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Mobile wireless ad hoc networks are instantaneous, autonomous 
telecommunication networks that provide service to users wherever and whenever the 
service is needed. The communication depends on wireless links that are formed between 
the users. A link is formed between two users if they are within each other?s wireless 
communication range. The mobility in these networks can cause links to disconnect, 
disrupting communications. A new strategy is proposed which controls the movements of 
some mobile agents to maintain network connectivity. The main objective of these
mobile agents is to maximize network data flow, which is formulated as an all-pair 
maximum flow problem. This is accomplished by optimizing the movements of the 
agents to their next locations as the user nodes travel freely in the field. The 
representation of ad hoc network performance in terms of an all-pair maximum flow 
vi
problem is novel as is dynamically optimizing the agent nodes using heuristic algorithms 
integrated with network flow algorithms. Two evolutionary inspired, population based 
heuristic algorithms; a genetic algorithm and a particle swarm are developed along with 
an approximate linear programming model as optimizer tools. The results show the
advantage of employing heuristic algorithms due to the complexity of the problem. While 
the approximate linear model could only solve small static and medium dynamic 
problems with poor results, the heuristics performed successfully for problems two to 
four times larger. These heuristic approaches will enable robust and physically self 
organizing networks with superior connectivity properties. The approach proposed in this 
research can be applied to static scenarios and dynamic situations. This is important 
because there are practical static applications of ad hoc networks, mainly in sensor 
networks. The novel models and algorithms developed should enable new research and 
and commercial opportunities in ad hoc wireless networking.
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CHAPTER 1
1. INTRODUCTION
With the increasing availability of computers with high processing speeds and large 
storage capabilities, individuals as well as businesses heavily depend on them. Moreover, 
the high data rate networks that connect computers and networks of computers to each 
other have enabled many services, but have increased the dependency of users to these 
interconnected networks. Computing is moving towards a time when a non-networked 
computer will be nearly useless.
1.1 Wireless and Wireline Telecommunication Networks
With the development of network technologies, wireline networks (networks built 
by cable connections) have become very fast, and reliable. Many researchers have studied 
the problems that arise in the design of wireline networks. Numerous methods and 
algorithms have been developed and tested which have more or less the same objectives; 
maximize reliability, speed, connectivity, and minimize cost [3, 4, 32, 33, 57, 82]. These 
objectives are sometimes seen in the form of constraints, where for example a minimum 
reliability value should be satisfied while minimizing the total cost.
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Wireline networks have provided users with very fast and reliable networks over 
time and a large portion of the world economy now relies completely on these
telecommunication networks. It is important to note that almost any form of information 
can be represented digitally today. Video, voice, and paper documents are common 
examples of data that are digitized every day. Wireline networks are fast, secure and 
reliable but they do have limitations. A significant limitation is that the users have to be 
near a data terminal so that they can connect their computer devices. However, it is
crucial in today?s world for individuals to travel and have access to a computer that is 
connected to a network. This is important for businesses or governments to be responsive 
to dynamically changing conditions and environments. Another limitation of wireline 
networks is that in case of a link failure, the repair job may involve the surrounding 
infrastructure.
With the recent developments in technology, very portable computer devices that 
have considerable processing speeds and data storage capabilities have become available. 
Such devices inherently have the ability to travel, and also manage individual or business 
tasks. Of course, portable devices need wireless data connectivity.
Wireless data communication networks can be divided into two main categories; 
wireless local area networks (WLAN) and wireless wide area networks (WWAN). 
Wireless local area networks have been highly developed and commercialized. In 
WLANs, users connect to local wireless access points and thus access local or wide area 
networks. The local access points have limited ranges, and the users need to be within the 
range of an access point in order to access the network. WLANs can provide users with 
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very fast data transmission speeds and reliability equivalent to wireline networks. 
However, range and mobility limitations exist. Users can only move within a few 
hundred feet, losing connectivity when they go out of the access points? range. It is 
possible to maintain connectivity by ?handoff? to other access points covering the new 
location, provided that they remain in the same subnet.
The second type of wireless data telecommunication networks (WWAN) is
centered on cellular networks, or the global system of mobile communications (GSM). 
GSM has made its way into the lives of countless people. There is currently an estimated 
1.5 billion GSM subscribers worldwide [47]. This is a huge increase from the 170 million 
wireless subscribers in year 2000 [24]. Almost all mobile telephones that are in use today 
are using cellular network technology. Similar to WLAN, cellular networking technology 
requires base stations, located so a certain area is covered. Base stations are connected to 
a central switching office which also keeps a database of users that are currently using the 
network so that the necessary routings can be done. These systems are technologically 
advanced and provide users excellent service for voice communications. However, 
cellular systems have limited data transfer. While the data rates in cellular networks are 
enough for good quality voice communications, they are still very slow for simple 
networking tasks involving multimedia or large file transfers. 
The newer generation cellular network technologies, i.e. 3G networks, offer higher 
data rates than previous cellular networks, but costly investments both in network 
infrastructure and subscriber equipment are necessary.
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1.2 Ad Hoc Networks
A different type of wireless networking technology that was developed a few 
decades ago has become popular again and is attracting research interest [24, 81]. Called
ad hoc networks, this type of wireless network does not require any fixed infrastructure
and user devices communicate among themselves via the arbitrary and temporary ?ad 
hoc? network topologies that they form [35, 41, 81]. Mobile ad hoc networks will be 
referred to as MANET in the literature throughout the rest of this paper, following the 
common practice in the literature. While the infrastructure topology is fixed and stable in 
a traditional WLAN, it is potentially very dynamic in a MANET [53]. Ad hoc networking 
had been used in combat fields and by emergency response teams but the wider 
availability of wireless capable computers and improved routing protocols have made it
an emergency telecommunication network alternative [7, 24, 35, 41]. Ad hoc networks 
are considered essential in 4G wireless network architectures. 4G systems aim to provide 
ultra-high transmission speed of up to 100 Mbps, which is 50 times faster than those in 
3G networks [24]. More detailed information on the MANET technology is given in the 
background section.
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CHAPTER 2
2. BACKGROUND
In this chapter, some background information about wireless mobile ad hoc 
networks, their possible application areas and research challenges are described. The 
literature review is given for routing, different approaches for modeling and measuring 
mobility and connectivity, and finally for the prediction of mobility in mobile ad hoc 
networks.
2.1 Wireless Mobile Ad hoc Networks (MANET)
Ad hoc networks are networks formed without a central administration. They 
consist of nodes which use wireless interfaces to send data packets. The nodes in ad hoc
networks can serve as both routers and hosts and they can forward packets on behalf of 
other nodes in the networks [41].
The roots of ad hoc networking can be traced back to the late 1960s and early 
1970s but the technology had not been developed for the consumer market [24, 41]. The 
reason that ad hoc networks are now drawing attention is because of the availability and 
popularity of high performance portable handheld computers with wireless 
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communication capabilities. An added motivation is that MANET has almost no initial 
investment cost.
The importance of being able to form instant, autonomous telecommunication 
networks is highlighted by the natural disasters that devastated different parts of the 
world in 2004 and 2005. Damage assessment and emergency response teams needed 
reliable telecommunication capability where almost all fixed infrastructure was damaged 
and non-operational for weeks or longer. The following quote is taken from [29], which 
describes the situation in New Orleans after the hurricane Katrina in August 2005:
"The devastation was so complete, so comprehensive ... that we couldn't figure 
out how bad it was," said Adm. Timothy Keating, chief of the U.S. military's 
Northern Command, which oversaw the Pentagon's Katrina effort. "On Tim 
Keating's list of things we need to work and to analyze very carefully, 
communications is at the top of that list."
This aspect of ad hoc networking is enough by itself to justify the need for research 
to develop its technology and reliability, i.e. its usability.
A main advantage of ad hoc networks is that no infrastructure investment is
necessary. This is a huge economic advantage from the point of view of investors. It also 
opens up possibilities in underdeveloped countries where infrastructure investment is 
lacking. Ad hoc networks are dynamic and flexible in terms of the coverage area. 
Network connectivity is a function of user movements and their relative locations. This is 
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an advantageous property from the users? standpoint but the network dynamics need to be 
properly managed.
A reliable network is usually the number one priority for users. A very crude
definition of a reliable network can be given as; the network is always expected to be 
available when access is required, given that the user equipment has no physical defects.
2.2 MANET Performance
There are many factors that affect the performance and reliability of a mobile ad 
hoc network. Links between the mobile devices sometime exist, and sometime not, 
depending on their locations relative to each other, their transmission power and the 
surrounding environment. New mobile devices can enter the system, or existing devices
can disappear for various reasons including loss of battery power or loss of signal 
strength due to distance or other environmental causes. Under totally random user 
behavior, it is very likely that one or more users will lose their connectivity with the 
network or with the parts of the network due to their positions relative to other users. If a
user is outside the range of its nearest neighbor in the network in terms of signal strength, 
then its access to the rest of the network will be unavailable.
Communication between the nodes of a MANET can be in a multi hop fashion, 
meaning data can be sent to a destination node not directly connected to the source node
using an available route through other nodes. Each user can communicate directly to 
other users within its range. To communicate with nodes beyond its range, it needs to use 
intermediate nodes to relay the data packets, hop by hop [24]. Figure 2-1 shows a 
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MANET with six nodes, each with a transmission range of 1.7 units at two different 
times.
-1 0 1 2 3 4 5-1
0
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5
-1 0 1 2 3 4 5-1
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(a) (b)
Figure 2-1 A MANET with six nodes, each with wireless transmission range = 1.7,
(a) Connected (b) Disconnected
Gupta and Kumar have shown that if n identical stationary ad hoc network nodes, 
each with a data transmission rate of W bits/sec and a fixed range, are randomly located 
to form a wireless network using a non-interference protocol, the data throughput realized 
by any node for a randomly chosen destination has an upper bound of ( )nnW log [48]. 
Even if all parameters such as transmission ranges, traffic patterns and node placements 
are optimally arranged, the bound on the throughput becomes ( )nW . The apparent trade-
off between the number of nodes and individual throughput rates is due to the multi-hop 
nature of wireless ad-hoc networks. Each node generates a certain traffic burden for other 
nodes, thus every node uses some of its capacity to relay other nodes? data. In order to 
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decrease the number of hops necessary to reach a destination node from a source node, 
one might think of increasing the transmission range, but this causes increased 
interference. The mobility of an ad hoc network introduces additional variations to its 
capacity. Grossglauser and Tse suggest that mobility can actually improve the capacity of 
an ad hoc network when compared with a fixed network [46]. They propose a
communication model by relaying the data to its destination using a number of relay 
nodes, delivering only when the relay node is closer to the destination, within a two-hop 
path. This eliminates excessive multi hop requirements. The drawback of this proposal is 
that the applications need to be delay tolerant. The communication waits until the mobile 
relay nodes are close to the destination nodes. This causes large delays, increasing with 
the size of the system, making it unsuitable for real time applications such as voice 
communications or remote control.
Whether fixed or mobile, the capacity of an ad hoc network is mainly bounded by
individual transmission capacities. In this research, a method to maximize the individual 
data transmission rates between all user pairs and the total data transmission rate of a 
mobile ad hoc network is proposed. The actual capacity of the network will depend on 
the routing, scheduling and relaying of the communicated data, which are not addressed 
in this dissertation.
There have been some studies that investigate reliability in ad hoc networks by 
addressing data packet routing algorithms. This is an important problem for ad hoc 
network reliability. Different routing algorithms have been developed, each trying to 
optimize data packet routes by assessing network connectivity [1, 5, 11, 35, 54, 55, 60, 
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72, 73, 89]. Detailed aspects of the different routing protocols will be given in the 
following sections. However, regardless of what type of routing protocol is used, the first 
and most important requirement for communication between any two nodes is having at 
least one path linking them, which is the basic definition of network connectivity. 
Network connectivity is at a high level in the reliability hierarchy. If a single user or a 
part of a network has no connectivity, then data packet routing reliability becomes of 
secondary importance. The availability of paths between the nodes depends on network 
topology. Since mobile ad hoc networks are formed by mobile devices, they have 
continuously changing, dynamic topologies which is a distinguishing feature as well a 
challenge [53].
Due to the dynamic connectivity nature of ad hoc networks, special care needs to 
be taken in studying the connectivity problem as well as the routing reliability problem. 
This dissertation aims to develop a method that will optimize the network topology 
dynamically such that the network connectivity is maximized. Network connectivity is a 
broad term used to represent different objectives by different researchers. The term 
network connectivity is purposely used here, because a special connectivity measure will 
be developed taking into account the characteristic properties of ad hoc networking.
2.3 Applications of MANET
The most commonly envisioned application of MANET is military 
communications including combat, emergency response, search and rescue, maneuvers, 
etc. [7, 24, 35, 41, 81]. Besides the commonly envisioned uses of MANET, it can be used 
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where there is no telecommunications network infrastructure available. This could be 
because it has never existed, or there might be an existing infrastructure which is 
inoperable due to disaster damage. Rescue operations, rural construction sites, or rural 
land survey teams are examples. Ad hoc networks can also be used when the existing 
infrastructure is not capable of handling a short-term demand increase. An event area 
where tens or hundreds of thousands of people gather is an example [81]. Such a 
concentration in a town, in a concert hall, or in a stadium creates a short-term demand 
that is beyond the maximum available capacity of the local network infrastructure. 
Another important aspect of MANET is its ability to form an independent network within 
its users only. This could be useful if the communications need to be secured. For 
example, for military operations, without using any existing infrastructure in either 
friendly or hostile territory, secure communications can be established between military 
vehicles, mobile or stationary teams.
2.4 Routing in Ad Hoc Networks
The definition of routing in a telecommunication network is as follows: routing is
the mechanism of directing data packet flow from the source to the destination. There are 
many different routing protocols, and different algorithms under those protocols, for 
fixed topology wireline or wireless networks with different constraints and objectives 
such as maximum path capacities or minimized costs. Similarly, there are different 
routing protocols and algorithms for ad hoc networks, with different objectives. In an ad 
hoc network since there is no fixed topology, managing routing is a very important task 
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to maintain the quality of service (QoS). Routing in ad hoc networks is much harder than 
routing in fixed topology networks. There are three main classifications of MANET 
routing protocols and each approach has its own advantages and disadvantages, according
to the realized mobile network scenario [53]. These three protocols can be summarized as 
follows:
2.4.1 Proactive Routing
Proactive routing algorithms or table-driven algorithms work on the basis of a well 
maintained, i.e. frequently updated, routing table kept by every node in the network. The 
routing tables are always available and whenever a packet needs to be sent, the source 
node will send the packets via the best route found by a certain algorithm. The 
disadvantage of this protocol is that due to the dynamic nature of the network topology, 
the maintenance of the routing tables consumes a lot of the network bandwidth. Common 
examples of this routing protocol are destination-sequenced distance-vector routing 
(DSDV) [71], clusterhead gateway switch routing (CGSR) [23], and optimized link state 
routing (OLSR) [54].
2.4.2 Source-initiated On-demand Routing
On-demand routing is a reactive protocol, and paths are constructed only when 
there is a need to send a packet. Rather than continuously updating the routing tables, the 
source node initiates a path discovery algorithm before sending the packet. When the path 
discovery reaches the destination node, the information is sent back to the source node 
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and the data packet is then sent via the constructed path. Although the on-demand routing 
protocol does not use up valuable bandwidth like the proactive routing, a delay is 
incurred while constructing a route from the source to the destination nodes. Some 
examples of this type of algorithm are ad hoc on-demand distance vector (AODV) [72]
and dynamic source routing (DSR) [55].
2.4.3 Hybrid Routing Protocols
The first two types of routing protocols have their weaknesses as described in their 
summaries. Hybrid protocols have emerged to form a MANET routing protocol that 
combine the advantages and minimize the weaknesses of the proactive and reactive 
protocols. Zone routing protocol (ZRP) is based on a hybrid approach. A node uses a 
proactive type routing for its neighboring nodes within a certain number of hops. Routing 
for more distant destinations is done using a reactive path discovery [70].
2.5 MANET Connectivity
Bettstetter [9] investigates node degree and connectivity characteristics of MANET, 
and terms these the two fundamental characteristics. The node degree and connectivity 
concepts for MANET are explained in more detail in Section 2.5.3. To give a basic 
definition, node degree is the number of links that a node has in the network, and 
connectivity is a measure of the total possible disjoint paths between node pairs. 
Bettstetter defines a simulation model which consists of three stages. First, a total of n
MANET nodes are placed on a two-dimensional simulation area A using a uniform
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random distribution. Second, wireless transmission is modeled for each node based on 
omnidirectional, or circular, transmission with transmission range, R, and a certain path 
loss or signal attenuation model. Every user is assumed to have the same transmission 
range. Finally, a third model is defined for the mobility of the nodes, such as random 
waypoint or random direction.
Bettstetter represents the MANET as a graph G = (V,E) where vertices set V is the 
nodes, and the edges set E is the links formed between the nodes within each other?s 
range. More detailed information on how a MANET is modeled as a graph is given in 
Section 2.5.3. He develops analytical expressions for the minimum required R value such 
that the probability of having no isolated nodes is a high probability P. In that study, the 
probability that a node is isolated is given as in equation ( 2-1 ).
P(a node has no neighbors) = 
2�!�?�5
e?
( 2-1 )
where ? = n / A, and similarly the probability that the network is connected is:
P(every MANET node is connected) = 
2
1 �!�?�5e??
( 2-2 )
Bettstetter provides the analyses of the transmission range R versus the probability 
that the MANET is connected. From his results, it is clearly seen that there is a certain 
threshold range value immediately below which the P(every MANET node is connected) 
is almost zero, whereas immediately above the critical range the probability is almost 
one. Known as the ?phase transition,? this behavior is fairly common in many graph 
measures [9, 38].
15
Similarly, Xue and Kumar [91] studied the number of nodes that each node needs 
to have in its neighborhood to keep the network connected. They showed that instead of 
some constant magic number, connectivity is almost certainly established if every node is 
connected to its nearest 5.1774?log(n) neighbors, where n is the number of MANET 
nodes. Both of these studies assume uniformly randomly distributed nodes in a certain 
area and approach the connectivity in a probabilistic manner. 
Cook and Marquez [28] proposed a two-terminal reliability calculation approach 
for a MANET with a random waypoint mobility model. The analytical expression for the 
expected number of neighbors is used to calculate the probability of link existence and a 
Monte Carlo based simulation calculates a two terminal reliability measure. Their results 
indicate that the two terminal reliability of a MANET increases with increasing node 
density, however it is bounded by the square of the node reliabilities.
Bettstetter also analyzes the impact of mobility on the measures he derived for
MANET. However, his basic assumption for mobile node scenarios is that n >> 1, nodes 
are always distributed uniformly in the area and A >> R2?pi at each time step. Further, all 
node movements are independent and not confined to a certain sub portion of the 
simulation area. The mobility model that is used in that study [9] is the random waypoint 
model in which a node randomly chooses a destination point and moves towards it with a 
certain velocity, pauses for a certain time when it reaches the destination and then 
chooses the next destination point. This behavior is sufficient to model a completely 
random behavior but certainly not suitable for the case of mobile agents whose primary 
aim is to analyze the network continuously and move to their next best location. 
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2.5.1 Connectivity versus Routing
Although routing is a very important task in ad hoc networking, network 
connectivity (which determines the ability of the user nodes being able to form single or 
multi hop paths among themselves) is a more fundamental requirement [53]. If there are 
no possible links between the source and the destination nodes, communications will be 
disrupted no matter which routing protocol is used. This dissertation is primarily aimed at 
developing a method that maximizes the connectivity of the network such that 
communication disruptions due to link unavailability are minimized. However, the 
developed method will also be useful for routing protocols to maintain or generate 
routing tables as needed.
2.5.2 Connectivity and Performance Measures
A mobile ad hoc network at any instant can modeled as an undirected graph with 
nodes being the vertices and links being the edges, as given in [9]. If any two nodes are 
within each other?s range, a link is formed between these two nodes in the ad hoc 
network. The principles of graph theory applied to telecommunication networks are also 
applicable to MANET. Since a MANET is a dynamic network with changing node 
locations, a discrete time model is used to represent the network state at any time t. Let 
UN be the set of the user nodes and AN be the set of mobile agents, and UNt and ANt be 
the sets of active user nodes and mobile agents at time t, respectively. Let graph Gt = 
G(Nt,Et) be an undirected graph with nt nodes (vertices) and mt edges (links), at time t. At 
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any time t, the set Nt = UNt ? ANt = {1,2,?,nt} denotes the set of active nodes on the 
network, and set Et = {1,2,?,mt} denotes the set of established links between node pairs.
2.5.3 Basic Graph Theory
As discussed above, there are some graph measures that are useful indicators of the 
state and performance of a MANET [9]. They will be briefly summarized in the 
following sections.
2.5.3.1 Node Degree
The node degree of a node i, denoted by d(i), is the number of neighboring nodes 
with a direct link to i. Another definition for the node degree of node i is the number of 
links it has. The minimum node degree of a graph G is defined as shown in equation
( 2-3).
