BUILT-IN SELF-TEST CONFIGURATIONS FOR FIELD PROGRAMMABLE GATE 
ARRAY CORES IN SYSTEMS-ON-CHIP 
 
 
Except where reference is made to the work of others, the work described in this thesis is 
my own or was done in collaboration with my advisory committee.  This thesis does not 
include proprietary or classified information. 
 
 
 
 
 
__________________________________________ 
Jonathan McKinley Harris 
 
 
 
 
 
 
Certificate of Approval: 
 
 
________________________ ________________________ 
Victor P. Nelson Charles E. Stroud, Chair 
Professor Professor 
Electrical and Computer Electrical and Computer 
Engineering Engineering 
 
 
 
________________________ ________________________ 
Adit D. Singh Stephen L. McFarland 
Professor Acting Dean 
Electrical And Computer Graduate School 
Engineering 
BUILT-IN SELF-TEST CONFIGURATIONS FOR FIELD PROGRAMMABLE GATE 
ARRAY CORES IN SYSTEMS-ON-CHIP 
Jonathan McKinley Harris 
 
A Thesis 
Submitted to 
the Graduate Faculty of 
Auburn University 
in Partial Fulfillment of the 
Requirements for the 
Degree of 
Master of Science 
 
 
 
 
 
 
Auburn, Alabama 
December 17, 2004 
 
 
iii 
 
BUILT-IN SELF-TEST CONFIGURATIONS FOR FIELD PROGRAMMABLE GATE 
ARRAY CORES IN SYSTEMS-ON-CHIP 
 
Jonathan McKinley Harris 
 
Permission is granted to Auburn University to make copies of this thesis at its discretion, 
upon request of individuals or institutions and at their expense.  The author reserves all 
publication rights. 
 
 
 
 ________________________ 
 Signature of Author 
 
 
 ________________________ 
 Date 
 
 
Copy sent to: 
 
 Name Date 
 
 
 
iv 
VITA 
Jonathan McKinley Harris, son of Ralph and Cathy Harris, was born June 25, 
1979, in Winston-Salem, NC.  He graduated from Forbush High School with high honors 
in 1997.  He graduated cum laude with a Bachelor of Science degree in Electrical 
Engineering at the University of North Carolina at Charlotte in May 2003.  After 
completion of his undergraduate degree, he entered the graduate program in Electrical 
Engineering at Auburn University in August 2003.  While in pursuit of his Master of 
Science degree at Auburn University, he worked under the advisement of Dr. Charles 
Stroud as a graduate research assistant in the Electrical and Computer Engineering 
department.  On June 12, 2004, he married Melinda L. Beaver, daughter of Bobby and 
Wanda Beaver.   
 
 
 
v 
THESIS ABSTRACT 
BUILT-IN SELF-TEST CONFIGURATIONS FOR FIELD PROGRAMMABLE GATE 
ARRAY CORES IN SYSTEMS-ON-CHIP 
 
 
 
Jonathan McKinley Harris 
Master of Science, December 17, 2004 
(B.S.E.E, University of North Carolina at Charlotte, 2003) 
 
 
125 Typed Pages 
 
Directed by Charles E. Stroud 
 
 
 
Built-In Self-Test configurations for the logic and routing resources present in the 
Field Programmable Gate Array core of a System-on-Chip is presented in this Thesis.  
These configurations completely test the Programmable Logic Blocks and Programmable 
Routing Resources present in the Field Programmable Gate Array Core.  A vendor-
specific CAD tool, Atmel System Designer software suite, is used in conjunction with 
custom design automation tools to generate a complete set of logic and routing BIST 
configurations for any size Atmel AT94K series FPGA core as well as any size Atmel 
AT40K series FPGA. 
 
 
 
vi 
ACKNOWLEDGEMENTS 
 
 The author would like to thank Dr. Charles Stroud for assistance with the 
development and application of the BIST configurations completed in the work for this 
thesis.  The author would also like to thank master's committee members Dr. Victor 
Nelson and Dr. Adit Singh for their advice and contributions to this thesis. Many thanks 
are due to family members Ralph, Cathy, Gray, and Kristy for their continued support 
during the course of the completion of the work for this thesis.  A special thanks is due to 
my wife, Melinda, who has given so much of herself and her time during the completion 
of this thesis.  Above all, thanks to God for the strength and persistence to complete this 
thesis and the work involved therein. 
 
 
 
vii 
IEEE (Institute of Electrical and Electronic Engineers) Format 
 
 
Microsoft Word
 
 
viii 
TABLE OF CONTENTS 
 
CHAPTER ONE................................................................................................................. 1 
1.1 Systems on Chip (SoCs) ........................................................................................... 3 
1.2 Field Programmable Gate Arrays (FPGAs).............................................................. 4 
1.3 The Testing Problem................................................................................................. 6 
1.4 Built-In Self-Test (BIST) Techniques ...................................................................... 7 
1.5 BIST for FPGAs ....................................................................................................... 9 
1.6 Thesis Statement ..................................................................................................... 12 
CHAPTER TWO .............................................................................................................. 15 
2.1 Atmel AT94K Series FPSLIC ................................................................................ 15 
2.2 Atmel AT40K Series FPGA ................................................................................... 17 
2.2.1 PLB Architecture ............................................................................................. 18 
2.2.2 Programmable Interconnect Points (PIPs) in FPGAs ...................................... 20 
2.2.3 Routing Architecture........................................................................................ 22 
2.3 Overview of Testing Methods for FPGAs.............................................................. 27 
2.4 Previous Work in BIST for FPGAs ........................................................................ 28 
2.4.1 Logic BIST....................................................................................................... 28 
2.4.2 Routing BIST................................................................................................... 31 
2.4.3 BIST for the ORCA FPGAs ............................................................................ 33 
2.4.4 BIST for the Xilinx 4000 and Spartan Series FPGAs...................................... 34 
2.4.5 Previous Work In Logic BIST for the Atmel AT94K Series FPGA Core....... 36 
2.5 ORCA, Xilinx, and Atmel FPGA Comparison....................................................... 36 
2.6 BIST Configuration Comparison............................................................................ 39 
2.7 BIST Development ................................................................................................. 41 
2.7.1 Macro Generation Language (MGL) ............................................................... 42 
2.8 Thesis Restatement ................................................................................................. 45 
CHAPTER THREE .......................................................................................................... 46 
3.1 Architectural Implications on Logic BIST Architecture ........................................ 46 
3.2 Modeling the PLB for Fault Simulations................................................................ 54 
3.2.1 MGL Generated BIST Configurations............................................................. 55 
3.2.2 Theoretical Best Case ...................................................................................... 61 
3.2.3 Manually Generated BUT Configurations with Bitstream Manipulation........ 63 
3.3 MGL's Effects on Logic BIST Development and Application............................... 71 
3.4 Comparison of Logic BIST for Atmel, ORCA, and Xilinx FPGAs ....................... 72 
CHAPTER FOUR............................................................................................................. 74 
4.1 Fault Models for FPGA Routing Resources ........................................................... 74 
4.2 Modifications to Routing BIST Methodology........................................................ 75 
4.3 Overview of Routing BIST Configurations............................................................ 80 
4.4 BIST Configurations for Cross-Point PIPs............................................................. 82 
4.5 BIST Configurations for Repeaters ........................................................................ 87 
4.6 BIST Configurations for the Tri-Stated L Output and the X Direct Connections 104 
4.8 Summary of Routing BIST Configurations .......................................................... 111 
4.9 MGL's Effect on Routing BIST Development and Application........................... 113 
4.10 Comparison of the Routing BIST for Atmel, ORCA, and Xilinx FPGAs.......... 115 
CHAPTER FIVE ............................................................................................................ 117 
 
 
ix 
5.1 Comparison of Work............................................................................................. 120 
5.2 Future Work.......................................................................................................... 121 
5.3 Conclusion ............................................................................................................ 122 
REFERENCES ............................................................................................................... 123 
 
 
x 
LIST OF TABLES AND FIGURES 
 
Figure 1.1 Example System on Chip (SoC) Architecture................................................... 3 
Figure 1.2 Example FPGA Block Diagram ........................................................................ 5 
Figure 1.3 Typical BIST Structure...................................................................................... 8 
Figure 1.4 Basic Logic BIST Architecture for FPGAs..................................................... 10 
Figure 1.5 Test Sessions for logic BIST for FPGAs......................................................... 11 
Figure 1.6 Example Interconnect BIST Architecture for FPGAs .................................... 12 
Figure 2.1 Atmel AT94K Series FPSLIC Architecture.................................................... 16 
Table 2.1 Atmel FPGA and FPGA Core Sizes................................................................. 17 
Figure 2.2 Atmel AT94K Series FPGA Core Architecture .............................................. 18 
Figure 2.3 Atmel AT40K Series PLB............................................................................... 20 
Figure 2.4 PIP Structures Typically Found in FPGAs...................................................... 20 
Figure 2.5 Local Interconnect Associated with the Atmel PLB ....................................... 23 
Figure 2.6 PLB-to-PLB Adjacent Connections ................................................................ 24 
Figure 2.7 PLB-to-Bus Connections................................................................................. 25 
Figure 2.8 Staggered Repeaters in Atmel Routing Architecture ...................................... 26 
Figure 2.9 Logic BIST Architecture ................................................................................. 29 
Figure 2.10 Basic ORA Structure in Logic BIST ............................................................. 31 
Figure 2.11 Routing BIST Architecture............................................................................ 32 
Figure 2.12 Parity check-based Routing BIST ................................................................. 32 
Table 2.2 Comparison of PLBs......................................................................................... 37 
Table 2.3 Comparison of Routing Resources ................................................................... 38 
Table 2.4 Percent Composition of PIPs in Routing Resources......................................... 39 
Table 2.5 BIST Configurations for ORCA and Xilinx FPGAs ........................................ 39 
Figure 3.1 Clock and Set/Reset Routing Structure in Atmel FPGA................................. 47 
Figure 3.2 ORA Structure for Logic BIST ....................................................................... 49 
Figure 3.3 BUT to ORA Connections During Logic BIST .............................................. 50 
Figure 3.4 Comparison ORA and Reconfigured ORA for Shift Register ........................ 52 
Figure 3.5 2-PLB ORA with Shift Register...................................................................... 53 
Figure 3.6 Logic BIST MGL Program Flow Diagram ..................................................... 56 
Table 3.1 Pin Numbers for I/O Cells for Logic BIST....................................................... 57 
Figure 3.7 MGL Generated BUT Configurations............................................................. 59 
Table 3.2 MGL Generated BUT Configurations .............................................................. 60 
Figure 3.8 Middle and Edge Fault Coverage (Five BUT Configurations) ....................... 61 
Figure 3.9 Theoretical Minimum Three BUT Configurations.......................................... 63 
Table 3.3 Manually Produced BUT Configurations......................................................... 65 
Figure 3.10 Manually Generated Four BUT Configurations............................................ 66 
Figure 3.11 Middle and Edge PLB Fault Coverage (Four BUT Configurations) ............ 67 
Figure 3.12 Column-Based to Row-Based Rotation for Logic BIST............................... 68 
Figure 3.13 Fault Coverage of PLBs Located in Four Corners of the Array.................... 69 
Table 3.4 Total Fault Coverage for PLB and Local Interconnect..................................... 70 
Table 3.5 FPGA Logic BIST Configuration Comparison ................................................ 73 
Figure 4.1 Routing BIST Architecture.............................................................................. 76 
Table 4.1 Test Pattern Sequences for Routing BIST ........................................................ 77 
Figure 4.2 ORA Structure for Routing BIST.................................................................... 79 
 
 
xi 
Table 4.2 Pin Numbers for I/O Cells for Routing BIST................................................... 81 
Figure 4.3 Global Routing Associated with the PLB ....................................................... 83 
Figure 4.4 Cross-Point PIP Routing BIST Architecture................................................... 84 
Figure 4.5 Abus Cross-Point STAR Tiles for all FPGA Array Sizes............................... 86 
Figure 4.6 Ebus Cross-Point STAR Tiles for all FPGA Array Sizes ............................... 87 
Figure 4.7 Repeater Connections and Targeted Fault Types............................................ 88 
Figure 4.8 Repeater Set 1 Configuration Architecture ..................................................... 90 
Figure 4.9 Repeater Set 2 Configuration Architecture ..................................................... 91 
Figure 4.10 Repeater Set 3 Configuration Architecture ................................................... 92 
Figure 4.11 Abus Repeater Set 1 Configuration Architecture.......................................... 93 
Figure 4.12 Abus Set 1 Configurations for All Array Sizes............................................. 94 
Figure 4.13 Flipped Abus Set 1 Configurations for All Array Sizes................................ 95 
Figure 4.14 Ebus Repeater Set 1 Configuration Architecture .......................................... 96 
Figure 4.15 Ebus Set 1 Configurations for Each Array Size ............................................ 97 
Figure 4.16 Flipped Ebus Set 1 Configurations for Each Array Size............................... 98 
Figure 4.17 Abus Repeater Set 2 Configuration Architecture.......................................... 99 
Figure 4.18 Abus Set 2 Configurations for Each Array Size............................................ 99 
Figure 4.19 Flipped Abus Set 2 Configurations for Each Array Size ............................ 100 
Figure 4.20 Ebus Line Repeater Set 2 Configuration (16x16, 32x32, & 48x48) ........... 101 
Figure 4.21 Ebus Line Repeater Set 2 Configuration (24x24) ....................................... 101 
Figure 4.22 Ebus Set 2 Configuration for Each Array Size............................................ 102 
Figure 4.23 Flipped Ebus Set 2 Configuration for Each Array Size .............................. 103 
Figure 4.24 Abus and Ebus Set 3 Configuration for Each Array Size ........................... 104 
Figure 4.25 L Output Configuration Architecture .......................................................... 105 
Figure 4.26 L Output Configuration Structure and Timing Diagram............................. 107 
Figure 4.27 X Direct Connection Configuration Test Phases......................................... 109 
Figure 4.28 Untested Direct Connections and L Output Cross-point PIPs..................... 110 
Table 4.3 Summary of Routing BIST MGL and C Programs ........................................ 113 
Table 4.4 FPGA Routing BIST Comparison .................................................................. 116 
 
 
xii 
LIST OF ACRONYMS 
 
 
ASIC - Application Specific Integrated Circuit 
AVR - Advanced Virtual RISC 
BIST - Built-In Self-Test 
BUT - Block Under Test 
CAD -  Computer Automated Design 
CLB - Configurable Logic Block 
CPU - Central Processing Unit 
CUT -  Circuit Under Test 
DCT - Discrete Cosine Transform 
DSP - Digital Signal Processing 
FIR -  Finite Impulse Response 
FFT - Fast Fourier Transform 
FPGA - Field Programmable Gate Array 
FPSLIC - Field Programmable System Level Integrated Circuit 
HDL - Hardware Description Language 
IC - Integrated Circuit 
IDS - Integrated Development System 
I/O - Input/Output 
IP - Intellectual Property
 
 
xiii 
LUT - Look Up Table 
MGL - Macro Generation Language 
MUX - Multiplexer 
NCD - NeoCAD Design Language 
ORA - Output Response Analyzer 
PAR - Place and Route 
PCB - Printed Circuit Board 
PIP - Programmable Interconnect Point 
PLB - Programmable Logic Block 
RISC - Reduced Instruction Set Computer 
SoC - System-on-Chip 
SRAM - Static Random Access Memory 
STAR - Self Test ARea 
TPG -  Test Pattern Generator 
VLSI - Very Large Scale Integration 
WUT - Wire Under Test 
XDL - Xilinx Design Language 
 
 
 
1 
CHAPTER ONE 
 
INTRODUCTION 
Meeting time to market demands and profitability requirements of digital 
electronics systems is increasingly important in the current economy [1].  In the past, 
systems have been designed at the board level, meaning a system may comprise many 
integrated circuits (ICs) interconnected on a printed circuit board (PCB).  Currently, IC 
process technologies are allowing transistor sizes to pass under the 100 nanometer 
threshold, thus making the designs much more dense and allowing on the order of a 
hundred million transistors to be fabricated on a single IC [2], [3].  With the availability 
to comprise an entire system on a single IC, an increase in the overall device speed and 
reduction of device power can be achieved.  This integration of a system down to the IC 
level is referred to as System-on-Chip (SoC).  In addition to the aforementioned 
advantages, an SoC implementation significantly reduces the cost of the system.  
Therefore, SoCs have been gaining popularity in the electronic design industry due to the 
attractiveness of attaining a complete system level design in an IC.    
Primarily, there are two types of SoC design implementations; Application 
Specific Integrated Circuit (ASIC) based SoCs and generic SoCs containing user-
programmable logic. A typical ASIC-based SoC would incorporate standard cell and 
regular structure based components and, therefore, be limited to one particular 
application, having no programmability to make it adaptable.  In contrast, a generic SoC 
 
 
2 
contains user-programmable logic allowing it to be easily reprogrammed to adapt to such 
changes as updated industry standards.  ASIC-based SoCs have primarily dominated the 
drive into SoC design implementations; however, generic SoCs containing Field 
Programmable Gate Arrays (FPGAs) as the user-programmable logic have been 
increasing in popularity [2].  Generic SoC designs have many advantages over the ASIC-
based SoC designs.  These advantages include [4]:   
�� The SoC does not suffer from expensive redesigns and long time to market. 
�� The embedded FPGA may be used for different functions at different times. 
�� Due to the FPGA?s massive parallelism, many algorithms (such as image or 
signal processing and cryptography) can be implemented. 
�� The same SoC can be used for multiple applications. 
�� The FPGA can be used to implement protocols and algorithms likely to change. 
�� The FPGA can support remote and internet based field upgrades. 
These generic SoC designs are very attractive to designers as their reconfigurability 
provides low design cost, shorter time to market, and possibly increased testability [2], 
[1].  As a result of the advantages mentioned above, the incorporation of an FPGA is 
increasingly becoming the standard technique in the design of an SoC [2].  This thesis 
will focus on the testing of FPGA core logic and routing resources within a specific 
generic SoC; however, the overall approach is applicable to most SoCs with user-
programmable logic. 
 
 
 
 
 
3 
1.1 Systems on Chip (SoCs) 
An example structure of an SoC includes user programmable or standard cell 
logic, memory (for data and program), Central Processing Units (CPUs), and possibly 
some analog circuitry [5].  SoCs are usually designed around Intellectual Property (IP) 
cores that generally fall into two categories, Hard IP cores and Soft IP cores.  Hard IP 
cores are supplied as a predesigned physical layout of a particular circuit, whereas Soft IP 
cores are available in synthesizable modules described in a Hardware Description 
Language (HDL), such as VHDL or Verilog [5].  These Soft IP cores would be 
synthesized into standard cell logic or into an FPGA core and, having performed the 
physical layout based on the logic implementation, be incorporated into the SoC.  Any 
combination of Hard and/or Soft IP cores may be used in the design of an SoC.  An 
example structure comprised in an SoC is shown in Figure 1.1.  This figure shows the 
components mentioned previously and illustrates their interconnections. 
 
 
  
Programmable I/O 
Central Processing 
Unit (CPU) 
FPGA and/or 
Standard Cell Logic 
Memory Controller 
Program Memory Data Memory C o 
n 
f 
i 
g 
u 
r 
a 
t 
i 
o 
n 
 
C 
o 
n 
t 
r 
o 
l 
 
Figure 1.1 Example System on Chip (SoC) Architecture 
 
 
4 
 The CPU allows complex algorithms to be implemented in software, which is 
almost a necessity in modern day digital systems.  The CPU can either have a predefined 
set of operating conditions, or may be user-configurable to allow for more flexibility [5].  
The user programmable logic, shown in Figure 1.1 as an FPGA, allows various hardware 
functions to be implemented using the programmability of the FPGA, to be discussed in 
the next section.  Program and data memories exist to store the algorithms for execution 
by the CPU and to provide a place to store operands and data to be manipulated, 
respectively [5].  Also shown in the figure is a memory controller interface, which serves 
to control the interaction of the CPU and FPGA with the program and data memories.  In 
addition to the memory controller, the configuration control can allow the FPGA to be 
programmed via the CPU or directly from the user. 
 
1.2 Field Programmable Gate Arrays (FPGAs) 
 The FPGA portion of the SoC typically consists of four components, configurable 
logic blocks (CLBs) also known as programmable logic blocks (PLBs), programmable 
interconnect, programmable Input/Output (I/O) cells, and a configuration memory [6].  
An example FPGA structure is shown in Figure 1.2.  The PLBs serve as the user 
programmable logic and allows for the implementation of various digital logic functions.  
The PLBs are typically arranged in an NxN array and are connected via the 
programmable interconnect network to allow multiple logic functions to be performed.  
The programmable I/O cells can function as inputs or outputs, depending on the 
requirements of the design.  The programming bits necessary to configure the CPU 
and/or the FPGA for the desired system function are stored in the configuration memory.   
 
 
5 
Programmable 
Logic Blocks (PLBs) 
Programmable 
Interconnect 
Programmable 
I/O Blocks 
 
Figure 1.2 Example FPGA Block Diagram 
Typically, a PLB will consist of two to eight k-input Look Up Tables (LUTs), one 
flip-flop per LUT, and various multiplexers and logic gates [7].  Each LUT can realize 
any combinational logic function of k inputs and each PLB can simultaneously execute m 
different k-input logic functions where m is the number of LUTs in the PLB.  The flip-
flop(s) give the user the flexibility of performing sequential logic functions as well as 
combinational logic functions.  The multiplexers serve to set up the data paths in the 
PLB.  These make the paths through which the appropriate input signals propagate 
through the PLB in order to implement the desired digital function. 
The programmable interconnect consists of various wire segments controlled by 
programmable interconnect points (PIPs) to form connections between two or more PLBs 
and/or between the PLBs and the programmable I/O cells [6].  The routing resources used 
to make connections between adjacent PLBs are usually referred to as local routing and 
 
 
6 
those resources used to make connections between non-adjacent PLBs are typically 
referred to as global routing.  The PIPs control the connections of the various wire 
segments to make or break these local or global connections between PLBs [6].  Data bits 
stored in the configuration memory are used to control the PIPs.  The PIPs act similar to 
switches where the data bits from the configuration memory are used to turn the PIP on 
and off, thus making or breaking connections between the associated wire segments. 
The configuration memory stores all the configuration bits for the PLBs, I/O cells,  
and the programmable interconnect network and is loaded via a configuration interface.  
The configuration memory is typically comprised of Static Random Access Memory 
(SRAM) cells that contain configuration bits for each of the LUTs, multiplexers, flip-flop 
reset/set, and various PIPs in the FPGA [6]. 
 Due to the volatility of the SRAM-based configuration memory, the configuration 
bits must be loaded each time the device is powered on and, therefore, must be stored in 
an external memory device or loaded from a computer [6].  However, the advantage of 
using an SRAM-based memory is that it allows in-system reprogramming to change the 
system function whenever desired. 
 
