Statistical Analysis of Time Delays in USB Type Sensor Interfaces on
Windows-based Low Cost Controllers
Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classi ed information.
Lalitha Ramadoss
Certi cate of Approval:
Thaddeus A. Roppel
Associate Professor
Electrical and Computer Engineering
John Y. Hung, Chair
Professor
Electrical and Computer Engineering
Robert N. Dean, Jr.
Assistant Professor
Electrical and Computer Engineering
George T. Flowers
Dean
Graduate School
Statistical Analysis of Time Delays in USB Type Sensor Interfaces on
Windows-based Low Cost Controllers
Lalitha Ramadoss
A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Ful llment of the
Requirements for the
Degree of
Master of Science
Auburn, Alabama
December 19, 2008
Statistical Analysis of Time Delays in USB Type Sensor Interfaces on
Windows-based Low Cost Controllers
Lalitha Ramadoss
Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.
Signature of Author
Date of Graduation
iii
Thesis Abstract
Statistical Analysis of Time Delays in USB Type Sensor Interfaces on
Windows-based Low Cost Controllers
Lalitha Ramadoss
Master of Science, December 19, 2008
(B.E., Bharathidasan University, 2000)
97 Typed Pages
Directed by John Y. Hung
Real-time control systems need sensor data at periodic and predictable time intervals-
this is one aspect of what is commonly called \determinism". Common forces that present
challenges to determinism in Windows-based control systems are computer hardware, soft-
ware, operating systems and external hardware interfaces. Popular, low cost interfaces
that are deployed for attaching peripheral devices and sensors to computing platforms are
Universal Serial Bus (USB) and Peripheral Component Interconnect (PCI).
This work examines the latency of such buses in Windows-based systems from a statis-
tical perspective. Experimental evaluation reveals that PCI and USB o er di erent levels
of performance. With the addition of more and more devices to any of these buses, over-
head increases resulting in deterioration of determinism. This study looks at the issue of
achieving predictability with a broader perspective of why and to what extent a real-time
system is unpredictable.
iv
Acknowledgments
I would like to thank my committee members for their suggestions and contributions to
this work. I would especially like to thank my advisor, Dr. John Y. Hung, for his patience
and invaluable assistance. I would like to thank all of my friends for their help and support.
I would also like to thank my family, particularly my parents, Bhavani and Ramadoss.
Without their love and support, I would have been unable to complete this.
v
Style manual or journal used Journal of Approximation Theory (together with the style
known as \aums"). Bibliograpy follows van Leunen?s A Handbook for Scholars.
Computer software used The document preparation package TEX (speci cally LATEX)
together with the departmental style- le aums.sty.
vi
Table of Contents
List of Figures ix
1 Introduction 1
2 Challenges to determinism in low-cost real-time control systems 5
2.1 Introduction . 5
2.2 Computer Hardware . 6
2.3 Computer Software . 7
2.4 Operating Systems . 7
2.4.1 Windows scheduling strategy . 8
2.4.2 Priority structure . 8
2.4.3 Context switching latency . 10
2.4.4 Latency with paging . 10
2.4.5 DPC latency . 10
2.4.6 RTOS and extensions . 11
2.4.7 Windows I/O subsystem . 11
2.5 External Devices Interface . 12
2.5.1 Universal Serial Bus . 13
2.5.2 Peripheral Component Interconnect 14
2.6 An Experimental Example: Videocapture Latency 15
2.7 Conclusion . 20
3 Latency analysis and Comparison - USB and USB hub 21
3.1 Introduction . 21
3.2 USB Overview . 22
3.2.1 USB device detection . 22
3.2.2 USB communication . 23
3.2.3 USB data transfer format . 24
3.2.4 USB hubs . 25
3.3 Experimental Evaluation . 28
3.3.1 Keypress latency . 29
3.3.2 Fileread latency . 33
3.3.3 Mousemotion latency . 37
3.3.4 Videocapture latency . 38
3.4 Conclusion . 42
vii
4 Multiple Devices - Comparison of USB and PCI Interfaces 45
4.1 Introduction . 45
4.2 Peripheral Component Interconnect . 45
4.2.1 PCI communication . 46
4.2.2 Data transfer mode . 47
4.2.3 Device detection and con guration 48
4.2.4 PCI address space . 48
4.2.5 Motherboard architecture . 50
4.3 Experimental Evaluation . 50
4.3.1 Keypress latency . 51
4.3.2 Fileread latency . 54
4.3.3 Mousemotion latency . 57
4.3.4 Videocapture latency . 60
4.4 Conclusion . 63
5 Conclusions, Recommendations and Future Research 64
5.1 Conclusions . 64
5.2 Recommendations . 65
5.3 Directions for future work . 65
Bibliography 67
Appendices 69
A VB.NET code 70
B VB.NET code for videocapture 81
viii
List of Figures
1.1 An autonomous robot-trailer system conducting geophysical mapping task . 2
2.1 Windows priority structure . 9
2.2 Windows I/O communication . 12
2.3 Machine1: Videocapture latency (USB) . 17
2.4 Machine2: Videocapture latency (USB) . 18
2.5 Machine2: Videocapture latency (PCI) . 19
3.1 USB communication . 23
3.2 USB data transfer format . 26
3.3 USB hub . 27
3.4 Machine1: Statistical analysis for USB keyboard 30
3.5 Machine1: Comparison of keypress latencies for three interfaces: system key-
board, USB keyboard and keyboard connected via USB hub 31
3.6 Machine2: Comparison of keypress latencies for three interfaces: system key-
board, USB keyboard and keyboard connected via USB hub 32
3.7 Machine1: Statistical analysis for leread from USB drive 34
3.8 Machine1: Comparison of leread latencies for three interfaces: system hard
disk, USB drive and USB drive connected via USB hub 35
3.9 Machine2: Comparison of leread latencies for three interfaces: system hard
disk, USB drive and USB drive connected via USB hub 36
3.10 Machine2: Statistical analysis for mousemotion from USB mouse 37
3.11 Machine1: Comparison of mousemove latencies for three interfaces: system
mouse, USB mouse and mouse connected via USB hub 39
ix
3.12 Machine2: Comparison of mousemove latencies for three interfaces: system
mouse, USB mouse and mouse connected via USB hub 40
3.13 Machine1: Statistical analysis for videocapture from USB webcamera 41
3.14 Machine1: Comparison of videocapture latencies for two interfaces: USB
webcamera and webcamera connected via USB hub 43
3.15 Machine2: Comparison of videocapture latencies for two interfaces: USB
webcamera and webcamera connected via USB hub 44
4.1 Motherboard layout . 49
4.2 USB: Comparison of latencies for three cases: keypress only, keypress with
mousemove and keypress with videocapture 52
4.3 PCI: Comparison of latencies for three cases: keypress only, keypress with
mousemove and keypress with videocapture 53
4.4 USB: Comparison of latencies for two cases: leread only and leread with
videocapture . 55
4.5 PCI: Comparison of latencies for two cases: leread only and leread with
videocapture . 56
4.6 USB: Comparison of latencies for two cases: mousemove only and mousemove
with keypress . 58
4.7 PCI: Comparison of latencies for two cases: mousemove only and mousemove
with keypress . 59
4.8 USB: Comparison of latencies for two cases: videocapture only and video-
capture with keypress . 61
4.9 PCI: Comparison of latencies for two cases: videocapture only and videocap-
ture with keypress . 62
x
Chapter 1
Introduction
Real-Time Systems are those in which the correctness of the system depends not only
on the logical results of the computation, but also on the time at which the results are
produced. Meeting timing constraints is a critical issue in real-time control systems. There
are certain obstacles a real-time engineer has to be concerned about while designing real-
time systems. These problems cannot be avoided completely, but it is better to be aware of
pros and cons for implementing better real-time systems in the future. This study provides
a set of recommendations for real-time developers and users to consider while building and
using low-cost, Windows-based, real-time applications.
Most literature refers to two classes of real-time systems: hard and soft [4] [13]. A
hard real-time system is one in which missing deadlines is not tolerated and leads to system
failure. A soft real-time system is one in which deadline misses may lead to performance
degradation but not system failure.
For example, shown in Fig. 1.1 is an autonomous robot-trailer system designed for
geophysical mapping of the ground. The system is designed to operate in both autonomous
and remote control modes. In the latter case, the system sends video information to a
remote computer, and also responds to keyboard/mouse/joystick commands sent from the
remote location. The control computer also can save data to a le for later analysis. A suite
of onboard sensors is connected to the main control computer via standard USB interfaces.
During system development, the latency of sensor information became an issue.
The 3 major objectives of this research are:
1
Figure 1.1: An autonomous robot-trailer system conducting geophysical mapping task
2
1. Explore the domains that cause latency in low-cost Windows-based real-time systems.
Some of the issues that a ect determinism in real time systems are computer hardware,
computer software, operating system and external hardware interfaces. A real-time
system designer strives for predictability with an appropriate mix of these that is cost
e ective.
2. Evaluate the suitability of USB for real-time applications. The behavior of di erent
peripheral devices like keyboard, mouse, USB drive and webcamera with respect to
USB and USB hub is studied from a latency perspective. The latencies caused by
USB and USB hub were measured and then compared to determine whether USB
hub adds overhead to USB latency.
3. Determine whether PCI is better than USB for achieving predictability in real-time
systems. Another question that is studied while working on this research is, \When
multiple devices are connected to the system, does operation of one device a ect the
latency of another device?"
Experimental results summarize the latencies caused by USB, USB hub and PCI interfaces.
It can be inferred from data that they o er di erent levels of performance in meeting timing
constraints. Statistical analysis of sample data was done in two distinct ways: one to t the
data with an appropriate distribution function which would give some insight into modeling
the system and the other to compare the means of data with T-tests.
