
BOTTLENECK DETECTION AND MITIGATION IN SERIAL PRODUCTION
SYSTEMS

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

Abishek Ramesh

Certificate of Approval

______________________________ ______________________________
John L. Evans Emmett J. Lodree
Associate Professor Assistant Professor
Industrial and Systems Engineering Industrial and Systems Engineering

______________________________ ______________________________
Jeffrey S. Smith, Chair Joe F. Pittman
Professor Interim Dean
Industrial and Systems Engineering Graduate School

BOTTLENECK DETECTION AND MITIGATION IN SERIAL PRODUCTION
SYSTEMS

Abishek Ramesh

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
December 15, 2006
iii
BOTTLENECK DETECTION AND MITIGATION IN SERIAL PRODUCTION
SYSTEMS

Abishek Ramesh

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

 Signature of Author

 Date of Graduation
iv
THESIS ABSTRACT

BOTTLENECK DETECTION AND MITIGATION IN SERIAL PRODUCTION
SYSTEMS

Abishek Ramesh

Master of Science, December 15, 2006
(B.S.M.E., Kumaraguru College of Technology, Bharathiyar University, 2004)

138 Typed Pages

Directed by Jeffrey S. Smith

 A variety of analytical models have been proposed to model and analyze serial
manufacturing systems. Most analytical models, however, make simplifying assumptions
in order to remain mathematically tractable. These analytical formulations do not,
however, model the underlying real-world system accurately. Discrete event simulation is
one of the primary tools, which provides decision support by capturing the working of
complex systems at level of detail and accuracy needed. This thesis analyzes the working
of serial production lines characterized by capacitated buffers, stochastic processing
times, unreliable machines, rework loops, maintenance and operator issues with the help
of discrete event simulation to ascertain its throughput. However, in the past researchers
have not been excited about the time it takes to build a complete simulation model. In an
v
effort to fast track the process of model development, a VBA project is undertaken which
will dynamically generate a simulation model in Arena 7.01 from an Excel template. We
also propose an algorithm which will automatically detect the bottleneck of a serial
manufacturing system and provide recommendations to the analyst. These include
reallocation of operators, addition of buffers or parallel resources with an objective of
increasing the throughput of the system with due economic consideration. Simulation
studies are undertaken on different serial manufacturing lines to illustrate the
effectiveness of the techniques developed.
vi
ACKNOWLEDGEMENTS

 I would like to thank Dr. Jeffrey S. Smith for his invaluable advice and support
through every step of this research and Dr. John L. Evans and Dr. Emmett J. Lodree for
their kind consent to serve on the thesis committee. I would also like to thank my
wonderful family and friends for their support. Finally, I would like to thank Skylab
Gupta, who has been a friend and a mentor throughout my time at Auburn University.
 vii
 Style manual or journal used Computers and Industrial Engineering.

 Computer software used Microsoft Word 2003.
 viii
TABLE OF CONTENTS
LIST OF TABLES xi
LIST OF FIGURES xiv
CHAPTER 1 INTRODUCTION 1
 1.1 Serial Manufacturing Lines 2
 1.2 Discrete Event Simulation 4
 1.3 Motivation and Overview of Thesis 6
CHAPTER 2 LITERATURE REVIEW 7
 2.1 Analytical Modeling and Evaluation of Serial
 Production Systems 7
 2.2 Bottleneck Detection 10
 2.3 Buffer Allocation 13
 2.4 Simulation Interface 15
 2.5 Conclusions 16
CHAPTER 3 PROBLEM DEFINITION AND METHODOLOGY . . 18
 3.1 Problem Definition 18
 3.2 Formalization of a Typical Station 18
 3.3 Methodology 22
 3.3.1 Data Collection 22
 3.3.2 Build/Update Static Model 26
 ix
 3.3.3 Expected Throughput Met? 28
 3.3.4 Build/Update Simulation Model . . . 28
 3.3.5 Verify and Validate Simulation Model . . 30
 3.3.6 Run Experiment 31
 3.3.7 Output Analysis of the System . . . 31
 3.3.8 Modify Configuration 35
 3.3.9 Data Update/Collection 35
 3.3.10 Documentation and Implementation . . . 36
CHAPTER 4 CASE STUDIES 37
 4.1 Experimental Setup 37
 4.2 Analysis of LL-Configuration 43
 4.3 Analysis of LH-Configuration 49
 4.4 Analysis of SL-Configuration 55
 4.5 Analysis of SH-Configuration 61
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 70
REFERENCES 73
APPENDICES 78
APPENDIX I RESOURCE STATE GRAPHS FOR
 LL-CONFIGURATION 79
APPENDIX II RESOURCE STATE GRAPHS FOR
 LH-CONFIGURATION 90
APPENDIX III RESOURCE STATE GRAPHS FOR
 SL-CONFIGURATION 101
 x
APPENDIX IV RESOURCE STATE GRAPHS FOR
 SH-CONFIGURATION 112
 xi
LIST OF TABLES
3.1 Processing Parameters 19
4.1 Labeling for Experiments 38
4.2 SL-Configuration Example 38
4.3 Data for the Stations 39
4.4 SL Example Results 42
4.5 Case LL-1 43
4.6 Case LL-2 43
4.7 Case LL-3 44
4.8 Case LL-4 44
4.9 Case LL-5 45
4.10 Case LL-6 45
4.11 Case LL-7 46
4.12 Case LL-8 46
4.13 Case LL-9 47
4.14 Case LL-10 48
4.15 Summary of LL-Configuration Results 48
4.16 Case LH-1 49
4.17 Case LH-2 49
4.18 Case LH-3 50
 xii
4.19 Case LH-4 50
4.20 Case LH-5 51
4.21 Case LH-6 52
4.22 Case LH-7 52
4.23 Case LH-8 53
4.24 Case LH-9 53
4.25 Case LH-10 54
4.26 Summary of LH-Configuration Results 55
4.27 Case SL-1 55
4.28 Case SL-2 56
4.29 Case SL-3 57
4.30 Case SL-4 57
4.31 Case SL-5 57
4.32 Case SL-6 58
4.33 Case SL-7 58
4.34 Case SL-8 59
4.35 Case SL-9 59
4.36 Case SL-10 60
4.37 Summary of SL-Configuration Results 61
4.38 Case SH-1 61
4.39 Case SH-2 62
4.40 Case SH-3 62
4.41 Case SH-4 63
 xiii
4.42 Case SH-5 63
4.43 Case SH-6 64
4.44 Case SH-7 64
4.45 Case SH-8 65
4.46 Case SH-9 65
4.47 Case SH-10 66
4.48 Summary of SH-Configuration Results 67
 xiv
LIST OF FIGURES
3.1 Typical Station 20
3.2 Busy and Idle States 21
3.3 Blocked, Failed and Repair States 22
3.4 Replenish and Exhaust States 22
3.5 Methodology for Simulation Modeling and Analysis of Serial Production
Systems 23
3.6 Excel Template from which Arena Model is Generated . . . 30
4.1 Base Scenario 40
4.2 Improved System 41
I.1 LL-Configuration Case 1 80
I.2 LL-Configuration Case 2 81
I.3 LL-Configuration Case 3 82
I.4 LL-Configuration Case 4 83
I.5 LL-Configuration Case 5 84
I.6 LL-Configuration Case 6 85
I.7 LL-Configuration Case 7 86
I.8 LL-Configuration Case 8 87
I.9 LL-Configuration Case 9 88
I.10 LL-Configuration Case 10 89
 xv
II.1 LH-Configuration Case 1 91
II.2 LH-Configuration Case 2 92
II.3 LH-Configuration Case 3 93
II.4 LH-Configuration Case 4 94
II.5 LH-Configuration Case 5 95
II.6 LH-Configuration Case 6 96
II.7 LH-Configuration Case 7 97
II.8 LH-Configuration Case 8 98
II.9 LH-Configuration Case 9 99
II.10 LH-Configuration Case 10 100
III.1 SL-Configuration Case 1 102
III.2 SL-Configuration Case 2 103
III.3 SL-Configuration Case 3 104
III.4 SL-Configuration Case 4 105
III.5 SL-Configuration Case 5 106
III.6 SL-Configuration Case 6 107
III.7 SL-Configuration Case 7 108
III.8 SL-Configuration Case 8 109
III.9 SL-Configuration Case 9 110
III.10 SL-Configuration Case 10 111
IV.1 SH-Configuration Case 1 113
IV.2 SH-Configuration Case 2 114
IV.3 SH-Configuration Case 3 115
 xvi
IV.4 SH-Configuration Case 4 116
IV.5 SH-Configuration Case 5 117
IV.6 SH-Configuration Case 6 118
IV.7 SH-Configuration Case 7 119
IV.8 SH-Configuration Case 8 120
IV.9 SH-Configuration Case 9 121
IV.10 SH-Configuration Case 10 122
 1
CHAPTER 1
INTRODUCTION

Process improvement programs and reengineering have taken a front seat due to a
significant increase in competition amongst the giants in manufacturing industry
(Snodgrass, 1994). These programs require an accurate estimate of performance metrics
such as throughput capacity of a given layout to justify projects and make valid
comparisons between various restructuring options which would cost millions of dollars
to implement. The focus of this thesis is on the analysis of serial production lines which
are characterized by capacitated buffers, stochastic processing times, unreliable
machines, rework loops, maintenance and operator issues. This constitutes a complex
manufacturing system for which we have adopted discrete event simulation as a tool to
predict the performance metrics. As a part of this thesis, a VBA project was undertaken
in an effort to automate the process of building a simulation model in Arena 7.01 from an
Excel template. This will enable line managers with the working knowledge of
simulation develop and modify models with minimal efforts and cut down on repetitive
model building and modification time to a great extent. We have also developed an
algorithm which will automatically detect the bottleneck in a serial production system
and suggest appropriate changes to the analyst with an objective of increasing the
 2
throughput of the system. These techniques are embedded in a ten step methodology
presented in this thesis.
1.1 Serial Manufacturing Lines
Serial production lines are sequential arrangements of machines designed for a
specific product. Products enter the system through the first station, get processed in a
sequential order and leave the system as finished products (Cochran and Erol, 2001). The
stations are independent of each other (for instance station x failing will have no bearing
on when station x+1 is going to fail next) and have varying processing times. Buffers
might be located at specific points and when a buffer in front of the bottleneck machine is
full, the upstream stations are blocked and the downstream stations are starved
(Blumenfeld, 1990).
Dallery and Greshwin (1992) classify features and properties of serial
manufacturing lines. They are detailed as follows:
a) Synchronous / asynchronous: In synchronous systems all machines start and
stop at the same instant and their operating times are assumed to be deterministic. The
system automatically indexes at constant intervals. Events like repair and replenishment
occur at discretized time intervals. Asynchronous systems have buffers between stations
which make them independent of one another as long as the buffers are neither full nor
empty. The station begins to work on a new unit as soon as the previous unit is
completed.
b) Saturated / non-saturated: Models built on the assumption that the first machine
is never starved and the last machine is never blocked are called saturated models.
 3
Saturated models are used to predict the production rate of a system. The concept of
having uncertain arrival and departure of parts constitute non-saturated models.
c) Blocking, Starving and decoupling: When a machine ceases to operate, the
upstream machines can still pass on parts until the buffers upstream are full and the
downstream machines will receive parts until buffers downstream are empty. When the
upstream buffers are full, those machines are said to be blocked and when the
downstream buffers are empty those machines are said to be starved. When there is no or
very small buffering it causes the greatest coupling between machines and there exists
least coupling when the buffer sizes are large.
d) Failures: Failures can be classified into time dependent and operation
dependent failures. Failures in stations that follow a chronological frequency are
classified under time dependent failures. When the failures occurring depend on the
number of units processed by a station it is called an operation dependent failure.
e) Operating times and policy: Efforts are made to design the production lines
such that the machines in the system have more or less the same production capacity. The
reason being the throughput of a line depends on the production rate of the bottleneck
machine and the investments made on other expensive machines in the line cannot be
economically justified if its production rate is significantly higher. But in the real world
scenarios due to the practical constraints this is not always achieved.
Serial production systems in this thesis are depicted as a sequential arrangement
of identical/non identical stations which are capable of processing one part at a time or
parts in batches. The stations might have inbuilt conveyors, multiple head processing
systems and other complex configurations. The processing time of a product might vary
 4
from one machine to the other and can be stochastic. Each station is subjected to failures
and exhausts. When a station is in a state of failure/exhaust a technician is seized for
repair/replenish operations and the priority with which technicians are seized can also be
specified. The stations are connected to one another by means of a conveyor which can
be either accumulating or non-accumulating. Capacitated buffers might be placed at
various points in the line between stations and the buffer discipline can be FIFO/LIFO.
The lines might include parallel ?legs? to increase production. In this configuration, the
main line is split into parallel lines and these parallel lines merge into the main line after
some operations. Some stations might be dedicated to inspect the quality of products at
various points in the production line. The production line might also have rework loops
where components which don?t meet the quality criteria are being worked on and some
parts might be scraped (Li, 2005).
In this thesis the effects of capacitated buffers are studied from the perspective of
only increasing the production rate and it doesn?t take inventory costs into account. Also
the products in the buffers are thought of as nonperishable items.

