
On the Lattice Boltzmann Method: Implementation and Applications

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Kang Jin

Certificate of Approval:

Paul G. Schmidt
Professor
Mathematics and Statistics

Amnon J. Meir, Chair
Professor
Mathematics and Statistics

Wenxian Shen
Professor
Mathematics and Statistics

Jay Khodadadi
Professor
Mechanical Engineering

George T. Flowers
Interim Dean
Graduate School

On the Lattice Boltzmann Method: Implementation and Applications

Kang Jin

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 19, 2008

On the Lattice Boltzmann Method: Implementation and Applications

Kang Jin

Permission is granted to Auburn University to make copies of this dissertation
at its discretion, upon the request of individuals or institutions and

at their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Kang Jin was born in Shanghai, China in 1979. He did all his undergraduate study

in Shanghai. He graduated from East China Normal University in 2001 with a Bachelors

Degree in Mathematics. He then went to the United States in 2002. He accepted an

offer from Auburn University, and began his graduate study as well as being a Teaching

Assistant. He got the Master of Science in Mathematics in 2005, and Then continue his

study as a Ph.D student in Auburn University.

iv

Dissertation Abstract

On the Lattice Boltzmann Method: Implementation and Applications

Kang Jin

Doctor of Philosophy, December 19, 2008
(B.S., East China Normal University, 2001)

125 Typed Pages

Directed by Amnon J. Meir

We studied the development and different types of the Lattice Boltzmann method.

We gave several implementations. Then we presented two moving boundary treatments

for the Lattice Boltzmann method, the second one is new. We also gave an incompresi-

bility enhancement for the Lattice Boltzmann method in order to better simulate some

problems using the moving boundary. Finally we gave a MHD solution using the Lattice

Boltzmann method.

v

Acknowledgments

I thank Auburn University Mathematics and Statistics department for offering me

the Graduate Teaching Assistant position. This is very important to me. Without this

offer I could not be where I am today. I also thank the faculty in Math department

who give me lots of help. I thank my committee members Dr. Wenxian Shen, Dr. Paul

Schimdt and Dr. Jay Khodadadi. Special thank to my advisor, Dr. Amnon J. Meir. His

support and advice are the key to my work.

vi

Style manual or journal used Journal of Approximation Theory (together with the

style known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

vii

Table of Contents

List of Figures x

1 Introduction 1
1.1 Background . 1
1.2 The FHP method . 3

1.2.1 Basic model . 3
1.2.2 Macroscopic quantities . 7

1.3 The Lattice BGK method . 7
1.3.1 The D2Q7 method . 7
1.3.2 Other frequently used Lattice Boltzmann Methods 22

1.4 Applications . 25

2 Moving Boundary Problems 26
2.1 Background . 26
2.2 Moving boundary for LBM . 30

2.2.1 Moving boundary without mass conservation 30
2.2.2 Moving boundary with mass conservation 34

2.3 Sharp boundary definition details . 39
2.3.1 Line . 40
2.3.2 Arc . 41

2.4 Implementation . 41
2.5 Conclusion and Future Work . 42

3 Incompressibility 45
3.1 Background . 45
3.2 An incompressibility enhanced scheme for LBGK 47

3.2.1 The scheme . 47
3.2.2 An example . 48

3.3 Incompressibility with moving boundary 48
3.4 Conclusion . 54

4 MHD With Constant B 55
4.1 Backgound . 55
4.2 Implementations . 56

4.2.1 Example I . 56
4.2.2 Example II . 59

4.3 Conclusion . 61

viii

5 Conclusion 62

Bibliography 64

Appendices 66

A FHP collision look-up table 67

B Partial Matlab code I: d2q9_rotating_polygon.m 69

C Partial matlab code II: d2q9_rotating_polygon_collision.m 82

ix

List of Figures

1.1 The hexagonal grid. 4

1.2 FHP collision rule . 6

1.3 The d2q7_lattice. 8

1.4 Left boundary of a hexagonal grid. 15

1.5 Driven cavity at Re = 10. 17

1.6 Driven cavity at Re = 100. 18

1.7 Driven cavity at Re = 200. 18

1.8 Driven cavity at Re = 400. 19

1.9 Ghia Ghia Shin’s result. 19

1.10 Driven cavity at Re = 800. 20

1.11 Dimensionless x-velocity profile at the geometry center. 20

1.12 Dimensionless y-velocity profile at the geometry center 21

1.13 A uniform flow past a cylinder . 23

1.14 The D2Q9 lattice. 24

2.1 No-slip Boundary . 28

2.2 Slip Boundary . 29

2.3 Above: boundary on the half-way; Below: boundary on the node 29

2.4 Cases when q>1/2 or q<1/2. 31

2.5 The change of state illustration. 33

2.6 A half-way bounce-back boundary. 35

x

2.7 Bounce-back boundary when q < 1/2. 37

2.8 Bounce-back boundary when q > 1/2. 38

2.9 An example of a boundary node. 39

2.10 The change of state in this bounce-back based scheme. 40

2.11 The definition of a straight line boundary. 41

2.12 The definition of an arc boundary. 42

2.13 The rotating triangle example. 43

3.1 A test using the incompressible Lattice BGK method 49

3.2 The velocity contour of the damper with the standard Lattice BGK method. 50

3.3 The velocity contour of the damper with the incompressible Lattice BGK
method. 51

3.4 The density of the fluid in the damper with the standard Lattice BGK
method. 52

3.5 The density of the fluid in the damper with the incompressible Lattice
BGK method. 53

4.1 The boundary conditions of φ. 57

4.2 The result of the cubic box MHD test. 58

4.3 The example of a magnetic pump. 59

4.4 The velocity contour of the magnetic pump example. 60

xi

Chapter 1

Introduction

1.1 Background

The Lattice Gas model and Lattice Boltzmann method are methods for simulating

fluid flows. The flow of incompressible fliuds can be described by the Navier-Stokes

equation

∂�u

∂t
+ (�u ·∇)�u = −∇P + ν∇2�u (1.1)

and the continuity equation

∇ · �u = 0 (1.2)

where �u is the velocity, P = p/ρ0 the kinematic pressure, p the pressure, ρ0 the constant

mass density and ν = η/ρ0 the kinematic shear viscosity, and η the dynamic shear

viscosity.

The Lattice Boltzmann method is derived from the Lattice Gas method. These

two methods are different from other methods such as finite difference, finite volume,

and finite elements which are based on the discretization of partial differential equations

(top-down models [1]). These two method are based on a discrete microscopic model

which conserves desired quantities (such as mass and momentum), the partial differential

equations can then be derived by multi-scale analysis (bottom-up models).

First introduced in 1973, by Hardy, de Pazzis and Pomeau (HPP) [2], the HPP

method is a Lattice Gas method. It simulates the microscopic behavior of the fluid

by utilizing a square grid. The basic idea was to create a simple Cellular Automaton

1

obeying nothing but conservation laws at a microscopic level that was able to reproduce

the complexity of real fluid flows. Fluid particles of identical mass are only allowed to

travel on the lattice at unit speed. All lattice sites, which are the intersections of the

lattice, are exclusive. This means that only one particle is allowed to travel at each of

the four directions of one site. This gives a maximum of 4 particles at each site. Each

site can only take a finite number of states, actually 24 = 16 states. At each time step,

a collision occurs at each site, according to a collision rule which conserves the density

and the momentum. Then particles travel in straight lines (free streaming) until they

meet some other particle or the boundary.

This method is computer friendly, since only a 4-bit variable is needed, and only

logical operations are repuired. Also, only the information from the four neighbours

are needed at each collision and streaming, this method is easy to parallelize. Simple

calculations as the HPP required, however, it leads to a macroscopical anisotropical

Navier-Stokes equation. This defect prevents the HPP from being widely used to model

fluid problems. In 1986 Frisch, Hasslacher and Pomeau (FHP) [3] introduced a lattice

gas method based on a hexagonal grid. This grid change made the FHP method exhibit

isotropy. Details of the FHP are discussed in the next section.

Similar to the HPP, logical operations made the FHP method easy to implement on

computers. Now the biggest problem of the cellular automata is noise, since it is based

on a Fermi-Dirac distribution of the equilibrium population because of the exclusion

principle. The Fermi-Dirac distruibution is a distribution that applies to particles called

fermions. Fermions have half-integral values of the quantum mechanical property called

spin and are “antisocial” in the sense that two fermions cannot exist in the same state.

Protons, neutrons, electrons, and many other elementary particles are fermions. The

2

results of the FHP is very noisy. Ensemble average and space average should both be

used. This may result in a grid size thousand times larger than the orighnal problem.

For example, if the final solution on a 100 × 100 grid is needed, averaging on 10 × 10

cells and ensemble averaging on 10 experiments, then the size of the calculation is 10

times the size that is on a 1000× 1000 grid! The lack of Galilean invariance is another

big problem of the FHP. The collision rules can be written in a look-up table. For the

FHP method, this table should have a size of 27× 7. For multi-dimensional simulations,

huge look-up table associated with the collision rule made this almost impossible.

The Lattice Boltzmann method overcomes these defects very well. Instead of using

boolean variables at each site, the Lattice Boltzmann method uses real numbers. The

first method, proposed by McNamara and Zanetti [4], replaced the boolean variables

with their ensemble average. The statistics noise is greatly reduced. After that the

linear collision operator [5] came into being and then the enhanced collision rule [6].

The breakthrough was the single relaxation time approximation, known as the Lattice

BGK method, named after Bhatnagar, Gross, and Krook [7]. This method dramatically

reduced computation and gives pretty good results in various applications. In this article,

we will discuss in detail the Lattice BGK method. Simulations up to Reynolds number

1000 are presented.

1.2 The FHP method

1.2.1 Basic model

The Lattice Gas Cellular Automata simulates molecular collision in a discretized

fashion. Consider a hexagonal grid shown in Figure 1.1. Each site is surrounded by 6

3

Figure 1.1: The hexagonal grid. One site can contain a maximum of 7 particles.

neighbours, connected by unit vectors

�ei = (sin(
π

2
(i− 1)), cos(π

2
(i− 1))), i = 1, ..., 6. (1.3)

Exclusion principles allow a maximum of 7 particles at one site, one moving particle

in each of the 6 directions, together with a rest particle in the middle. Here we use

an occupation boolean variable ni(�x, t), i = 0, 1, ..., 6 (0 stands for the rest particle) to

indicate particle presence or non-presence at the ith direction of site �x at time t. Thus a

7-bit variable is enough to carry the information at one site. All particles have the same

mass and the same speed.

One time step consists of a collision and a streaming. Collision only occurs at

the sites, while streaming takes place on the connection between each two sites. the

collision rules should conserve mass and momentum. Figure 1.2 shows the basic set of

collision rules [8]. The left column are the in-states and the right are the out-states. In-

state means that particles are moving towards the center of the site. After the collision

4

follows the out-state, particles then move away from the center of the site and begin

streaming. So a full time step is:

in-state =⇒ collision =⇒ out-state =⇒ streaming =⇒ in-state.

By rotating, flipping, and combining these 7 rules, one can get a full set of 128 collision

rules. Notice that some in-states will lead to two equivalent out-states. It is not necessary

to pick an out-state randomly at every site. Notice that picking a random number is

very time consuming. Instead, one can pick a single random boolean variable for all the

sites at one time step.

The 6-direction discretization makes this method lack degrees of freedom on speed

directions, yet it can display all the complexities of fliud phenomema [9]. This is the

simplest isotropic model. By limiting the types of collision, the FHP can be divided into

three types. The FHP-I only allows collisions of type (a) and (b). No rest particle is

present. Types of collision other than (a) and (b) are replaced by simple streamig as if

the particles don’t collide at all. FHP-II adds the rest particle, together with collision

type (c), (d), and (e). FHP-III includes all types of collisions.

A no-slip boundary condition can be imposed by a bounce back scheme, which

means particles that hit the boundary at any angle should move back (bounce back) in

the opposite direction. Reflection will lead to a slip boundary. The Dirichelet boundary

condition can be imposed as a random variable on the boundary with a probability

distuibution indicating the value at the boundary, then applying the collision followed

by the bounce back scheme.

5

Figure 1.2: FHP collision rule

6

1.2.2 Macroscopic quantities

Noise is the biggest problem of the FHP method. Hence both space average and

ensemble average should be used. The space average is achieved by averaging on small

cells, for example, 16× 16 cells. The density is given by ρ =
P
i
ni. And ρ0 is the mean

density, which is the average on the whole grid.

Here are some method-dependent quantities derived by Frisch et al. [3] for the three

types of FHP methods.

FHP-I FHP-II FHP-III

d ρ0/6 ρ0/7 ρ0/7

cs
1√
2

q
3
7

q
3
7

ν 1
12

1
d(1−d)3 −

1
8

1
28

1
d(1−d)3

1
1−4d/7 −

1
8

1
28

1
d(1−d)

1
1−8d(1−d)/7 −

1
8

where d is the mean density per link, cs is the speed of sound, ν is the kinematic viscosity.

