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 Land cover mapping via remote sensing is an important tool for conservation and 

land management.  A critical component to land cover mapping is defining the 

classification.  A classification scheme must be sufficiently detailed to meet the goals to 

which the map will be applied yet simple enough to accurately map the classification 

units with the available data and classification methods. 

 This thesis describes the methods and presents the results and accuracy 

assessment of a map of NatureServe’s Ecological Systems in the East Gulf Coastal Plain, 

USA derived using Landsat ETM+ imagery.  A combination of remote sensing 

techniques and classification methods was used to generate a 50 class land cover map.   
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Of 43 Ecological Systems existing in the East Gulf Coastal Plain, 25 were mapped and an 

additional 8 modified system classes were mapped.  The remaining 17 mapped land cover 

classes were composed of anthropogenic classes and land cover lacking vegetation. 

Additionally, an accuracy assessment of the land cover map was performed and 

interpreted by assessing the causes of error.  In this land cover map, a majority of the 

errors are caused by either fuzzy boundaries between class definitions or a lack of spatial 

data that can reliably separate classes.  This error analysis provides insight into the utility 

of the classification scheme when mapping with remotely sensed data. 
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INTRODUCTION 

 

The management and conservation of biodiversity is a topic of ever increasing 

concern.  As the human population continues to grow, our encroachment into and 

modification of natural environments increases.  The negative consequences of this trend 

include reductions in the population sizes and available habitats for other organisms 

(Primack, 2002).  To better understand how our environment is changing and make 

decisions regarding how limited resources should be applied, accurate land cover maps 

depicting existing vegetation are needed. 

 

Vegetation Classification 

Classification is the process of creating multiple groups of objects where there is greater 

similarity among objects within a single group than among objects in different groups.  

This can be a useful organizing procedure provided the utility gained from the new 

groups outweighs the information lost from generalizing and ignoring differences 

between things in the same group (James, 1985).  Because of the variability and 

complexity seen in nature, plant ecologists have long been classifying vegetation into 

simpler, discrete units.  But from the earliest days of ecology, there has been debate about 

whether this is even feasible.  In the early 1900’s, leading plant ecologists thought a 
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species response to habitat was the dominant force in structuring vegetation (Noy-Meir, 

1987).  Some ecologists believed that plant species tended to cluster together in repeating 

patterns, while others were unconvinced.  Clements, an early believer in the existence of 

communities, is credited with establishing this idea as the organismic view.  He stressed 

positive interactions among plants as a second major force in structuring vegetation 

(Clements, 1920).  These interactions increase the probability that a species will be near 

another species with which it has a positive association.  The continuum view put forth 

by Gleason (1926), however, argued that species affinities transition gradually in 

response to changes in the environment.  Gleason stressed individual responses of species 

to the environment, random events from dispersal, and disturbance (Noy-Meir, 1987).  

From his perspective, attempts at community classification are unproductive.   

In Europe a more quantitative approach to understanding vegetation was 

developing in the early 1900’s.  Braun-Blanquet developed the idea of the diagnostic 

species as defining a community (Noy-Meir, 1987).  Du Rietz (1928) tried to link 

empirical data with a causal theory of plant communities.  According to him: 

1. combinations of some species are found more frequently than others 

2. associations, as defined by dominants, exist in fairly discrete units, even 

across continuous habitat transitions. 



3. when an association is sampled with quadrants of set size, the frequency of 

species has a U-shaped distribution.  Most species are either very frequent or 

very rare. 

Du Rietz thought that competition was responsible for the sharp association boundaries. 

 As sampling methods were developed to meet statistical requirements, it became 

apparent that sampling bias and subjectivity were responsible for much of the 

disagreement between philosophies.  Whittaker (1952) showed that when using truly 

random sampling, vegetation is largely continuous with some clustering of sites and 

species.  Goodall (1966) stressed positive interactions and evolutionary adaptations of 

secondary species (facilitation) and the unusually large importance of some species 

(keystone species).  Whittaker and Levin (1977) looked at communities from a broader 

scale and emphasized the concepts of patches and mosaics.  This renewed an appreciation 

of scale as being fundamentally important to understanding communities. 

Despite the many advances, both quantitative and causal, there has been no great 

theoretical advancement or general hypotheses of plant communities.  This may reflect 

the realization that ecological processes are too complex to expect broad scale, general 

patterns and therefore, the classical theories are inadequate.  This does not reject the idea 

of the community as being a useful concept, but rather accepts the notion that, despite 

rigid sampling efforts, community descriptions are inherently subjective and are best 

treated as working hypotheses rather than clearly defined entities.  It is also worth noting 

that some communities are much better defined, with distinct boundaries, but others have 

more subtle transitions.  No general theory exists because there are many kinds of 

communities. 
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Given that nearly a century of effort has gone into quantitative community 

classification without any unified theory, it should come as no surprise that there are 

different approaches to community classification.  Although they likely have continuous 

boundaries, communities do exist and have measurable attributes.  These include 

physiognomy, life form, canopy coverage, species composition, species richness, and 

species proportion (Barbour et al., 1999).  Vegetation classification attempts to place 

similar sampled units together, clearly separating them from other sampled units. 

There are different approaches to classification, both conceptual and statistical 

(Barbour et al., 1999).  Dominance based classification looks at only one or two 

dominant species.  These are frequently overstory dominants, but it is also common to 

create a classification using one overstory dominant and one forb dominant.  With this 

approach all other species are excluded from the classification.  Another approach is 

classifying sampling units into communities based on the entire flora.  Quantitative 

techniques such as the Braum-Blanquet releve’ technique are used to create different 

vegetation orders (Poore, 1955).  Classification can also be performed hierarchically, 

creating multiple classification levels.  This is the approach taken by the National 

Vegetation Classification Standard (NVCS) in an attempt to standardize vegetation 

classification nationally (Grossman et al., 1998).  As an example, the NVCS 

classification of the longleaf pine woodland is shown below: 

 

Class II : Woodland 

           II.A : Evergreen woodland 

              II.A.1 : Tropical or subtropical broadleaved evergreen woodland 
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                II.A.1.N : Natural / Semi-natural 

                   II.A.1.N.a : Tropical or subtropical broadleaved evergreen woodland 

                       CES203.375 : Longleaf Pine woodland 

 

Ecosystem Classification 

When choosing a classification scheme the map producer should consider both 

the end user and map production methods.  What is the intended use of the map?  What is 

the desired final or minimum class accuracy of the map?  Are the desired classes even 

mappable?  If the intended use of the land cover map is conservation of biodiversity, then 

classes should be constructed which are ecologically meaningful (Pearlstine et al., 1998; 

Schultz, 1967).  This could be accomplished with an ecosystem classification, a 

classification approach which seeks to integrate climate, soil, landform, and vegetation 

into the class definitions (Kimmins, 2004).  An ecosystem classification would have 

additional benefits as well.  It would reduce the focus on individual species management, 

widely recognized as an inferior approach to conservation (Primack, 2002).  To the extent 

that an ecosystem classification facilitated conservation and management of ecosystems, 

it would help ensure the continued existence of ecosystem processes and evolution 

(Bailey, 1996). 

Many conservation organizations are currently using ecosystem classifications to 

help fulfill their missions of protecting and conserving biodiversity (Grumbine, 1994). 

The Gap Analysis Program (GAP) is a USGS funded program whose goal is to identify 

gaps in existing conservation reserves.  Focusing primarily on vertebrates, the analysis is 

accomplished by spatially mapping an ecosystem classification, using this classification 
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as a surrogate for vertebrate habitat, and determining how much of each species habitat is 

currently conserved (Csuti and Kiester, 1996).  NatureServe, formerly part of the Nature 

Conservancy, is a private, nationwide conservation organization with extensive botanical 

field experience.  They have spent many years developing community classifications 

(Brussard and Tull, 2007).  

Although different ecosystem classifications exist (Eyre, 1980; FNAI, 1990; 

Jennings, 1997), GAP has chosen NatureServe’s Ecological Systems as the mapping 

units for the next generation of GAP land cover mapping.  Ecological Systems are a 

nationally consistent classification and represent NatureServe’s assessment of the 

ecological management units within the United States (Comer et al., 2003).  This 

classification was generated by vegetation ecologists and relies primarily on vegetation, 

often herbaceous vegetation, as the diagnostic characteristics of a system.  These systems 

are more specifically defined in Comer et al. (2003) as follows: 

 

A terrestrial ecological system is defined as a group of plant community types that tend to co-

occur within landscapes with similar ecological processes, substrates, and/or environmental 

gradients. A given terrestrial ecological system will typically manifest itself at intermediate 

geographic scales of 10s to 1,000s of hectares and persist for 50 or more years. 

  

It is not strictly a vegetation classification scheme because it attempts to identify 

environmental processes which facilitate the existence of a particular community. 

The Ecological Systems classification scheme is, to some degree, a climax or 

potential vegetation classification scheme (Comer et al., 2003).  It does not provide a 

complete description of current vegetation, which vertebrate modeling requires.  A prime 
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example of this is the longleaf pine woodland.  This is a fire maintained community that 

historically accounted for much of the East Gulf Coastal Plain (Frost, 1993).  Due to 

timber harvesting and fire suppression, much of this area currently does not contain 

longleaf, even though this is the historically dominant vegetation.  

Due to the fact that Ecological Systems describe climax vegetation, modifications 

were created to reflect actual vegetation.  For the longleaf example, to better describe 

actual vegetation, we created two modifiers for this region: the loblolly modifier and the 

hardwood modifier.  These 3 classes, loblolly modifier, hardwood modifier, and true 

longleaf, better describe current vegetation that exists on lands that were once longleaf 

woodlands. 

 

Vegetation Mapping Via Remote Sensing 

Maps, with vegetation depicted on them, have been in existence since at least the 

15th century (Küchler and Zonneveld, 1988).  Initially, vegetation was added to maps to 

better convey locations and relationships between places (Küchler, 1967).  Only later 

were vegetation maps recognized as useful by themselves.  As distant travel became more 

common, scientists inquired about the distribution and mechanisms behind large scale 

vegetation patterns (Barbour et al., 1999).  Schimper created the first modern vegetation 

map of the world in 1898.  This map described vegetation life form and the classification 

scheme would be recognizable today as a form of global ecological land units (Küchler, 

1967).  In the United States, Shantz and Zon created the first map of pre-European 

vegetation in 1923 (Küchler, 1967).  This classification of major forest and grassland 

types is still in use today. 
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Over time, our ability to make more precise maps has increased along with our 

need for better maps.  In the 1930s, the federal government began to inventory land 

resources in an effort to buy land and retire it from agricultural use (Lins and Kleckner, 

1996).  Although ground surveys were used, this early fine scale mapping was the first 

large extent implementation of air photo interpretation for the purpose of land cover 

mapping in the United States.  The first national map derived from aerial photography 

was created in the 1940s by Marschner (Anderson, 1967).  This was a morphological or 

life form vegetation classification and was eventually published in 1950 under the title 

Major Land Uses in the United States (Marschner, 1950).  In the 1950s, as urban 

expansion increased, local agencies began using land cover mapping to monitor urban 

growth.  By the 1980s federal agencies became interested in increasing the thematic 

resolution in land cover mapping and using it to catalog and map biodiversity (Lins and 

Kleckner, 1996). 

Remote sensing is currently the most efficient tool available for large extent land 

cover mapping (Gaydos, 1996).  Many satellites are currently in orbit measuring the 

reflectance of energy from the earth’s surface.  These measurements are made 

continuously and consistently, relayed back to earth for storage, and provide a reliable 

record of earth surface reflectance.  Different surface types reflect light differently, both 

in terms of intensity and wavelength (Jensen, 1986).  Image analysts use these differences 

in reflectance to make inferences about land cover and create land cover maps. 

Satellite image derived land cover mapping has been in existence since the 1970’s 

(Lins and Kleckner, 1996).  Initial focus was on separating broad categories of land use 

and land cover.  Although these terms are frequently used interchangeably, land use 
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appropriately refers to ownership and activity on the land whereas land cover describes 

the natural or anthropogenic substance covering the earth’s surface (Avery and Berlin, 

1992).  Anderson et al. (1976, see Table 1) created a hierarchical system in which the 

first level distinguishes general land cover classes including urban, agriculture, water, 

rangeland and forest.  Level 2 is more detailed and breaks each level 1 class into multiple 

classes.  For example, agriculture gets separated into crop and pasture, orchards, confined 

feeding operations, and other agricultural land.  Recognizing the need for large area land 

cover mapping, the USGS created the national land cover dataset (NLCD) based upon 

circa 1992 Landsat TM imagery.  Covering the conterminous US at a grain of 30 meters, 

this was the first large area, fine grain land cover map (Vogelmann et al., 2001). 

Although the Anderson et al. (1976) classification scheme forms the basis for 

much of the land cover classification performed today, for many applications these 

classes are not sufficiently detailed.  While classes of land use are rather detailed, natural 

vegetation classes are broad.  There are 7 urban classes in Anderson et al. (1976) level 2 

classification but only 3 classes of forest lands. These natural vegetation classes may be 

too general for some purposes 

The US Geological Survey’s Gap Analysis Program (GAP) has been mapping 

land cover since 1987, specifically for the purposes of vertebrate modeling.  As 

mentioned earlier, GAP projects have been initiated in all states except Alaska and 

projects are complete in 41 states (Gap Analysis Program, 2007).  From these efforts 

several conclusions can be drawn: (1) we are frequently pushing and exceeding the limit 

of what can be discerned in the imagery (Pearlstine et al., 1998), (2) there is a tradeoff 

between thematic resolution and accuracy (the more classes mapped the less accurate the 
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map will be) (Pearlstine et al., 1998), and (3) if states do not collaborate regarding their 

choice of map units then edge matching at state boundaries becomes a significant 

problem (Stoms, 2000).  The first conclusion provides motivation for incorporating 

additional information beyond just spectral data into land cover mapping (Bolstad and 

Lillesand, 1992a; Hutchinson, 1982).  The second and third conclusions emphasize the 

importance of selecting an appropriate classification scheme. 

 

Remote Sensing Classification Methods 

Satellite image classification has been a rapidly developing field for many years.  

Large increases in personal computing power have turned a process which once could 

only be performed on central mainframes into a much more variable and flexible 

endeavor (Gaydos, 1996).   Attempting to catalog all approaches to image classification 

is a thesis by itself but I will cover the common ones.  First, approaches can be broken 

into patch based and pixel based classification (Definiens Imaging, Inc., 2005).  Image 

pixels are a digital information storage construct with no corresponding structure on the 

ground (Fisher, 1997).  Delineating the image initially into patches is appealing because 

this is how land cover actually exists spatially. 

 Regardless of whether classifying pixels or patches, the next step is to decide 

whether to use training data (supervised classification) or a multidimensional clustering 

algorithm (unsupervised classification).  These need not be done exclusively and in fact 

are often done in sequence. 

 When performing a supervised classification there are many methods that can be 

chosen including discriminant analysis, logistic regression, and decision trees (McDermid 
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et al., 2005; Schowengerdt, 2007).  More advanced software packages or independent 

modeling enables one to create heuristic algorithms or model building (ERDAS, Inc., 

1997).  External statistical packages allow one to create a statistically rigorous model. 

Depending on the classification scheme, methods can produce comparable output 

or widely different results (Schowengerdt, 2007).  Therefore, selection of a method is to a 

large extent dependent on the desired output.  In remote sensing methodological studies, 

the desired output is often a statistical model relating spectral reflectance to cover type.  

In practical applications, such as land cover mapping, the desire is to balance the demand 

for complete methods documentation and repeatability with the need to produce the most 

accurate map possible.  In this case, it is useful to think of classification in terms of how 

explicitly the classification algorithm can be defined. 

The optimal product would be a defensible statistical model mapping all classes.  

There are limitations here though for several reasons.  There may be insufficient training 

data to produce a reliable statistical model.  The statistical model may produce a map 

which does not attain the desired accuracy.  And finally, although there has been 

tremendous progress in the last 30 years, computer vision or pattern recognition 

algorithms are not yet sufficiently complex to match what humans can visually interpret 

in images (Overington, 1992).  Classification via remote sensing began using manual 

interpretation of aerial imagery and today there is still a place for image interpretation in 

remote sensing analysis. 

Manual interpretation should be used after more rigorous modeling has failed.  A 

framework for producing a classification can be outlined as follows: 

1. A data driven predictive model.  Again, this is optimal and should tried first. 

 11



2. A producer defined model.  This should be partially data driven but will not 

be a statistical model.  Instead, the producer decides upon thresholds to create 

classes.  This is the classical GIS information extraction technique and is often 

referred to as overlay analysis. 

3. The last option is to simply recode known areas to a particular class.  This is 

not predictive but can still be useful if a rare class with known patch extents 

must be included in the map.  This is often referred to as “burning in.” 

All of these techniques are widely used in current land cover mapping efforts (Lillesand, 

1994; McDermid et. al, 2005).  The amount of information and utility provided to the end 

user of the classification decreases as the method moves from 1 to 3. 

 A final and more recent approach has been the inclusion of other spatial data 

layers in addition to satellite imagery to help inform the classifier (Hutchinson, 1982; 

Estes, 1985; Bolstad and Lillesand, 1992b).  Often referred to as ancillary data, 

incorporation of data layers such as soils, ecoregions, and geology can improve 

classification if they are sufficiently correlated with the vegetation in the classification 

scheme (Loveland et al., 2002; Franklin et al., 1986; Bolstad and Lillesand, 1992a). 

 

OBJECTIVES 

 This study will assess the utility of Ecological Systems as a classification scheme 

from a remote sensing perspective.  It will start with the premise of using Ecological 

Systems as a mapping scheme and will not address the question of the validity of 

Ecological Systems as an ecological classification. 

 12



A map of Ecological Systems would be useful to land managers for planning, 

conservation organizations wanting to purchase land or easements, or landscape 

ecologists trying to understand patterns and trends across the landscape.  For this reason 

the creation of quality land cover maps and understanding how to improve future maps 

are important endeavors. 

My goal in this study is to map Ecological Systems in the East Gulf Coastal Plain 

(Fenneman, 1938; Homer et al., 2004) (see Figure 1).  This study area was chosen to 

coincide with the study area of the ongoing Alabama Gap Analysis Project (AL-GAP, 

2006).  A list of Ecological Systems occurring within the East Gulf Coastal Plain (Comer 

et al., 2003) is provided in Table 2.  Through the process of mapping these systems I will 

assess their mapping accuracy and, therefore, their utility as mapping units from a remote 

sensing perspective. 

 

 

METHODS 

 

Due to the complexity of the classification scheme, the creation of the land cover 

map followed a complex process.  Figure 2 is a schematic of the general work flow.  The 

description of methods will follow the general headings in the left hand side of this 

figure: Data Development, Ecological Systems Mapping, and Anthropogenic Class 

Mapping. 

The final hybrid classification scheme consists of 4 types of classes: original 

NLCD 2001 classes, refined anthropogenic classes, Ecological Systems, and modified 
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Ecological Systems.  The list of all 50 classes in the map and corresponding class type is 

shown in Table 3. 

 

Data Development 

Data used to create the map fell into 4 categories: point data identifying the 

location of Ecological Systems on the ground, satellite imagery, ancillary data used to 

enhance the accuracy of the classification, and an initial land cover classification (NLCD 

2001).  Each of these data development steps is described in detail below. 

 

ECOLOGICAL SYSTEMS TRAINING DATASET 

Point data were accumulated from a variety of sources (Table 4) to create an 

Ecological Systems training dataset.  Some of these data were collected specifically in 

conjunction with the AL-GAP mapping project while other datasets were not.  The data 

collected for the AL-GAP project by external personnel (Rob Evans, Al Schotz, Milo 

Pyne, from Table 4) contained, at minimum, the GPS coordinates and an assigned 

Ecological System at all sample points.  Other datasets were either previous 

classifications that I subsequently assigned to Ecological Systems or databases of field 

plots (NatureServe) or locations of rare species (state heritage programs).  If possible, I 

assigned plots and rare species locations to an Ecological System and this assignment 

was reviewed by Milo Pyne of NatureServe.  Points that could not be confidently 

assigned to an Ecological System were not included in the final training dataset.  These 

points were overlaid on satellite imagery and assessed for whether they occurred on land 

use edges or whether there was land use change between image dates.  Points which 
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occurred on edges or on sites where there was obvious change were excluded from the 

final training dataset. 

Field data were also collected by AL-GAP.  In most of these plots, additional 

information beyond GPS location and Ecological System was collected.  This included 

relative tree densities, estimated basal areas, landscape position, whether the plot was in a 

wetland, and other information relevant to an ecological classification.  Data from each 

source were merged and the final Ecological Systems training dataset contained 

approximately 3200 points. 

 

SATELLITE IMAGERY 

The base layer for the production of this land cover map was Landsat Enhanced 

Thematic Mapper plus imagery (Landsat ETM+).  This is satellite imagery with a pixel 

resolution of 30 meters.  All imagery was geometrically corrected by USGS’s Center for 

Earth Resources and Observation Science (EROS) and has a maximum spatial error of 

+/- 30 meters (1 pixel) (Huang et al., 2002).  I chose a minimum mapping unit for most 

classes of 900 square meters (1 pixel).  Thirty meter cell resolution was also used in all 

other data development. 

Three seasonal mosaics were used with each mosaic requiring 21 satellite scenes 

(63 images total), see Figure 3.  Image acquisition dates (i.e., date when the data was 

acquired by the satellite) ranged from 07/30/1999 to 06/23/2003.  Although I had image 

mosaics for all 3 seasons from the NLCD 2001 mapping, there was significant spectral 

variance between scenes in these mosaics.  Because the Ecological Systems classification 
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is more detailed with greater spectral overlap between classes, it was decided that a better 

normalized mosaic was needed.   

For this reason additional scenes were acquired and the scenes were normalized 

and mosaicked using no change block regression as described in Hogland (2005).  In this 

technique, digital numbers (DNs) are altered in a slave scene to better match the master 

scene through linear regression, change detection, and block averaging. 

 

NLCD 

An initial classification (NLCD 2001) using the same source imagery (Homer et 

al., 2004) was previously created (Grand et al., 2004) and this was used as the first stage 

of classification.  The NLCD 2001 classes are shown in Table 5.  The NLCD 2001 map 

was created using Classification and Regression Trees (CART) (Breiman et al., 1984; 

Quinlan, 1993).  The NLCD methods developed nationally are described in Homer et al. 

(2004) and methods and results specific to Alabama are fully described in Grand et al. 

(2004).  The vegetated classes in the initial classification were refined to create the map 

of Ecological Systems, as the remainder of the methods will discuss.   

 

ANCILLARY DATA 

For many Ecological Systems, spectral information, alone, is insufficient to 

accurately identify them.  Furthermore, the Ecological Systems concept incorporates 

environmental factors into the classification scheme.  One would expect that if 

environmental variables can be modeled spatially, these would be important predictive 

data layers.  Therefore, spatial data from other sources, hereafter referred to as ancillary 
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data, were incorporated into the mapping process (see Table 6) to increase classification 

accuracy.  Ancillary data were incorporated at multiple stages and for specific Ecological 

Systems where a data layer was thought to potentially improve the classification. 

  The following data layers were created: National Wetlands Inventory (NWI), 

Black Belt soils, matrix system boundaries, blackwater range, brackish water boundary, 

landform model, and modified stream layers.  Additionally, several anthropogenic classes 

required ancillary data.  Data layers identifying quarries, clear cuts and utility swaths 

were created.  More specific methods for each ancillary data layer are described below. 

