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       Profit maximization for power companies is highly related to the bidding strategies 
used. In order to sell electricity at high prices and maximize profit, power companies 
need suitable bidding models that consider power operating constraints and price 
uncertainty within the market. Therefore, models that include price uncertainty are 
needed to analyze the market and to make better bidding decisions. 
 vi 
      In this dissertation, the main objective is to develop bidding models for electric power 
generators and wholesale power suppliers under price uncertainty. A quadratic 
programming model and a nonlinear programming model were developed to find a 
solution to the bidding problem. However, in these models the computational time 
increases exponentially as the size of the problem increases. To overcome this limitation, 
two particle swarm optimization models are developed. The first method uses a 
conventional particle swarm optimization technique to find bid prices and quantities 
under the rules of a competitive power market. The second method uses a decomposition 
technique in conjunction with the particle swarm optimization approach. In addition, a 
spreadsheet based simulation algorithm is developed to evaluate a bid offer under given 
price samples. It is shown that for nonlinear cost functions particle swarm optimization 
solutions provide higher expected profits than marginal cost based bidding. A model to 
find an equilibrium solution in competitive power markets for power suppliers bidding 
into day-ahead market under forecasted demand is also developed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 vii 
 
 
 
 ACKNOWLEDGEMENTS 
 
First, I would like to thank Dr. Jorge Valenzuela, my advisor and mentor, for his 
invaluable guidance and support throughout this dissertation. I also would like to thank 
Dr. Chan S. Park and Dr. Gerry Dozier for their invaluable suggestions. Thanks also to 
Dr. Latif Kalin for being my out-side reader. Finally, I would like to express my endless 
appreciation to my parents Husne and Mehmet Yucekaya and to my other family 
members, for their continuous support and motivation all along my life. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 viii 
 
 
 
 
 
 
Style manual or journal used Bibliography conforms to those of Institute of Electrical   
                                              and Electronics Engineers (IEEE) Transactions  
Computer software used        AMPL 
          CPLEX 7.0 
                       MATLAB 
          MINITAB 
          Microsoft Visual Studio C/C++ 
                                                Microsoft Office Excel 
                                                Microsoft Office Word 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ix 
 
 
 
 
 
                                                  TABLE OF CONTENTS 
 
LIST OF TABLES                xii 
LIST OF FIGURES                xv 
NOMENCLATURE              xvii 
CHAPTER 1.   INTRODUCTION                 1 
CHAPTER 2.  REVIEW OF LITERATURE AND BACKGROUND            5 
2.1 Literature Review                 5 
2.2 Background                  8 
2.2.1 Auction Theory               8 
2.2.2 Market Design             10 
2.2.3 Locational Marginal Pricing            12 
2.2.4 Cost of Generation             13 
2.2.5 PJM Power Market             14 
2.2.6 Bidding into Market             15 
2.2.7 Power Market Equilibrium            19 
CHAPTER 3. SPREADSHEET BASED SIMULATION FOR            22 
OFFER EVALUATION 
        3.1 Bid Simulator                22 
        3.2 Simulation Functionality              23 
                   3.3 Numerical Example               28 
 x 
       3.4 Conclusion                31 
CHAPTER 4. ELECTRIC POWER BIDDING UNDER PRICE UNCERTAINITY       32 
       4.1 Price Uncertainty               32 
                  4.2 The bidding model               34 
       4.3 Quadratic Programming Model             37 
       4.4 Nonlinear Programming Model             37 
       4.5 Marginal Cost Biding               39 
       4.6 Numerical Example and Analysis             40 
           4.6.1 Quadratic Programming             40 
           4.6.2 Nonlinear Programming             40 
         4.6.3 Marginal Cost Bidding             42 
                   4.7 Conclusion                42 
CHAPTER 5. PARTICLE SWARM OPTIMIZATION FOR BIDDING INTO         44 
MARKET UNDER PRICE UNCERTAINITY        
                   5.1 Rationale for Heuristics Approach             44 
        5.2 Particle Swarm Optimization             44 
        5.3 Conventional Particle Swarm Optimization            47 
       5.4 Decomposition Based Particle Swarm Optimization          49 
                   5.5 dBPSO Genetic Representation             50 
               5.6 Numerical Example and Analysis             52 
                        5.6.1 Comparison Analysis of cPSO and Marginal           54 
                                       Cost based Bidding 
                             5.6.2. Comparison Analysis of cPSO and dBPSO           56 
 xi 
     5.6.3. Converging Process of dBPSOB and dBPSOQ          59 
     5.6.4 Impact of the order of dBPSOB and dBPSOQ          61 
                   5.6 Conclusion                63 
CHAPTER 6. AGENT BASED PARTICLE SWARM OPTIMIZATION FOR          65 
SUPPLY FUNCTION EQUILIBRIUM  
                   6.1 Introduction                65 
       6.2 Supply Function Equilibrium Model             65 
                   6.3 Agent Based Modeling and Simulation            69 
                   6.4 Agent based particle swarm optimization model            72 
                   6.5 Numerical Example and Analysis             78 
   6.5.1 ABPSO Experiment with Duopoly           78 
   6.5.2 ABPSO Experiment with m=5 firms           83 
   6.5.3 ABPSO Experiment with m=10 firms           89 
                   6.6 Conclusion                93 
CHAPTER 7.  CONCLUSION AND FUTURE RESEARCH           94  
REFERENCES                 96 
 
