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Built-In Self-Test configurations for the logic and routing resources present in the
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CHAPTER ONE

INTRODUCTION

Meeting time to market demands and profitability requirements of digital
electronics systems is increasingly important in the current economy [1]. In the past,
systems have been designed at the board level, meaning a system may comprise many
integrated circuits (ICs) interconnected on a printed circuit board (PCB). Currently, IC
process technologies are allowing transistor sizes to pass under the 100 nanometer
threshold, thus making the designs much more dense and allowing on the order of a
hundred million transistors to be fabricated on a single IC [2], [3]. With the availability
to comprise an entire system on a single IC, an increase in the overall device speed and
reduction of device power can be achieved. This integration of a system down to the IC
level is referred to as System-on-Chip (SoC). In addition to the aforementioned
advantages, an SoC implementation significantly reduces the cost of the system.
Therefore, SoCs have been gaining popularity in the electronic design industry due to the
attractiveness of attaining a complete system level design in an IC.

Primarily, there are two types of SoC design implementations; Application
Specific Integrated Circuit (ASIC) based SoCs and generic SoCs containing user-
programmable logic. A typical ASIC-based SoC would incorporate standard cell and
regular structure based components and, therefore, be limited to one particular

application, having no programmability to make it adaptable. In contrast, a generic SoC



contains user-programmable logic allowing it to be easily reprogrammed to adapt to such
changes as updated industry standards. ASIC-based SoCs have primarily dominated the
drive into SoC design implementations; however, generic SoCs containing Field
Programmable Gate Arrays (FPGAs) as the user-programmable logic have been
increasing in popularity [2]. Generic SoC designs have many advantages over the ASIC-
based SoC designs. These advantages include [4]:

a The SoC does not suffer from expensive redesigns and long time to market.

0 The embedded FPGA may be used for different functions at different times.

a Due to the FPGA’s massive parallelism, many algorithms (such as image or

signal processing and cryptography) can be implemented.

a The same SoC can be used for multiple applications.

a The FPGA can be used to implement protocols and algorithms likely to change.

a The FPGA can support remote and internet based field upgrades.

These generic SoC designs are very attractive to designers as their reconfigurability
provides low design cost, shorter time to market, and possibly increased testability [2],
[1]. As a result of the advantages mentioned above, the incorporation of an FPGA is
increasingly becoming the standard technique in the design of an SoC [2]. This thesis
will focus on the testing of FPGA core logic and routing resources within a specific
generic SoC; however, the overall approach is applicable to most SoCs with user-

programmable logic.



1.1 Systemson Chip (SoCs)

An example structure of an SoC includes user programmable or standard cell
logic, memory (for data and program), Central Processing Units (CPUs), and possibly
some analog circuitry [5]. SoCs are usually designed around Intellectual Property (IP)
cores that generally fall into two categories, Hard IP cores and Soft IP cores. Hard IP
cores are supplied as a predesigned physical layout of a particular circuit, whereas Soft [P
cores are available in synthesizable modules described in a Hardware Description
Language (HDL), such as VHDL or Verilog [5]. These Soft IP cores would be
synthesized into standard cell logic or into an FPGA core and, having performed the
physical layout based on the logic implementation, be incorporated into the SoC. Any
combination of Hard and/or Soft IP cores may be used in the design of an SoC. An
example structure comprised in an SoC is shown in Figure 1.1. This figure shows the

components mentioned previously and illustrates their interconnections.
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Figure 1.1 Example System on Chip (SoC) Architecture



The CPU allows complex algorithms to be implemented in software, which is
almost a necessity in modern day digital systems. The CPU can either have a predefined
set of operating conditions, or may be user-configurable to allow for more flexibility [5].
The user programmable logic, shown in Figure 1.1 as an FPGA, allows various hardware
functions to be implemented using the programmability of the FPGA, to be discussed in
the next section. Program and data memories exist to store the algorithms for execution
by the CPU and to provide a place to store operands and data to be manipulated,
respectively [5]. Also shown in the figure is a memory controller interface, which serves
to control the interaction of the CPU and FPGA with the program and data memories. In
addition to the memory controller, the configuration control can allow the FPGA to be

programmed via the CPU or directly from the user.

1.2 Field Programmable Gate Arrays (FPGAYS)

The FPGA portion of the SoC typically consists of four components, configurable
logic blocks (CLBs) also known as programmable logic blocks (PLBs), programmable
interconnect, programmable Input/Output (I/O) cells, and a configuration memory [6].
An example FPGA structure is shown in Figure 1.2. The PLBs serve as the user
programmable logic and allows for the implementation of various digital logic functions.
The PLBs are typically arranged in an NxN array and are connected via the
programmable interconnect network to allow multiple logic functions to be performed.
The programmable I/O cells can function as inputs or outputs, depending on the
requirements of the design. The programming bits necessary to configure the CPU

and/or the FPGA for the desired system function are stored in the configuration memory.
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Figure 1.2 Example FPGA Block Diagram

Typically, a PLB will consist of two to eight k-input Look Up Tables (LUTs), one
flip-flop per LUT, and various multiplexers and logic gates [7]. Each LUT can realize
any combinational logic function of k inputs and each PLB can simultaneously execute m
different k-input logic functions where m is the number of LUTs in the PLB. The flip-
flop(s) give the user the flexibility of performing sequential logic functions as well as
combinational logic functions. The multiplexers serve to set up the data paths in the
PLB. These make the paths through which the appropriate input signals propagate
through the PLB in order to implement the desired digital function.

The programmable interconnect consists of various wire segments controlled by
programmable interconnect points (PIPs) to form connections between two or more PLBs
and/or between the PLBs and the programmable I/O cells [6]. The routing resources used

to make connections between adjacent PLBs are usually referred to as local routing and



those resources used to make connections between non-adjacent PLBs are typically
referred to as global routing. The PIPs control the connections of the various wire
segments to make or break these local or global connections between PLBs [6]. Data bits
stored in the configuration memory are used to control the PIPs. The PIPs act similar to
switches where the data bits from the configuration memory are used to turn the PIP on
and off, thus making or breaking connections between the associated wire segments.

The configuration memory stores all the configuration bits for the PLBs, I/O cells,
and the programmable interconnect network and is loaded via a configuration interface.
The configuration memory is typically comprised of Static Random Access Memory
(SRAM) cells that contain configuration bits for each of the LUTs, multiplexers, flip-flop
reset/set, and various PIPs in the FPGA [6].

Due to the volatility of the SRAM-based configuration memory, the configuration
bits must be loaded each time the device is powered on and, therefore, must be stored in
an external memory device or loaded from a computer [6]. However, the advantage of
using an SRAM-based memory is that it allows in-system reprogramming to change the

system function whenever desired.

1.3 The Testing Problem

Testing combinational and sequential logic components is an intricate process and
involves many interacting aspects [8]. The primary issues in testing include the cost of
the test development, the quality of the generated test and the cost and time of applying
the test [8]. Other factors influencing testing are the increasing number of transistors

present in an IC, which can currently number in the millions. Over the past two to three



decades, the number of I/O pins on most very large scale integration (VLSI) devices has
increased by an order of magnitude while the number of transistors contained in those
VLSI devices has increased by about four orders of magnitude [7]. This has inherently
reduced the accessibility and, therefore, the testability of the circuits within these VLSI
devices [7]. In order to develop and evaluate the quality of a test for a device, a fault
model is used to emulate the various types of faults that can be encountered in VLSI
devices.

Typically, fault models that model gate, transistor, and other physical faults and
defects are used to perform fault simulations to determine the ability of a given set of test
patterns to detect faults within a circuit [7]. Testing is performed by using test patterns
designed to test for the specific type of fault model and applying these patterns to the
circuit under test (CUT). Once these test patterns have been applied to the CUT, the
output responses are compared against responses of a fault-free circuit obtained from
simulation. If all the output responses match, the CUT is assumed to be fault-free,
however, in case of a mismatch, the CUT is determined to be faulty and is typically

discarded.

1.4 Built-In Self-Test (BIST) Techniques

Built-In Self-Test (BIST) is a method of testing a given circuit wherein additional
circuitry is added such that the circuit can test itself. BIST can be broken into two
categories, on-line BIST and off-line BIST. When performing on-line BIST, the CUT is
operating in its normal system mode of operation. During off-line BIST the CUT is

placed in a test mode that is typically not a normal system mode of operation. The



advantage of off-line BIST is that it can be applied at the manufacturing, field, depot, and
operational levels [7], [8]. The primary focus of this thesis will be off-line BIST.

The particular form of off-line BIST that will be applied for the research involved
in this thesis will be a form of off-line BIST where no additional circuitry outside the
chip itself is required for testing, but existing flip-flops and registers within the CUT are
manipulated and used for testing [7]. A typical BIST structure comprises a test
controller, test pattern generator (TPG), circuit under test (CUT), and an output response

analyzer (ORA) as illustrated in Figure 1.3 [9].

Pass/
: : Fail
TPG ) Circuit Under Test :> ORA al
(CUT)
BIST
Controller

Figure 1.3 Typical BIST Structure

The TPG supplies test patterns to the CUT and the ORA analyzes the results to
indicate a pass or fail condition for the CUT. Typically, the TPG generates exhaustive or
pseudo-exhaustive test patterns and may be as simple as a binary n-bit counter or an n-bit
linear feedback shift register (LFSR) with a primitive polynomial or as complex as an
algorithmic test patter generator [7]. The ORA can be as simple as a comparator that
compares known good responses with the actual responses of the CUT or can be as
complex as a multiple input data compactor that may use signature analysis to indicate a

fault occurrence [7]. If the TPG and ORA are separated from the CUT, they can be used



to test multiple CUTs concurrently. Using this approach imposes no performance
penalties on the CUT other than additional set-up time when controlling the CUT to

operate in its BIST mode of operation [7].

1.5BIST for FPGAs

Typical BIST approaches for FPGAs involve taking the FPGA off-line, testing the
device, and, if found fault-free, placing the FPGA back on-line within the system. This is
possible since most current FPGAs use an SRAM-based configuration memory, which is
inherently in-system reprogrammable. As a result, the FPGA is reconfigured to create a
BIST structure, the device is tested, and is then reprogrammed for the system function
before being returned to the system operation [7]. Due to the reconfigurability and
multiple modes of operation and combinations of interconnection of an FPGA, many test
configurations will be required to completely test an FPGA’s programmable logic and
routing resources. The basic idea in BIST for the programmable logic of an FPGA is to
configure rows (or columns) of PLBs as TPGs and ORAs, and other rows (or columns) of

PLBs as blocks under test (BUTSs), as illustrated in Figure 1.4. [7]
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Figure 1.4 Basic Logic BIST Architecturefor FPGAS|[7]

The BUTs are reconfigured several times such that they are tested in all their

modes of operation. Each time the BUT is reconfigured to test a different PLB mode, it

is referred to as a test phase [7].

BUTs in all their modes of operation is referred to as a fest session [7]. Once the BUTs
have been completely tested in all their modes of operation, the test session is repeated
such that the PLBs that were previously TPGs and ORAs become BUTs, and vice versa

as illustrated for a 6" N array of PLBs in Figure 1.5 [7]. As a result, the programmable

A collection of test phases that completely test the

logic resources in the FPGA can be tested in a minimum of two test sessions.
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Figure 1.5 Test Sessionsfor logic BIST for FPGAS

Each test phase consists of the following steps: 1) the FPGA is reconfigured with
a BIST configuration, 2) the BIST sequence is executed, which involves initialization,
test pattern generation, and output response compaction, and 3) the BIST results are read
from the ORAs [7]. In step 1, the test controller interacts with the FPGA to reconfigure
the FPGA for testing. This is done when the controller retrieves the current BIST
configuration from a storage device, such as a computer, and downloads this information
to the configuration memory of the FPGA. The controller also initializes the TPGs,
ORAs, and BUTs and provides a BIST Start signal to initiate the test in step 2. In step 3,
the Pass/Fail results from the test phase are read from the ORAs in the FPGA to indicate
the condition of the device. For this type of BIST, comparator-based ORAs are used
because of the nature of the BIST architecture. Since the BUTs are receiving indentical
inputs from two TPGs, their outputs should match and a fault condition can be
determined simply by seeing a match or mismatch between the respective BUT outputs
[7].

One approach in BIST for the programmable interconnect of an FPGA is to

configure a subset of the routing resources (wire segments and PIPs) to form two groups
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of wires under test (WUTs). The WUTs receive identical test patterns from a TPG and
the values are compared at the other end of the WUTs by one or more comparison-based
ORAs [7]. A set of WUTs may be composed of several wire segments connected by
closed PIPs and may also include PLBs to check local routing to/from the PLBs. An
example of this type of BIST architecture for programmable interconnect is shown in

Figure 1.6 [7].

AWUTs
‘ PLB
BIST Start .
—p Pass/Fail

TPG ORA —

—
BIST Done + ‘ BWUTs +

Figure 1.6 Example I nterconnect BIST Architecturefor FPGAS[7]

1.6 Thesis Statement

The off-line BIST approach to testing FPGAs offers the advantage of no
additional circuitry, thus no area overhead in the design of the chip as well as no
performance penalty in the system mode of operation [7]. Theoretically, the same BIST
approach can be implemented in the FPGA core of a generic SoC. Once the BIST has
been performed on the FPGA and the FPGA determined fault-free, the FPGA core can
then be used to test the other cores in the SoC [4].

When applied to FPGA core logic and routing resources in an SoC, the benefits of
an off-line BIST approach can be fully utilized. Since the FPGA can be reprogrammed,

it can be removed from system operation, reprogrammed for BIST, tested for faults, and
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if no failures, reprogrammed for system operation. If faults are detected, the system
function can be reconfigured to avoid the faults present in the FPGA. A disadvantage of
testing an FPGA core with this approach is the requirement of multiple test
configurations. Since the PLBs and routing resources must be configured in many
different modes of operation, complete testing requires multiple configurations of the
device [7]. Despite the disadvantage of multiple test configurations, the use of BIST for
testing FPGA core logic provides the most benefits for complete testing of any test
methods to date.

The research to be presented in this thesis is based upon a previously proposed
SoC BIST methodology [4] and previous work completed in BIST for FPGA logic and
routing resources, in [10] and [11] respectively. The work to be presented is a
continuation of these two previous BIST approaches in relation to testing FPGA core
logic and routing resources that are a part of a generic SoC. The BIST approach is
developed for and applied to a commercially available SoC, specifically the Atmel
AT94K series Field Programmable System Level Integrated Circuit (FPSLIC).

The remaining chapters of this thesis are structured in the following manner:
Chapter 2 presents a detailed overview of the Atmel AT94K FPSLIC FPGA core
architecture as well as a review of previous work completed in BIST for other FPGAs.
Chapter 3 presents the BIST approach used in the testing of the FPGA core logic
resources and the results obtained with the Atmel AT94K Series SoC. Chapter 4 presents
the BIST approach used for the routing resources in the Atmel AT94K Series FPSLIC
FPGA core and the obtained results. Chapters 3 and 4 also give an overview of the

testing obstacles encountered with the Atmel FPSLIC and the methods used to overcome
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these obstacles and how they can be applied to testing other SoCs. Chapter 5 provides a
summary of the work completed as well as suggestions for future work in testing FPGA

core logic and routing resources in SoCs.
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CHAPTER TWO

BACKGROUND INFORMATION

Presented within this chapter is an overview of the AT94K series Field
Programmable System Level Integrated Circuit (FPSLIC) architecture (a generic SoC)
and the FPGA architecture incorporated in the Atmel AT40K series FPGAs and the
FPGA core of the FPSLIC. A review of prior work completed in the testing of FPGAs as
well as work in BIST for FPGAs is presented. In addition, a comparison of the FPGA
architectures in the prior BIST work to that of the Atmel FPGA is also presented. The
development process of the previous applications of BIST for FPGAs will be discussed
and background material for the proposed development process of BIST for application

to the Atmel FPGA will be presented.

2.1 Atmel AT94K SeriesFPSLIC

The Atmel AT94K series FPSLIC incorporates an FPGA core utilized in the
AT40K series FPGAs along with an AVR (Advanced Virtual RISC) 8-bit Reduced
Instruction Set Computer (RISC) microcontroller unit, a configuration controller, a
memory controller, and program and data memories [14]. The combination of the AVR
and configuration controller allows for in-system reprogramming of the desired operation
of the device by downloading a configuration in to the FPGA core or by utilizing the

AVR to dynamically reprogram the FPGA core of the device [14]. Figure 2.1 illustrates
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the interconnections in the FPSLIC device between the FPGA and the AVR with the

memory and configuration controller components.
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Figure2.1 Atmel AT94K Series FPSLIC Architecture[14]

The AVR 8-bit RISC Microcontroller supports over 120 instructions, of which
most execute within a single clock cycle [14]. The microcontroller architecture is
optimized for C code, but may be programmed in assembly language as well [14]. For
storage, up to 36 Kbytes of memory can be partitioned for up to 16 Kbytes x 16-bit
program memory and up to 16 Kbytes x 8-bit data memory [14]. Between the AVR and
the FPGA there are 16 address lines (8 lines for the AT94K05) decoded from 4 bits in the
AVR memory map and an 8-bit bi-directional data bus to allow for accessibility from the
AVR core of the device to the FPGA core [14]. In addition, 16 internal interrupt lines are

supplied from the FPGA to the AVR and up to four external interrupts are available

16



through user 1/0 [14]. The FPGA core of the FPSLIC can be one of four sizes of the
AT40K series FPGA, ranging in usable gate count from 5,000 to 40,000 gates [14], [15].
These four sizes are summarized in Table 2.1, which details the AT40K FPGA and the
associated AT94K FPGA core sizes in terms of the number of PLBs. The primary focus
of the FPSLIC architecture will be on the FPGA portion of the device since this portion
of the device is the focal point of the research and development work described in this

thesis.

