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THESIS ABSTRACT 
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(B.S.M.E., Kumaraguru College of Technology, Bharathiyar University, 2004) 
 
138 Typed Pages 
 
Directed by Jeffrey S. Smith 
 
 A variety of analytical models have been proposed to model and analyze serial 
manufacturing systems. Most analytical models, however, make simplifying assumptions 
in order to remain mathematically tractable. These analytical formulations do not, 
however, model the underlying real-world system accurately. Discrete event simulation is 
one of the primary tools, which provides decision support by capturing the working of 
complex systems at level of detail and accuracy needed. This thesis analyzes the working 
of serial production lines characterized by capacitated buffers, stochastic processing 
times, unreliable machines, rework loops, maintenance and operator issues with the help 
of discrete event simulation to ascertain its throughput. However, in the past researchers 
have not been excited about the time it takes to build a complete simulation model. In an 
v 
effort to fast track the process of model development, a VBA project is undertaken which 
will dynamically generate a simulation model in Arena 7.01 from an Excel template. We 
also propose an algorithm which will automatically detect the bottleneck of a serial 
manufacturing system and provide recommendations to the analyst. These include 
reallocation of operators, addition of buffers or parallel resources with an objective of 
increasing the throughput of the system with due economic consideration. Simulation 
studies are undertaken on different serial manufacturing lines to illustrate the 
effectiveness of the techniques developed.
vi 
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CHAPTER 1 
INTRODUCTION 
 
Process improvement programs and reengineering have taken a front seat due to a 
significant increase in competition amongst the giants in manufacturing industry 
(Snodgrass, 1994). These programs require an accurate estimate of performance metrics 
such as throughput capacity of a given layout to justify projects and make valid 
comparisons between various restructuring options which would cost millions of dollars 
to implement. The focus of this thesis is on the analysis of serial production lines which 
are characterized by capacitated buffers, stochastic processing times, unreliable 
machines, rework loops, maintenance and operator issues. This constitutes a complex 
manufacturing system for which we have adopted discrete event simulation as a tool to 
predict the performance metrics. As a part of this thesis, a VBA project was undertaken 
in an effort to automate the process of building a simulation model in Arena 7.01 from an 
Excel template. This will enable line managers with the working knowledge of 
simulation develop and modify models with minimal efforts and cut down on repetitive 
model building and modification time to a great extent. We have also developed an 
algorithm which will automatically detect the bottleneck in a serial production system 
and suggest appropriate changes to the analyst with an objective of increasing the 
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throughput of the system. These techniques are embedded in a ten step methodology 
presented in this thesis.  
1.1 Serial Manufacturing Lines 
Serial production lines are sequential arrangements of machines designed for a 
specific product. Products enter the system through the first station, get processed in a 
sequential order and leave the system as finished products (Cochran and Erol, 2001). The 
stations are independent of each other (for instance station x failing will have no bearing 
on when station x+1 is going to fail next) and have varying processing times. Buffers 
might be located at specific points and when a buffer in front of the bottleneck machine is 
full, the upstream stations are blocked and the downstream stations are starved 
(Blumenfeld, 1990). 
Dallery and Greshwin (1992) classify features and properties of serial 
manufacturing lines. They are detailed as follows:  
a) Synchronous / asynchronous: In synchronous systems all machines start and 
stop at the same instant and their operating times are assumed to be deterministic. The 
system automatically indexes at constant intervals. Events like repair and replenishment 
occur at discretized time intervals. Asynchronous systems have buffers between stations 
which make them independent of one another as long as the buffers are neither full nor 
empty. The station begins to work on a new unit as soon as the previous unit is 
completed.  
b) Saturated / non-saturated: Models built on the assumption that the first machine 
is never starved and the last machine is never blocked are called saturated models. 
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Saturated models are used to predict the production rate of a system. The concept of 
having uncertain arrival and departure of parts constitute non-saturated models.  
c) Blocking, Starving and decoupling: When a machine ceases to operate, the 
upstream machines can still pass on parts until the buffers upstream are full and the 
downstream machines will receive parts until buffers downstream are empty. When the 
upstream buffers are full, those machines are said to be blocked and when the 
downstream buffers are empty those machines are said to be starved. When there is no or 
very small buffering it causes the greatest coupling between machines and there exists 
least coupling when the buffer sizes are large.  
d) Failures: Failures can be classified into time dependent and operation 
dependent failures. Failures in stations that follow a chronological frequency are 
classified under time dependent failures. When the failures occurring depend on the 
number of units processed by a station it is called an operation dependent failure.  
e) Operating times and policy: Efforts are made to design the production lines 
such that the machines in the system have more or less the same production capacity. The 
reason being the throughput of a line depends on the production rate of the bottleneck 
machine and the investments made on other expensive machines in the line cannot be 
economically justified if its production rate is significantly higher. But in the real world 
scenarios due to the practical constraints this is not always achieved. 
Serial production systems in this thesis are depicted as a sequential arrangement 
of identical/non identical stations which are capable of processing one part at a time or 
parts in batches. The stations might have inbuilt conveyors, multiple head processing 
systems and other complex configurations. The processing time of a product might vary 
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from one machine to the other and can be stochastic. Each station is subjected to failures 
and exhausts. When a station is in a state of failure/exhaust a technician is seized for 
repair/replenish operations and the priority with which technicians are seized can also be 
specified. The stations are connected to one another by means of a conveyor which can 
be either accumulating or non-accumulating. Capacitated buffers might be placed at 
various points in the line between stations and the buffer discipline can be FIFO/LIFO. 
The lines might include parallel ?legs? to increase production. In this configuration, the 
main line is split into parallel lines and these parallel lines merge into the main line after 
some operations. Some stations might be dedicated to inspect the quality of products at 
various points in the production line. The production line might also have rework loops 
where components which don?t meet the quality criteria are being worked on and some 
parts might be scraped (Li, 2005). 
In this thesis the effects of capacitated buffers are studied from the perspective of 
only increasing the production rate and it doesn?t take inventory costs into account. Also 
the products in the buffers are thought of as nonperishable items. 
 
1.2 Discrete Event Simulation 
?Discrete-event simulation consists of a collection of techniques that, when 
applied to the study of a discrete-event dynamical system, generates sequences called 
sample paths that characterize its behavior? (Fishman, 2001). The term simulation in this 
thesis refers to discrete-event simulation. Simulation has evolved into a powerful decision 
support tool for manufacturing industries which is dominated by dynamic and stochastic 
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variables. A serial production line can be viewed as a system that has resources 
(machines and operators) arranged in some predetermined order, which processes entities 
(units). Simulation helps the decision makers to gain insights into such systems to make 
improvements. By doing so, simulation increases the utilization and productivity of a 
system and the organization ends up making quality decisions.  
Simulation helps answer the ?what if? questions posted by the management to decision 
makers. Some of the common questions posted are:  
? Can target production be met? 
? Is a layout change necessary? 
? Should the material handling system be changed? 
? What should be the size of buffers at various points in the line? 
? Which is the bottleneck machine and what?s its effect on the production rate? 
? Should additional resources be added to the line? 
? What is the effect of product mix on the line? 
Simulation can provide answers to all of the above questions. With increased 
computational power, the cost of a simulation study is estimated to be less than 1% of the 
total amount spent in implementing a design or redesign (McLean, 2001). The general 
consensus is that simulation is not adopted by most of the manufacturing industries in 
spite of these advantages (McLean, 2001). This thesis highlights the importance of 
simulation in the field of manufacturing systems and provides a methodology which will 
enable managers with basic knowledge of simulation to make effective use of this tool. 
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1.3 Motivation and Overview of Thesis 
This research is an extension of Mukkamala et al. (2003), Mukkamala (2003), 
Jadhav and Smith (2005) and Jadhav (2005) work. Mukkamala et al. (2003) and 
Mukkamala (2003) developed a domain specific template for the automated assembly of 
PCB. Their research focused in building PCM assembly template to analyze serial 
production PCB assembly lines where a typical machine has an input area, a processing 
area and an output area. The input area comprises of an input conveyor and an optional 
capacitated input buffer. Similarly an output buffer comprises of an output conveyor and 
an optional capacitated output buffer. Jadhav and Smith (2005) and Jadhav (2005) used 
the templates to build simulation models and predict the throughput of serial production 
systems. The simulation studies conducted were time consuming and the bottleneck 
resource detection was done by eyeballing the resource state graph.  
In this thesis we have undertaken a VBA project to dynamically generate the 
simulation model of the underlying system using an Excel template. We have also 
developed an algorithm which will automatically detect the bottleneck resource and 
suggest appropriate changes to the analyst in an effort to mitigate the bottleneck resource, 
thereby improving the throughput of the system. These techniques which fast track the 
process of a simulation study, have been embedded in a ten step methodology. 
 The next chapter will review literature relevant to this thesis. Chapter 3 presents 
the problem statement and the methodology developed. Chapter 4 comprises of case 
studies which verify the proposed techniques. Chapter 5 contains the conclusion and 
discusses future research.
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CHAPTER 2 
LITERATURE REVIEW 
 
This chapter reviews the complexities and assumptions involved in developing 
analytical models to estimate the throughput of serial production systems present in the 
literature. This discussion is followed by contrasting the bottleneck detection methods 
present in the literature to ours. Buffer allocation which plays an important part in 
enhancing the performance of serial production systems is also discussed in this chapter. 
Finally, the ideas in literature to develop a simulation interface to expedite the process of 
model building are presented. 
 