 

NATIONAL WETLANDS INVENTORY (NWI) 

The national wetlands inventory (NWI) is a US Fish and Wildlife Service 

mapping program which identifies and categorizes wetlands within the United States 

(USFWS, 2007).  These maps, generally created via manual interpretation of air photos at 

a scale of 1:80000, were created prior to the advent of widespread digital mapping.  The 

Fish & Wildlife Service is currently working to digitize these maps but at the start of the 

AL-GAP project, there were very few digital maps in the EGCP.  Therefore, AL-GAP 

initiated the task of collecting existing digital NWI maps, digitizing paper NWI maps, 

later contracting out the digitizing of paper maps, and the eventual assembling them into 

a statewide digital data layer.  NWI follows the Cowardin (1979) wetland classification 

scheme, which is quite detailed.  Furthermore, attribution of polygons is a large portion 

of the work involved in map digitization.  Recognizing this, AL-GAP decided to only 

code the digitized maps as wet or nonwet. 
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Once the NWI layer was assembled, pixels were recoded to separate riparian 

wetlands from nonriparian wetlands.  This was accomplished in several ways.  Pixels 

were recoded to riparian or nonriparian based upon patch size, shape factor, National 

Hydrography Dataset (NHD) (USGS, 2001) overlay, and manual editing.  Generally, 

large patches of pixels corresponded to the large river floodplains.  A threshold of 3000 

pixels was chosen above which all patches were considered riparian.  Shape factor is a 

landscape metric which essentially is a ratio of the perimeter of the patch to the perimeter 

of a circle of equal area.  The larger the shape factor, the more linear and convoluted the 

patch (Forman and Godron, 1986).  A threshold of 2.4 was chosen above which all pixels 

within the patch were identified as riparian.  Finally, the NWI layer was overlaid with the 

NHD layer.  Any patches which intersected the NHD layer were identified as riparian.  

These methods were insufficient in the lower coastal plain because a much larger 

percentage of the area is identified as wet in the NWI.  In the lower coastal plain, NWI 

was recoded to riparian only where it coincided with NHD pixels.  Finally, manual 

editing further identified smaller riparian areas. 

There were several 1:24000 topograhic quadrangle maps for which recent NWI 

maps did not exist.  In these instances, older 1:40000 maps were digitized and inserted.  

The final result was a thematic raster layer covering the entire extent of the EGCP 

identifying NWI wetlands as either riparian or nonriparian. 

 

BLACK BELT SOILS 

Soil type is recognized to be one of the dominant forces controlling vegetation 

patterns (Barbour et al., 1999).  This is especially true in the Black Belt, an area 
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containing patches of extremely alkaline soil relative to surrounding areas (Wilson, 1981; 

Harper, 1920).  There are several classes in the Ecological Systems classification specific 

to the Black belt, and it was thought that a detailed soil layer would be especially useful 

in identifying these systems.  STATSGO, the statewide and courser grain soil map 

(NRCS, 2006a), was assessed and deemed not sufficiently useful.  The SSURGO 

mapping program, on the other hand, is a county level soil mapping program which 

produces maps with greater spatial and thematic detail (NRCS, 2006b). 

Again, the problem was one of data not being in digital format.  Roughly half of 

the counties in the black belt had digital soils maps. AL-GAP digitized the parts of the 

remaining and available counties which intersected the Black Belt as defined by 

Omernik’s Ecoregion map unit 65a, blackland prairie (Omernik, 1998). 

For each county within the Black Belt, soil surveys were accessed through 

SoilDataMart (NRCS, 2006b) and soil types were assessed for their Black Belt vegetation 

affinity.  This was done by looking at 2 attributes, pH concentration and suggested timber 

species.  Three categories were created: high affinity (pH greater than 7 and Juniperus 

virginiana the recommended timber species), some affinity (pH greater than 7 but other 

timber species recommended), and no affinity (pH less than or equal to 7).  Polygons 

were recoded to category, rasterized, and all counties merged.  There were 2 counties in 

the Black Belt lacking county level soil surveys: Lowndes County, AL and Lowndes 

County, MS.  For these, the coarser scale STATSGO data were incorporated.  The result 

was a thematic layer identifying the location of Black Belt soil types. 
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MODIFIED MATRIX SYSTEM RANGES 

The concept of matrix as the spatial distribution of an Ecological System is 

especially important for the purpose of mapping.  A matrix system is the primary 

vegetation type in an area; the background or matrix within which other Ecological 

Systems are embedded (Comer et al., 2003).  Conceptually, for a given location, there 

can only be one matrix vegetation type.  In reality though, there is not a hard line where 

one matrix system ends and another begins.  It has been shown that vegetation in the 

Southeastern US transitions along a gradient (Carter et al., 1999; Skeen et al., 1993).  The 

problem with mapping this is that the matrix systems, to some extent, represent historical 

or potential vegetation.  So no specific line can be identified on a map. 

There are two ways of dealing with this.  One can identify a best guess of where 

this line is and 1) let that line stand, however obvious, in the final map or 2) find a way to 

blur this line and better intergrade the matrix systems.  I chose to do the latter, but in a 

way that reflects current vegetation and is therefore defensible.  For each boundary 

between matrix types the final separation was created using Omernik’s ecoregions, 

spectral data (NLCD 2001), and image objects generated in Ecognition.  Ecognition is 

patch based, image processing and classification software (Definiens Imaging, Inc., 

2005). It enables the user to generate image objects (i.e., patches) based upon the 

similarity of image pixels adjacent to one another.  The precise algorithm used in 

Ecognition is proprietary but it is at minimum using DN value and a texture measure to 

generate the image objects (Definiens Imaging, Inc., 2005).  Omernik’s ecoregions were 

the primary data layer upon which initial matrix system ranges were delineated.  TM 

imagery was then used as input to create image objects.  Objects were classified by the 
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relative composition of NLCD 2001 pine, hardwood, and mixed forest types.  Finally, 

manual recoding was performed to re-label interior objects not immediately adjacent to 

the primary boundary.  In this manner the initial boundaries were modified and better 

reflected both the fine scale features in the imagery and the transition in relative forest 

type, from pine along the coast and eastern edge of the mapping zone to more hardwood 

dominance further north and west.  The final distribution of matrix system ranges is 

shown in Figure 4.  The matrix system range map is particularly important for 

understanding the Ecological Systems classification.  Each matrix Ecological System 

only exists within its range and no other matrix system can exist within another range.  

These areas are mutually exclusive and this layer had significant influence in the 

classification. 

 

BLACKWATER RANGE 

Coastal plain blackwater streams are characterized by high acidity and high 

dissolved organic carbon concentrations which give rise to their dark color.  Having 

headwaters frequently in swamps, bogs, or marshes, and low stream velocities increases 

dissolved organic carbon.  Flowing over mostly sandy soils reduces dissolved mineral 

concentrations and buffering capacity.  These factors combine to reduce biological 

productivity (Smock and Gilinsky, 1992). 

The range of blackwater streams was created by expert review.  Dr. George 

Folkerts, a biology professor at Auburn University with extensive field experience in 

Alabama and Mississippi, was enlisted to identify which streams in the coastal plain had 

significant blackwater influence.  
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FRESHWATER/BRACKISH BREAK 

This layer was created from a land cover classification created by the National 

Oceanic and Atmospheric Administration’s (NOAA) Coastal Change and Analysis 

Program (CCAP) (NOAA, 2007).  The circa 2001 CCAP classification scheme is similar 

to NLCD but wetlands are further separated according to whether they are palustrine or 

estuarine.  These wetland classes provided the basis for generating a spatial layer 

showing which coastal areas were fresh and which were brackish. 

First, wetland pixels were extracted from the land cover.  This raster layer was 

then vectorized and polygons were generalized using the generalize option in Arcgis.  

Finally, smaller polygons (less than approximately 23000 m2 or 25 pixels) were removed, 

nodata values were filled with adjacent values, and the vector layer was converted back 

to a raster layer.  

 

MODIFIED HYDROGRAPHY 

This ancillary layer was created by the Southeast Regional Gap Analysis Project 

(SEReGAP).  The National hydrography dataset (NHD) consists of the delineated 

streams taken from the 1:24000 quad maps (USGS, 2001).  But between adjacent quads 

there is inconsistency as to which order streams are identified.  To remedy this 

inconsistency, a stream network was created from the National Elevation Dataset (NED) 

(USGS, 2006a).  First, 1:100000 stream digital line graphs (DLGs) were incorporated 

into the digital elevation model (DEM) to force drainage.  This was accomplished by 

rasterizing the DLGs, overlaying this raster onto the DEM, and subtracting 25 meters 
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from the elevation at each pixel.  Then the ARC/Info flow accumulation command was 

run to create a stream network.  Flow accumulation produces a raster layer showing the 

number of cells which provide surface flow to each cell.  This layer was visually 

compared to the more detailed portions of the NHD and a cutoff value was chosen where 

they best matched (personal communication, Matt Rubino, SEReGAP).  The final output 

was a binary raster layer showing where streams exist. 

 

LANDFORM MODEL 

 This ancillary layer was created by SEReGAP.  The National Elevation Dataset 

(NED) DEM and modified hydrography layer were used to create landform categories 

following the methods in Anderson et al. (1998).  For each twelve digit hydrologic unit 

code (HUC) (Seaber et al., 1987), a landscape position model was generated using a 30 

by 30 square kernel.  Then slope, aspect, and landscape position were integrated into 

discrete categories.  In the EGCP, SEReGAP used a subset of the Anderson et al. (1978) 

landform categories.  The 13 landform classes in this model are shown in Table 7 

(Anderson et al., 1998). 

 

QUARRIES 

The quarries layer was created by manually digitizing around mines identified 

from a USGS coverage (Geonames, 2006) of mine locations obtained from SEReGAP.  

Additional mines were located through visual inspection of the TM mosaics. 
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CLEAR CUTS 

A clear cut layer was created by comparing the NLCD 2001 classification to the 

older NLCD 1992 classification (USGS, 2007).  Pixels that had changed from forest in 

the 1992 classification to either scrub/shrub or herbaceous in the 2001 classification were 

identified.  This layer was further modified to remove small clear-cut patches and fill in 

non clear-cut pixels within larger clear-cut patches. 

 

UTILITY SWATHS 

Larger gas and power line right of ways were identified from existing coverages 

and in the satellite imagery.  A national power line arc coverage (USCB, 2007) and a 

more detailed Mississippi Power lines coverage (MARIS, 2007) were overlaid on the TM 

imagery.  Arcs were moved to spatially match locations in the imagery.  Additional gas 

and power lines were visually identified in the imagery.  Arcs were buffered by 30 meters 

and the resultant buffers were rasterized to produce a binary raster layer. 

 

Ecological Systems Mapping 

An important step in creating the map was finalizing the map legend by deciding 

which Ecological Systems would be mapped.  Throughout the mapping process, and in 

consultation with the vertebrate modeling side of the project, the list of Ecological 

Systems (Table 2) to be mapped was narrowed down from an initial 39 Ecological 

Systems in the East Gulf Coastal Plain (Comer et al., 2003) to 23 Ecological Systems and 

8 Ecological System modifications (31 total).  Ecological systems were not mapped if 

they existed in patches too small to be identified remotely (less than 3 by 3 pixels or 90 
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by 90 meters) or if it was clear from preliminary examination that I had insufficient 

predictive data to map them. 

Due to the complexity of the Ecological Systems classification scheme, it was 

clear that a single classification technique would not be sufficient to accurately map the 

Ecological Systems.  Instead, a process evolved where multiple techniques were applied 

sequentially.  This included image processing, GIS analysis, and spectral classification 

techniques including image subsetting, decision trees, spatial queries, logistic regression, 

unsupervised classifications (clustering), and direct image interpretation.  A schematic of 

this process is shown in Figure 5.  Essentially, classification techniques were applied, 

starting with a decision tree classifier, the most objective and statistically rigorous, and 

ending with manual image interpretation, the most subjective.  After each classification 

step, the output model (decision tree output) or map (spatial query) was assessed.  If the 

accuracy was acceptable, that model or map became final for that Ecological System and 

was incorporated into the final classification.  Otherwise, the next most desirable 

classification technique was performed. 

The first step (Figure 5) was to subset the image into subzones which would be 

mapped separately.  Image subsetting is especially useful when mapping large areas 

(Lillesand, 1994).  This is beneficial because it reduces: 1) the variability within 

individual ecological systems, 2) the affect of changing land use patterns, and 3) the 

number of classes in each zone.  By breaking a large heterogeneous area into several 

smaller and more homogeneous areas, spectral variability within classes can be reduced.  

Six subzones were identified based upon physiography, ecoregions, and primary land 

cover type (see Figure 6). 
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After subsetting, a decision tree was generated using 80% of the training data, the 

image mosaics, and ancillary data.  Decision trees were generated using See5 version 1.4.  

See5’s tree generation algorithm identifies a threshold for each attribute (data layer) 

which maximizes class separations, compares changes in entropy for each attribute, and 

selects the attribute and threshold which minimizes global entropy (Quinlan, 1993).  The 

accuracy of the decision tree was assessed using the remaining 20% of the training data.  

Initial decision trees for each of the 6 subzones are shown in Appendix 1. 

Decision trees were created for two purposes.  First, in several subzones the 

accuracy of the decision trees was sufficiently high (>75%) that these trees were used to 

classify their respective subzones.  In these subzones the decision trees provided 

objective and fully documented and reproducible classification methods.  In other 

subzones, where the accuracy of the decision trees were poor, the decision trees were 

inspected for unanticipated correlations that could provide insight into potential mapping 

approaches. 

 The second approach to classification (Figure 5) was spatial queries.  In this 

method, multiple ancillary data layers or ancillary and satellite data were spatially 

intersected to define classes.  For example, several Ecological Systems endemic to the 

Black Belt region were identified by intersecting the Black Belt soils data layer with the 

NLCD classification.  This approach is not necessarily data driven but it is well 

documented and therefore repeatable. 

The third approach to classification (Figure 5) was individual systems 

classification.  At this stage focus moved away from mapping a subregion and instead I 

was concerned with only a single class.  In one instance (longleaf pine), a statistically 
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rigorous model was developed for a single class (Hogland, 2005).  In general, however, at 

this stage of the classification framework an increasing amount of subjectivity necessarily 

enters the mapping process making repeatability difficult. 

The final approach to classification was manual image interpretation.  In this 

stage classes are mapped by visual interpretation, often with the aid of digital orthoquads 

(DOQs) (USGS, 2006b) or other ancillary imagery.  Classes are identified manually and 

often rely on texture, context, or other aspects of visual identification which are difficult 

to quantify and codify in an algorithm.  While this approach can be very subjective it is 

not necessarily less accurate than automated procedures. 

 

SUBZONE METHODS  

The mapping zone was divided into smaller mapping areas using a combination of 

ecoregions (Omernik, 1998) and Ecological System ranges.  In this manner, a large 

heterogeneous area, was divided into 6 smaller relatively homogeneous areas.  These 

were barrier, coastal, flatwoods, riverine, black belt, and upland (see Figure 6).  A brief 

description of mapping methods for each subset follows: 

 

Barrier 

This subset contains 4 Ecological Systems with relatively distinct spectral signatures.  In 

this subzone the initial CART model was acceptable and was used to classify the 

Ecological Systems. 
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Coastal 

This subset contains 4 Ecological Systems.  In the final CART model, two Ecological 

Systems (Maritime forest and Tidal Swamp) were combined.  Post processing was 

performed on the resulting map to eliminate speckle of systems where they were 

obviously misclassified.  This was accomplished by clumping individual classes, 

identifying patches with 2 or fewer pixels, and recoding these pixels to the majority class 

in a 3x3 kernel.  In some instances, larger patches were recoded if it was clear from 

visual inspection that they were misidentified.  As an example, the water edge of a beach-

ocean interface can be misclassified as vegetation when it is clearly not when looking at 

other imagery.  In this instance the vegetation patch would be coded water.  Finally, the 

two combined systems were separated using the Freshwater/Brackish break ancillary 

layer and proximity to water. 

 

Flatwoods 

The flatwoods subzone has 9 Ecological Systems contained within it.  Because of this 

larger number and the fact that many of these are wetlands with overlapping spectral 

ranges, the CART model was unable to separate them.  Spatial queries were also 

unsuccessful because of a lack of ancillary data that could separate systems.  For 

example, DEM derived layers have little predictive power because this area of the lower 

coastal plain has little relief.  High resolution soil maps would probably have been useful 

for separating isolated wetlands, but these were unavailable.  The final classification was 

produced subsetting the subzone by hydrologic regime using the NLCD 2001, TM 

mosaics, and the NWI layer.  Vegetated classes from the NLCD were divided into 
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uplands, riparian corridors, and isolated wetlands. Within each of these categories, 

Ecological Systems were identified by sequentially identifying classes, removing these 

pixels from the pool of unclassified pixels, and advancing to another Ecological System.  

Specific methods are described in the Individual Systems Classification section below. 

 

Riverine 

Conceptually, this is the large river floodplain ecoregion (65p) as identified by Omernik 

(1998).  Spatially, it was delineated using the NLCD 2001 woody wet class (90).  Large 

river floodplain is the only Ecological System in this subzone. 

 

Black Belt 

Ecological Systems in this subzone were mapped primarily by spatial queries.  The 

NLCD, Black Belt soils, and Matrix system ranges were overlaid.  Each combination of 

attributes from the various data layers were assigned to the most likely Ecological 

System.  For example, a pixel mapped as deciduous forest in the NLCD and occurring on 

a soil type with a high affinity for Black Belt vegetation would be labeled as the 

Limestone Forest Ecological System.  The major exception to the rule was Dry Chalk 

Bluff, which was mapped separately as described below in the Individual Systems 

Classification section. 

 

Upland 

Ecological Systems in this subzone were mapped primarily by spatial queries.  Data 

layers used included NLCD, NWI, modified matrix system ranges, Blackwater range, and 
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the landform model.  The matrix Ecological Systems in this subzone were labeled by 

simply intersecting the NLCD and modified matrix system ranges.  For example, any 

deciduous forest in the NLCD that fell within the Southern Loess Bluff Forest matrix 

system range was labeled the Southern Loess Bluff Forest Ecological System.  The 

exception was the Longleaf Pine Ecological System which is described in the Individual 

Systems Classification section below. 

 

POST  PROCESSING 

In all subzones there was additional post processing to further refine the classification.  

Classes were reviewed individually.  Large areas which were clearly misclassified when 

comparing the classification to satellite imagery were either filtered or manually recoded.  

In the coastal subzone, for example, isolated pixels of Brackish tidal marsh (class 250) 

were initially classified in grasslands not immediately adjacent to the coast.  These were 

recoded via a majority filter. 

 

INDIVIDUAL SYSTEMS CLASSIFICATION 

As stated earlier, several classes were mapped independently from the other classes in a 

subzone.  The methods used for identifying classes individually are briefly described 

below: 

 

EGCP Dry Chalk Bluff – These were mapped by selecting pixels in the cliff class of the 

landform model within a 5x5 window buffer of water (class 1).  These are bluffs 

occurring along the major rivers in the Black Belt.  Although a 3x3 window conceptually 
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makes more sense (only bluffs immediately adjacent to water would be selected), a 5x5 

window was chosen to allow for potential misregistration between the satellite imagery 

and the DEM.  Only bluff pixels not greater than 2 pixels (60 meters) away from water 

are mapped as Dry Chalk Bluff . 

 

EGCP Interior Upland Longleaf Pine Woodland -  Open understory modifier - This 

system was the subject of intense study by Hogland (2005).  Using logistic regression, he 

produced separate maps predicting the probability of occurrence of longleaf at each pixel, 

along with other land cover and forest types.  I combined these separate probability layers 

to produce a single classification based upon which class was most likely to occur 

(maximum likelihood).  The longleaf maximum likelihood was “burned” into the final 

upland classification.  For further information on this class or method see Hogland (2005) 

or to access these probability layers see AL-GAP (2006).  

 

EGCP Black Belt Calcareous Prairie and Woodland – Herbaceous modifier – This was 

mapped according to a spatial query and further limited to remove extrapolation outside 

the training set.  The NLCD 2001 class scrub/shrub (55) was subjected to a series of 

unsupervised classifications to identify potential prairie.  This was combined with class 

71 (herbaceous /grassland) and pasture (83).  This sum was intersected with Black Belt 

soils.  Finally, extrapolation beyond the prairie training points in the original point dataset 

was removed by selecting pixels which only fell within the range for the IR bands (4,5,6) 

in the spring, summer, and fall mosaics corresponding to the locations of these training 

points. 
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EGCP Nonriverine Basin Swamp – This class was mapped in several different ways.  

First, they were identified by visually locating bay swamps on topographic maps, digital 

orthographic quarter quads (DOQQs), and satellite imagery.  These were then manually 

digitized on the satellite imagery.  Second, larger nonriparian clumps from the NWI layer 

were visually examined on satellite imagery and assigned to this class, if appropriate. 

 

EGCP Southern Loblolly-Hardwood Flatwoods – The challenge for this class was 

defining a range.  Although it doesn’t readily appear in Omernik’s ecoregion map, it is a 

distinct forest type in older state forest assessments (Dunston, 1910; Harper, 1943) and it 

is a distinct ecoregion in the Keys et al. (1995) ecoregion map.  However, the spatial 

resolution of the Keys et al. ecoregion map was too course.  A range was created through 

expert review (Milo Pyne, NatureServe) by identifying STATSGO soil types with an 

affinity for this forest type.  Soil polygons were selected and clipped to the spatial extent 

of the Keys et al. ecoregion.  Within this range, a series of unsupervised classifications 

was performed to identify this class.  This Ecological System exists within a mosaic of 

pine plantation and riparian hardwood.  Unsupervised classifications were visually 

interpreted using DN values, texture, and DOQ comparison. 

 

EGCP Nonriverine Cypress Dome – This class was created by first manually defining a 

spatial range.  Cypress domes exist in fairly distinct regions of the Florida panhandle, 

where they are in a matrix of pine flatwoods, and southern Alabama, where they exist in a 
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matrix of agriculture on the Citronelle Formation (Osbourne, 1989).  In each case, the 

range was created by delineating a polygon on the satellite imagery. 

Cypress domes are also all circular and they have a fairly narrow size range so 

they are easily identified by shape or clumping and identifying manually.  NLCD 

wetlands within the range were identified.  These wetlands were clumped and riparian 

wetlands were removed.  Of the remaining clumps, larger (greater than 30 pixels) and 

smaller (less than 5 pixels) ones were eliminated.  The middle sized clumps were refined 

with an unsupervised classification and visual examination of the satellite imagery. 

 

EGCP Jackson Prairie and Woodland – This class was manually burned in.  Known 

occurrences from the original point dataset (see Table 4) were overlaid on DOQs and the 

prairie patches were digitized. 

 

Anthropogenic Class Mapping 

Not every pixel in the EGCP can correctly be attributed to an Ecological System.  

This is obviously true for land cover types such as water, urban, and agriculture.  But 

there were also nonnatural vegetated land cover classes which AL-GAP decided to 

recognize, independent of NatureServe’s Ecological Systems classification.  Some of 

these classes were unaltered NLCD 2001 classes and others were more specific land use 

classes, from here on referred to as anthropogenic classes.  Included in the anthropogenic 

class category are several nonvegetated but not truly anthropogenic classes such as water 

and unconsolidated shore.   
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Methods for mapping the anthropogenic classes are described below.  More 

detailed explanations of the national guidelines for NLCD 2001 methods can be found in 

Homer et al. (2004) and Yang et al. (2003).  Descriptions of methods and results specific 

to Alabama can be found in Grand et al. (2004) and Lee and Robinson (2004). 

 

Open Water (Fresh) – Water (class 11) in the NLCD2001 classification and fresh in the 

Freshwater/brackish break ancillary layer. 

 

Open Water (Brackish/Salt) – Water (class 11) in the NLCD2001 classification and 

brackish in the Freshwater/brackish break ancillary layer. 

 

Open Water (Aquaculture) – This is a subset of what was originally Open Water (Fresh).  

