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The objective in this manuscript is to study some iterative methods used to approxi-

mate solutions of nonlinear equations in Banach Spaces. In particular, we study a Halpern-

type iterative scheme in relation to nonexpansive and asymptotically nonexpansive map-

pings and prove convergence theorems in both of these cases. We also study a hybrid

steepest descent iterative scheme in relation to the variational inequality problem, and us-

ing this process, we prove convergence theorems for the approximation of the solution of

the variational inequality problem in certain Banach spaces, in particular for Lp spaces.
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Chapter 1

Introduction

1.1 Introduction

The contributions of this thesis fall within the general area of nonlinear operator theory,

an area with vast amount of applicability in recent years, as such becoming the object of

an increasing amount of study. We devote our attention to an important topic within the

area: iterative methods for approximating fixed points and solutions of variational inequality

problems for nonexpansive and accretive-type nonlinear mappings.

Let K be a nonempty subset of a real normed linear space E and let T : K → K

be a map. A point x ∈ K is said to be a fixed point of T if Tx = x. We shall denote

the set of fixed points for an operator T by F (T ). Now, consider the differential equation

du
dt + Au(t) = 0 which describes an evolution system where A is an accretive map from a

Banach space to itself. At equilibrium state, du
dt = 0 and so a solution of Au = 0 describes

the equilibrium or stable state of the system. This is very desirable in many applications

in, for example, ecology, economics, physics, to name a few. Consequently, considerable

research efforts have been devoted to methods of solving the equation Au = 0 when A is

accretive. Since, in general A is a nonlinear operator, there is no closed form solution to

this equation. The standard technique is to replace A by an operator (I −T ) where I is the

identity map on E and T maps E to itself. Such a map T is called a pseudo-contraction

(or is called pseudo-contractive). It is then clear that any zero of A is a fixed point of T. As

a result of this, the study of fixed point theory for pseudo-contractive maps has attracted

the interest of numerous scientists and has become a flourishing area of research, especially
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within the past 30 years or so, for numerous mathematicians. A very important subclass

of the class of pseudo-contractive mappings is the class of nonexpansive mappings. In this

dissertation, we shall devote attention particularly to this class of mappings. Interest in,

and the importance of this class of mappings will become evident in the sequel.

One of the most important fixed point theorems in applications is the classical contrac-

tion mapping principle, or, in other words, the Banach-Cacciopoli [14] fixed point theorem

which is the following:

Theorem 1.1.1 (Banach Contraction Mapping Principle) Let (X, ρ) be a complete metric

space and let T : (X, ρ) → (X, ρ) satisfy

ρ(T (x), T (y)) ≤ κρ(x, y) (1.1)

for some nonnegative constant k < 1 and for each x, y ∈ X. Then, T has a unique fixed

point in X. Moreover, starting with arbitrary x0 ∈ X, the sequence {xn} defined by

xn+1 = Txn = Tnx0, n ≥ 1, (1.2)

converges strongly to the unique fixed point.

The iterative technique of Theorem 1.1.1 is due to Picard [69]. A mapping T satisfying

(1.1) is called a strict contraction. If κ = 1 in the relation (1.1), then T is called nonexpan-

sive. If however, κ is an arbitrary fixed positive constant, then T is called a Lipschitz map

or a κ-Lipschitzian map.
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For the contractive condition (1.1), it was observed that if the condition κ < 1 on the

operator T is weakened to κ = 1, the operator T may no longer have a fixed point and even

when it does have a fixed point, the sequence {xn} defined by (1.2) may fail to converge to

such a fixed point. This can be seen by considering an anti-clockwise rotation of the unit

disc of R2 about the origin through an angle of say, π
4 . This map is nonexpansive with the

origin as the unique fixed point, but the Picard sequence fails to converge with any starting

point x0 6= (0, 0). Krasnosel’skii [58], however, showed that in this example, if the Picard

iteration formula is replaced by the following formula,

x0 ∈ K, xn+1 =
1
2
(xn + Txn), n ≥ 0, (1.3)

then the iterative sequence converges to the unique fixed point.

In general, if E is a normed linear space and T is a nonexpansive mapping, a generalization

of (1.3) which has proved successful in the approximation of a fixed point of T (when it

exists) was given by Schaefer [74] :

x0 ∈ K, xn+1 = (1− λ)xn + λTxn, n ≥ 0, λ ∈ (0, 1). (1.4)

However, the most general iterative formula for approximation of fixed points of nonex-

pansive mappings, which is called the Mann iteration formula (in the light of [63]), is the

following:

x0 ∈ K, xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.5)
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where {αn} is a real sequence in the interval (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0 and (ii)
∞∑

n=1

αn = ∞.

The recursion formula (1.4) is consequently called the Krasnoselskii-Mann (KM) formula

for finding fixed points of nonexpansive mappings. This iterative process has become very

important and applicable as noted below.

• ”Many well-known algorithms in signal processing and image reconstruction are it-

erative in nature .... A wide variety of iterative procedures used in signal processing

and image reconstruction and elsewhere are special cases of the (Krasnoselskii-Mann)

iteration procedure, for particular choices of the (nonexpansive) operator....”

(Charles Byrne , [13]).

Apart from being an obvious generalization of the contraction mappings, nonexpansive maps

are important, as has been observed by Bruck [9], mainly for the following two reasons:

• Nonexpansive maps are intimately connected with the monotonicity methods devel-

oped since the early 1960’s and constitute one of the first classes of nonlinear mappings

for which fixed point theorems were obtained by using the fine geometric properties

of the underlying Banach spaces instead of compactness properties.

• Nonexpansive mappings appear in applications as the transition operators for initial

value problems of differential inclusions of the form 0 ∈ du
dt + T (t)u, where the opera-

tors {T (t)} are, in general, set-valued and are accretive or dissipative and minimally

continuous.
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Nonexpansive maps have been studied, and are still being studied, extensively by numerous

authors (see e.g., Bauschke [2], Belluce and Kirk [3], Browder [4], Bruck [7, 8], Chidume

[19, 18], Chidume and Ali [21, 26], Chidume and Chidume [27], Chidume et al. [28, 34],

Chidume and Shahzad [33], De Marr [43], Göhde [47]. Jung and Kim [49], Jung [50], Jung

et al. [51], Khan and Fukharu-ud-din [53], Kirk [56], Lim [59], Matsuhita and Kuroiwa [64],

O’Hara et al. [67], Oka [68], Reich [68], Senter and Dotson [77], Shahzad [78], Shahzad and

Al-dubiban [79], Takahashi and Tamura [85], Takahashi and Kim [86], Tan and Xu [88], Xu

and Yin [94], Zeng and Yao [100] and a host of other authors).

Let E be a real Banach space, K a closed convex subset of E and T : K → K a non-

expansive mapping. For fixed t ∈ (0, 1] and arbitrary u ∈ K, define a map Tt : K → K

by Ttx := tu + (1 − t)Tx, x ∈ K. Then Tt is a strict contraction for every fixed constant

t ∈ (0, 1]. Denote the unique fixed point of Tt by zt ∈ K, and assume F (T ) := {x ∈ K :

Tx = x} 6= ∅.

In 1967, Browder [5] proved that if E = H, a Hilbert space, then lim
t→0

zt exists and is a fixed

point of T . In 1980, Reich [71] extended this result to uniformly smooth Banach spaces. In

1981, Kirk [57] obtained the same result in arbitrary Banach spaces under the additional

assumption that T has pre-compact range. We have mentioned that every nonexpansive

mapping is a pseudo-contractive mapping. Following this, in 2000, Morales and Jung [65]

proved the same result for T a continuous pseudocontraction in a real reflexive Banach

space with uniformly Gâteaux differentiable norm.

For a sequence {αn} of real numbers in [0, 1] and an arbitrary u ∈ K, let the sequence {xn}
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in K be iteratively defined by x0 ∈ K,

xn+1 = αnu + (1− αn)Txn, n ≥ 0. (1.6)

The recursion formula (1.6) was first introduced in 1967 by Halpern [48] with u = 0, in the

framework of Hilbert spaces. Under appropriate conditions on the domain of T, and some

restrictions on the parameter {αn} (αn = n−a, a ∈ (0, 1)), he proved strong convergence

of {xn} to a fixed point of T. Iteration formulas of the form (1.6) are now said to be of

the Halpern-type. Lions [62] considered a more general parameter {αn} and improved the

result of Halpern, still in Hilbert spaces. He proved strong convergence of {xn} to a fixed

point of T where the real sequence {αn} satisfies the conditions:

C1 : lim αn = 0; C2 :
∑

αn = ∞; C3 : lim
|αn − αn−1|

α2
n

= 0.

In 1980, Reich [71] proved that the result of Halpern remains true when E is uniformly

smooth. It was observed that both Halpern’s and Lions’s conditions on the real sequence

{αn} excluded the canonical choice αn = 1
n+1 . This was overcome in 1992 by Wittmann

[93] who proved, still in Hilbert spaces, the strong convergence of {xn} to a fixed point of

T if {αn} satisfies the conditions:

C1 : lim αn = 0; C2 :
∑

αn = ∞; C4 :
∑

|αn+1 − αn| < ∞.

In 1994, Reich [72] extended the result of Wittmann to Banach spaces which are uniformly

smooth and have weakly sequentially continuous duality maps (e.g., lp spaces, 1 < p < ∞),

where {αn} satisfies C1 and C2 and is also required to be decreasing (and hence also satisfies
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C4). These spaces exclude Lp spaces, 1 < p < ∞, p 6= 2. Shioji and Takahashi [80] extended

Wittmann’s result to real Banach spaces with uniformly Gâteaux differentiable norms and

in which each nonempty closed convex and bounded subset has the fixed point property

for nonexpansive mappings (e.g., Lp spaces, 1 < p < ∞). In 2002, Xu [95] (see also [96])

improved the result of Lions twofold. First, he weakened the condition C3 by removing the

square in the denominator so that the canonical choice of αn = 1
n+1 is possible. Secondly,

he proved the strong convergence of the scheme (1.6) in the framework of real uniformly

smooth Banach spaces. Xu also remarked ([95], Remark 3.2) that Halpern [48] observed

that conditions (C1) and (C2) are necessary for the strong convergence of algorithm (1.6)

for all nonexpansive mappings T : K → K. It is not clear if they are sufficient. This

brought about the following question which has been open for many years:

Question 1: Are the conditions C1 : lim αn = 0 and C2 :
∑

αn = ∞ sufficient for

the strong convergence of algorithm (1.6) for all nonexpansive mappings T : K → K?

In Chapter 2 of this dissertation, we modify the recursion formula (1.6) by introducing

an auxiliary operator that has the same set of fixed points as T . With the help of this

operator, we prove that conditions C1 and C2 are sufficient for the modified iteration al-

gorithm to converge strongly to a fixed point of T , even in the more general setting where

E is a real Banach space with uniformly Gâteaux differentiable norm. Consequently, our

theorems in Chapter 2 (also see [27]), provide a partial answer to Question 1. The general

question still remains open.
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One important class of nonlinear mappings more general than the class of nonexpansive

mappings which has been studied extensively by various authors is the class of asymptotically

nonexpansive mappings. This class of mappings was introduced in 1972 by Goebel and Kirk

[46].

Definition 1.1.2 Let K be a nonempty subset of a normed linear space, a mapping T :

K → K is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with

lim
n→∞

kn = 1 such that ‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ K and n = 1, 2, ....

It was proved in [46] that if K is a nonempty closed, convex and bounded subset of a

uniformly convex real Banach space and T is an asymptotically nonexpansive self-mapping

of K, then T has a fixed point. It is clear that every nonexpansive mapping is asymptotically

nonexpansive. The following example shows that the class of asymptotically nonexpansive

mappings properly contains the class of nonexpansive mappings.

Example 1.1.3 (Goebel and Kirk, [46]) Let B be a unit ball of the real Hilbert space

l2 and let T : B → B be defined by T ({x1, x2, ...}) = {0, x2
1, a2x2, a3x3, ...} where {an}

is a sequence of numbers such that 0 < an < 1 and
∞∏

n=2

an =
1
2
. Then T is Lipschitzian

and ‖Tx − Ty‖ ≤ 2‖x − y‖, for all x, y ∈ B and moreover, ‖Tnx − Tny‖ ≤ kn‖x − y‖,

with kn := 2
n∏

i=2

ai. Observe that T is not nonexpansive and that lim
n→∞

kn = 1, so that T is

asymptotically nonexpansive map.

In Chapter 3, we prove a strong convergence theorem for a Halpern-type iteration sequence

for approximation of a fixed point of asymptotically nonexpansive mappings. Our main

theorem in Chapter 3 (also see [35]) is proved in a real Banach space which has a uni-

formly Gâteaux differentiable norm. The main theorem extends some important known
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results from the class of nonexpansive mappings to the more general class of asymptotically

nonexpansive mappings.

