely physical, and 

thus challenging to observe. For example, a digital system that involves the transfer of data and 

information does not have wastes that can be seen by the human eye. Waiting for data and 

information might be easy to find, but what about inventory, motion, or transportation? The 7 

Wastes, as identified by Ohno and documented in the TPS, do not equally apply to all domains. 
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Because the 7 Wastes do not apply to all systems, utilizing the methods Ohno came up with in the 

development of the 7 Wastes of TPS is important so others can successfully define wastes in their 

systems. 

 The generalization of Ohno’s mental model allows users to replicate the process of 

identifying, classifying, and eventually eliminating wastes in different domains. In this research, 

Ohno’s thought processes were obtained and separated from any physical system ideology, 

creating a repeatable, disciplined, and iterative process for identifying and classifying waste in 

both physical and non-physical systems, shown in Figure 8. A guide for applying the framework 

follows: 

1. Know the goals of the organization and the customer. The goals should be described so that all 

system participants easily understand them. A shared understanding of the goals ensures that 

everyone is working together toward the same purpose. The need should be felt, and the purpose 

Figure 8 Generalized Framework for Identifying and Eliminating Waste. 
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should be clear. Do not neglect to consider the customer that receives the system’s output. Strong 

emphasis should be placed on the customer’s needs and wants. Consider that the customer may 

not always be a physical person, e.g., production data arriving at a scheduling system to form 

actionable information. 

2. Understand the system and how its components interact. These components include but are not 

limited to inputs, outputs, enablers, and constraints. Determine which processes and/or activities 

add value by transforming the inputs to the desired output. 

3. Focus on value-creating resources that produce the desired outcome. Emphasis should be placed 

on increasing the effectiveness of the resources that add value by transforming the inputs 

efficiently into the output. The primary purpose is to enhance and optimize the value-added 

components to increase value and make the identification of non-value-added wastes possible. 

4. Assume a better way with an eye for improvement opportunities. This mindset is crucial to 

making continual improvements because it is where untapped improvement opportunities are 

identified. 

5. Identify non-value features that do not optimally attain the desired outcome. Identify 

components of the system that are not in the right place, at the right time, in the right amount, or 

in the right form to attain the desired outcome and apply tools to eliminate these wastes. 

6. Apply critical thinking to identify new and creative ideas. Do not limit opportunities by using 

conventional methods and problem-solving techniques, rather look at the activities from different 

perspectives. Think of new ways to eliminate the identified value inhibitors by creating new 

processes that most effectively utilize resources to attain the desired outcome. 
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7. Try and try again without waiting until the perfect solution is uncovered. Seek many small 

improvements instead of delaying action to find one big win. Define success by the increased 

ability to attain the goals of the business and customer. 

Foster a thinking culture. Facilitate a thinking and learning culture in which all members of the 

organization understand the value of their work. This critical component of the generalized 

framework creates the environment in which the previous seven steps are practiced, improved, and 

celebrated. 

Utilizing this framework can have many benefits that go beyond identifying waste in a 

system. This generalized framework can be used to create a continuous improvement mindset that 

provides a better approach to achieving organizational goals, determine who or what defines the 

success, and encourage new ways of achieving those goals. This generalized framework can be 

used to identify value-added and non-value-added activities by ensuring every component serves 

a purpose that supports the overarching goal(s). As Ohno would say, there is always a better way, 

and this generalized framework enables the finding of that better way. 

 

4.6 Chapter Summary 

Ohno had a clear purpose of making TMC profitable and a desire to ensure that TMC outperformed 

its competition. Today, the purpose and desire remain the same for manufacturing companies 

everywhere- to make money and outperform competitors. Applying tools without comprehending 

the underlying mental model will not lead to the improvements that companies and organizations 

seek. By deploying a culture of continuous improvement utilizing the generalized framework, 

organizations can create a model for systematic improvements and waste elimination that is 
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tailored to their particular system. Forcing the application of TPS’s 7 Wastes to domains that are 

not physical manufacturing production systems is ineffective and produces little benefit. However, 

the philosophy and mental model behind the creation of the 7 Wastes can be replicated for 

identifying the appropriate categories of wastes in many other domains. 

In today’s Smart Manufacturing environment, a framework such as the one presented in 

this work is crucial to manufacturing digitalization efforts. Currently, manufacturers have little to 

no guidance on how to digitally transform or decipher the difference between value-added and 

non-value-added data and information practices. The Generalized Framework for Identifying and 

Eliminating Waste can be leveraged for training and preparing an entire organization for a digital 

transformation. Doing so will form a culture that is equipped to identify inefficient and costly data 

and information flows, and in return, organizations can determine the right tools and software to 

eliminate these costly wastes. 

The flow of manufacturing information that supports production is an improvement area 

that has already been identified as necessary by industry. The increasing complexity of production 

systems requires efficiency gains in non-physical components of systems, such as data and 

information flows [13], [35], [98]. Previous efforts have been made to adapt the 7 Wastes to apply 

to information streams [13], but the mental model used by Ohno in the creation of the 7 Wastes 

was not considered. The generalized framework proposed here is the missing link that is needed 

to successfully identify, categorize, and eliminate waste in non-physical systems. 

An important use of the generalized framework is to develop waste categories focused on 

the flow of data and information in production systems. Doing so will show where to find the 

hidden costs of inaccurate and inefficient information in manufacturing systems. Being able to 

identify and eliminate non-physical waste in information systems that support manufacturing 
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production will open a new domain of improvement opportunities for manufacturing. These efforts 

will support the digital transformation initiatives that are a part of the Industry 4.0 movement.  
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Chapter 5 Non-value-added Activities in Data and Information Flows 
 

 

5.1 Introduction 

By understanding and reproducing how Ohno identified, categorized, and eliminated waste at 

TMC, it is feasible to create categories for data and information wastes in manufacturing systems. 

Capturing and defining the data and information flows that are common amongst most 

manufacturing facilities is key to ensuring this work applies to all types of manufacturing 

companies. The challenges that manufacturers face with their data and information flows are 

captured and categorized to provide an overview of the current state of data and information issues 

in manufacturing systems. Waste categories for data and information flows are defined. 

 

5.2 Background 

To create categories of waste for data and information in manufacturing systems, it is essential to 

comprehend and define the data and information flows that are common amongst most 

manufacturing systems. The American National Standards Institute’s (ANSI) International Society 

of Automation (ISA) standard for Enterprise-Control System Integration, ANSI/ISA-95 (or ISA-

95 in short) accomplishes this by defining and mapping the data and information that commonly 

flow in manufacturing systems. A description of the Purdue Model is also provided, as it served 

as the basis of the formation of ISA-95. Then, the difference between the terms, “data” and 

“information,” is distinguished and clarified. 

5.2.1 Types of Data and Information in Manufacturing (ANSI/ISA-95 Standard) 

ISA-95 [99] defines four pillars of data: (Pillar 1) Inventory; (Pillar 2) Production; (Pillar 3) 

Maintenance; and (Pillar 4) Quality. There are also five levels between which data and information 
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can flow: (Level 0) the actual physical processes; (Level 1) sensing and manipulating the physical 

processes; (Level 2) monitoring and controlling physical processes; (Level 3) activities of the 

workflow, maintaining records, coordinating the processes; and (Level 4) business-related 

activities. Most manufacturers use enterprise systems to manage their data and information across 

a company [100]. Enterprise systems, such as Enterprise Resource Planning (ERP) and 

Manufacturing Execution System (MES), are commonly deployed by Levels 4 and 3, respectively 

(Figure 9) [101]. The physical processes on the plant floor, which are Levels 0-2 are controlled by 

the information provided by Level 3. Information that flows from Level 3 to 2 includes but is not 

limited to equipment and process-specific production rules, part drawings and models, work 

instructions, machine code, set-up and shutdown rules, part specifications, and work masters or 

routers. 

 

Figure 9 ISA-95 Level 3 of the Production Pillar [99]. 

Each of the arrows in the ISA-95 diagram represents an opportunity for data connectivity across 

the functions, which are represented by the ovals. ISA-95 shows how data should be connected 
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within a manufacturing system. However, the simplicity of Figure 9 is far from reality. The arrows 

and functions are much more disjointed with several non-value-added activities. Multiple software 

packages attempt to address one or more of the functions shown in Figure 9 but many non-value-

added activities remain that hinder interoperability. It is necessary to identify the non-value-added 

activities so that industry can begin to address and eliminate them. 

Table 7 Activities Within Manufacturing Functions as Defined by ANSI/ISA-95 [99]. 

 

Activities of the workflow are depicted in Pillar 2, Level 3 of the ISA-95 model. Within 

Level 3 of the Production pillar, there are eight common functions of a manufacturing facility 

between which data flow (Figure 9): (1) Production Resource Management, (2) Product Definition 

Management, (3) Detailed Production Scheduling, (4) Production Dispatching, (5) Production 

Execution Management, (6) Production Tracking, (7) Production Data Collection, and (8) 

Production Performance Analysis. The functions provide the data elements that are needed for the 

Function Activities 
Production Resource Management Manage the information about resources (personnel, equipment, materials, and energy) 

that are required by production operations, and understand the relationships between the 
resources. 
 

Product Definition Management Manage and distribute information about the product and production rules (ex. work 
masters, manufacturing instructions, product structure diagrams, set-up/shutdown 
rules). 
 

Detailed Production Scheduling Uses the production schedule to determine the optimal use of resources to meet the 
production schedule requirements. Accounts for constraints and resource availability. 
 

Production Dispatching Manage production flow, dispatches equipment to personnel, schedules run times, sets 
operating targets, and sends job orders to work centers. 
 

Production Execution Management Create work directives from work masters for each job order, ensures correct resources 
are used, and confirm that the work meets the standards. 
 

Production Tracking Summarize and report info. on resources used (ex. equipment & personnel used, material 
consumed, material produced, costs, and performances analysis). 
 

Production Data Collection Gather, compile, and manage production data (ex. sensor readings, equipment statuses, 
event data, and operator-entered data). 
 

Production Performance Analysis Analyze and report performance information to business systems (ex. performance, cost, 
comparing runs to other runs, comparing runs to an optimal run, and suggests changes 
to process/procedures based on the analysis. 
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planning and execution of production and the retrieval of data from the plant floor. The activities 

within each function are described in Table 7. 

5.2.2 Purdue Model 

The ISA-95 standard described in Section 5.2.1 was influenced by the Purdue Model of Computer-

Integrated Manufacturing (CIM), known as the Purdue Model for short (Figure 10). The Purdue 

Model defines layers of hardware and software in manufacturing systems (Table 8). The Purdue 

Model is commonly used in security applications to define the separation of different layers of 

data in an Industrial Control System [102]. The following sections of this chapter will refer to 

several of the software systems that are listed in Table 8 and the data and information wastes that 

occur due to the interoperability of the various levels. 

 

Figure 10 The Purdue Model [102]. 
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Table 8 Levels of the Purdue Model [103]. 

 

5.3 Methodology 

By understanding how Ohno created the original 7 Wastes of the TPS, the approach can be applied 

to other domains. To recreate the broad acceptance of the 7 Wastes of the TPS in another domain, 

equivalent principles behind the identification of waste must be used. Section 5.3.1 describes how 

Ohno’s mental model was applied to data and information flows. Section 5.3.2 then explains how 

non-value-added activities were collected and documented to evaluate the gamut of wastes that are 

present in today’s manufacturing data and information flows. 

5.3.1 Ohno’s Mental Model 

Understanding Ohno’s methodology behind the creation of the 7 Waste of the TPS was the 

first step in creating new waste categories for data and information flows. Ohno’s methodology, 

his mental model, and a generalized form of his mental model were presented in Chapter 4. A 

simplified version of the Generalized Framework is presented in Figure 11. The following 

Levels of the Purdue Potential Elements in Each Level 

Level 4/5: Enterprise Systems Enterprise Resource Planning (ERP) systems 

Level 3.5: Demilitarized Zone (DMZ) Security systems- firewalls and proxies 

Level 3: Manufacturing Operations Systems 
Manufacturing Operations Management (MOM) systems, 

Manufacturing Execution Systems (MES), 
Data historians 

Level 2: Control Systems 

Supervisory Control and Data Acquisition (SCADA) 
software, 

Distributed Control Systems (DCSs), 
Human-Machine Interfaces (HMIs) 

Level 1: Intelligent Devices Programmable Logic Controllers (PLCs), 
Remote Terminal Units (RTUs) 

Level 0: Physical Process Sensors, actuators, machinery 
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subsections explain how the Generalized Framework can be applied to the domain of 

manufacturing data and information flows. 

 

Figure 11 Generalized Framework for Identifying and Eliminating Waste [104]. 

5.3.1.1 Know the goals 

Unless the organization is a not-for-profit or has a pure humanitarian focus, the ultimate goal in 

manufacturing is to generate profit by providing a product that meets the customer’s expectations 

[105]. The data and information required for production should support the business goal (make 

money) and the customer goal (acquire a quality product). Data and information flows can inhibit 

both goals by incurring costs and causing unnecessary delays. The right data must arrive at the 

right place, at the right time, and in the right form to support the business and customer goals. Data 

and information flowing in this manner allow decisions to be optimized efficiently and effectively 

[104]. 
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5.3.1.2 Understand the system 

Understanding the entire manufacturing system and how components interact is essential. The 

traditional perspective focuses on the physical elements and how they interact and follow the 

product flow [68]. However, the non-physical components, such as data and information flows, 

are hidden, often forgotten, not analyzed, and not improved. Understanding how data is created, 

modified, delivered, consumed, and stored is critical to understanding the complex web of data 

and information flows. Data can serve as an input or output, and both must be acknowledged. It is 

also essential to understand the data required to perform manufacturing functions and the form or 

structure that the process requires. A portion of this is accomplished with ISA-95 by providing an 

ideal state of how data and information flows can be connected. However, one must also 

understand the intricacies of the current state of the data and information system to identify waste. 

5.3.1.3 Focus on value-creating 

Lean Manufacturing aims to maximize value by minimizing non-value-added activities [106]. 

When analyzing manufacturing processes, the value-creating resources add value to the product 

and support the goal. For data and information, focusing on value-creating resources will mean 

focusing on activities that support the goal of the right data, being in the right place, at the right 

time, and in the right form to inform the best possible decision [104]. Valuable data and 

information will differ across various roles in which individuals are trying to accomplish different 

yet related tasks [107]. Having multiple views of the same data may be necessary. 