2.1 Analytical Modeling and Evaluation of Serial Production Systems 
Cochran and Erol (2001) developed an analytical model for serial production lines 
to estimate throughput rates, scrap rates and outgoing quality levels by incorporating 
traffic rate equations. The serial production lines in this analysis are modeled as directed 
flow networks. The model explicitly differentiates between operation stations and 
inspection/repair stations. This model can be used for inspection configuration designs 
and formulation of optimal cost models. 
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Li (2005) evaluates the throughput of complex serial production system with 
parallel, rework and scrap operations using the overlapping decomposition technique. 
The idea behind this methodology is to divide the complex system into a number of serial 
production systems wherein the last machine of a serial line overlaps with the first 
machine of the next serial line. They adapt aggregation techniques and the throughput of 
a system is estimated when the procedure converges. This method is developed under the 
assumption that the processing rates of all the machines in the system are the same. 
Choong and Greshwin (1986) develop a decomposition method to analyze 
capacitated transfer lines with capacitated buffers and random service times. It is based 
on a model developed by Greshwin (1983) that approximates a (K-1)-buffer system by 
K-1 single-buffer systems. Throughput and average buffer levels of the system are 
calculated by formulating an iterative search algorithm. This model has been verified 
with the help of several numerical examples and the authors conclude that this approach 
is viable only if the probability that a machine is starved and blocked at the same time is 
small. Machine k is said to be both blocked and starved, only when machine ki-1 is either 
under repair, starved or is processing a piece and machine ki+1 is either under repair, 
blocked or is processing a piece. The buffer in front of machine k is empty while the one 
in front of machine ki+1 is full. According to the author, this probability will be high if 
there is a huge variation in efficiencies (probability that a station is processing a work 
piece) and processing rates of the machines. Under such conditions the method may 
break down. 
Burman (1995) investigates flow lines with unreliable machines and develops an 
analytical decomposition-type approximation technique to estimate throughput of such 
 9 
systems. ?Accelerated Dallery-David-Xie? (ADDX) algorithm was developed as a part of 
his thesis for solving the decomposition equations developed for flow lines. This 
analytical technique accounts for non-homogeneous flow, operation dependent failures, 
unreliable machines and failing buffers. The application of this technique is however 
limited to flow lines that have deterministic processing times with no rework operations. 
Paik et al. (2002) used decomposition and aggregation principles to 
approximately estimate throughput for finite buffered closed loop production system with 
unreliable machines and exponentially distributed processing times. They also propose a 
simple algorithm that predicts the upper bounds of throughput for such systems. The 
effectiveness of the procedure is illustrated in their paper with the help of extensive 
computational experiments. 
Tempelmeier and Burger (2001) analyze unbalanced serial production systems 
with finite buffers to estimate throughput of the system by employing an analytical 
approximation technique. This technique accounts for machine breakdown and defective 
part production. The time to failure was assumed to be exponentially distributed. In this 
procedure, M-station-lines are decomposed into M-1 two-station-lines and are analyzed 
with the help of GI/G/1/ maxN queuing model. This model also accounts for simultaneous 
blocking and starving that Choong and Greshwin (1986) model lacked. 
Chen et al. (2003) estimate the value and variance of throughput for serial 
production systems with unreliable machines using a sample path method. Their method 
conducts a sensitivity analysis on the mean and variation of throughput with respect to 
mean up time or mean down time to determine the amount of improvement that can be 
achieved in the system. It is assumed that a failed machine is immediately taken for 
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repair. The model assumes that all machines in the system have the same production rate 
with no inter-stage buffers. The idea of having inspection stations at various points in the 
line is also not considered in this study and hence we cannot use this technique for our 
projects. 
 
2.2 Bottleneck Detection 
A resource which impedes the performance of a system in the strongest manner is 
defined as the bottleneck resource (Chiang et al., 2001). In other words, it has the largest 
impact on reducing the throughput of a system. This section presents techniques available 
in the literature to detect the bottleneck resource of a system. 
Utilization of a machine is defined as the ratio of arrival rate of parts to be 
processed to effective production rate (Hopp and Spearman, 2000). According to Hopp 
and Spearman (2000), the percentage of utilization is calculated for each machine in the 
system and the machine with the largest percentage of utilization is considered to be the 
bottleneck resource. The author does not discuss about the % of time spent by a machine 
in blocked state when they illustrate this technique with an example. We contrast this 
bottleneck detection technique with the one developed as a part of this thesis in Chapter 
4. 
Roser et al. (2001) categorize all possible states of a machine into two groups: 
active and inactive states. A machine is said to be in active state when the current state of 
the machine is aimed at improving the system throughput. Starving, blocking and waiting 
for services are classified under inactive states. In this technique, the duration of a 
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machine remaining in an active state without being interrupted by an inactive state is 
measured. The machine which has the longest active period is detected as the bottleneck. 
They illustrate this method by simulating a production line which has eight machines 
with three capacitated buffers between machines and contrast it with the conventional 
percentage utilization approach. They conclude that their method detected the bottleneck 
with a higher level of confidence than the conventional percentage utilization approach. 
This approach assumes that there is minimum or no operator interference in the system 
which may not be true for all systems. Another drawback of this approach is that by 
considering only the longest active period it implicitly assumes that the machines in the 
system are highly reliable. In this thesis a methodology for detecting the bottleneck is 
proposed which can do away without these assumptions. 
Law and Kelton (2000) considers bottleneck machine to be one with the longest 
waiting time in queue for systems with unlimited buffer sizes. The waiting time in queue 
for a machine increases as the length of the queue increases by Little?s law. But every 
machine in the real world will have a finite buffer size which sets an upper bound to the 
wait in queue. And also the machines might have different buffer sizes. These factors 
might compromise the accuracy of identifying the actual bottleneck machine (Roser et 
al., 2001). 
Chiang et al. (2001) use an aggregation procedure to analyze the performance of 
Markovian lines with different cycle times and develop a method for cycle time 
bottleneck identification. This procedure is illustrated with the help of a case study and it 
is concluded that the probabilities of machine blockages and starvation play a critical role 
in bottleneck identification. Similar results are observed in this thesis. 
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Downtime Bottlenecks (DT-BN) were developed by Chiang et al. (2000) to 
identify bottlenecks based on probabilities of a machine being blocked and starved. The 
input parameters for the algorithm are: average uptime, downtime, frequency of 
blockages and starvations. This analytical approach can be applied to only Markovian 
lines. 
Lawrence and Buss (1994) analyze the phenomenon of shifting production 
bottlenecks by identifying bottleneck machine as one which has the maximal queue 
length. They propose a bottleneck shiftiness method to tests policies like chasing short-
run bottlenecks, increasing capacity at long-run bottlenecks and increasing capacity at 
non-bottleneck work centers. They conduct simulation studies and conclude that the 
policy of adding capacity at non-bottleneck work centers will reduce the bottleneck 
shiftiness to a great extent but the degree of system performance improvement is smaller 
than those when the other two policies are adopted. The method they adopt for 
identifying the bottleneck might fail to identify the true bottleneck machine when 
capacitated buffers are used. Also, they have not considered the costs of adding extra 
capacity to non-bottleneck work centers to minimize the bottleneck shifting. 
Moss and Yu (1999) use Lawrence and Buss (1994) methods to access the factors 
which will have the greatest influence on bottleneck shiftiness by using multiple 
regression. Their study concludes that job arrival rate, processing time at bottleneck 
machine and size of shop, have the greatest impact on bottleneck shiftiness and that the 
managers could use these parameters to make better capacity decisions. The results are 
however limited to only FCFS queuing disciplines. 
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2.3 Buffer Allocation 
Enginarlar et al. (2002), present an analytical approach to find the smallest 
amount of buffering required in a serial production line with unreliable machines 
necessary to meet the target production rate. To simplify the analytical model 
development they assume that the machine up times follow exponential distributions. In 
their analysis they found that a large amount of buffering is required for those machines 
which have high coefficient of variation of downtime. Their findings also state that the 
level of buffering doesn?t explicitly depend on the average up time of a machine but its 
efficiency, which is the ratio of average up time to average up and down times of a 
machine. These findings are based on the assumption that all the machines in the system 
are identical. According to Enginarlar et al. (2002), these results can be extended to non-
identical machines only by making a critical assumption that the efficiency of all the 
machines in the system are roughly the same. This assumption might not hold true for 
systems with highly variable processing times. 
Yamashita and Altiok (1998) investigated the minimum total buffer allocation 
required to meet the throughput in production lines with phase-type processing times. 
They have developed a dynamic programming algorithm which allocates the minimum 
total buffer space and estimates the throughput of the system at every stage by employing 
decomposition technique. They illustrate their methodology with a numerical example 
and conclude that when variability of the processing times increases the throughput of the 
system decreases, provided the mean processing time and buffer configuration remain 
constant. 
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Shi and Men (2003) incorporate Tabu search heuristic into the Nested Partitions 
Framework and develop a hybrid algorithm in an effort to optimally allocate buffers in 
large production systems. The model accommodates for different processing rates 
between machines and failure of machines. The authors claim that their algorithm is 
robust and can reduce the search effort for buffer allocation problems to a great extent. 
An efficient algorithm to find the optimal allocation of a fixed stock of buffer capacity 
for serial production systems was developed by Harris and Powell (1999). A simplex 
search procedure is embedded in the algorithm to ascertain the search direction which is 
determined by the best and the worst of current candidate solutions. This algorithm also 
employs simulation to estimate the throughput for each candidate configuration. The 
drawback of this algorithm is that it assumes that there are no unreliable machines in the 
system. 
Powell and Pyke (1998) study the issue of optimally deploying limited buffer 
capacity in short unbalanced assembly lines. They develop simple heuristic rules for 
unbalanced assembly lines with random processing times. Their study shows that mean 
and standard deviation of processing time distributions play a vital role in the selection of 
optimal location of the first buffer. Their heuristic was tested for assembly lines with 2, 3 
and 4 stations and it was found to successfully select the optimal location of the first 
buffer more than 90% of the time. This heuristic doesn?t take machines failures into 
account and it has not been tested for large complex systems. 
Papadopoulos and Vidalis (2001) investigate the buffer allocation problem for 
unreliable, unbalanced short production lines consisting up to six machines. The model 
assumes that the service and repair times follow Erlang-K distribution and time to failure 
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follow exponential distribution. A good initial buffer vector is found by the algorithm 
developed by them which makes use of parameters like mean service, repair and failure 
rates. The algorithm employs a sectioning search method to search for optimal buffer 
allocations. Their algorithm was 97% successful in identifying the optimal buffer 
allocation for 373 experiments conducted. They provide no evidence in their paper to 
show that this algorithm is effective for production lines of any size. 
Roser et al. (2003) develop a prediction model which uses a single simulation run 
to determine the effect of increased buffer capacity on the system performance. This 
method is applicable to both balanced (production rate of the machines are equal) and 
unbalanced production systems. It?s a two step methodology wherein the first step is to 
determine the causes for starving and blocking of all the machines thereby evaluating 
different buffer location options to reduce the idle time. The next step is to evaluate the 
improvement in performance metrics due to increases in buffer sizes by analyzing the 
data from the simulation report and the previous step. The prediction model has been 
fully automated for easier handling. The model cannot handle systems with machine 
breakdowns. 
 