1.2 Discrete Event Simulation
?Discrete-event simulation consists of a collection of techniques that, when
applied to the study of a discrete-event dynamical system, generates sequences called
sample paths that characterize its behavior? (Fishman, 2001). The term simulation in this
thesis refers to discrete-event simulation. Simulation has evolved into a powerful decision
support tool for manufacturing industries which is dominated by dynamic and stochastic
 5
variables. A serial production line can be viewed as a system that has resources
(machines and operators) arranged in some predetermined order, which processes entities
(units). Simulation helps the decision makers to gain insights into such systems to make
improvements. By doing so, simulation increases the utilization and productivity of a
system and the organization ends up making quality decisions.
Simulation helps answer the ?what if? questions posted by the management to decision
makers. Some of the common questions posted are:
? Can target production be met?
? Is a layout change necessary?
? Should the material handling system be changed?
? What should be the size of buffers at various points in the line?
? Which is the bottleneck machine and what?s its effect on the production rate?
? Should additional resources be added to the line?
? What is the effect of product mix on the line?
Simulation can provide answers to all of the above questions. With increased
computational power, the cost of a simulation study is estimated to be less than 1% of the
total amount spent in implementing a design or redesign (McLean, 2001). The general
consensus is that simulation is not adopted by most of the manufacturing industries in
spite of these advantages (McLean, 2001). This thesis highlights the importance of
simulation in the field of manufacturing systems and provides a methodology which will
enable managers with basic knowledge of simulation to make effective use of this tool.

 6
1.3 Motivation and Overview of Thesis
This research is an extension of Mukkamala et al. (2003), Mukkamala (2003),
Jadhav and Smith (2005) and Jadhav (2005) work. Mukkamala et al. (2003) and
Mukkamala (2003) developed a domain specific template for the automated assembly of
PCB. Their research focused in building PCM assembly template to analyze serial
production PCB assembly lines where a typical machine has an input area, a processing
area and an output area. The input area comprises of an input conveyor and an optional
capacitated input buffer. Similarly an output buffer comprises of an output conveyor and
an optional capacitated output buffer. Jadhav and Smith (2005) and Jadhav (2005) used
the templates to build simulation models and predict the throughput of serial production
systems. The simulation studies conducted were time consuming and the bottleneck
resource detection was done by eyeballing the resource state graph.
In this thesis we have undertaken a VBA project to dynamically generate the
simulation model of the underlying system using an Excel template. We have also
developed an algorithm which will automatically detect the bottleneck resource and
suggest appropriate changes to the analyst in an effort to mitigate the bottleneck resource,
thereby improving the throughput of the system. These techniques which fast track the
process of a simulation study, have been embedded in a ten step methodology.
 The next chapter will review literature relevant to this thesis. Chapter 3 presents
the problem statement and the methodology developed. Chapter 4 comprises of case
studies which verify the proposed techniques. Chapter 5 contains the conclusion and
discusses future research.
 7

CHAPTER 2
LITERATURE REVIEW

This chapter reviews the complexities and assumptions involved in developing
analytical models to estimate the throughput of serial production systems present in the
literature. This discussion is followed by contrasting the bottleneck detection methods
present in the literature to ours. Buffer allocation which plays an important part in
enhancing the performance of serial production systems is also discussed in this chapter.
Finally, the ideas in literature to develop a simulation interface to expedite the process of
model building are presented.

2.1 Analytical Modeling and Evaluation of Serial Production Systems
Cochran and Erol (2001) developed an analytical model for serial production lines
to estimate throughput rates, scrap rates and outgoing quality levels by incorporating
traffic rate equations. The serial production lines in this analysis are modeled as directed
flow networks. The model explicitly differentiates between operation stations and
inspection/repair stations. This model can be used for inspection configuration designs
and formulation of optimal cost models.
 8
Li (2005) evaluates the throughput of complex serial production system with
parallel, rework and scrap operations using the overlapping decomposition technique.
The idea behind this methodology is to divide the complex system into a number of serial
production systems wherein the last machine of a serial line overlaps with the first
machine of the next serial line. They adapt aggregation techniques and the throughput of
a system is estimated when the procedure converges. This method is developed under the
assumption that the processing rates of all the machines in the system are the same.
Choong and Greshwin (1986) develop a decomposition method to analyze
capacitated transfer lines with capacitated buffers and random service times. It is based
on a model developed by Greshwin (1983) that approximates a (K-1)-buffer system by
K-1 single-buffer systems. Throughput and average buffer levels of the system are
calculated by formulating an iterative search algorithm. This model has been verified
with the help of several numerical examples and the authors conclude that this approach
is viable only if the probability that a machine is starved and blocked at the same time is
small. Machine k is said to be both blocked and starved, only when machine ki-1 is either
under repair, starved or is processing a piece and machine ki+1 is either under repair,
blocked or is processing a piece. The buffer in front of machine k is empty while the one
in front of machine ki+1 is full. According to the author, this probability will be high if
there is a huge variation in efficiencies (probability that a station is processing a work
piece) and processing rates of the machines. Under such conditions the method may
break down.
Burman (1995) investigates flow lines with unreliable machines and develops an
analytical decomposition-type approximation technique to estimate throughput of such
 9
systems. ?Accelerated Dallery-David-Xie? (ADDX) algorithm was developed as a part of
his thesis for solving the decomposition equations developed for flow lines. This
analytical technique accounts for non-homogeneous flow, operation dependent failures,
unreliable machines and failing buffers. The application of this technique is however
limited to flow lines that have deterministic processing times with no rework operations.
Paik et al. (2002) used decomposition and aggregation principles to
approximately estimate throughput for finite buffered closed loop production system with
unreliable machines and exponentially distributed processing times. They also propose a
simple algorithm that predicts the upper bounds of throughput for such systems. The
effectiveness of the procedure is illustrated in their paper with the help of extensive
computational experiments.
Tempelmeier and Burger (2001) analyze unbalanced serial production systems
with finite buffers to estimate throughput of the system by employing an analytical
approximation technique. This technique accounts for machine breakdown and defective
part production. The time to failure was assumed to be exponentially distributed. In this
procedure, M-station-lines are decomposed into M-1 two-station-lines and are analyzed
with the help of GI/G/1/ maxN queuing model. This model also accounts for simultaneous
blocking and starving that Choong and Greshwin (1986) model lacked.
Chen et al. (2003) estimate the value and variance of throughput for serial
production systems with unreliable machines using a sample path method. Their method
conducts a sensitivity analysis on the mean and variation of throughput with respect to
mean up time or mean down time to determine the amount of improvement that can be
achieved in the system. It is assumed that a failed machine is immediately taken for
 10
repair. The model assumes that all machines in the system have the same production rate
with no inter-stage buffers. The idea of having inspection stations at various points in the
line is also not considered in this study and hence we cannot use this technique for our
projects.

2.2 Bottleneck Detection
A resource which impedes the performance of a system in the strongest manner is
defined as the bottleneck resource (Chiang et al., 2001). In other words, it has the largest
impact on reducing the throughput of a system. This section presents techniques available
in the literature to detect the bottleneck resource of a system.
Utilization of a machine is defined as the ratio of arrival rate of parts to be
processed to effective production rate (Hopp and Spearman, 2000). According to Hopp
and Spearman (2000), the percentage of utilization is calculated for each machine in the
system and the machine with the largest percentage of utilization is considered to be the
bottleneck resource. The author does not discuss about the % of time spent by a machine
in blocked state when they illustrate this technique with an example. We contrast this
bottleneck detection technique with the one developed as a part of this thesis in Chapter
4.
Roser et al. (2001) categorize all possible states of a machine into two groups:
active and inactive states. A machine is said to be in active state when the current state of
the machine is aimed at improving the system throughput. Starving, blocking and waiting
for services are classified under inactive states. In this technique, the duration of a
 11
machine remaining in an active state without being interrupted by an inactive state is
measured. The machine which has the longest active period is detected as the bottleneck.
They illustrate this method by simulating a production line which has eight machines
with three capacitated buffers between machines and contrast it with the conventional
percentage utilization approach. They conclude that their method detected the bottleneck
with a higher level of confidence than the conventional percentage utilization approach.
This approach assumes that there is minimum or no operator interference in the system
which may not be true for all systems. Another drawback of this approach is that by
considering only the longest active period it implicitly assumes that the machines in the
system are highly reliable. In this thesis a methodology for detecting the bottleneck is
proposed which can do away without these assumptions.
Law and Kelton (2000) considers bottleneck machine to be one with the longest
waiting time in queue for systems with unlimited buffer sizes. The waiting time in queue
for a machine increases as the length of the queue increases by Little?s law. But every
machine in the real world will have a finite buffer size which sets an upper bound to the
wait in queue. And also the machines might have different buffer sizes. These factors
might compromise the accuracy of identifying the actual bottleneck machine (Roser et
al., 2001).
Chiang et al. (2001) use an aggregation procedure to analyze the performance of
Markovian lines with different cycle times and develop a method for cycle time
bottleneck identification. This procedure is illustrated with the help of a case study and it
is concluded that the probabilities of machine blockages and starvation play a critical role
in bottleneck identification. Similar results are observed in this thesis.
 12
Downtime Bottlenecks (DT-BN) were developed by Chiang et al. (2000) to
identify bottlenecks based on probabilities of a machine being blocked and starved. The
input parameters for the algorithm are: average uptime, downtime, frequency of
blockages and starvations. This analytical approach can be applied to only Markovian
lines.
Lawrence and Buss (1994) analyze the phenomenon of shifting production
bottlenecks by identifying bottleneck machine as one which has the maximal queue
length. They propose a bottleneck shiftiness method to tests policies like chasing short-
run bottlenecks, increasing capacity at long-run bottlenecks and increasing capacity at
non-bottleneck work centers. They conduct simulation studies and conclude that the
policy of adding capacity at non-bottleneck work centers will reduce the bottleneck
shiftiness to a great extent but the degree of system performance improvement is smaller
than those when the other two policies are adopted. The method they adopt for
identifying the bottleneck might fail to identify the true bottleneck machine when
capacitated buffers are used. Also, they have not considered the costs of adding extra
capacity to non-bottleneck work centers to minimize the bottleneck shifting.
Moss and Yu (1999) use Lawrence and Buss (1994) methods to access the factors
which will have the greatest influence on bottleneck shiftiness by using multiple
regression. Their study concludes that job arrival rate, processing time at bottleneck
machine and size of shop, have the greatest impact on bottleneck shiftiness and that the
managers could use these parameters to make better capacity decisions. The results are
however limited to only FCFS queuing disciplines.