5.3.1.4 Assume a better way 

Continuously improving in manufacturing requires a mindset that constantly assumes that 

operations can be performed in a better way. Ohno was a trailblazer for repeatedly looking at a 

seemingly well-established process as if it were a mess [108]. Viewing a process this way allows 
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one to uncover activities that are not adding value. For data and information, this will mean looking 

at data and information flows as if they are a mess and assuming there must be a more efficient 

method. Data and information must go beyond digitization to digitalization to reap the highest 

benefits. 

5.3.1.5 Identify non-value 

Understanding the resources that create value provides the opportunity to identify resources that 

do not create value or support the goal. Lean Manufacturing practitioners use the 7 Wastes of the 

TPS to identify and categorize non-value-added activities, or waste, in manufacturing production 

systems for elimination or minimization [109]. Some have attempted to use the original list of 7 

Wastes created by Ohno force fitting them with new definitions related to data and information 

flows [59], [110]. However, assuming that waste categories for physical part production flow will 

have an equivalent counterpart for data flow is not reasonable. 

Creating waste classifications specifically for data and information flows provides better 

suited and understandable categories of waste to look for when studying the company’s data and 

information flows. Without waste categories explicitly developed for data and information, 

manufacturers cannot easily differentiate non-value-added data flow from value-added data flow 

or determine which tools to employ to minimize or eliminate those wastes. 

5.3.1.6 Apply critical thinking 

After thoroughly evaluating and understanding the manufacturing system, critical thinking must 

be used to identify and develop improvement opportunities. Critical thinking takes an objective 

analysis of the system and couples it with the assumption that there is a better way to form new 

ideas on how the system performs. For data and information, this means fully understanding the 

data and information requirements, how the processes are currently executed, assuming the data 
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can flow and be presented better, and actively thinking about ways to eliminate the non-value-

added steps in the data and information processes. 

5.3.1.7 Try and try again 

When improving the physical flow of manufacturing processes, Ohno did not wait for the perfect 

solution or improvement to be uncovered [108]. He deliberately tried and tried again to find a 

better way. For data and information improvements, this will mean trying a new improvement idea 

and if it only provides an evolutionary improvement, or does not provide the expected results, try 

again. The recursive cycle of continuous improvement will always be relevant in today’s 

competitive manufacturing marketplace. 

5.3.1.8 Foster a thinking culture 

Ohno captured everything he learned and shared it with his fellow manufacturing associates. He 

did not simply tell them about the new improvements; he taught them the reasoning behind the 

improvements. Ohno created an army of eyes searching for improvement opportunities [105], 

[108]. Similarly, significant effort must be made to disseminate the knowledge behind data and 

information flow improvements. Having classifications for data and information waste is a step in 

the right direction for training associates to regularly look for data and information flow 

improvement opportunities. 

The seven steps and the 8th overarching component, fostering a thinking culture, of the 

Generalized Framework should be used in developing waste categories for data and information 

flows in manufacturing systems. Doing so replicates the process in which Ohno developed the 7 

Wastes of the TPS, which proved to be highly successful in identifying and eliminating waste in 

manufacturing processes. 
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5.3.2 Industry Interviews 

The Generalized Framework shown in Figure 8 has an overall theme of value creation and 

eliminating activities that inhibit value creation. For data and information flows, this is any action 

that hinders the right data from being in the right place, at the right time, and in the right form to 

make the best possible decision [104]. Step 5 of the framework calls for the identification of non-

value-added activities. This study set out to identify non-value-added activities in manufacturing 

data and information flows by conducting industry interviews to identify, understand, and 

document issues with production data and information flows in manufacturing organizations. 

Discussions were held with manufacturers about their challenges with production data and 

information flows. All interviews were conducted via phone or video conferencing based on the 

participant’s preference. The discussions were approximately one hour long. The interviewer took 

notes during the interviews. The interviews were not recorded or transcribed to provide anonymity. 

Interviews were chosen because they allow for a semi-structured approach in which an 

interview guide can be used to ask uniform questions and allow for the responses from different 

interviews to be compared. It also permits asking additional questions if an insightful topic arises 

[111]. A survey would not have allowed this flexibility. A survey can capture unstructured data, 

but further questions cannot be asked when the participant’s responses are anonymous. 

Key informant sampling [111] was utilized to identify participants. This sampling method was 

chosen to target participants that are highly knowledgeable in their organization’s data and 

information challenges. The target participant was a person who works closely with manufacturing 

operations and has in-depth knowledge of the data and information inputs and outputs. In 

manufacturing, these are typically management roles such as plant manager, general manager, 

operations manager, quality manager, planner, or scheduler. 
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The interview conversations were structured around two main questions: (1) What 

challenges do you face with data and information flows? and (2) How do you define success in 

data and information flows? The questions were open-ended, so the participants mentioned their 

foremost thoughts, revealing the most pressing challenges. If participants needed clarification on 

the first question, they were asked to provide examples of instances in which the right data was 

not in the right place, at the right time, or in the right form to make the best possible decision. If 

the participant could not provide further examples, the interviewer would ask about the following 

types of data/information: ERP, materials requirements planning (MRP), scheduling, 

inspection/quality, work instructions, MES, routers/travelers, models/drawings, and material 

certifications/approvals. The second question was open to the participant’s interpretation to reveal 

if and how their organization thinks of successful data and information flows. The permission to 

perform the study by an institutional review board, training certificates for researchers, the 

recruitment email for participants, and questions to guide the interviews are in Appendices B-E. 

 

5.4 Results 

In this study, 32 interviews were conducted with participants from 22 companies. Of the 

companies that participated, five had multiple participants. The participant role, company size, and 

type of manufacturing demographics of the participants are shown in Figure 12-13. Participants 

represented roles in Operations (31%), Other (23%), Executive-level (19%), Engineering (15%), 

Quality (8%), and Planning (4%) (Figure 12). The “Other” group was created to aggregate small 

categories so as to not identify participants by their roles. Of the companies that participated, 64% 

of the companies were SMMs, having less than 500 employees [50], and 36% of companies were 

large manufacturers, having greater than 500 employees (Figure 13). 
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Figure 12 Roles of Participants. 

 

Figure 13 Company Size. 

The North American Industry Classification System (NAICS) code for each company was 

used to classify the participants by type of manufacturing. The industries represented in the 

interviews were: Primary Metal & Fabricated Metal Product Manufacturing (28%); Transportation 

Equipment Manufacturing (24%); Miscellaneous Manufacturing (16%); Other (16%); Machinery 

Manufacturing (8%); and Plastics and Rubber Manufacturing (8%) (Figure 14). The “Other” group 

was created to aggregate small categories so that the manufacturing companies are not identifiable. 

 

Figure 14 Type of Manufacturing. 
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The following subsections summarize the responses to the two main interview questions. 

Section 5.4.1 presents the challenges manufacturers face with their data and information flows. 

Section 5.4.2 summarizes how the participants defined success in the flow of data and information 

in manufacturing systems. 

5.4.1 Challenges with Data and Information Flows 

In this section, the participants’ responses to the question “What challenges do you face with data 

and information flows?” are summarized. In the following subsections, the interview responses 

are grouped by the type of data and information the participants discussed. 

5.4.1.1 General 

It is apparent through the interview responses that communication issues are rampant across all 

types of manufacturing and amongst all levels of employment. One notable response was that 

“manufacturing fundamentally has a communication problem.” This remark referred to the 

inefficient communication practices across manufacturing firms, from the plant floor to the 

executive suite. All participants mentioned inefficient, redundant, and back-and-forth 

communication practices. This indicates that communication issues are likely a widespread 

throughout manufacturing operations. 

A large portion of overhead costs is allocated to employees’ salaries for internal or supply 

chain communications, data reporting, and efforts to keep data and information up to date. A 

participant confirmed this statement by noting that they know their role could use significant 

efficiency improvements. The needed improvements are not enacted due to a focus on the day-to-

day tasks at hand; this is the firefighting mindset of needing to focus on the issues at hand and not 

having the capacity to consider future improvement opportunities. The comments made by this 

participant support the proposition of this research that inaccurate and inefficient data and 
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information practices are costly and often go unaddressed. However, the more significant issue 

may be a lack of perceived value of digitalization or the benefits that communication 

improvements can provide. 

Incorrect, inconsistent, and incomplete data and information were broadly mentioned as 

common issues. The excessive amounts of data and information, particularly in reporting, were 

also mentioned by management-level participants. The problems with reporting were on two ends 

of the spectrum; some participants noted that reports include information that is not pertinent to 

their role, and others mentioned that customized reports could cause inconsistency amongst 

reports. It is evident that different roles need different views of the same data. However, the data 

source needs to be up to date and consistent for multiple views of the same data to be accomplished 

successfully. 

Overall, the responses infer that data and information issues are widespread throughout 

manufacturing. Of the general comments about data and information in manufacturing, it became 

clear that there is no centralized or easily accessible source for data and information. The 

interviews also uncovered the importance of considering that “valuable data” will take on different 

meanings to individuals in various roles because they are trying to achieve related but somewhat 

different outcomes—the form and view of the data matter to the user. Therefore, non-value-added 

data and information will be defined differently by various users. 

5.4.1.2 Enterprise Resource Planning 

Interviews uncovered an overwhelming amount of disdain toward ERP software. The issues with 

ERP systems were multifaceted, including outdated and not user-friendly software, unorganized 

data or complicated search functions, homegrown software, and disconnected data and 

information. Many participants noted that their company’s ERP system seems archaic due to the 
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outdated interfaces and reports that are output in a form that is difficult to analyze, such as a 

portable document format (PDF). The ERP software can become a source of frustration if the user 

struggles to find the data they need to make informed decisions promptly. Several SMMs and large 

manufacturers have created homegrown ERP software to combat the costs and complexity of ERP 

software. In some cases, companies use a collection of files and spreadsheets that attempt to 

perform the functions of an ERP software suite. On the other hand, many large manufacturing 

participants with multiple plants or locations mentioned having non-similar ERP systems across 

the entire company. Having multiple ERP software providers can cause difficulty or inability to 

aggregate data for timely decision-making. 

The value of having a centralized location for manufacturing information arguably 

outweighs the challenges ERP systems present. However, the most significant issue with ERP 

systems was the perception that data in an ERP system cannot be trusted. Almost every participant 

said that the data in their company’s ERP system is wrong and prone to errors. ERP systems are 

designed to pull together disparate pieces of data from multiple sources. The data coming from 

many of the sources is often not up to date, resulting in a lack of trust in the data. Extracting data 

from one system and importing it to another can take time and manual intervention if the systems 

are not interoperable. Several respondents said the ERP system needs to be connected to the MRP 

module, but it is not. ERP is an evolution of MRP and MRP II. Since ERP systems typically have 

an integrated MRP component, the respondents likely meant that they desire to have their ERP 

system set up to consider material availability when scheduling production and that the ERP 

system is not correctly set up. ERP systems that have been properly configured and managed can 

allocate materials based on availability. Still, several respondents did not have this capability 

running or set up correctly, causing the ERP system to schedule production regardless of material 
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availability. The leading cause of this issue was the data not being up to date to allocate supply to 

demand accurately. 

Demand input and reporting for most respondents occur weekly while production happens 

in real-time daily, resulting in a significant lag in updating the needed data. In addition, most 

participants noted a missing feedback loop. From the production floor to the ERP system, meaning 

the ERP system does not keep track of planned vs. actual production. Combating the issue of 

outdated data is no easy task; for one company, a team has been tasked with evaluating all the data 

in their ERP system to remove data errors or “noise.” Performing the evaluation is daunting and 

may only provide benefits until the data is outdated again. Therefore, standard methods must be in 

place to ensure that data is continuously updated and can be trusted. 

The responses from the interviews reveal the vast frustration that ERP systems can cause. Most 

ERP systems are only correct and up to date on the day they begin running. After that, the data 

quickly becomes outdated and incorrect, resulting in a growing lack of trust. The inability to trust 

the data is a problem, but the root cause of the issue digs deeper into the data being outdated or 

incorrect. The data becoming outdated is most likely due to the ERP system not being set up with 

proper data feedback loops and a lack of connectivity between data sources that are needed as 

inputs for the ERP system [112]. Also, when data is manually entered into the ERP system, there 

is a high potential for data entry errors. The data entry procedures are commonly undocumented 

and unstructured or challenging to use. The task of manually entering data can be costly. 

5.4.1.3 Scheduling 

ERP software can create a schedule, however, few respondents use the schedule generated from 

the ERP software as is. The reasons for this varied: the ERP software does not take material 

availability into account, the ERP schedule is in a format that is difficult to understand, or it is not 
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user-friendly, the ERP schedule is built off of incorrect lead times that cannot be trusted, the ERP 

schedule does not include after-market parts that cause high levels of variability, and the ERP 

schedule does not adjust based on production. These issues represent instances in which the right 

data is not in the right place, at the right time, and in the right form to make the best possible 

decision (in this case, an accurate schedule). Several participants use the schedule generated from 

the ERP system as a baseline to which they make changes. In contrast, others do not use their ERP 

software for scheduling even though it has the capability. The most common form of scheduling 

used by the participants was a spreadsheet. 

Depending on the company’s size, an individual or multiple persons work solely on 

scheduling functions. These scheduling tasks are often redundant and could be better performed 

by a computer. However, the lack of up-to-date and correct data in the ERP software presents a 

significant challenge in scheduling, whether the schedule is created by software or by manual 

intervention. Many participants described the back-and-forth communication between multiple 

departments that must take place to determine production capacity, resource availability, material 

availability, machine and tooling availability, machine code readiness, and authorization readiness. 

Back-and-forth communication can be difficult to track and document. It is an inefficient form of 

communication, and data and information can be lost or miscommunicated in translation. 

Schedules are constantly changing in production environments. The manual intervention 

used to update schedules is time-consuming, an interruption to the flow of data, and happens at 

discrete points in time. Ideally, a continuous feedback loop would automatically update the 

production schedule. The interview responses illuminate the lack of connectivity between 

manufacturing functions (such as production resource management, product definition 
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management, detailed production scheduling, production dispatching, production execution, etc.) 

that need to merge to create an accurate schedule at the right time. 