( ) ( ){ }idGd
Gi??
= minmin
( 2-3 )
The average, or mean, node degree of a graph G is:
( ) ( )?
=
=
n
i
mean idnGd
1
1
( 2-4 )
which for undirected graphs is equal to:
n
md
mean
2=
( 2-5 )
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Thus, the minimum, and the average node degree of graph Gt at time t is:
( ) ( ){ }idGd
tGi
t ??= minmin
( 2-6 )
( ) ( )?
=
=
tn
it
tmean idnGd
1
1
( 2-7 )
or:
t
t
mean n
md 2=
( 2-8 )
2.5.3.2 Graph Connectivity
Connectivity is defined either for a pair of nodes, or for the entire graph, or for the 
network. A graph is said to be connected if every node can be reached from every other 
node by traveling through the links between nodes, and it is fully connected if all node 
pairs have links between them. In a typical WLAN or WWAN it is sufficient for a mobile 
node to have a link to at least one access point or to a base station. In a MANET 
however, connectivity is a function of the number and locations of the nodes and the 
wireless transmission range [9].
A common way to represent connectivity is the k-connected synonym. If a graph is 
k-connected, then every node pair has at least k disjoint paths between them. For a graph 
to be connected all nodes should be at least 1-connected, i.e. the links of the graph should 
form at least a spanning tree.
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A disconnected graph or an isolated node can result in degraded network 
performance. The main aim of the method proposed in this dissertation is to maintain at 
least a spanning tree at all times in the MANET. All links in the MANET are assumed 
bidirectional, i.e. the data can flow in any direction. Figure 2-2 represents three different 
graphs with different node degrees and connectivity properties.
(a) (b) (c)
Figure 2-2 (a) A connected graph, dmin = 1, dmean = 8/5. (b) A 2-connected graph, dmin = 2, 
dmean = 12/5. (c) A disconnected graph, dmin = 1, dmean = 8/5.
2.6 MANET Mobility
The mobility of a MANET has been addressed by researchers in many different 
ways. For example, in Shukla?s [80] and Camp et al.?s [18] studies, the average velocities 
of MANET nodes are taken as the mobility measure. In Ishibashi and Boutaba?s work
[53] the effect of maximum speed is strongly emphasized. Kwak et al. [58] propose a 
different measure called remoteness suggesting that the average or the maximum 
velocities are insufficient to reflect the movements of the nodes relative to each other. 
The remoteness measure that is proposed is a function of the distance between any two 
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nodes, and it assigns a greater importance to ones that are just at each other?s range or 
near the border.
Ishibashi and Boutaba [53] consider the mobility and MANET topology 
relationship using a random waypoint model. Throughout the life of the network, links 
are created and broken as the nodes move in and out of the range of one another. There 
are different time definitions to describe the life of a link. The first is the optimum 
lifetime of the link. This is the time from when the nodes first move within each other?s 
range so the link can be formed, until the link is broken when they move out of range. 
This is the maximum stable and usable period for the link. However, it is not the actual 
time that the link is available for use. In order for the link to be available for use, it has to 
be detected by a node. Similarly, the breakage of the link has to be detected and this 
happens when a neighbor does not respond for a certain timeout period. The time elapsed 
from the first detection to the link breakage detection is termed the perceived link 
lifetime, which usually extends beyond the end of the existence of a usable link. Data 
packets sent during that time are wasted effort. A final definition that is described in [53]
is the time the link is first included in a path by the routing protocol. This process may 
occur at any time during the link?s lifetime therefore the expected time to failure for the 
link, from the arbitrary time of route discovery, is half of the perceived link lifetime. 
Here, the term failure is used for the event that the link is lost due to the nodes moving 
out of range, not due to an equipment failure.
The quality of a link can be explained as its sustainable data transmission rate, 
which depends on the amount of signal attenuation mainly due to the distance between 
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nodes. This is explained in more detail in Section 4.3.1. Although the node density affects 
the transmission quality of the links, the lifetime only depends on the mobility model and 
the transmission range. Ishibashi and Boutaba show that average link lifetimes 
exponentially decrease with increasing maximum velocity. For a transmission range of 
250 m, at a maximum speed of 5 m/s (18 km/h) the links last about 165 seconds on 
average, and only 40 seconds when the maximum speed is 108 km/h. These are average 
link lifetimes. They report that link lifetime distributions have long but light tails and a 
significant weight around near-zero lifetimes. This means that a significant portion of the 
links formed in a MANET with randomly moving nodes fail in a very short period of 
time. 
Similarly, Chu and Nikolaidis analyze mobility versus connectivity of a MANET
[25]. Their analyses reveal that the higher the velocities are, the better the connectivity. 
This might seem contradicting at first sight, due to the fact that the average link lifetimes 
are expected to be shorter as stated by Ishibashi and Boutaba [53], but the observed 
behavior is explained in terms of connectivity. The explanation is that at low speeds, 
nodes in weaker covered regions tend to stay longer and thus decrease the overall 
connectivity of the network over time. However, with increasing speeds, the link 
lifetimes could become shorter but new links are formed as the older ones dissipate, and 
the node distribution tends to be more uniform, both contributing to overall better 
connectivity. The phase transition phenomena is also seen in Chu and Nikolaidis?s paper
[25] with changing wireless transmission range. 
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Stepanov and Rothermel [83] proposed an urban scenario simulation for a MANET 
to take into account mobility and wireless transmission differences that are realized in 
city environments. The mobility model considers movement constraints, obstacles, road 
networks and the transmission model considers propagation in city areas. Their study 
shows that realistic simulations for urban environments differ from simpler models and 
provide a better estimation of urban performance. However, this comes at the expense of 
computational complexity and the requirement of detailed data to reflect the physical 
conditions of the simulation area.
2.7 Future Location Prediction
There have been a few studies that investigate prediction of future locations of 
mobile users. The interest in estimating the future locations of users in wireless 
telecommunication networks falls in two main categories; 1) the cell that the user will 
enter in cellular networks, and 2) the future geographical location of the user or users, in 
ad hoc networks.
Papers that address the first group include: [10, 61, 62, 63, 66, 93]. Papers that 
address the latter group include: [8, 30, 67, 84, 85, 86, 89]. Discussion about these studies 
are presented below.
2.7.1 Cellular Models
Liu and Maguire model the movement of mobile users within cells as movement 
circle (MC), movement track (MT) and Markov chain models [61, 62]. The MC model is 
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based on the assumption that users will eventually return to their initial positions. The 
MT model is a uni-directional model, less constrained than the MC model. They use the 
MC and MT models to describe the regular or structured movements of the users, and the 
Markov chain model to describe additional randomness.
A similar two-level model is used to describe human motion in a cellular 
environment by Liu et al. in [63]. The top level is a global mobility model (GMM) whose 
resolution is in terms of cells crossed by the mobile user rather than user coordinates. The 
second level is a local mobility model (LMM) which is used to describe the movement 
within a cell, using speed, direction and position information. GMM is a deterministic 
model whereas LMM is a stochastic model that interacts with the GMM model. The 
GMM is motivated by the fact that the users show some regular patterns during daily 
movements.
Yava�?��et al. propose a data mining approach to extract inter-cell movement history 
regularities and combine that with the current trajectory to estimate the next position in 
[93]. A similar data mining application to location prediction is proposed by Ming-Hui et 
al. in [66]. Bilurkal et al. [10] propose a neural network (NN) algorithm to predict the 
next location of users. They emulated 6 weeks of data with 30 observations per day of 
(time, x-coordinate, y-coordinate) and trained a NN with backpropagation using the next 
x and y coordinates as the output.
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2.7.2 Ad hoc Models
Wang and Chang [89] propose a mobility prediction model to be used for a reliable 
routing protocol. Their model is based on the assumption that the position and velocity of 
a node is known at some time t, the path loss is a free-space loss and all devices have the 
same wireless transmission range R. A node at (x,y) at time to, is expected to be in a
circular region with center (x,y) and a radius of v?(t1-to) at time t1. By using this circular 
region to find the farthest possible point that the node can be at, and assuming a constant 
velocity and direction between (t1-to), the estimated link duration time between any pair 
of nodes can be calculated. This information is then utilized to route packets via longer 
duration links. The same principles are used by Su et al. and Tang et al. [85, 86].
Ashbrook and Starner [8] propose a learning algorithm for significant locations and 
motion prediction with GPS. GPS was used to record data for a period of 4 months in 
Atlanta, GA. They only recorded the location data when the subjects were steady. Thus, 
the stations, not the motion, is of interest in their model. They use a Markov model with 
transitions from each location to another.
Mitrovic [67] proposes a model to predict short term user motion to help vehicle 
navigation. A time-delay neural network is developed which allows information about 
signal history be available as an input to the NN. He uses longitudinal and lateral 
acceleration data gathered from two accelerometers, vehicle rotation data, changes in the 
road slope, and GPS position data as inputs.
Creixell and Sezaki [30] propose a time series method with the least squares lattice 
(LSL) method to estimate the parameters. The time series to represent the trajectory are 
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v={v0, v1, v2,?, vn} and Q={Q0, Q1, Q2,?, Qn}, where Q is the amount of displacement 
angle from the horizontal axis, and v is the velocity vector. The prediction model is given 
in equation ( 2-9 )and ( 2-10 ).
vi+1=?1v(i)vi+?2v(i)vi-1+wv
( 2-9 )
Qi+1d=?1Q(i)Qid+?2Q(i)Qi-1d+wQ
( 2-10 )
The method does not use the first 20 observations for prediction because LSL needs 
about 20 iterations to converge. The prediction horizon is 10 steps into the future.
As a summary, it can be stated that the first few papers by Wang and Chang [89]
Su et al. [85] and Tang et al. [86] utilize a simple location and velocity based expected 
position to help the routing protocol. The method does not make use of direction, change 
in direction nor change in velocity. The significant location learning approached 
proposed by Ashbrook and Starner [8] only predicts the next important station that the 
user will be in, and does not utilize velocity or direction information. It also is only 
functional over the specific area that is used for the learning. The NN model proposed by
Mitrovic [67] is aimed at predicting car motion. It is trained only using specific 
maneuvers on certain road conditions. However, the proposed neural network approach 
can be adapted for a more generalized motion pattern. Although satisfactory results are 
achieved, the time series method of Creixell and Sezaki [30] has a time series parameter 
prediction problem at every time step, adding to the computational burden.
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In a more recent study, Huang and Zaruba [52] proposed a method that enables non 
GPS equipped ad hoc nodes to estimate their approximate locations by using the 
information from GPS equipped nodes. This would be advantageous in situations where 
GPS equipment or satellite signals are unavailable. Their model involves multiple GPS 
enabled nodes. Other nodes on the MANET approximate their locations by using the 
known node location data and the signal strength between them to estimate a location 
distribution.
2.7.3 Kinematics Approach
Motion is inherently continuous. Where an object stands at a time instant greatly 
depends on where it was a moment ago, and is highly correlated with the space it will 
occupy moments later. Kinematics is a branch of mechanics which describes the motion 
of objects only by means of geographical coordinates, i.e. with no consideration of the 
forces acting on the bodies.
The position of an object is described by its coordinates. The rate of change of 
position is defined as the velocity and the rate of change of velocity is described as the 
acceleration of an object. By using the velocity and the acceleration information, it is 
possible to calculate how the position of an object changes.
In this study, a location prediction method based on kinematics principles is 
developed for MANET users. The location prediction system is integrated into the mobile 
agent location optimizer and it enables the system to utilize past user location 
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information. The details of location prediction using kinematics and its effects on 
algorithm performance are shown in Section 3.4 and Section 7.3.2.
2.8 Heuristic Optimization with Evolutionary Algorithms: Genetic Algorithm and 
Particle Swarm Optimization
Perhaps the most commonly used general purpose heuristics are evolutionary 
algorithms (EA) that mimic the dynamics of natural evolution where the fittest 
individuals survive and transfer their genetic information to the future generations.
2.8.1 Genetic Algorithms
Genetic algorithm (GA) is one of the evolutionary computation methods that 
researchers use when attempting to find approximate solutions to large, complex 
problems. GA was introduced by Holland, and its performance on both combinatorial and 
continuous problems has been studied extensively [31, 44, 51, 65, 78].
A genetic algorithm maintains a population of individuals and applies selection, 
crossover and mutation to the population over generations mimicking the natural 
evolution process. The individuals in the population are represented as a string of digits 
or alphabetical characters, synonymous with the genotype. A typical binary represented 
multi-variable individual is given in Figure 2-3.
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110010110101101001100?1010110
     Var 1        Var 2       Var 3    ?    Var n
Figure 2-3 A binary represented multi-variable solution.
In each generation, individuals with relatively better fitness values are given higher 
chances to mate with each other and transfer parts of their genotype to the children in the 
following generations. The fitness of an individual is correlated to its objective function 
value. The correlation should be positive for maximization problems and negative for 
minimization problems. To calculate the fitness of an individual, first its genotype needs 
to be converted from encoding space to the variable space, or phenotype, using a 
decoding function. A binary bit representation for the chromosomes is common among 
GA researchers. A typical decoding function from binary to real space is given in 
equation ( 2-11 ).
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where ci is the chromosome, 
ilb
x  is the lower bound, 
iub
x  is the upper bound of the ith
variable, li is the length of the ci, and decimal(ci) is the decimal value of ci as in equation
( 2-12 ).
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where 
ji
c  is the jth bit of ci.
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Populations generally become fitter through the generations as a result of the 
mimicked evolution. Initial populations are often created randomly. Search for the global 
optimal is conducted by selecting parent members from the parent population and letting 
them create an offspring population by combining their genetic information. Combination 
of genetic information is done by means of crossover operators. The parent members go 
through crossover with a certain crossover probability, pc. The offspring are mutated after 
crossover, which is also a natural phenomenon. Parent and survivor selections follow 
certain rules, which can differ from one GA application to other. In general, there are 
random, roulette wheel, and tournament selection methods for parent selection. Some 
examples of the crossover operators are single-point, multiple point and uniform 
crossover. Examples of single point and uniform crossover are given in Figure 2-4.
00101 00101110010 0010110100111100
00110 10100111100 0011000101110010
(a)
0010100101110010 0010100100110110
0011010100111100 0011010101111000
(b)
Figure 2-4 (a) Single point crossover. (b) Uniform crossover.
Survival selection can follow either a generational strategy or a steady-state 
strategy. In the generational strategy the entire population is merged with the offspring 
population, whereas in the steady state survival strategy offspring merge with existing 
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members in the parent population immediately after being created. GAs are often elitist, 
i.e. the best individual(s) in the population is(are) preserved and usually not mutated from 
one generation to another.
Population based heuristics have been applied to dynamically changing objectives 
in the literature [14, 15, 92]. Since the movements of mobile network nodes create a 
different topology within the proximity of the previous topology in successive time 
increments, the change in objective function is also incremental. Further, the new optimal 
locations of the mobile agents will be within the proximity of their previous locations due 
to velocity and geographical constraints. Once the population is stabilized, GA?s or any 
other EA?s response to an incremental change in the objective function is expected to be 
relatively fast, benefiting from previous superior solutions [92]. More detailed 
information about EAs in dynamic environments is given in Section 2.9, and the analysis 
of this behavior can be found in Section 7.3.3.
2.8.2 Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) is a population based optimization tool which 
emulates the social behavior of species that live in the form of swarms in the nature. 
These swarms are capable of exchanging valuable information such as food locations in 
the habitat. PSO was developed by Eberhart and Kennedy in 1995 [56]. The swarm 
particles in the algorithm communicate and direct the search towards areas in the search 
space with better fitness values.
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PSO has many common aspects with evolutionary algorithms. Like a GA, PSO has 
a population of randomly initialized candidate solutions. Different than the evolutionary 
algorithms, the members of a PSO population do not mate or mutate to create offspring. 
Instead, they swarm over the search space by moving in the solution hyper plane while 
communicating with each other and using the information from superior individuals in 
the swarm as well as their own best positions in the past. The value of their positions are 
evaluated in terms of the objective function.
2.8.2.1 The PSO Mechanism
A swarm particle changes its velocity at each iteration, or time step, aiming towards 
the superior particle in the neighborhood and its best history. This change in the particle 
velocity is also weighed by random factors to provide a robust and diverse search.
Each member particle in the swarm is represented by three vectors X, P and V. 
Vector X represents the current particle location, P represents the location of the 
particle?s historic best fitness and V is the velocity vector that defines the direction and 
magnitude the particle will travel if not disturbed. V is used to update X every iteration. 
The swarm has a global or neighborhood best fitness location vector, G, which is used in 
conjunction with individual P vectors while updating particle coordinates.
Maintaining the G vector relies on a communication scheme within the swarm. As 
mentioned above, the G for a particle is the best found in its neighborhood of particles 
and G is the global best if the swarm employs a global neighborhood. Different 
neighborhood topologies have been studied in the literature and global neighborhoods 
seem to perform better in terms of computational costs [19].
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The Pseudo code of the PSO mechanism is given in Figure 2-5. In Figure 2-5, the 
term ? is the inertia factor, c1 and c2 are the cognition and the social coefficients, 
respectively, and U(a,b) is a uniform random number between [a, b].
Initialize population {
X = U(Xmin, Xmax)
V = U(Vmin, Vmax)
P = X
}
Do While (Stopping criteria not met) {
V = ??V + c1?U(0,1)?(P ?X) + c2?U(0,1)?(G ? X)
X = X + V
if( f(X) is better than f(P) ) then P = X
if( f(X) is better than f(G) ) then G = X
}
Figure 2-5 Pseudo code for basic PSO mechanism.
The PSO has successfully been applied to problems in the continuous domain. It 
has few parameters that require adjustment, which makes the development process 
relatively easy and fast. Implementation is also easy due to its simple but robust 
mechanism. PSO has also been applied to dynamic problems. Eberhart and Shi [37]
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tested PSO on random error introduced problems with multi variables. They show the 
ability of PSO to track the changing objective successfully. Carlisle and Dozier [20]
modified the memory property (P vector maintenance strategy) of the swarm for 
dynamically changing environments. When a change in the problem environment is 
detected, all memory positions are reevaluated and set to either the old memory or to the 
current particle position, whichever is better. Their results show that the PSO can 
successfully track a time dependent objective function.
2.8.2.2 Enhancing PSO?s Performance
Since the major search component in the PSO is the modification of particle 
velocities, controlling the changes in the velocity is a major issue. If left unbounded, 
magnitudes of the particle velocities can reach quite large numbers [56]. There are two 
main methods developed to control the changes in the velocities:
1) Implementing a dynamically adjusted inertia coefficient
2) Using a constriction coefficient
The inertia method employs a dynamically changing ? coefficient. Initially, ? is set 
to 1 and is decreased gradually as the PSO iterations advance [56]. With a relatively high 
inertia coefficient, the current direction and magnitude of the particle?s motion are
weighed highly. As the iterations advance and the inertia coefficient is decreased, 
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changing the direction and magnitude of the particle velocities toward the self and global 
best particles become easier.
The constriction coefficient was developed by Clerc in 1999 [26]. The constriction 
coefficient K improves PSO?s ability to control the growth in velocity magnitudes. It 
scales the velocity updates such that a theoretical convergence is guaranteed. It has been 
found that K combined with Vmax constraints improved the PSO performance significantly 
[36]. The constriction coefficient K and its application to control PSO velocities are given 
as:
( ) ( )[ ]XGRXPRvKV ??+??+?= 2211 ??
( 2-13 )
2211 RR ??? +=
( 2-14 )
??
??
? >
?+?=
otherwise1
4for 
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2
2
?
???K
( 2-15 )
In equation ( 2-15 ), R1 and R2 are random numbers drawn from a uniform 
distribution between [0, 1].
2.9 Evolutionary Algorithms in Dynamic Environments
In many real world optimization problems, the objective function, the problem 
instance or the constraints may change over time, also changing the optimal solution to 
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the problem [13, 15, 16, 92]. Yaouchu et al. gives four main reasons that problem 
uncertainties might be taken into account:
1) Noise:  The fitness function is subject to noise. This can happen due to sensory 
measurement errors or randomized simulations.
2) Robustness:  The design variables are subject to perturbation after the optimal 
is determined. The solution is expected to be robust and still be satisfactory with the 
changed design variables.
3) Fitness approximation:  The fitness function is very expensive to calculate 
exactly. A simpler meta-model is used to approximate the fitness function value.
4) Time-varying fitness functions:  The fitness function is deterministic at any 
point in time, but is dependent on time t, as shown in equation ( 2-16 ),
F(X) = ft(X)
( 2-16 )
Therefore, the optimum also changes over time. The optimization algorithm is 
expected to track and locate the changing optimum in each time step. The challenge is to 
reuse the information from the previous environments to speed up the solution process.
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The mobile agent location optimization problem in a MANET falls into the fourth 
category in the above classification. The successive location problem at each time step 
should be solved in real time in an actual application.