2.4 Simulation Interface 
A simulation environment was developed to simplify the process of building a 
simulation model for high volume electronics manufacturing systems by Farrington et al. 
(1995). The environment can be decomposed into three basic elements, which provide 
increasing level of modeling capability and it reduces effort involved to build a 
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simulation model. The elements are interconnected through data transfer links and 
feedback loops. The problem definer element using a graphical interface develops the 
initial definition of a system. Static analysis is conducted on the system by the static 
analyzer element. The code generator element generates the simulation code for 
simulation packages. The Excel template developed as a part of this thesis performs a 
similar task described in this paper. 
Doss and Ulgen (2004) present the idea of building application specific models 
using various simulation software engines in an effort to reduce simulation modeling 
efforts and provide a continuous improvement tool for the companies. These ideas from 
the literature have taken the shape of the Excel template described in the next chapter and 
it is embedded in a ten step methodology proposed in this thesis in an effort to simplify 
repetitive model building and modification time. 
 
2.5 Conclusions 
 The review in this chapter focused on analytical modeling methods for estimating 
the throughput in serial production systems, bottleneck detection techniques, buffer 
allocation policies and the idea of creating a simulation interface to simplify the process 
of model building. From the literature it is clear that the analytical models require 
simplifying assumptions in order to remain mathematically tractable. These analytical 
models do not, however, model the underlying real-world system accurately. Some of the 
common assumptions made in analytical modeling techniques can be listed as follows: 
? Single part processing 
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? No inspection stations 
? Specific distributions for processing time, and TTF 
? No operator interference 
? Specific queuing disciplines 
? No product mix 
? Negligible transportation times between stations 
While, some analytical models address a part of these assumptions, it ignores the 
rest. The bottleneck detection techniques presented in this chapter also make assumptions 
like unlimited buffer sizes in front of stations, exponential processing time, minimum or 
no operator interference, and specific queuing disciplines. While these techniques might 
work for some lines, it might not correctly identify the bottleneck resource of any given 
serial production system. This thesis attempts to capture the behavior of serial production 
systems and there by detect the bottleneck resource and mitigate it, without making the 
assumptions stated above. We have also adapted the idea of creating a simulation 
interface proposed by Farrington et al. (1995) and Doss and Ulgen (2004) to reduce 
repetitive model building and modification time. So given a serial production system, the 
Excel template developed in this thesis will enable the analyst to generate the simulation 
model dynamically. The results from the model will be analyzed with the help of the 
algorithm proposed, which will detect the bottleneck and propose modifications to the 
system in an effort to curb the bottleneck. The next section discusses the problem 
statement followed by the techniques developed in this thesis.
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CHAPTER 3 
PROBLEM DEFINITION AND METHODOLOGY 
 
3.1 Problem Definition 
A technique to detect bottleneck resources in complex serial production systems 
with the help of discrete event simulation is proposed in this thesis. A procedure for 
mitigating the bottleneck of any given serial production line is also developed. This will 
provide decision support to the analyst in the form of addition of buffers, reallocation of 
operators, or addition of parallel bottleneck resources. The objectives of this thesis are to 
identify the line bottlenecks and to use an iterative procedure to maximize line 
throughput. Our bottleneck detection technique is then contrasted with a traditional 
bottleneck detection method with the help of case studies. The simulation model used for 
analyzing the serial production system is dynamically generated from a Microsoft Excel 
template in Arena 7.01 with the help of a VBA project. A static model for the system 
under consideration is also built using the Excel template. In the next section we define a 
typical station and its processing parameters. 
3.2 Formalization of a Typical Station 
A serial production line is characterized as K work stations arranged in series and 
each station is labeled as k where k = 1 to K. Let N be the number of products being 
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processed in the line and each product is marked as n where n = 1 to N. The product mix 
is denoted by Mn, where Mn is the proportion of production allocated to product n. Then, 
00.1
1
=?
=
N
n
nM  
 The processing time per unit ( P ) for the nth product at station k is denoted 
as ( )nPk . The attributes of a station are listed in Table 3.1. 
Table 3.1: Processing Parameters 
Attribute Expression Symbol 
Processing time 
per unit Stochastic Pk(n) 
Time to failure Stochastic Lk 
Cycles to exhaust Stochastic Ck 
Time to repair Stochastic Rk 
Time to replenish Stochastic Hk 
 
The static model built as a part of this thesis, uses mean values of these attributes. Some 
of the other notations used in this thesis are: 
T  is the total production time 
kF  is the expected time lost due to repair 
kG  is the expected time lost due to replenishment 
kB  is the % of time spent by station k in blocked state 
kI  is the Maximum units that can be produced in station k without considering failures 
and exhausts 
kU  = kFT ?  is the available processing time in station k after the expected total repair 
time has been removed 
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kV  = kk GFT ??  is the available processing time in station k after the expected total 
repair and replenish times are removed 
kJ  is the maximum units that can be produced in station k by considering repair and 
replenishment 
  
Figure 3.1: Typical Station 
 
Figure 3.1 is a snap shot of a typical station in our serial production system. A 
station will exist in one of the seven states idle, busy, failed, repair, exhaust, replenish 
and blocked. A machine remains in the idle state when it is not processing a part and 
there are no parts available in the input area. As soon as it gets started to work on a unit, 
its state changes to busy. Production process can be interrupted due to machine failures 
and component part exhaustion. As soon as a machine fails, its state changes to failure 
and an operator is requested for service. The state of the machine changes from failure to 
repair when an operator arrives to repair the machine. Machine exhaustion occurs when 
the raw material in a machine is exhausted. The machine remains in the exhaust state 
until an operator arrives to replenish the exhausted parts, which will change the state of 
the machine to replenish. When a machine is finished processing a unit it passes the unit 
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on to the next machine. If it is unable to do so due to unavailable capacity in its output 
area then the machine is considered to be blocked. 
Figure 3.2 illustrates the busy and idle states of a machine. Here Station A is 
working on a part and the Station B has exhausted the parts in the buffer in front of it. 
Station B is ready to work but there are no parts available for it to work on and it is in 
idle state (starved). Stations A and C are in busy state. Figure 3.3 illustrates the blocked, 
failed and repair states of a machine. In this case, Station B has finished working on its 
part but is not able to work on the next part because the buffer downstream is full and 
cannot accept any more parts. Station B is thus said to be blocked. Stations A and C have 
failed and both will be fixed by ?Operator X?. Here Station A is in the process of being 
fixed and is in repair state where as Station C is still waiting for ?Operator X? and is in 
failed state. Figure 3.4 portrays replenish and exhaust states. Its very similar to the 
previous case the only difference being the stations have exhausted their resource instead 
of failing and Station A, which is being served by ?Operator X? is in replenish state and 
Station C is in exhaust state waiting for service from ?Operator X?.  
          
 
Figure 3.2: Busy and Idle States 
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Figure 3.3: Blocked, Failed and Repair States 
 
Figure 3.4: Replenish and Exhaust States 
 
3.3 Methodology 
 
3.3.1 Data Collection 
Simulation models are computer programs that process input data to predict the 
output of the system by statistical sampling. Even when the underlying system is modeled 
accurately, if the input values plugged in are incorrect then the results will be misleading. 
A simulation model which is highly complex and stochastic in nature is difficult to 
validate. This is one of the primary reasons why the analysts need to have data that is 
representative of the actual system. According to Jadhav and Smith (2005) and Jadhav 
(2005), data can be extracted from the system either from historical databases if the 
system exists or similar systems if the system is nonexistent. The techniques developed in 
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this thesis are embedded in a ten step methodology proposed by Law and Kelton (2000). 
The flowchart of the methodology is shown in Figure 3.5. 
The ten step methodology provides an iterative procedure to maximize the 
throughput of the line. If the desired throughput of the system is not met for a proposed 
scenario then the bottleneck of the system is detected and mitigated using the techniques 
suggested in Section 3.3.7. The configuration of the system is modified accordingly and 
the iterative procedure is carried out until the target production rate for the system is 
achieved. 
Build/Update
Static Model
Throughput
Met?
Build/Update
Simulation Model
Document &
Implement
Yes No
Data Collection Data Update/Collection
Output
Analysis
Modify
Configuration
Run
Experiment
Verify & Validate
Simulation Model
Desired
throughput met
Desired throughput not met
 
Figure 3.5: Methodology for Simulation Modeling and Analysis of Serial Production 
Systems 
Robertson and Perera (2001) conducted a study and found that data collection in 
most simulation studies is unstructured, not automated, time consuming and hence forth 
comes at a high cost. The data thus extracted from the system may or may not be 
simulation friendly data or in other words the data would have to be processed further to 
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be used in a simulation study. Hence we have standardized the set of data that will be 
used in the simulation study to quicken this process. 
The data required for a simulation study can be classified into i) Data for static 
model and ii) Data for simulation model. The simulation model will also make use of the 
data available for static model. 
 