1.3 The Testing Problem 
 Testing combinational and sequential logic components is an intricate process and 
involves many interacting aspects [8].  The primary issues in testing include the cost of 
the test development, the quality of the generated test and the cost and time of applying 
the test [8].   Other factors influencing testing are the increasing number of transistors 
present in an IC, which can currently number in the millions.  Over the past two to three 
 
 
7 
decades, the number of I/O pins on most very large scale integration (VLSI) devices has 
increased by an order of magnitude while the number of transistors contained in those 
VLSI devices has increased by about four orders of magnitude [7].  This has inherently 
reduced the accessibility and, therefore, the testability of the circuits within these VLSI 
devices [7].   In order to develop and evaluate the quality of a test for a device, a fault 
model is used to emulate the various types of faults that can be encountered in VLSI 
devices. 
 Typically, fault models that model gate, transistor, and other physical faults and 
defects are used to perform fault simulations to determine the ability of a given set of test 
patterns to detect faults within a circuit [7].  Testing is performed by using test patterns 
designed to test for the specific type of fault model and applying these patterns to the 
circuit under test (CUT).  Once these test patterns have been applied to the CUT, the 
output responses are compared against responses of a fault-free circuit obtained from 
simulation.  If all the output responses match, the CUT is assumed to be fault-free, 
however, in case of a mismatch, the CUT is determined to be faulty and is typically 
discarded.  
 
1.4 Built-In Self-Test (BIST) Techniques 
 Built-In Self-Test (BIST) is a method of testing a given circuit wherein additional 
circuitry is added such that the circuit can test itself.  BIST can be broken into two 
categories, on-line BIST and off-line BIST.  When performing on-line BIST, the CUT is 
operating in its normal system mode of operation.  During off-line BIST the CUT is 
placed in a test mode that is typically not a normal system mode of operation.  The 
 
 
8 
advantage of off-line BIST is that it can be applied at the manufacturing, field, depot, and 
operational levels [7], [8]. The primary focus of this thesis will be off-line BIST.  
 The particular form of off-line BIST that will be applied for the research involved 
in this thesis will be a form of off-line BIST where no additional circuitry outside the 
chip itself is required for testing, but existing flip-flops and registers within the CUT are 
manipulated and used for testing [7].  A typical BIST structure comprises a test 
controller, test pattern generator (TPG), circuit under test (CUT), and an output response 
analyzer (ORA) as illustrated in Figure 1.3 [9].  
Pass/ 
Fail Circuit Under Test 
(CUT) TPG ORA 
BIST 
Controller 
 
Figure 1.3 Typical BIST Structure 
 The TPG supplies test patterns to the CUT and the ORA analyzes the results to 
indicate a pass or fail condition for the CUT.  Typically, the TPG generates exhaustive or 
pseudo-exhaustive test patterns and may be as simple as a binary n-bit counter or an n-bit 
linear feedback shift register (LFSR) with a primitive polynomial or as complex as an 
algorithmic test patter generator [7].  The ORA can be as simple as a comparator that 
compares known good responses with the actual responses of the CUT or can be as 
complex as a multiple input data compactor that may use signature analysis to indicate a 
fault occurrence [7]. If the TPG and ORA are separated from the CUT, they can be used 
 
 
9 
to test multiple CUTs concurrently.  Using this approach imposes no performance 
penalties on the CUT other than additional set-up time when controlling the CUT to 
operate in its BIST mode of operation [7]. 
 
1.5 BIST for FPGAs 
 Typical BIST approaches for FPGAs involve taking the FPGA off-line, testing the 
device, and, if found fault-free, placing the FPGA back on-line within the system.  This is 
possible since most current FPGAs use an SRAM-based configuration memory, which is 
inherently in-system reprogrammable.  As a result, the FPGA is reconfigured to create a 
BIST structure, the device is tested, and is then reprogrammed for the system function 
before being returned to the system operation [7].  Due to the reconfigurability and 
multiple modes of operation and combinations of interconnection of an FPGA, many test 
configurations will be required to completely test an FPGA?s programmable logic and 
routing resources.  The basic idea in BIST for the programmable logic of an FPGA is to 
configure rows (or columns) of PLBs as TPGs and ORAs, and other rows (or columns) of 
PLBs as blocks under test (BUTs), as illustrated in Figure 1.4. [7] 
 
 
 
 
 
 
10 
TPG #1 TPG #2 
BUT BUT 
ORA 
BUT 
ORA 
BUT 
BUT 
ORA 
BUT 
BUT 
ORA 
BUT 
BIST Start  BIST Done 
Pass/Fail 
 
Figure 1.4 Basic Logic BIST Architecture for FPGAs [7] 
 The BUTs are reconfigured several times such that they are tested in all their 
modes of operation.  Each time the BUT is reconfigured to test a different PLB mode, it 
is referred to as a test phase [7].  A collection of test phases that completely test the 
BUTs in all their modes of operation is referred to as a test session [7].  Once the BUTs 
have been completely tested in all their modes of operation, the test session is repeated 
such that the PLBs that were previously TPGs and ORAs become BUTs, and vice versa 
as illustrated for a 6?N array of PLBs in Figure 1.5 [7].  As a result, the programmable 
logic resources in the FPGA can be tested in a minimum of two test sessions. 
 
 
 
 
 
 
 
11 
row of TPGs  
row of BUTs 
row of ORAs 
row of BUTs 
row of ORAs 
row of BUTs row of TPGs  
row of BUTs 
row of ORAs 
row of BUTs 
row of ORAs 
row of BUTs 
Test Session #1 Test Session #2  
Figure 1.5 Test Sessions for logic BIST for FPGAs 
 Each test phase consists of the following steps: 1) the FPGA is reconfigured with 
a BIST configuration, 2) the BIST sequence is executed, which involves initialization, 
test pattern generation, and output response compaction, and 3) the BIST results are read 
from the ORAs [7].  In step 1, the test controller interacts with the FPGA to reconfigure 
the FPGA for testing.  This is done when the controller retrieves the current BIST 
configuration from a storage device, such as a computer, and downloads this information 
to the configuration memory of the FPGA.  The controller also initializes the TPGs, 
ORAs, and BUTs and provides a BIST Start signal to initiate the test in step 2.  In step 3, 
the Pass/Fail results from the test phase are read from the ORAs in the FPGA to indicate 
the condition of the device.  For this type of BIST, comparator-based ORAs are used 
because of the nature of the BIST architecture. Since the BUTs are receiving indentical 
inputs from two TPGs, their outputs should match and a fault condition can be 
determined simply by seeing a match or mismatch between the respective BUT outputs 
[7]. 
 One approach in BIST for the programmable interconnect of an FPGA is to 
configure a subset of the routing resources (wire segments and PIPs) to form two groups 
 
 
12 
of wires under test (WUTs).  The WUTs receive identical test patterns from a TPG and 
the values are compared at the other end of the WUTs by one or more comparison-based 
ORAs [7].  A set of WUTs may be composed of several wire segments connected by 
closed PIPs and may also include PLBs to check local routing to/from the PLBs.  An 
example of this type of BIST architecture for programmable interconnect is shown in 
Figure 1.6 [7]. 
TP G 
BIST Start  
BIST Do n e 
P LB  
ORA  
Pas s/Fail
A W UTs  
B  W UTs  
 
Figure 1.6 Example Interconnect BIST Architecture for FPGAs [7] 
 
1.6 Thesis Statement 
 The off-line BIST approach to testing FPGAs offers the advantage of no 
additional circuitry, thus no area overhead in the design of the chip as well as no 
performance penalty in the system mode of operation [7].  Theoretically, the same BIST 
approach can be implemented in the FPGA core of a generic SoC.  Once the BIST has 
been performed on the FPGA and the FPGA determined fault-free, the FPGA core can 
then be used to test the other cores in the SoC [4]. 
 When applied to FPGA core logic and routing resources in an SoC, the benefits of 
an off-line BIST approach can be fully utilized.  Since the FPGA can be reprogrammed, 
it can be removed from system operation, reprogrammed for BIST, tested for faults, and 
 
 
13 
if no failures, reprogrammed for system operation.  If faults are detected, the system 
function can be reconfigured to avoid the faults present in the FPGA.  A disadvantage of 
testing an FPGA core with this approach is the requirement of multiple test 
configurations.  Since the PLBs and routing resources must be configured in many 
different modes of operation, complete testing requires multiple configurations of the 
device [7].  Despite the disadvantage of multiple test configurations, the use of BIST for 
testing FPGA core logic provides the most benefits for complete testing of any test 
methods to date.  
 The research to be presented in this thesis is based upon a previously proposed 
SoC BIST methodology [4] and previous work completed in BIST for FPGA logic and 
routing resources, in [10] and [11] respectively.  The work to be presented is a 
continuation of these two previous BIST approaches in relation to testing FPGA core 
logic and routing resources that are a part of a generic SoC.  The BIST approach is 
developed for and applied to a commercially available SoC, specifically the Atmel 
AT94K series Field Programmable System Level Integrated Circuit (FPSLIC). 
  The remaining chapters of this thesis are structured in the following manner: 
Chapter 2 presents a detailed overview of the Atmel AT94K FPSLIC FPGA core 
architecture as well as a review of previous work completed in BIST for other FPGAs.  
Chapter 3 presents the BIST approach used in the testing of the FPGA core logic 
resources and the results obtained with the Atmel AT94K Series SoC. Chapter 4 presents 
the BIST approach used for the routing resources in the Atmel AT94K Series FPSLIC 
FPGA core and the obtained results.  Chapters 3 and 4 also give an overview of the 
testing obstacles encountered with the Atmel FPSLIC and the methods used to overcome 
 
 
14 
these obstacles and how they can be applied to testing other SoCs.  Chapter 5 provides a 
summary of the work completed as well as suggestions for future work in testing FPGA 
core logic and routing resources in SoCs. 
 
 
15 
CHAPTER TWO 
BACKGROUND INFORMATION 
 Presented within this chapter is an overview of the AT94K series Field 
Programmable System Level Integrated Circuit (FPSLIC) architecture (a generic SoC) 
and the FPGA architecture incorporated in the Atmel AT40K series FPGAs and the 
FPGA core of the FPSLIC.  A review of prior work completed in the testing of FPGAs as 
well as work in BIST for FPGAs is presented.  In addition, a comparison of the FPGA 
architectures in the prior BIST work to that of the Atmel FPGA is also presented.  The 
development process of the previous applications of BIST for FPGAs will be discussed 
and background material for the proposed development process of BIST for application 
to the Atmel FPGA will be presented. 
 
2.1 Atmel AT94K Series FPSLIC 
 The Atmel AT94K series FPSLIC incorporates an FPGA core utilized in the 
AT40K series FPGAs along with an AVR (Advanced Virtual RISC) 8-bit Reduced 
Instruction Set Computer (RISC) microcontroller unit, a configuration controller, a 
memory controller, and program and data memories [14].  The combination of the AVR 
and configuration controller allows for in-system reprogramming of the desired operation 
of the device by downloading a configuration in to the FPGA core or by utilizing the 
AVR to dynamically reprogram the FPGA core of the device [14].  Figure 2.1 illustrates 
 
 
 
16
the interconnections in the FPSLIC device between the FPGA and the AVR with the 
memory and configuration controller components.  
 
 
  
Programmable I/O 
Data  
Address 
Interrupts 
Data Memory Program Memory 
For Reconfigurability 
Memory Controller 
AVR 8-bit RISC 
Microcontroller 
AT40K Series 
FPGA with 
FreeRAM 
C 
o 
n 
f 
i 
g 
u 
r 
a 
t 
i 
o 
n 
 
C 
o 
n 
t 
r 
o 
l 
 
Figure 2.1 Atmel AT94K Series FPSLIC Architecture [14] 
 The AVR 8-bit RISC Microcontroller supports over 120 instructions, of which 
most execute within a single clock cycle [14].  The microcontroller architecture is 
optimized for C code, but may be programmed in assembly language as well [14].  For 
storage, up to 36 Kbytes of memory can be partitioned for up to 16 Kbytes x 16-bit 
program memory and up to 16 Kbytes x 8-bit data memory [14].  Between the AVR and 
the FPGA there are 16 address lines (8 lines for the AT94K05) decoded from 4 bits in the 
AVR memory map and an 8-bit bi-directional data bus to allow for accessibility from the 
AVR core of the device to the FPGA core [14].  In addition, 16 internal interrupt lines are 
supplied from the FPGA to the AVR and up to four external interrupts are available 
 
 
 
17
through user I/O [14].  The FPGA core of the FPSLIC can be one of four sizes of the 
AT40K series FPGA, ranging in usable gate count from 5,000 to 40,000 gates [14], [15].  
These four sizes are summarized in Table 2.1, which details the AT40K FPGA and the 
associated AT94K FPGA core sizes in terms of the number of PLBs.  The primary focus 
of the FPSLIC architecture will be on the FPGA portion of the device since this portion 
of the device is the focal point of the research and development work described in this 
thesis. 
Table 2.1 Atmel FPGA and FPGA Core Sizes 
Number of PLBs FPGA FPSLIC 
NxN 
AT40K05 AT94K05 16x16 
AT40K10 AT94K10 24x24 
AT40K20 Not Currently Available 32x32 
AT40K40 AT94K40 48x48 
 
2.2 Atmel AT40K Series FPGA 
 The AT40K FPGA is designed for rapid implementation of high-performance, 
large gate count designs through the use of synthesis- and schematic-based tools either on 
a PC or Sun platform [15].  Designs can be implemented in the AT40K series FPGA 
through common design software such as Synplicity, ModelSim, Exemplar, and 
Viewlogic since the Atmel design tools are devised to integrate with these and other 
industry standard design software [15].  The FPGA can be used to implement arithmetic-
intensive functions, which include applications for high-speed Digital Signal Processing 
(DSP) functions.  Examples of such DSP functions include Finite Input Response (FIR) 
filters, Fast Fourier Transforms (FFT), convolvers, interpolators, and Discrete Cosine 
Transforms (DCT) [15]. 
 
 
 
18
 The basic AT94K series FPGA core architecture is illustrated in Figure 2.2.  The 
device consists of an array of PLBs, two planes of programmable interconnect (vertical 
and horizontal) and programmable I/O pads.  The PLBs are arranged in an N?N array 
where N is given in Table 2.1.   
Programmable Interconnect 
Logic Cells 
Programmable I/O Pads  
Express Buses Local Bus 
I
n
t
e
r
f
a
c
e
 
t
o
 
A
V
R
 
a
n
d
 
d
a
t
a
 
R
A
M
 
 
Figure 2.2 Atmel AT94K Series FPGA Core Architecture [15] 
 
2.2.1 PLB Architecture 
The logic within the PLB is shown in Figure 2.3 and, as can be seen, various 
combinations of functions can be implemented within the PLB.  Configuration bits stored 
in the configuration memory of the device determine the logic function performed by the 
PLB.  Any n-input logic function, where 1 ? n ? 4, can be realized within the PLB 
utilizing the two 3-input LUTs simultaneously.  If n ? 3, up to two logic functions can be 
 
 
 
19
obtained using one LUT for each function, since each LUT contains eight bits [15].  The 
logic function(s) implemented can be either sequential or combinational, by using or not 
using the D flip-flop, respectively [15].  A logic function with feedback may also be 
realized within the PLB and can be either sequential or combinational [15].  The AND 
gate present on the W input is important for logic functions implementing arrays of 
multipliers [15].  The multiplexers shown in gray produce a default logic value of '1' 
when no input is selected; otherwise, they behave similar to non-decoded multiplexers 
where a control bit is associated with each input to the multiplexer [7].  The multiplexer 
with CB (configuration bit) shown as an input has a configuration bit from the 
configuration memory driving one of its inputs.  The remaining multiplexers shown 
behave as decoded multiplexers with a single configuration bit selecting one of the 
mulitplexer's two inputs.  In addition to the various types of logic functions available, the 
PLB output L can be optionally tri-stated for bi-directional bus implementations when the 
PLB output needs to be in a high impedance state [15].  The X, W, Y, and Z inputs are 
selected from multiplexers that are a part of the local routing resources, which are 
discussed in more detail in the next section.  In addition to X, W, Y, and Z inputs there is 
a clock and a set/reset input to the flip-flop and a horizontal and vertical output enable to 
the tri-state buffer of each PLB for a total of eight inputs.  The outputs of the PLB include 
the X and Y outputs to adjacent PLBs and the L output which connects to the global 
routing resources for a total of three outputs. 
 
 
 
20
Y  
LUT  
X  
LUT  
X  
W  
Y  
Z  
1 
0 
clk  
set/rst  
L  to global routing 
Y  
X  
to local 
routing  
to local 
routing  
 
CB
OE  OEH      V
1
0
 
Figure 2.3 Atmel AT40K Series PLB [15] 
 
2.2.2 Programmable Interconnect Points (PIPs) in FPGAs 
In order to understand the routing architecture present in an FPGA, it is important 
to understand the types of PIPs and wire segments commonly found in FPGAs.  The 
basic structure of a PIP is shown in Figure 2.4a, where a pass transistor (transmission 
gate) is turned on/off by the logic value of a configuration memory bit.  A connection can 
be made or broken by setting the configuration bit to the desired logic value. 
a) PIP Structure 
Configuration 
Bit 
b) Cross-Point PIP 
c) Brea k-Po int PIP 
Wire X 
Wire Y 
Wire X Wire Y 
Wire X Wire Y 
Output 
d) Multiple xer PIP 
PIP PIP 
PIP PIP PIP 
PIP 
e) Switch-Box PIP 
 
Figure 2.4 PIP Structures Typically Found in FPGAs [7] 
 
 
 
21
The general types of PIPs found in FPGAs fall into four categories, cross-point 
PIPs, break-point PIPs, multiplexer PIPs, and switch-box PIPs [7].  The cross-point PIPs 
(Figure 2.4b) connect wire segments perpendicular to one another; for example, a vertical 
wire segment and horizontal wire segment are connected.  A break-point PIP (Figure 
2.4c) connects or disconnects wire segments within the same plane, such as a vertical-
vertical connection or a horizontal-horizontal connection [7].  The multiplexer PIP 
(Figure 2.4d) can either be decoded or non-decoded and selects one of multiple input 
wire segments to make a connection to an output wire segment [7].  Non-decoded 
multiplexer PIPs are controlled by k configuration bits, where k is the number of input 
wire segments to the PIP [7], such that there exists one bit per wire segment and that bit 
controls the connection for its respective wire segment.  The decoded multiplexer PIP has 
2k input wire segments and is controlled by k configuration bits [7].  For the decoded 
multiplexer, the binary code formed by the configuration bits controls the connection 
between a given input and the output wire segments as in a basic multiplexer.  The last 
type of PIP, the switch-box PIP (Figure 2.4e), also referred to as a compound cross-point 
PIP, is usually made of an array of pass transistors making connections in various 
directions between different wire segments [7].    
Typically, the types of PIPs and wire segments found in an FPGA can be 
separated into global and local routing resources.  The multiplexer PIPs are typically 
found in the local routing resources while the cross-point, break-point, and switch-box 
PIPs are usually found in the global routing resources.  The local routing resources are 
those associated with a given PLB and its adjacent PLBs.  The PLB inputs and outputs 
enter and exit through the local routing resources and can make connections either to 
 
 
 
22
adjacent PLBs or to other PLBs or I/O cells through the global routing resources.  Global 
routing resources allow connections to be made between PLBs that are typically at 
distances of more than one PLB apart in the array.  These resources can also be used to 
route long distances from PLBs to I/O cells.  The global routing resources commonly 
comprise longer wire segments and their associated PIPs.  The wire segments present in 
the global routing resources span differing lengths of the FPGA array and connections 
can be made between these wire segments by the various types of PIPs that are present 
within the global routing network.   
The wire segments in the programmable interconnect in the FPGA have various 
lengths which are typically associated with the number of PLBs that a given wire 
segment spans.  These include short to medium length wire segments denoted as x1 lines, 
x2 lines, x4 lines, and x8 lines which span one, two, four, and eight PLBs, respectively.  
Longer wire segments may span a quarter (xQ lines), one half (xH lines), or the full 
length (xL lines) of the FPGA array. 
 
2.2.3 Routing Architecture 
 The routing architecture present in the Atmel FPGA core consists of both local 
and global routing resources.  The local routing resources are formed by wire segments 
and PIPs that make connections to adjacent PLBs and allow access to/from the global 
routing resources.  The global routing resources comprise busses of wire segments that 
span either four PLBs (x4 lines, which are referred to as local busses in Atmel 
terminology) or span eight PLBs (x8 lines, referred to as express busses in Atmel 
terminology) in the array before reaching repeaters, which will be discussed shortly. 
 
 
 
23
 The local routing resources consist of non-decoded multiplexer PIPs, which select 
inputs from one of the five x4 lines or from direct PLB connections from adjacent PLBs, 
as illustrated in Figure 2.5.  The five inputs to each multiplexer PIP, denoted as V/H 1 
through V/H 5 in Figure 2.5, come from the five vertical and five horizontal x4 lines in 
the global routing resources.  The W and Z inputs to PLB can come from any one of the 
five vertical x4 lines or of the five horizontal x4 lines and are selected by their respective 
multiplexer PIPs.  In the case of the X and Y inputs, additional multiplexer PIPs select a 
signal either from the inputs from the x4 lines or from one of the direct connections from 
an adjacent PLB. 
NW NE SE SW N E S W
X Y
Z X W Y
TO PLB
V/H 1 V/H 2 V/H 3 V/H 4 V/H 5
From Local Routing Resources
 
Figure 2.5 Local Interconnect Associated with the Atmel PLB [15] 
The available direct PLB connections are illustrated in Figure 2.6, which shows 
the eight possible direct PLB connections.  Only one input from any given direction can 
be selected at one time.  The available connections denoted as X in Figure 2.6 include 
 
 
 
24
both the X input to the PLB and the X output from the PLB and make it possible to 
connect to a diagonally adjacent PLB [15].  It is possible to connect to adjacent PLBs 
located northwest, northeast, southeast, and southwest (denoted NW, NE, SE, and SW, 
respectively, in Figures 2.5 and 2.6) using local X.  The connections denoted as Y in 
Figure 2.6 include both the Y input to the PLB and the Y output from the PLB and can 
make connections to orthogonally adjacent PLBs to the north, east, south, and west 
(denoted as N, E, S, and W, respectively, in Figures 2.5 and 2.6). 
NW
PLB
PLB
N
PLB
W
PLB
NE
PLB
E
PLB
SW
PLB
S
PLB
SE
PLB
X X
XX
Y
YY
Y
Y
Y
YY
XX
XX
 
Figure 2.6 PLB-to-PLB Adjacent Connections [15] 
  Each PLB has connections as shown in Figure 2.6 to and from the adjacent PLBs 
both orthogonally and diagonally except for those PLBs that are along the edges of the 
PLB array.  The PLBs along the edges have direct connections to and from I/O cells in 
place of the respective direct PLB connections. 
The PLB connections to the global routing resources are shown in Figure 2.7 and 
are denoted as W, X, Y, Z, and L [15].  Here, W, X, Y, and Z serve as inputs to the PLB 
and L is a PLB output.  The PLB inputs can connect to one, and only one, of the five 
vertical x4 lines or of the five horizontal x4 lines at a time [15]. The same is also true for 
 
 
 
25
the L output of the PLB.  It is important to note that the X and Y inputs can enter the PLB 
through one and only one of the connections from either one of the x4 lines or one of the 
adjacent PLB connections such that both connections cannot be made simultaneously.  
Therefore, if a connection is made to X or Y from a x4 line, no connection can be made 
from the direct inputs connected to an adjacent PLB [15].  
V1
H1
V2
H2
V3
H3
V4
H4
V5
H5
H
1
 
?
 