In Alabama and Mississippi (exclusive of the Mississippi Alluvial Valley), commercial 

aquaculture facilities exist primarily in the Black Belt.  In this area, water pixels were 

clumped.  Riparian (patches greater than 150 pixels) and small patches (less than 10 

pixels) were removed.  The remaining clumps of pixels were visually examined to 

determine if they were aquaculture facilities.  Aquaculture ponds are usually rectangular 

in shape and clumped.  DOQs were also consulted when clump identity was unclear. 

 

Developed Open Space – Taken directly from NLCD 2001, class 21. 

 

Low Intensity Developed – Taken directly from NLCD 2001, class 22. 
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Medium Intensity Developed – Taken directly from NLCD 2001, class 23. 

 

High Intensity Developed – Taken directly from NLCD 2001, class 24. 

 

Bare Soil – This is a subset of the NLCD2001 Barren class (31).  It occurs primarily in 

Eglin Air Force Base along targets and ranges and is also scattered within agriculture. 

 

Quarry/Strip Mine/Gravel Pit – This class was created using the Quarries ancillary data 

layer. 

 

Unconsolidated Shore (Lake/River/Pond) – This class is a subset of the NLCD2001 

Unconsolidated Shore class (32) consisting of inland pixels adjacent to water. 

 

Unconsolidated Shore (Beach/Dune) – This class is a subset of the NLCD2001 

Unconsolidated Shore class (32) consisting of coastal pixels adjacent to water. 

  

Evergreen Plantations – This class was created using image objects.  The leaf off TM 

mosaic was subset by Omernik’s level 4 ecoregions (Omernik, 1998).  Within each 

ecoregional subset, image objects were generated and classified within eCognition.  A 

training set was created by visually identifying plantation objects and nonplantation 

objects.  eCognition then uses a nearest neighbor classification routine.  After several 

trials, classification performed best when TM band 4 average value and TM band 4 

standard deviation were selected as classification attributes.  Upon completion of the 
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automated classification routine, the classified objects were visually compared to the leaf 

off mosaic and recoded if I disagreed with the eCognition classification.  I identified 

plantations visually using bands 4, 5, and 6.  Important characteristics for visual 

recognition were average DN value, low patch texture (high degree of homogeneity), and 

patch shape (linear edges increased likelihood of the patch being a plantation). 

Ecoregion subsets were then merged back together.  Care was taken to map this 

class conservatively (errors of commission were avoided at the expense of increasing 

omission errors), especially in the lower coastal plain. 

 

Successional Shrub/Scrub (Clear cut) – Shrub/Scrub (class 52 in NLCD 2001) was 

intersected with the Clear cut ancillary layer. 

 

Successional Shrub/Scrub (Utility swath) – Shrub/Scrub (class 52 in the NLCD2001) was 

intersected with the Utility Swath ancillary layer. 

 

Successional Shrub/Scrub (Other) – This class is the remaining pixels of Shrub/Scrub 

from the NLCD 2001 class 52 after class 125 and 126 and all Ecological System classes 

had been mapped. 

 

Pasture/Hay – This is a subset of the NLCD 2001 Pasture/Hay class (81).  A small 

fraction of NLCD 2001 Pasture/Hay class was eventually recoded to several Ecological 

Systems. 
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Row Crop – Taken directly from NLDC 2001, class 82. 

 

Accuracy Assessment 

Providing the accuracy assessment of a land cover map is an important part of 

mapping (Congalton and Green, 1999).  An accuracy assessment lets the end user know if 

the map will be acceptable for his or her intended use.  As land cover mapping has 

evolved, so have assessment methods.  The traditional way of reporting assessment is 

with an independent set of samples where the true land cover can be compared to the 

mapped land cover.  Often, accuracy is reported as a single value.  But because there is 

often a wide range in accuracy among classes, a single value usually provides little 

information (Congalton and Green, 1999).  A better way of reporting accuracy is with a 

cross tabulation table (SAS/STAT, 2007) which is known as an error matrix in the remote 

sensing literature (Jensen, 1986).  This table shows the true class and the mapped class 

for all accuracy assessment points.  It provides information on both the accuracy of each 

class and where confusion between classes exists.  If a statistical measure is desired, 

Kappa is used to provide a measure of new information in the map (Cohen, 1960; 

Congalton, 1981).  This is the difference between the error matrix accuracy and what one 

would expect with a randomly generated land cover map (Rosenfield and Fitzpatrick-

Lins, 1986). 

The data used to create the accuracy assessment for this classification came from 

multiple sources.  Assessment data were withheld from the initial Ecological Systems 

training dataset.  DOQs were used for interpreting points.  Finally, field work was 

performed to collect additional point data.  A decision was made to obtain a minimum of 
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25 points per class. This was not an optimal number (Congalton and Green, 1999), but 

one I arrived at when considering the existence of the initial accuracy dataset and our 

available resources for collecting additional data. 

If there were 25 points for a particular class in the withheld Ecological Systems 

training dataset then no further points were collected.  The second step, if needed, was to 

collect additional points from digital orthoquads (DOQs).  Three DOQs per ecoregion 

were selected randomly for a total of 15.  Within the extent of each DOQ footprint, the 

land cover map was processed to remove edge pixels and clump land cover patches.  

Patches greater than 9 pixels were then randomly selected by class, and a single point 

within each randomly selected patch was randomly generated.  These points were then 

manually interpreted from the DOQs and TM imagery.  Several Ecological System 

classes could not be confidently identified using manual interpretation of DOQs (Florida 

panhandle beach vegetation, dune and coastal grassland, Black Belt prairie, Limestone 

forest, and Longleaf pine woodland).  These classes required additional field work.  This 

was accomplished by either walking transects through areas on public lands for coastal 

classes, or selecting patches visible from roads of patches occurring on private land. 

The final assessment dataset contained 1,268 points.  Four classes do not have an 

accuracy assessment reported.  Successional shrub/scrub utility swath (126) was not 

assessed because its incorporation was entirely dependant upon the utility swath ancillary 

data layer, which has unknown accuracy. The issue with the other three classes (Bare soil 

(17), Quarry/Strip Mine/Gravel Pit (18), and the Ecological System EGCP Jackson 

Prairie and Woodland (134)) is that only known occurrences were incorporated into the 

map, and so for these classes, there is no prediction of occurrence.  Finally, a Kappa 
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coefficient was calculated (Congalton and Green, 1999).  This can be interpreted as the 

accuracy of the classification above that which could be expected from chance. 

 

 

RESULTS 

 

A map of the final Ecological Systems land cover map is shown in Figure 7.  A 

list of class area and percent area is shown in Table 8.  The class accounting for the 

largest area is the Loblolly modifier of the Upland Longleaf Pine Woodland (15.7%).  

The only other class accounting for at least 10 percent of the area is Pasture/Hay (11.4%).  

Classes accounting for between 5 and 10 percent of the area include: Interior Shortleaf 

Pine-Oak Forest - Mixed Modifier, Row Crop, and Small Stream and River Floodplain 

Forest.  Finally, 29 of the 50 mapped classes each account for less than 1 percent of the 

area mapped.  Although this is a relatively small area, these classes account for many of 

the mapped Ecological Systems which represent rare and diverse communities. 

Classes were mapped via multiple methods as shown in Figure 5.  Table 9 lists the 

final mapping method for each of the 50 classes.  Five classes were mapped via CART.  

These classes were generated exclusively with spectral data.  Twenty-six classes were 

mapped using spatial queries and ancillary data.  Twelve classes were mapped 

individually, and of these 12, 7 required manual image interpretation.  The remaining 7 

classes were incorporated directly from the NLCD 2001 map without any additional 

processing. 
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The contingency table (error matrix) from the accuracy assessment is shown in 

Table 10.  For the entire classification, the average user’s accuracy is 56% and the area 

adjusted user’s accuracy is 48%.  The area adjusted accuracy weights the accuracy of 

each class by the percentage of area occupied by that class (Congalton and Green, 1999).  

It is worth reiterating here that these average numbers have little meaning when it comes 

to assessing the quality of the map.  They are provided according to convention.  Much 

more insight can be gleaned from looking at the error matrix, identifying individual class 

accuracies, and when a class has low accuracy, understanding which classes it is 

confused with. 

The Kappa coefficient is also a useful measure for assessing the accuracy of a 

classification (Kalkhan et al., 1996).  The Kappa coefficient for this classification is 0.56.  

Kappa can theoretically range from -1 to +1 but negative values indicate negative 

correlation, meaning that you would be better off with a completely random 

classification.  Landis and Koch (1977) categorize Kappa values as follows: 

 > 0.8  strong agreement 

 0.4 – 0.8 moderate agreement 

 < 0.4  poor agreement 

According to their definitions, this classification has moderate agreement. 

 Another informative approach to classification accuracy assessment is an 

inspection of each class individually.  This is provided in Appendix 2.  I have included a 

brief description of the confidence I have in each class, what is really being mapped, and 

potential ways of improving the classification for certain classes. 
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DISCUSSION 

 

The classification procedure shown in Figure 4 is a hierarchy of classification 

methods.  There is decreasing objectivity and repeatability as one moves through the 

methods from the top to bottom.  Ideally, one would want a single, data driven model that 

would generate rules to create a classification.  This is preferred because it would be 1) 

parsimonious, 2) objective, 3) repeatable, and 4) would enable error estimates at the pixel 

rather than class level.  This is strong motivation for creating a single, statistically valid 

classification (the first classification approach in Figure 4). 

However, there are other considerations.  Users demand land cover maps with 

both thematic complexity (many classes) and high accuracy.  Additionally, we lack the 

ability to create algorithms as sophisticated as human vision.  Put simply, we can see 

more information in remotely sensed imagery than we can currently program computers 

to recognize.  These considerations provide motivation to move down the classification 

hierarchy and utilize methods requiring a greater degree of input from the image analyst.  

This approach is less parsimonious, less objective, less repeatable, and allows for error 

estimates at the class level only.  The recognition of this tradeoff deserves greater 

attention in the land cover mapping literature than it currently receives.  The methods 

used to create this land cover map illustrate this tradeoff. 

As previously stated, the area adjusted average user’s accuracy is 48%.  This 

means if one randomly selected pixels from the map, they would be accurate 48% of the 

time.  It is hoped that the full error matrix in Table 10 along with the discussion of each 
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class in Appendix 2 will provide a more useful assessment regarding whether classes may 

be appropriate for a particular purpose. 

Another way to better understand the classification and assess its utility for a 

given purpose is to view how these classes would collapse back to the NLCD 2001.  

Table 11 shows the relationship between each class in the Ecological Systems map and 

the percentage of area which is covered in each NLCD 2001 class.  As can be seen, while 

there is not a perfect hierarchical relationship, where each systems class exists within a 

single NLCD class, there is a high degree of fidelity between most Ecological Systems 

classes and a single NLCD class. 

If an Ecological Systems class is deemed to be of insufficient accuracy by the user 

after reviewing the NLCD comparison and the accuracy assessment error matrix, several 

options exist.  A user can 1) combine Ecological System classes based upon class 

accuracy and which class/classes there is confusion with or 2) recode all classes which 

are sufficiently contained within an NLCD class back to that NLCD class.  An end user 

of this map can use this relationship to pick and choose Ecological Systems from the 

system map based upon their classification accuracy.  A hybrid map can than be created 

which would include portions of both the NLCD 2001 and the Ecological Systems map.  

This new map would have greater overall accuracy than the Ecological Systems map and 

more thematic resolution (more classes) than the NLCD 2001 map. 

After generating the map and accuracy assessment it can be instructive to revisit 

class definitions.  Classes may have been mapped in such a way that they only partially 

captured the original class definition.  The accuracy assessment could indicate that a class 

contains more or less variability than desired.  Although unlikely, it is even conceivable 
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that a class is entirely mapped incorrectly.  Table 12 lists final descriptions for each class.  

This is not an attempt to redefine Ecological Systems or suggest an improved 

classification scheme.  Rather, the goal is to inform the potential user what the mapmaker 

believes is a concise and accurate class description of what has been mapped. 

Errors in a land cover map can be caused by many reasons and it is important to 

look at error source.  This helps in understanding how to improve future classifications. 

Congalton and Green (1999) divide mapping error into 4 major categories: reference data 

error, sensitivity of classification scheme to observer variability, inappropriate use of 

remote sensing technologies, and mapping error.  They point that in practice, 

inappropriate use of technique and mapping error are often difficult to separate.  The 

purpose of separating them is to attempt to identify errors essentially due to mapping 

naiveté, where a more experienced person could produce a better map. 

To better assess issues causing error in my classification, I expanded the mapping 

error to 3 categories.  I based this decision upon which 2 classes were confused and how 

those 2 classes were mapped.  The 3 new categories were spectral (class confusion likely 

spectral confusion), ancillary data model (class confusion caused by ancillary layer 

predicting incorrectly), or ancillary manual.  This last class was chosen when the error 

was the result of manual interpretation or a manual delineation between classes.  The 

aquaculture class, for example, was produced by manually identifying an area containing 

a high concentration of aquaculture facilities, and then identifying those facilities.  If an 

aquaculture reference point was mapped as open water, it would be a manual ancillary 

data layer error. 

 43



Table 13 lists the types of errors and their frequency.  Twelve percent of the errors 

were due to reference data error.  These errors were primarily either land cover change or 

interpreter error (mislabeled reference point).  Twenty percent of the error was from 

sensitivity of classification scheme to observer variability.  The error in this category is 

caused by two things: poorly defined matrix system boundaries and poorly defined class 

boundaries due to the continuous nature of many ecological systems.  This error can be 

directly attributed to the classification scheme.  Twenty percent of the error is attributable 

to ancillary data map error.  Error in this category is between classes where ancillary data 

is the primary predictive layer separating the classes.  Ten percent of the error is 

attributed to manual delineation using ancillary data.  In this category, ancillary data is 

not being used in a strictly predictive fashion.  Rather, ancillary data is modified to, for 

example, limit the potential spatial range of a class.  Finally, 6% of the error is attributed 

to inappropriate use of remote sensing technology.  I reserved this category to apply to 

cases where classes are poorly mapped, and I lacked a method to map a system with 

reasonable accuracy.  Spectral mapping error accounts for 32% of the overall error.  This 

category accounts for cases where there is likely confusion due to spectral similarity 

between classes.  As the number of classes in a classification scheme increases, it should 

be expected that spectral confusion increases.  This is simply due to the fact that one is 

trying to divide up a fixed spectral range into smaller and smaller categories. 

Analyzing the mapping error more critically, one can view errors from ancillary 

data as spectral errors.  Ancillary data were used to separate classes where spectral data 

was insufficient.  So if ancillary data had not been used, error attributed to ancillary data 

would have been attributed to a spectral cause.  Spectral error would have been (32% + 
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20% + 10%) or 62% of the error and is an indication of the extent of error attributable to 

the incomplete predictive power of spectral information alone. 

This number 62% is interesting in 2 respects.  On one hand it seems very large.  

This by far is the primary cause of error and reducing this component of the error would 

significantly improve the map.  Alternatively, it appears low.  In an ideal classification, 

all error would be due to spectral confusion.  In this instance, however, nearly 40% of the 

error can be attributed to other problems: issues with the classification system, reference 

data error, and inappropriate use. 

In addition to creating the classification and developing mapping methods, the 

other objective of this thesis is to determine whether NatureServe’s Ecological System 

classification is a realistic target classification scheme in the EGCP, given existing 

satellite imagery and ancillary data.  Although I cannot address this question statistically, 

through the process of mapping and performing an accuracy assessment I have enough 

information to begin addressing this question.  First, it is important to remember that only 

25 of 39 (64 %) Ecological Systems were mapped in the EGCP (Table 2).  The other 16 

systems were excluded because it was determined that I did not have ancillary data to 

spatially model them (this includes classes designated small patch).  Had these been 

included, accuracy would have been poorer.  Second, there is an accuracy assessment 

providing estimates of users and producers class accuracies.  In an effort to reduce the 

complexity of the error matrix, I categorized the individual systems user’s accuracy into 

four categories: <25%, 26-50%, 51-75%, >75%.  The percentage of systems in each 

category is shown in Figure 8.  Although this is easier to interpret, much information is 

lost because one can no longer see what classes the system is confused with.  It is also 
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important to note that the acceptable accuracy for a system is application dependant and 

probably system dependent.  But we can glean several things from this figure.  

Approximately a quarter (29%) of the systems were mapped well (accuracy > 75%), 

nearly two thirds (62%) of the systems were mapped moderately well (accuracy ≥ 51%), 

and approximately one third (38%) were mapped poorly (accuracy  < 50%).  Within this 

last class, I would recommend limiting my use of these classified Ecological Systems to 

applications where I was well aware of the potential implications of the limited accuracy. 

A final Systems assessment can be performed by revisiting the cause of errors in 

the accuracy assessment.  Referring to Table 13, 12 percent of error is attributed to 

reference data error.  These errors were independent of the classification scheme.  Six 

percent of the error is attributed to inappropriate use of technology.  In this category, 

error exists because there was not an effective way to classify the Ecological System.  

This can be attributed to the decision to map a particular Ecological System.  Twenty 

percent of the error was due to classification sensitivity.  This category can rightfully be 

attributed to the classification scheme.  Finally, summing the different map error types 

totals 62%.  This is the error due to incomplete ability to predict the systems based upon 

existing data (dependant variables).   From this assessment it is clear that much of the 

error is attributable to the classification scheme and a lack of data to predict the 

Ecological Systems with a high degree of accuracy. 

For a land cover map to be useful it must have reasonably high accuracy.  An 

absolute number cannot be chosen because what is useful is situation or application 

dependant.  Further, land cover classes need to be chosen which have distinct boundaries.  

This requirement will minimize inaccuracies in reference point labeling and increase map 
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accuracy and error estimates.  A third and underappreciated aspect, is that data layers 

must exist or be generated that have the ability to accurately predict the class.  A 

classification system may be very useful for categorizing existing vegetation when one is 

taking plots on the ground.  But if spatial data, either spectral or ancillary, does not exist 

that can separate the classes and predict them with reasonable accuracy across a mapping 

zone, the vegetation classification system may have limited utility from a remote sensing 

perspective.  All three of these issues were relevant in this map and limited the accuracy 

of this classification.  

 

 

CONCLUSION 

 

Despite a century of intense study, the classification of vegetation remains a 

challenging task today.  When classifying vegetation via remote sensing, there is the 

additional task of relating vegetation to spectral reflectance.  These issues are further 

complicated when mapping complex classification schemes over large areal extents.  

Despite these challenges, I produced a reasonably accurate, Ecological Systems 

vegetation classification of the East Gulf Coastal Plain containing 50 classes.  Although 

objectivity and repeatability were an initial goal, mapping was only accomplished by 

incorporating ancillary data, mapping sequentially in smaller subzones, and utilizing a 

variety of classification methods. 

Error analysis indicates a substantial portion (62%) of the error in the 

classification is due to overlapping class boundaries, matrix systems representing pre-

 47



European vegetation and therefore having unknowable ranges, and data layers lacking 

sufficient predictive capability.  If the purpose of the Ecological Systems classification is 

to provide a classification system that can be mapped remotely, future work should focus 

on refining the classification scheme to one with more discrete boundaries that can be 

better modeled with existing geospatial data. 
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Table 1. Anderson Land Cover Classification System (from Anderson et al., 1976). 

Level 1    Level 2                                                                     
                                                           
1 Urban     11 Residential 
     12 Commercial 
     13 Industrial 
     14 Transportation and Utilities 
     15 Industrial and Commercial 
     16 Mixed Urban 
     17 Other Urban 
2 Agriculture    21 Cropland and Pasture 
     22 Orchards 
     23 Confined Feeding Operations 
     24 Other Agricultural Land 
3 Rangeland    31 Herbaceous Rangeland 
     32 Shrub and Brush Rangeland 
     33 Mixed Rangeland 
4 Forest Land    41 Deciduous Forest Land 
     42 Evergreen Forest Land 
     43 Mixed Forest Land 
5 Water     51 Streams and Canals 
     52 Lakes 
     53 Reservoirs 
     54 Bays and Estuaries 
6 Wetland    61 Forested Wetland 
     62 Nonforested Wetland 
7 Barren Land    71 Dry Salt Flats 
     72 Beaches 
     73 Sandy Areas other than Beaches 
     74 Bare Exposed Rock 
     75 Strip Mines, Quarries, and Gravel Pits 
     76 Transitional Areas 
     77 Mixed Barren Land 
8 Tundra    81 Shrub and Brush Tundra 
     82 Herbaceous Tundra 
     83 Bare Ground Tundra 
     84 Wet Tundra 
     85 Mixed Tundra 
9 Perennial Snow or Ice   91 Perennieal Snowfields 
     92 Glaciers 
________________________________________________________________________________________________ 
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Table 2.  List of Ecological Systems occurring within the East Gulf Coastal Plain (from 

Comer et al., 2003).  An asterisk denotes the system was not mapped. 

NatureServe Code Ecological System Name                                                                
*CES202.338  Alabama Ketona Glade and Woodland 
*CES202.349  Allegheny-Cumberland Sandstone Box Canyon and Rockhouse 
*CES202.357  Southern Interior Sinkhole Wall 
*CES203.078  Southern Coastal Plain Herbaceous Seepage Bog 
CES203.192  East Gulf Coastal Plain Treeless Savanna and Wet Prairie 
CES203.251  Southern Coastal Plain Nonriverine Cypress Dome 
*CES203.258  Southeastern Coastal Plain Interdunal Wetland 
CES203.266  Florida Panhandle Beach Vegetation 
*CES203.275  Southern Coastal Plain Spring-run Stream Aquatic Vegetation 
CES203.299  East Gulf Coastal Plain Tidal Wooded Swamp 
CES203.303  Mississippi Sound Salt and Brackish Tidal Marsh 
CES203.375  East Gulf Coastal Plain Near-Coast Pine Flatwoods 
CES203.384  Southern Coastal Plain Nonriverine Basin Swamp 
*CES203.385  East Gulf Coastal Plain Interior Shrub Bog 
CES203.476  East Gulf Coastal Plain Southern Mesic Slope Forest 
CES203.477  East Gulf Coastal Plain Northern Mesic Hardwood Slope Forest 
CES203.478  East Gulf Coastal Plain Black Belt Calcareous Prairie and Woodland 
*CES203.479  South-Central Interior / Upper Coastal Plain Flatwoods 
CES203.481  East Gulf Coastal Plain Northern Loess Bluff Forest 
CES203.482  East Gulf Coastal Plain Northern Loess Plain Oak-Hickory Upland 
CES203.483  East Gulf Coastal Plain Northern Dry Upland Hardwood Forest 
CES203.489  East Gulf Coastal Plain Large River Floodplain Forest 
CES203.492  East Gulf Coastal Plain Dry Chalk Bluff 
CES203.493  Southern Coastal Plain Blackwater River Floodplain Forest 
*CES203.494  Southern Coastal Plain Oak Dome and Hammock 
CES203.496  East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland 
CES203.500  East Gulf Coastal Plain Dune and Coastal Grassland 
*CES203.501  Southern Coastal Plain Hydric Hammock 
CES203.502  East Gulf Coastal Plain Limestone Forest 
CES203.503  East Gulf Coastal Plain Maritime Forest 
*CES203.504  East Gulf Coastal Plain Southern Depression Pondshore 
*CES203.505  Southern Coastal Plain Seepage Swamp and Baygall 
CES203.506  East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest 
*CES203.534  Panhandle Florida Limestone Glade 
*CES203.554  East Gulf Coastal Plain Northern Seepage Swamp 
CES203.555  East Gulf Coastal Plain Jackson Prairie and Woodland 
CES203.556  East Gulf Coastal Plain Southern Loess Bluff Forest 
CES203.557  East Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods 
*CES203.558  East Gulf Coastal Plain Northern Depression Pondshore 
CES203.559  East Gulf Coastal Plain Small Stream and River Floodplain Forest 
*CES203.560  Southern Coastal Plain Dry Upland Hardwood Forest 
*CES202.691  Central Interior Highlands Calcareous Glade and Barrens 
*CES203.353  East Gulf Coastal Plain Jackson Plain Prairie and Barrens                      
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Table 3. Map legend, class type, and subzone. 

