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Chapter 1

The Shields-Harary Numbers

1.1 Introduction

Suppose we have a simple, finite non-empty graph G = (V,E) whose vertices have

non-negative weights g(v), v ∈ V where g : V → [0,∞). We can consider this graph to

be some network where the weight at each vertex represents some amount of harmful

material stored at that particular location (vertex).

This network has an enemy who wishes to dismantle it by removing vertices from the

network and thus destroying the material stored at the removed vertices. The network

is considered dismantled when the sum of the weights on each remaining connected

component of the network after vertex removal is less than or equal to some threshold,

say 1. The defense that the network has against the enemy is that it costs the enemy

a certain price to remove these vertices. The enemy pays f(g(v)) to remove v ∈ V

and
∑

v∈S

f(g(v)) to remove a set S of vertices where f is some decreasing (or at least

non-increasing) cost function on the range of g.

We will assume that the enemy is intelligent and has complete knowledge of the

weighted network and so for any allocation of weights throughout the network, the

enemy will always choose to remove the set of vertices that dismantles the network while

giving rise to the least possible total cost. This least possible total cost that the enemy

pays for a particular weighting g shall be denoted by mf (g,G). We endeavor to make the

enemy pay as much as possible. In section [1.2], we define things a little more precisely,

as well as defining what the Shields-Harary numbers are.

1
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1.2 Definitions

Let G = (V,E), S ⊆ V , g : V → [0,∞) and let f be some non-increasing cost

function on the range of g.

Why is the cost function f decreasing (or at least non-increasing)? The idea is that

the more harmful material you have stored in one location, the harder it will be to defend

and thus it will be easier (cheaper) for the enemy to remove from the network.

We call S a g-dismantling set if and only if
∑

v∈V (H)

g(v) ≤ 1 for each component H

of G − S. The Shields-Harary number of a graph G with respect to the cost function f

is given by

SH(G, f) = sup
g:V →[0,∞)

mf (g,G).

Recall that mf (g,G) is the least possible cost to dismantle the graph G with the specific

weighting g.

Now suppose we change the definition of dismantling so that the network is disman-

tled when the sums of the weights on each remaining connected component is strictly

less than 1. We call S a strict g-dismantling set if and only if
∑

v∈V (H)

g(v) < 1 for each

component H of G − S. The least possible cost to strictly dismantle the graph G with

weighting g is denoted by mf (g,G). We denote the Shields-Harary number of a graph

with this definition of dismantling by

SH(G, f) = sup
g:V →[0,∞)

mf (g,G).

We define SH0(G, f) and SH0(G, f) in the same manner as above except that our

weighting functions are restricted to be constant. It is elementary that in the definitions

of SH and SH0, the weighting functions may as well be into [0, 1].
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In [2] it was shown that if f is continuous from the right at each point of [0, 1]

then the “sup” in the definition of SH(G, f) is always a maximum (i.e. we can actually

make the enemy pay this amount). A weighting g which yields this “max” will be called

optimal (for G and f).

1.3 An example of the Shields-Harary Numbers

Having now defined all of the terms that we need, (for any others, refer to [9]), let

us now illustrate the concept of the Shields Harary Numbers (SH numbers for short)

by looking at an example of how the SH number relates to a graph with a particular

weighting and cost function. In later chapters, we will further explore the intricacies of

these calculations by actually calculating the SH numbers of specific graphs with respect

to various cost functions.

Consider the following graph G with the cost function f(x) =
1

x
and weighting g1

as illustrated by Figure 1.1.
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Figure 1.1: Our graph G with weighting g1
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The enemy whose intelligence is poor might yield to the temptation of dismantling

this graph by removing the central vertex of weight 1
8 ; thus disconnecting the graph

with the resulting components shown in Figure 1.2. This dismantling would yield a

dismantling cost of f( 1
8) = 8. At a quick glance, this might seem a logical choice since

the enemy would only have to remove a single vertex. Better intelligence, however, would

make it clear that the enemy could more cheaply dismantle this graph by removing the

two vertices of weights 5
8 and 4

8 with the resulting component shown in Figure 1.3. This

dismantling yields a dismantling cost of f( 5
8) + f(4

8) = 8
5 + 8

4 = 18
5 < 8. So dismantling

does not always imply disconnecting the graph. Notice that in both cases, the sum of

the weights on each remaining component of the graph is strictly less than one and so

the enemy in this example would pay 18
5 as this is the cheapest dismantling cost for

this particular weighting. Without considering any other weightings, we would say that

SH(G, 1
x
) ≥ 18

5 .
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Figure 1.2: Dismantling (G,g1) by disconnecting
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Figure 1.3: Dismantling but not disconnecting

Let us now consider some other weightings of G. Suppose we consider the following

weighting of G:
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Figure 1.4: Graph G with weighting g2

There are two ways in which we can dismantle G with this particular weighting.

One way would be to remove the central vertex of weight 1
7 and pay a cost of f( 1

7) = 7.

This dismantling leaves the components as shown in Figure 1.5. The other way in which

we could dismantle this graph would be to use a greedy algorithm and keep removing

the vertex of the largest weight until the graph is dismantled. With strict dismantling

in mind, we are required to remove three of the vertices of weight 3
7 which gives rise to a

removal cost of 3f( 3
7) = 3(7

3 ) = 7 and is illustrated in Figure 1.6. (As one can see, unlike
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the first weighting, with this weighting we get the same cost whether we disconnect the

graph or not.) So SH(G, 1
x
) ≥ 7 > 18

5 .
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Figure 1.5: Dismantling G with weighting g2 by disconnecting.
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Figure 1.6: Dismantling G with weighting g2 but not disconnecting.

Let us now consider a constant weighting of our graph G as shown in Figure 1.7.

With this particular weighting and with strict dismantling in mind, we cannot leave two

adjacent vertices. In this situation, we want to remove the fewest number of vertices

that we can and so the structure of the graph comes into play. If we leave the center

vertex in, then we must remove the four outer vertices. However, we can get away
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with only removing three as shown in Figure 1.8. This dismantling forces us to pay

3f(1
2) = 3(2) = 6. Thus it remains that, SH(G, 1

x
) ≥ 7 > 6. However, we find also that

SH0(G) ≥ 6. (By results to be introduced later, it will be easy to see that SH 0(G) = 6.)
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Figure 1.7: G with constant weighting g3.
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Figure 1.8: Cheapest dismantling of G with weighting g3.

From these different weightings, one can see that the computation of SH
(

G, 1
x

)

is

not necessarily a trivial calculation. In fact, the problem of computing SH
(

G, 1
x

)

is

indeed a five variable optimization problem.
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1.4 The History of the Shields-Harary Numbers and a Review of Literature.

The Shields-Harary numbers arose from a conjecture of the late Allen Shields. In

1972, at a University of Michigan Math Club meeting, Shields posed the following con-

jecture:

For any sequence of positive numbers d1, d2, . . . , dn there exists a set S ⊆

{1, 2, . . . , n} such that
∑

i∈S

1

di

≤ n and for each set of consecutive integers

(block) B of {1, . . . , n} \ S,
∑

i∈B

di ≤ 1.

In terms of graph theory, Shields’ conjecture was actually that SH(Pn, f) ≤ n where

Pn is the path on n vertices and f is the cost function f(x) =
1

x
.

Realizing that this conjecture was connected to graphs, Shields consulted Frank

Harary. They soon proved that if SH(Pn, 1
x
) = n, then SH(Cn, 1

x
) = 2n− 2 where Cn is

the cycle of length n. They also computed the values of SH(Kn, 1
x
) and SH(K1,n−1,

1
x
).

Both of these values are around n2

4 , which is interesting; by this measure of network

robustness, stars are close to cliques and are much more robust than cycles. However,

Shields and Harary never did prove Shields’ original conjecture. Instead, it was proven,

by a clever “cost analysis” argument, by Stephen Schanuel [7].

Initially, much of what was done with the Shields-Harary parameters dealt with

the specific cost function f(x) =
1

x
, which was the cost function involved in Shields’

original conjecture. Johnson [6] presented everything known at the time about the SH

parameters with that particular cost function. Another paper by Wunsch [8], also on

the original Shields-Harary number, obtains an infinite number of graphs G for which
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SH(G, 1
x
) is not an integer, through asymptotic estimates of SH(G) for G in a certain

family of graphs. (Johnson had found one graph for which SH(G) was not an integer.)

Some more recent work has dealt with the constant weight Shields-Harary numbers.

The basis for the work on the SH0 numbers is a result in [2] which reduces the com-

putation of SH0 or SH0 of a graph to computing the minimum cardinality of a set of

vertices whose removal from the graph leaves components of a certain size. This result

is as follows:

SH0(G, f) = max
1≤k≤n

p(k,G)f

(

1

k

)

where p(k,G) is the minimum cardinality of a set S ⊂ V (G) such that each component

of G − S has k − 1 or fewer vertices. In [5] it is shown that for all non-increasing cost

functions f and all trees T on n vertices, SH0(K1,n−1, f) ≤ SH0(T, f) ≤ SH0(Pn, f)

with the same inequality holding for SH0. In [5] the authors also show that for all

trees T on n vertices, 1 ≤ p(k, T ) ≤
⌊n

k

⌋

, 2 ≤ k ≤ n. Another paper, [1], shows that

SH(G, f) ≤ SH(G + e, f) for any edge e between non-adjacent vertices of G. This

inequality holds for SH, SH0 and SH0. This result proved useful in the calculations of

the values of SH0(G, f) in terms of p(k,G) when G is a special kind of Cayley Graph.

(See [1]).

The inequality SH(G, f) ≤ SH(G + e, f) mentioned above is a special case of the

monotonicity of the Shields-Harary numbers with respect to taking subgraphs. Surpris-

ingly, this monotonicity is not completely trivial; we prove it here.

Proposition 1.1 Suppose that P ∈ {SH,SH,SH0, SH0}, with respect to some cost

function f , and that G1 is a subgraph of G. Then P (G1) ≤ P (G).
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Proof. Suppose that ε > 0 and g is a weighting of V (G1) such that the minimum cost m

of (strictly) dismantling (G1, g) satisfies P (G1)− ε < m; and, of course, m ≤ P (G1). (If

P ∈ {SH0, SH0}, g is a constant function.) In case V (G)\V (G1) is non-empty, extend g

to a weighting g̃ on V (G) any which way; but g̃ = g on V (G)\V (G1) if g is constant. We

shall prove that the minimum cost m̃ of (strictly) dismantling (G, g̃) satisfies m̃ ≥ m. It

will then follow that P (G) ≥ P (G1) − ε for all ε > 0, and thence the desired conclusion.