H
5
V1 ? V5
PLB
W
X
Y
Z
L
W X Y Z L
Local Routing 
Cross-Point PIPs
Global Routing 
Cross-Point PIPs
V/H 1 V/H 2 V/H 3 V/H 4 V/H 5
x8 lines
x4 line
   a) PLB-to-Bus Connections           b) Local Routing Cross-Point PIPs 
Figure 2.7 PLB-to-Bus Connections [15] 
A connection is made to the x4 lines in the five vertical or horizontal busses 
through the cross-point PIPs shown in Figure 2.7b, denoted as V1 - V5 and Hl - H5.  
When the cross-point PIP is turned on, the x4 line is available to the PLB and multiplexer 
PIPs, shown in Figure 2.5, present on the W, X, Y, and Z inputs as well as the L output 
select the bus as an input or output, respectively.  Cross-point PIPs in the global routing 
resources, illustrated in Figure 2.7a diagonally from the PLB, can be used to make 
connections between the horizontal x8 and vertical x8 lines.  Connections between 
horizontal and vertical x4 lines are made through the cross-point PIPs shown in Figure 
2.7b. 
 
 
 
26
The x8 lines span eight PLBs before reaching a repeater and the x4 lines span four 
PLBs before coming to a repeater [15].  The x8 lines that are located furthest from the 
PLB shall be referred to as Abus lines while the x8 lines closest to the PLB shall be 
referred to as Ebus lines.  Repeaters are staggered throughout the array, meaning that 
every other span of eight cells the repeaters alternate which x8 and x4 lines can be 
connected as is illustrated in Figure 2.8a.  These repeaters allow selected types of 
connections to be made between wire segments.  For simplicity only one of the five 
busses of x4 lines and x8 lines is shown.  The internal organization of the repeater is 
illustrated in Figure 2.8b and consists of four 3-input non-decoded multiplexer PIPs. 
4 PLBs 8 PLBs
repeater x8 lines
x4 line
L8 = Left x8 line R8 = Right x8 line
L4 = Left x4 line R4 = Right x8 line
L8
L4
R8
R4
       a) Staggered Repeaters                              b) Repeater Connections 
Figure 2.8 Staggered Repeaters in Atmel Routing Architecture 
Connections can be made in multiple directions through the repeater.  A 
connection can be made from one x4 line through the repeater to the adjacent x4 line or 
from one x4 line to either of the x8 lines (where L4 and R4 denote left and right x4 lines 
and L8 and R8 denote left and right x8 lines as shown in Figure 2.8b).  The repeaters are 
staggered such that the orientation of the repeater is flipped about the horizontal axis 
from one repeater to the next such that the x4 lines and x8 lines alternate entry/exit points 
 
 
 
27
of the repeater.  As can be seen in the figure, four multiplexers within the repeater allow 
for the various combinations of connections to be made.  The high-level functionality of 
the repeater is similar to that of the switch-box PIPs, however, the actual internal 
organization utilizes multiplexer PIPs instead of pass transistors to complete connections 
between the different wire segments.  This provides buffering for long or heavily loaded 
signals and also implies directionality of the signal. 
 
2.3 Overview of Testing Methods for FPGAs 
 Many previous methods for testing FPGAs rely on externally applied test vectors, 
hence these various testing approaches are limited to device-level testing only [16]-[18].  
In addition, there also exist many restrictions in controllability and observability due to 
the number of I/O cells present in a particular package that can be used for testing the 
FPGA.  This problem is further complicated in generic SoCs since a large portion of the 
FPGA core I/O is internally connected to other SoC components.  As a result, even more 
controllability and observability restriction exists in the FPGA core of a generic SoC.   
In BIST-based approaches, such as in [9]-[10], [19], [20], the testing 
configurations do not rely on externally applied test vectors, but instead use the internal 
circuitry of the FPGA to generate test patterns for the purpose of testing the FPGA.  
Multiple test configurations may be required, but the advantage is the ability to use the 
same test procedure from device-level testing through system-level testing, since BIST is 
applicable to all these levels [10].  The BIST approach results in less total test 
development time since BIST can be applied from device-level testing through system-
level testing without the need for developing different tests for different levels of testing.  
 
 
 
28
Therefore, there is less final cost since test development is applicable to the various levels 
of testing of electronic devices, which, in turn, is a significant portion of device cost [21]. 
 
2.4 Previous Work in BIST for FPGAs 
 Previous implementations of BIST for FPGAs have been applied to devices such 
as the Lucent Technologies Optimized Reconfigurable Cell Array (ORCA) 2C and 2CA 
FPGAs [9], [20] and to the Xilinx 4000 and Spartan series FPGAs [10].  Typically BIST 
is separated into logic and routing BIST, which test the PLBs and programmable 
interconnect present in an FPGA, respectively.  In these previous works, there are 
specific architectural issues that have a large impact on the implementation of BIST in 
the respective device [10]. 
 
2.4.1 Logic BIST 
 In the previous implementations of BIST for FPGAs the basic idea for logic BIST 
is illustrated in Figure 2.9, where some columns (or rows) of the PLBs are configured as 
TPGs and ORAs and other columns (or rows) of PLBs are configured as BUTs.  This 
architecture is flipped from the first test session to the second test session.  The flipping 
of the architecture ensures that all PLBs become BUTs during testing as long as at least 
half the PLBs are BUTs during each test session.   
 
 
 
29
= TPG 
 
= BUT 
 
= ORA 
Test Session 1 
 
Test Session 2 
  Figure 2.9 Logic BIST Architecture 
Typically a binary counter is utilized as the TPG for the logic BIST test sessions 
since it generates exhaustive test patterns and can be used to apply all possible 2n test 
patterns for an n-input logic function [7].  This type of TPG is the most economical 
choice since a counter mode is common in the PLBs of most FPGAs [7].  An LFSR 
(Linear Feedback Shift Register) could also be used; however, additional logic is required 
to obtain an all 0's state, which makes the TPG more difficult to implement, when 
compared to a binary counter [7].  Algorithmic TPGs are used to test PLBs that have 
RAM modes of operation such as the ORCA and Xilinx FPGAs [10].  These algorithmic 
TPGs are also more difficult to implement and require more logic, hence more PLBs, 
than a binary counter.   
There are two important features to note pertaining to this logic BIST 
architecture.  First, multiple TPGs are used in order to source identical test patterns to 
alternating rows or columns of identically configured BUTs [7].  Second, every BUT, 
except for the first and last two columns, has its corresponding outputs observed by two 
different ORAs and compared with different BUTs [7].  The combination of these two 
factors guarantees that any single faulty PLB can be guaranteed to be detected [7].  In 
 
 
 
30
addition, the conditions that allow multiple faulty PLBs to avoid detection are so limiting 
that, in practice, the chances of occurrence are very unlikely [7]. 
Multiple test phases are applied during each test session in order to completely 
test the PLBs configured as BUTs in all of their modes of operation [9], [11], [20].   The 
number of configurations depends on the number of modes of operation available in the 
PLB.  Hence, the more available modes of operation that can be implemented in a PLB, 
the greater the number of configurations that are required to test the PLB.  It is desired to 
minimize the number of configurations required to test an FPGA in order to minimize 
testing time and test development effort and time. 
Since identical test patterns are applied to identically configured BUTs, the ORAs 
employed are comparison-based in order to compare the responses of the BUTs located 
in the adjacent rows or columns [7].  The basic architecture of the comparison-based 
ORA previously used is illustrated in Figure 2.10 where four sets of outputs from 
adjacent BUTs are compared [10], [19].  The feedback, OR gate, and flip-flop in the 
PLBs configured as ORAs latch any mismatch detected in the corresponding BUT 
outputs so that the faulty indication result is stored [7].  To retrieve the results, the ORAs 
can be connected as a shift register to shift out the results at the end of each BIST 
sequence or the configuration memory can be read to obtain the contents of the ORA flip-
flops at the end of a BIST sequence [7].  
 
 
 
31
D    Q Pass/Fail
BUT Right Y
BUT Left Y
BUT Rightt YQ
BUT Left YQ
BUT Right X
BUT Left X
BUT Right XQ
BUT Left XQ
 
Figure 2.10 Basic ORA Structure in Logic BIST [10], [19] 
 
2.4.2 Routing BIST 
One methodology applied in the routing BIST in previous implementations 
consists of a counter-based TPG that sources test patterns over two sets of WUTs that 
have their signals compared at a destination by a comparison-based ORA, as illustrated in 
Figure 2.11.  Groups of PLBs are configured as the TPGs in order to source the test 
patterns over the sets of WUTs [22].  These WUTs are configured from a subset of the 
routing resources of the FPGA and include selected wire segments and PIPs that are 
targeted for testing [22].  The ORAs receive the test patterns sourced over the WUTs by 
the TPGs and detect mismatches between the sets of WUTs to give a Pass/Fail indication 
at the end of the BIST sequence to determine if the WUTs are faulty or fault-free [22].  
The ORA results can be retrieved in a similar fashion as in the logic BIST: the ORAs can 
be connected as a shift register and the results shifted out at the end of the BIST sequence 
or the results can be read directly from the configuration memory [7]. 
 
 
 
32
TPG Comparison-based ORA
A WUTs
B WUTs  
Figure 2.11 Routing BIST Architecture 
Another approach to testing interconnect is demonstrated in Figure 2.12 where the 
counter-based TPG also generates parity over the binary count sent over a set of WUTs 
and, over some other routing resources, the parity bit is routed to the destination parity 
check-based ORA which also receives the signals from the WUTs [23].  In this routing 
BIST architecture, which is similar to that shown in Figure 2.11, some PLBs are 
configured as TPGs and some PLBs are configured as ORAs with selected wire segments 
and PIPs selected for testing configured as WUTs.  However, in this case, the TPG 
generates a parity bit associated with its test pattern and the ORA is configured 
accordingly to check the parity bit associated with the output response of the WUTs, as 
illustrated in Figure 2.12.  The parity bit is sent from the TPG to the ORA over known 
good routing resources [23]. 
  
WUTs
 
TPG generating 
Parity
Parity-based 
ORA
Parity Bit
 
Figure 2.12 Parity check-based Routing BIST 
 In both the comparison- and parity check-based routing BIST approaches, Self 
Test AReas (STARs) have been used to implement the BIST configurations within the 
routing resources of the FPGA [10].  These STARs consist of selected subsets of the 
programmable logic and routing resources within the FPGA configured as TPGs, ORAs, 
 
 
 
33
and WUTs [28].  These STARs are scalable to the architecture of the device to which the 
approach is applied and can be as large as the entire array.  The number of configurations 
depends on the size of the STARs and the number of routing resources to be tested within 
the STAR during a given test session.  The size of the STAR during a given test session 
impacts both the speed of the test and the diagnostic resolution of the test [10].  A large 
STAR or a STAR with a high number of routing resources has larger resistive and 
capacitive loading.  This is due to the finite on resistance and gate capacitance of the 
transmission gates in the various PIPs in the set of WUTs.  These factors cause longer 
delays in signal propagation, which affects the speed of the test.  In addition, a large 
STAR makes fault diagnosis more difficult since a larger number of routing resources is 
under test in a given test phase and determining which of the wire segments is faulty is 
made much more difficult. 
 
2.4.3 BIST for the ORCA FPGAs 
 The logic BIST approach implemented in [9], [11], [20] for the ORCA 2C and 
2CA FPGAs uses the logic BIST architecture illustrated in Figure 2.9.  It is important to 
note the impact of the PLB and interconnect architectures on the number of 
configurations and testability of the FPGA.  A total of 9 and 14 phases per test session 
were required to completely test the PLBs in the 2C and 2CA FPGAs, respectively [9], 
[20].  The ORCA 2CA FPGA has more modes of operation than the ORCA 2C FPGA, 
which include multiplier and comparator modes as well dual-port RAM modes of 
operation.  This increased number of modes translates to more BIST configurations 
required to test the PLB in all its modes of operation.  The PLB in the ORCA 2C and 
 
 
 
34
2CA FPGAs device consists of four 16-bit LUTs, four flip-flops, a fast-carry circuit, and 
several multiplexers [25].  The inputs to the flip-flops can be fed in through four primary 
inputs to the PLB or can be driven by the four LUTs [25].  There are five primary outputs 
of the PLB, which can be driven either from the flip-flops or the LUTs to allow for 
combinational or sequential functions to be performed [25].  The LUTs can be 
programmed in one of three modes: logic (LUT), arithmetic (fast-adders/subtractors), and 
memory (RAM) [25].  The two RAM modes allow the LUTs in the PLB to function as 
either a 16x4 RAM or as a two 16x2 RAMs.  The four flip-flops present in the PLB can 
be configured to act as level sensitive latches or to act as edge-triggered flip-flops [25]. 
The routing resources of the ORCA  FPGAs required 27 and 44 BIST configurations, 
respectively, for the two BIST approaches described in [11] and [22].  Both approaches 
used the routing BIST architecture shown in Figure 2.11.  The approach in [22] required 
more configurations due to the use smaller STARs in the application of routing BIST 
which were chosen to increase diagnostic resolution.  The routing resources associated 
with each PLB in the ORCA FPGA include six horizontal and six vertical 4-bit global 
routing busses and four sets of direct 5-bit local routing busses to adjacent PLBs [22].  
Along the horizontal and vertical direction, there are two 4-bit busses of x1 lines , two 4-
bit busses of x4 lines, one  4-bit bus of xH lines, and one 4-bit bus of xL lines associated 
with each PLB.   
 
2.4.4 BIST for the Xilinx 4000 and Spartan Series FPGAs 
 The logic BIST illustrated in Figure 2.9 was also applied to the Xilinx 4000 and 
Spartan series FPGAs [10].  For the case of these Xilinx FPGAs, a total of 12 test phases 
 
 
 
35
per test session were needed to completely test the PLBs.  The PLB consists of two 4-
input LUTs, one 3-input LUT, two flip-flops, dedicated carry logic, and various 
multiplexers to configure the cell interconnections and functions [26].  The two 4-input 
LUTs can function together as a single 32x1 RAM or as two 16x1 RAMs [26].  The two 
flip-flops can function as edge-triggered flip-flops or as level-sensitive latches [26].  The 
additional logic associated with the PLBs is the carry logic circuitry used to implement 
fast adders, subtractors, and counters [26].   
The routing resources within the Xilinx 4000 and Spartan series FPGAs consist of 
a specific number of wire segments dependent upon the particular type of device, either 
4000E/Spartan or a 4000XL/XLA series FPGAs.  Both types of devices include an 8-bit 
bus of x1 lines and a 4-bit bus of x2 lines.  The 4000E/Spartan FPGAs include ten vertical 
and six horizontal long lines (including xQ, xH, and xL lines) while the 4000XL/XLA 
FPGAs have 18 vertical and six horizontal long lines.  The 4000XL/XLA FPGAs also 
include three 4-bit busses of x4 lines and 2 direct connections to each adjacent PLB.  The 
comparison-based routing BIST approach in Figure 2.11 was applied to all routing 
resources in the 4000E/Spartan and 4000XL/XLA series FPGAs [10].  A total of 128 
BIST configurations were required to test all routing resources in the 4000E/Spartan 
series FPGAs while a total of 206 BIST configurations were required to test all of the 
routing resources in the 4000XL/XLA series FPGAs [10]. 
The parity-based routing BIST configuration was proposed in [23] to test the x1 
lines and their associated switch-box PIPs in the 4000 series FPGAs.  It was theorized 
that these resources could be tested in three BIST configurations.  However, this BIST 
approach was never implemented in the actual FPGA to verify that three BIST 
 
 
 
36
configurations were sufficient.  In addition, the x1 lines and their associated switch-box 
PIPs the easiest to test routing resources [10]. 
 
2.4.5 Previous Work In Logic BIST for the Atmel AT94K Series FPGA Core 
 The only previous work for logic BIST for the FPGA core in the AT94K series 
FPSLIC was proposed in [27].  This work involved on-line testing of the LUTs in the 
PLBs where two test configurations were required per LUT in each PLB [27].  In this 
approach, only the LUTs in the PLBs are tested and the remaining logic is left untested, 
as are the routing resources within the FPGA.  In the work reported in [27], the total 
number of configurations to test the NxN PLB array in the FPGA is 2N2 since the PLBs 
are tested one at a time.  In addition, it appears that the AVR core would perform the 
TPG and ORA functions. 
 
2.5 ORCA, Xilinx, and Atmel FPGA Comparison 
 The composition of the PLBs and the complexity of the routing resources are 
considerably different in the Atmel AT40K series FPGAs than in the ORCA and Xilinx 
FPGAs.   The PLBs in the ORCA and Xilinx FPGAs consist of more logic and hence 
more programmability and functionality than the Atmel FPGA, as is summarized in 
Table 2.2.  The ORCA and Xilinx PLBs have approximately twice the number of primary 
inputs as the Atmel PLB and also have more outputs.  In addition, the LUTs in the ORCA 
and Xilinx PLBs have more bits than contained in the LUTs in the Atmel PLB.  There are 
also more configuration multiplexers and additional logic gates (including carry logic) in 
the ORCA and Xilinx PLBs than in the Atmel. 
 
 
 
37
Table 2.2 Comparison of PLBs [14], [15], [25], [26] 
PLB Atmel ORCA 2C Xilinx 4000 
Component AT40K and 2CA and Spartan 
# Inputs 8 19 13 
# Outputs 3 6 4 
# LUTs 2 4 3 
# Bits/LUT 8x1 16x1 (2)16x1, (1)8x1 
Config. Multiplexers 
(incl. Carry Logic) 11 17 26 
# Flip-Flops 1 4 2 
# Addt'l Logic Gates 
(incl. Carry Logic) 1 3 6 
 
 The routing resources dispersed within the ORCA and Xilinx FPGAs are more 
numerous and comprise more types of wire segments and PIPs than the Atmel FPGA, as 
summarized in Table 2.3.  The ORCA and Xilinx FPGAs contain about twice as many 
total types of routing resources as the Atmel FPGA.  The diagonal direct lines are unique 
to the Atmel FPGA and are not found in either the ORCA or Xilinx FPGAs.  The Atmel 
and ORCA routing resources are symmetrically aligned horizontally and vertically 
meaning that the number and interconnections of vertical and horizontal planes of wire 
segments is the same.  However, in the Xilinx FPGA, the routing resources do not have 
rotational symmetry.  This asymmetry contributes to the test complexity for the Xilinx 
since there are different numbers of horizontal and vertical bussing planes depending on 
the type of routing resource [10].  In addition, some of the busses in the Xilinx routing 
resources are shared between PLBs and create obstacles in the development of logic and 
routing BIST configurations [10].  There also exists dedicated carry routing in the ORCA 
and Xilinx FPGAs that is not present in the Atmel  FPGA.  Carry routing can be 
implemented with the direct routing (orthogonal or diagonal direct lines) in the Atmel 
device, but at the expense of a PLB output since there is no dedicated logic or routing for 
carry circuitry within the Atmel FPGA.  The conclusion drawn in [10] is that the routing 
 
 
 
38
architecture of the FPGA is the primary component in the number of BIST configurations 
required to completely test the device.  This was demonstrated by the total number of test 
configurations required for the Xilinx routing resources (128 and 206) compared to that 
required for the ORCA routing resources (27 and 44) [10]. 
Table 2.3 Comparison of Routing Resources [10], [15] 
Routing Atmel  ORCA 2C Xilinx 4000E Xilinx 4000XL 
Resource AT40K ORCA 2CA and Spartan and XLA 
Type vertical horizontal vertical horizontal vertical horizontal vertical horizontal 
x1 lines 0 0 8 8 8 8 8 8 
x2 lines 0 0 0 0 4 4 4 4 
x4 lines 5 5 8 8 0 0 12 12 
x8 lines 10 10 0 0 0 0 0 0 
long lines 0 0 8 8 10 6 18 6 
direct lines 1 1 5 5 0  0 2 2 
diagonal 
direct lines 1 0 0 0 
carry lines 0 0 2 2 
Total 17 17 29 29 24 20 46 34 
 
 Another important point to consider in the comparison of the ORCA, Xilinx, and 
Atmel FPGAs is the percent composition of the types of PIPs present in the routing 
resources of the devices, as illustrated in Table 2.4.  The Atmel FPGA is more similar in 
certain aspects to the Xilinx than the ORCA FPGAs.  In terms of break-point PIPs and 
multiplexer (MUX) PIPs, the Atmel FPGA is more similar in composition to the Xilinx 
FPGA, however, as in the ORCA FPGA, there are no true switch-box PIPs in the Atmel 
FPGA.  The closest routing resource that the Atmel FPGA has to the switch-box PIPs in 
the Xilinx FPGA are the repeaters and they are more similar to multiplexer PIPs than to 
switch-box PIPs as illustrated in Figure 2.8b. 
 