1.3 The Lattice BGK method

1.3.1 The D2Q7 method

The scheme

Consider again the hexagonal lattice showed in figure 1.3. This time, the occupation

number is replaced by its ensemble average value, or, the particle distribution function

fi(�x, t). The meaning of this function is the probability of finding a particle moving in

the ith direction of the site �x at time t. The collision rules in FHP are replaced with

a collision operator Ωi, and the particle distribution function should satisfy the Lattice

7

Figure 1.3: The d2q7_lattice.

Boltzmann equation

fi(�x+ ei, t+ 1)− fi(�x, t) = Ωi. (1.4)

This collision operator has lots of forms. Here we talk about the simplest one, the

BGK single relaxation time model. Introduce the single relaxation parameter τ , and the

equilibrium distribution function feqi (�x, t). By assuming that the particle distribution

function approaches the equilibrium state at a constant rate, we should get

Ωi = −
1

τ
(fi − feqi). (1.5)

This gives us the equation

fi(�x+ ei, t+ 1) = (1− w)fi(�x, t) + wfeqi (�x, t) (1.6)

where the weight w = 1
τ . The equilibrium distribution function has the form

feqi (�x, t) = ρ(�x, t)

µ
1− z

6
+

D

6c2
(�ei · �u) +

D(D + 2)

12c4
(�ei · �u)2 −

D�u2

12c2

¶
, i = 1, ..., 6 (1.7)

feq0 (�x, t) = ρ(�x, t)(z − u2

c2
) (1.8)

8

where ρ(�x, t) =
P
i
fi is the density. Here z is a parameter, we choose z = 1

2 . Also D is

the dimension, here D = 2. c = |ei|, here c = 1. And the speed of sound cs is controlled

by the parameter z by

cs =

r
1− z

2
. (1.9)

The kinematic viscosity can be adjusted by choosing a proper relaxation parameter τ ,

and the relation is

ν =
c2

D + 2

µ
τ − 1

2

¶
. (1.10)

Recovering the Navier-Stokes Equations

The conservation laws From the definition of the unit vectors ei, one can get the

following equations [11]

X
i

eiα = 0, (1.11)

X
i

eiαeiβ =
c2b

D
δαβ, (1.12)X

i

eiαeiβeiγ = 0, (1.13)

X
i

eiαeiβeiγeiδ =
c4b

D(D + 2)
(δαβδγδ + δαγδβδ + δαδδβγ), (1.14)

and X
i

eiαeiβeiγeiδei� = 0,

where eiα stands for the α direction component (one of the i, j directions on the 2

dimentional plane) of the unit vector �ei. Using the first two, one can obtain the moments

9

of the equilibrium distribution function. First sum the equilibrium distribution function

and get conservation of mass and momentum

X
i

feqi = ρ, (1.15)

and

X
i

feqi eiα = ρuα. (1.16)

Also, from the rest of the equations, one gets

X
i

feqi eiαeiβ =
ρ(1− z)c2

D
δαβ + ρuαuβ, (1.17)

and X
i

feqi eiαeiβeiγ =
ρc2

D + 2
(uαδβγ + uβδαγ + uγδαβ). (1.18)

The Chapman-Enskog expansion The distribution funcition can be expanded as

follows

fi = f
(0)
i + �f

(1)
i + �2f

(2)
i + ... (1.19)

where |�| ¿ 1. Here we can use the Knudsen number Kn as �. The Knudsen number is

defined as

Kn =
λ

L

where λ is the mean free path, and L is the characteristic length. One can think this

expension of the distuibution function f as an equilibrium distribution function f (0)

together with some pertubations f (1), f (2),..., of higher order in �. We also expand �x and

10

t as

�x =
�x1
�
+ ..., t =

t1
�
+

t2
�2
+ ... (1.20)

where �x1 = o(�), t1 = o(�), t2 = o(�2). In this case, one can get

∂

∂xα
= �

∂

∂x1α
+ ..., (1.21)

and

∂

∂t
= �

∂

∂t1
+ �2

∂

∂t2
+

Now we perform a Taylor expension on the Lattice Boltzmann equation (1.4) in both

space and time, we obtain

"µ
∂

∂t
+ eiα

∂

∂xα

¶
+
1

2

µ
∂

∂t
+ eiα

∂

∂xα

¶2#
fi(�x, t) = Ωi. (1.22)

Notice that Einstein summation is used. So eiα
∂

∂xα
=

P
α=1,2

eiα
∂

∂xα
. Using the expensions

of f,
∂

∂xα
,
∂

∂t
, together with equation (1.5), we get

"µ
�
∂

∂t1
+ �2

∂

∂t2
+ �eiα

∂

∂x1α

¶
+
1

2

µ
�
∂

∂t1
+ �2

∂

∂t2
+ �eiα

∂

∂x1α

¶2#
(1.23)

×
³
f
(0)
i + �f

(1)
i + �2f

(2)
i

´
= −1

τ
(f
(0)
i + �f

(1)
i + �2f

(2)
i − feqi).

Set the 0th order approximation f
(0)
i to be the equilibrium distribution function feqi .

The conservation of mass and momentum require that
P
i
f
(k)
i = 0 and

P
i
f
(k)
i eiα = 0,

11

for k = 1, 2. From these equations to first-order in � we get

∂

∂t1
f
(0)
i + eiα

∂

∂x1α
f
(0)
i = −f

(1)
i

τ
. (1.24)

Summing over i and from equation (1.15) and (1.16) we get

∂ρ

∂t1
+

∂

∂x1α
ρuα = 0. (1.25)

Now multiply equation (1.24) by the unit vectors eiβ and again sum over i, using equation

(??) gives

∂

∂t1
ρuβ +

∂

∂x1α
ρuαuβ −

∂

∂x1α

ρ(1− z)c2

D
δαβ = 0. (1.26)

From equation (1.23) to second-order in � and by equation (1.24) we get

∙
∂

∂t2
+
1

2

∂

∂t1

µ
∂

∂t1
+ eiα

∂

∂x1α

¶
+
1

2
eiα

∂

∂x1α

µ
∂

∂t1
+ eiβ

∂

∂x1β

¶¸
f
(0)
i

+

µ
∂

∂t1
+ eiα

∂

∂x1α

¶
f
(1)
i = −1

τ
f
(2)
i . (1.27)

Summing over i and using equation (1.25), all
∂

∂t1
+ eiα

∂

∂x1α
vanished, and one gets

∂

∂t2
ρ = 0.

Again multiplying the equation by a unit vector eiγ gives the following

∙
∂

∂t2
eiγ +

1

2

∂

∂t1

µ
∂

∂t1
eiγ + eiαeiγ

∂

∂x1α

¶
+
1

2
eiαeiγ

∂

∂x1α

µ
∂

∂t1
+ eiα

∂

∂x1α

¶¸
f
(0)
i

+

µ
∂

∂t1
eiγ + eiαeiγ

∂

∂x1α

¶
f
(1)
i = −1

τ
f
(2)
i . (1.28)

12

By multiplying equation (1.24) by eiαeiγ
∂

∂x1α
, one can rewrite the second term of f (1)i

as

∂

∂x1α
eiαeiγf

(1)
i = −τ

µ
∂

∂t1

∂

∂x1α
eiαeiγf

(0)
i +

∂

∂x1β

∂

∂x1α
eiαeiβeiγf

(0)
i

¶
. (1.29)

Combining this term with the third term of f (0)i , one gets

∙
∂

∂t2
eiγ +

1

2

∂

∂t1

∂

∂t1
eiγ + eiαeiγ

∂

∂x1α

−
µ
τ − 1

2

¶µ
∂

∂t1

∂

∂x1α
eiαeiγ +

∂

∂x1β

∂

∂x1α
eiαeiβeiγ

¶¸
f
(0)
i

+
∂

∂t1
eiγf

(1)
i = −1

τ
f
(2)
i . (1.30)

Summing over i, the right-hand side is 0. The second term of f (0)i is 0 by equation (1.26).

The term of f (1)i is 0 by the conservation of momentum requirement. The third term

of f (0)i can be obtained from equation (??) to the order O(u) and then converting time

derivatives into spatial derivatives using equation (1.25), we get

∂

∂t2
ρuγ =

µ
τ − 1

2

¶ ∙
∂

∂t1

∂

∂x1α

ρ(1− z)c2

D
δαγ

+
∂

∂x1α

∂

∂x1β

ρc2

D + 2
(uαδβγ + uβδαγ + uγδαβ)

¸
=

µ
τ − 1

2

¶ ∙
∂

∂x1α

∂

∂x1α

ρc2

D + 2
uγ

+
∂

∂x1γ

µµ
2c2

D + 2
− (1− z)c2

D

¶
∂

∂x1α
ρuα

¶¸
. (1.31)

13

By setting the kinematic shear viscosity ν =
¡
τ − 1

2

¢ c2

D + 2
and the kinematic bulk

viscosity ς =
¡
τ − 1

2

¢µ 2c2

D + 2
− (1− z)c2

D

¶
, the above equation becomes

∂

∂t2
ρuγ = ν

∂2

∂x21α
ρuγ +

∂

∂x1γ

µ
ς

∂

∂x1α
ρuα

¶
. (1.32)

Using all these equations (provided above), one can show that the Navier-Stokes equa-

tion, the momentum equation

∂ρ

∂t
uα +

∂

∂xβ
ρuβuα = −

∂

∂xβ

∙
ρ(1− z)c2

D
δαβ

¸
+ ν

∂2

∂x2β
ρuα +

∂

∂xα

µ
ς

∂

∂xβ
ρuβ

¶
(1.33)

and the continuity equation

∂ρ

∂t
+

∂

∂xα
ρuα = 0 (1.34)

are satisfied. For an incompressible flow, these two equations reduce to equation (1.1)

and (1.2).

Boundary and initial conditions

The bounce back scheme is still good for the no-slip boundary condition. Bounce

back boundary conditions only give first-order accuracy. A Dirichlet boundary condition

can be achieved by solving the system of equations at the boundary sites

f1 +
1

2
f2 −

1

2
f3 − f4 −

1

2
f5 +

1

2
f6 = ρux, (1.35)

√
3

2
(f2 + f3 − f5 − f6) = ρuy, (1.36)

14

Figure 1.4: Left boundary of a hexagonal grid.

where �u = (ux, uy) is the velocity vector. For example, in the simulation of a driven cavity

flow, assume the top boundary has the speed �u = (u0, 0). The f2, f3 (up directions) are

from the inside sites, and you can keep f1, f4 (horizontal directions) as constants. Only

f5, f6 (down directions) are unknowns. This is a linear system of equations involving

two unknowns. Notice that when �u = (0, 0), it’s a bounce back scheme.

The left boundary shown in Figure 1.4 is not smooth in a microscopic view because

of the hexagonal structure of the grid. But it is smooth enough in a macroscopic view.

One can take the macroscopic boundary as the average of this boundary.

For initial conditions, one may use the equilibrium distribution from the given val-

ues of ρ and �u. Bad initial distribution, for example, far away from the equilibrium

distribution, will make the method unstable, and eventually lead to blow up.

15

Implementation

Consider a driven cavity flow again. This time, an array of 7 floating-point variable

is needed for the information at one site. So we create a T × 7 matrix M , where T is

the total number of sites. We number the sites the same way as in FHP. The program

structure is also pretty much the same as in FHP, except that in the LBGK method, the

collision and the streaming are combined together by the Lattice Boltzmann equation.

The equilibrium distribution function is a mapping from the given ρ and �u to the matrix

M . So first we can use this to initialize M . In the collision, we calculate the ρ and �u by

ρ(�x, t) =
X
i

M(n, i), (1.37)

ux(�x, t) = �M(n) · �eix, (1.38)

and

uy(�x, t) = �M(n) · �eiy, (1.39)

where n is the number of the site corresponding to �x, and �ei = (sin(π2 (i− 1)), cos(
π
2 (i−

1))), which is the link to the 6 neighbour sites. Then apply the weighted equilibrium

distribution function (equation 1.6) with a proper τ .

Results and data analysis

Driven Cavity Here we present a driven cavity example again. In figures 1.5, 1.6,

1.7, 1.8, and 1.10, we give the velocity vectors (left) and velocity contour (right) at the

steady state for Reynolds number 10, 100, 200, 400 and 800. We give the result of Ghia,

Ghia, and Shin [12] for Reynolds number at 400 for comparison (The computations were

16

Figure 1.5: Driven cavity at Re = 10.

performed using the time-marching capabilities of WIND to approach the steady-state

flow starting from the freestream conditions). We also give the velocity profiles for u

and v through the geometirc center of the cavity. For comparison, refer to Shuling Hou

and Qisu Zou et al [13].