In the second half of this manuscript, we turn attention to the approximation of a solution

of a variational inequality problem.

Definition 1.1.4 Let E be a real normed linear space and E∗ be its dual space. For some

real number q (1 < q < ∞), the generalized duality mapping Jq : E → 2E∗
is defined by

Jq(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1},

where 〈., .〉 denotes the duality pairing between elements of E and elements of E∗. If q = 2,

then J2 is called the normalized duality map on E.

Let K be a nonempty closed convex subset of E and S : E → E be a nonlinear operator.

The variational inequality problem is formulated as follows: Find a point x∗ ∈ K such that

V I(S, K) : 〈jq(Sx∗), (y − x∗)〉 ≥ 0 ∀y ∈ K. (1.7)

If E = H, a real Hilbert space, the variational inequality problem reduces to the following:

Find a point x∗ ∈ K such that

V I(S, K) : 〈Sx∗, y − x∗〉 ≥ 0 ∀y ∈ K. (1.8)

9



Definition 1.1.5 A mapping G : E → E is said to be accretive if ∀x, y ∈ E, there exists

jq(x− y) ∈ Jq(x− y) such that

〈Gx−Gy, jq(x− y)〉 ≥ 0. (1.9)

Definition 1.1.6 For some real number η > 0, G is called η−strongly accretive if ∀x, y ∈ E,

there exists jq(x− y) ∈ Jq(x− y) such that

〈Gx−Gy, jq(x− y)〉 ≥ η‖x− y‖q. (1.10)

In Hilbert spaces, accretive (strongly accretive) operators are called monotone (strongly

monotone) where inequalities (1.9) and (1.10) hold with jq replaced by the identity map of

H.

Applications of variational inequalities span as diverse disciplines as differential equations,

time-optimal control, optimization, mathematical programming, mechanics, finance and so

on (see, for example, Kinderlehrer and Stampacchia [55], Noor [66] for more details).

It is known that if S is Lipschitz and strongly accretive, then problem V I(S, K) has a

unique solution. An important problem is how to find a solution of the problem V I(S, K)

whenever it exists. Considerable efforts have been devoted to this problem (see, e.g. Xu

[98] , Yamada [99] and the references contained therein).
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It is known that in a real Hilbert space, the problem V I(S, K) is equivalent to the fol-

lowing fixed point equation

x∗ = PK(x∗ − δSx∗), (1.11)

where δ > 0 is an arbitrary fixed constant and PK is the nearest point projection map from

H onto K, i.e., PKx = y, where ‖x − y‖ = inf
u∈K

‖x − u‖ for x ∈ H. Consequently, under

appropriate conditions on S and δ, fixed point methods can be used to find or approximate

a solution of problem V I(S, K). For instance, if S is strongly monotone and Lipschitz then

a mapping G : H → H defined by Gx = PK(x − δSx), x ∈ H with δ > 0 sufficiently

small is a strict contraction. Hence, the Picard iteration, x0 ∈ H, xn+1 = Gxn, n ≥ 0 of

the classical Banach contraction mapping principle converges to the unique solution of the

problem V I(K, S).

In applications, however, the projection operator PK in the fixed point formulation (1.11)

may make the computation of the iterates difficult due to possible complexity of the convex

set K. In order to reduce the possible difficulty with the use of PK , Yamada [99] recently

introduced a hybrid descent method for solving the problem V I(K, S). Let T : H → H be a

map and let K := {x ∈ H : Tx = x} 6= ∅. Let S be η−strongly monotone and κ−Lipschitz

on H. Let δ ∈ (0, 2η
κ2 ) be arbitrary but fixed real number and let a sequence {λn} in (0, 1)

satisfy the following conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞; and C3 : lim
λn − λn+1

λ2
n

= 0.

11



Starting with an arbitrary initial guess x0 ∈ H, let a sequence {xn} be generated by the

following algorithm

xn+1 = Txn − λn+1δS(Txn), n ≥ 0. (1.12)

Then, Yamada [99] proved that {xn} converges strongly to the unique solution of V I(K, S).

In the case that K =
r
∩

i=1
F (Ti) 6= ∅, where {Ti}r

i=1 is a finite family of nonexpansive map-

pings, Yamada [99] studied the following algorithm,

xn+1 = T[n+1]xn+1 − λn+1δS(T[n+1]xn), n ≥ 0, (1.13)

where T[k] = Tk mod r, for k ≥ 1, with the mod function taking values in the set {1, 2, ..., r},

and where the sequence {λn} satisfies the conditions C1, C2 and C4 :
∑
|λn−λn+N | < ∞.

Under these conditions, he proved the strong convergence of {xn} to the unique solution of

the V I(K, S).

Recently, Xu and Kim [98] studied the convergence of the algorithms (1.12) and (1.13),

still in the framework of Hilbert spaces, and proved strong convergence with condition C3

replaced by C5: limλn−λn+1

λn+1
= 0 and with condition C4 replaced by C6 : limλn−λn+r

λn+r
= 0.

These are improvements on the results of Yamada. In particular, the canonical choice

λn := 1
n+1 is applicable in the results of Xu and Kim but is not in the result of Yamada

with condition C3.
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In Chapter 4, we prove theorems that extend the results of Xu and Kim [98] (and con-

sequently those of Wang [91], Xu and Kim [98], Yamada [99], Zheng and Yao [100]) from

real Hilbert spaces to the more general real q−uniformly smooth Banach spaces, q ≥ 2. In

particular, our theorems are applicable in Lp spaces, 2 ≤ p < ∞. (see e.g., Chidume et al.

[28]).

The condition q > 2, however, excludes the Lp spaces, 1 < p < 2. In Section 4.4, we

employ another tool to prove convergence theorems that extend the results of Xu and Kim

to Lp spaces, 1 < p ≤ 2 (see Chidume and deSouza [36]). These theorems complement

those of the first part of Chapter 4 to provide convergence theorems valid in all Lp spaces,

1 < p < ∞.

In Chapter 5, we continue our interest in fixed points of nonexpansive mappings and so-

lutions of variational inequality problems. In this chapter, we introduce a new recursion

formula and prove strong convergence theorems for the unique solution of the variational

inequality problem V I(K, S) of Chapter 4, requiring only conditions C1 and C2 on the

parameter sequence {λn}. Furthermore, in the case Ti : E → E, i = 1, 2, ..., r is a family

of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅, we prove a convergence theorem where

condition C6 is replaced with lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. An example satisfying this

condition is presented by Chidume and Ali in [22]. All our theorems in Chapter 5 (see

also [29]) are proved in q−uniformly smooth Banach spaces, q ≥ 2. In particular, they are

applicable in Lp spaces, 2 ≤ p < ∞.
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As in chapter 4, we also use a different tool to extend our theorems to include Lp spaces,

1 < p ≤ 2. Our theorems in Chapter 5 (see also [30]) still extend the results of Xu and Kim

[98] (and consequently those of Wang [91], Xu and Kim [98], Yamada [99], Zheng and Yao

[100]) from real Hilbert spaces to, in particular, the more general real Lp spaces, 1 < p < ∞.

Moreover, in this more general setting, the iteration parameter {λn} is required to satisfy

only conditions C1 and C2.

1.2 Preliminaries

Definition 1.2.1 Let S := {x ∈ E : ||x|| = 1} denote the unit sphere of the real Banach

space E. The space E is said to have a Gâteaux differentiable norm if the limit

lim
t→0

||x + ty|| − ||x||
t

exists for each x, y ∈ S; and E is said to have a uniformly Gâteaux differentiable norm if

for each y ∈ S, the limit is attained uniformly for x ∈ S.

Definition 1.2.2 We shall denote a Banach limit by µ. Recall that µ is an element of (l∞)∗

such that ‖µ‖ = 1, lim inf
n→∞

an ≤ µnan ≤ lim sup
n→∞

an and µnan = µn+1an for all {an}n≥0 ∈ l∞

(see e.g. Chidume et al. [31], Chidume [17]).

To motivate the definition of modulus of smoothness which will be used in the sequel,

we begin with the following definition.

Definition 1.2.3 A real Banach space is called smooth if for every x in X with ‖x‖ = 1,

there exists a unique x∗ in X∗ such that ‖x∗‖ = 〈x, x∗〉 = 1.
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Assume now that X is not smooth and take x in X and u∗, v∗ in X∗ such that ‖x‖ = ‖u∗‖ =

‖v∗‖ = 〈x, u∗〉 = 〈x, v∗〉 = 1 and u∗ 6= v∗. Let y in X be such that ‖y‖ = 1, 〈y, u∗〉 > 0 and

〈y, v∗〉 < 0 . Then for every t > 0 we have

1 + t〈y, u∗〉 = 〈x + ty, u∗〉 ≤ ‖x + ty‖,

1− t〈y, v∗〉 = 〈x− ty, v∗〉 ≤ ‖x− ty‖

which imply

2 < 2 + t(〈y, u∗〉 − 〈y, v∗〉) ≤ ‖x + ty‖+ ‖x− ty‖

or equivalently

0 < t(
〈y, u∗〉 − 〈y, v∗〉

2
) ≤ ‖x + ty‖+ ‖x− ty‖

2
− 1.

With this motivation we introduce the following definition.

Definition 1.2.4 Let E be a normed space with dimE ≥ 2. The modulus of smoothness

of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup
{
‖x + y‖ + ‖x− y‖

2
− 1 : ‖x‖ = 1; ‖y‖ = τ

}
.

The space E is called uniformly smooth if and only if lim
t→0+

ρE(t)
t = 0.

Definition 1.2.5 For some positive constant q, E is called q−uniformly smooth if there

exists a constant c > 0 such that ρE(t) ≤ ctq, t > 0.
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Lp spaces, 1 < p < ∞ are p−uniformly smooth (see e.g., Lindenstrauss and Tzafriri [61]).

In fact, it is known that

Lp(or lp) spaces are


2− uniformly smooth, if, 2 ≤ p < ∞,

p− uniformly smooth, if, 1 < p ≤ 2,

(see e.g., Lindenstrauss and Tzafriri [61]). It is well known that if E is smooth then the

duality mapping is singled-valued, and if E is uniformly smooth then the duality mapping

is norm-to-norm uniformly continuous on bounded subset of E.

Definition 1.2.6 Let E be a real Banach space and K be a nonempty, closed and convex

subset of E. Let P be a mapping of E onto K. Then, P is said to be sunny if P (Px+ t(x−

Px)) = Px for all x ∈ E and t ≥ 0. A mapping P of E into E is said to be a retraction if

P 2 = P.

Definition 1.2.7 A subset K of E is said to be sunny nonexpansive retract of E if there

exists a sunny nonexpansive retraction of E onto K. A retraction P is said to be orthogonal

if for each x, x− P (x) is normal to K in the sense of James [54].

It is well known (see Bruck [10]) that if E is uniformly smooth and there exists a nonexpan-

sive retraction of E onto K, then there exists a nonexpansive projection of E onto K. If E

is a real smooth Banach space, then P is an orthogonal retraction of E onto K if and only

if P (x) ∈ K and 〈P (x)−x, jq(P (x)− y)〉 ≤ 0 for all y ∈ K. It is also known (see e.g., Shioji

and Takahashi [81]) that if K is a convex subset of a uniformly convex Banach space whose

norm is uniformly Gâteaux differentiable and T : K → K is nonexpansive with F (T ) 6= ∅,
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then, F (T ) is a nonexpansive retract of K.

Let K be a nonempty closed convex and bounded subset of a Banach space E and let

the diameter of K be defined by d(K) := sup{‖x − y‖ : x, y ∈ K}. For each x ∈ K,

let r(x,K) := sup{‖x − y‖ : y ∈ K} and let r(K) := inf{r(x,K) : x ∈ K} denote the

Chebyshev radius of K relative to itself. The normal structure coefficient N(E) of E (see

e.g. [12]) is defined by N(E) := inf
{

d(K)
r(K) : K is a closed convex and bounded subset of E

with d(K) > 0
}

. A space E such that N(E) > 1 is said to have uniform normal structure.

It is known that all uniformly convex and uniformly smooth Banach spaces have uniform

normal structure (see e.g., [60]).
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Chapter 2

Iterative Approximation of Fixed Points of Nonexpansive Mappings

2.1 Introduction

Let K be a nonempty closed convex subset of a real Banach space E which has a

uniformly Gâteaux differentiable norm and T : K → K a nonexpansive mapping with

F (T ) 6= ∅.