 
 
 
 
 
 
 
 
 xii 
 
 
 
LIST OF TABLES 
Table 2.1. Comparison of offer types               17 
Table 2.2. Bid components in offer types              18 
Table 3.1. An example bidding solution to the problem            29 
Table 3.2. Descriptive statistics for daily profits             29 
Table 4.1. Price sample for the example problem             40 
Table 4.2. Optimum solution to the problem              40 
Table 4.3. Price samples used in the problem              41 
Table 4.4. Optimum solution to the problem              41 
Table 4.5. Bid prices and quantities for marginal cost bidding           42 
Table 5.1. Day-ahead market price samples for PSO            53 
Table 5.2. Quantity-price solutions for GEN-1 and GEN-2           55 
Table 5.3. Parameter set for the experiment             57 
Table 5.4. Statistical summary of the results of the cPSO solutions          57 
Table 5.5. Bid prices and quantities for best solutions of cPSO          57 
Table 5.6. ANOVA test results for cPSO             58 
Table 5.7. Statistical summary of dBPSO solutions            58 
Table 5.8. Bid prices and quantities for best solutions of dBPSO          58 
Table 5.9. ANOVA test results for dBPSO             59 
Table 5.10. ANOVA test results for method comparisons           59 
Table 5.11. Statistical summary of dBPSO solutions            63 
 xiii 
Table 6.1. Day-ahead demand for next day             78 
Table 6.2. Cost functions and capacities of the firms (m=2)           78 
Table 6.3. Equilibrium prices for the first stopping rule (m=2)           79 
Table 6.4. Results found in the first stopping rule (m=2)            79 
Table 6.5. Equilibrium prices for the second stopping rule (m=2)           80 
Table 6.6. Results found in the second stopping rule (m=2)            81 
Table 6.7. Equilibrium prices for the third stopping rule (m=2)           81 
Table 6.8. Results found in the third stopping rule (m=2)            82 
Table 6.9.Overview of the results found in each method (m=2)           82 
Table 6.10. Profit increases in each rule (m=2)             83 
Table 6.11. Cost functions and market capacities of the firms for (m=5)          83 
Table 6.12. Equilibrium prices for first stopping rule (m=5)            84 
Table 6.13. Results found for firm 1, 2 and 3 in first stopping rule (m=5)          84 
Table 6.14. Results found for firm 4 and 5 in first stopping rule (m=5)          85 
Table 6.15. Equilibrium prices for second stopping rule (m=5)           85 
Table 6.16. Results found for firm 1, 2 and 3 in second stopping rule (m=5)         86 
Table 6.17. Results found for firm 4 and 5 in second stopping rule (m=5)          86 
Table 6.18. Equilibrium prices for third stopping rule (m=5)           87 
Table 6.19. Results found for firm 1, 2 and 3 in third stopping condition (m=5)         87 
Table 6.20. Results found for firm 4 and 5 in third stopping condition (m=5)         88 
Table 6.21. Overview of the results found in each method (m=5)           88 
Table 6.22. Profit increases in each rule (m=5)             89 
Table 6.23. Cost functions and market capacities of the firms (m=10)          89 
 xiv 
Table 6.24. Equilibrium prices for second stopping rule (m=10)           90 
Table 6.25. Results found for firm 1, 2 and 3 (m=10)            90 
Table 6.26. Results found for firm 4, 5 and 6 (m=10)            91 
Table 6.27. Results found for firm 7 and 8 (m=10)             91 
Table 6.28. Results found for firm 9 and 10 (m=10)               92 
Table 6.29. Unit?s profits (m=10)               92 
Table 6.30. Profit increases in rule 2 (m=10)              92 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 xv 
 