Flow past a cylinder

This is an example of a uniform flow past a cylinder. This example is done on a

360 × 1000 grid. The speed of the uniform flow coming from the left is 0.5. And the

flow is free to flow out at the right end. The cylinder was placed at the center of the left

inlet with a diameter 120. The Reynolds number is 400. The top and bottom are no-slip

boundaries. It is well know that at a Reynolds number greater than 100, the flow past a

cylinder will give a Von Karman vortex street. Here we give the figures of both velocity

17

Figure 1.6: Driven cavity at Re = 100.

Figure 1.7: Driven cavity at Re = 200.

18

Figure 1.8: Driven cavity at Re = 400.

Figure 1.9: Ghia Ghia Shin’s result. The plot of the velocity contour with a Reynolds
number of 400

19

Figure 1.10: Driven cavity at Re = 800.

Figure 1.11: Dimensionless x-velocity profile at the geometry center of the cavity for
Reynolds number 10, 100, 200, 400, 800. Dashed line is the result from Ghia Ghia Shin
at Reynolds number 400.

20

Figure 1.12: Dimensionless y-velocity profile at the geometry center of the cavity for
Reynolds number 10, 100, 200, 400, 800. Dashed line is the result from Ghia Ghia Shin
at Reynolds number 400.

21

contour and vorticity contour at time step 5000. Both figures show the back half of the

cylinder.

1.3.2 Other frequently used Lattice Boltzmann Methods

D2Q9 method

D2Q9 method is the most commonly used 2 dimensional LBM. It has 3 discrete grid

speed: 0, c and
√
2c. It has 9 directions: 8 moving directions, plus the rest particle. This

can be discribed by the link vectors that point to the neighbors, which read

ei = (0, 0) i = 0, (1.40)

ei = (±c, 0), (0,±c), i = 1, 2, 3, 4, (1.41)

and

ei = (±c,±c), i = 5, 6, 7, 8. (1.42)

Figure 1.14 shows the D2Q9 Lattice. The equilibrium dsitribution is

feqi (x, t) =Wiρ(x, t)

∙
1 + 3

ei ·−→u
c2

+
9

2

(ei ·−→u)2
c4

− 3
2

−→u 2
c2

¸
, i = 0, ..., 8, (1.43)

where

Wi =
4

9
, i = 0, (1.44)

Wi =
1

9
, i = 1, 2, 3, 4, (1.45)

Wi =
1

36
, i = 5, 6, 7, 8, (1.46)

22

Figure 1.13: An example of a uniform flow past a cylinder for Re = 400. Above: velocity
contour. Below: vorticity contour.

23

Figure 1.14: The D2Q9 lattice.

and the kinematic viscosity is given by

ν =
c2

3

µ
τ − 1

2

¶
. (1.47)

D3Q19 method

The D3Q19 is a 19-direction 3-dimensional LBM. The link vectors are

ei = (0, 0, 0) i = 0, (1.48)

ei = (±c, 0, 0), (0,±c, 0), (0, 0,±c), i = 1, ..., 6, (1.49)

and

ei = (±c,±c, 0), (±c, 0,±c), (0,±c,±c) i = 7, ..., 18. (1.50)

Note that just like the D2Q9 LBM, D3Q19 also features 3 discrete speed: 0, c, and
√
2c,

so it shares the same form of equilibrium distribution with D2Q9, with a different set of

24

Wis, which read

Wi =
1

3
, i = 0, (1.51)

Wi =
1

18
, i = 1, ..., 6, (1.52)

Wi =
1

36
, i = 7, ..., 18. (1.53)

1.4 Applications

In the next 3 Chapters, we will give several applications of the Lattice Boltzmann

method. In Chapter 2, we will talk about the moving boundary problems using the

Lattice Boltzmann method. We present two different moving boundary treatments. In

Chapter 3, we give an incompressibility enhancement of the Lattice Boltzmann method.

In Chapter 4, we give an application that couples the Lattice Boltzmann method with a

Poisson’s equation to solve a MHD flow problem.

25

Chapter 2

Moving Boundary Problems

2.1 Background

Basic types of problems

The moving boundary problems are a type of CFD problems which have time de-

pendent solid moving boundaries. Numerous physical phenomena involve solid-fluid

interaction. This is in contrast to a static boundary where the boundary nodes are fixed

on a fixed mesh. These types of problems include deformation of structures, moving solid

objects, and boundaries that evolve in time. The main methods of solving these moving

boundary problems can be briefly classified into two major categories: the Lagrangian

methods, and the Eulerian methods.

On one hand, the Lagrangian methods maintain a mesh that follows the movement

of the solid. The solid-fluid interface is explicitly and accurately tracked. And boundary

conditions can be applied at the exact location of the interface at each time step. How-

ever, the regeneration of the mesh is time consuming. Also, in some cases, the resulting

grid may be unevenly distributed. This degrades the accuracy on the boundary.

The Eulerian methods, on the other hand, use a mesh that remains fixed. These

method can roughly be categorized into diffuse type and sharp type. For the diffuse

type, the exact location of the solid-fluid interface is unknown. The methods accuracy

is to the order of the grid scale. The boundary conditions are applied in the sense of the

governing equations of the fluid and the solid. The obvious advantage is that there is

no need to regenerate the mesh at every time step. However, due to the unclarity of the

26

exact boundary location, when the interface is arbitrarily shaped, improved resolution

is diffcult to obtain.

Perhaps the more commonly used method is the immersed moving boundary method

(Peskin 1977). A fixed Cartesian grid is used, and an explicit sharp interface is defined.

This method is a mixture of Eulerian and Lagrangian framework. Clearly, this method

shares the virtures of both the Eulerian and the Lagrangian method: accurate boundary

condition can be applied without regenerating the mesh. At the same time, however,

several problems arise. One issue that needs to be dealt with is keeping track of those

nodes that go from the solid state to fluid state, or fluid state to solid state. This is

an issue that is not encountered in a pure Lagrangian or pure Eulerian method. A

steep change will result in a huge discontinuity on the boundary. One method is to

use a fractional-step scheme (H. S. Udaykumar), which is based on a one-dimensional

interpolation.

Basic boundary types for LBM

For Lattice Boltzmann method, methods that are close to the immersed moving

boundary can be used. This is due to the nature of the lattice boltzmanm method,

that is, it uses a fixed Cartisian grid, and it is easy to manage local behaviors. In the

next section, we will present two methods for treating moving boundaries in the LBM.

The first one is a widely used method which based on a quadratic interpolation. This

method is second order accurate, but at the cost of violating mass conservation. The

second method we will present is a newly developed method, which is closer in spirit

to the fractional-step scheme. It conserves mass, and the change of state is gradual,

without a steep discontinuity.

27

Figure 2.1: No-slip Boundary

Before continuing, we describe several basic boundary types for LBM. The two most

common types of boundary conditions are: Dirichlet boundary condition and Newmann

boundary condition. In LBM, the simple realizations are of no-slip boundary and slip

boundary (Figure 2.1, 2.2). The no-slip boundary uses a bounce-back scheme, without

considering the angle of incidence of the particle. This makes the no-slip boundary very

easy to implement, since one doesn’t need to know the exact shape of the boundary.

The slip boundary is of reflection type. The angle of incidence should equal to the angle

of reflection. This makes the slip boundary much more difficult and complicated to

implement.

The moving particles in LBM travell to the neighbor node in one time step. In order

to make sure that all particles are on the nodes, one could either set the boundary at

the nodes, or in the middle of two neighbor nodes. Figure 2.3 shows the two normally

used boundary positions. One of the difficulties of the moving boundary is to find a way

so that the boundary can be set in any intermediate position.

28

Figure 2.2: Slip Boundary

Figure 2.3: Above: boundary on the half-way; Below: boundary on the node

29

2.2 Moving boundary for LBM

2.2.1 Moving boundary without mass conservation

The scheme

A moving boundary treatment for LBM was proposed by P. Lallemand and L.S. Luo

[14]. This method is based on the simple bounce-back boundary scheme and quadratic

interpolations, yielding a no-slip boundary condition. As stated in the previous section,

the difficulty lies in defining the boundary at a position other than the half-way between

nodes and on the nodes. For simplicity, we just study the case of one particle direction.

Figure 2.4 shows two cases when the boundary is not at a standard position. Here q

is the distance between the boundary and the closest node, assuming that the distance

between any two neighboring nodes is 1.

For the case q < 1/2, the problem is how to define the left direction particle on node

rj , since it should came from the right direction particle traveling between rj and r0j at

the previous time step. The idea is to implement a quadratic interpolation at position

x using the information on rj , r0j , and r00j . For the case q > 1/2, position x is outside

of rj , r0j , and r00j . To avoid using extrapolation, one can do the streaming (propagation)

first, and then implement a quadratic interpolation on node rj using the information on

x, r0j , and r00j .

Also to be considered is the extra term Fi introduced by the fluid-solid interac-

tion. By considering the mass conservation
P

Fi = 0 and the momentum conservationP−→eiFi = ρ−→uw, one can get Fi = wi(
−→ei · −→uw), where −→uw is the speed of the moving

boundary, and wi is the weight of the mass on i direction.

30

Figure 2.4: Cases when q>1/2 or q<1/2.

31

The actual formulas are: For q < 1/2

fi(rj , t) = q(1 + 2q)bfi(rj , t) + (1− 4q2)bfi(r0j , t)− q(1− 2q)bfi(r00j , t) + wi(
−→ei ·−→uw), (2.1)

And for q > 1/2

fi(rj , t) =
1

q(2q + 1)
bfi(rj , t)+ 2q − 1

q
fi(r

0
j , t)−

2q − 1
2q + 1

fi(r
00
j , t)+

wi

q(2q + 1)
(−→ei ·−→uw), (2.2)

where bfi is the distribution from the previous time step, and for D2Q9 LBM,

wi =

⎧⎪⎨⎪⎩ 2/3, i = 1, 2, 3, 4

1/6, i = 5, 6, 7, 8

. (2.3)

Note in the case q > 1/2, there is a correction of 1/[q(2q + 1)] [14]. This is obtained

by considering the analytic solution for the Couette flow. These two formulas coincide

when q = 1/2, and reduce to a simple bounce-back scheme.

Change of state treatment

For immersed moving boundary problems with a Cartisian grid and a sharp interface,

the change of state (a node goes either from fluid state to solid state, or from solid state

to fluid state) should be carefully considered. Figure 2.5 shows nodes that change state

as a sharp interface moves. The nodes that changed their state are marked with triangles.

The two different states are marked with squares and circles.

32

Figure 2.5: The change of state illustration.

On the one hand, the change of a node from the fluid state to solid state is simplely

considered a non-issue, since the fluid motion is not calculated in solid. And the treat-

ment is to set the distribution on those nodes to zero. On the other hand, the change of

a node from the solid state to fluid state is not trivial. Some method has to be used to

"create" the particle distribution of the LBM at those nodes.

Several methods could be used. A commonly used method is to use the information

from neighbors and extrapolate the distributions. One should use the direction which is

closest to −→n , the out-normal vector of the moving interface. That is, to pick the direction
−→ei which maximizes the quantity −→n ·−→ei . Then, use a linear or quadratic extrapolation, or

some other method, to get the distributions on the newly changed state nodes. Another

method is to use the velocity of the moving interface and the average density of the

system, or a local average density, to get the distributions.

33

An example

2.2.2 Moving boundary with mass conservation

An obvious compromise of the quadratic interpolation moving boundary is that

the mass is not conserved. Perhaps the total mass conservation in the whole system

is not violated, but locally the problem could be serious in some cases. In Figure 2.5

consider the moving boundary as a slim bar. What the quadratic interpolation does

is, it continuously eleminate particles that are in front of the bar along the moving

direction, and creates particles behind it. This results in an effect that fluid particles

are continuously infiltrating through the bar, this reduces the presure difference between

the two sides of the bar. If this issue is critical to the whole system, then some other

method should be used. This is the motivation for us to develop a new method for LBM

that conserves mass.

The scheme

Let’s consider again a half-way bounce-back boundary shown in Figure 2.6. And

first let’s only consider this in one direction. Then at the next time step, due to the

streaming, the following changes will be performed.

f1 = f 01,

f 02 = f2,

and

f2 = f1.

34

Figure 2.6: A half-way bounce-back boundary.