 
 
 
 
 
39
Table 2.4 Percent Composition of PIPs in Routing Resources [10], [15] 
Type of PIP 
Xilinx 
4000 
ORCA 
2C/2CA 
Atmel 
AT40K 
Break-Point 1.5% 12% N/A 
Cross-Point 11.3% 69% 34.8% 
MUX 72.5% 19% 60.9% 
Switch-Box 14.7% N/A N/A 
Repeaters N/A N/A 4.3% 
 
 
2.6 BIST Configuration Comparison 
As found in [10], the routing architecture is the primary influence on the total 
number of test configurations and on the total test time.  The comparisons of the routing 
architecture presented in Tables 2.2, 2.3, and 2.4, therefore, allow a good relative 
comparison of the total number of BIST configurations for the ORCA and Xilinx FPGAs.  
Table 2.5 summarizes the total number of logic and routing BIST configurations for the 
ORCA and Xilinx FPGAs. 
Table 2.5 BIST Configurations for ORCA and Xilinx FPGAs [10] 
  ORCA 2C 
ORCA 
2CA 
Xilinx 
4000E 
Xilinx 
4000XL 
      and Spartan and XLA 
# logic BIST configs 9 14 12 12 
# routing BIST configs 27/44 27/44 128 206 
 
 As Table 2.5 demonstrates, the primary component in the total number of BIST 
configurations is the number of routing BIST configurations.  The ORCA 2C and 2CA 
FPGAs required 27 and 44 routing BIST configurations, with the differing numbers due 
to the size of the STARS [10].  The Xilinx 4000E and Spartan FPGAs required 128 
routing BIST configurations while the Xilinx 4000XL/XLA FPGAs required 206 routing 
BIST configurations.  The Atmel device has a fine-grain PLB architecture, with a 
rotationally symmetrical routing architecture.  In addition, the composition of routing 
 
 
 
40
resources in the Atmel FPGA, as illustrated in Table 2.3 and Table 2.4, is somewhere 
between the percentages found in the ORCA and Xilinx FPGAs, and will have an impact 
on the total number of configurations since the routing architecture is the primary 
influence.  The differences between the architectures of these FPGAs affect the number 
of test configurations for the respective FPGA architectures to completely test the routing 
resources.   One of these differences is that the main types of PIPs within the respective 
FPGAs differ in their percent composition and in their amount of inputs [10].  The cross-
point and break-point PIPs make up 81% of the total PIPs in the ORCA FPGAs and the 
remaining 19% comprises the multiplexer PIPs [10].  In addition, there are no switch-box 
PIPS in the ORCA routing resources [10].  The more difficult to test PIPs are the 
multiplexer and switch-box PIPs.  In addition, the size of the multiplexer PIPs is smaller 
in the ORCA FPGAs in comparison with the Xilinx FPGAs, 5 inputs compared to 35 
inputs [10].  Consequently, more configurations are required to completely test these 
types of PIPs in comparison to the break-point or cross-point PIPs.   
Another difference arises in the carry logic where, in the ORCA FPGAs, there is 
dedicated carry routing to the four adjacent cells but the carry-out output can also be 
placed on one of the five PLB outputs, allowing for better observability of the signal [10].  
In the Xilinx FPGAs the carry-out can only be observed on dedicated routing that goes 
from a given PLB to only one PLB located directly above that PLB.  A third difference is 
the sharing of the routing resources associated with the PLBs [10].  In the ORCA FPGAs, 
the routing resources are not shared between two adjacent PLBs whereas in the Xilinx 
FPGAs, the routing resources are shared between the two adjacent PLBs [10].  In 
addition to the effect of PIP types in the ORCA and Xilinx FPGAs, the routing resources 
 
 
 
41
in the two FPGAs contain rotating and staggered busses, which make testing the busses 
more difficult and increase the number of configurations required to test the FPGA 
interconnect [10].  Finally, the inputs and outputs to and from the ORCA FPGAs can be 
connected to all routing resources on any side of the PLB while in the Xilinx FPGAs, the 
inputs and outputs can be connected to and from a subset of the routing resources on only 
two sides of the PLB making testing more complex [10].   
 
2.7 BIST Development 
 In the previous work in BIST for FPGAs performed on the ORCA and Xilinx 
FPGAs [9], [10], [11], [20], vendor-supplied computer-aided design (CAD) tools were 
used in conjunction with custom designed programs to develop and generate the logic 
and routing BIST configurations [28].  In the case of the ORCA FPGAs, custom 
programs were used to create textual netlist files, NeoCAD Design Language (NCL) 
files, which are interpreted through the vendor-supplied CAD tools provided from the 
manufacturer of the ORCA FPGAs in order to produce the download bitstreams needed 
for the logic and routing BIST sessions [28].  These textual netlists describe the 
configuration and placement of the PLBs (TPG, BUTs, and ORAs) and the routing 
resources used to route signals between the PLBs [28].   
The BIST development for the Xilinx FPGAs used custom programs to generate 
XDL (Xilinx Design Language) files that could be interpreted via the vendor-supplied 
CAD tools from Xilinx in order to produce the bitstreams needed for the logic and 
routing BIST sessions.  The vendor provided place and route (PAR) tools did not allow 
adequate control over the routing resources that was needed for the application of BIST.  
 
 
 
42
Therefore, a more controlled approach was needed and the idea of custom programs to 
generate XDL was chosen for its ability to control the interconnections in the routing 
resources of the FPGA.   
 
2.7.1 Macro Generation Language (MGL) 
 In the case of the Atmel FPGA, the vendor-supplied CAD tools include a design-
oriented programming language, called Macro Generation Language (MGL), that can be 
used to instantiate designs into the FPGA and produce download bitstreams without the 
need for the development of custom programs.  The Figaro Integrated Development 
System (IDS) is the software available from Atmel for implementation of designs into 
AT40K FPGAs, which includes the programming language, MGL, that can be compiled 
and used to instantiate designs, including placement and routing, and to create bitstreams 
for downloading into the FPGA [29].  The MGL combines aspects of many modern 
programming languages with characteristics of hardware description languages such as 
VHDL or Verilog.   
The language is a method of creating user-defined, parameterized circuits that 
meet desired design specifications.  Designs are created in much the same manner as that 
used in generating a computer program in a programming language such as C or C++.  
Just as in many programming languages, pre-processor directives, global variables and 
constants may also be defined.  The language is a strongly-typed language such as the 
case in VHDL, meaning that all objects must be assigned a specific type.  However, 
unlike VHDL, MGL is a case-sensitive language where function() and Function() 
represent two different and independent functions.  To generate a design using MGL, 
 
 
 
43
three components are necessary within the code: user-defined functions (i.e., BUTs, 
ORAs, TPGs), the target FPGA device (i.e., AT40K05, AT40K10, etc.), and the inputs 
and outputs to the circuit (i.e., clock input, reset input, pass/fail output) [29].   
In order to configure a PLB in the FPGA, MGL requires the use of predefined 
macros ranging in complexity from AND gates to multiplexers and decoders [29].  In 
addition, MGL can utilize dynamic macros that allow a variety of functionality to be 
configured in the PLB.  Three basic types of dynamic macros can be used to configure 
the PLB through MGL: the FGEN1 macro, the FGEN2 macro, and the MGEN macro, 
which are illustrated in Figure 2.13 [30]. 
W 
Z 
Y 
X 
FB 
D  Q T LUT 
a) FGEN1 Macro 
L 
X or Y 
X or Y WY
X 
 
LUT 
D  Q 
FB 
T 
b) FGEN2 Macro 
L 
X or Y 
X or Y 
X or Y 
Y 
X 
 
Z 
W 
 
LUT 
D  Q 
c) MGEN2 Macro 
T L 
X or Y 
X or Y 
X or Y FB = Feedback 
T = Tristate 
Figure 2.13 Dynamic Macros Utilized in MGL [30] 
The FGEN1 dynamic macro allows up to a 4-input logic function to be 
implemented in the PLB; with feedback up to a 4-input logic function can be 
implemented, but with only three external inputs [30].  The LUTs in this dynamic macro 
are used in conjunction with one another through the use of a multiplexer, shown in 
Figure 2.3, which selects between the individual LUT outputs resulting in a combined 16-
bits for the 4-input logic function.  The output can be registered or combinational by 
 
 
 
44
either using or not using the D flip-flop, respectively [30].  A tri-state output is also 
available if desired [30]. 
The FGEN2 macro is similar to the FGEN1 macro in that the outputs can be 
registered or combinational and have an optional tri-state.  However, the LUTs function 
separately and two logic functions of only up to three inputs can be implemented in the 
PLB [30].  If feedback is utilized in the FGEN2 macro, then one input is sacrificed 
making a function using up to two external inputs possible [30].   
The MGEN macro allows up to a 4-input logic function and has an upstream 
AND of two of the inputs to the PLB in front of the LUTs [30].  The AND gate is 
intended for use in multiplier-based functions such as those used in many DSP 
applications [14], [15], [29].  As in the FGEN1 and FGEN2 macros, the output can be 
registered or combinational and the optional tri-state on one output is available. 
Nodal statements In MGL can be used to configure the routing resources in order 
to define the interconnect of a design.  Signals must have a source and destination 
specified in the design and must be routed in order from the source to the destination.  
The MGL compiler ignores any nodal statements not meeting these conditions.  The 
documentation provided by Atmel in [29], [30] gives the net names of the most 
commonly used routing resources, which include the PLB direct connections, x4 lines, 
and x8 lines.  However, net names such as those associated with the clock and reset 
routing and the periphery routing at the I/O cells are not given in the documentation.  
Routing can be specified for these types of routing by identifying the appropriate net 
names associated with these routing resources through observation of the output files of 
the Atmel CAD tools, which is discussed further in Chapters 3 and 4. 
 
 
 
45
Configuration of the design implemented in the FPGA through the use of MGL is 
limited to the dynamic macros.  For designs not needing as much control over the FPGA 
configuration, the information supplied in [29], [30] is sufficient to produce working 
designs in the FPGA.  However, for applying BIST to the FPGA, complete control of the 
configuration of the PLBs and routing resources in the FPGA is necessary in order to 
achieve maximum fault coverage.   
 
2.8 Thesis Restatement 
The focus of this thesis is to apply the BIST approaches originally developed for 
the ORCA and Xilinx FPGAs to the Atmel AT40K series FPGAs and the AT94K series 
FPGA core.  The differences that exist between the various types of FPGA architectures 
can be expected to impact the application and development of BIST configurations as 
well as the total number of configurations needed.  Development and generation of the 
BIST configurations with the vendor-supplied CAD tools, MGL and Figaro IDS, appear 
to offer a more integrated approach compared to the prior development efforts for ORCA 
and Xilinx FPGAs.  Chapters 3 and 4 detail the logic BIST and routing BIST approaches 
applied to the Atmel FPGA, respectively.  In addition, the use of MGL for development 
and generation of BIST configurations will be discussed along with the associated 
advantages and limitations.  Finally, the total number of BIST configurations needed to 
completely test the programmable logic and routing resources in the FPGA core will be 
presented and analyzed. 
 
 
 
46
CHAPTER THREE 
LOGIC BIST 
 In this chapter, the logic BIST methodology is presented in its application and 
adaptation to the FPGA core architecture in the AT94K series SoC.  The architectural 
issues that impact the logic BIST architecture and implementation are discussed.  
Evaluation of the logic BIST approach through fault simulation is also presented.  
Automatic generation of the logic BIST configurations for any size AT40K FPGA and 
AT94K FPGA core using MGL will be discussed.  An analysis of the advantages and 
limitations of MGL will be presented.  Finally, the results of logic BIST for the FPGA 
core in the AT94K series SoC is compared to the results obtained for the ORCA [9] and 
Xilinx [10] FPGAs. 
 
3.1 Architectural Implications on Logic BIST Architecture 
 The Atmel FPGA architecture imposes new constraints on the BIST methodology 
originally applied to the ORCA [9] and Xilinx [10] FPGAs, which include the type of 
TPG used, BUT configurations, and ORA implementations.  The architecture of the PLB 
and its associated local routing resources has several implications on the logic BIST 
architecture in the FPGA core of the AT94K series SoC.  The architectural implications 
of the FPGA core on the logic BIST approach are presented in the subsequent 
discussions. 
 
 
 
47
a) Clock Routing Strucure b) Set/Reset Routing Strucure 
10 
Column 
Clock 
MUX Sector Clock 
MUX 
x8 line 
Global 
Clock 
Line Sector 
Set/Reset 
MUX 
x8 line Global Set/Reset 
Line Clock Edge 
Selection 
MUX Set/Reset 
Polarity 
Selection 
MUX 
 
Figure 3.1 Clock and Set/Reset Routing Structure in Atmel FPGA [14], [15] 
 One of the main factors influencing the logic BIST architecture is the column-
based reset and clocking schemes employed in the Atmel FPGA core.  The clock and 
reset inputs for the D flip-flop present in each PLB are arranged in banks of four PLBs 
along columns as illustrated in Figure 3.1.  The clock connections to each bank of four 
PLBs in the FPGA array can be made either from a x8 line, shown on the left in Figure 
3.1a, or from the global clock line, shown on the right in Figure 3.1a [14], [15].  Each 
column of PLBs can connect to one of 10 global clock signals that connect to the FPGA 
I/O cells [14], [15].  The clock signal may also be routed onto a x8 line and then 
connected to the PLB as well [14], [15].  Each bank of four PLBs has an associated 
Sector Clock Multiplexer (MUX) that selects the desired clock signal from the global 
clock line or from the x8 line [14], [15].  The triggering for the D flip-flop is either rising 
or falling edge, and is set by selecting either the non-inverting or inverting input to the 
 
 
 
48
Clock Edge Selection MUX [14], [15].  A similar scheme is employed in the routing for 
the asynchronous Set/Reset signal for the flip-flops.  Banks of four PLBs are connected 
to a Sector Set/Reset Multiplexer that selects the desired set/reset signal either from the 
global set/reset line or the x8 line [14], [15].  The configuration bits for the individual 
flip-flops determine the function (either Set or Reset).  The polarity (active high or active 
low) of the incoming Set/Reset signal is determined by a configuration bit associated 
with the Set/Reset Polarity Selection MUX [14], [15]. 
 As a result of the column-oriented clock and reset routing schemes illustrated in 
Figure 3.1a and 3.1b, the logic BIST architecture employed must also be column-based in 
order to test the clock and reset inputs to the BUTs during the logic BIST configurations.  
A row-based logic BIST architecture does not allow the Set/Reset or rising/falling edge 
triggering associated with the flip-flops in the BUTs to be tested.  Due to the column-
orientation of the Set/Reset of the flip-flops, an ORA in a row-based logic BIST 
architecture would be reset any time a BUT is reset thus causing the loss of any 
mismatches that could have been latched in the flip-flop within the ORA. 
The architecture of the PLB also has a large impact on the type of ORA 
implemented in the logic BIST test sessions.  In this FPGA, the PLB does not contain 
sufficient logic resources to implement more than a comparison of three inputs while 
having feedback to latch up any mismatch between the three inputs.  Therefore, only one 
output from each adjacent BUT can be compared during a given BIST configuration as 
illustrated by the ORA structure in Figure 3.2. 
 
 
 
49
X 
Y 
 
 
FB 
 
 
D      Q 
 
LUTs 
 
from 
Previous 
ORA 
 
Shift  
Mode 
 
0 
1 
 
Figure 3.2 ORA Structure for Logic BIST 
 The PLB outputs, denoted as X and Y in Figure 2.3, have an impact on the logic 
BIST architecture as these outputs connect only to adjacent PLBs as shown in Figure 
2.6a.  The diagonal and orthogonal orientations of the X and Y connections, respectively, 
impose restrictions on the BUT to ORA connections in the application of logic BIST.  
Since each is a PLB output and must be observed, both outputs must be compared during 
logic BIST.  Furthermore, the PLBs acting as ORAs can only observe one X output and 
one Y output at a given time due to the local interconnect multiplexer PIPs shown in 
Figure 2.5.  Therefore, the most efficient choice of local routing resources for the 
application of BIST is the X and Y outputs to implement the BUT to ORA connections in 
the logic BIST architecture.  In order to ensure comparison of the X output of one BUT 
with the Y output of another BUT, a set of routing schemes was devised, as shown in 
Figure 3.3, to allow outputs of the PLBs configured as BUTs to be observed by the 
ORAs.  During subsequent test phases in a given logic BIST test session the routing 
schemes are alternated between routing schemes 1 and 2 such that the X and Y outputs of 
adjacent BUTs are observed in an alternating fashion. 
 
 
 
50
Routing 
Scheme 1 
Routing 
Scheme 2 
a) Test Session #1 b) Test Session #2 
= TPG 
 
= BUT 
 
= ORA 
 
 
Figure 3.3 BUT to ORA Connections During Logic BIST 
 Another implication that the small PLB imposes on the ORA structure is that an 
ORA with a comparison of two inputs and feedback for the latching of mismatches does 
not have sufficient additional logic resources to include a shift register for retrieval of the 
BIST results at the end of a given test phase.  Three alternatives are available to work 
around this problem.   
An ORA can be implemented as shown in Figure 3.4b, and after completion of a 
logic BIST test phase, be reconfigured as a shift register as in Figure 3.4d to shift out the 
BIST results.  Since the FPGA is capable of dynamic partial reconfiguration, this can be 
done by using the synchronous RAM configuration mode to write only to the PLBs 
configured as ORAs and BUTs along the edges needed to route the shift data through to 
the next column in the shift register.  This partial reconfiguration can also be performed 
by the AVR core in the AT94K series SoC [14], [15].  The logic BIST sequence in this 
case would be as follows: 1) download the bitstream for a logic BIST test session, 2) run 
 
 
 
51
the BIST sequence, 3) reconfigure the ORAs as a shift register, and 4) shift out the 
Pass/Fail results contained in the ORAs.  Figure 3.4a illustrates the configuration of an 
individual ORA and its corresponding BUT connections.  Figure 3.4c illustrates the 
transformation via dynamic partial reconfiguration to a shift register for retrieval of the 
BIST results.  Figure 3.4b and 3.4d show the internal PLB structure before and after its 
transformation to a shift register, respectively.  The shift signal is shown as an input to 
the PLB in Figure 3.4e in the actual implementation of the desired ORA shown in Figure 
3.4b.  This signal is present since it must be routed to the ORAs in the initial download 
bitstream for logic BIST due to constraints imposed on routing in MGL.  Each route in 
MGL must have both a source and destination specified, therefore, the shift signal must 
be an input to the ORAs in order to route the signal to the ORAs for retrieval of BIST 
results.  The presence of this signal does give an advantage.  The shift signal can be used 
for additional testing of the PLBs and can be used to force a failure indication in the 
ORAs to provide a functionality check in the downloaded configuration.  
 
 
 
52
a) Comparison ORA 
BUT ORA  
BUT 
Shift 
c) Reconfigured ORA 
BUT Shift 
BUT 
Shift Previous 
ORA  
Next 
ORA  
b) Comparison ORA PLB Structure d) Shift Register PLB Structure 
FB 
 
D  Q Previous 
ORA 
Shift 
LUTs 
X 
Y 
 
FB 
 
D  Q 
LUTs 
e) Comparison ORA PLB Structure w/ Shift 
Shift 
 
FB 
 
D  Q 
LUTs 
X 
Y 
 
 
Figure 3.4 Comparison ORA and Reconfigured ORA for Shift Register 
This approach has the best diagnostic resolution of the available approaches since 
an ORA compares the corresponding outputs of two BUTs, a fault can be diagnosed to a 
particular PLB.  By knowing the shift register's order and placement, the ORA results 
that are shifted out can be used to diagnose the location of a faulty PLB based on the 
BIST results [19].   
Another approach available is to implement a 2-PLB ORA where one PLB 
compares the corresponding outputs of four BUTs.  The other PLB is used to latch any 
mismatch and for shifting out the results at the end of the BIST sequence as illustrated in 
Figure 3.5.  The BIST sequence in this case would be as follows:  1) Download the 
 
 
 
53
bitstream for a logic BIST test session, 2) Run the BIST sequence, and 3) Shift out the 
Pass/Fail results contained in the ORAs.  This ORA configuration yields a lower 
diagnostic resolution compared to the first approach since the outputs of four BUTs are 
being compared in a single ORA.  However, partial reconfiguration is not required in 
order to retrieve BIST results. 
BUT 
 
BUT 
 
BUT 
 
BUT 
 
Comp 
 
Shift 
Shift Shift 
Data 
To Next 
ORA 
FB 
 
 D  Q 
 
Shift 
Data 
 
Shift 
 
X 
L1 
Y 
L2 
a) 2-PLB ORA Connections b) 2-PLB ORA Structure 
global routing 
X 
Y 
L1 
L2 
 
Figure 3.5 2-PLB ORA with Shift Register 
 The X and Y PLB outputs are not being observed on two of the BUTs in the 2-
PLB ORA implementation.  As can be seen in Figure 3.5, the outputs of those PLBs must 
be routed out of the PLB through the L output in order to reach the global routing 
resources to connect to the comparison portion of the 2-PLB ORA.  This imposes a more 
complicated routing scheme and could lead to lower fault coverage. 
The last approach available is to read the ORA flip-flop contents through 
configuration memory readback.  The synchronous RAM mode can also be used to read 
the configuration memory in order to obtain pass/fail indications held within the flip-
flops in the ORAs [14], [15].  However, in the case of the AT94K series SoC, the 
configuration memory of the FPGA core can be written by the AVR core, but cannot be 
 
 
 
54
read by the AVR core [14].  As a result, the single PLB ORA implementation with 
reconfiguration into a shift register, performed by the AVR, is the best choice for 
application to the FPGA core of the AT94K series SoC. 
The TPG chosen for the logic BIST test sessions for the Atmel PLB was a 5-bit 
binary counter to drive the five inputs to the PLB.  The PLB is only capable of 
implementing a single counter cell.  The Y output of the PLB connects directly either 
vertically or horizontally to an adjacent PLB and is ideal for implementing the carry 
signal in a binary counter.  Since the PLB is only capable of implementing a single 
counter cell, a TPG such as an LFSR would require more PLBs and would not be as 
efficient an implementation as the binary counter for the case of the PLB due to the 
requirement of additional logic for implementing an all 0's state in the LFSR.  The 
smallest array size in the FPGA is 16x16, and is only capable of handling two identical 
TPGs no larger than eight PLBs each.  In this array size, the 5-bit binary counter is easily 
placed within these constraints.  Therefore, the logic BIST architecture as described in 
this section will work for any size AT40K series FPGA or AT94K series FPGA core. 
   
3.2 Modeling the PLB for Fault Simulations 
 Considerable knowledge about the logic within the PLB was obtained by studying 
the datasheets and technical references available from Atmel in [14], [15], [29], [30].  
The majority of the configuration bits associated with the PLB were determined through 
performing various download tests and observing the behavior of the PLB.  Through 
knowledge of the logic and the associated configuration bits, a gate-level model of the 
PLB was developed in order to perform single stuck-at, gate level fault simulations.   
 
 
 
55
From these fault simulations, the number of BUT configurations for the logic BIST test 
sessions as well as the fault coverage obtained with these BUT configurations could be 
evaluated. 
 