Let S̃ be a g̃-dismantling set of vertices of minimum cost, say m̃ and let S1 be the

set of vertices defined as follows, S1 = S̃ ∩ V (G1). Now suppose that u, v ∈ V (G1 − S1)

such that u, v are in the same component of G1−S1. We can then find a path in G1−S1

from u to v. Such a path will also be in G − S̃ since all of the edges and vertices of

G1 − S1 are in G − S̃ as well, in view of the definition of S1 and the fact that G1 is a

subgraph of G. Thus, any vertices of G1 that lie in the same component of G1 −S1 must

lie in the same component of G − S̃ and so every component of G1 − S1 is contained in

a component of G − S̃.

Since the components of G1−S1 are subgraphs of the components of G− S̃, it follows

that S1 dismantles G1. Since S1 is a subset of S̃, it follows that the cost of removing S1

is no more than m̃ (the cost of removing S̃). Thus, the minimum dismantling cost m of

(G1, g) is such that m ≤ m̃. �

A paper from Harary and Johnson [2] presents more results on the Shields-Harary

parameter, with arbitrary cost functions. Here are some of those results.

1. If f is a continuous function, then SH(G, f) = SH(G, f) and SH0(G, f) =

SH0(G, f). (Incidentally, f is allowed to take the value ∞ and still be contin-

uous throughout.)



11

2. If f is continuous, then the sup in the definition of SH(G, f) and SH0(G, f) is

always a max.

3. SH(Kn, f) = SH0(Kn, f) = max
1≤k≤n

(n− k +1) f

(

1

k

)+

, where f

(

1

k

)+

is the right

hand limit of f at
1

k
.

4. max
1≤k≤n

⌊n

k

⌋

f

(

1

k

)

≤ SH(Pn, f) ≤ n sup
0<x≤1

xf(x)

5. max
1≤k≤n

⌈n

k

⌉

f

(

1

k

)

≤ SH(Cn, f) ≤ max

[

f

(

1

n

)

, f

(

1

n − 1

)

+ SH(Pn−1, f)

]

Result (2) has some practical significance: with “strict” dismantling and a con-

tinuous cost function, we can actually find a weighting of the nodes of the network

that will force the enemy to pay the maximum amount. Finding that critical weight-

ing is a problem that can usually be solved as a by-product of the search for the value

of SH(G, f). For instance, by (1) and (3) we have, for continuous f , SH(Kn, f) =

max
1≤k≤n

(n−k +1)f

(

1

k

)

. Now, from this result alone, a certain amount of thought shows

that one of the constant weightings
1

k
is a critical weighting; but even if that is not

clear, the proof of this result in [2] shows this to be the case, and more: if f is strictly

decreasing, the only critical weightings are among those constant weightings.

In [2], Harary and Johnson also pose the following conjecture:

Conjecture 1.1 (Harary,Johnson, [2]) If f is continuous and G is vertex-transitive

then there is a constant optimal weighting of V (G). (So SH(G, f) = SH(G, f) =

SH0(G, f) = SH0(G, f)).

This conjecture gives rise to the following related problem:
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For which continuous f is it the case that for every G, there is an optimal

weighting of V (G) which is constant on each orbit of V (G) under Aut(G),

the group of graph automorphisms of G?

The conjecture that the answer to the question above is “all continuous f” we will

call the Constant Weights on Orbits Conjecture (CWOC) which will be discussed further

in Chapter 2. For now, it suffices to say that CWOC was of interest when work began on

[4] which initially began to compute the exact SH values of two intersecting cliques for

general cost functions f . The exact values, however, soon proved to be elusive and the

results obtained in [4] tended to pertain more to continuous concave cost functions and

optimal weightings of graphs with “clique-like” structures. As a result, doubts about

the CWOC arose and counterexamples were found with G = Kn − e, a clique minus an

edge. Counterexamples will be given and discussed in chapter 2 as will the exact values

of SH(Kn − e, f) for continuous cost functions f (see [3]).



Chapter 2

The Shields-Harary Number of Kn − e

2.1 Full Solution of Kn − e with optimal weighting possibilities

Let Kn − e stand for Kn minus an edge.

Theorem 2.1 For any f : [0,∞) → [0,∞], non-increasing and continuous, and any

n ≥ 3, SH(Kn − e, f) = max[M1,M2,M3] where

M1 = max
k=1,3,...,n

(n − k + 1)f(
1

k
)

M2 =f(1) + (n − 2)f(
1

2
)

M3 =



































(n − 1)f(1 − x) if f(0) > 2f(1), for some

x ∈ (0, 1
2 ] s.t. f(x) = 2f(1 − x)

M2 if f(0) ≤ 2f(1).

Proof. In the first part of this proof, we will show that there is a weighting of Kn − e

for each Mi, 1 ≤ i ≤ 3, so that the (strict) dismantling of Kn − e costs Mi. This will

prove that SH(Kn − e, f) ≥ max(M1,M2,M3). Let us denote the vertices of Kn by

v1, . . . , vn and let e = vn−1 vn.

Let us first consider the constant weighting 1
k
, k ∈ {1, 3, 4, . . . , n} on the vertices of

Kn − e. When k = 1, we put a weight of 1 on all vertices. To dismantle, we must knock

out all of the vertices, at a cost of nf(1). When k > 2, we can dismantle the Kn − e

13
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by either removing the Kn−2 induced by v1, . . . , vn−2 or by leaving some vertices in the

Kn−2 and then knocking out vertices until the sum of the weights on the remaining

component is strictly less than one. If we remove the Kn−2, we do so at a cost of

(n − 2) f( 1
k
) ≥ (n − k + 1) f( 1

k
). If we knock out vertices until the sum of weights is

less than 1, then we must knock out n − (k − 1) = (n − k + 1) vertices at a cost of

(n − k + 1) f( 1
k
). When k ≥ 3, this is the cheaper of the two dismantlings. Thus, for

each k ∈ {1, 3, . . . , n}, the dismantling cost is (n − k + 1)f( 1
k
); therefore the cost M1 is

achieved by one of these weightings.

Now, consider the dismantling cost required by placing a weight of 1 on vn and a

weight of 1
2 on v1, . . . , vn−1. To dismantle, we must take out vn at a cost of f(1). We

must also remove all but one of v1, . . . , vn−1 at a cost of (n − 2) f( 1
2). Thus, the cost of

dismantling with this weighting is f(1) + (n − 2) f( 1
2) = M2.

Let x ∈ (0, 1
2 ]. Consider the weighting where we put x on v1 and 1−x on v2, . . . , vn.

If v1 is not knocked out, then all the other vertices must be, for strict dismantling, at a

cost of (n− 1) f(1− x). If v1 is knocked out, then the dismantling is most economically

achieved by further knocking out each of v2, . . . , vn−2 (since 1 − x ≥ 1
2 , two adjacent

vertices with weight 1 − x cannot be left, but since 1 − x < 1, vn and vn−1 can be

left); the cost of this particular dismantling is f(x) + (n − 3) f(1 − x). Thus the cost of

dismantling with these weights is min[(n − 1)f(1 − x), f(x) + (n − 3)f(1 − x)].

Claim 1 If f(0) ≤ 2f(1), then for each x ∈ [0, 1
2 ], f(x) + (n − 3)f(1 − x) ≤ f(1) + (n −

2)f(1
2 ).
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Proof of Claim 1 If f(0) ≤ 2f(1) and 0 ≤ x ≤ 1
2 , then 1

2 ≤ 1 − x ≤ 1 and so

2f(1) ≥ f(0) ≥ f(x) ≥ f( 1
2) ≥ f(1 − x) ≥ f(1). From this long inequality, we get that

f(x)+(n−3)f(1−x) = f(x)−f(1−x)+(n−2)f(1−x) ≤ 2f(1)−f(1−x)+(n−2)f( 1
2) ≤

2f(1) − f(1) + (n − 2)f( 1
2) = f(1) + (n − 2)f( 1

2 ) as in the statement of the claim. �

Suppose that 2f(1) ≥ f(0). By definition, M3 = M2 ≤ SH(Kn−e, f). The following

observations will be helpful later. Because f is non-increasing, 2f(1−x) ≥ f(x) for each

x ∈ (0, 1
2 ], so (n−1)f(1−x) ≥ f(x)+(n−3)f(1−x), for each x ∈ (0, 1

2 ]. Thus the cost of

dismantling with this weighting is always f(x)+ (n− 3)f(1−x) if 2f(1) ≥ f(0), and the

greatest of these costs is incurred when f(x)+ (n− 3)f(1−x) achieves its max on (0, 1
2 ],

if it does achieve a max there. If it doesn’t, then f(x) + (n − 3)f(1 − x), a continuous

function, achieves its max on [0, 1
2 ] at 0, where its value is f(0)+(n−3)f(1) ≤ (n−1)f(1).

In either case, the maximum value of f(x)+(n−3)f(1−x) occurs on [0, 1
2 ] and by Claim

1 above, f(x) + (n − 3)f(1 − x) ≤ f(1) + (n − 2)f( 1
2) = M2.

If f(0) > 2f(1) then, since f( 1
2) ≤ 2f(1

2 ), and f(x) − 2f(1 − x) is continuous,

there is some x ∈ (0, 1
2 ] satisfying f(x) = 2f(1 − x), and since f is non-increasing, the

values of f(x) and f(1− x) are the same for different values of x satisfying the equation

f(x) = 2f(1−x). For any such x, f(x)+ (n− 3)f(1−x) = (n− 1)f(1−x) is the cost of

dismantling Kn − e equipped with this particular weighting. Thus M3 ≤ SH(Kn − e, f)

in the case f(0) > 2f(1). Thus M3 ≤ SH(Kn − e, f) in any case. This completes the

proof that max(M1,M2,M3) ≤ SH(Kn − e, f).