In the case when q < 1/2, the boundary nodes no longer occupy a whole unit space,

but just a part of it. The first graph in Figure 2.7 shows this case. In order to explain

things, the second graph in Figure 2.7 reflects the left direction distribution to the right

side. This makes all the particles to be right direction particles. After the streaming

process, all particles move to the right by one unit distance, as indicated in the third

graph of Figure 2.7. Then the space occupied by f1, f2, and f 02 (second graph of figure

2.7) has been replaced by f 01, f1, and f2 (third graph of figure 2.7). By comparing the

space being occupied, one gets the transition formulas

f1 = (1/2 + q)f 01, (2.4)

f 02 = f2 +
(1/2− q)

(1/2 + q)
f1, (2.5)

and

f2 =
2q

(1/2 + q)
f1 + (1/2− q)f 01. (2.6)

35

Similarly, as shown in Figure 2.8, in the case when q>1/2, the transition formulas

read

f1 =
(q − 1/2)
(q + 1/2)

f1 + f 01, (2.7)

f 02 =
f2

q + 1/2
, (2.8)

and

f2 =
q − 1/2
q + 1/2

f2 +
1

q + 1/2
f1. (2.9)

In either of these two cases, the occupied space of the boundary nodes does not

equal to a unit space, thus the fis can not represent the true distribution of a LBM

on that node. One can use the normalized distribution efi = fi/(1/2 + q) to get macro

quantities like density and velocity on the boundary nodes. For a D2Q9 method, one

needs to find the q for all directions. Figure 2.9 shows a typical example of a boundary

node. The occupied space on each direction is different. But in most of the cases, for

opposite directions, they are the same. The collision process includes normalizing the

distribution, collision, then un-normalizing. In this process, the mass is not perfectly

conserved. However, if the speed of the moving boundary is much slower than the grid

speed, this imperfection can be neglect.

The change of state

In this scheme, the change of state transition is smooth and requires no extra work.

As shown in Figure 2.10, the upper graph shows a situation when the boundary is very

close to a node, which is the case q < 1/2. Although the occupied space is small on the

boundary node, the normalized distribution should not be too different from the neighbor

36

Figure 2.7: Bounce-back boundary when q < 1/2.

37

Figure 2.8: Bounce-back boundary when q > 1/2.

38

Figure 2.9: An example of a boundary node.

node. Consider the case that after a time step, this node is coverd by the boundary, as

shown in the lower graph of Figure 2.10. Now the node is gone, but most of the volume

is still there. And the neighbor node becomes the boundary node with q > 1/2. So very

naturally, it will take over this part that the previous boundary node left. Given that

the boundary moves slowly enough, the sum of the occupied space of the previous two

node will not differ too much from the occupied space of the later boundary node. Thus

a smooth transition is achieved.

2.3 Sharp boundary definition details

The implementation of the moving boundary requires the knowledge of the exact

location of the sharp boundary. We demostrate the definition of two simple and widely

used boundaries: line and arc. Before locating the exact boundary, one needs to find the

39

Figure 2.10: The change of state in this bounce-back based scheme.

boundary layer first. This is a layer that contains nodes that are closest to the boundary

in all directions.

2.3.1 Line

The definition of a line can be done by using a normal vector of this line. The

advantage of this is that, by taking the projection along the normal vector, it is very

easy to get the perpendicular distance to the line. Figure 2.11 shows a straight line

boundary, which lies between v and v0. n is the normal vector to the line, and l is the

shortest distance between the line and the center point c. We wish to find q, the distance

between v and the line along v0− v. Assume that |v− v0| = 1, q is given by

q =
v · n− l

(v − v0) · n .

40

Figure 2.11: The definition of a straight line boundary.

2.3.2 Arc

The arc is of course defined by a partial circle. Figure 2.12 shows an arc boundary,

where r is the radius of the arc. Let ei = v0 − v, the distance of v to the arc along ei is

given by

q = v · ei|ei|
−

s
r2 −

¯̄̄̄
v− (v · ei|ei|

)
ei
|ei|

¯̄̄̄2
.

2.4 Implementation

Here we present an example of this moving boundary scheme. This example is a

rotating triangle in a square domain full of fluid. All boundaries are no-slip boundaries.

This example is done in a 300300 grid using D2Q9 Lattice Boltzmann method. Figure

41

Figure 2.12: The definition of an arc boundary.

2.13 shows the velocity contour with streamlines. This picture is taken after 2 full cycles

(720 degree).

2.5 Conclusion and Future Work

In this chapter we presented two moving boundary treatment for the Lattice Boltz-

mann method. Both define sharp boundaries, and both require that the speed of the

moving boundary is much slower than the grid speed c. The first uses quadratic interpo-

lation. It is of second order accurate, but at the cost of voilating the mass conservation.

The second is of first order accurate, and conserves mass.

We would like to point out a future work of the second mass-conserved moving

boundary treatment. One draw back of this scheme is that it lacks the shear stress. The

reason is that it only consider the normal direction movement of the boundary, but not

42

Figure 2.13: The rotating triangle example.

43

the tangential direction movement. The first treatment is also the same, but since it

count the momentum transfer, the effect is not severe. This may explain why the part

of the streamlines that connect to the boundary in figure 2.13 is almost perpendicular

to the boundary. So a future work of this moving boundary treatment is to consider the

shear stress that is given by the tangential direction movement of the boundary.

44

Chapter 3

Incompressibility

3.1 Background

In the previous chapters, we used Lattice Boltzmann method on incompressible

flows. However, we need to point out that an incompressible flow is an ideal flow.

It only exists in theorey. In practice, any flow is compressible to some extent. The

Lattice Boltzmann method, which is based on the Boltzmann equation for gas, simulates

compressible fluids with some finite speed of sound cs. When the fluid speed is sufficiently

small compared with cs, we should get a solution that converges to the incompressible

limit.

In recent years, several improvement were made to the Lattice Boltzmann method

in order to better approximate the incompressibility. This can be roughly categorized

into two groups: the improved single-relaxation time model (Lattice BGK method), and

the multi-relaxation time model [15]. The unique nature of the multi-relaxation time

model makes it a better method for simulating incompressible flows. However, due to

the simplicity of implementation and being 30% more efficient than the multi-relaxation

time model, the Lattice BGK method is the favorite method for many. Unfortunately,

theoretically it is impossible to maintain a constant density in the Lattice BGK method.

In this chapter, we focus on the Lattice BGK method.

In the real world, for an incompressible fluid, the density ρ = ρ0 + δρ , where ρ0

is a constant and δρ is the density fluctuation, which should be of the order O(M2)

(M is the Mach number, and M −→ 0). X. He and L-S Luo [16] improved the Lattice

45

BGK method by substituting ρ = ρ0+ δρ into the equilibrium distribution function feqi ,

neglecting the terms of the order O(M2) and higher. For a D2Q9 Lattice BGK method,

the result is a new equilibrium distribution function, which reads

feqi (x, t) = wi

½
ρ+ ρ0

∙
3
(−→ei ·−→u)

c2
+
9

2

(−→ei ·−→u)2
c4

− 3
2

−→u 2
c2

¸¾
. (3.1)

This improved method can simulate both steady and unsteady flow problems.

Another improved Lattice BGK method is provided by Guo, Shi and Wang [17].

This scheme redefined the distribution when the fluid is at rest (−→u = 0). The new

equilibrium distribution function (again, for D2Q9) is

geqi = vi
p

c2
+ wi

∙
3
(−→ei ·−→u)

c2
+
9

2

(−→ei ·−→u)2
c4

− 3
2

−→u 2
c2

¸
, (3.2)

and the macroscope velocity and pressure are given by

u =
8X

i=1

c−→ei gi (3.3)

and

p =
c2

−vi

"
8X

i=1

gi −
3

2

−→u 2
c2

#
. (3.4)

This scheme is an artificially incompressible Lattice BGK method due to the "neg-

ative rest particle distribution". It also can simulate both steady and unsteady flow

problems.

46

3.2 An incompressibility enhanced scheme for LBGK

3.2.1 The scheme

In a traditional Lattice BGK method, pressure and density are proprotional to each

other. Theoretically, in an incompressible flow, pressure disturbances travel at infinite

speed. But in Lattice BGK method, pressure disturbances travel at the grid speed c. To

improve the incompressibility, it is reasonable to increase the speed at which pressure

disturbances travel. Practically, an incompressible flow is a flow in which the density

fluctuation δρ will dissipate in a very short time, or more precisely, the system will reach

a constant density in a very short time.

To achive a faster "dissipation", we implement an extra "propagation" after every

propagation step. Each node should "push out" or "pull in" the amount that equals to

the density fluctuation. The new distribution function then reads

bfi(�x+ ei, t) = fi(�x+ ei, t) +
ρ− ρ0

ρ
fi(�x, t), (3.5)

where ρ =
P

fi, and is ρ0 the "supposed" constant density. In practice, it can be the

constant initial density. This is a re-distribution of mass that is due to the density

fluctuation of the Lattice BGK method. It would be natural to re-distribute the extra

mass to the neighbors. Since the re-distributed amount is proportional to fi, the velocity

is kept the same.

47

3.2.2 An example

We give an example using the new incompressible Lattice BGK method. Consider a

closed channel with a density fluctuation that is initially set as 1.05 at the left side, and

gradually decreases to 0.95 at the right side. We compare the results with a standard

Lattice BGK method. We were not supprised to see that our new proposed incom-

pressible Lattice BGK method reached (almost) constant density much faster than the

standard Lattice BGK method due to the extra propagation.

3.3 Incompressibility with moving boundary

An interesting example is obtained if we combine the mass conserving moving bound-

ary with the incompressible Lattice BGK method. As a matter of fact, it makes more

sense now, since the continuity equation

∂ρ

∂t
+∇ · (ρ−→u) = 0

is satisfied. The incompressibility

Dρ

Dt
=

∂ρ

∂t
+∇ρ ·−→u = 0

leads to

∇ ·−→u = 0.

We consider an example of a hydraulic rotation damper. A damper is a device that

restrains or depresses motion. It transfers the energy of the motion to kinetic energy

(heat) due to friction so that a sudden strong motion that might be dangerous to a

48

Figure 3.1: A test using the incompressible Lattice BGK method. From top to bottom:
1. velocity contour with normal Lattice BGK; 2. velocity contour with incompressible
Lattice BGK; 3. density plot with normal Lattice BGK; 4. density plot with incom-
pressible Lattice BGK.

49

Figure 3.2: The velocity contour of the damper with the standard Lattice BGK method.

system is prohibitted. In this example, we consider a half cylinder system which holds

a hydraulic fluid. A devider is attached to the center of the half cylinder and allowed

to rotate. Between the divider and the cylinder wall is a gap that allows the fluid to go

from one side of the divider into the other. Because of the incompressibility of the fluid,

the rotation of the divider will force the fluid to go throught the small gap, which create

a counter force, thus damps the rotation.

50

Figure 3.3: The velocity contour of the damper with the incompressible Lattice BGK
method.

51

Figure 3.4: The density of the fluid in the damper with the standard Lattice BGK
method.

52

Figure 3.5: The density of the fluid in the damper with the incompressible Lattice BGK
method.

53

3.4 Conclusion

In this chapter we present an incompressibility enhancement for the Lattice Boltz-

mann method. Since the pressure travel at an infinite speed, we perform an extra

propagation of the density disturbances. The result is that, it gives about the same ve-

locity solution as the normal Lattice Boltzmann method. But in some extream situations

where the density disturbances are too strong, the incompressibility enhancement will

keep the particle distribution in a "safe" mode so that the Lattice Boltzmann method

can continue without encounter any problem.

54

Chapter 4

MHD With Constant B

4.1 Backgound

We present an application of the Lattice Boltzmann method to Magnetohydrody-

namics (MHD). MHD is the theory of macroscopic interaction of electrically conducting

fluids and electromagnetic fields. Examples of such fluids include plasmas, liquid metals,

and salt water. The ideal MHD is that, in a moving conducting fluid, the magnetic field

will induce current, the interaction of the current and magnetic field creates a force in

this field and alters the velocity of the fluid, and also changes the magnetic field itself.

Assuming that the fluid is an incompressible viscous fluid, the governing equation of a

MHD system are the Navier-Stokes equation

�ut + (�u ·∇)�u = −∇P + ν∇2�u+−→J ×−→B +
−→
F , (4.1)

and the Ohm’s law

−→
J = σ(−∇φ+−→E +−→u ×−→B), (4.2)

together with the continuity equations

∇ ·−→u = 0 and ∇ ·−→J = 0, (4.3)

55

where �u is the velocity,
−→
J is the current,

−→
B is the magnetic field,

−→
E is the electric field,

P is the pressure, φ is the electric potential, ν is the kinematic viscosity, and σ is the

fluid conductivity.

We implement a LBM for the fluid. To solve Ohm’s law (4.2), we take the divergence

of both sides. Since the divergence of
−→
J and

−→
E are equal to zero (assuming there is no

net electric charge in the field), we get a poisson’s equation

4φ = ∇ · (−→u ×−→B).

In one time step, we solve the poisson’s equation for φ with a boundary condition that

yields a well-posed problem, then use φ to update
−→
J , then update −→u using LBM. For

simplicity, we neglect the induced magnetic field. So in this case,
−→
B is a constant external

magnetic field.