Class Class       Class   Mapping 
No. Name       Typea_______Subzonesb___ 
1 Open Water (Fresh)     Anth  Fl, Ri, Bb, Up 
2 Open Water (Brackish/Salt)    Anth  Ba, Co, Fl, Up 
3 Open Water (Aquaculture)    Anth  Bb 
4 Developed Open Space    NLCD  all 
5 Low Intensity Developed    NLCD  all 
6 Medium Intensity Developed    NLCD  all 
7 High Intensity Developed    NLCD  all 
12 Florida Panhandle Beach Vegetation   EcSy  Ba 
17 Bare Soil      Anth  Co, Fl, Up 
18 Quarry/Strip Mine/Gravel Pit    Anth  all 
32 East Gulf Coastal Plain Dry Chalk Bluff  EcSy  Bb 
35 Uncon. Shore (Lake/River/Pond)   Anth  all  
36 Uncon. Shore (Beach/Dune)    Anth  Ba, Co 
44 Interior Shortleaf Pine-Oak Forest -    MoES  Up 
  Hardwood modifier 
45 Limestone Forest     EcSy  Bb 
46 Northern Dry Upland Hardwood Forest  EcSy  Up 
47 Northern Loess Bluff Forest    EcSy  Up 
48 Northern Loess Plain Oak-     EcSy  Up 
  Hickory Upland - Hardwood Modifier 
49 Northern Mesic Hardwood Forest   EcSy  Bb, Up 
50 Southern Loess Bluff Forest    EcSy  Up 
51 Southern Mesic Slope Forest    EcSy  Fl, Bb, Up 
62 Interior Upland Longleaf Pine    MoES  Up 
  Woodland - Offsite Hardwood Modifier 
69 Black Belt Calcareous Prairie    MoES  Bb 
  and Woodland - Woodland Modifier 
71 Evergreen Plantations     Anth  Fl, Bb, Up 
79 Maritime Forest     EcSy  Co 
80 Northern Loess Plain Oak-Hickory   MoES  Up 
  Upland - Juniper Modifier 
94 Interior Upland Longleaf Pine    MoES  Up 
  Woodland - Loblolly Modifier 
95 Interior Upland Longleaf Pine   EcSy  Up 
  Woodland - Open Understory Modifier 
101 Northern Dry Upland      MoES  Up 
  HardwoodForest - Offsite Pine Modifier 
106 Interior Shortleaf Pine-Oak Forest -    EcSy  Up 
  Mixed Modifier 
125 Successional Shrub/Scrub (Clear Cut)  Anth  all 
126 Successional Shrub/Scrub (Utility Swath)  Anth  all 
127 Successional Shrub/Scrub (Other)   NLCD  all 
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132 Black Belt Calcareous Prairie    EcSy  Bb 
  and Woodland - Herbaceous Modifier 
134 Jackson Prairie and Woodland   EcSy  Up 
143 Dune and Coastal Grassland    EcSy  Ba 
148 Pasture/Hay      NLCD  all 
149 Row Crop      NLCD  all 
157 Large River Floodplain Forest -    EcSy  Ri 
  Forest Modifier 
158 Small Stream and River Floodplain Forest  EcSy  Fl, Bb,Up 
163 Blackwater River Floodplain Forest   EcSy  Co, Fl, Up 
179 Nonriverine Basin Swamp    EcSy  Fl, Up 
186 Near-Coast Pine Flatwoods -     MoES  Fl 
  Offsite Hardwood Modifier 
187 Near-Coast Pine Flatwoods -     EcSy  Fl 
  Open Understory Modifier 
189 Southern Loblolly-Hardwood Flatwoods  EcSy  Up 
195 Nonriverine Cypress Dome    EcSy  Fl, Up 
206 Tidal Wooded Swamp    EcSy  Ma, Fl 
233 Treeless Savanna and Wet Prairie   EcSy  Co, Ma 
238 Large River Floodplain Forest -    MoES  Ri 
  Herbaceous Modifier 
250 Salt and Brackish Tidal Marsh   EcSy  Ba, Co 
_______________________________________________________________________ 
 
a.  Class types: Anth = Anthropogenic, NLCD = National Land Cover Dataset, EcSy = 
     Ecological System, MoES = Modified Ecological System 
b.  Occurs in mapping subzones: Ba = Barrier, Co = Coastal, Fl = Flatwoods, Ri =  
     Riverine, Bb = Black Belt, Up = Upland, all = occurs in all subzones 
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Table 4. Sources of point data for training. 

Alabama Natural Heritage Program, ALNHP-VEG database                                          

Alabama Natural Heritage Program, DOQ interpretation by Al Schotz 

AL-GAP field data (Hogland and Kleiner) 

Eglin Air Force Base, field plots 

Mississippi Natural Heritage Program, vegetation database 

NatureServe, GAP targeted field points collected by Rob Evans 

NatureServe, National Forest plots collected by Milo Pyne 

Ron Wieland (formerly of the Mississippi State Museum) through NatureServe, personal  
 

collection 
 
The Nature Conservancy - Alabama Chapter, known prairie localities from Georgia  
 

Pierson                                                                                                                                      
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Table 5.  National Land Cover Dataset (NLCD) 2001 legend in the East Gulf Coastal 

Plain (from Homer et al., 2004). 

 
Class Number  Class Name 
____________________________________________________________________                                 

11   Water 
21   Developed, Open Space 
22   Developed, Low Intensity 
23   Developed, Medium Intensity 
24   Developed, High Intensity 
31   Barren Land (Rock/Sand/Clay) 
32   Unconsolidated Shore 
41  Deciduous Forest 
42   Evergreen Forest 
43   Mixed Forest 
52   Shrub/Scrub 
71   Grassland/Herbaceous 
81   Pasture/Hay 
82   Cultivated Crops 
90   Woody Wetlands 
95  Emergent Herbaceous Wetlands 

_____________________________________________________________________ 
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Table 6.  Ancillary data used. 
 
Data Layer   Original Source Data   Creator*

NLCD 2001   circa 2000 ETM+ imagery  AL-GAP 
NWI    NWI maps (USFWS)   AL-GAP 
Soils    Surgo Soil Maps (NRCS)  AL-GAP 
Blackwater Range  Expert Review    AL-GAP 
Fresh/Brackish break  SECAP land cover   AL-GAP 
Modified Hydrography NHD and NED   SEReGAP 
Landform Model  National Elevation Dataset (NED) SEReGAP 
Quarries and Mines  circa 2000 ETM+ imagery  AL-GAP 
Clear Cuts   NLCD 1992 and NLCD 2001  AL-GAP 
Utility Swaths   circa 2000 ETM+ imagery  AL-GAP 
Ecological System Ranges Omernik Ecoregions   NatureServe 
Modified Matrix System Omernik Ecoregions   AL-GAP 
Ranges                                                                                                              
 
*AL-GAP – Alabama Gap, SEReGAP – Southeast Region Gap 
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Table 7. Landform classes of the landform model within the East Gulf Coastal Plain 

(modified from Anderson et al., 1998). 

Flat summit/ridge                                                                                          

Slope crest 

Cove/ravine – North/Northeast 

Cove/ravine – South/Southwest 

Steep slope - North/Northeast 

Steep slope – South/Southwest 

Sideslope - North/Northeast 

Sideslope – South/Southwest 

Moist flat 

Slope bottom 

Stream 

Lake/river                                                                                                                             
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Table 8. Area and percent area for each class (percent area rounded to 0.1%). 
 
Class  Class         Area  % 
Number Name           km2  Area  
1  Open Water (Fresh)      3185  1.4 
2  Open Water (Brackish/Salt)     6203  2.6  
3  Open Water (Aquaculture)       127  0.1  
4  Developed Open Space   10404  4.4  
5  Low Intensity Developed     3321  1.4  
6  Medium Intensity Developed     1042  0.4  
7  High Intensity Developed       344  0.1  
12  Florida Panhandle Beach Vegetation        19  <0.1 
17  Bare Soil         239  0.1  
18  Quarry/Strip Mine/Gravel Pit         96  <0.1  
32  Dry Chalk Bluff            3  <0.1  
35  Unconsolidated Shore (Lake/River/Pond)       59  <0.1  
36  Unconsolidated Shore (Beach/Dune)        72  <0.1  
44  Interior Shortleaf Pine-Oak Forest -  10807  4.6  
    Hardwood Modifier  
45  Limestone Forest        197  0.1  
46  Northern Dry Upland Hardwood Forest   2331  1.0  
47  Northern Loess Bluff Forest     1875  0.8  
48  Northern Loess Plain Oak-Hickory Upland -   1915  0.8  
    Hardwood Modifier  
49  Northern Mesic Hardwood Forest    3379  1.4  
50  Southern Loess Bluff Forest     1871  0.8  
51  Southern Mesic Slope Forest     4580  2.0  
62  Interior Upland Longleaf Pine Woodland -   8992  3.8  
    Offsite Hardwood Modifier 
69  Black Belt Calcareous Prairie and Woodland -   81  <0.1  
      Woodland Modifier  
71  Evergreen Plantations    10249  4.4  
79  Maritime Forest        359  0.2  
80  Northern Loess Plain Oak-Hickory      277  0.1  
    Upland - Juniper Modifier  
94  Interior Upland Longleaf Pine Woodland 36794  15.7  
    - Loblolly Modifier  
95  Interior Upland Longleaf Pine Woodland -   2362  1.0  
    Open Understory Modifier  
101  Northern Dry Upland Hardwood Forest -     243  0.1  
    Offsite Pine Modifier  
106  Interior Shortleaf Pine-Oak Forest -  14936  6.4  
    Mixed Modifier  
125  Successional Shrub/Scrub (Clear Cut) 16939  7.2  
126  Successional Shrub/Scrub (Utility Swath)    863  0.4  
127  Successional Shrub/Scrub (Other)   7593  3.2  
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132  Black Belt Calcareous Prairie and Woodland -   64  <0.1  
    Herbaceous Modifier  
134  Jackson Prairie and Woodland         0*  <0.1 
143  Dune and Coastal Grassland         39  <0.1  
148  Pasture/Hay     26775  11.4  
149  Row Crop     18087  7.7  
157  Large River Floodplain Forest - Forest Mod   6854  2.9  
158  Small Stream and River Floodplain Forest 18130  7.7  
163  Blackwater River Floodplain Forest    6266  2.7  
179  Nonriverine Basin Swamp       288  0.1  
186  Near-Coast Pine Flatwoods -       252  0.1  
    Offsite Hardwood Modifier  
187  Near-Coast Pine Flatwoods -     4282  1.8  
    Open Understory Modifier  
189  Southern Loblolly-Hardwood Flatwoods     487  0.2  
195  Nonriverine Cypress Dome         58  <0.1  
206  Tidal Wooded Swamp       229  0.1  
233  Treeless Savanna and Wet Prairie      269  0.1  
238  Large River Floodplain Forest -      305  0.1  
    Herbaceous Modifier  
250  Salt and Brackish Tidal Marsh      481  0.2  
________________________________________________________________________ 
 
* This class occupied only 545 pixels, just less than 0.5 km2. 
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Table 9.  Class Name and Classification Method (corresponding to Figure 5).   

Class Class     Classification 
Num Name     Method_________________ 
1 Open Water (Fresh)   spatial query with ancillary data  
2 Open Water (Brackish/Salt)  spatial query with ancillary data 
3 Open Water (Aquaculture)  manual image interpretation 
4 Developed Open Space  decision tree classifier (NLCD)1

5 Low Intensity Developed  decision tree classifier (NLCD)1

6 Medium Intensity Developed  decision tree classifier (NLCD)1

7 High Intensity Developed  decision tree classifier (NLCD)1

12 Panhandle Beach Vegetation  decision tree classifier  
17 Bare Soil    manual image interpretation 
18 Quarry/Strip Mine/Gravel Pit  spatial query with ancillary data 
32 Dry Chalk Bluff   individual system mapping3

35 Uncon. Shore (Lake/River/Pond) manual image interpretation 
36 Uncon. Shore (Beach/Dune)  manual image interpretation 
44 Shortleaf Pine-Oak Forest -   spatial query with ancillary data3

   Hardwood modifier 
45 Limestone Forest   spatial query with ancillary data2   
46 N. Dry Upland Hardwood Forest spatial query with ancillary data3  
47 Northern Loess Bluff Forest  spatial query with ancillary data3

48 N. Loess Plain Upland -   spatial query with ancillary data3

 Hardwood Modifier 
49 Northern Mesic Hardwood Forest spatial query with ancillary data2

50 Southern Loess Bluff Forest  spatial query with ancillary data3

51 Southern Mesic Slope Forest  spatial query with ancillary data2

62 Longleaf Pine Woodland -  spatial query with ancillary data3

Offsite Hardwood Modifier 
69 Black Belt Woodland   spatial query with ancillary data2     
71 Evergreen Plantations   individual class mapping  
79 Maritime Forest   decision tree classifier 
80 N. Loess Plain Upland -  spatial query with ancillary data3

    Juniper Modifier 
94 Longleaf Pine Woodland -  spatial query with ancillary data2

    Loblolly Modifier 
95 Longleaf Pine Woodland   individual system mapping 
101 N. Dry Upland Hardwood Forest spatial query with ancillary data3

   - Offsite Pine Modifier 
106 Shortleaf Pine-Oak Forest -  spatial query with ancillary data3

    Mixed Modifier 
125 Succ. Shrub/Scrub (Clear Cut) spatial query with ancillary data2

126 Succ. Shrub/Scrub (Utility Swath) spatial query with ancillary data2

127 Succ. Shrub/Scrub (Other)  decision tree classifier (NLCD) 
132 Black Belt Prairie    individual system mapping3
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134 Jackson Prairie and Woodland manual image interpretation 
143 Dune and Coastal Grassland  decision tree classifier 
148 Pasture/Hay    decision tree classifier (NLCD) 
149 Row Crop    decision tree classifier (NLCD) 
157 Large River Floodplain Forest   spatial query with ancillary data3

158 Small Stream Floodplain Forest spatial query with ancillary data2

163 Blackwater Floodplain Forest  spatial query with ancillary data2

179 Nonriverine Basin Swamp  manual image interpretation 
186 Pine Flatwoods -    spatial query with ancillary data3

  Offsite Hardwood Modifier 
187 Pine Flatwoods    spatial query with ancillary data3

     
189 S. Loblolly-Hardwood Flatwoods individual system mapping3

195 Nonriverine Cypress Dome  manual image interpretation 
206 Tidal Wooded Swamp  spatial query with ancillary data2

233 Treeless Savanna and Wet Prairie decision tree classifier 
238 Large River Floodplain Forest -  spatial query with ancillary data3

    Herbaceous Modifier 
250 Salt and Brackish Tidal Marsh decision tree classifier3

_______________________________________________________________________ 
 
1 NLCD (CART) denotes the class was taken directly from the NLCD 2001 classification 
(which was also created using CART). 
 
2 The modified matrix System ranges were the only ancillary data used.  This layer was 
combined with the NLCD 2001 to produce the class. 
 
3 Ancillary data layers other than the modified matrix System ranges were used to 

produce the class. 
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n

Table 10. Contingency Table (Error Matrix) from the accuracy assessment.  Correct class listed vertically and predicted class listed horizontally.
1 2 3 4 5 6 7 12 17 18 32 35 36 44 45 46 47 48 49 50 51 62 69 71 79 80 94 95 101 106 125 126 127 132 134 143 148 149 157 158 159 163 179 186 187 189 195 206 233 238 250 Tot Users Acc

Open Water (Fresh) 1 19 5 1 1 1 27 0.70
Open Water (Brackish/Salt) 2 25 1 1 1 28 0.89
Open Water (Aquaculture) 3 1 24 25 0.96
Developed Open Space 4 9 12 2 1 1 1 1 2 1 30 0.30
Low Intensity Developed 5 6 19 1 2 1 29 0.21
Medium Intensity Developed 6 7 19 26 0.27
High Intensity Developed 7 1 19 20 0.95
Florida Panhandle Beach Vegetation 12 9 2 11 22 0.41
Bare Soil 17 0 ---
Quarry/Strip Mine/Gravel Pit 18 0 ---
Dry Chalk Bluff 32 2 4 1 1 8 0.50
Uncon. Shore (Lake/River/Pond) 35 18 1 19 0.95
Uncon. Shore (Beach/Dune) 36 19 22 1 7 49 0.45
Shortleaf Pine-Oak Forest - Hard. 44 27 1 6 3 3 1 1 42 0.64
Limestone Forest 45 10 1 5 4 2 2 2 26 0.38
N. Dry Upland Hard. Forest 46 1 18 2 3 2 26 0.69
N. Loess Bluff Forest 47 21 4 1 1 27 0.78
N. Loess Plain Upland - Hardwood 48 8 11 1 1 21 0.52
N. Mesic Hardwood Forest 49 7 1 1 9 0.78
S. Loess Bluff Forest 50 2 22 1 1 1 27 0.81
S. Mesic Slope Forest 51 1 7 2 1 11 0.64
Longleaf Pine Wdlnd - Offsite Hard 62 1 6 17 4 1 1 1 31 0.55
BB Woodland 69 1 15 1 2 1 20 0.75
Evergreen Plantations 71 1 2 1 20 3 1 28 0.71
Maritime Forest 79 1 20 1 1 1 1 2 3 1 9 1 41 0.49
N. Loess Plain Upland - Juniper Mod. 80 1 2 14 2 19 0.74
Longleaf Pine Wdlnd - Loblolly Mod. 94 2 4 5 34 6 2 2 1 1 1 58 0.59
Longleaf Pine Woodland 95 1 17 12 30 0.40
N. Dry Upland Hard. - Offsite Pine 101 2 5 18 25 0.72
Shrtlf Pine-Oak Forest - Mixed 106 5 3 3 1 1 1 31 2 47 0.66
Succ. Shrub/Scrub (Clear Cut) 125 1 2 2 2 2 2 7 9 1 1 1 3 33 0.21
Succ. Shrub/Scrub (Utility Swath) 126 0 ---
Succ. Shrub/Scrub (Other) 127 1 2 1 1 1 2 2 1 7 3 1 3 25 0.08
BB Prairie 132 1 8 2 11 0.09
Jackson Prairie and Woodland 134 0 ---
Dune and Coastal Grassland 143 1 11 2 14 0.79
Pasture/Hay 148 3 1 1 1 2 9 9 1 2 1 30 0.30
Row Crop 149 1 1 1 2 1 6 9 1 22 0.41
Large River Floodplain Forest 157 1 1 3 1 2 34 1 2 12 3 60 0.57
Small Stream Floodplain Forest 158 2 1 1 8 1 5 18 0.44
Miss Lower Floodplain Forest 159 3 3 ---
Blackwater River Floodplain Forest 163 2 1 3 1 2 1 4 13 8 1 4 6 2 1 49 0.27
Nonriverine Basin Swamp 179 1 36 1 3 41 0.88
Pine Flatwoods - Offsite Hardwood 186 11 1 7 6 25 0.28
Pine Flatwoods 187 2 1 1 1 7 1 1 15 2 4 2 5 42 0.36
S. Loblolly-Hardwood Flatwoods 189 3 6 2 1 15 27 0.56
Nonriverine Cypress Dome 195 10 10 1.00
Tidal Wooded Swamp 206 3 1 2 2 8 0.25
Treeless Savanna and Wet Prairie 233 1 11 3 15 0.73
Large RiverForest - Herb. Modifier 238 6 3 6 10 25 0.40
Brackish Tidal Marsh 250 1 1 3 34 39 0.87

Gra 22 25 30 16 26 30 38 29 0 0 5 18 26 48 13 19 24 11 27 34 27 35 21 32 27 15 68 23 21 48 25 0 27 4 0 33 37 31 36 26 0 35 49 11 32 23 24 29 32 10 46 0.56
Producers Accuracy 0.9 1 0.8 0.6 0.2 0.2 0.5 0.3 --- --- 0.8 1 0.8 0.6 0.8 0.9 0.9 1 0.3 0.6 0.3 0.5 0.7 0.6 0.7 0.9 0.5 0.5 0.9 0.6 0.3 --- 0.1 0.3 --- 0.3 0.2 0.3 0.9 0.3 --- 0.4 0.7 0.6 0.5 0.7 0.4 0.1 0.3 1 0.7 0.57
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Table 11. Percentage of Ecological System class area occurring within
NLCD class.
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Open Water (Fresh) 99 1
Open Water (Brackish/Salt) 100
Open Water (Aquaculture) 99
Developed Open Space 98 2
Low Intensity Developed 100
Medium Intensity Developed 100
High Intensity Developed 100
Florida Panhandle Beach Vegetation 3 1 8 1 77 1 8 2
Bare Soil 93 2 2 2
Quarry/Strip Mine/Gravel Pit 99 1
Dry Chalk Bluff 5 2 49 6 5 23 1 5 1 2 1
Unconsolidated Shore (Lake/River/Pond) 100
Unconsolidated Shore (Beach/Dune) 4 2 84 1 3 1 3
Interior Shortleaf Pine-Oak Forest - Hardwood Modifier 96 1 3 1
Limestone Forest 1 54 1 6 8 25 5
Northern Dry Upland Hardwood Forest 83 11 3 2
Northern Loess Bluff Forest 88 2 4 3 2
Northern Loess Plain Oak-Hickory Upland - Hardwood 80 11 6 3
Northern Mesic Hardwood Forest 80 18 2 1
Southern Loess Bluff Forest 73 4 18 2 2
Southern Mesic Slope Forest 31 43 24 1 1
Interior Upland Longleaf Pine Woodland - Offsite Hard. 96 2 1
Black Belt Calcareous Prairie and Woodland - Wdlnd 60 33 7 1
Evergreen Plantations 100
Maritime Forest 2 1 75 2 7 1 7 4
Northern Loess Plain Oak-Hickory Upland - Offsite Pine 97 3
Interior Upland Longleaf Pine Woodland - Loblolly Mod. 2 66 27 3 3
Interior Upland Longleaf Pine Woodland 5 1 71 3 8 9 1
Northern Dry Upland Hardwood Forest - Offsite Pine 99 1
Interior Shortleaf Pine-Oak Forest 7 48 38 3 3
Successional Shrub/Scrub (Clear Cut) 95 4
Successional Shrub/Scrub (Utility Swath) 13 12 6 33 2 24 7 2
Successional Shrub/Scrub (Other) 96 3
Black Belt Calcareous Prairie and Woodland - Herb. 29 2 69
Jackson Prairie and Woodland 9 13 6 5 55 5 3 3 1
Dune and Coastal Grassland 1 2 8 1 10 2 13 39 14 5 2 2
Pasture/Hay 1 1 98
Row Crop 100
Large River Floodplain Forest - Forest Modifier 14 6 7 2 70 1
Small Stream and River Floodplain Forest 17 1 9 3 62 6
Blackwater River Floodplain Forest 6 29 22 3 38 3
Nonriverine Basin Swamp 2 1 3 45 4 5 1 1 1 38 1
Near-Coast Pine Flatwoods - Offsite Hardwood 98 2
Near-Coast Pine Flatwoods 78 11 2 6 1
Southern Loblolly-Hardwood Flatwoods 2 72 20 1 5
Nonriverine Cypress Dome 1 1 2 25 2 7 1 3 54 3
Tidal Wooded Swamp 2 1 22 3 2 68 2
Treeless Savanna and Wet Prairie 1 9 14 30 4 5 5 32
Large River Floodplain Forest - Herbaceous Modifier 43 10 46
Salt and Brackish Tidal Marsh 7 3 5 2 1 9 73
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Table 12. Final class descriptions. 
 