5.4.1.4 Work Instructions and Manufacturing Execution Systems 

Issues revolving around manufacturing work instructions included information that is not up to 

date, work instructions are seldom viewed by experienced operators, and disconnects between the 

work instructions and MES. It is common for work instructions to be paper-based and stored at 

the operator’s workstation for future use. Other forms of work instructions include PowerPoint 

slides that are stored in a shared drive and can be pulled up by a uniform resource locator (URL) 

if needed, drawings that are used as work instructions, and work instructions that are printed, 

laminated, and posted at the operator’s workstation. 

Operators do not always refer to the work instructions, drawings, or specifications because 

they repeatedly perform the same or similar jobs. Familiarity with the work can lead to missing a 

change made to the product, leading to quality escapes. Work instructions that are not current can 

result in producing products to the wrong specifications, lost efficiency, and lost capacity. 

Updating work instructions is a challenge that many participants noted. Work instructions 

are often stored in multiple locations and updated in one place but not another. For example, the 

work instructions may be updated in the ERP or MES software, but the new work instructions are 

not printed and delivered to the plant floor, causing a mismatch in information. The reasoning 

behind paper-based work instructions, as opposed to digital instructions, was that operators might 

not be computer savvy; this is indicative of a culture that is resistant to change, which is a more 

significant issue that needs to be addressed. 

Several interviewees have an MES that is separate from the work instructions. For example, 

a company uses an MES for operators to sign off on completed tasks and specifications, but the 
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work instructions are housed in different software that can be accessed through a URL in the MES. 

The MES contains many of the same steps as the work instructions, but the work instructions are 

typically more detailed and only used if needed. Many participants noted that their MES and work 

instructions are not connected or are poorly connected with other systems, such as the ERP and 

quality software. 

Work instructions that are not digitized are prone to being outdated, causing the 

information used by the operator to be incorrect. Work instructions that are digitized and printed 

are liable to be mismatched and cause confusion about which version is correct. Printing and 

updating work instructions take time and can cause the work instructions to be incorrect and 

unavailable to the operator when needed. Work instructions are most likely not referred to due to 

the form in which they are displayed to the user, and it can be seen as a nuisance to view such 

detailed instructions. Of the respondents, the companies that use MES systems typically use them 

for logging job hours and status. However, this information is rarely correct or updated in real-

time based on actual production because it requires an operator’s manual interaction with the 

interface, which inherently causes a delay in the production status being updated. 

5.4.1.5 Models/Drawings, Computer-aided technologies, and Technical Data Packages 

A technical data package (TDP) is a set of information that a manufacturer receives from a 

customer about a part. The TDP typically includes the part design, configuration, performance 

requirements, and procedures [113]. The technical data may consist of 2D drawings, 3D models, 

notes or comments, and specifications. Because the information comes from many sources, it is 

common for TDPs to be incomplete, have conflicting information, or arrive in a non-standardized 

or inconsistent format, all of which were mentioned by participants in this study. Few companies 

trust the data in a TDP that comes from a customer. There is a fear of releasing jobs to the plant 
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floor without first reviewing (and possibly reworking) all the TDP because of significant issues 

they have had in the past with incorrect data from TDPs. Several participants mentioned that there 

are jobs dedicated to ensuring that TDPs are checked for errors, missing information, and 

inconsistencies because they cannot trust any data from the customer. 

Conflicting information is an error often found in TDPs, with the most common example 

being that drawings and models do not match. This requires the manufacturer to determine if the 

model or the drawing is correct, and then time is spent making the necessary changes to correct 

the data. Customers often use computer-aided technologies (cAx) to generate their models and 

drawings. The three most common issues with cAx mentioned by participants were difficulty 

verifying and validating models, interoperability issues from customers utilizing different cAx 

software, and loss of features or fidelity during model translation. 

Configuration management of TDPs was also mentioned as a challenge. When a 

manufacturer receives a revision or engineering change, the TDP must be updated to ensure that 

only the most up-to-date and accurate information is used to manufacture the part. The respondents 

mentioned maintaining and keeping track of the changes in TDPs as a challenge. One change in a 

TDP can cause a cascading effect of other changes that need to be made to support the revision, 

but those changes are not always reflected throughout all necessary parts of the TDP and in the 

manufacturing of the part. 

The respondents that produce classified products must protect TDPs and the models and 

drawings within the TDPs or risk a potential security breach. Moving this data with the appropriate 

level of security is challenging. Classified data on a network is a potential target for a security 

breach, so many companies are choosing to airgap their systems, which hinders the ability to flow 

data easily from the source of the data to the entities that are processing or using the data. 
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5.4.1.6 Production Data and Status 

Real-time insight into the status of orders was an issue noted by all participants. Some 

manufacturers reported having real-time production status data, but most respondents utilized 

barcode scans or operator signoffs to update their operational statuses. Barcode scans have the 

potential to be near real-time if standard barcode scanning procedures are in place. However, these 

methods rely on manual intervention from an operator to update the status of an operation or order. 

As a result, manufacturers struggle to answer the question: “When is the customer going to receive 

their order?” For most respondents, answering this question requires iterative phone calls and 

emails between multiple internal departments to determine supply, resource, and scheduling 

constraints. 

Another issue with production data is that many companies collect it, but there is a delay 

in receiving the data in a form that can be analyzed; Or worse, the data is stored and never analyzed. 

Experiencing a delay in receiving production data hinders the ability to take prompt corrective 

actions. Production issues, quality losses, and efficiency losses could have been prevented if the 

production data had been received and analyzed in near real-time. Production data must also be 

collected in a standardized way that is not prone to errors. Several participants mentioned that 

manual data entry is a common cause of data errors. In turn, the production statuses cannot be 

trusted due to incorrect data. 

Possessing large datasets that are not used to their potential could indicate that the 

production data is being collected in a form that is not easy to analyze, understand, or enact change. 

More likely, the users do not understand how to utilize the large datasets they have collected, but 

they feel the need to collect large amounts of data and do not know why. Simply obtaining data 

for the sake of having it is not value-added; taking it and turning it into information to inform 
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better decisions is value-added. The data may not appear to be value-added until it is in a form that 

can be understood and used to act. Valuable data is often overlooked because it is not visualized 

and presented effectively to decision-makers. It is also possible that the data is not used because it 

is not trusted. Systems must be in place to collect accurate data in a form that can be trusted. 

5.4.2 Defining Success in Data and Information Flows 

The interview’s second question dealt with how the respondents define success in data and 

information flows. This question initially stumped several respondents, and they had to stop and 

contemplate their response, revealing that data and information flow improvements are not 

commonly considered and addressed in manufacturing. However, the answers provided valuable 

insight into the issues being faced by manufacturers. 

The most common response in defining success in data and information was timely, fast, 

and accurate data. Manufacturers need readily available information. The desire to have timely 

data and information was driven by the need to provide the customer with the status of an order, 

an estimated or definitive delivery date, planned vs. actual man-hours and material used, and 

budget vs. actual production cost(s). One response described a desire to have a voice-activated 

system that could provide an answer instantaneously, essentially Alexa or Siri for manufacturing. 

The desire behind such a system is to obtain information quickly without exerting heroic effort in 

searching for an answer. There is a need for quick insight and visibility into any aspect of the 

manufacturing system. 

The second most common response was that successful data and information flow is when 

data is presented in a manner that is valuable and useful, meaning it can be used to make 

sustainable improvements and inform better decision-making. One response was that data should 

be “given to the end-user in an actionable fashion.” This participant sought to have the ability to 



   
 

 90 

view the data in its current form and, from that, be able to act. Manufacturers do not want to waste 

time, energy, or effort manually transforming data and making reports. They want to minimize the 

manual effort required to perform these data tasks so that they have readily available actionable 

information [114]. 

Success was defined as being able to have a direct link between manufacturing functions 

that is seamless and eliminates the need for an extensive number of emails and phone calls between 

departments. A participant provided an example of having the plant floor operations connected to 

the ERP system so that scheduling data is automatically updated based on actual production, 

indicating a disconnect between the production and planning systems in their current system. 

Manufacturers desire a centralized authoritative source for data with multiple views for various 

roles to enact different yet related value-added changes. This valuable insight must be considered 

when creating a tool to identify data waste. 

Respondents that worked with classified data and information had different responses to 

the question of defining success in data and information flows. These responses spoke first and 

foremost about success being a flow in which no data is compromised, no integrity is lost in data 

transmission, and all safeguards are in place with no failures. In this case, a lack of connectivity 

between manufacturing functions could be a positive indicator of success. For example, for 

security purposes, there is a need to airgap information technology and operations technology so 

that no piece of data or information can be accessed through a network. Adherence to government 

policies and regulations necessitates a different definition of success in the flow, or lack of flow, 

of data and information. However, not losing data or its integrity would be a success for all types 

of data, not just sensitive data. Additionally, this extreme position infers that the organization is 

foregoing any competitive improvement from digitalization that can be gained from data and 
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information technology improvement and connectivity in a trade-off with security, which is not a 

positive long-term growth strategy. 

 

5.5 Discussion 

This section explains how the interview responses contributed to the creation of 8 Wastes for Data 

and Information. Section 5.5.1 describes how the waste categories were formed from the interview 

responses. Section 5.5.2 introduces each of the 8 Wastes for Data and Information, and Section 

5.5.3 expands on their application. 

5.5.1 Creating the Waste Categories 

Approximately 300 data and information issues were extracted from the interview responses and 

recorded in a spreadsheet. Similar responses that described the same type of issue were grouped 

together. The grouping process is shown in Figure 15. Natural groupings began to appear when 

sorting the challenges by their descriptions. The natural groupings resulted in 42 categories. The 

42 categories were parsed over multiple iterations into fewer categories by a group of 

manufacturing experts. Each expert sorted the 42 categories individually and then compared their 

categories as a group, resulting in ten categories. For the final round of grouping, the ten categories 

underwent several iterations of regrouping and renaming by the team of experts, resulting in the 8 

Wastes for Data and Information. These waste categories are presented in Section 5.5.2. 

Fewer categories are desirable so that manufacturing associates can easily recall the 

categories, identify wastes, and methods of removal or minimization created and implemented. 

Multiple rounds of grouping took place to minimize the total number of categories (as shown in 

Figure 15). After two rounds of grouping, there were ten resulting categories, one being an “Other” 

category. The “Other” category consisted of issues that were not specifically data and information 
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wastes, such as no responsibility for data and information, security hindering the flow of data and 

information, and lack of personnel or skills. Regrouping and renaming of the categories were 

conducted to eliminate the “Other” category. The final eight categories of this iterative and 

recursive process are presented as the 8 Wastes for Data and Information (Table 9). 

 

 

Figure 15 Waste Grouping Process. 

5.5.2 The 8 Wastes for Data and Information 

The resulting waste categories were Form, Excess, Error, Separation, Delay, Change, Manual 

Intervention, and Storage, defined in Table 9. 

It is important to note that a data or information issue may fit into multiple waste categories. 

As with the 7 Wastes of the TPS, one waste can lead to other forms of waste, or numerous wastes 

may be present in one identified issue. Regardless of the chosen classification, identifying the 

waste is successful if the issue is identified and eliminated. 
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Table 9 Definitions of the 8 Wastes for Data and Information. 

Waste Category Definition 

Form A format of data or information that is suboptimal for use 

Excess A greater amount or volume of data or information than needed 

Error Incorrect, inaccurate, or incomplete data or information 

Separation Data or information that lacks connectivity in its flow 

Delay A stoppage in the flow of data or information 

Change The act of manipulating, modifying, or transforming data or information 

Manual Intervention Necessary intervention to initiate/continue the flow of data or information 

Storage The continued retaining of data that has no apparent purpose or requirement for preservation 

 

5.5.2.1 Waste of Form 

The Form category includes data and information that are not presented in a way to be efficiently 

utilized by the user. The user could be another software or someone who needs to interpret the 

data. The data or information may need to take on a different format, structure, or media to be 

user-friendly and interpretable. The form of the data or information either does not add value and 

is unnecessary or has the potential to add value but not in its current state. An example of the waste 

of Form could be machine-readable data being presented to humans for use, or human-readable 

data being presented to machines for use; either way, it is not suitable. 

5.5.2.2 Waste of Excess 

The Excess category includes data and information that are in an amount greater than necessary. 

Duplicates of data or information are considered a waste of Excess because the same information 

is stored in multiple locations, which can lead to inconsistent (waste of Form) or incorrect (waste 

of Error) data. One of the simplest examples of the waste of Excess is too much data or information. 

Presenting too much data to the user can cause them to skip over necessary details or become 

overwhelmed by all the data or information they feel they must review. A manufacturing example 
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of the waste of Excess is generating a full MRP report for the operations manager instead of a 

tailored report that simply provides the information needed to determine operational status. In this 

example, it is possible to see the interconnectivity of these waste categories as more information 

was reported to the operations manager than necessary (waste of Excess) in a form that was not 

optimal for their use (waste of Form). 

5.5.2.3 Waste of Error 

The Error category includes data and information that are incorrect, inaccurate, or incomplete. If 

the data is not current, it is historical, not timely, and therefore of no real value for making 

decisions on current production. Data or information that is manually entered (waste of Manual 

Intervention) incorrectly with typos is inaccurate and contains errors. Data or information that 

loses fidelity from translation is incorrect. Information that is incomplete or not captured is also 

considered an error because data that should be available is not present. Waste of Error can also 

be found where data duplicates (waste of Excess) do not match. If the data does not match, at least 

one data source is outdated or incorrect. An example of the waste of Error is wrong lead times in 

the ERP system. The lead times were likely correct when they were entered but have since become 

outdated. 

5.5.2.4 Waste of Separation 

Separation includes data or information that is not connected in a thread-like flow but could reap 

benefits if connected in an interoperable fashion. This waste arguably is the most detrimental 

because it leads to several other wastes. Software programs from different vendors that do not 

allow interoperability due to the proprietary nature of their products cause delays, errors, and 

manual intervention. When data is separated and stored in multiple different locations, there is a 

need to aggregate the data for decision-making. Pulling data together from various sources can 
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take time (waste of Delay) and manual effort (waste of Manual Intervention). It can also cause a 

need to modify the data (waste of Change) because it is not in the right form (waste of Form) for 

aggregation. 