Data for static model are listed as follows: 
i) Shift Details: 
a. Available time per year 
b. Changeover Time 
c. Changeover Frequency 
ii) Process Details: 
a. Operator Issues 
i. Failure distribution 
ii. Time to Repair 
b. Maintenance Issues 
i. Cycles to Exhaust 
ii. Time to Replenish 
iii) Product Mix Details 
Data for simulation model are listed as follows: 
i) Machine Details: 
a. Processing type: single or batch 
b. Indexing time (if required) 
   25 
 
c. Length of conveyor (if required) 
ii) Operator Details: 
a. Allocated set of stations 
b. Priorities 
iii) Inspection Details: 
a. Percentage passing 
b. Rework details 
i. Rework resource 
ii. Rework time 
iii. Percentage scrapped 
iv) Buffer Details: 
a. Location and capacity of buffer 
b. Queuing policy followed 
v) Conveyor Details: 
a. Length 
b. Accumulating/non-accumulating 
c. Speed 
vi) Process flow of the system 
Data pertaining to failures can be represented/collected in three ways namely, i) 
% of failures per shift, ii) Time To Failure, and iii) # of failures per shift. The static 
model developed in our study uses the # of failures per shift data. 
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3.3.2 Build/Update Static Model 
Static model which is an analytical modeling technique is a formalization of Mean 
Value Analysis (Reiser and Lavenberg, 1980) where mean values for processing times, 
failure/exhaust, repair and replenish times are used to estimate production rates. Using 
the data collected, a static model is generated dynamically with the help of the Excel 
template which would predict the throughput of the system under consideration. In this 
section we will describe the processing steps involved in static model generation. 
The processing steps involved in generation of static model are: 
Step 0:  Calculate mean processing time per unit kP = ( )[ ][ ]?
=
?
N
n
nk MnPE
1
 
Step 1: Throughput without considering failures and exhausts kI  = 
kP
T  
Step 2:  Time lost due to repair kF  = [ ]{ }[ ] [ ]{ }
kk
k
RELE
TRE
+
?  
Step 3: Calculate kU  = kFT ?  
Step 4: Time lost due to replenishment kG = [ ]{ }[ ] [ ] )({ }
kkk
kk
PCEHE
UHE
?+
?  
Step 5:  Calculate kV  = kk GU ?  
Step 6: Throughput considering failures and exhausts kJ  = 
k
k
P
V  
This procedure is carried out for every station in the system. The throughput is 
essentially determined by the processing rate of the slowest machine (Jadhav and Smith, 
2005 and Jadhav, 2005). The static model also dynamically generates the resource state 
graph which is a graphical representation of the % of time spent by each resource in the 
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seven states discussed earlier. For more information on resource state graph the reader is 
directed to refer Jadhav and Smith (2005) and Jadhav (2005). The expressions used for 
calculation of % of time spent by a resource in each of the states are listed below. 
For resource k, 
a. % of time spent in the Busy state = 
( )
T
JP
Kk
kk ??
?
??
? ?
=? ,....,1
min
        
b. % of time spent in the Replenishment state = TGk  
c. % of time spent in the Repair state = TFk  
d. % of time spent in the Failure/Exhaust state = 0 (Time in exhaust and failure 
states model complex operator interference issues; assumed zero in the static 
model) 
e. % of time spent in the Blocked state = 0 (Time in blocked state indicates 
complex inter-process interactions; assumed zero in the static model) 
f. % of time spent in the Idle state = 100 ? (? Other States) 
 
The static model doesn?t consider i) complex operator interference issues, ii) 
influence of capacitated buffers, iii) inter-process interactions, and iv) effects of rework 
and hence the values obtained are just estimates. Calculating the % of time spent by a 
resource in the blocked state in the static model is not straightforward and is beyond the 
scope of this thesis. It is assumed to be zero in our static model. The static model predicts 
the throughput for two standardized scenarios: 
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a. Scenario 1: Without Failures and Exhausts 
b. Scenario 2: With Failures and Exhausts 
 
3.3.3 Expected Throughput Met? 
Once the static model is developed it is compared with existing systems or similar 
systems to check for correctness of the input data. Since static model doesn?t consider 
complex operator interference issues and inter-process interactions, the expected 
throughput from the static model for the scenario 2 is considered to be overestimated. In 
other words, a simulation model built with this input data cannot be expected to have 
higher values for throughput. So if the domain experts feel that the throughput is below 
their requirement or expectation then the configuration of the system is modified by 
adopting procedures to detect and mitigate the bottleneck described in this thesis. The 
data is updated /collected and static model is rebuilt accordingly. This feedback loop 
which is made available by the static model reduces time by giving the user a heads-up 
(by providing a rough estimate of the throughput). This is particularly useful for systems 
which are non-existent. 
 
3.3.4 Build/Update Simulation Model 
The simulation model built will be an exact representation of the system under 
study. It will account for operator interference issues, effect of capacitated buffers in 
between stations, inter-process interactions like blocking and starving, and the effects of 
rework and scrapping of parts. The simulation model will be dynamically generated from 
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the Excel template. The processing steps involved in dynamically generating the Arena 
model are listed as follows: 
Step 0: Shortlist the modules that will be used in the simulation study 
Step 1: Identify the operands whose values are to be obtained from the Excel template 
Step 2: Select the appropriate module for each station in the system from a pull down 
menu provided in the Excel template. Each module in the pull down menu has a unique 
feature. 
For instance, if a station is meant to have a built-in conveyor and multiple head 
processing, then the module which provides this feature is selected. On the other hand if 
the model developer wants to add inspection stations at different points in the line, then a 
module which reroutes the parts based on a fixed probability is chosen. 
Step 3: Enter the details required to build the simulation model in the Excel template 
Step 4: Execute the VBA code which will generate the simulation model in Arena 7.01 
Usually the first two steps are exercised only at the beginning of a simulation 
study (since the modules that will be used for a study will remain fairly constant). If a 
new module is to be used then the dataset is updated accordingly. Steps 2, 3 and 4 are to 
be executed each time a new model is built. 
Before the user executes the code to build the simulation model, it has to be made 
sure that the template used in a study is automatically attached to the project bar when 
Arena 7.01 opens. This is done by opening Arena 7.01 Tools/Options/Settings/Auto 
Attach Panels and specifying the path where the .tpo file being used in modeling is 
located. 
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Figure 3.6: Excel Template from which Arena Model is generated 
In this thesis, the simulation model which was dynamically generated makes use 
of the template developed by Mukkamala et al. (2003) and Mukkamala (2003). A 
conveyor is defaulted between each station. A snap shot the Excel template from which 
the Arena model is generated is shown in Figure 3.6. 
 
3.3.5 Verify and Validate Simulation Model 
The simulation model with base configuration (that is no failures and exhausts) is 
run and compared with scenario 1 of the static model. The simulation model is animated 
and process flow of the products is verified with the real system. The base simulation 
model will consider capacitated buffers and conveyors/transporters in between the 
resources. The static model assumes that there is no time lost when a product moves from 
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one resource to another. These factors will influence the results of the simulation model. 
But if the simulation model is an accurate representation of the real system, the 
throughput determined by the simulation model will not vary significantly from that of 
the static model. The managers are consulted for validation purposes. 
 
3.3.6 Run Experiment 
Stochastic variables like failure, repair, exhaust and replenishment rates, % of 
defective units, etc. are incorporated into the verified and validated simulation model at 
this point. These stochastic variables make the model dynamic. If the concerned firm has 
some predetermined strategies for the line then each of those ideas are incorporated in a 
separate simulation model. The number of replications is decided by making a trial run 
and the resulting 95% confidence interval of the half width of the throughput from the 
underlying production system (Jadhav and Smith, 2005 and Jadhav, 2005). Each model 
will usually have a different value for number of replications due to the randomness. The 
simulation model is run accordingly and the throughput of the line under study is 
determined. A resource state graph for the system is generated and the system is analyzed 
which is explained in the next section. 
 
3.3.7 Output Analysis of the System 
The simulation results thus obtained will reveal the performance level of each 
station with respect to the seven states we have defined. The results have to be analyzed 
and effective measures are to be undertaken to enhance the efficiency of the system. To 
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do this the analyst will have to identify the station which has the greatest impact on the 
performance of the whole system, which will be the bottleneck resource.  
 The busy state reflects upon the effective % of time a resource was engaged in 
production. Replenish and repair states reflect upon the inability of a station to 
manufacture products due to exhaustion and failure respectively. Exhaust and failure 
states quantify the operator interferences. Idle and blocked state of a station quantifies the 
interdependency (coupling) of the station on others. It can also be interpreted as the 
effective % of time that a resource can utilize for production if it were decoupled from 
other stations in the system. When a machine is in blocked or idle state it is ready to 
accept parts for processing but is unable to do so due to complex inter-process 
interactions. The machine which is least affected by the inter-process interactions will be 
the bottleneck resource. This transforms to the fact that the machine which has the least 
value for the % of time spent in idle and blocked states is the bottleneck resource. In this 
thesis we compare our bottleneck detection technique with the concept of ?Machine with 
highest utilization? being the bottleneck resource. In chapter 4 we present case studies 
where in our bottleneck detection technique works better. This value will be referred to as 
Bottleneck Index from here on. 
The states of a machine are represented in the resource state graph which is 
generated from Arena with the help of VBA (Jadhav and Smith, 2005 and Jadhav, 2005).  
Three possible changes can be made in the system to counter the bottleneck problem. 
They are listed as follows: 
a. Add buffers before or after the bottleneck process 
b. Re-allocate the workforce to reduce the time spent in failure/exhaust 
   33 
 