Class Class      Description 
Number Name 
_________________________________________________________________________________________________________ 
1 Open Water (Fresh)    Open Water (Fresh) 
2 Open Water (Brackish/Salt)   Open Water (Brackish/Salt) 
3 Open Water (Aquaculture)   Aquaculture ponds 
4 Developed Open Space   Low impervious urban areas : parks, golf courses, cemeteries 
5 Low Intensity Developed   Low density urban: older residential neighborhoods 
6 Medium Intensity Developed   Medium density urban: dense residential 
7 High Intensity Developed   High density urban 
12 Florida Panhandle Beach   Frontal dune vegetation (Uniola paniculata) 
  Vegetation      
17 Bare Soil     Unvegetated 
18 Quarry/Strip Mine/Gravel Pit   Quarries 
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32 Dry Chalk Bluff    Cliffs along major rivers and tributaries where they dissect 
the Black Belt 

35 Unconsolidated Shore    Sand bars along larger streams and rivers, primarily in the  
(Lake/River/Pond)    lower coastal plain 

36 Unconsolidated Shore    Beach sand, completely unvegetated 
(Beach/Dune) 

44 Interior Shortleaf Pine-Oak   Hardwood dominated uplands within the historic range of the mixed Forest - 
Hardwood Modifier     shortleaf pine - oak forest 

45 Limestone Forest    Upland hardwoods on calcareous soils, only mapped in the  
black belt 

46 Northern Dry Upland    Upland hardwoods east of loess influence, soils drier and less fertile 
Hardwood Forest          

47 Northern Loess Bluff Forest   Mesic hardwood forests specific to the loess bluffs 
 
 

 



48 Northern Loess Plain Oak-   Upland hardwood forests within the area of loess influence 
 Hickory Upland - Hardwood  

Modifier 
49 Northern Mesic Hardwood   Hardwood forests on slopes 
 Forest 
50 Southern Loess Bluff Forest   Mesic hardwood forests specific to the bluffs, within the range 

of southern magnolia 
51 Southern Mesic Slope Forest   Hardwood forests on slopes, within the range of southern magnolia 
62 Interior Upland Longleaf Pine  Hardwood dominated uplands, fire suppressed, within historic  

Woodland - Offsite Hardwood   system range longleaf 
Modifier 

69 Black Belt Calcareous Prairie   Fire suppressed, cedar dominated grasslands in the black belt 
Woodland - Woodland Modifier 

71 Evergreen Plantations    Young dense managed pine 
79 Maritime Forest    Coastal forests affected by wind and salt spray, 

both broadleaved and needle leaved 
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80 Northern Loess Plain Oak-   Offsite evergreen dominated stands in the northern loess plain 
 Hickory Upland - Juniper  
 Modifier 
94 Interior Upland Longleaf Pine  Disturbed, loblolly dominant, within the historic longleaf system  

Woodland - Loblolly Modifier   range 
95 Interior Upland Longleaf Pine  Open pine woodlands, including longleaf woodlands 

Woodland - Open Understory 
Modifier 

101 Northern Dry Upland Hardwood  Offsite evergreen dominated stands east of the loess plain  
Forest -Offsite Pine Modifier    and north of the shortleaf pine - oak forest range 

106 Interior Shortleaf Pine-Oak   Mixed and evergreen dominant upland forests within the historic 
Forest - Mixed Modifier    shortleaf pine - oak system 

125 Successional Shrub/Scrub   Deforested areas, succeeding to shrub 
(Clear Cut) 
 

 



126 Successional Shrub/Scrub   Shrub or grass along utility right of ways 
 (Utility Swath) 
127 Successional Shrub/Scrub (Other)  Transitional shrubland 
132 Black Belt Calcareous Prairie   Grasslands in the Black Belt 
 and Woodland - Herbaceous Modifier 
134 Jackson Prairie and Woodland  Known Jackson prairies patches 
143 Dune and Coastal Grassland   Dune vegetation on the back slopes of dunes extending to  

Maritime forest 
148 Pasture/Hay     Pasture and Hay 
149 Row Crop     Row Crop 
157 Large River Floodplain Forest  Floodplain forests along the major rivers (Chattahoochee,  

- Forest Modifier     Choctawhatchee, Yellow, Escambia, Alabama, Cahaba, Tombigbee,  
Warrior, Pascagoula, and Pearl) 

158 Small Stream and River   Floodplain forests along smaller streams and rivers  
Floodplain Forest 

163 Blackwater River Floodplain   Floodplain forests in the lower coastal plain within a  
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Forest       delineated blackwater range 
179 Nonriverine Basin Swamp   Bay swamps, containing both broadleaved and needle-leaved tree 

species, with minimal stream connectivity in the lower coastal plain 
186 Near-Coast Pine Flatwoods -   Hardwood dominated uplands in the coastal flatwoods range,  

Offsite Hardwood Modifier    fire suppressed 
187 Near-Coast Pine Flatwoods -   Evergreen forests in the coastal flatwoods range 

Open Understory Modifier 
189 Southern Loblolly-Hardwood   Mature loblolly and hardwood stands on flat or gentle slopes, 

Flatwoods      restricted to interior flatwoods subsection, immediately  
south of the black belt 

195 Nonriverine Cypress Dome   Cypress dominant depressional wetlands in the lower coastal plain 
206 Tidal Wooded Swamp   Riparian freshwater swamps, forested, receiving daily flooding 

from tidal fluctuations 
233 Treeless Savanna and Wet Prairie  Wet grasslands within the coastal flatwoods range 
 

 



238 Large River Floodplain Forest -  Herbaceous vegetation within historic floodplains of the  
Herbaceous Modifier     large rivers 

250 Salt and Brackish Tidal Marsh  Coastal marsh 
____________________________________________________________________________________________________________ 
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Table 13. Error types and frequency by error type. 
 
Error Type       Frequency Percentage                
 
Reference data error      69  12 
Inappropriate use of a technology   34  6 
Classification scheme     116  20 
Mapping error - ancillary data   112  20 
Mapping error – spectral    181  32 
Mapping error - manual with ancillary data  56  10 
 
Total       568  100         
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Figure 1. The East Gulf Coastal Plain (after Homer et al., 2004). 
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Figure 2. Schematic of classification methods and structure of methods discussion. 
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Figure 3. Scene boundaries and seasonal image mosaic boundaries with image dates. 
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Figure 4.  Map of matrix system ranges in the East Gulf Coastal Plain. 
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Figure 5. Diagram of the classification procedure for Ecological Systems. 
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Figure 6.  Map of subzone locations in the East Gulf Coastal Plain.  Each of the six areas 

was mapped separately. 
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Figure 7.  Ecological Systems land cover map (legend also shown in Table 3).
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Figure 8. Percentage of Ecological Systems user’s accuracies by category. 
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APPENDIX 1 

Initial CART Models 

  

One interprets a CART model as follows:  In the Barrier subset, the initial 

separation is performed from the fall mosaic, band 2.  If this value is greater than 81, 

pixels are coded to 266 (Florida Panhandle Beach Vegetation).  At this split 106 training 

points were classified as 266, 93 correctly and 13 incorrectly.  The second split, on the 

remainder of the dataset is on the fall mosaic, band 3.  If the pixel value is less than or 

equal to 34, it is classed as 503 (Maritime Forest).  At this split 100 training points were 

classed as 503, 87correctly and 13 incorrectly.  The remainder of the training data is 

recursively portioned according to the rest of the decision tree. 

 

Barrier subset 

fall02 > 81: 266 (93/13) 

fall02 <= 81: 

:...fall03 <= 34: 503 (87/13) 

    fall03 > 34: 

    :...fall04 <= 51: 303 (151/14) 

        fall04 > 51: 

        :...fall05 <= 59: 

            :...tc02 <= 177: 500 (21/3) 

            :   tc02 > 177: 503 (7/2) 
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            fall05 > 59: 

            :...fall02 > 53: 500 (42/9) 

                fall02 <= 53: 

                :...fall05 > 67: 303 (37/8) 

                    fall05 <= 67: 

                    :...fall01 <= 66: 500 (18/7) 

                        fall01 > 66: 303 (7/2) 

 

Barrier subset key: 

266 Florida Panhandle Beach Vegetation 

303 Salt and Brackish Tidal Marsh 

500 Dune and Coastal Grassland  

503 Maritime Forest 

 

 

Coastal subset 

fall03 <= 33: 

:...wtc02 <= 180: 2990 (19) 

:   wtc02 > 180: 5030 (22/1) 

fall03 > 33: 

:...wint04 > 75: 

    :...fall01 <= 62: 1920 (8/1) 
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    :   fall01 > 62: 5030 (8/1) 

    wint04 <= 75: 

    :...wtc02 > 171: 1920 (13/5) 

        wtc02 <= 171: 

        :...fall05 > 78: 1920 (12/2) 

            fall05 <= 78: 

            :...fall01 > 63: 3030 (45/1) 

                fall01 <= 63: 

                :...fall05 <= 54: 3030 (8/1) 

                    fall05 > 54: 

                    :...fall02 <= 47: 1920 (15/4) 

                        fall02 > 47: 3030 (5) 

 

Coastal subset key: 

1920 Treeless Savannah and Wet Prairie 

2990 Tidal Wooded Swamp 

3030 Salt and Brackish Tidal Marsh 

5030 Maritime Forest 

 

 

Flatwoods subset 

fall02 > 42: 

:...wint01 <= 56: 
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:   :...fall01 <= 64: 1920 (6/2) 

:   :   fall01 > 64: 2990 (12/2) 

:   wint01 > 56: 

:   :...fall03 > 35: 1920 (77/21) 

:       fall03 <= 35: 

:       :...fall04 <= 53: 2990 (5/1) 

:           fall04 > 53: 

:           :...fall05 > 59: 5590 (8/2) 

:               fall05 <= 59: 

:               :...fall04 <= 61: 1920 (11/5) 

:                   fall04 > 61: 3750 (9/5) 

fall02 <= 42: 

:...fall04 <= 47: 

    :...wint06 <= 30: 

    :   :...wint01 > 55: 5590 (10/1) 

    :   :   wint01 <= 55: 

    :   :   :...fall02 <= 36: 5600 (9/3) 

    :   :       fall02 > 36: 3840 (7/1) 

    :   wint06 > 30: 

    :   :...wint02 > 45: 1920 (5/3) 

    :       wint02 <= 45: 

    :       :...fall02 <= 36: 3840 (6/3) 

    :           fall02 > 36: 2510 (70/20) 

    fall04 > 47: 

    :...fall01 <= 53: 
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        :...wint06 > 25: 5600 (59/18) 

        :   wint06 <= 25: 

        :   :...wint02 <= 36: 3840 (6) 

        :       wint02 > 36: 5050 (5/1) 

        fall01 > 53: 

        :...wint04 > 75: 5050 (44/8) 

            wint04 <= 75: 

            :...wint01 > 63: 5590 (16/2) 

                wint01 <= 63: 

                :...fall05 <= 44: 5050 (6/2) 

                    fall05 > 44: 

                    :...wint02 <= 40: 3840 (10/6) 

                        wint02 > 40: 

                        :...wint03 > 45: 5050 (5/3) 

                            wint03 <= 45: 

                            :...wint06 <= 31: 3840 (9/4) 

                                wint06 > 31: 

                                :...fall04 <= 57: 2990 (41/8) 

                                    fall04 > 57: 5590 (7/3) 

 

 

Flatwoods subset key: 

1920 Treeless Savanna and Wet Prairie 

2510 Nonriverine Cypress Dome 
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2990 Tidal Wooded Swamp 

3750 Near-Coast Pine Flatwoods 

3840 Nonriverine Basin Swamp 

5050 Southern Seepage Swamp 

5590 Small Stream and River Floodplain Forest 

5600 Dry Upland Hardwood Forest 

 

 

Riverine subset 

wint03 > 46: 3030 (36/1) 

wint03 <= 46: 

:...fall04 > 49: 

    :...wint03 <= 44: 2990 (37/3) 

    :   wint03 > 44: 4890 (3) 

    fall04 <= 49: 

    :...wintc1 <= 41: 

        :...falltc3 <= 164: 4890 (35/1) 

        :   falltc3 > 164: 2990 (6/2) 

        wintc1 > 41: 

        :...wintc2 <= 169: 3030 (7/1) 

            wintc2 > 169: 2990 (10/3) 
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Riverine subset key: 

2990 Tidal Wooded Swamp 

3030 Salt and Brackish Tidal Marsh 

4890 Large River Floodplain Forest 

 

 

Black Belt subset 

sprn02 <= 31: 

:...wint01 > 59: 5590 (48/8) 

:   wint01 <= 59: 

:   :...sprn03 <= 18: 5590 (11/1) 

:       sprn03 > 18: 4781 (6/1) 

sprn02 > 31: 

:...wint03 <= 37: 4920 (2) 

    wint03 > 37: 

    :...fall02 <= 41: 5020 (4/2) 

        fall02 > 41: 4781 (57/3) 

 

Black Belt subset key: 

4781 Black Belt Calcareous Prairie 

4920 Dry Chalk Bluff 

5020 Limestone Forest 
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5590 Small Stream and River Floodplain Forest 

 

 

Upland subset 

mxrng in {7,18}: 4962 (0) 

mxrng = 0: 4810 (6/4) 

mxrng = 2: 5590 (4/1) 

mxrng = 4: 4760 (8/3) 

mxrng = 5: 4830 (3/2) 

mxrng = 6: 4770 (9/6) 

mxrng = 8: 5560 (7/2) 

mxrng = 9: 5560 (11/2) 

mxrng = 17: 2510 (6/4) 

mxrng = 15: 

:...wint06 <= 30: 5590 (8/1) 

:   wint06 > 30: 

:   :...wint04 <= 66: 2510 (55/2) 

:       wint04 > 66: 3840 (5/2) 

mxrng = 1: 

:...nlcd in {11,22,24,32,71,81,82,95}: 5061 (0) 

:   nlcd = 21: 4770 (3/1) 

:   nlcd = 42: 5061 (89/15) 

:   nlcd = 52: 5061 (6/3) 

:   nlcd = 90: 5590 (16/5) 
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:   nlcd = 41: 

:   :...wint04 > 65: 4760 (20/9) 

:   :   wint04 <= 65: 

:   :   :...wint04 <= 58: 4770 (35/12) 

:   :       wint04 > 58: 

:   :       :...wint06 <= 48: 4760 (8/3) 

:   :           wint06 > 48: 4770 (14/3) 

:   nlcd = 43: 

:   :...wint04 <= 57: 4770 (6/3) 

:       wint04 > 57: 

:       :...fall05 <= 48: 5062 (6/2) 

:           fall05 > 48: 

:           :...wint04 <= 61: 5061 (7/2) 

:               wint04 > 61: 

:               :...fall04 > 66: 4760 (5) 

:                   fall04 <= 66: 

:                   :...wint06 <= 37: 4760 (5/1) 

:                       wint06 > 37: 5061 (9/5) 

mxrng = 3: 

:...nlcd in {11,22,24,32}: 4962 (0) 

    nlcd = 21: 4960 (6/3) 

    nlcd = 52: 4960 (16/10) 

    nlcd = 71: 4962 (2) 

    nlcd = 81: 4930 (1) 

    nlcd = 82: 4961 (1) 
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    nlcd = 95: 3840 (1) 

    nlcd = 41: 

    :...fall05 > 53: 4760 (24/7) 

    :   fall05 <= 53: 

    :   :...wint06 <= 36: 4760 (8/4) 

    :       wint06 > 36: 4964 (9/3) 

    nlcd = 43: 

    :...wint05 <= 57: 

    :   :...fall04 <= 55: 4962 (9/3) 

    :   :   fall04 > 55: 4963 (5/2) 

    :   wint05 > 57: 

    :   :...wint05 <= 63: 4760 (6/2) 

    :       wint05 > 63: 3840 (6/4) 

    nlcd = 90: 

    :...fall04 <= 48: 3840 (26/4) 

    :   fall04 > 48: 

    :   :...wint04 <= 54: 4963 (7/3) 

    :       wint04 > 54: 4760 (20/12) 

    nlcd = 42: 

    :...fall06 <= 19: 

        :...wint06 > 26: 4960 (5/4) 

        :   wint06 <= 26: 

        :   :...wint06 <= 21: 

        :       :...fall05 <= 38: 4963 (9/3) 

        :       :   fall05 > 38: 3840 (5) 
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        :       wint06 > 21: 

        :       :...fall04 <= 52: 4962 (7/2) 

        :           fall04 > 52: 4963 (11/4) 

        fall06 > 19: 

        :...wint04 <= 61: 

            :...fall04 <= 45: 3840 (9/5) 

            :   fall04 > 45: 

            :   :...fall06 <= 23: 4963 (10/7) 

            :       fall06 > 23: 

            :       :...fall05 <= 48: 4961 (5/2) 

            :           fall05 > 48: 4962 (5/2) 

            wint04 > 61: 

            :...fall04 > 57: 

                :...wint06 > 29: 4960 (16/9) 

                :   wint06 <= 29: 

                :   :...wint05 > 53: 4962 (8/4) 

                :       wint05 <= 53: 

                :       :...wint04 > 75: 4963 (21/7) 

                :           wint04 <= 75: 

                :           :...fall06 <= 20: 4963 (8/2) 

                :               fall06 > 20: 

                :               :...fall04 <= 59: 4962 (11/4) 

                :                   fall04 > 59: 4963 (5/2) 

                fall04 <= 57: 

                :...wint06 > 29: 
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                    :...fall06 <= 24: 4963 (14/6) 

                    :   fall06 > 24: 4962 (58/23) 

                    wint06 <= 29: 

                    :...fall04 > 55: 

                        :...wint04 <= 70: 3840 (6/3) 

                        :   wint04 > 70: 4963 (10/4) 

                        fall04 <= 55: 

                        :...wint05 > 50: 4962 (25/6) 

                            wint05 <= 50: 

                            :...wint04 > 69: 4962 (53/26) 

                                wint04 <= 69: 

                                :...wint06 <= 26: 

                                    :...wint05 <= 42: 4963 (9/3) 

                                    :   wint05 > 42: 4962 (26/7) 

                                    wint06 > 26: 

                                    :...wint06 <= 27: 4961 (5/2) 

                                        wint06 > 27: 4963 (8/3) 

Upland subset key: 

2510 Nonriverine Cypress Dome 

3840 Nonriverine Basin Swamp 

4760 Southern Mesic Slope Forest 

4770 Northern Mesic Slope Forest 

4810 Northern Loess Bluff Forest 
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4830 Northern Dry Upland Hardwood Forest 

4930 Blackwater River Floodplain Forest 

4960 Interior Upland Longleaf Pine Woodland 

4962 Interior Upland Longleaf Pine Woodland – Loblolly Modifier 

4963 Interior Upland Longleaf Pine Woodland – Hardwood Modifier 

5061 Interior Shortleaf Pine-Oak Forest 

5062 Interior Shortleaf Pine-Oak Forest – Hardwood Modifier 

5560 Southern Loess Bluff Forest 

5590 Small Stream and River Floodplain Forest 
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APPENDIX 2 

Discussion Of Classification Accuracy By Class 

 

1.  Open Water (Fresh) – Although the listed user’s accuracy is 70%, the true accuracy 

is certainly higher.  If all water classes are combined, accuracy is 92%. 

2.  Open Water (Brackish/Salt) – Accuracy of this class is dependant upon how good 

the brackish/fresh split is.  In reality, there is not a single line but a transitional gradient 

and the location of this gradient moves with time (when more freshwater is coming 

downriver the gradient moves further towards the confluence.  This transition is not 

captured in this accuracy assessment so the accuracy of this class may be questionable. 

3.  Open Water (Aquaculture) – This class has an extremely small spatial extent and is 

patchy; aquaculture facilities tend to be clumped.  For this classification the Black Belt 

region was the primary focus for identifying aquaculture facilities.  Therefore, 

aquaculture facilities existing elsewhere in the mapping zone are less likely to be 

identified and, correspondingly, have a lower accuracy. 

4.  Developed Open Space - see class 7, High Intensity Developed. 

5.  Low Intensity Developed - see class 7, High Intensity Developed. 

6.  Medium Intensity Developed – see class 7, High Intensity Developed. 
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7.  High Intensity Developed – These four urban classes were taken directly from the 

NLCD 2001 map, where impervious surface was mapped using higher resolution imagery 

and regression trees (Yang et al., 2003).  Developed Open Space (class 4) is characterized 

by less than 20% impervious surface, while low intensity developed (5), medium 

intensity developed (6), and high intensity developed (7) are characterized by 21-50%, 

51-80%, and greater than 80% impervious surface, respectively.  Interestingly, as can be 

seen in the confusion matrix, there is a consistent pattern of an urban class being 

confused with the urban class of immediately less impervious surface.  If this trend were 

to hold with a larger dataset, it could be argued that the regression model was inaccurate 

but precise, and simply shifting thresholds would increase the accuracy.  Additionally, in 

the initial NLCD 2001 map all urban classes were assessed as 1 class with an accuracy of 

70%.  Combining all 4 classes in this assessment yields an accuracy of 98%. 

12.  Florida Panhandle Beach Vegetation – Although this Ecological System has a low 

accuracy of 41%, it is primarily confused with the EGCP Dune and Coastal Grassland, an 

immediately adjacent Ecological System.  Furthermore, there are no EGCP Dune and 

Coastal Grassland points identified as Florida Panhandle Beach Vegetation.  So while the 

accuracy is low, it is conservatively mapped and is usually one of two Ecological 

Systems. 

17.  Bare Soil – This class consists primarily of the target areas on Eglin Air Force Base.  

It was produced via manual image interpretation.  I had no accuracy assessment points so 

class accuracy was not assessed. 

18.  Quarry/Strip Mine/Gravel Pit – This class was not assessed for accuracy.  Quarries 

were visually identified from DOQs and satellite imagery starting with a point file of 
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known quarries from EPA.  Satellite imagery was further inspected for the location of 

quarries.  There may be borrow pits that have succeeded to more natural swampy areas 

but care was taken to exclude anything with a significant amount of vegetation.  There 

also should be no error of inclusion:  all mapped quarries should be quarries, but it is 

likely that not all quarries are mapped.  There is no predictive model for this class so an 

accuracy assessment would be uninformative. 

32. East Gulf Coastal Plain Dry Chalk Bluff – This Ecological System has a user’s 

accuracy of 50% and this is likely accurate.  What is mapped in this class are steep cliffs 

(as defined from the landform model) adjacent to water and primarily in the Black Belt.  

It was not mapped spectrally so confusion potentially exists with many other classes. 

35. Unconsolidated Shore (Lake/River/Pond) – This class is primarily sand bars along 

larger rivers in the lower coastal plain.  One important point is that the size of the sand 

bar is often determined by the river stage and most of the rivers have regulated flow.  

Therefore sand bar size will be influenced by whether the upstream dam was releasing 

water at the time the image was taken.  There are also limestone sink pond shores in 

eastern Florida in this class. 

36. Unconsolidated Shore (Beach/Dune) – This class consists of the coastal beach line.  

There is significant confusion between this class and the Ecological System Florida 

Panhandle Beach Vegetation.  This confusion is logical because the beach vegetation 

class consists of beach grasses of varying density overlying sand. 

44. Interior Shortleaf Pine-Oak Forest - Hardwood Modifier – This system has a 

reported accuracy of 64% but all confusion is between other hardwood forested types.  

Most confusion is with other mesic hardwood types. 
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45. Limestone Forest – This Ecological System has a low reported accuracy of 38%.  