3.2.1 MGL Generated BIST Configurations 
 An MGL program was developed to automatically generate BIST configurations 
and the logic BIST architecture for testing the PLBs in the Atmel.  This MGL program 
was designed to generate logic BIST configuration for any size FPGA array for both the 
AT40K series FPGAs and the AT94K series FPGA cores.  By adjusting a few parameters 
within the program, five logic BIST configurations can be automatically generated with 
four different orientations (TPG located on either the East, West, North, or South side of 
the array, as illustrated in Figure 3.12) for any size FPGA array.  The program for the 
automatic generation of these logic BIST configurations consists of approximately 2500 
non-commented lines of MGL source code.  The flow diagram shown in Figure 3.6 
illustrates the overall structure and operation of the MGL program. 
 The first parameter to be selected in the MGL program is the device in which the 
logic BIST configurations are to be generated.  All possible devices and packages are 
given as comments within the MGL program in order to make device selection 
straightforward.  Next, the desired TPG location is set in order to determine the 
orientation of the logic BIST session.  As an example, setting the TPG location to '1' 
places the TPGs in the first column on the West side of the array.  With the TPG location 
set to '2', the TPG column is located on the East Side of the array.  For TPG locations '3' 
 
 
 
56
and '4', the TPGs are oriented horizontally in rows and located along the North or South 
sides of the array, respectively.   
Instantiation and Placement of 
TPGs, BUTs, and ORAs into 
PLBs as well as BUT to ORA 
connections
Routing for TPG to BUT 
Connections
Instantiation and Routing for 
I/O Pads
TPG Location
1 ? West Test Session
2 ? East Test Session
3 ? South Test Session
4 ? North Test Session
BUT Configuration
1 ? BUT1 (FGEN1R)
2 ? BUT2 (FGEN1)
3 ? BUT3 (FGEN1RF)
4 ? BUT4 (MGEN)
5 ? BUT5 (FGEN2F)
Set Device and 
Package Type
Design Generated
 
Figure 3.6 Logic BIST MGL Program Flow Diagram 
 Within a given session, East, West, North, or South, five BUT configurations can 
be generated.  These five configurations were chosen from the possible dynamic macros 
available through MGL to give maximum fault coverage with the fewest BIST test 
 
 
 
57
phases.  The five chosen were the FGEN1R, FGEN1, FGEN1RF, MGEN, and FGEN2F.  
Once these parameters are set, the MGL program can be compiled to generate the 
selected test session and BUT configuration for the selected device. 
The program begins by instantiating the TPGs, BUTs, and ORAs into their 
respective columns or rows, depending on the orientation, as well as making the BUT to 
ORA connections.  Next, the interconnections between the TPGs and BUTs are routed.  
These interconnections are followed by the instantiation of the routing for the Shift signal 
(Figure 3.4) for the ORAs and routing the Pass/Fail indication to an I/O pad from the last 
ORA that will be in the shift register after partial reconfiguration.  Finally, the I/O pads 
are instantiated to connect the input and output signals (Clock, Shift, and Pass/Fail).  The 
I/O pads instantiated are for the 84, 144, and 208 pin devices with package designations 
AJC, BQC, and DQC, respectively, which are illustrated in Table 3.1. 
Table 3.1 Pin Numbers for I/O Cells for Logic BIST 
Signal 84 Pin AJC 
Package 
144 Pin BQC 
Package 
208 Pin DQC 
Package 
Clock 13 2 4 
Shift 81 121 174 
Pass/Fail 23 19 27 
 
In developing the MGL program, obstacles were encountered where the provided 
documentation was insufficient to determine how to achieve adequate control over some 
of the routing to the PLBs and to the I/O pads.  In this case, the text-based output files 
produced by the Figaro IDS software were investigated for pertinent information.  This 
information consisted of the names of routing resources within the FPGA that could be 
applied in the MGL program to obtain the necessary control in routing the configuration 
of the FPGA for application of BIST. 
 
 
 
58
The five BUT configurations, FGEN1R, FGEN1, FGEN1RF, MGEN, and 
FGEN2F, are illustrated in Figure 3.7 in terms of the configuration of the logic resources.  
Of the three FGEN1 type macros, the first implements a registered output, 4-input 
exclusive-OR logic function (FGEN1R), the second implements a combinational output, 
4-input exclusive-NOR logic function (FGEN1), and the third implements a 3-input 
exclusive-OR logic function with registered feedback (FGEN1RF).  The fourth BUT 
configuration uses is an MGEN macro which implements a 4-input exclusive-NOR logic 
function with a combinational output.  The final BUT configuration implements a 3-input 
logic function shown in Figure 3.7e and utilizes combinational feedback (FGEN2F).  
Where an 'X' is shown for the set/reset signal, the value is considered as a don't care value 
by MGL and is arbitrarily assigned a value by the CAD tools. 
 
 
 
59
 a) BUT 1 ? FGEN1R
d) BUT 4 - MGEN
b) BUT 2 -  FGEN1
c) BUT 3 ? FGEN1RF
 
e) BUT 5 ? FGEN2F
 
 
 
 
 
X  
W  
Y  
Z  
 
 
clk  
X  
L   
Y  
X  
 
 
?1?
 
  
 
 
 
X  
 
Y  
Z 
 
 
clk  
X  
L  
Y  
X  
 
 
?0?
W
 
X
Y 
Z  
 
clk  
X  
L  
Y  
X  
 
 
?1?
 
 
 
 
 
X  
W  
Y  
Z 
 
 
clk  
reset  
L  
Y  
X  
?1?
 
 
 
 
X  
W
Y  
Z 
1 
0 
clk  
set  
L  
Y  
X  
 
 
?1?
 
Figure 3.7 MGL Generated BUT Configurations 
These configurations were found to be the minimum number of configurations 
that could be used to yield the maximum fault coverage in the PLB through the use of 
MGL.  Depending on the BUT configuration, ORAs were configured to check for either 
BUT response matches or mismatches.  As can be seen in Figure 3.7, the X and Y outputs 
of BUT configurations 4 and 5 will have different output values and require an ORA that 
 
 
 
60
will detect matches in the BUT output responses as an indication of a fault.  BUT 
configurations 1 through 3 have the same output values on the X and Y outputs and 
require an ORA that will detect mismatches in the BUT output responses as an indication 
of a fault.  This is accomplished by using an XOR function for configurations 1 through 3 
and an XNOR function for configurations 4 and 5 in the ORA illustrated in Figure 3.4b. 
 Using the derived gate-level PLB model, fault simulations were performed with 
these five MGL generated BUT configurations.  The five BUT configurations yielded a 
cumulative fault coverage of 97.9% for collapsed, single stuck-at gate-level faults within 
the PLB for those BUTs having both their X and Y outputs observed simultaneously.  
Table 3.2 gives the cumulative fault coverage obtained for the five BUT configurations.  
A total of 166 collapsed faults were simulated in the PLB with five faults left undetected 
after the five BIST configurations, of which three faults were potentially detected. 
Table 3.2 MGL Generated BUT Configurations 
BUT 
Configuration 
Detected 
Faults 
Undetected 
Faults 
Potentially 
Detected Faults 
Total Faults 
Simulated 
Cumulative 
Fault Coverage 
FGEN1R 99 67 0 166 59.64% 
FGEN1 43 24 0 67 85.54% 
FGEN1RF 9 15 1 24 91.27% 
MGEN 7 8 0 15 95.48% 
FGEN2F 3 5 2 8 97.89% 
 
 The edges of the PLB array pose an interesting problem in observability of the 
BUT outputs X and Y since, along the edge of the array, the BUTs do not have both 
outputs observed in the ORAs simultaneously.  The fault coverage obtained in the left 
edge PLBs is slightly less than that obtained in the PLBs in the middle of the array.  The 
five BUT configurations from MGL obtain 97.3% fault coverage in the left edge PLBs 
and 97.9% fault coverage in the right edge PLBs, which matches the number in the 
middle PLBs, as shown in Figure 3.8.  These differences arise from the fact that the left 
 
 
 
61
and right edge PLBs have a different output observed in a given BUT configuration due 
to the alternating routing scheme shown in Figure 3.3. 
10
20
30
40
50
60
70
80
90
100
1 2 3 4 5
BUT Configuration
F
a
u
l
t
 
C
o
v
e
r
a
g
e
Individual FC (Left Edge PLBs)
Individual FC (Middle PLBs)
Individual FC (Right Edge PLBs)
Cumulative FC (Middle PLBs)
Cumulative FC (Left Edge PLBs)
Cumulative FC (Right Edge
PLBs)
 
Figure 3.8 Middle and Edge Fault Coverage (Five BUT Configurations) 
 
3.2.2 Theoretical Best Case 
The MGL and Figaro software provided by Atmel does not grant the user 
complete control over the PLB functions and hence, the configuration bits associated 
with the PLB.  The dynamic macros impose constraints on the controllability of the PLB 
that do not allow for necessary test conditions to be set up in the PLB to test for certain 
faults.  This is in part due to the values placed on particular configuration bits, which, for 
the selected dynamic macro, can be either a logic '0' or logic '1', and MGL arbitrarily sets 
the bit to a value other than that desired for the proper test conditions.  Therefore, it was 
necessary to look at alternatives and modifications to the MGL-based approach in order 
to maximize fault coverage.  One solution is manipulating the download bitstream to set 
 
 
 
62
up the desired test conditions in the configuration bits before the BIST configuration is 
downloaded to the FPGA. 
Through the single stuck-at, gate-level fault simulations a theoretical minimum 
number of BUT configurations was derived.  Assuming observability of all PLB outputs, 
X, Y, and L, and complete controllability of all PLB configuration bits, a fault coverage 
of 100% for gate-level single stuck-at faults can be obtained in only three BUT 
configurations, which are shown in Figure 3.9.  The first configuration (Figure 3.9a) is 
the same FGEN1R dynamic macro configuration generated by the MGL program while 
the second and third are custom configurations and do not correspond to any available 
dynamic macro.  The second configuration (Figure 3.9b) is similar to an MGEN type 
dynamic macro in that it utilizes the upstream AND gate, however, the paths through the 
PLB logic are different than what can be arranged utilizing the MGEN dynamic macro.  
The third configuration (Figure 3.9c) utilizes the feedback in the PLB and utilizes 
different paths through the PLB logic than can be obtained with any of the dynamic 
macros. 
 
 
 
63
 a) BUT1 b) BUT2
c) BUT3
 
 
 
 
X  
W  
Y  
Z 
 
 
clk  
set  
L   
Y  
X  
 
 
?0?
 
 
 
 
X  
W  
Y  
Z  
 
 
clk  
set  
L   
Y  
X  
 
 
?1?
 
 
 
 
X  
W  
Y  
Z  
 
 
clk  
reset  
L  
Y  
X  
?1?
 
Figure 3.9 Theoretical Minimum Three BUT Configurations 
These three BUT configurations represent the absolute best case for logic BIST.  
In actuality all outputs are not observable in the ORAs, only the X and Y outputs are 
observed in logic BIST, as demonstrated by the ORA structure in Figure 3.2 and the logic 
BIST architecture in Figure 3.3.  However, through manipulation of the download 
bitstream, an alternative exists between this ideal case and the case with MGL. 
 
3.2.3 Manually Generated BUT Configurations with Bitstream Manipulation 
 A C program was written to post-process the bitstreams produced through the 
compiled MGL program in order to produce the desired test conditions within the BUT 
configuration bits.  This C program consisted of approximately 370 non-commented lines 
of C source code.  In addition to increasing the fault coverage within the PLB, using a C 
program to manipulate the configuration bits within the PLB can reduce the number of 
 
 
 
64
BUT configurations from five to four.  This is accomplished by generating a template 
bitstream for the first and third BUT configurations produced by the MGL program and 
then manipulating the bitstream templates via the C program to produce the remaining 
two BUT configurations.  These template bitstreams contain all the configuration and 
routing information needed to have the TPGs, BUTs, and ORAs and their interconnect 
configured in a given test session.  The template bitstream for BUT configuration 1 
configures the reset function and falling edge triggering of the BUTs while BUT 
configuration 3 configures the set function and rising edge triggering of the BUTs.  BUT 
configurations 1, 2, and 4 are generated from the bitstream template for the first BUT 
configuration and BUT configuration 3 is generated from the bitstream template for the 
third BUT configuration.  The template for the third BUT configuration is changed since 
BUT 3 for the manual configurations is different than for BUT 3 produced from MGL.  
Having the two template bitstreams accommodates testing for the set and reset functions 
and the rising/falling edge triggering since the C program does not manipulate the 
configuration bits associated with the set and reset or the rising/falling edge triggering.  
The only changes needed in the bitstream are performed by the C program, which 
changes the configuration bits for the BUTs and ORAs.  The C program changes the 
configuration bits for those PLBs in order to change between BUT configurations, 
change the ORA configuration for either matching or mismatching, and change the 
alternating routing scheme between the BUTs and ORAs.  Table 3.3 gives the cumulative 
fault coverage obtained for the logic associated with the BUT during the four BIST 
configurations. 
 
 
 
 
65
Table 3.3 Manually Produced BUT Configurations 
BUT 
Configuration 
Detected 
Faults 
Undetected 
Faults 
Potentially Detected 
Faults 
Total Faults 
Simulated 
Cumulative 
Fault Coverage 
1 99 67 0 166 59.64% 
2 50 17 0 67 89.76% 
3 13 4 1 37 97.89% 
4 3 2 0 4 99.70% 
 
The four BUT configurations are illustrated in Figure 3.10.  The first 
configuration is an FGEN1R (the same as the first configuration with the five MGL 
generated configurations and the three theoretical minimum configurations), which is 
used as a template bitstream to produce the remaining three configurations.  The second 
BUT configuration (Figure 3.10b) is a 4-input exclusive-OR logic function which utilizes 
the upstream AND gate and both the X and Y outputs are combinational.  The third BUT 
configuration (Figure 3.10c) tests the registered feedback path in the PLB again utilizing 
the upstream AND gate by ANDing the feedback with a PLB input.  The outputs in this 
configuration are again combinational.  The final BUT configuration (Figure 3.11d) tests 
the combinational feedback path in the PLB and tests the outputs directly from the LUTs 
in the PLB.  These configurations also require ORAs that detect a match or a mismatch, 
depending on BUT configurations.  As can be seen, the X and Y outputs will be the same 
logic values in BUT configurations 1 and 4 while in BUT configurations 2 and 3, the X 
and Y outputs will have different logic values, which require ORAs configured to check 
for matches and mismatches, respectively. 
 
 
 
66
 
d) BUT 4
b) BUT 2
c) BUT 3
 
 
 
 a) BUT 1
 
 
 
 
X  
W  
Y  
Z  
 
 
clk  
reset  
L  
Y  
X  
?1?
 
 
 
 
X  
W  
Y  
Z 
 
 
clk  
reset  
L   
Y  
X  
 
 
?1?
 
 
 
 
X  
W  
Y  
Z  
1 
0 
clk  
set  
L  
Y  
X  
 
 
?0?
 
 
 
 
 
X  
 
Y  
Z 
 
 
clk  
reset  
L  
Y  
X  
 
 
?0?
 
Figure 3.10 Manually Generated Four BUT Configurations 
The four BIST configurations generated from the C program yield a total fault 
coverage of 99.7%, which is closer to the 100% obtained with the theoretical minimum 
three BUT configurations.  The five MGL configurations resulted in 97.9% fault 
coverage with faults left undetected.  However, in the four BUT configurations, the one 
fault left undetected is actually potentially detected and is guaranteed to be detected 
during the routing BIST configurations. 
The disadvantage in utilizing these four BUT configurations to test the PLBs in 
the array is a decrease in fault coverage observed in the BUTs on the left and right edges 
of the PLB array.  Along these edges, the fault coverage observed decreases from that of 
the BUTs in the middle of the array shown in Table 3.2 due to the alternating X and Y 
BUT to ORA routing schemes and the configuration of the BUTs during the test phases.  
 
 
 
67
The total fault coverage in the BUTs obtained during logic BIST along the left and right 
edges of the array drops to 82.23% for left edge BUTs and drops to 87.95% for right edge 
BUTs from the 99.7% obtained in the BUTs in the middle of the array, as is illustrated in 
Figure 3.11. 
0
10
20
30
40
50
60
70
80
90
100
1 2 3 4
BUT Configuration
F
a
u
l
t
 
C
o
v
e
r
a
g
e
 
(
%
)Individual FC (Left Edge Cells)
Individual FC (Middle Cells)
Individual FC (Right Edge Cells)
Cumulative FC (Left Edge Cells)
Cumulative FC (Middle Cells)
Cumulative FC (Right Edge Cells)
 
Figure 3.11 Middle and Edge PLB Fault Coverage (Four BUT Configurations) 
One solution to the problem of decreased fault coverage along the edges of the 
array is to apply each BUT configuration twice using both BUT to ORA routing schemes.  
This doubles the number of test phases in order to obtain increased fault coverage only 
along the edges of the array.  However, this problem can be almost eliminated by rotating 
the orientation of the logic BIST architecture from column-based to row-based to obtain 
North and South test sessions.  This rotation is demonstrated in Figure 3.12, which shows 
the four directional orientations of the logic BIST test sessions, East, West, North, and 
South.  This rotation also gives a total of 16 logic BIST configurations, four BUT 
configurations for each directional orientation of the logic BIST architecture. 
 
 
 
 
68
T 
P 
G 
2 
T 
P 
G 
1 East 
T 
P 
G 
2 
T 
P 
G 
1 West 
TPG 1 TPG 2 
North TPG 1 TPG 2 South  
Figure 3.12 Column-Based to Row-Based Rotation for Logic BIST 
Due to the column-based banks of clocks and resets, the flip-flops cannot be 
tested during the row-based North and South test sessions; however, these have already 
been tested during the column-based East and West test sessions.  By rotating the logic 
BIST test sessions, all but eight of the PLBs in the array will have 99.7% fault coverage.  
The eight PLBs are located in the four corners of the array as illustrated in Figure 3.13. 
 
 
 
69
= 99.7% 
 
= 82.23% 
 
= 87.75% 
 
Figure 3.13 Fault Coverage of PLBs Located in Four Corners of the Array 
An advantage of performing the rotation of the logic BIST test sessions includes 
allowing for horizontal and vertical local routing resource testing to be performed 
simultaneously with the logic BIST.  Since the local routing configuration bits are 
associated with the PLB configuration bits, testing can be performed on the local 
interconnect simultaneously by using the C program to change connections to the local 
routing resources between test phases.  The inputs to the PLB have multiplexers to select 
an input signal from one of the five horizontal or five vertical x4 lines, as shown in Figure 
2.5.  By rotating through the combinations of inputs during test phases, these multiplexer 
PIPs can be tested simultaneously during logic BIST.   
Through fault simulations, it was found that the rotation on the input connections 
allowed all but one input to one multiplexer in the local routing resources to be tested 
during the four logic BIST test sessions.  However, this particular input is used for the 
Shift signal to the ORAs during the shifting out of the BIST results.  As a result, a shift 
register test was added to test this input.  In this additional test a logic '1' is input to the 
ORAs on the Shift input which causes all the ORAs to latch the logic '1' as can be seen in 
 
 
 
70
Figure 3.4e.  The ORAs are then reconfigured as a shift register and the ORA values are 
shifted out.  Adding local routing resource faults to the BUTs increases the total number 
of collapsed faults from 166 to 298.  These additional faults include faults in the MUX 
PIPs and cross-point PIPs at the W, X, Y, and Z inputs to the PLBs from the global 
routing resources. 
The results of the fault simulations performed on both the PLB and local 
interconnect are given in Table 3.3.  The configurations denoted by EW indicate fault 
simulations for PLBs during East/West orientations of logic BIST while the 
configurations denoted by NS indicate fault simulations for North/South orientations of 
logic BIST.  The ORAShift simulation indicates the additional test for the input of the 
shift signal which forces ORA failures.  The total fault coverage obtained was 95.81%, 
with very few faults undetected.  In performing these fault simulations, the PLBs 
functioning as both BUTs and ORAs were monitored to determine the total fault 
coverage.  These are designated respectively in Table 3.4. 
Table 3.4 Total Fault Coverage for PLB and Local Interconnect 
Test Phase 
Detected 
Faults 
Undetected 
Faults 
Potentially 
Detected Faults 
Total Faults 
Simulated 
Cumulative Fault 
Coverage 
BUT1EW 151 147 0 298 50.67% 
BUT2EW 68 79 0 147 73.49% 
BUT3EW 20 59 1 79 80.37% 
BUT4EW 7 52 0 61 82.72% 
ORA1EW 5 47 0 52 84.40% 
ORA2EW 4 43 0 47 85.74% 
BUT1NS 13 30 0 43 90.10% 
BUT2NS 10 20 0 30 93.46% 
BUT3NS 0 20 0 20 93.46% 
BUT4NS 0 20 0 20 93.46% 
ORA1NS 4 16 0 20 94.80% 
ORA2NS 2 14 0 16 95.47% 
ORAShift 1 13 0 14 95.81% 
 
 
 
 
71
Undetected faults were left only on the cross-point PIPs present on the W, X, Y, 
and Z vertical and horizontal inputs to the PLB, which are shown in Figure 2.7 as well as 
some of the X direct PLB connections and the tri-state buffer present on the L output of 
the PLB.  The undetected faults left on the cross-point PIPs as well as those in the X 
direct connections and the tri-state buffer are tested during the routing BIST sessions, as 
will be discussed in Chapter 4.  The one potentially detected fault is associated with the 
multiplexer for the L output and is detected when testing the tri-state buffer during 
routing BIST.  Due to the amount of logic and routing resources utilized in logic BIST, 
the cross-point PIPs are not detected since opposite logic values are needed on the 
vertical and horizontal cross-point PIPs in order to detect faults.  The X direct PLB 
connections left untested in the PLB array include one of four direct X connections in a 
PLB in a given location in the array, which result from the routing schemes (shown in 
Figure 3.3).  The tri-state buffer on the L output of the PLB was not targeted during logic 
BIST due to the choice of ORA, as discussed in section 3.2.  The best choice for 
regularity and efficient implementation allowed for two observable outputs from the PLB 
and did not allow for three observable outputs from the PLB, which meant the exclusion 
of L as an observable output during logic BIST.   
 
3.3 MGL's Effects on Logic BIST Development and Application 
 The utilization of MGL to develop logic BIST configurations for the AT94K 
FPGA cores had both advantages and disadvantages.  The language has similarities to 
modern programming languages and HDLs that allow users to more easily learn the basic 
constructs that are used and, thus, create designs relatively quickly once the language is 
 
 
 
72
mastered.  These similarities allow the user to easily transition from a programming 
language or HDL into the MGL environment.  As a result, the MGL approach facilitates 
an integrated approach to the development of automated BIST configuration generation 
within the FPGA manufacturer CAD tool suite.  This was not available in previous 
development of BIST for FPGAs in [9], [10], [19], [20].   However, the language does 
not give complete control over the PLBs and routing resources within the FPGA nor is 
complete documentation given to provide necessary details for the development and 
application of BIST.  The development of the logic BIST configurations, therefore, 
requires more than MGL alone.  The implementation of the basic structure of the logic 
BIST configurations is fairly straightforward using MGL, however, additional control 
over the PLBs and routing resources is required through other means, such as the C 
program that was utilized to manipulate the download bitstream in this research and 
development effort. 
 