Chapter 2 discusses the domains that a ect determinism in low-cost Windows-based
real-time control systems. Chapter 3 describes the analysis made on latencies measured
with USB and USB hub on di erent peripheral devices. A study on PCI and comparison
of USB and PCI latencies with two devices communicating to the system at the same time
3
is explained in Chapter 4. Chapter 5 concludes the thesis with inferences and a sketch of
relevant future work.
4
Chapter 2
Challenges to determinism in low-cost real-time control systems
An extensive analysis in the areas of computer hardware, software and operating system
helps a real-time designer to gain deeper understanding of limitations imposed by them on
real-time applications. An overview of these challenges is presented in this chapter; an
experimental example helps illustrate the deadline miss that can result.
2.1 Introduction
New powerful processor architectures optimize the overall performance but an analysis
of several hardware features like Instruction Set Architecture, system bus speed, caching,
parallelism and pipelining is necessary to determine its suitability for real-time performance.
Microsoft Windows series of operating systems are becoming more common in real-time
applications because many developmental tools and techniques are widely available.
Real-Time Operating Systems (RTOS) better meet the needs of real-time applications
than general purpose operating systems like Windows. RTOS when used with appropriate
hardware con guration and systematically developed software might produce determinis-
tic behavior. For programming real-time applications, real-time languages like ADA and
PEARL may be used. But many of such languages are not commercially available [4].
Because of the market forces, real-time control engineers expect to get maximum per-
formance with available commercial o -the-shelf products. For example, the common per-
sonal computer with Intel processor, Windows operating system, and standard peripheral
5
interfaces (USB, serial, PCI) is often considered a low-cost option to achieve real-time per-
formance.
2.2 Computer Hardware
Technological advances and new ideas employed in processor architectural design give
the illusion of meeting timing constraints for real-time applications. A real-time system is
not expected to process data in micro or nanoseconds but meet its deadlines. It is signi cant
to note that there is a clear boundary between real-time performance and high performance.
For example, a massive supercomputer running scienti c simulations may give impressive
performance yet not real-time performance.
For time-critical systems, predictability but not speed is the foremost concern. Proces-
sors with high clock speed and more memory might not contribute to determinism. There
are many hardware issues that cause latency in real-time systems. The rst ight of the
space shuttle was delayed, at considerable cost, because of a subtle timing bug that arose
from a transient CPU overload during system initialization [20]. Hence, the architecture
and design of processor should be closely tailored to the needs of real-time applications to
meet the timing constraints.
To exploit high performance, processors are employed with advanced architectural con-
siderations like pipelining, caching, Direct Memory Access, exception handling and interrupt
handling. These techniques present hazards to determinism since they complicate the pre-
diction of execution times of processors [4]. In contrast, determinism may be more easily
achieved with less complicated structures. For this reason, some engineers prefer to imple-
ment real-time controllers on microcontrollers rather than general purpose microprocessors.
6
2.3 Computer Software
The choice of particular type of programming language is an important decision factor
in real-time system design. Many programming languages are not suitable for developing
real-time applications because they lack deterministic features for expressing timing con-
straints [8]. For example, high level implementation languages like C and C++ have built in
garbage collection techniques which may occur at any time during the execution of program,
thereby a ecting real-time performance.
Garbage collection is a memory management technique that reclaims the memory used
by objects in the program that is no longer needed by the application. This technique
eases the programmer of not doing the task manually but a ects timely execution of events.
Also, C doesn?t have strong structured options for exception handling which may cause
immediate termination of programs due to memory over ow, divide by zero exceptions
thereby a ecting predictability.
Some of the real-time programming languages like ADA, PEARL [4] and extensions
of C++, Java to RTC++ [12] and RTJAVA enable real-time programs to meet timing
constraints. Real-time programming languages and extensions support features like special
data types, strong type checking, exception handling, modular programming, task synchro-
nization and temporal behavior. Though general purpose programming languages like C
and C++ are not better for real-time applications, they are used because of their advantages
like programmer?s familiarity, good availability and Windows support for development.
2.4 Operating Systems
The Operating System(OS) is one of the factors that a ect determinism in real-time
systems. The OS determines allocation of resources and CPU scheduling for the set of
cooperating tasks so that they can obtain the necessary resources at the right time. Much
7
work has been done to improve performance of existing operating systems with di erent
scheduling approaches for meeting real-time performance requirements [10][16] [18].
2.4.1 Windows scheduling strategy
State-of-the-art literature reveals that Windows operating system has several features
that limits its suitability for hard real-time systems [17]. Windows uses priority based pre-
emptive scheduling; if a higher priority process becomes ready while lower priority process is
running, the lower priority process is preempted by higher priority process giving preference
for higher priority process.
The higher the priority, the more the processing time is attributed to the process.
But for a real-time system, predictable performance is more crucial than overall system
performance. Windows was designed as a general purpose operating system with the goal
to maximize system performance.
2.4.2 Priority structure
Figure 2.1 shows the priority structure of the Windows operating system. Processes run
in two modes: kernel and user. Interrupt Service Routines (ISR?s) and Deferred Procedure
Calls (DPC?s) run in kernel mode and all other user level initiated processes run in user
mode. In user mode, there are 32 priority levels; 16-31 for real-time processes and 1-15 for
other processes.
When the number of real-time processes increases, time sharing approach is used be-
tween threads. The 32 priority levels are called thread base priorities and a particular
thread base priority is obtained by combining process priority and thread level priority.
Each process belongs to one of the following priority classes: IDLE, NORMAL, HIGH
and REALTIME. REALTIME priority class is provided to support real-time applications.
8
Figure 2.1: Windows priority structure
9
Each thread can have one of the following seven priority levels: IDLE, LOWEST, BE-
LOW NORMAL, NORMAL, ABOVE NORMAL, HIGHEST and TIME CRITICAL.
2.4.3 Context switching latency
When processes share the same priority level, context switching may cause delays in
response times. When context switching occurs, the kernel switches from one running thread
to another; the kernel saves context of the current running process in memory, retrieves the
context of the process to be run next, restores it in CPU?s registers, executes it, and then
returns to the suspended process.
2.4.4 Latency with paging
Windows uses virtual memory and paging which allows the programs to reference more
RAM than is available in the system. With virtual memory, the system looks for data that
has been used least recently and copies it to the hard disk, creating free space in RAM to
load new applications.
When a process needs data that is not in RAM, the OS determines its location in
secondary memory, determines a location in RAM to load the data from secondary memory,
and then loads it. Though it creates an illusion of unlimited RAM (RAM being more
expensive), an insight into the paging mechanism reveals that, the OS is moving back
and forth between hard disk and RAM. Page swapping can occur at any time during the
execution of a thread, thereby jeopardizing predictability of a real-time system [2].
2.4.5 DPC latency
ISR is given the highest priority among kernel mode processes. When an interrupt
occurs, critical processing is done by ISR and the rest by Deferred Procedure Calls (DPCs).
DPCs are assigned the next priority level to ISR. With the arrival of multiple interrupts,
10
DPCs in FIFO queue cause signi cant indeterminism because the order in which DPCs
are processed are not based on priority metrics. A higher priority DPC may have to wait
for lower priority DPC to nish [16] [2]. Another noteworthy issue is that according to
the priority hierarchy, real-time processes are at lower priority level than interrupts and a
particular real-time running thread can be preempted by any interrupt.
2.4.6 RTOS and extensions
RTOS supports 256 levels of priority for real-time systems. The more the number of
priority levels for real-time systems, the better the deterministic the system will be because
this would overcome the overhead caused by context switching between threads.
Real-Time kernels often use the scheduling strategy that the task which needs quickest
response is given the highest priority. The scheduler is the critical component of RTOS as
it is responsible for providing deterministic time slices to real-time processes. It considers
factors like criticality of the task, time deadline, precedence relations between tasks and
resource constraints and map all of them into single gure called priority.
There are also extensions made to existing operating systems to support timing con-
straints like UNIX to RT-UNIX, LINUX to RTLINUX. Basically, this involves taking the
kernel and adding necessary services like interprocess communication, scheduling, interrupt
handling etc. Various problems arise when such extensions are made [18].
2.4.7 Windows I/O subsystem
Successful interfacing of peripheral devices is the responsibility of the OS. The I/O
manager (see Figure 2.2) supports the communication between application software and
peripheral device by providing a comprehensive set of system services. Every call to device
driver from application is under the control of I/O manager. When I/O manager receives an
11
Figure 2.2: Windows I/O communication
I/O request, it constructs I/O Request Packets (IRPs) and directs them to the appropriate
device driver which handles these IRPs. The application software does not have knowledge
of which device driver services a particular device.
2.5 External Devices Interface
I/O devices are one of the major components of real-time control systems. Most real-
time systems get input from outside world through standard interfaces like USB, SCSI etc.
In a real-time operation, programs for processing of data arriving from external environment
are permanently ready, so that the results are produced at the predetermined periods of
12
time. The arrival time of data is a ected by communication protocol used, type of device,
processor load etc.
2.5.1 Universal Serial Bus
USB presents an attractive option among other interfaces because of the features like
high performance, capability to expand up to 127 devices, power conservation, and support
for four di erent types of data transfers. This protocol makes the connection of peripheral
devices to the computer easier and hence addresses simple I/O.
The four di erent types of data transfers are: interrupt, isochronous, bulk and control
transfers [1].
 Interrupt transfers are used with interrupt driven devices like keyboard. A USB
keyboard is polled periodically to determine if data is ready to be transferred.
 Isochronous transfers are continuous and periodic. This type of transfer is used in
audio and video streaming applications. The device is guaranteed a slice of every
frame.
 Bulk transfers are used for transferring large volumes of data that does not have
any periodic requirement. A document to be printed transferred through USB is an
example for bulk transfer.