Greatest confusion is with the Interior Upland Longleaf Pine Woodland - Offsite 

Hardwood Modifier.  Because the separation between these 2 systems was accomplished 

with a soils map, it suggests this is the primary cause of error.  However, without the soils 

map, its unlikely this class would have been mapped at all. 

46. Northern Dry Upland Hardwood Forest – This Ecological System has a reasonable 

accuracy of 69%.  It is a matrix system in the north of the mapping zone where pine 

begins to be replaced by more hardwoods. Confusion is with other forest types. 

47. Northern Loess Bluff Forest – This is a spatially defined matrix Ecological System 

along the northwestern edge of the map zone.  Few other Ecological Systems reside 

within its extent and it is primarily contiguous forest.  It has a correspondingly high 

accuracy of 78% but this is likely underestimated.  A greater number of accuracy 

assessment points would likely lead to an increased estimate of accuracy. 

48. Northern Loess Plain Oak-Hickory Upland - Hardwood Modifier – The loess 

plain is a transition zone from the western bluffs of deep loess soil to the poorer quality 

soils which exist eastward as the loess effect diminishes.  The vague transition is captured 

in the accuracy of this class, 52%.  The primary source of confusion is with the EGCP 

Interior Shortleaf Pine-Oak Forest – Hardwood modifier, the hardwood matrix system 

immediately east.  If these classes were merged, the accuracy would be 73%.  The 

difference in error is the result of not having a clearly defined line, but rather a transition. 

49. Northern Mesic Hardwood Forest – The user’s accuracy of this class is stated as 

78%, but this is misleading.  The producer’s accuracy is 26%.  This large difference and 

their relative sizes suggests that the class has a fairly low degree of inclusion, but a high 
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degree of exclusion.  The map under predicts the distribution of this forest type 

considerably.  Mapping of this class relied on landform and here may lay the problem.  

The quality of DEM combined with the fact that there is little relief in the coastal plain 

make landform a less than satisfactory predictor for this class.  In more mountainous 

parts of the Southeast landform has been used by GAP projects to map ecologically 

similar classes.  I overestimated the utility of landform as a predictive mapping tool for 

this Ecological System in the EGCP.. 

50. Southern Loess Bluff Forest – Accuracy for this Ecological System is 81%. As with 

the northern loess bluff,  this is likely a low estimate.  

51. Southern Mesic Slope Forest - The user’s accuracy of this class is stated as 64%, but 

this is misleading.  The producer’s accuracy is 26%.  This large difference and their 

relative sizes suggests that the class has a fairly low degree of inclusion, but a high 

degree of exclusion.  The map considerably under predicts the distribution of this forest 

type.  As with the Northern Mesic Hardwood Forest, the mapping of this class relied on 

landform which is problematic. 

62. Interior Upland Longleaf Pine Woodland - Offsite Hardwood Modifier - This 

class has an accuracy of 55%.  Confusion is primarily with the mesic slope hardwood 

type and loblolly type.  Because a mixed forest class is not in our classification system 

for this area, spectral confusion is the source this error. 

69.  East Gulf Coastal Plain Black Belt Calcareous Prairie and Woodland - 

Woodland Modifier – This class is successional evergreen (Juniperus virginiana) in the 

Black Belt.  Conceptually, these were likely prairies historically, but, due to fire 
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suppression, have become wooded.  Accuracy is 71% and, because it is successional 

class, confusion is primarily with scrub/shrub classes. 

71.  Evergreen Plantations – Accuracy is estimated at 71% for this class.  For this 

classification, not everything planted or in rows is considered plantation.  The intent was 

to map young, dense, intensively managed pine.  Identifying plantations in the northern 

part of the zone, where the background or matrix vegetation is hardwood, is relatively 

straightforward.  In the southern third of the zone, however, nearly all vegetation is 

evergreen and much of the forested lands are planted.  This makes identifying plantations 

significantly more difficult.  In general, I think this class is under represented (there are 

greater errors of exclusion than inclusion), but this is not captured in the accuracy 

assessment.  Additionally, accuracy likely increases as one advances from south to north. 

79.  Maritime Forest – The accuracy of this class is 49%.  This may be partly explained 

by the fact that this is a broad class covering diverse vegetation types.  Contained within 

this class are both live oak hammocks and coastal pine. 

80.  East Gulf Coastal Plain Northern Loess Plain Oak-Hickory Upland - Juniper 

Modifier – The accuracy of this class is 74%.  It is evergreen forest in the loess plain. 

94.  East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly 

Modifier – This class contains the largest area of forested lands in the Longleaf matrix 

range of the EGCP.  It is the secondary growth forest following the initial logging of the 

longleaf woodland.  It includes a greater mature, planted pine and naturally seeded pine.  

Accuracy is 59% with confusion primarily with true longleaf, mesic slope forest types, 

and the hardwood modifier of the longleaf ecosystem. 
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95.  East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Open 

Understory Modifier – This is the true longleaf Ecological System.  Accuracy is 40%, 

with nearly all confusion being with the loblolly modifier.  Because of the nature of the 

land cover modeling, the accuracy of this class is likely much greater on public lands.  

Additionally, field checks revealed that although this class does not always contain 

longleaf, it is consistently mature, open pine woodland.  Potentially, accuracy can be 

improved by 1) incorporating more training data from private lands, 2) including finer 

grain a priori probability estimates, and 3) stratifying classification by soil type. 

101.  East Gulf Coastal Plain Northern Dry Upland Hardwood Forest - Offsite Pine 

Modifier – The accuracy of this class is 72%, confusion is primarily with plantations.   

106.  East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest - Mixed Modifier – 

The accuracy of this class is 66%, but all confusion is with other forested types. 

125.  Successional Shrub/Scrub (Clear Cut) – The accuracy of this class is 21%.  The 

greatest confusion is with class 127 Successional Shrub/Scrub (Other).  Combining these 

2 classes would produce an accuracy of 34%.  In the NLCD 2001 map there is a scrub/ 

shrub class with an accuracy of 65%.  Reasons for the initial Ecological Systems 

accuracy being low (21%) include: a large number of classes, difficulty identifying the 

class in DOQs, and shrub/scrub being a successional, temporally transitional class.  Due 

to the temporal nature of successional classes, one would expect spectral overlap between 

the successional class and a large number of other classes.  Additionally, edge or mixed 

pixels, which have multiple land cover classes in the pixel are frequently mapped as 

scrub/shrub.  Essentially, scrub/shrub is not a well defined, discrete class, but rather a 

combination of temporally transitional land cover and mixed pixel effects. 
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126. Successional Shrub/Scrub (Utility Swath) - This class was created from digitized 

line work.  Only known occurrences are mapped so the accuracy was not assessed. 

127. Successional Shrub/Scrub (Other) – The accuracy of this class is 8%.  Confusion 

is primarily with row crop.  Due to the low accuracy of the 2 assessed shrub/scrub 

classes, all 3 shrub/scrub classes should be lumped into a single class or removed from 

the classification entirely.  For further discussion see class 125, Successional Shrub/Scrub 

(Clear Cut).   

132.  East Gulf Coastal Plain Black Belt Calcareous Prairie and Woodland - 

Herbaceous Modifier – The accuracy of this class is 9%.  This is the true black belt 

prairie ecological system.  Of 11 sites that were field checked, only 1 had native prairie 

vegetation on it.  However, this class was consistently unmanaged old field.  For the 

remaining 10 points, 8 (80%) were unmanaged old field with native Andropogon sp. and 

other grasses as the dominant vegetation.  This class contains 2 ground cover types that 

are potentially useful:  unmanaged grassland and what can more accurately be referred to 

as potential prairie sites. 

134. East Gulf Coastal Plain Jackson Prairie and Woodland – Only known localities 

of this class were incorporated into the map. There is no predictive model so no accuracy 

assessment was performed. 

143.  East Gulf Coastal Plain Dune and Coastal Grassland – The user’s accuracy of 

this class is 79%.  However, the producer’s accuracy is only 33% so there is considerable 

under prediction.  It is a subset of what is truly this class on the ground.  In the producer’s 

accuracy, confusion is with the Florida panhandle beach vegetation Ecological System 

and unconsolidated shore, both of which are to be expected. 
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148.  Pasture/Hay – Accuracy is 30%, but this is likely an underestimate.  Including row 

crop would increase the accuracy to 60%.  The initial NLCD 2001 has a pasture accuracy 

of 63% and this is likely closer to the true accuracy.  There are at least two issues causing 

reduced accuracy.  First, there are more classes in the Ecological Systems classification 

than in the NLCD 2001 classification (46 vs. 12 assessed classes).  Confusion between 

the additional grassland classes, likely to be confused with pasture, reduces accuracy.  

Second, 30 points were identified in this accuracy assessment as pasture, compared to 95 

in the nlcd2001 map.  A smaller sample size may be misrepresenting the actual accuracy. 

149.  Row Crop – Accuracy is 41%.  See the discussion in class 148. 

157.  East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier – The 

accuracy of this class is 57%.  Confusion is primarily with the Tidal Wooded Swamp 

Ecological System.  Combining these classes would increase accuracy to 77%.  The 

producer’s accuracy is 94% so the spatial extent of this class is potentially exaggerated.  

The initial floodplain forest class in the NLCD 2001, which this class was extracted from, 

was developed using a DEM model in which the floodplain was over predicted (Grand et 

al., 2004).  Although steps were taken to further refine the floodplain extent, some of the 

NLCD 2001 error has propagated into this map.  

158.  East Gulf Coastal Plain Small Stream and River Floodplain Forest – Accuracy 

for this class is estimated as 44%.  Curiously, it is confused mostly with class 189 East 

Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods which has a restricted range.  

This is likely just a sampling artifact.  All confusion is with other forested classes, 

primarily forested wetlands. 
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163.  Southern Coastal Plain Blackwater River Floodplain Forest – This class was 

separated from class 158 EGCP Small Stream and River with the blackwater ancillary 

data layer.  The accuracy of this class is 27%.  Confusion is primarily with other forested 

wetland types.  Although there is confusion between this class and class 158, there was 

no attempt to fully assess the quality of blackwater/brownwater break. 

179. Southern Coastal Plain Nonriverine Basin Swamp – The accuracy of this class is 

88%.  This is likely an overestimate of accuracy but it is also likely that their true 

extent is underestimated in this map.  This class was identified via a hybrid 

classification scheme including directly incorporating known localities.  After the 

accuracy assessment, it was observed that several of these assessment points were in 

these known areas.  To maintain objectivity, no points were added or removed. 

In general, basin swamps are a difficult class to map. In springtime imagery they 

are visually recognizable, but creating a computer algorithm to identify them proved 

unsuccessful.  Additionally, accessing them in the field is challenging as they tend not to 

have road access.  My opinion is that most of the patches of basin swamp in the map are 

in fact basin swamp, but this is an underestimate of their true areal extent. 

186.  East Gulf Coastal Plain Near-Coast Pine Flatwoods - Offsite Hardwood 

Modifier – This class is the fire suppressed, deciduous hardwood modification of the 

coastal flatwoods.  The accuracy of this class is estimated as 28%.  Confusion is 

primarily with 163 Southern Coastal Plain Blackwater River Floodplain Forest, a broad-

leafed evergreen system,  but also 186 East Gulf Coastal Plain Near-Coast Pine 

Flatwoods – Open Understory Modifier.  Difficulty mapping this system was driven by 
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the fact that, in the lower coastal plain, even deciduous trees have a short leafless season 

and catching this in imagery is difficult. 

187. East Gulf Coastal Plain Near-Coast Pine Flatwoods - Open Understory 

Modifier - This is the true coastal pine flatwoods.  The estimated accuracy is 36%.  

Confusion is primarily with class163 Southern Coastal Plain Blackwater River 

Floodplain Forest, class 250 Brackish Tidal Marsh, and class 206 Tidal wooded swamp.  

The tidal marsh confusion is troubling, but confusion with the other forest types is 

reasonable.  The accuracy of this class is likely substantially underestimated here. 

189.  East Gulf Coastal Plain Southern Loblolly-Hardwood Flatwoods – The 

accuracy of this class is 56%, confusion being primarily with class 106 Interior Shortleaf 

Pine-Oak Forest – mixed modifier.  The error matrix also lists confusion with Evergreen 

Plantations and it is likely that this is where the bulk of the confusion truly exists. 

195. Southern Coastal Plain Nonriverine Cypress Dome – The user’s accuracy of this 

class is 100%.  Cypress Domes are easily identified where they exist either in a matrix of 

pine or agriculture.  The producer’s accuracy is 42%, suggesting they are under 

represented.  It is likely that both of these values are accurate.  Therefore, high accuracy 

where they are predicted, but they account for a larger percentage of the landscape (there 

are more of them) than is depicted in this map. 

206. East Gulf Coastal Plain Tidal Wooded Swamp – The user’s accuracy of this class 

is estimated to be 25%, but only 8 points were identified as this class.  The producer’s 

accuracy  is 07% with the vast majority of confusion being between large river floodplain 

and maritime forest.  This Ecological System is perhaps the one I have the least 

confidence that we have spatial data for input into a model to generate a predicted 
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distribution.  As described by NatureServe (Comer et al., 2003), it is riparian freshwater 

swamp that gets daily inundation from the rising and falling of the tide and its 

corresponding ‘backing up’ of riverine discharge.  It was mapped using a 

brackish/freshwater break derived from a CCAP classification and is dependent upon the 

accuracy of that classification.  Additionally, all known assessment points were from the 

Mobile delta.  Therefore, the 25% accuracy may not be representative elsewhere. 

233. East Gulf Coastal Plain Treeless Savanna and Wet Prairie – The user’s accuracy 

is 73% and the producer’s accuracy is 34% so there may be substantial errors of 

exclusion.  Confusion is with both forested and grassland classes which matches the 

definition of this class as a seral stage, maintained by fire, between a full grassland and a 

forested flatwood (FNAI, 1990). 

238. East Gulf Coastal Plain Large River Floodplain Forest - Herbaceous Modifier – 

The user’s accuracy of this class is 40% and the producer’s accuracy is 100%.  There are 

likely more errors of inclusion than exclusion.  Confusion exists with class 127 

Successional Shrub/Scrub (Other), class 148 Pasture/Hay and class 149 Row Crop.  The 

method of identifying this class involved identifying areas of shrub, pasture, or row crop 

within the large river subset.  So error could potentially be reduced with manual 

interpretation and recoding. 

250. Mississippi Sound Salt and Brackish Tidal Marsh – The accuracy of this class is 

87%.  Confusion is primarily with class 233 Treeless Savanna and Wet Prairie as these 

are adjacent and spectrally similar systems.  Because this class is limited to the coastline, 

its extent can easily be identified.  Therefore while the accuracy estimate is high it is also 

likely accurate. 
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APPENDIX 3 

Source Code Used To Create The Final Ecological Systems Classification 

 

COMMENT "Generated from graphical model: 

c:/kevin/kevin/thesis/final/megamodel.gmd"; 

# 

# set cell size for the model 

# 

SET CELLSIZE MIN; 

# 

# set window for the model 

# 

SET WINDOW 418860, 1438200 : 1064490, 784740 MAP; 

# 

# set area of interest for the model 

# 

SET AOI NONE; 

# 

# declarations 

# 
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Integer RASTER n1_flatwoods_work2 FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/flatwoods_work2.img"; 

Integer RASTER n2_new_sys_range FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/new_sys_range.img"; 

Integer RASTER n3_mesic_model_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/ancillary_working/mesic_model.img"; 

Integer RASTER n4_nlcd_s9 FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/mapwork/nlcd_s9.img"; 

Integer RASTER n6_step01a FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/step01a.img"; 

Integer RASTER n7_new_sys_range_no_lobflat FILE OLD NEAREST NEIGHBOR 

AOI NONE "z:/kevin/ancillary_working/new_sys_range_no_lobflat.img"; 

Integer RASTER n11_bw_range FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/bw_range.img"; 

Integer RASTER n12_cypdome_final FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/cypdome_final.img"; 

Integer RASTER n15_nwi_2class FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/nwi_2class.img"; 

Integer RASTER n16_nbs_final FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/nbs_final.img"; 

Integer RASTER n19_lob_flat_classified_subset_RC_Org FILE OLD NEAREST 

NEIGHBOR AOI NONE "z:/kevin/ancillary_working/lob_flat_classified_subset.img"; 
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Integer RASTER n21_nlcd_s9 FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/mapwork/nlcd_s9.img"; 

Integer RASTER n22_longleaf_maxlik FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/longleaf_maxlik.img"; 

Integer RASTER n25_maggra FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/maggra"; 

Integer RASTER n28_model_01 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/model_01.img"; 

Integer RASTER n29_fall_tc FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/images/john_normal/fall_tc.img"; 

Integer RASTER n31_tc_fall71_sub FILE NEW IGNORE 0 ATHEMATIC 8 BIT 

UNSIGNED INTEGER "g:/output/tc_fall71_sub.img"; 

Integer RASTER n32_winter_tc FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/images/john_normal/winter_tc.img"; 

Integer RASTER n34_tc_wint71_sub FILE NEW IGNORE 0 ATHEMATIC 8 BIT 

UNSIGNED INTEGER "g:/output/tc_wint71_sub.img"; 

Integer RASTER n36_diff_tc_green_norm FILE NEW USEALL ATHEMATIC 8 BIT 

SIGNED INTEGER "g:/output/diff_tc_green_norm.img"; 

Integer RASTER n38_model_2_temp1 FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/model_2_temp1.img"; 

Integer RASTER n39_eglin FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/eglin"; 
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Integer RASTER n41_model_2 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/model_2.img"; 

Integer RASTER n43_c90_wet_clump FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/c90_wet_clump.img"; 

Integer RASTER n47_sieve_1 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/sieve_1.img"; 

Integer RASTER n50_buf_clumps FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/buf_clumps.img"; 

Integer RASTER n51_model_2a FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/model_2a.img"; 

Integer RASTER n53_donuts FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/donuts.img"; 

Integer RASTER n57_non_singles FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/non_singles.img"; 

Integer RASTER n62_rc_90 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/rc_90.img"; 

Integer RASTER n65_single_pixels FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/single_pixels.img"; 

Integer RASTER n67_recode_ind_pixels FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/recode_ind_pixels.img"; 

Integer RASTER n71_mesic_model_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/ancillary_working/mesic_model.img"; 
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Integer RASTER n72_temp1 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/temp1.img"; 

Integer RASTER n74_mesic_subset FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/mesic_subset.img"; 

Integer RASTER n76_new_sys_range_no_lobflat FILE OLD NEAREST NEIGHBOR 

AOI NONE "z:/kevin/ancillary_working/new_sys_range_no_lobflat.img"; 

Integer RASTER n78_draft_90mod FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/draft_90mod.img"; 

Integer RASTER n86_model_3 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/model_3.img"; 

Integer RASTER n88_pshore_aoi FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/pshore_aoi"; 

Integer RASTER n90_z_46_metamodel_091306 FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER "g:/z_46_metamodel_091306.img"; 

Integer RASTER n91_ccap_brack FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/ccap_brack"; 

Integer RASTER n92_new_sys_range FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/new_sys_range.img"; 

Integer RASTER n94_bbsoils FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/soils/bbsoils.img"; 

Integer RASTER n95_z46_step3 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/z46_step3.img"; 
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Integer RASTER n96_z46spring_refl FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/images/spring/z46spring_refl.img"; 

Integer RASTER n97_winterall FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/images/john_normal/winterall.img"; 

Integer RASTER n98_c96 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/c96.img"; 

Integer RASTER n101_clump FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/bb/clump.img"; 

Integer RASTER n105_sieve_2 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/bb/sieve_2.img"; 

Integer RASTER n108_bufclump FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/bb/bufclump.img"; 

Integer RASTER n109_nwi_2class_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/ancillary_working/nwi_2class.img"; 

Integer RASTER n111_donuts FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/bb/donuts.img"; 

Integer RASTER n117_recode_96_from_nwi FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/bb/recode_96_from_nwi.img"; 

Integer RASTER n118_j137 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/j137.img"; 
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Integer RASTER n123_recode_96_from_smstrm FILE NEW IGNORE 0 THEMATIC 

BIN DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/bb/recode_96_from_smstrm.img"; 

Integer RASTER n128_sieve_10 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/bb/sieve_10.img"; 

Integer RASTER n131_prairie FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/prairie.img"; 

Integer RASTER n133_c55_pot_bbprairie FILE OLD NEAREST NEIGHBOR AOI 

NONE "g:/blackblet/55_bust/c55_pot_bbprairie.img"; 

Integer RASTER n134_z_46_metamodel_062806 FILE OLD NEAREST NEIGHBOR 

AOI NONE "g:/z_46_metamodel_062806.img"; 

Integer RASTER n136_water_in_bb FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/water_in_bb.img"; 

Integer RASTER n137_bb4 FILE OLD NEAREST NEIGHBOR AOI NONE 

"g:/blackblet/drychalkbluff/bb4"; 

Integer RASTER n140_water_buffer FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/water_buffer.img"; 

Integer RASTER n142_z46_landforms FILE OLD NEAREST NEIGHBOR AOI NONE 

"f:/landform/z46_landforms"; 

Integer RASTER n143_stpslp_adj_wat_step1 FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/bb/stpslp_adj_wat_step1.img"; 
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Integer RASTER n147_step1_buffer FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/step1_buffer.img"; 

Integer RASTER n151_water_buf_3x3 FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/water_buf_3x3.img"; 

Integer RASTER n152_landform_steep_slp_adja_water FILE NEW IGNORE 0 

THEMATIC BIN DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/bb/landform_steep_slp_adja_water.img"; 

Integer RASTER n154_donut_bluff FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/donut_bluff.img"; 

Integer RASTER n156_donut_water FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/bb/donut_water.img"; 

Integer RASTER n158_matrix_range_in_blackbelt FILE OLD NEAREST NEIGHBOR 

AOI NONE "z:/kevin/ancillary_working/matrix_range_in_blackbelt.img"; 

Integer RASTER n162_jacprai FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/systems_final/last_minute_edits/jacprai"; 

Integer RASTER n163_blk_to_smstm FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/systems_final/last_minute_edits/blk_to_smstm"; 

Integer RASTER n164_strm_to_lgriv FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/systems_final/last_minute_edits/strm_to_lgriv"; 

Integer RASTER n165_ccap_to_overwrite_nlcd_RC_Org FILE OLD NEAREST 

NEIGHBOR AOI NONE 

"z:/kevin/systems_final/last_minute_edits/ccap_to_overwrite_nlcd.img"; 
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Integer RASTER n167_bb_063006 FILE OLD NEAREST NEIGHBOR AOI NONE 

"g:/bb_063006.img"; 

Integer RASTER n168_z46_step4 FILE NEW IGNORE 0 THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/z46_step4.img"; 

Integer RASTER n170_bw_fix FILE OLD NEAREST NEIGHBOR AOI NONE 

"f:/temp/bw_fix.img"; 

Integer RASTER n172_z46_temp2 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/z46_temp2.img"; 

Integer RASTER n175_cypdom_edge_to_rc FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/systems_final/las_minute_2/4_models/cypdom_edge_to_rc.img"; 

Integer RASTER n176_excess_96_in_la FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/systems_final/las_minute_2/4_models/excess_96_in_la.img"; 

Integer RASTER n177_nbas_edge_to_rc FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/systems_final/las_minute_2/4_models/nbas_edge_to_rc.img"; 

Integer RASTER n178_96fin_rc_to_blk_and_smstrm FILE OLD NEAREST 

NEIGHBOR AOI NONE 

"z:/kevin/systems_final/las_minute_2/4_models/96fin_rc_to_blk_and_smstrm.img"; 

Integer RASTER n179_meslp_recode_final FILE OLD NEAREST NEIGHBOR AOI 

NONE "z:/kevin/systems_final/las_minute_2/4_models/meslp_recode_final.img"; 