Table2.1 Atme FPGA and FPGA Core Sizes

FPGA FPSLIC Number of PLBs
NxN
AT40KO05 AT94K05 16x16
AT40K10 AT94K10 24x24
AT40K20 |Not Currently Available 32x32
AT40K40 AT94K40 48x48

2.2 Atmel AT40K Series FPGA

The AT40K FPGA is designed for rapid implementation of high-performance,
large gate count designs through the use of synthesis- and schematic-based tools either on
a PC or Sun platform [15]. Designs can be implemented in the AT40K series FPGA
through common design software such as Synplicity, ModelSim, Exemplar, and
Viewlogic since the Atmel design tools are devised to integrate with these and other
industry standard design software [15]. The FPGA can be used to implement arithmetic-
intensive functions, which include applications for high-speed Digital Signal Processing
(DSP) functions. Examples of such DSP functions include Finite Input Response (FIR)
filters, Fast Fourier Transforms (FFT), convolvers, interpolators, and Discrete Cosine

Transforms (DCT) [15].
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The basic AT94K series FPGA core architecture is illustrated in Figure 2.2. The
device consists of an array of PLBs, two planes of programmable interconnect (vertical
and horizontal) and programmable I/O pads. The PLBs are arranged in an N N array

where N is given in Table 2.1.
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Figure2.2 Atme AT94K Series FPGA Core Architecture[15]
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2.2.1 PLB Architecture

The logic within the PLB is shown in Figure 2.3 and, as can be seen, various
combinations of functions can be implemented within the PLB. Configuration bits stored
in the configuration memory of the device determine the logic function performed by the
PLB. Any n-input logic function, where 1 £ n £ 4, can be realized within the PLB

utilizing the two 3-input LUTs simultaneously. If n £ 3, up to two logic functions can be
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obtained using one LUT for each function, since each LUT contains eight bits [15]. The
logic function(s) implemented can be either sequential or combinational, by using or not
using the D flip-flop, respectively [15]. A logic function with feedback may also be
realized within the PLB and can be either sequential or combinational [15]. The AND
gate present on the W input is important for logic functions implementing arrays of
multipliers [15]. The multiplexers shown in gray produce a default logic value of 'I'
when no input is selected; otherwise, they behave similar to non-decoded multiplexers
where a control bit is associated with each input to the multiplexer [7]. The multiplexer
with CB (configuration bit) shown as an input has a configuration bit from the
configuration memory driving one of its inputs. The remaining multiplexers shown
behave as decoded multiplexers with a single configuration bit selecting one of the
mulitplexer's two inputs. In addition to the various types of logic functions available, the
PLB output L can be optionally tri-stated for bi-directional bus implementations when the
PLB output needs to be in a high impedance state [15]. The X, W, Y, and Z inputs are
selected from multiplexers that are a part of the local routing resources, which are
discussed in more detail in the next section. In addition to X, W, Y, and Z inputs there is
a clock and a set/reset input to the flip-flop and a horizontal and vertical output enable to
the tri-state buffer of each PLB for a total of eight inputs. The outputs of the PLB include
the X and Y outputs to adjacent PLBs and the L output which connects to the global

routing resources for a total of three outputs.
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Figure 2.3 Atmel AT40K Series PLB [15]

2.2.2 Programmable I nterconnect Points (PIPs) in FPGAs

In order to understand the routing architecture present in an FPGA, it is important
to understand the types of PIPs and wire segments commonly found in FPGAs. The
basic structure of a PIP is shown in Figure 2.4a, where a pass transistor (transmission
gate) is turned on/off by the logic value of a configuration memory bit. A connection can

be made or broken by setting the configuration bit to the desired logic value.

I—I Wire Y
I Wire X
Configuration PIP PIP

Bit

a) PIP Structure b) Cross-Point PIP <\Iy
Wire X Wire Y PIP PIP PIP

Wire X C Wire Y i $ ; Output
¢) Break-Point PTP d) Multiple xer PIP e) Switch-Box PIP

Figure 2.4 PIP Structures Typically Found in FPGAS[7]
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The general types of PIPs found in FPGAs fall into four categories, cross-point
PIPs, break-point PIPs, multiplexer PIPs, and switch-box PIPs [7]. The cross-point PIPs
(Figure 2.4b) connect wire segments perpendicular to one another; for example, a vertical
wire segment and horizontal wire segment are connected. A break-point PIP (Figure
2.4c) connects or disconnects wire segments within the same plane, such as a vertical-
vertical connection or a horizontal-horizontal connection [7]. The multiplexer PIP
(Figure 2.4d) can either be decoded or non-decoded and selects one of multiple input
wire segments to make a connection to an output wire segment [7]. Non-decoded
multiplexer PIPs are controlled by k configuration bits, where k is the number of input
wire segments to the PIP [7], such that there exists one bit per wire segment and that bit
controls the connection for its respective wire segment. The decoded multiplexer PIP has
2" input wire segments and is controlled by k configuration bits [7]. For the decoded
multiplexer, the binary code formed by the configuration bits controls the connection
between a given input and the output wire segments as in a basic multiplexer. The last
type of PIP, the switch-box PIP (Figure 2.4e), also referred to as a compound cross-point
PIP, is usually made of an array of pass transistors making connections in various
directions between different wire segments [7].

Typically, the types of PIPs and wire segments found in an FPGA can be
separated into global and local routing resources. The multiplexer PIPs are typically
found in the local routing resources while the cross-point, break-point, and switch-box
PIPs are usually found in the global routing resources. The local routing resources are
those associated with a given PLB and its adjacent PLBs. The PLB inputs and outputs

enter and exit through the local routing resources and can make connections either to
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adjacent PLBs or to other PLBs or I/O cells through the global routing resources. Global
routing resources allow connections to be made between PLBs that are typically at
distances of more than one PLB apart in the array. These resources can also be used to
route long distances from PLBs to I/O cells. The global routing resources commonly
comprise longer wire segments and their associated PIPs. The wire segments present in
the global routing resources span differing lengths of the FPGA array and connections
can be made between these wire segments by the various types of PIPs that are present
within the global routing network.

The wire segments in the programmable interconnect in the FPGA have various
lengths which are typically associated with the number of PLBs that a given wire
segment spans. These include short to medium length wire segments denoted as x/ lines,
x2 lines, x4 lines, and x8 lines which span one, two, four, and eight PLBs, respectively.
Longer wire segments may span a quarter (xQ lines), one half (xH lines), or the full

length (xL lines) of the FPGA array.

2.2.3 Routing Architecture

The routing architecture present in the Atmel FPGA core consists of both local
and global routing resources. The local routing resources are formed by wire segments
and PIPs that make connections to adjacent PLBs and allow access to/from the global
routing resources. The global routing resources comprise busses of wire segments that
span either four PLBs (x4 lines, which are referred to as local busses in Atmel
terminology) or span eight PLBs (x8 lines, referred to as express busses in Atmel

terminology) in the array before reaching repeaters, which will be discussed shortly.
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The local routing resources consist of non-decoded multiplexer PIPs, which select
inputs from one of the five x4 lines or from direct PLB connections from adjacent PLBs,
as illustrated in Figure 2.5. The five inputs to each multiplexer PIP, denoted as V/H 1
through V/H 5 in Figure 2.5, come from the five vertical and five horizontal x4 lines in
the global routing resources. The W and Z inputs to PLB can come from any one of the
five vertical x4 lines or of the five horizontal x4 lines and are selected by their respective
multiplexer PIPs. In the case of the X and Y inputs, additional multiplexer PIPs select a
signal either from the inputs from the x4 lines or from one of the direct connections from

an adjacent PLB.

V/H 1 V/H?2 V/H 3 V/H 4 V/H 5

K
4 N
i

NW NE SE SW I\IT I|3 ?

Figure 2.5 Local Interconnect Associated with the Atmel PLB [15]
The available direct PLB connections are illustrated in Figure 2.6, which shows
the eight possible direct PLB connections. Only one input from any given direction can

be selected at one time. The available connections denoted as X in Figure 2.6 include

23



both the X input to the PLB and the X output from the PLB and make it possible to
connect to a diagonally adjacent PLB [15]. It is possible to connect to adjacent PLBs
located northwest, northeast, southeast, and southwest (denoted NW, NE, SE, and SW,
respectively, in Figures 2.5 and 2.6) using local X. The connections denoted as Y in
Figure 2.6 include both the Y input to the PLB and the Y output from the PLB and can
make connections to orthogonally adjacent PLBs to the north, east, south, and west

(denoted as N, E, S, and W, respectively, in Figures 2.5 and 2.6).

Figure 2.6 PLB-to-PL B Adjacent Connections[15]

Each PLB has connections as shown in Figure 2.6 to and from the adjacent PLBs
both orthogonally and diagonally except for those PLBs that are along the edges of the
PLB array. The PLBs along the edges have direct connections to and from I/O cells in
place of the respective direct PLB connections.

The PLB connections to the global routing resources are shown in Figure 2.7 and
are denoted as W, X, Y, Z, and L [15]. Here, W, X, Y, and Z serve as inputs to the PLB
and L is a PLB output. The PLB inputs can connect to one, and only one, of the five

vertical x4 lines or of the five horizontal x4 lines at a time [15]. The same is also true for
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the L output of the PLB. It is important to note that the X and Y inputs can enter the PLB
through one and only one of the connections from either one of the x4 lines or one of the
adjacent PLB connections such that both connections cannot be made simultaneously.
Therefore, if a connection is made to X or Y from a x4 line, no connection can be made

from the direct inputs connected to an adjacent PLB [15].

7 x8 lines
» x4 line ® Local Routing
ol / Cross-Point PIPs
n )
» m| ] Global Routing
n = Cross-Point PIPs
|
»
[ |
n —_ —
WXYZL V 1 V2 V3 V4 VS
X
Y PLB H1 H2 H3 H4 H5
L
V/H 1 V/H?2 V/H 3 V/H 4 V/H 5
V1-V5
a) PLB-to-Bus Connections b) Local Routing Cross-Point PIPs

Figure 2.7 PL B-to-Bus Connections[15]

A connection is made to the x4 lines in the five vertical or horizontal busses
through the cross-point PIPs shown in Figure 2.7b, denoted as V1 - V5 and HI - HS.
When the cross-point PIP is turned on, the x4 line is available to the PLB and multiplexer
PIPs, shown in Figure 2.5, present on the W, X, Y, and Z inputs as well as the L output
select the bus as an input or output, respectively. Cross-point PIPs in the global routing
resources, illustrated in Figure 2.7a diagonally from the PLB, can be used to make
connections between the horizontal x8 and vertical x8 lines. Connections between
horizontal and vertical x4 lines are made through the cross-point PIPs shown in Figure

2.7b.
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The x8 lines span eight PLBs before reaching a repeater and the x4 lines span four
PLBs before coming to a repeater [15]. The x8 lines that are located furthest from the
PLB shall be referred to as Abus lines while the x8 lines closest to the PLB shall be
referred to as Ebus lines. Repeaters are staggered throughout the array, meaning that
every other span of eight cells the repeaters alternate which x8 and x4 lines can be
connected as is illustrated in Figure 2.8a. These repeaters allow selected types of
connections to be made between wire segments. For simplicity only one of the five
busses of x4 lines and x8& lines is shown. The internal organization of the repeater is

illustrated in Figure 2.8b and consists of four 3-input non-decoded multiplexer PIPs.

L8 |/ B \l RS
U

repeater /’

/ X8 lines

2l | jZ ST
— x4 line I\— —)

4 PLBs 8 PLBs

L8 =Left x8line R8 = Right x8line
L4 =Left x4line R4 =Right x8line
a) Staggered Repeaters b) Repeater Connections

Figure 2.8 Staggered Repeatersin Atmel Routing Architecture
Connections can be made in multiple directions through the repeater. A
connection can be made from one x4 line through the repeater to the adjacent x4 line or
from one x4 line to either of the x8 lines (where L4 and R4 denote left and right x4 lines
and L8 and R8 denote left and right x8 lines as shown in Figure 2.8b). The repeaters are
staggered such that the orientation of the repeater is flipped about the horizontal axis

from one repeater to the next such that the x4 lines and x8§ lines alternate entry/exit points
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of the repeater. As can be seen in the figure, four multiplexers within the repeater allow
for the various combinations of connections to be made. The high-level functionality of
the repeater is similar to that of the switch-box PIPs, however, the actual internal
organization utilizes multiplexer PIPs instead of pass transistors to complete connections
between the different wire segments. This provides buffering for long or heavily loaded

signals and also implies directionality of the signal.

2.3 Overview of Testing Methodsfor FPGASs

Many previous methods for testing FPGAs rely on externally applied test vectors,
hence these various testing approaches are limited to device-level testing only [16]-[18].
In addition, there also exist many restrictions in controllability and observability due to
the number of I/O cells present in a particular package that can be used for testing the
FPGA. This problem is further complicated in generic SoCs since a large portion of the
FPGA core I/O is internally connected to other SoC components. As a result, even more
controllability and observability restriction exists in the FPGA core of a generic SoC.

In BIST-based approaches, such as in [9]-[10], [19], [20], the testing
configurations do not rely on externally applied test vectors, but instead use the internal
circuitry of the FPGA to generate test patterns for the purpose of testing the FPGA.
Multiple test configurations may be required, but the advantage is the ability to use the
same test procedure from device-level testing through system-level testing, since BIST is
applicable to all these levels [10]. The BIST approach results in less total test
development time since BIST can be applied from device-level testing through system-

level testing without the need for developing different tests for different levels of testing.
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Therefore, there is less final cost since test development is applicable to the various levels

of testing of electronic devices, which, in turn, is a significant portion of device cost [21].

2.4 PreviousWork in BIST for FPGASs

Previous implementations of BIST for FPGAs have been applied to devices such
as the Lucent Technologies Optimized Reconfigurable Cell Array (ORCA) 2C and 2CA
FPGAs [9], [20] and to the Xilinx 4000 and Spartan series FPGAs [10]. Typically BIST
is separated into logic and routing BIST, which test the PLBs and programmable
interconnect present in an FPGA, respectively. In these previous works, there are
specific architectural issues that have a large impact on the implementation of BIST in

the respective device [10].

2.4.1Logic BIST

In the previous implementations of BIST for FPGAs the basic idea for logic BIST
is illustrated in Figure 2.9, where some columns (or rows) of the PLBs are configured as
TPGs and ORAs and other columns (or rows) of PLBs are configured as BUTs. This
architecture is flipped from the first test session to the second test session. The flipping
of the architecture ensures that all PLBs become BUTSs during testing as long as at least

half the PLBs are BUTs during each test session.
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Figure 2.9 Logic BIST Architecture

Typically a binary counter is utilized as the TPG for the logic BIST test sessions
since it generates exhaustive test patterns and can be used to apply all possible 2" test
patterns for an n-input logic function [7]. This type of TPG is the most economical
choice since a counter mode is common in the PLBs of most FPGAs [7]. An LFSR
(Linear Feedback Shift Register) could also be used; however, additional logic is required
to obtain an all O's state, which makes the TPG more difficult to implement, when
compared to a binary counter [7]. Algorithmic TPGs are used to test PLBs that have
RAM modes of operation such as the ORCA and Xilinx FPGAs [10]. These algorithmic
TPGs are also more difficult to implement and require more logic, hence more PLBs,
than a binary counter.

There are two important features to note pertaining to this logic BIST
architecture. First, multiple TPGs are used in order to source identical test patterns to
alternating rows or columns of identically configured BUTs [7]. Second, every BUT,
except for the first and last two columns, has its corresponding outputs observed by two
different ORAs and compared with different BUTs [7]. The combination of these two

factors guarantees that any single faulty PLB can be guaranteed to be detected [7]. In
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addition, the conditions that allow multiple faulty PLBs to avoid detection are so limiting
that, in practice, the chances of occurrence are very unlikely [7].

Multiple test phases are applied during each test session in order to completely
test the PLBs configured as BUTs in all of their modes of operation [9], [11], [20]. The
number of configurations depends on the number of modes of operation available in the
PLB. Hence, the more available modes of operation that can be implemented in a PLB,
the greater the number of configurations that are required to test the PLB. It is desired to
minimize the number of configurations required to test an FPGA in order to minimize
testing time and test development effort and time.

Since identical test patterns are applied to identically configured BUTs, the ORAs
employed are comparison-based in order to compare the responses of the BUTs located
in the adjacent rows or columns [7]. The basic architecture of the comparison-based
ORA previously used is illustrated in Figure 2.10 where four sets of outputs from
adjacent BUTs are compared [10], [19]. The feedback, OR gate, and flip-flop in the
PLBs configured as ORAs latch any mismatch detected in the corresponding BUT
outputs so that the faulty indication result is stored [7]. To retrieve the results, the ORAs
can be connected as a shift register to shift out the results at the end of each BIST
sequence or the configuration memory can be read to obtain the contents of the ORA flip-

flops at the end of a BIST sequence [7].
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Figure 2.10 Basic ORA Structurein Logic BIST [10], [19]

2.4.2 Routing BIST

One methodology applied in the routing BIST in previous implementations
consists of a counter-based TPG that sources test patterns over two sets of WUTs that
have their signals compared at a destination by a comparison-based ORA, as illustrated in
Figure 2.11. Groups of PLBs are configured as the TPGs in order to source the test
patterns over the sets of WUTs [22]. These WUTs are configured from a subset of the
routing resources of the FPGA and include selected wire segments and PIPs that are
targeted for testing [22]. The ORAs receive the test patterns sourced over the WUTs by
the TPGs and detect mismatches between the sets of WUTs to give a Pass/Fail indication
at the end of the BIST sequence to determine if the WUTs are faulty or fault-free [22].
The ORA results can be retrieved in a similar fashion as in the logic BIST: the ORAs can
be connected as a shift register and the results shifted out at the end of the BIST sequence

or the results can be read directly from the configuration memory [7].
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Figure 2.11 Routing BIST Architecture

Another approach to testing interconnect is demonstrated in Figure 2.12 where the
counter-based TPG also generates parity over the binary count sent over a set of WUTs
and, over some other routing resources, the parity bit is routed to the destination parity
check-based ORA which also receives the signals from the WUTs [23]. In this routing
BIST architecture, which is similar to that shown in Figure 2.11, some PLBs are
configured as TPGs and some PLBs are configured as ORAs with selected wire segments
and PIPs selected for testing configured as WUTs. However, in this case, the TPG
generates a parity bit associated with its test pattern and the ORA is configured
accordingly to check the parity bit associated with the output response of the WUTs, as
illustrated in Figure 2.12. The parity bit is sent from the TPG to the ORA over known

good routing resources [23].