 13
2.3 Buffer Allocation
Enginarlar et al. (2002), present an analytical approach to find the smallest
amount of buffering required in a serial production line with unreliable machines
necessary to meet the target production rate. To simplify the analytical model
development they assume that the machine up times follow exponential distributions. In
their analysis they found that a large amount of buffering is required for those machines
which have high coefficient of variation of downtime. Their findings also state that the
level of buffering doesn?t explicitly depend on the average up time of a machine but its
efficiency, which is the ratio of average up time to average up and down times of a
machine. These findings are based on the assumption that all the machines in the system
are identical. According to Enginarlar et al. (2002), these results can be extended to non-
identical machines only by making a critical assumption that the efficiency of all the
machines in the system are roughly the same. This assumption might not hold true for
systems with highly variable processing times.
Yamashita and Altiok (1998) investigated the minimum total buffer allocation
required to meet the throughput in production lines with phase-type processing times.
They have developed a dynamic programming algorithm which allocates the minimum
total buffer space and estimates the throughput of the system at every stage by employing
decomposition technique. They illustrate their methodology with a numerical example
and conclude that when variability of the processing times increases the throughput of the
system decreases, provided the mean processing time and buffer configuration remain
constant.
 14
Shi and Men (2003) incorporate Tabu search heuristic into the Nested Partitions
Framework and develop a hybrid algorithm in an effort to optimally allocate buffers in
large production systems. The model accommodates for different processing rates
between machines and failure of machines. The authors claim that their algorithm is
robust and can reduce the search effort for buffer allocation problems to a great extent.
An efficient algorithm to find the optimal allocation of a fixed stock of buffer capacity
for serial production systems was developed by Harris and Powell (1999). A simplex
search procedure is embedded in the algorithm to ascertain the search direction which is
determined by the best and the worst of current candidate solutions. This algorithm also
employs simulation to estimate the throughput for each candidate configuration. The
drawback of this algorithm is that it assumes that there are no unreliable machines in the
system.
Powell and Pyke (1998) study the issue of optimally deploying limited buffer
capacity in short unbalanced assembly lines. They develop simple heuristic rules for
unbalanced assembly lines with random processing times. Their study shows that mean
and standard deviation of processing time distributions play a vital role in the selection of
optimal location of the first buffer. Their heuristic was tested for assembly lines with 2, 3
and 4 stations and it was found to successfully select the optimal location of the first
buffer more than 90% of the time. This heuristic doesn?t take machines failures into
account and it has not been tested for large complex systems.
Papadopoulos and Vidalis (2001) investigate the buffer allocation problem for
unreliable, unbalanced short production lines consisting up to six machines. The model
assumes that the service and repair times follow Erlang-K distribution and time to failure
 15
follow exponential distribution. A good initial buffer vector is found by the algorithm
developed by them which makes use of parameters like mean service, repair and failure
rates. The algorithm employs a sectioning search method to search for optimal buffer
allocations. Their algorithm was 97% successful in identifying the optimal buffer
allocation for 373 experiments conducted. They provide no evidence in their paper to
show that this algorithm is effective for production lines of any size.
Roser et al. (2003) develop a prediction model which uses a single simulation run
to determine the effect of increased buffer capacity on the system performance. This
method is applicable to both balanced (production rate of the machines are equal) and
unbalanced production systems. It?s a two step methodology wherein the first step is to
determine the causes for starving and blocking of all the machines thereby evaluating
different buffer location options to reduce the idle time. The next step is to evaluate the
improvement in performance metrics due to increases in buffer sizes by analyzing the
data from the simulation report and the previous step. The prediction model has been
fully automated for easier handling. The model cannot handle systems with machine
breakdowns.

2.4 Simulation Interface
A simulation environment was developed to simplify the process of building a
simulation model for high volume electronics manufacturing systems by Farrington et al.
(1995). The environment can be decomposed into three basic elements, which provide
increasing level of modeling capability and it reduces effort involved to build a
 16
simulation model. The elements are interconnected through data transfer links and
feedback loops. The problem definer element using a graphical interface develops the
initial definition of a system. Static analysis is conducted on the system by the static
analyzer element. The code generator element generates the simulation code for
simulation packages. The Excel template developed as a part of this thesis performs a
similar task described in this paper.
Doss and Ulgen (2004) present the idea of building application specific models
using various simulation software engines in an effort to reduce simulation modeling
efforts and provide a continuous improvement tool for the companies. These ideas from
the literature have taken the shape of the Excel template described in the next chapter and
it is embedded in a ten step methodology proposed in this thesis in an effort to simplify
repetitive model building and modification time.

2.5 Conclusions
 The review in this chapter focused on analytical modeling methods for estimating
the throughput in serial production systems, bottleneck detection techniques, buffer
allocation policies and the idea of creating a simulation interface to simplify the process
of model building. From the literature it is clear that the analytical models require
simplifying assumptions in order to remain mathematically tractable. These analytical
models do not, however, model the underlying real-world system accurately. Some of the
common assumptions made in analytical modeling techniques can be listed as follows:
? Single part processing
 17
? No inspection stations
? Specific distributions for processing time, and TTF
? No operator interference
? Specific queuing disciplines
? No product mix
? Negligible transportation times between stations
While, some analytical models address a part of these assumptions, it ignores the
rest. The bottleneck detection techniques presented in this chapter also make assumptions
like unlimited buffer sizes in front of stations, exponential processing time, minimum or
no operator interference, and specific queuing disciplines. While these techniques might
work for some lines, it might not correctly identify the bottleneck resource of any given
serial production system. This thesis attempts to capture the behavior of serial production
systems and there by detect the bottleneck resource and mitigate it, without making the
assumptions stated above. We have also adapted the idea of creating a simulation
interface proposed by Farrington et al. (1995) and Doss and Ulgen (2004) to reduce
repetitive model building and modification time. So given a serial production system, the
Excel template developed in this thesis will enable the analyst to generate the simulation
model dynamically. The results from the model will be analyzed with the help of the
algorithm proposed, which will detect the bottleneck and propose modifications to the
system in an effort to curb the bottleneck. The next section discusses the problem
statement followed by the techniques developed in this thesis.
 18
CHAPTER 3
PROBLEM DEFINITION AND METHODOLOGY

3.1 Problem Definition
A technique to detect bottleneck resources in complex serial production systems
with the help of discrete event simulation is proposed in this thesis. A procedure for
mitigating the bottleneck of any given serial production line is also developed. This will
provide decision support to the analyst in the form of addition of buffers, reallocation of
operators, or addition of parallel bottleneck resources. The objectives of this thesis are to
identify the line bottlenecks and to use an iterative procedure to maximize line
throughput. Our bottleneck detection technique is then contrasted with a traditional
bottleneck detection method with the help of case studies. The simulation model used for
analyzing the serial production system is dynamically generated from a Microsoft Excel
template in Arena 7.01 with the help of a VBA project. A static model for the system
under consideration is also built using the Excel template. In the next section we define a
typical station and its processing parameters.
3.2 Formalization of a Typical Station
A serial production line is characterized as K work stations arranged in series and
each station is labeled as k where k = 1 to K. Let N be the number of products being
19

processed in the line and each product is marked as n where n = 1 to N. The product mix
is denoted by Mn, where Mn is the proportion of production allocated to product n. Then,
00.1
1
=?
=
N
n
nM
 The processing time per unit (P) for the nth product at station k is denoted
as ()nPk . The attributes of a station are listed in Table 3.1.
Table 3.1: Processing Parameters
Attribute Expression Symbol
Processing time
per unit Stochastic Pk(n)
Time to failure Stochastic Lk
Cycles to exhaust Stochastic Ck
Time to repair Stochastic Rk
Time to replenish Stochastic Hk

The static model built as a part of this thesis, uses mean values of these attributes. Some
of the other notations used in this thesis are:
T is the total production time
kF is the expected time lost due to repair
kG is the expected time lost due to replenishment
kB is the % of time spent by station k in blocked state
kI is the Maximum units that can be produced in station k without considering failures
and exhausts
kU = kFT ? is the available processing time in station k after the expected total repair
time has been removed
 20

kV = kk GFT ?? is the available processing time in station k after the expected total
repair and replenish times are removed
kJ is the maximum units that can be produced in station k by considering repair and
replenishment

Figure 3.1: Typical Station

Figure 3.1 is a snap shot of a typical station in our serial production system. A
station will exist in one of the seven states idle, busy, failed, repair, exhaust, replenish
and blocked. A machine remains in the idle state when it is not processing a part and
there are no parts available in the input area. As soon as it gets started to work on a unit,
its state changes to busy. Production process can be interrupted due to machine failures
and component part exhaustion. As soon as a machine fails, its state changes to failure
and an operator is requested for service. The state of the machine changes from failure to
repair when an operator arrives to repair the machine. Machine exhaustion occurs when
the raw material in a machine is exhausted. The machine remains in the exhaust state
until an operator arrives to replenish the exhausted parts, which will change the state of
the machine to replenish. When a machine is finished processing a unit it passes the unit
 21

on to the next machine. If it is unable to do so due to unavailable capacity in its output
area then the machine is considered to be blocked.
Figure 3.2 illustrates the busy and idle states of a machine. Here Station A is
working on a part and the Station B has exhausted the parts in the buffer in front of it.
Station B is ready to work but there are no parts available for it to work on and it is in
idle state (starved). Stations A and C are in busy state. Figure 3.3 illustrates the blocked,
failed and repair states of a machine. In this case, Station B has finished working on its
part but is not able to work on the next part because the buffer downstream is full and
cannot accept any more parts. Station B is thus said to be blocked. Stations A and C have
failed and both will be fixed by ?Operator X?. Here Station A is in the process of being
fixed and is in repair state where as Station C is still waiting for ?Operator X? and is in
failed state. Figure 3.4 portrays replenish and exhaust states. Its very similar to the
previous case the only difference being the stations have exhausted their resource instead
of failing and Station A, which is being served by ?Operator X? is in replenish state and
Station C is in exhaust state waiting for service from ?Operator X?.