In dynamic optimization algorithms, an explicit ?solve from scratch? approach can 
be time consuming. Using previously gained knowledge about the search space can speed 
up the next optimization process. If the new optimal solution is guaranteed to be within a 
certain distance of the old one, then restricting the search to only that space will certainly 
be beneficial [92]. As described in the previous section, the new optimal locations of the 
mobile agents need to be within the proximity of their previous locations due to 
maximum velocity and possible geographical constraints. This inherent characteristic 
makes the mobile agent motion optimization problem suitable for dynamic environment 
solution methods.
Many ways can be devised to transfer knowledge from the previous search space. A 
common way is to keep the individuals in the final population of the previous problem 
state [14, 92]. However, explicit actions or strategies are needed to increase diversity and 
facilitate the shift of the population towards the new optimum when a change in the 
environment occurs. There are various ways to accomplish this. The EA can be run in a 
standard fashion, but the diversity can be increased for a short period of time after a 
change is observed. Some examples of this strategy are hypermutation [27] and variable 
local search [88], where the mutation rate is gradually increased after a change in the 
environment is detected. Another method is to maintain diversity throughout the runs. 
This can be accomplished by accepting random individuals, i.e. random immigrants [45], 
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into the population at every generation. Memory-based approaches are useful when the 
optimum repeatedly returns to past stages [68, 79].
Some meta-heuristics have been applied to dynamic optimization problems. The 
particle swarm optimization (PSO), which is described in Section 2.8.2, is among those. 
More information on evolutionary heuristic algorithms for problems with changing 
environments can be found in the recent survey paper [92].
Considering all the discussions above, a GA and a PSO with dynamic objective 
functions are developed as the mobile agent location optimizer heuristics, to dynamically 
manage the motion of a number of mobile agents in the MANET in order to maximize its 
connectivity. Detailed model of the proposed method is given in Chapter 3, followed by 
the detailed descriptions of the GA and the PSO implementations in Chapter 6.
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CHAPTER 3
3. THE PPROPOSED MANET MANAGEMENT SYSTEM: PROBLEM
DESCRIPTION AND MATHEMATICAL MODEL
A MANET management system is developed that helps maintain connectivity by 
using a number of controlled ad hoc network nodes (agents). Brief descriptions of the 
proposed system, the problem it solves, and its solution operators are given in this 
chapter.
3.1 Introduction
The proposed method consists of managing the directions and magnitudes of 
velocities of a group of mobile agents that have predefined wireless communication 
capabilities similar to the other mobile nodes that form the MANET. The agents actually 
become an integral part of the ad hoc network. Their movements and thus their locations 
are remotely controlled dynamically as the entire MANET topology changes to optimize 
network connectivity. To our knowledge, such a method or algorithm for MANET 
networks has not yet been proposed.
Since the ad hoc network nodes are mobile, only their current and past location data 
are available. The proposed method is designed to make use of the current and the past 
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location data available by the use of a global positioning system (GPS). GPS is a satellite 
based system that can provide readily available and accurate position information almost 
anywhere on Earth. Many GPS implementations are available including integrated GPS 
receivers in mobile phones or mobile network devices [24]. To achieve a real time 
response to the changing network topology, a fast and dynamic algorithm is required to 
continuously optimize the locations of the mobile agents. This problem is a complex, 
non-linear problem that requires a heuristic algorithm with a continuously changing 
objective function. A population based heuristic with a time varying fitness function is 
therefore applied as the heuristic optimizer.
3.2 The Proposed MANET Management System
There are two main types of MANET nodes; user nodes and agent nodes. User 
nodes are the nodes that demand network service. Mobile agents are responsible for 
helping the user nodes experience the best network service possible. The user nodes in 
the MANET move at their own will and it is assumed that their future positions are 
unknown. Also, location data is assumed to be available to the agent control system for 
all times that there exists a communication path between a node nodes and the control 
system. This is technically possible by broadcasting the location information provided by 
the GPS. Finally, every node has a certain wireless connection range and a maximum 
velocity.
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3.3 The Mobile Agent Location Problem
The locations of the mobile agents are under control of a location optimizer that is 
responsible for maximizing the performance objective as a function of the current 
coordinates of the nodes in the MANET. The objective function gauges performance that 
the user nodes experience in terms of being able to communicate with other users and the 
speed of the data transmission rates. Only the users are used to assess network 
performance and only the mobile agent movements are controlled by the centralized 
optimizer.
The problem, which is formulated below, is a non-linear problem and is appropriate 
for a heuristic algorithm. Heuristic optimization algorithms need an objective function 
that responds well to the decision variables. Measures such as minimum node degree or 
connectedness usually show sudden changes in certain regions of the search space, 
depending on the graph?s characteristics. These measures typically show a steady or flat 
behavior over large portions of the search space. This is a phenomenon known as phase 
transition as mentioned earlier [38]. In order to overcome this issue, an objective function 
is needed that is responsive to small changes in mobile agent locations and that also 
reflects network connectivity and performance. This is accomplished using a maximum 
flow approach as detailed in Section 3.3.1.
3.3.1 The Maximum Flow Analogy
In a wireless network, a link?s performance depends on the signal strength, which is 
a function of the link distance and some external factors. In general, the link distance and 
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signal strength, and thus the link data rate, are negatively related. The wireless IEEE 
802.11 standard is capable of linking MANET nodes [41]. Using this protocol, it is 
technically possible to create multi-hop networks that cover several square kilometer 
areas [24]. The 802.11 standard operates at 2.4 GHz, or for some applications at 5.0 GHz. 
The signal attenuation for 2.4 GHz in free space environments is given in [64], as in 
equation ( 3-1 ).
Path Loss  = 32.4 + 20?log(f) + 20?log(dij)
( 3-1 )
where f is the frequency in megahertz (MHz), and dij is the distance between nodes i and j
in km, and Path Loss is in decibels (dB).
The path loss model is used along with a product specification sheet of a wireless 
access point manufactured by one of the industry leaders to calculate the data transfer rate 
versus distance [69]. The path loss versus data rate chart is given in Table 3-1.
Table 3-1 Path Loss verus Data Rate
Data rate (Mbps) Receive Sensitivity (dBm)
54 -75
48 -76
36 -80
24 -84
18 -88
12 -90
9 -90
6 -93
2 -93
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If a normalized wireless transmission range is considered, equation ( 3-2 ) provides 
a reasonable normalized data rate estimation for location optimization purposes.
( )( ) 15.0101),( ???+= ijdejiDataRate
( 3-2 )
where dij is the Euclidean distance between nodes i and j.
The function given in equation ( 3-2 ) may not be the most accurate estimation of 
the normalized data rates at intermediate distances, but the path loss and the data rate 
estimation models are all estimates assuming constant interference and certain 
environmental conditions. Also, technical capabilities such as antenna reception of 
devices differ. The device that is presented here is just example. It is expected that the 
manufacturer?s specification curve in Figure 3-1 will shift left or right for different 
products. This is why a general centralized estimation curve is devised. The data rate 
function conforms to the basic requirements of a normalized distance versus data rate. 
When the distance is close to zero, the normalized data rate should be close to one, and 
when the distance is close to one, i.e. the distance is close to the wireless transmission 
range, the data rate should be close to zero. Also exponential decrease of the data rate 
occurs as the distance increases, as observed in practice. The graph of the data rate 
estimation function is given in Figure 3-1 with comparison to a device manufacturer?s 
specifications.
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Figure 3-1 Normalized distance vs. normalized data rate, range = 450 m.
At any time t, a MANET is modeled as a transportation network with flow 
capacities equal to the data rates of the wireless links. An intuitive first measure is then 
the maximum flow values between the pairs of nodes. The maximum flow values 
between every node pair give a good sense of the overall network performance. Trying to 
maximize the minimum of those maximum flows between every user pair is a responsive 
objective function, and is suitable for the mobile agent location optimizer. The maximum 
flow problem is a well known network optimization problem and there are various 
algorithms readily available to optimally solve it, including ones in polynomial time [2, 
40]. Maximizing the minimum of maximum flow values between user node pairs is very 
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similar to a problem that exists in the literature, the all-pairs maximum flow (or 
minimum-cut) problem [2, 6, 49, 50].
Let?s consider a capacitated network Gt = (Nt,Et) with a non-negative capacity uijt, 
associated with each link (i,j) at time t. Further, two special nodes in network Gt are 
specified; a source node S, and a target node T. The formulation of the maximum flow 
problem between the source S and the target T at time t is as follows:
MaxFlow(Gt,S,T) = Maximize f
Subject to
{ } { }
{ }
??
???
=?
??
=
=? ??
?? Tif
TSNi
Sif
xx t
Eijj
ji
Ejij
ij
tt for 
,and-0
,for 
),(:),(:
( 3-3 )
ijtij ux ??0
( 3-4 )
where xij is the amount of flow from node i to node j and uijt is the capacity of  link (i,j) at 
time t.
3.3.2 The Mathematical Model
Notation
UNt the set of user nodes at time t
ANt the set of mobile agent nodes at time t
Nt the set of all MANET nodes at time t, ttt ANUNN ?=
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tu
n the number of mobile user nodes at time t, tUN
ta
n the number of mobile agent nodes at time t, tAN
nt the total number of MANET nodes at time t, tN
Et the set of links between all MANET nodes at time t
to initial time
Rit the wireless connection range of the ith node at time t
(xit,yit) x and the y coordinates of the ith MANET node at time t
XYt {(xit,yit) : i?Nt} , the set of x and y coordinates of the MANET 
nodes at time t
XYdestin {(xjdestin,yjdestin) : j?UN} , the set of x and y coordinates of user node 
final destination points
(Xmin, Xmax) x-axis boundaries
(Ymin, Ymax) y-axis system boundaries
rit rotation angle (rad, counter clockwise) from the x-axis of the ith
mobile agent at time t
vit the speed of the ith mobile agent at time t
i
vmax the maximum speed of node i user or agent
),( jit
e 1 if there exists a link between (i,j) at time t, 0 otherwise
ijtu the capacity of the link between (i,j) at time t, i.e. DataRate(i,j)
U(a,b) uniformly distributed random number between a and b
zijt 1 if there exists a path between (i, j) at time t
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M a big enough number for computational use
For any time t, and set XYt = {(xit,yit) : i?Nt}, the graph Gt = (Nt,Et) is formed as 
follows:
?
?
? ??=
otherwise0
andif1
),(
ijtjtijtit
t
dRdRe
ji
( 3-5 )
where i,j ? Nt  and dijt is the Euclidean distance between nodes i and j at time t as given in 
equation ( 3-6 ).
( ) ( )22 jtitjtitijt yyxxd ?+?=
( 3-6 )
The formation of a link is a function of the signal attenuation between the nodes, 
and can depend on factors other than distance. In that case, the proper attenuation model 
will replace equation ( 3-2 ). The remainder of the model will not be affected. The 
mathematical model for the mobile agent location optimizer is then written as given in 
equations ( 3-7 ) through ( 3-9 ).
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0 ? rit ? 2pi ?i?ANt
( 3-8 )
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3.3.3 The Objective Function
The term O1 in equation ( 3-7 ) is the user pair with the worst possible maximum 
flow value. O2 is the total maximum possible flows between all user pairs, scaled down 
by the maximum number of possible direct links among the users. This scaling ensures 
that O2 is not given more importance than O1. Finally, the connectivity term O3 ensures 
that no communication path between a user pair is sacrificed for better O1 or O2 values. 
This gives connectivity the greatest importance among the three factors.
48
An algorithm is coded for the calculation of the maximum flow value between all 
user node pairs and is invoked during each objective value calculation. The maximum 
flow between the pairs of nodes is calculated by an implementation of the highest-label 
push-relabel algorithm. The push-relabel algorithm was proposed by Goldberg and 
Tarjan [43]. Cheriyan and Maheshwari [22] show that the algorithm runs in ( )mnO 2
which is a tighter bound than the ( )3nO  which Goldberg previously stated [42]. The 
implemented version is the most efficient maximum flow algorithm in practice [2] and is
available from the BOOST C++ libraries, which is a peer-reviewed, freely available
software library collection [12].
The MaxFlow algorithm is called to calculate the flow between every user pair 
unless a direct link exists in between with a larger data transmission capacity than the 
user pair with the current lowest maximum flow. The Pseudo code is given in Figure 3-2.
The MintF  and TottF  are used to calculate the O1 and O2 values in the objective function.
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Start{
Set TottF  = 0
Set MintF  = M
for ( S in UNt = 1 to nu-1 ){
for ( T in UNt = S + 1 to nu ){
If ( eS,T = 1 AND uS,T > MintF ) then {
Tot
tF =
Tot
tF  + uS,T
}
Else {
FST = MaxFlow(G,S,T)
Tot
tF =
Tot
tF  + FST
If ( 0 < FST < MintF ) then {
Min
tF = FST
}
}
}
}
}End
Figure 3-2 The pseudo code for the components of the objective function calculation
In the worst case, the MaxFlow(Gt,S,T) algorithm is executed for a  total of 
2/)1( ?
tt uu
nn  times. The all-user-pairs maximum flow calculation is made more efficient 
by excluding node pairs that are guaranteed to have a larger flow than a known lowest 
maximum flow pair.
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3.3.4 The Mobile Agent Velocity Constraints
There is an important advantage of implementing a polar coordinate system when 
optimizing the mobile agent relocations. If the rectangular coordinates of the agents are 
taken as the decision variables, satisfying the velocity constraints would require 
calculation of Euclidean distances and taking necessary measures within the algorithm 
such as penalization of unwanted or infeasible solutions. On the other hand, using polar 
coordinate components for the direction and magnitude of agent velocity vectors resolves
this issue.
The velocity vector rotation ri bounded by [0, 2pi] and the magnitude vi bounded by 
[0, vmax] allow the search method to move the mobile agents freely within a circle of 
radius vmax, thus automatically complying with the velocity constraint. The Cartesian 
coordinates at time (t+1) can then be calculated as given in equations ( 3-10 ) and 
( 3-11 ).
xi(t+1) = xit + cos(rit) ? vit ?i?ANt
( 3-10 )
yi(t+1) = yit + sin(rit) ? vit ?i?ANt
( 3-11 )
Once the Cartesian coordinates of the mobile agents are known for time t+1, then 
the graph Gt+1 can be drawn and its connectivity and data flow capacity properties can be 
calculated for the objective function.
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3.4 Future Location Prediction Using Kinematics
Since the MANET users envisioned in this study are allowed to move freely within 
no preset boundaries or paths, an accurate and practical future position estimation method 
is developed by making use of the laws of kinematics. The only data needed for the 
future position prediction of an ad hoc user is its position history from three time steps 
back. With position data at each time step from time (t-3), it is possible to calculate the 
rate of change of acceleration, which is equivalent to the third derivative of the position.
Any older time observations do not affect the practical accuracy of future location 
prediction. The GPS systems that are assumed to be available to all MANET users 
provide accurate position information that is used by the location prediction method. The 
components of the kinematics based location prediction method are given below:
( ) ( ) 322 ,, ??? ?= ttt yxyxv
( 3-12 )
( ) ( ) 211 ,, ??? ?= ttt yxyxv
( 3-13 )
( ) ( ) 1,, ??= ttt yxyxv
( 3-14 )
t
vva tt
t ?
?= ?
?
1
1
( 3-15 )
t
vva tt
t ?
?= ??
?
21
2
( 3-16 )
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tavv ttt ??+=+ ?? 1
( 3-19 )
tavxy ttt ??+=? ?21
( 3-20 )
tt
p
t xyXYXY ?+=+1
( 3-21 )
In the formulations of equations ( 3-12 ) through ( 3-19 ), vt indicates the calculated 
velocity for time t, at indicates the change in velocity, i.e. acceleration, between time t
and t+1. ?at is the rate of change of acceleration between t-1 and t. Finally, ?xyt is the 
change in x and y coordinates, and ptXY 1+  is the set of predicted x and y coordinates at time 
t+1.
Set t = current time
for ( repeat = 1:H ){
p
tXY 1+  = XYt+?xyt
1+tXY = 
p
tXY 1+
t = t+1;
}
Figure 3-3 Pseudo code for predicting the location at time (t+H)
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Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8 represent example 
cases of future location prediction of a single user in a time frame of 100 time steps for 
prediction horizons (H) of 0, 2, 4, 6 and 8 time steps, respectively. An H value of 0 
means no prediction is performed.
In Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8, the trajectories marked by + 
show the predicted locations of the user. Increasing prediction error is observed clearly as 
H increases from 2 to 8 time steps.
0 0.5 1 1.5 2 2.5 3 3.5
0
0.5
1
1.5
Time# 100
Figure 3-4 Real trajectory (H = 0)
0 0.5 1 1.5 2 2.5 3 3.5
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1
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Time# 100
Figure 3-5 Location prediction with H = 2
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Figure 3-6 Location prediction with H = 4
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Figure 3-7 Location prediction with H = 6
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Figure 3-8 Location prediction with H = 8
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When the mobile agent location optimization is done with future location data, two 
minor changes to the algorithm are necessary. One is the conversion of the velocity 
constraints into travel distance constraints for a time span of H. This is required because 
the system with future location prediction tries to relocate the agents from their positions 
at time t to their optimized locations at time t+H. The second modification is the 
interpretation of the result at t+H and its application at time t+1, which is where the 
agents are going to be deployed next.
The velocity constraints of mobile agents are converted to travel distance 
constraints as shown in equation ( 3-22 ), and the coordinates of the mobile agents at time 
t+1 are calculated according to equations ( 3-23 ) and ( 3-24 ).
0 ? vit ? Hvv
ii
?= max'max ?i?ANt
( 3-22 )
xi(t+1) = xit + cos(rit) ? vit / H
( 3-23 )
yi(t+1) = yit + sin(rit) ? vit / H
( 3-24 )
In equations ( 3-22 ), ( 3-23 ) and ( 3-24 ), the maximum travel distances that the 
mobile agents can cover are calculated. Then, the optimized movement at H time steps is 
scaled down to a single time unit by keeping the direction constant and scaling the travel 
distance down by H.
In this chapter, the mobile agent location problem is defined and modeled as a 
maximum flow problem variant. An objective function that reflects MANET connectivity
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and overall data transmission speed, and which is sensitive to small changes in mobile 
agent locations is developed.
The agent velocity constraints are successfully handled with the use of polar 
coordinate transformations. This allows any heuristic algorithm to perform an effective 
search without violating velocity constraints.
The results of the kinematics based future location prediction are satisfactory. 
While the prediction error is expected to increase as the prediction horizon increases, the 
mobile agent location optimization is found to benefit from the additional information 
gained by a modest prediction horizon. A prediction horizon, H, of 4 time steps is found 
most beneficial. Analysis of the effect of prediction horizon on agent location 
optimization is given in Section 7.3.2.
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CHAPTER 4
4. A SPECIAL GENETIC ALGORITHM WITH NON-DETERMINISTIC 
BINARY DECODING FOR CONTINUOUS PROBLEMS
For a continuous domain, a genetic algorithm (GA) is usually encoded using a 
binary string because of simplicity and established common use. However, when a 
continuous domain is represented using a binary string only a finite number of discrete 
points are actually represented [44]. The number of represented discrete points relates to 
the number of binary digits so the length of binary string defines the resolution of the 
binary to continuous domain mapping, as well as the precision of the returned solution. 
For a problem with 100 variables, the required number of binary digits for a precision of 
six digits after the decimal point can reach thousands. For such problems, the 
performance of GAs is quite poor [65].
Various approaches have been developed to address the representation precision 
problem [59, 76]. A GA that uses a real number coding can be used but requires different 
crossover and mutation operators [65]. Also, the theory of genetic search is currently 
better established for binary string representations than for real representations [65].
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4.1 Background
A few studies focus on the binary representation resolution deficiency. Schraudolph 
and Belew [76] introduced a method, dynamic parameter encoding (DPE), which 
repeatedly improves the precision by re-mapping the genes to promising smaller search 
regions and thus searching a finer resolved section. DPE divides its search interval into a 
certain number of sections and zooms into a ?good? region that is identified by statistical 
information collected during previous generations. Kwon et al. [59] recently proposed a 
similar algorithm, the successive zooming genetic algorithm (SZGA), using continuous 
zooming factors. In their method, the search space is zoomed around the best point of the 
last 100 generations. Both methods sacrifice some portion of the search space as 
evolution progresses, in order to achieve better resolution. This might result in loss of the 
search space that contains the global optimum.
The method proposed here enables a GA to search the regions that are left out by 
conventional decoding functions as a result of finite resolution. Binary strings are 
decoded with a small Gaussian perturbation instead of being decoded on the same 
discrete points every time. This enables the GA to search the region between two 
adjacent discrete points of a conventional decoding. The non-deterministic decoding is 
coupled with a mapping rearrangement mechanism that continuously uses the 
information gathered from GA?s evolution such that the best known solution is the 
expected decoded value of the corresponding best chromosome.