 
 
LIST OF FIGURES 
Figure 2.1. Services in a typical SMD              10 
Figure 2.2. Electric power system               11 
Figure 2.3. A generator?s offer curve in the PJM day-ahead market           16 
Figure 3.1. Pseudo code of the simulation model             23 
Figure 3.2. Bid Simulator main screen              24 
Figure 3.3. Bid Simulator menu               24 
Figure 3.4. Bid Simulator simulation and price generation            25 
Figure 3.5. Bid Simulator hourly profits              26 
Figure 3.6.  Bid Simulator daily profits              26 
Figure 3.7. Bid Simulator output analysis              28 
Figure 3.8. Expected hourly price graph from generated prices           29 
Figure 3.9. Expected hourly profits based on generated prices           30 
Figure 3.10. Histogram of daily profits              30 
Figure 3.11. Cumulative histogram of daily profits             31 
Figure 4.1. Day-ahead and real time prices for February 29, 2008           33 
Figure 4.2. Bid prices and power quantity intervals             35 
Figure 5.1. Pseudo code for the PSO method              45 
Figure 5.2. Pseudo code for the cPSO method             48 
Figure 5.3. Pseudo code for the dBPSO method             51 
Figure 5.4. Hourly day-ahead market price samples             53 
 xvi 
Figure 5.5a. Cost function of GEN-1               54 
Figure 5.5b. Cost function of GEN-2               54 
Figure 5.6. Percentage of increase of cPSO solution in relation to MC          56 
Figure 5.7. Converging process of dBPSOB and dBPSOQ to the solution (C=200)         60 
Figure 5.8. Converging process of dBPSOB and dBPSOQ to the solution (C=100)         60 
Figure 5.9. Converging process of dBPSOB and dBPSOQ to the solution (C=50)         61 
Figure 5.10. Converging process of dBPSOB and dBPSOQ to the solution (C=200)         62 
Figure 5.11. Converging process of dBPSOB and dBPSOQ to the solution (C=100)         62 
Figure 5.12. Converging process of dBPSOB and dBPSOQ to the solution (C=50)         63 
Figure 6.1. Equilibrium process in day-ahead power market            66 
Figure 6.2. Agent based modeling and simulation             69 
Figure 6.3. General flow of a typical ABMS              70 
Figure 6.4. Components of ABMS method              73 
Figure 6.5. The flow of the ABPSO               74 
 
 
 
 
 
 
 
 
 
 
 
 xvii 
 
 
 