Now we shall show that SH(Kn − e, f) ≤ max(M1,M2,M3) by showing that for

every g : V (G) → [0, 1], where G = Kn − e, there is a strict g-dismantling set S of
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vertices of Kn − e such that
∑

v∈S f(g(v)) ≤ max(M1,M2,M3). (Note that we may as

well suppose that all weights are ≤ 1.) So, suppose g is such a weighting function, and

let g(vi) = xi, 1 ≤ i ≤ n.

Claim 2 It suffices to consider only weighting functions g such that g(vn−1), g(vn) ≥

g(vi), 1 ≤ i ≤ n − 2.

Proof of Claim 2 Suppose g(vn) = xn < x1 = g(v1). Let us define ĝ by ĝ(vi) = xi

for 2 ≤ i ≤ n − 1, ĝ(vn) = x1, and ĝ(v1) = xn. We will show that m(g,G) ≤ m(ĝ, G).

Suppose that S is a cheapest strict ĝ-dismantling set of vertices; then
∑

v∈S f(ĝ(v)) =

m(ĝ, G).

If v1, vn 6∈ S, or, if v1, vn ∈ S, then S is a strict g-dismantling set (in the case

v1, vn 6∈ S, note that v1 and vn are in the same component of G − S; indeed, G − S

is connected in this case) and m(g,G) ≤ ∑

v∈S f(g(v)) =
∑

v∈S f(ĝ(v)) = m(ĝ, G). If

vn ∈ S, v1 6∈ S, then let S̃ = (S \ {vn}) ∪ {v1}. Note that G − S is connected, since

v1 6∈ S, so we have
∑

v∈V (G−S̃) f(g(v)) =
∑

v∈V (G−S) f(ĝ(v)) < 1. Thus, S̃ is a strict

g-dismantling set, and we have m(g,G) ≤ ∑

v∈S̃ f(g(v)) =
∑

v∈S f(ĝ(v)) = m(ĝ, G). For

the last case, if v1 ∈ S, vn 6∈ S, then S is clearly a strict g-dismantling set, and we have

m(g,G) ≤ ∑

v∈S f(g(v)) ≤ ∑

v∈S f(ĝ(v)) = m(ĝ, G). This establishes the claim. �

So, we may as well assume that x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn ≤ 1. If xn = 1,

then vn must be removed, for strict dismantling, and then the (n − 1)-clique G − vn

must be dismantled, which can be accomplished at a cost no greater than SH(Kn−1, f).
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Thus, if xn = 1, m(g,G) ≤ f(1) + max
1≤k≤n−1

(n − k)f( 1
k
) ≤ max[M1,M2]. So assume that

x1 ≤ · · · ≤ xn < 1.

If
∑n

i=1 xi < 1 take S = ∅. Otherwise, there is some k ∈ {2, . . . , n} such that

∑k−1
i=1 xi < 1 ≤ ∑k

i=1 xi ≤ kxk (so, xk ≥ 1
k
). Take S = {vk, . . . , vn} which is a strict

g-dismantling set with cost
∑n

i=k f(xi) ≤ (n − k + 1)f( 1
k
) ≤ M1, unless k = 2. Let us

now assume that k = 2. If x1 ≥ 1
2 , then 1

2 ≤ xi < 1, 1 ≤ i ≤ n. Dismantle by knocking

out v1, . . . , vn−2 at a cost of
∑n−2

i=1 f(xi) ≤ (n−2)f( 1
2) ≤ M2. Therefore, we may assume

that x1 < 1
2 . Since k = 2 we have 1 ≤ x1 + x2, so, 1 − x1 ≤ x2 ≤ · · · ≤ xn. Take S1 =

{v2, . . . , vn}, which is a strict g-dismantling set with cost
∑n

i=2 f(xi) ≤ (n− 1)f(1− x1)

and take S2 = {v1, . . . , vn−2}, which costs
∑n−2

i=1 f(xi) ≤ f(x1) + (n − 3)f(1 − x1). So,

m(g,G) ≤ min[(n − 1)f(1 − x1), f(x1) + (n − 3)f(1 − x1)] ≤ M3,

by Claim 1 above, and associated arguments. [To see the inequality in the case when

f(0) > 2f(1) observe that f(1 − x) is a non-decreasing function of x, and (f(x) + (n −

3)f(1 − x)) − (n − 1)f(1 − x) = f(x) − 2f(1 − x) is therefore a non-increasing function

of x. The value of the difference, h(x) = f(x) − 2f(1 − x), is positive when x = 0, and

non-positive when x = 1
2 , and is therefore equal to zero at some x̃ ∈ (0, 1

2 ], since f is

continuous. Because h(x) is non-increasing on [0, 1
2 ], for x1 < 1

2 , min[(n − 1)f(1 − x1),

f(x1)+(n−3)f(1−x1)] = min[(n−1)f(1−x1), (n−1)f(1−x1)+h(x1)] ≤ (n−1)f(1−x̃) =

M3.] This completes the proof that SH(Kn − e, f) ≤ max(M1,M2,M3). �

Corollary (of the proof). For any non-increasing, non-negative, continuous cost function

f , and any n ≥ 3, one of the following is a critical (most costly) weighting of Kn − e,

with respect to f :
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1. a constant weighting 1/k, for some k ∈ {1, 3, . . . , n};

2. a weight of 1 on one of the vertices of degree n − 2, with 1
2 on all the remaining

vertices;

3. a weight of x on one vertex of degree n − 1 and a weight of 1 − x on the other

vertices, if f(0) > 2f(1), where x ∈ (0, 1
2 ] satisfies f(x) = 2f(1 − x).

2.2 Examples of different cost functions for each Mi

In this section, we present different cost functions fi such that SH(Kn −e, fi) = Mi

for i = 1, 2, 3.

Let f1(x) = 1
x
. This cost function gives us the following values for M1,M2 and M3;

n ≥ 4.

M1 =

⌊

(n + 1)2

4

⌋

, M2 = 2n − 3, M3 =
3

2
(n − 1).

It can easily be seen that for all n ≥ 4, M1 > max (M2,M3) and so by Theorem 2.1 we

have that SH(Kn − e, f1) = M1.

Now let f2(x) =











3 if 0 ≤ x ≤ 1
2

−4x + 5 if 1
2 < x ≤ 1

. From this cost function, for n ≥ 3, we

get the following values:

M1 = 3n − 6, M2 = 3n − 5, M3 = 3
2(n − 1).

Once again it can easily be checked that for all n ≥ 3, M2 > max (M1,M3) and thus by

Theorem 2.1 we have that SH(Kn − e, f2) = M2.
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Finally, let f3(x) =



























−x(n + 2)(n + 1) + n + 3 if 0 ≤ x < 1
n+1

1 if 1
n+1 ≤ x ≤ n+1

n+2

−(n + 2)(x − 1) if n+1
n+2 < x ≤ 1

This cost function yields the following values:

M1 = n − 2, M2 = n − 2, M3 = n − 1 .

In this case, obtaining the values of the M ’s is a bit difficult but it is quite clear that

M3 > max (M1,M2). By Theorem 2.1, SH(Kn − e, f3) = M3.

2.3 A counterexample to the constant weights on orbits conjecture

The constant weights on orbits conjecture (CWOC) has been posed as follows:

For all continuous non-increasing cost functions f and all graphs G, there is

an optimal weighting of V (G) which is constant on each orbit of V (G) under

Aut(G), the group of graph automorphisms of G.

It takes little imagination to see that this conjecture, if true, would be quite useful

in computing the SH numbers of intersecting cliques. However, as stated, the CWOC

is not true and a counterexample lies among the cost functions f on Kn − e. In fact,

perhaps any cost function f that yields SH(Kn − e, f) = M2 is such a counterexample.

The one which we present and prove is such a counterexample is the cost function f2

which was first presented in section 2.2 (and which we will present again later in this

section).

In section 2.2, we presented the values of M1,M2 and M3 obtained from using f2 as

our cost function. From these values, it can easily be verified that max[M1,M2,M3] =
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M2 = 3n − 5, for n ≥ 3. We will now show that with f2 as our cost function, any

weighting that is constant on each orbit of G = Kn − e is not an optimal weighting (i.e.

SH(G, f2) > mf2
(g,G).

Proposition 2.1 Let g be any weighting that is constant on each orbit of G = Kn − e.

Then SH(G, f2) > mf2
(g,G) where f2 is defined as follows:

f2(x) =











3 if 0 ≤ x ≤ 1
2

−4x + 5 if 1
2 < x ≤ 1

Proof. Let, as before, the vertices of Kn − e be v1, . . . , vn with e = vn, vn−1. Let

a, b ∈ [0, 1] and let g be the weighting such that for each 1 ≤ i ≤ n

g(vi) =











b if 1 ≤ i ≤ n − 2

a if n − 2 < i ≤ n

_ __ _` `` ` a aa abbc cde efg gh
i ij jk kl l
m mn n

o o o o o oo o o o o oo o o o o oo o o o o oo o o o o oo o o o o o
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r r r r r rr r r r r rr r r r r rr r r r r rr r r r r rr r r r r rr r r r r r

a

vn−1 vn

a

all with weight b

v1, . . . , vn−2

Kn−2

Figure 2.1: Kn − e with constant on orbits weighting g

If a = b, then we find that SH0(Kn−e, f2) = max
1≤k≤n

p(k,Kn−e)f2(
1

k
) = max[n, 3(n−

2)] = 3n−6. Clearly, 3n−6 < 3n−5 = M2 and so any weighting that is constant on the
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vertices of Kn − e is not an optimal weighting. Otherwise, if a 6= b, then by Claim 2 in

the proof of Theorem 2.1 we may as well assume that a > b. This leaves us a few cases

to consider. In each of the following cases, we look at how we can choose values of a and

b so as to maximize the cheapest dismantling cost of G with respect to the weighting g

and cost function f2.

Case 1: b < a ≤ 1
2 In this case, f2(g(v)) = 3 for all v ∈ V (Kn−e). So we want to force

the removal of as many vertices as we can. Choosing values of a and b so that 2a+ b ≥ 1

will force the removal of n−2 vertices which will be the best we can do (since a+ b < 1).

This results in mf2
(g,Kn − e) = 3(n − 2) = 3n − 6 < 3n − 5 = M2 = SH(G, f2).

Case 2: b ≤ 1
2 < a < 1 Since for all b ≤ 1

2 , f(b) = f( 1
2) we may as well choose b = 1

2 .