c. Consider parallel processing option for the bottleneck resource 
The decision to select the options stated above is not straightforward and hence 
we have developed an algorithm which will be helpful for the analyst in this regard. The 
processing steps are as follows: 
Step 0: If Exhaust/failure state for any station is >= Z %, consider reallocating the 
operator for those stations 
Step 1: If Blocked state of the bottleneck is > 0 %, then add buffers right after the 
bottleneck resource 
Step 2: If Idle state of the bottleneck is >= Y %, then add buffers appropriately for 
machines upstream and stop 
Step 3: If Idle state of the bottleneck is > 0 %, add buffers right before the bottleneck 
resource 
Step 4: If (Idle + Blocked) states of bottleneck resource are =< X %, add parallel resource 
and stop 
The values that the parameters X, Y and Z will assume are decided by the analyst 
and the management, which is going to be subjective and it will depend on the objective 
of the analysis that is being conducted. Usually the values range from 1 to 40. The values 
of X, Y and Z parameters used in this thesis are assumed to be 5, 25 and 2 respectively. 
The interpretations of variables are: 
1. Higher values of ?Z?: Operator interchangeability/sharing is not easy or very few 
cross trained operators available. Another interpretation is that, highly skilled 
operators are required for certain processes. 
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2. Lower values of ?Y?: Management is ready to add buffers around non-bottleneck 
resources to reduce the % of time spent by a bottleneck resource in idle state. 
3. Higher values of ?X?: Management is in favor of adding resources either due to 
the need for substantial increase in production or the cost of adding machines is 
relatively less expensive than adding buffers in the long run. 
As a part of this research, another algorithm was developed to help the analyst 
decide on the changes to be made. This algorithm is an approximation technique which 
uses the % of time spent by the machines in blocked state upstream to that of the 
bottleneck resource and the blocking of the bottleneck resource due to the machines 
downstream. An index (referred to as Blocked Index) is calculated based on these values 
and the analyst is advised to either add buffers or add a parallel processing resource based 
on the value of this index. If the thn machine is the bottleneck resource then Blocked 
Index is calculate as follows: 
Blocked Index = [ ?
?
=
1
1
(
n
i
iB - nB ) / (n-1)] 
Mathematical interpretation to the computation of the Blocked Index is that the 
effects of machines downstream to bottleneck resource can be approximately represented 
by the % of time spent by the bottleneck resource in the blocked state. The effect of the 
bottleneck resource on the machines upstream can similarly be approximated to the 
blocked state of those machines. Hence the average effect of the bottleneck machine on 
resources upstream is given by the Blocked Index. 
If the value of Blocked Index is higher than 40% (which is subjective), then the 
analyst will be directed to add a parallel resource to the bottleneck machine. 
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Pitfalls of this algorithm: 
1. It overestimates the effect of the bottleneck machine on the resources upstream 
as it fails to account for the blocking due to other non-bottleneck resources 
2. The starving of the bottleneck machine is not taken into account, which can be 
minimized by adding buffers, thereby increasing the throughput without adding 
a parallel resource 
3. The failure/exhaust states are not considered and hence the operator allocation 
issue is not addressed 
Due to the above stated inconveniences this algorithm was not used for decision 
making purposes. Modifying the configuration of the system accordingly is discussed in 
the next section. 
3.3.8 Modify Configuration 
After the analysis of the simulation models the proposed changes and the results 
are shared with the decision makers and their suggestions for improvements are also 
considered. If the decision makers want to conduct a cost analysis then factors like WIP, 
machine costs, Labor costs etc. are taken into account. After analyzing all the possible 
options a viable option is chosen and the data is updated /collected accordingly.  
 
3.3.9 Data Update/Collection 
The existing data is either updated or new data is collected to rebuild the static 
model. Data is usually updated in cases where the company makes the choice of adding a 
parallel resource to the line for which data is already available. New data is collected 
usually when a new resource is added to the system for which the processing time or 
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failure/exhaust rates are unknown or some process improvements on a resource is done 
where the cycle time or the failures/exhausts or both the parameters change. The static 
model and the simulation model are updated. 
 
3.3.10 Documentation and Implementation 
The process is terminated when the decision makers requirement/expectation are 
met. Static and simulation models for various configurations are documented for future 
reference and the proposed methodology is enforced.
37 
 
 
CHAPTER 4 
CASE STUDIES 
 
The case studies conducted on four sets of production lines are presented in this 
chapter. We analyze ten station lines and fifty station lines with low and high variability 
in processing parameters. The production lines listed here can be thus be categorized into: 
i) Long line with low variability in processing parameters , ii) Long line with high 
variability in  processing parameters, iii) Short line with low variability in processing 
parameters and iv) Short line with high variability in processing parameters. The 
methodology proposed in the previous chapter has been adapted in modeling and analysis 
of these lines. The processing parameters under considered are: 
? Processing time 
? Time to failure 
? Cycles to exhaust 
? Time to repair 
? Time to replenish 
4.1 Experimental Setup 
In this thesis, we have conducted ten sets of experiments for each category of 
production line mentioned above. An experiment is setup by arbitrarily assigning mean 
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values to the processing parameters. The length of the line and coefficient of variation 
(C.V.) of processing parameters are decided upon by the category in which it falls. For 
example, a fifty machine line with a C.V. of around 10% for the processing parameters 
would fall under the category of long lines with low variability in processing parameters. 
The labeling of the experiments is shown in Table 4.1. 
Table 4.1: Labeling of Experiments 
C.V. between Process Parameters Length of Production Line 
~ 0.10 ~ 0.30 
10 SL SH 
50 LL LH 
 
Data points are generated for each processing parameter and each machine in the 
system is assigned with a set of processing expression. Distribution for each processing 
expression is selected arbitrarily and the system is dynamically generated from the Excel 
template. The system thus modeled is simulated and tested against the algorithm 
proposed in this thesis. This procedure can be explained better with the help of an 
example. Let us consider a short line with low variability in processing parameters. The 
mean values and C.V. between processes which were arbitrarily assigned are listed below 
in Table 4.2. The range of all the mean values used in this thesis for processing 
parameters is obtained from Jadhav and Smith (2005) and Jadhav (2005). 
Table 4.2: SL-Configuration Example 
Attribute Mean Value Units C.V. between processes 
Processing Time Px 16 Sec 0.12 
Time to Failure Lx 64.5 Min 0.10 
Cycles to Exhaust Cx 30 Parts 0.13 
Time to Repair Rx 280 Sec 0.11 
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Time to Replenish Hx 90 Sec 0.09 
 
 Normal distribution is selected to generate the data points and each machine is 
assigned a data set as shown in Table 4.3. These data points in the table are used as mean 
values for stations in the static model and a distribution is selected for each attribute in 
the simulation model. 
Table 4.3: Data for the Stations 
Attribute 
Resource Processing 
Time 
Time to 
Failure 
Cycles to 
Exhaust 
Time to 
Repair 
Time to 
Replenish 
Machine A 16.72 84.75 25 313.01 97.07 
Machine B 17.86 82.07 25 326.76 81.98 
Machine C 16.62 65.12 31 270.59 87.65 
Machine D 19.54 72.54 23 302.26 98.05 
Machine E 17.13 68.58 33 287.75 83.23 
Machine F 17.06 88.33 34 307.07 87.24 
Machine G 16.25 74.72 28 282.19 98.58 
Machine H 18.87 84.68 40 288.56 74.11 
Machine I 18.63 65.3 27 298.04 94.51 
Machine J 16.61 72.73 37 292 80.45 
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Results: 
Table 4.4: SL Example Results 
Results 
Initial throughput: 479,984 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine D Machine D 
Mitigation Add 7 buffers in front of Machine D and 10 behind it Add 7 buffers in front of Machine D and 10 behind it 
Throughput 530,581 530,581 
 
The resource state graphs of the base case scenario and the one after adding buffers to the 
bottleneck resource are shown in Figure 4.1 and Figure 4.2 respectively. The case studies 
are presented in the next section.
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4.2 Analysis of LL-Configuration 
Case 1: 
Table 4.5: Case LL-1 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 20 Sec 0.12 
Time to Failure Lk 53.25 Min 0.13 
Cycles to Exhaust Ck 115 Parts 0.11 
Time to Repair Rk 155 Sec 0.08 
Time to Replenish Hk 155 Sec 0.09 
Results 
Initial throughput: 88,184 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine X Machine F 
Mitigation Add 10 buffers in front of Machine X and 15 behind it Add 10 buffers in front of Machine F and 20 behind it 
Throughput 104,335 100,734 
 
Case 2: 
Table 4.6: Case LL-2 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 12 Sec 0.10 
Time to Failure Lk 71 Min 0.10 
Cycles to Exhaust Ck 70 Parts 0.10 
Time to Repair Rk 120 Sec 0.10 
Time to Replenish Hk 140 Sec 0.10 
Results 
Initial throughput: 125,452 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AV Machine AV 
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Mitigation 
Add 10 buffers in front of 
Machine AV and 7 behind it 
and 3 buffers in front of and 
behind Machine AT 
Add 10 buffers in front of 
Machine AV and 7 behind 
it and 3 buffers in front of 
and behind Machine AT 
Throughput 143,623 143,623 
 
Case 3: 
Table 4.7: Case LL-3 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 19 Sec 0.09 
Time to Failure Lk 71 Min 0.13 
Cycles to Exhaust Ck 135 Parts 0.11 
Time to Repair Rk 170 Sec 0.13 
Time to Replenish Hk 145 Sec 0.08 
Results 
Initial throughput: 85,106 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AI Machine AI 
Mitigation 
Add 10 buffers in front of 
Machine AI and 10 behind it, 
and an operator 
Add 10 buffers in front of 
Machine AI and 10 behind 
it, and an operator 
Throughput 109,253 109,253 
 
Case 4: 
Table 4.8: Case LL-4 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 6 Sec 0.11 
Time to Failure Lk 56.8 Min 0.11 
Cycles to Exhaust Ck 100 Parts 0.09 
Time to Repair Rk 80 Sec 0.11 
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Time to Replenish Hk 60 Sec 0.09 
Results 
Initial throughput: 268,871 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine F Machine F 
Mitigation Add 8 buffers in front of Machine F and 20 behind it Add 8 buffers in front of Machine F and 20 behind it 
Throughput 319,006 319,006 
 