4.2 Implementations

4.2.1 Example I

In this example, we consider a cubic box which contains electrically conducting

incompressible fluid. The boundary conditions of φ are shown in Figure 4.1. The little

arrows indicate dirichlet boundary, and neumann boundary elsewhere. The front side of

the dirichlet boundary is set to 1, and the back side is set to 0. The magnetic field
−→
B is

set to 1 all over the cubic box, the direction is shown in the figure. The external electric

field
−→
E is set to 0. We used D3Q19 for the fluid.

Figure 4.2 shows the result.

56

Figure 4.1: The boundary conditions of φ.

57

Figure 4.2: The result of the cubic box MHD test.

58

Figure 4.3: The example of a magnetic pump.

4.2.2 Example II

This is a magnetic pump example. In this example, we consider a loop which

contains electrically conducting incompressible fluid. The boundary conditions of the

electric potential φ are shown in Figure 4.3. The boundary of φ at the front shaded area

is set to 0, and at the back shaded area is set to 1. Other boundaries are all Neumann

boundaries. The magnetic field
−→
B is set to 1 on z direction and 0 on x and y directions.

The external electric field
−→
E is set to 0. The electic conductivity σ of the fluid is set to

1. We used D3Q19 for the fluid. Figure 4.4 gives the result at t = 500.

59

Figure 4.4: The velocity contour of the magnetic pump example.

60

4.3 Conclusion

In this chapter we coupled the Lattice Boltzmann method with the Ohm’s law. We

presented two examples. They showed that the 3-dimension D3Q19 is a very fast solver

for the Navier-Stokes equation.

61

Chapter 5

Conclusion

In the last chapter, we give an overall conclusion of the Lattice Boltzmann method

and the applications.

The Lattice Boltzmann is a fast solver of the Navier-Stokes equation. Several dif-

ferent discretizations are available. Take the 2-dimension methods as an example: the

D2Q7 is the fastest 2-dimension method due to the least number of discrete speed, while

the D2Q9 is a little slower but gives a little more accurate result. So one can pick the

right method to keep the best balance between performance and accuracy.

The biggest advantage of the Lattice Boltzmann method over other methods is that

it is very easy to handle complicated no-slip boundaries. This is due to the fact that to

implement the bounce back boundary condition, one doesn’t need to know the angle of

incidence. So on programming using the Lattice Boltzmann method, one just need to

specify the fluid nodes and the solid nodes.

By using the moving boundary treatments we presented in Chapter 2, the Lattice

Boltzmann method can be used on even more complicated situations without compro-

mising the performance. This is due to the fact that Lattice Boltzmann method uses

a fixed grid and an immersed moving boundary. We presented two moving boundary

treatments in Chapter 2: the second order accurate moving boundary, and the first order

mass-conserved moving boundary. As we discussed in the conclusion section of Chapter

2, one future work of the mass conserved moving boundary is to consider the shear stress.

62

The Lattice Boltzmann method is also easy to couple with other method to simulate

problems that are related to fluid. We gave examples of MHD flows in Chapter 4.

Overall, the Lattice Boltzmann method can be widely used to different types of

problems, and it can do very well.

63

Bibliography

[1] Dieter A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann
Models, An Introduction, Springer-Verlag Berlin Heidelberg 2000. ISSN 0075-8434
ISBN 3-540-66973-6

[2] J. Hardy, Y. Pomeau & O. de Pazzis, Time evolution of two-dimensional model
system. I. Invariant states and time correlation functions, J. Math. Phys. 14 (1973),
pp. 1746-1759.

[3] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes
equation. Physical Review Letters, 56:1505-1508, 1986.

[4] G. R. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-
gas automata. Physical Review Letters, 61:2332-2335, 1988.

[5] F. J. Higuera and J. Liménez. Boltzmann approach to lattice gas simulations. Euro-
physics Letters, 9 (7):663-668, 1989.

[6] F. J. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collisions.
Europhysics Letters, 9 (4):345-349, 1989.

[7] P. L. Bhatnagar, E. P. Gross, and M Krook. A model for collision processes in
gases. I. Small amplitude processes in charged and neutral one-component systems.
Physical Review, 94 (3):511-525, 1954.

[8] J. Buick, W. Easson, and C. Greated. Simulation of wave motion using a lattice gas
model. International Journal for Numberical Methods in Fluids, 22:313-321, 1996.

[9] Sauro Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,
Clarendon Press, Oxford, 2001. ISBN 0-19-850398-9

[10] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius. A consistent hydro-
dynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7
(1):203-209, 1995.

[11] S. Wolfram. Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics,
45(3/4): p471-529, 1986.

[12] Ghia, Ghia, and Shin, High Resolutions for incompressible flow using the navier-
stokes equations and a multigrid method, Journal of Computational Physics, Vol.
48, p387-411, 1982.

64

[13] Shuling Hou and Qisu Zou, Shiyi Chen, Gary Doolen, Allen C. Cogley. Simulation
of Cavity Flow by the Lattice Boltzmann Method. Journal of Computational Physics
118, p329-347 1995.

[14] Pierre Lallemand, Li-Shi Luo. Lattice Boltzmann method for moving boundaries.
Journal of Computational Physics 184 (2003) 406-421

[15] Paul J. Dellar, Incompressible limits of lattice Boltzmann equations using multiple
relaxation times, Journal of Computational Physics 190 (2003) 351-370

[16] Xiao He and Li-Shi Luo, Lattice Boltzmann Model for the Incompressible Navier-
Stokes Equation, Journal of Statistical Physics, Vol.88, Nos. 3/4, 1997

[17] Zhaoli Guo, Baochang Shi, and Nengchao Wang, Lattice BGK Model for Incom-
pressible Navier-Stokes Equation, Journal of Computational Physics 165, 288-306
(2000)

65

Appendices

66

Appendix A

FHP collision look-up table

This is the collision look-up table. It gives the two out-states corresponding to each

of the 128 in-states (right in bracket).

0 [0 0]

1 [1 1]

2 [2 2]

3 [3 3]

4 [4 4]

5 [66 66]

6 [6 6]

7 [7 7]

8 [8 8]

9 [36 18]

10 [68 68]

11 [38 69]

12 [12 12]

13 [74 22]

14 [14 14]

15 [15 15]

16 [16 16]

17 [96 96]

18 [9 36]

19 [98 37]

20 [72 72]

21 [42 42]

22 [13 74]

23 [102 75]

24 [24 24]

25 [52 104]

26 [84 44]

27 [45 54]

28 [28 28]

29 [90 108]

30 [30 30]

31 [110 110]

32 [32 32]

33 [33 33]

34 [65 65]

35 [35 35]

36 [18 9]

37 [19 98]

38 [69 11]

39 [39 39]

40 [80 80]

41 [81 50]

42 [21 21]

43 [83 101]

44 [26 84]

45 [54 27]

46 [77 86]

47 [87 87]

48 [48 48]

49 [49 49]

50 [41 81]

51 [51 51]

52 [104 25]

53 [105 114]

54 [27 45]

55 [107 107]

56 [56 56]

57 [57 57]

58 [116 89]

59 [117 117]

60 [60 60]

61 [122 122]

62 [93 93]

63 [63 63]

67

64 [64 64]

65 [34 34]

66 [5 5]

67 [67 67]

68 [10 10]

69 [11 38]

70 [70 70]

71 [71 71]

72 [20 20]

73 [100 82]

74 [22 13]

75 [23 102]

76 [76 76]

77 [86 46]

78 [78 78]

79 [79 79]

80 [40 40]

81 [50 41]

82 [73 100]

83 [101 43]

84 [44 26]

85 [106 106]

86 [46 77]

87 [47 47]

88 [88 88]

89 [58 116]

90 [108 29]

91 [109 118]

92 [92 92]

93 [62 62]

94 [94 94]

95 [95 95]

96 [17 17]

97 [97 97]

98 [37 19]

99 [99 99]

100 [82 73]

101 [43 83]

102 [75 23]

103 [103 103]

104 [25 52]

105 [114 53]

106 [85 85]

107 [55 55]

108 [29 90]

109 [118 91]

110 [31 31]

111 [111 111]

112 [112 112]

113 [113 113]

114 [53 105]

115 [115 115]

116 [89 58]

117 [59 59]

118 [91 109]

119 [119 119]

120 [120 120]

121 [121 121]

122 [61 61]

123 [123 123]

124 [124 124]

125 [125 125]

126 [126 126]

127 [127 127]

68

Appendix B

Partial Matlab code I: d2q9_rotating_polygon.m

%

% Test of a D2Q9 Lattice BGK model on a square area w/ a rotating polygon.

% An implementation of the moving boundary with mass conservation.

% An implementation of the incompressible enhancement.

%

%% Define the general global variables

global cont_mode;

cont_mode = 0

global dimension; % The square domain

dimension = [1 1];

global n_poly; % Number of the sides of the polygon

n_poly = 3;

global center;

center = [.5 .5]; % Center of the rotating polygon

global N; % Number of fineness

N = 100;

global diameter; % The diameter of the rotating object

diameter = 1/N + 0.9;

global D; % The hydraulic diameter

if n_poly == 3

H = N;

69

S = N*sqrt(3)/2*diameter;

D = 2*(H^2-sqrt(3)/4*S^2)/(4*H+3*S)

elseif n_poly == 4

H = N;

L = H/sqrt(2);

D = 2*(H^2-L^2)/(4*H+4*L)

end

global x y; % Define the domain length, width (including the ghost layer)

x = dimension(1)*N + 3;

y = dimension(2)*N + 3;

global speed; % Rotation angle speed

T = 3000;

speed = pi/T;

global r; % Density

r = 1;

global Re; % Reynolds number

Re = 31;

global omega;

viscosity = r*D^2*speed/Re

omega = 1/(viscosity*3+1/2)

global F; % Distribution function matrix

F = zeros(x*y, 9);

global U; % Velocity field

U = zeros(x*y, 2);

% global SequenceU;

% SequenceU = zeros(x*y,2,500);

global Rho; % Density

70

Rho = zeros(x*y, 1);

global Fc; % Distribution function after the collision

Fc = F;

global c; % c is the unit speed

c = 1;

global e;

e = [0 0]; % i = 1

e = [e; 1 0; 0 1; -1 0; 0 -1]; % i = 2,3,4,5

e = [e; 1 1; -1 1; -1 -1; 1 -1]; % i = 6,7,8,9

% 7 3 6

% \ | /

% \ | /

% 4 --- 1 ----2

% / | \

% / | \

% 8 5 9

global w;

w = [4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36];

global dx;

dx = 1; % the increment on positive x direction

global dy;

dy = x; % the increment on positive y direction

global opposite;

opposite = [1 4 5 2 3 8 9 6 7];

global q2 q3 q4 q5 q6 q7 q8 q9;

71

q2 = [];

q3 = [];

q4 = [];

q5 = [];

q6 = [];

q7 = [];

q8 = [];

q9 = [];

global i_polygon_update2 i_polygon_update3 i_polygon_update4 i_polygon_update5

i_polygon_update6 i_polygon_update7 i_polygon_update8 i_polygon_update9;

i_polygon_update2 = [];

i_polygon_update3 = [];

i_polygon_update4 = [];

i_polygon_update5 = [];

i_polygon_update6 = [];

i_polygon_update7 = [];

i_polygon_update8 = [];

i_polygon_update9 = [];

global A B C;

A = 0; B = 0; C = 0;

%% Numbering order: x -> y

% An example of this code with polygon = 3

% Starting from (1, 1) which is the lower left corner

%

% | y |----------|

72

% | | /\ |

% | | / \ | <- rotating triangle

% ------- x | /____\ | (counter-clockwise rotation)

% (x+1)| |

% (1)|----------|(x)

%

% ___

% | The index should start with i_ |

% | Those without the i_ are binary index that are for logical operation |

% |__|

%

% actual boundary

% |

% boundary ghost

% node node

% | |

% x x x x x

% | |

% ------- inside ------->|

%

% ---------- domain -------------->|

%

%

% Since we are using on-the node bounce-back boundary, the inside nodes

% number will be (N - 1)

% center of each space.