Integer RASTER n181_z46_step5 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/z46_step5.img"; 
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Integer RASTER n182_water_in_forest_with_rc_class FILE OLD NEAREST 

NEIGHBOR AOI NONE 

"z:/kevin/systems_final/las_minute_2/4_models/water_in_forest_with_rc_class.img"; 

Integer RASTER n185_96fin FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "g:/output/las_minute_2/96fin.img"; 

Integer RASTER n187_96_fin_clump FILE NEW IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 32 BIT UNSIGNED INTEGER 

"g:/output/las_minute_2/96_fin_clump.img"; 

Integer RASTER n190_96fin_buf FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "g:/output/las_minute_2/96fin_buf.img"; 

Integer RASTER n193_z46_step4_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "g:/z46_step4.img"; 

Float RASTER n198_96fin_bw_cnt FILE NEW USEALL ATHEMATIC FLOAT 

DOUBLE "g:/output/las_minute_2/96fin_bw_cnt.img"; 

Float RASTER n200_96fin_clump_hist FILE NEW USEALL ATHEMATIC FLOAT 

DOUBLE "g:/output/las_minute_2/96fin_clump_hist.img"; 

Float RASTER n201_96fin_per_touch_bw FILE NEW USEALL ATHEMATIC FLOAT 

DOUBLE "g:/output/las_minute_2/96fin_per_touch_bw.img"; 

Float RASTER n203_96fin_bw_cnt_float FILE NEW USEALL ATHEMATIC FLOAT 

DOUBLE "g:/output/las_minute_2/96fin_bw_cnt_float.img"; 

Integer RASTER n206_bw_to_change_25 FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/las_minute_2/bw_to_change_25.img"; 
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Integer RASTER n209_z46_step4_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "g:/z46_step4.img"; 

Float RASTER n213_96fin_smstrm_cnt FILE NEW USEALL ATHEMATIC FLOAT 

DOUBLE "g:/96fin_smstrm_cnt.img"; 

Float RASTER n215_96fin_per_touch_smstrm FILE NEW USEALL ATHEMATIC 

FLOAT DOUBLE "g:/output/las_minute_2/96fin_per_touch_smstrm.img"; 

Float RASTER n217_96fin_smstrm_cnt_float FILE NEW USEALL ATHEMATIC 

FLOAT DOUBLE "g:/output/las_minute_2/96fin_smstrm_cnt_float.img"; 

Integer RASTER n220_sm_strm_to_change_25 FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"g:/output/las_minute_2/sm_strm_to_change_25.img"; 

Integer RASTER n221_96fin_rc_to_blk_and_smstrm FILE NEW USEALL THEMATIC 

BIN DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"z:/kevin/systems_final/las_minute_2/4_models/96fin_rc_to_blk_and_smstrm.img"; 

Integer RASTER n225_clump FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "c:/97_catfishponds/clump.img"; 

Integer RASTER n227_lowval FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "c:/97_catfishponds/lowval.img"; 

Integer RASTER n233_highval FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "c:/97_catfishponds/highval.img"; 

Integer RASTER n235_middle FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "c:/97_catfishponds/middle.img"; 



 127

Integer RASTER n236_clump_final FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "c:/97_catfishponds/clump_final.img"; 

Integer RASTER n238_clump FILE OLD NEAREST NEIGHBOR AOI NONE 

"c:/96_final/clump.img"; 

Integer RASTER n241_j96_sp FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j96_sp.img"; 

Integer RASTER n243_j96_sp_clump FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "f:/asap/j96_sp_clump.img"; 

Integer RASTER n245_j136 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j136.img"; 

Integer RASTER n247_j221 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j221.img"; 

Integer RASTER n249_j137 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j137.img"; 

Integer RASTER n253_step6 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/step6.img"; 

Integer RASTER n254_t25_final_fn FILE OLD NEAREST NEIGHBOR AOI NONE 

"c:/96_final/t25_final_fn"; 

Integer RASTER n255_new_sys_range_no_lobflat FILE OLD NEAREST NEIGHBOR 

AOI NONE "z:/kevin/ancillary_working/new_sys_range_no_lobflat.img"; 

Integer RASTER n256_bw_range FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/bw_range.img"; 
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Integer RASTER n258_j96 FILE NEW USEALL THEMATIC BIN DIRECT DEFAULT 

8 BIT UNSIGNED INTEGER "f:/asap/j96.img"; 

Integer RASTER n260_j96_clump FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "f:/asap/j96_clump.img"; 

Integer RASTER n264_sieve_100 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "f:/asap/sieve_100.img"; 

Integer RASTER n268_j136buf FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j136buf.img"; 

Integer RASTER n269_j137buf FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j137buf.img"; 

Integer RASTER n270_j221 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/j221.img"; 

Integer RASTER n274_change_136 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/change_136.img"; 

Integer RASTER n277_change_137 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/change_137.img"; 

Integer RASTER n280_change_221 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/change_221.img"; 

Integer RASTER n281_step6 FILE OLD NEAREST NEIGHBOR AOI NONE 

"f:/asap/step6.img"; 

Integer RASTER n283_step7 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/step7.img"; 
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Integer RASTER n297_choctaw_10_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "c:/96_lgriv_mouthfix/choctaw_10.img"; 

Integer RASTER n298_escambia_10_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "c:/96_lgriv_mouthfix/escambia_10.img"; 

Integer RASTER n299_mobile_10_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "c:/96_lgriv_mouthfix/mobile_10.img"; 

Integer RASTER n300_pascagoula_10_RC_Org FILE OLD NEAREST NEIGHBOR 

AOI NONE "c:/96_lgriv_mouthfix/pascagoula_10.img"; 

Integer RASTER n301_pearl_10_RC_Org FILE OLD NEAREST NEIGHBOR AOI 

NONE "c:/96_lgriv_mouthfix/pearl_10.img"; 

Integer RASTER n303_step9 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/step9.img"; 

Integer RASTER n304_max_slope_in_clump FILE OLD NEAREST NEIGHBOR AOI 

NONE "f:/asap/final/max_slope_in_clump.img"; 

Integer RASTER n305_new_sys_range_no_lobflat FILE OLD NEAREST NEIGHBOR 

AOI NONE "z:/kevin/ancillary_working/new_sys_range_no_lobflat.img"; 

Integer RASTER n306_j96_to_rc_from_hydro FILE OLD NEAREST NEIGHBOR AOI 

NONE "f:/asap/final/j96_to_rc_from_hydro.img"; 

Integer RASTER n307_j96_clump FILE OLD NEAREST NEIGHBOR AOI NONE 

"f:/asap/slopmax/j96_clump.img"; 

Integer RASTER n308_nlcd_s8_new FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/mapwork/nlcd_s8_new.img"; 
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Integer RASTER n310_j96_clump FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 32 BIT UNSIGNED INTEGER "f:/asap/final/j96_clump.img"; 

Integer RASTER n316_nwhdmaxinclump FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"f:/asap/final/nwhdmaxinclump.img"; 

Integer RASTER n318_j96_to_rc_from_hydro FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"f:/asap/final/j96_to_rc_from_hydro.img"; 

Integer RASTER n319_bw_range FILE OLD NEAREST NEIGHBOR AOI NONE 

"z:/kevin/ancillary_working/bw_range.img"; 

Integer RASTER n320_z46_newhydro FILE OLD NEAREST NEIGHBOR AOI NONE 

"f:/asap/z46_newhydro.img"; 

Integer RASTER n322_hyd_buf_5x5 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "f:/asap/final/hyd_buf_5x5.img"; 

Integer RASTER n325_step9 FILE NEW USEALL THEMATIC BIN DIRECT 

DEFAULT 8 BIT UNSIGNED INTEGER "c:/97_catfishponds/step9.img"; 

Integer RASTER n328_z46_ecol_systems_class FILE NEW USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER "c:/z46_ecol_systems_class.img"; 

INTEGER MATRIX n48_Low_Pass; 

INTEGER MATRIX n68_Custom_Integer; 

INTEGER MATRIX n106_Custom_Integer; 

INTEGER MATRIX n138_Low_Pass; 

FLOAT MATRIX n144_Low_Pass; 
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FLOAT MATRIX n189_Low_Pass; 

FLOAT MATRIX n191_Output; 

FLOAT MATRIX n207_Output; 

FLOAT MATRIX n250_Low_Pass; 

FLOAT MATRIX n286_Output; 

FLOAT MATRIX n290_Output; 

FLOAT MATRIX n294_Output; 

INTEGER MATRIX n311_Low_Pass; 

FLOAT MATRIX n312_Output; 

INTEGER TABLE n45_Output; 

INTEGER TABLE n55_Output; 

INTEGER TABLE n103_Output; 

INTEGER TABLE n113_Output; 

INTEGER TABLE n120_Output; 

INTEGER TABLE n126_Output; 

INTEGER TABLE n196_Output; 

INTEGER TABLE n211_Output; 

INTEGER TABLE n228_Output; 

INTEGER TABLE n231_Output; 

INTEGER TABLE n262_Output; 

INTEGER TABLE n284_Output; 

INTEGER TABLE n288_Output; 

INTEGER TABLE n292_Output; 
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INTEGER TABLE n314_Output; 

# 

# addition variables to recode n3_mesic_model_RC 

# 

INTEGER TABLE n3_recode; 

# 

# addition variables to recode n19_lob_flat_classified_subset_RC 

# 

INTEGER TABLE n19_recode; 

# 

# addition variables to recode n71_mesic_model_RC 

# 

INTEGER TABLE n71_recode; 

# 

# addition variables to recode n109_nwi_2class_RC 

# 

INTEGER TABLE n109_recode; 

# 

# addition variables to recode n165_ccap_to_overwrite_nlcd_RC 

# 

INTEGER TABLE n165_recode; 

# 

# addition variables to recode n193_z46_step4_RC 
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# 

INTEGER TABLE n193_recode; 

# 

# addition variables to recode n209_z46_step4_RC 

# 

INTEGER TABLE n209_recode; 

# 

# addition variables to recode n223_memory 

# 

INTEGER TABLE n223_recode; 

# 

# addition variables to recode n297_choctaw_10_RC 

# 

INTEGER TABLE n297_recode; 

# 

# addition variables to recode n298_escambia_10_RC 

# 

INTEGER TABLE n298_recode; 

# 

# addition variables to recode n299_mobile_10_RC 

# 

INTEGER TABLE n299_recode; 

# 



 134

# addition variables to recode n300_pascagoula_10_RC 

# 

INTEGER TABLE n300_recode; 

# 

# addition variables to recode n301_pearl_10_RC 

# 

INTEGER TABLE n301_recode; 

# 

# load matrix n48_Low_Pass 

# 

n48_Low_Pass = MATRIX(3, 3: 

 1, 1, 1,  

 1, 1, 1,  

 1, 1, 1); 

# 

# load matrix n68_Custom_Integer 

# 

n68_Custom_Integer = MATRIX(3, 3: 

 1, 1, 1,  

 1, 0, 1,  

 1, 1, 1); 

# 

# load matrix n106_Custom_Integer 
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# 

n106_Custom_Integer = MATRIX(3, 3: 

 1, 1, 1,  

 1, 1, 1,  

 1, 1, 1); 

# 

# load matrix n138_Low_Pass 

# 

n138_Low_Pass = MATRIX(5, 5: 

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1); 

# 

# load matrix n144_Low_Pass 

# 

n144_Low_Pass = MATRIX(3, 3: 

 1, 1, 1,  

 1, 1, 1,  

 1, 1, 1); 

# 

# normalize matrix n144_Low_Pass 
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# 

if (global sum ($n144_Low_Pass) NE 0) 

 {n144_Low_Pass = $n144_Low_Pass / global sum ($n144_Low_Pass);} 

# 

# load matrix n189_Low_Pass 

# 

n189_Low_Pass = MATRIX(3, 3: 

 1, 1, 1,  

 1, 1, 1,  

 1, 1, 1); 

# 

# normalize matrix n189_Low_Pass 

# 

if (global sum ($n189_Low_Pass) NE 0) 

 {n189_Low_Pass = $n189_Low_Pass / global sum ($n189_Low_Pass);} 

# 

# load matrix n250_Low_Pass 

# 

n250_Low_Pass = MATRIX(3, 3: 

 1, 1, 1,  

 1, 1, 1,  

 1, 1, 1); 

# 



 137

# normalize matrix n250_Low_Pass 

# 

if (global sum ($n250_Low_Pass) NE 0) 

 {n250_Low_Pass = $n250_Low_Pass / global sum ($n250_Low_Pass);} 

# 

# load matrix n311_Low_Pass 

# 

n311_Low_Pass = MATRIX(5, 5: 

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1,  

 1, 1, 1, 1, 1); 

# 

# load recode table for n3_mesic_model_RC 

# 

n3_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0); 

# 

# load recode table for n19_lob_flat_classified_subset_RC 

# 

n19_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 165, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 

# 

# load recode table for n71_mesic_model_RC 

# 

n71_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1); 

# 

# load recode table for n109_nwi_2class_RC 

# 

n109_recode = TABLE(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0); 

# 

# load recode table for n165_ccap_to_overwrite_nlcd_RC 

# 

n165_recode = TABLE(0, 1, 2, 3, 4, 21, 84, 83, 83, 9, 143, 143, 55, 96, 96, 96, 16, 17, 

18, 36, 34, 13, 96); 

# 

# load recode table for n193_z46_step4_RC 

# 
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n193_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 

# 

# load recode table for n209_z46_step4_RC 

# 

n209_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 

# 

# load recode table for n223_memory 

# 

n223_recode = TABLE(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 

# 

# load recode table for n297_choctaw_10_RC 

# 

n297_recode = TABLE(0, 121, 114, 121, 221, 121, 221, 114, 121, 121, 221); 

# 

# load recode table for n298_escambia_10_RC 

# 

n298_recode = TABLE(0, 121, 114, 114, 121, 121, 221, 221, 121, 221, 222); 

# 

# load recode table for n299_mobile_10_RC 

# 

n299_recode = TABLE(0, 114, 121, 114, 221, 221, 221, 121, 114, 114, 114); 

# 

# load recode table for n300_pascagoula_10_RC 

# 

n300_recode = TABLE(0, 114, 114, 114, 114, 221, 221, 221, 121, 121, 114); 

# 

# load recode table for n301_pearl_10_RC 

# 
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n301_recode = TABLE(0, 121, 221, 221, 221, 114, 121, 121, 221, 221, 114); 

# 

# recode n3_mesic_model_RC_Org 

# 

#define n3_mesic_model_RC LOOKUP($n3_mesic_model_RC_Org, $n3_recode) 

# 

# recode n19_lob_flat_classified_subset_RC_Org 

# 

#define n19_lob_flat_classified_subset_RC 

LOOKUP($n19_lob_flat_classified_subset_RC_Org, $n19_recode) 

# 

# recode n71_mesic_model_RC_Org 

# 

#define n71_mesic_model_RC LOOKUP($n71_mesic_model_RC_Org, $n71_recode) 

# 

# recode n109_nwi_2class_RC_Org 

# 

#define n109_nwi_2class_RC LOOKUP($n109_nwi_2class_RC_Org, $n109_recode) 

# 

# recode n165_ccap_to_overwrite_nlcd_RC_Org 

# 

#define n165_ccap_to_overwrite_nlcd_RC 

LOOKUP($n165_ccap_to_overwrite_nlcd_RC_Org, $n165_recode) 
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# 

# recode n193_z46_step4_RC_Org 

# 

#define n193_z46_step4_RC LOOKUP($n193_z46_step4_RC_Org, $n193_recode) 

# 

# recode n209_z46_step4_RC_Org 

# 

#define n209_z46_step4_RC LOOKUP($n209_z46_step4_RC_Org, $n209_recode) 

# 

# recode n223_memory_Org 

# 

#define n223_memory LOOKUP($n223_memory_Org, $n223_recode) 

# 

# recode n297_choctaw_10_RC_Org 

# 

#define n297_choctaw_10_RC LOOKUP($n297_choctaw_10_RC_Org, $n297_recode) 

# 

# recode n298_escambia_10_RC_Org 

# 

#define n298_escambia_10_RC LOOKUP($n298_escambia_10_RC_Org, 

$n298_recode) 

# 

# recode n299_mobile_10_RC_Org 
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# 

#define n299_mobile_10_RC LOOKUP($n299_mobile_10_RC_Org, $n299_recode) 

# 

# recode n300_pascagoula_10_RC_Org 

# 

#define n300_pascagoula_10_RC LOOKUP($n300_pascagoula_10_RC_Org, 

$n300_recode) 

# 

# recode n301_pearl_10_RC_Org 

# 

#define n301_pearl_10_RC LOOKUP($n301_pearl_10_RC_Org, $n301_recode) 

# 

# function definitions 

# 

n322_hyd_buf_5x5 = FOCAL MAX ( $n320_z46_newhydro , $n311_Low_Pass ) ; 

n6_step01a = CONDITIONAL { ( $n7_new_sys_range_no_lobflat == 4 and 

$n21_nlcd_s9 == 41 ) 221 ,  ( $n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 

42 ) 221 , ( $n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 43 ) 221, ( 

$n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 90 ) 221, ( 

$n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 71 ) 222 ,   ( 

$n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 52 ) 222 ,  ( 

$n7_new_sys_range_no_lobflat == 4 and $n21_nlcd_s9 == 95 ) 222 ,  ( $n15_nwi_2class 

== 10 and $n21_nlcd_s9 == 41 and $n11_bw_range == 0) 137 , ( $n15_nwi_2class == 
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10 and $n21_nlcd_s9 == 43 and $n11_bw_range == 0) 137 , ( $n15_nwi_2class == 10 

and $n21_nlcd_s9 == 90 and $n11_bw_range == 0) 137 , ( $n15_nwi_2class == 10 and 

$n21_nlcd_s9 == 95 and $n11_bw_range == 0) 137 , ( $n15_nwi_2class == 10 and 

$n21_nlcd_s9 == 41 and $n11_bw_range == 1 ) 136 , ( $n15_nwi_2class == 10 and 

$n21_nlcd_s9 == 43 and $n11_bw_range == 1 ) 136 , ( $n15_nwi_2class == 10 and 

$n21_nlcd_s9 == 90 and $n11_bw_range == 1 ) 136 , ( $n15_nwi_2class == 10 and 

$n21_nlcd_s9 == 95 and $n11_bw_range == 1 ) 136 , ($n7_new_sys_range_no_lobflat   

NE 8 and $n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and 

$n21_nlcd_s9 == 41 and $n25_maggra == 1 ) 145 ,  ($n7_new_sys_range_no_lobflat   

NE 8 and $n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and 

$n21_nlcd_s9 == 42 and $n25_maggra == 1 ) 145 , ($n7_new_sys_range_no_lobflat   

NE 8 and $n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and 

$n21_nlcd_s9 == 43 and $n25_maggra == 1 ) 145 , ($n7_new_sys_range_no_lobflat   

NE 8 and $n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and 

$n21_nlcd_s9 == 90 and $n25_maggra == 1 ) 145 ,($n7_new_sys_range_no_lobflat   NE 

8 and $n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and 

$n21_nlcd_s9 == 41 ) 163 , ($n7_new_sys_range_no_lobflat   NE 8 and 

$n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and $n21_nlcd_s9 

== 43 ) 163 ,  ($n7_new_sys_range_no_lobflat   NE 8 and 

$n7_new_sys_range_no_lobflat NE 9 and $n3_mesic_model_RC == 1 and $n21_nlcd_s9 

== 90 ) 163 , ( $n15_nwi_2class == 12 and $n21_nlcd_s9 == 52 ) 96 , ( $n15_nwi_2class 

== 12 and $n21_nlcd_s9 == 71 ) 96 , ( $n15_nwi_2class == 12 and $n21_nlcd_s9 == 41 

) 96 , ( $n15_nwi_2class == 12 and $n21_nlcd_s9 == 42 ) 96 , ( $n15_nwi_2class == 12 
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and $n21_nlcd_s9 == 43 ) 96 , (  $n15_nwi_2class == 12 and $n21_nlcd_s9 == 90 ) 96, (  

$n15_nwi_2class == 12 and $n21_nlcd_s9 == 95 ) 96, ($n7_new_sys_range_no_lobflat 

== 9 and $n21_nlcd_s9 == 41 ) 211,  ($n7_new_sys_range_no_lobflat == 9 and 

$n21_nlcd_s9 == 42 ) 211, ($n7_new_sys_range_no_lobflat == 9 and $n21_nlcd_s9 == 

43 ) 211, ($n7_new_sys_range_no_lobflat == 9 and $n21_nlcd_s9 == 90 ) 211, 

($n7_new_sys_range_no_lobflat == 8 and $n21_nlcd_s9 == 41 ) 201, 

($n7_new_sys_range_no_lobflat == 8 and $n21_nlcd_s9 == 42 ) 201, 

($n7_new_sys_range_no_lobflat == 8 and $n21_nlcd_s9 == 43 ) 201, 

($n7_new_sys_range_no_lobflat == 8 and $n21_nlcd_s9 == 90 ) 201, ( 

$n7_new_sys_range_no_lobflat == 7 and $n21_nlcd_s9 == 41 ) 191 , ( 

$n7_new_sys_range_no_lobflat == 7 and $n21_nlcd_s9 == 43 ) 191 ,  ( 

$n7_new_sys_range_no_lobflat == 7 and $n21_nlcd_s9 == 42 ) 192 ,  ( 

$n7_new_sys_range_no_lobflat == 6 and $n21_nlcd_s9 == 41 ) 181 , ( 

$n7_new_sys_range_no_lobflat == 6 and $n21_nlcd_s9 == 43 ) 181 , ( 

$n7_new_sys_range_no_lobflat == 6 and $n21_nlcd_s9 == 42 ) 182 , ( 

$n7_new_sys_range_no_lobflat == 1 and $n21_nlcd_s9 == 42 ) 161 , ( 

$n7_new_sys_range_no_lobflat == 1 and $n21_nlcd_s9 == 43 ) 161 , ( 

$n7_new_sys_range_no_lobflat == 1 and $n21_nlcd_s9 == 41 ) 162 ,  ( 

$n7_new_sys_range_no_lobflat == 3 and $n21_nlcd_s9 == 42 ) 143 , ( 

$n7_new_sys_range_no_lobflat == 3 and $n21_nlcd_s9 == 43 ) 143 , ( 

$n7_new_sys_range_no_lobflat == 3 and $n21_nlcd_s9 == 41 ) 144 , ($n4_nlcd_s9 > 0 ) 

$n4_nlcd_s9  } ; 
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n28_model_01 = CONDITIONAL { ($n12_cypdome_final > 0 ) 135 , ( $n16_nbs_final 

> 0 ) 134 , ($n19_lob_flat_classified_subset_RC > 0 ) 

$n19_lob_flat_classified_subset_RC , ($n1_flatwoods_work2 > 0 ) 

$n1_flatwoods_work2 , ($n7_new_sys_range_no_lobflat == 3 and $n22_longleaf_maxlik 

> 0 ) 141 , ($n6_step01a == 52 ) 55 , ( $n6_step01a > 0 ) $n6_step01a } ; 

n34_tc_wint71_sub = EITHER $n32_winter_tc(2) IF ( $n28_model_01 == 71 ) OR 0 

OTHERWISE ; 

n31_tc_fall71_sub = EITHER $n29_fall_tc(2) IF ( $n28_model_01 == 71 ) OR 0 

OTHERWISE ; 

n36_diff_tc_green_norm = EITHER ( GLOBAL MEAN ( $n31_tc_fall71_sub ) - 

$n31_tc_fall71_sub )  /  GLOBAL SD ( $n31_tc_fall71_sub )  - ( GLOBAL MEAN ( 

$n34_tc_wint71_sub ) - $n34_tc_wint71_sub )  /  GLOBAL SD ( $n34_tc_wint71_sub ) 