The waste of Separation can be identified where there is a lack of communication, poor 

communication, or back-and-forth communication. These are indicators that data is not in the right 

place, at the right time, or in the right form to inform the best possible decision. If data were readily 

available and centralized, the back-and-forth communication between manufacturing departments 

would no longer be necessary. An example of the waste of Separation is using ERP software for 

scheduling but using a spreadsheet for material allocation. The data is not connected, but a 

significant amount of time and effort could be saved if material allocation were integrated into the 

ERP system. 

5.5.2.5 Waste of Delay 

The Delay category includes data and information being moved or transferred from one place to 

another, either manually or automatically, which causes time delays and adds to the overall lead 

time in delivering the product to a customer. It can also be the result of unknown or overlapping 

responsibilities of personnel where needed data is not moved because it was not considered as part 

of the job responsibilities or the thought that someone else had taken care of the transmission. The 

waste of Delay is often seen on the receiving end of data and information. A user is waiting on 

data or information because of a delay that is likely from several other wastes such as Change or 

Manual Intervention. Delivering and transferring data belong to the waste of Delay because these 

actions take extra time. For example, an operator waiting for work instructions, a schedule, or 

approval, is experiencing the waste of Delay. 
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5.5.2.6 Waste of Change 

The Change category includes data and information being manipulated, modified, or transformed, 

typically to fit another purpose or to be viewed/consumed differently by a user. The waste of 

Change encompasses any action in which the data takes on a new form. The data itself or how the 

data is presented has changed. It is prevalent in manufacturing for various users to view the same 

data differently because they are trying to accomplish different yet related goals. The action of 

putting the data in other formats is a waste of Change. The waste of Change can also tie into the 

waste of Form because the waste of Form often leads to a need to modify the data. Reviewing, 

verifying, and validating data also falls into the waste of Change because each action ensures that 

data modifications are unnecessary. Reformatting or creating different versions of a schedule for 

different users is an example of waste of change.  

5.5.2.7 Waste of Manual Intervention 

The Manual Intervention category encompasses all human interactions with data and information 

that interrupt the flow of data and information. However, the waste of Manual Intervention could 

also appear in a digital form. The actions of manually collecting, entering, and searching for data 

would be considered Manual Intervention because a human interface is utilized. Retrieving and 

extracting data also fall into this category because these actions are taken by a person or software 

when systems are not interoperable (waste of Separation). Manual Intervention will almost always 

cause the waste of Delay because of the time spent on the intervention. A typical example of the 

waste of Manual Intervention is an operator manually entering machine downtime reasons. 

Manually entering data is also susceptible to typos (waste of Error). 
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5.5.2.8 Waste of Storage 

The Storage category includes data retained with no apparent purpose or requirement for 

preservation. An example is the continued purchase of storage space for data with little or no 

access, activity, or review. Storage of data for the sake of keeping the data is a non-value-added 

activity that is costly. The waste of Storage can be found where data and information are stored, 

but there is no plan to retrieve or analyze the data. Data or information is being collected, but it is 

not being used to inform better decision-making. The data may have the potential to be analyzed 

or used for actionable change, but it is not in its current state. Storing data and information can 

also cause a need for retrieval, which may take time (waste of Delay) and effort (waste of Manual 

Intervention). 

5.5.3 Application of the 8 Wastes for Data and Information 

The 8 Data and Information Wastes inhibit an organization’s ability to effectively and efficiently 

make decisions related to production and operations, resulting in poor system performance. Figure 

16 depicts how data and information wastes inhibit the right data and information from being in 

the right place, at the right time, and in the right form to make the best possible decision. 

Minimizing and eliminating the eight wastes supports data and information value creation. All data 

and information flows do not necessarily experience all the wastes presented in Figure 16. 

However, it is common for one data and information waste to lead to another or several wastes to 

be present within one data and information flow. Identifying waste so that it can be eliminated is 

the key. It is not necessary to classify waste into only one category. Having categories of waste 

provides a method for spotting the various types of waste that might be present in data and 

information systems and begin the generation of methods and tools to minimize or eliminate the 

waste. 
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Inputs commonly involved in data and information value creation or the hindrance of it 

include the six elements listed on the left side of Figure 16: hardware, software, methods, 

connectivity, and management. The hardware and software used can be a source in which data and 

information wastes can be identified. For manufacturing, the software would include the enterprise 

resource systems, and the hardware would consist of the equipment upon which the software can 

be found. Methods include any data and information methods, or practices, performed concerning 

data and information. Connectivity refers to how data and information are connected or not 

connected. For example, interfaces and places of disjointed connectivity are sources where waste 

can be found. Management explicitly refers to the management of data and information (in other 

words, how the data is handled and managed). It is also important to consider all users as inputs 

because users are those that see the direct impact of data and information waste. It is typical to 

view a user as a human, but in a digital environment, the user can also include a digital interface 

in which data must be interpreted in its expected/standardized form. 

 

Figure 16 Data and Information Value Creation. 
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Much like the 7 Wastes of the TPS, it is envisioned that practitioners will utilize the 8 

Wastes for Data and Information as a starting point to eliminate waste in data and information 

processes continuously. Searching for these 8 Data and Information Wastes will require that 

manufacturers start to understand the intricacies of their data and information flows entirely. Doing 

so will uncover the data and information practices that are value-added and non-value-added. 

Associates trained to identify the 8 Wastes for Data and Information can quickly identify 

improvement opportunities that can save time and money while increasing productivity and 

minimizing the previous effort spent on redundant data and information tasks that has been hidden 

in the overhead costs for years. Employees can repurpose their time to focus on forward-thinking 

and value-creating decisions. Identifying and eliminating data and information wastes will 

declutter data networks and generate data and information that is accurate, timely, and trusted. 

Quantifying data and information wastes will assist in determining the time and costs 

associated with inaccurate and inefficient data and information practices. Tables 10-13 include 

metrics that should be considered when evaluating the impact of data and information wastes. Each 

metric is tied to value (right data, right place, right time, right form). Tying metrics to value ensures 

that non-value-added activities are identified for elimination, creating an environment that 

supports value creation. The 2nd-9th columns in Tables 10-13 indicate which waste categories are 

the most closely related to each metric. The 10th column of Tables 10-13 indicates if the metric 

should be minimized, maximized, or controlled, meaning that the metric needs to be observed over 

time. Controllable metrics are those that should not necessarily be minimized or maximized; a 

“good” value will vary from company to company and therefore “good” should be defined by the 

individual company. Most of these metrics can be converted to costs which is crucial in 
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understanding the impact and importance of identifying and eliminating the non-value-added 

activities. 

Each of these metrics should be measured with intent and purpose. It is not necessary to 

measure data and information flows for the simple sake of studying them. The outputs of these 

measurements should be used to enact change, understand the current state, and plan an improved 

future state in which the entire data and information system supports value creation. Before 

determining these metrics, one should foster a mindset of asking themselves, how do we measure 

for a purpose? Every organization should work to understand which metrics can increase return on 

investment in their system. 

 Table 10 presents metrics for “Right Data”. The amount of used data and unused data are 

metrics that should be controlled. The amount of data that a company collects will vary from 

company to company. Therefore, the amount of used and unused data will also vary. The time 

spent verifying and validating data is closely related six out of the eight waste categories. This 

reveals the significant amount of non-value-added activities that can occur in the quoting process 

when internal employees review TDPs for errors and inconsistencies and correct them. Time in 

error remediation can occur anywhere there is data that is incorrect and therefore must be corrected. 

The percentage of complete and accurate data can also be used in varying contexts. However, an 

example of using the metric would be to evaluate the incoming TDPs from customers. Having this 

metric should encourage customers to provide more complete and accurate data than before. 
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Table 10 Metrics for Data and Information Waste: Right Data. 

  Related Waste Categories    

 Waste Metric 

Fo
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Minimize (¯), 
Maximize (­), 
or 
Control) 

Definition Unit 

R
IG

H
T 

D
A

TA
 

Amount of Used 
Data 
 

 X      X C 
Data used by software or human Gigabytes, 

Megabytes, 
or Kilobytes 

Amount of Unused 
Data 
 

 X      X C 
Data not used by software or 
human 

Gigabytes, 
Megabytes, 
or Kilobytes 

Time 
Verifying/Validating 
 

X  X X X X X  ¯ 
Time spent evaluating 
data/information to check for 
accuracy and completeness 

Time 

Time in Error 
Remediation 
 

X  X  X X X  ¯ 
Time spent correcting 
data/information errors 

Time 

Percentage of 
Complete/Accurate 
Data 
 

  X    X  ­ 

Percentage of incoming data that 
is complete and accurate 

Percentage 
 

 

Table 11 introduces metrics for “Right Place”. All the metrics listed in Table 11 should be 

minimized. Data that is in the right place should not be found in disparate locations that would 

create the opportunity for mismatched and inconsistent data. If time is spent searching for data, it 

is not in the right place; therefore, time searching for data should be minimized. Transferring data 

from one location or software to another can be time consuming and costly and therefore should 

be minimized. Instances in which data is missing should also be minimized. A common example 

of this would be that an operator needs specific data to manufacture a part, but the operator does 

not have the data. 
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Table 11 Metrics for Data and Information Waste: Right Place. 

  Related Waste Categories    

 Waste Metric 
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Minimize (¯), 
Maximize (­), 
or 
Control) 

Definition Unit 

R
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T 
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A

C
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Count of Disparate 
Locations 
 

X X  X     ¯ 
Number of disparate locations in 
which the same data/information 
(and its other forms) is stored 

Count 

Time Searching 
 X X  X X  X X ¯ Time spent looking for the 

correct data/information 
Time 

Count of Transfers 
 X   X   X  ¯ 

Transmissions of the 
data/information from the point 
of creation or collection to the 
point of use or storage 

Count 

Count of Instances 
of Missing Data 
 X  X X     ¯ 

Instances in which 
data/information is needed, but it 
is not present in its needed 
location 

Count 

 

Table 12 presents metrics for “Right Time”. Information lead time and time waiting should 

have a goal of minimization while time at rest and in use should be controlled by companies. The 

metrics of information lead time should be thought of in a similar manner to lead time for product 

flow. Each of the eight waste categories depict non-value-added activities that could impact the 

overall information lead time. Time waiting for data and information should always be minimized. 

However, this is not necessarily the case with time at rest and in use. Time at rest may be more 

meaningful to some companies than others. Data at rest is data that is not currently being used for 

actionable change and therefore could be costly in terms of storage. Time in use will also vary 

from company to company. An extended time in use could indicate that the data is not easy to 

interpret or its being evaluated for actionable change. 
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Table 12 Metrics for Data and Information Waste: Right Time. 

  Related Waste Categories    

 Waste Metric 
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St
or

ag
e 

Minimize (¯), 
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or 
Control) 

Definition Unit 

R
IG

H
T 

TI
M

E 

Information Lead 
Time 
    X X  X  ¯ 

Time it takes from the point of 
data/information creation or 
collection to the point of use or 
storage 

Time 

Time Waiting 
    X X  X  ¯ Time spent waiting on 

data/information 
Time 

Time at Rest 
  X   X   X C Time data is at rest or not being 

used 
Time 

Time in Use 
    X X  X  C Time data is being used by 

software or human 
Time 

 

Table 13 introduces metrics for “Right Form”. The three metrics: time in manual 

intervention, count of manual interventions, and count of forms should all be minimized. Manual 

intervention is one of the eight wastes that should be mitigated. It is important to reduce the time 

spent in manual intervention and the occurrences of manual intervention to decrease the negative 

outcomes of the waste. Count of forms refers to the different formats that data or a dataset takes 

on during its lifecycle. While it may be positive to have several views of the data, it is not positive 

to have multiple forms and locations of the data because it creates opportunities for data 

inconsistencies. 
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Table 13 Metrics for Data and Information Waste: Right Form. 

  Related Waste Categories    

 Waste Metric 
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or 
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Definition Unit 

R
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T 
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R
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Time in Manual 
Intervention 
 X    X X X  ¯ 

Time spent to move 
data/information to the correct 
place or transform it into another 
form 

Time 

Count of Manual 
Interventions 
 X  X X   X  ¯ 

Number of interventions that 
take place from the point of 
data/information creation or 
collection to the point of use or 
storage 

Count 

Count of Forms 
 

X X     X  ¯ 

Number of forms that 
data/information takes on from 
the point of data/information 
creation or collection to the point 
of use or storage 

Count 

 

5.6 Chapter Summary 

In this study, interviews uncovered the vast amount of non-value-added activities that are present 

in today’s manufacturing systems. This chapter presented eight waste categories to assist in the 

identification of non-value-added activities in the flow of data and information: (1) Form, (2) 

Excess, (3) Error, (4) Separation, (5) Delay, (6) Change, (7) Manual Intervention, and (8) Storage. 

These categories of waste are necessary to facilitate the creation of waste elimination solutions to 

achieve the value-added data and information flows that make manufacturers more competitive. 

Manufacturers can join the digitalization movement by using the eight categories presented in this 

chapter to start identifying wastes in their systems and then developing tools for minimizing and 

eliminating those wastes to develop optimized manufacturing information systems that improve 

organizational competitiveness. 

Interviews revealed that manufacturers do not currently grasp what constitutes success in 

the flow of data and information. This chapter defined value in data and information as having the 
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right data, in the right place, at the right time, and in the right form to inform the best possible 

decision. Metrics were also presented to quantify the impact of inefficient and inaccurate data and 

information practices. 



   
 

 106 

Chapter 6 The Impact of Data and Information Wastes on the Manufacturing Plant Floor 
 

 

6.1 Introduction 

Now that the data and information wastes in manufacturing systems have been revealed (Chapter 

5), it is prudent to evaluate the impact that the data and information wastes can have on 

manufacturing operations. This chapter answers the research questions: how do data and 

information wastes manifest themselves in manufacturing operations, and what is the potential 

impact of data and information waste on manufacturing processes? Answering these questions 

involved a quantitative analysis of data and information practices and plant operations. To form 

an abstraction and evaluate the manufacturing system, a simulation was created. The simulation 

discussed in this chapter demonstrates the impact of having and not having the right data, in the 

right place, at the right time, and in the right form to make the best possible decision. 