3.4 Comparison of Logic BIST for Atmel, ORCA, and Xilinx FPGAs 
 As a result of the architectural differences in the PLBs between the ORCA and 
Xilinx FPGAs, a different number of logic BIST configurations were required to test the 
two FPGAs; as summarized in Table 3.4.  Similarly the number of logic BIST 
configurations is different for the Atmel FPGA than that required for the ORCA and 
Xilinx FPGAs.  In order to test just the logic in the PLBs in the Atmel FPGA, a total of 
four configurations is required.  This is less than the number of configurations required 
for both the ORCA and Xilinx FPGAs.  The primary reason is the smaller amount of 
logic present within the Atmel PLB, as pointed out in Table 2.1.  A result of logic BIST 
 
 
 
73
unique to the Atmel FPGA is the loss of fault coverage in the PLBs located on the left 
and right edges of the array due to the FPGA routing architecture and small PLBs.  This 
is overcome by the additional configurations performed by rotating the orientation of the 
logic BIST to perform the East, West, North, and South test sessions.  In performing 
these additional sessions, not only do the PLBs along the edges gain improved fault 
coverage, but diagnostic resolution is also increased [19].  In addition, a large majority of 
the local routing resources is also being tested simultaneously. 
Table 3.5 FPGA Logic BIST Configuration Comparison 
FPGA Number of BUT 
Configurations 
ORCA 2C 9 
ORCA 2CA 14 
Xilinx 4000 12 
Xilinx Spartan 12 
Atmel AT40K 4 
Atmel AT94K 4 
 
 
 
 
74
CHAPTER FOUR 
ROUTING BIST  
 
The adaptation of FPGA routing BIST techniques will be discussed in their 
application to the Atmel AT94K series FPGA core.  The fault models used in testing the 
routing resources of the FPGA will be discussed.  The routing architecture of the Atmel 
FPGA poses new challenges in the application of BIST, which will be discussed along 
with proposed solutions.  The goal of the development effort described in this chapter 
was to completely test all global routing resources and those local routing resources not 
completely tested during logic BIST.  The routing BIST configurations are presented 
along with the evaluation of the faults detected by these configurations.  Finally, the 
number of routing BIST configurations is compared to those previously developed for 
ORCA and Xilinx FPGAs. 
 
4.1 Fault Models for FPGA Routing Resources 
 There are three basic types of fault models that are typically considered when 
modeling faults in the routing resources of an FPGA [11].  These faults include PIPs 
(cross-point PIPs, break-point PIPs, or MUX PIPs) stuck-closed (stuck-on) and stuck-
open (stuck-off), wire segments stuck-at-0 and stuck-at-1, and, wires open and shorted 
wires (bridging faults) [11].  BIST architectures for testing the routing resources have 
been developed using these fault models to test for these various types of faults that may 
 
 
 
75
occur.  In order to test the FPGA routing resources for some of these faults the applied 
test must ensure that every PIP and wire segment can transmit both a '0' and a '1' [11].  
This will detect any stuck-open (stuck-off) fault in any closed PIP along the wire segment 
as well as any open or stuck-at fault affecting the wire segment [11].  In order to detect a 
PIP that is stuck-closed (stuck-on) opposite logic values must be applied to the wire 
segments associated with the PIP with both wire segments monitored by ORAs such that 
a fault will result in an incorrect logic value on one of the wire segments [11].  As a 
result, both combinations of logic values (1,0 and 0,1) must be applied during the test to 
the two wire segments separated by the open PIP [11].  For the case of wire segments that 
may have bridging faults associated with them, the same case holds true.  During the test, 
opposite logic values must be applied to the wire segments while the wire segments are 
monitored by ORAs so that a fault will result in an incorrect logic value on one of the two 
wire segments [11].  A MUX PIP requires one test configuration for each of its inputs 
where both a '0' and a '1' must be applied to each input while the opposite logic value is 
applied to the remaining unselected inputs [11].  By applying this test, both a stuck-open 
fault in the closed PIP connecting the selected input wire segment to the output wire 
segment as well as any stuck-closed fault in the unselected (open) PIPs is detected [11].  
In the case of non-decoded MUX PIPs, only one unselected input needs to be tested for 
stuck-on during each stuck-off test of a selected input. 
 
 
4.2 Modifications to Routing BIST Methodology 
 In the previous applications of FPGA routing BIST to the ORCA [9] and Xilinx 
[10] FPGAs, a comparison-based routing BIST approach has been used.  In this particular 
 
 
 
76
case, only two wires and associated PIPs can be observed in the ORAs.  For the case of 
the Atmel FPGA, it is necessary to observe more than two wires in an ORA in order to 
minimize the number of configurations required to test the programmable routing 
resources.  Therefore, the parity-based approach proposed in [23] was modified for 
application to the global routing resources in the Atmel FPGA.  The approach in [23] for 
the testing of FPGA interconnect involved utilization of a TPG generating parity, a set of 
WUTs, other assumed fault-free routing resources, and a parity-based ORA.  In this case, 
the TPG would source the test patterns over sets of WUTs to the ORA and, over other 
routing resources assumed to be fault-free, a parity bit was also routed to the ORA.  This 
approach was modified to incorporate the parity bit as part of the test patterns being 
sourced over the WUTs and observed in the ORAs, which is illustrated in Figure 4.1.   
C0
C1
Par
ORA
WUTs
 
Figure 4.1 Routing BIST Architecture 
 In this architecture, the TPG comprises a two-bit binary counter along with a 
parity bit generated over the two-bit count.  The WUTs are a selected subset of routing 
resources, and the ORA checks for parity across the test patterns.  Each of the sets of 
busses, both x8 lines and the x4 line, contain five wire segments in both vertical and 
horizontal directions.  To apply this to the global routing resources, the parity bit is 
routed on the middle bus (third bus) of each set, while each of the two bits of the binary 
 
 
 
77
count are routed on two of the remaining four busses.  These two bits are routed onto one 
bus on either side of the parity bit (i.e. count bit C0 is routed onto the first and fourth 
busses and C1 on the remaining busses).  By routing the binary count and parity bits in 
this particular manner,  any two of the wire segments in a set of busses are guaranteed to 
have opposite logic values (0,1 and 1,0) during the test sequence in order to detect faults 
present in the routing resources.  In order to accommodate opposite logic values for 
particular tests associated with the cross-point PIPs, wire segments, and repeaters, 
alternating TPGs and ORAs for binary up-count with even parity and for binary down-
count with odd parity are employed.  This is demonstrated in Table 4.1, which shows the 
count sequences of both types of TPGs.  Note that for the TPGs to attain opposite logic 
values between their test patterns, the binary up counter must be reset initially and the 
binary down counter must be preset initially. 
Table 4.1 Test Pattern Sequences for Routing BIST 
Up-count with 
Even Parity 
(C1, C0, Parity) 
Down-count with 
Odd Parity 
(C1, C0, Parity) 
000 111 
011 100 
101 010 
110 001 
 
As is illustrated in Table 4.1, between the bits of the test patterns for each TPG 
and parity combination, opposite logic values are present between any two of the bits in 
the sequence.  In addition, between the respective bits of the two test patterns, there are 
opposite logic values.  This allows the necessary conditions to be met to detect faults 
associated with the fault models used for the routing BIST development.  This pattern can 
be utilized to apply both logic values to every wire segment and PIP thus testing for any 
stuck-off fault in any closed PIP in a set of WUTs as well as for any open or stuck-at 
 
 
 
78
fault affecting the wire segments in a set of WUTs.  The presence of opposite logic 
values in the patterns can be used to test for stuck-on faults associated with PIPs in a set 
of WUTs in addition to testing the non-decoded MUX PIPs in the repeaters.  The only 
exception is in the case of the L output configurations, which use a similar architecture 
and the same type TPG and ORA as those used in the logic BIST test sessions.   
 A TPG sourcing the two-bit binary count value and generating a parity bit across 
the 2-bit count was ideal for the PLB architecture.  Due to the small size of the PLB, the 
number of inputs that can be checked for parity in a given ORA while latching an error is 
a maximum of three.  This restriction is a result of the number of bits present in the LUTs 
as well as the organization of the PLB, which is shown in Figure 2.3.  The LUTs in the 
PLB contain eight bits each and only four inputs can be routed into the PLB, which allow 
for up to a 4-input function to be obtained by combining the LUTs through the use of the 
multiplexers located just below the LUTs in Figure 2.4.  In order to implement an ORA 
with feedback to latch errors, however, a maximum of three inputs can be checked for 
parity, which is illustrated in Figure 4.2.  Thus, a TPG was chosen to source three test 
patterns, including the parity bit, over the sets of WUTs to test the programmable 
interconnect in the FPGA.  The exclusive-OR (or exclusive-NOR) gate at the front end 
checks for even (or odd) parity across the test pattern and the OR gate serves to latch up 
an error within the flip-flop if an error in parity is detected (given by the output of the 
exclusive-OR or exclusive-NOR gate).   
 
 
 
79
D     QC0C1
Parity
Pass/Fail
D     QC0C1
Parity
Pass/Fail
a) ORA for Up Count & Even Parity
b) ORA for Down Count & Odd Parity  
Figure 4.2 ORA Structure for Routing BIST 
 In order to implement this ORA in the FPGA, a C program was utilized to 
perform bit manipulation on the download bitstream files.  This was necessary due to the 
available dynamic macros as discussed in Section 2.6.1.  A function can be implemented 
in the PLB with a parity-check of three inputs and feedback to latch any errors using an 
FGEN2 type dynamic macro.  However, a Shift signal must be routed to all ORAs in 
order to shift out the BIST results at the end of a routing BIST phase, as was the case in 
logic BIST.  This signal can not be routed to the ORAs unless specified as an input to the 
PLB in the MGL program.  Thus, a dynamic macro with four inputs, the FGEN1 type 
dynamic macro, is necessary in order to route the Shift signal to the ORAs.  Utilizing a 
dynamic macro with four inputs does not allow for the ORA structure to be implemented 
through MGL, therefore, a C program was generated to perform bit manipulation of the 
download bitstream files.  In doing so, the fourth input to the ORAs needed for the Shift 
signal can be ignored during the execution of a routing BIST phase even though the 
signal is routed through the global routing resources and available to the PLB.  Upon 
 
 
 
80
execution of a given routing BIST phase, the ORA must be dynamically reconfigured, 
utilizing the synchronous RAM mode of configuration for the FPGA or through partial 
dynamic reconfiguration from the AVR, to utilize the Shift signal in order to shift out the 
BIST results, as illustrated in Figure 3.4d. 
 
4.3 Overview of Routing BIST Configurations 
 The routing BIST configurations for the programmable routing resources consist 
of four test sessions targeting four different types of the routing resources.  These tests 
target the cross-point PIPs and the repeaters in the global routing resources in addition to 
the PLB L output and tri-state buffer and X direct connections left untested after 
completion of the logic BIST sessions.  There is a total of 48 routing BIST configurations 
which include 16 configurations for cross-point type PIPs, 24 configurations for vertical 
and horizontal repeaters, 4 configurations for the L output and tri-state buffer, and 4 
configurations for the X direct connections.  All of these configurations, with the 
exception of the L output configurations, utilize the TPG and ORA discussed in section 
4.2, differing only by the subset of routing targeted and the particular architecture during 
a given routing BIST configuration.  The L output configurations use a similar 
architecture to that used in the logic BIST test sessions. 
 These configurations also require that additional pins be utilized for the Shift 
input signal and the Pass/Fail output signal.  This is due to the use of busses during 
particular orientations of configurations.  Only particular x8 and x4 lines connect to the 
I/O cells through repeaters at the edge of the array, and, therefore, if these lines are 
utilized as a set of WUTs, a signal cannot be routed to an I/O cell through these particular 
 
 
 
81
lines.  This was overcome by selecting pins for the Shift and Pass/Fail signals on different 
sides of the array in order to avoid conflict with the sets of WUTs during the vertical and 
horizontal orientations of the routing BIST test sessions.  In order to accomplish this, two 
pins each for both the Shift and Pass/Fail signals were chosen in order to be used in the 
different routing BIST configurations, as summarized in Table 4.2.  Note that the signals 
denoted with a '1' have the same pin numbers as used in logic BIST. 
Table 4.2 Pin Numbers for I/O Cells for Routing BIST 
Signal 84 Pin AJC 
Package 
144 Pin BQC 
Package 
208 Pin DQC 
Package 
Clock 13 2 4 
Shift 1 81 121 174 
Shift 2 17 11 17 
Pass/Fail 1 23 19 27 
Pass/Fail 2 41 53 77 
 
 The faults left undetected after completion of logic BIST include stuck-on and 
stuck-off faults in the MUX PIPs in the X direct connections from adjacent PLBs, stuck-
on faults in the local routing cross-point PIPs, and stuck-at faults in the MUX PIP and the 
tri-state buffer associated with the L output of the PLB.  Some, but not all, of the X direct 
connections are tested during logic BIST due to the applied logic values to the X inputs 
of the ORAs.  The MUX PIPs that are tested are selected as inputs to the ORA during 
logic BIST while the untested MUX PIPs are not selected as inputs to the ORA during 
logic BIST.  The local routing cross-point PIPs are left incompletely tested since opposite 
logic values are not applied to the vertical (V1-V5) and horizontal (H1-H5) during logic 
BIST in order to test the PIPs for stuck-on faults.  The MUX PIP associated with the L 
output of the PLB is partially tested during logic BIST configurations that utilize 
feedback since one of its inputs is combinational and the other is sequential, which 
presents a clock-cycle delay between the two inputs and allows opposite logic values 
 
 
 
82
during a part of the test sequence being applied.  It is only partially tested since the faulty 
circuit value must be propagated back through the LUTs as feedback.  The tri-state buffer 
is not selected during logic BIST and is left completely untested.  Each of the sets of 
routing BIST configurations that target the various types of routing resources is discussed 
in the following sections. 
 
4.4 BIST Configurations for Cross-Point PIPs 
 The cross-point PIPs present in the global routing resources, illustrated in Figure 
4.3, requires a total of 16 routing BIST configurations.  These 16 configurations break 
down into two sets of eight configurations with each set targeting a particular set of x8 
lines, either the Abus or Ebus lines, on which the cross-point makes or breaks a 
connection.  These routing BIST configurations target stuck-off and stuck-on faults in the 
global routing cross-point PIPs, opens and stuck-at faults in the x8 lines, and the 
remaining stuck-on faults in the local routing cross-point PIPs at the inputs to the PLBs 
left untested during the application of logic BIST.  These configurations are generated 
from separate set of MGL and C programs, one set of programs for the Abus line cross-
point PIPs and one set for the Ebus line cross-point PIPs.   
 
 
 
83
H
1
 
?
 
H
5
V1 ? V5
PLB
W
X
Y
Z
L
W X Y Z L
Local Routing 
Cross-Point PIPs
Global Routing 
Cross-Point PIPs
Abus x8 Line
Ebus x8 Line
 
Figure 4.3 Global Routing Associated with the PLB 
The basic architecture of the cross-point PIP BIST configurations is a STAR 
which consists of an 8x8 array of PLBs with each STAR separated by repeaters.  The 
STARs are tiled across the FPGA array such that concurrent testing is performed on all 
the selected cross-point PIPs in the array, as illustrated in Figure 4.3.  Each STAR has 
either a TPG functioning as a two-bit up counter with even parity generation and the 
corresponding even parity check ORA or has a TPG functioning as a two-bit down 
counter with odd parity generation and the corresponding odd parity check ORA.  These 
two types of STARs are tiled across the array in a checkerboard fashion.  This allows 
opposite logic values to be sourced into a given STAR from an adjacent STAR to test the 
global routing cross-point PIPs shown for stuck-off faults as well as for testing the local 
routing cross-point PIPs at the inputs to the PLBs for stuck-on faults, which are both 
illustrated in Figure 4.4.  Since the configuration is made up of 8x8 STARs, there are 
eight phases per cross-point PIP test session.  Each routing BIST phase shifts the TPG 
down by one row while every other phase the ORAs are shifted up by two columns such 
 
 
 
84
that, in the last phase, the TPG and ORAs are at the opposite end of the STAR from their 
positions in the first phase.  In each phase the connections to the two rows of ORAs are 
swapped.  This allows all the local routing cross-point PIPs at the ORAs to be tested for 
stuck-on faults since the inputs to the ORAs enter through vertical local routing cross-
point PIPs and the opposite logic values from an adjacent STAR are routed onto the 
corresponding busses associated with the horizontal local routing cross-point PIPs above 
each row of ORAs.   
= Global Routing Cross-Points PIPs 
   Tested for Stuck-off Faults
= Global Routing Cross-Points PIPs
   Tested for Stuck-on Faults and Local 
   Routing Cross-Point PIPs Tested for 
   Stuck-on Faults
= TPG
= ORA
  
Figure 4.4 Cross-Point PIP Routing BIST Architecture 
 
 
 
85
  Since the cross-point PIPs make or break connections between vertical and 
horizontal wire segments, there is no difference in the testing of cross-point PIPs when 
orienting the BIST architecture horizontally (as in Figure 4.4) or vertically (can be 
derived by rotating Figure 4.4 counter-clockwise 90o).  However, by orienting the 
architecture both vertically and horizontally during different BIST configurations, all the 
local routing cross-point PIP stuck-on faults at the inputs to the PLBs can be tested.  
Therefore, the set of configurations for the cross-point PIPs on the Abus lines was 
oriented vertically while the Ebus line cross-point PIP set of BIST configurations was 
oriented horizontally.  These configurations facilitate testing of the cross-point PIPs 
denoted in Figure 4.4 for stuck-off faults since both a logic '0' and a logic '1' are passed 
through the PIPs.  The x4 lines are tested for shorts between the five wire segments in the 
set of x4 lines since opposite logic values are guaranteed between every pair of wire 
segments during the test pattern.  The vertical and horizontal x4 lines are both tested since 
the test is oriented both vertically and horizontally and the x4 lines have to be used to 
enter into the ORAs from the global routing.  The same case holds true for the Abus lines 
and Ebus lines.  The five wire segments in the set of Abus or Ebus lines are guaranteed to 
have both opposite logic values between any pair of wire segments.  For the Abus lines, 
the repeaters are staggered evenly across the array, meaning that the boundaries of the 
repeaters selecting from the Abus x8 lines and the x4 lines matches up with the 
boundaries of the FPGA array, as is illustrated in Figure 4.5.  This is true because all the 
array sizes are multiples of eight: 16, 24, 32, and 48.   
 
 
 
86
a) 16x16
b) 24x24
c) 32x32
d) 48x48
= 8x8 STAR ? Up Count 
   & Even Parity
= 8x8 STAR ? Down Count 
   & Odd Parity  
Figure 4.5 Abus Cross-Point STAR Tiles for all FPGA Array Sizes 
This is not the case for the repeaters selecting from the Ebus x8 lines and the x4 
lines since these Ebus x8 lines start with an offset of four PLBs from either edge of the 
array.  Due to this staggering of repeaters, the cross-point PIP test session for the Ebus 
lines have not only 8x8 STARs but also have 4x4, 4x8, and 8x4 STARs, which are shown 
in Figure 4.6.  In addition to having different STAR sizes, the checkerboard tiling of the 
STARs for the Ebus cross-point configurations is different in the 24x24 array due to the 
offset of the Ebus repeaters from the edges and the arrangement of STARs that form the 
checkerboard pattern, which is illustrated in Figure 4.6b. For the Ebus line cross-point 
PIP configurations, the MGL program is much more complex than that for the Abus line 
cross-point PIP configurations. 
 
 
 
87
a) 16x16
b) 24x24
c) 32x32
d) 48x48
= 4x4 STAR ? Up Count &
   Even Parity
= 8x8 STAR ? Up Count &
   Even Parity
= 4x4 STAR ? Down Count &
   Odd Parity
= 4x8 STAR ? Down Count &
   Odd Parity
= 4x8 STAR ? Up Count &
   Even Parity
= 8x4 STAR ? Up Count &
   Even Parity
= 4x8 STAR ? Down Count &
   Odd Parity
= 8x8 STAR ? Down Count &
   Odd Parity
 
Figure 4.6 Ebus Cross-Point STAR Tiles for all FPGA Array Sizes 
 
4.5 BIST Configurations for Repeaters 
 The repeaters that are disbursed within the global routing resources are shown in 
Figure 4.7a.  These repeaters required multiple test phases to completely test for all 
possible combinations of stuck-on and stuck-off faults that may exist in the MUX PIPs 
within the repeater.  In addition, the opens and stuck-at faults are further tested for the 
Abus x8 lines as well as for the Ebus x8 lines.  Since the repeaters are dispersed 
symmetrically both horizontally and vertically, tests were derived that test both types of 
repeaters.  As in the cross-point PIP test sessions, the staggering of the repeaters 
throughout the array has several implications on the application of BIST.   
 Three sets of BIST configurations were developed to test the MUX PIPs in the 
repeaters for both stuck-on and stuck-off type faults.  These three sets of configurations 
were developed for both the Abus line and Ebus line repeaters.  The faults targeted during 
 
 
 
88
each set of configurations are given in Figure 4.7.  Figure 4.7a shows the possible 
connections that can be made through the MUX PIPs in a repeater and Figure 4.7b lists 
the faults that are targeted during a given set of configurations.  Since the repeater 
structure allows connections to be made in both directions (i.e. from L8 to R8 or from R8 
to L8), for a given set of configurations the repeaters must be tested in both directions.   
S-On S-Off
a) Repeater Connections
b) Stuck-on and Stuck-off Faults in MUX PIPs Targeted in a Given Set of Configurations
L8
L4
R8
R4
MUX PIP S-On S-Off S-On S-Off S-On S-Off
R8 Input L8 Input R4 Input L4 Input
R8
L8
R4
L4
2 3
2 1
1 2
2 3
1 2
2 1
2 1
1 2
2 3
1 2
2 1
2 3
 
Figure 4.7 Repeater Connections and Targeted Fault Types 
 For each type of repeater, there are three sets of configurations each of which has 
orientation horizontally and vertically and tests both directions of the connections 
through the repeaters.  Therefore, there are four test phases per set of configurations: two 
horizontal configurations, which test both directions through horizontal repeaters, and 
two vertical configurations, which test both directions through vertical repeaters.  This 
makes a total of 12 BIST configurations for each set of repeaters associated with the 
Abus x8 line and the Ebus x8 line. 
 
 
 
89
The first set of x8 line repeater configurations targets only the MUX PIPs that 
make connections between wire segments R8-L4, R8-R4, R4-L8, and L4-R8 for stuck-on 
faults and the MUX PIPs that make connections between wire segments R8-R4, L8-L4, 
R4-R8, and L4-L8 for stuck-off faults, as given in Figure 4.7b.  This is done by creating 
STARs that alternate between TPGs with up-count with even parity and with down-count 
with odd parity, as illustrated in Figure 4.6.  Connections are formed that loop around 
through the repeaters such that connections made on each side of the repeater have 
opposite logic values during the test sequence, thus testing for the desired set of faults in 
the MUX PIPs.  For example, the MUX PIP for the L8 output receives an input signal 
from the L4 input while the opposite logic value is applied to the MUX PIP's unselected 
input coming from R8, facilitating a test of the L8 MUX PIP according to the fault 
models being used.  The orientation shown is for horizontal STARs; the vertical 
orientation can be derived by rotating the figure counter-clockwise by 90o since the 
routing architecture is rotationally symmetric.  The repeaters form loop-around 
connections between the x4 line and x8 line or vice-versa to make connections between 
the TPGs and ORAs.  Swapping the locations of the TPGs and ORAs facilitates a test of 
the opposite direction through the repeaters. 
 