In this chapter, we prove that the conditions C1: lim αn = 0 and C2:
∑

αn = ∞ which

are known to be necessary are, under appropriate conditions, also sufficient for the strong

convergence of a Halpern-type iterative scheme to a fixed point of a nonexpansive mapping

T. Our result gives a partial answer to Question 1 mentioned in the introduction.

We begin with the following well known theorem.

Theorem 2.1.1 (Morales and Jung [65], Reich [71]) Let K be a nonempty closed convex

subset of a Banach space E which has uniformly Gâteaux differentiable norm and T : K →

K a nonexpansive mapping with F (T ) 6= ∅. Suppose that every nonempty closed convex

bounded subset of K has the fixed point property for nonexpansve mappings. Then there

exists a continuous path t → zt, 0 < t < 1 satisfying zt = tu + (1 − t)Tzt, for arbitrary but

fixed u ∈ K, which converges to a fixed point of T .

Recently, Shioji and Takahashi [80] proved the following theorem.

Theorem 2.1.2 (Shioji and Takahashi [80]) Let E be a real Banach space whose norm is

uniformly Gâteaux differentiable and let K be a closed convex subset of E. Let T : K → K

be a nonexpansive mapping with F (T ) := {x ∈ K : Tx = x} 6= ∅. Let {αn} be a sequence
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which satisfies the following conditions:

(i) 0 ≤ αn ≤ 1, lim αn = 0;

(ii)
∑

αn = ∞;

(iii)
∑∞

n=0 |αn+1 − αn| < ∞.

Let u ∈ K and let {xn} be defined by x0 ∈ K,

xn+1 = αnu + (1− αn)Txn, n ≥ 0. (2.1)

Assume that {zt} converges strongly to z ∈ F (T ) as t → 0, where for 0 < t < 1, zt is the

unique element of K which satisfies zt = tu + (1− t)Tzt. Then, {xn} converges strongly to

z.

Xu [96] (see also [95]) proved the following theorem.

Theorem 2.1.3 (Xu [96], Theorem 3.1) Let E be a uniformly smooth real Banach space,

K a closed convex subset of E, and T : K → K a nonexpansive mapping with a fixed point.

Let u, x0 ∈ K be given. Assume that {αn} ⊂ [0, 1] satisfies the conditions:

(1) lim αn = 0;

(2)
∑

αn = ∞;

(3) lim αn−αn−1

αn
= 0.

Then the sequence {xn} generated by x0 ∈ K,

xn+1 = αnu + (1− αn)Txn, n ≥ 0,

converges strongly to a fixed point of T .
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It is our purpose in this chapter to prove a significant improvement of Theorem 2.1.2

and Theorem 2.1.3 in the following sense. We prove the strong convergence of the algorithm

(2.1) in the framework of real Banach spaces E with uniformly Gâteaux differentiable norms

and without condition (iii) of Theorem 2.1.2. Our theorem then also extends Theorem 2.1.3

to the more general real Banach spaces with uniformly Gâteaux differentiable norms and

at the same time dispenses with condition (3) of that theorem. Furthermore, our theorem

gives a partial affirmative answer to Question 1 mentioned in Chapter 1.

2.2 Preliminaries

Lemma 2.2.1 Let E be a real normed linear space. Then, the following inequality holds:

||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉 ∀ x, y ∈ E, ∀ j(x + y) ∈ J(x + y).

In the sequel, we shall also make use of the following lemmas.

Lemma 2.2.2 (Suzuki, [83]) Let {xn} and {yn} be bounded sequences in a Banach space

E and let {βn} be a sequence in [0, 1] with 0 < lim infβn ≤ lim supβn < 1. Suppose

xn+1 = βnyn+(1−βn)xn for all integers n ≥ 0 and lim sup(||yn+1−yn||−||xn+1−xn||) ≤ 0.

Then, lim||yn − xn|| = 0.

Lemma 2.2.3 (Xu, [96]). Let {an} be a sequence of nonnegative real numbers satisfying

the relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where,

(i) {αn} ⊂ [0, 1],
∑

αn = ∞;
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(ii) lim sup σn ≤ 0;

(iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞.

Then, an → 0 as n →∞.

2.3 Convergence Theorems

Theorem 2.3.1 (C.E.Chidume and C.O.Chidume [27]) Let K be a nonempty closed convex

subset of a real Banach space E which has a uniformly Gâteaux differentiable norm and

T : K → K be a nonexpansive mapping with F (T ) 6= ∅. For a fixed δ ∈ (0, 1), define

S : K → K by Sx := (1 − δ)x + δTx ∀ x ∈ K. Assume that {zt} converges strongly

to a fixed point z of T as t → 0, where zt is the unique element of K which satisfies

zt = tu+(1− t)Tzt for arbitrary u ∈ K. Let {αn} be a real sequence in (0, 1) which satisfies

the conditions: C1 : lim αn = 0; C2 :
∑

αn = ∞. For arbitrary x0 ∈ K, let the sequence

{xn} be defined iteratively by

xn+1 = αnu + (1− αn)Sxn. (2.2)

Then, {xn} converges strongly to a fixed point of T .

Proof. Observe first that S is nonexpansive and has the same set of fixed points as T .

Define

βn := (1− δ)αn + δ ∀ n ≥ 0; yn :=
xn+1 − xn + βnxn

βn
, n ≥ 0.

Observe also that βn → δ as n → ∞, and that if {xn} is bounded, then {yn} is bounded.

Let x∗ ∈ F (T ) = F (S). One easily shows by induction that ||xn − x∗|| ≤ max{||x0 −
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x∗||, ||u−x∗||} for all integers n ≥ 0, and so, {xn}, {yn}, {Txn} and {Sxn} are all bounded.

Also,

||xn+1 − Sxn|| = αn||u− Sxn|| → 0, n →∞. (2.3)

Observe that from the definitions of βn and S, we obtain that

yn =
αnu + (1− αn)δTxn

βn
,

which implies

||yn+1 − yn|| − ||xn+1 − xn||

≤
∣∣∣αn+1

βn+1
− αn

βn

∣∣∣.||u||+ (1− αn+1)
βn+1

δ ||Txn+1 − Txn||

+
∣∣∣1− αn+1

βn+1
− 1− αn

βn

∣∣∣ δ ||Txn|| − ||xn+1 − xn||.

Since {xn} and {Txn} are bounded, we obtain (for some constants M1 > 0, and M2 > 0)

that,

lim sup(||yn+1 − yn|| − ||xn+1 − xn||)

≤ lim sup
{∣∣∣αn+1

βn+1
− αn

βn

∣∣∣.||u||
+

∣∣∣(1− αn+1)
βn+1

δ − 1
∣∣∣ M1

+
∣∣∣1− αn+1

βn+1
− 1− αn

βn

∣∣∣δM2

}
≤ 0.
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Hence, by Lemma 2.2.2, ||yn − xn|| → 0 as n →∞. Consequently,

lim ||xn+1 − xn|| = lim βn||yn − xn|| = 0.

Combining this with (2.3) yields that

||xn − Sxn|| → 0 as n →∞.

We now show that

lim sup〈u− z, j(xn − z)〉 ≤ 0.

For each integer n ≥ 0, let tn ∈ (0, 1) be such that

tn → 0, and
||xn − Sxn||

tn
→ 0, n →∞.

Let ztn ∈ K be the unique fixed point of the contraction mapping Stn given by

Stnx = tnu + (1− tn)Sx, x ∈ K.

Then,

ztn − xn = tn(u− xn) + (1− tn)(Sztn − xn).
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Using the inequality of Lemma 2.2.1, we compute as follows:

||ztn − xn||2 ≤ (1− tn)2||Sztn − xn||2 + 2tn〈u− xn, j(ztn − xn)〉

≤ (1− tn)2(||Sztn − Sxn||+ ||Sxn − xn||)2 + 2tn(||ztn − xn||2

+ 〈u− ztn , j(ztn − xn)〉

≤ (1 + t2n)||ztn − xn||2 + ||Sxn − xn|| ×

(2||ztn − xn||+ ||Sxn − xn||)

+ 2tn〈u− ztn , j(ztn − xn)〉,

and hence,

〈u− ztn , j(xn − ztn)〉 ≤ tn
2
||ztn − xn||2 +

||Sxn − xn||
2tn

× (2||ztn − xn||+ ||Sxn − xn||).

Since {xn}, {ztn} and {Sxn} are bounded and ||Sxn−xn||
2tn

→ 0, n → ∞, it follows from the

last inequality that

lim sup〈u− ztn , j(xn − ztn)〉 ≤ 0.

Moreover, we have that

〈u− ztn , j(xn − ztn)〉 = 〈u− z, j(xn − z)〉+ 〈u− z, j(xn − ztn)− j(xn − z)〉

+ 〈z − ztn , j(xn − ztn)〉. (2.4)
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But, by hypothesis, ztn → z ∈ F (S), n → ∞. Thus, using the boundedness of {xn} we

obtain that

〈z − ztn , j(xn − ztn)〉 → 0, n →∞. (2.5)

Also,

〈u− z, j(xn − ztn)− j(xn − z)〉 → 0, n →∞,

since j is norm-to-weak∗ uniformly continuous on bounded subsets of E. Hence, we obtain

from (2.4) and (2.5) that

lim sup〈u− z, j(xn − z)〉 ≤ 0.

Furthermore, from the recurrence relation (2.2) we get that xn+1 − z = αn(u − z) + (1 −

αn)(Sxn − z). It then follows that

||xn+1 − z||2 ≤ (1− αn)2||Sxn − z||2 + 2αn〈u− z, j(xn+1 − z)〉

≤ (1− αn)||xn − z||2 + αnσn,

where σn := 2〈u− z, j(xn+1 − z)〉; γn ≡ 0 ∀ n ≥ 0. Thus, by Lemma 2.2.3, {xn} converges

strongly to a fixed point of T . 2

Remark 2.3.2 We note that every uniformly smooth Banach space has a uniformly Gâteaux

differentiable norm and is such that every nonempty closed convex and bounded subset of E

has the fixed point property for nonexpansive maps (see e.g., [1]).
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Remark 2.3.3 Theorem 2.3.1 is a significant generalization of Theorem 2.1.2 and of The-

orem 2.1.3 as has been explained in the introduction. Furthermore, our method of proof

which is different from the method of Shioji and Takahashi [80] is of independent interest.

Let Sn(x) := 1
n

∑n−1
k=0 Skx. With this definition, Xu also proved the following theorem.

Theorem 2.3.4 (Xu [96], Theorem 3.2) Assume that E is a real uniformly convex and

uniformly smooth Banach space. For given u, x0 ∈ K, let {xn} be generated by the algorithm:

xn+1 = αnu + (1− αn)Snxn, n ≥ 0. (2.6)

Assume that

(i) lim αn = 0;

(i)
∑

αn = ∞.

Then, {xn} converges strongly to a fixed point of S : K → K nonexpansive.

Remark 2.3.5 Theorem 2.3.1 is also a significant improvement of Theorem 2.3.4 in the

sense that the recursion formula (2.2) is simpler and requires less computer time than

the recursion formula (2.6). Moreover, the requirement that E is also uniformly convex

imposed in Theorem 2.3.4 is dispensed with in Theorem 2.3.1. Furthermore, Theorem 2.3.1

is proved in the framework of the more general real Banach spaces with uniformly Gâteaux

differentiable norms.
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Chapter 3

A Strong Convergence Theorem for Fixed Points of Asymptotically Nonexpansive

Mappings in Banach Spaces

3.1 Introduction

In this chapter, we extend the result of Chapter 2 from the class of nonexpansive mappings

to the class of asymptotically nonexpansive ones.

Recall that a mapping T : K → K is called asymptotically nonexpansive if there exists a

sequence {kn}, kn ≥ 1, such that limn→∞ kn = 1 and ||Tnx − Tny|| ≤ kn||x − y|| holds for

each x, y ∈ K and for each integer n ≥ 1.

This class of mappings has been studied extensively by various authors (see e.g.,Chidume

and Ali [20],[22], [24], Chidume et al.[32, 33], Chang et al. [15], Falset et al. [45], Kaczor

[52], Oka [68], Schu [75, 76], Wang [92], Qihou [70], Shioji and Takahashi [81], Sun [82],Tan

and Xu [89, 87] and the references contained therein).

Suppose now K is a nonempty closed convex subset of real uniformly smooth Banach space

E and T : K → K is an asymptotically nonexpansive mapping with sequence kn ≥ 1 for all

n ≥ 1. Fix u ∈ K and define, for each integer n ≥ 1, the contraction mapping Sn : K → K

by

Sn(x) =
(
1− tn

kn

)
u +

tn
kn

Tnx,
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where {tn} ⊂ [0, 1) is any sequence such that tn → 1. Then, by the Banach contraction

mapping principle, there exists unique xn such that

xn =
(
1− tn

kn

)
u +

tn
kn

Tnxn.

