

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR
HIGH-PERFORMANCE COMPUTING PLATFORMS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classified information.

Ziliang Zong

Certificate of Approval:

__________________________ ___________________________
Drew Hamilton Xiao Qin, Chair
Associate Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

__________________________ ___________________________
Wei-Shinn Ku George T. Flowers
Assistant Professor Interim Dean
Computer Science and Software Graduate School
Engineering

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR
HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 9, 2008
iii

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR
HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at their expense. The
author reserves all publication rights.

 Signature of Author

Date of Graduation

iv

DISSERTATION ABSTRACT
ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR
HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong
Doctor of Philosophy, August 9, 2008
(M.S. Shandong University, China, 2005)
(B.S. Shandong University, China, 2002)

151 Typed Pages
Directed by Xiao Qin

In the past decade, high-performance computing (HPC) platforms like clusters and
computational grids have been widely used to solve challenging and rigorous
engineering tasks in industry and scientific applications. Due to extremely high energy
cost, reducing energy consumption has become a major concern in designing
economical and environmentally friendly HPC infrastructures for many applications. In
this dissertation, we first describe a general architecture for building energy-efficient
HPC infrastructures, where energy-efficient techniques can be incorporated in each layer
of the proposed architecture. Next, we developed an array of energy-efficient scheduling
as well as energy-aware load balancing algorithms for high-performance clusters,
v

computational grids, and large-scale storage systems. The primary goal of this
dissertation research is to minimize energy consumption while maintaining reasonably
high performance by incorporating energy-aware resource management techniques to
HPC platforms. We have conducted extensive simulation experiments using both
synthetic and real world applications to quantitatively evaluate both energy efficiency
and performance of our proposed energy-efficient scheduling and load balancing
strategies. Experimental results show that our approaches can reduce energy dissipation
in HPC platforms without significantly degrading system performance.

vi

ACKNOWLEDGMENTS
First of all, I would like to express my deep and sincere gratitude to my advisor, Dr.
Xiao Qin. Without his wide knowledge, detailed and constructive guidance, generous
support and warm encouragement, I would not have completed my PhD study within
three years and this dissertation research would have never been possible. His passionate
attitude towards research and wonderful personality will have a remarkable influence on
my entire career.
I warmly thank Dr. Drew Hamilton and Dr. Wei-Shinn Ku for their valuable advice
on my dissertation. The extensive discussions and their insightful comments have
significantly helped in improving the quality of this dissertation. I also wish to express
my warm and sincere thanks to Dr. Shiwen Mao for serving as the outside reader and
proofreading my dissertation.
I also wish to extend my sincere thanks to all the members in our research group led
by Dr. Qin. The group members and my friends have helped me and collaborated with
me during my study in Auburn University. These research group members include
Adam Manzanares, Xiaojun Ruan, Kiranmai Bellam, Tao Xie, and Mais Nijim.
I owe my loving thanks to my wife Shuo Wang, my daughter Elena Zong and my
parents-in-law. They not only have been providing me with sufficient time to do
research, but also giving me a happy family life in Auburn. It would have been
impossible for me to complete this dissertation without their encouragement and
vii

understanding. I am deeply grateful to my parents. Without their consistent support and
selfless love, I could not get the achievements today.
viii

Style manual: IEEE Standard for Research Papers
Software used: Microsoft Word 2007, Microsoft Excel 2007, Linux GCC Compiler,
Microsoft Visio 2007, Eclipse, Adobe Photoshop, C/C++/Java

ix

TABLE OF CONTENTS

LIST OF FIGERS .. xiii
LIST OF TABLES ... xvii
1. INTRODUCTION ... 1
1.1 Problem Statement ... 2
1.1.1 The Era of High-Performance Computing ... 2
1.1.2 The Data Center Energy Crisis ... 3
1.2 Scope of Research ... 4
1.3 Contributions ... 5
1.4 Dissertation Organization .. 6
2. LITERATURE REVIEW .. 7
2.1 Related Work on Energy-Aware Scheduling .. 7
2.1.1 Energy-Aware Scheduling in Clusters and Grids 8
2.1.2 Task Partitioning and Task Scheduling .. 9
2.2 Related Work on Energy-Efficient Storage Systems 11
2.3 Summary .. 13
3. HIGH-PERFORMANCE COMPUTING PLATFORMS ARCHITECTURE............ 15
x

3.1 A General High-Performance Computing Platforms Architecture 16
3.2 Summary .. 19
4. ENERGY-EFFICIENT SCHEDULING FOR CLUSTERS 20
4.1 System Models .. 22
4.1.1 Cluster Model ... 22
4.1.2 Parallel Tasks Model .. 23
4.1.3 Energy Consumption Model ... 24
4.2 Energy-Efficient Scheduling Algorithms .. 27
4.2.1 Original Task Sequence Generation ... 28
4.2.2 Duplication Parameters Calculation ... 29
4.2.3 Energy-Efficient Scheduling: EAD and PEBD 30
4.2.4 A Case Study .. 34
4.3 Time Complexity Analysis .. 38
4.4 Simulation Results ... 39
4.4.1 Simulation Metrics and Parameters .. 39
4.4.2 Impact of Processor Types to Energy ... 43
4.4.3 Impact of Interconnection Types to Energy ... 45
4.4.4 Impact of Application Types to Energy ... 48
4.4.5 Impact of CCR to Energy ... 51
4.4.6 Impact of Processor Status to energy ... 52
xi

4.4.7 Impact to Schedule Length ... 55
4.5 Summary .. 57
5. ENERGY-EFFICIENT SCHEDULING FOR GRIDS ... 58
5.1 Motivation ... 59
5.2 System Model .. 60
5.2.1 Grid Systems Model ... 61
5.2.2 Parallel Tasks Model .. 62
5.3 Job Scheduling in Grids ... 64
5.4 Energy-Efficient Scheduling Algorithms .. 68
5.4.1 The Task Analyzer.. 69
5.4.2 Grouping Phase .. 70
5.4.3 Task Duplication Phase .. 71
5.4.4 Energy-Efficient Group Allocation Phase .. 75
5.4.5 A Case Study .. 77
5.5 Time Complexity Analysis .. 82
5.6 Simulation Results ... 84
5.6.1 Simulation Metrics and Parameters .. 84
5.6.2 Experimental Results for Gaussian Elimination 87
5.6.3 Experimental Results for Fast Fourier Transform 91
5.6.4 Experimental Results of Schedule Length ... 94
xii

5.7 Summary .. 95
6. ENERGY-EFFICIENT STORAGE SYSTEMS ... 97
6.1 Motivation ... 98
6.2 Buffer-Disk Architecture ... 99
6.3 Heat-Based Load Balancing .. 100
6.3.1 A Concrete Example ... 101
6.3.2 Heat-based Load Balancing Algorithm .. 103
6.4 Energy Consumption Models .. 106
6.5 Simulation Results ... 109
6.5.1 Evaluation of Energy Consumption ... 111
6.5.2 Evaluation of Load Balancing .. 113
6.5.3 Evaluation of Response Time ... 116
6.6 Summary .. 120
7. CONCLUSIONS AND FUTURE WORK .. 121
7.1 Main Contributions .. 121
7.2 Future Work ... 124
8. REFERENCES .. 127

xiii

LIST OF FIGURES

Figure 1.1 2007 EPA report to congress about U.S. data center power usage 4
Figure 3.1 High-performance computing platforms architecture 16
Figure 4.1 System model of high-performance clusters (source: Wikipedia) 20
Figure 4.2 Pseudo code of phase 3 in the EAD algorithm .. 31
Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm .. 33
Figure 4.4 A typical DAG ... 34
Figure 4.5 Energy consumption parameters in different working modes 41
Figure 4.6 Structure of simulated trees and applications... 42
Figure 4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4) 43
Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4) 44
Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4) 44
Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4) 44
Figure 4.8(a) Total energy consumption (Robot Control, Myrinet) 46
Figure 4.8(b) Total energy consumption (Robot Control, Infiniband) 46
Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet) 47
Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband) 47
xiv

Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet) 49
Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet) 49
Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet) 49
Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet) 50
Figure 4.10(a) CPU energy consumption under different CCRs 51
Figure 4.10(b) Interconnection energy under different CCRs ... 52
Figure 4.10(c) Total energy consumption under different CCRs 52
Figure 4.11(a) CPU energy consumption under light mode .. 53
Figure 4.11(b) CPU energy consumption under busy mode ... 53
Figure 4.11(c) CPU energy consumption under heavy mode ... 54
Figure 4.11(d) Total energy consumption under light mode ... 54
Figure 4.11(e) Total energy consumption under busy mode ... 54
Figure 4.11(f) Total energy consumption under heavy mode ... 55
Figure 4.12(a) Schedule length of Gaussian Elimination .. 56
Figure 4.12(b) Schedule length of Sparse Matrix Solver .. 56
Figure 5.1 Example task graph and heterogeneous processor graph 64
Figure 5.2 The system view of scheduling in a computational grid 65
Figure 5.3 The task view of scheduling in a computational grid 68
Figure 5.4 A directed acyclic graph (DAG) analyzed by the task analyzer 70
Figure 5.5 An example of duplication scheduling strategy ... 72
xv

Figure 5.6 Pseudo code of the grouping phase in the EETDS algorithm 73
Figure 5.7 Pseudo code of the grouping phase in the HEADUS algorithm 74
Figure 5.8 Pseudo code of group allocation to minimize energy consumption 76
Figure 5.9 A synthetic parallel application .. 77
Figure 5.10 Allocation results showing how the EETDS algorithm works....................... 82
Figure 5.11 Parameters used in simulation (data from test report of Xbit Lab) 87
Figure 5.12 CCR sensitivity for Gaussian when Net_Energy=33.6 88
Figure 5.13 Computational nodes heterogeneity experiments .. 90
Figure 5.14 Network heterogeneity and threshold sensitivity experiments 91
Figure 5.15 CCR sensitivity for FFT when Net_Energy=20W ... 92
Figure 5.16 Computational nodes heterogeneity experiments for FFT 93
Figure 5.17 Network heterogeneity for FFT and schedule length for Gaussian 94
Figure 6.1 The buffer disk architecture ... 100
Figure 6.2 Allocation results of sequential mapping strategy ... 102
Figure 6.3 Allocation results of round-robin mapping strategy 102
Figure 6.4 Allocation results of heat-based mapping strategy .. 103
Figure 6.5 Heat-based load balancing algorithm ... 105
Figure 6.6 Energy consumption for large reads .. 112
Figure 6.7 Energy consumption for small reads .. 113
Figure 6.8 Temperature tracking trace .. 114
xvi

Figure 6.9 Temperatures in initial stage .. 115
Figure 6.10 Temperatures in intermediate stage ... 115
Figure 6.11 Temperatures in final stage .. 115
Figure 6.12 Load balancing comparison ... 116
Figure 6.13 Response time trace before training (64MB) ... 117
Figure 6.14 Response time trace after training (64MB) .. 118
Figure 6.15 Response time trace before training (64KB) .. 118
Figure 6.16 Response time trace after training (64KB)... 119

xvii

LIST OF TABLES

Table 4.1 Important notations and parameters .. 29
Table 4.2 Final results of parameters .. 36
Table 4.3 Simulation environment of processor impact .. 43
Table 4.4. Simulation environment of interconnection impact ... 46
Table 4.5 Simulation environment of application impact ... 48
Table 4.6 Simulation environment of CCR impact ... 51
Table 5.1 Results of the important parameters .. 79
Table 5.2 Energy consumption values ... 81
Table 5.3 Characteristics of experimental system parameters .. 85
Table 6.1 Seek time calculation ... 109
Table 6.2 Hardware characteristics of disks .. 110
Table 6.3 Important parameters ... 111
Table 6.4 Average response time comparison ... 119

1

Chapter 1
Introduction
With the advent of powerful processors, fast interconnects, and low-cost storage
systems, high performance computing platforms like clusters, grids and large-scale
storage systems have served as primary and cost-effective infrastructures for ever
complicated scientific and commercial applications. Theses platforms provide powerful
computing capability and the applications running in these platforms require intensive
data processing and data storage capability in nature. Unfortunately, super-computing
power is at the cost of huge energy consumption. How to generate enough power to
support these high-performance computing platforms has become a serious problem.
We believe that an efficient way to alleviate the energy crisis caused by high-
performance computing platforms is to design green computing techniques and apply
these techniques to the super-computing platforms. The objective of this dissertation is
to explore energy-efficient resource management technologies to reduce power
consumption of high-performance computing platforms built in giant data centers.
2

This chapter first presents the problem statement in Section 1.1. In Section 1.2, we
describe the scope of this research. Section 1.3 highlights the main contributions of this
dissertation, and Section 1.4 outlines the dissertation organization.
1.1 Problem Statement
In this section, we start with an overview of new trends in high-performance
computing. Section 1.1.2 introduces the serious data center energy crisis that we have to
face today and presents the initial motivation for the dissertation research.
1.1.1 The Era of High-Performance Computing
We are now in an era of information explosion. Billions of data is generated in the
moment you blink your eyes. In order to process these massive data, large-scale high-
performance computing platforms have been widely deployed all over the world. These
high-performance computing platforms usually are built in huge data centers. A large
fraction of applications running in these high-performance computing platforms are
computing-intensive and storage-intensive, since these applications deal with a large
amount of data transferred either between memory and storage systems or among
hundreds of computing nodes via interconnection networks. Nowadays, we can find the
impact of high-performance computing data centers in almost every domain: financial
services, scientific computing, bioinformatics, computational chemistry, and weather
forecast etc. Without the support of high-performance computing platforms, the
implementation of large-scale scientific and commercial projects like human genome
sequence programs, universe dark matter observation and Google search engine is
3

almost impossible. There is no doubt that data centers have significantly changed our
lives. We are enjoying the great convenience and services provide by data centers every
day.
1.1.2 The Data Center Energy Crisis
However, every sword cuts two sides. Increasing evidences have shown that the
powerful computing capability of data centers is actually at the cost of huge energy
consumption. For example, Energy User News stated that the power requirements of
today?s data centers range from 75 W/ft2 to 150-200 W/ft2 and will increase to 200-300
W/ft2 in the nearest future [1]. The new data center capacity projected for 2005 in U.S.
would require approximately 40 TWh ($4B at $100 per MWh) per year to run 24x7
unless they become more efficient [2]. The supercomputing center in Seattle is forecast
to increase the city's power demands by 25% [3]. As shown in Figure 1.1, the
Environment Protection Agency reported that the total energy consumption of servers
and data centers of the United States was 61.4 billion KWh in 2006, which is more than
doubled the energy usage for the same purpose in 2000 [4]. Even worse, the EPA
predicted that the power usage of servers and data centers will be doubled again within
five years if the historical trends are followed [4]. However, most previous research
about high-performance computing primarily focused on the improvement of
performance, security, and reliability. Energy conservation issue was a forgotten corner.
However, organizations of all sizes are currently experiencing significant challenges as a
result of energy-related expenses within their data centers. For example, ?The data
center energy crisis is inhibiting our clients? business growth as they seek to access
4

computing power. Many data centers have now reached full capacity, limiting a firm?s
ability to grow and make necessary capital investments,? said Mike Daniels, senior vice
president, IBM Global Technology Services. Our research is motivated by the energy
consumption trend and the necessity of energy conservation for high-performance
computing platforms.

Figure 1.1 2007 EPA report to congress about U.S. data center power usage
1.2 Scope of Research
Our research is focusing on designing new energy-efficient techniques for data
centers and incorporating existing techniques to conserve energy in high-performance
computing platforms. Since CPUs, network interconnections and storage systems are
three primary energy consumers in most high-performance computing platforms, our
research focuses on conserving energy for CPUs, interconnections and storage systems.
5

More specific, the energy conservation for CPUs and interconnections are achieved
through energy-efficient scheduling. A buffer disk based architecture (BUD for short)
and energy-aware load balancing algorithm are proposed to build energy-efficient
parallel storage systems.
1.3 Contributions
The major contributions of this research are summarized as follows:
(1) We propose a general architecture for large scale high-performance computing
platforms and discuss the potential possibilities of incorporating energy-
efficient techniques to each layer of the proposed architecture.
(2) We design and implement two energy-efficient scheduling algorithms for
homogeneous cluster systems.
(3) We design and implement two energy-efficient scheduling algorithms for
heterogeneous grid systems.
(4) We design energy-efficient buffer disk based architecture (BUD for short) for
storage systems and implement the according energy-aware load balancing
algorithm for BUD.
(5) We conduct extensive experiments for large scale clusters, grids, and storage
systems. These experimental results could be used for other researchers in the
research area of green computing.

6

1.4 Dissertation Organization
This dissertation is organized as follows. In Chapter 2, related work in the literature
is briefly reviewed.
In Chapter 3, we propose the high-performance computing platforms architecture
and discuss the potential possibilities of incorporating energy-efficient techniques to
each layer of the proposed architecture.
To make the architecture presented in Chapter 3 more practical, we develop two
energy-efficient algorithms for parallel jobs running in clusters in Chapter 4.
In Chapter 5, we study the energy-efficient scheduling issue for heterogeneous grids.
In Chapter 6, a buffer disk based energy-efficient storage system is presented and its
impact to performance and energy is evaluated.
In Chapter 7, we summarize the main contributions of this dissertation and discuss
future directions for this research.