 Control transfers are used during device con guration. The setup requests transferred
during device enumeration is a typical control transfer.
USB is a shared bus that supports simultaneous attachment of many devices. Data is
transferred in regular intervals of 1 ms called frames. Not every device will transfer data
during each frame. Bandwidth allocation depends on throughput of the device and available
bandwidth. A mix of transfer types is likely to be performed during each 1ms frame.
13
USB speci cation states that isochronous and interrupt transfers occupy 90% of USB
bandwidth while control transfers have 10% reservation. Bulk transfers are allocated with
the remaining bandwidth after all other transfers have been scheduled.
Hence, when a real-time system is communicating to several devices that follow di er-
ent data transfer modes, devices with bulk transfer have to wait for longer times causing
latencies. Better bandwidth reservation algorithms have been proposed for USB to support
real-time applications by modifying scheduling strategy in USB driver [9].
2.5.2 Peripheral Component Interconnect
PCI is a high performance IO bus that can be con gured dynamically for devices that
need high bandwidth requirements. Some of the interesting features of PCI are low-power
consumption, low pin count, auto con guration and processor independence.
PCI uses a shared bus topology that allows di erent PCI devices like network card,
sound card, or a RAID card to be attached to the same bus, through which they com-
municate with the CPU. PCI makes use of DMA (Direct Memory Access), the ability to
access system memory without consulting the CPU which signi cantly improves system
performance.
When several devices are attached to the PCI bus, a bus arbitration scheme is used
to decide the allocation of the bus for devices. Devices are assigned priority based on the
value of device?s con guration register, which is maximum latency, the time it has to wait
for getting bus access.
Once a device has control of the bus, it becomes the bus master and starts commu-
nicating with the processor and memory. Other devices have to wait until bus master
relinquishes the bus, this a ects the timeliness of critical activities. Most PCI devices are
capable of initiating a data transfer as bus masters without the need for CPU.
14
2.6 An Experimental Example: Videocapture Latency
This study measures the latency of videocapture by attaching a webcamera to USB
and then to PCI through a PCI/USB interface card. PCI interface could only be tested on
Machine2 because it did not exist in Machine1 which is a laptop computer. As discussed
in Section 2.1, latency comes from various sources. The experiment was performed on the
following two di erent Machines.
1. Machine1: Windows Vista, Intel Core Duo processor with 1GB RAM, 120GB Hard
Disk and 1.73GHz clock speed
2. Machine2: Windows XP, Intel Celeron processor with 512MB RAM, 60GB Hard Disk
and 2.4GHz clock speed.
The software is written in VB.NET and timing is measured using QueryPerformanceCounter
function. Since the results are expected to be in millisecond precision, events are timed us-
ing highest resolution timer o ered by the system. Windows NT 3.1 or later versions
and Windows 95 or later versions support this function. It accesses the CPU?s high per-
formance counter values. QueryPerformanceFrequency function retrieves the frequency of
high-resolution performance counter. The resolution is system-dependent and is given by
R = 1=QueryPerformanceFrequency
The frequency of the high performance counter retrieved using QueryPerformanceFrequency
with Machine1?s Hardware is 14318180 Hz and for Machine2 is 3579545 Hz.
While timing an event, if T1 is the start count value of the counter and T2 is the end
count value, then seconds elapsed Te is calculated by
Te = (T2 T1)=QueryPerformanceFrequency
15
Table 2.1: Statistical analysis for videocapture
Min (ms) Max (ms) Avg (ms) std
Machine1 (USB) 99.7660 139.8132 109.2908 3.1746
Machine2 (USB) 75.2070 268.4690 125.8854 35.5179
Machine2 (PCI) 84.7834 146.2633 111.3936 8.9181
The tests were conducted on two di erent machines with di erent operating systems,
hardware con gurations and di erent technical speci cations to validate latency with video-
capture. The preview rate for videocapture is set to 100ms.
The system is expected to capture one frame every 100ms. But due to limitations
with hardware, software, operating system and peripheral intereface, frame capture rate
of 100 ms was not observed. The experiment was run until 1000 samples were collected
and statistical values were analyzed. Figures 2.3 and 2.4 show the results obtained from
experimental runs and Table 2.1 shows the statistical values calculated for both machines.
The test cases analyzed were webcam connected to
1. Machine1?s USB port
2. Machine2?s USB port
3. Machine2?s PCI bus using a USB/PCI interface card
It can be noted that the minimum value is actually less than 100ms for both Machine1
and Machine2. A real-time application that depends on input from webcam gets data earlier
for some frames and also delayed for some frames.
On Machine1, the average value is 9 ms greater than expected average value. This
delay could signi cantly a ect determinism in real-time systems. Figure 2.3 illustrates the
frequency distribution of data with respect to time. More data appears to be in the range
from 108 to 109 ms.
16
Figure 2.3: Machine1: Videocapture latency (USB)
17
Figure 2.4: Machine2: Videocapture latency (USB)
18
Figure 2.5: Machine2: Videocapture latency (PCI)
19
For Machine2 with USB, the minimum value is 25 ms lower and maximum value is 168
ms higher than expected time. This early occurrence of an event and delayed event indicates
the extent to which determinism is a ected. High value of standard deviation complicates
the prediction of timely execution of events. This is evident from the probability plot of
Figure 2.4 as the curve is more spread apart.
Changing the I/O interface on Machine2 from USB to PCI greatly improves predictabil-
ity. Figure 2.5 illustrates the latency of videocapture with PCI bus on Machine2. The mean
of 1000 samples is expected to be 100 ms but Table 2.1 shows the average to be close to 111
ms. Although functionally correct, frames captured beyond or before predetermined time
are considered invalid from a real-time perspective.
2.7 Conclusion
Deadline miss was evident with USB webcamera where the combination of factors
discussed in Section 2.1 comes into play. Also, statistical analysis of experimental data
and comparison with two machines give us some idea about the spread and probability of
latencies.
The next chapter demonstrates the e ects of latency with USB when di erent devices
like keyboard, mouse, USB drive and webcam are communicating to the real-time system.
Another interesting related issue that is explored is, \Will a USB hub introduce latency
with peripheral devices?"
20
Chapter 3
Latency analysis and Comparison - USB and USB hub
In this chapter, latency values for getting input from di erent peripheral devices like
keyboard, mouse, USB drive and webcam were measured by attaching them to USB and
then through hub. A statistical analysis was done to compare the delays and nd whether
hub causes more latency.
3.1 Introduction
In real-time operation of a computer system, the programs for the processing of input
data are constantly operational so that the results will be available within predetermined
periods of time. For example, an aircraft must process accelerometer data within speci ed
time that depends on the speci cations of the aircraft (for example every 5 ms) [13].
Universal Serial Bus has become an industry standard for attaching peripheral devices
to the computer. This chapter presents an overview of USB, measures the latencies caused
by USB and USB hub and compares their latencies to determine whether USB hub adds
overhead to USB. Experimental evaluation shows that USB is a good interface for soft
real-time systems that can tolerate delays in the order of few milliseconds. It also provides
insight needed for building real-time architectures that depend on USB to collect sensor
data.
USB?s success is due to some of its characteristics like simplicity, plug and play, low
power consumption, expandability, high performance and error detection and recovery. In
recent years, sensors with USB connectivity have been developed for industrial applications;
21
therefore temperature, humidity, pressure and other sensors are utilizable to accomplish
speci c tasks [6].
One of the objectives of this research is to evaluate the suitability of USB for real-
time applications. The behavior of di erent peripheral devices like keyboard, mouse, USB
drive and webcam with respect to USB and hub is studied from a latency perspective.
Section 3.2 gives an overview of USB?s technical speci cations like device detection, data
communication mechanism, data transfer modes and packet formats. Since this research
also involves testing with USB hub, a brief explanation about USB hub?s functionality is
also presented. Experimental results in Section 3.3 summarize the latencies caused by USB
and USB hub.
3.2 USB Overview
USB makes the connection of multiple peripheral devices to the computer easier and
more e cient and hence addresses simple I/O.
3.2.1 USB device detection
When a USB device is attached to the PC, the host software (operating system) detects
and con gures the device. The USB driver detects the device characteristics through a
device descriptor. A descriptor is a data structure which contains information about the
device and its properties. Then, the USB driver locates the appropriate device driver and
loads it. Once the device driver is loaded, it establishes a logical connection called pipe
between device driver and endpoint. Data transfer takes place through this communication
pipe. Endpoint is a logical entity (register) where data enters or leaves USB device.
22
Figure 3.1: USB communication
3.2.2 USB communication
USB communication is based on master slave relationship between host computer and
device (see Fig. 3.1). Slave responds to master?s requests and there can be only one master in
the system, i.e., host computer. Also, USB devices cannot interact with each other without
host [15]. USB system software consists of USB driver and host controller driver which are
explained below. USB communication could be explained as a series of the following steps:
1. When a USB device needs to transfer data, the device driver sends a transfer request
to USB driver. These packets are termed as IO Request packets (IRP?s).
23
2. The device driver supplies a memory bu er which is used to store data when trans-
ferring data to or from the device.
3. USB driver splits the IRP into individual transactions that will be executed during
series of 1 ms time frames. It organizes the requests based on device requirements,
needs of client driver and capabilities of USB.
4. The host controller driver schedules these requests according to the algorithm based
on USB transfer capabilities.
5. The host controller then executes the transactions and passes data through USB. Each
transaction results in data being transferred from USB device to client bu er or from
client bu er to USB device.
3.2.3 USB data transfer format
USB transfers data in series of 1 ms time frames. Fig. 3.2 illustrates the packet transfer
mechanism of USB. Each frame consists of 1 or more transactions. Transactions consist of
three packets: token, data, and handshake [11].