The question now arises as to whether or not this sequence converges to a fixed point of T.

A partial answer was given in 1994 by Lim and Xu who proved the following theorem:

Theorem 3.1.1 (Lim and Xu [60] ) Suppose E is a real uniformly smooth Banach space

and suppose {tn} is chosen such that limn→∞
(

kn−1
kn−tn

)
= 0. Suppose, in addition, the follow-

ing condition holds:

lim ||xn − Txn|| = 0.

Then, the sequence {xn} defined, for a fixed u ∈ K, by

xn =
(
1− tn

kn

)
u +

tn
kn

Tnxn (3.1)

converges strongly to a fixed point of T .

Remark 3.1.2 Observe that equation (4.10) can be re-written as follows:

xn = ωnu + (1− ωn)Tnxn

where ωn := 1− tn
kn

and ωn → 0 as n →∞.

It is our purpose in this chapter to extend Theorem 2.3.1 of Chapter 2 to the more

general class of asymptotically nonexpansive mappings.
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3.2 Convergence Theorems

Theorem 3.2.1 (Chidume and de Souza [35]) Let K be a nonempty closed convex subset of

a real Banach space E which has a uniformly Gâteaux differentiable norm and T : K → K

be an asymptotically nonexpansive mapping with sequence {kn}, kn ≥ 1 and lim kn = 1

such that
∑

(k2
n − 1) < ∞ and F (T ) := {x ∈ K : Tx = x} 6= ∅. For a fixed δ ∈ (0, 1),

define Sn : K → K by Snx := (1 − δ)x + δTnx ∀ x ∈ K. Assume that {zt} converges

strongly to a fixed point z of T as t → 0, where zt is the unique element of K which satisfies

zt = tu + (1 − t)Tnzt for arbitrary u ∈ K. Let {αn} be a real sequence in (0, 1) which

satisfies the following conditions: C1 : lim αn = 0; C2 :
∑

αn = ∞. For arbitrary x0 ∈ K,

let the sequence {xn} be defined iteratively by

xn+1 = αnu + (1− αn)Snxn.

Assume {xn} is bounded and ‖xn − Txn‖ → 0 as n → ∞. Then, {xn} converges strongly

to a fixed point of T .

Proof. Observe first that

‖Snx− Sny‖ ≤ (1− δ)‖x− y‖+ δ‖Tnx− Tny‖ ≤ (1− δ + knδ)‖x− y‖.

Furthermore, Snx = x if and only if Tnx = x, and hence S is asymptotically nonexpansive

and has the same set of fixed points as T . Define

βn := (1− δ)αn + δ ∀ n ≥ 0; yn :=
xn+1 − xn + βnxn

βn
, n ≥ 0. (3.2)
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Observe that βn → δ as n → ∞, and that {xn}, {yn}, {Txn} and {Sxn} are all bounded.

Observe also that from the definitions of βn and Sn, we obtain that yn = αnu+(1−αn)δT nxn

βn

so that,

||yn+1 − yn|| − ||xn+1 − xn||

≤
∣∣∣αn+1

βn+1
− αn

βn

∣∣∣ .||u||+ (1− αn+1)
βn+1

δ ||Tn+1xn+1 − Tnxn||

+
∣∣∣∣∣∣(1− αn+1)

βn+1
δTn+1xn −

(1− αn)
βn

δTn+1xn

+
(1− αn)

βn
δTn+1xn −

(1− αn)
βn

δTnxn

∣∣∣∣∣∣
≤

∣∣∣αn+1

βn+1
− αn

βn

∣∣∣ ||u||+ (1− αn+1)
βn+1

δkn+1 ||xn+1 − xn||

+
∣∣∣((1− αn+1)

βn+1
− (1− αn)

βn

)
δ
∣∣∣ ||Tn+1xn||

+
∣∣∣(1− αn+1

βn+1
− 1− αn

βn
) δKn

∣∣∣ ||xn − Txn||.

Hence we have for some constant M1 > 0,

||yn+1 − yn|| − ||xn+1 − xn||

≤
∣∣∣αn+1

βn+1
− αn

βn

∣∣∣.||u||+ ∣∣∣(1− αn+1)
βn+1

δkn+1 − 1
∣∣∣ ||xn+1 − xn||

+
(1− αn+1

βn+1
− 1− αn

βn

)
δM1 +

(1− αn

βn

)
δkn||xn − Txn||,

and so,

lim sup(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0.
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Hence, by Lemma 2.2.2, ||yn − xn|| → 0 as n → ∞. Consequently, lim ||xn+1 − xn|| =

lim βn||yn − xn|| = 0. Furthermore, ||xn+1 − Snxn|| = αn||u − Snxn|| → 0 as n → ∞.

Hence, ||xn − Snxn|| ≤ ||xn − xn+1||+ ||xn+1 − Snxn|| → 0 as n →∞.

Claim: lim sup〈u− z, j(xn − z)〉 ≤ 0.

For each integer n ≥ 0, let tn ∈ (0, αn
1−αn

) be such that

k2
n − 1
tn

→ 0, and
||xn − Sxn||

tn
→ 0, n →∞. (3.3)

Clearly tn → 0 as n →∞. Now observe that

ztn = tnu + (1− tn)Snztn

so that

||ztn − xn||2 ≤ (1− tn)2||Snztn − xn||2 + 2tn〈u− ztn , j(ztn − xn)〉

≤ (1− tn)2
[
||Snztn − Snxn||+ ||Snxn − xn||

]2

+ 2tn||ztn − xn||2 + 2tn〈u− ztn , j(ztn − xn)〉

≤ (1− tn)2kn
2||ztn − xn||2 + 2||Snztn − Snxn||||Snxn − xn||

+ ||Snxn − xn||2 + 2tn||ztn − xn||2 + 2tn〈u− ztn , j(ztn − xn)〉
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and because

〈u− ztn , j(xn − ztn)〉 ≤ 1
2

[(1− tn)2k2
n + 2tn − 1
tn

]
||ztn − xn||2 +

||Snxn − xn||M
tn

,

for some constant M > 0, this yields that

lim sup〈u− ztn , j(xn − ztn)〉 ≤ 0.

Moreover,

〈u− ztn , j(xn − ztn)〉 = 〈u− z, j(xn − z)〉+ 〈u− z, j(xn − ztn)− j(xn − z)〉

+ 〈z − ztn , j(xn − ztn)〉,

and since j is norm-to-weak∗ uniformly continuous on bounded sets and ztn → z, we obtain

that

lim sup〈u− z, j(xn − z)〉 ≤ 0,

establishing the claim. From xn+1 = αnu + (1− αn)Snxn we have

||xn+1 − z||2 ≤ (1− αn)2k2
n||xn − z||2 + 2αn〈u− z, j(xn+1 − z〉.

Since tn ∈ (0, αn
1−αn

), there exists an integer N0 > 0 such that,

||xn+1 − z||2 ≤ (1− αn)||xn − z||2 + αnσn,
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for all n ≥ N0, where σn := 2〈u − z, j(xn+1 − z)〉 ∀ n ≥ 0. Thus, by Lemma 2.2.3, {xn}

converges strongly to a fixed point of T . 2

Corollary 3.2.2 Let K be a nonempty closed convex subset of a real Banach space E which

has a uniformly Gâteaux differentiable norm. Let T : K → K be a nonexpansive mapping

with F (T ) 6= ∅. For a fixed δ ∈ (0, 1), define S : K → K by Sx := (1− δ)x+ δTx, ∀ x ∈ K.

Assume that {zt} converges strongly to a fixed point z of T as t → 0, where zt is the unique

element of K which satisfies zt = tu + (1 − t)Tzt for arbitrary u ∈ K. Let {αn} be a real

sequence in (0, 1) which satisfies the conditions: C1 : lim αn = 0; C2 :
∑

αn = ∞. For

arbitrary x0 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 = αnu + (1− αn)Sxn. (3.4)

Then, {xn} converges strongly to a fixed point of T .

Proof. It is easy to see from equation (3.4) that {xn} is bounded and lim ||xn −Txn|| = 0.

Hence, the result follows from Theorem 3.2.1.

Remark 3.2.3 Theorem 3.2.1 extends Theorem 2.3.1 (and consequently, extends Theorem

2.1.2, Theorem 2.1.3 and Theorem 2.3.4, (see Remarks 3.1, 3.2 and 3.4 of [27]) to the more

general class of asymptotically nonexpansive mappings.
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Chapter 4

Convergence of a Hybrid Steepest Descent Method for Variational Inequalities in

Banach Spaces

4.1 Introduction

In this chapter, we extend the results of Xu and Kim [98] from real Hilbert spaces to

q−uniformly smooth real Banach spaces which are much more general than Hilbert spaces.

In particular, our theorems will be applicable in Lp spaces, 1 < p < ∞.

4.2 Preliminaries

We shall make use of the following lemmas.

Lemma 4.2.1 (Shoiji and Takahashi, [80]) Let (a0, a1, ...) ∈ l∞ such that µn(an) ≤ 0 for

all Banach limit µ and limsup
n→∞

(an+1 − an) ≤ 0. Then, limsup
n→∞

an ≤ 0.

Lemma 4.2.2 (Xu, [97]) Let E be a q-uniformly smooth real Banach space for some q > 1,

then there exists some positive constant dq such that

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ dq‖y‖q ∀ x, y ∈ E and jq(x) ∈ Jq(x).

Lemma 4.2.3 ((Lim and Xu,) [60], Theorem 1) Suppose E is a Banach space with uniform

normal structure, K is a nonempty bounded subset of E, and T : K → K is uniformly

k−Lipschitzian mapping with k < N(E)
1
2 . Suppose also there exists a nonempty bounded
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closed convex subset C of K with the property (P ) :

(P ) x ∈ C implies ωw(x) ⊂ C,

where ωw(x) is the ω−limi set of T at x, i.e., the set

{y ∈ E : y = weak− lim
j

Tnjx for j →∞}.

Then, T has a fixed point in C.

Lemma 4.2.4 Let X be a real reflexive Banach space and f : X −→ R∪{+∞} be a convex

proper lower semi-continuous function. Suppose

lim
‖x‖→∞

f(x) = +∞.

Then, ∃ x̄ ∈ X such that f(x̄) ≤ f(x), x ∈ X, i.e.,

f(x̄) = inf
x∈X

f(x).

4.3 Convergence Theorems

Lemma 4.3.1 (Chidume et al. [28]) Let E be a q−uniformly smooth real Banach space

with constant dq, q ≥ 2. Let T : E → E be a nonexpansive mapping and G : E →

E be an η− strongly accretive and κ−Lipschitzian map. For λ ∈
(
0, 2

q(q−1)

)
and δ ∈(

0,min
{

q
4η , ( qη

dqκq )
1

(q−1)

})
, define a map T λ : E → E by T λx = Tx − λδG(Tx), x ∈ E.
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Then, T λ is a strict contraction. Furthermore,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ E, (4.1)

where α := q
2 −

√
q2

4 − δ(qη − δq−1dqκq) ∈ (0, 1).

Proof. For x, y ∈ E, using Lemma 4.2.2, we have:

‖T λx− T λy‖q = ‖Tx− Ty − λδ(G(Tx)−G(Ty))‖q

≤ ‖Tx− Ty‖q − qλδ〈G(Tx)−G(Ty), jq(Tx− Ty)〉

+ dqλ
qδq‖G(Tx)−G(Ty)‖q

≤ ‖Tx− Ty‖q − qλδη‖Tx− Ty‖q + dqλ
qδqκq‖Tx− Ty‖q

≤
[
1− λδ

(
qη − dqλ

q−1δq−1κq
)]
‖x− y‖q

≤
[
1− λδ

(
qη − dqδ

q−1κq
)]
‖x− y‖q.

Define

f(λ) := 1− λδ(qη − dqδ
q−1κq) = (1− λτ)q, for some τ ∈ (0, 1), say.

By Taylor development, there exists ξ ∈ (0, λ) such that

1− λδ(qη − dqδ
q−1κq) = 1− qτλ +

1
2
q(q − 1)(1− ξτ)q−2λ2τ2.

Using λ ∈
(
0, 2

q(q−1)

)
which implies 1

2q(q − 1)λ < 1, we obtain that

1− λδ(qη − dqδ
q−1κq) < 1− qτλ +

1
2
q(q − 1)λ2τ2 < 1− qτλ + λτ2,
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so that

τ2 − qτ + δ(qη − dqδ
q−1κq) > 0.

Solving this quadratic inequality in τ , we obtain, τ < q
2 −

√
q2

4 − δ(qη − dqδq−1κq).