 

6.2 Background 

As mentioned across previous chapters, continuous improvement efforts in manufacturing are 

typically focused on the movement of product in plant operations and few efforts are focused on 

data and information flows that support the movement of product. Therefore, data and information 

wastes remain unanalyzed. Manufacturers need a method to visualize the effect that data and 

information wastes can have on operations. A common way to analyze manufacturing systems and 

isolate variables to assess their impact is through simulation. However, little literature can be found 

on simulation being used to simulate the interplay between data and information flows and product 

flows [66].  
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 The eight data and information wastes identified in Chapter 5 are: (1) form, (2) excess, (3) 

error, (4) separation, (5) delay, (6) change, (7) manual intervention, and (8) storage. Many of these 

wastes happen before the information ever reaches the plant floor. For example, the if the work 

schedule is not in the correct form, manual intervention is required to make the necessary changes 

before the work schedule is delivered to the first operation. To provide another example, if there 

is an error in the work instructions or specifications, the error is likely created in within the business 

functions that happen before the issue arises on the plant floor, or worse, at the customer. Data and 

information wastes primarily manifest themselves on the plant floor in the form of data and 

information latency or errors. Whether the plant floor is waiting on information or if the 

information is wrong, serious issues can occur. A unique and novel simulation was created as a 

part of this research to demonstrate situations in which information causes delays. 

 

6.3 Methodology 

To better understand and evaluate data and information wastes in manufacturing systems, a 

simulation of an existing manufacturing system, a metal fabrication company, was developed 

using Simio simulation software. The company name and information are not shared due to 

confidentiality requirements. The company will be referred to as “The Company” in this study. 

 A discrete-event simulation (DES) approach was chosen over an agent-based simulation 

(ABS) approach because the DES approach allows the user to understand the state of the system 

at discrete points in time and to take an object-oriented approach [115]. An ABS approach would 

have focused on agents and how they interact with their environment and other agents; this was 

not the goal of the simulation. DES allows us to introduce delays and understand the impact on the 
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overall manufacturing system. The interest is the impact on the manufacturing plant floor, not the 

data and information itself. 

Section 6.3.1 describes the company’s manufacturing system. Section 6.3.2 explains the 

input data collection and analysis that was performed for the simulation. Section 6.3.3 details how 

the simulation was developed. Section 6.3.4 discusses the assumptions and simplifications that 

were made during the model creation. Section 6.3.5 explains the verification and validation that 

were performed during the creation of the simulation. Section 6.3.6 describes the three simulation 

scenarios that were conducted to test the impact of data and information flows on manufacturing 

production systems. 

6.3.1 System Definition 

A high-level view of the company’s manufacturing system is shown in Figure 17. Multiple 

customers send in order requests. If the order is accepted by the company, the order is added to the 

scheduling process. When it is time for the order to begin processing, the schedule is dispatched 

to the plant floor. A part router is matched up with the order on the plant floor. The part router 

contains printed information such as, but not limited to, a list of processes the part must undergo, 

2D drawings, specifications, work instructions, quality documentation, and setup instructions for 

each operation. Each order consists of only one part type, and the router travels with the order. 

There are barcodes on the router that can be used to pull up a digital form of the information. The 

company is organized as a job shop in which orders follow different sequences that are defined by 

the order’s process flow and work instructions. 
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Figure 17 The Company’s Manufacturing System. 

There are many wastes that can be identified within the “Data & Information Processes” 

box that is shown in Figure 17, but the focus of this particular research is on the interplay between 

data and information and plant operations. For the company, data and information wastes can 

negatively affect the plant floor operations if there is a delay in receiving needed information such 

as the schedule or the part router or if the information is incorrect. For example, if any piece of 

information in the router is incorrect or if the digital information does not match the printed router, 

there is potential for an error to occur when processing a part, which can lead to costly defects, 

rework, and lost capacity. 

6.3.2 Input Data Collection and Analysis 

The company provided historical datasets to study the arrival of orders and the sequence that orders 

follow throughout the manufacturing system. The dataset included 39 weeks of order numbers, 

part numbers, operation codes, planned time at each operation, actual time at each operation, order 

arrival date, and order due date. 
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The company experienced an unusual influx of orders in January due to orders that were 

not accepted over the holidays. The daily number of order arrivals was not reflective of the 

company’s typical order arrivals. The data was cleaned by performing an outlier test using Minitab, 

and outliers in the arrival data were removed. More information about the outlier test and a 

goodness of fit test data can be found in Appendix F. The arrival data and sequence data that were 

provided by the company were used as input data in the simulation. The company also provided 

work schedules with shift and break times to include in the simulation. 

6.3.3 Building the Simulation 

The simulation described in this section is a deterministic DES. A deterministic model was chosen 

because of the high level of data fidelity that was provided and because the complex manufacturing 

system could be represented through logical steps and processes. The simulation shows an 

abstraction of what happened in the real-world manufacturing operations. Making changes to the 

deterministic model allows the focus to be on the specific changes that are made to the model, and 

probability does not influence the results. The main drawback of a deterministic simulation is that 

the simulation will only reflect what actually occurred on the plant floor without including the 

randomization of incoming orders (which would be stochastic). A deterministic simulation was 

sufficient at this stage in the research because the company has a high level of volatility in their 

incoming orders, and a large dataset was provided which increased the complexity of the input 

data. 

A baseline model of the simulation was developed so that various scenarios could be 

executed and analyzed against the baseline model. The baseline model consisted of 1 source, 19 

servers, 1sink, and 1 model entity (Figure 18). For detailed notes on how the simulation was 

developed, see Appendix G. 
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Figure 18 Baseline Model. 

Two tables were created from the datasets: Arrivals and Sequence. The Arrivals and 

Sequence tables are relational tables that are connected through a Primary Key (PK), called Order 

ID, in the Arrivals table. Order ID is a Foreign Key (FK) in the Sequence table; in other words, 

the Sequence table references the Arrivals Table through the Order ID. The connection of the 

relational tables is shown in Figure 19. The columns in the Arrivals Table are Order ID, Mix, 

Estimated Time (Hours), Arrive Time Date-time Group (DTG), Completion DTG, Arrive Time 

(Hours), Completion Time (Hours), and Due Time (Hours). “Mix” is the percentage of each order 

type. In this case, the mix for each order had a value of one because each Order ID was unique and 

not repeated. DTG columns were created to ensure that the number of hours corresponded with 

the expected dates and times. The columns in the Sequence Table are Order ID, Sequence, 

Processing Time (pTime) (Hours), and Router Time (Minutes). 
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Figure 19 Relational Tables. 

The source object, Customer, generates model entities, called Orders, based on the Arrival 

Table. From the Arrivals Table, each entity is assigned an Order ID, a total estimated time for 

processing (Estimated Time), an arrival time DTG (Arrive Time DTG), and a due time (Due Time). 

From the Sequence Table, each entity is assigned a list of operations based on its Order ID and 

processing times for each operation. The arrival time and due time are set when the entity enters 

the output buffer of the source object. The number of entities in the system, a variable called 

Number in System (NIS), is also calculated as entities enter the output buffer of the source object. 

The due time is calculated by adding the total estimated processing time to the arrival time and 

adding three days (or 72 hours) of queue time because the company typically adds time for queue 

waiting. Changes in output statistics such as on-time shipping percentage are more visible, and the 

impact of data and information issues can be studied more closely. Further constraining the due 

time reduces the likelihood of orders being on time. 

The company’s 19 operations are represented by servers in the simulation. The servers can 

be seen in Figure 18. The company does not run production on weekends, leaving only five days 
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of production per week. Since the company does not run 24 hours, 7 days per week, work schedules 

were implemented at each server; doing so provides constraints on when the servers can run. The 

company’s work schedules include two shifts that are approximately eight hours each with breaks. 

When the company is not producing, the servers stop running and switch to an off-shift mode. 

When servers are in an off-shift mode, they turn white (Figure 20). The laser operation is an 

exception to the work schedules because the laser can run 24 hours, 7 days per week, and the 

company runs the laser as parts arrive. Including work schedules was a necessary level of 

complexity to add to the simulation because servers spend approximately 50% of the time in an 

off-shift mode. 

 

Figure 20 Off-shift Servers in White. 

 The sink object, called “Ship”, is used to remove entities from the simulation when they 

are finished processing. Shipping does not have a processing time. The sink is used to decrement 

the NIS value and increment the number of completed orders. The sink also stores the completion 

time and completion time DTG for each completed order. 
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6.3.4 Assumptions and Simplifications 

Assumptions and simplifications were used in the creation of the Simio model to reduce 

complexity and maintain a focus on identifying the impact of data and information wastes on the 

manufacturing plant floor. The assumptions and simplifications are listed below. 

• Holidays: For simplification purposes, the simulation does not consider holidays. The 

company observes 10 holidays a year. Incorporating off-shift days for holidays adds 

unnecessary complexity to the simulation. 

• Laser: To simplify the laser cutting operation, each order goes through the laser one order 

at a time. This does not account for the size, geometry, or thickness of the parts. It also 

does not consider the quantity of the parts and the possibility of using multiple sheets of 

metal for one order. Though these assumptions seem significant, they are not. If an order 

requires the laser operation, it is always the first operation. The laser is not a bottleneck; it 

can run 24 hours, 7 days per week. In the simulation, an order moves to the next process 

instead of waiting for the full metal sheet to finish with the laser process. This 

simplification significantly decreases the complexity of the simulation and removes the 

need for combiners and separators for the parts and would not add to the robustness of the 

study of data and information flow issues. It also removes the need to collect proprietary 

data that the company deems as sensitive information. 

• Material Handling: One of the assumptions is that entities move from one operation to 

another in zero time. Therefore, the model is simplified by not considering material 

handling. In Simio, this is accomplished by setting the initial desired speed of the entities 

to infinity. Removing material handling is a reasonable assumption because orders spend 
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more time in the next process’ queue as opposed to the output queue of the operation that 

it most recently completed. 

• Order Separation: Parts within an order cannot be separated or go on various machines 

within one server object. Orders can only be processed on one machine. For example, if 

the deburr server has a capacity of two, two orders can be processed at the deburr server at 

one time. The ability to separate parts within an order would add significant complexity to 

the simulation by requiring combiners and separators and not add value to the analysis of 

data and information flow issues in the operations of the company. 

• Shipping: When an order is finished processing, it enters the sink object, “Ship”. The entity 

is no longer of interest when it enters the sink object. Therefore, shipping and preparation 

for shipping times are not considered in the simulation for simplification purposes. When 

operations are complete for an order, the order is considered complete. 

6.3.5 Verification and Validation 

Verification was conducted as an ongoing process as the simulation model was developed. 

Initially, the simulation only had 1 source, 1 server, 1 sink, and 1 model entity. The system utilized 

Poisson distributed interarrival times (M), exponentially distributed service times (M), and one 

server (1); this is denoted as an M/M/1 system. Queueing verification was used to determine if the 

outputs of the simulation equated to the M/M/1 queueing results. The equations for an M/M/1 

system are shown in Table 14 [116].  

After adding 18 more servers for a total of 19, a Jackson Network Excel template was used 

to verify the queueing results. A Jackson Network is used for analysis when there are multiple 

servers in a system or in other words, multiple nodes that entities can enter [117]. A Jackson 

Network defines the interarrival process of each server, the probabilities that an entity will go to 
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other servers or return to the same server, and the probability that an entity will leave the system 

from its current server. The results of the Jackson Network model and the Simio model are shown 

and compared in Table 15 and Table 16. There was a less than 0.3% difference in the Jackson 

Network Model and the Simio model for all the server utilizations (Table 15) which was an 

accepted level of accuracy, indicating the model is running as intended [118]. The number of parts 

in the system and the overall throughput had very similar values when comparing the Jackson 

Network results to the Simio model (Table 16). The time orders spent in the system was not quite 

the same between the Jackson Network and the Simio model. However, the job shop layout and 

sequencing of orders accounts for the difference in the two values. 

Table 14 M/M/c Queueing Results [116]. 

 M/M/1 
Where: 
𝜆   average arrival rate, 
𝜇   average service rate, 
𝜌 = 	 "

#$
  utilization factor, 

𝐿   expected number of customers 
at the workstation, 
𝑊   expected throughput time for 
an arbitrary customer, and 
𝑞   queue at the workstation. 
 

𝑝(0) 1 − 𝜌 

𝐿% 𝜌&

1 − 𝜌 

𝐿 
𝜌

1 − 𝜌 

𝑊% 
𝜌

𝜇(1 − 𝜌) 

𝑊 
1

𝜇(1 − 𝜌) 

  

Table 15 Jackson Network Queueing Verification: Utilization. 

 Utilization 

 Laser Deburr Part 
Mark 

Press 
Brake 

Machin-
ing Welding Saw Cut Lathe Mill Other 

Jackson 
Network 91.98% 91.98% 6.79% 35.22% 7.39% 9.25% 1.40% 0.39% 1.01% 7.80% 

Simio 91.73% 91.78% 6.80% 35.22% 7.58% 9.14% 1.46% 0.37% 1.00% 7.92% 

Difference 0.256% 0.206% 0.003% 0.008% 0.189% 0.115% 0.060% 0.028% 0.001% 0.127% 
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Table 16 Jackson Network Queueing Verification: Parts in System, Time in System, and Throughput. 

 L 
(Parts in System) 

W 
(Time in System) 

Throughput 
(parts/hr) 

Jackson Network 23.863 357.941 4.000 
Simio 22.694 339.330 4.004 

Difference 1.169 18.611 0.004 

 

The creation of a Plan in the Simio Planning Tab was used for further verification purposes. 

The Plan included a Resource Plan and an Entity Workflow. The Resource Plan showed each of 

the servers, the orders being processed by each server, the capacity of each server (changes to zero 

during breaks), and constrained entities (the entities that cannot be processed because the server is 

full). The Resource Plan verified the capacity of each server was correct by displaying the number 

of orders being processed at any given time. The work schedules were verified by viewing the 

capacity changing to zero during off-shift times such as breaks and weekends. Figure 21 shows an 

example of the Resource Plan when deburr has a capacity of five. To the right of the deburr row, 

there are five colored rows representing there are five orders in the deburr server. To the right of 

the Capacity row, there are two colors that denote the capacity state of the server. White denotes a 

capacity of zero and the other color denotes a capacity of five. To the right of the Constrained 

Entities row, there are multiple rows of constrained entities that are in the queue of deburr waiting 

to be processed. 
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Figure 21 Example of Resource Plan. 

The Entity Workflow verified that each order followed the sequence of operations as 

defined in the Sequence Table. The arrival times, processing times, and completion times were 

also verified by viewing the time at which the order arrived, the amount of time the order spent 

processing at each server, and the time that the order was completed; the values in the Entity 

Workflow were compared to the Arrivals Table to ensure that the values matched the expectation. 