                                                       NOMENCLATURE 
 
Parameters 
i              Block number of bidding offer 
j              Firms in the market 
t              Time of bidding period   
m           Number of firms 
r             Iteration number  
N           Number of blocks in bidding offer 
T            Time period that the bid is valid for 
R           Number of rounds or iterations 
Bmax       Price Cap or Maximum allowable bid price in the market 
Qmax       Maximum generation capacity of the generator (MWh) 
Qjmax      Maximum market capacity of the firm j (MWh) 
a1               No-load cost  
a2               Linear cost coefficient 
a3               Quadratic cost coefficient 
aj1               No-load cost for firm j 
aj2               Linear cost coefficient for firm j 
aj3               Quadratic cost coefficient for firm j 
Dt           Demand at time t 
?j           Profit function of firm j 
 xviii 
Pt            Market price at time t 
k
tP          Market clearing price at time t of scenario k ($/MWh) 
r
tP          Market clearing price at time t of iteration r ($/MWh) 
C(q)         Cost of generating q MWh ($/MWh) 
?1              Stopping condition value for first rule 
?2              Stopping condition value for second rule 
?3              Stopping condition value for third rule 
C              Cycle value for particle swarm optimization analysis 
R               Number of replication for particle swarm optimization analysis 
 
Decision variables 
qjt(Pt)       Dispatched bid quantity of firm j at time t at market price Pt 
q-jt(Pt)     Cumulative Bid quantity of competitor?s of firm j at time t at market price Pt 
?qi           Bid energy amount increase of block i (MWh) 
bi              Bid price of block i ($/MWh) 
qt             Total energy generated at hour t (MWh) 
?qji           Bid energy amount increase of block i of firm j (MWh) 
bji             Bid price of block i of firm j ($/MWh) 
?t      Stopping condition criterion value for first rule  
t
?
?            Stopping condition criterion value for second rule 
tw?          Stopping condition criterion value for third rule
 1 
                                                            CHAPTER 1 
        INTRODUCTION                                                                                          
 
After the 90s, many countries changed the economics of their electricity markets 
from monopolies to oligopolies in an effort to increase competition. One of the main 
market competition structures used in the new deregulated environments is the poolco 
[1]. A poolco market is a central auction that brings regional buyers and sellers together. 
All competitive power generators (supply) and buyers (demand) are required to submit 
blocks of energy amounts and corresponding prices they are willing to receive from or 
pay to the pool. The prices and quantities submitted by the market participants are 
binding obligations as they require financial commitments to the market. Once all the 
supply and demand bids have been submitted and the bidding period ends, an 
Independent System Operator (ISO) ranks these quantity-price offers based on the least-
cost for selling bids and the highest price for buying bids. The ISO then matches the 
selling bids with buying offers such that the highest offers are matched with the lowest 
selling bids. The point that supply meets demand determines the market clearing price 
(MCP). 
Perfect competition and oligopoly are two models of interest in the deregulation 
of the electricity market. Under a perfect competition model, power suppliers are 
expected to bid their marginal costs. For generating units with a nonlinear cost function 
(such as coal and gas fired units), the marginal cost depends on the quantity of electricity 
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produced by the unit. This implies the necessity of knowing the amount of energy that 
will be offered to the market before the marginal production cost can be computed. 
However, if the electricity market is not perfectly competitive, a power supplier may 
increase benefits by bidding a price higher than its marginal production costs [2]. This 
behavior is called strategic bidding [3]. This strategy imposes the risk of producing no 
profit at all if the bid price is too high. There is a risk that the supplier?s bid might be 
placed in jeopardy. Thus, the strategic bidding problem (SBP) is to determine proper sizes 
and bid prices such as to maximize expected profits.  
In both situations described above, the MCP plays an important role in the SBP 
since it determines what blocks will be selected by the market clearing mechanism. The 
MCP is the result of a complex interaction among producers and consumers. When power 
suppliers have the ability to affect the MCP by altering its power output, oligopoly 
models such as Cournot [4] or supply function equilibrium [5] are usually adopted.  
These models can incorporate detailed economic information about the system, but they 
are difficult to solve and they present theoretical problems related to the lack of 
equilibrium or the existence of multiple equilibriums. In addition, these models require 
suppliers? cost data, which may not be openly available. An alternative approach, 
suggested in [6], is to assume that the future values of the MCP are actually unknown by 
the market participants since the interaction of processes that governs the MCP is too 
complex to model. Thus, the MCP can be modeled as a random variable to represent the 
complexity and uncertainty involved in current electricity markets. The advantage of this 
modeling approach is that it allows the inclusion of the MCP as an exogenous variable to 
the SBP. In [6], it has been shown that when the MCP is assumed to be exogenous each 
 3 
generating unit can be considered separately. Nevertheless, this modeling approach can 
be considered as an approximation to the game theoretic method. Its accuracy will 
depend in part on whether there is a chance that the generating unit that is bidding into 
the market will be the unit that will set the MCP.  
In this dissertation, bidding models for two power producer behaviors are 
developed. The first set of bidding models assumes that power producers cannot 
influence the price, i.e. they behave as price takers; while the second set assumes that 
power producers influence the prices with their bids. One contribution of this dissertation 
is to model the SBP and find a solution using quadratic and nonlinear programming given 
that the power producer has imperfect price estimations. However, an optimal solution 
can only be obtained within a reasonable computational time for a limited number of 
price scenarios. A second contribution is the development of a spreadsheet based 
simulation algorithm to evaluate bids and help power companies with their decision 
analysis. A third contribution is the application of heuristic approaches to solve the SBP. 
Two models are developed to demonstrate the effectiveness of particle swarm 
optimization method to solve the SBP. A fourth contribution is the application of agent-
based simulation method for finding bids when power producers compete for fixed 
demand. Numerical results show that the agent based simulation model is capable of 
finding an equilibrium solution for each power supplier.  
The remainder of this dissertation is organized as follows: Chapter 2 provides a 
review of related research currently available about auction designs, bidding processes, 
pricing and market equilibrium. Chapter 3 provides details about the developed 
spreadsheet based simulation method and its application on bid evaluation. Chapter 4 
 4 
describes the model formulation of the SBP and implemented solution techniques.  
Chapter 5 provides a description of the conventional particle swarm optimization (cPSO) 
and decomposition based particle swarm optimization (dBPSO) methods. Chapter 6 
describes the formulation and model of the proposed market equilibrium model and 
developed solution technique. The conclusion and implications for future research may 
be found in Chapter 7.  
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                                                            CHAPTER 2 
REVIEW OF LITERATURE AND BACKGROUND 
2.1 Literature Review 
 