7

Chapter 2
Literature Review
In this chapter, we briefly summarize the previous literatures which are most
relevant to our research in terms of energy-efficient resource management for high-
performance computing platforms. Section 2.1 will introduce related work on energy-
efficient parallel scheduling, which is highly relevant to our research shown in chapter 4
and 5. Related work on energy-efficient high-performance storage systems will be
discussed in section 2.2. This part of related work is closely relevant to our research
shown in chapter 6.
2.1 Related Work on Energy-Aware Scheduling
The issue of conserving energy consumption in clusters and grids did not attract
enough attention for a long period because researchers primarily concentrate on the
performance, reliability, and security issues [5]. Recently, people start to realize that the
energy consumption issue is also critical since energy demands of clusters and grids
have been steadily growing companied with an increasing number of data centers.
However, designing energy-aware scheduling algorithms for homogeneous clusters,
especially for heterogeneous grids, is technically challenging because we have to take
8

into account multiple design objectives, including performance (measured by throughput
and schedule length), energy efficiency, and heterogeneities.
2.1.1 Energy-Aware Scheduling in Clusters and Grids
A handful of previous studies investigated energy-aware processor and memory
design techniques to reduce energy consumption in CPU and memory resources [6] [7]
[8]. IBM researchers Elnozahy, Kistler, and Rajamony proposed the Request Batching
Policy (RBP), in which servicing of incoming requests is delayed while a web server is
kept in a low power state. Incoming requests are accumulated in memory until a request
has been kept pending for longer than a specified batching timeout. RBP can save
energy because while requests are being accumulated, the processor is placed in a lower
power state such as deep sleep [9]. Dynamic power management is designed to achieve
requested performance with minimum number of active components or a minimum load
on such components [6] [10]. Dynamic power management consists of a collection of
energy-efficient techniques, which adaptively turn off system components or reduce
their performance when the component is idle or partially unexploited. For example,
based on the observation of past idle and busy periods, predictive shutdown policies can
make power management decisions when a new idle period starts [11] [12]. Shin and
Choi proposed a scheme to slow down a processor when there is a single task eligible
for execution [13]. Yao et al. developed a static off-line scheduling algorithm [14],
whereas Hong et al. proposed on-line heuristics scheduling for aperiodic tasks [15]. T.
Xie and X. Qin developed a task allocation strategy aiming to minimize overall energy
consumption while confining schedule lengths to an ideal range [16].
9

However, the prior work in the arena of energy-aware scheduling was merely
focused on energy consumed by processors. The communication energy consumption
was completely ignored. The literature has shown that reducing energy dissipation in
interconnects is critical important. For instance, interconnect consumes 33 percent of the
total energy in an Avici switch [17] [18], and routers and links consume 37 percent of
the total power budget in a Mellanox server blade [19]. The energy consumption in
interconnects becomes even more critical for communication-intensive parallel
applications, in which large number of data will be transferred among precedence
constrained parallel tasks. One of the fundamental differences between our research and
previous research is that we consider both CPU and network interconnection power
consumption in the context of homogeneous and heterogeneous environment.
2.1.2 Task Partitioning and Task Scheduling
Task allocation strategies, which can be divided into task partitioning and scheduling
strategies, play an important role in achieving high-performance for parallel applications
on clusters and grids. The goal of a partitioning algorithm is to partition a parallel
application into a set of precedence constrained tasks represented in the form of a
directed acyclic graph (DAG), whereas a scheduling algorithm is deployed to schedule
the DAG onto a set of homogeneous or heterogeneous computational nodes. Scheduling
strategies deployed in clusters and grids have large impacts on overall system
performance.
Allocation techniques can be generally classified into two types: static and dynamic
schemes. The basic idea of static allocation schemes [20] [21] [22] [23] [24] is to
10

assume prior knowledge of applications, including the component tasks, their execution
times, and the like. Static allocation tries to find the overall optimized scheduling
solution for given objectives at compile time, which is extremely expensive (NP-
Complete Problem) in numerous complicated applications. In contrast, dynamic
allocation strategies [25] [26] [27] [28], which are much less expensive, provide merely
suboptimal results.
Scheduling policies can be generally classified into three categories: priority-based
scheduling [29], group-based scheduling, and task-duplication based scheduling
algorithms [30]. Priority-based scheduling algorithms involve assignments of priorities
to tasks and then maps the tasks to computing nodes based upon assigned priorities.
Group-based scheduling algorithms group intercommunicating tasks within a single
computing node, thereby eliminating communication overheads [31]. The basic idea
behind duplication-based scheduling algorithms is to make use of computing nodes? idle
times to replicate predecessor tasks [30] [32]. Many researchers have demonstrated that
various strategies regarding task duplications are extremely applicable for reducing total
execution times under communication intensive workload conditions [32] [33]. In
duplication-based scheduling strategies that exhibit performance improvements over
other scheduling methods, redundantly executed tasks either eliminate communication
overheads or allow productive utilization of idle processor times. Hagras and Janecek
developed a simple yet efficient task-graph scheduling algorithm using the list-based
and task-duplication-based scheduling approaches [34]. Siegel et al. investigated various
mapping and scheduling algorithms in the context of heterogeneous ad hoc grids, where
the algorithms are aimed to assign resources in a way to meet applications? execution
11

time and energy constraints [35]. Kishimoto and Ichikawa carried out a case study,
attempting to reduce the execution time of the high-performance linpack benchmark on
two heterogeneous clusters [36]. Cuenca et al. proposed an approach to adapting an
application implementing a homogeneous parallel dynamic programming algorithm for
efficient execution on a heterogeneous cluster [37].
In our algorithms for grids, we try to seamlessly integrate static and dynamic
allocation techniques to guarantee high-performance while conserving energy. Basically,
our algorithms contain two phases. In the first phase, we apply a heuristic (a similar
approach can be found in [5]) to minimize schedule lengths by clustering the most
related parallel tasks together. The static allocation is carried out because we assume the
execution and communication times of tasks are already known in priori. In the second
phase, our algorithms make use of a dynamic allocation method to obtain an optimal
power consumption of a grid computing system by comparing total energy consumption
when grouped tasks are allocated to different computational nodes in the grids.
2.2 Related Work on Energy-Efficient Storage Systems
Modern parallel storage systems are able to provide higher performance at the cost
of enormous energy consumption. For example, a typical robotic tape system provided
by StorageTek would have an aggregate bandwidth of 1200MB/s [38] while a modern
disk array could easily provide a peak bandwidth of 2,880,000MB/s. However, reading
and storing 1,000TB of information would cost $9,400 to power the tape library system
vs. $91,500(almost ten times) to power the disk array [39]. The gap will definitely
increase when faster disks with higher power consumption rates appear and are widely
12

deployed. A recent industry report shows that storage devices account for almost 27% of
the total energy in a data center [40]. Even worse, this fraction tends to increase as
storage requirements are rising by 60% annually [41]. Due to the preceding energy
consumption trends, new technologies focused on the design of energy-efficient parallel
storage systems are highly desirable.
Several techniques proposed to conserve energy in storage systems include dynamic
power management schemes [42], power-aware cache management strategies [43],
power-aware prefetching schemes [44], software-directed power management
techniques [45], and multi-speed settings [46]. But so far, none of these techniques
address the energy conservation and performance issue of buffer-disk based parallel
storage systems.
In 2002, D. Colarelli and D. Grunwald presented a similar framework as compared
to our BUD architecture. Their architecture was called ?Massive Arrays of Idle Disks?
or MAID [39]. However, two important problems remain unsolved in MAID. First, they
did not clearly mention about the mapping structure of active drives and passive drives,
i.e. which buffer disk should be chosen as the candidate to cache the data whenever
there is a data miss. Second, they did not consider the load balancing issue, which very
likely could lead to performance penalties.
Another framework similar to MAID, called Popular Data Concentration (PDC),
was proposed by E. Pinheiro and R. Bianchini in 2004 [47]. The basic idea of PDC is to
migrate data across disks according to frequency of access, or popularity. The goal is to
lay data out in such a way that popular and unpopular data are stored on different disks.
This layout leaves the disks that store unpopular data mostly idle, so that they can be
13

transitioned to a low-power mode. However, PDC is a static offline algorithm. In some
cases, it is impossible for the system to exactly know which data is popular and which is
not. This is especially true for the ever-changing workload, in which some data is
popular at a particular period but becomes unpopular the next period.
In contrast with both MAID and PDC, we implemented a heat-based algorithm to
control data caching and data mapping between data disks and buffer disks in the BUD
architecture. The heat-based algorithm was first proposed by P. Scheuermann, G.
Weikum and P. Zabback in 1998 [48]. Their algorithm varies from our algorithm in the
fact that they calculate the heat of data disks and apply the algorithm in the data
partitioning stage. We calculate the heat of buffer disks and apply the algorithm in the
data caching stage. They focus on how to partition data to improve throughput, while
our focus is how to judiciously cache data to achieve load balancing.
2.3 Summary
The objective of this dissertation is to present energy-aware resource management
strategies for high-performance computing platforms, which is based on previous
research efforts in scheduling, load balancing and large-scale storage systems. This
chapter overviewed a variety of existing techniques related to scheduling, load balancing
and high-performance storage systems.
In the first part of this chapter, we discussed the relevant approaches for energy-
aware task partitioning and scheduling for clusters and grids. In particular, we talked
about the energy-aware techniques for CPU and memory, static and dynamic task
allocation and three different scheduling strategies. Moreover, we briefly introduce the
14

characteristics of our scheduling algorithms. In the second part, we surveyed existing
energy-aware techniques used in high performance storage systems. These techniques
include Massive Arrays of Idle Disks and Popular Data Concentration. In addition, we
compare our heat-based algorithms for buffer disk architecture with these two existing
algorithms.
15

Chapter 3
High-Performance Computing
Platforms Architecture
In the previous chapter, we summarized the published literatures which are highly
related to our research. However, during the course of literature review, we realized that
almost all previous studies are in the lower level such as energy-aware scheduling, CPU
energy efficiency and Memory energy efficiency etc. Although these works have made
great contribution to build energy-aware high-performance computing platforms,
comprehensive discussions in the architecture level was ignored.
We believe that the discussions in the architecture level are necessary and valuable
because these discussions can help us understand the importance of energy-efficiency
for high-performance computing platforms and provide a big picture of this research
area. Meanwhile, it can provide meaningful guidance for the follow-up researchers.
Therefore, in this chapter, we propose a general architecture for high-performance
computing platforms and discuss the possibility of incorporating energy-efficient
techniques to each layer of this architecture.
16

3.1 A General High-Performance Computing Platforms
Architecture
Generally, most high-performance computing platforms can be presented by the
following four layers: the application layer, the middleware layer, the resource layer and
the network layer (See Figure 3.1). Since grid system is one of the most complicated
high-performances computing platforms, we will use grids as an example to explain the
proposed architecture.

Figure 3.1 High-performance computing platforms architecture
The network layer is responsible for routing and transferring packets and it also has
the responsibility of establishing network services for the resource layer. The dynamic
17

network power management technique could be implemented in the network layer to
support energy-efficient data transmission by deferring packet transmissions without
violating any delay constraints.
On top of the network layer is a resource layer, which consists of a wide range of
resources like computing nodes, storage systems, electronic data catalogues, and
satellites or other instruments. The resource layer is responsible for manipulating the
distributed resources in grid systems. In this layer, the dynamic voltage scaling
techniques can be used to conserve energy for computing nodes by dynamically
lowering supply voltages when the computing nodes are running faster than specified
performance requirements.
Parallel applications running in a grid system do not directly interact with the
resource layer. Instead, application programs interact with the middleware layer which
provides a sophisticated means of reliability control, security protection, resource
allocation, and task scheduling and analysis. The middleware layer contains a set of
intelligent modules, including resource broker, security access, task analyzer, task
scheduler, communication service, information service, and reliability control. The
resource broker allows users to submit their applications to the grid system. The security
module is responsible for providing security protection schemes to security-critical grid
applications. After a grid job is admitted to the grid system, the task analyzer partitions
the job into a number of small tasks with dependency constraints. Next, the task
scheduler allocates the tasks to distributed computing resources using specific
scheduling strategies. The communication service module has the responsibility for
supporting services like remote function calls. The information service module keeps
18

track of detailed information pertinent to the tasks? execution on computing resources.
The reliable control module makes the grid system highly reliable and fault tolerant. For
example, the reliable control module may reject a submitted job if the job?s reliability
requirements cannot be guaranteed by resources in the grid system. The middleware
layer provides significant opportunities for incorporating energy-efficient techniques,
especially for applying energy-efficient scheduling strategies. Our proposed scheduling
algorithms in Chapter 4 and Chapter 5 are actually running in this layer.
The application layer handles all types of user applications varying from science,
engineering, business, and financial area. Portals and development toolkits are provided
to support various grid applications. Although energy-aware software applications are
unusual today, they may become the next hotspot in the research area of software
engineering with the emerging technology of multi-core microprocessors.
A number of energy efficiency trends for large scale servers and data centers are
currently underway. For example, multi-core processors are expected to run at a slower
speed and lower voltage but handle more work in parallel than a single-core chip
thereby balancing energy efficiency and performance. Replacing several dedicated
servers that operate at a low average processor utilization level with a single ?host?
server that operates at a higher average utilization level is another trend. Hard disk drive
storage devices are also expected to become more energy-efficient in part because of a
shift to smaller form factor disk drives and increasing use of serial advanced technology
attachment drives. Meanwhile, the next generation of power supply systems and site
infrastructure systems for grids will become more and more energy efficient. If these
trends could be realized and the according techniques could be implemented in different
19

layers, the energy usage caused by high performance computing platforms will be
greatly reduced.
3.2 Summary
In this chapter, we have proposed a general architecture for high-performance
computing platforms and discussed the possibility of incorporating energy-efficient
techniques to each layer of this architecture.
To make this architecture more solid and sound, we will illustrate how to incorporate
energy-efficient techniques to three typical high-performance computing platforms in
the following three chapters. More specifically, Chapter 4 and Chapter 5 will illustrate
energy-efficient scheduling for clusters and grids respectively. Chapter 6 will illustrate
energy-efficient resource management for large-scale storage systems.

20

Chapter 4
Energy-Efficient Scheduling For
Clusters
In this chapter, we consider the problem of building energy-efficient cluster systems.
A cluster is a type of parallel processing system, which consists of a collection of
interconnected stand-alone computers cooperatively working together as a single,
integrated computing system (see Figure 4.1). All these loosely coupled computers do
not have common memory. They communicate with each other by passing messages.

Figure 4.1 System model of high-performance clusters (source: Wikipedia)
21

When we talk about cluster systems, we have to mention about the parallel
computing technologies. Parallel computing is the simultaneous execution of small tasks
split up from a complicated application and specially allocated on multiple processors in
order to obtain results faster. The combination of cluster systems and parallel computing
technology exhibits powerful computing capabilities. Over the last decade, the rapid
advancement of high-performance microprocessors, high-speed networks, and standard
middleware tools makes cluster computing platforms more powerful and convenient to
use. Therefore, cluster computing technology has been extensively deployed and widely
used to solve challenging and rigorous engineering problems in industry and scientific
areas like molecular design, weather modeling, database systems, universe dark matter
observations, and complex image rendering. However, the rapid growth of cluster
computing centers introduces a serious problem: excessively high energy consumption.
To address this problem, we propose two energy-efficient scheduling algorithms in this
chapter for parallel applications running on clusters. The two algorithms are named the
Energy-Aware Duplication scheduling algorithm (or EAD for short) and the
Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short).
This chapter is organized as follows. In section 4.1, we introduce the mathematical
models used to present cluster systems, including cluster model, parallel tasks model,
and energy consumption model. In section 4.2, we present the energy-efficient
scheduling algorithms and illustrate how the EAD and PEBD algorithms work using a
concrete example. Next, we will prove the time complexity of our algorithms in section
4.3. Experimental environment and simulation results are shown in section 4.4. Finally,
section 4.5 concludes this chapter by summarizing the main contributions of the chapter.
22

4.1 System Models
In this section, we describe mathematical models used to represent clusters,
precedence constrained parallel tasks, and energy consumption in CPUs and
interconnects.
4.1.1 Cluster Model
A computer cluster is a group of coupled computers that work together closely so
that in many respects they can be viewed as though they are a single computer. A cluster
in our research is characterized by a set P = {p1, p2,..., pm} of computational nodes
(hereinafter referred to as nodes) connected by a Myrinet-style cluster interconnects. It is
assumed that the computational nodes are homogeneous in nature, meaning that all
processors are identical in their capabilities. Similarly, the underlying interconnection is
assumed to be homogeneous and, thus, communication overhead of a message with
fixed data size between any pair of nodes is considered to be the same. Each node
communicates with other nodes through message passing, and the communication time
between two precedence constrained tasks assigned to the same node is negligible. In
our system model, computation and communication can take place simultaneously. This
assumption is reasonable because each computational node in a modern cluster has a
communication coprocessor that can be used to free the processor in the node from
communication tasks.
To simply the system model without loss of generality, we assume that the cluster
system is fault free and the page fault service time of each task is integrated into its
execution time. With respect to energy conservation, energy consumption rate of each
23

node in the system is measured by Joule per unit time. Each interconnection link is
characterized by its energy consumption rate that heavily relies on data size and the
transmission rate of the link.
4.1.2 Parallel Tasks Model
A parallel application with a set of precedence-constrained tasks is represented in the
form of a Directed Acyclic Graph (DAG), which throughout this paper is modeled as a
pair (V, E). V = {v1, v2, ..., vn} represents a set of precedence constrained parallel tasks,
and ti is the ith task?s computation requirement showing the number of time units to
compute vi, 0 ? i ? 1. It is assumed that all the tasks in V are non-preemptive and
indivisible work units, and a similar assumption can be found in related studies [13][49].
E denotes a set of messages representing communications and precedence constraints
among parallel tasks. Thus, eij = (vi, vj)? E is a message transmitted from task vi to vj,
and cij is the communication cost of the message eij ? E. We assume in this study that
there is one entry task and one exit task for an application with a set of precedence-
constrained tasks. The assumption is reasonable because in case of multiple entry or exit
tasks exist, the multiple tasks can always be connected through a dummy task with zero
computation cost and zero communication cost messages.
The communication-to-computation ratio or CCR of a parallel application is defined
as the ratio between the average communication cost and the average computation cost
of the application on a given cluster. Formally, the CCR of an application (V, E) is given
by the Eq. (1):
24

?
?
=
?=
||
1||
1
||
1
),(V
i
i
Ee
ij
tV
cE
EVCCR ij . (1)
A task allocation matrix (e.g., X) is an n?m binary matrix reflecting a mapping of n
precedence constrained parallel tasks to m computational nodes in a cluster. Element xij
in X is ?1? if task vi is assigned to node pj and is ?0?, otherwise.
4.1.3 Energy Consumption Model
We use a bottom-up approach to derive energy dissipation experienced by a parallel
application running on a cluster. In this subsection, we first model energy consumption
exhibited by computational nodes in the cluster. Next, we calculate energy dissipation in
the interconnection network of the cluster.
Let eni be the energy consumption caused by task vi running on a computational
node, of which the energy consumption rate is activePN , and the energy dissipation of task
vi can be expressed as Eq. (2)
 iactivei tPNen ?= . (2)
Given a parallel application with a task set V and allocation matrix X, we can
calculate the energy consumed by all the tasks in V using Eq. (3).

()
.

1
1
||
1
?
??
=
==
=
?==
n
i
iactive
n
i
iactive
V
i
iactive
tPN
tPNenEN
 (3)
Let idlePN be the energy consumption rate of a computational node when it is
inactive, and fi be the completion time of task ti. The energy consumed by an inactive
25

node is a product of the idle energy consumption rate idlePN and an idle period. Thus,
we can use Eq. (4) to obtain the energy consumed by the jth computational node in a
cluster when the node is sitting idle.
 () ()?
?
??
?
? ???= ?
==
n
i
iiji
n
iidle
j
idle txfPNEN
11
max (4)
where ()i
n
i
f
1
max
=
 is the schedule length (also known as makespan time), and
() ?
==
??
n
i
iiji
n
i
txf
11
max is the total idle time on the jth node. The total energy consumption
of all the idle nodes cluster is

() ()
() () .max
max
1 11
1 111
???
?
???
? ????=
?
?
??
?
? ???==
??
? ??
= ==
= ===
m
j
n
i
iiji
n
iidle
m
j
n
i
iiji
n
iidle
m
j
j
idleidle
txfmPN
txfPNenEN
 (5)
Consequently, the total energy consumption of the parallel application running on
the cluster can be derived from Eqs. (3) and (5) as
 () () .max
1 111 ?
?
?
?
???
? ????+=
+=
???
= ===
m
j
n
i
iiji
n
iidle
n
i
iactive
idleactive
txfmPNtPN
ENENEN
 (6)
We denote ijel as the energy consumed by the transmission of message (ti, tj)? E. We
can compute the energy consumption of the message as a product of its communication
cost and the power activePL of the link when it is active:
 ijactiveij cPLel ?= (7)
The cluster interconnect in this study is homogeneous, which implies that all
26

messages are transmitted over the interconnection network at the same transmission rate.
The energy consumed by a network link between pa and pb is a cumulative energy
consumption caused by all messages transmitted over the link. Therefore, the link?s
energy consumption is obtained by Eq. (8) as follows, where Lab is a set of messages
delivered on the link, and Lab can be expressed as
{ }11,1, =?=????= jbiaijab xxmbaEeL .