 
 
 
90
C0 C1 P O O C0 C1 P O O
Up-Count w/ Even Parity Down-Count w/ Odd Parity  
Figure 4.8 Repeater Set 1 Configuration Architecture 
In order to test both directions through the repeaters, the architecture shown in 
Figure 4.6 is flipped such that the respective TPGs and ORAs swap positions and the 
signals from the TPGs are driven in the opposite direction.  The STARs consist of 1x8 
arrays of PLBs and are tiled across the array to form the BIST architecture.  Figure 4.8 
gives the horizontal orientation; the vertical orientation can be derived by rotating the 
figures counter-clockwise by 90o (which gives 8x1 STARs). 
The second set of x8 line repeater BIST configurations targets connections 
between wire segments R8-L8, R8-R4, L8-R8, L8-L4, R4-R8, R4-L4, L4-L8, and L4-R4 
for stuck-on faults and targets connections between wire segments R8-L4, L8-R4, R4-L8, 
and L4-R8 for stuck-off faults.  The STARs in this case overlap, as can be seen in Figure 
4.9 where all five x8 lines are being driven by the TPGs and observed by the ORAs.  A 
STAR in the second set of configurations must be 1x16 to accommodate the diagonal 
connections through the repeaters needed to target the desired fault types.  In this set of 
configurations opposite logic values are applied to the inputs on either side of the 
repeater, such that diagonal connections made in the MUX PIPs through the repeaters are 
tested.  As an example, the MUX PIP for the R8 output is selecting the signal coming 
 
 
 
91
from the L4 input while having the opposite logic value applied to its MUX PIP for the 
L8 input.  This set of configurations also tests the wire Abus lines and x4 lines as well as 
the Ebus lines and x4 lines for shorts between the wire segments.  This is true because the 
respective wire segments are guaranteed to have opposite logic values between them 
during the test sequence.  Not only are these wire segments tested for shorts between 
them, but they are also tested for stuck-at 0, stuck-at 1, and opens, since each wire 
segment is driven by a logic '0' and a logic '1' and observed in an ORA during the 
execution of the configuration.  The only wire segments not completely tested are the 
Abus lines that are at the edges of the FPGA array (along the 8 PLBs from either edge).  
These wire segments do not have opposite logic values with respect to the x4 lines during 
the test sequence.  Therfore, they are tested only for stuck-at 0, stuck-at 1, and opens, 
with no testing done for bridging faults between these lines and the x4 lines.  Rotating the 
configuration counter-clockwise by 90o gives the vertical orientation (which yields 16x1 
STARs). The alternating TPGs, which have up-count with even parity or down-count 
with odd parity, are used in this architecture, as was the case in the architecture of the Set 
1 configuration.   
O O C0 C1 P O O C0 C1 P
Up-Count w/ Even Parity Down-Count w/ Odd Parity
 
Figure 4.9 Repeater Set 2 Configuration Architecture 
 
 
 
92
The third set of configurations for the x8 line repeaters test the stuck-off faults on 
connections between wire segments R8-L8, L8-R8, R4-L4, and L4-R4, which connect 
straight through the repeaters between x4 lines or between x8 lines.  The BIST 
architecture is shown in Figure 4.10 for this set of configurations, STARs of size 4xarray 
(arrayx4 for vertical sessions) are tiled in the array to produce a test of the straight-
through connections (i.e. in the repeaters).  In this configuration there is no need for 
alternating TPGs and ORAs since one TPG is driving an entire row (or column) of ORAs 
and since the repeaters are being targeted for stuck-off faults only.  In order to test both 
directions of connections in the repeaters, the architecture is flipped such that the TPG 
moves to the opposite end of the array between a given horizontal or vertical orientation 
of the BIST architecture.  As the case with the set 1 configurations, these do not test for 
any faults in the wire segments. 
C0 C1 P O O O O O O 
 
Figure 4.10 Repeater Set 3 Configuration Architecture 
 The three sets of configurations match well with Abus repeaters in the global 
routing resources; however, the case is much different with the Ebus repeaters.  Since the 
Abus repeaters evenly divide busses in the routing resources into sections that span eight 
PLBs as well as line up with the boundaries of the array, the three sets of configurations 
tile uniformly into any size FPGA array.  The case for the Ebus repeaters is much 
different.  These repeaters do not divide the busses in the routing resources into even 
 
 
 
93
sections spanning eight PLBs and do no match up with the boundaries of the array.  
Instead, the boundary of the Ebus repeaters lies four PLBs from the edges of the array, 
such that, inside the boundaries, the busses span eight PLBs before reaching an Ebus 
repeater, and, outside the boundaries, busses span only four PLBs before reaching an 
Ebus repeater. 
 The Set 1 configurations apply uniformly to the Abus repeaters, which is 
illustrated by Figure 4.11.  The repeaters in the middle of the array are completely tested 
for the targeted faults.  The exceptions lie at the edges of the array where test patterns are 
not supplied to the loop-back connections on the outer side of the repeaters.  This means 
that only stuck-off faults are tested in connections between wire segments R8-R4 and R4-
R8 or in connections between wire segments L8-L4 and L4-L8, depending on the side of 
the array that the repeater is located.  However, these repeaters make connections to I/O 
cells and can be tested during BIST configurations developed for the I/O cells. 
ORA TPG ORA TPG
= Up-Count & Even Parity = Down-Count & Odd Parity
*TPGs = 3 PLBs & ORAs = 2 PLBs
5 5
 
Figure 4.11 Abus Repeater Set 1 Configuration Architecture 
The implementation of the Abus repeater Set 1 configuration into the array sizes 
is given in Figures 4.12 and 4.13.  Figure 4.12 shows the BIST architecture in its 
implementation to test one direction of connections through the repeater.  Figure 4.13 
 
 
 
94
shows the BIST architecture having been flipped to make connections through the 
repeaters in the opposite direction as that of Figure 4.12.  As illustrated in these figures, 
the implementation of the configurations is very uniform in its application to any of the 
array sizes in both its normal and flipped connections for the repeaters.  Although the 
horizontal direction is shown, the vertical implementation has the same architecture and 
can be derived by rotating Figures 4.12 and 4.13 counter-clockwise by 90o.  This is 
possible due to the rotational symmetry of the programmable routing resources in the 
array. 
a) 16x16 Abus Repeater Session b) 24x24 Abus Repeater Session
c) 32x32 Abus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Abus Repeater Session  
Figure 4.12 Abus Set 1 Configurations for All Array Sizes 
 
 
 
95
b) 24x24 Abus Repeater Session
c) 32x32 Abus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Abus Repeater Session  
Figure 4.13 Flipped Abus Set 1 Configurations for All Array Sizes 
The repeaters staggered along the Ebus lines and x4 lines do not match up with 
the boundaries of the FPGA array.  Instead, the boundaries for these repeaters fall four 
PLBs from either edge of the array.  This makes the generation of routing BIST 
configurations for these repeaters more difficult than for the Abus line repeaters 
discussed previously. 
As can be seen in Figure 4.14, which illustrates the architecture of the Set 1 Ebus 
line repeater configurations, the misalignment of the boundaries Ebus repeaters with the 
boundaries of the FPGA array has an effect on the implementation of the BIST 
configurations.  Since the Ebus line repeater boundary is four PLBs from the edge, a 
scheme was devised to compensate for the mismatch.  STARs of size 1x16 (16x1 for 
vertical sessions) are constructed in the middle of the array to allow for the targeted faults 
to be tested in the Ebus line repeaters.  At the four PLBs along the edges of the array (east 
and west sides for horizontal configurations and north and south for vertical 
configurations), conflicts arise in making the desired connections.  A scheme was devised 
to allow the desired connections through the MUX PIPs in the repeaters to be made.  
 
 
 
96
However, this scheme imposes constraints on the diagnostic resolution at the edges, 
which limits the diagnosis of a detected fault to one of two repeaters since, between any 
TPG and ORA, there are two repeaters through which the test patterns must travel.  
However, this scheme is the most efficient method to implement a test of the loop-back 
connections in the Ebus line repeaters.  In addition, this scheme does not suffer from the 
problem of incomplete testing at the repeater boundaries as seen in the Set 1 
configurations for the Abus repeaters.  
ORA TPG ORA TPGTPG
ORA
TPG
ORA
4 PLBs at Edge 
of Array
4 PLBs at Edge 
of Array= Up-Count & Even Parity = Down-Count & Odd Parity
*TPGs = 3 PLBs & ORAs = 2 PLBs
ORA TPG ORA TPG
5 5
 
Figure 4.14 Ebus Repeater Set 1 Configuration Architecture 
 The Set 1 Ebus configurations are shown in Figures 4.15 and 4.16 as they tile into 
the array sizes for both the normal and flipped architecture, respectively, for testing both 
directions of connections through the MUX PIPs in the repeaters.  These configurations 
are much less regular and less structured than those configurations for the Abus line 
repeaters.  This is due to the mismatch of boundaries between the Ebus line repeaters and 
the FPGA boundaries and the compensation made in the routing BIST architecture to 
accommodate this difference.   
 
 
 
 
97
The Ebus line repeaters do maintain rotational symmetry, however, such that the 
configurations shown can be rotated counterclockwise by 90o to derive the vertically 
oriented Set 1 Ebus line repeater configurations. 
a) 16x16 Ebus Repeater Session b) 24x24 Ebus Repeater Session
c) 32x32 Ebus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Ebus Repeater Session  
Figure 4.15 Ebus Set 1 Configurations for Each Array Size 
 
 
 
 
98
a) 16x16 Ebus Repeater Session b) 24x24 Ebus Repeater Session
c) 32x32 Ebus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Ebus Repeater Session  
Figure 4.16 Flipped Ebus Set 1 Configurations for Each Array Size 
 The architecture for the Set 2 configurations for the Abus repeaters is given in 
Figure 4.17.  Although the Abus repeater boundaries line up with the array boundaries, 
the scheme for testing the diagonal-type connections made through the MUX PIPs in the 
repeaters does not match up well with the repeater boundaries, as is illustrated in the 
architecture of the Set 2 configuration given in Figure 4.17.  These configurations face 
similar problems to those faced in the Set 1 configurations for the Abus repeaters.  The 
repeaters at the edge of the array are incompletely tested.  Actually, the repeaters at the 
edges are tested again for stuck-off faults in connections R8-R4 and R4-R8 or in 
connections L8-L4 and L4-L8, and the targeted faults for the Set 2 configurations are not 
tested in these repeaters.  However, these can be tested through BIST configurations 
developed for the I/O cells dispersed around the array. 
 
 
 
99
ORA TPG ORA TPG
= Up Count & Even Parity = Down Count & Odd Parity
5 5
*TPGs = 3 PLBs & ORAs = 2 PLBs
 
Figure 4.17 Abus Repeater Set 2 Configuration Architecture 
In this case, 1x16 STARs (16x1 for vertical sessions) are shown tiled across the 
array in Figures 4.18 and 4.19, which show the normal and flipped placement of the 
TPGs and ORAs, respectively.  Notice that in the 24x24 array, the STARs must be 
overlapped since the 1x16 STAR size does not fit exactly into the array.  The tiles are not 
as uniform in the Set 2 configurations as in the Set 1 configurations.  This is due to the 
diagonal connections through the repeaters, which result in the configuration not lining 
up exactly with the repeater boundaries in the array. 
a) 16x16 Abus Repeater Session b) 24x24 Abus Repeater Session
c) 32x32 Abus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Abus Repeater Session  
Figure 4.18 Abus Set 2 Configurations for Each Array Size 
 
 
 
100
a) 16x16 Abus Repeater Session b) 24x24 Abus Repeater Session
c) 32x32 Abus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Abus Repeater Session  
Figure 4.19 Flipped Abus Set 2 Configurations for Each Array Size 
The basic architecture of the Set 2 Ebus line repeater configurations is illustrated 
in Figures 4.18 and 4.19, which give the structure for the 16x16, 32x32, and 48x48 arrays 
and for the 24x24 array, respectively.  The Set 2 configurations have STARs that are of 
size 2x16 for horizontal configurations and 16x2 for vertical configurations.  In the Set 2 
configurations, however, the problems that arose at the boundaries of the Ebus line 
repeater are overcome by the schemes implemented for the different array sizes, as 
illustrated in Figures 4.20 and 4.21.  Since the array sizes 16x16, 32x32, and 48x48 are 
multiples of 16, the architecture illustrated in Figure 4.20 can be overlapped and tiled to 
fit into these array sizes.  Since the 24x24 array is not a multiple of 16, the architecture 
needed to be adapted to fit into the array.  Therefore, the scheme for the 16x16, 32x32, 
and 48x48 array sizes was adapted for the 24x24 array.  The basic architecture for the 
configuration is similar between the two schemes, with both having STARs that are two 
rows (or two columns) wide.  These configurations are generated from an MGL program 
that accounts for both architectures of the Set 2 Ebus configurations. 
 
 
 
101
ORA TPG TPG
ORA ORA ORAORA
5 5
*TPGs = 3 PLBs & ORAs = 2 PLBs
= Up Count & Even Parity = Down Count & Odd Parity
 
Figure 4.20 Ebus Line Repeater Set 2 Configuration (16x16, 32x32, & 48x48) 
 
ORA TPG TPG
ORA ORA ORAORA
ORA
5 5
*TPGs = 3 PLBs & ORAs = 2 PLBs
= Up Count & Even Parity = Down Count & Odd Parity
 
Figure 4.21 Ebus Line Repeater Set 2 Configuration (24x24) 
 The Set 2 configurations are shown in Figures 4.22 and 4.23 tiled into the 
different array sizes for both the unflipped and flipped versions of the configuration, 
 
 
 
102
respectively, which test both directions through the Ebus line repeaters.  As with the Set 1 
Ebus configurations, the tiling of the STARs in the Set 2 Ebus line repeater 
configurations is not as regular and structured as the Set 2 Abus line repeater 
configurations.  These configurations impose constraints on the diagnostic resolution, as 
seen in the edges of the Ebus line repeater Set 1 configurations.  Between any TPG and 
ORA in this scheme, there are two repeaters that the test patterns must travel through, 
thus, in the presence of a fault, diagnosis can be made to one of two repeaters. 
a) 16x16 Ebus Repeater Session b) 24x24 Ebus Repeater Session
c) 32x32 Ebus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Ebus Repeater Session  
Figure 4.22 Ebus Set 2 Configuration for Each Array Size 
 
 
 
 
103
a) 16x16 Ebus Repeater Session b) 24x24 Ebus Repeater Session
c) 32x32 Ebus Repeater Session
= ORA
= TPG
= Empty
d) 48x48 Ebus Repeater Session  
Figure 4.23 Flipped Ebus Set 2 Configuration for Each Array Size 
 The Abus and Ebus line repeater Set 3 configurations target faults in the straight 
through connections in the MUX PIPs in the repeaters, which are stuck-off faults on 
connections R8-L8 and R4-L4 or on connections L8-R8 and L4-R4, depending on the 
direction of the configuration.  The basic architecture of the Set 3 configurations is given 
in Figure 4.10, which illustrates that the STARs in these configurations are 4xarray 
(arrayx4 for vertical sessions).  This architecture can be applied to both the Abus and 
Ebus lines in a similar manner differing only by which x8 line is tested during a given 
configuration.  These configurations do not require alternating TPGs with up or down-
count with even or odd parity, since stuck-off faults in the straight through connections of 
the repeaters do not require any type of opposite logic values on unselected inputs for 
detection.  The tiling of the 4xarray (or arrayx4) STARs for the Abus and Ebus line 
 
 
 
104
repeater Set 3 configurations is illustrated in Figures 4.24a and 4.24b for the unflipped 
and flipped architectures, respectively, which test both directions through the repeaters 
for the targeted stuck-off faults.  This Set of configurations forms a regular structure and 
is easily tiled to fill the various array sizes. 
= ORA
= TPG
= Empty
Repeats to 
Fill Array
a) Normal Set 3 Configuration b) Flipped Set 3 Configuration  
Figure 4.24 Abus and Ebus Set 3 Configuration for Each Array Size 
 
4.6 BIST Configurations for the Tri-Stated L Output and the X Direct Connections 
 The BIST configurations targeting the tri-stated PLB L output utilize the same 
architecture employed for the logic BIST configurations with the exception being in the 
BUT to ORA connections and the size of the TPG utilized to supply test patterns.  The 
tri-state buffer and its associated output enable lines present on the L output as well as the 
connections to the vertical and horizontal global routing resources via local routing cross-
point PIPs are targeted for testing.  The local routing cross-point PIPs targeted for testing 
are closely coordinated with the X direct connection configurations such that all local 
routing cross-point PIPs making connections to the global routing resources are tested.  
This means that the proper selection of the local routing cross-point PIPs must be 
coordinated with the X direct configurations so that each local routing cross-point PIP is 
observed during one of the two sets of routing BIST configurations.  For the L output 
 
 
 
105
configurations, there are North, South, East, and West test sessions.  These test sessions 
are required to ensure that most PLBs have their L output observed and that both the 
horizontal and vertical output enable inputs to the tri-state buffer are tested during the 
configurations.  The architecture of the L output configurations is demonstrated in Figure 
4.25, which shows all four directional orientations of the configuration. 
T 
P 
G 
2 
 
T 
P 
G 
1 
 
T 
P 
G 
2 
 
T 
P 
G 
1 
 
TPG 1 
 
TPG 2 
 
TPG 1 
 
TPG 2 
 
a) West Session b) East Session 
c) North Session d) South Session  
Figure 4.25 L Output Configuration Architecture 
 The TPG employed to supply test patterns is similar to that used in the logic BIST 
test sessions.  However, in the L output configurations, a 3-bit binary counter is used 
instead of the 5-bit binary counter used in logic BIST.  In addition, the third bit of the 
binary count is delayed by one clock cycle by feeding the bit through a fourth PLB's flip-
flop.  The second bit of the 3-bit binary counter connects to the output enable of the tri-
 
 
 
106
state buffer and the most significant bit of the binary counter is delayed by the one clock 
cycle and is the input to the tri-state buffer as illustrated in Figure 4.26.  The connection 
scheme and delayed counter bit are employed to avoid any clock data races between the 
count values due to the behavior of the tri-state buffer on the L output.  The tri-state 
buffer actually has behavior that mimics that of a dynamic latch, meaning that the data at 
the input to the tri-state buffer is actually latched for a brief period of time after the buffer 
is tri-stated.  This means that the counter must be preset such that the tri-state buffer is 
disabled at the beginning of the test in order to avoid unknown initial data from being 
latched.  This architecture allows the PLBs with their L output under test to be tested in a 
minimum of two sessions, since, during a given test session, half the PLBs have this 
output tested and observed in an ORA.  However, since the tri-state buffer has both a 
horizontal and vertical output enable signal, the rotation as shown in Figure 4.25 is used 
to test for the operability of both signals.  As illustrated by the timing diagram in Figure 
4.26, the connections scheme allows the tri-state buffer to be enabled and disabled during 
a test session allowing its ability to pass data to be tested as well the functionality of the 
output enable to be tested. 
 
 
 
107
C2delay
C2
C1
C0
C0
C1
C2
C2d
T
To ORA
a) Timing Diagram for Binary Count Sequence
b) TPG Connections to L Output Tri-State Buffer
 
Figure 4.26 L Output Configuration Structure and Timing Diagram 
The BIST configurations developed for the X direct connections target the PLB 
input X MUX PIPs left incompletely tested after completion of logic BIST test sessions.  
Due to the routing schemes employed for logic BIST, which are shown in Figure 3.3, 
particular PLBs in the array have X direct connections that are not observed during logic 
BIST test sessions or any other routing BIST test session, even after the rotation to form 
North, South, East, and West logic BIST sessions.  In addition to targeting faults left 
undetected in the X direct connections, these BIST configurations also target faults in the 
PLB L output and its connections to the global routing resources via local routing cross-
point PIPs.  These tests are closely corresponded to the L output tri-state test 
configurations such that the local routing cross-point PIPs making connections to the 
global routing resources are completely tested between the two sets of routing BIST 
 
 
 
108
configurations.  To test for these faults, the input signal entering the PLB at the X input is 
sent to the L output and then fed back into the PLB through connections made in the 
local routing cross-point PIPs to route the signal back into the PLB on the Y input from 
the local routing cross-point PIP connections in the global routing. 
 The configurations targeting the X direct connections consist of four phases, 
which are illustrated in Figure 4.27 and show only a 4x4 array of PLBs for simplicity.  
The four phases consist of STARs that are actually of size arrayx3, where the first two 
phases have TPGs placed along the north side of the array and source test patterns down 
through the PLBs to ORAs along the south side of the array.  The directions of the PLB 
X connections are flipped about the vertical axis from the first phase to the second phase.  
The first and second test phases are flipped about the horizontal axis such that the TPGs 
and ORAs swap positions and the test reverses directions through the PLBs in order to 
form the third and fourth test phases, respectively.  The STARs shown in Figure 4.27 are 
butted against one another such that between two STARs there are no empty PLBs.  
These configurations provide test conditions for all of the X direct connections through 
the middle of the FPGA array.   
 