For example, according to the Sequence Table, one of the orders should follow a sequence of spot 

weld, press brake, then ship, and according to the Arrivals Table, the order should arrive on 

Monday, April 11, 2022. As shown in Figure 22, the order went to spot weld, but the process was 

busy processing other orders. When spot weld became available, the order was processed and 

continued to the press brake operation. Therefore, the order followed its intended order of 

operations, and its sequence is verified. Figure 22 also shows that the order arrived on Monday, 

April 11, 2022, as intended. Therefore, the order arrived at its intended arrival time, and its arrival 

time is verified. 
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Figure 22 Example of Entity Workflow. 

 The most basic form of validation that was used was face validity. It was confirmed that 

the look of the model is reflective of the manufacturing operations. Each server in the simulation 

represents a group of machines that are of the same type which is similar to the layout of the 

manufacturing facility. 

Status labels were created to track the number of entities that were created by the source 

object, the number of completed entities, and the on-time shipping percentage. The three status 

labels can be seen in Figure 18. When setting the simulation to run for a specific run length, the 

simulation accurately created the entities as specified. The on-time shipping percentage was also 

within 1% of the on-time shipping percentage that was actually achieved by the company. 

A graph of the arriving entities was created to ensure that entities only arrive on weekdays 

since the company only pushes orders to their first process on weekdays. The iterative staircase 

pattern that can be seen in Figure 23 shows the spike of order arrivals on weekdays and no order 

arrivals on weekends. 
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Figure 23 Graph of Entity Arrivals. 

 A graph of the number of entities in each server’s queue was also created to ensure that the 

processing logic and server properties were properly implemented (Figure 24). Each colored line 

in Figure 24 represents the number of entities in a server’s queue. As expected, the queues 

increased on weekdays and did not change on weekends. The queues deplete each day as the orders 

are processed. 

 

Figure 24 Graph of Number of Entities in Server Queues. 

6.3.6 Simulation Scenarios 

The methodologies behind the three simulation scenarios are explained in the following 

subsections. 
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6.3.6.1 Scenario 1 

The first simulation scenario was created to compare three methodologies that can be utilized to 

run a manufacturing facility: (1) first in, first out (FIFO), (2) earliest due date (EDD), and (3) EDD 

at the first operation and FIFO at the following operations. A system that runs with a FIFO 

methodology does not use information such as due date or processing time to determine which 

order to process next. Instead, the order that is processed next is determined by the order in which 

work orders arrive in the queue. On the other hand, running a manufacturing plant with an EDD 

methodology requires that each operation’s queue be ordered by due date. The operator is provided 

with due date information, and the operator determines the next work order to process based on 

the order that is due the soonest. A dispatch list is one way that operators can see the orders in their 

queue ordered by due date. The third methodology utilizes a combination of FIFO and EDD. Work 

orders start in EDD order, but as the work orders continue to subsequent operations, the work 

orders follow a FIFO pattern. 

The first methodology, all FIFO, represents a manufacturing system that does not use 

information to guide their order of operations as the operation simply process orders in the 

sequence in which they arrive. The second methodology, all EDD, represents a manufacturing 

system that uses due date data to determine their order of operations; therefore, the efficiency of 

the data and information system has a significant impact on operational performance. The facility 

would need updating information on orders in each of the operations’ queues to accomplish this 

methodology. The third methodology, a combination of FIFO and EDD, represents a 

manufacturing facility that deploys a schedule that follows EDD initially, but the data does not 

update as the manufacturing of orders progress. 
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Figure 25 Scenario 1: FIFO Processing Logic. 

 

Figure 26 Scenario 1: Example of a FIFO Queue. 

These three methodologies were built in the simulation using varying queue logic. All 

FIFO did not require any changes to the baseline simulation; this is because Simio automatically 

sets the servers to run in a FIFO manner (Figure 25). An example of a queue that is ordered with 

a FIFO methodology is shown in Figure 26. The values on each of the entities correspond to the 

“Due Time” of the order. For the second methodology, where all queues are ordered by EDD, 

changes were made to each of the servers so that the next order is selected by the EDD (or in 

Simio, smallest “Due Time” value from the Sequence Table). For the third methodology, only the 

Laser operation was changed from FIFO to EDD logic. The Simio logic for EDD is shown in 

Figure 27. An example of a queue that is ordered with an EDD methodology is shown in Figure 

28. Notice the difference between FIFO and EDD ordered queues- the orders in the queue are 

ordered sequentially by their “Due Time” value in front of the server. 
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Figure 27 Scenario 1: EDD Processing Logic. 

 

Figure 28 Scenario 1: Example of an EDD Queue. 

6.3.6.2 Scenario 2 

The 2nd Scenario was created to represent the impact of delays in receiving information on the 

plant floor. A sensitivity analysis was conducted by introducing information delays in plant 

operations. Information delays can come in many forms. Plant operations can experience delays 

in receiving information such as but not limited to, a schedule, work instructions, specifications, 

part geometry, drawings, models, routers, machine code, and authorizations. These pieces of 

information are referred to as production rules and operational commands in ISA-95 (described in 

Section 5.2.1). As shown in ISA-95 (Figure 9), it is common for production rules to come from a 

product definition function and for operational commands to come from a production execution 

management function. Therefore, it is easy for the two functions to lose synchronization, resulting 
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in the operator experiencing a delay in receiving information, a mismatch in information, or not 

having the complete information that is needed to complete the task. 

 The information delay that is modeled in Scenario 2 is a part router being matched with its 

corresponding order. For the company, a part router is a packet of paper-based information that 

includes a list of processes that the order must go through, quality documents, part specifications, 

and part drawings. The router also has barcodes that can be used to pull up a digital form of the 

information. The routers are delivered by an individual to the operation; this is an example of the 

data and information waste of manual intervention. A manufacturing associate then matches the 

routers to their corresponding orders. For the company, this task can occur at the deburr, welding, 

or saw cut operations. Most of the orders go from the laser to the deburr operation, and therefore, 

the parts are not yet marked when arriving at the deburr station. Since the parts are not marked, 

grouping the parts by order and matching them with the correct router can be a difficult task. 

A manufacturing system with no information delays has the right data, in the right place, 

at the right time, and in the right form to make the best possible decision. In other words, the 

information does not have a negative impact on the plant operations. However, this perfect 

information world is not realistic due to the information wastes that were identified in Chapter 5. 

Having minor or significant information delays is more realistic. Introducing a minor information 

delay allows us to see if the impact on the plant floor is minor also or if there are larger implications 

that cost time and money. A sensitivity analysis was used to test various values for the time it may 

take to match a router with its order. 

In Simio, task sequences were added to the deburr, welding, and saw cut operations to 

account for the time that it takes for an order to be matched with its router (Figure 29). Matching 

the router with the order occurs before the processing at the deburr, welding, and saw cut 
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operations (Figure 30). The sequence numbers default to increments of ten to indicate the order of 

task sequences. Matching a router with an order is conditional; it only occurs if the router time 

specified in the Sequence Table is greater than zero. If so, the processing time for the “Router” 

task sequence is equal to the router time that is specified in the Sequence Table. The “Processing” 

task sequence always occurs to account for the processing of the order at its current operation. The 

Auto Cancel Trigger is set to none to ensure that the “Processing” task sequence occurs even if the 

“Router” task sequence does not occur. 

 

Figure 29 Scenario 2: Task Sequence for Matching Routers with Orders. 

 

Figure 30 Scenario 2: Task Sequence for Processing Time at Stations with Router Matching. 

 The time that it takes to match a router with its corresponding order is defined in the 

Sequence Table. Randomly exponentially distributed times and deterministic times were used as 

input data for the router matching activity. Times of 1, 5, 10, 15, 20, 25, and 30 minutes are used 

to observe the implications of increasing the time that it takes to match each order with a router. 

Exponential and deterministic time values were used to determine if there was a significant 

difference in randomly distributed times versus deterministic time values. 
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6.3.6.3 Scenario 3 

The company can accept priority orders because of their ability to order queues by EDD. Without 

the proper information structure, the company would have difficulty understanding its ability to 

accept a priority order, and the company would have little transparency into how priority orders 

affect other orders in the system. 

The third simulation scenario builds on Scenario 1 and Scenario 2. It aims to understand 

the impact of priority orders. For the purposes of the simulation, priority orders are defined as 

orders that arrive with a due date that only allows for one day of queue time (24 hours) instead of 

three days of queue time (72 hours). This simulation scenario introduces priority orders in all EDD 

manufacturing environment (building on Scenario 1). The scenario also uses part router matching 

of five minutes per order (building on Scenario 2); five minutes was chosen because it is the typical 

time that it takes the company to collect the parts in an order and match the order with its 

corresponding part router. 

To create priority orders in Simio, two servers were added to the system: a “NotPriority” 

server and a “Priority” server (Figure 31). Instead of orders going from the customer to their first 

operation, a specified percentage of the orders go to the “NotPriority” server and the rest of the 

orders go to the “Priority” server. The processing times at both servers are zero because there is 

no time associated with assigning an order a priority. To send the entities to their first operation, 

the output nodes at both servers have a routing logic of “By Sequence.” 
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Figure 31 Scenario 3: Non-priority and Priority Servers. 

When orders enter the “Priority” server, they are assigned a new due date (1st row in Figure 

32), a new color (2nd row in Figure 32), and a priority value of one (3rd row in Figure 32). The new 

color of red is used to differentiate priority orders from non-priority orders (Figure 33). The priority 

value is binary: zero for non-priority and one for priority. This allows us to separate the simulation 

results by non-priority orders and priority orders. As shown in Figure 33, priority orders are 

correctly ordered before non-priority orders in the queue. 

 

Figure 32 Scenario 3: Priority Server State Assignments. 
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Figure 33 Scenario 3: Non-priority entities (green), Priority entities (red). 

 Several state assignments were added to the sink object to create the needed output 

statistics (Figure 34): total time priority orders spend in the system (5th row), total number of 

priority orders (6th row), total time non-priority orders spend in the system (7th row), and total 

number of non-priority order (8th row). 

 

Figure 34 Scenario 3: Sink State Assignments. 

 An add-on process was also added to the sink object to create the needed output statistics 

(Figure 35). The first decide step determines if the order was completed on time or not (Figure 36). 

If so, the order moves to the second decide step. If not, the order completes the sink add-on process, 

and the entity is removed from the system. The second decide step determines if the order is a 

priority or not a priority (Figure 37). If the order is a priority, the total number of on time priority 

orders is increased by one (Figure 38). If the order is not a priority, the total number of on time 

non-priority orders is increased by one (Figure 39). 
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Figure 35 Scenario 3: Sink Add-on Process. 

 

Figure 36 Scenario 3: Sink Add-on Process, 1st Decide Step. 

 

Figure 37 Scenario 3: Sink Add-on Process, 2nd Decide Step. 

 

Figure 38 Scenario 3: Sink Add-on Process, 1st Assign Step. 

 

Figure 39 Scenario 3: Sink Add-on Process, 2nd Assign Step. 
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 Four output statistic elements were added so that the simulation results would show the 

output statistic values: the average time in system for priority orders (“PriorityTISAverage” in 

Figure 40), the average time in system for non-priority orders (“NotPriorityTISAverage” in Figure 

41), on time percentage for priority orders (“PriorityOnTimePercentage” in Figure 42), and on 

time percentage for non-priority orders (“NotPriorityOnTimePercentage” in Figure 43). 

 

Figure 40 Scenario 3: Output Statistic- Average Time in System for Priority Orders. 

 

Figure 41 Scenario 3: Output Statistic- Average Time in System for Non-priority Orders. 

 

Figure 42 Scenario 3: Output Statistic- On Time Orders Percentage for Priority Orders. 

 

Figure 43 Scenario 3: Output Statistic- On Time Orders Percentage for Non-priority Orders. 
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6.4 Results 

The results of the three simulation scenarios are explained in the following subsections. 

6.4.1 Scenario 1 Results 

The results of Scenario 1 demonstrate the positive and negative implications of running an all 

FIFO methodology, all EDD methodology, and an EDD at the laser operation strategy (Table 17). 

The output statistics for each of these methodologies are shown in the columns that are highlighted 

in grey, and comparisons of these methodologies are shown in the last three columns of Table 17. 

 For the average and maximum number of orders in the system and time the order spends 

in the system, a negative value indicates improvement. For the on time orders percentage and 

throughput, a positive value indicates improvement. However, for the company, delivering orders 

on time and having a higher on time orders percentage is more important than increasing 

throughput. Desirable values are highlighted in green. Output statistics that are not desirable are 

highlighted in red. 

Table 17 Scenario 1 Results. 

 

Simulation Results Percent Change 

All FIFO Laser 
EDD All EDD 

All FIFO 
vs. 

Laser EDD 

Laser EDD 
vs. 

All EDD 

All FIFO 
vs. 

All EDD 
Average Number of Orders in System 60.2 58.7 49.2 -2.5% -16.2% -18.3% 

Maximum Number of Orders in System 248.0 248.0 224.0 0.0% -9.7% -9.7% 
On Time Orders Percentage 97.3% 97.5% 98.5% 0.2% 1.1% 1.3% 

Average Order Time in System 19.5 19.0 16.0 -2.5% -16.2% -18.3% 
Maximum Order Time in System 225.7 226.5 217.3 0.3% -4.1% -3.7% 
Throughput (orders per weekday) 105.4 105.2 105.2 -0.2% 0.0% -0.2% 

 

Overall, the all EDD methodology resulted in the most favorable results. The all EDD 

methodology had the lowest average and maximum number of orders in the system and the lowest 
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time orders spend in the system. All EDD also had the highest on time orders percentage. For the 

company, the decrease of less than 0.5% in throughput would not be a concern because the on time 

orders percentage is the preferred performance metric to gauge success. 

6.4.2 Scenario 2 Results 

The results of Scenario 2 demonstrate the negative impact that information delays can have on a 

manufacturing system (Table 18, Table 19). Scenario 2 builds on Scenario 1 by using the all EDD 

queue strategy for the baseline simulation. The following tables present a comparison of a system 

that organizes all its queues by EDD with no information delays due to automated router matching 

versus a system that organizes all queues by EDD with information delays due to manual router 

matching. The data presented in Table 18 is based upon randomly distributed exponential time 

values, and the data presented in Table 19 is based upon deterministic time values. The baseline 

column that is used for the percentage change calculations is highlighted in grey. Cells that are 

highlighted in red indicate a negative impact due to information delays. Cells that are not 

highlighted and are white indicate there is no significant impact due to information delays. 
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Table 18 Scenario 2 Results: Randomly Distributed (x) Minutes. 