IF ($n28_model_01 == 71) OR 99 OTHERWISE ; 

n38_model_2_temp1 = CONDITIONAL { ($n36_diff_tc_green_norm == 99 )  0 , 

($n36_diff_tc_green_norm <=  -1 ) 53 , ($n36_diff_tc_green_norm >= 1 ) 53 , 

($n39_eglin == 1 and $n36_diff_tc_green_norm == 0 ) 141 , ($n39_eglin == 0 and 

$n36_diff_tc_green_norm ==  0 ) 55 }; 

n41_model_2 = EITHER $n38_model_2_temp1 IF ( $n38_model_2_temp1 > 0 ) OR 

$n28_model_01 OTHERWISE ; 

n51_model_2a = CONDITIONAL { ( $n41_model_2 == 96 ) 96 , ( $n41_model_2 == 

121 ) 121 , ( $n41_model_2 == 136 ) 136 , ( $n41_model_2 == 137 ) 137 , ( 

$n41_model_2 == 221 ) 221 ,  ( $n41_model_2 > 0 ) 1 } ; 

n72_temp1 = EITHER 90 IF ( $n41_model_2 == 90 ) OR 0 OTHERWISE ; 
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n74_mesic_subset = EITHER $n72_temp1 IF ( $n71_mesic_model_RC == 1 ) OR 0 

OTHERWISE ; 

n43_c90_wet_clump = CLUMP ( $n74_mesic_subset , 8 ) ; 

n45_Output = SIEVETABLE ( 2 , HISTOGRAM ( $n43_c90_wet_clump )  ) ; 

WRITE $n45_Output TO "g:/output/hist2.tbl"; 

n47_sieve_1 = LOOKUP ( $n43_c90_wet_clump, $n45_Output ) ; 

n65_single_pixels = EITHER 1 IF ( $n43_c90_wet_clump > 0 and $n47_sieve_1 == 0 ) 

OR 0 OTHERWISE ; 

n67_recode_ind_pixels = EITHER FOCAL MAJORITY ( $n41_model_2 , 

$n68_Custom_Integer )  IF ( $n65_single_pixels == 1) OR 0 OTHERWISE ; 

n50_buf_clumps = FOCAL MAX ( $n47_sieve_1 , $n48_Low_Pass ) ; 

n53_donuts = EITHER 0 IF ( $n47_sieve_1 > 0 ) OR $n50_buf_clumps OTHERWISE ; 

n55_Output = ZONAL MAX ( $n53_donuts , $n51_model_2a ) ; 

WRITE $n55_Output TO "g:/output/s90_adj.tbl"; 

n57_non_singles = EITHER LOOKUP ( $n47_sieve_1 , $n55_Output ) IF ( 

$n47_sieve_1 > 0 ) OR 0 OTHERWISE; 

n62_rc_90 = CONDITIONAL { ($n67_recode_ind_pixels > 0) $n67_recode_ind_pixels , 

($n57_non_singles == 1 ) 96 , ($n57_non_singles > 0 ) $n57_non_singles } ; 

n78_draft_90mod = CONDITIONAL { ($n74_mesic_subset == 0 AND $n72_temp1 == 

90 AND $n76_new_sys_range_no_lobflat == 1) 161 , ($n74_mesic_subset == 0 AND 

$n72_temp1 == 90 AND $n76_new_sys_range_no_lobflat == 3 ) 143 , 

($n74_mesic_subset == 0 AND $n72_temp1 == 90 AND 

$n76_new_sys_range_no_lobflat == 6) 181 , ($n74_mesic_subset == 0 AND 
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$n72_temp1 == 90 AND $n76_new_sys_range_no_lobflat == 7) 191, 

($n74_mesic_subset == 0 AND $n72_temp1 AND $n76_new_sys_range_no_lobflat == 

15 ) 131 , ($n62_rc_90 > 0 ) $n62_rc_90} ; 

n86_model_3 = EITHER $n78_draft_90mod IF ( $n78_draft_90mod > 0 ) OR 

$n41_model_2 OTHERWISE ; 

n90_z_46_metamodel_091306 = CONDITIONAL { ( $n86_model_3 == 32 ) 34 , 

($n86_model_3 == 142 ) 144 , ($n86_model_3 == 95 ) 96 , ($n86_model_3 == 11 and 

$n91_ccap_brack == 1) 14 , ( $n86_model_3 == 11 and $n91_ccap_brack == 0 ) 13 , ( 

$n86_model_3 == 83 and $n88_pshore_aoi == 1 ) 96 , ( $n86_model_3 > 0 )  

$n86_model_3 } ; 

n136_water_in_bb = EITHER 1 IF ( $n137_bb4 == 1 and 

$n90_z_46_metamodel_091306 == 13 ) OR 0 OTHERWISE ; 

n151_water_buf_3x3 = FOCAL MAX ( $n136_water_in_bb , $n144_Low_Pass ) ; 

n156_donut_water = EITHER 0 IF ( $n136_water_in_bb == 1 ) OR 

$n151_water_buf_3x3 OTHERWISE ; 

n140_water_buffer = FOCAL MAX ( $n136_water_in_bb , $n138_Low_Pass ) ; 

n143_stpslp_adj_wat_step1 = CONDITIONAL { ($n140_water_buffer == 1 and 

$n142_z46_landforms == 10) 1 , ($n140_water_buffer == 1 and $n142_z46_landforms 

== 11) 1  } ; 

n147_step1_buffer = FOCAL MAX ( $n143_stpslp_adj_wat_step1 , $n144_Low_Pass ) ; 

n154_donut_bluff = EITHER 0 IF ( $n143_stpslp_adj_wat_step1 == 1 ) OR 

$n147_step1_buffer OTHERWISE ; 
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n152_landform_steep_slp_adja_water = EITHER 1 IF ( $n154_donut_bluff == 1 and 

$n156_donut_water == 1 and $n90_z_46_metamodel_091306 NE 13 ) OR 

$n143_stpslp_adj_wat_step1 OTHERWISE ; 

n131_prairie = CONDITIONAL { ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 71 and $n94_bbsoils == 2 and 

$n96_z46spring_refl(4) > 93 and $n96_z46spring_refl(4) < 123 and 

$n96_z46spring_refl(5) > 57 and $n96_z46spring_refl(5) < 91 and 

$n96_z46spring_refl(6) > 21 and $n96_z46spring_refl(6) < 48 and $n97_winterall(4) > 

56 and $n97_winterall(4) < 74  and $n97_winterall(5) > 67 and $n97_winterall(5) < 106 

and $n97_winterall(6) > 41 and $n97_winterall(6) $n90_z_46_metamodel_091306 93 

and $n96_z46spring_refl(4) < 123 and $n96_z46spring_refl(5) > 57 and 

$n96_z46spring_refl(5) < 91 and $n96_z46spring_refl(6) > 21 and 

$n96_z46spring_refl(6) < 48 and $n97_winterall(4) > 56 and $n97_winterall(4) < 74  and 

$n97_winterall(5) > 67 and $n97_winterall(5) < 106 and $n97_winterall(6) > 41 and 

$n97_winterall(6) < 66 ) 1, ($n133_c55_pot_bbprairie == 1 and $n94_bbsoils == 2 and 

$n96_z46spring_refl(4) > 93 and $n96_z46spring_refl(4) < 123 and 

$n96_z46spring_refl(5) > 57 and $n96_z46spring_refl(5) < 91 and 

$n96_z46spring_refl(6) > 21 and $n96_z46spring_refl(6) < 48 and $n97_winterall(4) > 

56 and $n97_winterall(4) < 74 and $n97_winterall(5) > 67 and $n97_winterall(5) < 106 

and $n97_winterall(6) > 41 and $n97_winterall(6) < 66 ) 1 

} ; 

n118_j137 = EITHER 1 IF ( $n90_z_46_metamodel_091306 == 137 ) OR 0 

OTHERWISE ; 
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n98_c96 = EITHER 1 IF ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 96 ) OR 0 OTHERWISE ; 

n101_clump = CLUMP ( $n98_c96 , 8 ) ; 

n126_Output = SIEVETABLE ( 10 , HISTOGRAM ( $n101_clump )  ) ; 

WRITE $n126_Output TO "g:/output/bb/size.tbl"; 

n128_sieve_10 = LOOKUP ( $n101_clump, $n126_Output ) ; 

n103_Output = SIEVETABLE ( 2 , HISTOGRAM ( $n101_clump )  ) ; 

WRITE $n103_Output TO "g:/output/bb/list.tbl"; 

n105_sieve_2 = LOOKUP ( $$n101_clump, $n103_Output ) ; 

n108_bufclump = FOCAL MAX ( $n105_sieve_2 , $n106_Custom_Integer ) ; 

n111_donuts = EITHER 0 IF ( $n105_sieve_2 > 0 ) OR $n108_bufclump OTHERWISE ; 

n120_Output = ZONAL MAX ( $n111_donuts , $n118_j137 ) ; 

WRITE $n120_Output TO "g:/output/bb/zonmax_smstrm.tbl"; 

n123_recode_96_from_smstrm = EITHER LOOKUP ( $n105_sieve_2 , $n120_Output ) 

IF ( $n105_sieve_2 > 0 ) OR 0 OTHERWISE; 

n113_Output = ZONAL MAX ( $n111_donuts , $n109_nwi_2class_RC ) ; 

WRITE $n113_Output TO "g:/output/bb/zonmax_nwi.tbl"; 

n117_recode_96_from_nwi = EITHER LOOKUP ( $n105_sieve_2 , $n113_Output ) IF ( 

$n105_sieve_2 > 0 ) OR 0 OTHERWISE; 

n95_z46_step3 = CONDITIONAL { ( $n152_landform_steep_slp_adja_water == 1 ) 

173, ( $n92_new_sys_range == 5 and $n90_z_46_metamodel_091306 == 41 and 

$n94_bbsoils == 2 ) 174, ( $n92_new_sys_range == 5 and $n131_prairie == 1 ) 171, 

($n92_new_sys_range == 5 and $n90_z_46_metamodel_091306 == 42 and $n94_bbsoils 
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== 2 ) 172, ($n92_new_sys_range == 5 and <raster> == 43 and $n94_bbsoils == 2 ) 172 , 

($n92_new_sys_range == 5 and <raster> == 90 and $n94_bbsoils == 2 ) 174 , 

($n92_new_sys_range == 5 and $n90_z_46_metamodel_091306 == 90 and $n94_bbsoils 

== 2 ) 174 , ($n92_new_sys_range == 5 and $n117_recode_96_from_nwi == 1 ) 137 , 

($n92_new_sys_range == 5 and $n123_recode_96_from_smstrm == 1 ) 137, 

($n92_new_sys_range == 5 and $n128_sieve_10 > 0 ) 137, ( $n92_new_sys_range == 5 

and $n90_z_46_metamodel_091306 == 41 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 1 ) 162 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306== 41 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 3 ) 144 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 41 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 6 ) 181 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 42 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 1 ) 161 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 42 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 3 ) 143 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 42 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 6 ) 182 ,  ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 43 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 1 ) 161,   ( $n92_new_sys_range == 5 and 

$n90_z_46_metamodel_091306 == 43 and $n94_bbsoils < 2 and 

$n158_matrix_range_in_blackbelt == 3 ) 143 , ( $n92_new_sys_range == 5 and 
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$n90_z_46_metamodel_091306 == 43 and $n94_bbsoils $n90_z_46_metamodel_091306 

0 ) $n90_z_46_metamodel_091306  

 } ; 

n172_z46_temp2 = CONDITIONAL { ( $n95_z46_step3 == 137 and $n170_bw_fix == 

1 ) 136 , ( $n95_z46_step3 == 136 ) 136 , ( $n95_z46_step3 == 221 ) 221, ( 

$n95_z46_step3 == 137) 137, ( $n95_z46_step3 > 0 ) $n95_z46_step3 } ; 

n168_z46_step4 = CONDITIONAL { ( $n163_blk_to_smstm == 1 and 

$n172_z46_temp2 == 136 ) 137 , ($n162_jacprai == 1) 151 , ($n164_strm_to_lgriv == 1 

and $n172_z46_temp2 == 136 ) 221 , ( $n164_strm_to_lgriv == 2 and $n172_z46_temp2 

== 137 ) 221 , ( $n165_ccap_to_overwrite_nlcd_RC > 0 ) 

$n165_ccap_to_overwrite_nlcd_RC, ( $n167_bb_063006 == 81 ) 83 , 

($n172_z46_temp2 == 81 ) 83, ( $n167_bb_063006 == 82 ) 84 , ( $n172_z46_temp2 == 

82 ) 84 , ($n167_bb_063006 > 0 ) $n167_bb_063006 , ($n172_z46_temp2 > 0 ) 

$n172_z46_temp2 

 } ; 

n185_96fin = EITHER 1 IF ( $n168_z46_step4 == 96 ) OR 0 OTHERWISE ; 

n187_96_fin_clump = CLUMP ( $n185_96fin , 8 ) ; 

n200_96fin_clump_hist = LOOKUP ( $n187_96_fin_clump , HISTOGRAM ( 

$n187_96_fin_clump )  ) ; 

n190_96fin_buf = FOCAL MAX ( $n187_96_fin_clump , $n189_Low_Pass ) ; 

n207_Output = SUMMARY ( $n190_96fin_buf , $n209_z46_step4_RC ) ; 

WRITE $n207_Output TO "g:/output/las_minute_2/96_fin_smstrm.mtx"; 

n211_Output = ZONAL MAJORITY COUNT ( $n207_Output, IGNORE 0 ) ; 
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WRITE $n211_Output TO "g:/output/las_minute_2/96fin_zm_smstrm.tbl"; 

n213_96fin_smstrm_cnt = LOOKUP ( $n187_96_fin_clump , $n211_Output ) ; 

n217_96fin_smstrm_cnt_float = $n213_96fin_smstrm_cnt; 

n215_96fin_per_touch_smstrm = EITHER ( $n217_96fin_smstrm_cnt_float/ 

$n200_96fin_clump_hist  * 100 ) IF ( $n200_96fin_clump_hist > 0 ) OR 0 OTHERWISE 

; 

n220_sm_strm_to_change_25 = EITHER 1 IF ( $n215_96fin_per_touch_smstrm > 25 ) 

OR 0 OTHERWISE ; 

n191_Output = SUMMARY ( $n190_96fin_buf , $n193_z46_step4_RC ) ; 

WRITE $n191_Output TO "g:/output/las_minute_2/96_fin_bw.mtx"; 

n196_Output = ZONAL MAJORITY COUNT ( $n191_Output, IGNORE 0 ) ; 

WRITE $n196_Output TO "g:/output/las_minute_2/96fin_zm_bw.tbl"; 

n198_96fin_bw_cnt = LOOKUP ( $n187_96_fin_clump , $n196_Output ) ; 

n203_96fin_bw_cnt_float = $n198_96fin_bw_cnt; 

n201_96fin_per_touch_bw = EITHER ( $n203_96fin_bw_cnt_float/ 

$n200_96fin_clump_hist  * 100 ) IF ( $n200_96fin_clump_hist > 0 ) OR 0 OTHERWISE 

; 

n206_bw_to_change_25 = EITHER 1 IF ( $n201_96fin_per_touch_bw > 25 ) OR 0 

OTHERWISE ; 

n221_96fin_rc_to_blk_and_smstrm = CONDITIONAL { ($n206_bw_to_change_25 == 

1) 136 , ( $n220_sm_strm_to_change_25 == 1 ) 137 } ; 

n181_z46_step5 = CONDITIONAL { ( $n175_cypdom_edge_to_rc > 0 ) 

$n175_cypdom_edge_to_rc , ( $n177_nbas_edge_to_rc > 0 ) $n177_nbas_edge_to_rc , ( 
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$n176_excess_96_in_la > 0 ) $n176_excess_96_in_la , ( 

$n178_96fin_rc_to_blk_and_smstrm > 0 ) $n178_96fin_rc_to_blk_and_smstrm ,  ( 

$n179_meslp_recode_final > 0 ) $n179_meslp_recode_final ) , ( 

$n182_water_in_forest_with_rc_class > 0) $n182_water_in_forest_with_rc_class,  ( 

$n168_z46_step4 > 0 ) $n168_z46_step4} ; 

#define n223_memory Float(EITHER 1 IF ( $n181_z46_step5 == 11 ) OR 0 

OTHERWISE ) 

n253_step6 = CONDITIONAL { ( $n254_t25_final_fn == 2) 221 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 1 ) 161 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 3 ) 143 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 5 ) 174 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 6 ) 181 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 7 ) 191 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 15 ) 134 ,  

( $n254_t25_final_fn == 3  and $n255_new_sys_range_no_lobflat == 17 ) 111 ,  

( $n254_t25_final_fn == 4  and $n256_bw_range == 1 ) 136 ,  

( $n254_t25_final_fn == 4  and $n256_bw_range == 0 ) 137 ,  

( $n254_t25_final_fn == 5 )  45 ,  

( $n254_t25_final_fn == 7 ) 53 ,  

( $n254_t25_final_fn == 8 ) 134 , 

( $n254_t25_final_fn == 9 ) 121, 

( $n254_t25_final_fn == 10 ) 136 , 

( $n254_t25_final_fn == 11 ) 135 , 
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( $n181_z46_step5 > 0 ) $n181_z46_step5 

 } ; 

n258_j96 = EITHER 1 IF ( $n253_step6 == 96 ) OR 0 OTHERWISE ; 

n260_j96_clump = CLUMP ( $n258_j96 , 8 ) ; 

n262_Output = SIEVETABLE ( 100 , HISTOGRAM ($n260_j96_clump ) ) ; 

WRITE $n262_Output TO "f:/asap/sievtab.tbl"; 

n264_sieve_100 = LOOKUP ( $n260_j96_clump , $n262_Output ) ; 

n249_j137 = EITHER 1 IF ( $n253_step6 == 137 ) OR 0 OTHERWISE ; 

n269_j137buf = FOCAL MAX ( $n249_j137 , $n250_Low_Pass ) ; 

n247_j221 = EITHER 1 IF ( $n253_step6 == 221 ) OR 0 OTHERWISE ; 

n270_j221 = FOCAL MAX ( $n247_j221 , $n250_Low_Pass ) ; 

n245_j136 = EITHER 1 IF ( $n253_step6 == 136 ) OR 0 OTHERWISE ; 

n268_j136buf = FOCAL MAX ( $n245_j136 , $n250_Low_Pass ) ; 

n241_j96_sp = EITHER 1 IF ( $n260_j96_clump > 0 and $n264_sieve_100 == 0 ) OR 0 

OTHERWISE ; 

n243_j96_sp_clump = CLUMP ( $n241_j96_sp , 8 ) ; 

n294_Output = SUMMARY ( $n243_j96_sp_clump , $n270_j221 ) ; 

WRITE $n294_Output TO "f:/asap/sum221.mtx"; 

n292_Output = ZONAL MAX ( $n294_Output ) ; 

WRITE $n292_Output TO "f:/asap/zm221tab.tbl"; 

n280_change_221 = LOOKUP ($n243_j96_sp_clump , $n292_Output ) ; 

n290_Output = SUMMARY ( $n243_j96_sp_clump , $n269_j137buf ) ; 

WRITE $n290_Output TO "f:/asap/sum137.mtx"; 
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n288_Output = ZONAL MAX ( $n290_Output ) ; 

WRITE $n288_Output TO "f:/asap/zm137tab.tbl"; 

n277_change_137 = LOOKUP ( $n243_j96_sp_clump , $n288_Output ) ; 

n286_Output = SUMMARY ( $n243_j96_sp_clump, $n268_j136buf ) ; 

WRITE $n286_Output TO "f:/asap/zm136.mtx"; 

n284_Output = ZONAL MAX ( $n286_Output ) ; 

WRITE $n284_Output TO "f:/asap/zm136tab.tbl"; 

n274_change_136 = LOOKUP ( $n243_j96_sp_clump , $n284_Output ) ; 

n283_step7 = CONDITIONAL { ( $n274_change_136 == 1 and $n281_step6 == 96 ) 

136, ( $n277_change_137 == 1 and $n281_step6 == 96 ) 137 ,  ( $n280_change_221 == 

1 and $n281_step6 == 96 ) 221 , ( $n281_step6 > 0 ) $n281_step6 

} ; 

n303_step9 = CONDITIONAL { ( $n297_choctaw_10_RC > 0 ) $n297_choctaw_10_RC 

, ( $n298_escambia_10_RC > 0 ) $n298_escambia_10_RC , ( $n299_mobile_10_RC > 0 

) $n299_mobile_10_RC , ( $n300_pascagoula_10_RC > 0 ) $n300_pascagoula_10_RC , 

( $n301_pearl_10_RC > 0 ) $n301_pearl_10_RC ,  

($n306_j96_to_rc_from_hydro == 136 ) 136, 

($n306_j96_to_rc_from_hydro == 137 ) 137, 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and $n308_nlcd_s8_new 

== 83 ) 83 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and $n308_nlcd_s8_new 

== 84 ) 84 , 
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( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and $n308_nlcd_s8_new 

== 55 ) 83 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 1 ) 161 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 3 ) 143 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 5 ) 174 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 6 ) 181 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 7 ) 191 , 

( $n307_j96_clump > 0 and $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 15 ) 131 , 

 ($n307_j96_clump > 0 and  $n304_max_slope_in_clump > 0 and 

$n305_new_sys_range_no_lobflat == 17 ) 111 , 

( $n283_step7 > 0 ) $n283_step7 

} ; 

n325_step9 = EITHER 1 IF ( $n303_step9 == 96 ) OR 0 OTHERWISE ; 

n310_j96_clump = CLUMP ( $n325_step9 , 8 ) ; 

n312_Output = SUMMARY ( $n310_j96_clump , $n322_hyd_buf_5x5 ) ; 

WRITE $n312_Output TO "f:/asap/final/newhydmat.mtx"; 

n314_Output = ZONAL MAX ( $n312_Output ) ; 
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WRITE $n314_Output TO "f:/asap/final/newhydzm.tbl"; 

n316_nwhdmaxinclump = LOOKUP ( $n310_j96_clump , $n314_Output ) ; 

n318_j96_to_rc_from_hydro = CONDITIONAL { ( $n316_nwhdmaxinclump > 1 and 

$n319_bw_range == 1 ) 136 ,  ( $n316_nwhdmaxinclump > 1 and $n319_bw_range == 0 

) 137  

} ; 

n225_clump = CLUMP ( $n223_memory , 8 ) ; 

n231_Output = SIEVETABLE ( 2000 , HISTOGRAM ($n225_clump) ) ; 

WRITE $n231_Output TO "c:/97_catfishponds/sievetablarge.tbl"; 

n233_highval = LOOKUP ( $n225_clump , $n231_Output ) ; 

n228_Output = SIEVETABLE ( 50 , HISTOGRAM ($n225_clump)  ) ; 

WRITE $n228_Output TO "c:/97_catfishponds/sievetab.tbl"; 

n227_lowval = LOOKUP ( $n225_clump , $n228_Output ) ; 

n235_middle = CONDITIONAL { ( $n227_lowval > 0 and $n225_clump > 0 and 

$n233_highval == 0 ) 1 

 } ; 

n236_clump_final = CLUMP ( $n235_middle , 8 ) ; 

n328_z46_ecol_systems_class = CONDITIONAL { ( $n236_clump_final > 0 ) 3, ( 

$n221_96fin_rc_to_blk_and_smstrm > 0 ) $n221_96fin_rc_to_blk_and_smstrm, ( 

$n318_j96_to_rc_from_hydro > 0 ) $n318_j96_to_rc_from_hydro, ($n325_step9 > 0 ) 

$n325_step9 

} ; 

QUIT; 
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