 Each transaction begins with a token packet which indicates the type of transaction
that follows: IN for data transfer from USB device to system, OUT for data transfer
from system to USB device and SETUP for control transfer.
 Data packet carries the payload associated with transaction. There are two types of
data packets: DATA0 and DATA1 each can carry 1024 bytes.
 Handshake packet contains information about transaction status. There are three
types: ACK indicates error-free receipt of data, NAK signi es host that target is
unable to accept data and STALL is used by target to report that it cannot complete
transfer and requires intervention by host.
24
A packet is the mechanism for performing all transactions. Each packet consists of following
 elds:
 SYNC: It indicates the speed of data transfer.
 PID: Packet Identi er identi es the type of packet sent (token, data and handshake).
 ADDR: It is the address eld that speci es the device to which the packet is destined
for.
 ENDP: Endpoint number where data enters or leaves the system.
 CRC: Cyclic Redundancy Check is used to check for errors in data payload.
 EOP: signals the End of Packet.
3.2.4 USB hubs
USB hubs permit extension of USB system by providing additional ports for attach-
ing USB devices. Hubs may be bus-powered (derive power from USB bus for itself and
attached devices) or self powered. As Fig. 3.3 shows hubs consists of two major functional
components; hub controller and repeater [1].
 Hub controller: It gathers hub and port status information that is read by USB system
software to detect attachment and removal of device. It receives commands from USB
system software to control various aspects of hub?s operation such as powering and
enabling ports.
 Repeater: It transfers the data between host controller and device based on control
signal from hub controller.
25
Figure 3.2: USB data transfer format
26
Figure 3.3: USB hub
27
3.3 Experimental Evaluation
A study was conducted to determine the latency with USB and USB hub using pe-
ripheral devices like keyboard, mouse, USB drive and webcamera. The experiment was
performed on the following two di erent machines.
1. Machine1: Windows Vista, Intel Core Duo processor with 1GB RAM, 120GB Hard
Disk and 1.73GHz clock speed
2. Machine2: Windows XP, Intel Celeron processor with 512MB RAM, 60GB Hard Disk
and 2.4GHz clock speed.
The software is written in VB.NET and timing is done using QueryPerformanceCounter
function. A series of experiments enable us to analyze and compare the results from di erent
classes of USB devices that have di erent data transfer modes. The experimental data shows
a considerable latency in the order of milliseconds with USB and USB hub for certain
devices.
Since the results were expected to be in millisecond precision, events are timed using
highest resolution timer o ered by the system. Counter resolution is system dependent, but
in all experiments the resolution is much less than one microsecond.
This section consists of four subsections, one for each tested device. Each subsection
presents data in two tables; one table lists the values of minimum, maximum, average, and
standard deviation (in milliseconds), and the other table summarizes the values of Student?s
T-tests.
The T-test compares the means of two sample sets based on the null hypothesis that
both means are likely to be equal with 95 percent con dence (signi cance level = 0:05).
If h=0, the null hypothesis is accepted and means are statistically equal. If h=1, the null
28
Table 3.1: Statistical analysis of keypress
Machine1 Machine2
Connectiontype Min(ms) Max(ms)Avg(ms) std Min(ms) Max(ms)Avg(ms) std
System 21.986 42.054 31.931 0.789 11.036 60.38 33.222 4.261
USB 21.651 61.123 33.014 1.552 11.027 69.056 33.246 4.188
USBhub 17.146 41.515 33.017 0.813 13.624 68.194 33.520 5.479
hypothesis is rejected; the con dence interval for the di erence between the two means is
displayed between brackets.
3.3.1 Keypress latency
This experimental part determines the time taken for reading characters from the
keyboard. The test is conducted for three cases:
 System keyboard connected through the PS/2 interface
 Keyboard connected through a USB port
 Keyboard connected through a USB hub
In each case, 1000 samples were collected. Shown in Figure 3.4 are that data histogram and
candidate probability curves. Probability curves are plotted in both linear and logarithmic
vertical axis. The plots show the sample data does not t a normal density curve.
From Table 3.1, it can be inferred that latency is the highest for a USB keyboard,
compared to the other two cases. On Machine1, it can be observed from Table 3.2 that
the USB and USB hub introduce latency when compared to system keyboard. But, the
USB hub does not introduce signi cant latency when compared against USB on either
Machine1 or Machine2. The graphical representation of statistical data in tables is shown
in Figures 3.5 and 3.6.
29
Figure 3.4: Machine1: Statistical analysis for USB keyboard
Table 3.2: Comparison of means (T-test = 0:05) for keypress
Comparison Machine1 Machine2
System vs. USB h=1 [-1.1910,-0.9751] h=0 (no di erence)
System vs. USB hub h=1 [-1.1565, -1.0160] h=0 (no di erence)
USB vs. USB hub h=0 (no di erence) h=0 (no di erence)
30
Figure 3.5: Machine1: Comparison of keypress latencies for three interfaces: system key-
board, USB keyboard and keyboard connected via USB hub
31
Figure 3.6: Machine2: Comparison of keypress latencies for three interfaces: system key-
board, USB keyboard and keyboard connected via USB hub
32
Table 3.3: Statistical analysis for leread
Machine1 Machine2
Device Min(ms) Max(ms) Avg(ms) std Min(ms) Max(ms) Avg(ms) std
Harddisk 0.136 17.798 0.185 0.583 0.693 38.801 1.005 1.974
USBdrive 0.376 7.798 0.599 0.305 1.103 25.934 1.510 0.953
USBdrive hub 0.371 5.402 0.629 0.188 1.124 46.345 1.582 1.746
Table 3.4: Comparison of means (T-test = 0:05) for leread
Comparison Machine1 Machine2
Harddiskvs. USBdrive h=1[-0.4547,-0.3731] h=1[-0.6406,-0.3687]
Harddiskvs. USBhub drive h=1[-0.4822,-0.4061] h=1[-0.7395,-0.4126
USBdrive vs. USBhub drive h=1[-0.0524,-0.0080] h=0(nodi erence)
3.3.2 Fileread latency
To evaluate the latency of data transfer from a USB drive, time taken to read a text
 le is measured in three cases, from:
 Hard Disk
 USB drive
 USB drive connected through hub
The text le size is constant throughout the experiment and Table 3.3 summarizes the
statistical values. The le is read 1000 times and the experiment is repeated for all the
three cases with two Machines. Figure 3.7 illustrates that distribution of sample data for
USB drive is di erent from rayleigh distribution; this is because sample data is more spread
and most of the probability values are close to 0. It can be inferred from Table 3.4 that
accessing data from USB drive is slower than hard disk. Although USB hub causes latency,
its e ect is not very signi cant, based on results from T-tests. The graphical representation
of the statistical data in tables for both machines is shown in Figures 3.8 and 3.9.
33
Figure 3.7: Machine1: Statistical analysis for leread from USB drive
34
Figure 3.8: Machine1: Comparison of leread latencies for three interfaces: system hard
disk, USB drive and USB drive connected via USB hub
35
Figure 3.9: Machine2: Comparison of leread latencies for three interfaces: system hard
disk, USB drive and USB drive connected via USB hub
36
Figure 3.10: Machine2: Statistical analysis for mousemotion from USB mouse
3.3.3 Mousemotion latency
The third experiment consists of the implementation of the code that detects mouse
position and timer value for every mousemove event. Over 1000 samples were collected on
two di erent machines, each over three cases:
 Mouse conected through PS/2
 Mouse connected through USB
 Mouse connected through USB hub
37
Table 3.5: Statistical analysis for mousemotion
Machine1 Machine2
Connectiontype Min(ms)Max(ms)Avg(ms) std Min(ms)Max(ms)Avg(ms) std
PS/2 2.440 144.849 19.824 14.309 5.678 456.893 26.640 26.034
USB 7.482 128.145 22.513 10.950 13.159 225.027 38.572 25.530
USBhub 6.983 251.055 30.648 20.758 10.948 256.720 40.706 26.243
Table 3.6: Comparison of means (T-test = 0:05) for mousemotion
Comparison Machine1 Machine2
PS/2 vs. USB h=1 [-3.8064, -1.5715] h=1 [-14.1935,-9.6709]
PS/2 vs. USB hub h=1 [-12.3876,-9.2603] h=1 [-16.3587,-11.7737]
USB vs. USB hub h=1 [-9.5908 -6.6793] h=0 (no di erence)
The histogram, probability distribution and Rayleigh distribution of sample data in Fig-
ure 3.10 reveal the fact that sample data roughly ts the Rayleigh density function. Ta-
ble 3.5 shows that the average values for sample data increases for mouse connected from
PS/2 to USB to USB hub. A statistical comparison of means summarized in Table 3.6 is
useful in validating the latencies with three di erent cases. Mouse connected through PS/2
is faster than USB mouse which is faster than mouse through USB hub. Hence, real-time
applications that depend on input from mouse connected through USB hub are a ected by
latency issues. The graphical representation for the above statistical data in tables for
both machines are shown in Figures 3.11 and 3.12.
3.3.4 Videocapture latency
To observe the e ects of latency with videocapture, software was developed to deter-
mine the time taken for capturing every frame from an inexpensive Webcam. The frame
capture rate was set to be 100 ms, i.e the system should ideally capture a single frame 10
times per second.
The QueryPerformanceCounter was used to measure the actual time taken for captur-
ing every frame. Time taken for capturing 1000 frames were collected and analyzed. The
experiment was conducted for two cases on 2 di erent machines.
38
Figure 3.11: Machine1: Comparison of mousemove latencies for three interfaces: system
mouse, USB mouse and mouse connected via USB hub
39
Figure 3.12: Machine2: Comparison of mousemove latencies for three interfaces: system
mouse, USB mouse and mouse connected via USB hub
40
Figure 3.13: Machine1: Statistical analysis for videocapture from USB webcamera
 Webcam connected through USB
 Webcam connected through USB hub
Average values calculated from sample data described in Table 3.7 give us some idea about
latency caused in capturing frames. The average value is supposed to be close to 100 ms
but for both machines and for both cases, average values are greater than 100ms. From
Table 3.8, one concludes that the USB hub does not introduce latency with videocapture.
