












  184

 
 

 

Fig. 6-26 SEM images for cantilevers and bridges coated with ~ 4 µm FeB thin films. 
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6.6. Microfabrication and Resonant Frequency Test of Magnetostrictive Freestanding 

Beam (Particle) 

6.6.1. Free-free ended Beam (Particle) Fabrication 

The process used for the fabrication of freestanding particles was described in Fig. 

6-7. The specific process is to pattern photoresist into rectangular structures possessing 

the desired length and width of the freestanding beams. Fig. 6-27 illustrates these 

structures on the wafer. The Metglas film is then deposited and the PR dissolved so that 

the particles become freestanding and float off. In order to develop a functioning sensor, 

a 100 nm thin Au film was deposited before and after the deposition of magnetostrictive 

film to create a substrate for the capture film to adhere to. The process used for sputtering 

the Metglas film was the optimized one as discussed in section 6.4. Multiple sputtering 

processes were carried out to obtain a thicker magnetostrictive film material. The 

freestanding beams or particles before lift-off are shown in Fig. 6-28. Fig. 6-29 shows the 

freestanding beams before collection, from which one can see the free lift-off beams are 

bent. This observation indicates that tensile stress developed in the thin film materials, 

which confirms and explains the hysteresis loop shape with the measurement of magnetic 

properties by VSM as shown in Figs. 6-20 and 6-21. 
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Fig. 6-27 SEM images of microfabricated photo resist templates for the fabrication of 

freestanding sensors. 

 
 

 

Fig. 6-28 SEM image of a freestanding beam (particle) on PR template. 
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Fig. 6-29 SEM images of some uncollected, lift-off freestanding beams (particles). The 

bent particles appeared to be stressed. 

 

Fig. 6-30 Resonant frequency spectrum for a 500 µm x 100 µm beam (particle). 
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6.6.2. Results of Resonance Frequency Tests 

The resonant frequency of the freestanding particles (beam) of 500 µm x 100 µm x 3 

µm was measured by using the similar setup as the one used for large scale samples. 

Typical resonant frequency spectrum of a beam is as shown in Fig. 6-30. The amplitude 

of the resonant peak was usually weak but strong enough for testing, distinguishing and 

inspection. The calculated Figure-of-merit Q value is about 971.2 for this beam, which is 

much higher than the value of 265 for a large scale sensor made of Metglas strip. 

 

6.6.3. Annealing Effect  

The temperature profile for annealing was recorded and plotted in Fig. 6-31. The 

temperature ramp up was controlled by setting the electrical current that is directly linked 

to the target temperature (215 oC). Temperature cooling down was naturally controlled by 

the room environment. During cooling, the chamber was sealed and kept under vacuum. 
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Fig. 6-31 Temperature changes with time during annealing/cooling process. 
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6.6.3.1. Effect of annealing on Magnetic Properties 

The magnetic properties of annealed magnetostrictive film were also characterized by 

VSM. Fig. 6-32 indicates that after annealing, the coercity of the magnetostrictive film is 

slightly reduced to about 4 Oe, but the total energy loss is reduced significantly. The 

hysteresis loop starts to merge together right before the magnetization of the material gets 

saturated, which is desirable for our application in the dynamic vibration mode. For 

instance, when the applied field has so little change in the resonant frequency range that 

no resonant frequency jump occurs, a stable resonant frequency spectrum can be obtained.  
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Fig. 6-32 Hysteresis loops of sputtering deposited films before and after annealing at 

215oC for two hours in a vacuum chamber. 
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6.6.3.2. Effect of annealing on the Resonance Frequency and Q-Factor of Sensor 

Resonance frequency of the freestanding beam was significantly improved through 

annealing at 215 oC under vacuum condition. Fig. 6-33 shows a typical particle’s 

resonant frequency shift before and after the heat treatment. After annealing, all particles 

tested exhibitd an increase in their frequencies by about 23 kHz (~0.6% of the original 

frequency), with an average resonant frequency of 4.019440 MHz. The annealing process 

also intensified the amplitude of the resonance frequency signal about 15 times as seen in 

Fig. 6-33. Additionally, the Figure-of-merit Q values for the annealed sensors were 

virtually increased by 180 in average from 971 to 1150. 
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Fig. 6-33 Resonant frequency shift of a particle after annealing. 