%

73

% |------|------|------|------|---....---|------|------|------|

% ghost 0 1 ghost

%

% nodes showed 1 2 3 4 N-1 N N+1

%

% |<---------------- domain ----------------->|

% |<--------- inside ---------->|

%

%

%% Define the domain

global domain;

domain = zeros(x*y,1);

% Each node will be assign a number:

% 0 for ghost_boundary

% 1 for boundary

% 2 for inside

%

% Domain = boundary + inside

%

for j = 2:y-1

74

for i = 2:x-1

domain((j-1)*x+i) = 1;

end

end

for j = 3:y-2

for i = 3:x-2

domain((j-1)*x+i) = 2;

end

end

%% Define the rotating polygon

global radius; % The radius of the inscribed circle

radius = diameter/2*sin((pi - 2*pi/n_poly)/2);

global theta; % Initial polygon position

theta = pi*3/2;

% Define the sides of the polygon by the normal vector

global v_poly;

v_poly = zeros(n_poly, 2);

for i = 1:n_poly

v_poly(i,:) = [cos(theta+2*pi/n_poly*(i-1)) sin(theta+2*pi/n_poly*(i-1))];

end

global polygon;

polygon = zeros(x*y, 1);

for i = 2:x-1

75

for j = 2:y-1

v = [((i-2)/N - center(1)) ((j-2)/N - center(2))];

if v_poly*v’<radius

polygon((j-1)*x+i) = 1;

end

end

end

% i_polygon = find(polygon==1);

global i_domain;

i_domain = find((domain-polygon.*2) > 0);

global i_boundary;

i_boundary = find((domain-polygon.*2) == 1);

global v_poly_update;

v_poly_update = zeros(n_poly, 2);

for i = 1:n_poly

v_poly_update(i,:) = [cos(theta+2*pi/n_poly*(i-1)) sin(theta+2*pi/n_poly

*(i-1))];

end

polygon_update = zeros(x*y,1);

for i = 2:x-1

for j = 2:y-1

v = [((i-2)/N - center(1)) ((j-2)/N - center(2))];

76

if v_poly_update*v’<radius

polygon_update((j-1)*x+i) = 1;

end

end

end

v_poly = v_poly_update;

i_non_domain = find((domain-polygon_update.*2) <= 0);

polygon_update2 = polygon_update;

polygon_update3 = polygon_update;

polygon_update4 = polygon_update;

polygon_update5 = polygon_update;

polygon_update6 = polygon_update;

polygon_update7 = polygon_update;

polygon_update8 = polygon_update;

polygon_update9 = polygon_update;

polygon_update2(1+dx:end) = polygon_update(1:end-dx);

polygon_update3(1+dy:end) = polygon_update(1:end-dy);

polygon_update4(1:end-dx) = polygon_update(1+dx:end);

polygon_update5(1:end-dy) = polygon_update(1+dy:end);

polygon_update6(1+dx+dy:end) = polygon_update(1:end-dx-dy);

polygon_update7(1+dy:end-dx) = polygon_update(1+dx:end-dy);

polygon_update8(1:end-dx-dy) = polygon_update(1+dx+dy:end);

polygon_update9(1+dx:end-dy) = polygon_update(1+dy:end-dx);

77

polygon_update2 = xor(polygon_update, polygon_update2) & (domain-polygon.*2);

polygon_update3 = xor(polygon_update, polygon_update3) & (domain-polygon.*2);

polygon_update4 = xor(polygon_update, polygon_update4) & (domain-polygon.*2);

polygon_update5 = xor(polygon_update, polygon_update5) & (domain-polygon.*2);

polygon_update6 = xor(polygon_update, polygon_update6) & (domain-polygon.*2);

polygon_update7 = xor(polygon_update, polygon_update7) & (domain-polygon.*2);

polygon_update8 = xor(polygon_update, polygon_update8) & (domain-polygon.*2);

polygon_update9 = xor(polygon_update, polygon_update9) & (domain-polygon.*2);

i_polygon_update2_backup = i_polygon_update2;

i_polygon_update3_backup = i_polygon_update3;

i_polygon_update4_backup = i_polygon_update4;

i_polygon_update5_backup = i_polygon_update5;

i_polygon_update6_backup = i_polygon_update6;

i_polygon_update7_backup = i_polygon_update7;

i_polygon_update8_backup = i_polygon_update8;

i_polygon_update9_backup = i_polygon_update9;

i_polygon_update2 = find(polygon_update2==1);

i_polygon_update3 = find(polygon_update3==1);

i_polygon_update4 = find(polygon_update4==1);

i_polygon_update5 = find(polygon_update5==1);

i_polygon_update6 = find(polygon_update6==1);

i_polygon_update7 = find(polygon_update7==1);

i_polygon_update8 = find(polygon_update8==1);

i_polygon_update9 = find(polygon_update9==1);

78

q2_backup = q2;

q3_backup = q3;

q4_backup = q4;

q5_backup = q5;

q6_backup = q6;

q7_backup = q7;

q8_backup = q8;

q9_backup = q9;

q2 = []; % q2 is the boundary length from the polygon to the nearest node on

direction 2

q3 = [];

q4 = [];

q5 = [];

q6 = [];

q7 = [];

q8 = [];

q9 = [];

q2 = q_rotating_polygon(i_polygon_update2, 2);

q3 = q_rotating_polygon(i_polygon_update3, 3);

q4 = q_rotating_polygon(i_polygon_update4, 4);

q5 = q_rotating_polygon(i_polygon_update5, 5);

q6 = q_rotating_polygon(i_polygon_update6, 6);

q7 = q_rotating_polygon(i_polygon_update7, 7);

q8 = q_rotating_polygon(i_polygon_update8, 8);

79

q9 = q_rotating_polygon(i_polygon_update9, 9);

%% Starting initialization

tic

Rho(i_domain,:) = 1;

for i = 1:9

F(i_domain,i) = Rho(i_domain,:)*w(i).*(1 + 3/c^2*U(i_domain,:)*e(i,:)’

+ 9/(2*c^4)*(U(i_domain,:)*e(i,:)’).^2 - 3/(2*c^2)*(U(i_domain,1).^2

+ U(i_domain,2).^2));

end

disp(’Initialization completed!’)

toc

if cont_mode == 1

load D:\LBM\d2q9\data\rotating_triangle\N100d.9speed3000Re31@50cycles.mat

end

%%

tic

80

if cont_mode == 1

t = k;

for k = t+1:t+6000*50

theta = theta + speed;

d2q9_rotating_polygon_collision;

k

if mod(k, 1) == 0

U_contour_wide(F)

sum(Rho)/numel(i_domain)

% vis_F(F)

end

end

else

for k = 1:6000*50

theta = theta + speed;

d2q9_rotating_polygon_collision;

k

if mod(k, 3000) == 0

U_contour_wide(F)

vis_F(F)

sum(Rho)/numel(i_domain)

% vis_F(F)

end

end

end

time = toc

81

Appendix C

Partial matlab code II: d2q9_rotating_polygon_collision.m

function d2q9_rotating_polygon_collision

%% Define the general global variables

global N;

global n_poly;

global x y;

global speed;

global omega;

global F;

global U;

global Fc;

global c;

global e;

global w;

global v_poly;

global i_boundary;

global inside;

global center;

global domain;

global i_domain;

global Rho;

82

global dx;

global dy;

global polygon;

global opposite;

global q2 q3 q4 q5 q6 q7 q8 q9;

global i_polygon_update2 i_polygon_update3 i_polygon_update4 i_polygon_update5

i_polygon_update6 i_polygon_update7 i_polygon_update8 i_polygon_update9;

global A B C;

%% Define the rotating polygon

global radius;

global theta;

% Define the sides of the polygon by the normal vector

global v_poly_update;

v_poly_update = zeros(n_poly, 2);

for i = 1:n_poly

v_poly_update(i,:) = [cos(theta+2*pi/n_poly*(i-1)) sin(theta+2*pi/n_poly

*(i-1))];

end

polygon_update = zeros(x*y,1);

for i = 2:x-1

83

for j = 2:y-1

v = [((i-2)/N - center(1)) ((j-2)/N - center(2))];

if v_poly_update*v’<radius

polygon_update((j-1)*x+i) = 1;

end

end

end

v_poly = v_poly_update;

i_domain = find((domain-polygon_update.*2) > 0);

i_non_domain = find((domain-polygon_update.*2) <= 0);

polygon_update2 = polygon_update;

polygon_update3 = polygon_update;

polygon_update4 = polygon_update;

polygon_update5 = polygon_update;

polygon_update6 = polygon_update;

polygon_update7 = polygon_update;

polygon_update8 = polygon_update;

polygon_update9 = polygon_update;

polygon_update2(1+dx:end) = polygon_update(1:end-dx);

polygon_update3(1+dy:end) = polygon_update(1:end-dy);

polygon_update4(1:end-dx) = polygon_update(1+dx:end);

polygon_update5(1:end-dy) = polygon_update(1+dy:end);

polygon_update6(1+dx+dy:end) = polygon_update(1:end-dx-dy);

polygon_update7(1+dy:end-dx) = polygon_update(1+dx:end-dy);

84

polygon_update8(1:end-dx-dy) = polygon_update(1+dx+dy:end);

polygon_update9(1+dx:end-dy) = polygon_update(1+dy:end-dx);

polygon_update2 = xor(polygon_update, polygon_update2)

& (domain-polygon_update.*2);

polygon_update3 = xor(polygon_update, polygon_update3)

& (domain-polygon_update.*2);

polygon_update4 = xor(polygon_update, polygon_update4)

& (domain-polygon_update.*2);

polygon_update5 = xor(polygon_update, polygon_update5)

& (domain-polygon_update.*2);

polygon_update6 = xor(polygon_update, polygon_update6)

& (domain-polygon_update.*2);

polygon_update7 = xor(polygon_update, polygon_update7)

& (domain-polygon_update.*2);

polygon_update8 = xor(polygon_update, polygon_update8)

& (domain-polygon_update.*2);

polygon_update9 = xor(polygon_update, polygon_update9)

& (domain-polygon_update.*2);

i_polygon_update2_backup = i_polygon_update2;

i_polygon_update3_backup = i_polygon_update3;

i_polygon_update4_backup = i_polygon_update4;

i_polygon_update5_backup = i_polygon_update5;

i_polygon_update6_backup = i_polygon_update6;

i_polygon_update7_backup = i_polygon_update7;

i_polygon_update8_backup = i_polygon_update8;

85

i_polygon_update9_backup = i_polygon_update9;

i_polygon_update2 = find(polygon_update2==1);

i_polygon_update3 = find(polygon_update3==1);

i_polygon_update4 = find(polygon_update4==1);

i_polygon_update5 = find(polygon_update5==1);

i_polygon_update6 = find(polygon_update6==1);

i_polygon_update7 = find(polygon_update7==1);

i_polygon_update8 = find(polygon_update8==1);

i_polygon_update9 = find(polygon_update9==1);

q2_backup = q2;

q3_backup = q3;

q4_backup = q4;

q5_backup = q5;

q6_backup = q6;

q7_backup = q7;

q8_backup = q8;

q9_backup = q9;

q2 = []; % q2 is the boundary length from the polygon to the nearest node

on direction 2

q3 = [];

q4 = [];

q5 = [];

q6 = [];

86

q7 = [];

q8 = [];

q9 = [];

q2 = q_rotating_polygon(i_polygon_update2, 2);

q3 = q_rotating_polygon(i_polygon_update3, 3);

q4 = q_rotating_polygon(i_polygon_update4, 4);

q5 = q_rotating_polygon(i_polygon_update5, 5);

q6 = q_rotating_polygon(i_polygon_update6, 6);

q7 = q_rotating_polygon(i_polygon_update7, 7);

q8 = q_rotating_polygon(i_polygon_update8, 8);

q9 = q_rotating_polygon(i_polygon_update9, 9);

%% Find and fill in newly released zone

Fc = F;

released = xor((polygon | polygon_update), polygon_update);

i_released = find(released==1);

count = numel(i_released);

for k = 1:count

coordi = [mod(i_released(k),x) floor(i_released(k)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

87

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

temp = [0 0 0 0 0 0 0 0 0];

for i = 2:9

temp1 = find(i_domain == i_released(k)+e(i,:)*[dx;dy]);

% Check if the previous node is in domain

temp2 = find(i_released == i_released(k)+e(i,:)*[dx;dy]);

% Check if the previous node is also a released node

temp3 = find(i_domain == i_released(k)-e(i,:)*[dx;dy]);

% Check if the next node is in domain

temp4 = eval([’find(i_polygon_update’ num2str(i) ’ == i_released(k))’]);

% Check if q value is available

if temp1 & isempty(temp2) & isempty(temp3) & temp4

temp(1) = temp(1) + 1;

temp(i) = 1;

% For F

F(i_released(k), i) = Fc(i_released(k)+e(i,:)*[dx;dy], i);

F(i_released(k), opposite(i)) = Fc(i_released(k)+e(i,:)*[dx;dy],

opposite(i));

end

88

if temp1 & temp3

% For F

F(i_released(k), i) = (Fc(i_released(k)+e(i,:)*[dx;dy], i)

+Fc(i_released(k)-e(i,:)*[dx;dy], i))/2;

F(i_released(k), opposite(i)) = (Fc(i_released(k)+e(i,:)*[dx;dy],

opposite(i))