Now, set

α :=
q

2
−

√
q2

4
− δ(qη − dqδq−1κq).

Observe that

q2

4
− δ(qη − dqδ

q−1κq) =
(q2

4
− δqη

)
+ dqδ

q−1κq > 0,

since δ < q
4η . Moreover, since q ≥ 2 and λ < 2

q(q−1) < 2
q , we have

1− λα = 1− λq

2
+

√
q2λ2

4
− λ2δ(qη − dqδq−1κq) ∈ (0, 1).

The proof is complete.

We note that Lp spaces, 2 ≤ p < ∞, are 2−uniformly smooth and the following inequality

holds (see e.g., [97]): For each x, y ∈ Lp, 2 ≤ p < ∞,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ (p− 1)‖y‖2.

It then follows that by setting q = 2, dq = (p− 1) in Lemma 4.3.1, we obtain the following

corollary.

Corollary 4.3.2 Let E = Lp, 2 ≤ p < ∞. Let T : E → E, be a nonexpansive map and

G : E → E be an η−strongly accretive and κ−Lipschitzian map. For λ ∈
(
0, 1

)
and

δ ∈
(
0,min

{
1
2η , 2η

(p−1)κ2

})
, define a map T λ : E → E by T λx = Tx − λδG(Tx), x ∈ E.
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Then, T λ is a strict contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖, x, y ∈ E, (4.2)

where α := 1−
√

1− δ(2η − (p− 1)δκ2) ∈ (0, 1).

By setting p = 2 in Corollary 4.3.2, we obtain the following corollary.

Corollary 4.3.3 Let H be a real Hilbert space, T : H → H be a nonexpansive map and

G : H → H be an η−strongly monotone and κ−Lipschitzian map. For λ ∈
(
0, 1

)
and

δ ∈
(
0,min

{
1
2η , 2η

κ2

})
, define a map T λ : H → H by T λx = Tx− λδG(Tx), x ∈ H. Then,

T λ is a strict contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖, x, y ∈ H, (4.3)

where α := 1−
√

1− δ(2η − δκ2) ∈ (0, 1).

Remark 4.3.4 Corollary 4.3.3 is a result of Yamada [99] and is the main tool used in Wang

[91], Xu and Kim [98], Yamada [99], Zheng and Yao [100]. Lemma 4.3.1 and Corollary

4.3.2 which extend this result to q-uniformly smooth spaces, q ≥ 2, and Lp spaces, 2 ≤ p <

∞, respectively, are new.

We prove the following theorem for family of nonexpansive maps. In the theorem, dq is the

constant which appears in Lemma 4.2.2.

Theorem 4.3.5 (Chidume et al. [28]) Let E be a q−uniformly smooth real Banach space

with constant dq, q ≥ 2. Let Ti : E → E, i = 1, 2, ..., r be a finite family of nonexpansive
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mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly accretive map which is

also κ−Lipschitzian. Let {λn} be a real sequence in [0, 1] satisfying

C1 : limλn = 0; C2 :
∑

λn = ∞; C6 : lim
λn − λn+r

λn+r
= 0.

For δ ∈
(
0,min

{
q
4η , ( qη

dqκq )
1

(q−1)

})
, define a sequence {xn} iteratively in E by x0 ∈ E,

xn+1 = T
λn+1

[n+1]xn = T[n+1]xn − δλn+1G(T[n+1]xn), n ≥ 0, (4.4)

where T[n] = Tn mod r. Assume also that

K = F (TrTr−1...T1) = F (T1Tr...T2) = ... = F (Tr−1Tr−2...Tr).

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality V I(G, K).

Proof. Let x∗ ∈ K, then the sequence {xn} satisfies

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
, n ≥ 0.
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It is obvious that this is true for n = 0. Assume it is true for n = k for some k ∈ N.

From the recursion formula (4.4) and condition C1, we have

‖xk+1 − x∗‖ = ‖T λk+1

[k+1]xk − x∗‖

≤ ‖T λk+1

[k+1]xk − T
λk+1

[k+1]x
∗‖+ ‖T λk+1

[k+1]x
∗ − x∗‖

≤ (1− λk+1α)‖xk − x∗‖+ λk+1δ‖G(x∗)‖

≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
,

and the claim follows by induction. Thus the sequence {xn} is bounded and so are

{T[n+1]xn} and {G(T[n+1]xn)}. Using the recursion formula (4.4) we get,

‖xn+1 − T[n+1]xn‖ = λn+1δ‖G(T[n+1]xn)‖ → 0 as n →∞.

Also,

‖xn+r − xn‖ = ‖T λn+r

[n+r]xn+r−1 − T λn

[n] xn−1‖

≤ ‖T λn+r

[n+r]xn+r−1 − T
λn+r

[n+r]xn−1‖+ ‖T λn+r

[n+r]xn−1 − T λn

[n] xn−1‖

≤ (1− λn+rα)‖xn+r−1 − xn−1‖

+ αλn+r

( |λn+r − λn|
αλn+r

δ‖G(T[n]xn−1)‖
)
.

By Lemma 2.2.3 and condition C6, we have

‖xn+r − xn‖ → 0 as n →∞. (4.5)
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In particular,

‖xn+1 − xn‖ → 0 as n →∞. (4.6)

Replacing n by n + r − 1 in (4.4) we have,

||xn+r − Tn+rxn+r−1|| = δλn+r||G(T[n+r]xn+r−1)|| → 0, n →∞.

Using the fact that Ti is nonexpansive for each i, we obtain the following finite table:

xn+r − Tn+rxn+r−1 → 0 as n →∞;

Tn+rxn+r−1 − Tn+rTn+r−1xn+r−2 → 0 as n →∞;

...

Tn+rTn+r−1...Tn+2xn+1 − Tn+rTn+r−1...Tn+2Tn+1xn → 0 as n →∞;

and adding up the table yields

xn+r − Tn+rTn+r−1...Tn+1xn → 0 as n →∞.

Using this and (4.5) we get that

lim
n→∞

||xn − Tn+rTn+r−1...Tn+1xn|| = 0. (4.7)

Define a map ϕ : E → R by ϕ(y) = µn‖xn+1−y‖2, where µn denotes a Banach limit. Then,

ϕ is continuous, convex and ϕ(y) → +∞ as ‖y‖ → +∞. Thus, since E is a reflexive Banach
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space, there exists y∗ ∈ E such that ϕ(y∗) = min
u∈E

ϕ(u). So, the set K∗ := {x ∈ E : ϕ(x) =

min
u∈E

ϕ(u)} 6= ∅. We now show Ti has a fixed point in K∗ for each i = 1, 2, ..., r. We shall

assume, from equation (4.7), that ∀i ,

lim
n→∞

||xn − Tixn|| = 0. (4.8)

We shall make use of Lemma 4.2.3. If x is in K∗ and y := ω − limj T
mj

i x, belongs to the

weak ω − limit set ωw(x) of Ti at x, then, from the w-l.s.c. of ϕ and equation (4.8), we

have, (since equation (4.8) implies ||xn − Tm
i xn|| → 0 as n → ∞, this is easily proved by

induction),

ϕ(y) ≤ lim inf
j

ϕ
(
T

mj

i x
)
≤ lim sup

m
ϕ
(
Tm

i x
)

= lim sup
m

(
µn||xn − Tm

i x||2
)

= lim sup
m

(
µn||xn − Tm

i xn + Tm
i xn − Tm

i x||2
)

≤ lim sup
m

(
µn||Tm

i xn − Tm
i x||2

)
≤ lim sup

m

(
µn||xn − x||2

)
= ϕ(x)

= inf
u∈E

ϕ(u).

So, y ∈ K∗. By Lemma 4.2.3, Ti has a fixed point in K∗ ∀ i and so K∗ ∩K 6= ∅.

Let x∗ ∈ K∗ ∩ K and t ∈ (0, 1). It then follows that ϕ(x∗) ≤ ϕ(x∗ − tG(x∗)). Using

the inequality of Lemma 2.2.1, we have that

‖xn − x∗ + tG(x∗)‖2 ≤ ‖xn − x∗‖2 + 2t〈G(x∗), j(xn − x∗ + tG(x∗))〉.
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Thus, taking Banach limits over n ≥ 1 gives

µn‖xn − x∗ + tG(x∗)‖2 ≤ µn‖xn − x∗‖2

+ 2tµn〈G(x∗), j(xn − x∗ + tG(x∗))〉.

This implies,

µn〈−G(x∗), j(xn − x∗ + tG(x∗))〉 ≤ ϕ(x∗)− ϕ(x∗ − tG(x∗)) ≤ 0.

This therefore implies that

µn〈−G(x∗), j(xn − x∗ + tG(x∗))〉 ≤ 0 ∀ n ≥ 1.

Since the normalized duality mapping is norm-to-norm uniformly continuous on bounded

subsets of E, we obtain, as t → 0, that

〈−G(x∗), j(xn − x∗)〉 − 〈−G(x∗), j(xn − x∗ + tG(x∗))〉 → 0.

Hence, for all ε > 0, there exists δ > 0 such that ∀t ∈ (0, δ) and for all n ≥ 1,

〈−G(x∗), j(xn − x∗)〉 < 〈−G(x∗), j(xn − x∗ + tG(x∗))〉+ ε.

Consequently,

µn〈−G(x∗), j(xn − x∗)〉 ≤ µn〈−G(x∗), j(xn − x∗ + tG(x∗))〉+ ε ≤ ε.

43



Since ε is arbitrary, we have

µn〈−G(x∗), j(xn − x∗)〉 ≤ 0.

Moreover, from the norm-to-norm uniform continuity of j on bounded sets, we obtain, that

lim
n→∞

(
〈−G(x∗), j(xn+1 − x∗)〉 − 〈−G(x∗), j(xn − x∗)〉

)
= 0.

Thus, the sequence {〈−G(x∗), j(xn − x∗)〉} satisfies the conditions of Lemma 4.2.1. Hence,

we obtain that

lim sup
n→∞

〈−G(x∗), j(xn − x∗)〉 ≤ 0.

Define

εn := max {〈−G(x∗), j(xn+1 − x∗)〉, 0}.

Then, lim εn = 0, and 〈−G(x∗), j(xn+1 − x∗)〉 ≤ εn. From the recursion formula (4.4),

and Lemma 2.2.1, we have,

‖xn+1 − x∗‖2 = ‖T λn+1

[n+1]xn − T
λn+1

[n+1]x
∗ + T

λn+1

[n+1]x
∗ − x∗‖2

≤ ‖T λn+1

[n+1]xn − T
λn+1

[n+1]x
∗‖2 + 2λn+1δ〈−G(x∗), j(xn+1 − x∗)〉

≤ (1− λn+1α)‖xn − x∗‖2 + 2λn+1δ〈−G(x∗), j(xn+1 − x∗)〉

and by Lemma 2.2.3, we have that xn → x∗ as n →∞. This completes the proof.2

The following corollaries follow from Theorem 4.3.5.
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Corollary 4.3.6 Let E = Lp, 2 ≤ p < ∞. Let Ti : E → E, i = 1, 2, ..., r be a finite

family of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly

accretive map which is also κ−Lipschitzian. Let {λn} be a real sequence in [0, 1] that satisfies

conditions C1, C2 and C6 as in theorem 4.3.5. For δ ∈
(
0,min

{
1
2η , 2η

(p−1)κ2

})
, define a

sequence {xn} iteratively in E by (4.4). Then, {xn} converges strongly to the unique solution

x∗ of the variational inequality V I(G, K).

Corollary 4.3.7 Let H be a real Hilbert space. Let Ti : H → H, i = 1, 2, ..., r be a finite

family of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅. Let G : H → H be an η−strongly

monotone map which is also κ−Lipschitzian. Let {λn} be a real sequence in [0, 1] that

satisfies conditions C1, C2 and C6 as in theorem 4.3.6. For δ ∈
(
0,min

{
1
2η , 2η

κ2

})
, define

a sequence {xn} iteratively in H by (4.4). Then, {xn} converges strongly to the unique

solution x∗ of the variational inequality V I(G, K).

Theorem 4.3.8 (Chidume et al. [28]) Let E be a real q−uniformly smooth Banach space

with constant dq, q ≥ 2. Let T : E → E be a nonexpansive map. Assume that K := F (T ) =

{x ∈ E : Tx = x} 6= ∅. Let G : E → E be an η−strongly accretive and κ−Lipschitzian map.

Let {λn} be a real sequence in [0, 1] satisfying the following conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞; C5 : lim
|λn − λn+1|

λn+1
= 0.