In fact, on Machine2, the USB hub actually reduces the average latency and deviation
compared to a direct USB connection. It can be observed that the behavior of the USB hub
with webcamera is di erent from other devices. Probability curve of sample data closely
follows the normal density curve which is evident from Figure 3.13. Hence, for real-time
41
Table 3.7: Statistical analysis for videocapture
Machine1 Machine2
Connectiontype Min(ms)Max(ms)Avg(ms) std Min(ms)Max(ms)Avg(ms) std
USB 99.766 139.813 109.291 3.175 75.207 268.469 125.885 35.518
USBhub 95.687 136.102 109.231 3.059 76.330 287.400 119.787 26.448
Table 3.8: Comparison of means (T-test = 0:05) for videocapture
Comparison Machine1 Machine2
USBvs USBhub h=0(no di erence) h=1[3.3515,8.8445]
applications both USB and USB hub have a greater e ect on videocapture in meeting timing
constraints. The graphical representation for the above statistical data in tables for both
machines are shown in Figures 3.14 and 3.15.
3.4 Conclusion
This work measures the latency involved in using USB devices that one must consider
when trying to weigh the real-time requirements of the system versus cost and reliability.
A comparison of latency values of USB and USB hub is made to determine whether USB
hub cause more latency. There are also interfaces other than USB that can be used in real-
time applications. Statistical analysis of experimental data and comparison with models
illustrates the spread and probability of time values for every event.
The concept developed from this research forms a baseline for studying the behavior
of multiple devices that are communicating through USB and PCI to a real-time system at
the same time. In the next chapter, a comparison of latencies of PCI and USB buses was
done to decide the suitability for meeting timing constraints.
42
Figure 3.14: Machine1: Comparison of videocapture latencies for two interfaces: USB
webcamera and webcamera connected via USB hub
43
Figure 3.15: Machine2: Comparison of videocapture latencies for two interfaces: USB
webcamera and webcamera connected via USB hub
44
Chapter 4
Multiple Devices - Comparison of USB and PCI Interfaces
Meeting timing constraints in a real-time system depends on the computational power
of the processor, complexity of the control algorithm, operating system capabilities, and
types of communication protocol used to communicate information. The impact of external
device interfaces like PCI and USB in meeting timing constraints with real-time applications
is studied in this chapter.
4.1 Introduction
PCI has become the standard in all high performance systems that require quicker IO
data transfer. PCI has its widespread use not only in PC market but also in embedded
systems, laptops and mobile systems. Universal Serial Bus is another popular standard for
personal computer peripheral devices because of its versatile interconnection speci cations.
With the prominence of USB and PCI, it is interesting to explore whether PCI is better
than USB for achieving predictability in real-time systems. To analyze latency with PCI,
USB devices are connected to the computer via PCI/USB interface card.
4.2 Peripheral Component Interconnect
Peripheral Component Interconnect is an industry speci cation for connecting periph-
eral devices to CPU. Designed by Intel in 1992, it is high performance IO bus that can
be con gured dynamically for devices that have high bandwidth requirements. PCI bus
is 64 bits wide, operates at 133 MHz speed with transfer rate of 1Gbps. PCI compliant
45
programmable logic devices such as FPGAs (Field Programmable Gate Arrays) are used to
create PCI bus interfaces facilitating the bene ts of both FPGA and PCI. Such a design
requires adherence to PCI standard speci cation to guarantee compliance [5] [7].
PCI is an attempt to avoid data bottlenecks between processor and peripherals. Ap-
plications such as data acquisition and waveform generation require su cient bandwidth
to ensure that data can be transferred to memory quickly without being lost or overwrit-
ten. PCI Express uses high performance, point-to-point serial interface enabling faster data
streaming [19].
4.2.1 PCI communication
PCI uses a shared bus topology that allows di erent PCI devices like network card,
sound card, or a RAID card to be attached to the same bus, through which they communi-
cate with the CPU. In a typical system, operating system queries all PCI buses at startup
time to determine what devices are attached to PCI bus and what system resources (mem-
ory space, IO space etc) they need. It then allocates necessary resources they need and
noti es the devices about its allotted resources. Devices connected to PCI have executable
code in their ROM which can be read by processor and then operating system loads the
corresponding device driver.
Because several devices can be attached to PCI bus, bus arbitration scheme is used
to decide which device can access the bus when. Once a device has control of the bus,
it becomes the bus master and can start communicating with the processor and memory.
Other devices have to wait and this demand for bus may degrade performance of system
[3].
All PCI devices are capable of initiating a data transfer as bus masters without the need
for CPU. Hence CPU is not intervened which signi cantly improves system?s performance.
46
When two or more bus masters want to transfer data at the same time, bus arbitration
handles all possible scenarios and ensures fair bus access to all devices. PCI uses hidden
bus arbitration mechanism in which bus arbitration will take place when bus data transfer
is going on. This will reduce latency because the device is ready to transfer data once when
bus will become available.
Priority is assigned to PCI devices based on the value speci ed by device?s con guration
register which is maximum latency, the time it has to wait for getting bus access. If a high
priority device has been assigned bus access and if another device which is of higher priority
than one that is granted bus access arrives in, then the the older device is preempted by
the new device.
Once a device has started using the bus, it can begin its transaction and cannot be
interrupted by other devices until it has completed the transfer. Each device has latency
timer whose value indicates the guaranteed period of bus access. This latency timer is a
con guration register, it is decremented for every bus cycle and when its value reaches zero,
the device has to relinquish the bus for other device.
4.2.2 Data transfer mode
PCI uses burst mode of data transfer which o ers superior performance when compared
to other buses. Burst mode is faster than other modes because data is transferred in blocks
and it seizes control over the bus. Also, PCI makes use of DMA (Direct Memory Access),
the ability to access system memory without consulting the CPU. DMA is the natural mode
of data transfer in PCI which uses burst operation [21]. This feature may specially be useful
in real-time computing because current running processes are not stalled thereby avoiding
the CPU overhead.
47
4.2.3 Device detection and con guration
When a new device is attached to PCI slot, con guration steps that are followed to
identify the device are:
1. BIOS scans the PCI bus and tries to identify the device by sending a signal to the
device.
2. The device sends back the device ID.
3. BIOS con gures the device by assigning IRQ (Interrupt Request), DMA, Memory
address and IO settings.
4. Operating System on boot up, checks the PCI bus and loads the corresponding device
driver.
5. Once the device driver is installed, the device is ready for use.
4.2.4 PCI address space
When a PCI-enabled computer starts up, it initializes the PCI subsystem by allocating
blocks of memory dedicated for each PCI device so that they will be accessible to the CPU.
Once the devices know about their address spaces, they start listening to the bus for any
commands and data in their way. The PCI target can implement three types of address
spaces, con guration space, memory space and IO space.
Con guration space consists of 256 bytes of con guration registers and stores basic
information about the device such as vendor and class of device. This space can be accessible
at any time by con guration, initialization and error handling software. IO space is where
basic peripheral devices are mapped and memory space is used as a general-purpose space.
48
Figure 4.1: Motherboard layout
49
4.2.5 Motherboard architecture
Figure 4.1 shows the typical motherboard layout with buses, processor and chipset.
The chipset consists of two chips: northbridge and southbridge. Northbridge also known
as Memory controller hub controls communication between RAM, CPU and southbridge.
Southbridge also known as I/O controller hub is not directly connected to CPU and handles
communication between northbridge and IO devices. It is moved farther away from CPU
and is responsible for slower devices.
Front Side Bus carries information between northbridge and CPU. It?s frequency de-
pends on processor speed and can operate upto 800MHz. ISA bus connects peripheral
devices like mouse, keyboard, serial port to southbridge. It is 32 bits wide and operates
at 8MHz with a transfer rate of 32Mbps. The memory bus is a set of wires that carry
address and data information between system RAM and chipset. PCI bus has direct access
to system memory but uses bridge to connect with Front Side Bus and CPU.
To support modern 3D applications, Intel established PCI Express for attaching video
cards to motherboard. PCI Express based on PCI provides a scalable, high-bandwidth,
low-latency interconnect. It is software compatible with PCI since no changes are necessary
for device drivers at the operating systems level [14].
4.3 Experimental Evaluation
The experiment is performed on Windows XP, Intel Celeron processor with 512MB
RAM, 2.4GHz processor speed, 60GB hard disk. Software is written in VB.NET and timing
is done using QueryPerformanceCounter. This function retrieves the values of the highest
resolution timer o ered by Windows XP. The resolution of the timer with this hardware
con guration is 2.79365114840015E-07 seconds. The experiments were run for the following
two cases:
50
Table 4.1: Statistical analysis of keypress
USB PCI
Event(s) Min(ms) Max(ms) Avg(ms) std Min(ms) Max(ms) Avg(ms) std
Kponly 6.9601 68.3048 33.2412 3.8134 15.8383 50.6257 33.2081 2.0826
Kp+Mm 8.2052 144.1387 40.7836 12.4219 14.7418 84.0459 42.2598 11.7989
Kp+Vc 4.6394 112.4615 35.0038 14.3682 8.3642 72.1486 33.6172 11.0430
Table 4.2: Comparison of means (T-test = 0:05) for keypress
Events USB PCI
Kpvs. kp+Mm h=1[-8.3486,-6.7363] h=1[-9.7951,-8.3082]
Kpvs. Kp+Vc h=1[-2.6849,-0.8402] h=0(nodi erence)
Kp+Mmvs. Kp+Vc h=1[4.6019,6.9578] h=1[7.6403,9.6448]
 analyzing the behavior and measuring the latency e ects of one device when another
device is communicating to the system through USB bus
 analyzing the behavior and measuring the latency e ects of one device when another
device is communicating to the system through PCI bus with USB/PCI interface card.