For any 1
2 < a < 1, we can force the removal of no more than n − 2 vertices and so

mf2
(g,Kn − e) = 3(n − 2) = 3n − 6 < 3n − 5 = M2 = SH(G, f2).

Case 3: b ≤ 1
2 < a = 14 In this case, f2(b) = 3 and f2(a) = 1. The two vertices of

weight a must be removed for strict dismantling and so we wish to force the removal of

as many of the n−2 vertices of weight b. Choosing b = 1
2 forces the removal of (n−2)−1

of the vertices of weight b which is the best we can do. mf2
(g,Kn − e) = 3(n − 3) + 2 =

3n − 7 < 3n − 5 = M2 = SH(G, f2).

Case 4: 1
2 < b < a < 1 For strict dismantling, all remaining components after vertex

removal must contain no more than one vertex. Of all cheapest dismantling costs, the

maximum is achieved when the Kn−2 is removed and so mf2
(g,Kn − e) = f2(b)(n−2) <

3(n − 2) = 3n − 6 < 3n − 5 = M2 = SH(G, f2).

Case 5: 1
2 < b < a = 1 For strict dismantling, vn−1 and vn must be removed at a cost

of 2f2(a) = 2. Since b > 1
2 , (n− 2)− 1 = n− 3 vertices of the Kn−2 must be removed at
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a cost of f2(b)(n− 3) and so mf2
(g,Kn − e) = f2(b)(n− 3)+2 < 3(n− 3)+2 = 3n− 7 <

3n − 5 = M2 = SH(G, f2). �



Chapter 3

Some General Results

with Applications to Intersecting Cliques

In what follows, G will be an arbitrary finite simple graph with vertex set V (G), of

order n(G) = |V (G)|. For u ∈ V (G), deg(u) will denote the degree of u in G and NG(u)

will denote the set of vertices adjacent to u in G.

3.1 A useful proposition

The following is a generalization of Claim 2 in the proof of Theorem 2.1.

Proposition 3.1 Suppose that T ⊆ V (G) and for each u ∈ T deg(u) = n(G) − 1. For

any continuous f , there is an optimal weighting g of G satisfying g(u) ≤ g(v) for each

u ∈ T and each v /∈ T .

Proof. Let g be an optimal weighting of G, with respect to f (i.e., m(g,G) = SH(G, f)).

Now suppose that for some v /∈ T, u ∈ T, g(v) < g(u). Define ĝ by ĝ(u) = g(v),

ĝ(v) = g(u), and ĝ = g on V (G)\{u, v}. We shall show that ĝ is an optimal weighting

of G with respect to f . This will prove the proposition, since, even if ĝ does not satisfy

the requirement of the conclusion, we can go on switching values until we arrive at a

weighting that does satisfy that requirement, and this final weighting will be optimal.

Let S ⊆ V (G) be a strict ĝ-dismantling set such that m(ĝ, G) =

∑

w∈S f(ĝ(w)). If neither u nor v, or if both u and v, belong to S, then S is a strict

g-dismantling set, whence SH(G, f) ≥ m(ĝ, G) =
∑

w∈S f(ĝ(w)) =
∑

w∈S f(g(w)) ≥

23
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m(g,G) = SH(G, f), and it follows that ĝ is an optimal weighting of G, with respect to

f . This leaves two cases to consider.

v ∈ S, u /∈ S : in this case, because u ∈ T is not in S, G − S is connected, and

∑

w∈V (G)\S ĝ(w) < 1. Let S̃ = (S\{v})∪{u}. Then
∑

w∈V (G)\S̃ g(w) =
∑

w∈V (G)\S ĝ(w) <

1 so S̃ is a strict g-dismantling set, and so m(g,G) ≤
∑

w∈S̃ f(g(w)) =
∑

w∈S f(ĝ(w)) = m(ĝ, G). The conclusion that ĝ is an optimal weight-

ing follows as before.

v /∈ S, u ∈ S : In this case, S is a strict g-dismantling set and m(g,G) ≤ ∑

w∈S f(g(w)) ≤
∑

w∈S f(ĝ(w)) = m(ĝ, G) because ĝ(u) < g(u) and f is non-increasing. The conclusion

that ĝ is optimal follows as before. �

For 0 < s < l, r, denote by G(l, r, s) the graph consisting of a Kl and a Kr inter-

secting in a Ks, as indicated in Figure 3.1 below.

Kl Ks Kr

Figure 3.1: G(l, r, s)

Corollary 3.1 For any continuous f , there is an optimal weighting g of G(l, r, s) with

g(u) ≤ g(v) for every u in the Ks and every v not in the Ks.

Proof. The proof of this corollary follows immediately from Proposition 1 by taking

T = V (Ks). �
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3.2 Limits of Optimal Weightings

Proposition 3.2 If f is continuous and gn is an optimal weighting of G for each n =

1, 2, 3, . . . and gn(v) → g(v) as n → ∞ for each v ∈ V (G), then g is an optimal weighting

of G.

Proof. Since each weighting gn is an optimal weighting of G, mf (gn, G) = SH(G, f)

for each n. Now, let S be a strict g-dismantling set of vertices of least cost with

∑

v∈S f(g(v)) = mf (g,G) ≤ SH(G, f). We now show that S is a strict gn-dismantling

set for all n sufficiently large by showing that for such n and for each component H of

G − S,
∑

v∈V (H) gn(v) < 1.

Since S is a strict g-dismantling set, then for each component H of G − S we

have limn→∞
∑

v∈V (H) gn(v) =
∑

v∈V (H) g(v) < 1. Thus, there exists some integer NH

such that n ≥ NH implies that
∑

v∈V (H) gn(v) < 1. There are only finitely many such

H; take N = max
H a component of G-S

NH ; then n ≥ N implies that for each such H ,

∑

v∈V (H) gn(v) < 1.

Now for all n sufficiently large we have the following:

SH(G, f) = mf (gn, G) ≤ ∑

v∈S f(gn(v)) → ∑

v∈S f(g(v)) = mf (g,G).

This gives us that mf (g,G) ≥ SH(G, f). Since mf (g,G) ≤ SH(G, f), g is an optimal

weighting of G. �

Definition f : I → R is concave on an interval I if and only if for all x, y ∈ I and t ∈ [0, 1],

f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y).
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Proposition 3.3 Suppose f is continuous and concave on [0, 1] and S ⊆ V (G) satisfies:

for each u, v ∈ S,NG(u)\{v} = NG(v)\{u}. Suppose either that f(1) = 0 or that S

induces a clique in G. Then for any optimal weighting g of G, there is another optimal

weighting g̃ of G which is constant on S, agrees with g on V (G)\S, and minv∈S g(v) ≤

g̃|S ≤ maxv∈S g(v). Further, if S1, S2, . . . , Sk are disjoint sets of vertices of G each

satisfying the suppositions above, then there is an optimal weighting ĝ of G which is

constant on each Si, i = 1, 2, . . . , k, agrees with g at vertices not in any Si, and, for each

i, minv∈Si
g(v) ≤ ĝ|Si

≤ maxv∈Si
g(v).

Proof. Suppose we have an optimal weighting g of G with respect to f , so mf (g,G) =

SH(G, f). Let S ⊆ V (G) be such that for each u, v ∈ S with u 6= v, NG(u) \ {v} =

NG(v) \ {u}. We further suppose that either f(1) = 0 or S induces a clique in G. If g is

constant on S we can take g̃ = g, so assume that g is not constant on S. Let u0, u1 ∈ S

such that g(u0) = min
v∈S

g(v) < g(u1) = max
v∈S

g(v).

Now let us define a weighting ĝ by ĝ = g except at u0 and u1 where ĝ(u0) =

ĝ(u1) = g(u0)+g(u1)
2 . We will show that mf (ĝ, G) ≥ mf (g,G), which implies mf (ĝ, G) =

SH(G, f).

Let T ⊆ V (G) be a strict ĝ-dismantling set of least cost, so mf (ĝ, G) =

∑

v∈T f(ĝ(v)). We have four cases to consider:

Case 1: u0 /∈ T , u1 ∈ T In this case, for any connected component H of G − T ,

∑

u∈V (H) g(u) ≤ ∑

u∈V (H) ĝ(u) < 1 since g(u0) < ĝ(u0) and u0 /∈ T . Thus T is a strict

g-dismantling set, so mf (g,G) ≤ ∑

u∈T f(g(u)) ≤ ∑

u∈T f(ĝ(u)) = mf (ĝ, G) because f

is non-increasing.
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Case 2: u0 ∈ T , u1 /∈ T If this occurs, we can find another set T1 = (T \ {u0}) ∪ {u1}

with a dismantling cost equal to
∑

v∈T f(ĝ(v)), because ĝ(u0) = ĝ(u1). T1 is a strict

ĝ-dismantling set of vertices because T is, and u0 and u1 have the same neighbors other

than themselves. Since, by assumption, T is a cheapest strict ĝ-dismantling set, T1 must

be one as well. Further, T1 satisfies the requirement defining Case 1, so we are done in

this case.

Case 3: u0 /∈ T , u1 /∈ T If u0 and u1 are adjacent, then u0 and u1 will be in the same

component of G−T . Then for every connected component H of G−T ,
∑

u∈V (H) g(u) =

∑

u∈V (H) ĝ(u) < 1. So T is a g-dismantling set, whence mf (g,G) ≤ ∑

v∈T f(g(v)) =

∑

v∈T f(ĝ(v)) = mf (ĝ, G). Now if u0 and u1 are not adjacent, then S does not induce

a clique in G, so f(1) = 0. Now u0 and u1 may possibly not be in the same component

of G − T . If they are in the same component, then T is a strict g-dismantling set and

we are done. If they are not, then u0 and u1 are isolated vertices in G− T because they

have the same neighbor sets in G. We know that
∑

u∈V (H) g(u) ≤ ∑

u∈V (H) ĝ(u) < 1 for

every connected component H of G−T except the H consisting of the vertex u1. Now if

g(u1) < 1 then T is a g-dismantling set and we are done. If g(u1) = 1 then f(g(u1)) = 0

and so T ∪ {u1} is a strict g-dismantling set with the same cost as T . We have that

mf (g,G) ≤ ∑

v∈T∪{u1}
f(g(v)) =

∑

v∈T f(g(v)) =
∑

v∈T f(ĝ(v)) = mf (ĝ, G).