Case 5: 
Table 4.9: Case LL-5 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 10 Sec 0.13 
Time to Failure Lk 85.2 Min 0.12 
Cycles to Exhaust Ck 100 Parts 0.08 
Time to Repair Rk 100 Sec 0.09 
Time to Replenish Hk 90 Sec 0.11 
Results 
Initial throughput: 175,707 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine Z Machine R 
Mitigation Add 5 buffers in front of Machine Z and 12 behind it Add 10 buffers in front of Machine R and 8 behind it 
Throughput 200,748 192,407 
 
Case 6: 
Table 4.10: Case LL-6 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 14 Sec 0.11 
Time to Failure Lk 60.85 Min 0.09 
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Cycles to Exhaust Ck 120 Parts 0.13 
Time to Repair Rk 130 Sec 0.12 
Time to Replenish Hk 100 Sec 0.09 
Results 
Initial throughput: 133,799 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine X Machine AT 
Mitigation Add 10 buffers behind Machine X  
Add 5 buffers in front of 
Machine AT and 10 behind 
it 
Throughput 155,529 152,734 
 
Case 7: 
Table 4.11: Case LL-7 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 21.5 Sec 0.10 
Time to Failure Lk 56.8 Min 0.09 
Cycles to Exhaust Ck 105 Parts 0.13 
Time to Repair Rk 135 Sec 0.09 
Time to Replenish Hk 135 Sec 0.10 
Results 
Initial throughput: 95,876 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AU Machine AU 
Mitigation Add 10 buffers in front of Machine AU and 5 behind it 
Add 10 buffers in front of 
Machine AU and 5 behind 
it 
Throughput 106,815 106,815 
 
Case 8: 
Table 4.12: Case LL-8 
Configuration 
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Attribute Mean Value Units C.V. between processes 
Processing Time Pk 18 Sec 0.08 
Time to Failure Lk 65.5 Min 0.11 
Cycles to Exhaust Ck 130 Parts 0.09 
Time to Repair Rk 120 Sec 0.13 
Time to Replenish Hk 140 Sec 0.12 
Results 
Initial throughput: 114,569 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AQ Machine AQ 
Mitigation Add 10 buffers in front of Machine AQ and 5 behind it Add 10 buffers in front of Machine AQ and 5 behind it 
Throughput 127,498 127,498 
 
 
Case 9: 
Table 4.13: Case LL-9 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 8 Sec 0.13 
Time to Failure Lk 94.6 Min 0.08 
Cycles to Exhaust Ck 95 Parts 0.12 
Time to Repair Rk 90 Sec 0.12 
Time to Replenish Hk 80 Sec 0.11 
Results 
Initial throughput: 217,909 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AC Machine AF 
Mitigation Add 12 buffers in front of Machine AC and 5 behind it 
Add 20 buffers in front of 
Machine AF and 3 behind 
it 
Throughput 244,860 231,759 
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Case 10: 
Table 4.14: Case LL-10 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 16 Sec 0.09 
Time to Failure Lk 77.45 Min 0.08 
Cycles to Exhaust Ck 105 Parts 0.12 
Time to Repair Rk 145 Sec 0.11 
Time to Replenish Hk 120 Sec 0.08 
Results 
Initial throughput: 118,892 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine V Machine V 
Mitigation Add 10 buffers in front of Machine V and 15 behind it Add 10 buffers in front of Machine V and 15 behind it 
Throughput 136,133 136,133 
 
Ten sets of lines with LL configuration were studied in this section. It was found 
that the Bottleneck Index Method identified the same bottleneck as that of the Highest 
Utilized Machine Method on six occasions. The Bottleneck Index Method yielded better 
results in terms of throughput of the line for the remaining four cases. The results are 
presented in Table 4.15. The scenarios where both methods found the same bottleneck 
are bolded. 
Table 4.15: Summary of LL-Configuration Results 
Throughput 
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine 
Method 
Case 1 88,184 104,335 100,734 
Case 2 125,452 143,623 143,623 
Case 3 85,106 109,253 109,253 
Case 4 268,871 319,006 319,006 
Case 5 175,707 200,748 195,407 
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Case 6 133,799 155,529 152,734 
Case 7 95,876 106,815 106,815 
Case 8 114,569 127,498 127,498 
Case 9 217,909 244,860 231,759 
Case 10 118,892 136,133 136,133 
 
4.3 Analysis of LH-Configuration 
Case 1: 
Table 4.16: Case LH-1 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 12 Sec 0.30 
Time to Failure Lk 71 Min 0.30 
Cycles to Exhaust Ck 130 Parts 0.30 
Time to Repair Rk 120 Sec 0.30 
Time to Replenish Hk 140 Sec 0.30 
Results 
Initial throughput: 102,850 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AV Machine AV 
Mitigation Add 15 buffers in front of Machine AV and 7 behind it 
Add 15 buffers in front of 
Machine AV and 7 behind 
it 
Throughput 111,725 111,725 
 
Case 2: 
Table 4.17: Case LH-2 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 10 Sec 0.33 
Time to Failure Lk 85.2 Min 0.32 
Cycles to Exhaust Ck 100 Parts 0.28 
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Time to Repair Rk 100 Sec 0.29 
Time to Replenish Hk 90 Sec 0.33 
Results 
Initial throughput: 143,240 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine R Machine R 
Mitigation Add 5 buffers in front of Machine R and 10 behind it Add 5 buffers in front of Machine R and 10 behind it 
Throughput 149,833 149,833 
 
Case 3: 
Table 4.18: Case LH-3 
Configuration 
Attribute Mean Value Units 
C.V. 
between 
processes 
Processing Time Pk 14 Sec 0.31 
Time to Failure Lk 60.85 Min 0.29 
Cycles to Exhaust Ck 120 Parts 0.33 
Time to Repair Rk 130 Sec 0.32 
Time to Replenish Hk 100 Sec 0.29 
Results 
Initial throughput: 92,533 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine X Machine AT 
Mitigation Add 15 buffers in front of Machine X and 20 behind it 
Add 25 buffers in front of 
Machine AT and 15 
behind it and 4 buffers in 
front of and behind 
Machine AR 
Throughput 111,221 107,092 
 
Case 4: 
Table 4.19: Case LH-4 
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Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 16 Sec 0.29 
Time to Failure Lk 77.45 Min 0.28 
Cycles to Exhaust Ck 105 Parts 0.32 
Time to Repair Rk 145 Sec 0.31 
Time to Replenish Hk 120 Sec 0.28 
Results 
Initial throughput: 75,131 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine V Machine V 
Mitigation 
Add 5 buffers in front of 
Machine V and 15 behind 
it 
Add 5 buffers in front of 
Machine V and 15 behind it 
Throughput 87,154 87,154 
 
Case 5: 
Table 4.20: Case LH-5 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 18 Sec 0.28 
Time to Failure Lk 65.5 Min 0.31 
Cycles to Exhaust Ck 130 Parts 0.29 
Time to Repair Rk 120 Sec 0.33 
Time to Replenish Hk 140 Sec 0.32 
Results 
Initial throughput: 83,335 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AW Machine J 
Mitigation 
Add 20 buffers in front of 
Machine AW and 5 
behind it 
Add 10 buffers in front of 
Machine J and 20 behind it 
Throughput 94,947 91,045 
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Case 6: 
Table 4.21: Case LH-6 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 20 Sec 0.32 
Time to Failure Lk 53.25 Min 0.33 
Cycles to Exhaust Ck 115 Parts 0.31 
Time to Repair Rk 155 Sec 0.28 
Time to Replenish Hk 155 Sec 0.29 
Results 
Initial throughput: 63,416 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine G Machine G 
Mitigation 
Add 8 buffers in front of 
Machine G and 25 behind 
it, and an operator 
Add 8 buffers in front of 
Machine G and 25 behind it, 
and an operator 
Throughput 73,051 73,051 
 
Case 7: 
Table 4.22: Case LH-7 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 21.5 Sec 0.30 
Time to Failure Lk 56.8 Min 0.29 
Cycles to Exhaust Ck 105 Parts 0.33 
Time to Repair Rk 135 Sec 0.29 
Time to Replenish Hk 135 Sec 0.30 
Results 
Initial throughput: 57,588 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine V Machine V  
Mitigation Add 7 buffers in front of Machine V and 12 behind Add 7 buffers in front of Machine V and 12 behind 
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it, and an operator it, and an operator 
Throughput 64,561 64,561 
 
Case 8: 
Table 4.23: Case LH-8 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 8 Sec 0.33 
Time to Failure Lk 94.5 Min 0.28 
Cycles to Exhaust Ck 95 Parts 0.32 
Time to Repair Rk 90 Sec 0.32 
Time to Replenish Hk 80 Sec 0.31 
Results 
Initial throughput: 155,645 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine W Machine W 
Mitigation 
Add 10 buffers in front of 
Machine W and 20 
behind it 
Add 10 buffers in front of 
Machine W and 20 behind 
it 
Throughput 170,172 170,172 
 
Case 9: 
Table 4.24: Case LH-9 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 6 Sec 0.31 
Time to Failure Lk 56.8 Min 0.31 
Cycles to Exhaust Ck 200 Parts 0.29 
Time to Repair Rk 80 Sec 0.31 
Time to Replenish Hk 60 Sec 0.29 
Results 
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Initial throughput: 204,178 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine T Machine T 
Mitigation 
Add 5 buffers in front of 
Machine T and 20 behind 
it 
Add 5 buffers in front of 
Machine T and 20 behind it 
Throughput 230,787 230,787 
 
Case 10: 
Table 4.25: Case LH-10 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 19 Sec 0.29 
Time to Failure Lk 71 Min 0.33 
Cycles to Exhaust Ck 220 Parts 0.31 
Time to Repair Rk 170 Sec 0.33 
Time to Replenish Hk 145 Sec 0.28 
Results 
Initial throughput: 58,779 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine AO Machine AO 
Mitigation 
Add 20 buffers in front of 
Machine AO and 5 
behind it and 2 buffers in 
front of and behind 
Machine AK 
Add 20 buffers in front of 
Machine AO and 5 behind 
it and 2 buffers in front of 
and behind Machine AK 
Throughput 66,163 66,163 
 
Ten sets of lines with LH configuration were studied in this section. It was found 
that the Bottleneck Index Method identified the same bottleneck as that of the Highest 
Utilized Machine Method on eight occasions. The Bottleneck Index Method yielded 
better results in terms of throughput of the line for the remaining two cases. The results 
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are presented in Table 4.26. The scenarios where both methods found the same 
bottleneck are bolded. 
 