()
(),

1 ,1
? ?
??
= ?=
??
???=
?==
n
i
n
ijj
ijactivejbia
Le
ijactive
Le
ij
ab
active
cPLxx
cPLelEL
abijabij (8)
The energy consumption of the whole interconnection network is derived from Eq.
(8) as the summation of all the links? energy consumption. Thus, we have
 ? ?
= ?=
=
m
a
m
abb
ab
activeactive ELEL
1 ,1

 ()? ? ? ?
= ?= = ?=
???=
n
i
n
ijj
m
a
m
abb
ijactivejbia cPLxx
1 ,1 1 ,1
. (9)
We can express energy consumed by a link when it is inactive as a product of the
consumption rate and the idle period of the link. Thus, we have
 () ()??
?
?
???
? ????= ? ?
= ?=
n
i
n
ijj
ijjbiai
n
iidle
ab
idle cxxfPLEL
1 ,1
max
(10)
where idlePL is the power of the link when it is inactive, and
() ()? ?
= ?=
???
n
i
n
ijj
ijjbiai
n
i
cxxf
1 ,1
max is the total idle time of the link. We can express energy
27

incurred by the whole interconnection network during the idle periods as

() ()? ? ? ?
? ?
= ?= = ?=
= ?=
???
?
?
???
? ???=
=
m
a
m
a,bb
n
i
n
ijj
ijjbiai
n
iidle
m
a
m
abb
ab
idleidle
cxxfPL
ELEL
1 1 1 ,1
1 ,1
max

(11)
Total energy consumption exhibited by the cluster interconnect is derived from Eqs.
(9) and (11) as
 ,idleactive ELELEL += (12)
Now, we can compute energy dissipation experienced by a parallel application on a
cluster using Eqs. (6) and (12). Hence, we can express the total energy consumption of
the cluster executing the application as
 () ()??
?
?
???
? ????+=+= ???
= ===
m
j
n
i
iiji
n
iidle
n
i
iactive txfmPNtPNELENE
1 111
max (13)

() () ()? ? ? ? ? ? ??
= ?= = = ?= = ?=?= ?
?
?
?
???
? ???+???+ n
i
n
ijj
m
a
m
a
m
a,bb
n
i
n
ijj
ijjbiai
n
iidle
m
abb
ijactivejbia cxxfPLcPLxx
1 ,1 1 1 1 1 ,1,1
.max
4.2 Energy-Efficient Scheduling Algorithms
In this section, we present two energy-aware scheduling algorithms for parallel
applications with precedence constraints running on clusters. The two algorithms are
named the Energy-Aware Duplication scheduling algorithm (or EAD for short) and the
Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short).
The objective of the two scheduling algorithms is to shorten schedule lengths while
28

optimizing energy consumption of clusters. Theoretically, the scheduling problem for
clusters is NP-hard problem because it could be mapped to a scheduling problem proven
to be an NP-complete [50]. Therefore, the proposed two scheduling algorithms are
heuristic in the sense that they can produce suboptimal solutions in polynomial-time.
The EAD and PEBD algorithms consist of three major steps delineated in sections 4.2.1
-- 4.2.3.
4.2.1 Original Task Sequence Generation
Precedence constraints of a set of parallel tasks have to be guaranteed by executing
predecessor tasks before successor tasks. To achieve this goal, the first step in our
algorithms is to construct an ordered task sequence using the concept of level, which of
each task is defined as the length in computation time of the longest path from the task
to the exit task. There are alternative ways to generate the task sequence for a DAG,
including critical path-based priority schemes [30] and other priority-based schemes
[51]. In this study, we use a similar approach as proposed by Srinivasan and Jha [5] to
define the level L(vi) of task vi as below
 ()
??
??? + ?==
?
otherwisetklevel
t
vL i
isucck
i
i)(max
 i)successor(if ,
)(
)(
43421 . (14)
The levels of the tasks which have no successor are equal to their execution time.
The levels of other tasks can be obtained in a bottom-up fashion by specifying the level
of the exit task as its execution time and then recursively applying the second term on
the right-hand side of Eq. (14) to calculate the levels of all the other tasks. Next, all the
tasks are placed in a queue in an increasing order of the levels.
29

4.2.2 Duplication Parameters Calculation
The second phase in the EAD and PEBD algorithms is to calculate some important
parameters, which the algorithms rely on. The important notation and parameters are
listed in Table 4.1.
Table 4.1 Important notations and parameters
Notation Definition
EST(vi) Earliest start time of task vi
ECT(vi) Earliest completion time of task vi
FP(vi) Favorite predecessor of task vi
LACT(vi) Latest allowable completion time of task vi
LAST(vi) Latest allowable start time of task vi

The earliest start time of the entry task is 0 (see the first term on the right side of Eq.
(15). The earliest start times of all the other tasks can be calculated in a top-down
manner by recursively applying the second term on the right side of Eq. (15).
 ()
??
???
?????? +
?=
=
???
otherwise ,)(),(maxmin
 r(i)predecesso if ,0
)(
, kikjvvEeEe
i cvECTvECTvEST
jkkiji
. (15)
The earliest completion time of task vi is expressed as the summation of its earliest
start time and execution time. Thus, we have
 .)()(iii tvESTvECT += (16)
Allocating task vi and its favorite predecessor FP(vi) on the same computational
node can lead to a shorter schedule length. As such, the favorite predecessor FP(vi) is
defined as below
30

 .)()(,, where,)(kikjijkijiji cvECTcvECTkjEeEevvFP +?+????=
(17)
As shown by the first term on the right-hand side of Eq. (18), the latest allowable
completion time of the exit task equals to its earliest completion time. The latest
allowable completion times of all the other tasks are calculated in a top-down manner by
recursively applying the second term on the right-hand side of Eq. (18).
 () ()
??
???
?????? ?
?=
=
=???
otherwise ,)(min,)(minmin
 i)successor(if),(
)(
)(,)(, jvFPvEeijjvFPvEe
i
i vLASTcvLAST
vECT
vLACT
jiijjiij
. (18)
The latest allowable start time of task vi is derived from its latest allowable
completion time and execution time. Hence, the LAST(vi) can be written as
 .)()(iii tvLACTvLAST ?= (19)
4.2.3 Energy-Efficient Scheduling: EAD and PEBD
Given a parallel application presented in form of a DAG, the EAD algorithm in this
phase allocates each parallel task to a computational node in a way to aggressively
shorten the schedule length of the DAG while conserving energy consumption. The
pseudocode in Figure 4.2 shows the details of this phase in the EAD algorithm, which
aims to provide the greatest energy savings when it reaches the point to duplicate a task.
Most existing duplication-based scheduling schemes merely optimize schedule lengths
without addressing the issue of energy conservation. As such, the existing duplication-
based approaches tend to yield minimized schedule lengths at the cost of high energy
consumption. To make tradeoffs between energy savings and schedule lengths, we
design the EAD algorithm in which task duplications are strictly forbidden if the
31

duplications do not exhibit energy conservation (see Steps 9-10). In other words,
duplications are not allowed if they result in a significant increase in energy
consumption (e.g., the increase exceeds a threshold) and, are avoided in EAD.
Consequently, the EAD algorithm ensures that schedule lengths are minimized using
task duplication without adversely affecting energy conservation.
Figure 4.2 Pseudo code of phase 3 in the EAD algorithm
Before this phase starts, phase 1 sorts all the tasks in a waiting queue, followed by
phase 2 to calculate the important parameters. In phase 3 EAD strives to group
1. v = first waiting task of scheduling queue;
2. i = 0;
3. assign v to Pi;
4. while (not all tasks are allocated to computational nodes) do
5. u = FP(v);
6. if (u has already been assigned to another processor) then
7. if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the schedule
length */
8. moreenergy = enu ? eluv; /*energy increase*/
9. if (moreenergy ? threshold h) then /* increased energy less than our threshold*/
10. assign u to Pi; /*duplicate u*/
11. if v has another predecessor z ? u has not yet been allocated to any node then
12. u = z;
13. else
14. if u is entry task then
15. u = the next task that has not yet been assigned to a node;
16. i++;
17. else
18. for another predecessor z of v, z ? u,
19. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn?t been allocated) then
20. u = z; /* do not duplicate*/
21. else
22. for another predecessor z of v, z? u,
23. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn?t been allocated) then
24. u = z; /* do not duplicate*/
25. else allocate u to Pi;
26. v = u;
27. if v is entry task then
28. v = the next task that has not yet been allocated to a computational node;
29. i++;
30. assign v to Pi;
31. return schedule list;
32

communication-intensive parallel tasks together and have them allocated to the same
computational node. Once multiple task groups are constructed, each group of tasks is
assigned to a different node in the cluster. The process of grouping tasks is repeated
from the first task in the queue by performing a depth-first style search, which traces the
path from the first task to the entry task. Steps 5 and 6 choose a favorite predecessor if it
has not been allocated a computational node. Otherwise, EAD may or may not replicate
the favorite predecessor on the current node. For example, we assume that vj is the
favorite predecessor of the current task vi, and vj has been allocated to another node. If
duplicating vj on the current node to which vi is allocated can improve performance
without sacrificing energy conservation, Step 12 makes a duplication of vj.
Please note that the generation of a task group terminates once the path reaches the
entry task. The next task group starts from the first unassigned task in the queue. If all
tasks are assigned to the computation nodes, then the EAD algorithm terminates.
The third phase of the PEBD algorithm is similar as that of EAD except that PEBD
seamlessly integrate the approach to minimizing schedule lengths with the process of
energy optimization (see Figure 4.3). Unlike EAD, the development of PEBD is
motivated by the needs of making the right tradeoff between performance and energy
conservation. Thus, the PEBD algorithm is geared to efficiently reduce schedule lengths
while providing the greatest energy savings. Energy consumption incurred by
duplicating a task involves judging whether the duplication is profitable or not. To
facilitate the construction of PEBD, we introduce a concept of cost ratio of a
duplication, which is defined as the ratio between the energy saving and schedule length
reduction (see Step 10). While the energy saving of the duplication is obtained in Step 8,
33

the reduction in schedule length is computed in Step 9. The PEBD algorithm is, of
course, conducive to maintaining cost ratios at a low level, thereby efficiently shortening
schedule lengths with low energy consumption. This feature is accomplished by Steps
11-12, which duplicate a task in case the cost ratio of such duplication is smaller than a
given threshold.
Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm
1. v = first waiting task of scheduling queue;
2. i = 0;
3. assign v to Pi;
4. while (not all tasks are allocated to computational nodes) do
5. u = FP(v);
6. if (u has already been assigned to another node) then
7. if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the execution
time*/
8. moreenergy = enu ? eluv; /*energy increase*/
9. lesstime = LACT(u) + cuv -LAST(v); /* schedule length is reduced */
10. cost ratio = moreenergy / lesstime; /*value of ratio: the smaller the better*/
11. if (ratio ? threshold h) then /* significantly shorten schedule length */
12. assign u to Pi; /*duplicate u*/
13. if v has another predecessor v ? u has not yet been assigned to any node then
14. u = v;
15. else
16. if u is entry task then
17. u = the next task that has not yet been allocated to a computational node;
18. i++;
19. else
20. for another predecessor z of v, z ? u,
21. if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then
22. u = z; /*do not duplicate*/
23. else
24. for another predecessor z of v, z ? u,
25. if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then
26. u = z; /*do not duplicate*/
27. else assign u to Pi;
28. v = u;
29. if v is entry task then
30. v = the next task that has not yet been allocated;
31. i++;
32. allocate v to Pi;
33. return schedule list
34

4.2.4 A Case Study
Now we run the proposed scheduling algorithms using a sample task graph
delineated in Figure 4.4. In this example, we choose Intel Core2 Duo E6300 as the CPU
of each computing node and high-speed Merynet as interconnection. Recall that the
energy consumption of the task graph is determined by Eq. (13), where PNactive and
PLactive are set to 44W and 33.6W, respectively.
In the task DAG plotted in Figure 4.4, each task is represented by (eni, ti) and each
message is denoted by (elij, cij). Recall that eni and elij, computed by Eqs. (2) and (7), are
the energy consumption of task vi and communication between task vi and vj. The
running trace of EAD and PEBD is given as follows:

Figure 4.4 A typical DAG
35

Phase 1. Generate a task sequence by computing levels: The levels of tasks can be
calculated using Eq. (14). For instance, the level of task v10 is 8, since v10 is the exit task
without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor
task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors -
v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus,
we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1}
Phase 2. Calculate important parameters:
Phase 2.1 Compute EST and ECT : The EST and ECT values of each task can be
computed by applying Eqs. (15) and (16). For example, task v1 is the entry task and,
therefore, EST(v1) = 0. In accordance with Eq. 16, we have ECT(v1) = 0 + t1 = 3. Since
v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) =
EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below
 () (){ }() (){ } .725 7,max,47 5,maxmin)ECT(v),ECT(vmax,)ECT(v),ECT(vmaxmin)EST(v 474337347 =++= ++= cc
Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 7 + 20 = 27.
Phase 2.2 Compute favorite predecessors: The favorite predecessor of a task is
determined by using Eq. (17). For example, the favorite predecessor of task v2, v3, and v4
is v1, simply because these three tasks have only one predecessor. The favorite
predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 10 = 26 > ECT(v5) + c58 = 7 + 1 =
8.
Phase 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task
v10 equal to 40 and, thus, we have LAST(v10) = LACT(v10) - t10 = 40 ? 8 = 32. In case of
LACT(v6), we have to consider two successors, namely, v8 (not in critical path) and v9
36

(in critical path). We obtain
(){ } { } 1718) 10),-(27min))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 === and
LAST(v6) = LACT(v6) - t6 = 17 ? 10 = 7
Table 4.2 shows the final results of all important parameters.
Table 4.2 Final results of parameters
Task level est ect last lact fpred
1 40 0 3 0 3 --
2 28 3 6 4 7 1
3 37 3 7 3 7 1
4 35 3 5 3 5 1
5 16 6 7 16 17 2
6 25 6 16 7 17 2
7 33 7 27 7 27 3
8 15 16 23 18 25 6
9 13 27 32 27 32 7
10 8 32 40 32 40 9

Phase 3. Task allocation and duplication phase:
The EAD algorithm. Given a threshold h = 25, EAD generates the first group of
tasks by starting from the first task in the task list obtained in Phase 1. The first task
group containing tasks v1, v3, v7, v9, and v10 is allocated to node 1. Next, EAD attempts
to allocate the first unassigned task in the list. In this case, the unassigned task is task v8.
Tasks v8, v6 and v2 are allocated to node 2, and the next task to be assigned is task v1.
Since v1 has been allocated to node 1, EAD has to decide whether there is an incentive
to duplicate v1 on node 2. The condition in step 7 (see Figure 4.2) is satisfied, because
we have LAST(v2) - LACT(v1) = 4 ? 3 = 1 < cc12 = 3. Therefore, duplicating v1 on node
2 can shorten the schedule length. However, the increase in energy consumption is en1 ?
el12 = 44w?3 ? 33.6w?3 = 31.2J (see step 8 in Figure 4.2), which is greater than the
threshold. Thus, there is no any incentive to duplicate the task due to the high energy
37

overhead, signifying that the duplication of v1 must be avoided. EAD assigns task v5 to
node 3, followed by task v2, and v1, which are not duplicated on node 3 because we can
not shorten the schedule length (LAST(v5) - LACT(v2)=16-7=9> cc25=3). Task v4 is the
only task allocated on node 4, and v1 is not duplicated because the increase in energy
consumption is significant.
Therefore, the final scheduling decision of EAD is as follows:
Processor 1: Task 10barb2right Task 9barb2right Task 7barb2right Task 3barb2right Task 1
Processor 2: Task 8barb2right Task 6barb2right Task 2
Processor 3: Task 5
Processor 4: Task 4

The PEBD algorithm. The behavior of PEBD is similar to that of EAD except that
energy-performance tradeoffs are determined by a ratio between the energy
consumption of replicas and the decrease in schedule length by virtue of replicas. Given
a threshold h = 25, PEBD first allocates v1, v3, v7, v9, and v10 to node 1 and then it will
meet the same situation as EAD, in which PEBD has to decide whether or not to
duplicate v1. Once again, PEBD will calculate LAST(v2) - LACT(v1) = 4 ? 3 = 1 < cc12 =
3. Thus, if duplicate T1, the scheduling length can be shortened by 2 seconds. However,
the energy consumption will be increased by en1 ? el12 = 44w?3 ? 33.6w?3 = 31.2J.
Now PEBD will decide based on the result of ratio (31.2/2 =15.6<Threshold=25) to
duplicate T1. The duplication of v1 is made possible by PEBD because the replica helps
in reducing the schedule length without significantly increasing energy consumption.
And then, in the next iteration, EAD assigns task v5 to node 3, followed by task v2, and
v1, which are not duplicated on node 3 because we cannot shorten the schedule length
(LAST(v5) - LACT(v2)=16-7=9> cc25=3). The final scheduling decision of PEBD is:
38

Processor 1: Task 10barb2right Task 9barb2right Task 7barb2right Task 3barb2right Task 1
Processor 2: Task 8barb2right Task 6barb2right Task 2barb2right Task 1
Processor 3: Task 5
Processor 4: Task 4barb2right Task 1
4.3 Time Complexity Analysis
In this subsection, we will analyze the time complexity of the EAD and PEBD
algorithms.
Theorem 1. The time complexity of EAD and PEBD is O(|V|2).
Proof. The EAD and PEBD algorithms perform the three main phases respectively
described in Sections 4.2. In the first phase, EAD and PEBD traverse all the tasks of the
DAG to compute the levels of the tasks. The time complexity to calculate the levels is
O(|E|), where |E| is the number of messages. This is because all the messages have to be
examined in the worst case. It takes O(|V|log|V|) time to sort the tasks in the non-
increasing order of the levels, where |V| = n is the number of tasks. Therefore, the time
complexity of phase 1 is O(|E| + |V|log|V|).
The second phase is performed to obtain all the important parameters like EST, ECT,
FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first
search with the complexity of O (|V| + |E|).
Recall that in phase 3 the tasks are allocated to the computational nodes. First, all the
tasks are checked and allocated to one or more nodes in the while loop based on
duplication strategies. In the worst case, all the tasks in the critical path must be
duplicated, meaning that the time complexity is O(h|V|)time, where h is the height of the
DAG. Since h is less than or equal to |V|, the complexity of the third phase is O(|V|2).
39

Consequently, the overall time complexities of EAD and PEBD are O(2|E| + |V|(lg|V|+1)
+ |V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to
O(|V|2). Hence, the time complexities of EAD and PEBD are O(|V|2).
4.4 Simulation Results
Now we are in the position to evaluate the effectiveness of the proposed energy-
aware duplication scheduling algorithms. In this section, we compare EAD and PEBD
with two existing scheduling algorithms: the non-duplication-based scheduling heuristic
(NDS or MCP) [52], and the task duplication-based scheduling algorithm (TDS) [49]. In
order to fairly compare our scheduling algorithms with existing algorithms, we set the
same evaluation metrics and parameter tune rule for all simulation results of different
algorithms. Additionally, we choose popular processors of AMD and Intel companies
and popular interconnections like Myrinet and Infiniband network as our simulation
platform, which can make our simulation results more practical and acceptable to
industry people.
4.4.1 Simulation Metrics and Parameters
Schedule length and energy consumption are the major two metrics used in our
simulation to evaluate the performance of different algorithms. The basic but important
rule we followed in our simulations is OTOP (Once Tuning One Parameter). In other
words, parameters in the same simulation group results are exactly the same except one
parameter is different. By tuning only one parameter, we can clearly observe its impact
to clusters and easily find out the system sensitivity to this specific parameter. The
40

important parameters tuned in our simulations include Communication-to-Computation
Ratio (CCR), energy threshold, interconnection type and processor type. It is to be noted
that CCR is an overall average time parameter to measure the communication time and
computation time, which is defined in equation (1). Generally speaking, data transfer
intensive applications have higher CCR, whereas the CCR of computation-intensive
applications is lower.
The processors used in our simulator are AMD Athlon 64 X2 4600+ with 85W TDP,
AMD Athlon 64 X2 4600+ with 65W TDP, AMD Athlon 64 X2 3800+ with 35W TDP,
Intel Core 2 Duo E6300 processor. Figure 4.5 demonstrates the energy consumption rate
of each processor in idle, light, busy and heavy working mode. The data source is from
the latest test report of Xbit Lab (http://www.xbitlabs.com).
Myrinet and Infiniband network are the interconnections used in our simulations.
The energy consumption parameters used for Myrinet and Infiniband are 33.6w and 65w
respectively, which are based on the products technical report from Myricom and Qlogic
company.
41