Case 4: u0 ∈ T , u1 ∈ T In this case, it is clear that for every connected component H of

G − T ,
∑

u∈V (H) g(u) =
∑

u∈V (H) ĝ(u) < 1 and so T is a strict g-dismantling set. Now,

mf (ĝ, G) =
∑

v∈T f(ĝ(v)) =
∑

v∈T f(g(v)) − [f(g(u0)) + f(g(u1))] + 2[f( g(u0)+g(u1)
2 )]

≥ mf (g,G)− f(g(u0))− f(g(u1))+2[f( 1
2g(u0)+ 1

2g(u1))] ≥ mf (g,G) since f is concave.

This completes the proof that ĝ is optimal.
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Now for any weighting h of G let d(h) = maxu∈S h(u) − minu∈S h(u). We will

show that for every optimal weighting h of G with d(h) > 0 there is another optimal

weighting h̃ satisfying the following: d(h̃) < d(h), h̃(v) = h(v) for all v ∈ V (G)\S, and

minv∈S h(v) ≤ h̃|S ≤ maxv∈S h(v).

Let h be any optimal weighting of G with d(h) > 0 and let h1 = ĥ, obtained

as above. By the definition of ĥ, h(v) = h1(v) for all v ∈ V (G − S), and clearly

minv∈S h(v) ≤ minv∈S h1(v) ≤ maxv∈S h1(v) ≤ maxv∈S h(v). Therefore d(h1) ≤ d(h).

If d(h1) < d(h), take h̃ = h1. Otherwise, we have d(h1) = d(h) > 0, which implies

that maxv∈S h1(v) = maxv∈S h(v) and minv∈S h1(v) = minv∈S h(v). Note that the set of

vertices in S where h1 achieves its maximum is the set of vertices in S where h achieves

its maximum, minus one vertex, and the same holds for the sets of points where h and

h1 achieve their minimum on S.

Let h2 = ĥ1. If d(h2) < d(h), take h̃ = h2. Otherwise, continue, letting h3 = ĥ2, and

so on. In going from hi−1 to hi, one vertex of S at which hi−1 is maximal has its weight

decreased, and one vertex at which hi−1 is minimal has its weight increased, and these

are vertices at which h is maximal, respectively minimal. Since there are only a finite

number of such vertices, we must have d(hi) < d(h) eventually. It is straightforward to

see that h̃ = hi has the desired properties.

Suppose that g is an optimal weighting of G and suppose that W = {h : V (G) →

[0, 1];h is an optimal weighting of G, h ≡ g on V (G)\S, and minv∈S g(v) ≤ h|S ≤

maxv∈S g(v)} contains no weightings which are constant on S. Let d = inf[d(h);h ∈ W ].

By the meaning of inf, for each positive integer k, there is a weighting hk ∈ W with

d ≤ d(hk) < d + 1
k
. Then (hk) is a sequence of optimal weightings. Since the hk are
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bounded functions on a finite set, V (G), the sequence (hk) has a convergent subsequence;

to avoid proliferation of subscripts, let us suppose that (hk) itself is convergent, i.e., for

each v ∈ V (G), (hk(v)) converges to some value h(v).

By Proposition 3.2, the weighting h is optimal, and it clearly satisfies the other

requirements for membership in W . We claim that d(h) = d. It is certainly clear by

the definition of d that d ≤ d(h). Let u0, u1 ∈ S be such that h(u1) = maxu∈S h(u)

and h(u0) = minu∈S h(u). Then d(h) = h(u1) − h(u0) = limk→∞(hk(u1) − hk(u0)) ≤

limk→∞ d(hk) since for each hk, d(hk) is the maximum distance between the values of

hk at two vertices in S. Thus, d(h) ≤ d. Since d ≤ d(h) and d(h) ≤ d then d(h) = d

as claimed. If d = 0 then h is an optimal weighting with d(h) = 0, so such a weighting

satisfying all conditions of the proposition must exist after all, contrary to supposition.

If d(h) > 0 then by previous remarks there is another optimal weighting h̃ ∈ W with

d(h̃) < d(h) = d. But this contradicts the definition of d, by which d is a lower bound of

a collection of numbers of which d(h̃) is one. So there must be an optimal weighting of

G which is constant on S satisfying all the conditions of the proposition after all.

Now suppose that S1, . . . , Sk are pairwise disjoint sets of vertices, each satisfying the

conditions of the proposition. We proceed by induction on k. We may as well suppose

that k > 1. By the induction hypothesis, there is an optimal weighting ĝk−1 of G, with

respect to f , which is constant on each of S1, . . . , Sk−1, agrees with g off

k−1
⋃

i=1

Si, and

whose constant value on Si is between the max and min values of g on Si, for each

i = 1, . . . , k− 1. If we let Sk play the role of S and ĝk−1 replace g in the argument above

we get an optimal weighting ĝ that satisfies the conclusion of the proposition. �
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Corollary 3.2 If f is continuous and concave on [0, 1], there is an optimal weighting of

G(l, r, s) satisfying the conclusion of Corollary 3.1 which is constant on each of Kl\Ks

and Kr\Ks, and Ks.

Proof. Let g be an optimal weighting of G(l, r, s) satisfying the conclusion of Proposition

3.1 and which is possibly not constant on Kl − Ks,Kr − Ks and/or Ks. Now let S1 =

V (Kl−Ks), S2 = V (Kr−Ks) and S3 = V (Ks). S1, S2 and S3 are disjoint sets of vertices

which satisfy the conditions of Proposition 3.3. Applying Proposition 3.3 to G(l, r, s)

with the weighting g of Corollary 1 will then yield a new optimal weighting ĝ which will

satisfy the conclusion of the corollary. �

3.3 An application of Proposition 3.3 and other useful results

The goal of this section is to present an application of some of the results presented

here in Chapter 3. We do this with special emphasis on an application of Proposition 3.3

in order to illustrate how it can be used to simplify and reduce the number of calculations

that are often required in computing the Shields-Harary numbers. It should be noted that

Proposition 3.3 arose out of an attempt to compute the SH numbers of two intersecting

cliques for general continuous cost functions with non-constant weightings. The main

usefulness of Proposition 3.3 lies in the fact that for any graph G containing a set or

disjoint sets of vertices satisfying the requirements of the proposition, if the cost function

is concave we can restrict the search for optimal weightings to weightings constant on that

set or those sets. This reduces the number of unknowns in the calculation of SH(G, f).

We illustrate this in proving the following corollary.
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Corollary 3.3 Let G =

st u uv

w wxyz
.

Then SH(G, 1 − x) = 4
3

Proof. Let S1 consist of the two vertices of G of degree 2 and let S2 consist of the two

vertices of G of degree 3. Since 1 − x is concave on [0, 1] and S1 and S2 are disjoint

sets of vertices satisfying the requirements of Proposition 3.3, then as a result of the

proposition, the computation of SH(G, 1−x) requires only considering those weightings

which are constant on each of S1 and S2.

Now suppose that our weighting g puts weights a and b on the vertices of S1 and S2

respectively. Since G = K4 − e, then by Corollary 3.1, we know that there is an optimal

weighting with f(x) = 1 − x such that b ≤ a. So we may as well assume that a ≥ b.

Suppose that S is a cheapest g-dismantling set of vertices of G. We have several

cases to consider:

Case 1: a, b ≥ 1
2 We may as well let a = b = 1

2 in this case. This gives us that S = S2

with a g-dismantling cost of 2f( 1
2) = 2(1 − 1

2) = 1.

Case 2: a ≥ 1
2 , b < 1

2 We can drive the cheapest dismantling cost as high as possible by

choosing a = 1
2 . This yields S = S1 with a g-dismantling cost of 2f( 1

2) = 1.

Case 3: a, b < 1
2 If 2b + a < 1 then S ( S1 with a g-dismantling cost of f(a) = 1 − a <

1. In this event, Cases 1 and 2 yield a higher cheapest dismantling cost. Otherwise,

2b + a ≥ 1 =⇒ a ≥ 1 − 2b. Again, we can drive the cheapest dismantling cost as high
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as possible by choosing a = 1 − 2b. This yields S = S1 with a g-dismantling cost of

2f(a) = 2(1−a) = 2(1−1+2b) = 4b. However, a ≥ b =⇒ 1−2b ≥ b =⇒ b ≤ 1
3 . So to

make 4b as high as possible, we choose b = 1
3 . Thus, if 2b + a ≥ 1, S has a g-dismantling

cost of 4
3 .

As a result, SH(G, 1 − x) = max[1, 1, 4
3 ] = 4

3 . �

Note: Since G = K4 − e, we could just as easily have used Theorem 2.1 to compute

SH(G, 1 − x). If so, the results would be that SH(G, 1 − x) = max[M1,M2,M3] =

max[max[0, 4
3 , 3

4 ]], 1, 1] = 4
3 as computed above.

Clearly, Theorem 2.1 provides a shorter route in this particular case. Since Kn − e

is just a special case of two intersecting cliques (namely two K3’s intersecting in a K2),

this serves as no big surprise. However, in the more general setting, where Theorem

2.1 will not always apply, we can see how useful Proposition 3.3 can be in its use in

the calculation above. In this particular case we only had to consider two unknown

quantities as opposed to four.

We now consider some other applications of these propositions. If G = G(3, 3, 1)

and f(x) = 1−x, then SH(G, f) = 3
2 . Corollary 3.2 tells us that there will be an optimal

weighting of G as illustrated in Figure 3.2 where either (1)a ≥ b ≥ x or (2)b ≥ a ≥ x.

Clearly, we may look for a weighting satisfying (1) without loss of generality.
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Figure 3.2: G(3, 3, 1)
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The simplification provided by Corollary 3.2 in the problem of determining

SH(G(l, r, s), f) for any concave cost function f is mainly to reduce the number of

variables involved from l + r − s(= 5 in this case) to 3. The additional restriction

that f(1) = 0 allows us the assumption that a, b, x < 1. Even with these simplifica-

tions, and even with a particular cost function f , the analysis necessary to determine

SH(G(l, r, s), f) and (what may be more important) an optimal weighting of the ver-

tices of G, will be rather tedious and involved and we leave an illustration of the proof

of SH(G(3, 3, 1), 1 − x) = 3
2 to the work done in [4].