Figure 3.2: Busy and Idle States
 22

Figure 3.3: Blocked, Failed and Repair States

Figure 3.4: Replenish and Exhaust States

3.3 Methodology

3.3.1 Data Collection
Simulation models are computer programs that process input data to predict the
output of the system by statistical sampling. Even when the underlying system is modeled
accurately, if the input values plugged in are incorrect then the results will be misleading.
A simulation model which is highly complex and stochastic in nature is difficult to
validate. This is one of the primary reasons why the analysts need to have data that is
representative of the actual system. According to Jadhav and Smith (2005) and Jadhav
(2005), data can be extracted from the system either from historical databases if the
system exists or similar systems if the system is nonexistent. The techniques developed in
 23

this thesis are embedded in a ten step methodology proposed by Law and Kelton (2000).
The flowchart of the methodology is shown in Figure 3.5.
The ten step methodology provides an iterative procedure to maximize the
throughput of the line. If the desired throughput of the system is not met for a proposed
scenario then the bottleneck of the system is detected and mitigated using the techniques
suggested in Section 3.3.7. The configuration of the system is modified accordingly and
the iterative procedure is carried out until the target production rate for the system is
achieved.
Build/Update
Static Model
Throughput
Met?
Build/Update
Simulation Model
Document &
Implement
Yes No
Data Collection Data Update/Collection
Output
Analysis
Modify
Configuration
Run
Experiment
Verify & Validate
Simulation Model
Desired
throughput met
Desired throughput not met

Figure 3.5: Methodology for Simulation Modeling and Analysis of Serial Production
Systems
Robertson and Perera (2001) conducted a study and found that data collection in
most simulation studies is unstructured, not automated, time consuming and hence forth
comes at a high cost. The data thus extracted from the system may or may not be
simulation friendly data or in other words the data would have to be processed further to
 24

be used in a simulation study. Hence we have standardized the set of data that will be
used in the simulation study to quicken this process.
The data required for a simulation study can be classified into i) Data for static
model and ii) Data for simulation model. The simulation model will also make use of the
data available for static model.

Data for static model are listed as follows:
i) Shift Details:
a. Available time per year
b. Changeover Time
c. Changeover Frequency
ii) Process Details:
a. Operator Issues
i. Failure distribution
ii. Time to Repair
b. Maintenance Issues
i. Cycles to Exhaust
ii. Time to Replenish
iii) Product Mix Details
Data for simulation model are listed as follows:
i) Machine Details:
a. Processing type: single or batch
b. Indexing time (if required)
 25

c. Length of conveyor (if required)
ii) Operator Details:
a. Allocated set of stations
b. Priorities
iii) Inspection Details:
a. Percentage passing
b. Rework details
i. Rework resource
ii. Rework time
iii. Percentage scrapped
iv) Buffer Details:
a. Location and capacity of buffer
b. Queuing policy followed
v) Conveyor Details:
a. Length
b. Accumulating/non-accumulating
c. Speed
vi) Process flow of the system
Data pertaining to failures can be represented/collected in three ways namely, i)
% of failures per shift, ii) Time To Failure, and iii) # of failures per shift. The static
model developed in our study uses the # of failures per shift data.

 26

3.3.2 Build/Update Static Model
Static model which is an analytical modeling technique is a formalization of Mean
Value Analysis (Reiser and Lavenberg, 1980) where mean values for processing times,
failure/exhaust, repair and replenish times are used to estimate production rates. Using
the data collected, a static model is generated dynamically with the help of the Excel
template which would predict the throughput of the system under consideration. In this
section we will describe the processing steps involved in static model generation.
The processing steps involved in generation of static model are:
Step 0: Calculate mean processing time per unit kP = ()[][]?
=
?
N
n
nk MnPE
1

Step 1: Throughput without considering failures and exhausts kI =
kP
T
Step 2: Time lost due to repair kF = []{ }[] []{ }
kk
k
RELE
TRE
+
?
Step 3: Calculate kU = kFT ?
Step 4: Time lost due to replenishment kG = []{ }[] [])({ }
kkk
kk
PCEHE
UHE
?+
?
Step 5: Calculate kV = kk GU ?
Step 6: Throughput considering failures and exhausts kJ =
k
k
P
V
This procedure is carried out for every station in the system. The throughput is
essentially determined by the processing rate of the slowest machine (Jadhav and Smith,
2005 and Jadhav, 2005). The static model also dynamically generates the resource state
graph which is a graphical representation of the % of time spent by each resource in the
 27

seven states discussed earlier. For more information on resource state graph the reader is
directed to refer Jadhav and Smith (2005) and Jadhav (2005). The expressions used for
calculation of % of time spent by a resource in each of the states are listed below.
For resource k,
a. % of time spent in the Busy state =
()
T
JP
Kk
kk ??
?
??
? ?
=? ,....,1
min

b. % of time spent in the Replenishment state = TGk
c. % of time spent in the Repair state = TFk
d. % of time spent in the Failure/Exhaust state = 0 (Time in exhaust and failure
states model complex operator interference issues; assumed zero in the static
model)
e. % of time spent in the Blocked state = 0 (Time in blocked state indicates
complex inter-process interactions; assumed zero in the static model)
f. % of time spent in the Idle state = 100 ? (? Other States)

The static model doesn?t consider i) complex operator interference issues, ii)
influence of capacitated buffers, iii) inter-process interactions, and iv) effects of rework
and hence the values obtained are just estimates. Calculating the % of time spent by a
resource in the blocked state in the static model is not straightforward and is beyond the
scope of this thesis. It is assumed to be zero in our static model. The static model predicts
the throughput for two standardized scenarios:
 28

a. Scenario 1: Without Failures and Exhausts
b. Scenario 2: With Failures and Exhausts

3.3.3 Expected Throughput Met?
Once the static model is developed it is compared with existing systems or similar
systems to check for correctness of the input data. Since static model doesn?t consider
complex operator interference issues and inter-process interactions, the expected
throughput from the static model for the scenario 2 is considered to be overestimated. In
other words, a simulation model built with this input data cannot be expected to have
higher values for throughput. So if the domain experts feel that the throughput is below
their requirement or expectation then the configuration of the system is modified by
adopting procedures to detect and mitigate the bottleneck described in this thesis. The
data is updated /collected and static model is rebuilt accordingly. This feedback loop
which is made available by the static model reduces time by giving the user a heads-up
(by providing a rough estimate of the throughput). This is particularly useful for systems
which are non-existent.

3.3.4 Build/Update Simulation Model
The simulation model built will be an exact representation of the system under
study. It will account for operator interference issues, effect of capacitated buffers in
between stations, inter-process interactions like blocking and starving, and the effects of
rework and scrapping of parts. The simulation model will be dynamically generated from
 29

the Excel template. The processing steps involved in dynamically generating the Arena
model are listed as follows:
Step 0: Shortlist the modules that will be used in the simulation study
Step 1: Identify the operands whose values are to be obtained from the Excel template
Step 2: Select the appropriate module for each station in the system from a pull down
menu provided in the Excel template. Each module in the pull down menu has a unique
feature.
For instance, if a station is meant to have a built-in conveyor and multiple head
processing, then the module which provides this feature is selected. On the other hand if
the model developer wants to add inspection stations at different points in the line, then a
module which reroutes the parts based on a fixed probability is chosen.
Step 3: Enter the details required to build the simulation model in the Excel template
Step 4: Execute the VBA code which will generate the simulation model in Arena 7.01
Usually the first two steps are exercised only at the beginning of a simulation
study (since the modules that will be used for a study will remain fairly constant). If a
new module is to be used then the dataset is updated accordingly. Steps 2, 3 and 4 are to
be executed each time a new model is built.
Before the user executes the code to build the simulation model, it has to be made
sure that the template used in a study is automatically attached to the project bar when
Arena 7.01 opens. This is done by opening Arena 7.01 Tools/Options/Settings/Auto
Attach Panels and specifying the path where the .tpo file being used in modeling is
located.

 30

Figure 3.6: Excel Template from which Arena Model is generated
In this thesis, the simulation model which was dynamically generated makes use
of the template developed by Mukkamala et al. (2003) and Mukkamala (2003). A
conveyor is defaulted between each station. A snap shot the Excel template from which
the Arena model is generated is shown in Figure 3.6.

3.3.5 Verify and Validate Simulation Model
The simulation model with base configuration (that is no failures and exhausts) is
run and compared with scenario 1 of the static model. The simulation model is animated
and process flow of the products is verified with the real system. The base simulation
model will consider capacitated buffers and conveyors/transporters in between the
resources. The static model assumes that there is no time lost when a product moves from
 31

one resource to another. These factors will influence the results of the simulation model.
But if the simulation model is an accurate representation of the real system, the
throughput determined by the simulation model will not vary significantly from that of
the static model. The managers are consulted for validation purposes.

3.3.6 Run Experiment
Stochastic variables like failure, repair, exhaust and replenishment rates, % of
defective units, etc. are incorporated into the verified and validated simulation model at
this point. These stochastic variables make the model dynamic. If the concerned firm has
some predetermined strategies for the line then each of those ideas are incorporated in a
separate simulation model. The number of replications is decided by making a trial run
and the resulting 95% confidence interval of the half width of the throughput from the
underlying production system (Jadhav and Smith, 2005 and Jadhav, 2005). Each model
will usually have a different value for number of replications due to the randomness. The
simulation model is run accordingly and the throughput of the line under study is
determined. A resource state graph for the system is generated and the system is analyzed
which is explained in the next section.