Since the 1980s, much effort has been made to restructure the traditional 
monopoly of the power industry with the objectives of introducing fair competition and 
improving economic efficiency [7]. The electricity supply industry has unique features 
such as a limited number of producers, large investment size (which poses a barrier to 
entering the market), transmission constraints (which are obstacles for consumers to 
effectively reach many generators), and transmission losses (which discourage consumers 
from purchasing power from distant suppliers) [7].These features force market players to 
be more aggressive on their bidding strategies; it also makes them construct models that 
carefully consider their constraints and the uncertainty of the market price.  
The deregulated electricity market usually has a few generators (market suppliers) 
that usually dominate the market. This makes the market seem more similar to an 
oligopoly. In such oligopolistic markets, an individual generator can exercise market 
power and manipulate the market price via its strategic bidding behavior [8]. Companies 
have to determine bidding strategies so that they can profit even if they are price takers 
and do not dominate the market.  
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There are several approaches to analyze and develop bidding models. The bidding 
strategies used in the market are discussed in [9] which contains a literature survey of the 
current approaches to the bidding problem. The performance of a power market is 
measured by the common term ?social welfare?. Social welfare is the benefit of a 
commodity to society: to both customers and suppliers.  
The game theory approach is commonly used in the literature to model market 
participant?s behaviors [10].  The approach assumes that each market player tries to 
maximize its profit. The behavior of the market player is affected by other players? 
behavior. Several methods used in modeling bidding strategies are explained in [11] as 
they compare the game theory approach with the conjectural variation based method. In 
both approaches, each firm in the market rationally tries to maximize its profit while 
considering the reactions of its competitors. They show that firms can increase their profit 
by using conjectural variation based method and the equilibrium found corresponds to 
Nash equilibrium.  
Several solution methods have been used to solve the bidding problem. In [12], a 
genetic algorithm is used to solve the bidding problem. Although the solution obtained is 
a heuristic one, it could be used by a company in its daily bidding process. The authors 
explain the process of bidding and how the equilibrium price is determined. They 
construct their model based on the assumption of exogenous prices. In [13], an 
optimization tool to determine a bidding curve for the Ontario Power Market was 
developed. The authors used different scenarios of market prices and load. The decision 
process for the generator is based on the probability distribution of forecasted prices. The 
model chooses the block of the curve (the price and the corresponding quantity) to be 
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submitted in order to maximize expected profits. The model assumes exogenous prices 
and includes operational constraints such as ramp-up limits, start-up limits and minimum 
up-down times. In [14], bids are represented as quadratic functions of power levels. The 
model optimizes the parameters of each function during a two-phase process. In the first 
phase, the ISO minimizes the total system cost in which the parameters for other 
generators are known. In the second phase, solutions are plugged into the generator?s 
model. The Lagrangian relaxation procedure is used to solve the expected cost 
minimization problem.   
In [15], the authors assume that suppliers bid linear supply functions; the 
coefficients of the functions are chosen for each supplier in such a way that the expected 
profit is maximized subject to the behavior of one?s rivals.  They formulate a stochastic 
optimization model and use a Monte Carlo based method to tune the parameters of the 
function.  They also include the level of information known for each generator in a 
symmetric and asymmetric market. In [16], [17] and [18] bidding strategies are 
developed for price taker generating units.  
 The papers mentioned above deal with bidding problems that consist of bids of 
one or two blocks. The models developed in this dissertation consider that companies 
submit up to ten blocks in their bids and include multiple price scenarios. These 
additional features increase the computational time required to solve these problems. In 
addition, in some papers the bids are modeled as a price-quantity function. Thus, the 
optimization consists of finding the coefficients of this function.  In contrast, the price-
quantity is function free in this dissertation.  
 8 
2.2 Background  
 