We can explore this situation even further by considering the graph G(3, 3, 1) with

the cost function f(x) = 2 − x. In this case, it turns out that SH(G(3, 3, 1), 2 − x) = 5.

Now, the analysis is complicated by the possibility of using 1 as a weight. Any vertex

with weight 1 must be removed in strict dismantling and with f(x) = 2 − x it turns out

to be optimal to use 1 as a weight. In fact, two optimal weightings with f(x) = 2 − x

are given by a = b = x = 1 and a = 1, b = x = 1
2 .

In the case of a complete r-partite graph Kn1,...,nr
, r ≥ 2, and a concave function

satisfying f(1) = 0, the application of Proposition 3.3 allows us to look for optimal

weightings which are constant on each part of size ni ≥ 2, and constant on the clique

formed by the parts with only one vertex. Thus, the number of variables is reduced from

n =

r
∑

i=1

ni either to r − s + 1 or to r, if s = {i;ni = 1} = 0. Thus, for the complete

bipartite graphs Km,n, except for K1,1 = K2 and such a cost function, there are only

two variables to worry about, the constant weights on each part.



Chapter 4

The Shields-Harary Numbers of Km,n for Some Cost Functions

4.1 Some generalities

Throughout, let Km,n have parts M and N with |M | = m ≤ n = |N |, and let f be

some continuous non-increasing cost function.

Lemma 4.1 Suppose a, b ∈ (0, 1) and g is the weighting of the vertices of G = Km,n

constantly equal to a on M and to b on N . Then there is a strict g-dismantling set S of

least cost (with respect to f) satisfying one of the following:

(i) S = M ;

(ii) S = N ;

(iii) S ( M ;

(iv) S ( N .

Further, if a > b then possibility (iv) can be excluded, and if a ≤ b then possibility (iii)

can be excluded.

Proof. Since a, b < 1, choosing either S = M or S = N strictly g-dismantles G.

Also, any set of vertices of G whose removal disconnects G will contain either M or N .

Therefore, one of M or N is a strict g-dismantling set of least cost among those (if any)

whose removal disconnects G.

Now we consider the cases in which there is a strict g-dismantling set Ŝ of minimum

cost such that G − Ŝ is connected, and Ŝ is neither M nor N (G − N is connected if

m = 1, and G − M is connected if m = n = 1).

34
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Case 1: a > b If Ŝ ( M , we are done, so suppose that Ŝ = M̂ ∪ N̂ , M̂ ( M , ∅ 6= N̂ ( N .

If |N̂ | ≥ |M − M̂ |, then we can find a no more expensive g-dismantling set S of vertices

by defining S = M . Otherwise, we can still find a cheaper g-dismantling set S of vertices

by defining S = (Ŝ − N̂) ∪ M̂2 where M̂2 ( M − M̂ and |M̂2| = |N̂ |. Since, in either

case, S consists only of vertices with weight a and |S| is never more than |Ŝ|, we can

certainly do no better.

Thus, if a > b, then there is a strict g-dismantling set S of least cost such that either

S = M or S ( M .

Case 2: a ≤ b If Ŝ ( N we are done, so, as in Case 1, suppose that Ŝ = M̂ ∪ N̂ , N̂ ( N ,

∅ 6= M̂ ( M . If |M̂ | ≥ |N − N̂ |, then we can find a no more expensive g-dismantling

set S of vertices by defining S = N . Otherwise, we can still find a no more expensive

g-dismantling set S by defining S = (Ŝ − M̂) ∪ N̂2 where N̂2 ( N − N̂ and |N̂2| = |M̂ |.

Since, in either case, S consists only of vertices of weight b and |S| is never more than

|Ŝ|, we can certainly do no better.

So, if a ≤ b, then there is a strict g-dismantling set S of least cost such that either

S = N or S ( N . �

Lemma 4.2 Among weightings constant on M and on N , there is one of greatest strict

dismantling cost whose value on M is less than or equal to its value on N .

Proof. Throughout, suppose a < b ≤ 1 and let f be some continuous, non-increasing

cost function and G = Km,n . Let g̃ be a weighting of the vertices of G constantly equal

to a on M and b on N . Now let g be a weighting of the vertices of G constantly equal

to b on M and a on N . We will show mf (g̃, G) ≥ mf (g,G), which implies the result.
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Let S be a cheapest strict g-dismantling set of vertices of G and let S̃ be a cheapest

strict g̃ dismantling set of vertices of G . If b = 1, then because of the requirement of

strict dismantling, S = M and S̃ = N ; since n ≥ m, our result follows in this case.

Otherwise, b < 1 and so by Lemma 4.1, we only need consider the cases where S = M ,

S = N or S ( M and for S̃, S̃ = M , S̃ = N or S̃ ( N .

Case 1: S = M If S = M , then S has g-dismantling cost of mf(b), so mf (g,G) = mf(b).

If G − S̃ is disconnected, then either S̃ = M and so mf (g̃, G) = mf(a) ≥ mf(b) =

mf (g,G) or S̃ = N in which case mf (g̃, G) = nf(b) ≥ mf(b) = mf (g,G). Otherwise,

G − S̃ is connected and so we may assume that S̃ ( N . So let |S̃| = k. If k ≥ m, then

mf (g̃, G) = kf(b) ≥ mf(b) = mf (g,G). Otherwise, k < m.

Since S is a strict g-dismantling set, then na + b ≥ 1. Now, since S̃ is a cheapest g̃

dismantling set, then it must be the case that (n−k)b+ma < 1. However, (n−k)b+ma ≥

na + b ≥ 1 whenever b(n − (k + 1)) ≥ a(n − m) which is true when k < m since

n− (k + 1) ≥ n−m whenever k < m. This implies that k ≥ m and so we are done with

this case.

Case 2: S = N If S = N , then S has g-dismantling cost of nf(a). Clearly mf(b) ≤

nf(a), and M is a dismantling set for g, so this case can be dismissed.

Case 3: S ( M If S ( M , then mf (g,G) = lf(b) where l = |S|. Now suppose that

S̃ = N , in which case mf (g̃, G) = nf(b) ≥ lf(b) = mf (g,G) or if S̃ = M , then

mf (g̃, G) = mf(a) ≥ lf(b) = mf (g,G). So if G − S̃ is disconnected, then mf (g̃, G) ≥

mf (g,G). Now, if G − S̃ is connected, then we may assume that S̃ ( N and so let

|S̃| = k. If k ≥ l, then mf (g̃, G) = kf(b) ≥ lf(b) = mf (g,G). Since S̃ is a strict

g̃-dismantling set, (n − k)b + ma < 1. Now, since S is a cheapest strict g-dismantling
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set, we know that (m− l +1)(b)+na ≥ 1. Therefore, (m− l +1)b+na > (n−k)b+ma,

which implies that 0 ≥ (n − m)(a − b) > (l − (k + 1))b. Thus, l ≥ k. �

Lemma 4.3 Among all weightings of G = Km,m constantly equal to a on one partition

of G and constantly equal to b on the other partition of G, there is one of greatest strict

dismantling cost such that a = b.

Proof. Let g be a weighting of G = Km,m such that weight a is assigned to the vertices

of one partition, which we shall call Ma and weight b is assigned to the vertices of the

other partition of G which we shall call Mb. Without loss of generality, we may as well

assume that a > b. Now let g̃ be the weighting of G such that weight a is assigned to all

of the vertices of G. We shall show that mf (g̃, G) ≥ mf (g,G).

Let S̃ be a cheapest strict g̃-dismantling set of vertices. By Lemma 4.1 and since

a > b either S̃ = Ma or S̃ ( Ma (likewise for the cheapest g-dismantling set of vertices).

These are the two cases that we must consider.

If S̃ = Ma, then it must be the case that m(a)+a ≥ 1 and mf (g̃, G) = mf(a). Since

S̃ disconnects G, then S̃ is also a g-dismantling set of vertices, though not necessarily the

cheapest g-dismantling set of vertices. If mb+a ≥ 1 then since ma+a ≥ mb+a, S̃ is also

the cheapest g-dismantling set of vertices and so mf (g,G) = mf (g̃, G). Otherwise, the

cheapest g-dismantling set of vertices is a proper subset of S̃ and so mf (g,G) < mf (g̃, G).

If S̃ ( Ma then ma+a < 1 and there is some 0 < k < m such that (m−k)a+ma < 1

and (m − k + 1)a + ma ≥ 1. This gives us that mf (g̃, G) = kf(a). Since a ≥ b,

(m − k)a + mb ≤ (m − k)a + ma < 1 which implies that the cardinality of the cheapest

g-dismantling set is no greater than the cardinality of S̃. As the vertices of both of these

sets are coming from Ma (because a ≥ b), mf (g,G) ≤ mf (g̃, G). �



38

Corollary 4.1 If f is non-increasing, continuous and concave on [0,1] and f(1) = 0,

then SH(Km,m, f) = SH0(Km,m, f).

Proof. Since M and N satisfy the requirements on the Si in Proposition 3.3, it follows

from that proposition that there is an optimal weighting of Km,n which is constant on

each of M and N . By lemma 4.3, therefore, there is an optimal weighting of Km,n which

is constant, which proves the claim. �

Corollary 4.2 SH(G = Km,m, 1 − x) =
m2

m + 1
and the constant weighting 1

m+1 is

optimal.

Proof. Since f(x) = 1 − x is non-increasing, continuous and concave on [0, 1], and

f(1) = 0, then we can apply corollary 4.1 and so only need worry with weightings which

are constant on G.

By the above paragraph, SH(G, 1 − x) = SH0(G, 1 − x) = max
1≤k≤n

p(k,G)f

(

1

k

)

(a

result stated in Chapter 1). Now p(k,G) is the minimum cardinality of a set of vertices of

V (G) such that each component of G−S has k−1 or fewer vertices). In fact, p(k,G)f( 1
k
)

is the dismantling cost when the vertices bear the constant weight 1
k
. For G = Km,m,

we get the following, with n = 2m:
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p(1, G) = 2m

p(2, G) = m

p(3, G) = m

...

p(m − 1, G) = m

p(m,G) = m

p(m + 1, G) = m

p(m + 2, G) = m − 1

p(m + 3, G) = m − 2

...

p(m + k,G) = m − k + 1

...

p(2m − 1, G) = 2

p(2m,G) = 1

So max
1≤k≤n

p(k,G)f(
1

k
) = max

1≤k≤m

[

p(k,G)f

(

1

k

)

, p(m + k,G)f

(

1

m + k

)]

= max
1≤k≤m

[

m

(

1 − 1

k

)

, (m − k + 1)

(

1 − 1

m + k

)]

.