For δ ∈
(
0,min

{
q
4η , ( qη

dqκq )
1

(q−1)

})
, define a sequence {xn} iteratively in E by x0 ∈ E,

xn+1 = T λn+1xn = Txn − δλn+1G(Txn), n ≥ 0. (4.9)

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality V I(G, K).
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Proof. Take T1 = T2 = ... = Tr = T in Theorem 4.3.5 and the result follows.

The following corollaries follow from Theorem 4.3.8.

Corollary 4.3.9 Let E = Lp, 2 ≤ p < ∞. Let T : E → E, be a nonexpansive map. Assume

that K := F (T ) = {x ∈ E : Tx = x} 6= ∅. Let G : E → E be an η−strongly accretive

and κ−Lipschitzian map. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1,

C2 and C5 as in theorem 4.3.8. For δ ∈
(
0,min

{
1
2η , 2η

(p−1)κ2

})
, define a sequence {xn}

iteratively in E by (4.9). Then, {xn} converges strongly to the unique solution x∗ of the

variational inequality V I(G, K).

Corollary 4.3.10 Let H be a real Hilbert space. Let T : H → H, be a nonexpansive

map. Assume that K := F (T ) = {x ∈ E : Tx = x} 6= ∅. Let G : H → H be an

η−strongly monotone and κ−Lipschitzian map. Let {λn} be a real sequence in [0, 1] that

satisfies conditions C1, C2 and C5 as in theorem 4.3.8. For δ ∈
(
0,min

{
1
2η , 2η

κ2

})
, define

a sequence {xn} iteratively in H by (4.9). Then, {xn} converges strongly to the unique

solution x∗ of the variational inequality V I(G, K).

4.4 The case of Lp spaces, 1 < p ≤ 2.

We begin with the following definition.

Definition 4.4.1 A Banach space E is called a lower weak parallelogram space with con-

stant b ≥ 0 or, briefly, E is LWP (b), in the terminology of Bynum [12] if

||x + y||2 + b||x− y||2 ≤ 2(||x||2 + ||y||2) (4.10)
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holds for all x, y ∈ E.

It is proved in [12] that lp space, 1 < p ≤ 2, is a lower weak parallelogram space with (p−1)

as the largest number b for which (4.10) holds. Furthermore, if Lp, (1 < p ≤ 2) has at least

two disjoint sets of positive finite measure, then it is a lower weak parallelogram space with

(p − 1) as the largest number b for which (4.10) holds. We shall assume, without loss of

generality, that Lp, (1 < p ≤ 2) has at least two disjoint sets of positive finite measure. In

the sequel, we shall state all our theorems and lemmas only for Lp spaces, 1 < p ≤ 2, with

the understanding that they also hold for lp spaces, 1 < p ≤ 2.

In terms of the normalized duality mapping, Bynum [12] proved that a real Banach

space is a lower weak parallelogram space if and only if for each x, y ∈ E and f ∈ J(x), the

following inequality holds:

||x + y||2 ≥ ||x||2 + b||y||2 + 2〈y, f〉. (4.11)

In particular, for E = Lp, 1 < p ≤ 2, the following inequality holds:

||x + y||2 ≥ ||x||2 + (p− 1)||y||2 + 2〈y, j(x)〉 ∀ x, y ∈ E. (4.12)

We now prove the following lemmas which will be central in the sequel.

Lemma 4.4.2 Let E = Lp, 1 < p ≤ 2. Then, for all x, y ∈ E, the following inequality

holds:

(p− 1)||x + y||2 ≤ ||x||2 + 2〈y, j(x)〉+ ||y||2. (4.13)
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Proof. Observe first that E is smooth so that the normalized duality map on E is single-

valued. Now, replacing x by (−x) and y by (x + y) in inequality (4.12), we obtain

||y||2 ≥ ||x||2 + 2〈x + y, j(−x)〉+ (p− 1)||x + y||2,

which implies

(p− 1)||x + y||2 ≤ ||y||2 − ||x||2 + 2〈x + y, j(x)〉

= ||x||2 + 2〈y, j(x)〉+ ||y||2,

establishing inequality (4.13) and completing proof of the lemma.2

Lemma 4.4.3 (Chidume and de Souza [36]) Let E = Lp, 1 < p ≤ 2, T : E → E a non-

expansive mapping and G : E → E an η−strongly accretive and κ- Lipschitzian mapping.

For,

λ ∈
(
0,

1
p− 1

)
, and δ ∈

(
0 , min

{2η(p− 1)
κ2

,
(p− 1)2

η

})
,

define a map T λ : E → E by: T λx := Tx − λδG(Tx), x ∈ E. Then, T λ is a strict

contraction. Furthermore,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ E, (4.14)

where

α := (p− 1)−
√

(p− 1)2 − δ[2η − δ(p− 1)−1κ2] ∈ (0, 1).
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Proof. For x, y ∈ E, using Lemma 4.4.2, we have,

‖T λx− T λy‖2 = ‖Tx− Ty − λδ(G(Tx)−G(Ty))‖2

≤ 1
(p− 1)

[
‖Tx− Ty‖2 − 2λδ〈G(Tx)−G(Ty), j(Tx− Ty)〉

+ λ2δ2‖G(Tx)−G(Ty)‖2
]

≤ 1
(p− 1)

[
‖Tx− Ty‖2 − 2λδη‖Tx− Ty‖2 + λ2δ2κ2‖Tx− Ty‖2

]
≤ 1

(p− 1)

[
1− λδ[2η − δ(p− 1)−1κ2]

]
‖x− y‖2, since λ <

1
(p− 1)

.

Define

f(λ) :=
1

(p− 1)

[
1− λδ[2η − δ(p− 1)−1κ2]

]
.

If f(λ) = (1 − λτ)2 for some τ ∈ (0, 1) then, τ2 − 2(p − 1)τ + σ ≥ 0, where σ :=

δ[2η − δ(p− 1)−1κ2]. Thus we obtain that

τ ≤ (p− 1)−
√

(p− 1)2 − δ[2η − δ(p− 1)−1κ2] ∈ (0, 1).

Now set

α := (p− 1)−
√

(p− 1)2 − δ[2η − δ(p− 1)−1κ2] ∈ (0, 1),

and the proof is complete. 2

Remark 4.4.4 In Hilbert space, by putting p = 2 and observing that η can always be as-

sumed to be arbitrarily small, without any loss of generality, we get, min
{

2η(p−1)
κ2 , (p−1)2

η

}
=

2η
κ2 .

Thus, we have the following corollary.
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Corollary 4.4.5 Let H be a real Hilbert space, T : H → H a nonexpansive mapping, G :

H → H an η−strongly monotone and κ−Lipschitzian map. For λ ∈ (0, 1) and δ ∈ (0, 2η
κ2 ),

define a map T λ : H → H by: T λx = Tx − λδG(Tx), x ∈ H. Then, T λ is a strict

contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ H, (4.15)

where α := 1−
√

1− δ(2η − δκ2) ∈ (0, 1).

Proof. Set p = 2 in Lemma 4.4.3 and the result follows.

Remark 4.4.6 Corollary 4.4.5 is a result of Yamada [99] and is the main tool used in Wang

[91], Xu and Kim [98], Yamada [99] and Zheng and Yao [100]. Consequently, Lemma 4.4.3

is an important extension of these results to Lp spaces, 1 < p ≤ 2.

We now prove the following theorems. In the theorem, F (Ti) := {x ∈ E : Tix = x}.

Theorem 4.4.7 (Chidume and de Souza [36]) Let E = Lp, 1 < p ≤ 2, T : E → E

a nonexpansive mapping. Assume K := {x ∈ E : Tx = x} 6= ∅. Let G : E → E be

an η−strongly accretive and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1]

satisfying the following conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞;C3 : lim
λn − λn+1

λn+1
= 0.

For δ ∈
(

0, min
{

2η(p−1)
κ2 , (p−1)2

η

})
, define a sequence {xn} iteratively in E by x0 ∈ E,

xn+1 = T λn+1xn = Txn − δλn+1G(Txn), n ≥ 0. (4.16)
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Then, {xn} converges strongly to the unique solution x∗ of the variational inequality problem

V I(G, K).

Proof. This follows using Lemma 4.4.3.

The following corollary follows from Theorem 4.4.7.

Corollary 4.4.8 Let H be a real Hilbert space, T : H → H a nonexpansive mapping.

Assume K := {x ∈ E : Tx = x} 6= ∅. Let G : H → H be an η−strongly monotone and

κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1,

C2 and C3 as in Theorem 4.4.7. For δ ∈ (0, 2η
κ2 ), define a sequence {xn} iteratively in H by

(4.16). Then, {xn} converges strongly to the unique solution x∗ of the variational inequality

problem V I(G, K).

Following the method of section 4.3 and using Lemma 4.4.3, the following theorem and

corollary are easily proved.

Theorem 4.4.9 Let E = Lp, 1 < p ≤ 2, Ti : E → E, i = 1, 2, ..., r a finite family of

nonexpansive mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly accretive

and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] satisfying the conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞; C6 : lim
λn − λn+r

λn+r
= 0.

For δ ∈
(

0, min
{

2η(p−1)
κ2 , (p−1)2

η

})
, define a sequence {xn} iteratively in E by: x0 ∈ E,

xn+1 = T
λn+1

[n+1]xn = T[n+1]xn − δλnG(T[n+1]xn), n ≥ 0, (4.17)
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where T[n] = Tn mod r. Assume also that

K = F (TrTr−1...T1) = F (T1Tr...T2) = ... = F (Tr−1Tr−2...Tr)

and lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. Then, {xn} converges strongly to the unique solution

x∗ of the variational inequality problem V I(G, K).

Corollary 4.4.10 Let H be a real Hilbert space, Ti : H → H, i = 1, 2, ..., r a finite family

of nonexpansive mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : H → H be an η−strongly

monotone and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies

conditions C1, C2 and C6 as in Theorem 4.4.9 and let lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. For

δ ∈ (0, 2η
κ2 ), define a sequence {xn} iteratively in H by (5.9). Then, {xn} converges strongly

to the unique solution x∗ of the variational inequality problem V I(G, K).

Remark 4.4.11 Our theorems in this chapter which are extensions of the results of Yamada

[99], Wang [91], Xu and Kim [98], Zeng and Yao [100] from real Hilbert spaces to Lp spaces,

1 < p ≤ 2 complement the theorems earlier in the chapter (see also Chidume et al. [28]) to

provide convergence theorems, for the problems considered here, in all Lp spaces, 1 < p < ∞.
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Chapter 5

Approximation of Fixed Points of Nonexpansive Mappings and Solutions of

Variational Inequalities

5.1 Introduction

In Chapter 4, we extended the results of Xu and Kim [98] to q−uniformly smooth

Banach spaces, q ≥ 2. In particular, we proved theorems which are applicable in Lp spaces,

1 < p < ∞ under conditions C1, C2 and C5 or C6 (as in the result of Xu and Kim).

In this chapter, we introduce new recursion formulas and prove strong convergence

theorems for the unique solution of the variational inequality problem V I(K, S), requiring

only conditions C1 and C2 on the parameter sequence {λn}. Furthermore in the case Ti :

E → E i = 1, 2, ..., r is a family of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅, we prove

a convergence theorem where condition C6 is replaced with lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ =

0. An example satisfying this condition is given in [21]. All our theorems are proved in

q−uniformly smooth Banach spaces, q ≥ 2. In particular, our theorems are applicable in Lp

spaces, 1 < p < ∞.

5.2 Convergence Theorems

We first prove the following lemma which will be central in the sequel.

Lemma 5.2.1 (Chidume et al. [29]) Let E be a q−uniformly smooth real Banach space

with constant dq, q ≥ 2, T : E → E a nonexpansive mapping and G : E → E an
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η−strongly accretive and κ−Lipschitzian mapping. For

δ ∈
(
0,min

{ q

4ση
, (

qη

dqκq
)

1
(q−1)

})
, σ, λ ∈ (0, 1),

define a mapping T λ : E → E by:

T λx := (1− σ)x + σ[Tx− λδG(Tx)], x ∈ E.

Then, T λ is a strict contraction. Furthermore,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ x, y ∈ E, (5.1)

where

α :=
q

2
−

√
q2

4
− σδ(qη − δq−1dqκq) ∈ (0, 1).