WUTs

TPG generating Parity-based
Parity ORA

Parity Bit
Figure 2.12 Parity check-based Routing BIST
In both the comparison- and parity check-based routing BIST approaches, Self
Test AReas (STARs) have been used to implement the BIST configurations within the
routing resources of the FPGA [10]. These STARs consist of selected subsets of the

programmable logic and routing resources within the FPGA configured as TPGs, ORAs,
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and WUTs [28]. These STARs are scalable to the architecture of the device to which the
approach is applied and can be as large as the entire array. The number of configurations
depends on the size of the STARs and the number of routing resources to be tested within
the STAR during a given test session. The size of the STAR during a given test session
impacts both the speed of the test and the diagnostic resolution of the test [10]. A large
STAR or a STAR with a high number of routing resources has larger resistive and
capacitive loading. This is due to the finite on resistance and gate capacitance of the
transmission gates in the various PIPs in the set of WUTs. These factors cause longer
delays in signal propagation, which affects the speed of the test. In addition, a large
STAR makes fault diagnosis more difficult since a larger number of routing resources is
under test in a given test phase and determining which of the wire segments is faulty is

made much more difficult.

2.4.3 BIST for the ORCA FPGAs

The logic BIST approach implemented in [9], [11], [20] for the ORCA 2C and
2CA FPGAs uses the logic BIST architecture illustrated in Figure 2.9. It is important to
note the impact of the PLB and interconnect architectures on the number of
configurations and testability of the FPGA. A total of 9 and 14 phases per test session
were required to completely test the PLBs in the 2C and 2CA FPGAs, respectively [9],
[20]. The ORCA 2CA FPGA has more modes of operation than the ORCA 2C FPGA,
which include multiplier and comparator modes as well dual-port RAM modes of
operation. This increased number of modes translates to more BIST configurations

required to test the PLB in all its modes of operation. The PLB in the ORCA 2C and
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2CA FPGAs device consists of four 16-bit LUTs, four flip-flops, a fast-carry circuit, and
several multiplexers [25]. The inputs to the flip-flops can be fed in through four primary
inputs to the PLB or can be driven by the four LUTs [25]. There are five primary outputs
of the PLB, which can be driven either from the flip-flops or the LUTs to allow for
combinational or sequential functions to be performed [25]. The LUTs can be
programmed in one of three modes: logic (LUT), arithmetic (fast-adders/subtractors), and
memory (RAM) [25]. The two RAM modes allow the LUTs in the PLB to function as
either a 16x4 RAM or as a two 16x2 RAMs. The four flip-flops present in the PLB can
be configured to act as level sensitive latches or to act as edge-triggered flip-flops [25].
The routing resources of the ORCA FPGAs required 27 and 44 BIST configurations,
respectively, for the two BIST approaches described in [11] and [22]. Both approaches
used the routing BIST architecture shown in Figure 2.11. The approach in [22] required
more configurations due to the use smaller STARs in the application of routing BIST
which were chosen to increase diagnostic resolution. The routing resources associated
with each PLB in the ORCA FPGA include six horizontal and six vertical 4-bit global
routing busses and four sets of direct 5-bit local routing busses to adjacent PLBs [22].
Along the horizontal and vertical direction, there are two 4-bit busses of x/ lines , two 4-
bit busses of x4 lines, one 4-bit bus of xH lines, and one 4-bit bus of xL lines associated

with each PLB.

2.4.4 BIST for the Xilinx 4000 and Spartan Series FPGAs

The logic BIST illustrated in Figure 2.9 was also applied to the Xilinx 4000 and

Spartan series FPGAs [10]. For the case of these Xilinx FPGAs, a total of 12 test phases
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per test session were needed to completely test the PLBs. The PLB consists of two 4-
input LUTs, one 3-input LUT, two flip-flops, dedicated carry logic, and various
multiplexers to configure the cell interconnections and functions [26]. The two 4-input
LUTs can function together as a single 32x1 RAM or as two 16x1 RAMs [26]. The two
flip-flops can function as edge-triggered flip-flops or as level-sensitive latches [26]. The
additional logic associated with the PLBs is the carry logic circuitry used to implement
fast adders, subtractors, and counters [26].

The routing resources within the Xilinx 4000 and Spartan series FPGAs consist of
a specific number of wire segments dependent upon the particular type of device, either
4000E/Spartan or a 4000XL/XLA series FPGAs. Both types of devices include an 8-bit
bus of x/ lines and a 4-bit bus of x2 lines. The 4000E/Spartan FPGAs include ten vertical
and six horizontal long lines (including xQ, xH, and xL lines) while the 4000XL/XLA
FPGAs have 18 vertical and six horizontal long lines. The 4000XL/XLA FPGAs also
include three 4-bit busses of x4 lines and 2 direct connections to each adjacent PLB. The
comparison-based routing BIST approach in Figure 2.11 was applied to all routing
resources in the 4000E/Spartan and 4000XL/XLA series FPGAs [10]. A total of 128
BIST configurations were required to test all routing resources in the 4000E/Spartan
series FPGAs while a total of 206 BIST configurations were required to test all of the
routing resources in the 4000XL/XLA series FPGAs [10].

The parity-based routing BIST configuration was proposed in [23] to test the x/
lines and their associated switch-box PIPs in the 4000 series FPGAs. It was theorized
that these resources could be tested in three BIST configurations. However, this BIST

approach was never implemented in the actual FPGA to verify that three BIST

35



configurations were sufficient. In addition, the x/ lines and their associated switch-box

PIPs the easiest to test routing resources [10].

2.4.5 PreviousWork In Logic BIST for the Atmel AT94K Series FPGA Core

The only previous work for logic BIST for the FPGA core in the AT94K series
FPSLIC was proposed in [27]. This work involved on-line testing of the LUTs in the
PLBs where two test configurations were required per LUT in each PLB [27]. In this
approach, only the LUTs in the PLBs are tested and the remaining logic is left untested,
as are the routing resources within the FPGA. In the work reported in [27], the total
number of configurations to test the NxN PLB array in the FPGA is 2N” since the PLBs
are tested one at a time. In addition, it appears that the AVR core would perform the

TPG and ORA functions.

2.5 0RCA, Xilinx, and Atmel FPGA Comparison

The composition of the PLBs and the complexity of the routing resources are
considerably different in the Atmel AT40K series FPGAs than in the ORCA and Xilinx
FPGAs. The PLBs in the ORCA and Xilinx FPGAs consist of more logic and hence
more programmability and functionality than the Atmel FPGA, as is summarized in
Table 2.2. The ORCA and Xilinx PLBs have approximately twice the number of primary
inputs as the Atmel PLB and also have more outputs. In addition, the LUTs in the ORCA
and Xilinx PLBs have more bits than contained in the LUTs in the Atmel PLB. There are
also more configuration multiplexers and additional logic gates (including carry logic) in

the ORCA and Xilinx PLBs than in the Atmel.
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Table 2.2 Comparison of PLBs[14], [15], [25], [26]

PLB Atmel |ORCA 2(C| Xilinx 4000
Component AT40K | and 2CA | and Spartan
# Inputs 8 19 13
# Outputs 3 6 4
# LUTs 2 4 3
# Bits/LUT 8x1 16x1 |(2)16x1, (1)8x1
Config. Multiplexers
(incl. Carry Logic) 1 17 26
# Flip-Flops 1 4 2
# Addt'l Logic Gates 1 3 6
(incl. Carry Logic)

The routing resources dispersed within the ORCA and Xilinx FPGAs are more
numerous and comprise more types of wire segments and PIPs than the Atmel FPGA, as
summarized in Table 2.3. The ORCA and Xilinx FPGAs contain about twice as many
total types of routing resources as the Atmel FPGA. The diagonal direct lines are unique
to the Atmel FPGA and are not found in either the ORCA or Xilinx FPGAs. The Atmel
and ORCA routing resources are symmetrically aligned horizontally and vertically
meaning that the number and interconnections of vertical and horizontal planes of wire
segments is the same. However, in the Xilinx FPGA, the routing resources do not have
rotational symmetry. This asymmetry contributes to the test complexity for the Xilinx
since there are different numbers of horizontal and vertical bussing planes depending on
the type of routing resource [10]. In addition, some of the busses in the Xilinx routing
resources are shared between PLBs and create obstacles in the development of logic and
routing BIST configurations [10]. There also exists dedicated carry routing in the ORCA
and Xilinx FPGAs that is not present in the Atmel FPGA. Carry routing can be
implemented with the direct routing (orthogonal or diagonal direct lines) in the Atmel

device, but at the expense of a PLB output since there is no dedicated logic or routing for

carry circuitry within the Atmel FPGA. The conclusion drawn in [10] is that the routing
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architecture of the FPGA is the primary component in the number of BIST configurations
required to completely test the device. This was demonstrated by the total number of test
configurations required for the Xilinx routing resources (128 and 206) compared to that
required for the ORCA routing resources (27 and 44) [10].

Table 2.3 Comparison of Routing Resour ces[10], [15]

Routing Atmel ORCA 2C Xilinx 4000E Xilinx 4000XL
Resource AT40K ORCA 2CA and Spartan and XLA
Type |vertical horizontal |vertical |horizontal |vertical |horizontal | vertical | horizontal
x1 lines 0 0 8 8 8 8 8 8
x2 lines 0 0 0 0 4 4 4 4
x4 lines 5 5 8 8 0 0 12 12
x8 lines 10 10 0 0 0 0 0 0
long lines 0 0 8 8 10 6 18 6
direct lines| 1 1 5 5 0 0 2 2
diagonal
direct lines ! 0 0 0
carry lines 0 0 2 2
Total 17 [ 17 29 | 29 24 | 20 46 | 34

Another important point to consider in the comparison of the ORCA, Xilinx, and
Atmel FPGAs is the percent composition of the types of PIPs present in the routing
resources of the devices, as illustrated in Table 2.4. The Atmel FPGA is more similar in
certain aspects to the Xilinx than the ORCA FPGAs. In terms of break-point PIPs and
multiplexer (MUX) PIPs, the Atmel FPGA is more similar in composition to the Xilinx
FPGA, however, as in the ORCA FPGA, there are no true switch-box PIPs in the Atmel
FPGA. The closest routing resource that the Atmel FPGA has to the switch-box PIPs in
the Xilinx FPGA are the repeaters and they are more similar to multiplexer PIPs than to

switch-box PIPs as illustrated in Figure 2.8b.
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Table 2.4 Percent Composition of PIPsin Routing Resources|[10], [15]

Xilinx ORCA Atmel
Type of PIP| 4000 2C/2CA AT40K
Break-Point| 1.5% 12% N/A
Cross-Point| 11.3% 69% 34.8%
MUX 72.5% 19% 60.9%
Switch-Box| 14.7% N/A N/A
Repeaters N/A N/A 4.3%

2.6 BIST Configuration Comparison

As found in [10], the routing architecture is the primary influence on the total
number of test configurations and on the total test time. The comparisons of the routing
architecture presented in Tables 2.2, 2.3, and 2.4, therefore, allow a good relative
comparison of the total number of BIST configurations for the ORCA and Xilinx FPGAs.
Table 2.5 summarizes the total number of logic and routing BIST configurations for the
ORCA and Xilinx FPGAs.

Table 2.5 BIST Configurationsfor ORCA and Xilinx FPGAs[10]
ORCA Xilinx Xilinx
ORCA 2C| 2CA 4000E 4000XL
and Spartan| and XLA

# logic BIST configs 9 14 12 12
# routing BIST configs| 27/44 27144 128 206

As Table 2.5 demonstrates, the primary component in the total number of BIST
configurations is the number of routing BIST configurations. The ORCA 2C and 2CA
FPGAs required 27 and 44 routing BIST configurations, with the differing numbers due
to the size of the STARS [10]. The Xilinx 4000E and Spartan FPGAs required 128
routing BIST configurations while the Xilinx 4000XL/XLA FPGAs required 206 routing
BIST configurations. The Atmel device has a fine-grain PLB architecture, with a

rotationally symmetrical routing architecture. In addition, the composition of routing
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resources in the Atmel FPGA, as illustrated in Table 2.3 and Table 2.4, is somewhere
between the percentages found in the ORCA and Xilinx FPGAs, and will have an impact
on the total number of configurations since the routing architecture is the primary
influence. The differences between the architectures of these FPGAs affect the number
of test configurations for the respective FPGA architectures to completely test the routing
resources. One of these differences is that the main types of PIPs within the respective
FPGAs differ in their percent composition and in their amount of inputs [10]. The cross-
point and break-point PIPs make up 81% of the total PIPs in the ORCA FPGAs and the
remaining 19% comprises the multiplexer PIPs [10]. In addition, there are no switch-box
PIPS in the ORCA routing resources [10]. The more difficult to test PIPs are the
multiplexer and switch-box PIPs. In addition, the size of the multiplexer PIPs is smaller
in the ORCA FPGAs in comparison with the Xilinx FPGAs, 5 inputs compared to 35
inputs [10]. Consequently, more configurations are required to completely test these
types of PIPs in comparison to the break-point or cross-point PIPs.

Another difference arises in the carry logic where, in the ORCA FPGAs, there is
dedicated carry routing to the four adjacent cells but the carry-out output can also be
placed on one of the five PLB outputs, allowing for better observability of the signal [10].
In the Xilinx FPGAs the carry-out can only be observed on dedicated routing that goes
from a given PLB to only one PLB located directly above that PLB. A third difference is
the sharing of the routing resources associated with the PLBs [10]. In the ORCA FPGAs,
the routing resources are not shared between two adjacent PLBs whereas in the Xilinx
FPGAs, the routing resources are shared between the two adjacent PLBs [10]. In

addition to the effect of PIP types in the ORCA and Xilinx FPGAs, the routing resources
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in the two FPGAs contain rotating and staggered busses, which make testing the busses
more difficult and increase the number of configurations required to test the FPGA
interconnect [10]. Finally, the inputs and outputs to and from the ORCA FPGAs can be
connected to all routing resources on any side of the PLB while in the Xilinx FPGAs, the
inputs and outputs can be connected to and from a subset of the routing resources on only

two sides of the PLB making testing more complex [10].

2.7 BIST Development

In the previous work in BIST for FPGAs performed on the ORCA and Xilinx
FPGAs [9], [10], [11], [20], vendor-supplied computer-aided design (CAD) tools were
used in conjunction with custom designed programs to develop and generate the logic
and routing BIST configurations [28]. In the case of the ORCA FPGAs, custom
programs were used to create textual netlist files, NeoCAD Design Language (NCL)
files, which are interpreted through the vendor-supplied CAD tools provided from the
manufacturer of the ORCA FPGAs in order to produce the download bitstreams needed
for the logic and routing BIST sessions [28]. These textual netlists describe the
configuration and placement of the PLBs (TPG, BUTs, and ORAs) and the routing
resources used to route signals between the PLBs [28].

The BIST development for the Xilinx FPGAs used custom programs to generate
XDL (Xilinx Design Language) files that could be interpreted via the vendor-supplied
CAD tools from Xilinx in order to produce the bitstreams needed for the logic and
routing BIST sessions. The vendor provided place and route (PAR) tools did not allow

adequate control over the routing resources that was needed for the application of BIST.
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Therefore, a more controlled approach was needed and the idea of custom programs to
generate XDL was chosen for its ability to control the interconnections in the routing

resources of the FPGA.

2.7.1 Macro Generation Language (MGL)

In the case of the Atmel FPGA, the vendor-supplied CAD tools include a design-
oriented programming language, called Macro Generation Language (MGL), that can be
used to instantiate designs into the FPGA and produce download bitstreams without the
need for the development of custom programs. The Figaro Integrated Development
System (IDS) is the software available from Atmel for implementation of designs into
AT40K FPGAs, which includes the programming language, MGL, that can be compiled
and used to instantiate designs, including placement and routing, and to create bitstreams
for downloading into the FPGA [29]. The MGL combines aspects of many modern
programming languages with characteristics of hardware description languages such as
VHDL or Verilog.

The language is a method of creating user-defined, parameterized circuits that
meet desired design specifications. Designs are created in much the same manner as that
used in generating a computer program in a programming language such as C or C++.
Just as in many programming languages, pre-processor directives, global variables and
constants may also be defined. The language is a strongly-typed language such as the
case in VHDL, meaning that all objects must be assigned a specific type. However,
unlike VHDL, MGL is a case-sensitive language where function() and Function()

represent two different and independent functions. To generate a design using MGL,
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three components are necessary within the code: user-defined functions (i.e., BUTs,
ORAs, TPGs), the target FPGA device (i.e., AT40K05, AT40K10, etc.), and the inputs
and outputs to the circuit (i.e., clock input, reset input, pass/fail output) [29].

In order to configure a PLB in the FPGA, MGL requires the use of predefined
macros ranging in complexity from AND gates to multiplexers and decoders [29]. In
addition, MGL can utilize dynamic macros that allow a variety of functionality to be
configured in the PLB. Three basic types of dynamic macros can be used to configure
the PLB through MGL: the FGEN1 macro, the FGEN2 macro, and the MGEN macro,

which are illustrated in Figure 2.13 [30].
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Figure 2.13 Dynamic Macros Utilized in MGL [30]

The FGEN1 dynamic macro allows up to a 4-input logic function to be
implemented in the PLB; with feedback up to a 4-input logic function can be
implemented, but with only three external inputs [30]. The LUTs in this dynamic macro
are used in conjunction with one another through the use of a multiplexer, shown in
Figure 2.3, which selects between the individual LUT outputs resulting in a combined 16-

bits for the 4-input logic function. The output can be registered or combinational by
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either using or not using the D flip-flop, respectively [30]. A tri-state output is also
available if desired [30].