 Simulation Results 
All EDD vs. All EDD with Routers 

Percent Change 
All EDD vs. All EDD with Routers 

 Randomly Distributed Exponential (x) Minutes Randomly Distributed Exponential (x) Minutes 

 
0 

All 
EDD 

1 5 10 15 20 25 30 1 5 10 15 20 25 30 

Average Number 
of Orders in 

System 
49.2 52.1 68.0 121.4 251.4 369.6 591.2 795.0 6.1% 38.4% 146.9% 411.4% 651.8% 1102.7% 1517.3% 

Maximum 
Number of 

Orders in System 
224.0 226.0 276.0 361.0 586.0 846.0 1144.0 1455.0 0.9% 23.2% 61.2% 161.6% 277.7% 410.7% 549.6% 

On Time Orders 
Percentage 98.5% 98.4% 96.1% 87.8% 65.8% 61.4% 49.2% 42.1% -0.1% -2.4% -10.9% -33.2% -37.6% -50.1% -57.3% 

Average Order 
Time in System 16.0 16.9 22.0 38.7 77.4 112.8 178.3 238.4 6.0% 38.0% 142.5% 385.4% 607.2% 1018.0% 1394.6% 

Maximum Order 
Time in System 217.3 217.5 217.6 234.6 331.4 407.3 561.9 682.0 0.1% 0.2% 8.0% 52.5% 87.5% 158.6% 213.9% 

Throughput 
(orders per 
weekday) 

105.2 105.2 105.0 104.2 99.6 96.3 92.7 89.6 0.0% -0.1% -0.9% -5.3% -8.4% -11.8% -14.7% 
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Table 19 Scenario 2 Results: Deterministic (x) Minutes. 

 Simulation Results 
All EDD vs. All EDD with Routers 

Percent Change 
All EDD vs. All EDD with Routers 

 Deterministic (x) Minutes Deterministic (x) Minutes 

 
0 

All 
EDD 

1 5 10 15 20 25 30 1 5 10 15 20 25 30 

Average Number 
of Orders in 

System 
49.2 52.0 67.6 119.9 248.7 373.2 584.6 793.5 5.9% 37.5% 143.9% 405.8% 659.1% 1089.2% 1514.3% 

Maximum 
Number of 

Orders in System 
224.0 226.0 275.0 360.0 590.0 853.0 1144.0 1456.0 0.9% 22.8% 60.7% 163.4% 280.8% 410.7% 550.0% 

On Time Orders 
Percentage 98.5% 98.2% 96.1% 88.1% 65.8% 61.2% 49.9% 42.0% -0.3% -2.4% -10.5% -33.2% -37.9% -49.3% -57.3% 

Average Order 
Time in System 16.0 16.9 21.9 38.2 76.5 113.8 176.2 238.1 5.8% 37.1% 139.4% 379.4% 613.3% 1004.8% 1392.7% 

Maximum Order 
Time in System 217.3 217.4 217.7 233.7 328.8 457.0 561.2 683.3 0.1% 0.2% 7.5% 51.3% 110.3% 158.3% 214.5% 

Throughput 
(orders per 
weekday) 

105.2 105.2 105.0 104.3 99.6 96.4 92.6 89.7 0.0% -0.1% -0.8% -5.3% -8.3% -11.9% -14.7% 
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For both randomly distributed router time values and deterministic router time values, all 

output statistics were impacted negatively due to information delays caused by router matching 

except throughput at a time value of 1 minute. Throughput did not experience a decrease of more 

than 5% until the router matching reached 15 minutes per order. The average number of orders in 

the system and the average time orders spend in the system were impacted the most by information 

delays. The maximum and average number of orders in the system are shown in Figure 44 and 46. 

The maximum and average time orders spent in the system are shown in Figure 46 and 48. 

 

Figure 44 Scenario 2 Results: Exponential, Maximum & Average Number of Orders in System. 

 

Figure 45 Scenario 2 Results: Deterministic, Maximum & Average Number of Orders in System. 
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Figure 46 Scenario 2 Results: Exponential, Maximum & Average Time Orders Spent in System. 

 

Figure 47 Scenario 2 Results: Deterministic, Maximum & Average Time Orders Spent in System. 
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in grey. The term “Overall” in the results table is referring to all of the orders, both priority and 

non-priority orders combined. 

 

Figure 48 Scenario 2 Results: Exponential, On Time Orders Percentage. 

 

Figure 49 Scenario 2 Results: Deterministic, On Time Orders Percentage. 
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Table 20 Scenario 3 Results. 

 

Simulation Results 
with 5min. Router Matching 

Percentage Change 
No Priority Orders vs. Priority Orders 

Percentage of Priority Orders Percentage of Priority Orders 
0% 
(No 

Priority 
Orders) 

5% 10% 15% 5% 10% 15% 

Number of 
Orders in 

System 

Overall Average 67.6 68.5 69.7 70.5 1.4% 3.2% 4.4% 

Overall Maximum 275.0 276.0 280.8 285.7 0.4% 2.1% 3.9% 

Order Time 
in System 

Overall Average 21.9 22.2 22.6 22.8 1.4% 3.2% 4.4% 

Overall Maximum 217.7 214.0 215.2 215.2 -1.7% -1.2% -1.1% 
Priority Orders 

Average - 8.7 9.0 9.2 - - - 

Non-Priority 
Orders Average - 21.1 22.2 23.2 - - - 

Throughput 
(orders per 
weekday) 

Overall 105.0 105.1 105.1 105.0 0.0% 0.0% 0.0% 

On Time 
Percentage 

Overall 96.1% 95.9% 95.5% 95.3% -0.2% -0.6% -0.8% 

Priority Orders - 97.8% 97.5% 97.4% - - - 
Non-Priority 

Orders - 95.8% 95.3% 95.0% - - - 

 

 With 5%, 10%, and 15% of the arrivals being priority orders, the overall average (67.6 

orders) and overall maximum (275.0 orders) number of orders in the system increased. The overall 

average time that orders spend in the system (21.9 hours) increased, but the overall maximum time 

that orders spend in the system (217.7 hours) decreased. No significant changes were seen in the 

overall throughput values. 

 The average time that priority orders spend in the system increased as the percentage of 

priority orders increased. The average time that non-priority orders spend in the system also 

increased as the percentage of priority orders increased. When comparing the overall average time 

that orders spend in the system (21.9 hours) to the time that non-priority orders spend in the system, 

the values are very similar; the non-priority orders saw an increase in the time they spend in the 

system at the 10% (22.2 hours) and 15% (23.2 hours) amount of priority orders. 
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 The percentage of on time orders for priority orders and non-priority orders slightly 

decreased as the amount of priority orders increased. At the 5%, 10%, and 15% amount of priority 

orders, the on time percentage of priority orders was higher than the on time percentage of non-

priority orders. The overall on time percentage of orders slightly decreased as the amount of 

priority orders increased. As expected, all on time percentages for priority orders were higher than 

the on time percentages for non-priority orders. 

 

6.5 Discussion 

The results of the first simulation scenario revealed the positive outcomes that can come from 

having the right data, in the right place, at the right time, and in the right form to make the best 

possible decision. Running a system with an all EDD strategy would require that the data maintain 

a continuous feedback loop to keep actual production data up to date. The company in this study 

has reaped tremendous benefits from transitioning to an information-centric business model that 

keeps data accurate so they can make critical business decisions in near real time. 

From the simulation results for Scenario 1, benefits of an all EDD strategy included a 

reduction in the number of orders in the system, a reduction of time that orders spend in the system, 

and an increased percentage of on time orders. For a manufacturing company, having fewer orders 

in the system and orders spending less time in the system means less money tied up on the plant 

floor. Increasing the percentage of on time orders increases the trust the customer has in the 

supplier; having a nearly perfect on time shipping percentage for orders means that customers can 

trust that the supplier will provide their orders at the promised time. All EDD performed better 

than all FIFO and EDD at only the laser for almost all the tracked metrics. As expected on time 

orders percentage improved (increased) because queues are ordered by EDD, and therefore, orders 



   
 

 140 

spend less time in queue and are more likely to be shipped on time. This also means that the overall 

time in system will decrease which was found to be true from the simulation results.  

 Scenario 2 demonstrated the consequences of adding only a few minutes of information 

delays to each order. All time values from one to thirty minutes that are spent on matching part 

routers with their corresponding orders resulted in increases in the number of orders in the system, 

increases in the time orders spend in the system, and decreases in on time orders percentages. 

Increasing the overall number of orders in the system and increasing the time orders spend in the 

system also results in increased costs of material movement, warehousing, and orders that are tied 

up and reducing cash flow. The results of Scenario 2 uncovered the demise that information delays 

can inflict on a manufacturing facility. The negative outcomes of information delays should urge 

manufacturers to analyze potential areas were data and information may be causing unbeknownst 

ramifications. 

  The results of the third simulation scenario show how up to date data can be leveraged to 

send a priority order through the manufacturing facility. Priority orders were able to traverse the 

plant floor two and a half times faster than non-priority orders. Having the ability to prioritize 

orders is attractive to customers when choosing a supplier because customers need to know that 

their supplier can provide orders in a timely manner if the need to do so arises. Introducing priority 

orders did have negative implications on the overall percentage of on time orders. However, for 

the company, the benefits outweigh the consequence because having up to date information would 

allow the company to evaluate and communicate the effects of a priority order to the customer so 

that due dates of other orders can be adjusted if necessary. When transparency is increased between 

the customer and supplier, the customer can trust that the supplier will provide the orders that are 

needed when they are needed, and there is open communication about the effect of introducing 
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priority orders. None of this would be possible without an information-centric business model that 

has accurate and up to date data that supports the manufacturing operations. 

 

6.6 Chapter Summary 

With today’s efforts to digitize and digitalize data and information practices, manufacturers need 

to turn their attention to identifying data and information wastes, especially those that are 

manifesting themselves and causing negative ramification on the plant floor. Though the results in 

this chapter were for one company, the results should serve as a wakeup call for manufacturers 

and researchers alike to identify data and information wastes and create methods and technologies 

to eradicate the wastes. The company discussed in this chapter has reached their success by 

ensuring their data is accurate and up to date, which is the only way to make an information-centric 

business system work. The three simulation scenarios that were performed here are just the 

beginning of the simulation community evaluating the interplay between data and information 

flows and product flows.  



   
 

 142 

Chapter 7 Conclusions and Future Work 
 

 

This research unveiled the inaccuracies and inefficiencies that hinder manufacturers from having 

the right data, in the right place, at the right time, and in the right form to make the best possible 

decision. Former research efforts in the manufacturing domain have been mostly focused on 

improving product flow on the plant floor. However, manufacturing systems are composed of 

much more than product flow. Data and information systems are a large part of the overall 

manufacturing business, and yet, there are a few continuous improvement efforts that are focused 

on eliminating waste in data and information flows. This will soon change with the industry 4.0 

initiatives that are happening across the globe. Manufacturers are faced with having to make drastic 

improvements to their data and information flows with little to no guidance. This dissertation lays 

the foundation for understanding and differentiating value-added and non-value-added activities 

in the data and information domain. 

 This research was built on Lean manufacturing principles that are commonly used for 

manufacturing system improvements. Lean literature is filled with methods and tools to further 

improvement efforts, but a significant gap was found in the literature. The methodology that Ohno 

used to develop the TPS, which is now known as Lean manufacturing, was not well-understood. 

This research began with a desire to discover how Ohno successfully identified and eliminated 

wastes in product flow so that the same level of success can be replicated in waste and data and 

information flows. After a deep dive into Ohno’s writings and the writings of those that worked 

with him, Ohno’s mental model was revealed. The mental model is a contribution to the Lean body 

of knowledge and a unique way of using I-O psychology to understand one’s mindset in a work 

environment. 
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 Ohno’s mental model was then used to identify inaccuracies in inefficiencies in data and 

information flows in manufacturing. After conducting interviews across several manufacturing 

sectors, a plethora of wastes were revealed. When grouping the wastes, eight categories took shape: 

(1) form, (2) excess, (3) error, (4) separation, (5) delay, (6) change, (7) manual intervention, and 

(8) storage. Manufacturers can utilize these eight wastes to identify improvement opportunities in 

their data and information practices. These eight ways are intended to be used for waste 

identification, and the next step is waste elimination. Deploying the proper technologies to 

eliminate these wastes is only made possible with a thorough understanding of the root cause of 

the wastes. When one waste is found, several wastes are often found. The goal is not to properly 

categorize each waste; the goal is to identify what creates value in terms of data and information 

and use that value to drive business decisions. In this work, value in data and information flows is 

defined as having the right data, in the right place, at the right time, and in the right form to make 

the best possible decision. 

 After identifying data and information wastes in manufacturing systems, a quantitative 

analysis was performed to understand the interplay of data and information process and plant 

operations. It became clear that even adding only a few minutes of information latency to orders 

can cause a rippling effect of ramifications. Having an information-centric business model that 

aims to eliminate data and information wastes will be crucial to maintaining a competitive 

advantage. Manufacturers can use the simulation presented in this dissertation as an example of 

the importance of having up to date and accurate information that arrives in a timely manner to the 

plant floor. 

 This body of work will likely grow exponentially in the future. To further this research, 

investigators should begin adding to the conversation of data and information flow improvements. 
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There should be more effort on developing and publicizing the business case for digitalization so 

that manufacturers can become more familiar with the meaning and benefits of digitalization. 

SMMs that do not have the capital that larger manufacturers have, and they will need assistance in 

identifying the best ways to identify and eliminate their wastes. Manufacturers need to understand 

that spending large amounts of capital on new technologies is not always the answer. Creating 

value for the end-user should be of utmost importance when digitizing and digitalizing data and 

information. SMMs will want to see successful business cases with a substantial ROI. Doing so 

will require further quantitative analysis of how data and information flows impact manufacturing 

systems. 

 The examples of metrics for data and information wastes that were presented in Chapter 5 

should be evaluated further by determining their applicability in multiple manufacturing facilities. 