The proposed algorithm will be referred to as the non-deterministic binary 
decoding GA, or NDBGA, in the following sections. NDBGA is introduced and its 
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details are given in Section 4.2. Tests and analysis of its performance over a variety of 
test functions, as well as comparisons to DPE and SZGA are presented in Sections 4.2.6
and 4.2.7.
4.2 NDBGA Algorithm
NDBGA is a binary coded GA for the optimization of continuous multi-
dimensional functions. Details on the modified binary decoding function and other 
NDBGA operators are explained in this section.
4.2.1 Motivation
When GAs are used for continuous optimization problems, the parameters are often 
encoded as binary strings. A typical binary encoding/decoding scheme works as follows; 
let xi be the ith variable of a function in a continuous search domain. A binary string 
chromosome of length l, used to encode xi will represent 2l discrete values of xi, starting 
at its lower bound and ending at its upper bound. Thus, the search space for xi is divided 
into 2l-1 intervals. Conventional decoding, or mapping, from binary to continuous space 
is done as given in equations ( 2-11 ) and ( 2-12 ).
4.2.2 Non-deterministic Binary Decoding
The NDBGA algorithm uses a decoding function that maps a certain chromosome 
not to one specific point, but to a neighborhood or region around it, by adding a Gaussian 
offset with zero mean to the decoded value. This is identical to adding a Gaussian offset 
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to the lower bound of the variable that is used in the decoding function and then decoding 
the variable using this new lower bound. Every chromosome is assigned a specific area in 
the search space and these areas do not overlap. In a two-dimensional search space 
(Figure 4-1) each grid intersection point represents the center points of the rectangular 
regions that chromosomes are responsible for. This can be better visualized in Figure 4-2. 
In Figure 4-2, chromosomes ca and cb are given chances to represent points in the dotted 
and shaded areas, respectively. With conventional decoding, only the center points would 
have been represented.
Figure 4-1 Two dimensional binary coded search space
Figure 4-2 Regions represented by chromosomes ca and cb in NDBGA, a two 
dimensional case
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Let ci be the binary chromosome string for the ith variable and let rci be the decoded 
real value of ci. With non-deterministic decoding, ci represents a Gaussian random 
number with mean rci, and a standard deviation of Khi, where hi is the resolution half 
width of the ith variable given by equation ( 4-2 ) and K is a user defined scaling factor.
12 ?
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where;
wi is the interval width of the ith variable
ilbx is the lower bound of the ith variable
iubx is the upper bound of the ith variable
li is the chromosome length for the ith variable
The NDBGA decoding function can be derived by implementing a dynamic lower 
bound value and a Gaussian offset in a conventional decoding function as in equation
( 4-3 ).
),0(12 )()()( iil ilbubi KhNlbcdecimalxxcndecode
i
ii ++
?
??=
( 4-3 )
62
where;
ilbx is the lower bound of the i
th variable
iubx is the upper bound of the i
th variable
ci is the chromosome for the ith variable
li is the chromosome length for the ith variable
decimal(ci) is the decimal value of ci
lbi is the lower bound of the ith variable used for decoding
N(0,Khi) is a Gaussian random number with mean 0, and standard deviation Khi
K is a user defined constant, used to scale the standard deviation of the 
Gaussian offset
hi is the interval half-width of the ith variable
Figure 4-3 illustrates the Gaussian mapping onto the search space. Each peak is the 
expected decoded value of the corresponding chromosome. The X1 and X2 axes are 
variable axes and, the pdf is the Gaussian probability density function value.
Figure 4-3 Gaussian mapping from binary representation grid to the search space
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Initially, the peak points correspond to the points that would have been represented 
by the regular binary mapping. As NDBGA progresses, information from the individual 
with the best fitness in each generation is continuously used to update the decoding lower 
bound values so that the optimum peak point in the updated mapping correspond to the 
best known solution. Thus, the decoded value of the best known chromosome will always 
be based on the best known solution so far. This process is referred to as the mapping 
rearrangement property of NDBGA. Change of expected values of chromosomes can be 
visualized as a geometrical rearrangement of the binary representation grid.
The mapping rearrangement is determined by the best known individual. This is 
illustrated in Figure 4-4 for a two dimensional case. The black grid represents the initial 
binary mapping and the gray grid represents an intermediate stage, which has been 
rearranged to position the superior individual S at its corresponding grid intersection 
point. After the rearrangement, if the chromosome of S is decoded with zero offsets, point 
S will be precisely located.
Figure 4-4 Graphical representation of binary mapping rearrangement for the 2D case
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The binary to real mapping is rearranged continuously as the population evolves. It 
is important to note that rearrangement does not alter regions that the chromosomes are 
responsible for. If we consider Figure 4-2, if the best known solution is in the dotted 
region, it will be represented by ca. Similarly, if it is in the shaded region, it will be 
represented by cb, etc.
The mapping rearrangement is done by updating elements of lb whenever a solution 
that is superior to the best known is created. The procedure is described in Section 4.2.3.
4.2.3 Mapping Rearrangement Mechanism
A binary mapping can be rearranged by altering the variable lower bounds vector, 
lb. When an improvement on the best-known solution is realized, the lb vector is updated 
according to equation ( 4-4 ).
( ) ( ) iNlblb iii ?+= soldnew
( 4-4 )
where;
(lbi)new is the updated lower bound of the ith variable
(lbi)old is the previous lower bound of the ith variable
Nsi is the Gaussian offset that was generated for the ith variable of the superior 
individual
65
4.2.4 NDBGA Algorithm Structure
While the non-deterministic decoding idea could be used with any binary GA, the 
one that is designed for experimentation is described here.
Notation
varsize the number of variables in problem
l the length of the binary string for a variable
? population size
q tournament size
ncouple the number of parent couples
? total number of offspring created (? = 2 ? ncouple)
pc crossover probability
bm bit mutation probability
?replace the number of worst individuals replaced by offspring
PopBest best individual of the current population
BestSoFar best individual found so far
Ni Gaussian offset generated when decoding the ith variable of an individual
Each individual in NDBGA has a total of (varsize?l) genes as its genotype, and also 
stores a real value for each of its variables for the mapping rearrangement mechanism.
Initially all members are generated randomly by assigning 0 or 1 to their binary genes, 
with equal probabilities.
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By changing the ncouple parameter, NDBGA can behave as a steady-state GA, a 
generational GA, or anything in between. Each couple contains two parents. The same 
parent member can appear in more than one couple but it cannot appear more than once 
in one couple. Parent selection is done using a tournament selection of size q. Each 
couple produces two children by crossover with a probability of pc. If a couple is to 
undergo crossover, either a uniform crossover or a single-point crossover takes place with 
equal probability. Every child is subject to mutation with a bit mutation probability of bm. 
Each of the bits in a child?s chromosome is flipped with a probability of bm. Figure 4-5
shows the flowchart of the NDBGA.
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Figure 4-5 NDBGA flowchart
Every time an individual superior to the current BestSoFar is generated, the lb
vector is updated.
4.2.5 Gray Coding
Gray coding is a commonly applied method to transform a binary mapping such 
that adjacent points in the search space differ by one bit only in genotype. This eliminates 
the problem of small mutations producing solutions far away from the original point [44, 
START
Initialize ? individuals
Initialize lb as
ixlb ilbi ?=
Evaluate ? individuals
using ndecode(c)
Pick 2?ncouple parents
Generate ? offspring
Evaluate ? offspring
using ndecode(c)
Replace worst ?replace individuals 
with best ?replace offspring
Update
lb
END
Stopping criteria met?
NO
YES
NO
YESPopBest better 
than BestSoFar?
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65]. NDBGA can be used with any binary encoding scheme, either Gray coded or not. 
Gray coding has been shown to improve GAs? performance on many types of continuous 
problems [21]. There are many different ways to Gray code binary strings and below is 
the conversion rule used in this study;
Let cb be the binary chromosome string, cg be the gray coded chromosome, and l be 
the chromosome length. Start with assigning the higher ordered bit in Step1:
Step1
ll gb
cc =
Step2 i = l-1
Step3 ( ) ig
ii
c
bb cc 1+=
Step4 decrease i by 1.
Step5 Goto Step3 if i > 0, otherwise stop.
Where
ib
c and 
ig
c  are the ith elements of cb and cg, respectively.
4.2.6 Testing NDBGA
NDBGA was tested on a set of 20 test problems, including the test sets used by 
Schraudolph et al. for DPE and test sets used by Kwon et al. for SZGA to see how 
NDBGA compares to these algorithms [59, 76]. The remainder of the test suite is 
compiled from well known multi-modal and multi-dimensional continuous optimization 
problems. The complete test suite is in Table 4-1 and Table 4-2.
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All problems are multi-dimensional and many have numerous local extrema that 
challenge search algorithms. All problems were tested for minimization. Functions F1 
through F5 are De Jong?s test functions and were used by Schraudolph et al. to test DPE. 
Function F5 was also used by Kwon et al. Functions F6 through F14 are the remainder of 
Kwon et al.?s functions used to test SZGA. F4 in Kwon et al.?s paper could not be tested 
due to its unbounded variables.
Function F1 is a convex three-dimensional parabola with a minimum at the origin. 
It is a relatively easy function to optimize. F2 is a widely studied test function which was 
first proposed by and named after Rosenbrock. It is a non-convex, unimodal function 
with a deep parabolic valley along the curve 212 xx = [31]. F3 is a 30 dimensional, 
discontinuous step function. F4 is a convex and unimodal 30 dimensional quadric 
function with Gaussian noise. It is useful to test the performance of an optimization 
algorithm under the presence of noise. F5 is known as Shekel?s foxholes [31]. It is an 
interesting two-dimensional multi-modal function with 25 local minima. F6 was 
proposed by Bohachevsky et al. and is a two-dimensional function with numerous local 
minima and a global optimum at the origin [39]. When (x1,x2) is far from origin, the 
quadratic terms of F6 dominate the cosine terms, thus giving an overall quadratic shape 
to the function [39]. F7 is the second function in Kwon et al.?s test suite. It is a multi-
modal function with 16 local minima. F8 is commonly known as the Branin-RCOS 
function and has a global minimum at three different locations [34]. F9 is known as the 
six-hump camelback function and has three conjugate pairs of local optima, one of which 
is the global minimum [87]. F10, known as Goldstein-Price function, has four local 
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minima and a global minimum [87]. F11, also known as the Shubert function, has 760 
local minima, 18 of which are global minima [65]. F12, also known as the Colville 
function, is a 4 dimensional function with a global minimum at (1,1,1,1), a stationary 
point at (1,-1,1,-1), and further local minima. A very narrow valley runs from the 
stationary point to the minimum [78]. F13 and F14 are the last two test functions in 
Kwon et al.?s test suite. They are both 20 dimensional functions with global optimal 
values of 0. The remainder of our test suite consists of a variety of functions ranging from 
2 to 30 dimensions.
F15 is a 2 dimensional, highly multi-modal function proposed by Schaffer [75].  
F16 and F17 are 5 and 20 dimensional variants of the generalized Rastrigin function, 
respectively. The function was first proposed by Rastrigin as a 2-dimensional problem, 
and generalized by Rudolph as a test function for distributed parallel evolutionary 
strategies [77, 87]. F18 is a 30 dimensional version of the sphere function F1. F19, 
known as Schwefel?s problem, is a continuous and unimodal problem [77]. Finally, F20 
is another function by Bohachevsky with 10 dimensions. It has numerous local optima 
and a global optimum of 0. Optimizing F20 requires a simultaneous minimization of 10 
multi-modal functions [39].
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Table 4-1 Test Functions F1-F10
Fn. Equation Dim. Variable range
Theoretical 
optimum
(f*)
F1 ?
=
3
1
2
i
ix 3 [-5.12,5.12] 
f* = 0.0
at
xi* = 0
F2 212221 )1()(100 xxx ?+? 2 [-2.048,2.048] 
f* = 0.0
at
xi* = 1
F3 ? ??
=
30
1i
ix 30 [-5.12,5.12] 
F* = -30.0
at
xi* ? [5.12,
-5)
F4 ( )1,0
30
1
4 Gaussianix
i
i +?
=
30 [-1.28,1.28] 
f* = 0.0
(underlying 
function)
at
xi* = 0
F5
1
25
1
12
1
6)(002.0
?
=
?
= ?
?
?
?
?
??
?
?
?
???
?
???
? ?++ ? ?
j i
iji axj 2 [-65.536,65.536] 
f* = 
0.9980038
at
xi* = -32
??
?
??
?=
323232323216161616160000016-16-16-16-16-32-32-32-32-32-
3216016-32-3216016-32-3216016-32-3216016-32-3216016-32-a
F6 7.0)4cos(4.0)3cos(3.02 212221 +??+ xxxx pipi 2 [-1.28,1.28] 
f* = 0.0
at
xi* = 0
F7 [ ] [ ])5.3cos()3cos(1.21.2)5.2cos()2cos( 2211 xxxx pipipipi ????+ 2 [-1,1] 
f* = -
16.0917200
at
(0.4388,
-0.3058)
F8 10)cos()811(10)654 1.5( 1212122 +?+?+? xxxx pipipi 2 x1 ? [-5,10] x
2 ? [0,15] 
f* = 
0.3978873
at
(-3.142, 
12.275)
(3.142, 
2.275)
(9.425, 
2.245)
F9 22222121
4
12
1 )44(31.24 xxxxx
xx ?++
???
?
???
? +?
2 [-5,5] 
f* = -
1.0316285
at
(0.08983,
-0.7126)
(-0.08983, 
0.7126)
F10 ( ) ( )
{ }
( ) ( ){ }22212211221
2
2212
2
11
2
21
2736481232183230
36143141911
xxxxxxxx
xxxxxxxx
+?++??+
?++?+?+++ 2 [-2,2] f* = 3.0
at
(0, -1)
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Table 4-2 Test Functions F11-F20
Fn. Equation Dim. Variable range
Theoretical 
optimum
(f*)
F11
??
???
??
??? ++?
??
???
??
??? ++ ??
==
5
1
2
5
1
1 ))1cos(())1cos((
ji
jxjjixii 2 [-10,10] 
f* = -
186.7309088
at
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-0.800)
F12 ( ) ( ) ( ) ( )( ) ( )( ) ( )( )
118.19111.10
1901100
42
2
4
2
2
2
3
22
34
2
1
22
12
??+?+?
+?+?+?+?
xxxx
xxxxxx 4 [-10,10] f* = 0.0at
xi* = 1
F13 ( )( ) ( )( )?
=
+
+
+
??
?
??
? ++19
1
12
1
12 22 1
i
x
i
x
i
ii xx 20 [-1,4] f* = 0.0at
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F14 ( ) ( ) ( )( )[ ] ( ) ?
?
???
??
??? ?++?+ ?
+
2
20
19
1
1
22
1
2 1sin1011sin10
20 xxxx ii pipi
pi 20 [-10,10] f* = 0.0at
xi* = 1
F15 [ ]
22
2
2
1
22
2
2
1
)(001.00.1
5.0)sin(
5.0
xx
xx
+?+
??????? +
+ 2 [-100,100] 
f* = 0.0
at
(0,0)
F16 ( )[ ]?
=
+?
5
1
2 102cos10
i
ii xx pi 5 [-5.12,5.12] 
f* = 0.0
at
xi* = 0
F17 ( )[ ]?
=
+?
20
1
2 102cos10
i
ii xx pi 20 [-5.12,5.12] 
f* = 0.0
at
xi* = 0
F18 ?
=
30
1
2
i
ix 30 [-5.12,5.12] 
f* = 0.0
at
xi* = 0
F19 ? ?
= = ?
?
?
?
?
?
?
?20
1
2
1i
i
j
jx 20 [-65.536,65.536] 
f* = 0.0
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xi* = 0
F20
( )
???
???
?
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?
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++?+?
=
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10
1
110
2
1
2
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9
1
1
2
1
2
xxxx
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i
iiii
pipi
pipi
10 [-50,50] 
f* = 0.0
at
xi* = 0
General performance measures that are considered can be listed as; the average 
number of function evaluations before the population best reaches the global optimal 
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within a tolerance limit, the standard deviation of number of function evaluations, the 
objective value of the population best, the average objective value of the population best, 
and the standard deviation of the objective value of the population best. All of the 
statistics are calculated over 20 repetitions with different random number seeds for each 
function.
For fair comparisons with DPE and SZGA, NDBGA was limited to the 
corresponding number of function evaluations, where applicable, for test functions F1 
through F14. For all other results provided, the function evaluation limit is set to 500,000 
for each run. 
It is well known that GAs generally require larger population sizes as the number of 
variables increase, for better performance. After preliminary experiments, the population 
size of NDBGA was set to 30 for functions with less than 10 variables, and to 100 for 
others. Using a generational strategy provides better diversification and performed well 
on problems with less than 10 variables but it greatly decreased the convergence ability 
for larger problems. An elitist generational strategy was used for problems with less than 
10 variables, and a steady-state strategy was employed for the larger problems. A fixed 
bit string length of 8 was used for all test functions, unless indicated otherwise. Other 
fixed parameters related to the evolution dynamics are given in Table 4-3.
Table 4-3 NDBGA Population Parameters
Population
size
(?)
Number of
couples
(ncouple)
Tournament
size
(q)
Offspring
size
(?)
?replace pc bm K
30 15 2 30 29 0.85 0.05 0.050
100 1 2 2 2 0.85 0.01 0.001
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4.2.7 NDBGA Performance
NDBGA performed satisfactorily throughout the entire test suite Table 4-4 and 
Table 4-5 summarize the performance comparisons of NDBGA with DPE and SZGA on 
test functions F1 through F5 and F5 through F14, respectively.  Both tables are structured 
the same way.
Table 4-4 presents the best and the average results of NDBGA along with the 
average results of DPE. NDBGA performs at least as good as DPE except for F4, the 
noisy problem. It is not clear from Schraudolph et al.?s paper if the reported values of F4 
were noise-free or not. NDBGA?s performance measures for the noisy F4 function is 
calculated by using the noise-free values of the function since it is the underlying 
function that is optimized. A completely noise-free version of F4 was also tested and 
presented along with the original version.
Table 4-5 presents the best and the average NDBGA results in comparison with best 
results reported for SZGA [59]. Again, NDBGA performs at least as good as SZGA with 
the same number of function evaluations allowed.
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Table 4-4 Results for F1-F5 Compared With DPE
DPE resultsa NDBGA resultsa
Fn. Theoreticalminimum
Number of
function
evaluations Population average Population best Averagepopulation best
F1 0.0 12,000 1?10-18 <1?10-30 <1?10-30
F2 0.0 6,000 3?10-2<DPE<1?10-1 2.1?10-8 1.66?10-2
F3 -30.0 4,000 1?10-2 -30.0 -30.00
F4b 0.0 10,000 3?10-1 5.1?10-1 5.16?10-1
F4c 0.0 10,000 Not available 2.42?10-1 2.77?10-1
F5 0.9980038 18,000 9.98?10-1 9.98?10-1 9.98?10-1
a NDBGA and DPE results are with 3 bits per variable for F1 through F4 and 6 bits per variable for F5.
b Values for the underlying function are presented.
c Values for F4 optimized with no noise are presented.
Table 4-5 Results for F5-F14 Compared With SZGA
SZGA resultsa NDBGA results a,b
Fn. Theoreticalminimum
Number of
function
evaluations Population best Population best Averagepopulation best
F5c 0.9980038 8,000 9.98?10-1 9.98?10-1 9.98?10-1
F6 0.0 4,000 2.98?10-8 5.55?10-17 5.55?10-17
F7 -16.0917200 4,000 -16.09172 -16.0917200 -16.0037882
F8 0.3978873 4,000 0.39789 0.3978874 0.3979254
F9 -1.0316285 3,000 -1.03163 -1.0316284 -1.0316249
F10 3.0 4,000 3.0 3.0000000 3.0000000
F11 -186.7309088 3,000 -186.73091 -186.7309088 -186.7282441
F12 0.0 228,000 1.3074?10-6 1.04?10-6 0.1629989
F13 0.0 500,000 2.5422?10-8 5.08?10-10 7.61?10-10
F14 0.0 668,000 2.3033?10-4 7.85?10-10 1.41?10-9
a NDBGA and SZGA results are with 8 bits and 12 bits per variable, respectively.
b Presented results are calculated over 20 runs with different random number seeds.
c NDBGA was limited to 8,000 function evaluations for F5 when compared with SZGA, which is different than 18,000 function 
evaluation limit used for comparison with DPE.
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For the comparison of NDBGA with DPE given in Table 4-4, NDBGA was set to 3 
bits per variable for the functions F1 through F4 and 6 bits per variable for F5. DPE was 
tested with a fixed binary string size of 3 per variable for functions F1 through F5 [76]. 
This resolution of DPE was not enough for F5, but with a resolution of 6 bits per variable 
DPE was able to converge to the global optimal in 18,000 function evaluations. For the 
F5 function, NDBGA converged to the global optimal with 6 bits per variable in 1,400 
function evaluations on average. SZGA was tested with 12 bits per variable [59]. 