4.3.1 Keypress latency
Time taken to read characters from keyboard is measured using QPC. This part focuses
on evaluating the behavior of keyboard with the addition of webcam and mouse when
connected to USB and PCI buses. The test was conducted to determine time of keypress
event with
 only keypress (Kp)
 keypress and mousemove, both done simultaneously (Kp+Mm)
 keypress and videocapture, both done simultaneously (Kp+Vc)
These three test cases were analyzed for USB and PCI. Figures 4.2 and 4.3 indicate the
fact that time of keypress event is a ected by the addition of another event like mousemove
and videocapture since the probability curves are more spread apart for keypress with
mousemove and keypress with videocapture. Also, statistical data (see Table 4.1) illustrates
51
Figure 4.2: USB: Comparison of latencies for three cases: keypress only, keypress with
mousemove and keypress with videocapture
Table 4.3: Comparison of means (T-test = 0:05) for keypress
Events USB vs. PCI
Kp only h=0 (no di erence)
Kp+Mm h=1 [-2.5387, -0.4137]
Kp+Vc h=1 [0.2626, 2.5104]
52
Figure 4.3: PCI: Comparison of latencies for three cases: keypress only, keypress with
mousemove and keypress with videocapture
53
Table 4.4: Statistical analysis of leread
USB PCI
Event(s) Min(ms) Max(ms) Avg(ms) std Min(ms) Max(ms) Avg(ms) std
Fr only 1.0216 23.9824 1.4948 1.3150 1.0236 19.7858 1.4196 0.7664
Fr+Vc 1.2015 48.2502 2.5407 4.4324 1.1507 43.8056 2.9127 5.2222
Table 4.5: Comparison of means (T-test = 0:05) for leread
Events USB PCI
Fr vs. Fr+Vc h=1[-1.3328,-0.7591] h=1[-1.8207,-1.1656]
the fact that mouse has greater e ect on keypress than webcam because mouse and keyboard
uses same type of data transfer, interrupt transfer.
Based on T-tests results from Table 4.2 and 4.3, it can be stated that when a real-
time system needs to get data from webcam and keyboard simultaneously, PCI would be
a better protocol. But when keyboard and mouse are connected, USB would be a better
option than PCI. For both PCI and USB, with addition of either mouse or webcam, the
standard deviation has increased as high as 5 times. Hence, data transfer from keyboard in
both buses is signi cantly a ected by the addition of either webcam or mouse though the
extent of e ects on both cases are di erent.
4.3.2 Fileread latency
To experiment the e ects of webcam with USB memory, time taken to read a text le
from USB disk drive was measured when webcam is capturing and displaying video. The
 le was read 1000 times and time taken for every le read (Fr) is noted. This experimental
run was done in two stages:
 only USB disk drive connected to USB port (Fr)
 USB disk drive and webcam connected to USB ports, webcam was in function when
 le read was done (Fr+Vc)
54
Figure 4.4: USB: Comparison of latencies for two cases: leread only and leread with
videocapture
Table 4.6: Comparison of means (T-test = 0:05) for leread
Events USB vs. PCI
Fr only h=0 (no di erence)
Fr+Vc h=0 (no di erence)
55
Figure 4.5: PCI: Comparison of latencies for two cases: leread only and leread with
videocapture
56
Table 4.7: Statistical analysis of mousemove
USB PCI
Event(s) Min(ms) Max(ms) Avg(ms) std Min(ms) Max(ms) Avg(ms) std
Mmonly 5.4630 135.9530 18.1194 9.7388 5.3786 106.3942 16.9752 10.1648
Mm+Kp 5.1102 80.7929 25.7740 13.8153 4.2827 51.8130 18.4522 8.2534
Table 4.8: Comparison of means (T-test = 0:05) for mousemove
Events USB PCI
Mm vs. Mm+Kp h=1 [-8.7029, -6.6062] h=1 [-2.2891, -0.6650]
These test cases were run with PCI and USB. Figures 4.4 and 4.5 show that probability
curve for leread with webcam is shifted from that of curve for leread only and also it is
wider. There is an increase in the minimum and maximum values for time taken for leread
during videocapture (see Table 4.4).
The average time for leread with webcam is 1 ms more than that of leread with-
out webcam and standard deviation is also higher. Hence, when both webcam and USB
disk drive are connected to the system, webcam a ects the behavior of USB memory by
introducing signi cant overhead (See Table 4.5). However, when T-tests were performed
for comparing the means of leread with USB and PCI, Table 4.6 illustrates that both o er
the same level of performance for USB memory.
4.3.3 Mousemotion latency
The experimental approach in this section explains the e ects of keyboard over mouse.
Time was measured for every mousemove event and 1000 samples were collected for statis-
tical analysis. The tests were conducted for the following possible cases with PCI and USB
buses.
 only mousemove (Mm)
 when mouse is moved, keyboard is pressed simultaneously (Mm+Kp)
57
Figure 4.6: USB: Comparison of latencies for two cases: mousemove only and mousemove
with keypress
Table 4.9: Comparison of means (T-test = 0:05) for mousemove
Events USB vs. PCI
Mm only h=1 [0.2712, 2.0172]
Mm+Kp h=1 [6.3236, 8.3199]
58
Figure 4.7: PCI: Comparison of latencies for two cases: mousemove only and mousemove
with keypress
59
Table 4.10: Statistical analysis of videocapture
USB PCI
Event(s) Min(ms) Max(ms) Avg(ms) std Min(ms) Max(ms) Avg(ms) std
Vconly 83.7190 355.6731 112.5570 13.36184 84.7834 146.2632 111.3936 8.9181
Vc+Kp 39.2033 260.1895 113.3746 21.5718 60.2842 263.8042 113.2646 21.2167
Table 4.11: Comparison of means (T-test = 0:05) for videocapture
Events USB PCI
Vc vs. Vc+Kp h=0 (no di erence) h=1 [-3.2987,-0.4432]
From Table 4.7 it can be observed that average value for mousemove with keypress is
higher than just mousemove for both USB and PCI. An uniformity in mousemove latency
between PCI and USB is that curves for mousemove with keypress is more spread than only
mousemove which is evident from Figure 4.6 and Figure 4.7.
The e ect of keypress on mousemove is less with PCI than USB (see Table 4.8). Com-
paring the means of USB and PCI with T-tests (see Table 4.9), USB takes more time
than PCI for both mousemove event and mousemove with keypress. Hence, PCI o ers
quicker response and better level of performance than USB for real-time applications that
communicate to mouse and keyboard at the same time.
4.3.4 Videocapture latency
This experimental part investigates whether keyboard a ects the timing of videocapture
with webcam. The preview rate for videocapture is set to 100 ms. Ideally, the system is
expected to capture one frame for every 100 ms. But frame capture rate of 100 ms was
not observed with both USB and PCI. The actual time taken for capturing 1000 frames is
measured for the following possibilities with USB and PCI.
 only videocapture (Vc)
 videocapture and keypress are done simultaneously (Vc+Kp)
60
Figure 4.8: USB: Comparison of latencies for two cases: videocapture only and videocapture
with keypress
Table 4.12: Comparison of means (T-test = 0:05) for videocapture
Events USB vs. PCI
Vc only h=1 [0.1670 2.1597]
Vc+Kp h=0 (no di erence)
61
Figure 4.9: PCI: Comparison of latencies for two cases: videocapture only and videocapture
with keypress
62
Behavior of webcam is slightly di erent from other devices because it could be inferred
from Table 4.10 that the delay introduced by keyboard on videocapture is not signi cant
(less than a millisecond for USB and less than 2 ms for PCI). The overhead caused by
keypress on videocapture is illustrated in Figures 4.8 and 4.9.
Standard deviation of videocapture with keypress is higher than with only videocapture.
This indicates that though videocapture?s delay with keypress is less, it becomes more
unpredictable when kepress event occurs. With USB, addition of keypress has almost null
e ect on timing of videocapture (See Table 4.11). Comparing the T-tests results of USB
and PCI from Table 4.12, it can be inferred that PCI and USB o er the same level of
performance for videocapture with keypress and PCI incurs less overhead than USB with
only videocapture.
4.4 Conclusion
PCI caters to the increasing bandwidth requirements of high-speed applications where
a faster system interconnect bus is required. USB is popular for its expandability and
simpli ed hardware connectivity. The choice of particular communication protocol is one
of the fundamental design decisions for a real-time control engineer. It can be inferred from
this study that USB and PCI o er di erent levels of real-time performance and the choice
of particular type of standard depends on the type and number of devices used.
63
Chapter 5
Conclusions, Recommendations and Future Research
5.1 Conclusions
Determinism in real-time systems is a ected by computer hardware, software, operating
system and external device interfaces. Real-time control systems that operate on inputs
from USB peripheral devices have become more common because the USB interface eases
the task of installation with plug and play.
A key element of this study has been to determine to what extent a Windows-based
real-time system is unpredictable when it uses USB for data input. To better evaluate the
performance, time for events with devices in the system were measured and then compared
with time for events with devices connected through USB and USB hub. Statistical analysis
shows that latency values of USB and USB hub are higher than system devices that a ect
predictability.
Most real-time applications get input from the environment through peripheral devices
attached to them. With both USB and PCI, there can be signi cant impact on the latency of
one device when another device is added to the system that is sending input simultaneously.
Hence, as the number of I/O devices communicating to the real-time system increases,
determinism is jeopardized.