The FGEN2 macro is similar to the FGEN1 macro in that the outputs can be
registered or combinational and have an optional tri-state. However, the LUTs function
separately and two logic functions of only up to three inputs can be implemented in the
PLB [30]. If feedback is utilized in the FGEN2 macro, then one input is sacrificed
making a function using up to two external inputs possible [30].

The MGEN macro allows up to a 4-input logic function and has an upstream
AND of two of the inputs to the PLB in front of the LUTs [30]. The AND gate is
intended for use in multiplier-based functions such as those used in many DSP
applications [14], [15], [29]. As in the FGEN1 and FGEN2 macros, the output can be
registered or combinational and the optional tri-state on one output is available.

Nodal statements In MGL can be used to configure the routing resources in order
to define the interconnect of a design. Signals must have a source and destination
specified in the design and must be routed in order from the source to the destination.
The MGL compiler ignores any nodal statements not meeting these conditions. The
documentation provided by Atmel in [29], [30] gives the net names of the most
commonly used routing resources, which include the PLB direct connections, x4 lines,
and x8 lines. However, net names such as those associated with the clock and reset
routing and the periphery routing at the I/O cells are not given in the documentation.
Routing can be specified for these types of routing by identifying the appropriate net
names associated with these routing resources through observation of the output files of

the Atmel CAD tools, which is discussed further in Chapters 3 and 4.
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Configuration of the design implemented in the FPGA through the use of MGL is
limited to the dynamic macros. For designs not needing as much control over the FPGA
configuration, the information supplied in [29], [30] is sufficient to produce working
designs in the FPGA. However, for applying BIST to the FPGA, complete control of the
configuration of the PLBs and routing resources in the FPGA is necessary in order to

achieve maximum fault coverage.

2.8 Thesis Restatement

The focus of this thesis is to apply the BIST approaches originally developed for
the ORCA and Xilinx FPGAs to the Atmel AT40K series FPGAs and the AT94K series
FPGA core. The differences that exist between the various types of FPGA architectures
can be expected to impact the application and development of BIST configurations as
well as the total number of configurations needed. Development and generation of the
BIST configurations with the vendor-supplied CAD tools, MGL and Figaro IDS, appear
to offer a more integrated approach compared to the prior development efforts for ORCA
and Xilinx FPGAs. Chapters 3 and 4 detail the logic BIST and routing BIST approaches
applied to the Atmel FPGA, respectively. In addition, the use of MGL for development
and generation of BIST configurations will be discussed along with the associated
advantages and limitations. Finally, the total number of BIST configurations needed to
completely test the programmable logic and routing resources in the FPGA core will be

presented and analyzed.
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CHAPTER THREE

LOGIC BIST

In this chapter, the logic BIST methodology is presented in its application and
adaptation to the FPGA core architecture in the AT94K series SoC. The architectural
issues that impact the logic BIST architecture and implementation are discussed.
Evaluation of the logic BIST approach through fault simulation is also presented.
Automatic generation of the logic BIST configurations for any size AT40K FPGA and
AT94K FPGA core using MGL will be discussed. An analysis of the advantages and
limitations of MGL will be presented. Finally, the results of logic BIST for the FPGA
core in the AT94K series SoC is compared to the results obtained for the ORCA [9] and

Xilinx [10] FPGAs.

3.1 Architectural Implicationson Logic BIST Architecture

The Atmel FPGA architecture imposes new constraints on the BIST methodology
originally applied to the ORCA [9] and Xilinx [10] FPGAs, which include the type of
TPG used, BUT configurations, and ORA implementations. The architecture of the PLB
and its associated local routing resources has several implications on the logic BIST
architecture in the FPGA core of the AT94K series SoC. The architectural implications
of the FPGA core on the logic BIST approach are presented in the subsequent

discussions.
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Figure 3.1 Clock and Set/Reset Routing Structurein Atmel FPGA [14], [15]

One of the main factors influencing the logic BIST architecture is the column-
based reset and clocking schemes employed in the Atmel FPGA core. The clock and
reset inputs for the D flip-flop present in each PLB are arranged in banks of four PLBs
along columns as illustrated in Figure 3.1. The clock connections to each bank of four
PLBs in the FPGA array can be made either from a x8 line, shown on the left in Figure
3.1a, or from the global clock line, shown on the right in Figure 3.1a [14], [15]. Each
column of PLBs can connect to one of 10 global clock signals that connect to the FPGA
I/O cells [14], [15]. The clock signal may also be routed onto a x8 line and then
connected to the PLB as well [14], [15]. Each bank of four PLBs has an associated
Sector Clock Multiplexer (MUX) that selects the desired clock signal from the global
clock line or from the x8 line [14], [15]. The triggering for the D flip-flop is either rising

or falling edge, and is set by selecting either the non-inverting or inverting input to the
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Clock Edge Selection MUX [14], [15]. A similar scheme is employed in the routing for
the asynchronous Set/Reset signal for the flip-flops. Banks of four PLBs are connected
to a Sector Set/Reset Multiplexer that selects the desired set/reset signal either from the
global set/reset line or the x8 line [14], [15]. The configuration bits for the individual
flip-flops determine the function (either Set or Reset). The polarity (active high or active
low) of the incoming Set/Reset signal is determined by a configuration bit associated
with the Set/Reset Polarity Selection MUX [14], [15].

As a result of the column-oriented clock and reset routing schemes illustrated in
Figure 3.1a and 3.1b, the logic BIST architecture employed must also be column-based in
order to test the clock and reset inputs to the BUTs during the logic BIST configurations.
A row-based logic BIST architecture does not allow the Set/Reset or rising/falling edge
triggering associated with the flip-flops in the BUTs to be tested. Due to the column-
orientation of the Set/Reset of the flip-flops, an ORA in a row-based logic BIST
architecture would be reset any time a BUT is reset thus causing the loss of any
mismatches that could have been latched in the flip-flop within the ORA.

The architecture of the PLB also has a large impact on the type of ORA
implemented in the logic BIST test sessions. In this FPGA, the PLB does not contain
sufficient logic resources to implement more than a comparison of three inputs while
having feedback to latch up any mismatch between the three inputs. Therefore, only one
output from each adjacent BUT can be compared during a given BIST configuration as

illustrated by the ORA structure in Figure 3.2.
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Figure 3.2 ORA Structurefor Logic BIST

The PLB outputs, denoted as X and Y in Figure 2.3, have an impact on the logic
BIST architecture as these outputs connect only to adjacent PLBs as shown in Figure
2.6a. The diagonal and orthogonal orientations of the X and Y connections, respectively,
impose restrictions on the BUT to ORA connections in the application of logic BIST.
Since each is a PLB output and must be observed, both outputs must be compared during
logic BIST. Furthermore, the PLBs acting as ORAs can only observe one X output and
one Y output at a given time due to the local interconnect multiplexer PIPs shown in
Figure 2.5. Therefore, the most efficient choice of local routing resources for the
application of BIST is the X and Y outputs to implement the BUT to ORA connections in
the logic BIST architecture. In order to ensure comparison of the X output of one BUT
with the Y output of another BUT, a set of routing schemes was devised, as shown in
Figure 3.3, to allow outputs of the PLBs configured as BUTs to be observed by the
ORAs. During subsequent test phases in a given logic BIST test session the routing
schemes are alternated between routing schemes 1 and 2 such that the X and Y outputs of

adjacent BUTSs are observed in an alternating fashion.
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Figure 3.3 BUT to ORA Connections During Logic BIST

Another implication that the small PLB imposes on the ORA structure is that an
ORA with a comparison of two inputs and feedback for the latching of mismatches does
not have sufficient additional logic resources to include a shift register for retrieval of the
BIST results at the end of a given test phase. Three alternatives are available to work
around this problem.

An ORA can be implemented as shown in Figure 3.4b, and after completion of a
logic BIST test phase, be reconfigured as a shift register as in Figure 3.4d to shift out the
BIST results. Since the FPGA is capable of dynamic partial reconfiguration, this can be
done by using the synchronous RAM configuration mode to write only to the PLBs
configured as ORAs and BUTSs along the edges needed to route the shift data through to
the next column in the shift register. This partial reconfiguration can also be performed
by the AVR core in the AT94K series SoC [14], [15]. The logic BIST sequence in this

case would be as follows: 1) download the bitstream for a logic BIST test session, 2) run
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the BIST sequence, 3) reconfigure the ORAs as a shift register, and 4) shift out the
Pass/Fail results contained in the ORAs. Figure 3.4a illustrates the configuration of an
individual ORA and its corresponding BUT connections. Figure 3.4c illustrates the
transformation via dynamic partial reconfiguration to a shift register for retrieval of the
BIST results. Figure 3.4b and 3.4d show the internal PLB structure before and after its
transformation to a shift register, respectively. The shift signal is shown as an input to
the PLB in Figure 3.4e in the actual implementation of the desired ORA shown in Figure
3.4b. This signal is present since it must be routed to the ORAs in the initial download
bitstream for logic BIST due to constraints imposed on routing in MGL. Each route in
MGL must have both a source and destination specified, therefore, the shift signal must
be an input to the ORAs in order to route the signal to the ORAs for retrieval of BIST
results. The presence of this signal does give an advantage. The shift signal can be used
for additional testing of the PLBs and can be used to force a failure indication in the

ORAs to provide a functionality check in the downloaded configuration.
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This approach has the best diagnostic resolution of the available approaches since

an ORA compares the corresponding outputs of two BUTs, a fault can be diagnosed to a
particular PLB. By knowing the shift register's order and placement, the ORA results

that are shifted out can be used to diagnose the location of a faulty PLB based on the

BIST results [19].

Figure 3.5. The BIST sequence in this case would be as follows:

Another approach available is to implement a 2-PLB ORA where one PLB

compares the corresponding outputs of four BUTs. The other PLB is used to latch any

mismatch and for shifting out the results at the end of the BIST sequence as illustrated in
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bitstream for a logic BIST test session, 2) Run the BIST sequence, and 3) Shift out the
Pass/Fail results contained in the ORAs. This ORA configuration yields a lower
diagnostic resolution compared to the first approach since the outputs of four BUTs are
being compared in a single ORA. However, partial reconfiguration is not required in

order to retrieve BIST results.

To Next global routing
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X
LI DQ
Y
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: Data
Shift { i Shift
Data
a) 2-PLB ORA Connections b) 2-PLB ORA Structure

Figure 3.5 2-PLB ORA with Shift Register

The X and Y PLB outputs are not being observed on two of the BUTs in the 2-
PLB ORA implementation. As can be seen in Figure 3.5, the outputs of those PLBs must
be routed out of the PLB through the L output in order to reach the global routing
resources to connect to the comparison portion of the 2-PLB ORA. This imposes a more
complicated routing scheme and could lead to lower fault coverage.

The last approach available is to read the ORA flip-flop contents through
configuration memory readback. The synchronous RAM mode can also be used to read
the configuration memory in order to obtain pass/fail indications held within the flip-
flops in the ORAs [14], [15]. However, in the case of the AT94K series SoC, the

configuration memory of the FPGA core can be written by the AVR core, but cannot be
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read by the AVR core [14]. As a result, the single PLB ORA implementation with
reconfiguration into a shift register, performed by the AVR, is the best choice for
application to the FPGA core of the AT94K series SoC.

The TPG chosen for the logic BIST test sessions for the Atmel PLB was a 5-bit
binary counter to drive the five inputs to the PLB. The PLB is only capable of
implementing a single counter cell. The Y output of the PLB connects directly either
vertically or horizontally to an adjacent PLB and is ideal for implementing the carry
signal in a binary counter. Since the PLB is only capable of implementing a single
counter cell, a TPG such as an LFSR would require more PLBs and would not be as
efficient an implementation as the binary counter for the case of the PLB due to the
requirement of additional logic for implementing an all O's state in the LFSR. The
smallest array size in the FPGA is 16x16, and is only capable of handling two identical
TPGs no larger than eight PLBs each. In this array size, the 5-bit binary counter is easily
placed within these constraints. Therefore, the logic BIST architecture as described in

this section will work for any size AT40K series FPGA or AT94K series FPGA core.

3.2 Moddling the PLB for Fault Simulations

Considerable knowledge about the logic within the PLB was obtained by studying
the datasheets and technical references available from Atmel in [14], [15], [29], [30].
The majority of the configuration bits associated with the PLB were determined through
performing various download tests and observing the behavior of the PLB. Through
knowledge of the logic and the associated configuration bits, a gate-level model of the

PLB was developed in order to perform single stuck-at, gate level fault simulations.
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From these fault simulations, the number of BUT configurations for the logic BIST test
sessions as well as the fault coverage obtained with these BUT configurations could be

evaluated.

3.2.1 MGL Generated BIST Configurations

An MGL program was developed to automatically generate BIST configurations
and the logic BIST architecture for testing the PLBs in the Atmel. This MGL program
was designed to generate logic BIST configuration for any size FPGA array for both the
ATA40K series FPGAs and the AT94K series FPGA cores. By adjusting a few parameters
within the program, five logic BIST configurations can be automatically generated with
four different orientations (TPG located on either the East, West, North, or South side of
the array, as illustrated in Figure 3.12) for any size FPGA array. The program for the
automatic generation of these logic BIST configurations consists of approximately 2500
non-commented lines of MGL source code. The flow diagram shown in Figure 3.6
illustrates the overall structure and operation of the MGL program.

The first parameter to be selected in the MGL program is the device in which the
logic BIST configurations are to be generated. All possible devices and packages are
given as comments within the MGL program in order to make device selection
straightforward. Next, the desired TPG location is set in order to determine the
orientation of the logic BIST session. As an example, setting the TPG location to 'l'
places the TPGs in the first column on the West side of the array. With the TPG location

set to '2', the TPG column is located on the East Side of the array. For TPG locations '3'
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and '4', the TPGs are oriented horizontally in rows and located along the North or South

sides of the array, respectively.

Routing for TPG to BUT
Connections

Instantiation and Routing for
I/0 Pads

Design Generated

Instantiation and Placement of

TPGs, BUTs, and ORAs into

PLBs as well as BUT to ORA
connections

Figure 3.6 Logic BIST MGL Program Flow Diagram
Within a given session, East, West, North, or South, five BUT configurations can
be generated. These five configurations were chosen from the possible dynamic macros

available through MGL to give maximum fault coverage with the fewest BIST test
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phases. The five chosen were the FGEN1R, FGEN1, FGEN1RF, MGEN, and FGEN2F.
Once these parameters are set, the MGL program can be compiled to generate the
selected test session and BUT configuration for the selected device.

The program begins by instantiating the TPGs, BUTs, and ORAs into their
respective columns or rows, depending on the orientation, as well as making the BUT to
ORA connections. Next, the interconnections between the TPGs and BUTSs are routed.
These interconnections are followed by the instantiation of the routing for the Shift signal
(Figure 3.4) for the ORAs and routing the Pass/Fail indication to an I/O pad from the last
ORA that will be in the shift register after partial reconfiguration. Finally, the I/O pads
are instantiated to connect the input and output signals (Clock, Shift, and Pass/Fail). The
I/0O pads instantiated are for the 84, 144, and 208 pin devices with package designations
AJC, BQC, and DQC, respectively, which are illustrated in Table 3.1.

Table 3.1 Pin Numbersfor 1/0O Cellsfor Logic BIST

Signal 84 Pin AJC | 144 Pin BQC 208 Pin DQC
Package Package Package
Clock 13 2 4
Shift 81 121 174
Pass/Fail 23 19 27

In developing the MGL program, obstacles were encountered where the provided
documentation was insufficient to determine how to achieve adequate control over some
of the routing to the PLBs and to the I/O pads. In this case, the text-based output files
produced by the Figaro IDS software were investigated for pertinent information. This
information consisted of the names of routing resources within the FPGA that could be
applied in the MGL program to obtain the necessary control in routing the configuration

of the FPGA for application of BIST.
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The five BUT configurations, FGEN1R, FGEN1, FGENIRF, MGEN, and
FGENZ2F, are illustrated in Figure 3.7 in terms of the configuration of the logic resources.
Of the three FGENI1 type macros, the first implements a registered output, 4-input
exclusive-OR logic function (FGEN1R), the second implements a combinational output,
4-input exclusive-NOR logic function (FGEN1), and the third implements a 3-input
exclusive-OR logic function with registered feedback (FGENIRF). The fourth BUT
configuration uses is an MGEN macro which implements a 4-input exclusive-NOR logic
function with a combinational output. The final BUT configuration implements a 3-input
logic function shown in Figure 3.7e and utilizes combinational feedback (FGENZ2F).
Where an X' is shown for the set/reset signal, the value is considered as a don't care value

by MGL and is arbitrarily assigned a value by the CAD tools.
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These configurations were found to be the minimum number of configurations
that could be used to yield the maximum fault coverage in the PLB through the use of
MGL. Depending on the BUT configuration, ORAs were configured to check for either
BUT response matches or mismatches. As can be seen in Figure 3.7, the X and Y outputs

of BUT configurations 4 and 5 will have different output values and require an ORA that
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will detect matches in the BUT output responses as an indication of a fault. BUT
configurations 1 through 3 have the same output values on the X and Y outputs and
require an ORA that will detect mismatches in the BUT output responses as an indication
of a fault. This is accomplished by using an XOR function for configurations 1 through 3
and an XNOR function for configurations 4 and 5 in the ORA 1illustrated in Figure 3.4b.

Using the derived gate-level PLB model, fault simulations were performed with
these five MGL generated BUT configurations. The five BUT configurations yielded a
cumulative fault coverage of 97.9% for collapsed, single stuck-at gate-level faults within
the PLB for those BUTs having both their X and Y outputs observed simultaneously.
Table 3.2 gives the cumulative fault coverage obtained for the five BUT configurations.
A total of 166 collapsed faults were simulated in the PLB with five faults left undetected
after the five BIST configurations, of which three faults were potentially detected.