NDBGA?s binary string size was kept at 8 bits per variable for comparisons with SZGA
as given in Table 4-5. The high number of function evaluations of DPE might be a result 
of the ?folding? process where the individuals falling out of the zoomed in region are 
recalculated using new bounds, and this requires objective function evaluations equal to 
the number of individuals recalculated. Similarly, in SZGA, the population is reset every 
time the intervals are changed. NDBGA does not re-initialize individuals like DPE and 
SZGA and it can therefore conserve objective function evaluations while converging to 
global optimal.
The general performance measures of the NDBGA on the entire test suite, also 
compared with a conventionally decoded GA (CDGA) are tabulated in Appendix Ap- 1, 
page 184. CDGA is identical to NDBGA algorithmically and parameter-wise except for 
the decoding method. It also uses the same Gray coding scheme but it has the 
conventional binary to real decoding function.
The tolerance limit, t, is set to 10-7 for all functions except the noisy F4, which had 
a tolerance limit of 0.25. When the best individual in the population reaches an objective 
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function value that is closer than t to the theoretical minimum, it is considered a 
successful convergence. All problems successfully converged to the theoretical optimum 
100% of the time, except the noisy F4, which had a success rate of 55%.
The encoding mechanism presented in this chapter enables a binary coded genetic 
algorithm to perform an efficient and effective search in the continuous domain. It is very 
easy to convert a standard binary coded GA into NDBGA. The standard binary coded GA 
in the continuous domain usually suffers from long chromosome strings, which can have 
adverse effects in its performance due to some second order effects. i.e. effects due to the 
algorithm mechanism, not due to problem size or complexity. Moreover, the number of 
generations it takes to converge to a superior solution increases with increasing 
chromosome length.
The NDBGA mechanism helps the GA in two ways. One is the shorter 
chromosome length. The other is the fine search undertaken by the mapping 
rearrangement mechanism without increasing the number of function evaluations per 
generation. This helps keep down the overall number of generations and thus the total 
number of objective function evaluations, which is critical for the computationally 
intense functions in this study. As shown in Section 7, the NDBGA performs very 
satisfactorily over different types and sizes of test instances.
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CHAPTER 5
5. AN APPROXIMATE LINEAR MODEL WITH PIECEWISE LINEAR 
APPROXIMATIONS FOR DISTANCE AND DATA FLOW RATE
The mobile agent location optimization model proposed in this study involves a 
complex and non-linear objective function as well as non-linear constraints. Although 
this is a typical scenario where researchers and practitioners benefit from using heuristic 
optimization methods, a similar model is developed as a mixed-integer programming 
(MIP) model by approximating the  non-linear parts of the original model by piecewise 
linear curves. This model is then used to compare the performances of the heuristics up to 
medium sized (10-15 nodes) problems.
5.1 Mathematical Model
The approximate mixed integer model is developed by modification of a standard 
maximum flow model to incorporate the all-pair maximum flow calculation. This allows
relocation of agent nodes considering the velocity constraints and enables varying link 
capacities with varying link distances.
The basic idea for the all-pair maximum flow calculation is to let virtual 
commodities, equal to the number of node pairs, flow through the network without 
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sharing link capacities between commodity types. All distance calculations are 
approximated to the Euclidean distances by mapping the orthogonal components of the 
link and agent travel distances to their second power and summing them to get the square 
of the said distances. The velocity and data rate constraints are then handled using the 
distances in their squared forms. The model given below is followed by the description of 
the notation used.
Maximize ( ) ( ) 21??+
?
>?
nn
F
F SUN:TS,T
ST
( 5-1 )
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5.2 Notation
xi is the x-coordinate of node i
yi is the y-coordinate of node i
F is the flow value between the user pair that has the lowest maximum flow 
value among all pairs
FST is the flow value of the virtual commodity ST from source node S to target
node T
N is the set of nodes
n is the number of nodes
CijST is the flow value of virtual commodity ST through the link ij
x
ijd is the absolute difference between the x coordinates of nodes i and j
y
ijd is the absolute difference between the y coordinates of nodes i and j
dx
pexa is the constant factor of the pex
th segment of the piecewise approximation 
curve for ( xijd )2
dx
pexb is the rate factor of the pex
th segment of the piecewise approximation curve 
for ( xijd )2
dy
peya is the constant factor of the pey
th segment of the piecewise approximation 
curve for ( yijd )2
dy
peyb is the rate factor of the pey
th segment of piecewise approximation curve for 
( yijd )2
82
Dij is the approximated value of the link (i,j)?s distance squared
dx
pdxL is the boundary of the pdx
th segment of the piecewise approximation curve 
for ( xijd )2, in terms of ( xijd )
dy
pdyL is the boundary of the pdy
th segment of the piecewise approximation curve 
for ( yijd )2, in terms of ( yijd )
Pd is the number of line segments used for approximating the link distances 
between the agent nodes and other nodes that are within their transmission 
range, or may become by agent relocation within velocity constraints
u
pua is the constant factor of the pu
th segment of the piecewise approximation 
curve for the link data rate
u
pub is the rate factor of the pu
th segment of the piecewise approximation curve 
for the wireless link data rate
u
puL is the boundary of the pu
th segment of the piecewise approximation curve 
for the wireless link data rate u, in terms of Dij
Pu is the number of line segments used to approximate the wireless link data 
rate curve
x
jv is the travel amount of mobile agent j in the x-direction
y
jv is the travel amount of agent j in the y-direction
vx
pvxa is the constant factor of the pvx
th segment of the piecewise approximation 
curve for ( xjv )2
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vx
pvxb is the rate factor of the pvx
th segment of the piecewise approximation curve 
for ( xjv )2
vy
pvya is the constant factor of the pvy
th segment of the piecewise approximation 
curve for ( yjv )2
vy
pvyb is the rate factor of the pey
th segment of piecewise approximation curve for 
( yjv )2
vmaxj is the maximum velocity for agent j
vx
pvxL is the boundary of the pvx
th segment of the piecewise approximation curve 
for ( xjv )2, in terms of ( xjv )
vy
pvyL is the boundary of the pvy
th segment of the piecewise approximation curve 
for ( yjv )2, in terms of ( yjv )
Pv is the number of line segments used to approximate the magnitude of the 
agent velocity squared
Decision variables
xlj is the x-coordinate of the relocated agent node j
ylj is the y-coordinate of the relocated agent node j
As seen in Figure 5-1, the calculation of the linear coefficients a and b for a 
piecewise linearization procedure is fairly straightforward, given that the number of line 
segments P, and the variable limits Lxp, p ? [1,2,..,P-1] are known. This figure is 
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presented for demonstration purposes only for f(x) = x2, x ? [0, 2] and P = 3. The dashed 
line segments represent the linear curves that are used to constrain the decision variable 
that is approximated to x2 given x. The slope for the (P+1)th segment is assumed to be 
infinity. The AMPL modeling language which is used to model the linear approximate 
problem has a built-in function to automatically approximate non-linear functions. In this 
study this functionality is used, information on which can be found in the AMPL user?s 
manual [74].
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) =
 x2
Figure 5-1 The piecewise linear approximation of f(x) = x2. An example is plotted for x ?
[0, 2], P = 3
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The AMPL model file, run file and an example data file can be found in 
Appendices Ap- 4, Ap- 5, Ap- 6 on pages 189 through 195. The descriptions of the 
constraints of the above model are as follows:
The constraint given in equation ( 5-2 ) bounds the all-pair minimum flow decision 
variable by all flows between any node pair.
The constraints given in equation ( 5-3 ) limit any virtual commodity?s flow on a 
particular link by the link capacity. The flow of different virtual commodities are 
exclusive and do not take up each others flow resources.
The constraints given in ( 5-4 ) maintain the flow equalities separately for every 
virtual commodity flow.
The constraints given in ( 5-5 ) and ( 5-6 ) set the link distances in the x and y
directions, respectively, to the relevant decision variables by imposing a lower bound. A 
lower bound is necessary because for larger link capacities, the link distance variables 
would tend to become smaller.
The constraints given in ( 5-7 ) bound the decision variable used to approximate the 
square of the link distances by the corresponding piecewise linear curve.
The constraints given in ( 5-8 ) bound the decision variable used to approximate the 
link flow capacities by the piecewise linear Dij versus uij curve.
The constraints given in ( 5-9 ) maintain the equality in the link flow capacities in 
the inverse directions.
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The constraints given in ( 5-10 ) and ( 5-11 ) set the mobile agent travel distances in 
the x and y directions, respectively, to the relevant decision variables by imposing a lower 
bound.
The constraints given in ( 5-12 ) are used to approximate the square of the distance 
traveled to the corresponding piecewise linear curve.
The mixed integer approximate linear model for mobile agent location optimization 
is a complex model, with the solver being able to return solutions for problems up to 
medium size in reasonable time. It is used for verification of the heuristics and 
comparisons on small scale problems. The performance of the mixed integer model, even 
for small test problems, is far below the two heuristics developed in this study. The 
results of the MIP model and comparisons with the NDBGA and PSO heuristics can be 
found in Section 7.4.
One reason for the poor performance of the mixed integer model is the lack of 
flexibility, especially in defining the objective function. The heuristics are designed to 
favor solutions with total connectivity in any situation, or utilize the non-zero minimum 
flow if this is not possible. The first term in the objective function given in ( 5-1 ) is zero 
when the network is not fully connected. This is sometimes not preventable for sparse 
networks. The heuristics, however still consider the non zero minimum flow within the 
network and continue with the optimization accordingly.
Additionally, the mixed integer program solutions had to be limited with a 10% 
optimality gap in order to return solutions in practical time (although still slower than the 
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two heuristics). The model, however, proves how complex and hard to solve a problem 
this is and provides a reasonable basis for algorithm comparison.
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CHAPTER 6
6. THE MOBILE AGENT LOCATION OPTIMIZATION SYSTEM AND 
THE SIMULATION ENVIRONMENT
In the field where the MANET is active, the locations of the mobile agents
determine the links between them and any other node on the network. This affects the 
link capacities and therefore the maximum possible data flow rates between the user 
nodes, which is an important consideration when maximizing the network performance.
An optimization engine needs two decision variables per mobile agent- its direction 
of motion and its magnitude of motion- and an objective function as defined in equation
( 3-7 ) that can be calculated when the node coordinates are known. Both the NDBGA 
and PSO are population based heuristic optimization tools. Their general working 
principle for mobile agent location optimization is given in Figure 6-1 as a Pseudo code.
In Figure 6-1, the variables marked with * show the best values returned by the 
optimizer. The implementation details of the NDBGA and the PSO algorithms are 
described in Section 6.2 and 6.3, respectively.
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Start{
Initialize t = to
Do{
Read XYt
Optimize with NDBGA or PSO rit and vit using XYt , find rit* and 
vit*
Update (xi(t+1),yi(t+1)) using rit* and vit* ?i?ANt
Deploy mobile agents to (xi(t+1),yi(t+1)) ?i?ANt
Set t = t + 1
}While (User nodes are active)
}End
Figure 6-1 The pseudo code for the mobile agent location optimizer
A MANET can perform in a stationary situation as well as in a dynamic one. 
Therefore, a second type of problem exists which involves locating the mobile agents to 
optimize the connectivity and performance of static users.
6.1.1 Dynamic Scenarios
The problems in this group are multiple time step problems with varying user 
locations in each time step, as mainly considered in this study. Mobile agents are bound 
with a velocity constraints which limit their movement each time step.
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6.1.2 Static Scenarios
There are times that a MANET might need to be set up in a stationary fashion. Such 
applications can be seen in sensor networks, or at temporary establishments such as 
military or disaster emergency camps, short-term housings, etc.
Modifying the mobile agent optimizer algorithm for the static case is fairly simple. 
These can be regarded as single time step problems where agents are not bound with 
velocity limits. The objective is to locate the agents such that the connectivity and 
network performance among the stationary users are maximized.
6.2 The NDBGA for Mobile Agent Location Optimization
The general structure and parametric settings of the NDBGA algorithm for the 
mobile agent location problems are as follows:
Due to the inherent characteristics of the static and the dynamic problems, two 
different NDBGA generation strategies are followed. For the static type, a generational 
strategy is adopted. A generational strategy means that the child population size is equal 
to the population size, and the children replaces all parent population members except the 
best two of the parent population, following an elitist strategy.
For the dynamic type of problems, a steady state strategy is used, in which 20% of
the population members are selected, following a tournament selection strategy, as 
couples and the child population replaces the worst 20% of the parent population. The 
steady state strategy is implemented for the dynamic problems because the search space
is relatively small when compared to the static problems and a continuous incremental 
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optimization is performed. The detailed pseudo code of the NDBGA for mobile agent 
location optimization is as follows:
Start{
Initialize t = to
Read XYt
BestSoFar = -M
Set rit and vit for each agent i as decision variables, encoded by l binary digits each.
Do{
Initialize population for ( each population member ){
for ( each rit variable ) lbvar = rlb = 0
for ( each vit variable ) lbvar = vlb = 0
if ( t �?��to AND mbr = 1) then {
Transfer population best from time (t-1)
}else{
Initialize population randomly by assigning each gene a binary 
digit randomly with equal chances for 0 and 1.
}
}
Evaluate fitness for ( each population member ){
Decode for ( each rit variable var){
templb
var  = lbvar + N(0,Khvar)
rit = ( ) ( ) templlb lbcdecimalr varvar122 +???pi
}
Decode for ( each vit variable var){
templb
var  = lbvar + N(0,Khvar)
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vit = ( ) ( ) templlbi lbcdecimalvv varvarmax 12 +???
}
Calculate the xi(t+1) and yi(t+1) coordinates suggested by the solution at (t+1) 
for every agent i using decoded rit and vit values as given in equations         
( 3-10 ) and ( 3-11 ).
Form MANET topology, Gt+1, and calculate link capacities.
Calculate objective:
Set fitness F = MANET performance metric (Equation ( 3-7 ) )
if ( Member fitness is better than BestSoFar ) then {
Update BestSoFar as the member and its solution for 
Update lbvar for each variable with templbvar  of the BestSoFar solution
}
}
Loop{
for ( ncouple couples){
Repeat for 2 parents: P1, P2{
Randomly pick q individuals from the population
Assign the one with best fitness as a parent
}
Crossover parents to create two offspring with probability pc{
DO with equal probabilities{
{Uniform crossover: Offspring get each chromosome from 
either of the parents, P1 and P2, with equal probabilities.}
OR
{Singlepoint crossover:Offspring get a random length 
sequence of genes from one parent, and the corresponding 
rest from the other. The reverse is applied to create the 
second offspring.}
}
93
if (No crossover) then {
Transfer P1 and P2 to offspring population without crossover.
}
Mutate (bit flip) each offspring gene with probability bm
}
Evaluate fitness for (each offspring member)
Replace worst ?replace population members with best ?replace offspring
}While (Loop) (stopping criteria is not met)
Update (xi(t+1),yi(t+1)) ?i?ANt using BestSoFar solution
Deploy mobile agents to (xi(t+1),yi(t+1)) ?i?ANt
Set t = t + 1
}While (Do) (User nodes are active)
}End
The NDBGA takes two decision variables per agent, the direction and the 
magnitude of its velocity, binary encoded using 12 bits per variable. Every individual in 
the population represents one possible movement scenario for the mobile agent nodes. 
The fitness evaluation involves generating the network that corresponds to the movement 
scenario, find the link capacities and calculate the objective function, as described in the 
?Evaluate fitness? routine in the above pseudo code. This is followed by parent selection 
using tournament selection, crossover and mutation to create offspring, evaluation of the 
offspring fitness and replacement of the parent population accordingly. This loop 
continues until the stopping criteria is met, which is described in Section 6.4.
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The genetic algorithm specific parameters such as population size (?), tournament 
size (q), bit mutation rate (bm) and crossover rate (pc) are determined by factorial 
experimentation as described in Section 6.2.1.
6.2.1 Tuning the NDBGA parameters
Like every other heuristic, a GA?s performance depends to some degree eon its 
parameter settings. As Wolpert and Macready [90] state in their study, known as the ?no 
free lunch? theorem, different search algorithms over the global problem space are 
indistinguishable, but might return superior solutions on some group of problems. In 
other words, it is shown that no single algorithm is perfect for comprehensive problem 
space.
Algorithms tailored for a specific group of problems are expected to perform better 
than others on that problem type. The behavior of an algorithm on any problem changes
when the values of its certain parameters change. In NDBGA, population size, 
tournament size, mutation rate and crossover rate are the general GA parameters that are 
commonly tested among different problem types, and the value of the non-deterministic 
decoding error, K, is an additional parameter that has a potential effect on algorithm 
performance.
In order to investigate the significance of the NDBGA parameters on the mobile 
agent location optimization algorithm, a factorial experimentation is carried out. 
Parameters such as population size, tournament size, bit mutation rate, crossover rate and 
the decoding error K are tested with the following factor levels:
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Population size (?): four levels at 30 60 90 120
Tournament size (q): four levels at 2 3 4 5
Bit mutation rate (bm): four levels at 0.02 0.03 0.04 0.05
Crossover rate (pc): two levels at 0.70 0.90
K two levels at 0.05 0.20
These levels are selected per preliminary experimentation results and common 
practice among GA researchers [31, 44, 65]. The tests for the above factor levels are done 
on 5 stationary test problems with 7 users and 5 agents, with 5 replications per problem
using different random seeds for a total of 25 runs per factor level combination (FLC),
resulting in a total of 6400 runs. All runs are conducted with the same stopping criteria: If 
the best solution is not improved in 1000 consecutive objective function evaluations, the 
algorithm stops and returns the best solution found.
The three performance measures that are considered, in order of importance are:
1) The average percent of user nodes that one user node can communicate with, 
(P1) (%).
2) All-pair minimum bandwidth, (P2) (Mbps).
3) Total bandwidth, (P3) (Mbps).
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Calculation of the above performance measures are shown in detail in Section 7.3, 
in equations ( 7-6 ), ( 7-7 ) and ( 7-8 ), respectively.
The results of the experiments are analyzed with Minitab software, and the analysis 
of variance (ANOVA) indicated that the factors, other than K, have a significant effect on 
the performance metrics. The pc however only has a significant effect on the all-pair 
minimum bandwidth. Table 6-1 summarizes the ANOVA results.
Table 6-1 ANOVA analysis for NDBGA parameters
Factor DF Metric SS MS F P
P1 12187 4062 16.76 0.000
P2 9805 3268.4 67.05 0.000? 3
P3 1401707 467236 179.31 0.000
P1 1796 599 2.47 0.060
P2 11576.7 3858.9 79.16 0.000q 3
P3 2048604 682868 262.06 0.000
P1 20205 6735 27.79 0.000
P2 19166.7 6388.9 131.06 0.000bm 3
P3 3441697 1147232 440.26 0.000
P1 3 3 0.01 0.915
P2 241.8 241.8 4.96 0.026pc 1
P3 24343 24343 9.34 0.002
P1 120 120 0.49 0.482
P2 36.4 36.4 0.75 0.388K 1
P3 665 665 0.26 0.613
P1 1204605 301151 1242.61 0.000
P2 65963.3 16490.8 338.30 0.000Problem Instance 4
P3 37736641 9434160 3620.46 0.000
P1 1547188 242
P2 311199.1 48.7Error 6384
P3 16635388 2606
P1 2786104
P2 417989.3Total 6399
P3 61289046
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Selecting a parameter level combination with three performance measures requires 
a decision making process since this is a multi-objective criteria. A factor level 
combination only dominates another one if it performs better in terms of all objectives. 
The analysis of the above FLC revealed 34 non-dominated options. The non-dominated 
factor level combination set is then sorted with respect to the performance metric P1, and 
the one with the following settings is selected as the NDBGA parameter set due to its 
satisfactory performance with respect to P2 and P3 while being among the top with 
respect to P1.
Population size (?): 90
Tournament size (q): 3
Bit mutation rate (bm): 0.03
Crossover rate (pc): 0.70
K 0.05
6.3 The PSO for Mobile Agent Location Optimization
Due to PSO?s advantages discussed in Section 2.8.2, it is selected to be an 
alternative tool for the mobile agent location optimization problem. Since the PSO is 
proven to be an effective tool for continuous optimization, it provides a good comparison 
opportunity for the NDBGA. The benefits and disadvantages of using PSO over NDBGA 
or vice versa are discussed in Section 7.3.
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The pseudo code of the PSO implementation for mobile agent location 
optimization:
Start{
Initialize t = to
Read XYt
G = -M
P = -M for all particles
Set rit and vit for each agent i as decision variables, each encoded as a real number.
Do{
Initialize swarm particles? X, V for ( each swarm particle ){
if ( t �?��to AND mbr = 1) then {
Transfer best particle?s X, P from time (t-1)
}else{
for ( each rit variable ) X ? U(0,2pi)
for ( each vit variable ) X ? U(0,
i
vmax )
}
for ( each rit variable ) Vmax = 2pi, V ? U(-2pi,2pi)
for ( each vit variable ) Vmax = vmax, V ? U(
i
vmax ,
i
vmax )
}
Evaluate fitness for ( each swarm particle ){
Calculate the xi(t+1) and yi(t+1) coordinates suggested by the solution at (t+1) 
for every agent i using decoded rit and vit values as given in equations (
3-10 ) and ( 3-11 ).