3.3.7 Output Analysis of the System
The simulation results thus obtained will reveal the performance level of each
station with respect to the seven states we have defined. The results have to be analyzed
and effective measures are to be undertaken to enhance the efficiency of the system. To
 32

do this the analyst will have to identify the station which has the greatest impact on the
performance of the whole system, which will be the bottleneck resource.
 The busy state reflects upon the effective % of time a resource was engaged in
production. Replenish and repair states reflect upon the inability of a station to
manufacture products due to exhaustion and failure respectively. Exhaust and failure
states quantify the operator interferences. Idle and blocked state of a station quantifies the
interdependency (coupling) of the station on others. It can also be interpreted as the
effective % of time that a resource can utilize for production if it were decoupled from
other stations in the system. When a machine is in blocked or idle state it is ready to
accept parts for processing but is unable to do so due to complex inter-process
interactions. The machine which is least affected by the inter-process interactions will be
the bottleneck resource. This transforms to the fact that the machine which has the least
value for the % of time spent in idle and blocked states is the bottleneck resource. In this
thesis we compare our bottleneck detection technique with the concept of ?Machine with
highest utilization? being the bottleneck resource. In chapter 4 we present case studies
where in our bottleneck detection technique works better. This value will be referred to as
Bottleneck Index from here on.
The states of a machine are represented in the resource state graph which is
generated from Arena with the help of VBA (Jadhav and Smith, 2005 and Jadhav, 2005).
Three possible changes can be made in the system to counter the bottleneck problem.
They are listed as follows:
a. Add buffers before or after the bottleneck process
b. Re-allocate the workforce to reduce the time spent in failure/exhaust
 33

c. Consider parallel processing option for the bottleneck resource
The decision to select the options stated above is not straightforward and hence
we have developed an algorithm which will be helpful for the analyst in this regard. The
processing steps are as follows:
Step 0: If Exhaust/failure state for any station is >= Z %, consider reallocating the
operator for those stations
Step 1: If Blocked state of the bottleneck is > 0 %, then add buffers right after the
bottleneck resource
Step 2: If Idle state of the bottleneck is >= Y %, then add buffers appropriately for
machines upstream and stop
Step 3: If Idle state of the bottleneck is > 0 %, add buffers right before the bottleneck
resource
Step 4: If (Idle + Blocked) states of bottleneck resource are =< X %, add parallel resource
and stop
The values that the parameters X, Y and Z will assume are decided by the analyst
and the management, which is going to be subjective and it will depend on the objective
of the analysis that is being conducted. Usually the values range from 1 to 40. The values
of X, Y and Z parameters used in this thesis are assumed to be 5, 25 and 2 respectively.
The interpretations of variables are:
1. Higher values of ?Z?: Operator interchangeability/sharing is not easy or very few
cross trained operators available. Another interpretation is that, highly skilled
operators are required for certain processes.
 34

2. Lower values of ?Y?: Management is ready to add buffers around non-bottleneck
resources to reduce the % of time spent by a bottleneck resource in idle state.
3. Higher values of ?X?: Management is in favor of adding resources either due to
the need for substantial increase in production or the cost of adding machines is
relatively less expensive than adding buffers in the long run.
As a part of this research, another algorithm was developed to help the analyst
decide on the changes to be made. This algorithm is an approximation technique which
uses the % of time spent by the machines in blocked state upstream to that of the
bottleneck resource and the blocking of the bottleneck resource due to the machines
downstream. An index (referred to as Blocked Index) is calculated based on these values
and the analyst is advised to either add buffers or add a parallel processing resource based
on the value of this index. If the thn machine is the bottleneck resource then Blocked
Index is calculate as follows:
Blocked Index = [?
?
=
1
1
(
n
i
iB - nB) / (n-1)]
Mathematical interpretation to the computation of the Blocked Index is that the
effects of machines downstream to bottleneck resource can be approximately represented
by the % of time spent by the bottleneck resource in the blocked state. The effect of the
bottleneck resource on the machines upstream can similarly be approximated to the
blocked state of those machines. Hence the average effect of the bottleneck machine on
resources upstream is given by the Blocked Index.
If the value of Blocked Index is higher than 40% (which is subjective), then the
analyst will be directed to add a parallel resource to the bottleneck machine.
 35

Pitfalls of this algorithm:
1. It overestimates the effect of the bottleneck machine on the resources upstream
as it fails to account for the blocking due to other non-bottleneck resources
2. The starving of the bottleneck machine is not taken into account, which can be
minimized by adding buffers, thereby increasing the throughput without adding
a parallel resource
3. The failure/exhaust states are not considered and hence the operator allocation
issue is not addressed
Due to the above stated inconveniences this algorithm was not used for decision
making purposes. Modifying the configuration of the system accordingly is discussed in
the next section.
3.3.8 Modify Configuration
After the analysis of the simulation models the proposed changes and the results
are shared with the decision makers and their suggestions for improvements are also
considered. If the decision makers want to conduct a cost analysis then factors like WIP,
machine costs, Labor costs etc. are taken into account. After analyzing all the possible
options a viable option is chosen and the data is updated /collected accordingly.

3.3.9 Data Update/Collection
The existing data is either updated or new data is collected to rebuild the static
model. Data is usually updated in cases where the company makes the choice of adding a
parallel resource to the line for which data is already available. New data is collected
usually when a new resource is added to the system for which the processing time or
 36

failure/exhaust rates are unknown or some process improvements on a resource is done
where the cycle time or the failures/exhausts or both the parameters change. The static
model and the simulation model are updated.

3.3.10 Documentation and Implementation
The process is terminated when the decision makers requirement/expectation are
met. Static and simulation models for various configurations are documented for future
reference and the proposed methodology is enforced.
37

CHAPTER 4
CASE STUDIES

The case studies conducted on four sets of production lines are presented in this
chapter. We analyze ten station lines and fifty station lines with low and high variability
in processing parameters. The production lines listed here can be thus be categorized into:
i) Long line with low variability in processing parameters , ii) Long line with high
variability in processing parameters, iii) Short line with low variability in processing
parameters and iv) Short line with high variability in processing parameters. The
methodology proposed in the previous chapter has been adapted in modeling and analysis
of these lines. The processing parameters under considered are:
? Processing time
? Time to failure
? Cycles to exhaust
? Time to repair
? Time to replenish
4.1 Experimental Setup
In this thesis, we have conducted ten sets of experiments for each category of
production line mentioned above. An experiment is setup by arbitrarily assigning mean
38

values to the processing parameters. The length of the line and coefficient of variation
(C.V.) of processing parameters are decided upon by the category in which it falls. For
example, a fifty machine line with a C.V. of around 10% for the processing parameters
would fall under the category of long lines with low variability in processing parameters.
The labeling of the experiments is shown in Table 4.1.
Table 4.1: Labeling of Experiments
C.V. between Process Parameters Length of Production Line
~ 0.10 ~ 0.30
10 SL SH
50 LL LH

Data points are generated for each processing parameter and each machine in the
system is assigned with a set of processing expression. Distribution for each processing
expression is selected arbitrarily and the system is dynamically generated from the Excel
template. The system thus modeled is simulated and tested against the algorithm
proposed in this thesis. This procedure can be explained better with the help of an
example. Let us consider a short line with low variability in processing parameters. The
mean values and C.V. between processes which were arbitrarily assigned are listed below
in Table 4.2. The range of all the mean values used in this thesis for processing
parameters is obtained from Jadhav and Smith (2005) and Jadhav (2005).
Table 4.2: SL-Configuration Example
Attribute Mean Value Units C.V. between processes
Processing Time Px 16 Sec 0.12
Time to Failure Lx 64.5 Min 0.10
Cycles to Exhaust Cx 30 Parts 0.13
Time to Repair Rx 280 Sec 0.11
 39

Time to Replenish Hx 90 Sec 0.09

 Normal distribution is selected to generate the data points and each machine is
assigned a data set as shown in Table 4.3. These data points in the table are used as mean
values for stations in the static model and a distribution is selected for each attribute in
the simulation model.
Table 4.3: Data for the Stations
Attribute
Resource Processing
Time
Time to
Failure
Cycles to
Exhaust
Time to
Repair
Time to
Replenish
Machine A 16.72 84.75 25 313.01 97.07
Machine B 17.86 82.07 25 326.76 81.98
Machine C 16.62 65.12 31 270.59 87.65
Machine D 19.54 72.54 23 302.26 98.05
Machine E 17.13 68.58 33 287.75 83.23
Machine F 17.06 88.33 34 307.07 87.24
Machine G 16.25 74.72 28 282.19 98.58
Machine H 18.87 84.68 40 288.56 74.11
Machine I 18.63 65.3 27 298.04 94.51
Machine J 16.61 72.73 37 292 80.45

40

41

42

Results:
Table 4.4: SL Example Results
Results
Initial throughput: 479,984
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine D Machine D
Mitigation Add 7 buffers in front of Machine D and 10 behind it Add 7 buffers in front of Machine D and 10 behind it
Throughput 530,581 530,581

The resource state graphs of the base case scenario and the one after adding buffers to the
bottleneck resource are shown in Figure 4.1 and Figure 4.2 respectively. The case studies
are presented in the next section.
43

4.2 Analysis of LL-Configuration
Case 1:
Table 4.5: Case LL-1
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 20 Sec 0.12
Time to Failure Lk 53.25 Min 0.13
Cycles to Exhaust Ck 115 Parts 0.11
Time to Repair Rk 155 Sec 0.08
Time to Replenish Hk 155 Sec 0.09
Results
Initial throughput: 88,184
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine X Machine F
Mitigation Add 10 buffers in front of Machine X and 15 behind it Add 10 buffers in front of Machine F and 20 behind it
Throughput 104,335 100,734

Case 2:
Table 4.6: Case LL-2
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 12 Sec 0.10
Time to Failure Lk 71 Min 0.10
Cycles to Exhaust Ck 70 Parts 0.10
Time to Repair Rk 120 Sec 0.10
Time to Replenish Hk 140 Sec 0.10
Results
Initial throughput: 125,452
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AV Machine AV
44
Mitigation
Add 10 buffers in front of
Machine AV and 7 behind it
and 3 buffers in front of and
behind Machine AT
Add 10 buffers in front of
Machine AV and 7 behind
it and 3 buffers in front of
and behind Machine AT
Throughput 143,623 143,623

Case 3:
Table 4.7: Case LL-3
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 19 Sec 0.09
Time to Failure Lk 71 Min 0.13
Cycles to Exhaust Ck 135 Parts 0.11
Time to Repair Rk 170 Sec 0.13
Time to Replenish Hk 145 Sec 0.08
Results
Initial throughput: 85,106
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AI Machine AI
Mitigation
Add 10 buffers in front of
Machine AI and 10 behind it,
and an operator
Add 10 buffers in front of
Machine AI and 10 behind
it, and an operator
Throughput 109,253 109,253

Case 4:
Table 4.8: Case LL-4
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 6 Sec 0.11
Time to Failure Lk 56.8 Min 0.11
Cycles to Exhaust Ck 100 Parts 0.09
Time to Repair Rk 80 Sec 0.11
45
Time to Replenish Hk 60 Sec 0.09
Results
Initial throughput: 268,871
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine F Machine F
Mitigation Add 8 buffers in front of Machine F and 20 behind it Add 8 buffers in front of Machine F and 20 behind it
Throughput 319,006 319,006

Case 5:
Table 4.9: Case LL-5
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 10 Sec 0.13
Time to Failure Lk 85.2 Min 0.12
Cycles to Exhaust Ck 100 Parts 0.08
Time to Repair Rk 100 Sec 0.09
Time to Replenish Hk 90 Sec 0.11
Results
Initial throughput: 175,707
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine Z Machine R
Mitigation Add 5 buffers in front of Machine Z and 12 behind it Add 10 buffers in front of Machine R and 8 behind it
Throughput 200,748 192,407

Case 6:
Table 4.10: Case LL-6
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 14 Sec 0.11
Time to Failure Lk 60.85 Min 0.09
46
Cycles to Exhaust Ck 120 Parts 0.13
Time to Repair Rk 130 Sec 0.12
Time to Replenish Hk 100 Sec 0.09
Results
Initial throughput: 133,799
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine X Machine AT
Mitigation Add 10 buffers behind Machine X
Add 5 buffers in front of
Machine AT and 10 behind
it
Throughput 155,529 152,734

Case 7:
Table 4.11: Case LL-7
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 21.5 Sec 0.10
Time to Failure Lk 56.8 Min 0.09
Cycles to Exhaust Ck 105 Parts 0.13
Time to Repair Rk 135 Sec 0.09
Time to Replenish Hk 135 Sec 0.10
Results
Initial throughput: 95,876
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AU Machine AU
Mitigation Add 10 buffers in front of Machine AU and 5 behind it
Add 10 buffers in front of
Machine AU and 5 behind
it
Throughput 106,815 106,815