Table3.2 MGL Generated BUT Configurations

BUT Detected |Undetected| Potentially | Total Faults | Cumulative
Configuration | Faults Faults |Detected Faults| Simulated | Fault Coverage
FGENIR 99 67 0 166 59.64%
FGEN1 43 24 0 67 85.54%
FGENI1RF 9 15 1 24 91.27%
MGEN 7 8 0 15 95.48%
FGEN2F 3 5 2 8 97.89%

The edges of the PLB array pose an interesting problem in observability of the
BUT outputs X and Y since, along the edge of the array, the BUTs do not have both
outputs observed in the ORAs simultaneously. The fault coverage obtained in the left
edge PLBs is slightly less than that obtained in the PLBs in the middle of the array. The
five BUT configurations from MGL obtain 97.3% fault coverage in the left edge PLBs
and 97.9% fault coverage in the right edge PLBs, which matches the number in the

middle PLBs, as shown in Figure 3.8. These differences arise from the fact that the left
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and right edge PLBs have a different output observed in a given BUT configuration due

to the alternating routing scheme shown in Figure 3.3.
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Figure 3.8 Middle and Edge Fault Coverage (Five BUT Configurations)

3.2.2 Theoretical Best Case

The MGL and Figaro software provided by Atmel does not grant the user
complete control over the PLB functions and hence, the configuration bits associated
with the PLB. The dynamic macros impose constraints on the controllability of the PLB
that do not allow for necessary test conditions to be set up in the PLB to test for certain
faults. This is in part due to the values placed on particular configuration bits, which, for
the selected dynamic macro, can be either a logic '0' or logic 'l', and MGL arbitrarily sets
the bit to a value other than that desired for the proper test conditions. Therefore, it was
necessary to look at alternatives and modifications to the MGL-based approach in order

to maximize fault coverage. One solution is manipulating the download bitstream to set
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up the desired test conditions in the configuration bits before the BIST configuration is
downloaded to the FPGA.

Through the single stuck-at, gate-level fault simulations a theoretical minimum
number of BUT configurations was derived. Assuming observability of all PLB outputs,
X, Y, and L, and complete controllability of all PLB configuration bits, a fault coverage
of 100% for gate-level single stuck-at faults can be obtained in only three BUT
configurations, which are shown in Figure 3.9. The first configuration (Figure 3.9a) is
the same FGEN1R dynamic macro configuration generated by the MGL program while
the second and third are custom configurations and do not correspond to any available
dynamic macro. The second configuration (Figure 3.9b) is similar to an MGEN type
dynamic macro in that it utilizes the upstream AND gate, however, the paths through the
PLB logic are different than what can be arranged utilizing the MGEN dynamic macro.
The third configuration (Figure 3.9c) utilizes the feedback in the PLB and utilizes
different paths through the PLB logic than can be obtained with any of the dynamic

macros.
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These three BUT configurations represent the absolute best case for logic BIST.
In actuality all outputs are not observable in the ORAs, only the X and Y outputs are
observed in logic BIST, as demonstrated by the ORA structure in Figure 3.2 and the logic
BIST architecture in Figure 3.3. However, through manipulation of the download

bitstream, an alternative exists between this ideal case and the case with MGL.

3.2.3 Manually Generated BUT Configurationswith Bitstream Manipulation

A C program was written to post-process the bitstreams produced through the
compiled MGL program in order to produce the desired test conditions within the BUT
configuration bits. This C program consisted of approximately 370 non-commented lines
of C source code. In addition to increasing the fault coverage within the PLB, using a C

program to manipulate the configuration bits within the PLB can reduce the number of
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BUT configurations from five to four. This is accomplished by generating a template
bitstream for the first and third BUT configurations produced by the MGL program and
then manipulating the bitstream templates via the C program to produce the remaining
two BUT configurations. These template bitstreams contain all the configuration and
routing information needed to have the TPGs, BUTs, and ORAs and their interconnect
configured in a given test session. The template bitstream for BUT configuration 1
configures the reset function and falling edge triggering of the BUTs while BUT
configuration 3 configures the set function and rising edge triggering of the BUTs. BUT
configurations 1, 2, and 4 are generated from the bitstream template for the first BUT
configuration and BUT configuration 3 is generated from the bitstream template for the
third BUT configuration. The template for the third BUT configuration is changed since
BUT 3 for the manual configurations is different than for BUT 3 produced from MGL.
Having the two template bitstreams accommodates testing for the set and reset functions
and the rising/falling edge triggering since the C program does not manipulate the
configuration bits associated with the set and reset or the rising/falling edge triggering.
The only changes needed in the bitstream are performed by the C program, which
changes the configuration bits for the BUTs and ORAs. The C program changes the
configuration bits for those PLBs in order to change between BUT configurations,
change the ORA configuration for either matching or mismatching, and change the
alternating routing scheme between the BUTs and ORAs. Table 3.3 gives the cumulative
fault coverage obtained for the logic associated with the BUT during the four BIST

configurations.
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Table 3.3 Manually Produced BUT Configurations

BUT Detected | Undetected |Potentially Detected| Total Faults | Cumulative
Configuration | Faults Faults Faults Simulated |Fault Coverage
1 99 67 0 166 59.64%
2 50 17 0 67 89.76%
3 13 4 1 37 97.89%
4 3 2 0 4 99.70%

The four BUT configurations are illustrated in Figure 3.10. The first
configuration is an FGENIR (the same as the first configuration with the five MGL
generated configurations and the three theoretical minimum configurations), which is
used as a template bitstream to produce the remaining three configurations. The second
BUT configuration (Figure 3.10b) is a 4-input exclusive-OR logic function which utilizes
the upstream AND gate and both the X and Y outputs are combinational. The third BUT
configuration (Figure 3.10c) tests the registered feedback path in the PLB again utilizing
the upstream AND gate by ANDing the feedback with a PLB input. The outputs in this
configuration are again combinational. The final BUT configuration (Figure 3.11d) tests
the combinational feedback path in the PLB and tests the outputs directly from the LUTs
in the PLB. These configurations also require ORAs that detect a match or a mismatch,
depending on BUT configurations. As can be seen, the X and Y outputs will be the same
logic values in BUT configurations 1 and 4 while in BUT configurations 2 and 3, the X
and Y outputs will have different logic values, which require ORAs configured to check

for matches and mismatches, respectively.
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Figure 3.10 Manually Generated Four BUT Configurations

The four BIST configurations generated from the C program yield a total fault
coverage of 99.7%, which is closer to the 100% obtained with the theoretical minimum
three BUT configurations. The five MGL configurations resulted in 97.9% fault
coverage with faults left undetected. However, in the four BUT configurations, the one
fault left undetected is actually potentially detected and is guaranteed to be detected
during the routing BIST configurations.

The disadvantage in utilizing these four BUT configurations to test the PLBs in
the array is a decrease in fault coverage observed in the BUTs on the left and right edges
of the PLB array. Along these edges, the fault coverage observed decreases from that of
the BUTs in the middle of the array shown in Table 3.2 due to the alternating X and Y

BUT to ORA routing schemes and the configuration of the BUTs during the test phases.
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The total fault coverage in the BUTs obtained during logic BIST along the left and right
edges of the array drops to 82.23% for left edge BUTs and drops to 87.95% for right edge
BUTs from the 99.7% obtained in the BUTSs in the middle of the array, as is illustrated in

Figure 3.11.
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Figure 3.11 Middle and Edge PL B Fault Coverage (Four BUT Configurations)

One solution to the problem of decreased fault coverage along the edges of the
array is to apply each BUT configuration twice using both BUT to ORA routing schemes.
This doubles the number of test phases in order to obtain increased fault coverage only
along the edges of the array. However, this problem can be almost eliminated by rotating
the orientation of the logic BIST architecture from column-based to row-based to obtain
North and South test sessions. This rotation is demonstrated in Figure 3.12, which shows
the four directional orientations of the logic BIST test sessions, East, West, North, and
South. This rotation also gives a total of 16 logic BIST configurations, four BUT

configurations for each directional orientation of the logic BIST architecture.
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Due to the column-based banks of clocks and resets, the flip-flops cannot be
tested during the row-based North and South test sessions; however, these have already
been tested during the column-based East and West test sessions. By rotating the logic
BIST test sessions, all but eight of the PLBs in the array will have 99.7% fault coverage.

The eight PLBs are located in the four corners of the array as illustrated in Figure 3.13.
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An advantage of performing the rotation of the logic BIST test sessions includes
allowing for horizontal and vertical local routing resource testing to be performed
simultaneously with the logic BIST. Since the local routing configuration bits are
associated with the PLB configuration bits, testing can be performed on the local
interconnect simultaneously by using the C program to change connections to the local
routing resources between test phases. The inputs to the PLB have multiplexers to select
an input signal from one of the five horizontal or five vertical x4 lines, as shown in Figure
2.5. By rotating through the combinations of inputs during test phases, these multiplexer
PIPs can be tested simultaneously during logic BIST.

Through fault simulations, it was found that the rotation on the input connections
allowed all but one input to one multiplexer in the local routing resources to be tested
during the four logic BIST test sessions. However, this particular input is used for the
Shift signal to the ORAs during the shifting out of the BIST results. As a result, a shift
register test was added to test this input. In this additional test a logic '1' is input to the

ORAs on the Shift input which causes all the ORAs to latch the logic '1' as can be seen in

69



Figure 3.4e. The ORAs are then reconfigured as a shift register and the ORA values are
shifted out. Adding local routing resource faults to the BUTSs increases the total number
of collapsed faults from 166 to 298. These additional faults include faults in the MUX
PIPs and cross-point PIPs at the W, X, Y, and Z inputs to the PLBs from the global
routing resources.

The results of the fault simulations performed on both the PLB and local
interconnect are given in Table 3.3. The configurations denoted by EW indicate fault
simulations for PLBs during East/West orientations of logic BIST while the
configurations denoted by NS indicate fault simulations for North/South orientations of
logic BIST. The ORAShift simulation indicates the additional test for the input of the
shift signal which forces ORA failures. The total fault coverage obtained was 95.81%,
with very few faults undetected. In performing these fault simulations, the PLBs
functioning as both BUTs and ORAs were monitored to determine the total fault
coverage. These are designated respectively in Table 3.4.

Table 3.4 Total Fault Coveragefor PLB and L ocal | nter connect

Detected | Undetected Potentially Total Faults | Cumulative Fault
Test Phase | Faults Faults Detected Faults | Simulated Coverage
BUTIEW 151 147 0 298 50.67%
BUT2EW 68 79 0 147 73.49%
BUT3EW 20 59 1 79 80.37%
BUT4EW 7 52 0 61 82.72%
ORAIEW 5 47 0 52 84.40%
ORA2EW 4 43 0 47 85.74%
BUTINS 13 30 0 43 90.10%
BUT2NS 10 20 0 30 93.46%
BUT3NS 0 20 0 20 93.46%
BUT4NS 0 20 0 20 93.46%
ORAINS 4 16 0 20 94.80%
ORA2NS 2 14 0 16 95.47%
ORAShift 1 13 0 14 95.81%
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Undetected faults were left only on the cross-point PIPs present on the W, X, Y,
and Z vertical and horizontal inputs to the PLB, which are shown in Figure 2.7 as well as
some of the X direct PLB connections and the tri-state buffer present on the L output of
the PLB. The undetected faults left on the cross-point PIPs as well as those in the X
direct connections and the tri-state buffer are tested during the routing BIST sessions, as
will be discussed in Chapter 4. The one potentially detected fault is associated with the
multiplexer for the L output and is detected when testing the tri-state buffer during
routing BIST. Due to the amount of logic and routing resources utilized in logic BIST,
the cross-point PIPs are not detected since opposite logic values are needed on the
vertical and horizontal cross-point PIPs in order to detect faults. The X direct PLB
connections left untested in the PLB array include one of four direct X connections in a
PLB in a given location in the array, which result from the routing schemes (shown in
Figure 3.3). The tri-state buffer on the L output of the PLB was not targeted during logic
BIST due to the choice of ORA, as discussed in section 3.2. The best choice for
regularity and efficient implementation allowed for two observable outputs from the PLB
and did not allow for three observable outputs from the PLB, which meant the exclusion

of L as an observable output during logic BIST.

3.3MGL'sEffectson Logic BIST Development and Application

The utilization of MGL to develop logic BIST configurations for the AT94K
FPGA cores had both advantages and disadvantages. The language has similarities to
modern programming languages and HDLs that allow users to more easily learn the basic

constructs that are used and, thus, create designs relatively quickly once the language is
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mastered. These similarities allow the user to easily transition from a programming
language or HDL into the MGL environment. As a result, the MGL approach facilitates
an integrated approach to the development of automated BIST configuration generation
within the FPGA manufacturer CAD tool suite. This was not available in previous
development of BIST for FPGAs in [9], [10], [19], [20]. However, the language does
not give complete control over the PLBs and routing resources within the FPGA nor is
complete documentation given to provide necessary details for the development and
application of BIST. The development of the logic BIST configurations, therefore,
requires more than MGL alone. The implementation of the basic structure of the logic
BIST configurations is fairly straightforward using MGL, however, additional control
over the PLBs and routing resources is required through other means, such as the C
program that was utilized to manipulate the download bitstream in this research and

development effort.

3.4 Comparison of Logic BIST for Atmel, ORCA, and Xilinx FPGAs

As a result of the architectural differences in the PLBs between the ORCA and
Xilinx FPGAs, a different number of logic BIST configurations were required to test the
two FPGAs; as summarized in Table 3.4. Similarly the number of logic BIST
configurations is different for the Atmel FPGA than that required for the ORCA and
Xilinx FPGAs. In order to test just the logic in the PLBs in the Atmel FPGA, a total of
four configurations is required. This is less than the number of configurations required
for both the ORCA and Xilinx FPGAs. The primary reason is the smaller amount of

logic present within the Atmel PLB, as pointed out in Table 2.1. A result of logic BIST
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unique to the Atmel FPGA is the loss of fault coverage in the PLBs located on the left
and right edges of the array due to the FPGA routing architecture and small PLBs. This
is overcome by the additional configurations performed by rotating the orientation of the
logic BIST to perform the East, West, North, and South test sessions. In performing
these additional sessions, not only do the PLBs along the edges gain improved fault
coverage, but diagnostic resolution is also increased [19]. In addition, a large majority of
the local routing resources is also being tested simultaneously.

Table 3.5 FPGA Logic BIST Configuration Comparison

FPGA Number of BUT
Configurations

ORCA 2C 9
ORCA 2CA 14
Xilinx 4000 12
Xilinx Spartan 12
Atmel AT40K 4
Atmel AT94K 4
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CHAPTER FOUR

ROUTING BIST

The adaptation of FPGA routing BIST techniques will be discussed in their
application to the Atmel AT94K series FPGA core. The fault models used in testing the
routing resources of the FPGA will be discussed. The routing architecture of the Atmel
FPGA poses new challenges in the application of BIST, which will be discussed along
with proposed solutions. The goal of the development effort described in this chapter
was to completely test all global routing resources and those local routing resources not
completely tested during logic BIST. The routing BIST configurations are presented
along with the evaluation of the faults detected by these configurations. Finally, the
number of routing BIST configurations is compared to those previously developed for

ORCA and Xilinx FPGAs.

4.1 Fault Modelsfor FPGA Routing Resour ces

There are three basic types of fault models that are typically considered when
modeling faults in the routing resources of an FPGA [11]. These faults include PIPs
(cross-point PIPs, break-point PIPs, or MUX PIPs) stuck-closed (stuck-on) and stuck-
open (stuck-off), wire segments stuck-at-0 and stuck-at-1, and, wires open and shorted
wires (bridging faults) [11]. BIST architectures for testing the routing resources have

been developed using these fault models to test for these various types of faults that may
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occur. In order to test the FPGA routing resources for some of these faults the applied
test must ensure that every PIP and wire segment can transmit both a '0' and a '1"' [11].
This will detect any stuck-open (stuck-off) fault in any closed PIP along the wire segment
as well as any open or stuck-at fault affecting the wire segment [11]. In order to detect a
PIP that is stuck-closed (stuck-on) opposite logic values must be applied to the wire
segments associated with the PIP with both wire segments monitored by ORAs such that
a fault will result in an incorrect logic value on one of the wire segments [11]. As a
result, both combinations of logic values (1,0 and 0,1) must be applied during the test to
the two wire segments separated by the open PIP [11]. For the case of wire segments that
may have bridging faults associated with them, the same case holds true. During the test,
opposite logic values must be applied to the wire segments while the wire segments are
monitored by ORAs so that a fault will result in an incorrect logic value on one of the two
wire segments [11]. A MUX PIP requires one test configuration for each of its inputs
where both a '0' and a 'l' must be applied to each input while the opposite logic value is
applied to the remaining unselected inputs [11]. By applying this test, both a stuck-open
fault in the closed PIP connecting the selected input wire segment to the output wire
segment as well as any stuck-closed fault in the unselected (open) PIPs is detected [11].
In the case of non-decoded MUX PIPs, only one unselected input needs to be tested for

stuck-on during each stuck-off test of a selected input.

4.2 M odifications to Routing BIST Methodology

In the previous applications of FPGA routing BIST to the ORCA [9] and Xilinx

[10] FPGAs, a comparison-based routing BIST approach has been used. In this particular

75



case, only two wires and associated PIPs can be observed in the ORAs. For the case of
the Atmel FPGA, it is necessary to observe more than two wires in an ORA in order to
minimize the number of configurations required to test the programmable routing
resources. Therefore, the parity-based approach proposed in [23] was modified for
application to the global routing resources in the Atmel FPGA. The approach in [23] for
the testing of FPGA interconnect involved utilization of a TPG generating parity, a set of
WUTs, other assumed fault-free routing resources, and a parity-based ORA. In this case,
the TPG would source the test patterns over sets of WUTs to the ORA and, over other
routing resources assumed to be fault-free, a parity bit was also routed to the ORA. This
approach was modified to incorporate the parity bit as part of the test patterns being

sourced over the WUTs and observed in the ORAs, which is illustrated in Figure 4.1.