Form MANET topology, Gt+1, and calculate link capacities.
Calculate objective:
Set fitness F = MANET performance metric (Equation ( 3-7 ) )
if ( F is better than particle?s P ) then {
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Set P = F
}
if ( P is better than G ) then {
Set G = P
}
}
Set ? = 1.5
Loop{
for ( each swarm particle ){
if (U(0,1) < 0.02) then {
Set ? = 1.5
}
Set R1 = U(0,1)
Set R2 = U(0,1)
Set 2211 RR ??? +=
Set 
??
??
? >
?+?=
otherwise1
4for 
42
2
2
?
???K
Set ( ) ( )[ ]XGRXPRVKV ??+??+??= 2211 ???
Scale V down, if any of its elements is beyond the corresponding 
Vmax limit, by ( ) ??????
? varmax
var
var
max VV .
Set X = X + V
}
Evaluate fitness for ( each swarm particle )
}While (Loop) (stopping criteria is not met)
Update (xi(t+1),yi(t+1)) ?i?ANt using G
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Deploy mobile agents to (xi(t+1),yi(t+1)) ?i?ANt
Set t = t + 1
}While (Do) (User nodes are active)
}End
The PSO for mobile agent location optimization takes two decision variables per 
agent, the direction and the magnitude of its velocity. Every particle in the swarm 
represents one possible movement scenario for the mobile agent nodes. The fitness 
evaluation involves generating the network that corresponds to the movement scenario, 
finding the link capacities and calculating the objective function, as described in the 
?Evaluate fitness? routine in the above pseudo code. This is followed by updating the P, 
G, and the V vectors, and finally the X vector for each particle. This loop continues until 
the stopping criteria is met, which is described in Section 6.4.
6.3.1 PSO Parameters
As discussed in Section 2.8.2.2, the PSO performance is enhanced by the 
introduction of the constriction coefficient, and setting the social and cognition
parameters such that they sum up to a number larger than 4. The common practice is to 
set them to 2.05 each, which has been done in this study also [17]. Additionally, a
dynamic weight inertia strategy is applied with an initial ?o value of 1.5, and decreased 
geometrically by a coefficient of 0.98 at every iteration. Although the common practice is 
to let the inertia coefficient decrease monotonically, in preliminary experimentation it 
was found beneficial to randomly reset it back to its high level. This improves the ability 
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to escape local optima by ?exciting? the particles every now and then, helping them 
swarm to other regions. The inertia coefficient is reset to its original value of 1.5, with a 
probability of 0.02, at each iteration.
The swarm particle velocities are limited to the variable limits, which is also a 
common practice. One important thing that needs to be noted on limiting the velocities is 
that the swarm particle velocity vector is scaled down entirely. That is, all of its elements 
are scaled down rather than only the ones that exceed the limit. The scale factor is 
calculated using the velocity element that has the largest deviation from the maximum 
allowed velocity limit.
The global neighborhood was found to be the most efficient over a wide variety of 
continuous test problems as suggested by Carlisle and Dozier [19]. A global 
neighborhood topology is used for the PSO in this study. For all comparisons, the PSO 
and the NDBGA population sizes are kept equal. 
6.4 Stopping Criteria
Since the heuristic optimization algorithms are expected to return a ?good solution? 
which usually cannot be tested for optimality, there is one or more stopping criteria used. 
In this study, a strategy is used which records the function evaluation count every time 
there is an improvement on the best known solution. If no improvements are detected 
within a preset number of consecutive function evaluations, the algorithm stops and 
returns the best found solution so far.
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The mobile agent location optimizer is designed for two types of scenarios, static 
and dynamic, which are explained in detail in Section 6. Here, the importance of their 
differences in terms of the stopping criteria is discussed.
The static problems and the dynamic problems are almost identical except for the 
problem complexity. The static problems have a significantly larger search space due to 
the larger velocity constraints of the mobile agents. On the other hand, the dynamic 
problems are made up of many static problems that have agents with infinitesimal 
velocity constraints. 
This property brings an advantage when solving individual time steps of the 
dynamic problems because the stopping criteria requirements can be lowered drastically 
without a significant loss of performance. According to preliminary experiments, the 
sufficient stopping criteria are found as follows: For the static problems, both the 
NDBGA and the PSO algorithms stop and return a solution if the number of objective 
function evaluations without an improvement of the best solution found so far is 1000
and for dynamic problems, the requirement for each time step is set equal to 200.
6.5 Semi-intelligent Agent Behavior
The heuristic mobile agent location optimizer requires the agents to be an integral 
part of the MANET in order to calculate the objective function. If, for some reason, an 
agent falls back, or becomes disconnected from the network, it has to be able to move 
independently and catch up with the MANET to be properly utilized again.
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To achieve this, a simple method is developed. Every mobile agent keeps track of 
the coordinates of the users it can communicate with, including multi-hop 
communications. The center point of the coordinates of these users is treated as an 
attractive target to move towards in case an agent becomes isolated. The last recorded 
velocity of the target location, which is the difference between the target at time t and 
time t-1, is also preserved in order to be able to predict the change in the target location 
while the agent is isolated.
An agent that cannot communicate with any user node, or an agent that has a node 
degree of 1 or 0 (nd < 2), it is considered an isolated agent. If an agent becomes isolated, 
then it will self deploy towards the last recorded target coordinate until it catches up with 
the network, becomes a node with nd ? 2 and it is able to communicate with at least one 
user node.
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The pseudo code for the semi-intelligent agent behavior is as follows:
For any agent j{
If( t = to ) then { )0,0(=TjtXY  }
At any time t{
If( jtUN > 1 ) then {
)( jtTjt UNCXY =
}else{
If( t > 2 ) then {
T
tj
T
tj
T
jt XYXYXY )2()1(2 ?? ??=
}else{
),( jtjtTjt yxXY =
}
}
If( d(j) ? 1 OR jtUN ? 1 ) then {
Self deploy agent j to TjtXY
}else{
Obey mobile agent location optimizer system
}
}
}
Where TjtXY is the calculated target coordinate for self deployment of agent j at time 
t, jtUN is the set of user nodes that agent j can communicate with (not necessarily within 
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the immediate range), )( jtUNC  is the coordinate center of all users in jtUN , ),( jtjt yx  is 
the position of agent j at time t, and d(j) is the node degree of agent j.
In this chapter, the two different problem scenarios for the mobile agent location 
optimization problem, static and dynamic, are described. The details of the NDBGA and 
the PSO algorithms are given. The determination of the NDBGA algorithm parameters is 
done by a full factorial experiment and a multi-criteria decision is made by taking a very 
high performing parameter combination.
The dynamic mobile agent location optimization can be enhanced by making use of 
future user location prediction and information gained during past time steps. These are 
explained in sections 7.3.2 and 7.3.3 in the next chapter.
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CHAPTER 7
7. TEST PROBLEMS AND RESULTS
The performance analyses of this study are done in a computerized simulation 
environment. Test problems of static and dynamic natures are generated and the 
performance of the developed algorithms are analyzed using computer simulation. Test 
problems for the dynamic cases are generated in three groups based on problem size: 
small, medium and large. Small sized problems employ 4 users and 3 agents, medium 
sized problems employ 8 users and 6 agents, and large size problems employ 16 users 
with 12 agents. The dynamic test problems are generated with a span of 100 time steps.
All test problems are generated and the computer simulations are carried out using 
the MATLAB technical computing package. To achieve better computational 
performance, all heuristic optimization computations are coded in C++ and embedded 
into the simulation platform within MATLAB. The MIP model was constructed using the 
AMPL modeling language and solved with CPLEX version 9.1, which is also embedded 
in the MATLAB simulation platform.
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7.1 Generation of the Static Test Problems
Test problem data involve the locations of the users as well as the initial coordinates 
of the mobile agents. The mobile agent location optimizer system then deploys the agents 
within the simulation area. The test problem instance generation code and the test 
problem parameters necessary to create the test problems are given in Appendix Ap- 2
and Ap- 3, pages 185-188.
7.2 Generation of the Dynamic Test Problems
Test problem data specify the starting locations of the users and the agents, 
followed by all future users? locations in discrete time steps. Naturally, the mobile agent 
location optimizer system is only given the user location data of the current time step.
The simulation dimensions are set so that the wireless transmission ranges of all 
MANET nodes are 1.0 distance unit. Velocity constraint vmax for user nodes is 0.05 and 
vmin for user nodes is 0.02. User nodes come to a stop when they reach their destinations.
Velocity constraint vmax for mobile agents is 0.06 and vmin for mobile agents is 0.0. The 
velocity values indicate Euclidean distance units traveled per one time increment. The 
simulation area is a two dimensional rectangular area with Xmin = 0, Xmax = 5, Ymin = 0. 
Ymax = 5. Test problem instance generation code and the parameters necessary to create 
the test problems are given in Appendix Ap- 2 and Ap- 3, pages 185-188.
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7.2.1 User Mobility Model
User nodes are assigned random destination points and they follow a random path 
with random perturbations to their directions. Each user is assigned a random velocity 
U[vmin, vmax] at each time step. Let uvjt be the unit vector in the direction of the motion of 
the jth user node at time t, and uvdestinjt be the unit vector in the direction of its final 
destination point from its location at time t, as given in equation ( 7-1 ). The initial 
direction of user motion, i.e. 
0jt
uv , is created randomly for all users.
( ) ( )
( ) ( )jtjtjdestinjdestin jtjtjdestinjdestinjt yxyx
yxyxuvdestin
,,
,,
?
?=?
( 7-1 )
The direction angle of each user node, uvjt, is perturbed by a uniformly distributed 
random number between [-pi/4 , pi/4] with a 10% probability in each time step before 
calculating its direction of motion for the next time step, uvj(t+1). The random rotation 
procedure is given in equations ( 7-2 ) through ( 7-5 ).
)4/,4/( pipi? ?= U
( 7-2 )
( ) ( )
( ) ( )??
?
??
?
?= ??
??
cossin
sincosRotMatrix
( 7-3 )
RotMatrixuvuv jtjt ?=*
( 7-4 )
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where ? is the random rotation in the direction of the motion, RotMatrix is the 
corresponding rotation matrix and *jtuv  is the perturbed unit vector in the direction of 
motion of the jth user at time t.
The directions of user nodes are calculated for each successive time step as shown 
in equation ( 7-5 ).
uvj(t+1) = (?)?uvjt + (1??)?uvdestinjt
( 7-5 )
where ? = 0.95 is the weight factor for the current motion direction, uvj(t+1) is the unit 
direction vector of the simulated motion of the jth user in the next time step, uvcurrentjt is 
the current direction vector, and uvdestinjt is the direction towards the destination of the 
jth user from its current location.
This mobility model is similar to the random waypoint model, but different in the 
sense that the user nodes try to reach a certain destination. The simulated motion 
resembles the case as if the users are searching for their destination or making their way 
around forbidden areas or obstacles, which is a reasonable representation of a search and 
rescue or a military operation. Other mobility models could be readily used since the 
motion strategy is not an input.
7.3 Performance Metrics and Use of Dynamic Information
This section is organized as follows; first, analyses are presented on future location 
prediction and the usage of the best solution from the previous time step in Section 7.3.1. 
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Then, comparisons of the NDBGA and PSO heuristics and CPLEX as the MIP solver are 
made on static and dynamic test problem cases in Section 7.4.
The performance criteria that the comparisons are based on are the three metrics 
given in Section 6.2.1 and, in the order of importance, they are:
1) The average percent of  other users that one user can communicate with, P1 (%), 
given in equation ( 7-6 ).
( )
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where,
tf is the final time step in the problem simulation. For static problems, tf = 1.
t
thth
ijt UNji
tjiz ??
??
?= ,
otherwise0
,at timeuser  theandebetween thpath ais thereif1
2) The average all-pair minimum bandwidth, P2 (Mbps), given in equation ( 7-7 ).
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( 7-7 )
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3) The average total bandwidth, P3 (Mbps), given in equation ( 7-8 ).
( )
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?
= 1 :,3
,,
( 7-8 )
The performance measures given in equations ( 7-6 ) through ( 7-8 ) are indicators 
of algorithm performance over the entire simulation time span. P1 is the average percent 
user connectivity metric, in which it is possible to weight to give more or less importance 
to users? connectivity properties. For dynamic problems, the P1, P2 and P3 metrics reflect 
the average performances over the entire time span, which form the basis of algorithm 
performance comparisons for dynamic problems.
All of the above listed performance measures are ?the higher the better? type of 
performance measures. A fourth performance measure, the time for the optimizers to 
return a solution, is also recorded.
7.3.1 Dynamic Problem Analyses
The dynamic have unique characteristics that, if made use of, enable some 
additional inputs to the optimizer to enhance performance. This performance increase is 
realized in both the solution found and in the solution time.
The two additional inputs used are the future predicted locations of MANET users
and the transfer of the best solution at time t to time t+1 during the initialization of the 
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population at time t+1. The results of these two analyses are given in Sections 7.3.2 and 
7.3.3.
7.3.2 The Effect of Future Location Prediction
The optimization of the mobile agents in the MANET is done according to the user 
location data. At each time step, the user locations are collected, and the optimum agent 
locations are determined. As the agents relocate to their calculated locations, users also 
move to their next coordinates, which are used at the next time step.
Optimizing agent locations using current user coordinates can be seen in a sense as 
the agents following the users? movements on the field. This actually can be aided by
forecasting the coordinates of the users at a specific prediction horizon by using the past 
location information, as described in Section 3.4, and supplying this information to the 
agent location optimizer instead of the current user location data.
To test for the effect of using predicted user location in mobile agent location 
optimization, prediction horizons (H) of 1, 2, 3, 4, 5, 6, 7 and 8 time steps are analyzed 
on 5 medium size test problems, with 5 replications per problem with different random 
seeds for the heuristic algorithm, for a total of 200 runs.
The location prediction did not have any adverse effects on the average percent of 
users that could communicate. Furthermore, the results show that a horizon of H = 4 is an 
optimal setting which not only helps increase the average total and the minimum 
bandwidth of the MANET but also decrease the average time it takes to return the 
solutions. Figure 7-1 and Figure 7-2 show the average total and minimum bandwidth of 
113
all runs at corresponding H levels. Figure 7-3 shows the average time it takes to solve a 
50 time step problem with corresponding levels of H.
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Figure 7-3 Prediction horizon H versus the average total solution time
In Figure 7-3, it seems as if there is an improvement in the solution time as H 
increases. Interpreting this as an improvement would be misleading. It is true that 
solutions are returned more quickly, but this is because the algorithm cannot improve its
best solution. This best solution is inferior to the best solution with smaller prediction 
horizons.
7.3.2.1 Time Varying Effects
In this part, the effect of future location prediction on the performance metrics at 
each time step is analyzed for an example problem. Figure 7-4 and Figure 7-5 show the 
change in performance metrics over time for cases with no location prediction (H=0), 
with prediction of 4 time steps into the future (H=4) and with prediction of 8 time steps 
into the future (H=8).
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Figure 7-4 Change of (a) % user connectivity (b) all pair minimum bandwidth with
simulation time
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Figure 7-5 Change of total bandwidth with simulation time
Figure 7-6 shows the actual optimized locations of mobile agents for the example 
problem with different prediction horizons. Three different optimizations are overlaid in 
the figures. Diamond shape represent user nodes while ?, ? and + represent agents 
optimized with H=0, H=4 and H=8, respectively.
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Figure 7-6 Mobile agent behavior with location prediction
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7.3.3 The Effect of Using the Best Solutions From the Previous Time Step
Dynamic mobile agent location optimization inherently models a continuous time-
space relationship. If the best solution vector from the previous time step (t-1) is fed into 
the new population when solving for the agent velocity vectors of time t, it is expected to 
speed up the search process because the best velocities of time t are likely to be correlated 
with the best mobile velocities of time t-1.
The effect of feeding the last time step?s best solutions into the new population is 
investigated on 5 medium scale test problems with 5 replications per problem. 
Transferring the only the best solution, top 5 solutions, best half (45) and the entire 
population (90) is tested for each instance for a total of 125 runs. The results show that 
the inclusion of the best solutions -no matter how many- from the previous time step has
only a minor effect, if any, on the performance measures but a significant reduction, 
about 30-40%, on the solution time. Figure 7-8, Figure 7-9, and Figure 7-10 show the 
effects on the three performance measures and the solution time as boxplots.
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bandwidth between the MANET user pairs
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time
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7.3.3.1 Time Varying Effects
In this part, the effect of transferring the population best is investigated at each time 
step for an example problem. Figure 7-11, Figure 7-12 and Figure 7-13 show the change 
in performance metrics over simulation time and solution times for cases with no transfer 
and with transfer of the population best.
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Figure 7-11 Change of (a) % user connectivity (b) all pair minimum bandwidth with 
simulation time
123
0 5 10 15 20 25 30 35 40 45 50300
400
500
600
700
800
900
1000
1100
1200
Time
To
tal
 B
an
dw
idt
h (
Mb
ps
)
With no transfer
With transfer
Figure 7-12 Change of total bandwidth with simulation time
0 5 10 15 20 25 30 35 40 45 500
5
10
15
20
25
30
35
40
45
50
Time
So
lut
ion
 Ti
me
 (s
ec
)
With no transfer
With transfer
Figure 7-13 Solution time for each time step
As a conclusion, it can be stated that the transfer of the information of the best 
solution from t-1, which is actually the current velocity direction and magnitudes of the 
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mobile agents, improves the solution time significantly. When the effects of transferring 
the best solution, the top 5, best half or the entire population are analyzed with paired-t 
tests, the effects of transferring any more than one solution are not statistically 
significant. Therefore, in order to keep any possible bias to a minimum, transfer of only
the population best is set as the default for the rest of this study.
Another result that can be drawn when the effects of future user location prediction 
and population best transfer are analyzed is as follows: The prediction provides 
estimation of unknown information and therefore it helps improve solution quality. 
Transfer of the previous best solution provides memory to maintain previously gained 
knowledge and it helps speed up reaching a high quality solution in the future time step,
which is very important for real time applications.
7.4 Algorithm Performances
In this section, the performances of the NDBGA, the PSO and the CPLEX solvers 
are compared on various sizes of static and dynamic problems. The boxplot figures are 
produced with Minitab and a typical boxplot is given in Figure 7-14.
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Figure 7-14 Boxplot figure description
7.4.1 Comparisons on Static Scenarios
The algorithms? performance are analyzed and compared with respect to the three 
measures defined in Section 7.3. The heuristic algorithms are run for 5 replications per 
problem.
The analyses are grouped into three problem categories; small, medium and large, 
depending on the number of nodes. The results and comparisons of the algorithm 
performance are presented as boxplots of all the performance data from all problem 
instances of same type and size, followed by the graph of the best, average and the worst 
performances over replications for each problem instance. The problem instances are 
generated randomly, with the code and random seed data provided in appendices Ap- 2
and Ap- 3. Static users are assigned x and y coordinates drawn from a uniform 
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distribution U(0,XYmax), where XYmax = 5 units, representing a 5 by 5 square simulation 
area.
7.4.1.1 Small Static Problems
The comparisons on small scale problems are done on 20 instances with 6 users and 
4 agents. Problem instances are generated as explained in Section 7.4.1. An example 
problem and its solution is given in Figure 7-15. In the figure, the diamond shaped nodes 
represent user nodes and the solid round shaped nodes represent the agent nodes.
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Figure 7-15 An example problem (a) and its solution (b) for a small static scenario
When the average connectivity results are analyzed, as seen in Figure 7-16, the 
NDBGA based mobile agent location optimizer performed the best in terms of the 
average % of user connectivity. NDBGA is followed by the PSO with approximately 9% 
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gap. The CPLEX?s performance is much poorer with nearly 50% gap when compared to 
the NDBGA.
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Figure 7-16 The performance of the GA and the PSO algorithms on small scale static test 
problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
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In terms of the minimum bandwidth between all user pairs, CPLEX seemingly has 
done a better job than the heuristics as presented in Figure 7-17, but given its much 
poorer performance on the most important first criteria, the improvement in the average 
minimum bandwidth is not a real benefit. The NDBGA lead over the PSO is still valid in 
this criteria, with approximately 3.5% gap, although the PSO has generated some outliers 
towards the higher minimum bandwidth.
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Figure 7-17 The performance of the GA and the PSO algorithms on small scale static test 
problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 
Boxplot (b) Best, average and worst performances over all problem instances
When the average total bandwidth results are compared, the NDBGA has 
outperformed the PSO and CPLEX on an average basis, while PSO has produced some 
better outliers. These results can be seen in Figure 7-18.