Case 8:
Table 4.12: Case LL-8
Configuration
47
Attribute Mean Value Units C.V. between processes
Processing Time Pk 18 Sec 0.08
Time to Failure Lk 65.5 Min 0.11
Cycles to Exhaust Ck 130 Parts 0.09
Time to Repair Rk 120 Sec 0.13
Time to Replenish Hk 140 Sec 0.12
Results
Initial throughput: 114,569
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AQ Machine AQ
Mitigation Add 10 buffers in front of Machine AQ and 5 behind it Add 10 buffers in front of Machine AQ and 5 behind it
Throughput 127,498 127,498

Case 9:
Table 4.13: Case LL-9
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 8 Sec 0.13
Time to Failure Lk 94.6 Min 0.08
Cycles to Exhaust Ck 95 Parts 0.12
Time to Repair Rk 90 Sec 0.12
Time to Replenish Hk 80 Sec 0.11
Results
Initial throughput: 217,909
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AC Machine AF
Mitigation Add 12 buffers in front of Machine AC and 5 behind it
Add 20 buffers in front of
Machine AF and 3 behind
it
Throughput 244,860 231,759

48
Case 10:
Table 4.14: Case LL-10
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 16 Sec 0.09
Time to Failure Lk 77.45 Min 0.08
Cycles to Exhaust Ck 105 Parts 0.12
Time to Repair Rk 145 Sec 0.11
Time to Replenish Hk 120 Sec 0.08
Results
Initial throughput: 118,892
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine V Machine V
Mitigation Add 10 buffers in front of Machine V and 15 behind it Add 10 buffers in front of Machine V and 15 behind it
Throughput 136,133 136,133

Ten sets of lines with LL configuration were studied in this section. It was found
that the Bottleneck Index Method identified the same bottleneck as that of the Highest
Utilized Machine Method on six occasions. The Bottleneck Index Method yielded better
results in terms of throughput of the line for the remaining four cases. The results are
presented in Table 4.15. The scenarios where both methods found the same bottleneck
are bolded.
Table 4.15: Summary of LL-Configuration Results
Throughput
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine
Method
Case 1 88,184 104,335 100,734
Case 2 125,452 143,623 143,623
Case 3 85,106 109,253 109,253
Case 4 268,871 319,006 319,006
Case 5 175,707 200,748 195,407
49
Case 6 133,799 155,529 152,734
Case 7 95,876 106,815 106,815
Case 8 114,569 127,498 127,498
Case 9 217,909 244,860 231,759
Case 10 118,892 136,133 136,133

4.3 Analysis of LH-Configuration
Case 1:
Table 4.16: Case LH-1
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 12 Sec 0.30
Time to Failure Lk 71 Min 0.30
Cycles to Exhaust Ck 130 Parts 0.30
Time to Repair Rk 120 Sec 0.30
Time to Replenish Hk 140 Sec 0.30
Results
Initial throughput: 102,850
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AV Machine AV
Mitigation Add 15 buffers in front of Machine AV and 7 behind it
Add 15 buffers in front of
Machine AV and 7 behind
it
Throughput 111,725 111,725

Case 2:
Table 4.17: Case LH-2
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 10 Sec 0.33
Time to Failure Lk 85.2 Min 0.32
Cycles to Exhaust Ck 100 Parts 0.28
50
Time to Repair Rk 100 Sec 0.29
Time to Replenish Hk 90 Sec 0.33
Results
Initial throughput: 143,240
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine R Machine R
Mitigation Add 5 buffers in front of Machine R and 10 behind it Add 5 buffers in front of Machine R and 10 behind it
Throughput 149,833 149,833

Case 3:
Table 4.18: Case LH-3
Configuration
Attribute Mean Value Units
C.V.
between
processes
Processing Time Pk 14 Sec 0.31
Time to Failure Lk 60.85 Min 0.29
Cycles to Exhaust Ck 120 Parts 0.33
Time to Repair Rk 130 Sec 0.32
Time to Replenish Hk 100 Sec 0.29
Results
Initial throughput: 92,533
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine X Machine AT
Mitigation Add 15 buffers in front of Machine X and 20 behind it
Add 25 buffers in front of
Machine AT and 15
behind it and 4 buffers in
front of and behind
Machine AR
Throughput 111,221 107,092

Case 4:
Table 4.19: Case LH-4
51
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 16 Sec 0.29
Time to Failure Lk 77.45 Min 0.28
Cycles to Exhaust Ck 105 Parts 0.32
Time to Repair Rk 145 Sec 0.31
Time to Replenish Hk 120 Sec 0.28
Results
Initial throughput: 75,131
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine V Machine V
Mitigation
Add 5 buffers in front of
Machine V and 15 behind
it
Add 5 buffers in front of
Machine V and 15 behind it
Throughput 87,154 87,154

Case 5:
Table 4.20: Case LH-5
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 18 Sec 0.28
Time to Failure Lk 65.5 Min 0.31
Cycles to Exhaust Ck 130 Parts 0.29
Time to Repair Rk 120 Sec 0.33
Time to Replenish Hk 140 Sec 0.32
Results
Initial throughput: 83,335
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AW Machine J
Mitigation
Add 20 buffers in front of
Machine AW and 5
behind it
Add 10 buffers in front of
Machine J and 20 behind it
Throughput 94,947 91,045

52
Case 6:
Table 4.21: Case LH-6
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 20 Sec 0.32
Time to Failure Lk 53.25 Min 0.33
Cycles to Exhaust Ck 115 Parts 0.31
Time to Repair Rk 155 Sec 0.28
Time to Replenish Hk 155 Sec 0.29
Results
Initial throughput: 63,416
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine G Machine G
Mitigation
Add 8 buffers in front of
Machine G and 25 behind
it, and an operator
Add 8 buffers in front of
Machine G and 25 behind it,
and an operator
Throughput 73,051 73,051

Case 7:
Table 4.22: Case LH-7
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 21.5 Sec 0.30
Time to Failure Lk 56.8 Min 0.29
Cycles to Exhaust Ck 105 Parts 0.33
Time to Repair Rk 135 Sec 0.29
Time to Replenish Hk 135 Sec 0.30
Results
Initial throughput: 57,588
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine V Machine V
Mitigation Add 7 buffers in front of Machine V and 12 behind Add 7 buffers in front of Machine V and 12 behind
53
it, and an operator it, and an operator
Throughput 64,561 64,561

Case 8:
Table 4.23: Case LH-8
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 8 Sec 0.33
Time to Failure Lk 94.5 Min 0.28
Cycles to Exhaust Ck 95 Parts 0.32
Time to Repair Rk 90 Sec 0.32
Time to Replenish Hk 80 Sec 0.31
Results
Initial throughput: 155,645
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine W Machine W
Mitigation
Add 10 buffers in front of
Machine W and 20
behind it
Add 10 buffers in front of
Machine W and 20 behind
it
Throughput 170,172 170,172

Case 9:
Table 4.24: Case LH-9
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 6 Sec 0.31
Time to Failure Lk 56.8 Min 0.31
Cycles to Exhaust Ck 200 Parts 0.29
Time to Repair Rk 80 Sec 0.31
Time to Replenish Hk 60 Sec 0.29
Results
54
Initial throughput: 204,178
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine T Machine T
Mitigation
Add 5 buffers in front of
Machine T and 20 behind
it
Add 5 buffers in front of
Machine T and 20 behind it
Throughput 230,787 230,787

Case 10:
Table 4.25: Case LH-10
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 19 Sec 0.29
Time to Failure Lk 71 Min 0.33
Cycles to Exhaust Ck 220 Parts 0.31
Time to Repair Rk 170 Sec 0.33
Time to Replenish Hk 145 Sec 0.28
Results
Initial throughput: 58,779
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine AO Machine AO
Mitigation
Add 20 buffers in front of
Machine AO and 5
behind it and 2 buffers in
front of and behind
Machine AK
Add 20 buffers in front of
Machine AO and 5 behind
it and 2 buffers in front of
and behind Machine AK
Throughput 66,163 66,163

Ten sets of lines with LH configuration were studied in this section. It was found
that the Bottleneck Index Method identified the same bottleneck as that of the Highest
Utilized Machine Method on eight occasions. The Bottleneck Index Method yielded
better results in terms of throughput of the line for the remaining two cases. The results
55
are presented in Table 4.26. The scenarios where both methods found the same
bottleneck are bolded.

Table 4.26: Summary of LH-Configuration Results
Throughput
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine
Method
Case 1 102,850 111,725 111,725
Case 2 143,240 149,833 149,833
Case 3 92,533 111,221 107,092
Case 4 75,131 87,154 87,154
Case 5 83,335 94,944 91,045
Case 6 63,416 73,051 73,051
Case 7 57,588 64,561 64,561
Case 8 155,645 170,172 170,172
Case 9 204,178 230,787 230,787
Case 10 58,779 66,663 66,663

4.4 Analysis of SL-Configuration
Case 1:
Table 4.27: Case SL-1
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 6 Sec 0.08
Time to Failure Lk 53.25 Min 0.12
Cycles to Exhaust Ck 60 Parts 0.11
Time to Repair Rk 120 Sec 0.12
Time to Replenish Hk 35 Sec 0.08
Results
Initial throughput: 1,650,761
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine E Machine D
Mitigation Add 5 buffers in front of Machine E and 5 behind it Add 5 buffers in front of Machine D and 5 behind it
56
Throughput 1,834,244 1,736,535

Case 2:
Table 4.28: Case SL-2
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 20 Sec 0.11
Time to Failure Lk 106.5 Min 0.09
Cycles to Exhaust Ck 30 Parts 0.08
Time to Repair Rk 300 Sec 0.09
Time to Replenish Hk 90 Sec 0.11
Results
Initial throughput: 450,382
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine E Machine F
Mitigation
Add 5 buffers in front of
Machine E and 10 behind it,
and an operator
Add 15 buffers in front of
Machine F and 8 behind it,
and an operator
Throughput 523,395 500,963

Case 3:
Table 4.29: Case SL-3
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 15 Sec 0.10
Time to Failure Lk 50 Min 0.10
Cycles to Exhaust Ck 50 Parts 0.10
Time to Repair Rk 20 Sec 0.10
Time to Replenish Hk 120 Sec 0.10
Results
Initial throughput: 984,053
 Bottleneck Index Method Highest Utilization Method
57
Bottleneck Machine E Machine E
Mitigation Add Machine E Add Machine E
Throughput 1,004,148 1,004,148

Case 4:
Table 4.30: Case SL-4
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 16 Sec 0.12
Time to Failure Lk 64.50 Min 0.10
Cycles to Exhaust Ck 30 Parts 0.13
Time to Repair Rk 280 Sec 0.11
Time to Replenish Hk 90 Sec 0.09
Results
Initial throughput: 479,984
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine D Machine D
Mitigation Add 7 buffers in front of Machine D and 10 behind it Add 7 buffers in front of Machine D and 10 behind it
Throughput 530,581 530,581