 
 
109
C0 C1 Par
ORA
C0C1Par
ORA
C0 C1 Par
ORA
C0C1Par
ORA
a) Phase 1 b) Phase 2
c) Phase 3 d) Phase 4  
Figure 4.27 X Direct Connection Configuration Test Phases 
The direct connections that are at the edges of the array are left untested since 
they only connect to I/O cells.  However, these can be tested in BIST configurations 
developed specifically for the I/0 cells.  The connections that are left untested at the edge 
of the array also include Y direct connections in addition to the X direct connections due 
to their connections only to the I/O cells.  Some of the local routing cross-point PIPs 
associated with the L output are also left untested.  These, like the unobserved X and Y 
direction connections, are also at the edges of the array.  However, for those PLBs at the 
edges of the array, not all local routing cross-point PIPs are untested, only some are 
 
 
 
110
unobserved.  Figure 4.28 provides an illustration of the particular connections left 
untested after the completion of all the logic and routing BIST configurations.  The 
number denoted in the PLBs gives the number of untested L output cross-point PIPs with 
no number signifying all PIPs are tested.  The black and gray lines, respectively, give the 
X and Y direct connections unobserved after completion of logic and routing BIST. 
4 3 3 3 3 3 3 4
4 4
= X Direct Connection Untetested = Y Direct Connection Untetested
n = # of L Cross-point PIPs Untested
333333
2
2
2
2
2
2 2
2
2
2
2
2
 
Figure 4.28 Untested Direct Connections and L Output Cross-point PIPs 
 
 
 
111
 
4.8 Summary of Routing BIST Configurations 
 The routing BIST configurations for the Atmel FPGA test most of the 
programmable routing resources dispersed within the array.  The resources left untested 
appear at the periphery of the array near the I/O cells of the device.  All of the global 
routing and local routing cross-point PIPs, the Ebus repeaters, and the L output and 
associated tri-state buffer along with the X direct connections and the Abus repeaters in 
the middle of the array are completely tested for the types of fault models assumed.  The 
X direct and Y direct connections associated with the PLBs along the edges of the array 
that connect only to I/O cells are not tested for any faults since these are not selected 
during logic or routing BIST.  Some of the L output cross-point PIPs at the edges of the 
array, given in Figure 4.28, are left untested.  The Abus repeaters that lie on the edge of 
the array are also incompletely tested since these repeaters do not have proper test 
conditions set up during testing.  These repeaters have test patterns sourced only to one 
side of inputs being either the L8 and L4 inputs or the R8 and R4 inputs, depending on 
the exact side of the array.  In addition, the Abus line wire segments along the 8 PLBs 
nearest the edges of the array are not tested for shorts between the wire segments.  In the 
case of routing BIST, due to the abstract behavior of routing faults, no fault simulations 
were performed to determine fault coverage.  However, based on the fault models used, 
the targeted faults can be said to be detected in all cases except where noted since the 
proper test conditions are set up for the fault models used.  An exact figure for the fault 
coverage obtained with the routing BIST configurations can be obtained, however, an 
estimate can be made of the approximate total percentage of routing resources that are 
 
 
 
112
tested.  Based on the composition of routing resources and the number of routing 
resources tested during the routing BIST test sessions, it is estimated that between 90% 
and 95% of the programmable routing resources are tested for the assumed fault models.   
However, all of the incompletely tested resources can be tested in BIST configurations 
developed for the purpose of testing the I/O cell network and associated routing. 
 All of these routing BIST configurations were generated through the use of both 
MGL and C programs.  Table 4.3 provides a summary of the BIST configurations along 
with the non-commented lines of code associated with the respective configurations.  
Separated codes were generated for each of the cross-point PIP configurations, for the L 
output and tri-state configurations, and for the X direct connection configurations.  For 
the case of the Abus and Ebus repeater configurations, separate MGL programs were 
used to generate each set of configurations, but only one C program was used to perform 
bit manipulation for each of the three sets of Abus and Ebus repeater configurations.  The 
complexity caused by the staggering of the repeaters can be seen in the difference of the 
number of lines of code required for the Abus and Ebus configurations.  The Ebus 
programs consistently have more lines of code, which is due to the increased complexity 
of the configuration architectures employed to test the targeted routing resources 
associated with the Ebus x8 lines. 
 
 
 
 
 
 
 
 
113
Table 4.3 Summary of Routing BIST MGL and C Programs 
Routing BIST 
Configuration 
MGL Non-commented 
Line Count 
C Code Non-commented 
Line Count 
Abus Cross-Point PIPs 750 200 
Ebus Cross-Point PIPs 1600 650 
Abus Repeaters Set 1 1000 
Abus Repeaters Set 2 2000 
Abus Repeaters Set 3 900 
650 
Ebus Repeaters Set 1 1900 
Ebus Repeaters Set 2 2500 
Ebus Repeaters Set 3 900 
1000 
L Ouptut and tri-state 1200 450 
X Direct Connections 750 350 
 
4.9 MGL's Effect on Routing BIST Development and Application 
 The utilization of MGL resulted in a significant impact on the development and 
application of routing BIST.  To be able to implement the routing BIST configurations 
such that the BIST results can be retrieved at the end of a BIST sequence, the ORAs must 
have similar conditions to those of the logic BIST configurations.  A shift signal must be 
routed to all the ORAs so that, at the end of a BIST sequence after the ORAs are 
reconfigured into a shift register, the results can be shifted out.  This is due to the 
requirement in MGL for a source and destination to be specified for any route required.  
Thus, in order to have a shift signal present after reconfiguration for a shift register, it 
must be routed in the MGL program.  Due to the architecture of the routing BIST 
configurations, the three bits in the test pattern must be routed through a set of WUTs to 
each ORA.  This condition makes for even more congestion of needed functionality in 
the PLBs than is the case for logic BIST.  A total of four signals must be routed to the 
ORAs in order to perform routing BIST, the three bits of the test pattern along with the 
Shift signal.  Thus, an ORA function can not be implemented through MGL for two 
 
 
 
114
reasons.  The first reason lies in the fact that the a dynamic macro implementing a 4-input 
function with feedback does not exist and, furthermore, cannot be implemented in the 
PLB.  The second, as mentioned previously, is that a signal must have a source and a 
destination in MGL such that a Shift signal can only be routed if a source node (i.e. input 
from an I/O cell) and a destination (i.e. an input to a PLB, namely an ORA) are both 
specified.  Thus a dynamic macro implementing a 4-input registered function (FGEN1 
dynamic macro) is needed to set up conditions initially for a routing BIST configuration.  
This requires that a template bitstream be created containing the necessary routing 
information for the routing BIST configurations.  Thus, bit manipulation via a C program 
is required before a routing BIST configuration can be downloaded into the FPGA.  For 
each set of routing BIST configurations, a different C code was generated to perform the 
required bit manipulation. 
 The effort in generating BIST configurations through the use of MGL is similar to 
previous efforts in the generation of BIST configurations for the ORCA [9] and Xilinx 
[10] FPGAs.  In the previous work, C programs were used to generate textual netlists of 
the BIST configurations that were interpreted by the vendor-supplied CAD tools for the 
respective FPGAs.  In the generation of BIST configurations using MGL, C programs are 
again needed in order to produce the BIST configurations for the device.  The actual 
process is somewhat different, with the previous work creating netlists via C programs 
while the work described in this thesis uses C programs to perform bit manipulation on 
the download bitstream files.  However, the concept is the same between the different 
cases; the vendor supplied CAD tools themselves do not provide adequate control over 
the resources within the FPGA.  
 
 
 
115
4.10 Comparison of the Routing BIST for Atmel, ORCA, and Xilinx FPGAs 
 The routing architectures of the three devices have several differences which 
include the direct connections to adjacent PLBs within the local routing resources, the 
percentage composition of the different types of PIPs in the local and global routing 
resources, and the number and type of wire segments in the global routing resources, as 
was summarized in chapter 2.  As found in [10], the routing architecture of a given FPGA 
has the most impact on the total number of BIST configurations required for complete 
testing of that FPGA.  The asymmetric routing architecture in the Xilinx devices is more 
complex and suffers more from factors that affect the number of routing BIST 
configurations required, such as shared routing resources between PLBs, rotating and 
staggered busses, and large numbers of MUX PIPs with a high number of inputs, all of 
which cause an increase in the number of configurations [10].  The Atmel and ORCA 
devices employ a more symmetric and regular routing architecture that is much less 
complex than that found in the Xilinx FPGAs.  This is demonstrated in the total number 
of routing BIST configurations required for the respective FPGAs.  Table 4.4 provides a 
summary of the routing BIST configurations for the ORCA, Xilinx, and Atmel FPGAs.  
The Xilinx FPGAs required 128 configurations for the 4000E and Spartan series FPGAs 
and 206 configurations for the 4000XL and 4000XLA series FPGAs to completely test 
the routing resources [10].  The ORCA 2C and 2CA FPGAs required 27 and 44 
configurations, depending on the size of the STARs, to completely test the routing 
resources [10].  The Atmel FPGA requires 48 configurations to completely test the 
routing resources, which is more similar to that of the ORCA FPGAs. 
 
 
 
 
116
Table 4.4 FPGA Routing BIST Comparison 
FPGA Number of BUT 
Configurations 
ORCA 2C 27,44 
ORCA 2CA 27,44 
Xilinx 4000 128 
Xilinx Spartan 206 
Atmel AT40K 48 
Atmel AT94K 48 
 
In contrast, however, parts of the local routing resources are being tested during 
logic BIST for the Atmel FPGA, which is not the case with the ORCA FPGA.  In 
addition, the routing architecture of the Atmel device does not have as much access to the 
PLB inputs and outputs as found in the ORCA FPGA.  A large factor in the testability of 
the routing resources of an FPGA lies in their access to the PLBs.  Even though the 
routing architecture is much more complex in the ORCA FPGA than in the Atmel FPGA, 
there are fewer required routing BIST configurations.  This is due in large part to the poor 
access of the PLBs in the array to all routing resources.  The PLB only has access to the 
routing resources on two of its sides and, furthermore, can access only x4 lines directly 
while having to go through a repeater to reach the either of the x8 lines.  The rotational 
symmetry of the routing architecture does help to provide a fewer number of 
configurations as compared to the asymmetric routing architecture in the Xilinx FPGAs, 
but is not enough to overcome the limited access of the PLBs to the routing resources. 
 
 
 
117
CHAPTER FIVE 
 
SUMMARY 
 
 The application of BIST to the programmable logic and routing resources present 
in an FPGA core in a commercially available generic SoC has been presented.  
Automatic generation of BIST configurations using vendor supplied CAD tools along 
with custom developed C programs has been discussed.  These automatically generated 
BIST configurations can be applied to any AT40K series FPGA or AT94K series FPGA 
core.   
 The amount of available logic in the PLB has been found to impact the 
application of BIST.  The ORAs for both logic and routing BIST are significantly 
impacted due to the small amount of logic present in the PLB.  This problem has been 
overcome in this research work by generating logic and routing BIST architectures that 
minimize the number of configurations while allowing sufficient observation of the 
BUTs or WUTs in the ORAs.  In addition, the device's ability to be partially reconfigured 
was used to help overcome the issues of the small PLBs.  The ORAs were reconfigured 
into a shift register after completion of a BIST sequence in order to maximize the use of 
the available logic during the BIST sequence without having the shift register use 
required logic for the comparison or parity check of the BUTs or WUTs. 
 The limitations imposed by the available direct connections in the local routing 
resources associated with the PLBs were overcome by the alternating BUT-to-ORA 
 
 
 
118
routing schemes shown in Figure 3.3.  The type of ORA chosen for the implementation 
of logic BIST was greatly impacted by these connections and by the size of the PLB.  The 
routing schemes shown in Figure 3.3 overcome most of the problems in the observability 
of the X and Y PLB outputs which connect only to adjacent PLBs.  However, the 
remaining issues in the observability of the X and Y PLB outputs at the edges of the PLB 
array are overcome by the rotation of the logic BIST architecture to form not only the 
East and West test session, but also the North and South test sessions.  In any given array 
size, only eight PLBs are left incompletely tested after the rotation of the logic BIST 
architecture. 
 Existing methods in routing BIST techniques were adapted for this architecture to 
overcome issues caused also by the size of the PLBs.  The method described in [23] was 
adapted to work with the fine-grain architecture of the Atmel FPGA.  Since the size of 
the PLB allows for implementation of only one bit of a binary counter, the adapted 
method, utilizing a two-bit binary counter with odd or even parity generation, was the 
best choice to overcome the associated implications.  This new methodology for routing 
BIST provides the best solution for FPGAs with fine-grain architecture similar to the 
AT40K FPGAs and AT94K FPGA cores. 
 As found in [10], the staggering and inaccessibility of routing resources has been 
found to have a large impact on the application of routing BIST.  In this application, 
BIST architectures were developed to overcome the obstacles imposed by the 
inaccessibility to the x8 lines, and the staggering of repeaters in the array.  In this case, 
BIST architectures were developed that are as similar as possible, independent of the 
particular x8 lines on which a given repeater is staggered.  The rotational symmetry of the 
 
 
 
119
routing resources allowed the configurations to be applied to both horizontal and vertical 
repeaters dispersed in the array. 
 In this particular case, the vendor-supplied CAD tools also imposed restrictions 
on the test development and application.  It was found that newer versions of the software 
used to compile the MGL code to instantiate designs into the FPGA place and route tool 
and create bitstreams created problems in particular instances with the routing needed to 
apply the BIST configurations.  This was not encountered in the application of logic 
BIST, but was seen in the application of routing BIST.  Particular routes are required to 
test certain parts of the programmable routing resources and, in some cases, these routes 
could be achieved in older versions of the software but not in newer versions.  Therefore, 
this imposes a requirement that new and old versions of the software must be maintained 
in order to generate all the BIST configurations.  Since as few mediums as possible are 
preferred to generation test configurations, this inhibits the test development and 
application process since multiple versions of software must be used to generate BIST 
configurations for a single family of FPGAs. 
 Partial reconfiguration of the FPGA core has important positive implications on 
the application of both logic and routing BIST.  Previously, for the case of Xilinx FPGAs, 
the configuration memory of the FPGA has been read to retrieve the BIST results at the 
end of a BIST configuration.  In the case of the Atmel AT94K FPGA cores, the FPGA 
configuration memory can be written or re-written but not read from the AVR core [14].  
However, the configuration memory can be read in the AT40K series FPGAs via the 
synchronous RAM mode in order to retrieve the values in the ORA flip-flops [15].  For 
the case of the AT40K series FPGAs, the ORA flip-flop contents can be read through the 
 
 
 
120
configuration memory in order to determine pass or fail results.  However, this can not be 
done for the FPGA core in the AT94K SoC.  Partial reconfiguration must be used in 
order to retrieve the results at the end of a BIST configuration.  In this case, a BIST 
configuration is downloaded and executed, the ORAs are then reconfigured as a shift 
register, and the BIST results shifted out.  For the case of the ORCA FPGAs, there is 
sufficient logic for the implementation of both the ORA function and shift register within 
a single PLB.  In the case of the Xilinx FPGAs, the configuration memory can be read in 
order to read the values of the ORA flip-flops to determine pass or fail results.  Partial 
reconfiguration allows the BIST architecture to be applied to FPGA cores where the 
configuration memory can not be read and where the PLBs are not capable of 
implementing both an ORA function and shift function. 
 
5.1 Comparison of Work 
 
 The work completed for the Atmel AT40K series FPGAs and AT94K series 
FPGA cores provides new insights on the application of BIST for the programmable 
logic and routing resources in an FPGA.  The work completed previously for ORCA and 
Xilinx FPGAs along with the work completed in this thesis provide a basis of comparison 
in the application of BIST to coarse-grain architecture FPGAs to the application of BIST 
to fine-grain architecture FPGAs.  It is shown in this thesis that the fine-grain architecture 
facilitates fewer BIST configurations to achieve complete testing of the logic resources 
present in the FPGA in comparison to a course-grain architecture.  In addition, the fine-
grain architecture is shown to have a significant impact on the application of routing 
BIST.  The parity-based routing BIST approach described in [23] was modified and is 
 
 
 
121
shown to work well with the fine-grain architecture in the Atmel FPGAs and FPGA 
cores.  Partial reconfiguration is also exploited in this case in the application of BIST for 
the logic and routing resources.  With the ability to perform partial reconfiguration, fine-
grain architecture FPGA cores can decrease the development effort in the application of 
BIST to offset the impact of limited PLB logic resources by maximizing the number of 
observable BUT outputs or WUTs during a given test session.  This is true because the 
PLBs can be more efficiently used to perform ORA functions only during the BIST 
sequences instead of having to utilize multiple PLBs to implement ORA and shift register 
functions.  Once the BIST sequences have been applied, partial reconfiguration can be 
done to create a shift register in the ORAs in order to shift out the BIST results. 
 
5.2 Future Work 
 
 The work completed for this thesis has generated many interesting ideas for the 
application of BIST for FPGAs.  The fine-grain architecture FPGA has many 
implications on the implementation of BIST.  Methods have been presented in this thesis 
to overcome limitations on the application of BIST to fine-grain architecture FPGAs not 
previously encountered with coarse-grain architecture FPGAs such as the ORCA and 
Xilinx FPGAs.  Suggestions for future work in this area would be to improve upon the 
adaptations made to the logic and routing BIST methodologies.  In particular, future work 
might include evaluating the advantages of developing more specific BIST configurations 
for the AT94K series FPGA cores.  The BIST configurations in this thesis can be applied 
to both the AT40K series FPGAs and the AT94K series FPGA cores.  Since the AVR 
core in the AT94K series devices can be used to write or rewrite the configuration 
 
 
 
122
memory of the FPGA core, it would be advantageous to research new methodologies to 
exploit these capabilities and evaluate the impact this has on the number of BIST 
configurations and the respective diagnostic resolution of such configurations. 
 
5.3 Conclusion 
 
 This research set out to develop BIST configurations for the logic and routing 
resources present in the Atmel AT40K series FPGAs and AT94K series FPGA cores.  
Central to this research was the need to further develop existing methodologies used in 
BIST for FPGAs, namely in the application of BIST to the ORCA and Xilinx FPGAs.  In 
doing so, a methodology was developed for testing fine-grain architecture FPGAs.  These 
BIST configurations were developed using both vendor-specific CAD tools along with 
custom developed C programs to automatically scale to any size device in the AT40K 
series FPGAs and AT94K series FPGA cores.  However, the methodology utilized in the 
application of BIST for FPGAs to these devices can be applied to any similar fine-grain 
architecture FPGA. 
 
 
 
123
REFERENCES 
 
[1] G. Aldrich, ?Yes, You Can Get a Testable SoC Design to Market on Time,? 
Electronic Design Magazine, ED Online ID # 1820, November 2002. 
 
[2]  D. Bursky, ?Digital ICs: Programmable Logic,? Electronic Design Magazine, ED  
Online ID # 3294, January 2003. 
 
[3] D. Maliniak, ?Tool Reveals SoC Hot Spots,? Electronic Design Magazine, ED 
Online ID # 3146, April 2003. 
 
[4] M. Abramovici, C. Stroud, and M. Emmert, ?Using Embedded FPGAs for SoC 
Yield Improvement,? Proc.ACM/ IEEE Design Automation Conf., pp. 713-724, 
2002. 
 
[5] W. Wolf, ?Modern VLSI Design: System-on-Chip Design,? Prentice Hall, New 
Jersey, 2002. 
 
[6] P. Chan and S. Mourad, ?Digital Design Using Field Programmable Gate Arrays,? 
Prentice Hall, New Jersey, 1994. 
 
[7] C. Stroud, ?A Designer?s Guide to Built-In Self-Test,? Kluwer Academic 
Publishers, Boston, 2002. 
 
[8] M. Abramovici, M. Breuer, and A. Friedman, ?Digital Systems Testing and 
Testable Design,? Computer Science Press, New York, 1990. 
 
[9]  E. Lee, ?Built-In  Self-Test  and  Diagnosis  of  Field Programmable  Gate  Arrays,? 
 M.S.E.E. Thesis, University of Kentucky, 1997. 
 
[10] C. Stroud, K. Leach, and T. Slaughter, ?BIST for Xilinx 4000 and Spartan Series 
FPGAs: A Case Study,? Proc. IEEE International Test Conf., pp. 1258-1267, 
2003. 
 
[11] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici, ?BIST-Based Diagnosis of 
FPGA Interconnect,? Proc. IEEE International Test Conf., pp. 618-627,  2002. 
 
[12] J. Nall, ?On-Line and Off-Line Built-In Self-Test Based Diagnosis of Interconnect 
Faults in Field Programmable Gate Arrays,? M.S.E.E. Thesis, University of 
North Carolina at Charlotte, 2002. 
 
 
 
124
[13] M. Lashinsky, ?On-Line and Off-Line Built-In Self-Test of Field Programmable 
Gate Array Interconnect Resources,? M.S.E.E. Thesis, University of North 
Carolina at Charlotte, 2001. 
 
[14] __, AT94K Series Field Programmable System Level Integrated Circuit, Data 
Sheet, Atmel Corporation, 2003. 
 
[15] __, AT40K Series Field Programmable Gate Array, Data Sheet, Atmel Corporation, 
2003. 
 
[16]  W. K. Huang,  F. J. Meyer,  and F. Lombardi,  ?An Approach for Detecting 
Multiple Faulty FPGA Logic Blocks,? IEEE Trans. on Computers, vol. 49, pp. 
48-54,  January 2000. 
 
[17]  W. K. Huang, F. J. Meyer, X. Chen, and F. Lombardi, ?Testing Configurable LUT- 
  based FPGAs,? IEEE Trans. on VLSI Systems, vol. 6, pp. 276-283, June 1998. 
 
[18]  T. Inoue, S. Miyazaki, and H. Fujiwara, ?Universal Fault Diagnosis for Lookup 
Table FPGAs,? IEEE Design and Test of Computers, vol. 15, pp. 39-44, Januray 
1998. 
 
[19] M. Abramovici and C. Stroud, ?BIST-Based Test and Diagnosis of FPGA Logic 
Blocks,? Proc. IEEE Trans. on VLSI Systems, vol. 9, pp. 159-172, 2001. 
 
[20] C. Stroud, E. Lee, and M. Abramovici, ?BIST-Based Diagnosis of FPGA Logic 
Blocks,? Proc. IEEE International Test Conf., pp. 539-547, 1997. 
 
[21] M. Bushnell and V. Agrawal, ?Essentials of Electronic Testing: For Digital, 
Memory, and Mixed-Signal VLSI Circuits,? Kluwer Academic Publishers, 
Boston, 2000. 
 
[22] C.   Stroud,   S.  Wijesuriya,   and  C.   Hamilton,   ?Built-In   Self-Test   of   FPGA 
      Interconnect,? Proc. IEEE International Test Conf., pp. 404-411, 1998. 
 
[23] X. Sun, J. Xu, B. Chan, and P. Trouborst, "Novel Technique for BIST of FPGA 
Interconnects," Proc. IEEE International Test Conf., pp. 795-803, 2000. 
 
[24] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, and V. Verma, "Using 
Roving STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant 
Applications," Proc. IEEE International Test Conf., pp. 973-982, 1999. 
 
[25] __, ORCA Series 2 Field Programmable Gate Arrays, Data Sheet, Lattice 
Semiconductor Corporations, 2003. 
 
[26] __, Xilinx XC4000E and XC4000X Series Field Programmable Gate Arrays, Data 
Sheet, Xilinx Inc., 1999. 
 
 
 
125
[27] S. Pontarelli, G.C. Cardarilli, A. Malvoni, M. Ottavi, M. Re, and A. Salsano, 
?System-on-Chip Oriented Fault-Tolerant Sequential Systems Implementation 
Methodology?, Proc. IEEE International Symp. on Defect and Fault Tolerance 
in VLSI Systems, pp. 455-460, 2001. 
 
[28] C. Stroud, J. Nall, A. Taylor, M. Ford, and L. Charnley, ?A System for Automated 
Generation of Built-In Self-Test Configurations For Field Programmable Gate 
Arrays?, Proc. International Conf. on Systems Engineering, pp. 437-443, 2002. 
 
[29] __, Integrated Development System Technical Reference and Release Notes 
Version 6.0, Atmel Corp., 1998. 
 
[30] __, Integrated Development System AT40K Macro Library Version 6.0, Atmel 
Corp., 1998. 
 
 
 
 
 