Now the value m(1− 1
k
) attains its maximum value when k = 2 to get a value of m

2 .

The value (m−k+1)(1− 1
m+k

) attains its maximum value at k = 1 (as it is a decreasing

function of positive k) and that value is (m)(1 − 1
m+1 ) = m2

m+1 > m
2 . As a result,

SH(Km,m, 1 − x) = max
1≤k≤n

p(k,G)f(
1

k
) =

m2

m + 1
, and the constant weighting 1

m+1 is

optimal. �
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Lemma 4.4 Suppose that 1 ≤ m ≤ n. There is an integer k ∈ {1, . . . , n − 1} satisfying

k(n−k)
n−k+1 ≥ m if and only if n ≥ m + 2

√
m.

Proof. Solving x(n−x)
n−x+1 ≥ m for x, assuming x ∈ [1, n−1], so that n−x+1 ≥ 2 > 0, we get

that x2− (n+m)x+m(n+1) ≤ 0 which has a real solution x,
n+m−

√
(n+m)2−4m(n+1)

2 ≤

x ≤ n+m+
√

(n+m)2−4m(n+1)

2 , if and only if (n + m)2 − 4m(n + 1) = (n − m)2 − 4m ≥ 0,

i.e. if and only if n − m ≥ 2
√

m (recollect that n − m ≥ 0), or n ≥ m + 2
√

m.

Now suppose that n ≥ m + 2
√

m. We want to know if
[

n+m−
√

(n−m)2−4m

2 ,
n+m+

√
(n−m)2−4m

2

]

⋂{1, . . . , n − 1} 6= ∅.

First of all, it can easily be verified that 1 ≤ n+m−
√

(n−m)2−4m

2 ≤ n − 1, so [c, d] =
[

n+m−
√

(n−m)2−4m

2 ,
n+m+

√
(n−m)2−4m

2

]

will contain an integer among 1, . . . , n−1 unless

d < n− 1 and d− c < 1. If d = c, i.e. (n−m)2 − 4m = 0, meaning n = m + 2
√

m (note

m is a perfect square), then n ≡ m mod 2 so c = d = n+m
2 is an integer, and is clearly

in the right range (i.e., is among 1, . . . , n − 1).

If d > c then (n−m)2 − 4m > 0 =⇒ (n−m)2 − 4m ≥ 1 =⇒
√

(n − m)2 − 4m =

d − c ≥ 1, and we are done. �

Lemma 4.5 SH(Kn, 1 − x) = max
k=1,...,n−1

k(n − k)

n − k + 1
.

Proof. From [2], we know that SH(Kn, 1−x) = max
k=1,...,n

(n−k+1) f
(

1
k

)

(where f(x) = 1−

x) = max
k=2,...,n

(n−k+1)f

(

1

k

)

= max
k=1,...,n−1

kf

(

1

n − k + 1

)

= max
k=1,...,n−1

k

(

1 − 1

n − k + 1

)

= max
k=1,...,n−1

k(n − k)

n − k + 1
. �

Remark: Applying a little calculus to g(x) = x(n−x)
n−x+1 shows that it achieves its max

on [1, n − 1], n ≥ 3, at n + 1 −
√

n + 1 (and that max is (
√

n + 1 − 1)2). It follows

from this and the analysis of g that g achieves its max on the integers 1, . . . , n − 1 at
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either n + 1 −
√

n + 1, if n + 1 is a perfect square, or at one of the 2 integers closest to

n + 1 −
√

n + 1, namely, n + 1 − d
√

n + 1e or n + 1 − b
√

n + 1c.

Proposition 4.1

SH(Km,n, 1 − x) =











m if n ≥ m + 2
√

m

max[ 1
n+1b

(n+m)2

4 c, SH(Kn, 1 − x)] < m if m ≤ n < m + 2
√

m

Proof. For any weighting of Km,n with weights from [0, 1], take M together with all

vertices of N which are weighted 1, for a dismantling cost ≤ m. Thus SH(Km,n, 1−x) ≤

m.

Suppose that m ≤ n < m + 2
√

m. Let k = bn+m
2 c. Weight each vertex of N with

b = k+1−m
n+1 , and each vertex of M with a = 1− k(n+m−k)

m(n+1) . Note that a is positive because

k(n + m − k) ≤ (n+m)2

4 , so k(n+m−k)
m(n+1) ≤ (n+m)2

4m(n+1) < 1 because m ≤ n < m + 2
√

m implies

(n − m)2 < 4m, so (n + m)2 = (n − m)2 + 4mn < 4m(n + 1).

It is straightforward to verify that m(1−a) = k(1−b) and that ma+(n−k+1)b = 1.

Therefore Km,n with this weighting can be dismantled by removing M , or k vertices of

N , at the identical (minimum) cost of k(1 − b) = k(n+m−k)
n+1 = 1

n+1b
(m+n)2

4 c. Thus

SH(Km,n, 1 − x) ≥ 1
n+1b

(n+m)2

4 c if m ≤ n < m + 2
√

m.

Now suppose that n ≥ m + 2
√

m. By Lemma 4.4, for some k ∈ {1, . . . , n − 1},
k(n−k)
n−k+1 ≥ m. Weight M with 0 and each vertex of N with 1

n−k+1 . Then the only

dismantling sets competing with M are the k-subsets of N ; but each of these costs

k(1 − 1
n−k+1) = k(n−k)

n−k+1 ≥ m. Thus M is the cheapest dismantling set, at a cost of m, so

we have SH(Km,n, 1 − x) ≥ m; thus SH(Km,n, 1 − x) = m if n ≥ m + 2
√

m.

Now suppose that m ≤ n < m + 2
√

m. We want to show that SH(Km,n, 1 − x) =

max[ 1
n+1b

(n+m)2

4 c, SH(Kn, 1 − x)] and that this value is < m.
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By Proposition 3.3 and Lemma 4.2, there is an optimal weighting of the vertices of

Km,n constant on each of M and N , with the weight on M no greater than that on N .

Let a denote the weight on M and b the weight on N ; keep in mind that a ≤ b.

Suppose that a = 0. We must have that b < 1 (if b = 1, we can dismantle by

removing N , at no cost) and nb ≥ 1 (otherwise, if nb < 1, the empty set is dismantling,

again at no cost). Therefore, for some k ∈ {1, . . . , n − 1}, (n − k)b < 1 ≤ (n − k + 1)b.

By Lemma 4.1, the cheapest dismantling set is either M (at a cost of m) or S ⊆ N ,

|S| = k. Since reducing b down to 1
n−k+1 will not change that fact, but will increase

the cost of S, by the fact that our weighting is optimal we may as well suppose that

b = 1
n−k+1 . Then the cost of S is k(1 − 1

n−k+1) = k(n−k)
n−k+1 < m, by Lemma 4.4 (since

m ≤ n < m+2
√

m), so S is the cheapest (or, cheaper) dismantling set, and SH(Km,n, 1−

x) = k(n−k)
n−k+1 . Since we may as well take k ∈ {1, . . . , n − 1} so that k(n−k)

n−k+1 is maximized,

we conclude that SH(Km,n, 1 − x) = SH(Kn, 1 − x), by Lemma 4.5, if a = 0 in the

optimal weighting.

Also, weighting with a = 0 and b = 1
n−k+1 , where k ∈ {1, . . . , n − 1} maximizes

k(n−k)
n−k+1 , shows that SH(Km,n, 1−x) ≥ SH(Kn, 1−x), if m ≤ n < m+2

√
m. Therefore,

SH(Km,n, 1 − x) ≥ max[ 1
n+1b

(n+m)2

4 c, SH(Kn, 1 − x)] if m ≤ n < m + 2
√

m, and it

remains to demonstrate the reverse inequality. We have disposed of the case when there

is an optimal weighting with a = 0 on M .

Now suppose that a > 0 (and m ≤ n < m + 2
√

m). Again, from Lemma 4.1, we

have that our cheapest dismantling set S will be one of three, either S = M , S = N or

S ( N . We now consider each of these three cases.
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Case 1: S = M We may as well assume that SH(Km,n, 1−x) = m(1−a) > 1
n+1b

(n+m)2

4 c.

Noting that 1
n+1b

(n+m)2

4 c ≥ mn
n+1 , we have that m(1 − a) > mn

n+1 and thus that a < 1
n+1 .

Case 1A: ma + b ≥ 1 If ma+b ≥ 1, then b ≥ 1−ma > 1− m
n+1 = n−m+1

n+1 and

(since S is a cheapest g-dismantling set) m(1− a) ≤ n(1− b) =⇒ m + nb ≤

n + ma < n + m
n+1 =⇒ b < n−m

n
+ m

n(n+1) . So if m(1 − a) > mn
n+1 , b satisfies

n−m+1
n+1 < b < n−m

n
+ m

n(n+1) . However, n−m+1
n+1 < n−m

n
+ m

n(n+1) =⇒ 0 < 0.

This contradiction disposes of this case.

Case 1B: ma + (n − k)b < 1 ≤ ma + (n − k + 1)b for some k ∈ {1, . . . , n − 1}.

Since S is a cheapest g-dismantling set, we also have that m(1 − a) ≤

k(1 − b) =⇒ b ≤ 1 − m(1−a)
k

and from the original inequality here in

the case 1B, we have that 1−ma
n−k+1 ≤ b < 1−ma

n−k
.

Claim If a > 0 then it must be the case that ma + (n − k + 1)b = 1 and

m(1 − a) = k(1 − b).

Proof of Claim If both ma + (n − k + 1)b > 1 and m(1 − a) < k(1 − b),

reduce a slightly without changing b, so that the new value ã, still positive,

satisfies mã + (n − k + 1)b ≥ 1 and m(1 − ã) ≤ k(1 − b). Then S = M is

still a cheapest dismantling set with respect to the new weighting, but then

ã < a =⇒ SH(Km,n, 1 − x) = m(1 − a) < m(1 − ã) ≤ SH(Km,n, 1 − x), a

contradiction. Therefore, it is not possible that both inequalities are strict.