(a) Energy parameter in idle mode (b) Energy parameter in light mode
(c) Energy parameter in busy mode (d) Energy parameter in heavy mode
Figure 4.5 Energy consumption parameters in different working modes
We simulated four DAGs, which include Fast Fourier Transform Tree (15 tasks),
Gaussian Elimination Tree(18 tasks), Robot Control application (88 tasks) and Sparse
Matrix Solver application (96 tasks). The detailed tree structures are shown in Figure 4.6
and the tree structure files of two actual applications (Robot and Sparse) can be
downloaded at Standard Task Graph website [53]. Robot Control DAGs represents a
task graph for Newton-Euler dynamic control calculation for the 6-degrees-of-freedom
Stanford manipulator [54]. Sparse Matrix Solver DAGs represents a task graph for a
random sparse matrix solver of an electronic circuit simulation that was generated using
a symbolic generation technique and the OSCAR FORTRAN compiler [55] [56].
42

T1
T2 T3
T4 T5 T6 T7
T8 T9 T10 T11
T12 T13 T14 T15

(a) Fast Fourier Transform

(b) Gaussian Elimination

(c) Robot Control

(d) Sparse Matrix Solver
Figure 4.6 Structure of simulated trees and applications

43

4.4.2 Impact of Processor Types to Energy
Processors play an important role in the computing capacity and energy consumption
of clusters. In order to study impacts of processors on the performance of EAD and
PEBD, we choose three different AMD processors and one Intel processor as CPUs used
in our simulated clusters. All the power consumption parameters of these four types of
processors are listed in Figure 4.5. Table 4.3 shows the simulation environment and
according parameters of the clusters which we collect data for Figures 4.7.
Table 4.3 Simulation environment of processor impact

Figure 4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4)
Simulation environment
Processor type Athlon 4600+ 85W, Athlon 4600+ 65W
Athlon 3800+ 35W, Intel Core2 Duo E6300
Processor working mode Heavy
Interconnection Myrinet
Simulated Trees or
Applications
Gaussian Elimination, Fast Fourier
Transform
CCR (0.4, 4)
44

Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4)

Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4)

Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4)
45

We observe from Figures 4.7 that EAD and PEBD can provide significant
performance improvements for these four kiMCP of processors. In general, EAD and
PEBD perform much better on Athlon 4600+ 85W than Intel Core2 Duo E6300. An
intriguing result for EAD or PEBD is that a larger discrepancy between CPU_heavy and
CPU_idle leads to a more pronounced performance enhancements. For instance, the gap
between CPU_heavy and CPU_idle (i.e., 104W ? 15W = 89) in Athlon 4600+ 85W,
which is bigger than that (i.e., 44W ? 26W = 18W) of Intel Core2 Duo E6300; EAD and
PEBD outperform TDS by 19.47% and 19.36% in Athlon 4600+ 85W whereas the
percentage drops down to 3.73% and 3.76% respectively in Intel Core2 Duo E6300. We
did exactly the same experiments in FFT tree (results shown in Figures 4.7(c) and (d))
and found very similar trend. The implication of the result is that processors with large
descrepency between CPU_heavy and CPU_idle can benefit greatly from EAD and
PEBD, regardless of the value of CCR. This implication provides a useful suggestion to
users what kind of processor is more suitable for our algorithms.
4.4.3 Impact of Interconnection Types to Energy
Network energy consumption is a second critical factor affecting total energy
dissipation in clusters. In this subsection, our goal is to study the impacts of different
interconnections on the performance of the EAD and PEBD algorithms. The underneath
interconnections used in this group of simulation results are Myrinet and Infiniband,
which are two of the popular networks implemented in modern clusters. Table 4.4 shows
the simulation environment and according parameters of the clusters which we collect
data for Figures 4.8.
46

Table 4.4. Simulation environment of interconnection impact

Figure 4.8(a) Total energy consumption (Robot Control, Myrinet)

Figure 4.8(b) Total energy consumption (Robot Control, Infiniband)
Simulation environment
Processor type Intel Core2 Duo E6300
Processor working mode Heavy
Interconnection Myrinet , Infiniband
Simulated Trees or
Applications
Robot Control , Sparse Matrix Solver
CCR (0.1, 0.5, 1, 5, 10)
47

Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet)

Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband)
From Figures 4.8, we can find out that the overall performance of EAD and PEBD
are better than TDS and MCP. Another interesting observation is that both EAD and
PEBD work better, i.e. save more energy, when the interconnection is Myrinet. For
example, for the same Robot Control application, EAD outperformance TDS in terms of
energy conservation for 16.65% (CCR=0.1) and 13.25% (CCR=0.5) if we use Myrinet,
whereas the numbers will change to 5% (CCR=0.1) and 3.14% (CCR=0.5) when we
choose Infiniband. Similary, for the same Sparse Matrix Solver application, PEBD
48

outperformance MCP in terms of power consumption for 4.64% (CCR=5) and 17.25%
(CCR=10) if we use Myrinet, whereas the numbers will change to 4.17% (CCR=5) and
6.35% (CCR=10) when we choose Infiniband. Since the interconnection power
consumption rate used in our siumlations for Myrinet and Infiniband are 33.6w and 65w
respectively, we can see that the efficiency of our algorithms are somehow degraded by
the high interconnection power consumption. In other words, less portion of network
energy consumption is a positive factor to make our algorithms have better performance.
4.4.4 Impact of Application Types to Energy
Will the application type affect the efficiency of EAD and PEBD? If it does, what is
the most important factor? In order to answer these questions, we simulated Robot
Control and Sparse Matrix Solver applications under exactly the same environments,
which means we have same processor, same interconnections, same CCRs and even
same energy threshold. Figures 4.9 shows the simulation results which illustrate the
different efficiency of both EAD and PEBD for different applications. Table 4.5 shows
the simulation environment of Figures 4.9.
Table 4.5 Simulation environment of application impact

Simulation environment
Processor type Intel Core2 Duo E6300
Athlon 3800+ 35W
Processor working mode Heavy
Interconnection Myrinet
Simulated Trees or
Applications
Robot Control , Sparse Matrix Solver
CCR (0.1, 0.5, 1, 5, 10)
49

Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet)

Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet)

Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet)
50

Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet)
From Figures 4.9, we can see that EAD and PEBD can save more energy in the
Robot Control applications. For example, in the Robot Control application, EAD can
save more energy than TDS up to 17.07% (CCR=0.1, Athlon 3800+ 35W) and 15.78%
(CCR=0.5, Athlon 3800+ 35W), whereas the numbers will drop down to 6.89%
(CCR=0.1, Athlon 3800+ 35W) and 5.37% (CCR=0.5, Athlon 3800+ 35W) for Sparse
Matrix Solver application. Since all the other parameters are exactly the same except the
application structures (see Figures 4.9(c) and (d)), we can draw the conclusion that
application types do affect the efficiency of our algorithms. Based on the data provided
by Standard Task Graph Set website [53], the parallelism of Robert Control and Sparse
Matrix Solver applications are 4.363796 and 15.868853 respectively, which means
Robert Control has more task dependencies thus there exists more possibility for EAD
and PEBD to consume energy by judiciously duplicating tasks. In other words, the task
dependencies and parallelism level are the key points to decide the efficiency of our
algorithms.
51

4.4.5 Impact of CCR to Energy
Group Figures 4.10 illustrate the CCR impact to processor energy, interconnection
energy and total energy. Four observations are evident from this group of experimental
results. First, the overall performance of EAD and PEBD outperforms MCP and TDS.
Second, both EAD and PEBD are very sensitive to CCR. For example, when CCR is
0.1, EAD and PEBD perform 11.33% and 8.33% better than TDS. However, the
performance drops down to 9.39% and 6.85% if we tune the CCR to 0.5. Third, MCP
provides the greatest energy savings if CCR is less than 1. This is because energy cost
due to interconnection is extremely low with a small CCR value. Finally yet
importantly, the communication energy cost will dramatically increase when CCR going
higher and become the major power consumer of whole system.
Table 4.6 Simulation environment of CCR impact
Processor type: Athlon 3800+ 35W
Processor working mode: Busy
Interconnection: Myrinet
Simualated Application: Robot Control
CCR: (0.1, 0.5, 1, 5, 10)

Figure 4.10(a) CPU energy consumption under different CCRs
52

Figure 4.10(b) Interconnection energy under different CCRs

Figure 4.10(c) Total energy consumption under different CCRs
4.4.6 Impact of Processor Status to energy
Processors may have different working modes like idle, not busy, busy and
extremely busy. The energy consumption rate is different under different modes. In
order to speculate the impact of processor status to energy consumption, we simulated
three working modes, for AMD Athlon 3800+ 35W processor. When processor is
running applications like widows media player, 3D graph generation, CD burn, it is in
53

light, busy and heavy modes respectively. The simulation results are shown in Figures
4.11 and the corresponding energy consumption parameters for each working mode
could be found in Figures 4.5.

Figure 4.11(a) CPU energy consumption under light mode

Figure 4.11(b) CPU energy consumption under busy mode
54

Figure 4.11(c) CPU energy consumption under heavy mode

Figure 4.11(d) Total energy consumption under light mode

Figure 4.11(e) Total energy consumption under busy mode
55

Figure 4.11(f) Total energy consumption under heavy mode
If we look at Figures 4.11(a) (b) (c) together, you will find the CPU energy
consumption of EAD and PEBD are various under different modes, which indicates
EAD and PEBD have different duplication decisions. If we compared the results shown
in Fig.4.11 (d) (e) (f), we can easily find that EAD and PEBD work more efficiently
under heavy mode. For example, EAD and PEBD can conserve 17.07%, 12.6% more
energy than TDS in heavy mode, whereas these numbers will become 11.33%, 8.33% in
busy mode and 4.43%, 3.23% in light mode. Recall that in the heavy mode, the
processor has the biggest energy consumption gap between CPU idle and CPU working,
we can easily find out the same conclusion as section 6.2, which tells us processors with
large energy consumption descrepency betweent CPU_working and CPU_idle can
benefit greatly from EAD and PEBD, regardless of the value of CCR.
4.4.7 Impact to Schedule Length
Group Figures 4.12 depict the experimental results used to evaluate the overall
performance of the four scheduling algorithms in term of schedule length. Figures
56

4.12(a) and (b) show the scheduling lengths of schedules made by the four algorithms
for the Gaussian Elimination and Fast Fourier Transform applications. The results show
that EAD and PEBD efficiently reduce energy consumption without adversely affecting
performance of the applications. For example, on average the schedule lengths of
Gaussian Elimination produced by EAD and PEBD are merely 5.7% and 2.2% larger
than those generated by TDS. Similarly, on average the schedule lengths of Fast Fourier
Transform yielded by EAD and PEBD are only 2.92% and 2.02% longer than that of
TDS. These results suggest that it is worth trading a marginal degradation in schedule
length for a significant reduction in energy dissipation for cluster computing systems.

Figure 4.12(a) Schedule length of Gaussian Elimination

Figure 4.12(b) Schedule length of Sparse Matrix Solver
57

4.5 Summary
In this chapter, we addressed the issue of allocating tasks of parallel applications
running on clusters with an objective of shortening schedule lengths while conserving
energy. Specifically, we proposed two improved duplication-based scheduling
algorithms, namely the Energy-Aware Duplication algorithm (or EAD) and the
Performance-Energy Balanced Duplication algorithm (or PEBD). EAD and PEBD are
designed and implemented to provide energy savings in clusters by duplicating tasks on
more than one computational node. While EAD is able to aggressively provide the
greatest energy savings by making use of task replicas to eliminate energy-consuming
messages, PEBD aims at making tradeoffs between energy conservation and
performance.
To facilitate the presentation of EAD and PEBD, we built mathematical models to
describe a cluster system framework, parallel applications with precedence constraints,
and energy consumption model. We conducted extensive experiments and our
experimental results show that EAD and PEBD are more energy-efficient compared
with other two existing allocation schemes called MCP(or NDS) and TDS. Our
conclusion is that EAD and PEBD are capable of trading a marginal degradation in
schedule length for a significant reduction in energy consumption for homogeneous
cluster computing systems.

58

Chapter 5
Energy-Efficient Scheduling For
Grids
In the previous chapter, we have designed two energy-efficient scheduling
algorithms for homogeneous clusters, which comprise a set of identical characteristics in
terms of CPU speed, memory capacity, power consumption rate and interconnections.
However, these algorithms cannot be directly used for heterogeneous high performance
computing platforms like grids. In this chapter, we propose two energy-aware
scheduling algorithms, called Energy-Efficient Task Duplication Scheduling (EETDS)
and Heterogeneous Energy-Aware Duplication Scheduling (HEADUS), which attempt
to make the best tradeoffs between performance and energy savings for parallel
applications running on heterogeneous grids.
This chapter is organized as follows. Section 5.1 presents the motivation of this
study. In section 5.2, we define the mathematical models used in our grid systems,
which include a grid model, parallel tasks model, and an energy consumption model.
Next, in section 5.3, we discuss the job scheduling in grid systems. In section 5.4, we
present the proposed EETDS and HEADUS scheduling algorithms in detail and
59

illustrate how they work using a concrete example. Section 5.5 proves that time
complexity of EETDS and HEADUS. Experimental results with qualitative comparisons
to other two existing approaches are analyzed in section 5.6. Finally, section 5.7
summarize the entire chapter.
5.1 Motivation
Although it is common that a new and stand-alone cluster system is homogeneous in
nature, upgraded clusters or networked clusters are likely to be heterogeneous in
practice. In other words, heterogeneity of a variety of resources such as CPU, memory,
and interconnection, may exist in cluster systems. This is because, to improve
performance and support more users, new nodes that might have different characteristics
than the original ones may be added to the systems or several smaller clusters of
different characteristics may be connected via a high-speed network to form a bigger
one. Accordingly, heterogeneity may exist in a variety of resources such as CPU,
memory, and interconnection etc.
Computing grids are one of the typical distributed systems with heterogeneity. A
computational grid is a type of parallel and distributed system that enables the sharing,
selection, and aggregation of resources distributed across multiple administrative
domains based on the resources? availability, capacity, performance, cost and users'
quality-of-service requirements. Literally speaking, a large-scale distributed system that
qualifies the following three conditions could be envisioned as a computational grid
[57]. (1) Computing resources are not administered centrally; (2) open standards are
used; and (3) non-trivial quality of service is achieved. Grid applications distinguish
60

themselves from traditional distributed applications because they not only
simultaneously use large number of resources, but also have stringent performance
requirements, dynamic resource requirements, and complex communication structures
[58]. As our economy shifts from paper-based to digital information management, large-
scale grid computing platforms have been widely deployed to support the complicated
scientific and commercial applications which require intensive data processing and data
storage in nature. As you can imagine, the powerful computing capability of grids is
actually in the cost of huge energy consumption. Therefore, designing energy-efficient
algorithms for grids becomes highly desirable.
The research shown in this chapter is motivated by the above reasons. However, we
realized that the design is much more challenging compared with the design for
homogeneous clusters. In the study shown in this chapter, we take into account multiple
design objectives, including performance (measured by throughput and schedule length),
energy efficiency, and heterogeneities.
5.2 System Model
In this section, we describe mathematical models used to represent heterogeneous
grids, parallel applications with precedence constraints. Since the energy consumption
model is the same to the model used in cluster systems, we do not explain it again in this
chapter. Please refer to section 4.1.3 for details.

61

5.2.1 Grid Systems Model
A grid system consists of a set P = {p1, p2,..., pm} of heterogeneous computing nodes
(hereinafter referred to as nodes) connected by a high-speed interconnect like fast
Ethernet, gigabit Ethernet, SCI, FDDI or Myrinet. A heterogeneous grid can be
represented by a graph, where computing nodes are vertices. There exists a weighted
edge if a pair of corresponding nodes can communicate with each other. An n?m binary
allocation matrix X is used to reflect a mapping of n tasks to m heterogeneous nodes.
Thus, element xij in X is ?1? if task ti is assigned to node pj and is ?0?, otherwise. Since
our scheduling algorithms will be verified in a heterogeneous environment, it is
imperative to define the following constraints for our heterogeneous grid system model.
First, different nodes have different preference with respect to tasks, meaning that a
node offering task ti a shorter execution time does not necessarily run faster for another
task tj. Thus, different nodes in a heterogeneous cluster favor different kinds of tasks.
Second, execution times of tasks on different nodes may various because the nodes may
have various clock speed and processing capabilities. Third, the transmission rates of
network interconnections depend on underlying network types. Last, energy
consumption rates of the nodes and interconnections may not necessarily be identical.
To simply the system model without loss of generality, we assume that all nodes are
fully connected with dedicated and reliable network interconnections. Each node
communicates with other nodes through message passing; communication time between
two tasks assigned to the same node is negligible. In addition, we assume computation
and communication can take place simultaneously in our system model. This
assumption is reasonable because each computing node in a modern cluster has a
62

communication coprocessor that can be used to free the processor in the node from
communication tasks. Since we primarily focus on energy consumption, each node in
the system has an energy consumption rate measured by Joule per unit time.
Furthermore, each network link is characterized by its energy consumption rate that
heavily relies on the link?s transmission rate, which is modeled by weight wij of the edge
between nodes pi and pj.
5.2.2 Parallel Tasks Model
Parallel tasks with dependencies are represented by Directed Acyclic Graphs
(DAGs) in this study. Throughout this paper, a collaborative application is specified as a
pair, i.e, (T, E), where T = {t1, t2, ..., tn} represents a set of parallel tasks, E is a set of
weighted and directed edges representing communication cost among tasks, e.g., (ti, tj)?
E is a message transmitted from task ti to tj. Precedence constrains of the parallel tasks
are represented by all edges in set E. Communication time spent in delivering a message
(ti, tj) ? E from task ti on node pu to tj on pv is determined by sij/buv, where sij is the
message?s data size and buv is the transmission rate of a link connecting node pu and pv.
The execution times of task ti running on a set of heterogeneous computing nodes are
modeled by a vector, i.e., ()miiii cccc ,,, 21 L= , where jic represents the execution time of
ti on the jth computing node. If task ti cannot be executed on node pj, the corresponding
execution time jic in the vector ci is marked as ?. We define a task as an entry task if it
does not have any predecessor tasks and; similarly, a task is called an exit task if there is
no task following behind it.
63

An Example. Figure 5.1 illustrates the task description of a parallel application
represented by a task graph, a mapping matrix, and a cluster with three heterogeneous
computing nodes. The task graph contains ten tasks; the computing node graph (or
processor graph) has three heterogeneous computing nodes. iactiveEN is the energy
consumption rate of the ith computing node in the busy mode, and iidleEN is the energy
consumption of the ith computing node in the idle mode. Similarly, ijactiveEL and ijidleEL is
the energy consumption rate of the link between the ith and jth nodes when data is being
transferred and when no data are being transmitted. For example, the energy
consumption rates of the network link between nodes p1 and p2 are 3012 =activeEL and
12
idleEL = 10 when the link is in the busy and idle modes, respectively. The energy
consumption rates of node p1 is 1activeEN = 25 and 81 =idleEN when it is active and idle,
respectively. We assume that the transmission rate between two computing nodes is
same in both directions. The execution time vector of each task on the three processors
is illustrated in Figure 5.1(d). For example, the execution times of task t1 on nodes p1, p2,
and p3 are 6.7, 3.9, and 2.0 time units, respectively. Here we should note that task t9
couldn?t be allocated to p1 because the corresponding item in the mapping matrix is
marked as ?.
64

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
2.4 1.3 11.2
9.9 10.2
1.7 2.3 8.1
3.2 4.1 9.6
7.2 6.5 7.8
5.0 1.4 5.9
3.0 7.6 7.5
2.4 4.9 8.8
4.5 5.2 9.3
1.8 11.4 9.0
2.0 3.9 6.7
8
25
=
=
idle
active
EN
EN
65
100
=
=
idle
active
EN
EN
4
12
=
=
idle
active
EN
EN
6
10
30
2112 ==
=
=
trtr
EL
EL
idle
active
4
7
20
3223 ==
=
=
trtr
EL
EL
idle
active
8
15
40
3113 ==
=
=
trtr
EL
EL
idle
active

Figure 5.1 Example task graph and heterogeneous processor graph
5.3 Job Scheduling in Grids
Computational grids are complex multivariate environments, which are made up of
numerous grid entities needed to be managed. The job scheduling module plays a key
role in making coherent and coordinated use of ubiquitous and heterogeneous resources
in a grid system.
The responsibility of the scheduling module includes resource allocations and task
scheduling. Figure 5.2 and Figure 5.3 depict the process of job scheduling in grids from
the prospective of system and task level respectively. In system view, the job scheduler
65

of grids contains two parts, a global scheduler and several local schedulers. The global
level scheduler (or grid level scheduler) coordinates multiple local schedulers while
choosing the most appropriate resources for grid applications. It is worth noting that the
global level scheduler in most cases has no direct control over grid resources.
Consequently, the global level schedule has to communicate with and precisely trigger
local level schedulers to complete tasks of jobs submitted by users. The local level
schedulers in turn directly handle resources by accessing to local resources. Moreover,
the global level scheduler is responsible for collaborating with other fundamental
middleware modules such as information services, communication services, and
reliability controllers.