Table 4.26: Summary of LH-Configuration Results 
Throughput 
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine 
Method 
Case 1 102,850 111,725 111,725 
Case 2 143,240 149,833 149,833 
Case 3 92,533 111,221 107,092 
Case 4 75,131 87,154 87,154 
Case 5 83,335 94,944 91,045 
Case 6 63,416 73,051 73,051 
Case 7 57,588 64,561 64,561 
Case 8 155,645 170,172 170,172 
Case 9 204,178 230,787 230,787 
Case 10 58,779 66,663 66,663 
 
4.4 Analysis of SL-Configuration 
Case 1: 
Table 4.27: Case SL-1 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 6 Sec 0.08 
Time to Failure Lk 53.25 Min 0.12 
Cycles to Exhaust Ck 60 Parts 0.11 
Time to Repair Rk 120 Sec 0.12 
Time to Replenish Hk 35 Sec 0.08 
Results 
Initial throughput: 1,650,761 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine E Machine D 
Mitigation Add 5 buffers in front of Machine E and 5 behind it Add 5 buffers in front of Machine D and 5 behind it 
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Throughput 1,834,244 1,736,535 
 
Case 2: 
Table 4.28: Case SL-2 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 20 Sec 0.11 
Time to Failure Lk 106.5 Min 0.09 
Cycles to Exhaust Ck 30 Parts 0.08 
Time to Repair Rk 300 Sec 0.09 
Time to Replenish Hk 90 Sec 0.11 
Results 
Initial throughput: 450,382 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine E Machine F 
Mitigation 
Add 5 buffers in front of 
Machine E and 10 behind it, 
and an operator 
Add 15 buffers in front of 
Machine F and 8 behind it, 
and an operator 
Throughput 523,395 500,963 
 
Case 3: 
Table 4.29: Case SL-3 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 15 Sec 0.10 
Time to Failure Lk 50 Min 0.10 
Cycles to Exhaust Ck 50 Parts 0.10 
Time to Repair Rk 20 Sec 0.10 
Time to Replenish Hk 120 Sec 0.10 
Results 
Initial throughput: 984,053 
 Bottleneck Index Method Highest Utilization Method 
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Bottleneck Machine E Machine E 
Mitigation Add Machine E Add Machine E 
Throughput 1,004,148 1,004,148 
 
Case 4: 
Table 4.30: Case SL-4 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 16 Sec 0.12 
Time to Failure Lk 64.50 Min 0.10 
Cycles to Exhaust Ck 30 Parts 0.13 
Time to Repair Rk 280 Sec 0.11 
Time to Replenish Hk 90 Sec 0.09 
Results 
Initial throughput: 479,984 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine D Machine D 
Mitigation Add 7 buffers in front of Machine D and 10 behind it Add 7 buffers in front of Machine D and 10 behind it 
Throughput 530,581 530,581 
 
Case 5: 
Table 4.31: Case SL-5 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 22 Sec 0.09 
Time to Failure Lk 85 Min 0.13 
Cycles to Exhaust Ck 70 Parts 0.11 
Time to Repair Rk 140 Sec 0.08 
Time to Replenish Hk 85 Sec 0.12 
Results 
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Initial throughput: 625,096 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine I Machine G 
Mitigation Add 5 buffers in front of Machine I and 3 behind it Add 5 buffers in front of Machine G and 8 behind it 
Throughput 665,599 633,404 
 
Case 6: 
Table 4.32: Case SL-6 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 25 Sec 0.08 
Time to Failure Lk 60.8 Min 0.11 
Cycles to Exhaust Ck 60 Parts 0.08 
Time to Repair Rk 100 Sec 0.09 
Time to Replenish Hk 60 Sec 0.11 
Results 
Initial throughput: 587,503 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine B Machine B 
Mitigation Add Machine B Add Machine B 
Throughput 588,447 588,447 
 
Case 7: 
Table 4.33: Case SL-7 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 18 Sec 0.13 
Time to Failure Lk 106.5 Min 0.08 
Cycles to Exhaust Ck 50 Parts 0.09 
Time to Repair Rk 150 Sec 0.11 
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Time to Replenish Hk 100 Sec 0.13 
Results 
Initial throughput: 539,741 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine E 
Mitigation 
Add 7 buffers in front of 
Machine H and 10 behind 
it, and an operator is 
added to the line 
Add 7 buffers in front of 
Machine E and 15 behind it, 
and an operator is added to the 
line 
Throughput 587,335 564,214 
 
Case 8: 
Table 4.34: Case SL-8 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 12 Sec 0.10 
Time to Failure Lk 60.85 Min 0.10 
Cycles to Exhaust Ck 25 Parts 0.10 
Time to Repair Rk 300 Sec 0.10 
Time to Replenish Hk 70 Sec 0.10 
Results 
Initial throughput: 584,591 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine D Machine D 
Mitigation 
Add 5 buffers in front of 
Machine D and 10 behind 
it 
Add 5 buffers in front of 
Machine D and 10 behind it 
Throughput 664,215 664,215 
 
Case 9: 
Table 4.35: Case SL-9 
Configuration 
Attribute Mean Value Units C.V. between processes 
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Processing Time Pk 10 Sec 0.09 
Time to Failure Lk 85.5 Min 0.13 
Cycles to Exhaust Ck 40 Parts 0.12 
Time to Repair Rk 220 Sec 0.11 
Time to Replenish Hk 45 Sec 0.12 
Results 
Initial throughput: 1,089,495 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine E Machine D 
Mitigation Add 3 buffers in front of Machine E and 5 behind it Add 20 buffers behind Machine D 
Throughput 1,180,721 1,140,280 
 
Case 10: 
Table 4.36: Case SL-10 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 8.5 Sec 0.13 
Time to Failure Lk 71 Min 0.12 
Cycles to Exhaust Ck 50 Parts 0.10 
Time to Repair Rk 170 Sec 0.10 
Time to Replenish Hk 50 Sec 0.11 
Results 
Initial throughput: 1,111,752 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine C 
Mitigation 
Add 10 buffers in front of 
Machine H and 10 behind 
it 
Add 15 buffers in front of 
Machine C and 15 behind it 
Throughput 1,219,555 1,141,881 
 
Ten sets of lines with SL configuration were studied in this section. It was found 
that the Bottleneck Index Method identified the same bottleneck as that of the Highest 
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Utilized Machine Method on four occasions. The Bottleneck Index Method yielded better 
results in terms of throughput of the line for the remaining six cases. The results are 
presented in Table 4.37. The scenarios where both methods found the same bottleneck 
are bolded. 
 
Table 4.37: Summary of SL-Configuration Results 
Throughput 
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine 
Method 
Case 1 1,650,761 1,834,244 1,736,535 
Case 2 450,382 523,395 500,963 
Case 3 984,053 1,004,148 1,004,148 
Case 4 479,984 530,581 530,581 
Case 5 625,096 665,599 633,404 
Case 6 587,503 588,447 588,447 
Case 7 539,741 587,335 564,032 
Case 8 584,591 664,215 664,215 
Case 9 625,096 665,599 633,404 
Case 10 1,111,752 1,219,555 1,141,881 
 
4.5 Analysis of SH-Configuration 
Case 1: 
Table 4.38: Case SH-1 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 18 Sec 0.30 
Time to Failure Lk 7 Min 0.30 
Cycles to Exhaust Ck 150 Parts 0.30 
Time to Repair Rk 150 Sec 0.30 
Time to Replenish Hk 200 Sec 0.30 
Results 
Initial throughput: 477,761 
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 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine C Machine C 
Mitigation Add 10 buffers in front of Machine C and 15 behind it Add 10 buffers in front of Machine C and 15 behind it 
Throughput 553,850 553,850 
 
Case 2: 
Table 4.39: Case SH-2 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 16 Sec 0.33 
Time to Failure Lk 106.5 Min 0.32 
Cycles to Exhaust Ck 110 Parts 0.29 
Time to Repair Rk 240 Sec 0.28 
Time to Replenish Hk 180 Sec 0.33 
Results 
Initial throughput: 517,369 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine H 
Mitigation Add 7 buffers in front of Machine H and 3 behind it Add 7 buffers in front of Machine H and 3 behind it 
Throughput 566,800 566,800 
 
Case 3: 
Table 4.40: Case SH-3 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 10 Sec 0.31 
Time to Failure Lk 86.5 Min 0.29 
Cycles to Exhaust Ck 45 Parts 0.33 
Time to Repair Rk 180 Sec 0.32 
Time to Replenish Hk 100 Sec 0.29 
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Results 
Initial throughput: 763,443 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine E 
Mitigation Add 7 buffers in front of Machine H and 15 behind it Add 10 buffers in front of Machine E and 18 behind it 
Throughput 857,098 795,458 
 
Case 4: 
Table 4.41: Case SH-4 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 13.5 Sec 0.29 
Time to Failure Lk 106.5 Min 0.28 
Cycles to Exhaust Ck 70 Parts 0.32 
Time to Repair Rk 120 Sec 0.32 
Time to Replenish Hk 90 Sec 0.28 
Results 
Initial throughput: 878,667 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine H 
Mitigation Add 1 buffers in front of Machine H and 3 behind it Add 1 buffers in front of Machine H and 3 behind it 
Throughput 959,073 959,073 
 