64
5.2 Recommendations
It can inferred from this work that low-cost Windows based systems are suitable for
building \soft" real-time applications that can tolerate delays in the order of few millisec-
onds. RTOS is a better option for hard real-time systems. To get input from keyboard and
mouse, it is better to use the ones that are attached to the system through PS/2 interface
than attaching them to the USB because the latency values are lower for devices connected
through PS/2. Also, accessing data from hard disk is faster than accessing data from USB
memory.
USB hub does not introduce signi cant latency with peripheral devices. Hence, deploy-
ment of USB hub to attach multiple devices to the real-time system simpli es the connection
and will not add overhead to USB. When a real-time system needs to communicate with
multiple devices at the same time, PCI is a better option than USB because the latency
values for peripheral devices connected through PCI/USB interface card to the PCI is lower
than latency values for peripheral devices connected through USB.
5.3 Directions for future work
The behavior of a real-time system with multiple heterogeneous USB devices would
be an interesting area to explore. It is a theoretical issue that as the number of USB of
devices connected to the system increases, latency increases. This work would be a baseline
for further study on latency with low-cost Windows-based real-time systems with multiple
devices communicating to them at the same time. There are many USB devices used in
real-time control applications. Research on this domain could be done to observe the e ects
of latency with di erent types of devices.
Firewire, also known as IEEE 1394, is a serial bus interface standard used for high-
speed communications and real-time data transfers. Some of the interesting features of
65
Firewire are plug and play performance, expandability up to 63 devices, peer-to-peer de-
vice communication, and high data transfer rates of up to 800 Mbps. The key di erence
between USB and Firewire is that Firewire is used where bulk data is to be transferred like
camcorders, DVD players and digital audio equipment. Future research can examine the
latency of Firewire. The topology is di erent from USB and it has not gained the same
acceptance as USB, primarily because the hardware cost is higher.
66
Bibliography
[1] Don Anderson. Universal Serial Bus System Architecture. Addison Wesley Developers
Press, 1997.
[2] Allan Baril. Using Windows NT in real-time systems. pages 132{141, 1999.
[3] Al Chame. PCI bus in high speed I/O systems applications. In Proceedings of IEEE
Aerospace Conference, 1998.
[4] Matjaz Colnaric. State of the art review paper: Advances in embedded hard real-time
systems design. In Industrial Electronics, 1999.
[5] Pablo Costi-Kowolik and Roberto Gutierrez-Mazon. A rst approach towards a high-
speed PCI-based data acquisition card for industrial applications. In IEEE 24th Con-
vention of Electrical and Electronics Engineers, 2006.
[6] A. Depari, A. Flammini, D. Marioli, and A. Taroni. USB sensor network for indus-
trial applications. In Proceedings of the 21st IEEE Instrumentation and Measurement
Technology Conference, 2004.
[7] E. Finkelstein and S. Weiss. Implementation of PCI-based systems using programmable
logic. In IEE proceedings of Circuits, Devices and Systems, 2000.
[8] Alceu Heinke Frigeri, Carlos E. Pereira, and Wolf. An object-oriented extension to
PEARL90. In Object-Oriented Real-Time Distributed Computing, 1998.
[9] Chih-Yuan Huang, Li-Pin Chang, and Tei-Wei Kuo. A cyclic-based QoS guarantee over
USB. In Real-Time and Embedded Technology and Applications Symposium, 2003.
[10] Shyh-In Hwang, Chia Mei Chen, and Ashok K. Agrawala. Scheduling an overloaded
real-time system. In Computers and Communications. Conference Proceedings of the
1996 IEEE Fifteenth Annual International Phoenix Conference, 1996.
[11] John Hyde. USB Design by Example: A practical guide to building IO devices. John
Wiley & Sons, 1999.
[12] Yutaka Ishikawa, Hideyuki Tokuda, and Cli ord W. Mercer. An object-oriented real-
time programming language. IEEE Computer Magazine, 25:66{73, 1992.
[13] Philip A. Laplante. Design issues in real-time. IEEE Potentials, 12:24{26, 1993.
67
[14] Jiuxing Liu, Amith Mamidala, Abhinav Vishnu, and Dhabaleswar K Panda. Perfor-
mance evaluation of in niband with PCI Express. In Proceedings of 12th Annual IEEE
Symposium High Performance Interconnects, 2004.
[15] Ulrich Muehlmam, Miguel Ribo, Peter Lag, and Axel Pinz. A new high speed CMOS
camera for real-time tracking applications. In Proceedings of ICRA?04 IEEE Interna-
tional Conference on Robotics and Automation, 2004.
[16] Kevin M. Obenland, Ti any Frazier, Jin S. Kim, and John Kowalik. Comparing the
real-time performance of Windows NT to an real-time extension. In Proceedings of the
Fifth IEEE Real-Time Technology and Applications Symposium, 1999.
[17] Krithi Ramamritham, Chia Shen, Oscar Gonzale, and Shreedhar Shirgurkar. Using
Windows NT for real-time applications: Experimental observations and recommenda-
tions. In Proceedings of Fourth IEEE Real-Time Technology and Applications Sympo-
sium, pages 102{111, 1998.
[18] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and operating
systems support for real-time systems. Proceedings of the IEEE, 82:55{67, 1994.
[19] Murali Ravindran. Cabled PCI Express-A standard high-speed instrument intercon-
nect. In IEEE Autotestcon Magazine, 2007.
[20] John A. Stankovic. Misconceptions about real-time computing: A serious problem for
next-generation systems. IEEE Computer Magazine, 21:10{19, 1988.
[21] J. Toledo, H. Muller, J. Buytaert, F. Bal, A. David, A. Guirao, and F. J. Mora. A
plug and play approach to data acquisition. IEEE transactions on Nuclear Science,
49:1190{1194, 2002.
68
Appendices
69
Appendix A
VB.NET code
Imports System
Imports System.Globalization
Imports System.Threading
Imports System.IO
Imports System.Runtime.InteropServices
Public Class Form1
Inherits System.Windows.Forms.Form
?declare all parameters for capturing
and displaying video
Const WM_CAP As Short = &H400S
Const WM_CAP_DRIVER_CONNECT As
Integer=WM_CAP + 10
Const WM_CAP_DRIVER_DISCONNECT
As Integer =WM_CAP + 11
Const WM_CAP_EDIT_COPY
As Integer = WM_CAP + 30
Const WM_CAP_SET_CALLBACK_FRAME
As Integer = WM_CAP + 5
70
Const WM_CAP_SET_PREVIEW
As Integer = WM_CAP + 50
Const WM_CAP_SET_PREVIEWRATE
As Integer = WM_CAP + 52
Const WM_CAP_SET_SCALE
As Integer = WM_CAP + 53
Const WS_CHILD As Integer = &H40000000
Const WS_VISIBLE As Integer = &H10000000
Const SWP_NOMOVE As Short = &H2S
Const SWP_NOSIZE As Short = 1
Const SWP_NOZORDER As Short = &H4S
Const HWND_BOTTOM As Short = 1
? Current device ID
Dim iDevice As Integer = 0
?Handle to preview window
Dim hHwnd As Integer
?function for sending messages to window
Declare Function SendMessage Lib "user32"
Alias "SendMessageA" _(ByVal hwnd As Integer,
ByVal wMsg As Integer, ByVal wParam As Integer, _
<MarshalAs(UnmanagedType.AsAny)> ByVal lParam
As Object) As Integer
71
?function to set position and size of the window
Declare Function SetWindowPos Lib "user32" Alias
"SetWindowPos" (ByVal hwnd As Integer, _ByVal
hWndInsertAfter As Integer, ByVal x As Integer,
ByVal y As Integer, _ByVal cx As Integer,
ByVal cy As Integer, ByVal wFlags As Integer)
As Integer
?function to destroy window
Declare Function DestroyWindow Lib
"user32" (ByVal hndw As Integer) As Boolean
?function to create capture window
Declare Function capCreateCaptureWindowA Lib
"avicap32.dll" _(ByVal lpszWindowName As
String, ByVal dwStyle As Integer, _ByVal x As
Integer, ByVal y As Integer, ByVal nWidth As Integer, _
ByVal nHeight As Short, ByVal hWndParent As
Integer, _ByVal nID As Integer) As Integer
?function to be called every time when
frame is captured
Declare Function capSetCallbackOnFrame Lib
"vfw32.lib" (ByVal hpWnd As Long,
72
ByVal lpProc As Long) As Long ? Boolean
?function to execute the code in another domain
Delegate Function CallBackDelegate(ByVal
hwnd As IntPtr, ByRef lpVHdr As VIDEOHDR) As IntPtr
Public delCallBack As CallBackDelegate = New
CallBackDelegate(AddressOf FrameCallbackTarget)
Public Declare Function SendMessage2 Lib
"user32.dll" Alias "SendMessageA"
(ByVal hWnd As IntPtr, ByVal msg As Integer,
ByVal wParam As IntPtr, ByVal lParam As
CallBackDelegate) As IntPtr
Structure VIDEOHDR
?address of video buffer
Dim lpData As Integer
?size, in bytes, of the Data buffer
Dim dwBufferLength As Integer
Dim dwBytesUsed As Integer
Dim dwTimeCaptured As Integer
Dim dwUser As Integer
Dim dwFlags As Integer
<VBFixedArray(3)> Dim dwReserved() As Integer
End Structure
73
Declare Function capGetDriverDescriptionA
Lib "avicap32.dll" (ByVal wDriver As Short,
_ ByVal lpszName As String, ByVal cbName As Integer,
ByVal lpszVer As String,
_ ByVal cbVer As Integer) As Boolean