Proof. For x, y ∈ E, using the convexity of ||.||q and Lemma 4.2.2, we have,

‖T λx− T λy‖q = ‖(1− σ)(x− y) + σ[Tx− Ty − λδ(G(Tx)−G(Ty))]‖q

≤ (1− σ)‖x− y‖q + σ
[
‖Tx− Ty‖q − qλδ〈G(Tx)−G(Ty), jq(Tx− Ty)〉

+ dqλ
qδq‖G(Tx)−G(Ty)‖q

]
≤ (1− σ)‖x− y‖q + σ

[
‖Tx− Ty‖q − qλδη‖Tx− Ty‖q

+ dqλ
qδqκq‖Tx− Ty‖q

]
≤

[
1− σλδ

(
qη − dqλ

q−1δq−1κq
)]
‖x− y‖q

≤
[
1− σλδ

(
qη − dqδ

q−1κq
)]
‖x− y‖q.
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Define

f(λ) := 1− σλδ(qη − dqδ
q−1κq) = (1− λτ)q, for some τ ∈ (0, 1), say.

Then, there exists ξ ∈ (0, λ) such that

1− σλδ(qη − dqδ
q−1κq) = 1− qτλ +

1
2
q(q − 1)(1− ξτ)q−2λ2τ2,

and since q ≥ 2, this implies

1− σλδ(qη − dqδ
q−1κq) ≤ 1− qτλ +

1
2
q(q − 1)λ2τ2,

which yields,

τ2 − qτ + σδ
(
qη − dqδ

q−1κq
)

> 0,

since λ ∈
(
0, 2

q(q−1)

)
. Thus we have,

τ ≤ q

2
−

√
q2

4
− σδ(qη − δq−1dqκq) ∈ (0, 1).

Set

α :=
q

2
−

√
q2

4
− σδ(qη − δq−1dqκq) ∈ (0, 1).

and the proof is complete. 2

We note that in Lp spaces, 2 ≤ p < ∞, the following inequality holds (see e.g., [17]):
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For each x, y ∈ Lp, 2 ≤ p < ∞,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ (p− 1)‖y‖2.

It then follows that by setting q = 2, dq = p− 1 in Lemma 5.2.1, the following corollary is

easily proved.

Corollary 5.2.2 Let E = Lp, 2 ≤ p < ∞, T : E → E a nonexpansive mapping and

G : E → E an η−strongly accretive and κ−Lipschitzian mapping. For λ, σ ∈ (0, 1), and

δ ∈
(
0,min

{
1

2ση , 2η
(p−1)κ2

})
, define a mapping T λ : E → E by:

T λx := (1− σ)x + σ[Tx− λδG(Tx)] ∀ x ∈ E.

Then, T λ is a strict contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ x, y ∈ H, (5.2)

where α := 1−
√

1− σδ(2η − (p− 1)δκ2) ∈ (0, 1).

We also have the following corollary.

Corollary 5.2.3 Let H be a real Hilbert space, T : H → H a nonexpansive mapping,

G : H → H an η−strongly monotone and κ−Lipschitzian mapping. For λ, σ ∈ (0, 1) and

δ ∈
(
0,min

{
1

2ση , 2η
κ2

})
, define a mapping T λ : H → H by:

T λx = (1− σ)x + σ[Tx− λδG(Tx)] ∀ x ∈ H.
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Then, T λ is a strict contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ H, (5.3)

where α := 1−
√

1− σδ(2η − δκ2) ∈ (0, 1).

Proof. Set p = 2 in Corollary 5.2.2 and the result follows.

We now prove the following convergence theorems.

Theorem 5.2.4 (Chidume et al. [29]) Let E be a q−uniformly smooth real Banach space

with constant dq, q ≥ 2 and T : E → E a nonexpansive mapping. Assume K := {x ∈ E :

Tx = x} 6= ∅. Let G : E → E be an η−strongly accretive and κ−Lipschitzian mapping. Let

{λn} be a real sequence in [0, 1] satisfying the conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞.

For δ ∈
(
0,min

{
q

4ση , ( qη
dqκq )

1
(q−1)

})
, σ ∈ (0, 1), define a sequence {xn} iteratively in E by

x0 ∈ E,

xn+1 = T λn+1xn = (1− σ)xn + σ[Txn − δλn+1G(Txn)], n ≥ 0. (5.4)

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality V I(G, K).

Proof. Let x∗ ∈ K := F (T ), then the sequence {xn} satisfies

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
, n ≥ 0.
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It is obvious that this is true for n = 0. Assume it is true for n = k for some k ∈ N. From

the recursion formula (5.4), we have

‖xk+1 − x∗‖ = ‖T λk+1xk − x∗‖

≤ ‖T λk+1xk − T λk+1x∗‖+ ‖T λk+1x∗ − x∗‖

≤ (1− λk+1α)‖xk − x∗‖+ λk+1δ‖G(x∗)‖

≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
,

and the claim follows by induction. Thus the sequence {xn} is bounded and so are the

sequences {Txn} and {G(Txn)}.

Define two sequences {βn} and {yn} by βn := (1− σ)λn+1 + σ and

yn := xn+1−xn+βnxn

βn
. Then,

yn =
(1− σ)λn+1xn + σ[Txn − λn+1δG(Txn)]

βn
.

Observe that {yn} is bounded and that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
∣∣∣ σ

βn+1
− 1

∣∣∣ ‖xn+1 − xn‖

+
∣∣∣ σ

βn+1
− σ

βn

∣∣∣‖Txn‖+
λn+2(1− σ)

βn+1
‖xn+1 − xn‖

+ (1− σ)
∣∣∣λn+2

βn+1
− λn+1

βn

∣∣∣‖xn‖+
λn+1σδ

βn
‖G(Txn)−G(Txn+1)‖

+ σδ
∣∣∣λn+1

βn
− λn+2

βn+1

∣∣∣‖G(Txn+1)‖.
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This implies, limsup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0, and therefore by Lemma 2.2.2,

lim
n→∞

||yn − xn|| = 0.

Hence,

||xn+1 − xn|| = βn||yn − xn|| → 0 as n →∞. (5.5)

From the recursion formula (5.4), we have that

σ‖xn+1 − Txn‖ ≤ (1− σ)‖xn+1 − xn‖+ λn+1σδ‖G(Txn)‖ → 0 as n →∞.

which implies,

‖xn+1 − Txn‖ → 0 as n →∞. (5.6)

From (5.5) and (5.6) we have

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖ → 0 as n →∞. (5.7)

We now prove that

limsup
n→∞

〈−G(x∗), j(xn+1 − x∗)〉 ≤ 0.

Define a map φ : E → R by

φ(x) = µn‖xn − x‖2 ∀ x ∈ E,
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where µn is a Banach limit for each n. Then, φ(x) →∞ as ‖x‖ → ∞, φ is continuous and

convex, so as E is reflexive, there exists y∗ ∈ E such that φ(y∗) = min
u∈E

φ(u). Hence, the set

K∗ :=
{

x ∈ E : φ(x) = min
u∈E

φ(u)
}
6= ∅.

We now show T has a fixed point in K∗. We know

lim
n→∞

||xn − Tixn|| = 0. (5.8)

We shall make use of Lemma 4.2.3. If x is in K∗ and y := ω − limj Tmjx, belongs to the

weak ω − limit set ωw(x) of T at x, then, from the w-l.s.c. (since ϕ is l.s.c. and convex) of

ϕ and equation (5.8), we have,

ϕ(y) ≤ lim inf
j

ϕ
(
Tmjx

)
≤ lim sup

m
ϕ
(
Tmx

)
= lim sup

m

(
µn||xn − Tmx||2

)
= lim sup

m

(
µn||xn − Tmxn + Tmxn − Tmx||2

)
≤ lim sup

m

(
µn||Tmxn − Tmx||2

)
≤ lim sup

m

(
µn||xn − x||2

)
= ϕ(x)

= inf
u∈E

ϕ(u).

So, y ∈ K∗. By Lemma 4.2.3, T has a fixed point in K∗ and so K∗ ∩K 6= ∅.

By Lemma 4.2.3, K∗ ∩ K 6= ∅. Let x∗ ∈ K∗ ∩ K and let t ∈ (0, 1). Then, it follows
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that φ(x∗) ≤ φ(x∗ − tG(x∗)) and using Lemma 2.2.1, we obtain that

‖xn − x∗ + tG(x∗)‖2 ≤ ‖xn − x∗‖2 + 2t〈G(x∗), j(xn − x∗ + tG(x∗))〉

which implies,

µn〈−G(x∗), j(xn − x∗ + tG(x∗))
〉
≤ 0.

The rest now follows exactly as in the proof of Theorem 4.3.5 to yield that xn → x∗ as n →

∞. This completes the proof. 2

The following corollaries follow from Theorem 5.2.4.

Corollary 5.2.5 Let E = Lp, 2 ≤ p < ∞, T : E → E a nonexpansive mapping. Assume

K := {x ∈ E : Tx = x} 6= ∅. Let G : E → E be an η−strongly accretive and κ−Lipschitzian

mapping. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1 and C2 as

in theorem 5.2.4. For δ ∈
(
0,min

{
1

2ση , 2η
(p−1)κ2

})
, σ ∈ (0, 1), define a sequence {xn}

iteratively in E by (5.4). Then, {xn} converges strongly to the unique solution x∗ of the

variational inequality problem V I(G, K).

Corollary 5.2.6 Let H be a real Hilbert space, T : H → H a nonexpansive mapping.

Assume K := {x ∈ H : Tx = x} 6= ∅. Let G : H → H be an η−strongly monotone

κ−Lipschitzian mapping. Further, let {λn} be a real sequence in [0, 1] that satisfies con-

ditions C1 and C2 as in Theorem 5.2.4. For δ ∈
(
0,min

{
1

2ση , 2η
κ2

})
, σ ∈ (0, 1), define

a sequence {xn} iteratively in H by (5.4). Then, {xn} converges strongly to the unique

solution x∗ of the variational inequality problem V I(G, K).

Finally, we prove the following theorem for a finite family of nonexpansive mappings.
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Theorem 5.2.7 (Chidume et al. [29]) Let E be a q−uniformly smooth real Banach space

with constant dq, q ≥ 2, Ti : E → E, i = 1, 2, ..., r a finite family of nonexpan-

sive mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly accretive and

κ−Lipschitzian mapping, and {λn} a real sequence in [0, 1] satisfying the conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞.

For a fixed real number δ ∈
(
0,min

{
q

4ση , ( qη
dqκq )

1
(q−1)

})
, σ ∈ (0, 1), define a sequence {xn}

iteratively in E by x0 ∈ E,

xn+1 = T
λn+1

[n+1]xn = (1− σ)xn + σ[T[n+1]xn − δλnG(T[n+1]xn)], n ≥ 0, (5.9)

where T[n] = Tn mod r. Assume also that

K = F (TrTr−1...T1) = F (T1Tr...T2) = ... = F (Tr−1Tr−2...Tr)

and lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. Then, {xn} converges strongly to the unique solution

x∗ of the variational inequality problem V I(G, K).

Proof. Let x∗ ∈ K, then the sequence {xn} satisfies

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
, n ≥ 0.
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It is obvious that this is true for n = 0. Assume it is true for n = k for some k ∈ N.

From the recursion formula (5.9), we have

‖xk+1 − x∗‖ = ‖T λk+1

[k+1]xk − x∗‖

≤ ‖T λk+1

[k+1]xk − T
λk+1

[k+1]x
∗‖+ ‖T λk+1

[k+1]x
∗ − x∗‖

≤ (1− λk+1α)‖xk − x∗‖+ λk+1δ‖G(x∗)‖

≤ max
{
‖x0 − x∗‖, δ

α
‖G(x∗)‖

}
,

and the claim follows by induction. Thus the sequence {xn} is bounded and so are {T[n]xn}

and {G(T[n]xn)}.

Define two sequences {βn} and {yn} by βn := (1− σ)λn+1 + σ and

yn := xn+1−xn+βnxn

βn
. Then,

yn =
(1− σ)λn+1xn + σ[T[n+1]xn − λn+1δG(T[n+1]xn)]

βn
.

Observe that {yn} is bounded and that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
∣∣∣ σ

βn+1
− 1

∣∣∣ ‖xn+1 − xn‖

+
σ

βn+1
‖T[n+2]xn − T[n+1]xn‖+

∣∣∣ σ

βn+1
− σ

βn

∣∣∣‖T[n+1]xn‖

+
λn+2(1− σ)

βn+1
‖xn+1 − xn‖+ (1− σ)

∣∣∣λn+2

βn+1
− λn+1

βn

∣∣∣‖xn‖

+
λn+1σδ

βn
‖G(T[n+1]xn)−G(T[n+2]xn+1)‖

+ σδ
∣∣∣λn+1

βn
− λn+2

βn+1

∣∣∣‖G(T[n+2]xn+1)‖.
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This implies,

limsup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0,

and by Lemma 2.2.2,

limn→∞ ||yn − xn|| = 0. Hence,

||xn+1 − xn|| = βn||yn − xn|| → 0 (5.10)

as n →∞. From the recursion formula (5.9), we have that

σ‖xn+1 − T[n+1]xn‖ ≤ (1− σ)‖xn+1 − xn‖+ λn+1σδ‖G(T[n+1]xn)‖ → 0,

as n →∞, which implies,

‖xn+1 − T[n+1]xn‖ → 0 as n →∞. (5.11)

Note that from (5.10) and (5.11) we have

‖xn − T[n+1]xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T[n+1]xn‖ → 0 as n →∞. (5.12)

Also,

‖xn+r − xn‖ ≤ ‖xn+r − xn+r−1‖+ ‖xn+r−1 − xn+r−2‖+ · · ·+ ‖xn+1 − xn‖

and so,

‖xn+r − xn‖ → 0 as n →∞. (5.13)
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Using the fact that Ti is nonexpansive for each i, we obtain the following finite table:

xn+r − Tn+rxn+r−1 → 0 as n →∞;

Tn+rxn+r−1 − Tn+rTn+r−1xn+r−2 → 0 as n →∞;

...