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Figure 7-18 The performance of the GA and the PSO algorithms on small scale static test 
problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 
average and worst performances over all problem instances
In terms of the solution times, CPLEX recorded the worst performance, which is 
not surprising. Although the PSO returned slightly quicker solutions on the average, its 
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poorer performance on the connectivity metrics makes the NDBGA the preferred 
optimizer for this group of problems. The solution time results are presented in Figure 
7-19.
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Figure 7-19 The performance of the GA and the PSO algorithms on small scale static
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
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7.4.1.2 Medium Static Problems
The comparisons on medium scale problems are done on 20 test problems with 10 
users and 10 agents. Problem instances are generated as explained in Section 7.4.1. Only 
the heuristic algorithms could be tested on this scale, due to the complexity of the MIP 
model. For the NDBGA and PSO solutions, each problem is solved 5 times with different 
random number seeds.
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Figure 7-20 The performance of the GA and the PSO algorithms on medium scale static 
test problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
Figure 7-20 presents the average % user connectivity among the network. For this 
group of problems, the performance of the NDBGA is clearly superior to the PSO. There 
is an approximately 10% performance gap between the two. The NDBGA has 
successfully returned solutions with full communication except a few outliers.
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Figure 7-21 The performance of the GA and the PSO algorithms on medium scale static 
test problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 
Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-22 The performance of the GA and the PSO algorithms on medium scale static 
test problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 
average and worst performances over all problem instances
The performance of the NDBGA is also superior in terms of the remaining 
performance criteria. The average minimum and total bandwidth are both approximately 
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25% higher than the PSO while the solution time is approximately 20% quicker. The 
results are presented in Figure 7-21, Figure 7-22 and Figure 7-23.
(a)
NDBGA PSO
0
50
100
150
200
250
300
350
Optimizer Type
So
lut
ion
Ti
me
(se
c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
50
100
150
200
250
300
350
Problem Instance
So
lut
ion
 Ti
me
 (s
ec
)
NDBGA
PSO
(b)
Figure 7-23 The performance of the GA and the PSO algorithms on medium scale static
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
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7.4.1.3 Large Static Problems
The comparisons on large scale problems are done on 10 test problems with 20 
users and 20 agents. Problem instances are generated as explained in Section 7.4.1. Only 
the heuristic algorithms could be tested on this scale, due to the complexity of the MIP 
model. For the NDBGA and PSO solutions, each problem is solved 5 times with different 
random number seeds.
Both algorithms returned solutions with 100% user connectivity for all test runs. 
Therefore only comparisons on the average minimum bandwidth, average total 
bandwidth and solution time are presented.
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Figure 7-24 The performance of the GA and the PSO algorithms on large scale static test 
problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 
Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-25 The performance of the GA and the PSO algorithms on large scale static test 
problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 
average and worst performances over all problem instances
As seen in Figure 7-25 and Figure 7-26, the average performance of the NDBGA is 
approximately 10% better than the PSO in terms of the minimum bandwidth between 
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user pairs, and about 3% better then PSO in terms of the total bandwidth. In addition to 
this, the average solution return time is about twice as long for the PSO.
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Figure 7-26 The performance of the GA and the PSO algorithms on large scale static 
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
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Table 7-1 presents paired-t test results for NDBGA and PSO performances on static 
test problem instances.
Table 7-1 Paired-t tests for NDBGA and PSO on static scenarios
Mean PerformanceProblem
Size NDBGA PSO
Paired-t Test
p-value
% User Connectivity 56.267 50.600 0.003
Min. Bandwidth (Mbps) 10.924 6.541 0.000
Small
Total Bandwidth (Mbps) 110.685 71.331 0.000
Solution Time (sec) 11.699 6.226 0.000
% User Connectivity 96.178 84.756 0.000
Min. Bandwidth (Mbps) 3.674 2.604 0.006
Medium
Total Bandwidth (Mbps) 432.840 326.446 0.000
Solution Time (sec) 51.401 66.383 0.006
% User Connectivity 100.000 100.000 N/A
Min. Bandwidth (Mbps) 5.156 4.533 0.192
Large
Total Bandwidth (Mbps) 2573.723 2490.506 0.289
Solution Time (sec) 477.789 1141.468 0.000
Table 7-1 suggests that almost all practically significant differences in 
performances of NDBGA and PSO are statistically significant as well. The PSO suffers 
from long solution times for larger size problems with no improvement on the network 
performance measures when compared with the NDBGA.
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7.4.2 Comparisons on Dynamic Scenarios
The performance analyses of the three optimizers on the dynamic problems are 
presented in this section. Similar to the static case, the results and the four performance 
comparisons are presented as boxplots of all the performance data from all problem 
instances of same type and size, followed by the graph of the best, average and the worst 
performances over replications for each problem instance. The analyses are grouped into 
three problem categories; small, medium and large, depending on the number of nodes.
The connectivity performance metrics for the dynamic problems are calculated at 
the end of each time step and reported as the average over the time span of the problem. 
The solution time for the dynamic problems reflect the time it takes to complete a full 
simulation over the entire time span.
7.4.2.1 Small Dynamic Problems
The comparisons on small scale problems are done on 20 dynamic problems with 4 
users and 3 agents in a time span of 100 time steps. The problem instances are generated 
as explained in Section 7.2 and the test problem generation code given in appendices Ap-
2 and Ap- 3. For the NDBGA and PSO solutions, each problem is solved 5 times with 
different random number seeds.
An example problem and its solution is given in Figure 7-27. In the figure, the 
diamond shaped nodes represent user nodes and the round shaped nodes represent the 
agent nodes. The time caption shows the simulation time which runs from 1 to 100 for (a) 
at time t = 1, (b) at t = 25, (c) at t = 50 and (d) at t = 75. 
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Figure 7-27 An example small scale dynamic scenario shown at (a) t = 1, (b) t = 25, (c) t
= 50 and (d) t = 75, diamond shape represents user nodes and round shape represents 
agent nodes
When the average results are analyzed, as seen in Figure 7-28 the PSO based 
mobile agent location optimizer performed the best in terms of the average % user 
connectivity. PSO is followed by the GA with approximately a 1% gap and finally, the 
MIP model with approximately a 3.5% gap.  
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Figure 7-28 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
small scale dynamic test problems in terms of the average % user connectivity. (a) 
Boxplot (b) Best, average and worst performances over all problem instances
The GA based optimizer takes the lead in terms of the average minimum and total 
bandwidth among all MANET users. Figure 7-29 gives the performances of the 
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algorithms with respect to the average minimum bandwidth metric. The GA has the lead 
with a gap of approximately 1.5% over the PSO and CPLEX is behind the two heuristics 
again with an approximate performance gap of 9%.
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Figure 7-29 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
small scale dynamic problems in terms of the average minimum (nonzero) bandwidth 
between all user pairs. (a) Boxplot (b) Best, average and worst performances over all 
problem instances
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The performance of the three algorithms with respect to the total bandwidth 
between MANET users is similar to the minimum bandwidth metric. Again, as seen in 
Figure 7-30, the GA leads with a 2.5% performance gap over the PSO, and around 7% 
over the CPLEX solver.
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Figure 7-30 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
small scale dynamic problems in terms of the average total bandwidth between all user 
pairs. (a) Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-31 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
small scale dynamic problems in terms of the average solution time. (a) Boxplot (b) Best, 
average and worst performances over all problem instances
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Finally, the solution time of the heuristics for the small scale problems is about 1/5th
of the CPLEX model. As seen in Figure 7-31 with PSO being the fastest with a minor gap 
when compared to the GA.
All three algorithms managed to sustain an average user connectivity of at least 
90%, heuristics being at the higher 90?s.
7.4.2.1.1 Time Varying Performance:
In this part, the analyses of the algorithms? performance at each time step is 
presented for a typical small size problem. Figure 7-32 and Figure 7-33 show the change 
in % user connectivity, and change in minimum and total bandwidth with time, 
respectively. The dashed lines represent a MANET with no agents present and solid lines 
represent a MANET with 3 mobile agents and 4 users.
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Figure 7-32 Change in % user connectivity over simulation time
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Figure 7-33 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 
time
In the above figures, the positive impact of having the mobile agents in the MANET 
can be clearly seen. The network without mobile agents starts to lose connectivity around 
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t=40, whereas full connectivity is maintained until t=95 with agents. The imporovement 
on the minimum bandwidth is also clearly visible before t=40.
7.4.2.2 Medium Dynamic Problems
The comparisons on medium scale problems are done on 10 dynamic problems with 
8 users and 6 agents in a time span of 100 time steps. For the NDBGA and PSO, each 
problem is solved 5 times with different random number seeds.
When the results are analyzed, unlike the small scale problems, for the medium 
scale the genetic algorithm performed superior to the PSO with respect to all three 
performance measures, and the solution time. However, as it can be observed from Figure 
7-34, that the performance gap for the average % user connectivity measure is quite 
narrow. 
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Figure 7-34 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on
medium scale dynamic problems in terms of the average % user connectivity. (a) Boxplot 
(b) Best, average and worst performances over all problem instances
Figure 7-35 shows the performance of the algorithms on the average minimum 
bandwidth between all MANET user pairs. In terms of the minimum bandwidth, the GA 
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lead is followed by the PSO by a 10% gap, while the MIP model suffers from significant 
lack of performance. 
With the medium scale problems, the MIP model became significantly 
overwhelmed and unstable. The CPLEX solver was unable to solve 3 out of 10 test 
problems, even with the time limitation removed. On the ones it could solve, it suffered 
from lack of performance due to the problem scale. Due to this issues, the large scale 
problems are only tested with the heuristic algorithms.
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Figure 7-35 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
medium scale dynamic problems in terms of the average minimum (nonzero) bandwidth 
between all user pairs. (a) Boxplot (b) Best, average and worst performances over all 
problem instances
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A performance similar to the minimum bandwidth measure is seen on the average 
total bandwidth. Again, as seen in Figure 7-36, the GA has a performance lead over the 
PSO by approximately 3%.
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Figure 7-36 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
medium scale dynamic problems in terms of the average total bandwidth between all user 
pairs. (a) Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-37 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 
medium scale dynamic problems in terms of the average solution time. (a) Boxplot (b) 
Best, average and worst performances over all problem instances
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7.4.2.2.1 Time Varying Performance:
In this part, the analyses of algorithms? performance at each time step is presented 
for an example medium size problem. Figure 7-38 and Figure 7-39 show the change in % 
user connectivity, and change in minimum and total bandwidth with time, respectively. 
The dashed lines represent a MANET with no agents present and solid lines represent a 
MANET with 6 mobile agents and 8 users.
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Figure 7-38 Change in % user connectivity over simulation time
The impact of mobile agents on the MANET performance in terms of connectivity 
is significant. The network with agents never loses connectivity. Moreover, the minimum 
and the total bandwidth performance is significantly improved as seen in Figure 7-39.
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Figure 7-39 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 
time
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7.4.2.3 Large Dynamic Problems
The comparisons on large scale problems are done on 5 dynamic problems with 16 
users and 12 agents over a time span of 100 time steps. For the NDBGA and PSO, each 
problem is solved 5 times with different random number seeds.
When the results are analyzed, it can be seen that the NDBGA algorithm performed 
slightly better in terms of average %user connectivity. The boxplot and the best, average 
and the worst performances for every problem instance can be seen in Figure 7-40 (a) and 
(b), respectively.
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Figure 7-40 The performance of the GA and the PSO algorithms on large scale dynamic 
problems in terms of the average % user connectivity. (a) Boxplot (b) Best, average and 
worst performances over all problem instances
When the results for the average minimum bandwidth between user pairs are 
analyzed, the PSO shows a slightly better overall average performance, around 9%, with 
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larger variations within problem instances. The boxplot and the mean value graphs are 
given in Figure 7-41.
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Figure 7-41 The performance of the GA and the PSO algorithms on large scale dynamic 
problems in terms of the average minimum (nonzero) bandwidth between all user pairs. 
(a) Boxplot (b) Best, average and worst performances over all problem instances
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The NDBGA and the PSO algorithms perform almost the same in terms of the
overall average total bandwidth between user pairs, with PSO having larger variance
within problem instances. The boxplot and the mean value comparison graphs are given 
in Figure 7-43.
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Figure 7-42 The performance of the GA and the PSO algorithms on large scale dynamic 
problems in terms of the average total bandwidth between all user pairs. (a) Boxplot (b) 
Best, average and worst performances over all problem instances
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The average solution times for the NDBGA and the PSO for large scale dynamic 
problems are significantly different. Although the PSO?s performance for the average 
minimum and the total bandwidth measures is quite close to the NDBGA, the 
computation time is significantly higher. The PSO?s average performance is around 33% 
slower than the NDBGA. Furthermore, NDBGA?s performance for the shortest and the 
longest duration solutions are both superior to those of PSO?s. The boxplot and the mean 
value graphs for the solution time are given in Figure 7-43.
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Figure 7-43 The performance of the GA and the PSO algorithms on large scale dynamic 
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 
performances over all problem instances
7.4.2.3.1 Time Varying Performance:
In this part, the analyses of the algorithms? performance at each time step is 
presented for an example large size problem. Figure 7-44 and Figure 7-45 show the 
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change in % user connectivity, and change in minimum and total bandwidth with time, 
respectively. The dashed lines represent a MANET with no agents present and solid lines 
represent a MANET with 12 mobile agents and 16 users.
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Figure 7-44 Change in % user connectivity over simulation time
The impact of mobile agents on the MANET performance in terms of connectivity 
is significant. The network with no agents loses full connectivity a little before t = 40, and 
constantly degrades after that while the network with mobile agents is able to regain and 
maintain connectivity. Moreover, the minimum and the total bandwidth performance is 
significantly improved as seen in Figure 7-45.
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Figure 7-45 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 
time
Table 7-2 presents the paired-t test results for NDBGA and PSO performance on 
dynamic scenarios.
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Table 7-2 Paired-t tests for NDBGA and PSO on dynamic scenarios
Mean PerformanceProblem
Size NDBGA PSO
Paired-t Test
p-value
Avg. % User Connectivity 94.558 95.318 0.082
Avg. Min. Bandwidth (Mbps) 32.042 31.517 0.002
Small
Avg. Total Bandwidth (Mbps) 210.563 208.239 0.000
Solution Time (sec) 98.428 84.049 0.000
Avg. % User Connectivity 86.586 85.561 0.013
Avg. Min. Bandwidth (Mbps) 22.316 21.279 0.004
Medium
Avg. Total Bandwidth (Mbps) 810.583 786.524 0.001
Solution Time (sec) 832.144 944.363 0.000
Avg. % User Connectivity 95.608 95.239 0.332
Avg. Min. Bandwidth (Mbps) 22.147 24.323 0.040
Large
Avg. Total Bandwidth (Mbps) 4806.391 4835.774 0.169
Solution Time (sec) 11492.028 16116.164 0.000
Table 7-2 suggests that the performances of NDBGA and the PSO for mobile agent 
location optimization are significantly different at the ?=0.05 level of significance for 
dynamic problems for almost all performance criteria. Although generally comparable 
results are achieved in terms of network performance, the PSO suffers from long solution 
times as the problem size increases.
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7.5 Cost-benefit Analyses
When using mobile agents in real life, each agent will have an associated fixed cost 
and operating costs. In order to plan the required number of agents -or resources- prior to 
an operation, the proposed model can be used as a simulation tool to see the estimated 
network performance with different numbers of agents incorporated into the network.
The following example is a demonstration of such a simulation. A 20 user problem 
is simulated with the number of mobile agents ranging from 0 to 10. The number of 
agents versus the average network performance over 100 time steps is provided in the 
figures, followed by discussion.
90
92
94
96
98
100
102
0 1 2 3 4 5 6 7 8 9 10
Number of agents
Av
g. 
%
 U
se
r C
om
mu
nic
ati
on
Figure 7-46 Number of mobile agents versus average % user connectivity
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In Figure 7-46, the change in average % user connectivity with increasing agent 
number is presented. Although full connectivity is achieved with only 3 agents, it is also 
true that full connection was lost with 5 agents. This is because the agents blend in and 
evolve with the network. The evolution with 3 agents can be different than with 5 agents
because the best agent locations at each time step will change for each agent with 
changing number of agents. The graph suggests that number of agents should be on the 
greater side, preferably at least 6 in this case. As a general methodology, this also 
suggests that test simulations should be done with more agents than what is thought 
necessary to see whether a steady connectivity and performance is achieved, or not.
The following graphs present the time varying performances with 0, 3, 6 and 10 
agents. In Figure 7-49, cases with 3, 6 and 10 agents are 100% connected all the time.
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In Figure 7-50, the effects on the minimum and the total bandwidth is seen. 
Although full connectivity is achieved, for the case with 3 agents, the bandwidth 
properties are much better with 6 or 10 agents. A greater benefit is experienced when the 
agent number is increased from 3 to 6 than 6 to 10. The scenario with 10 agents can 
maintain maximum possible network performance until t=70 and performs better than 
others towards the end of the simulation (t>70) when the network is the least dense, 
which is expected.
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Figure 7-50 Number of agents versus the change of (a) minimum bandwidth and (b) total 
bandwidth with simulation time
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CHAPTER 8
8. CONCLUSIONS
In this research, a new model is proposed to conceptualize an autonomous topology 
optimization for mobile ad hoc networks. Mobile ad hoc networks are advantageous in 
many aspects. They do not require a costly infrastructure, and they are flexible and 
immediately available to serve the tasks and needs of the users. However, there are 
topological challenges that affect connectivity and performance due to their mobile 
nature. The proposed approach relocates a number of mobile agents within their mobility 
capabilities to help maintain a suitable level of communication service in the network.
The representation of the wireless ad hoc network communications as network 
flows and optimization using a maximum flow model is a novel approach. It is very 
responsive to small changes in topology when evaluating network connectivity and 
performance. Also, it can be used with any signal attenuation model when calculating the 
data flow rates.
The dynamic nature of the problem is a challenge, but it also enables the optimizer 
to gain additional information by leveraging the dynamism. The optimization at a new 
time step can benefit from the knowledge of the best solution from the previous time step. 
This results from the fact that motion has a time and space continuity and for small 
increments in time, the velocity of objects are usually correlated with predecessor and 
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successor velocities. Another benefit based on the dynamism is the ability to predict 
future user locations. By making use of the position data from a few time steps back, the 
optimizer can predict where the user nodes will be positioned over a specified prediction 
horizon and thus position the agents for better performance. The inclusion of this 
additional information is algorithm independent. The genetic algorithm, the particle 
swarm algorithm or any other algorithm that is programmed to solve the proposed model 
can benefit from the additional information.
The non-deterministic decoding for binary coded genetic algorithms was developed 
during this research but is applicable to a wide range of continuous optimization 
problems. It outperformed previous approaches to the resolution deficiency that is 
experienced when solving problems in continuous domain with binary encoded genetic 
algorithms. The non-deterministic decoding method enables the genetic algorithm to 
effectively work its crossover and mutation mechanisms without the need to increase the 
chromosome length for precision only.
The approximate MIP model proposed in this research is also new. It optimizes the 
locations of agent nodes in a network with an objective to maximize a function of the all-
pair maximum flow and total maximum flows between node pairs. The movements of 
agent nodes affect the link capacities, which is incorporated into the model, as well as the 
agent travel distance constraints. The nonlinear link distance versus capacity relationship
and the Euclidean link distance and agent travel distances are modeled using piecewise 
linear approximations. The model, while being not as effective as the heuristic optimizers 
tested, shows how complex the problems are, even very small sizes.
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The heuristic algorithms have outperformed the MIP model, especially with respect 
to the solution time. They outperformed the MIP model with respect to the performance 
criteria most of the time because the heuristics allow greater flexibility when defining the 
objective function when the network is not fully connected. Among the heuristics, both 
the genetic algorithm and the particle swarm optimizations? performances were close in 
terms of solution quality, but the genetic algorithm in general, performed better in terms 
of the solution time.
The proposed approach, while developed for dynamic topology optimization, easily 
adapts to a static scenario by increasing the agent velocity constraints. The static scenario 
is useful when users want to improve an existing system of sensors or communication 
hubs already positioned in the field, or when designing a new static system.
The approach could also be used for ?what if? purposes before launching an actual 
network in the field. The simulation is useful to plan for the most efficient number of 
mobile agents to serve under a certain scenario, and to consider cost / benefit trade offs.
For future research, a combination of the static model and the dynamic model might
be adapted into a system which will deploy mobile agents into an already operating 
MANET. Another future topic is a slight modification to the objective function. In this 
study, all users are considered to be of equal importance. This could be readily changed, 
and weighted user importance objectives could be investigated. Different user mobility 
models could be used with the proposed approach. Finally, the model could be extended 
to three dimensions for agent and user motion and communication.
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APPENDIX
Ap- 1 NDBGA Performance compared with conventionally decoded binary GA (CDGA) 
on the continuous test problems
Comparison of NDBGA With a Conventionally Decoded GA (CDGA)
NDBGA CDGA
Fn. Populationbest
Average
population
best
Standard dev. 
of population
best
Average
function
eval.