If ma + (n − k + 1)b > 1 and m(1 − a) = k(1 − b) then b = 1 − m
k
(1 − a).

Now if we decrease the value of a just a little to a value ã then b will decrease

by a small amount to a new value b̃ = 1 − m
k

(1 − ã), and we can still have

the inequality mã + (n − k + 1)b̃ > 1. However, this implies that S = M is
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still a cheapest g-dismantling set with respect to the new weighting with a

dismantling cost of m(1 − ã). Since a > ã we get that SH(Km,n, 1 − x) =

m(1 − a) < m(1 − ã) ≤ SH(Km,n, 1 − x), a contradiction. Therefore, if

m(1 − a) = k(1 − b) then ma + (n − k + 1)b = 1.

Now if m(1 − a) < k(1 − b) and ma + (n − k + 1)b = 1 then b = 1−ma
n−k+1 .

If we lower a just a little to a value say ã then b will increase slightly to a

value b̃ and the inequality m(1 − ã) < k(1 − b̃) can be maintained. Then we

can actually increase the cost of removing M which will still be a cheapest

dismantling set. We get a contradiction once again, as above. �

Since a > 0, then from claim 1 we have that ma + (n − k + 1)b = 1 and

m(1−a) = k(1−b) and so we want the a and/or the b that satisfy this system

of equations. Finding both of these values gives us our optimal weighting.

Since ma+(n−k+1)b = 1 and m(1−a) = k(1− b) we can solve this system

by rewriting m(1 − a) = k(1 − b) as m − k = ma − kb and eliminating the

ma from both equations. This leaves us with 1 + k −m = (n + 1)b =⇒ b =

k−m+1
n+1 =⇒ k ≥ m in this case. Now m(1− a) = k(1− b) = k(1− 1+k−m

n+1 ) =

k(n−k+m
n+1 ). However, k(n+m−k)

n+1 achieves its maximum value 1
n+1b

(n+m)2

4 c,

for k ∈ {1, . . . , n − 1}, at k = bn+m
2 c, so SH(Km,n, 1 − x) = k(n+m−k)

n+1 ≤
1

n+1b
(n+m)2

4 c, contrary to assumption, which finishes this case.

Case 2: S ( N Let |S| = k ∈ {1, . . . , n − 1} and since S is a cheapest g-dismantling set

then we have that ma+(n−k)b < 1 ≤ ma+(n−k+1)b and k(1−b) ≤ m(1−a). We also

may as well assume that SH(Km,n, 1 − x) = k(1 − b) > 1
n+1b

(n+m)2

4 c (keeping in mind

that m ≤ n < m + 2
√

m). If we consider the possibility of lowering b to try to exact a
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slightly higher cheapest dismantling cost, we see that at least one of the two inequalities,

ma + (n − k + 1)b ≥ 1 and k(1 − b) ≤ m(1 − a) must be equality. Now suppose that

we have ma + (n − k + 1)b > 1 and k(1 − b) = m(1 − a). Then M is also a cheapest

dismantling set, i.e., we are in Case 1, and so we are done in this case. Now suppose

that ma + (n − k + 1)b = 1 and k(1 − b) < m(1 − a). From the equation, we get that

a = 1−(n−k+1)b
m

and so if we lower b, a increases. Pushing b down very slightly, we get new

weights b̃ < b and ã > a so that k(1− b̃) < m(1− ã) and mã+ (n− k +1)b̃ = 1. Clearly,

S is still a cheapest g-dismantling set but with a dismantling cost of k(1− b̃) > k(1− b).

This yields a contradiction to the supposition that SH(Km,n, 1 − x) = k(1 − b), and

finishes the disposal of Case 2.

Case 3: S = N We may as well assume that SH(Km,n, 1−x) = n(1− b) > 1
n+1b

(n+m)2

4 c

(keeping in mind that a > 0 and m ≤ n < m+2
√

m). Since S is a cheapest g-dismantling

set, we have that ma+b ≥ 1 and m(1−a) ≥ n(1−b). We want to consider the possibility

of lowering b a little in order to exact a higher cheaper dismantling cost. As in previous

cases, it turns out that it must be the case that at least one of the inequalities ma+b ≥ 1

and m(1−a) ≥ n(1−b) must be equality. Suppose that ma+b = 1 and m(1−a) > n(1−b).

This implies that a = 1−b
m

and so if we decrease b slightly, we increase a slightly and the

inequality m(1−a) > n(1−b) can still hold. So N is still the cheapest g-dismantling set,

but its new dismantling cost is actually higher than the assumed value of SH(Km,n, 1−x)

and so we have a contradiction leading us to the conclusion that b cannot be lowered at

all; and in fact, it must be the case that if ma + b = 1, then m(1 − a) = n(1 − b).

Therefore, it must be that m(1 − a) = n(1 − b), which implies that M is also a

cheapest dismantling set, which returns us to case 1 and finishes the proof. �
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4.2 The constant-on-each-part Shields-Harary numbers of Km,n

Let P0(m,n, f) be defined as SH(Km,n, f) is, except that only weightings con-

stant on each of M,N are allowed. The arguments in [2] show that P0(m,n, f) is

achieved by some such weighting (assuming f is continuous), and Lemma 4.2 guar-

antees that P0(m,n, f) will be achieved with a weight on M less than or equal to

that on N . Proposition 3.3 implies that if f is concave on [0, 1] and f(1) = 0 then

P0(m,n, f) = SH(Km,n, f). We will make some general remarks about P0(m,n, f) and

then attempt to calculate if for particular cost functions f , especially f(x) = (1 − x)p,

0 < p ≤ 1, and f(x) = 1 − xp, p ≥ 1, since these are concave on [0, 1] and f(1) = 0.

Corollary 4.1 shows that as long as f is concave on [0, 1] and f(1) = 0 then

P0(m,m, f) = SH0(Km,m, f) and as a direct result, Corollary 4.2 gives the value of

P0(m,m, 1 − x) = m2

m+1 . Proposition 4.1 gives the value of P0(m,n, 1 − x) for all m ≤ n.

Now in terms of different cost functions, it is not difficult to see that the following

inequalities should hold:

P0(m,n, 1 − x) ≤ P0(m,n, 1 − xp) where p ≥ 1

P0(m,n, 1 − x) ≤ P0(m,n, (1 − x)q) where 0 < q ≤ 1

In fact, we conclude with the following generalization of these two inequalities.

Proposition 4.2 Let f1(x) and f2(x) be non-increasing, continuous functions on [0,∞)

satisfying f1(x) ≤ f2(x) for all x ∈ [0,∞). Then for any of the Shields-Harary parame-

ters P = P (G, f), and any G, P (G, f1) ≤ P (G, f2).

Proof. Suppose g is an admissible (depending on how P is defined) weighting of the

vertices of G and suppose S is a g-dismantling set (of whichever type is called for in
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the definition of P ) of least cost, with respect to f2. Then S is a g-dismantling set and

∑

u∈S

f1(g(u)) ≤
∑

u∈S

f2(g(u)). Consequently, the minimum cost of dismantling (g,G) with

respect to f1 is no greater than that of dismantling with respect to f2. Since this holds

for all admissible g, and since P (G, fi) is the supremum of these minimum costs, i = 1, 2,

it follows that P (G, f1) ≤ P (G, f2). �

Corollary 4.3 If f1, f2 are as in the Proposition above, and if f1(x) ≤ f2(x) for all

x ∈ [0, 1], then P0(m,n, f1) ≤ P0(m,n, f2).

Proof. In the definition of P0, only the values of the cost function on [0, 1] matter. To

apply Proposition 4.1, extend fi to [0,∞) by setting fi(x) = fi(1), for x > 1, i = 1, 2. �

Corollary 4.4 For 0 < p ≤ 1 ≤ q, m ≤ n < m+2
√

m, 1
n+1b

(n+m)2

4 c ≤ min[SH(Km,n, 1−

xq), SH(Km,n, (1−x)p)], and for n ≥ m+2
√

m, m = min[SH(Km,n, 1−xq), SH(Km,n, (1−

x)p)].

Proof. In the definition of SH, only the values of the cost function on [0, 1] matter.

1 − x ≤ 1 − xq for q ≥ 1 and x ∈ [0, 1] and 1 − x ≤ (1 − x)p for 0 < p ≤ 1 and x ∈ [0, 1],

thus proving the corollary, for m ≤ n < m + 2
√

m, and proving m ≤ min[SH(Km,n, 1 −

xq), SH(Km,n, (1 − x)p)] if n > m + 2
√

m.

By the same argument that was applied in the case f(x) = 1 − x, it is easy to see

that for any cost function f satisfying f(0) = 1, f(1) = 0, SH(Km,n, f) ≤ m. This

completes the proof of the Corollary. �



Bibliography

[1] Andrew Blinco, John Holliday and Sarah Holliday, On the Constant-Weight Shields-
Harary Numbers of Cayley Graphs, Congressus Numerantium 159 (2002) 151-158.

[2] Frank Harary and Peter D. Johnson, Jr., The Shields-Harary Indices of Vulnerability
of a Graph, Mathematical and Computer Modelling (2001), 299-310.

[3] John Holliday and Peter D. Johnson, Jr., The Shields-Harary Numbers of Kn − e,
Congressus Numerantium 147 (2001), 153-159.

[4] John Holliday and Peter D. Johnson, Jr., Shields-Harary Numbers of Graphs With
Respect to Continuous Concave Cost Functions, International Journal of Mathemat-
ics and Mathematical Sciences 62, (2003), 3921-3930.

[5] Sarah Holliday and Peter D. Johnson, Jr., On the Constant-Weight Shields-Harary
Numbers of a Tree, Congressus Numerantium 153 (2001), 187-191.

[6] Peter D. Johnson, Jr., A Graph Parameter of Shields and Harary, Congressus Nu-
merantium 82 (1991), 193-200.

[7] Stephen Schanuel, A Combinatorial Problem of Shields and Pearcy, Procedures of the
American Mathematical Society 65 (1977), No. 1, 185-186.

[8] Jared Wunsch, The Shields-Harary Number for Wheel and Broken-Wheel Graphs,
Discrete Applied Mathematics 59 (1995), 193-199.

[9] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ,
1996.

48