Case 5:
Table 4.31: Case SL-5
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 22 Sec 0.09
Time to Failure Lk 85 Min 0.13
Cycles to Exhaust Ck 70 Parts 0.11
Time to Repair Rk 140 Sec 0.08
Time to Replenish Hk 85 Sec 0.12
Results
58
Initial throughput: 625,096
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine I Machine G
Mitigation Add 5 buffers in front of Machine I and 3 behind it Add 5 buffers in front of Machine G and 8 behind it
Throughput 665,599 633,404

Case 6:
Table 4.32: Case SL-6
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 25 Sec 0.08
Time to Failure Lk 60.8 Min 0.11
Cycles to Exhaust Ck 60 Parts 0.08
Time to Repair Rk 100 Sec 0.09
Time to Replenish Hk 60 Sec 0.11
Results
Initial throughput: 587,503
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine B Machine B
Mitigation Add Machine B Add Machine B
Throughput 588,447 588,447

Case 7:
Table 4.33: Case SL-7
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 18 Sec 0.13
Time to Failure Lk 106.5 Min 0.08
Cycles to Exhaust Ck 50 Parts 0.09
Time to Repair Rk 150 Sec 0.11
59
Time to Replenish Hk 100 Sec 0.13
Results
Initial throughput: 539,741
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine E
Mitigation
Add 7 buffers in front of
Machine H and 10 behind
it, and an operator is
added to the line
Add 7 buffers in front of
Machine E and 15 behind it,
and an operator is added to the
line
Throughput 587,335 564,214

Case 8:
Table 4.34: Case SL-8
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 12 Sec 0.10
Time to Failure Lk 60.85 Min 0.10
Cycles to Exhaust Ck 25 Parts 0.10
Time to Repair Rk 300 Sec 0.10
Time to Replenish Hk 70 Sec 0.10
Results
Initial throughput: 584,591
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine D Machine D
Mitigation
Add 5 buffers in front of
Machine D and 10 behind
it
Add 5 buffers in front of
Machine D and 10 behind it
Throughput 664,215 664,215

Case 9:
Table 4.35: Case SL-9
Configuration
Attribute Mean Value Units C.V. between processes
60
Processing Time Pk 10 Sec 0.09
Time to Failure Lk 85.5 Min 0.13
Cycles to Exhaust Ck 40 Parts 0.12
Time to Repair Rk 220 Sec 0.11
Time to Replenish Hk 45 Sec 0.12
Results
Initial throughput: 1,089,495
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine E Machine D
Mitigation Add 3 buffers in front of Machine E and 5 behind it Add 20 buffers behind Machine D
Throughput 1,180,721 1,140,280

Case 10:
Table 4.36: Case SL-10
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 8.5 Sec 0.13
Time to Failure Lk 71 Min 0.12
Cycles to Exhaust Ck 50 Parts 0.10
Time to Repair Rk 170 Sec 0.10
Time to Replenish Hk 50 Sec 0.11
Results
Initial throughput: 1,111,752
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine C
Mitigation
Add 10 buffers in front of
Machine H and 10 behind
it
Add 15 buffers in front of
Machine C and 15 behind it
Throughput 1,219,555 1,141,881

Ten sets of lines with SL configuration were studied in this section. It was found
that the Bottleneck Index Method identified the same bottleneck as that of the Highest
61
Utilized Machine Method on four occasions. The Bottleneck Index Method yielded better
results in terms of throughput of the line for the remaining six cases. The results are
presented in Table 4.37. The scenarios where both methods found the same bottleneck
are bolded.

Table 4.37: Summary of SL-Configuration Results
Throughput
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine
Method
Case 1 1,650,761 1,834,244 1,736,535
Case 2 450,382 523,395 500,963
Case 3 984,053 1,004,148 1,004,148
Case 4 479,984 530,581 530,581
Case 5 625,096 665,599 633,404
Case 6 587,503 588,447 588,447
Case 7 539,741 587,335 564,032
Case 8 584,591 664,215 664,215
Case 9 625,096 665,599 633,404
Case 10 1,111,752 1,219,555 1,141,881

4.5 Analysis of SH-Configuration
Case 1:
Table 4.38: Case SH-1
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 18 Sec 0.30
Time to Failure Lk 7 Min 0.30
Cycles to Exhaust Ck 150 Parts 0.30
Time to Repair Rk 150 Sec 0.30
Time to Replenish Hk 200 Sec 0.30
Results
Initial throughput: 477,761
62
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine C Machine C
Mitigation Add 10 buffers in front of Machine C and 15 behind it Add 10 buffers in front of Machine C and 15 behind it
Throughput 553,850 553,850

Case 2:
Table 4.39: Case SH-2
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 16 Sec 0.33
Time to Failure Lk 106.5 Min 0.32
Cycles to Exhaust Ck 110 Parts 0.29
Time to Repair Rk 240 Sec 0.28
Time to Replenish Hk 180 Sec 0.33
Results
Initial throughput: 517,369
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine H
Mitigation Add 7 buffers in front of Machine H and 3 behind it Add 7 buffers in front of Machine H and 3 behind it
Throughput 566,800 566,800

Case 3:
Table 4.40: Case SH-3
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 10 Sec 0.31
Time to Failure Lk 86.5 Min 0.29
Cycles to Exhaust Ck 45 Parts 0.33
Time to Repair Rk 180 Sec 0.32
Time to Replenish Hk 100 Sec 0.29
63
Results
Initial throughput: 763,443
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine E
Mitigation Add 7 buffers in front of Machine H and 15 behind it Add 10 buffers in front of Machine E and 18 behind it
Throughput 857,098 795,458

Case 4:
Table 4.41: Case SH-4
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 13.5 Sec 0.29
Time to Failure Lk 106.5 Min 0.28
Cycles to Exhaust Ck 70 Parts 0.32
Time to Repair Rk 120 Sec 0.32
Time to Replenish Hk 90 Sec 0.28
Results
Initial throughput: 878,667
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine H
Mitigation Add 1 buffers in front of Machine H and 3 behind it Add 1 buffers in front of Machine H and 3 behind it
Throughput 959,073 959,073

Case 5:
Table 4.42: Case SH-5
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 8 Sec 0.28
Time to Failure Lk 213 Min 0.31
Cycles to Exhaust Ck 30 Parts 0.29
64
Time to Repair Rk 46.5 Sec 0.33
Time to Replenish Hk 23.5 Sec 0.32
Results
Initial throughput: 1,565,133
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine E Machine B
Mitigation Add Machine E Add Machine B
Throughput 1,619,663 1,565,133

Case 6:
Table 4.43: Case SH-6
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 25 Sec 0.32
Time to Failure Lk 170 Min 0.33
Cycles to Exhaust Ck 130 Parts 0.31
Time to Repair Rk 80 Sec 0.28
Time to Replenish Hk 70 Sec 0.27
Results
Initial throughput: 427,741
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine C Machine C
Mitigation Add Machine C Add Machine C
Throughput 523,610 523,610

Case 7:
Table 4.44: Case SH-7
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 20 Sec 0.30
Time to Failure Lk 71 Min 0.29
65
Cycles to Exhaust Ck 90 Parts 0.33
Time to Repair Rk 220 Sec 0.29
Time to Replenish Hk 130 Sec 0.30
Results
Initial throughput: 564,081
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine E Machine E
Mitigation Add 3 buffers in front of Machine E and 3 behind it Add 3 buffers in front of Machine E and 3 behind it
Throughput 605,291 605,291

Case 8:
Table 4.45: Case SH-8
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 12 Sec 0.33
Time to Failure Lk 142 Min 0.28
Cycles to Exhaust Ck 100 Parts 0.32
Time to Repair Rk 65 Sec 0.32
Time to Replenish Hk 140 Sec 0.31
Results
Initial throughput: 856,211
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine C Machine F
Mitigation Add 4 buffers in front of Machine C and 10 behind it Add 15 buffers in front of Machine F and 5 behind it
Throughput 929,791 882,391

Case 9:
Table 4.46: Case SH-9
Configuration
Attribute Mean Value Units C.V. between processes
66
Processing Time Pk 15 Sec 0.31
Time to Failure Lk 94 Min 0.31
Cycles to Exhaust Ck 120 Parts 0.29
Time to Repair Rk 130 Sec 0.31
Time to Replenish Hk 100 Sec 0.29
Results
Initial throughput: 632,703
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine C Machine C
Mitigation Add Machine C Add Machine C
Throughput 705,078 705,078

Case 10:
Table 4.47: Case SH-10
Configuration
Attribute Mean Value Units C.V. between processes
Processing Time Pk 22 Sec 0.29
Time to Failure Lk 77.5 Min 0.33
Cycles to Exhaust Ck 880 Parts 0.31
Time to Repair Rk 160 Sec 0.33
Time to Replenish Hk 170 Sec 0.28
Results
Initial throughput: 466,609
 Bottleneck Index Method Highest Utilization Method
Bottleneck Machine H Machine H
Mitigation Add 3 buffers in front of Machine H and 6 behind it Add 3 buffers in front of Machine H and 6 behind it
Throughput 501,315 501,315

Ten sets of lines with SH configuration were studied in this section. It was found
that the Bottleneck Index Method identified the same bottleneck as that of the Highest
Utilized Machine Method on seven occasions. The Bottleneck Index Method yielded
67
better results in terms of throughput of the line for the remaining three cases. The results
are presented in Table 4.48. The scenarios where both methods found the same
bottleneck are bolded. The resource state graphs of all case studies have been presented
in the appendix.
Table 4.48: Summary of SH-Configuration Results
Throughput
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine
Method
Case 1 477,761 553,850 553,850
Case 2 517,369 566,800 566,800
Case 3 763,443 857,098 795,458
Case 4 878,667 959,073 959,073
Case 5 1,565,133 1,619,663 1,565,133
Case 6 427,741 523,610 523,610
Case 7 564,081 605,291 605,291
Case 8 856,211 929,791 882,391
Case 9 632,703 705,078 705,078
Case 10 466,609 501,315 501,315

The simulation models for the case studies presented above were built with the
help of the Excel template developed as a part of this thesis. This reduced the modeling
efforts to a great extent; wherein the simulation model was built at a ?click of a button?.
The algorithm that was developed to detect the bottleneck in any serial production system
and give the simulation analyst a direction in an effort to increase throughput with the
consideration of economics was tested and verified under different conditions.
It was found that out of the forty scenarios that were analyzed in this thesis, there
were only twenty-five cases in which the highest utilized machine was actually the
bottleneck resource (both Bottleneck Index and Highest Utilized Machine Methods
detected the same bottleneck in these twenty-five cases). We use the mitigation procedure
developed in this thesis for bottlenecks detected by Bottleneck Index and Highest
68
Utilized Machine Methods. For the fifteen cases in which the methods identified different
bottlenecks, our technique of detecting the bottleneck and mitigating the same yielded
better throughput. This difference in throughput between the lines after mitigation gives
us evidence that our method of identifying the bottleneck of a serial production system is
more accurate than the traditional method. We analyzed the resource state graphs of these
fifteen cases to find out the conditions in which Bottleneck Index Method chose a
different resource rather than choosing the one with the highest utilization. It is listed as
follows:
? It occurs only when there are some machines in the line with very similar
processing times as that of the highest utilized machine and
? In the absence of station breakdown (failure and exhaust) both the methods
always pick the same bottleneck resource
From the fifteen cases in which the methods identified different bottlenecks, it
was found that on an average there were around 2.93 resources in those systems whose
average percentage of utilization was 2.27% lesser than that of the highest utilized
machine. A mathematical explanation to why both methods pick the same bottleneck
resource in the absence of breakdowns is that our method detects the bottleneck based on
the time a resource spends in idle and blocked states. A machine can exist only in three
states namely, busy, idle and blocked in the absence of breakdowns. The % of time a
resource spends in busy state is dictated by its processing time. So mathematically, a
machine with highest utilization in the absence of station breakdowns will spend the least
% of time in idle and blocked states. But in the presence of machine breakdowns, factors
like operator interference affect the % of time spent by a resource in idle and blocked
69
states and our method might choose a different resource other than the highest utilized
machine to be the bottleneck resource.
70
CHAPTER 5
CONCLUSIONS AND FUTURE WORK