Figure 5.2 The system view of scheduling in a computational grid
66

The grid level scheduler not only implements energy-efficient scheduling policies
but also deals with resource heterogeneities. The grid level scheduler has the following
unique attributes.
Reclamation of allocations
Target resources may be reclaimed by the local administrator so that the reclaimed
resources can be allocated to tasks with higher priorities. In this case, the scheduler must
be able to reclaim allocated resources and reallocate resources to corresponding tasks.
Task and data migrations
This attribute signifies that any task can be interrupted in computing node and the
task along with its corresponding data can be migrated to another node. The scheduling
module leverages the task and data migrations to improve the performance and
reliability of grid systems.
Exclusive allocations
It is common that some computing resources might have particular preferences or
exclusiveness for different types of tasks. For example, a computing node offering a
shorter execution time for a task does not necessarily run faster for another task. Even
worse, some computing nodes may be exclusive to specific types of tasks. Thus, the
scheduling module has to resolve conflicts between tasks and resources.
Tentative allocations
To make scheduling decisions with high energy efficiency, it is imperative for the
scheduling module to calculate and compare task allocation cost by tentatively
allocating tasks to a wide range of available resources. The scheduler is able to
efficiently complete revocation of tentative allocations.
67

Dependent task allocations
A grid application may be consist of multiple dependent tasks, whose dependencies
must be handled by the scheduling module. In our framework, a task analyzer provides
detailed information of tasks to scheduler; the scheduler makes an effort to first allocate
tasks with high dependencies to the same computing resources to significantly reduce
communication overheads.
From the task view, once the scheduling module has collected all the information of
currently available resources, the module can allocate shared resources to parallel tasks
after judiciously choosing target recourses in accordance with specific scheduling
policies. Figure 5.3 outlines the job scheduling flow in computational grids. During the
course of jobs? execution, a result collector periodically checks randomly returned sub-
results and transfers the sub-results to the grid level scheduler. The grid level scheduler
further passes on the latest information to all tasks, thereby guaranteeing that the tasks
with dependencies can immediately be executed their precedence constraints are met
(i.e., sub-results become available).
68

User
Requests
Sub Tasks
Results
Grid Level
Task
Scheduler
Results
Collector
Input tasks
Return results

Figure 5.3 The task view of scheduling in a computational grid

5.4 Energy-Efficient Scheduling Algorithms
In this section, we present the details of scheduling algorithms used in our Grid
scheduling framework. First, we will explain how the task analyzer can provide
information about task dependencies. Next, the proposed EETDS and HEADUS will be
explained in three major phases. The first phase is called grouping, in which tasks with
highest dependency will be grouped together. Phase two is called task duplication,
which aims to duplicate as many tasks as possible if the energy cost will not be
significantly increased. In phase three, the scheduler will tentatively allocate the grouped
tasks to different available resources and calculate the energy cost. Finally, the scheduler
69

will make its final (energy-performance balanced) decision and completed the real
allocations.
5.4.1 The Task Analyzer
The task analyzer is responsible for analyzing tasks characteristic and task
dependencies. In addition, the task analyzer has to accurately estimate execution times
of tasks based on task types or information provided by users. In our framework, parallel
tasks with dependencies are represented by Directed Acyclic Graphs (DAGs).
Throughout this paper, a grid application is specified as a pair, i.e, (T, E), where T = {t1,
t2, ..., tn} represents a set of parallel tasks, E is a set of weighted and directed edges
representing communication cost among tasks, e.g., (ti, tj)? E is a message transmitted
from task ti to tj. Task dependencies among the parallel tasks are represented by all
edges in set E. Communication time spent in delivering a message (ti, tj) ? E from task ti
on node pu to tj on pv is determined by sij/buv, where sij is the message?s data size and buv
is the transmission rate of a link connecting node pu and pv. The execution times of task
ti running on a set of heterogeneous computing nodes are modeled by a vector, i.e.,
()miiii cccc ,,, 21 L= , where jic represents the execution time of ti on the jth computing
node. If task ti cannot be executed on node pj, the corresponding execution time jic in
the vector ci is marked as ?. We define a task as an entry task if it does not have any
predecessor tasks and; similarly, a task is called an exit task if there is no task following
behind it. The task analyzer will take the user request (usually it contains the necessary
task description information) as input and generate DAGs as output. Figure 5.4
illustrates a typical task description file and the DAG generated by the task analyzer.
70

Figure 5.4 A directed acyclic graph (DAG) analyzed by the task analyzer

5.4.2 Grouping Phase
The grouping phase of our algorithms is to associate the most relevant tasks (i.e.
tasks in the same critical paths) into groups. Given a parallel application modeled as a
task graph or DAG, the grouping phase yields a group-based graph of the DAG. Since
all tasks in a group are allocated to the same computing node where there are no waiting
times among the tasks within the group, we can reduce communication overheads of
highly dependent tasks with intensive communications. Additionally, a task-duplication
strategy is applied in the process of grouping to further improve system performance by
replicating tasks into multiple computing nodes if schedule lengths can be shortened.
71

More specifically, the grouping phase can be finely divided into two sub-steps, namely,
original task sequence generating and parameters calculating. Since these two steps are
quite similar with the first two steps used for EAD and PEBD. Please refer to section
4.2.1 and section 4.2.2 for details.
5.4.3 Task Duplication Phase
After the grouping phase, the original task sequence should be generated and all
important parameters should be calculated. Once the original task sequence and
important parameters are available, we are ready to apply the duplication strategy to
complete the last step of the grouping phase. Figure 5.5 illustrates the main idea of the
duplication strategy using a simple example. The left part of Figure 5.5 shows a DAG
for four tasks with precedence constraints. The execution times of task T1, T2, T3, T4 are
8s, 10s, 15s, and 6s. The communication times among the tasks are 6s, 5s, 2s, and 4s,
respectively. The right part of Figure 5.5 provides three schedules made by the linear
scheduling strategy, the non-duplication strategy, and the duplication strategy,
respectively. The linear schedule has the longest schedule length because all the tasks
allocated to one computing nodes have to be executed in a sequential order. The non-
duplication schedule reduces the schedule length by allowing T2 and T3 running in
parallel on two computing nodes. The duplication schedule further improves the
performance by redundantly executing T1 on the second node. Thus, the duplication
strategy trades CPU times for communication overheads.

Figure 5.5

Figures 5.6 and 5.7 illustrate in details the implementation of EETDS and HEADUS
with respect to the process of forming a final task group graph. Initially, no task is
marked as ?grouped? and the list of clusters is initialized to be empty. Next, the
algorithms consider the first task and insert it to a newly formed group called G1. Then
in the following iterations, the algorithms go through all the tasks along the favorite
predecessor chain, attempting to add all the tasks in the critical path to the same group.
Once a task is added to a group, it will be immediately marked as ?grouped?. If the task
being processed is the entry task, the current iteration will end and a new iteration will
start in the next loop by choosing the first ungrouped task from the original
sequence generated in step 1. During the process of walking through multiple critical
paths, we may find some tasks have been added to a group. At this point, the duplication
strategy is responsible to make the decision whether or not to duplicate thi
72
An example of duplication scheduling strategy

task
s task to
73

multiple groups by comparing the value of LAST(t) - LACT(t?) and the communication
time cc(t, t?). A task will be duplicated if the schedule length can be reduced and the task
will not be duplicated otherwise. At the end of the process, the task graph has been
divided into groups. Finally, the group graph is generated by creating edges among all
the groups communicating with each other. The algorithms then set a weight for each
edge to represent corresponding communication cost.

Figure 5.6 Pseudo code of the grouping phase in the EETDS algorithm

1. t = first waiting task of original task sequence;
2. i = 1;
1. add t to Gi; /* mark t as ?grouped? */
2. while (not all tasks are grouped) do
3. t? = FP(t);
4. if (t? has already been added to one cluster) then
5. if (LAST(t) - LACT(t?) < cc(t, t?)) then /* if duplicate t?, we can shorten the schedule
length */
6. add t? to Gi; /*duplicate t?, mark t? grouped */
7. if t has another predecessor z ? t? has not yet been grouped then
8. t? = z;
9. else
10. if t? is entry task then
11. t? = the next task that has not yet been grouped;
12. i++;
13. else
14. for another predecessor z of x, z? t?,
15. if (ECT(t?)+ccuv = ECT(z) + cc(t, t?)) and z hasn?t been grouped) then
16. t? = z; /* do not duplicate*/
17. else allocate t? to Gi; /*also mark t? as ?grouped? */
18. t = t?;
19. if t is entry task then
20. t = the next task that has not yet been added to a group;
21. i++;
22. assign t to Gi; /*also mark t as grouped*/
23. return group graph;
74

Figure 5.7 Pseudo code of the grouping phase in the HEADUS algorithm
The major difference between EETDS and HEADUS is that HEADUS makes
tradeoff between energy savings and schedule lengths, in which task duplications are
strictly forbidden if the duplications do not exhibit energy conservation (see Steps 9-10).
In other words, duplications are infeasible if they result in a significant increase in
energy consumption (e.g., the increase exceeds a threshold). In doing so, the HEADUS
algorithm ensures that schedule lengths are optimized using task duplication without
greatly affecting energy conservation.
1. t = first waiting task of original task sequence;
2. i = 1;
3. assign t to Gi;
4. while (not all tasks are grouped) do
5. t? = FP(t);
6. if (t? has already been added to one cluster) then
7. if (LAST(t) - LACT(t?) < cc(t, t?)) then /* duplicate t?, we can shorten the schedule
length */
8. moreenergy = ENt? ? ELt?t; /*energy increase*/
9. if (moreenergy ? threshold T) then /* increased energy less than our threshold*/
10. add t? to Gi; /*duplicate t?, mark t? grouped */
11. if t has another predecessor z ? t? has not yet been allocated to any node then
12. t? = z;
13. else
14. if t? is entry task then
15. t? = the next task that has not yet been assigned to a node;
16. i++;
17. else
18. for another predecessor z of t, z ? t?,
19. if (ECT(t?)+cct?t = ECT(z) + cczt) and z hasn?t been allocated) then
20. t? = z; /* do not duplicate*/
21. else
22. for another predecessor z of x, z? t?,
23. if (ECT(t?)+ cc(t, t?) = ECT(z) + cc(t,z)) and z hasn?t been allocated) then
24. t? = z; /* do not duplicate*/
25. else add t? to Gi; /*duplicate t?, mark t? grouped */
26. t = t?;
27. if t is entry task then
28. t = the next task that has not yet been allocated to a computational node;
29. i++;
30. add t? to Gi; /*duplicate t?, mark t? grouped */
31. return schedule list;
75

5.4.4 Energy-Efficient Group Allocation Phase
After the grouping stage, the DAG has been partitioned into a number of groups,
which will be allocated to heterogeneous computing nodes by the next step in an energy-
efficient way. The main objective for this phase is to generate an allocation list with
minimized energy dissipation. Recall that there might be exclusion relations among
some tasks and nodes, e.g. task t9 couldn?t be allocated to p1 as shown in Figure 5.1.
Therefore, we have to verify whether or not a node and a group are exclusive to each
other. In other words, we have to assure that all tasks in the group are exclusion
compatible with the node to be allocated on. If any task is exclusive to a current node,
our algorithm performs the same verification process on another computing node until
an exclusion compatible node is identified. In real world clusters, most computing nodes
are compatible with various parallel tasks. Otherwise the clusters cannot provide widely
used services for end users. To make our algorithm practical, we implement the
compatible verification process in our algorithm to handle exclusion issues.
Once a group and a computing node pass the compatible verification process, the
group will be temporarily allocated to the node. Next, the algorithms calculate energy
consumption caused by the group running on the node. The estimation of the energy
consumption can be carried out using the energy consumption model described in
Section 3.3. The value of this energy consumption is saved in an energy cost array. The
algorithms apply the same procedure to the next type of compatible node. This
procedure is repeatedly performed until all candidate compatible nodes with respect to
the group have been considered. Finally, the algorithms update the allocation list with a
compatible node that leads to the minimized energy dissipation. After the group
76

allocation phase is accomplished, the allocation list provides an allocation solution with
minimized energy consumption of the heterogeneous cluster. Figure 5.8 shows the way
of implementing the energy-efficient group allocation phase.

Figure 5.8 Pseudo code of group allocation to minimize energy consumption
Energy_Efficient_Allocation () {
set allocation list is empty;
for each cluster c in the cluster graph G {
 n = Energy_Efficient_Calculation (c, N);
 mark c is finally allocated to n, update allocation list;
}
return allocation list;
}
Energy_Efficient_Calculation (c, N) {
i = 1;
while (n is not the last node in N) {
 Legal_n = Exclusion_Verify (c, n);
 Add Legal_n to the Legal_Node_List;
 n = the next node following Legal_n in N ;
}
for each node n in Legal_Node_List {
 if (n has not been allocated with any cluster) {
 mark c to be temporarily allocated to n;
 temp_energy_cost[i] = Energy_Consumption(c,n);
 //here Energy_Consumption()will calcutlate energy cost assumming c is allocted to n;
 i++;
 }
}
return the node with minimized value in array temp_energy_cost[]
}
Exclusion_Verify (c, n) {
for each task t in cluster c {
 if (t is exclusive with n) {
 n = the next node following n in N ;
 Exclusion_Verify (c, n);
 }
 }
 return n;
 }
77

5.4.5 A Case Study
In this section, we use a synthetic parallel application as an example to illustrate how
the EETDS and HEADUS algorithms work. The task graph of the parallel application is
delineated in Figure 5.9. The running trace of each step is given as follows:
1
2 3 4
5 6 7
8 9
10
3
3 4
2
1
10 20
7 5
8
15 15
15
15 15
20
10
5 50 50 100
2535

Figure 5.9 A synthetic parallel application

Phase 1. Grouping
Step 1. Generate a task sequence by computing levels: The levels of the tasks can be
calculated using Eq. (16). For instance, the level of task v10 is 8, since v10 is the exit task
without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor
task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors -
78

v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus,
we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1}
Step 2. Calculate the important parameters:
Step 2.1 Compute EST and ECT: The EST and ECT values of each task can be
computed by applying Eqs. (17) and (18). For example, task v1 is the entry task and,
therefore, EST(v1) = 0. In accordance with Eq. (18), we have ECT(v1) = 0 + t1 = 3. Since
v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) =
EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below
 () (){ }() (){ } .15105 7,max,207 5,maxmin)ECT(v),ECT(vmax,)ECT(v),ECT(vmaxmin)EST(v 474337347 =++= ++= cc
Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 15 + 20 = 35.
Step 2.2 Compute favorite predecessors: The favorite predecessor of a task is
determined by using Eq. (19). For example, the favorite predecessor of task v2, v3, and v4
is v1, simply because these three tasks have only one predecessor. The favorite
predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 50 = 66 > ECT(v5) + c58 = 7 + 5 =
12.
Step 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task v10
equal to 79 and, thus, we have LAST(v10) = LACT(v10) - t10 = 79 ? 8 = 71. In case of
LACT(v6), we have to consider two successors, namely, v8 (in critical path) and v9 (not
in critical path). We obtain
(){ } { } 1629) 50),-(66min))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 === and
LAST(v6) = LACT(v6) - t6 = 16 ? 10 = 6. Table 5.1 summarizes the values of all the
parameters:
79

Table 5.1 Results of the important parameters

Step 3. Generate a duplication task sequence:
The EETDS algorithm generates the first group of tasks by starting from the first
task in the task list obtained in step 1, which is task 10. The first task group containing
tasks v1, v3, v7, v9, and v10 forms GROUP 1. Next, the second iteration starts because the
algorithm hits task v1, which is the entry task. At this point, next ungrouped task is task
v8. Tasks v8, v6 and v2 are associated to GROUP 2, and the next task to be considered is
task v1. Since v1 has been clustered to GROUP 1, the algorithm has to decide whether
there is an incentive to duplicate v1 on GROUP 2. The condition in step 7 (see Figure
5.7) is satisfied, because we have LAST(v2) - LACT(v1) = 3 ? 34 < cc12 = 15. Therefore,
duplicating v1 on GROUP 2 gives rise to a shortened schedule length. Thus, GROUP 2
consists of v8, v6 , v2 and v1. Again, the algorithm hits the entry task and the third
Task level EST ECT LAST LACT FP
1 40 0 3 31 34 --
2 28 3 6 3 6 1
3 37 3 7 42 46 1
4 35 3 5 34 36 1
5 16 6 7 23 24 2
6 25 6 16 6 16 2
7 33 15 35 46 66 3
8 15 16 23 29 36 6
9 13 66 71 66 71 7
10 8 71 79 71 79 9
80

iteration is invoked. At this point, task v5 is added to GROUP 3, followed by task v2, and
v1, which are not duplicated on GROUP 3 because LAST(v5) - LACT(v2) = 23 ? 6 = 17 >
cc12 = 15, which means the schedule length will be increased. Similarly, task v4 and v1
are added to GROUP 4 in the last iteration. Finally, the following task groups are
created:

Accordingly, the final task group generated by HEADUS is like follows (energy
threshold T, ENactive and ELactive are set to 1J, 6J and 1J, respectively):

Last but not the least, the EETDS and HEADUS algorithms compute the
communication cost between each pair of task groups and set the corresponding edges to
form a group graph.