+Fc(i_released(k)-e(i,:)*[dx;dy], opposite(i)))/2;

end

end

% Fill in the rest particle

for i = 2:9

if temp(i) == 1

% For F

F(i_released(k), 1) = F(i_released(k), 1) + Fc(i_released(k)+e(i,:)

*[dx;dy], 1);

end

end

% For F

if temp(1)~=0

F(i_released(k), 1) = F(i_released(k), 1)/temp(1);

89

elseif temp(1)==0

for i = 2:9

F(i_released(k), 1) = Fc(i_released(k), 1) + Fc(i_released(k)+e(i,:)

*[dx;dy], 1);

end

F(i_released(k), 1) = F(i_released(k), 1)/8;

end

end

%% Find and clear newly covered zone

covered = xor((polygon | polygon_update), polygon) & domain;

i_covered = find(covered==1);

count = numel(i_covered);

for k = 1:count

coordi = [mod(i_covered(k),x) floor(i_covered(k)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

temp = [0 0 0 0 0 0 0 0 0];

for i = 2:9

temp1 = find(i_domain == i_covered(k)+e(i,:)*[dx;dy]);

% Check if the next node is in domain

90

temp2 = find(i_covered == i_covered(k)+e(i,:)*[dx;dy]);

% Check if the next node is also a covered node

temp4 = eval([’find(i_polygon_update’ num2str(i) ’_backup

== i_covered(k))’]);

% Check if q value is available

if temp1 & isempty(temp2) & temp4

temp(i) = 1;

end

end

for i = 2:9

if temp(i) == 1

F(i_covered(k)+e(i,:)*[dx;dy], i) = Fc(i_covered(k)+e(i,:)*[dx;dy], i)

+ Fc(i_covered(k), i) * (eval([’q’ num2str(i) ’_backup(find(i_polygon_update’

num2str(i) ’_backup == i_covered(k)))’]) + 1/2);

F(i_covered(k)+e(i,:)*[dx;dy], opposite(i)) = Fc(i_covered(k)

+e(i,:)*[dx;dy], opposite(i)) + Fc(i_covered(k), opposite(i))

* (eval([’q’ num2str(i) ’_backup(find(i_polygon_update’ num2str(i) ’

_backup == i_covered(k)))’]) + 1/2);

% boundary uncorrection

F(i_covered(k)+e(i,:)*[dx;dy], i) = F(i_covered(k)+e(i,:)*[dx;dy], i)

/ (3/2 + eval([’q’ num2str(i) ’_backup(find(i_polygon_update’ num2str(i) ’

_backup == i_covered(k)))’]));

F(i_covered(k)+e(i,:)*[dx;dy], opposite(i)) = F(i_covered(k)

91

+e(i,:)*[dx;dy], opposite(i)) / (3/2 + eval([’q’ num2str(i) ’_backup(find

(i_polygon_update’ num2str(i) ’_backup == i_covered(k)))’]));

end

end

end

B = B + sum(sum(F))/numel(i_domain);

%% Calculate Rho and U

Rho(:,:) = 0;

for i = 1:9

Rho(i_domain,:) = Rho(i_domain,:) + F(i_domain,i);

end

U(:,:) = 0;

for i = 1:9

U(i_domain,:) = U(i_domain,:) + F(i_domain,i)*e(i,:);

end

U(i_domain,1) = U(i_domain,1)./Rho(i_domain);

U(i_domain,2) = U(i_domain,2)./Rho(i_domain);

%% Calculate equilibrium distribution

92

for i = 1:9

Fc(i_domain,i) = Rho(i_domain,:)*w(i).*(1 + 3/c^2*U(i_domain,:)*e(i,:)’

+ 9/(2*c^4)*(U(i_domain,:)*e(i,:)’).^2 - 3/(2*c^2)*(U(i_domain,1).^2

+ U(i_domain,2).^2));

end

%% Collision

Fc(i_domain,:) = (1-omega)*F(i_domain,:) + omega*Fc(i_domain,:);

%% Streaming (propagation)

% For F

for i = 2:9

F(i_domain + e(i,:)*[dx; dy], i) = Fc(i_domain, i);

end

F(i_non_domain,:) = 0;

%% Boundary correction on F

93

% For F

F(i_polygon_update2_backup, 2) = Fc(i_polygon_update2_backup, 2)

.*(1/2+q2_backup);

F(i_polygon_update2_backup, 4) = Fc(i_polygon_update2_backup, 4)

.*(1/2+q2_backup);

F(i_polygon_update4_backup, 4) = Fc(i_polygon_update4_backup, 4)

.*(1/2+q4_backup);

F(i_polygon_update4_backup, 2) = Fc(i_polygon_update4_backup, 2)

.*(1/2+q4_backup);

F(i_polygon_update3_backup, 3) = Fc(i_polygon_update3_backup, 3)

.*(1/2+q3_backup);

F(i_polygon_update3_backup, 5) = Fc(i_polygon_update3_backup, 5)

.*(1/2+q3_backup);

F(i_polygon_update5_backup, 5) = Fc(i_polygon_update5_backup, 5)

.*(1/2+q5_backup);

F(i_polygon_update5_backup, 3) = Fc(i_polygon_update5_backup, 3)

.*(1/2+q5_backup);

F(i_polygon_update6_backup, 6) = Fc(i_polygon_update6_backup, 6)

.*(1/2+q6_backup);

F(i_polygon_update6_backup, 8) = Fc(i_polygon_update6_backup, 8)

.*(1/2+q6_backup);

F(i_polygon_update8_backup, 8) = Fc(i_polygon_update8_backup, 8)

.*(1/2+q8_backup);

94

F(i_polygon_update8_backup, 6) = Fc(i_polygon_update8_backup, 6)

.*(1/2+q8_backup);

F(i_polygon_update7_backup, 7) = Fc(i_polygon_update7_backup, 7)

.*(1/2+q7_backup);

F(i_polygon_update7_backup, 9) = Fc(i_polygon_update7_backup, 9)

.*(1/2+q7_backup);

F(i_polygon_update9_backup, 9) = Fc(i_polygon_update9_backup, 9)

.*(1/2+q9_backup);

F(i_polygon_update9_backup, 7) = Fc(i_polygon_update9_backup, 7)

.*(1/2+q9_backup);

% Correction on newly released zone

count = numel(i_released);

for k = 1:count

coordi = [mod(i_released(k),x) floor(i_released(k)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

for i = 2:9

temp1 = find(i_domain == i_released(k)+e(i,:)*[dx;dy]);

% Check if the previous node is in domain

temp2 = find(i_released == i_released(k)+e(i,:)*[dx;dy]);

% Check if the previous node is also a released node

95

temp3 = find(i_released == i_released(k)-e(i,:)*[dx;dy]);

% Check if the next node is a released node

temp4 = eval([’find(i_polygon_update’ num2str(i) ’

== i_released(k))’]);

% Check if q value is available

if temp1 & isempty(temp2) & isempty(temp3) & temp4

% For F

F(i_released(k), i) = F(i_released(k), i) * (eval([’q’ num2str(i)

’_backup(find(i_polygon_update’ num2str(i) ’_backup == i_released(k)

+e(i,:)*[dx;dy]))’]) - 1/2);

F(i_released(k), opposite(i)) = F(i_released(k), opposite(i))

* (eval([’q’ num2str(i) ’_backup(find(i_polygon_update’ num2str(i) ’

_backup == i_released(k)+e(i,:)*[dx;dy]))’]) - 1/2);

F(i_released(k)+e(i,:)*[dx;dy], i) = F(i_released(k)+e(i,:)

*[dx;dy], i) / (1/2 + eval([’q’ num2str(i) ’_backup(find(i_polygon_update

’ num2str(i) ’_backup == i_released(k)+e(i,:)*[dx;dy]))’]));

F(i_released(k)+e(i,:)*[dx;dy], opposite(i)) = F(i_released(k)

+e(i,:)*[dx;dy], opposite(i)) / (1/2 + eval([’q’ num2str(i) ’_backup(

find(i_polygon_update’ num2str(i) ’_backup == i_released(k)+e(i,:)

*[dx;dy]))’]));

end

end

96

end

% Correction on newly covered zone

count = numel(i_covered);

for k = 1:count

coordi = [mod(i_covered(k),x) floor(i_covered(k)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

temp = [0 0 0 0 0 0 0 0 0];

for i = 2:9

temp1 = find(i_domain == i_covered(k)+e(i,:)*[dx;dy]);

% Check if the next node is in domain

temp2 = find(i_covered == i_covered(k)+e(i,:)*[dx;dy]);

% Check if the next node is also a covered node

temp4 = eval([’find(i_polygon_update’ num2str(i) ’_backup

== i_covered(k))’]);

% Check if q value is available

if temp1 & isempty(temp2) & temp4

temp(i) = 1;

end

end

97

for i = 2:9

if temp(i) == 1

% For F

F(i_covered(k)+e(i,:)*[dx;dy], i) = F(i_covered(k)+e(i,:)*[dx;dy], i)

* (3/2 + eval([’q’ num2str(i) ’_backup(find(i_polygon_update’ num2str(i) ’

_backup == i_covered(k)))’]));

F(i_covered(k)+e(i,:)*[dx;dy], opposite(i)) = F(i_covered(k)+e(i,:)

*[dx;dy], opposite(i)) * (3/2 + eval([’q’ num2str(i) ’_backup(find

(i_polygon_update’ num2str(i) ’_backup == i_covered(k)))’]));

end

end

end

F_backup = F;

%% Boundary correction on the polygon for q<1/2

U_speed = U;

U_speed(:,:) = 0;

98

count = numel(q2);

for i = 1:count

if q2(i)<1/2

coordi = [mod(i_polygon_update2(i),x) floor(i_polygon_update2(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update2(i),:) = u’;

F(i_polygon_update2(i), opposite(2)) = (1/2+q2(i))*F_backup

(i_polygon_update2(i)+dx, opposite(2));

F(i_polygon_update2(i), 2) = (2*q2(i)/(1/2+q2(i)))*F_backup

(i_polygon_update2(i), opposite(2)) + (1/2-q2(i))*F_backup

(i_polygon_update2(i)+dx, opposite(2));

F(i_polygon_update2(i)+dx, 2) = F_backup(i_polygon_update2(i), 2)

+ (1/2-q2(i))/(1/2+q2(i))*F_backup(i_polygon_update2(i), opposite(2));

end

end

% Direction 3

count = numel(q3);

for i = 1:count

if q3(i)<1/2

coordi = [mod(i_polygon_update3(i),x) floor(i_polygon_update3(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

99

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update3(i),:) = u’;

F(i_polygon_update3(i), opposite(3)) = (1/2+q3(i))*F_backup

(i_polygon_update3(i)+dy, opposite(3));

F(i_polygon_update3(i), 3) = (2*q3(i)/(1/2+q3(i)))*F_backup

(i_polygon_update3(i), opposite(3)) + (1/2-q3(i))*F_backup

(i_polygon_update3(i)+dy, opposite(3));

F(i_polygon_update3(i)+dy, 3) = F_backup(i_polygon_update3(i), 3)

+ (1/2-q3(i))/(1/2+q3(i))*F_backup(i_polygon_update3(i), opposite(3));

end

end

% Direction 4

count = numel(q4);

for i = 1:count

if q4(i)<1/2

coordi = [mod(i_polygon_update4(i),x) floor(i_polygon_update4(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update4(i),:) = u’;

100

F(i_polygon_update4(i), opposite(4)) = (1/2+q4(i))*F_backup

(i_polygon_update4(i)-dx, opposite(4));

F(i_polygon_update4(i), 4) = (2*q4(i)/(1/2+q4(i)))*F_backup

(i_polygon_update4(i), opposite(4)) + (1/2-q4(i))*F_backup

(i_polygon_update4(i)-dx, opposite(4));

F(i_polygon_update4(i)-dx, 4) = F_backup(i_polygon_update4(i), 4)

+ (1/2-q4(i))/(1/2+q4(i))*F_backup(i_polygon_update4(i), opposite(4));

end

end

% Direction 5

count = numel(q5);

for i = 1:count

if q5(i)<1/2

coordi = [mod(i_polygon_update5(i),x) floor(i_polygon_update5(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update5(i),:) = u’;

F(i_polygon_update5(i), opposite(5)) = (1/2+q5(i))*F_backup

(i_polygon_update5(i)-dy, opposite(5));

F(i_polygon_update5(i), 5) = (2*q5(i)/(1/2+q5(i)))*F_backup

(i_polygon_update5(i), opposite(5)) + (1/2-q5(i))*F_backup

(i_polygon_update5(i)-dy, opposite(5));

101

F(i_polygon_update5(i)-dy, 5) = F_backup(i_polygon_update5(i), 5)

+ (1/2-q5(i))/(1/2+q5(i))*F_backup(i_polygon_update5(i), opposite(5));

end

end

% Direction 6

count = numel(q6);

for i = 1:count

if q6(i)<1/2

coordi = [mod(i_polygon_update6(i),x) floor(i_polygon_update6(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update6(i),:) = u’;