Case 5: 
Table 4.42: Case SH-5 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 8 Sec 0.28 
Time to Failure Lk 213 Min 0.31 
Cycles to Exhaust Ck 30 Parts 0.29 
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Time to Repair Rk 46.5 Sec 0.33 
Time to Replenish Hk 23.5 Sec 0.32 
Results 
Initial throughput: 1,565,133 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine E Machine B 
Mitigation Add Machine E Add Machine B 
Throughput 1,619,663 1,565,133 
 
Case 6: 
Table 4.43: Case SH-6 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 25 Sec 0.32 
Time to Failure Lk 170 Min 0.33 
Cycles to Exhaust Ck 130 Parts 0.31 
Time to Repair Rk 80 Sec 0.28 
Time to Replenish Hk 70 Sec 0.27 
Results 
Initial throughput: 427,741 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine C Machine C 
Mitigation Add Machine C Add Machine C 
Throughput 523,610 523,610 
 
Case 7: 
Table 4.44: Case SH-7 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 20 Sec 0.30 
Time to Failure Lk 71 Min 0.29 
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Cycles to Exhaust Ck 90 Parts 0.33 
Time to Repair Rk 220 Sec 0.29 
Time to Replenish Hk 130 Sec 0.30 
Results 
Initial throughput: 564,081 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine E Machine E 
Mitigation Add 3 buffers in front of Machine E and 3 behind it Add 3 buffers in front of Machine E and 3 behind it 
Throughput 605,291 605,291 
 
Case 8: 
Table 4.45: Case SH-8 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 12 Sec 0.33 
Time to Failure Lk 142 Min 0.28 
Cycles to Exhaust Ck 100 Parts 0.32 
Time to Repair Rk 65 Sec 0.32 
Time to Replenish Hk 140 Sec 0.31 
Results 
Initial throughput: 856,211 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine C Machine F 
Mitigation Add 4 buffers in front of Machine C and 10 behind it Add 15 buffers in front of Machine F and 5 behind it 
Throughput 929,791 882,391 
 
Case 9: 
Table 4.46: Case SH-9 
Configuration 
Attribute Mean Value Units C.V. between processes 
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Processing Time Pk 15 Sec 0.31 
Time to Failure Lk 94 Min 0.31 
Cycles to Exhaust Ck 120 Parts 0.29 
Time to Repair Rk 130 Sec 0.31 
Time to Replenish Hk 100 Sec 0.29 
Results 
Initial throughput: 632,703 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine C Machine C 
Mitigation Add Machine C Add Machine C 
Throughput 705,078 705,078 
 
Case 10: 
Table 4.47: Case SH-10 
Configuration 
Attribute Mean Value Units C.V. between processes 
Processing Time Pk 22 Sec 0.29 
Time to Failure Lk 77.5 Min 0.33 
Cycles to Exhaust Ck 880 Parts 0.31 
Time to Repair Rk 160 Sec 0.33 
Time to Replenish Hk 170 Sec 0.28 
Results 
Initial throughput: 466,609 
 Bottleneck Index Method Highest Utilization Method 
Bottleneck Machine H Machine H 
Mitigation Add 3 buffers in front of Machine H and 6 behind it Add 3 buffers in front of Machine H and 6 behind it 
Throughput 501,315 501,315 
 
Ten sets of lines with SH configuration were studied in this section. It was found 
that the Bottleneck Index Method identified the same bottleneck as that of the Highest 
Utilized Machine Method on seven occasions. The Bottleneck Index Method yielded 
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better results in terms of throughput of the line for the remaining three cases. The results 
are presented in Table 4.48. The scenarios where both methods found the same 
bottleneck are bolded. The resource state graphs of all case studies have been presented 
in the appendix. 
Table 4.48: Summary of SH-Configuration Results 
Throughput 
Experiment # Base Scenario Bottleneck Index Method Highest Utilized Machine 
Method 
Case 1 477,761 553,850 553,850 
Case 2 517,369 566,800 566,800 
Case 3 763,443 857,098 795,458 
Case 4 878,667 959,073 959,073 
Case 5 1,565,133 1,619,663 1,565,133 
Case 6 427,741 523,610 523,610 
Case 7 564,081 605,291 605,291 
Case 8 856,211 929,791 882,391 
Case 9 632,703 705,078 705,078 
Case 10 466,609 501,315 501,315 
 
The simulation models for the case studies presented above were built with the 
help of the Excel template developed as a part of this thesis. This reduced the modeling 
efforts to a great extent; wherein the simulation model was built at a ?click of a button?. 
The algorithm that was developed to detect the bottleneck in any serial production system 
and give the simulation analyst a direction in an effort to increase throughput with the 
consideration of economics was tested and verified under different conditions.  
It was found that out of the forty scenarios that were analyzed in this thesis, there 
were only twenty-five cases in which the highest utilized machine was actually the 
bottleneck resource (both Bottleneck Index and Highest Utilized Machine Methods 
detected the same bottleneck in these twenty-five cases). We use the mitigation procedure 
developed in this thesis for bottlenecks detected by Bottleneck Index and Highest 
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Utilized Machine Methods. For the fifteen cases in which the methods identified different 
bottlenecks, our technique of detecting the bottleneck and mitigating the same yielded 
better throughput. This difference in throughput between the lines after mitigation gives 
us evidence that our method of identifying the bottleneck of a serial production system is 
more accurate than the traditional method. We analyzed the resource state graphs of these 
fifteen cases to find out the conditions in which Bottleneck Index Method chose a 
different resource rather than choosing the one with the highest utilization. It is listed as 
follows: 
? It occurs only when there are some machines in the line with very similar 
processing times as that of the highest utilized machine and 
? In the absence of station breakdown (failure and exhaust) both the methods 
always pick the same bottleneck resource  
From the fifteen cases in which the methods identified different bottlenecks, it 
was found that on an average there were around 2.93 resources in those systems whose 
average percentage of utilization was 2.27% lesser than that of the highest utilized 
machine. A mathematical explanation to why both methods pick the same bottleneck 
resource in the absence of breakdowns is that our method detects the bottleneck based on 
the time a resource spends in idle and blocked states. A machine can exist only in three 
states namely, busy, idle and blocked in the absence of breakdowns. The % of time a 
resource spends in busy state is dictated by its processing time. So mathematically, a 
machine with highest utilization in the absence of station breakdowns will spend the least 
% of time in idle and blocked states. But in the presence of machine breakdowns, factors 
like operator interference affect the % of time spent by a resource in idle and blocked 
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states and our method might choose a different resource other than the highest utilized 
machine to be the bottleneck resource.
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 
 
This thesis dealt with the problem of dynamic generation of simulation models 
and analysis of serial production systems which is characterized by capacitated buffers, 
stochastic processing times, unreliable machines, rework loops, maintenance and operator 
issues. This is a significant issue in the field of manufacturing where the decision makers 
are often faced with the task of accessing the throughput of a production line, thereby 
allocating resources and buffers accordingly to meet the annual requirement of the plant. 
This process has to be carried out in relatively short time with no compromises in 
accuracy of the estimates.  
In this thesis, a VBA project was undertaken in an effort to automate the process 
of simulation model building, which will enable decision makers with working 
knowledge of discrete event simulation to carryout case studies with minimal efforts. The 
result of this VBA project was an Excel template, where in the analyst could specify the 
processing parameters for each station and the simulation model of the line will be 
dynamically generated in Arena 7.01. This reduced the simulation modeling efforts to a 
great extent. 
We have developed a technique (Bottleneck Index Method) to detect the 
bottleneck resource in any serial production system by effectively using the resource state 
statistics, which records the % of time spent by a station in the seven different states 
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discussed in this thesis. This technique of ours is compared to that of the traditional 
bottleneck detection method, where in the resource with the highest utilization is 
considered to be the bottleneck. We analyze ten station lines and fifty station lines with 
low and high variability in processing parameters. The production lines analyzed in this 
thesis can be thus be categorized into: i) Long line with low variability in processing 
parameters , ii) Long line with high variability in  processing parameters, iii) Short line 
with low variability in processing parameters and iv) Short line with high variability in 
processing parameters. We have conducted ten sets of experiments for each category. As 
a part of this thesis, we have developed a procedure to curb the bottleneck of a system 
after the detection of the same. We use this mitigation procedure for bottlenecks detected 
by Bottleneck Index and Highest Machine Utilization Methods. Out of the forty cases 
that were analyzed, both Bottleneck Index and Highest Machine Utilization Methods 
detected the same bottleneck machine in twenty-five cases. For the rest of the cases 
(which is about 37.5%) it was shown that our technique of detecting the bottleneck and 
mitigating the same yielded better throughput. The ability to rightly identify the 
bottleneck is demonstrated in this thesis. It was also shown in the case studies that the 
throughput of a system could be improved appreciably by proper adaptation of the 
mitigation techniques suggested in this thesis. Any marginal increase in the throughput of 
a line could result in saving millions of dollars. Proper application of the proposed 
methodologies will help management achieve the desired production rate with minimal 
outlay. 
Buffer allocation is an area which needs further investigation. Currently, the 
algorithm proposed in this thesis analyses output from a simulation model and may 
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suggest changes like adding buffers to a resource. But there is no quantification of the 
size of the buffer that is to be added. The analyst has to guess estimate this value by 
looking at the % of time that resource has spent on different states. If the buffers added 
are surplus or deficit then there is a chance that the study will undergo an extra iteration. 
Another algorithm which will quantify the amount of buffers to be added can be 
developed and it can be integrated into the techniques proposed in this thesis. This way 
time taken for the complete study can be further reduced. 
Another potential extension to this research will be to make the simulation model 
accessible through the World Wide Web where in the user can build the model, run the 
same and analyze the system from a  remote server. This can be accomplished with the 
help of XML. Standards like B2MML can be used in developing the schemas for XML; 
thereby the sender and receiver will have the same expectations of the data that is being 
shared.
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