 
In order to better analyze the SBP, one should understand the fundamentals of 
auction theory, power market, electricity pricing, cost of electricity production and bid 
structures. The fundamentals might not be exactly the same for all power markets, but 
they are similar. Auction based markets are also used in some other markets such as the 
stock exchange, agricultural wholesale, and goods wholesale on the Internet. The solution 
approaches developed in this dissertation could also be applied to such markets. 
 
2.2.1 Auction Theory 
 
 
Auction theory deals with how participants of an endeavor behave in auction 
markets where game-theoretic behaviors are involved.  The objective of an auction is 
generally determined by an operator. It can be the maximization of the outcome (revenue) 
like government licenses, or it can be the minimization of the cost like public service by 
giving equal market opportunity to each competing player. The players, rules, outcomes 
and payoffs of the auction along with their mission might change depending on the 
objective, but the same essence of competition remains [19]. An auction design requires 
careful research and experiments on efficiency, optimum and equilibrium bidding 
strategies and revenue so that an effective auction can be created and manipulations can 
be eliminated. It is important that each player does not have perfect information about 
their competitors? bid. The operator is supposed to provide a confidential environment to 
provide equal opportunity for players [19]. 
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Typical auctions are classified by designs (rules). Some examples are first-price 
sealed-bid auctions, second-price sealed-bid auctions, open ascending-bid auctions 
(English auctions) and open descending-bid auctions (Dutch auctions). In first-price 
sealed-bid auctions, bids are submitted simultaneously in sealed envelopes by all bidders 
to the operator. The individual with the highest bid wins and pays the proposed amount. 
In second-price sealed-bid auctions, bids are submitted in sealed envelopes 
simultaneously. The individual with the highest bid wins and pays the amount equal to 
the second highest bid. In open ascending-bid auctions, the price is steadily raised by the 
operator. Some players drop out as the price becomes too high and the last player wins 
the auction at the current price. This is more common in revenue maximizing auctions. In 
open descending-bid auctions, the price starts at a relatively high level and is steadily 
decreased by the operator until one player is willing to accept the offer. This approach is 
more common in cost minimization auctions which often are an issue for public service 
providers. Many auctions are hybrids of these four types. Since Electric power auctions 
aims to minimize the cost of electricity provided to the market, they are a hybrid of open 
descending-bid auctions and first-price sealed-bid auctions [20]. The success of a 
competetive market is related to the design of the auction mechanism used [19]. 
Auctions can also be classified as single-round auctions and multi-round auctions. 
In single-round auctions, sell bids are matched with buy bids to reach equilibrium at 
once. On the other hand, in multi-round auctions bidders are asked to update their offers 
at each iteration/round so that a more effective equilibrium can be reached [21].  
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2.2.2 Market Design 
 