Group 1: Task 10, Task 9, Task 7, Task 3, Task 1
Group 2: Task 8, Task 6, Task 2, Task 1
Group 3: Task 5
Group 4: Task 4, Task 1
Group 1: Task 10, Task 9, Task 7, Task 3, Task 1
Group 2: Task 8, Task 6, Task 2
Group 3: Task 5
Group 4: Task 4
81

Table 5.2 Energy consumption values
 A B C D
C1 3050J 3700J 2008J 3000J
C2 1000J 900J 1560J 1200J
C3 180J 194J 136J 75J
C4 207J 226J 251J 243J

Phase 2. Energy-efficient Allocating
In this phase, the EETDS algorithm performs the procedure described in Figure 5.6.
Here we just assume that the heterogeneous grid system consists of four types of
computing nodes denoted by A, B, C, and D. Energy consumption values of the nodes
are listed in Table 5.2:
The final list of allocations determined by the EETDS algorithm is given as follows:
Group 1 is allocated to node C
Group 2 is allocated to node B
Group 3 is allocated to node D
Group 4 is allocated to node A

.
82

Figure 5.10 Allocation results showing how the EETDS algorithm works
5.5 Time Complexity Analysis
The time complexity of the EETDS scheduling algorithm is O(|V|2).
Proof. The algorithm consists of two major phases: the grouping and energy-aware
allocation phases. Let us first analyze the time complexity of each phase.
Let us start from the first step in the grouping phase. In this step, the algorithm
traverses all tasks of a DAG to compute the levels of the tasks. The time complexity to
calculate the levels is O(|E|), where |E| is the number of messages. This is because in the
worst case all the messages in the DAG have to be examined. Furthermore, it takes
83

O(|V|log|V|) time to sort the tasks in an increasing order of the levels, where |V| = n is
the number of tasks. Therefore, the time complexity of step 1 is O(|E| + |V|log|V|).
The second step is performed to obtain all the important parameters like EST, ECT,
FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first
search with the time complexity of O (|V| + |E|).
In the last step of the grouping phase the tasks are associated into several groups,
which can help in reducing schedule length. First, each task is checked and added to one
or more groups in the iteration based on the duplication strategy. In the worst case, all
the tasks in the critical path must be duplicated, meaning that the time complexity is
O(h|V|) time, where h is the height of the DAG. Since h is less than or equal to |V|, the
time complexity of the third step is O(|V|2).
Consequently, the total time complexity of these three steps is O(2|E| + |V|(lg|V|+1) +
|V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to O(|V|2).
Hence, the time complexities of the grouping phase is O(|V|2).
In the second phase, the algorithm executes the compatibility verification process
and calculates the energy consumption caused by each group on each compatible
computing node. Suppose the grouping phase generates a group set G= {g1, g2, g3, ? gq}
with q different groups. We have a heterogeneous node set P = {p1, p2,..., pm} with m
different type of processors, the algorithm attempts to select two elements randomly
from the sets G and P in order to estimate energy cost. According to the permutation and
combination theory, the time complexity is 11 mq CC ? . Obviously, the number q of groups
is always less than the number of tasks and the number of m is a constant (i.e. the
number of heterogeneous nodes in a real cluster). Since the calculation of power
84

consumption for each combination can be completed in linear time, the time complexity
of the group allocation phase is O(c|V|), where c is a constant relies on m and other
related calculation time. Similarly, the verification process can be done within O(c|V|).
Therefore, the overall time complexity of the EETDS algorithm is O(|V|2), where V is
the number of tasks in a parallel task set.
5.6 Simulation Results
In this section, we evaluate the effectiveness of the proposed EETDS and HEADUS
scheduling algorithms.
5.6.1 Simulation Metrics and Parameters
We conducted extensive experiments using Gaussian Elimination and Fast Fourier
Transform applications. In addition, we compare EETDS and HEADUS with two
existing scheduling algorithms: the Non-Duplication Scheduling algorithm (NDS) and
the Task Duplication Scheduling algorithm (TDS). We also compare our algorithms
with a baseline algorithm: Energy-Efficient Non-Duplication Scheduling (EENDS). The
NDS, TDS and EENDS algorithms are briefly described below.
(1) NDS: This a non-duplication-based algorithm (also know as the static priority-
based Modified Critical Path (MCP) algorithm [52]) with time complexity of O(n2(logn
+ m)), where n and m are the numbers of tasks and nodes, respectively. NDS, which
does not duplicate any task, makes scheduling decisions using the critical-path method.
(2) TDS: The TDS algorithm allocates all tasks that are in a critical path to one
computing node. If tasks have already been dispatched to other nodes, TDS only
85

duplicates the tasks that can potentially shorten scheduling length. TDS aims to generate
a schedule of a parallel application with the shortest schedule length.
(3) EENDS: To the best of our knowledge, EENDS is a baseline algorithm that
could not be found in the literature. In order to comprehensively understand the impacts
of grouping phase, we combine the second phase of our algorithm with the NDS
grouping to form a new EENDS scheduling algorithm.
Table 5.3 Characteristics of experimental system parameters
 Parameters Value (Fixed) - (Varied)
Different trees to be
examined
Gaussian elimination, Fast Fourier Transform
E ecution time of
Gaussian Elimination
{5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 7, 8, 6, 6, 20, 30, 30 }-(random)
Execution time f Fast
Fourier Transform
{15, 10, 10, 8, 8, 1, 1, 20, 20, 40, 40, 5, 5, 3, 3 }-(random)
Computing node type AMD Athlon 64 X2 4600+ with 85W TDP (Type 1)
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2)
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3)
Intel Core 2 Duo E6300 processor (Type 4)
CCR set Between 0.1 and 10
Computing node
heterogeneity
Environment1:
of Type 1: 4
of Type 2: 4
of Type 3: 4
of Type 4: 4
Environment2:
of Type 1: 6
of Type 2: 2
of Type 3: 2
of Type 4: 6
Environment3:
of Type 1: 5
of Type 2: 3
of Type 3: 3
of Type 4: 5
Environment4:
of Type 1: 7
of Type 2: 1
of Type 3: 1
of Type 4: 7
Network energy
consumption rate
20W, 33.6W, 60W

The basic yet important method we used in our experiments is called OTOP (Once
Tuning One Parameter). Specifically, in each experimental study we only vary one
parameter while keeping the other parameters unchanged. By tuning one parameter at a
time, we are allowed to clearly observe its impacts on clusters and easily analyze system
sensitivities to this specific parameter. Important system parameters tuned in our
experimental studies include Communication-to-Computation Ratio (or CCR for short),
network heterogeneity, and computing heterogeneity.
86

Note that the CCR value of a parallel application on a heterogeneous cluster is
defined as the ratio between the average communication cost of |E| messages and the
average computation cost of n parallel tasks in the application on the given cluster with
m heterogeneous computing nodes. Formally, the CCR of an application (T, E) is
expressed by Eq. (22) as below.

? ?
?? ? ?
? ?
?? ? ?
= =
= = = ?=
= =
= = = ?=
???
?
???
?
???
?
???
?
??=
???
?
???
?
???
?
???
?
?=
n
i
m
j
j
i
n
i
n
j
m
u
m
uvv uv
ij
n
i
m
j
j
i
n
i
n
j
m
u
m
uvv uv
ij
cn
b
s
mE
cmn
b
s
mmEETCCR
1 1
1 1 1 ,1
1 1
1 1 1 ,1
1
)1(||
1
11
)1(
1
||
1
),((20)
Generally speaking, communication-intensive applications have high CCRs, whereas
CCRs of computation-intensive applications are low.
Table 5.3 summarizes the configuration parameters of simulated heterogeneous
clusters used in our experiments. On the right hand side of each row in Table 5.3,
parameters in the first part are fixed, whereas parameters in the second part are varied or
randomly generated using uniform distributions. In order to illustrate the heterogeneity
of computing nodes, we choose to test four heterogeneous cluster computing
environments, in which the numbers of four types of computing nodes are different in
processors. The last row in Table 5.3 represents the network heterogeneity by setting
various energy consumption rates. Figure 5.11 shows the energy consumption
parameters, CPU speed parameters of different types of processors used in computing
nodes. All these data comes from the latest test report of Xbit Lab
(http://www.xbitlabs.com). Figure 4.6 depicts the task graphs of parallel applications
used in our simulation.
87

CPU Clock Speed, GHZ
1.86
2
2.4
2.6
0 0.5 1 1.5 2 2.5 3
Core2 Duo E6300
Athlon 3800+ 35W
Athlon 4600+ 65W
Athlon 4600+ 85W
Figure 5.11 Parameters used in simulation (data from test report of Xbit Lab)
5.6.2 Experimental Results for Gaussian Elimination
In this subsection, we evaluate five scheduling algorithms using the Gaussian
Elimination application on a heterogeneous grid. Figure 5.12 shows the impacts of CCR
on energy dissipation of the cluster running the Gaussian Elimination application. Five
observations are evident from this group of experiments. First, the energy consumption
of Gaussian Elimination under all the five scheduling schemes is very sensitive to CCR.
Second, EETDS and HEADUS provide noticeable energy savings compared with the
TDS and NDS algorithms. Third, NDS outperforms TDS with respect to energy
conservation when the CCR values are small. However, TDS is superior to NDS when
CCR becomes large (e.g., CCR is greater than or equal to 4). Fourth, EETDS and
HEADUS work well in all these four heterogeneous cluster computing environments.
These results demonstrate that EETDS and HEADUS have overall better performance
88

compared with the other three and HEADUS is the best energy-efficient scheduling
algorithm among the five examined schemes. Last, the energy savings exhibited by
EETDS and HEADUS become more pronounced with the increasing values of CCR.
These results indicate that with respect to energy conservation our algorithms are more
appropriate for communication-intensive applications as opposed to computation-
intensive applications.
Figure 5.12 CCR sensitivity for Gaussian when Net_Energy=33.6
Since our algorithms are designed for heterogeneous grids, we tested energy
dissipation in the four different environments, which are shown in Table 5.3. Figure 5.13
illustrates the impacts of the computing heterogeneity on grid computing platforms.
First, we observe that EETDS and HEADUS can conserve more energy in E1 and E3
89

(see Figs. 5.13(a) and (b) compared with E2 and E4 (see Figs. 5.13(c) and (d), from
which we can draw the conclusion that less energy is consumed by clusters with more
energy-efficient computing nodes. Second, the computing heterogeneity has significant
impacts on the energy efficiency of EETDS. For example, when CCR equals to 0.1 in
the four clusters, the EETDS algorithm reduces energy consumption (compared with
TDS) by 38.5%, 49.1%, 48.7%, and 51.7%, respectively. These experimental results
indicate that EETDS and HEADUS can conserve even more energy for heterogeneous
clusters that are comprised of energy-consuming computing nodes. Third, Figure 5.13
shows a similar performance trend that EETDS and HEADUS significantly conserve
energy in overall because TDS consumes huge energy when CCR is small and NDS
consumes more energy when CCR is large due to the high energy dissipation in the
network interconnections.
Next, let us quantitatively show the impacts of network heterogeneity on the
performance of these five scheduling algorithms. In this group of experiments, we vary
network energy consumption rates. Three network energy consumption rates are chosen:
20W, 33.6W, and 60W. It is worth noting that these three energy consumption rates
represent real-world network interconnections (e.g. Merinet) widely used in clusters.
90

Figure 5.13 Computational nodes heterogeneity experiments
After comparing Figs. 5.14(a), (b), and (c), we can quantify the impacts of network
heterogeneity on energy dissipation exhibited by the five scheduling algorithms. For
instance, given computing environment 1, EETDS can improve energy efficiency over
TDS by 27.9%, 27.9%, 27.8% when network energy consumption rate is 20W, 33.6W,
and 60W, respectively (CCR is set to 0.1). However, when CCR is large (e.g., 10), these
improvements in energy efficiency are scaled down to 15.6%, 13.3% and 10.2%,
respectively. In this set of experiments we confirm that the network energy consumption
contributes a whole lot to the grids? total energy consumption when CCR is large. Last,
we conclude that NDS is not suitable for communication-intensive parallel applications
because NDS has schedule lengths significantly increased when communication
overheads are high.
91

Finally, we illustrate the energy threshold sensitivity of HEADUS algorithm in
Figure 5.14(d). We did this simulation by setting threshold as 100J, 500J and 1kJ under
different CCRs in environment 4 when Net_Energy consumption rate is set to 60W. Our
conclusion is that energy threshold does affect the performance of HEADUS. More
specifically, HEADUS is very sensitive to threshold, especially when the energy
consumption of related CPU and links is comparable with the energy threshold.
Figure 5.14 Network heterogeneity and threshold sensitivity experiments
5.6.3 Experimental Results for Fast Fourier Transform
The goal of this group of experiments is to compare the performance of the proposed
EETDS and HEADUS algorithms with the NDS, TDS and EENDS algorithms with
respect to energy conservation under the FFT application. First, we are focused on
relationships between CCR and energy consumption of the FFT application. Figure 5.15
plots total energy consumption of the four heterogeneous clusters running FFT. CCR is
92

gradually varied from 0.1 to 10. Figure 5.15 shows that the total energy consumption
caused by the FFT application becomes more sensitive to CCR when CCR is greater
than 2. Compared with the TDS algorithm, EETDS conserves approximately 46% and
31% energy when CCR is small and large in environment 4. Accordingly, HEADUS
conserves roughly about 47% and 17% respectively. Also, EETDS and HEADUS
outperform NDS with 17.5% & 19.5% for small CCRs and 34.7% & 20.5% for big
CCRs. Therefore, we can see that HEADUS is more appropriate for computation
intensive application and EETDS works better in highly communication intensive
applications. When CCR is greater than 8, even EENDS consumes more energy because
the first grouping phase in EENDS generates groups that have high communication
overheads.

Figure 5.15 CCR sensitivity for FFT when Net_Energy=20W
93

Moreover, Figure 5.15 shows that when CCR is relatively small, energy
consumption under the TDS algorithm is noticeably higher than those under the other
four algorithms. This is mainly because energy dissipation in the network
interconnections is diminished with a small CCR. Not surprisingly, EETDS improves
energy efficiency over NDS up to 50% when CCR is large (e.g., CCR = 10).
Now we evaluate the impacts of computing heterogeneity using the FFT application.
Experimental results in terms of energy efficiency are depicted in Figure 5.16. For all
four cluster computing environments, EETDS and HEADUS significantly improves
energy efficiency over the three alternative scheduling algorithms (see Figure 5.16).
These results coupled with the results plotted in Figure 5.15 confirm that regardless of
the heterogeneities and CCR values, our algorithm are consistently the most energy-
efficient scheduling algorithm among all the five examined schemes.

Figure 5.16 Computational nodes heterogeneity experiments for FFT
94

Figure 5.17 shows the impacts of network heterogeneity on the energy consumption
experienced by the four scheduling algorithms. Comparing Figs. 5.17(a), (b), and (c), we
observe that the impacts of network heterogeneity are highly dependent on CCR. Energy
consumption cased by network interconnections account for the major portion of the
energy dissipation in the clusters under the condition that CCR is large.

Figure 5.17 Network heterogeneity for FFT and schedule length for Gaussian
5.6.4 Experimental Results of Schedule Length
Schedule length is one the of most important performance metrics. Our algorithms
are conducive to conserve energy without significantly degrading performance. In this
set of experimental results, we will evaluate the impact to schedule length. Figure
95

5.17(d) summarizes empirical results based on the Gaussian Elimination application.
Figure 5.17(d) reveals that both EETDS and HEADUS have only a marginal
performance degradation compared with TDS. That is partially because the four types of
processors used in the computing nodes consume more energy if they run at full speed.
Therefore, EETDS and HEADUS are forced to sacrifice performance to some extent by
allocating parallel tasks to energy-efficient computing nodes. Although EETDS and
HEADUS increase schedule length by an average of 9% and 10% compared with TDS,
EETDS and HEADUS do conserve energy by an average of 32% and 34%.
Nevertheless, the performance degradation problem can be remedied by the
advancement of hardware technology (e.g., high CPU capacity and high CPU energy
efficiency).
5.7 Summary
In this chapter, we addressed the issue of allocating and scheduling tasks of parallel
applications running on heterogeneous grids in a way to conserve energy without
adversely affecting performance. Specifically, we proposed two novel scheduling
algorithms called EETDS and HEADUS, which aim to make the best tradeoffs between
energy savings and performance for tasks of parallel applications running on
heterogeneous clusters. EETDS and HEADUS are designed and implemented based on
the previous algorithms used in chapter 4 for homogeneous clusters. Both the EETDS
and HEADUS algorithms consist of two major phases. In the first phase, a grouping
method is employed to minimize schedule lengths of parallel applications. The goal of
96

phase two is to leverage energy-consumption parameters to achieve high energy
efficiency.
The experimental results show that compared with TDS, NDS and EENDS, EETDS
and HEADUS can significantly reduce energy consumption in heterogeneous grids with
only a marginal degradation in performance.

97

Chapter 6
Energy-Efficient Storage Systems
In the previous two chapters, we have addressed the energy conservation issue for
high-performance cluster and grid systems through energy-efficient scheduling. These
scheduling algorithms primarily consider the energy consumed by CPU and
interconnection. The significantly energy consumed by storage systems has not been
discussed.
In this chapter, we address the energy conservation issue for large-scale storage
systems by proposing buffer disk based architecture and designing energy-aware
resource management strategy.
The rest of this chapter is organized as follows. In section 6.1, we present the
motivation of this study. Section 6.2 illustrates the buffer-disk based parallel disks
architecture. In section 6.3, we demonstrate the heat-based load balancing strategy.
Mathematical models for calculating the power of parallel storage systems are explained
in section 6.4.The experimental environment and simulation results are presented in
section 6.5. Finally, section 6.6 will summarize the primary contribution of this chapter
and future research directions.
98

6.1 Motivation
Storage systems are considered as one of the major energy consumer in most high
performance computing platforms. That is mainly because most high-performance
computing servers have to storage and process massive data. Historically, tape libraries
are preferred over disk arrays for massive storage environments, in large part due to the
capacity and cost differential between tapes and disks. Over the last decade the original
tape systems have been gradually replaced by parallel disk systems because of the
continuous expansion of disk capacity and continuous drop of disk price. However,
large-scale parallel storage systems consume significant amount of energy. A recent
industry report shows that storage devices account for almost 27% of the total energy in
a data center [40]. Therefore, new technologies focused on the design of energy-efficient
parallel storage systems are highly desirable.
In this chapter, we present a buffer disk (BUD for short) based architecture to build
energy efficient parallel storage systems. The basic idea of BUD is simple and
straightforward. To most people, it is common sense that leaving a light bulb on at
daytime is a waste of energy. The same thing happens if we keep the disks on when it
does nothing. It makes no sense that we still feed those idle disks power, without
producing any useful work. The primary design goal of BUD is to conserve energy by
serving most of the requests in a small number of buffer disks and turning as many idle
disks as possible to a low power mode. Nevertheless, one potential problem of the BUD
architecture is that a limited number of buffer disks may easily become the bottleneck.
Worst case access patterns can direct all requests to a single buffer disk, resulting in
99

arbitrarily large delays for very small arrival rates. Therefore, we also designed the heat
based load balancing strategy for BUD in order to improve the performance.
6.2 Buffer-Disk Architecture
The buffer disk architecture (see Figure 6.1) consists of four major components: a
RAM buffer, m buffer disks, n data disks, and a buffer-disk controller. The buffer disks
temporarily cache the requests for the data disks. Data disks remain in low power mode
unless a read request misses in the buffer disk or the write log for a specific data disk
grows too large. The buffer-disk controller is the ?brain? of the whole system, which
contains the energy-related reliability algorithms, data partitioning algorithms, data
movement/placement strategies, and prefetching strategies. Our ultimate objective in
this research is to conserve more energy without adversely affecting the performance of
the disk system. More specifically, the controller strives to move the frequently accessed
data from data disks into buffer disks. This allows as many data disks as possible to
switch into low-power modes. The rationale behind this strategy relies on the fact that
only a small percentage of the data is frequently accessed in a wide variety of data-
intensive applications [59]. To achieve this goal, we proposed the heat-based algorithm
to dynamically balance the workload. This algorithm aids in avoiding the potential
?traffic jam? caused by over loaded buffer disks. Here we want to note that all our
solutions and experimental results illustrated in the following sections are primarily
based on read requests.
100

Figure 6.1 The buffer disk architecture
6.3 Heat-Based Load Balancing
To conserve energy, most data disks will run in the low power state and all the
traffic will be directed to a limited number of buffer disks. This can potentially make the
buffer disks overloaded and they may become the system bottleneck and degrade the
system performance. Load balancing is one of the best solutions for the inherent
shortcoming of the BUD architecture. Basically, there are three types of load balancing
strategies called non-random load balancing, random load balancing, and redundancy
load balancing. Sequential mapping belongs to non-random load balancing because the
buffer disks have fixed mapping relationship with specific data disks. The round-robin
mapping is a typical random load balancing strategy by allocating data to each buffer
disk with equal portions and in order. Redundancy load balancing strategies for storage
systems include EERAID [60], eRAID [61], and RIMAC [62]. In this section, we will
propose a heat-based load balancing strategy, which also belongs to random load
101

balancing strategy. The primary objective of our strategy is to keep all buffer disks as
equally loaded as possible and to minimize the overall response time of all requests.
6.3.1 A Concrete Example
Before we start discussing our proposed heat-based load balancing algorithm, we
will demonstrate a concrete example. In it some buffer disks are over loaded, thus
degrading the performance of the whole system.
Suppose we have 15 requests cached in the RAM buffer and they are going to be
dispatched to different buffer disks by the controller. Requests have different colors,
which represent that they will access different data blocks. For example, request
1(white) will access data block 1 (white) existing in data disk 1 and request 6 (green)
will access the data block 6 (green) existing in data disk 6. Figure 6.2 illustrates the
dispatching results of the sequential mapping algorithm, which is a typical non-random
load balancing strategy. In the sequential mapping strategy, a buffer disk will only cache
the data coming from specific data disks in a sequential way. For instance, the data in
data disk 1 and data disk 2 will only be copied to buffer disk 1 and similarly, buffer disk
3 will only cache the data coming from data disk 5 and data disk 6. Figure 6.2 shows
that the three buffer disks are not well load balanced because buffer disk 1, 2, and 3
serve 9 requests, 3 requests and 3 requests respectively. Obviously, buffer disk 1 has
become the bottleneck whereas the other two buffer disks are only slightly loaded.
Round robin mapping is a typical random load balancing strategy. Figure 6.3 illustrates
the scheduling results of the round robin mapping, in which data blocks are cached to
the buffer disks in a round robin way. We can see that buffer disk 1, 2, and 3 are
102

allocated 7 requests, 5 requests and 3 requests respectively. Although we get better
results as compared to sequential mapping, three buffer disks are still not well balanced.
It is highly possible that buffer disk 1 could cause performance degradation when more
requests are processed.