_____ WUTs
0 I' |
: |
|
Dt 0
| |
| |
Par |. ____________ .

Figure 4.1 Routing BIST Architecture
In this architecture, the TPG comprises a two-bit binary counter along with a
parity bit generated over the two-bit count. The WUTs are a selected subset of routing
resources, and the ORA checks for parity across the test patterns. Each of the sets of
busses, both x8 lines and the x4 line, contain five wire segments in both vertical and
horizontal directions. To apply this to the global routing resources, the parity bit is

routed on the middle bus (third bus) of each set, while each of the two bits of the binary
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count are routed on two of the remaining four busses. These two bits are routed onto one
bus on either side of the parity bit (i.e. count bit CO is routed onto the first and fourth
busses and C1 on the remaining busses). By routing the binary count and parity bits in
this particular manner, any two of the wire segments in a set of busses are guaranteed to
have opposite logic values (0,1 and 1,0) during the test sequence in order to detect faults
present in the routing resources. In order to accommodate opposite logic values for
particular tests associated with the cross-point PIPs, wire segments, and repeaters,
alternating TPGs and ORAs for binary up-count with even parity and for binary down-
count with odd parity are employed. This is demonstrated in Table 4.1, which shows the
count sequences of both types of TPGs. Note that for the TPGs to attain opposite logic
values between their test patterns, the binary up counter must be reset initially and the
binary down counter must be preset initially.

Table4.1 Test Pattern Sequences for Routing BIST

Up-count with Down-count with
Even Parity Odd Parity
(C1, CO, Parity) (C1, CO, Parity)
000 111
011 100
101 010
110 001

As is illustrated in Table 4.1, between the bits of the test patterns for each TPG
and parity combination, opposite logic values are present between any two of the bits in
the sequence. In addition, between the respective bits of the two test patterns, there are
opposite logic values. This allows the necessary conditions to be met to detect faults
associated with the fault models used for the routing BIST development. This pattern can
be utilized to apply both logic values to every wire segment and PIP thus testing for any

stuck-off fault in any closed PIP in a set of WUTSs as well as for any open or stuck-at
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fault affecting the wire segments in a set of WUTs. The presence of opposite logic
values in the patterns can be used to test for stuck-on faults associated with PIPs in a set
of WUTs in addition to testing the non-decoded MUX PIPs in the repeaters. The only
exception is in the case of the L output configurations, which use a similar architecture
and the same type TPG and ORA as those used in the logic BIST test sessions.

A TPG sourcing the two-bit binary count value and generating a parity bit across
the 2-bit count was ideal for the PLB architecture. Due to the small size of the PLB, the
number of inputs that can be checked for parity in a given ORA while latching an error is
a maximum of three. This restriction is a result of the number of bits present in the LUTs
as well as the organization of the PLB, which is shown in Figure 2.3. The LUTs in the
PLB contain eight bits each and only four inputs can be routed into the PLB, which allow
for up to a 4-input function to be obtained by combining the LUTs through the use of the
multiplexers located just below the LUTs in Figure 2.4. In order to implement an ORA
with feedback to latch errors, however, a maximum of three inputs can be checked for
parity, which is illustrated in Figure 4.2. Thus, a TPG was chosen to source three test
patterns, including the parity bit, over the sets of WUTs to test the programmable
interconnect in the FPGA. The exclusive-OR (or exclusive-NOR) gate at the front end
checks for even (or odd) parity across the test pattern and the OR gate serves to latch up
an error within the flip-flop if an error in parity is detected (given by the output of the

exclusive-OR or exclusive-NOR gate).
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Figure 4.2 ORA Structurefor Routing BIST

In order to implement this ORA in the FPGA, a C program was utilized to
perform bit manipulation on the download bitstream files. This was necessary due to the
available dynamic macros as discussed in Section 2.6.1. A function can be implemented
in the PLB with a parity-check of three inputs and feedback to latch any errors using an
FGEN2 type dynamic macro. However, a Shift signal must be routed to all ORAs in
order to shift out the BIST results at the end of a routing BIST phase, as was the case in
logic BIST. This signal can not be routed to the ORAs unless specified as an input to the
PLB in the MGL program. Thus, a dynamic macro with four inputs, the FGEN1 type
dynamic macro, is necessary in order to route the Shift signal to the ORAs. Utilizing a
dynamic macro with four inputs does not allow for the ORA structure to be implemented
through MGL, therefore, a C program was generated to perform bit manipulation of the
download bitstream files. In doing so, the fourth input to the ORAs needed for the Shift
signal can be ignored during the execution of a routing BIST phase even though the

signal is routed through the global routing resources and available to the PLB. Upon
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execution of a given routing BIST phase, the ORA must be dynamically reconfigured,
utilizing the synchronous RAM mode of configuration for the FPGA or through partial
dynamic reconfiguration from the AVR, to utilize the Shift signal in order to shift out the

BIST results, as illustrated in Figure 3.4d.

4.3 Overview of Routing BIST Configurations

The routing BIST configurations for the programmable routing resources consist
of four test sessions targeting four different types of the routing resources. These tests
target the cross-point PIPs and the repeaters in the global routing resources in addition to
the PLB L output and tri-state buffer and X direct connections left untested after
completion of the logic BIST sessions. There is a total of 48 routing BIST configurations
which include 16 configurations for cross-point type PIPs, 24 configurations for vertical
and horizontal repeaters, 4 configurations for the L output and tri-state buffer, and 4
configurations for the X direct connections. All of these configurations, with the
exception of the L output configurations, utilize the TPG and ORA discussed in section
4.2, differing only by the subset of routing targeted and the particular architecture during
a given routing BIST configuration. The L output configurations use a similar
architecture to that used in the logic BIST test sessions.

These configurations also require that additional pins be utilized for the Shift
input signal and the Pass/Fail output signal. This is due to the use of busses during
particular orientations of configurations. Only particular x8 and x4 lines connect to the
I/O cells through repeaters at the edge of the array, and, therefore, if these lines are

utilized as a set of WUTS, a signal cannot be routed to an I/O cell through these particular
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lines. This was overcome by selecting pins for the Shift and Pass/Fail signals on different
sides of the array in order to avoid conflict with the sets of WUTSs during the vertical and
horizontal orientations of the routing BIST test sessions. In order to accomplish this, two
pins each for both the Shift and Pass/Fail signals were chosen in order to be used in the
different routing BIST configurations, as summarized in Table 4.2. Note that the signals
denoted with a 'l1' have the same pin numbers as used in logic BIST.

Table4.2 Pin Numbersfor 1/O Cellsfor Routing BIST

Signal 84 Pin AJC 144 Pin BQC 208 Pin DQC
Package Package Package
Clock 13 2 4
Shift 1 81 121 174
Shift 2 17 11 17
Pass/Fail 1 23 19 27
Pass/Fail 2 41 53 77

The faults left undetected after completion of logic BIST include stuck-on and
stuck-off faults in the MUX PIPs in the X direct connections from adjacent PLBs, stuck-
on faults in the local routing cross-point PIPs, and stuck-at faults in the MUX PIP and the
tri-state buffer associated with the L output of the PLB. Some, but not all, of the X direct
connections are tested during logic BIST due to the applied logic values to the X inputs
of the ORAs. The MUX PIPs that are tested are selected as inputs to the ORA during
logic BIST while the untested MUX PIPs are not selected as inputs to the ORA during
logic BIST. The local routing cross-point PIPs are left incompletely tested since opposite
logic values are not applied to the vertical (V1-V5) and horizontal (H1-HS) during logic
BIST in order to test the PIPs for stuck-on faults. The MUX PIP associated with the L
output of the PLB is partially tested during logic BIST configurations that utilize
feedback since one of its inputs is combinational and the other is sequential, which

presents a clock-cycle delay between the two inputs and allows opposite logic values
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during a part of the test sequence being applied. It is only partially tested since the faulty
circuit value must be propagated back through the LUTs as feedback. The tri-state buffer
is not selected during logic BIST and is left completely untested. Each of the sets of
routing BIST configurations that target the various types of routing resources is discussed

in the following sections.

4.4 BIST Configurationsfor Cross-Point PIPs

The cross-point PIPs present in the global routing resources, illustrated in Figure
4.3, requires a total of 16 routing BIST configurations. These 16 configurations break
down into two sets of eight configurations with each set targeting a particular set of x8
lines, either the Abus or Ebus lines, on which the cross-point makes or breaks a
connection. These routing BIST configurations target stuck-off and stuck-on faults in the
global routing cross-point PIPs, opens and stuck-at faults in the x8 lines, and the
remaining stuck-on faults in the local routing cross-point PIPs at the inputs to the PLBs
left untested during the application of logic BIST. These configurations are generated
from separate set of MGL and C programs, one set of programs for the Abus line cross-

point PIPs and one set for the Ebus line cross-point PIPs.
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Figure 4.3 Global Routing Associated with the PLB

The basic architecture of the cross-point PIP BIST configurations is a STAR
which consists of an 8x8 array of PLBs with each STAR separated by repeaters. The
STARs are tiled across the FPGA array such that concurrent testing is performed on all
the selected cross-point PIPs in the array, as illustrated in Figure 4.3. Each STAR has
either a TPG functioning as a two-bit up counter with even parity generation and the
corresponding even parity check ORA or has a TPG functioning as a two-bit down
counter with odd parity generation and the corresponding odd parity check ORA. These
two types of STARs are tiled across the array in a checkerboard fashion. This allows
opposite logic values to be sourced into a given STAR from an adjacent STAR to test the
global routing cross-point PIPs shown for stuck-off faults as well as for testing the local
routing cross-point PIPs at the inputs to the PLBs for stuck-on faults, which are both
illustrated in Figure 4.4. Since the configuration is made up of 8x8 STARs, there are
eight phases per cross-point PIP test session. Each routing BIST phase shifts the TPG

down by one row while every other phase the ORAs are shifted up by two columns such
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that, in the last phase, the TPG and ORAs are at the opposite end of the STAR from their
positions in the first phase. In each phase the connections to the two rows of ORAs are
swapped. This allows all the local routing cross-point PIPs at the ORAs to be tested for
stuck-on faults since the inputs to the ORAs enter through vertical local routing cross-
point PIPs and the opposite logic values from an adjacent STAR are routed onto the
corresponding busses associated with the horizontal local routing cross-point PIPs above

each row of ORAs.
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Figure 4.4 Cross-Point PIP Routing BIST Architecture
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Since the cross-point PIPs make or break connections between vertical and
horizontal wire segments, there is no difference in the testing of cross-point PIPs when
orienting the BIST architecture horizontally (as in Figure 4.4) or vertically (can be
derived by rotating Figure 4.4 counter-clockwise 90°). However, by orienting the
architecture both vertically and horizontally during different BIST configurations, all the
local routing cross-point PIP stuck-on faults at the inputs to the PLBs can be tested.
Therefore, the set of configurations for the cross-point PIPs on the Abus lines was
oriented vertically while the Ebus line cross-point PIP set of BIST configurations was
oriented horizontally. These configurations facilitate testing of the cross-point PIPs
denoted in Figure 4.4 for stuck-off faults since both a logic '0' and a logic '1' are passed
through the PIPs. The x4 lines are tested for shorts between the five wire segments in the
set of x4 lines since opposite logic values are guaranteed between every pair of wire
segments during the test pattern. The vertical and horizontal x4 lines are both tested since
the test is oriented both vertically and horizontally and the x4 lines have to be used to
enter into the ORAs from the global routing. The same case holds true for the Abus lines
and Ebus lines. The five wire segments in the set of Abus or Ebus lines are guaranteed to
have both opposite logic values between any pair of wire segments. For the Abus lines,
the repeaters are staggered evenly across the array, meaning that the boundaries of the
repeaters selecting from the Abus x8 lines and the x4 lines matches up with the
boundaries of the FPGA array, as is illustrated in Figure 4.5. This is true because all the

array sizes are multiples of eight: 16, 24, 32, and 48.
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Figure 4.5 Abus Cross-Point STAR Tilesfor all FPGA Array Sizes

d) 48x48

This is not the case for the repeaters selecting from the Ebus x8 lines and the x4
lines since these Ebus x8 lines start with an offset of four PLBs from either edge of the
array. Due to this staggering of repeaters, the cross-point PIP test session for the Ebus
lines have not only 8x8 STARSs but also have 4x4, 4x8, and 8x4 STARs, which are shown
in Figure 4.6. In addition to having different STAR sizes, the checkerboard tiling of the
STARs for the Ebus cross-point configurations is different in the 24x24 array due to the
offset of the Ebus repeaters from the edges and the arrangement of STARs that form the
checkerboard pattern, which is illustrated in Figure 4.6b. For the Ebus line cross-point
PIP configurations, the MGL program is much more complex than that for the Abus line

cross-point PIP configurations.
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Figure 4.6 Ebus Cross-Point STAR Tilesfor all FPGA Array Sizes

4.5 BIST Configurationsfor Repeaters

The repeaters that are disbursed within the global routing resources are shown in
Figure 4.7a. These repeaters required multiple test phases to completely test for all
possible combinations of stuck-on and stuck-off faults that may exist in the MUX PIPs
within the repeater. In addition, the opens and stuck-at faults are further tested for the
Abus x8 lines as well as for the Ebus x8 lines. Since the repeaters are dispersed
symmetrically both horizontally and vertically, tests were derived that test both types of
repeaters. As in the cross-point PIP test sessions, the staggering of the repeaters
throughout the array has several implications on the application of BIST.

Three sets of BIST configurations were developed to test the MUX PIPs in the
repeaters for both stuck-on and stuck-off type faults. These three sets of configurations

were developed for both the Abus line and Ebus line repeaters. The faults targeted during
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each set of configurations are given in Figure 4.7. Figure 4.7a shows the possible
connections that can be made through the MUX PIPs in a repeater and Figure 4.7b lists
the faults that are targeted during a given set of configurations. Since the repeater
structure allows connections to be made in both directions (i.e. from L8 to R8 or from R8

to L8), for a given set of configurations the repeaters must be tested in both directions.
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a) Repeater Connections

R8 Input L8 Input R4 Input L4 Input
MUX PIP | S-On | S-Off | S-On | S-Off | S-On | S-Off [ S-On | S-Off
R8 2 3 2 1 1 2
L8 2 3 1 2 2 1
R4 2 1 1 2 2 3
L4 1 2 2 1 2 3

b) Stuck-on and Stuck-off Faults in MUX PIPs Targeted in a Given Set of Configurations
Figure 4.7 Repeater Connections and Targeted Fault Types

For each type of repeater, there are three sets of configurations each of which has
orientation horizontally and vertically and tests both directions of the connections
through the repeaters. Therefore, there are four test phases per set of configurations: two
horizontal configurations, which test both directions through horizontal repeaters, and
two vertical configurations, which test both directions through vertical repeaters. This
makes a total of 12 BIST configurations for each set of repeaters associated with the

Abus x8 line and the Ebus x8 line.
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The first set of x8 line repeater configurations targets only the MUX PIPs that
make connections between wire segments R8-L4, R8-R4, R4-L8, and L4-R8 for stuck-on
faults and the MUX PIPs that make connections between wire segments R8-R4, L8-L4,
R4-R8, and L4-L8 for stuck-off faults, as given in Figure 4.7b. This is done by creating
STARs that alternate between TPGs with up-count with even parity and with down-count
with odd parity, as illustrated in Figure 4.6. Connections are formed that loop around
through the repeaters such that connections made on each side of the repeater have
opposite logic values during the test sequence, thus testing for the desired set of faults in
the MUX PIPs. For example, the MUX PIP for the L8 output receives an input signal
from the L4 input while the opposite logic value is applied to the MUX PIP's unselected
input coming from R8, facilitating a test of the L8 MUX PIP according to the fault
models being used. The orientation shown is for horizontal STARs; the vertical
orientation can be derived by rotating the figure counter-clockwise by 90° since the
routing architecture is rotationally symmetric. The repeaters form loop-around
connections between the x4 line and x8 line or vice-versa to make connections between
the TPGs and ORAs. Swapping the locations of the TPGs and ORAs facilitates a test of

the opposite direction through the repeaters.
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Figure 4.8 Repeater Set 1 Configuration Architecture

In order to test both directions through the repeaters, the architecture shown in
Figure 4.6 is flipped such that the respective TPGs and ORAs swap positions and the
signals from the TPGs are driven in the opposite direction. The STARs consist of /x8
arrays of PLBs and are tiled across the array to form the BIST architecture. Figure 4.8
gives the horizontal orientation; the vertical orientation can be derived by rotating the
figures counter-clockwise by 90° (which gives 8x/ STARS).