?function for retrieving QueryPerformanceCounter
and frequency values
Public Class PerfCount
<System.Runtime.InteropServices.DllImport
("Kernel32.dll")> _
Public Shared Function QueryPerformanceCounter
(ByRef perfcount As Int64) As Boolean
End Function
<System.Runtime.InteropServices.DllImport
("Kernel32.dll")> _
Public Shared Function QueryPerformanceFrequency
ByRef freq As Int64) As Boolean
End Function
?timer values
Public Shared Function QueryPerformanceCounter()
As Int64
Dim perfcount As Int64
QueryPerformanceCounter(perfcount)
74
Return perfcount
End Function
?frequency value
Public Shared Function QueryPerformanceFrequency()
As Int64
Dim freq As Int64
QueryPerformanceFrequency(freq)
Return freq
End Function
End Class
Dim objStreamWriter As StreamWriter
? procedure for writing frequency and
resolution of Queryperformancecounter into text file
Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click
Dim freq As Int64 = PerfCount.QueryPerformanceFrequency()
Dim Filename As String = "c:\Results\Freq&Res.txt"
objStreamWriter = New StreamWriter(Filename)
objStreamWriter.WriteLine("Frequency of the
counter is: " & freq)
objStreamWriter.WriteLine("Resolution of the
counter is: " & (1 / freq))
objStreamWriter.Close()
75
End Sub
?procedure for creating text file with date and
time stamp to write timer values of keypress events
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click
Dim str As String = "c:\Results\kp " &
Format(Now, "MMddyy_HHmmss") & ".txt"
objStreamWriter = New StreamWriter(str, True)
TextBox2.Text = str
objStreamWriter.Close()
End Sub
?procedure for timing keypress events
Private Sub TextBox3_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles TextBox3.KeyPress
TextBox3.Text += e.KeyChar
Dim startcount = PerfCount.QueryPerformanceCounter()
objStreamWriter = New StreamWriter(TextBox2.Text, True)
objStreamWriter.WriteLine(startcount)
objStreamWriter.Close()
End Sub
76
?procedure for timing mousemove events
Private Sub Form1_MouseMove(ByVal sender As Object,
ByVal e As System.Windows.Forms.MouseEventArgs)
Handles Me.MouseMove
Label1.Text = "X: " + CStr(e.X)
Label2.Text = "Y: " + CStr(e.Y)
Dim startcount1 = PerfCount.QueryPerformanceCounter()
TextBox5.Text += CStr(startcount1) & vbCrLf
End Sub
?procedure for creating new text file for writing
timer values of mousemove events into text file
Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click
Dim str1 As String = "c:\Results\mm " &
Format(Now, "MMddyy_HHmmss") & ".txt"
objStreamWriter = New StreamWriter(str1, True)
TextBox4.Text = str1
objStreamWriter.WriteLine(TextBox5.Text)
objStreamWriter.Close()
End Sub
?procedure that writes timer values of keypress
77
event in textbox in form
Private Sub Button10_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button10.Click
Dim startcount = PerfCount.QueryPerformanceCounter()
TextBox1.Text += CStr(startcount) & vbCrLf
End Sub
?procedure for creating a new text file for writing timer
values of mouseclick event
Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click
Dim str1 As String = "c:\Results\mc " &
Format(Now, "MMddyy_HHmmss") & ".txt"
objStreamWriter = New StreamWriter(str1, True)
TextBox6.Text = str1
objStreamWriter.WriteLine(TextBox1.Text)
objStreamWriter.Close()
End Sub
?procedure for creating new text file
to write timer values
into it and read a file 1100 times
Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click
Dim str1 As String = "c:\Results\fr " &
78
Format(Now, "MMddyy_HHmmss") & ".txt"
objStreamWriter = New StreamWriter(str1, True)
TextBox8.Text = str1
Dim myStream As Stream = Nothing
Dim myReader As System.IO.StreamReader
Dim I As Integer
Dim startCount As Int64 = PerfCount.
QueryPerformanceCounter()
?select text file to be read
OpenFileDialog1.InitialDirectory = "c:\"
OpenFileDialog1.Filter = "txt files (*.txt)|*.txt"
OpenFileDialog1.FilterIndex = 2
OpenFileDialog1.RestoreDirectory = True
If OpenFileDialog1.ShowDialog()=
System.Windows.Forms.DialogResult.OK Then
Try
TextBox7.Text = OpenFileDialog1.FileName
?open the selected file for reading and read
myStream = OpenFileDialog1.OpenFile()
For I = 1 To 1100
startCount = PerfCount.QueryPerformanceCounter()
objStreamWriter.WriteLine(startCount)
myReader = New StreamReader(TextBox7.Text)
79
If Not myStream Is Nothing Then
?write timer values into textbox in form
TextBox10.Text += myReader.ReadToEnd & vbCrLf
End If
Next I
Catch Ex As Exception
MessageBox.Show("Cannot read file from disk.
Original error: " & Ex.Message)
Finally
If Not myReader Is Nothing Then
myReader.Close()
End If
?Check this again, since we need to make sure
we didn?t throw an exception on open.
If Not myStream Is Nothing Then
myStream.Close()
End If
End Try
End If
objStreamWriter.Close()
End Sub
80
Appendix B
VB.NET code for videocapture
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)Handles MyBase.Load
LoadDeviceList()
If lstDevices.Items.Count > 0 Then
btnStart.Enabled = True
lstDevices.SelectedIndex = 0
btnStart.Enabled = Then
Else
lstDevices.Items.Add("No Capture Device")
btnStart.Enabled = False
End If
btnStop.Enabled = False
picCapture.SizeMode = PictureBoxSizeMode.
StretchImage
End Sub
Private Sub LoadDeviceList()
Dim strName As String = Space(100)
Dim strVer As String = Space(100)
Dim bReturn As Boolean
Dim x As Integer = 0
81
? Load name of all avialable devices
into the lstDevices
Do
? Get Driver name and version
bReturn=capGetDriverDescriptionA
(x, strName,100,strVer, 100)
? If there was a device add device name to the list
If bReturn Then lstDevices.Items.Add(strName.Trim)
x += 1
Loop Until bReturn = False
End Sub
Private Sub OpenPreviewWindow()
Dim iHeight As Integer = picCapture.Height
Dim iWidth As Integer = picCapture.Width
? Open Preview window in picturebox
hHwnd = capCreateCaptureWindowA
(iDevice, WS_VISIBLE Or WS_CHILD, 0, 0,
640, _480, picCapture.Handle.ToInt32, 0)
? Connect to device
If SendMessage(hHwnd, WM_CAP_DRIVER_CONNECT,
82
iDevice, 0) Then
?Set the preview scale
SendMessage(hHwnd, WM_CAP_SET_SCALE, True, 0)
?Set the preview rate in milliseconds
SendMessage(hHwnd, WM_CAP_SET_PREVIEWRATE, 100, 0)
?Start previewing the image from the camera
SendMessage(hHwnd, WM_CAP_SET_PREVIEW, True, 0)
? Resize window to fit in picturebox
SetWindowPos(hHwnd, HWND_BOTTOM,
0, 0, picCapture.Width,
piCapture.Height,_SWP_NOMOVE Or SWP_NOZORDER)
SendMessage2(New IntPtr(hHwnd),
WM_CAP_SET_CALLBACK_FRAME,
New IntPtr(0), delCallBack)
btnStop.Enabled = True
btnStart.Enabled = False
Else
? Error connecting to device close window
DestroyWindow(hHwnd)
End If
83
End Sub
?procedure to open display window
Private Sub btnStart_Click
(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnStart.Click
iDevice = lstDevices.SelectedIndex
OpenPreviewWindow()
End Sub
?procedure to close display window
Private Sub ClosePreviewWindow()
? Disconnect from device
SendMessage(hHwnd, WM_CAP_DRIVER_DISCONNECT,
iDevice, 0)
? close window
DestroyWindow(hHwnd)
End Sub
?procedure to enable user to stop display
Private Sub btnStop_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles btnStop.Click
84
ClosePreviewWindow()
btnStart.Enabled = True
btnStop.Enabled = False
End Sub
Private Sub Form1_Closing(ByVal sender As Object,
ByVal e As System.ComponentModel.CancelEventArgs)
Handles MyBase.Closing
If btnStop.Enabled Then
ClosePreviewWindow()
End If
End Sub
?procedure to create new text file
for writing timer values
Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click
Dim str As String = "c:\Results\wc " &
Format(Now, "MMddyy_HHmmss") & ".txt"
objStreamWriter = New StreamWriter(str, True)
TextBox9.Text = str
objStreamWriter.Close()
End Sub
?function called every time when a frame is
85
captured by the driver
Public Function FrameCallbackTarget
(ByVal hwnd As IntPtr,
ByRef lpVHdr As VIDEOHDR) As IntPtr
Dim startcount = PerfCount.QueryPerformanceCounter()
Try
objStreamWriter = New StreamWriter(TextBox9.Text, True)
objStreamWriter.WriteLine(startcount)
TextBox11.Text += CStr(startcount) & vbCrLf
objStreamWriter.Close()
Catch Ex As Exception
MessageBox.Show(Ex.Message)
End Try
End Function
?procedure to start reading text file
Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click
Dim myStream As Stream = Nothing
Dim ofile As System.IO.File
buttonstop.Enabled = False
Dim myReader As System.IO.StreamReader
Try
myReader = ofile.OpenText("c:\TestFolder\Testtext.txt")
TextBox12.Text += myReader.ReadToEnd & vbCrLf
86
Catch Ex As Exception
MessageBox.Show("Cannot read file from disk.
Original error: " & Ex.Message)
Finally
If Not myReader Is Nothing Then
myReader.Close()
End If
? Check this again, since we need to make sure we
didn?t throw an exception on open.
If Not myStream Is Nothing Then
myStream.Close()
End If
End Try
End Sub
Private Sub buttonstop_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)Handles buttonstop.Click
buttonstop.Enabled = True
End Sub
87