Figure 6.2 Allocation results of sequential mapping strategy

Figure 6.3 Allocation results of round-robin mapping strategy
103

6.3.2 Heat-based Load Balancing Algorithm
In contrast with sequential and round robin mapping algorithms, we proposed a heat-
based mapping strategy to achieve load balancing. The basic idea of heat-based mapping
is that blocks in data disks will be mapped to buffer disks based on their heat. Our goal
is to make the accumulated heat of data blocks allocated to each buffer disk the same or
close to this ideal situation. In other words, the temperature, or the workload of each
buffer disk should be the same. The temperature of a buffer disk is the total heat of all
blocks existing in the buffer disk. For example, if we suppose all blocks have the same
data size, the heat of blocks 1-6 is 5, 4, 1, 2, 1, and 2 respectively. Therefore, block 1 is
cached to buffer disk 1, block 2 and 3 are copied to buffer disk 2 and block 4, 5 and 6
are mapped to buffer disk 3. With this mapping the temperature of each buffer disk is 5.
Figure 6.4 depicts the dispatching results of the heat-based load balancing strategy.

Figure 6.4 Allocation results of heat-based mapping strategy
104

To clearly describe our heat-based load balancing algorithm, we define the key
parameters as follows.
Access Frequency: times a data block is accessed within a specific time unit.
Heat weight: the ratio of requested data size and standard data size (1MB)
Heat: the multiplication of access frequency and heat weight
Temperature: the accumulated heat of all data blocks existing in a buffer disk
The heat could be used to measure the popularity of a data block and the temperature
clearly shows how busy a buffer disk is. To calculate the heat more accurately, we need
to consider the impact of block size. A large block size should have higher heat
compared to a small block with the same access frequency. This is due to the fact that
the system will spend more time to complete the response operation for the larger block.
In other words, the larger blocks should have higher heat weight.
Since our algorithm is executed online, dynamic tracking of the heat of blocks is
crucial. We implemented two strategies to dynamically track the heat. In the first
strategy, the controller will snapshot the first k requests of the request queue and run the
heat calculation function. Once the k requests are captured, they will be removed from
the main request queue in the memory. We call these k requests a snapshot request
window and this window will be the input of the heat-based load balancing algorithm.
However, the snapshot window strategy is only suitable for bursty request patterns but
not for sparse request patterns. When a sparse request pattern is encountered, it may take
too long to collect a snapshot window of k requests. The response time suffers if we do
not serve the requests until all k requests ready. Therefore, we designed a second
strategy called the observation time window strategy. In this strategy, the controller will
105

serve the requests that arrive within a specific observation time, T seconds, no matter
how many requests arrive. That means, the maximum waiting overhead for each request
is T.
Figure 6.5 Heat-based load balancing algorithm
1. Input: the request window ; /* request window will be updated periodically */
2. for each unique target block in the queue /* each request has a target block to be accessed
*/
3. AF = Access_Frequency_Calculation() ; /* calculate the block access
frequency*/
4. HW = accessed block size/ standard block size; /*calculate the heat
weight*/
5. heat = AF * HW; /*calculate the heat */
6. sort the data blocks based on heat and save them in Linklist_Block; /* first block has the
highest heat */
7. sort the buffer disk based on current temperature to a Linklist_Buffer ;/* first disk has lowest
temperature*/
8. pointer p_buffer = the first buffer disk in the Linklist_Buffer;
9. pointer p_block = the first block in the Linklist_Block;
10. pointer t_buffer ; /* t_buffer points to the buffer disk which have the copy of target block*/
11. for each block in the Linklist_Block
12. if (p_block.found = = false) /* the target block cannot be found in buffer
disks*/
13. if (p_buffer. free = = true) /* the candidate buffer disk has enough space*/
14. wake up the corresponding data disk and cache the data;
 /* The data blocks within the batch prefetching window will be copied to the buffer disk
p_buffer;
15. dispatch all requests accessing p_block to p_buffer;
16. recalculate and update the information of block heat and buffer disk temperature ;
17. else /* the first candidate buffer disk has no space*/
18. if (p_buffer.next != empty)
 p_buffer ++; /* seek another candidate buffer disk*/
19. go to setp 12;
20. else /* all buffer disks are already full*/
21. reset p_buffer to the first buffer disk in the Linklist_Buffer;
22. data_replace_function(p_buffer); /* replace existing data blocks using LRU
algorithm */
23. dispatch all requests accessing p_block to p_buffer;
24. recalculate and update the information of block heat and buffer disk temperature ;
25. else /* p_block is found in one buffer disk t_buffer */
26. dispatch all requests accessing p_block to t_buffer ;
27. recalculate and update the information of block heat and buffer disk temperature ;
106

Figure 6.5 outlines the pseudo code of the heat-based load balancing algorithm. We
should note that the request window in the first line could represent the snapshot
window or the observation time window. This algorithm will periodically collect the
requests waiting in the queue, analyze the target block of each read request, and
calculate the heat of each unique block. If the target block cannot be found in the buffer
disk, the controller will send a data miss command. This will wake up the corresponding
data disk and copy the block to the buffer disk that has the lowest temperature. In a
special case, the selected buffer disk may not have free space to store a new data block.
The controller will seek the next buffer disk with a temperature that is higher than the
initial buffer disk selected, but still lower than any other buffer disk. In the worst case,
no candidate buffer disk will be found because all buffer disks are full. A data
replacement function based on the LRU algorithm will be executed to replace some
existing data blocks. If the target block has already been cached in one of the buffer
disks, that buffer disk will serve the corresponding request. Once the algorithm has
made the decision how to dispatch these requests, the block heat and buffer disk
temperature will be recalculated and updated accordingly. Since this is an online
algorithm, the decision made at the current time period relies on the heat and
temperature information collected at the last time period.
6.4 Energy Consumption Models
In order to compare the energy efficiency of the BUD architecture with disk arrays
without buffer disks, we define the energy consumption model in this section. As we all
know, the states of a disk (either a buffer disk or a data disk) include active, sleep, idle,
107

or shut down. Some modern disks even have different energy consumption modes for
the active state (different rotation speeds), in our study we only consider the active, idle,
and sleep states in this study to simplify the problem. The core of our power model used
in our simulator is a summation of all power states multiplied by the time each power
state was active. In addition, the power state transition overhead is also considered and
added to the total energy consumption of BUD. Moreover, we suppose the buffer disk
will never enter the sleep state. Therefore, the buffer disks only have two states, active
and idle. Similarly, the data disks will either be active when they are copying data to
buffer disks or sleeping when no data access is required. In what follows, a series of
functions are presented to formally illustrate how we calculate the energy consumption
of the BUD architecture. The calculation for traditional parallel disk arrays is trivial and
ignored here.
We denote the energy consumption rates of the disks when they are in active, idle
and sleep mode by Pactive, Pidle, and Psleep, respectively. Similarly, let Tactive, Tidle and Tsleep
be the time intervals when the disk is in the active, idle and sleep states, respectively.
Hence, the energy dissipation Eactive of the disk when it is in the active state can be
written as activeactive TP ? . Similarly, the energy Eidle of the disk when it is sitting idle and
the energy Esleep of the disk when it is sleeping can be expressed as idleidle TP ? and
sleepsleep TP ? respectively. In addition to that, we denote Etr as the energy consumption
overhead when disks transit from one state to another and Ntr indicates how many times
a disk transits its power state. Now the total energy consumed by each buffer disk can be
108

calculated as
idleidleactiveactivetrtr
idleactivetrtrbuffer
TPTPNE
EENEE
?+?+?=
++?= (21)

 In a similar way, the total energy consumed by each data disk can be calculated as
sleepsleepactiveactivetrtr
sleepactivetrtrdata
TPTPNE
EENEE
?+?+?=
++?=
 (22)
Although we use the same term Etr in both equations, the value of Etr is different
because the energy overhead for transitions between the active, idle, and sleep states are
different. The energy values for each of the previously mentioned transitions are made
explicit in Table 2. The time interval Tactive when the disk is in the active state is the sum
of serving times of disk requests submitted to the disk system.
 ,)(
1
?
=
=
n
i
serviceactive iTT (23)
where n is the total number of submitted disk requests, and)(iTservice is the serving
time of the ith disk request.)(iTservice can be modeled as
).()()()(iTiTiTiT transrotseekservice ++= (24)
where Tseek is the amount of time spent seeking to the desired cylinder, Trot is the
rotational delay and Ttrans is the amount of time spent actually reading from or writing to
the disk.
Suppose there are a total of m buffer disks and n data disks in the BUD parallel
storage systems, now we can quantify the total energy with the equation below
??
==
+=
n
i
data
m
i
buffertotal iEiEE
11
)()((25)
109

6.5 Simulation Results
In this section, we present the performance evaluation of the BUD parallel disk
system and the heat-based load balancing algorithm proposed above. To simulate the
BUD architecture, we implemented our simulator, called BUD_Sim, using Java
language. We tried our best to consider and incorporate as many details of real disks as
possible. For example, we calculate the seek time as a non-linear function (Table 6.1) of
the seek distance using the seek-time-versus-distance curve presented in [63].
Table 6.1 Seek time calculation

In addition, we have implemented a load generator, which can generate synthetic
workloads according to specified parameter distributions, or analyze and filter real
traces and feed them as the input to BUD_Sim. Using the generator, we could easily
control and systematically tune all relevant parameters of a workload based on our
evaluation requirements.
Another important decision for implementing BUD_Sim is the type of hard disk
drives we should simulate. We believe that the buffer disks should have higher
performance (e.g. short seek time, high rotation speed) compared with data disks.
Consequently, buffer disks are more expensive and cost higher energy. It is still
worthwhile to use higher performance buffer disks because the number of buffer disks is
limited compared with the number of data disks. We will have an overall optimal
Seek distance Seek time (ms)
< 616 cylinders 3.45 + 0.597 d
? 616 cylinders 10.8 + 0.012 d
110

performance/cost rate. In BUD_Sim, the high-performance IBM disk, IBM 36Z15
Ultrastar, serves as the buffer disk and the low performance disk, IBM 73LZX Ultrastar,
serves as the data disk. Table 6.2 illustrates the detailed parameters of these two types of
disks, which are from IBM manuals and power measurements published in [64]. In
Table 6.3, we summarize the important parameters that have been used in our
simulation.
Table 6.2 Hardware characteristics of disks

Parameters
IBM 36Z15
Ultrastar
(high perf.)
IBM 73LZX Ultrastar
(low perf.)
Standard interface SCSI SCSI
Number of platters 4 2
Rotations per minute 15000 10000
Average seek time 3.4 ms 4.9 ms
Average rotation time 2 ms 3 ms
Transfer rate 55 MB/sec 53 MB/sec
Power (active) 13.5 W 9.5 W
Power (idle) 10.2 W 6.0 W
Power (sleep) 2.5W 1.4W
Energy (spin down) 13.0 J 10.0 J
Time (spin down) 1.5 s 1.7 s
Energy (spin up) 135.0 J 97.9 J
Time (spin up) 10.9 s 10.1 s
111

Before the simulation results are discussed, we briefly outline the baseline parallel
storage system and load balancing algorithms. They are used for comparison with our
proposed BUD architecture and heat-based load balancing algorithm. In section 6.3.1
and 6.3.3, where we compare the energy consumption and response time, the baseline
parallel storage system has no buffer disks. All disk drives greedily serve the requests in
order to shorten the response time, i.e. disks only have active and idle modes and will
never sleep. Therefore, the energy and time overhead caused by spin-up and spin-down
could be avoided. In section 6.3.2, the other two baseline algorithms, called sequential
mapping and round robin mapping, are compared against the proposed heat-based
mapping algorithm. Please refer to section 6.2.1 for more detailed information about
these two mapping strategies.
Table 6.3 Important parameters
Parameters Range/Value
of requests: {2000,5000,10000,20000}
of buffer disks 3
of data disks 30
data block size {64KB, 1MB, 4MB, 64MB}
average interval
(light load trace)
2.5s
average interval
(heavy load trace)
0.5s
6.5.1 Evaluation of Energy Consumption

This set of experimental results aims at evaluating the energy efficiency of the buffer
disk based parallel storage systems. To fairly compare the results, we generated and
executed a large number of requests and simulated both large reads (average data size is
64MB) and small reads (average data size is 64KB). Fig
total energy consumption of NO
20000 large read requests and small read requests, respectively.
There are three important observations here. First, the BUD can significantly
conserve energy compared with No
requests BUD serves, the more
outperforms No-Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18%
and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected
because more requests lead to more
sleep mode. Third, BUD performs better for small reads (average 84.4% improvement)
than large reads (average 78.77% improvement). The rationale behind is that BUD will
consume more energy when moving large da
Figure
112
ure 6.6 and Fig
-buffer and Heat-BUD running 2000, 5000, 10000, and

-Buffer parallel storage systems. Second, the more
potential power savings is revealed. For example, BUD
opportunities for BUD to keep the data disks in
ta blocks to buffer disks.
 6.6 Energy consumption for large reads
ure 6.7 plot the

113

Figure 6.7 Energy consumption for small reads
6.5.2 Evaluation of Load Balancing
In this section, we will evaluate the load balancing ability of the heat-based
algorithm. Please note that there are actually two levels of load balancing in real parallel
storage systems. The first level is memory caching, i.e. the main memory could cache
the popular disks. The second level is buffer disk caching. In order to study the effects
of load balancing in the buffer disks, we suppose no data are cached in the memory.
Recall that the temperature of a buffer disk clearly shows how busy it is. Figure 6.8
records the temperature of three buffer disks when we run the simulation for 1000
requests in BUD. From Figure 6.8, we can see that the three temperature curves merge
together most of the time. This means that the three buffer disks are almost equally
loaded most of the simulation time. In order to identify the information hidden in Figure
6.8, how the dynamic load balancing works, we plot the initial stage, intermediate stage,
and final stage of the temperature tracking trace in Figure 6.9, Figure 6.10 and Figure
6.11. At the initial stage, the three buffer disks are not load balanced. Buffer disk 2 is the
114

busiest disk and buffer disk 1 is lightly loaded. Therefore, the heat-based algorithm will
keep allocating requests to buffer disk 1. We can see that the temperature of buffer disk
1 keeps growing and it catches buffer disk 3 first. After that, the temperatures of buffer
disk 1 and 3 cross-rise for a while and then they catch buffer disk 2. At this point, the
system is load balanced for the first time. Figure 6.10 shows that the whole system is
perfectly load balanced in the intermediate stage because the temperatures of three
buffer disks rise in turns. Interestingly, we find in Figure 6.11 that the three temperature
curves are not as closely intertwined in the final stage when compared to the
intermediate stage. This could be explained by the fact that the heat-based load
balancing might not be that efficient when all data blocks that are requested are already
present in the buffer disks. In other words, if a data miss operation does not occur, there
is no chance for the heat-based algorithm to execute. Therefore, the temperature of
buffer disks will be largely decided by the access pattern of coming requests.

Figure 6.8 Temperature tracking trace
115

Figure 6.9 Temperatures in initial stage

Figure 6.10 Temperatures in intermediate stage

Figure 6.11 Temperatures in final stage
116

To compare the load balancing efficiency of sequential mapping, round robin
mapping, and heat-based mapping, we simulated 5000 requests with average data size of
4MB using these three mapping strategies. The simulation results depicted in Figure
6.12 prove that the proposed heat-based mapping is the most efficient algorithm that
achieves load balancing. In addition, the random mapping method (round robin
mapping) outperforms non-random mapping strategies (sequential mapping) overall.

Figure 6.12 Load balancing comparison
6.5.3 Evaluation of Response Time
Response time is one of the most important criteria to evaluate the BUD
architecture. This is because the buffer disk architecture leads to response time penalties.
This is especially true in the early stages of a workload when few data blocks are cached
in buffer disks. However, we believe that the performance penalty in the early stage is
worthwhile as long as the system can provide quick response times when the initial
caching stage is over.
117

In order to accurately evaluate the response time, we simulated 25000 requests for
large reads (average data size 64MB) and small reads (average data size 64KB), which
are illustrated in Figure 6.13-6.16 respectively. For each simulation, we first execute
20000 requests to complete the caching stage. After that, we execute 5000 more requests
to see whether or not the system can leverage the response time delay. Since the number
of sample requests is too large, it is difficult to analyze the performance trend.
Therefore, we plot the trend line in each figure (the black line inside) to better analyze
the changing response time trend. The trend line is plotted by calculating the average
response time of every 100 tasks and inserting this value into the trend line. For
example, if we have 5000 requests, the program will calculate 50 average response times
which will be the data points in trend line.

Figure 6.13 Response time trace before training (64MB)
118

Figure 6.14 Response time trace after training (64MB)

Figure 6.15 Response time trace before training (64KB)
Figure 6.13 and Figure 6.15 verify our prediction of the response time delay in the
early caching stage. For example, we can see in Figure 6.13 that the response time delay
rises up to 140s. However, we are very delighted to witness the performance improve
when more and more hot data blocks are cached in the buffer disks. After the training
process, the average response time is very close to the performance of a greedy No-
Buffer parallel storage system. For example, the average response time of BUD shown
119

in Table 6.4 is 1.219s for large reads and 0.01s for small reads. These numbers are in the
same level of No-Buffer parallel disk systems. We can even predict that the BUD could
offer better performance than No-Buffer strategies if higher performance disks serve as
the buffer disk in the future.