The second set of x8 line repeater BIST configurations targets connections
between wire segments R8-L8, R8-R4, L8-R8, L8-1.4, R4-R8, R4-1.4, [ 4-L8, and L4-R4
for stuck-on faults and targets connections between wire segments R8-1.4, L8-R4, R4-LS,
and L4-R8 for stuck-off faults. The STARSs in this case overlap, as can be seen in Figure
4.9 where all five x8 lines are being driven by the TPGs and observed by the ORAs. A
STAR in the second set of configurations must be /x/6 to accommodate the diagonal
connections through the repeaters needed to target the desired fault types. In this set of
configurations opposite logic values are applied to the inputs on either side of the
repeater, such that diagonal connections made in the MUX PIPs through the repeaters are

tested. As an example, the MUX PIP for the R8 output is selecting the signal coming
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from the L4 input while having the opposite logic value applied to its MUX PIP for the
L8 input. This set of configurations also tests the wire Abus lines and x4 lines as well as
the Ebus lines and x4 lines for shorts between the wire segments. This is true because the
respective wire segments are guaranteed to have opposite logic values between them
during the test sequence. Not only are these wire segments tested for shorts between
them, but they are also tested for stuck-at 0, stuck-at 1, and opens, since each wire
segment is driven by a logic '0' and a logic 'l' and observed in an ORA during the
execution of the configuration. The only wire segments not completely tested are the
Abus lines that are at the edges of the FPGA array (along the 8 PLBs from either edge).
These wire segments do not have opposite logic values with respect to the x4 lines during
the test sequence. Therfore, they are tested only for stuck-at 0, stuck-at 1, and opens,
with no testing done for bridging faults between these lines and the x4 lines. Rotating the
configuration counter-clockwise by 90° gives the vertical orientation (which yields 76x1
STARs). The alternating TPGs, which have up-count with even parity or down-count
with odd parity, are used in this architecture, as was the case in the architecture of the Set

1 configuration.
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Figure 4.9 Repeater Set 2 Configuration Architecture
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The third set of configurations for the x8 line repeaters test the stuck-off faults on
connections between wire segments R8-L8, L8-R8, R4-L.4, and L4-R4, which connect
straight through the repeaters between x4 lines or between x8 lines. The BIST
architecture is shown in Figure 4.10 for this set of configurations, STARSs of size 4xarray
(arrayx4 for vertical sessions) are tiled in the array to produce a test of the straight-
through connections (i.e. in the repeaters). In this configuration there is no need for
alternating TPGs and ORAs since one TPG is driving an entire row (or column) of ORAs
and since the repeaters are being targeted for stuck-off faults only. In order to test both
directions of connections in the repeaters, the architecture is flipped such that the TPG
moves to the opposite end of the array between a given horizontal or vertical orientation
of the BIST architecture. As the case with the set 1 configurations, these do not test for

any faults in the wire segments.
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Figure 4.10 Repeater Set 3 Configuration Architecture
The three sets of configurations match well with Abus repeaters in the global
routing resources; however, the case is much different with the Ebus repeaters. Since the
Abus repeaters evenly divide busses in the routing resources into sections that span eight
PLBs as well as line up with the boundaries of the array, the three sets of configurations
tile uniformly into any size FPGA array. The case for the Ebus repeaters is much

different. These repeaters do not divide the busses in the routing resources into even
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sections spanning eight PLBs and do no match up with the boundaries of the array.
Instead, the boundary of the Ebus repeaters lies four PLBs from the edges of the array,
such that, inside the boundaries, the busses span eight PLBs before reaching an Ebus
repeater, and, outside the boundaries, busses span only four PLBs before reaching an
Ebus repeater.

The Set 1 configurations apply uniformly to the Abus repeaters, which is
illustrated by Figure 4.11. The repeaters in the middle of the array are completely tested
for the targeted faults. The exceptions lie at the edges of the array where test patterns are
not supplied to the loop-back connections on the outer side of the repeaters. This means
that only stuck-off faults are tested in connections between wire segments R8-R4 and R4-
R8 or in connections between wire segments L.8-1.4 and L4-L8, depending on the side of
the array that the repeater is located. However, these repeaters make connections to I/O

cells and can be tested during BIST configurations developed for the I/O cells.
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Figure4.11 Abus Repeater Set 1 Configuration Architecture
The implementation of the Abus repeater Set 1 configuration into the array sizes
is given in Figures 4.12 and 4.13. Figure 4.12 shows the BIST architecture in its

implementation to test one direction of connections through the repeater. Figure 4.13
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shows the BIST architecture having been flipped to make connections through the
repeaters in the opposite direction as that of Figure 4.12. As illustrated in these figures,
the implementation of the configurations is very uniform in its application to any of the
array sizes in both its normal and flipped connections for the repeaters. Although the
horizontal direction is shown, the vertical implementation has the same architecture and
can be derived by rotating Figures 4.12 and 4.13 counter-clockwise by 90°. This is
possible due to the rotational symmetry of the programmable routing resources in the
array.

OOEEOOO00O0O0ONEOOOO
OOEROO00O00ONEO000

W e
O eee
O ee-
D sesn
[0 see
[0 see
O eee

Oom m[mim] | |mjm]m]
OOEROO0O0000ERO000
a) 16x16 Abus Repeater Session

[ ee-

b) 24x24 Abus Repeater Session

OOEEOO0O0000EROO0O0000EEOO0O0000ONEOOO00
OOEROO0O0000EROO0000O0EEOO0O0O00ONEOO0O00 0 =TPG
M- N R R R R R R E R R R B =0RA
OOEEOO00000EROO0O0000ENEOOO00ONEOOO00 O =Empty
OOEROO0O0000ERO00000EEOO00O00ONEOO000
c) 32x32 Abus Repeater Session

OOEEOOO000ONEOOO000ONNOO0000NEOOO0000ONEOOO00O00ONMEOO0O00
OOEEOOO0000OEEOO0000O0ERO00000NEO00000ONEOO0O00O0O0MEO000
OOEROOO000ONEOOO000ONEOOO0000NEOOO0000ONEOOO00O00ONMEOOO00
OOEEOOO0000ONEOO0O000O0ERO00000NEO00000OEEOO0O0000OMEO000

d) 48x48 Abus Repeater Session
Figure4.12 Abus Set 1 Configurationsfor All Array Sizes
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Figure4.13 Flipped Abus Set 1 Configurationsfor All Array Sizes
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The repeaters staggered along the Ebus lines and x4 lines do not match up with

the boundaries of the FPGA array. Instead, the boundaries for these repeaters fall four

PLBs from either edge of the array. This makes the generation of routing BIST

configurations for these repeaters more difficult than for the Abus line repeaters

discussed previously.

As can be seen in Figure 4.14, which illustrates the architecture of the Set 1 Ebus

line repeater configurations, the misalignment of the boundaries Ebus repeaters with the

boundaries of the FPGA array has an effect on the implementation of the BIST

configurations. Since the Ebus line repeater boundary is four PLBs from the edge, a

scheme was devised to compensate for the mismatch. STARs of size /x/6 (16x] for

vertical sessions) are constructed in the middle of the array to allow for the targeted faults

to be tested in the Ebus line repeaters. At the four PLBs along the edges of the array (east

and west sides for horizontal configurations and north and south for vertical

configurations), conflicts arise in making the desired connections. A scheme was devised

to allow the desired connections through the MUX PIPs in the repeaters to be made.
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However, this scheme imposes constraints on the diagnostic resolution at the edges,
which limits the diagnosis of a detected fault to one of two repeaters since, between any
TPG and ORA, there are two repeaters through which the test patterns must travel.
However, this scheme is the most efficient method to implement a test of the loop-back
connections in the Ebus line repeaters. In addition, this scheme does not suffer from the
problem of incomplete testing at the repeater boundaries as seen in the Set 1

configurations for the Abus repeaters.
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Figure 4.14 Ebus Repeater Set 1 Configuration Architecture
The Set 1 Ebus configurations are shown in Figures 4.15 and 4.16 as they tile into
the array sizes for both the normal and flipped architecture, respectively, for testing both
directions of connections through the MUX PIPs in the repeaters. These configurations
are much less regular and less structured than those configurations for the Abus line
repeaters. This is due to the mismatch of boundaries between the Ebus line repeaters and
the FPGA boundaries and the compensation made in the routing BIST architecture to

accommodate this difference.
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The Ebus line repeaters do maintain rotational symmetry, however, such that the

configurations shown can be rotated counterclockwise by 90° to derive the vertically

oriented Set 1 Ebus line repeater configurations.
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Figure4.15 Ebus Set 1 Configurationsfor Each Array Size

97



OO0O0OEEOO000000000 OOOOEEOOO0O00O0EMEOO000000000
OOEEREROO00O0000NE OORERROOOO0O0O0NROOO0O000O0O0NNE
OO0O0OmEO0000000000 OooOEEOO0000EEOO0000000080
OO0O0OEROO00O00000ONE OORERROOO00O0OEEOOO00O0O00O0ONNE
OOOOmEO0000000000 OOOOEEOOO0O00O0EMEOO000000000
OONEEROO000000CEE OOEEEROOO0O000OENOOO00O000OENE
OO0OOmEOO000000000 OOOOEEOOO0O00O0EMEOO000000000
OOEEEROO0O00O0O000ONEE OOEEREROOO0O0O0OEEOO0O00000O0OENE
a) 16x16 Ebus Repeater Session b) 24x24 Ebus Repeater Session
OOOOEEO0000O0ERO00000NRO000000000
OONERROO0O00O0NROOO0O00O0NROO00O0O000CRN
OOOOEEOO0000O0NEO00000NRO000000000
OOEEEEOO0O000OREOO00000NROO0000000O0ENE O=TPG
Piiiiiiiiiiiiiiiiiiiiiiiiifi m-ora
OOOOeROO0000O0ORROO00000O0RRO00O00O000000 O = Empty
OONEEEOO00O00O0RROO0O000RROOO0O0000NE
OOOOEEOO00000REOO0O000NROO00000000
OOEEEROO0O000O0NEOOO0O00ONNOO00O00000O0ENE

¢) 32x32 Ebus Repeater Session
OO0OOEEOO00000NEOO000ONROO00000NNO00000NNO0000000080
OONEEROO00000NEOO00O0ONEOOO0O00O0NEOOO0O0O0ONEOOO0O00000NNE
OO0O0OEEOO0000O0NNEOO000ONNOO0000NNEOO0O000NNOO00000000
OONEEROO0O0O000NEOO0000ONROO00000NROO00000NEOOO000000ONENE
OOOOEEOOO000O0NEOO000ONROOO000O0NNEOOO0O0O0O0NEOO00000000
OOEEEEOO00000NEOO000ONEOO0O000NEOOO0O00ONEOO000000NNE
OO0O0OEEOO00000NEOO000O0NROO000O0NNEOOO0O00O0NEOO00000000
OOEEEROO0O0000NEOO0000O0NROO00000NRO00000NEOO0O000000ONNE

d) 48x48 Ebus Repeater Session

Figure 4.16 Flipped Ebus Set 1 Configurationsfor Each Array Size

The architecture for the Set 2 configurations for the Abus repeaters is given in

Figure 4.17. Although the Abus repeater boundaries line up with the array boundaries,

the scheme for testing the diagonal-type connections made through the MUX PIPs in the

repeaters does not match up well with the repeater boundaries, as is illustrated in the

architecture of the Set 2 configuration given in Figure 4.17. These configurations face

similar problems to those faced in the Set 1 configurations for the Abus repeaters. The

repeaters at the edge of the array are incompletely tested. Actually, the repeaters at the

edges are tested again for stuck-off faults in connections R8-R4 and R4-R8 or in

connections L8-L4 and [4-L8, and the targeted faults for the Set 2 configurations are not

tested in these repeaters. However, these can be tested through BIST configurations

developed for the I/O cells dispersed around the array.
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Figure4.17 Abus Repeater Set 2 Configuration Architecture

In this case, Ix/6 STARs (16x1 for vertical sessions) are shown tiled across the

array in Figures 4.18 and 4.19, which show the normal and flipped placement of the

TPGs and ORAs, respectively. Notice that in the 24x24 array, the STARs must be

overlapped since the /x/6 STAR size does not fit exactly into the array. The tiles are not

as uniform in the Set 2 configurations as in the Set 1 configurations. This is due to the

diagonal connections through the repeaters, which result in the configuration not lining

up exactly with the repeater boundaries in the array.
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Figure 4.18 Abus Set 2 Configurationsfor Each Array Size
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Figure 4.19 Flipped Abus Set 2 Configurationsfor Each Array Size

The basic architecture of the Set 2 Ebus line repeater configurations is illustrated

in Figures 4.18 and 4.19, which give the structure for the 16x16, 32x32, and 48x48 arrays

and for the 24x24 array, respectively. The Set 2 configurations have STARs that are of

size 2x16 for horizontal configurations and /6x2 for vertical configurations. In the Set 2

configurations, however, the problems that arose at the boundaries of the Ebus line

repeater are overcome by the schemes implemented for the different array sizes, as

illustrated in Figures 4.20 and 4.21. Since the array sizes 16x16, 32x32, and 48x48 are

multiples of 16, the architecture illustrated in Figure 4.20 can be overlapped and tiled to

fit into these array sizes. Since the 24x24 array is not a multiple of 16, the architecture

needed to be adapted to fit into the array. Therefore, the scheme for the 16x16, 32x32,

and 48x48 array sizes was adapted for the 24x24 array. The basic architecture for the

configuration is similar between the two schemes, with both having STARs that are two

rows (or two columns) wide. These configurations are generated from an MGL program

that accounts for both architectures of the Set 2 Ebus configurations.
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Figure 4.20 EbusLine Repeater Set 2 Configuration (16x16, 32x32, & 48x48)
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Figure4.21 EbusLine Repeater Set 2 Configuration (24x24)

The Set 2 configurations are shown in Figures 4.22 and 4.23 tiled into the

different array sizes for both the unflipped and flipped versions of the configuration,
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respectively, which test both directions through the Ebus line repeaters. As with the Set 1
Ebus configurations, the tiling of the STARs in the Set 2 Ebus line repeater
configurations is not as regular and structured as the Set 2 Abus line repeater
configurations. These configurations impose constraints on the diagnostic resolution, as
seen in the edges of the Ebus line repeater Set 1 configurations. Between any TPG and
ORA in this scheme, there are two repeaters that the test patterns must travel through,

thus, in the presence of a fault, diagnosis can be made to one of two repeaters.
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Figure 4.22 Ebus Set 2 Configuration for Each Array Size
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Figure 4.23 Flipped Ebus Set 2 Configuration for Each Array Size

The Abus and Ebus line repeater Set 3 configurations target faults in the straight
through connections in the MUX PIPs in the repeaters, which are stuck-off faults on
connections R8-L8 and R4-L4 or on connections L8-R8 and [4-R4, depending on the
direction of the configuration. The basic architecture of the Set 3 configurations is given
in Figure 4.10, which illustrates that the STARs in these configurations are 4xarray
(arrayx4 for vertical sessions). This architecture can be applied to both the Abus and
Ebus lines in a similar manner differing only by which x8 line is tested during a given
configuration. These configurations do not require alternating TPGs with up or down-
count with even or odd parity, since stuck-off faults in the straight through connections of
the repeaters do not require any type of opposite logic values on unselected inputs for

detection. The tiling of the 4xarray (or arrayx4) STARs for the Abus and Ebus line

103



repeater Set 3 configurations is illustrated in Figures 4.24a and 4.24b for the unflipped
and flipped architectures, respectively, which test both directions through the repeaters
for the targeted stuck-off faults. This Set of configurations forms a regular structure and

is easily tiled to fill the various array sizes.
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Figure 4.24 Abus and Ebus Set 3 Configuration for Each Array Size

4.6 BIST Configurationsfor the Tri-Stated L Output and the X Direct Connections

The BIST configurations targeting the tri-stated PLB L output utilize the same
architecture employed for the logic BIST configurations with the exception being in the
BUT to ORA connections and the size of the TPG utilized to supply test patterns. The
tri-state buffer and its associated output enable lines present on the L output as well as the
connections to the vertical and horizontal global routing resources via local routing cross-
point PIPs are targeted for testing. The local routing cross-point PIPs targeted for testing
are closely coordinated with the X direct connection configurations such that all local
routing cross-point PIPs making connections to the global routing resources are tested.
This means that the proper selection of the local routing cross-point PIPs must be
coordinated with the X direct configurations so that each local routing cross-point PIP is

observed during one of the two sets of routing BIST configurations. For the L output
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configurations, there are North, South, East, and West test sessions. These test sessions
are required to ensure that most PLBs have their L output observed and that both the
horizontal and vertical output enable inputs to the tri-state buffer are tested during the
configurations. The architecture of the L output configurations is demonstrated in Figure

4.25, which shows all four directional orientations of the configuration.
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Figure4.25 L Output Configuration Architecture

The TPG employed to supply test patterns is similar to that used in the logic BIST
test sessions. However, in the L output configurations, a 3-bit binary counter is used
instead of the 5-bit binary counter used in logic BIST. In addition, the third bit of the
binary count is delayed by one clock cycle by feeding the bit through a fourth PLB's flip-

flop. The second bit of the 3-bit binary counter connects to the output enable of the tri-
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state buffer and the most significant bit of the binary counter is delayed by the one clock
cycle and is the input to the tri-state buffer as illustrated in Figure 4.26. The connection
scheme and delayed counter bit are employed to avoid any clock data races between the
count values due to the behavior of the tri-state buffer on the L output. The tri-state
buffer actually has behavior that mimics that of a dynamic latch, meaning that the data at
the input to the tri-state buffer is actually latched for a brief period of time after the buffer
is tri-stated. This means that the counter must be preset such that the tri-state buffer is
disabled at the beginning of the test in order to avoid unknown initial data from being
latched. This architecture allows the PLBs with their L output under test to be tested in a
minimum of two sessions, since, during a given test session, half the PLBs have this
output tested and observed in an ORA. However, since the tri-state buffer has both a
horizontal and vertical output enable signal, the rotation as shown in Figure 4.25 is used
to test for the operability of both signals. As illustrated by the timing diagram in Figure
4.26, the connections scheme allows the tri-state buffer to be enabled and disabled during
a test session allowing its ability to pass data to be tested as well the functionality of the

output enable to be tested.
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Figure4.26 L Output Configuration Structureand Timing Diagram

The BIST configurations developed for the X direct connections target the PLB
input X MUX PIPs left incompletely tested after completion of logic BIST test sessions.
Due to the routing schemes employed for logic BIST, which are shown in Figure 3.3,
particular PLBs in the array have X direct connections that are not observed during logic
BIST test sessions or any other routing BIST test session, even after the rotation to form
North, South, East, and West logic BIST sessions. In addition to targeting faults left
undetected in the X direct connections, these BIST configurations also target faults in the
PLB L output and its connections to the global routing resources via local routing cross-
point PIPs. These tests are closely corresponded to the L output tri-state test
configurations such that the local routing cross-point PIPs making connections to the

global routing resources are completely tested between the two sets of routing BIST
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configurations. To test for these faults, the input signal entering the PLB at the X input is
sent to the L output and then fed back into the PLB through connections made in the
local routing cross-point PIPs to route the signal back into the PLB on the Y input from
the local routing cross-point PIP connections in the global routing.