 

The Figure-of-merit Q value is an important measure of the sensor’s quality, 

particularly for those applications for detecting a single or few biomolecule cells present 
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on the sensor surface. The higher the Q value, the sharper of the resonant frequency 

spectrum is; consequently, it is easier to locate the peak position of the spectrum. Fig. 6-

34 (a) to (c) shows the profile of spectrum peak for the Q values varying from 930 to 

1425. It can be seen that at lower Q values, the spectrum is rather broad, and the 

frequency peak is more difficult to determine. Such a flat spectrum at the peak position is 

not desirable, and may result in greater error of testing. As the Q value increases, the 

spectrum becomes sharper; and the peak position is therefore easy to distinguish. For 

example, in Fig. 6-34 (c) with Q value equal 1425, the frequency peak can be easily 

determined with an error of less than 50 Hz. 
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Fig. 6-34  Peak profiles of resonant frequency spectra for different sensors with various Q values. 
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6.6.3.3. Mechanisms on the Annealing Effects 

The effect of annealing on the magnetic properties of magnetostrictive thin films and 

the sensor’s performance may be attributed to an increase in the elastic modulus and a 

reduction in residual stress during the annealing process. The change in the elastic 

modulus of the film materials after annealing is most likely due to the defect healing. 

Furthermore, the annealing treatment also released the residual stress as it can be seen 

from Fig. 6-29, where the freestanding beams are bowed down due to stress developed in 

the magnetostrictive film. Fig. 6-35 shows that when the stress in the longitudinal 

direction of sensor is released, there is no curvature observed under SEM. However, we 

do observe that the sensor still has slight curvature in the width direction upon annealing. 

This effect of stress released in longitudinal direction greatly improves the sensor 

performance such as amplitude of the resonance frequency peak and Q value. The 

following model is suggested to elucidate the effects. 
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Fig. 6-35 SEM images of an annealed sensor. A slight curvature in the width direction 

can be seen, but not in the longitudinal direction. (a) Bottom surface is up. (b) Bottom 

surface is down. 

a 

b 
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When the bent sensor shown in Fig. 6-29 is subjected to an applied magnetic field 

(see model of Fig. 6-36) the magnetized domains will tend to align to the external filed. 

However, since there is bending in the longitudinal direction, many domains will impinge 

on the bent surfaces (top and bottom). In addition, the growth process of the domains will 

be confined by the bent surface. Such an effect is believed to significantly reduce the 

magnetized flux. Moreover, the direction of magnetized flux will follow the similar shape 

of the sensor, which is not parallel to the applied magnetic field, or the axis of read coil, 

but is a low angle to the them instead. Only the partial of magnetized flux whose 

direction is parallel to the read coil axis, MII as shown in Fig. 6-36, will effectively 

interact with this read coil. Clearly, this interaction is less intense than the one that did 

not bend; therefore, the sensing coil detected a weaker signal during the sensor oscillating. 

One can compare this bent sensor with the unbent one shown in Fig. 6-37. In this case, 

magnetization took place perfectly aligned to the applied filed and the axis of the read 

coil in the longitudinal direction. Moreover, the formation of larger domains is possible 

in the longitudinal direction due to the lack of residual stress. This also helps to explain 

why this sensor’s resonant frequency increased after annealing. Additionally, bent 

sensors exhibit tensile stress on one side and compressed stress on the other. The resonant 

frequency will be not the same as non-bent one, but it is lower due to the length of the 

side with tensile stress being longer than the one that does not bend. This causes different 

acoustic wave speeds and effectively widens the resonant peak. Likely this caused the 

sensor a very small amplitude and low Q values. 

For the annealed sensor (Fig. 6-35), since the stress is released, there is no 

significantly bending in the longitudinal axis, although a small curvature was observed 
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with SEM in the lateral direction. The behavior of such sensors can be modeled as 

described in Fig. 6-38. The bending in the lateral direction would not significantly 

influence the magnetization of the sensor when the applied magnetic filed is parallel to 

the longitudinal direction. These out-of-plane effects likely only have negligible effects. 
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Fig. 6-36 Modeling of a sensor bent in longitudinal direction. 
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Applied H  

Fig. 6-37 Modeling of a perfect sensor without bending. 

 
 
 
 

Applied H  

Fig. 6-38 Modeling of an annealed sensor that is only bent in the lateral axis, but not in 

the longitudinal direction. 
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6.7. Summary 

The fabrication of a Metglas sputtering target and deposition of a magnetostrictive 

thin film were demonstrated in this work. The film material exhibited soft ferromagnetic 

properties and low degrees of magnetic anisotropy. Deposition process studies indicated 

that the magnetic properties of thin film material are very much dependent on the process 

parameters, such as deposition pressure, sputtering power and substrate temperature. The 

optimal deposition parameters were found to be: pressure = 3 mT, power = 30 w, and 

substrate heating temperature = 200oC or room temperature.  