Figure 6.16 Response time trace after training (64KB)

Table 6.4 Average response time comparison
 Average Response Time
training (64MB): 5.614s
after training (64MB): 1.219s
training (64KB): 0.767s
after training (64KB): 0.01s
NO-Buffer(64MB) 1.216s
NO-Buffer(64KB) 0.01s

120

6.6 Summary
In this chapter, we propose a buffer disk based architecture for parallel storage
systems, or BUD for short, which can conserve energy by allowing as many data disks
as possible running in low-power mode. A heat-based dynamic data-caching strategy
was proposed to improve the performance of BUD architecture by achieving good load
balancing in buffer disk layer. We also analyze and compare the impact of three
mapping methods, which are sequential mapping, round robin mapping, and heat-based
mapping respectively. These mappings are applied to the BUD architecture to gauge
load balance, energy consumption, and performance.
The preliminary results have shown substantial gains that BUD can conserve more
than 80% of energy when compared with traditional parallel systems that do not employ
buffer disks. In addition, the average response time could be as good as the No-Buffer
parallel systems. For the future research work we would like to explore the impact of the
number of buffer disks and data disks to the system. In addition, we need to incorporate
traces from real-world applications to improve the feasibility of our approaches.

121

Chapter 7
Conclusions and Future Work
In this dissertation, we propose a general architecture for building energy-efficient
high-performance computing platforms and discuss the possibility of incorporating
energy-efficient techniques in each layer of the proposed architecture. In addition, we
have developed a series of energy-efficient algorithms for high-performance computing
platforms like clusters, grids and large-scale storage systems. This chapter concludes the
dissertation by summarizing the contributions and describing future directions. The
chapter is organized as follows: section 7.1 highlights the main contributions of the
dissertation. In section 7.2, we concentrate on some future directions, which are
extensions of our past and current research on green computing for high-performance
computing platforms.
7.1 Main Contributions
Currently, more and more data centers face the energy crisis. This crisis appears to
be a mismatch between requirements and capabilities. On the requirements side, to meet
application demands and the regulatory requirements, we need to deploy more and more
122

servers. During the years 2000-2010, the number of servers is expected to grow by 6
times and the number of storage disks is expected to grow by 69 times. Accordingly,
demands for energy use will significantly increase. How to get enough power to support
future data center has become a serious problem. The objective of our research is to find
possible and potential energy-efficient techniques to reduce power consumption of high-
performance computing platforms built in giant data centers. The main contributions are
summarized as follows:
? Architecture for High-Performance Computing Platforms
As far as we have known, there is no existing general architecture which is suitable
for most high-performance computing platforms. Especially, there is no previous
research have discussed the energy conservation issue of high-performance computing
platforms in the architecture level. We propose a general architecture for high-
performance computing platforms and discuss the possibility of incorporating energy-
efficient techniques to each layer of the proposed architecture (See Figure 3.1).
? Energy-Efficient Scheduling for Clusters
In the past few years, high-performance clusters have been widely used to solve
challenging and rigorous engineering tasks in industry and scientific applications. Due
to extremely high energy cost, reducing energy consumption has become a major
concern in designing economical and environmentally friendly Clusters for many
applications. We propose two energy-efficient duplication-based scheduling algorithms
called EAD and PEBD for clusters. They aimed to reduce energy consumption in
clusters while minimizing communication overheads associated with parallel tasks.
Rather than just consider energy or performance, our algorithms strived to balance the
123

scheduling lengths and energy savings by judiciously replicating predecessors of a task
if the duplication can aid in performance with limited energy consumption. We
conducted extensive experiments using both synthetic benchmarks and real-world
applications to prove the efficiency of these two algorithms.
? Energy-Efficient Scheduling for Grids
Grids are complicated heterogeneous super computing platforms which can
simultaneously execute thousands of parallel tasks. How to energy-efficiently schedule
those parallel tasks in complex heterogeneous grids environment is an open problem.
The objective of this study is to develop energy-efficient data grids to provide
significant energy savings for data-intensive applications running on grids. We designed
a generic energy-aware scheduling framework for grids and proposed two energy-
efficient algorithms called EETDS and HEADUS. In addition, we evaluated the
performance and energy efficiency of the proposed algorithms by conducting extensive
simulations.
? Energy-Efficient Storage Systems
With the tremendous development of human society, billions of data in the form of
knowledge and information is generated every day. In order to save and process these
massive data sets with high-performance, a large number of disks have to be operated in
parallel, which introduces a serious problem: huge energy consumption. To build
energy-efficient storage systems, we propose a buffer-disk based architecture. In
addition, we design and implement corresponding energy-aware load balancing strategy
for the buffer-disk architecture.
124

7.2 Future Work
In the course of designing and evaluating energy-aware resource management
techniques for high-performance computing platforms, we have found several
interesting issues that are still unresolved. This section overviews some of these open
issues that need further investigation. These open issues present opportunities for my
future research.
? Energy-Efficient Scheduling for Embedded Systems
Embedded/mobile devices are even more sensitive to power consumption due to the
limited battery life. I will extend my previous energy-aware research to embedded
devices/sensor networks and evaluate previous algorithms in terms of energy efficiency
in a more power sensitive environment.
? Energy-Aware Load Balancing
The nature of load balancing is to equally spread work between many computers,
processes, hard disks or other resources in order to get optimal resource utilization and
decrease computing time. In order to do this, the controller or scheduler has to keep as
many resources active as possible. This will lead to a potential problem - huge energy
consumption. Now we are in a dilemma: increase throughput means more energy
consumption while saving energy means system performance degradation. It is expected
to propose a power-aware load balancing schema which aims at judiciously spreading
work in an energy-efficient way.
? Optimize Data Movement
125

I/O-intensive applications tend to have a huge amount of transferred data. Since the
transferred data may be moved from node to node, data movement has a significant
impact on the overall performance of load balancing polices. To alleviate such a burden
resulting from data movements, it is necessary to propose a predictive model to move
data without compromising the performance of applications running on local nodes. The
new model should largely depend on data distribution, the amount of data, data access
pattern, and network traffic.
? Dynamic Scheduling Strategies in Grids
The performance of a large scale heterogeneous grid system is very sensitive to
various unforeseen and unplanned events that can happen at short notice, which include
but not limited to breakdowns of computers and random arrivals of new jobs. These
real-time events not only interrupt system operations, but also have negative impacts on
job schedules made on the fly. Therefore, it is highly desirable to develop adaptive
dynamic scheduling strategies which can handle those unpredicted events. Multi-agent
techniques are promising approaches to building complex, robust, and cost-effective
schedulers for the next-generation grid systems, because multi-agents are autonomous,
distributed and dynamic in nature. The agent-based dynamic scheduling strategy could
be a possible solution to generate robust schedules in a complicated and dynamic
distributed computing environment like grids.
? Service Level Agreement Research in High-Performance Clusters
It is desirable to develop high-performance clusters to provide secure and reliable
services for various types of customer requests submitted to the systems. Various cluster
computing use cases have different requirements such as execution deadline, higher
126

security, higher reliability, low cost etc. Therefore, it is highly imperative to develop
widely accepted regulations at the high level.

127

References
[1] B. Moore. Taking the data centre power and cooling challenge. Energy User News,
August 27th, 2002.
[2] J. Chase and Ron Doyle, ?Energy Management for Server Clusters?, Proc. the 8th
Workshop Hot Topics in Operating Systems (HotOS-VIII), pp. 165, May 2001.
[3] R. Bryce. Power struggle. Interactive Week, December 2000.
http://www.zdnet.com/intweek/, found under
stories/news/0,4164,2666038,00.html.
[4] http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datace
nter_Report_Congress_Final1.pdf.
[5] S. Srinivasan and N.K. Jha, ?Safety and Reliability Driven Task Allocation in
Distributed Systems?, IEEE Trans. Parallel and Distributed Systems, Vol. 10, No.
3, pp. 238-251, March 1999.
[6] L. Benini and G. De Micheli, ?Dynamic Power Management: Design Techniques
and CAD Tools?, Kluwer Academic Publisher, 1998.
[7] J. Rabaey and M. Pedram (Editors), ?Lower Power Design Methodologies?,
Kluwer Academic Publisher, Norwell, MA, 1998.
[8] A. Raghunathan, N. K. Jha, and S. Dey, ?High-Level Power Analysis and
Optimization, Kluwer Academic Publisher?, Norwell, MA, 1998.
[9] E.N. M. Elnozahy, M. Kistler, and R. Rajamony, ?Energy-Efficient Server
128

Clusters,? Proc. Int?l Workshop Power-Aware Computer Systems, Feb. 2002.
[10] L. Benini, A. Bogliolo, G. D. Micheli, ?A Survey of Design Techniques for
System-Level Dynamic Power Management,? IEEE Trans. VLSI Sys., vol. 8, no.
3, pp.299-316, June 2000.
[11] F. Douglis, P. Krishnan, B. Bershad, ?Adaptive Disk Spin-down Policies for
Mobile Computers?, USENIX Symp. Mobile and Location-Independent Computing,
pp. 121-137, 1995.
[12] M. Srivastava, A. Chandrakasan. R. Brodersen, ?Predictive System Shutdown and
Other Architectural Techniques for Energy Efficient Programmable Computation?,
IEEE Trans. VLSI Systems, Vol. 4, No. 1, pp. 42-55, March 1996.
[13] X. Qin and H. Jiang, ?A Dynamic and Reliability-driven Scheduling Algorithm for
Parallel Real-time Jobs on Heterogeneous Clusters?, Journal of Parallel and
Distributed Computing, vol. 65, no. 8, pp. 885-900, Aug. 2005.
[14] F. Yao, A. Demers, and S. Shenker, ?A Scheduling Model for Reduced CPU
Energy?, Proc. IEEE Annual Foundations of Computer Science, pp. 374-382,
1995.
[15] I. Hong, M. Potkonjak, and M. Srivastava, ?On-line Scheduling of Hard Real-Time
Tasks on Variable Voltage Processor?, Proc. Computer Aided Design, pp. 653-656,
1998.
[16] T. Xie, X. Qin, and M. Nijim, ?Solving Energy-Latency Dilemma: Task Allocation
for Parallel Applications in Heterogeneous Embedded Systems?, Proc. 35th Int?l
Conf. Parallel Processing, Columbus, Ohio, Aug. 2006.
[17] W. Dally, P. Carvey, and L. Dennison, ?The Avici Terabit Switch/Rounter?, Proc.
129

Hot Interconnects 6, pp. 41-50, Aug. 1998.
[18] .N. M. Elnozahy, M. Kistler, and R. Rajamony, ?Energy-Efficient Server Clusters?,
Proc. Int?l Workshop Power-Aware Computer Systems, Feb. 2002.
[19] Mellanox Technologies Inc., ?Mellanox Performance, Price, Power, Volumn
Metric (PPPV)?, http://www.mellanox.co/products/shared/PPPV.pdf, 2004.
[20] T. Hagras and J. Janecek, ?A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems?, Proc. IEEE
Heterogeneous Computing Workshop, 2006.
[21] I. Page, T. Jacob, and E.Chen, ?Fast Algorithms for Distributed Resource
Allocation?, IEEE Trans. Parallel and Distributed Sys., vol. 4, no. 2, pp. 188-197,
Feb. 1993.
[22] G.C. Sih and E.A. Lee, ?Declustering: A New Multiprocessor Scheduling
Technique?, IEEE Trans. Parallel and Distributed Sys., vol. 4, no.6, pp. 625-637,
June 1993.
[23] G.C. Sih and E.A. Lee, ?A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures?, IEEE Trans.
Parallel and Distributed Sys., vol. 4, no. 2, pp. 175-186, Feb. 1993.
[24] C.M. Woodside and G.G. Monforton, ?Fast Allocation of Processes in Distributed
and Parallel systems?, IEEE Trans. Parallel and Distributed Sys., vol. 4, no. 2, pp.
164-174, Feb. 1993.
[25] N.S. Bowen, C.N. Nikolaou, and A. Ghafoor, ?On the Assignment Problem of
Arbitrary Process Systems to Heterogeneous Distributed Computer Systems?,
IEEE Trans. Computers, vol. 41, no. 3, Mar. 1992.
130

[26] K. Efe, ?Heuristic Models of Task Assignment Scheduling in Distributed
Systems?, IEEE Trans. Computers, pp. 50-60, June 1982.
[27] V.M. Lo, ?Heuristic Algorithms for Task Assignments in Distributed System?,
IEEE Trans. Computers, vol. 37, no. 11, pp. 1,384-1,397, Nov. 1988.
[28] S. Yajnik, S. Srinivasan, and N.K. Jha, ?TBFT: A Task-Based Fault Tolerance
Scheme for Distributed Systems?, Proc. Int?l Conf. Parallel and Distributed
Computer Sys., Oct. 1994.
[29] Y. Shin and K. Choi, ?Power Conscious Fixed Priority Scheduling for Hard Real-
Time Systems?, Proc. Design Automation Conf., 1999.
[30] S. Bansal, P. Kumar, and K. Singh, ?An Improved Duplication Strategy for
Schedulng Precedence Constrained Graphs in Multiprocessor Systems?, IEEE
Trans. Parallel and Distributed Systems, Vol. 14, No. 6, pp. 533-544, June 2003.
[31] S.S. Pande, D.P. Agrawal and J. Mauney, ?A Scalable Scheduling Method for
Functional Parallelism on Distributed Memory Multiprocessors?, IEEE Trans.
Parallel and Distributed Systems, Vol. 6, No. 4, pp. 388-399, April 1995.
[32] S. Darbha and D. P. Agrawal, ?A Task Duplication Based Scalable Scheduling
Algorithm for Distributed Memory Systems?, J. Parallel and Distributed
Computing, vol. 46, no. 1, pp. 15-27, Oct. 1997.
[33] S. Ranaweera, and D.P. Agrawal, ?A Task Duplication Based Scheduling
Algorithm for Heterogeneous Systems?, Proc. Parallel and Distributed Processing
Symp., pp.445-450, May 2000.
[34] T. Hagras and J. Janecek, ?A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems?, Proc. IEEE
131

Heterogeneous Computing Workshop, 2006.
[35] H.J. Siegel et al., ?Mapping subtasks with multiple versions on an ad-hoc grid?,
Proc. IEEE Heterogeneous Computing Workshop, 2006.
[36] Y. Kishimoto and S. Ichikawa, ?Optimizing the configuration of a heterogeneous
cluster with multiprocessing and execution-time estimation?, Proc. IEEE
Heterogeneous Computing Workshop, 2006.
[37] J. Cuenca, D. Gimenez and J.-P. Martinez, ?Heuristics for work distribution of a
homogeneous parallel dynamic programming scheme on heterogeneous systems?,
Proc. IEEE Heterogeneous Computing Workshop, 2006.
[38] StorageTek Corp. 9310 tape silo information,
http://www.storagetek.com/products/tape/9310/2001.
[39] D. Colarelli and D. Grunwald, ?Massive Arrays of Idle Disks for Storage
Archives?, Proc. of the 15th High Performance Networking and Computing Conf.,
November 2002.
[40] ?Power, heat, and sledgehammer?, White paper, Maximum Institution Inc.,
http://www.max-t.com/ownloads/whitepapers/SledgehammerPowerHeat20411.pdf.
[41] Fred Moore, ?More Power Needed?, Energy User News, November 2002.
[42] F. Douglis, P. Krishnan, and B. Marsh, ?Thwarting the Power-Hunger Disk?, Proc.
Winter USENIX Conf., pp.292-306, 1994.
[43] Q. Zhu, F. M. David, C. F. Devaaraj, Z. Li, Y. Zhou, and P. Cao, ?Reducing
Energy Consumption of Disk Storage Using Power-Aware Cache Management,?
Proc. High-Performance Computer Framework, 2004.
[44] S.W. Son and M. Kandemir, ?Energy-aware data prefetching for multi-speed
132

disks?, Proc. ACM International Conference on Computing Frontiers, Ischia, Italy,
May 2006.
[45] S.W. Son, M. Kandemir, and A. Choudhary, ?Software-directed disk power
management for scientific applications?, Proc. Int?l Symp. Parallel and Distributed
Processing, April, 2005.
[46] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Fanke, ?DRPM:
Dynamic Speed Control for Power Management in Server Class Disks?, Proc. Int?l
Symp. of Computer Framework, pp. 169-179, June 2003.
[47] E. Pinheiro and R. Bianchini, ?Energy Conservation Techniques for Disk Array-
Based Servers?, Proc. of the 18th International Conference on Supercomputing
(ICS?04), June 2004.
[48] P. Scheuermann, G. Weikum, P. Zabback, ?Data partitioning and load balancing in
parallel disk systems?, The International Journal on Very Large Data Bases, vol.
7, issue 1, pp. 48-66, Feb.1998
[49] S. Darbha, D.P. Agrawal, ?Optimal Scheduling Algorithm for Distributed-Memory
Machines?, IEEE Trans. Parallel and Distributed Systems, Vol. 9, No. 1, pp.87-95,
Jan. 1998.
[50] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H. Kan, ?Optimizing and
Approximation in Deterministic Sequencing and Scheduling: A Survey?, Annals of
Discrete Math, pp.287-326, 1979.
[51] H.El. Rewini, T.G. Lewis, and H.H. Ali, ?Task Scheduling in Parallel and
Distributed Systems?, New Jersy: Prentice Hall, 1994.
[52] M.Y. Wu and D.D. Gajski, ?Hypertool: A Performance Aid for Message-Passing
133

Systems,? IEEE Trans. Parallel and Distributed Systems, Vol. 1, No. 3, pp. 330-
343, July 1990.
[53] Standard Task Graph Set web site.
http://www.kasahara.elec.waseda.ac.jp/schedule/ making_e.html#application.
[54] H. Kasahara and S. Narita, ?Parallel Processing of Robot-Arm Control
Computation on a Multiprocessor System?, IEEE J. Robotics and Automation,
Vol.RA-1, No.2, pp. 104-113 (1985).
[55] H. Kasahara, H. Honda and S. Narita, ?Parallel Processing of Near Fine Grain
Tasks Using Static Scheduling on OSCAR?, Proc. IEEE ACM Supercomputing
'90 (1990).
[56] A. Yoshida, K. Koshizuka and H. Kasahara, "Data-Localization for Fortran
Macrodataflow Computation Using Partial Static Task Assignment", Proc. 10th
ACM Int'l Conf. on Supercomputing, pp. 61-68 (1996).
[57] Wikipedia about Grid computing, http://en.wikipedia.org/wiki/Grid_computing.
[58] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, ?A Security Architecture for
Computational Grids?, Proc. ACM Computer and Communication Security, San
Francisco, CA, USA, 1998.
[59] T.T. Kwan, R.E. McGrath, and D.A Reed, ?NCSA's World Wide Web Server:
Design and Performance?, IEEE Computer, vol. 28, no. 11, pp. 68 ? 74, Nov.
1995.
[60] D. Li and J. Wang, ?EERAID: Energy-Efficient Redundant and Inexpensive Disk
Array?, Proc. of the 11th ACM SIGOPS European Workshop, Sept 2004.
[61] D. Li and J. Wang, ?Conserving Energy in RAID Systems with Conventional
134

Disks?, Proc. of the International Workshop on Storage Network Architecture and
Parallel I/Os, Sept 2005.
[62] X. Yao and J. Wang, ?RIMAC: A Redundancy-based Hierarchical I/O Architecture
for Energy-Efficient Storage Systems?, Proc. of the 1st ACM EuroSys Conference,
Apr 2006.
[63] C. Ruemmler, J. Wilkes, ?An introduction to Disk Drive Modeling?, IEEE Trans.
on Computers, Vol. 27, no. 3, pp. 17 ? 28, 1994.
[64] E.V. Carrera, E. Pinheiro, and R. Bianchini, ?Conserving Disk Energy in Network
Servers?, Proc. of the 17th International Conference on Supercomputing (ICS?03),
June 2003.