Most of the metrics presented in Chapter 5 are output metrics. In future research, there should also 

be a focus on developing input metrics that evaluate the six inputs in Figure 16: hardware, software, 

methods, connectivity, management, and user. Input metrics will be useful in understanding where 

the wastes originate and not just the outcomes of having wastes in a system. For example, for 

hardware and software inputs, quantify system availability, and for the user input, quantify 

employee capacity, proficiency, and cross-training. These metrics will help manufacturers better 

understand the inputs that may increase non-value-added activities. 

The simulation community can build on this research by making it more commonplace to 

evaluate data and information flows, not just product flows to understand the impact of data an 

information wastes on manufacturing operations. Three scenarios were presented in this work 

(Chapter 6), but more scenarios of data and information wastes should be developed and tested. 

The simulation presented in Chapter 6 should also be replicated and compared for other 
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manufacturing facilities to understand how all manufacturers are affected by data and information 

wastes. The magnitude of the results will vary from company to company, but it is likely that data 

and information wastes have the potential to negatively affect all manufacturing companies. 

The simulation work can also be furthered by analyzing stochastic order arrivals that have 

some level of variability as opposed to a deterministic simulation that was used in this work. 

Adding a probabilistic component by randomizing the order generation will add a layer of 

complexity that is more representative of what it is like receiving orders in a manufacturing system. 

The incoming orders can somewhat be predicted based on order history; however, the incoming 

stream of orders is not known. 

It will also be of interest to analyze data and information practices that occur before the 

data and information reach the plant operations. There are several business practices such as 

scheduling and quoting that generate data and information for the plant floor. These practices are 

often lumped into overhead costs and not analyzed for continuous improvement purposes. 

Simulations could also be created to analyze these business practices for future improvement 

opportunities. 

Data and information flow research is also headed in the direction of building new visual 

mapping tools that are made for capturing, mapping, and analyzing data and information flows. 

For example, Ledford and Patterson [119] have created a systematic methodology called “Data 

Element Mapping and Analysis” (DEMA). DEMA enables visibility to the individual data 

elements that drive a system as opposed to traditional visual mapping techniques that are only 

suitable for creating functional, document-centric views of data flows. DEMA focuses on the 

specific data elements within data vessels (documents), not just the documents themselves. 

Ledford and Patterson [119] have also found that most manufacturing data and information flows 
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are nonstandard or undocumented. This reveals today’s lack of knowledge and emphasis on data 

and information flows in manufacturing. The DEMA approach can be combined with the eight 

wastes for data and information presented in this dissertation to further this research area. Having 

a mapping tool such as DEMA can be used to visualize the occurrence of non-value-added 

activities or wastes in data and information flows. 

 Efforts of the future will no longer be focused on just digitization but also digitalization- 

continually improving data and information flows with advanced technologies. By using Ohno’s 

mental model, we can assume there is a better way for not just product flow but also data and 

information flow. Identifying the eight wastes for data and information presented in this work and 

acting on them will improve data connectivity and interoperability. Documenting, mapping, and 

analyzing data and information flows in manufacturing will get us one step closer to realizing a 

true digital thread. 

 Manufacturers will no longer only design for product flows but also for data and 

information flows. Digitalization calls for data connectivity and interoperability. Today’s systems 

are filled with non-value-added activities that could have been avoided if data and information 

systems were designed with value creation in mind: having the right data, in the right place, at the 

right time, and in the right form to make the best possible decision. It is likely that software 

providers will catch onto the current needs of manufacturers and rethink ERP and MES systems 

to better support a complete digital thread and an information-centric business model. Purposefully 

designing for data and information flows and eliminating non-value-added activities allows 

manufacturers to better control and visualize their operations to gain actionable insights.  

In conclusion, manufacturers are on the brink of a new era of digitalization, and they must 

join in to remain competitive in today’s marketplace. This research contributes to this area of study 



   
 

 147 

by building on the already successful Lean principles, creating eight wastes to identify data and 

information wastes, and demonstrating a way to create an abstraction of the data and information 

domain for analysis purposes.   
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Figure 50 Institutional Review Board- Exemption Review Application. 
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Appendix C CITI Training Certificates 
 

 

 
Figure 51 CITI Training Certificates. 
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Appendix D Recruitment Email 
 

 

 
Figure 52 Recruitment Email. 
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Appendix E Questions to Guide the Interview Discussion 
 

 

 
Figure 53 Questions to Guide the Interview Discussion. 
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Appendix F Data Analysis of the Company’s Data 
 

 

A Grubb’s test for outliers was performed in Minitab to clean the company’s dataset by removing 

outliers so that the outliers do not affect the results of the simulation. The null hypothesis was that 

all data values come from the same normal population, and the alternative hypothesis was that the 

smallest or largest data value is an outlier. The significance level for the test was 5%. There was 

one outlier in the arrival data that was removed before further analysis. The outlier is shown as the 

red data point on the right of the graph Figure 54. A second outlier test was performed to ensure 

that no outliers remained. The test resulted in zero outliers at the 5% level of significance. 

 

Figure 54 Outlier Plot of Arrivals. 

After the outlier was removed, an Individual Distribution Identification test was applied to 

understand which statistical distribution the data most closely fits. Performing the individual 

distribution test was not used in the simulation discussed in this research. However, the test was 

performed to understand what distribution should be used for order arrivals if the simulation were 

stochastic as opposed to deterministic. A stochastic simulation was mentioned as potential future 

work. 
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The Individual Distribution Identification test revealed that the Lognormal distribution 

most accurately describes the data (Figure 55). The Lognormal distribution was chosen over other 

distributions due to it being the distribution with the highest p-value and therefore being the most 

statistically significant. (Note: The Box-Cox Transformation has the highest p-value in Figure 56, 

but it is not a representative distribution that can be used in Simio.) The results of the goodness of 

fit tests for each potential distribution are shown below (Figure 56). 

For the Lognormal distribution, the goodness of fit test returned a p-value of 0.891 which 

indicated that the result was statistically significant with a Confidence Interval (CI) of 95%. The 

probability plot and goodness of fit test for the Lognormal distribution is shown in Figure 55. The 

points being inside the outer red boundaries and the points closely aligning to the middle red line 

indicate a good fit which is desirable when determining which distribution most closely fits the 

data. The parameters, µ and s, that were calculated in the Individual Distribution Identification 

test can be used in future studies if using a randomly distributed interarrival process for orders. 

 

Figure 55 Probability Plot of the Arrival Data. 
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Figure 56 Goodness of Fit Test. 
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Appendix G Detailed Simulation Building Notes 
 

 

The following sections provide detailed information on how the simulation was built. In Simio, 

the properties that are changed by the user become bold text. Any properties that do not have bold 

text are inherent to Simio models. 

 

E1. Entity 

Orders are represented by entities in the simulation (Figure 57). 

 

Figure 57 Entity: Order. 

The properties of the “Order” entities are shown below (Figure 58). The travel speed is set 

to Infinity so that entities do not experience travel time. Entities move from one location to another 

in zero time. The display name is set to “Arrivals.OrderID” so that the OrderID is shown with each 

entity as the model runs. The OrderID is in the Arrivals Table. The dynamic label text is also set 

to “Arrivals.OrderID” so that the OrderID can be seen in the Planning Tab in Simio. 
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Figure 58 Entity: Properties. 

E2. Source 

The company’s customers are represented by one source called “Customer” (Figure 59). 

 

Figure 59 Source: Customer. 

 The properties of the source are shown in Figure 60. The source generates the “Order” 

entities. The source uses an arrival table called “Arrivals” to generate the entities at the times that 

are specified in the “ArriveTime” column of the “Arrivals” table. 
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Figure 60 Source: Properties. 

 The source has three state assignments that occur before the entity exits the source (Figure 

61). “NumberInSys” is used to calculate the total number of entities that are in the system. Before 

the entity leaves the source object, “NumberInSystem” is incremented by one. 

“Arrivals.ArriveTimeDTG” fills in the “ArriveTimeDTG” column in the “Arrivals” table. When 

each entity enters the system, it is assigned an arrival time of the current time. “Arrivals.DueTime” 

fills in the “DueTime” column of the “Arrivals” table. The “DueTime” is calculated by adding the 

arrival time, the total estimated time for the order, and three days’ of queue time. The units are in 

hours which is why there is a multiplication of 24 hours. 

 

Figure 61 Source: State Assignments. 

E3. Servers 

The company’s operations are represented by 19 servers (Figure 62). 
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Figure 62 Servers. 

All the servers have the same properties with the exception of the “Laser” server (Figure 

63). The laser properties are shown in Figure 64. All the servers, except the laser, follow a work 

schedule. The work schedule tells the server when it should be available and when it should be off 

shift. The work schedules also define the capacity of each server. The servers reference the 

“PTime” column in the “Sequence” table to determine how long each order should spend 

processing. The log resource usage is set to “True” for all the servers so that their statuses can be 

logged and viewed in the Simio planning tab. 
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Figure 63 Servers (Except Laser): Properties. 

 The Laser can run 24 hours, 7 days per week. Because of this behavior, it does not need to 

follow a work schedule that specifies when the laser should be off-shift because the laser is never 

off-shift. The capacity of the laser is fixed. The capacity value is removed in Figure 64 due to 

privacy concerns. 
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Figure 64 Server (Laser): Properties. 

E4. Sink 

“Order” entities leave the system through a sink object called “Ship” (Figure 65). 

 

Figure 65 Sink: Ship. 

 “Ship” has four state assignments and one add-on process associated with it (Figure 66). 
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Figure 66 Sink: Properties. 

 The state assignments are shown in Figure 67. As mentioned earlier, “NumberInSys” is 

incremented at the source object. When an entity leaves the system, “NumberInSys” is 

decremented at the sink object. “Arrivals.CompletionTime” records the time that an entity leaves 

the system as the current time in the “Arrivals” table. The time is recorded in units of hours and as 

a DTG. “CompletedOrders” counts the total number of entities that have finished processing and 

were destroyed by the sink. 

 

Figure 67 Sink: State Assignments. 

 “Ship” uses an add-on process to determine if orders were completed by their assigned due 

time (Figure 68). The add-on process begins when an entity enters the “Ship” sink. The add-on 

process contains two steps: Decide and Assign. 
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Figure 68 Sink: Add-On Process. 

 The Decide step is condition based (Figure 69). If the entity’s “CompletionTime” is less 

the “DueTime” then the entity moves to the Assign step; this would mean that the order was 

completed on time. 

 

Figure 69 Sink: Add-On Process, Decide Step. 

 The Assign step used the state variable called “OnTimeOrders” to increment the total 

number of on time orders by one (Figure 70). 

 

Figure 70 Sink Add-On Process, Assign Step. 

E5. Output Nodes 

There are output nodes after the source object and each server object (Figure 71). 
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Figure 71 Output Nodes. 

 The output nodes are used to specify where an entity should travel next. The entity 

destination type is set to “By Sequence” so that entities follow their sequence that is specified in 

the “Sequence” table (Figure 72). 

 

Figure 72 Output Nodes: Properties. 

E6. State Statistic Element 

The simulation uses one state statistic element to assist in the number in system calculation; it is 

called “NIS” (Figure 73). 

 

Figure 73 State Statistic Element: NIS. 

 The state variable name that corresponds with the “NIS” state statistic element is 

“NumberInSys” (Figure 74). As mentioned previously, “NumberInSys” is incremented and 

decremented at the source and sink objects, respectively. 
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Figure 74 State Statistic Element (NIS): Properties. 

E7. Output Statistic Element 

The simulation uses one output statistic element to calculate the percentage of on time orders; it is 

called “OnTimeOrdersPercentage” (Figure 75). 

 

Figure 75 Output Statistic Element: OnTimeOrdersPercentage. 

 The output statistic is calculated by diving the number of on time orders by the total number 

of completed orders (Figure 76). The “OnTimeOrders” and “CompletedOrders” are calculated at 

the sink object. 

 

Figure 76 Output Statistic Element (OnTimeOrdersPercentage): Properties. 

E8. Data Tables 

There are two data tables that support the simulation model: the “Arrivals” table and the 

“Sequence” table (Figure 77). 
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Figure 77 Data Tables: Arrivals and Sequence. 

 The “Arrivals” table has several columns: OrderID, Mix, EstimatedTime (Hours), 

ArriveTimeDTG, CompletionTimeDTG, CompletionTime, ArriveTime (Hours), and DueTime 

(Hours) (Figure 78, Table 21). The “Order ID” is the PK. At the far right of the table, there is also 

a Target Value that provides a shipment status of “Incomplete”, “OnTime”, or “Late” (Figure 79). 

 

Figure 78 Arrivals Table Columns. 

Table 21 Arrivals Table Columns. 

Column Name Property Type 
Order ID String Property 
Mix Real Property 
EstimatedTime (Hours) Real Property 
ArriveTime (Hours) Real Property 
ArriveTimeDTG Date Time State Variable 
CompletionTimeDTG Date Time State Variable 
CompletionTime (Hours) Real State Variable 
DueTime (Hours) Real State Variable 

 

 If the completion time is less than the due time, the completion time of the order is within 

bounds and considered “OnTime”. If the completion time is below the lower bound, the order is 

“Incomplete”. If the completion time is beyond the due time, the completion time is above the 

upper bound and “Late”. 
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Figure 79 Arrivals Table: Target Ship Date. 

 The “Sequence” table has four columns: Order ID, Sequence, and PTime (Hours) (Figure 

80, Table 22). The Order ID is a FK that is linked to the “Arrivals” table. 

 

Figure 80 Sequence Table Columns. 

Table 22 Sequence Table Columns. 

Column Name Property Type 
Order ID Foreign Key Property 
Sequence SequenceDestination Property 
PTime (Hours) Real Property 

 

E9. Planning Tab 

To use the Planning Tab in Simio, the user went to the model’s Run Tab, clicked “Advanced 

Options”, and then clicked “Enable Interactive Logging”. All the servers were selected, and their 

Advanced Options, Log Resource Usage properties were set to “True”. 
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E10. Dashboard Reports and Dispatching 

Dr. Jeffrey Smith’s Dashboard Reports from “INSY 6450 VM03 V02” were imported by going to 

the Results Tab, Dashboard Reports, Import. (The dashboards that are imported can be found at 

this link: https://jsmith.co/vm03-scheduling-type-job-shop-models/) 