Federal Energy Regulatory Commission proposed a design on July 31, 2002 titled 
?Standard Market Design? (SMD) for the standardization of electric power markets in 
USA [22], [23]. The major power markets in the US such as PJM, New England 
(NEEPOL), New York (NYPX), and Midwest ISO (MISO) are variants of the SMD [19]. 
The Electric Reliability Council of Texas (ERCOT) and California power market 
(CAISO) are in the process of implementing SMD rules as well. 
The objective of a typical SMD is to develop a market structure that brings 
together the physical system and the economic financial operations. This is achieved by 
defining the roles and the interaction of system components. SMD also deals with the 
system governance, market operations, risk management, market monitoring and conflict 
resolutions that might occur among the members [23], [24]. Figure 2.1 illustrates general 
services involved in SMD [24].  
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                                         Figure 2.1. Services in a typical SMD 
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An electric power system consists of four main parts: generation, transmission, 
distribution and customers.  Figure 2.2 shows the flow of electricity from generation to 
customers [24].  SMD governs the processes through scheduling coordinator (SC), power 
exchange (PX), independent system operator (ISO), transmission owner (TO) and load 
serving entity (LSE). The role of the ISO might slightly change in each SMD, but the 
major role remains the same. 
Competition
Generation
Transmission
Distribution
Demand
Federally 
Regulated (FERC)
State Regulated
Customers
 
Figure 2.2. Electric power system 
 
 
The ISO is a neutral entity responsible for maintaining the instantaneous balance 
of the grid system [24], [25]. It performs its function by controlling the dispatch of 
flexible plants to ensure that loads match resources available to the system. It also 
coordinates the day-ahead market and real-time balancing market and monitors 
compliance with all regional operating and reliability standards. The members of the ISO 
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are power suppliers, wholesale power customers and, transmission line owners.  The day-
ahead market and real-time market are used to equate supply and demand based upon the 
sell and buy bids submitted by the members [25]. In a typical SMD, pricing is handled by 
a nodal mechanism [24]. 
2.2.3 Locational Marginal Pricing 
 
Locational Marginal Pricing (LMP) is a market-pricing method that is used to 
manage the efficient use of the transmission system when congestion occurs between 
source and sink. In a SMD, congestion occurs when restrictions such as capacity of the 
line and losses prevent the economic or least expensive supply of energy from serving the 
demand. It also means that, if the system was entirely unconstrained and there were no 
losses, all the LMPs would be same and it would reflect only the energy price [26], [27].  
In an SMD, after offers and bids are submitted and the market is settled, the 
LMPs are usually calculated at three types of locations, at the node, the load zone and the 
hub. Nodes are the places on the system where generators inject power into the system or 
demand (load) withdraws from the system. Each node is connected to one or more buses, 
which are specific components of the power system at which generators, loads or the 
transmission system are connected. Prices are made up of three components energy, 
congestion and losses. The energy component is the cost to serve the next increment of 
demand at a specific location or node which should be produced by the least expensive 
generating unit in the system that still has available capacity [26], [28]. If the 
transmission network is congested, the next increment of energy cannot be delivered from 
the least expensive unit on the system because it would violate transmission operating 
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criteria or cause overloading. The extra cost which is called congestion cost is calculated 
at a node as the difference between the energy component of the price and the cost of the 
providing the additional more expensive energy that can be delivered at that location 
[24],[25]. Losses occur during the transmission of power from one location to another 
and incurred costs are also included to the calculation.  
Generators are paid nodal LMPs and assured by market rules to recover their 
costs. Load zones consist of aggregations of nodes in a region. SMD requires a load to 
pay the price calculated for that particular zone. The prices calculated for each zone are a 
load-weighted average of the nodal prices located within each zone. They are less volatile 
than nodal prices since they are aggregated from nodes that reflect the true cost for 
delivering power by different location [25].  
 