The configurations targeting the X direct connections consist of four phases,
which are illustrated in Figure 4.27 and show only a 4x4 array of PLBs for simplicity.
The four phases consist of STARs that are actually of size arrayx3, where the first two
phases have TPGs placed along the north side of the array and source test patterns down
through the PLBs to ORAs along the south side of the array. The directions of the PLB
X connections are flipped about the vertical axis from the first phase to the second phase.
The first and second test phases are flipped about the horizontal axis such that the TPGs
and ORAs swap positions and the test reverses directions through the PLBs in order to
form the third and fourth test phases, respectively. The STARs shown in Figure 4.27 are
butted against one another such that between two STARs there are no empty PLBs.
These configurations provide test conditions for all of the X direct connections through

the middle of the FPGA array.
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¢) Phase 3 d) Phase 4
Figure 4.27 X Direct Connection Configuration Test Phases

The direct connections that are at the edges of the array are left untested since
they only connect to I/O cells. However, these can be tested in BIST configurations
developed specifically for the I/0 cells. The connections that are left untested at the edge
of the array also include Y direct connections in addition to the X direct connections due
to their connections only to the I/O cells. Some of the local routing cross-point PIPs
associated with the L output are also left untested. These, like the unobserved X and Y
direction connections, are also at the edges of the array. However, for those PLBs at the

edges of the array, not all local routing cross-point PIPs are untested, only some are
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unobserved. Figure 4.28 provides an illustration of the particular connections left

untested after the completion of all the logic and routing BIST configurations. The

number denoted in the PLBs gives the number of untested L output cross-point PIPs with

no number signifying all PIPs are tested. The black and gray lines, respectively, give the

X and Y direct connections unobserved after completion of logic and routing BIST.
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Figure 4.28 Untested Direct Connectionsand L Output Cross-point PIPs
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4.8 Summary of Routing BIST Configurations

The routing BIST configurations for the Atmel FPGA test most of the
programmable routing resources dispersed within the array. The resources left untested
appear at the periphery of the array near the I/O cells of the device. All of the global
routing and local routing cross-point PIPs, the Ebus repeaters, and the L output and
associated tri-state buffer along with the X direct connections and the Abus repeaters in
the middle of the array are completely tested for the types of fault models assumed. The
X direct and Y direct connections associated with the PLBs along the edges of the array
that connect only to I/O cells are not tested for any faults since these are not selected
during logic or routing BIST. Some of the L output cross-point PIPs at the edges of the
array, given in Figure 4.28, are left untested. The Abus repeaters that lie on the edge of
the array are also incompletely tested since these repeaters do not have proper test
conditions set up during testing. These repeaters have test patterns sourced only to one
side of inputs being either the L8 and L4 inputs or the R8 and R4 inputs, depending on
the exact side of the array. In addition, the Abus line wire segments along the 8 PLBs
nearest the edges of the array are not tested for shorts between the wire segments. In the
case of routing BIST, due to the abstract behavior of routing faults, no fault simulations
were performed to determine fault coverage. However, based on the fault models used,
the targeted faults can be said to be detected in all cases except where noted since the
proper test conditions are set up for the fault models used. An exact figure for the fault
coverage obtained with the routing BIST configurations can be obtained, however, an

estimate can be made of the approximate total percentage of routing resources that are
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tested. Based on the composition of routing resources and the number of routing
resources tested during the routing BIST test sessions, it is estimated that between 90%
and 95% of the programmable routing resources are tested for the assumed fault models.
However, all of the incompletely tested resources can be tested in BIST configurations
developed for the purpose of testing the I/O cell network and associated routing.

All of these routing BIST configurations were generated through the use of both
MGL and C programs. Table 4.3 provides a summary of the BIST configurations along
with the non-commented lines of code associated with the respective configurations.
Separated codes were generated for each of the cross-point PIP configurations, for the L
output and tri-state configurations, and for the X direct connection configurations. For
the case of the Abus and Ebus repeater configurations, separate MGL programs were
used to generate each set of configurations, but only one C program was used to perform
bit manipulation for each of the three sets of Abus and Ebus repeater configurations. The
complexity caused by the staggering of the repeaters can be seen in the difference of the
number of lines of code required for the Abus and Ebus configurations. The Ebus
programs consistently have more lines of code, which is due to the increased complexity
of the configuration architectures employed to test the targeted routing resources

associated with the Ebus x8 lines.
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Table4.3 Summary of Routing BIST MGL and C Programs

Routing BIST MGL Non-commented | C Code Non-commented
Configuration Line Count Line Count
Abus Cross-Point PIPs 750 200
Ebus Cross-Point PIPs 1600 650
Abus Repeaters Set 1 1000
Abus Repeaters Set 2 2000 650
Abus Repeaters Set 3 900
Ebus Repeaters Set 1 1900
Ebus Repeaters Set 2 2500 1000
Ebus Repeaters Set 3 900
L Ouptut and tri-state 1200 450
X Direct Connections 750 350

4.9 MGL's Effect on Routing BIST Development and Application

The utilization of MGL resulted in a significant impact on the development and
application of routing BIST. To be able to implement the routing BIST configurations
such that the BIST results can be retrieved at the end of a BIST sequence, the ORAs must
have similar conditions to those of the logic BIST configurations. A shift signal must be
routed to all the ORAs so that, at the end of a BIST sequence after the ORAs are
reconfigured into a shift register, the results can be shifted out. This is due to the
requirement in MGL for a source and destination to be specified for any route required.
Thus, in order to have a shift signal present after reconfiguration for a shift register, it
must be routed in the MGL program. Due to the architecture of the routing BIST
configurations, the three bits in the test pattern must be routed through a set of WUTsS to
each ORA. This condition makes for even more congestion of needed functionality in
the PLBs than is the case for logic BIST. A total of four signals must be routed to the
ORAs in order to perform routing BIST, the three bits of the test pattern along with the
Shift signal.

Thus, an ORA function can not be implemented through MGL for two

113



reasons. The first reason lies in the fact that the a dynamic macro implementing a 4-input
function with feedback does not exist and, furthermore, cannot be implemented in the
PLB. The second, as mentioned previously, is that a signal must have a source and a
destination in MGL such that a Shift signal can only be routed if a source node (i.e. input
from an I/O cell) and a destination (i.e. an input to a PLB, namely an ORA) are both
specified. Thus a dynamic macro implementing a 4-input registered function (FGEN1
dynamic macro) is needed to set up conditions initially for a routing BIST configuration.
This requires that a template bitstream be created containing the necessary routing
information for the routing BIST configurations. Thus, bit manipulation via a C program
is required before a routing BIST configuration can be downloaded into the FPGA. For
each set of routing BIST configurations, a different C code was generated to perform the
required bit manipulation.

The effort in generating BIST configurations through the use of MGL is similar to
previous efforts in the generation of BIST configurations for the ORCA [9] and Xilinx
[10] FPGAs. In the previous work, C programs were used to generate textual netlists of
the BIST configurations that were interpreted by the vendor-supplied CAD tools for the
respective FPGAs. In the generation of BIST configurations using MGL, C programs are
again needed in order to produce the BIST configurations for the device. The actual
process is somewhat different, with the previous work creating netlists via C programs
while the work described in this thesis uses C programs to perform bit manipulation on
the download bitstream files. However, the concept is the same between the different
cases; the vendor supplied CAD tools themselves do not provide adequate control over

the resources within the FPGA.
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4.10 Comparison of the Routing BIST for Atmel, ORCA, and Xilinx FPGASs

The routing architectures of the three devices have several differences which
include the direct connections to adjacent PLBs within the local routing resources, the
percentage composition of the different types of PIPs in the local and global routing
resources, and the number and type of wire segments in the global routing resources, as
was summarized in chapter 2. As found in [10], the routing architecture of a given FPGA
has the most impact on the total number of BIST configurations required for complete
testing of that FPGA. The asymmetric routing architecture in the Xilinx devices is more
complex and suffers more from factors that affect the number of routing BIST
configurations required, such as shared routing resources between PLBs, rotating and
staggered busses, and large numbers of MUX PIPs with a high number of inputs, all of
which cause an increase in the number of configurations [10]. The Atmel and ORCA
devices employ a more symmetric and regular routing architecture that is much less
complex than that found in the Xilinx FPGAs. This is demonstrated in the total number
of routing BIST configurations required for the respective FPGAs. Table 4.4 provides a
summary of the routing BIST configurations for the ORCA, Xilinx, and Atmel FPGAs.
The Xilinx FPGAs required 128 configurations for the 4000E and Spartan series FPGAs
and 206 configurations for the 4000XL and 4000XLA series FPGAs to completely test
the routing resources [10]. The ORCA 2C and 2CA FPGAs required 27 and 44
configurations, depending on the size of the STARs, to completely test the routing
resources [10]. The Atmel FPGA requires 48 configurations to completely test the

routing resources, which is more similar to that of the ORCA FPGA:s.
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Table 4.4 FPGA Routing BIST Comparison

FPGA Number of BUT
Configurations

ORCA 2C 27,44

ORCA 2CA 27,44
Xilinx 4000 128
Xilinx Spartan 206
Atmel AT40K 48
Atmel AT94K 48

In contrast, however, parts of the local routing resources are being tested during
logic BIST for the Atmel FPGA, which is not the case with the ORCA FPGA. In
addition, the routing architecture of the Atmel device does not have as much access to the
PLB inputs and outputs as found in the ORCA FPGA. A large factor in the testability of
the routing resources of an FPGA lies in their access to the PLBs. Even though the
routing architecture is much more complex in the ORCA FPGA than in the Atmel FPGA,
there are fewer required routing BIST configurations. This is due in large part to the poor
access of the PLBs in the array to all routing resources. The PLB only has access to the
routing resources on two of its sides and, furthermore, can access only x4 lines directly
while having to go through a repeater to reach the either of the x8 lines. The rotational
symmetry of the routing architecture does help to provide a fewer number of
configurations as compared to the asymmetric routing architecture in the Xilinx FPGAs,

but is not enough to overcome the limited access of the PLBs to the routing resources.
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CHAPTER FIVE

SUMMARY

The application of BIST to the programmable logic and routing resources present
in an FPGA core in a commercially available generic SoC has been presented.
Automatic generation of BIST configurations using vendor supplied CAD tools along
with custom developed C programs has been discussed. These automatically generated
BIST configurations can be applied to any AT40K series FPGA or AT94K series FPGA
core.

The amount of available logic in the PLB has been found to impact the
application of BIST. The ORAs for both logic and routing BIST are significantly
impacted due to the small amount of logic present in the PLB. This problem has been
overcome in this research work by generating logic and routing BIST architectures that
minimize the number of configurations while allowing sufficient observation of the
BUTSs or WUTs in the ORAs. In addition, the device's ability to be partially reconfigured
was used to help overcome the issues of the small PLBs. The ORAs were reconfigured
into a shift register after completion of a BIST sequence in order to maximize the use of
the available logic during the BIST sequence without having the shift register use
required logic for the comparison or parity check of the BUTs or WUTs.

The limitations imposed by the available direct connections in the local routing

resources associated with the PLBs were overcome by the alternating BUT-to-ORA
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routing schemes shown in Figure 3.3. The type of ORA chosen for the implementation
of logic BIST was greatly impacted by these connections and by the size of the PLB. The
routing schemes shown in Figure 3.3 overcome most of the problems in the observability
of the X and Y PLB outputs which connect only to adjacent PLBs. However, the
remaining issues in the observability of the X and Y PLB outputs at the edges of the PLB
array are overcome by the rotation of the logic BIST architecture to form not only the
East and West test session, but also the North and South test sessions. In any given array
size, only eight PLBs are left incompletely tested after the rotation of the logic BIST
architecture.

Existing methods in routing BIST techniques were adapted for this architecture to
overcome issues caused also by the size of the PLBs. The method described in [23] was
adapted to work with the fine-grain architecture of the Atmel FPGA. Since the size of
the PLB allows for implementation of only one bit of a binary counter, the adapted
method, utilizing a two-bit binary counter with odd or even parity generation, was the
best choice to overcome the associated implications. This new methodology for routing
BIST provides the best solution for FPGAs with fine-grain architecture similar to the
AT40K FPGAs and AT94K FPGA cores.

As found in [10], the staggering and inaccessibility of routing resources has been
found to have a large impact on the application of routing BIST. In this application,
BIST architectures were developed to overcome the obstacles imposed by the
inaccessibility to the x8 lines, and the staggering of repeaters in the array. In this case,
BIST architectures were developed that are as similar as possible, independent of the

particular x8 lines on which a given repeater is staggered. The rotational symmetry of the
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routing resources allowed the configurations to be applied to both horizontal and vertical
repeaters dispersed in the array.

In this particular case, the vendor-supplied CAD tools also imposed restrictions
on the test development and application. It was found that newer versions of the software
used to compile the MGL code to instantiate designs into the FPGA place and route tool
and create bitstreams created problems in particular instances with the routing needed to
apply the BIST configurations. This was not encountered in the application of logic
BIST, but was seen in the application of routing BIST. Particular routes are required to
test certain parts of the programmable routing resources and, in some cases, these routes
could be achieved in older versions of the software but not in newer versions. Therefore,
this imposes a requirement that new and old versions of the software must be maintained
in order to generate all the BIST configurations. Since as few mediums as possible are
preferred to generation test configurations, this inhibits the test development and
application process since multiple versions of software must be used to generate BIST
configurations for a single family of FPGAs.

Partial reconfiguration of the FPGA core has important positive implications on
the application of both logic and routing BIST. Previously, for the case of Xilinx FPGAs,
the configuration memory of the FPGA has been read to retrieve the BIST results at the
end of a BIST configuration. In the case of the Atmel AT94K FPGA cores, the FPGA
configuration memory can be written or re-written but not read from the AVR core [14].
However, the configuration memory can be read in the AT40K series FPGAs via the
synchronous RAM mode in order to retrieve the values in the ORA flip-flops [15]. For

the case of the AT40K series FPGAs, the ORA flip-flop contents can be read through the
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configuration memory in order to determine pass or fail results. However, this can not be
done for the FPGA core in the AT94K SoC. Partial reconfiguration must be used in
order to retrieve the results at the end of a BIST configuration. In this case, a BIST
configuration is downloaded and executed, the ORAs are then reconfigured as a shift
register, and the BIST results shifted out. For the case of the ORCA FPGAs, there is
sufficient logic for the implementation of both the ORA function and shift register within
a single PLB. In the case of the Xilinx FPGAs, the configuration memory can be read in
order to read the values of the ORA flip-flops to determine pass or fail results. Partial
reconfiguration allows the BIST architecture to be applied to FPGA cores where the
configuration memory can not be read and where the PLBs are not capable of

implementing both an ORA function and shift function.

5.1 Comparison of Work

The work completed for the Atmel AT40K series FPGAs and AT94K series
FPGA cores provides new insights on the application of BIST for the programmable
logic and routing resources in an FPGA. The work completed previously for ORCA and
Xilinx FPGAs along with the work completed in this thesis provide a basis of comparison
in the application of BIST to coarse-grain architecture FPGAs to the application of BIST
to fine-grain architecture FPGAs. It is shown in this thesis that the fine-grain architecture
facilitates fewer BIST configurations to achieve complete testing of the logic resources
present in the FPGA in comparison to a course-grain architecture. In addition, the fine-
grain architecture is shown to have a significant impact on the application of routing

BIST. The parity-based routing BIST approach described in [23] was modified and is
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shown to work well with the fine-grain architecture in the Atmel FPGAs and FPGA
cores. Partial reconfiguration is also exploited in this case in the application of BIST for
the logic and routing resources. With the ability to perform partial reconfiguration, fine-
grain architecture FPGA cores can decrease the development effort in the application of
BIST to offset the impact of limited PLB logic resources by maximizing the number of
observable BUT outputs or WUTSs during a given test session. This is true because the
PLBs can be more efficiently used to perform ORA functions only during the BIST
sequences instead of having to utilize multiple PLBs to implement ORA and shift register
functions. Once the BIST sequences have been applied, partial reconfiguration can be

done to create a shift register in the ORAs in order to shift out the BIST results.

5.2 FutureWork

The work completed for this thesis has generated many interesting ideas for the
application of BIST for FPGAs. The fine-grain architecture FPGA has many
implications on the implementation of BIST. Methods have been presented in this thesis
to overcome limitations on the application of BIST to fine-grain architecture FPGAs not
previously encountered with coarse-grain architecture FPGAs such as the ORCA and
Xilinx FPGAs. Suggestions for future work in this area would be to improve upon the
adaptations made to the logic and routing BIST methodologies. In particular, future work
might include evaluating the advantages of developing more specific BIST configurations
for the AT94K series FPGA cores. The BIST configurations in this thesis can be applied
to both the AT40K series FPGAs and the AT94K series FPGA cores. Since the AVR

core in the AT94K series devices can be used to write or rewrite the configuration
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memory of the FPGA core, it would be advantageous to research new methodologies to
exploit these capabilities and evaluate the impact this has on the number of BIST

configurations and the respective diagnostic resolution of such configurations.

5.3 Conclusion

This research set out to develop BIST configurations for the logic and routing
resources present in the Atmel AT40K series FPGAs and AT94K series FPGA cores.
Central to this research was the need to further develop existing methodologies used in
BIST for FPGAs, namely in the application of BIST to the ORCA and Xilinx FPGAs. In
doing so, a methodology was developed for testing fine-grain architecture FPGAs. These
BIST configurations were developed using both vendor-specific CAD tools along with
custom developed C programs to automatically scale to any size device in the AT40K
series FPGAs and AT94K series FPGA cores. However, the methodology utilized in the
application of BIST for FPGAs to these devices can be applied to any similar fine-grain

architecture FPGA.
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