This thesis dealt with the problem of dynamic generation of simulation models
and analysis of serial production systems which is characterized by capacitated buffers,
stochastic processing times, unreliable machines, rework loops, maintenance and operator
issues. This is a significant issue in the field of manufacturing where the decision makers
are often faced with the task of accessing the throughput of a production line, thereby
allocating resources and buffers accordingly to meet the annual requirement of the plant.
This process has to be carried out in relatively short time with no compromises in
accuracy of the estimates.
In this thesis, a VBA project was undertaken in an effort to automate the process
of simulation model building, which will enable decision makers with working
knowledge of discrete event simulation to carryout case studies with minimal efforts. The
result of this VBA project was an Excel template, where in the analyst could specify the
processing parameters for each station and the simulation model of the line will be
dynamically generated in Arena 7.01. This reduced the simulation modeling efforts to a
great extent.
We have developed a technique (Bottleneck Index Method) to detect the
bottleneck resource in any serial production system by effectively using the resource state
statistics, which records the % of time spent by a station in the seven different states
71
discussed in this thesis. This technique of ours is compared to that of the traditional
bottleneck detection method, where in the resource with the highest utilization is
considered to be the bottleneck. We analyze ten station lines and fifty station lines with
low and high variability in processing parameters. The production lines analyzed in this
thesis can be thus be categorized into: i) Long line with low variability in processing
parameters , ii) Long line with high variability in processing parameters, iii) Short line
with low variability in processing parameters and iv) Short line with high variability in
processing parameters. We have conducted ten sets of experiments for each category. As
a part of this thesis, we have developed a procedure to curb the bottleneck of a system
after the detection of the same. We use this mitigation procedure for bottlenecks detected
by Bottleneck Index and Highest Machine Utilization Methods. Out of the forty cases
that were analyzed, both Bottleneck Index and Highest Machine Utilization Methods
detected the same bottleneck machine in twenty-five cases. For the rest of the cases
(which is about 37.5%) it was shown that our technique of detecting the bottleneck and
mitigating the same yielded better throughput. The ability to rightly identify the
bottleneck is demonstrated in this thesis. It was also shown in the case studies that the
throughput of a system could be improved appreciably by proper adaptation of the
mitigation techniques suggested in this thesis. Any marginal increase in the throughput of
a line could result in saving millions of dollars. Proper application of the proposed
methodologies will help management achieve the desired production rate with minimal
outlay.
Buffer allocation is an area which needs further investigation. Currently, the
algorithm proposed in this thesis analyses output from a simulation model and may
72
suggest changes like adding buffers to a resource. But there is no quantification of the
size of the buffer that is to be added. The analyst has to guess estimate this value by
looking at the % of time that resource has spent on different states. If the buffers added
are surplus or deficit then there is a chance that the study will undergo an extra iteration.
Another algorithm which will quantify the amount of buffers to be added can be
developed and it can be integrated into the techniques proposed in this thesis. This way
time taken for the complete study can be further reduced.
Another potential extension to this research will be to make the simulation model
accessible through the World Wide Web where in the user can build the model, run the
same and analyze the system from a remote server. This can be accomplished with the
help of XML. Standards like B2MML can be used in developing the schemas for XML;
thereby the sender and receiver will have the same expectations of the data that is being
shared.
73
REFERENCES

Blumenfeld, D. E. (1990). A simple formula for estimating throughput of serial
production lines with variable processing times and limited buffer capacity, Int. J.
Prod. Res., Vol. 28, No. 6, 1163-1182.
Burman, M.H. (1995). New results in flow line analysis, MIT, Thesis.
Chen, C.T., Yuan, J.,

and Lin, M.H. (2003).Transient Throughput Analysis using Sample
Path Method for Serial Unreliable Work Centers, International Journal of The
Computer, The Internet and Management, Vol. 11, No.1, 30 ? 41.
Chiang, S.Y., Kuo, C.T., and Meerkov, S.M. (2000). DT-Bottlenecks in Serial Production
Lines: Theory and Application, IEEE Transactions on Robotics and Automation, Vol.
16, No. 5, 567- 579.
Chiang, S.Y., Kuo, C.T. and Meerkov, S.M. (2001). C-Bottlenecks in Serial Production
Lines" Identification and Application, Mathematical Problems in Engineering Vol. 7,
543-578.
Choong, Y.F., and Gershwin, S.B. (1986). A decomposition method for the approximate
evaluation of capacitated transfer lines with unreliable machines and random
processing times, MIT Laboratory for Information and Decision Systems Report
LIDS-P-1476. 1-36.
Cochran, J. K., Erol, R. (2001). Performance modelling of serial production lines with
inspection/repair stations, Int.J. Prod. Res., Vol. 39, No. 8, 1707-1720
74

Dallery, Y. and Gershwin, S.B. (1992). Manufacturing flow line systems: a review of
models and analytical results. Queuing Systems, 12, 3-94.
Doss, D.L. and Ulgen, O.M. (2004). A case for generic, custom-designed simulation
applications for material handling and manufacturing industries. Brooks Automation?s
Worldwide Automation Symposium, 1-5.
Enginarlar, E., Li, J., Meerkov, S.M., and Zhang, R.Q. (2002). Buffer capacity for
accommodating machine downtime in serial production lines, Int. J. Prod. Res., Vol.
40, No. 3, 601- 624.
Farrington, P.A., Rogers, J.S., Schroer, B.J., Swain, J.J., and Evans, J.J. (1995).
Simulation environment for electronics manufacturing. In proceedings of 1995 Winter
Simulation Conference, 917-924.
Fishman, G. S. (2001). Discrete Event Simulation: Modeling, Programming and
Analysis, Springer-Verlag, New York.
Gershwin, S. B. (1983). An Efficient Decomposition Method for the Approximate
Evaluation of Tandem Queues with Finite Storage Space and Blocking, MIT
Laboratory for Information and Decision Systems Report LIDSP-P1309.
Harris, J.H., and Powell, S.G. (1999), An algorithm for optimal buffer placement in
reliable serial lines, IIE Transactions 31, 287 ? 302.
Hopp, W. J. and Spearman, M. L. (2000). Factory Physics. McGraw Hill.
Jadhav, P.D., Smith, J.S., 2005, Analyzing Printed Circuit Board Assembly Lines Using
A PCB Assembly Template. In Proceedings of the 2005 Winter Simulation
75
Conference, eds. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 1335-
1342.
Jadhav, P.D. (2005), Simulation modeling and analysis of printed circuit board assembly
lines, Auburn University, Thesis.
Law, A.M., and Kelton, W.D. (2000). Simulation Modeling and Analysis. McGraw Hill.
Lawrence, S.R., Buss, A.H. (1994). Shifting production bottlenecks: Causes, Cures and
Conundrums, Production and Operations Management, Vol. 3 No. 1, 22-38.
Li, J. (2005). Overlapping Decomposition: A System-Theoretic Method for Modeling
and Analysis of Complex Manufacturing Systems. IEEE Transactions on Automation
Science and Engineering Vol. 2, No. 1, 40-53.
McLean, C., and Leong, S. (2001). The expanding role of simulation in future
manufacturing, Proceedings of the 2001 Winter Simulation Conference, Eds. B.A.
Peters, J.S. Smith, D.J. Medeiros and M.W. Rohrer. 1478 - 1486.
Moss, H.K. and Yu, W.B. (1999). Toward the estimation of bottleneck shiftiness in a
manufacturing operation, Production and Inventory Management Journal; 40, 2; 53-
58.
Mukkamala, P. S., Smith, J.S., Valenzuela, J. F., 2003, Designing Reusable Simulation
Modules For Electronics Manufacturing Systems. In Proceedings of the 2003 Winter
Simulation Conference, eds. S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice,
1281-1289.
Mukkamala, P. S. (2003), Design of a template in simulation for various machines in
electronics assembly and it?s implementation in the simulation package Arena, Auburn
University, Thesis.
76
Paik, C.H., Kim, H.G. and Cho, H.S. (2002). Performance analysis for closed-loop
production systems with unreliable machines and random processing times,
Computers & Industrial Engineering 42, 207- 220.
Papadopoulos, H.T., Vidalis, M.I. (2001). A heuristic algorithm for the buffer allocation
in unreliable unbalanced production lines, Computers & Industrial Engineering 41,
261 ? 277.
Powell, S.G., and Pyke, D.F. (1998), Buffering unbalanced assembly systems, IIE
Transactions 30, 55 ? 65.
Reiser, M., and Lavenberg, S.S. (1980). Mean-value analysis of closed multichain
queueing networks. Journal of the ACM, 27 (2), 312 - 322
Roser, C., Nakano, M., Tanaka, M. (2001). A practical bottleneck detection method,
Proceedings of the 2001 Winter Simulation Conference, B. A. Peters, J. S. Smith, D. J.
Medeiros, and M. W. Rohrer, eds., 949-953.
Roser, C., Nakano, M., Tanaka, M., (2003). Buffer allocation model based on a single
simulation, Proceedings of the 2003 Winter Simulation Conference, S. Chick, P. J.
S?nchez, D. Ferrin, and D. J. Morrice, eds., 1238-1246.
Shi, L., and Men, S., (2003). Optimal buffer allocation in production lines, IIE
Transactions 35, 1?10
Snodgrass, E., (1994). Beyond the Basics of Reengineering: Survival Tactics for the 90?s.
Quality Resources, White Plains, New York, USA.
Tempelmeier, H. and Burger, M. (2001), Performance evaluation of unbalanced flow
lines with general distributed processing times, failures and imperfect production, IIE
Transactions 33, 293 ? 302.
77
Yamashita, H., and Alitok, T. (1998), Buffer capacity allocation for a desired throughput
in production lines, IIE Transactions 30, 883 ? 889.
78
APPENDICES
79
APPENDIX I
RESOURCE STATE GRAPHS FOR LL-CONFIGURATION
80

81

82

83

84

85

86

87

88

89

90
APPENDIX II
RESOURCE STATE GRAPHS FOR LH-CONFIGURATION
91

92

93

94

95

96

97

98

99

100

101

APPENDIX III
RESOURCE STATE GRAPHS FOR SL-CONFIGURATION
102

103

104

105

106

107

108

109

110

111

112

APPENDIX IV
RESOURCE STATE GRAPHS FOR SH-CONFIGURATION
113

114

115

116

117

118

119

120

121

122