F(i_polygon_update6(i), opposite(6)) = (1/2+q6(i))*F_backup

(i_polygon_update6(i)+dx+dy, opposite(6));

F(i_polygon_update6(i), 6) = (2*q6(i)/(1/2+q6(i)))*F_backup

(i_polygon_update6(i), opposite(6)) + (1/2-q6(i))*F_backup

(i_polygon_update6(i)+dx+dy, opposite(6));

F(i_polygon_update6(i)+dx+dy, 6) = F_backup(i_polygon_update6(i), 6)

+ (1/2-q6(i))/(1/2+q6(i))*F_backup(i_polygon_update6(i), opposite(6));

end

end

102

% Direction 7

count = numel(q7);

for i = 1:count

if q7(i)<1/2

coordi = [mod(i_polygon_update7(i),x) floor(i_polygon_update7(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update7(i),:) = u’;

F(i_polygon_update7(i), opposite(7)) = (1/2+q7(i))*F_backup

(i_polygon_update7(i)-dx+dy, opposite(7));

F(i_polygon_update7(i), 7) = (2*q7(i)/(1/2+q7(i)))*F_backup

(i_polygon_update7(i), opposite(7)) + (1/2-q7(i))*F_backup

(i_polygon_update7(i)-dx+dy, opposite(7));

F(i_polygon_update7(i)-dx+dy, 7) = F_backup(i_polygon_update7(i), 7)

+ (1/2-q7(i))/(1/2+q7(i))*F_backup(i_polygon_update7(i), opposite(7));

end

end

% Direction 8

count = numel(q8);

for i = 1:count

if q8(i)<1/2

103

coordi = [mod(i_polygon_update8(i),x) floor(i_polygon_update8(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update8(i),:) = u’;

F(i_polygon_update8(i), opposite(8)) = (1/2+q8(i))*F_backup

(i_polygon_update8(i)-dx-dy, opposite(8));

F(i_polygon_update8(i), 8) = (2*q8(i)/(1/2+q8(i)))*F_backup

(i_polygon_update8(i), opposite(8)) + (1/2-q8(i))*F_backup

(i_polygon_update8(i)-dx-dy, opposite(8));

F(i_polygon_update8(i)-dx-dy, 8) = F_backup(i_polygon_update8(i), 8)

+ (1/2-q8(i))/(1/2+q8(i))*F_backup(i_polygon_update8(i), opposite(8));

end

end

% Direction 9

count = numel(q9);

for i = 1:count

if q9(i)<1/2

coordi = [mod(i_polygon_update9(i),x) floor(i_polygon_update9(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

104

% For F

U_speed(i_polygon_update9(i),:) = u’;

F(i_polygon_update9(i), opposite(9)) = (1/2+q9(i))*F_backup

(i_polygon_update9(i)+dx-dy, opposite(9));

F(i_polygon_update9(i), 9) = (2*q9(i)/(1/2+q9(i)))*F_backup

(i_polygon_update9(i), opposite(9)) + (1/2-q9(i))*F_backup

(i_polygon_update9(i)+dx-dy, opposite(9));

F(i_polygon_update9(i)+dx-dy, 9) = F_backup(i_polygon_update9(i), 9)

+ (1/2-q9(i))/(1/2+q9(i))*F_backup(i_polygon_update9(i), opposite(9));

end

end

%% Boundary correction on the polygon for q>=1/2

% F_backup2 = F;

% Direction 2

count = numel(q2);

for i = 1:count

if q2(i)>=1/2

coordi = [mod(i_polygon_update2(i),x) floor(i_polygon_update2(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

105

% For F

U_speed(i_polygon_update2(i),:) = u’;

F(i_polygon_update2(i), opposite(2)) = (q2(i)-1/2)/(q2(i)+1/2)

*F_backup(i_polygon_update2(i), opposite(2)) + F_backup(i_polygon_update2(i)

+dx, opposite(2));

F(i_polygon_update2(i), 2) = (q2(i)-1/2)/(q2(i)+1/2)*F_backup

(i_polygon_update2(i), 2) + 1/(q2(i)+1/2)*F_backup(i_polygon_update2(i),

opposite(2));

F(i_polygon_update2(i)+dx, 2) = 1/(q2(i)+1/2)*F_backup

(i_polygon_update2(i), 2);

end

end

% Direction 3

count = numel(q3);

for i = 1:count

if q3(i)>=1/2

coordi = [mod(i_polygon_update3(i),x) floor(i_polygon_update3(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update3(i),:) = u’;

F(i_polygon_update3(i), opposite(3)) = (q3(i)-1/2)/(q3(i)+1/2)

*F_backup(i_polygon_update3(i), opposite(3)) + F_backup(i_polygon_update3

106

(i)+dy, opposite(3));

F(i_polygon_update3(i), 3) = (q3(i)-1/2)/(q3(i)+1/2)*F_backup

(i_polygon_update3(i), 3) + 1/(q3(i)+1/2)*F_backup(i_polygon_update3(i),

opposite(3));

F(i_polygon_update3(i)+dy, 3) = 1/(q3(i)+1/2)*F_backup

(i_polygon_update3(i), 3);

end

end

% Direction 4

count = numel(q4);

for i = 1:count

if q4(i)>=1/2

coordi = [mod(i_polygon_update4(i),x) floor(i_polygon_update4(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update4(i),:) = u’;

F(i_polygon_update4(i), opposite(4)) = (q4(i)-1/2)/(q4(i)+1/2)

*F_backup(i_polygon_update4(i), opposite(4)) + F_backup(i_polygon_update4(i)

-dx, opposite(4));

F(i_polygon_update4(i), 4) = (q4(i)-1/2)/(q4(i)+1/2)*F_backup

(i_polygon_update4(i), 4) + 1/(q4(i)+1/2)*F_backup(i_polygon_update4(i),

opposite(4));

107

F(i_polygon_update4(i)-dx, 4) = 1/(q4(i)+1/2)*F_backup

(i_polygon_update4(i), 4);

end

end

% Direction 5

count = numel(q5);

for i = 1:count

if q5(i)>=1/2

coordi = [mod(i_polygon_update5(i),x) floor(i_polygon_update5(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update5(i),:) = u’;

F(i_polygon_update5(i), opposite(5)) = (q5(i)-1/2)/(q5(i)+1/2)

*F_backup(i_polygon_update5(i), opposite(5)) + F_backup(i_polygon_update5(i)

-dy, opposite(5));

F(i_polygon_update5(i), 5) = (q5(i)-1/2)/(q5(i)+1/2)*F_backup

(i_polygon_update5(i), 5) + 1/(q5(i)+1/2)*F_backup(i_polygon_update5(i),

opposite(5));

F(i_polygon_update5(i)-dy, 5) = 1/(q5(i)+1/2)*F_backup

(i_polygon_update5(i), 5);

end

108

end

% Direction 6

count = numel(q6);

for i = 1:count

if q6(i)>=1/2

coordi = [mod(i_polygon_update6(i),x) floor(i_polygon_update6(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update6(i),:) = u’;

F(i_polygon_update6(i), opposite(6)) = (q6(i)-1/2)/(q6(i)+1/2)

*F_backup(i_polygon_update6(i), opposite(6)) + F_backup(i_polygon_update6(i)

+dx+dy, opposite(6));

F(i_polygon_update6(i), 6) = (q6(i)-1/2)/(q6(i)+1/2)*F_backup

(i_polygon_update6(i), 6) + 1/(q6(i)+1/2)*F_backup(i_polygon_update6(i),

opposite(6));

F(i_polygon_update6(i)+dx+dy, 6) = 1/(q6(i)+1/2)*F_backup

(i_polygon_update6(i), 6);

end

end

% Direction 7

count = numel(q7);

109

for i = 1:count

if q7(i)>=1/2

coordi = [mod(i_polygon_update7(i),x) floor(i_polygon_update7(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update7(i),:) = u’;

F(i_polygon_update7(i), opposite(7)) = (q7(i)-1/2)/(q7(i)+1/2)

*F_backup(i_polygon_update7(i), opposite(7)) + F_backup(i_polygon_update7(i)

-dx+dy, opposite(7));

F(i_polygon_update7(i), 7) = (q7(i)-1/2)/(q7(i)+1/2)*F_backup

(i_polygon_update7(i), 7) + 1/(q7(i)+1/2)*F_backup(i_polygon_update7(i),

opposite(7));

F(i_polygon_update7(i)-dx+dy, 7) = 1/(q7(i)+1/2)*F_backup

(i_polygon_update7(i), 7);

end

end

% Direction 8

count = numel(q8);

for i = 1:count

if q8(i)>=1/2

coordi = [mod(i_polygon_update8(i),x) floor(i_polygon_update8(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

110

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

U_speed(i_polygon_update8(i),:) = u’;

F(i_polygon_update8(i), opposite(8)) = (q8(i)-1/2)/(q8(i)+1/2)

*F_backup(i_polygon_update8(i), opposite(8)) + F_backup(i_polygon_update8(i)

-dx-dy, opposite(8));

F(i_polygon_update8(i), 8) = (q8(i)-1/2)/(q8(i)+1/2)*F_backup

(i_polygon_update8(i), 8) + 1/(q8(i)+1/2)*F_backup(i_polygon_update8(i),

opposite(8));

F(i_polygon_update8(i)-dx-dy, 8) = 1/(q8(i)+1/2)*F_backup

(i_polygon_update8(i), 8);

end

end

% Direction 9

count = numel(q9);

for i = 1:count

if q9(i)>=1/2

coordi = [mod(i_polygon_update9(i),x) floor(i_polygon_update9(i)/x)+1];

v = [((coordi(1)-2)/N - center(1)) ((coordi(2)-2)/N - center(2))];

u = [-v(2) v(1)];

u = u*speed*norm(v)/norm(u);

% For F

111

U_speed(i_polygon_update9(i),:) = u’;

F(i_polygon_update9(i), opposite(9)) = (q9(i)-1/2)/(q9(i)+1/2)

*F_backup(i_polygon_update9(i), opposite(9)) + F_backup(i_polygon_update9(i)

+dx-dy, opposite(9));

F(i_polygon_update9(i), 9) = (q9(i)-1/2)/(q9(i)+1/2)*F_backup

(i_polygon_update9(i), 9) + 1/(q9(i)+1/2)*F_backup(i_polygon_update9(i),

opposite(9));

F(i_polygon_update9(i)+dx-dy, 9) = 1/(q9(i)+1/2)*F_backup

(i_polygon_update9(i), 9);

end

end

polygon = polygon_update;

%% Bounce back boundary condition

% This is mainly for the outer circular cylinder wall

% For F

Fc(i_boundary,:) = F(i_boundary,:);

F(i_boundary,2) = Fc(i_boundary,4);

F(i_boundary,4) = Fc(i_boundary,2);

F(i_boundary,3) = Fc(i_boundary,5);

112

F(i_boundary,5) = Fc(i_boundary,3);

F(i_boundary,6) = Fc(i_boundary,8);

F(i_boundary,8) = Fc(i_boundary,6);

F(i_boundary,7) = Fc(i_boundary,9);

F(i_boundary,9) = Fc(i_boundary,7);

%% Boundary uncorrection on F

F(i_polygon_update2, 2) = F(i_polygon_update2, 2)./(1/2+q2);

F(i_polygon_update2, 4) = F(i_polygon_update2, 4)./(1/2+q2);

F(i_polygon_update4, 4) = F(i_polygon_update4, 4)./(1/2+q4);

F(i_polygon_update4, 2) = F(i_polygon_update4, 2)./(1/2+q4);

F(i_polygon_update3, 3) = F(i_polygon_update3, 3)./(1/2+q3);

F(i_polygon_update3, 5) = F(i_polygon_update3, 5)./(1/2+q3);

F(i_polygon_update5, 5) = F(i_polygon_update5, 5)./(1/2+q5);

F(i_polygon_update5, 3) = F(i_polygon_update5, 3)./(1/2+q5);

F(i_polygon_update6, 6) = F(i_polygon_update6, 6)./(1/2+q6);

F(i_polygon_update6, 8) = F(i_polygon_update6, 8)./(1/2+q6);

F(i_polygon_update8, 8) = F(i_polygon_update8, 8)./(1/2+q8);

F(i_polygon_update8, 6) = F(i_polygon_update8, 6)./(1/2+q8);

F(i_polygon_update7, 7) = F(i_polygon_update7, 7)./(1/2+q7);

F(i_polygon_update7, 9) = F(i_polygon_update7, 9)./(1/2+q7);

F(i_polygon_update9, 9) = F(i_polygon_update9, 9)./(1/2+q9);

113

F(i_polygon_update9, 7) = F(i_polygon_update9, 7)./(1/2+q9);

114