Stress associated with the thin film during deposition was released by annealing at 

215 oC for 120 minutes, which resulted in increased resonant frequency and Q factor, 

aspects that are important in developing this material into a usable sensor. The resonant 

frequency of microfabricated magnetostrictive sensors in both cantilevers and bridges 

was not detectable by general detecting setup because the pickup coil wasnot sensitive 

enough. However, a successful detection of microscale freestanding beams was 

demonstrated. The sensor’s performance was significantly improved by annealing and a 

model describing this effect was proposed. 
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7. CONCLUSION AND FUTURE WORK  

7.1. Conclusions 

This work focused on solving several issues in the development of magnetostrictive 

acoustic wave sensors. Magnetostrictive material has been shown to be an excellent 

material for actuation and sensing in sensors that are configured as a cantilever, bridge, 

and beam. These sensors are driven by an alternating magnetic field and mass changes 

are measured by monitoring changes in resonant frequency. The work addressed the 

benefits of the longitudinal vibration mode, provided more precise governing equations, 

and demonstrated that magnetostrictive sensors are a cheap and easy method for 

measuring the thin film Young’s modulus.  It also developed the optimum sputter 

deposition parameters for depositing magnetostrictive films from Metglas 2826 MB 

targets and illustrated how to microfabricate these structures into useful forms. Finally, it 

constructed and demonstrated operation of thin film microscale resonators. 

In particular, the superiority of the longitudinal mode resonance over the transverse 

mode was discussed and proven. The governing equations for a thin slender beam 

resonating in the longitudinal mode was modified by replacing the plane strain modulus 

with the plane stress modulus for geometries associated with thin film resonators or bulk 

scale resonators where thickness is significantly less than length and width. This was 

accomplished through a combined experimental and numerical simulation approach 
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which not only found issues with the fundamental operation equation for the longitudinal 

mode, but also clarified and confirmed that the Poisson’s ratio for commercial Metglas 

2826 MB strip is 0.33. This work also aided in identifying that a cantilever sensor 250 

microns in length 50 microns wide with a thickness one micron or less, should be able to 

detect small amounts of mass or even a single spore or cell attached to the sensor’s 

surface. 

Metglas resonators were constructed and used to measure the thin film Young’s 

modulus of several materials commonly used in state-of-the-art devices. The results were 

confirmed using a second thin film measurement technique and demonstrated that this 

technique offers a cost-effective, user-friendly and non-destructive test for thin film 

properties. It also improved the methodology of determining the thin film Young’s 

modulus by assuming that film density was equivalent to bulk density, which 

significantly reduced the amount of error associated with the measurement.  

This research also successfully developed the optimum process parameters for 

magnetostrictive thin film deposition by directly sputtering a Metglas strip. The optimal 

deposition parameters were found to be pressure =3 mT, power = 30 w, and a substrate 

heating temperature of 200 oC or room temperature followed by annealing at 215 oC for 

120 minutes. The deposited thin film material exhibited soft ferromagnetism and high 

isotropic magnetic properties. Freestanding beams or particles with the size of 500 µm x 

100 µm x 3 µm were fabricated by standard microfabrication process and their resonant 

frequency was effectively detected. Annealing the sensors resulted in relieving residual 

stress, which significantly improved performance and Q factor. 



  201

7.2. Future work 

The successful deposition and microfabrication of thin film magnetostrictive sensors 

has the potential to revolutionize the MEMS and microdevices field by enabling 

remote/wireless powering and actuation of devices. Towards this goal, future work 

should focus on (1) better detection of small amounts of biological agents, (2) integrating 

these thin film actuators into actual devices or demonstrating their function and (3) 

developing small, on-chip read coils to detect their signals. 

(1) Detection of Biological Agents 

• develop a sensor with both bridges and freestanding beams of varying size to 

better assess attachment of biological species 

• develop an algorithm that can distinguish between the number of spores or 

cells attaching and their position on the platform 

 (2) Integration as MEMS actuators would require the following tasks 

• demonstrate that magnetostrictive films are compatible with many types of 

microfabrication processes 

• demonstrate that magnetostrictive films retain their properties when subjected 

to typical MEMS microfabrication processes 

(3) Development of a small, on-chip coils would require the following tasks 

• develop a 2-dimensional magnetic coil capable of applying and reading the 

necessary fields 

• examine employing giant magnetoresistive elements to detect fields generated 

by the films 
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