Standard 
dev. of
function
Eval.
Population
best
Average
population
best
Standard 
dev. of
population
best
F1 <1?10-30 <1?10-30 <1?10-30 5,538 938 1.21?10-3 1.21?10-3 4.45?10-19
F2 5.08?10-12 1.75?10-10 3.56?10-10 23,615 16,940 1.57?10-3 1.57?10-3 2.22?10-19
F3 -30.0 -30.0 0.0 15,627 25,839 -30.0 -30.0 <1?10-30
F4 2.09?10-1 2.73?10-1 5.91?10-2 169,918 99,905 9.29?10-2 2.60?10-1 1.10?10-1
F4c 4.88?10-21 2.00?10-20 1.38?10-20 59,003 2,253 2.95?10-7 2.95?10-7 5.43?10-23
F5 0.99800384 0.99800384 1.33?10-14 2,817 8,342 0.9980116 0.9980116 2.28?10-16
F6 5.55?10-17 5.55?10-17 0.0 1,649 339 1.21?10-3 1.21?10-3 <1?10-30
F7 -16.0917200 -16.0917200 1.34?10-10 3,076 1,716 -16.0832124 -16.0832124 7.29?10-15
F8 0.3978874 0.3978874 1.30?10-9 11,185 10,328 0.3989716 0.3989716 1.14?10-16
F9 -1.0316285 -1.0316285 2.43?10-10 3,953 6,587 -1.0311667 -1.0311667 <1?10-30
F10 3.0000000 3.0000000 1.85?10-13 2,900 4,621 3.0154081 3.0154081 <1?10-30
F11 -186.7309088 -186.7309088 2.97?10-9 17,156 9,094 -185.5815858 -185.5815858 2.92?10-14
F12 1.90?10-9 2.91?10-8 2.31?10-8 219,856 95,307 7.18?10-2 8.60?10-2 2.13?10-2
F13 5.08?10-10 7.61?10-10 1.14?10-10 12,475 1,056 <1?10-30 <1?10-30 <1?10-30
F14 9.46?10-10 1.53?10-9 3.23?10-10 84,377 90,557 7.20?10-3 1.51?10-2 3.51?10-2
F15 <1?10-30 <1?10-30 <1?10-30 8,243 7,569 4.77?10-3 4.77?10-3 8.90?10-19
F16 <1?10-30 <1?10-30 <1?10-30 43,690 19,968 3.99?10-1 3.99?10-1 1.14?10-16
F17 8.45?10-10 1.55?10-8 1.06?10-8 125,786 40,860 1.5974995 1.5974995 6.83?10-16
F18 6.13?10-10 9.47?10-10 2.11?10-10 131,009 1,791 1.21?10-2 1.21?10-2 <1?10-30
F19 5.12?10-10 2.58?10-8 2.41?10-8 313,455 44,343 6.61?10-1 6.87?10-1 8.13?10-2
F20 <1?10-30 <1?10-30 <1?10-30 30,152 15,898 2.68?10-1 2.68?10-1 5.70?10-17
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Ap- 2 Test problem generation code for Matlab
This function accepts rand_seed, NoOfUsers, NoOfAgents, and NumberOfTimeSlots as 
input parameters. NumberOfTimeSlots is set to 1 for static problems. The NodeXY cell 
stores an array of X and Y coordinates of the users for each time step t as 
NodeXY{t}(UserID,1) for the x-coordinate and NodeXY{t}(UserID,2) for the y-
coordinate of user UserID ? [1,2,3,?,NoOfUsers] 
rand('state',rand_seed); % Always the same results default
NoOfUsers = NoOfUsersLcl; %The number of users getting service
NoOfAgents = NoOfAgentsLcl; %The number of remote controlled agents
NodeSize = NoOfUsers + NoOfAgents;    %total number of moving nodes
MinX = 0;
MaxX = 5;
MinY = 0;
MaxY = 5;
if(NumberOfTimeSlots == 1)
    StartXY_User = unifrnd(0,MaxX,NoOfUsers,2);    %randomly create 
starting XY coordinates default
else
if(NoOfAgents <= 5)
        StartXY_User = unifrnd(0,MaxX/3,NoOfUsers,2);    %randomly 
create starting XY coordinates default
else
        StartXY_User = unifrnd(0,MaxX/2,NoOfUsers,2);    %randomly 
create starting XY coordinates default
end
end
DestXY_User = unifrnd(0,MaxX-1,NoOfUsers,2); %randomly create 
destination XY coordinates default
StartXY_Agent_temp = zeros(NoOfAgents,2);
StartXY_temp = [StartXY_User %combine the start positions
    StartXY_Agent_temp] ;
NodeXY = cell(1, NumberOfTimeSlots);
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NodeXY{1} = StartXY_temp; %assign the current XY coordinates of the 
nodes to the initial coordinates
Vmin = 0.02; %minimum linear speed of mobile nodes default
Vmax = 0.05; %maximum linear speed of mobile nodes default
Velocity = unifrnd(Vmin,Vmax,NoOfUsers,1); %randomly assign velocities
RangeNodes = ones(NodeSize,1) * 1.0; %everbody has the same range
DeltaXY = DestXY_User - NodeXY{1}(1:NoOfUsers,:);   %find delta X and Y 
coordinates from destination to the current location
UV(:,1) = DeltaXY(:,1)./((DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5);    
%normalize the deltas calculated above
UV(:,2) = DeltaXY(:,2)./((DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5);    
%normalize the deltas calculated above
%start generate user trajectory
for time = 1:NumberOfTimeSlots
%get the euclidian distance between current position and the 
destination
    DeltaXY = DestXY_User - NodeXY{time}(1:NoOfUsers,:);   %find delta 
X and Y coordinates from destination to the current location
    ScaleFactors = ( (DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5 ); 
%calculate the distance from current location to the destination
    alfa = 0.95; %weight of the current direction
    UV(:,1) = alfa*UV(:,1) + (1-alfa)*DeltaXY(:,1)./ScaleFactors;    
%normalize the distance calculated above
    UV(:,2) = alfa*UV(:,2) + (1-alfa)*DeltaXY(:,2)./ScaleFactors;    
%normalize the distance calculated above
    DestReached{time} = find(ScaleFactors<Velocity); %find the nodes 
that have made it to the destination
    UV(DestReached{time},1) = 0;    %no more movement for the nodes at 
their destinations
    UV(DestReached{time},2) = 0;    %no more movement for the nodes at 
their destinations
for j = 1:NoOfUsers %for every node
if (rand<0.1) %change the path angle with a small probability
            teta = unifrnd(-pi/4,pi/4);%random rotation angle
            rot_matrix = [cos(teta) sin(teta)
-sin(teta) cos(teta)] ;%2D rotation matrix
            RotatedUVj = [UV(j,1) UV(j,2)] * rot_matrix; %rotate the 
direction unit vectors
            UV(j,1) = RotatedUVj(1,1);%assign rotated direction vectors
            UV(j,2) = RotatedUVj(1,2);%assign rotated direction vectors
end
end
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    Velocity = unifrnd(Vmin,Vmax,NoOfUsers,1); %randomly assign 
velocities
    AgentVelocity = ones(NoOfAgents,1) * 0; %assign agent velocities to 
zero
    NodeXY{time+1}(1:NoOfUsers,1) = 
NodeXY{time}(1:NoOfUsers,1)+Velocity(:,1).*UV(:,1); %calculate the next 
X coordinates
    NodeXY{time+1}(1:NoOfUsers,2) = 
NodeXY{time}(1:NoOfUsers,2)+Velocity(:,1).*UV(:,2); %calculate the next 
Y coordinates
end%generate user trajectory
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Ap- 3 Test problem data
Static cases
NumberOfTimeSlots = 1
Problem Scale NoOfUsers NoOfAgents rand_seed
Small 6 4
675, 948, 375, 468, 
427, 843, 674, 241, 
643, 846, 451, 944, 
346, 466, 841, 523, 
597, 411, 624, 977
Medium 10 10
675, 948, 375, 468, 
427, 843, 674, 241, 
643, 846, 451, 944, 
346, 466, 841, 523, 
597, 411, 624, 977
Large 20 20
675, 948, 375, 468, 
427, 843, 674, 241, 
643, 846
Dynamic cases
NumberOfTimeSlots = 100
Problem Scale NoOfUsers NoOfAgents rand_seed
Small 4 3
675, 948, 375, 468, 
427, 843, 674, 241, 
643, 846, 451, 944, 
346, 466, 841, 523, 
597, 411, 624, 977
Medium 8 6
675, 948, 375, 468, 
427, 843, 674, 241, 
643, 846
Large 14 10 547, 862, 468, 142, 465
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Ap- 4 AMPL model file
set NODES; #The set of nodes
param x{NODES}; #user node x coordinates (including 
initial agent coordinates)
param y{NODES}; #user node y coordinates (including 
initial agent coordinates)
set AGENTS; #The set of agent nodes
param Vmax{AGENTS}; #Maximum distance that agents can travel 
in one time step
param range; #Wireless transmission range
param MaxDataRate; #Maximum data transmission rate
param M:=10000;
#Arcs between user nodes
set ARCSa:={i in NODES diff AGENTS, j in NODES diff AGENTS:  i<>j and  
( sqrt( (x[i]-x[j])^2+(y[i]-y[j])^2 ) <= range) };
#Arcs between agents and user nodes, an arc is drawn if the agent can 
reach a currently out of range user by travelling
set ARCSb:={i in NODES diff AGENTS, j in AGENTS:  i<>j and  ( sqrt( 
(x[i]-x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[j] ) ) };
set ARCSc:={i in AGENTS, j in NODES diff AGENTS:  i<>j and  ( sqrt( 
(x[i]-x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[i] ) ) };
#Arcs between agent nodes themselves, an arc is drawn if the agents 
currently out of range can reach themselves by travelling
set ARCSd:={i in AGENTS, j in AGENTS:  i<>j and  ( sqrt( (x[i]-
x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[i] + Vmax[j] ) ) };
#Unite the arcs sets
set ARCS:=ARCSa union ARCSb union ARCSc union ARCSd;
param npiece_dist; #number of points to approximate arc 
distance
param npiece_Vmax; #number of points to approximate travel 
distance
param npiece_cap; #number of points to approximate data 
rate
param NumOfUsers; #number of Ad Hoc users
#Arc distance approximation
param rate_x{i in NODES, j in AGENTS, p in 1..npiece_dist : i<>j };
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param limit_x{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j 
};
param rate_y{i in NODES, j in AGENTS, p in 1..npiece_dist : i<>j };
param limit_y{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j 
};
#Travel distance approximation
param rate_Vmax_x{i in AGENTS, p in 1..npiece_Vmax };
param limit_Vmax_x{i in AGENTS, p in 1..(npiece_Vmax-1) };
param rate_Vmax_y{i in AGENTS, p in 1..npiece_Vmax };
param limit_Vmax_y{i in AGENTS, p in 1..(npiece_Vmax-1) };
#Link capacity (data rate) approximation
param rate_cap{i in NODES, j in AGENTS, p in 1..npiece_cap : i<>j };
param limit_cap{i in NODES, j in AGENTS, p in 1..(npiece_cap-1) : i<>j 
};
var d{ARCS} >=0; #arc 
distance
var xl{AGENTS} >=0; #new 
location of agents x coordinate
var yl{AGENTS} >=0; #new 
location of agents y coordinate
var dx{ARCS} >=0; #arc 
distance in x direction
var dy{ARCS} >=0; #arc 
distance in y direction
var delta_x{AGENTS};
#agent travel in x direction
var delta_y{AGENTS};
#agent travel in y direction
var u{ARCS} >=0, <= MaxDataRate; #data transmission rate
var d2{i in NODES, j in AGENTS : i <> j } >=0; #the 
square of the arc distances
var minflow >= 0;
#all-pair min flow value
set VirtualCommodity := {S in NODES, T in NODES: S<T};
#virtual commodities, each belong to a node pair
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set VirtualCommodity2 := {S in NODES diff AGENTS, T in NODES diff 
AGENTS: S<T}; #virtual commodities within users only
var CommodityFlows {ARCS,VirtualCommodity} >= 0, <= MaxDataRate;
#virtual commodity flow values
var MaxFlowCommodityType {VirtualCommodity} <= MaxDataRate;
#the maximum possible flow of virtual commodity
maximize AllPairMaxFlow : minflow + ( sum{(S,T) in VirtualCommodity2} 
MaxFlowCommodityType[S,T] ) / ( NumOfUsers * (NumOfUsers - 1) / 2 );
#the minimum of maximum possible virtual commodity flows
subject to AllPairMin {(S,T) in VirtualCommodity2}: minflow <= 
MaxFlowCommodityType[S,T];
#every virtual commodity flow need to be within bounds, and they do not 
take up other virtual commodities bandwidth
subject to capacity_all_1 {(i,j) in ARCS, (S,T) in VirtualCommodity}: 
CommodityFlows[i,j,S,T] <= u[i,j];
#if node not the source or the target of the specific virtual 
commodity, flow in equals flow out
subject to flow_balance1 {i in NODES, (S,T) in VirtualCommodity: S<>i 
and T<>i}: sum{j in NODES: (i,j) in ARCS} CommodityFlows[i,j,S,T] -
sum{j in NODES: (j,i) in ARCS} CommodityFlows[j,i,S,T] = 0;
#if node the source of the specific virtual commodity, flow difference 
equals +flow
subject to flow_balance2 {(S,T) in VirtualCommodity}: sum{j in NODES: 
(S,j) in ARCS} CommodityFlows[S,j,S,T] - sum{j in NODES: (j,S) in ARCS} 
CommodityFlows[j,S,S,T] = MaxFlowCommodityType[S,T];
#if node the target of the specific virtual commodity, flow difference 
equals -flow
subject to flow_balance3 {(S,T) in VirtualCommodity}: sum{j in NODES: 
(T,j) in ARCS} CommodityFlows[T,j,S,T] - sum{j in NODES: (j,T) in ARCS} 
CommodityFlows[j,T,S,T] = -1*MaxFlowCommodityType[S,T];
#Arc distance constraints (absolute value)
subject to Distance_x1a {i in NODES, j in AGENTS : (i,j) in ARCS }: 
dx[i,j] >= x[i]-xl[j];
subject to Distance_x2a {i in NODES, j in AGENTS : (i,j) in ARCS }: 
dx[i,j] >= xl[j]-x[i];
subject to Distance_y1a {i in NODES, j in AGENTS : (i,j) in ARCS }: 
dy[i,j] >= y[i]-yl[j];
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subject to Distance_y2a {i in NODES, j in AGENTS : (i,j) in ARCS }: 
dy[i,j] >= yl[j]-y[i];
#Arc distance constraints, approximate the squares of each distance 
component and add to get arc (i,j) length (squared)
subject to InWirelessRange_1a {i in NODES, j in AGENTS : (i,j) in ARCS 
}:
   << {p in 1..npiece_dist-1} limit_x[i,j,p];{p in 1..npiece_dist} 
rate_x[i,j,p]>> dx[i,j] +<< {p in 1..npiece_dist-1} limit_y[i,j,p];{p 
in 1..npiece_dist} rate_y[i,j,p]>> 
dy[i,j] <= d2[i,j];
#Set arc capacities with the arc length squared
subject to Capacity_A {i in NODES, j in AGENTS : (i,j) in ARCS }:
u[i,j] <=  << {p in 1..npiece_cap-1} limit_cap[i,j,p];{p in 
1..npiece_cap} rate_cap[i,j,p] >> (d2[i,j],range^2);
subject to Capacity_B {j in AGENTS, i in NODES : (j,i) in ARCS }:
u[j,i] <= u[i,j];
#Travel distance constraints (absolute value)
subject to Travel_x_1 {j in AGENTS}: delta_x[j] >= x[j]-xl[j];
subject to Travel_x_2 {j in AGENTS}: delta_x[j] >= xl[j]-x[j];
subject to Travel_y_1 {j in AGENTS}: delta_y[j] >= y[j]-yl[j];
subject to Travel_y_2 {j in AGENTS}: delta_y[j] >= yl[j]-y[j];
#Travel range constraints
subject to InMotionRange_1 {i in AGENTS}:
   << {p in 1..npiece_Vmax-1} limit_Vmax_x[i,p];{p in 1..npiece_Vmax} 
rate_Vmax_x[i,p]>> delta_x[i] +<< {p in 1..npiece_Vmax-1} 
limit_Vmax_y[i,p];{p in 1..npiece_Vmax} rate_Vmax_y[i,p]>> 
delta_y[i] <= Vmax[i]^2;
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Ap- 5 AMPL run file
include in.inf;
model model_cap.mod;
#Data file
data NodeLocation.dat #from Matlab
#Mobility distance approximation
for {i in AGENTS} {
for { p in 1..(npiece_Vmax-1)}{
let limit_Vmax_x[i,p]:=p*(Vmax[i]/(npiece_Vmax-1));
let limit_Vmax_y[i,p]:=p*(Vmax[i]/(npiece_Vmax-1));
}
let rate_Vmax_x[i,1]:=limit_Vmax_x[i,1];
let rate_Vmax_y[i,1]:=limit_Vmax_y[i,1];
 for { p in 2..(npiece_Vmax-1)}{
let rate_Vmax_x[i,p]:=(limit_Vmax_x[i,p]^2-
limit_Vmax_x[i,p-1]^2)/(limit_Vmax_x[i,p]-limit_Vmax_x[i,p-1]);
let rate_Vmax_y[i,p]:=(limit_Vmax_y[i,p]^2-
limit_Vmax_y[i,p-1]^2)/(limit_Vmax_y[i,p]-limit_Vmax_y[i,p-1]);
}
let rate_Vmax_x[i,npiece_Vmax]:=M;
let rate_Vmax_y[i,npiece_Vmax]:=M;
     }
#Range distance approximation
for {i in NODES, j in AGENTS : i <>j } {
for { p in 1..(npiece_dist-1)}{
let limit_x[i,j,p]:=p*(range/(npiece_dist-1));
let limit_y[i,j,p]:=p*(range/(npiece_dist-1));
}
let rate_x[i,j,1]:=limit_x[i,j,1];
let rate_y[i,j,1]:=limit_y[i,j,1];
for { p in 2..(npiece_dist-1)}{
let rate_x[i,j,p]:=(limit_x[i,j,p]^2-limit_x[i,j,p-
1]^2)/(limit_x[i,j,p]-limit_x[i,j, p-1]);
let rate_y[i,j,p]:=(limit_y[i,j,p]^2-limit_y[i,j,p-
1]^2)/(limit_y[i,j,p]-limit_y[i,j, p-1]);
}
let rate_x[i,j,npiece_dist]:=M;
let rate_y[i,j,npiece_dist]:=M;
    }
#Data rate approximation
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for { i in NODES, j in AGENTS : i <>j } {
for { p in 1..(npiece_cap-1)}{
let limit_cap[i,j,p]:=( p*(range/(npiece_cap-1)) )^2;
}
let rate_cap[i,j,1]:= MaxDataRate * ( 1.0/(1 + exp(10*( 
limit_cap[i,j,1]^0.5/range - 0.5))) - 1.0 ) / limit_cap[i,j,1];
for { p in 2..(npiece_cap-1)}{
let rate_cap[i,j,p]:= MaxDataRate * ( 1.0/(1 + exp(10*( 
limit_cap[i,j,p]^0.5/range - 0.5))) - 1.0/(1 + exp(10*( 
limit_cap[i,j,p-1]^0.5/range - 0.5))) ) / (limit_cap[i,j,p]-
limit_cap[i,j,p-1]); 
}
let rate_cap[i,j,npiece_cap]:=0;
}
#Fix the data rates for users
for { (i,j) in ARCS: i not in AGENTS and j not in AGENTS } {
if ( ((x[i]-x[j])^2+(y[i]-y[j])^2)^0.5<=range) then{
fix u[i,j] := MaxDataRate * 1.0/(1+exp(10*( ((x[i]-
x[j])^2+(y[i]-y[j])^2)^0.5/range - 0.5)));
}
else{
fix u[i,j]:= 0;
}
}
option cplex_options 'mipgap=0.10 timelimit=120';
solve;
printf"">agentLocation.out;
for {i in AGENTS}{
printf"%f %f;\n",xl[i],yl[i]>>agentLocation.out;
}
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Ap- 6 Example data file for AMPL model (Stationary scenario)
param : NODES : x y :=
1 1.77560 2.85915
2 0.71296 4.84898
3 4.53495 4.72558
4 1.25040 3.95480
5 1.84809 2.74672
6 2.93035 1.23632
7 2.37250 2.88927
8 4.39605 2.40152
;
param range:= 1.00000;
param npiece_dist:= 8;
param npiece_Vmax:= 8;
param npiece_cap:= 8;
param MaxDataRate:= 54;
param NumOfUsers:= 5;
param : AGENTS : Vmax :=
6 4.23889
7 2.83694
8 4.42213
;