Tn+rTn+r−1 · · ·Tn+2xn+1 − Tn+rTn+r−1 · · ·Tn+2Tn+1xn → 0 as n →∞;

and adding up the table yields

xn+r − Tn+rTn+r−1 · · ·Tn+1xn → 0 as n →∞.

Using this and (5.13) we get that lim
n→∞

||xn − Tn+rTn+r−1 · · ·Tn+1xn|| = 0.

Carrying out similar arguments as in the proof of Theorem 5.2.4, we easily get that

limsup
n→∞

〈−G(x∗), j(xn+1 − x∗)〉 ≤ 0.

From the recursion formula (5.9), and Lemma 2.2.1 we have

‖xn+1 − x∗‖2 = ‖T λn+1

[n+1]xn − T
λn+1

[n] x∗ + T
λn+1

[n+1]x
∗ − x∗‖2

≤ ‖T λn+1

[n+1]xn − T
λn+1

[n+1]x
∗‖2 + 2λn+1σδ〈−G(x∗), j(xn+1 − x∗)〉

≤ (1− λn+1α)‖xn − x∗‖2 + 2λn+1σδ〈−G(x∗), j(xn+1 − x∗)〉
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which by using Lemma 2.2.3, gives that xn → x∗ as n →∞, completing the proof. 2

The following corollaries follow from Theorem 5.2.7.

Corollary 5.2.8 Let E = Lp, 2 ≤ p < ∞, Ti : E → E, i = 1, 2, ..., r a finite family

of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly

accretive and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies

conditions C1 and C2 as in Theorem 5.2.7 and let lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. For

δ ∈
(
0,min

{
1

2ση , 2η
(p−1)κ2

})
, σ ∈ (0, 1), define a sequence {xn} iteratively in E by (5.9).

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality problem

V I(G, K).

Corollary 5.2.9 Let H be a real Hilbert space, Ti : H → H, i = 1, 2, ..., r a finite family

of nonexpansive mappings with K =
r
∩

i=1
F (Ti) 6= ∅. Let G : H → H be an η−strongly

monotone and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies

conditions C1 and C2 as in theorem 5.2.7 and let lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. For

δ ∈
(
0,min

{
1

2ση , 2η
κ2

})
, σ ∈ (0, 1), define a sequence {xn} iteratively in H by (5.9). Then,

{xn} converges strongly to the variational inequality problem V I(G, K).

5.3 The case of Lp spaces, 1 < p ≤ 2.

We first prove the following lemmas.

We begin with the following definition. A Banach space E is called a lower weak paral-

lelogram space with constant b ≥ 0 or, briefly, E is LWP (b), in the terminology of Bynum
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[11] if

||x + y||2 + b||x− y||2 ≤ 2(||x||2 + ||y||2) (5.14)

holds for all x, y ∈ E. It is proved in [11] that lp space, 1 < p ≤ 2, is a lower weak

parallelogram space with (p−1) as the largest number b for which (5.14) holds. Furthermore,

if Lp, (1 < p ≤ 2), has at least two disjoint sets of positive finite measure, then it is a lower

weak parallelogram space with (p− 1) as the largest number b for which (5.14) holds. We

shall assume, without loss of generality, that Lp, (1 < p ≤ 2), has at least two disjoint sets

of positive finite measure. In the sequel, we shall state all our theorems and lemmas only for

Lp spaces, 1 < p ≤ 2, with the understanding that they also hold for lp spaces, 1 < p ≤ 2.

In terms of the normalized duality mapping, Bynum [11] proved that a real Banach

space is a lower weak parallelogram space if and only if for each x, y ∈ E and f ∈ J(x), the

following inequality holds:

||x + y||2 ≥ ||x||2 + b||y||2 + 2〈y, f〉. (5.15)

In particular, for E = Lp, 1 < p ≤ 2, the following inequality holds:

||x + y||2 ≥ ||x||2 + (p− 1)||y||2 + 2〈y, j(x)〉 ∀ x, y ∈ E. (5.16)

We now obtain the following lemmas which will be central in the sequel.
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Lemma 5.3.1 Let E = Lp, 1 < p ≤ 2. Then, for all x, y ∈ E, the following inequality

holds:

(p− 1)||x + y||2 ≤ ||x||2 + 2〈y, j(x)〉+ ||y||2. (5.17)

Proof. Observe first that E is smooth so that the normalized duality map on E is single-

valued. Now, replacing x by (−x) and y by (x + y) in inequality (5.16), we obtain ||y||2 ≥

||x||2 + 2〈x + y, j(−x)〉+ (p− 1)||x + y||2, so that

(p− 1)||x + y||2 ≤ ||y||2 − ||x||2 + 2〈x + y, j(x)〉

= ||x||2 + 2〈y, j(x)〉+ ||y||2,

establishing the lemma. 2

Lemma 5.3.2 (Chidume et al. [30]) Let E = Lp, 1 < p ≤ 2, T : E → E be a nonexpansive

mapping and G : E → E be an η−strongly accretive and κ- Lipschitzian mapping. For,

λ ∈ (0, 1), σ ∈ (0, 1), δ ∈
(
0 , min

{2η

κ2
,

(p− 1)2

2ησ

})
,

define a map T λ : E → E by

T λx := (1− σ)x + σ
[
Tx− λδG(Tx)

]
, x ∈ E.

Then, T λ is a strict contraction. Furthermore,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ E, (5.18)
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where

α := (p− 1)−
√

(p− 1)2 − σδ(2η − δκ2) ∈ (0, 1).

Proof. For x, y ∈ E, using the convexity of ||.||2, and Lemma 5.3.1, we have,

‖T λx− T λy‖2 = ‖(1− σ)(x− y) + σ[Tx− Ty − λδ(G(Tx)−G(Ty))]‖2

≤ (1− σ)‖x− y‖2 +
σ

(p− 1)

[
‖Tx− Ty‖2

− 2λδ〈G(Tx)−G(Ty), j(Tx− Ty)〉+ λ2δ2‖G(Tx)−G(Ty)‖2
]

≤ (1− σ)‖x− y‖2 +
σ

(p− 1)

[
‖Tx− Ty‖2 − 2λδη‖Tx− Ty‖2

+ λ2δ2κ2‖Tx− Ty‖2
]

≤
[
1 + σ

( 1
p− 1

− 1
)
− 2σλδη

(p− 1)
+

σλδ2κ2

(p− 1)

]
‖x− y‖2, (λ < 1).

Define

f(λ) := 1 + σ
( 1

p− 1
− 1

)
− 2σλδη

(p− 1)
+

σλδ2κ2

(p− 1)
= (1− λτ)2,

for some τ ∈ (0, 1), say. Since
(

1
p−1 − 1

)
> 0, and λ(p− 1) ≤ 1, this implies,

− 2σδη

(p− 1)
+

σδ2κ2

(p− 1)
≤ −2τ + τ2,

which yields

τ2 − 2(p− 1)τ + 2σδη − σδ2κ2 ≥ 0,

implying that

τ ≤ (p− 1)−
√

(p− 1)2 − σδ(2η − δκ2) ∈ (0, 1).
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Now set

α := (p− 1)−
√

(p− 1)2 − σδ(2η − δκ2) ∈ (0, 1),

and the proof is complete. 2

Remark 5.3.3 In a Hilbert space, by putting p = 2 and observing that η can always be as-

sumed to be arbitrarily small, without any loss of generality, we get, min
{

2η(p−1)
κ2 , (p−1)2

η

}
=

2η
κ2 .

By Remark 5.3.3, we have the following corollary.

Corollary 5.3.4 Let H be a real Hilbert space, T : H → H be a nonexpansive map-

ping, G : H → H be an η−strongly κ−Lipschitzian mapping. For λ ∈ (0, 1) and δ ∈(
0,min

{
1

2ση , 2η
κ2

})
, σ ∈ (0, 1), define a mapping T λ : H → H by: T λx = (1−σ)x+σ[Tx−

λδG(Tx)], x ∈ H. Then, T λ is a strict contraction. In particular,

‖T λx− T λy‖ ≤ (1− λα)‖x− y‖ ∀ x, y ∈ H, (5.19)

where α := 1−
√

1− σδ(2η − δκ2) ∈ (0, 1).

Proof. Set p = 2 in Lemma 5.3.2 and the result follows.

We now prove the following theorem.

Theorem 5.3.5 (Chidume et al. [30]) Let E = Lp, 1 < p ≤ 2, T : E → E be a

nonexpansive mapping. Assume K := {x ∈ E : Tx = x} 6= ∅. Let G : E → E be an

η−strongly accretive and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1]
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satisfying the conditions:

C1 : limλn = 0; C2 :
∑

λn = ∞.

For σ ∈ (0, 1), and δ ∈
(

0, min
{

2η
κ2 , (p−1)2

2ησ

})
, define a sequence {xn} iteratively in E by

x0 ∈ E,

xn+1 = T λn+1xn = (1− σ)xn + σ[Txn − δλn+1G(Txn)], n ≥ 0. (5.20)

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality problem

V I(G, K).

Proof. This follows exactly as in the proof of theorem 5.2.4, using Lemma 5.3.2.

The following corollary follows from Theorem 5.3.5.

Corollary 5.3.6 Let H be a real Hilbert space, T : H → H be a nonexpansive mapping.

Assume K := {x ∈ E : Tx = x} 6= ∅. Let G : H → H be an η−strongly monotone

κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1

and C2 as in theorem 5.2.4. For δ ∈
(
0,min

{
1

2ση , 2η
κ2

})
, σ ∈ (0, 1), define a sequence {xn}

iteratively in H by (5.4). Then, {xn} converges strongly to the unique solution x∗ of the

variational inequality V I(G, K).

Following the method of Section 5.2, the following theorem and corollary are easily proved.

Theorem 5.3.7 Let E = Lp, 1 < p ≤ 2, and Ti : E → E, i = 1, 2, ..., r be a finite family of

nonexpansive mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : E → E be an η−strongly accretive

and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] satisfying the conditions:
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C1 : limλn = 0; C2 :
∑

λn = ∞. For σ ∈ (0, 1), and δ ∈
(

0, min
{

2η
κ2 , (p−1)2

2ησ

})
, define

a sequence {xn} iteratively in E by x0 ∈ E,

xn+1 = T
λn+1

[n+1]xn = (1− σ)xn + σ[T[n+1]xn − δλnG(T[n+1]xn)], n ≥ 0, (5.21)

where T[n] = Tn mod r. Assume also that

K = F (TrTr−1...T1) = F (T1Tr...T2) = ... = F (Tr−1Tr−2...Tr)

and lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. Then, {xn} converges strongly to the unique solution

x∗ of the variational inequality problem V I(G, K).

Corollary 5.3.8 Let H be a real Hilbert space, Ti : H → H, i = 1, 2, ..., r be a finite

family of nonexpansive mappings with K :=
r
∩

i=1
F (Ti) 6= ∅. Let G : H → H be an η−strongly

monotone and κ−Lipschitzian mapping. Let {λn} be a real sequence in [0, 1] that satisfies

conditions C1 and C2 as in theorem 5.3.7 and let lim
n→∞

‖T[n+2]xn − T[n+1]xn‖ = 0. For

δ ∈
(
0,min

{
1

2ση , 2η
κ2

})
, σ ∈ (0, 1), define a sequence {xn} iteratively in H by (5.21).

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality problem

V I(G, K).

Remark 5.3.9 Our theorems in this chapter are extensions of the results of Yamada [99],

Wang [91], Xu and Kim [98], Zeng and Yao [100] from real Hilbert spaces to Lp spaces,

1 < p < ∞. Moreover, in this our general setting, the iteration parameter is required to

satisfy only conditions C1 and C2.
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