2.2.4 Cost of Generation 
 
The cost of the energy produced by the generating unit depends on the amount of 
fuel consumed and is typically approximated by a quadratic cost 
function 2321)( qaqaaqC ++=  ($/MWh), where q is the amount of energy generated in 
one hour [27],[29],[[30].  The coefficient a1 represents the fixed cost or no-load cost for 
each hour. This cost includes the labor and the cost of non-direct goods necessary to 
produce power for that hour. The value a2 represents the linear cost which is proportional 
to the amount of power produced. The parameter a3 is the quadratic cost coefficient and it 
is related with the amount of fuel used to produce electricity [29]. 
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Generators use a single cost function when they bid into market but it is also 
possible to combine number of cost functions and get an approximated cost function. 
Most of the time this approach is used by firms which have several generators and prefer 
to bid into the market using portfolio-based cost functions. Generators also have start-up 
costs, minimum-load operating costs and minimum up-down constraints. These are also 
used by the ISO when the bids are evaluated [31].  
 
2.2.5 PJM Power Market 
 
The PJM interconnection is a federally regulated and nonprofit organization that 
manages the transmission of wholesale electricity in Pennsylvania, New Jersey, Maryland 
(PJM), Delaware, Illinois, Indiana, Kentucky, Michigan, North Carolina, Ohio, 
Tennessee, Virginia, West Virginia and the District of Columbia, involving more than 51 
million people. Its dispatching capacity is more than 164,000 MW [32]. PJM?s members, 
totaling more than 450, include power generators, transmission owners, electricity 
distributors, power marketers and large consumers. PJM?s role as a federally regulated 
RTO means that it acts independently and impartially in managing the regional 
transmission system and the wholesale electricity market. 
The PJM energy market includes two markets ? day-ahead and real-time markets. 
In addition to these markets, there is daily capacity market, Monthly capacity market, 
fixed transmission rights (FTRs) auction market, regulation market and spinning reserve 
market. In the day-ahead market, bilateral transaction schedules, generator offers, and 
consumer demands are submitted twelve hours before the actual delivery of electricity. 
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Each installed capacity in the day-ahead market has an obligation to submit an offer to 
the market even if it is unavailable or in outage [24], [25].  All participants must submit 
bids offers until 12:00 p.m. for the next operating day. The ISO evaluates the bid offers 
between 12:00-4:00 p.m. No offer is accepted during this time. PJM announces the 
accepted bids at 4:00 p.m. Non-winning participants have the chance to modify their bids 
until 6:00 p.m. Demand bids also follow the same process for the day-ahead market [32].  
Based on these offers and demands, market clearing prices are determined for 
each hour of the next operating day. The day-ahead market is considered a forward 
market because the formation of the generation and consumption is determined the day 
before the operating day [25]. On the other hand, the real-time energy market balances 
the deviations occurred in the day-ahead market and the actual generation. Unlike the 
day-ahead market, market clearing prices in the real-time market are calculated every 5 
minutes based on the actual system operations. The methods developed in this 
dissertation assume that the bids are submitted to the PJM power market. 
 
2.2.6 Bidding into the PJM Market 
 
A generator offer for the PJM market is composed of two components, the price 
and quantity of electricity that a supplier is willing to generate. Offers are submitted in 
blocks of price quantity pairs. PJM allows submitting at the most ten blocks for a 
generator offer [32]. Figure 2.3 illustrates a valid offer curve in PJM power market. 
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Figure 2.3. A generator?s offer curve in the PJM day-ahead market 
Each generating unit also submits its minimum run time, minimum down time, 
no-load costs and start-up costs to the PJM market [32]. 
PJM runs the ?two-settlement? software to determine the hourly commitment 
schedules and the LMPs. Generating units that have minimum run times that exceed 24 
hours are asked by PJM to submit binding offer prices for the next seven hours. PJM 
supports mainly three offer types: Cost-capped offers, historic LMP based offers and 
market-based (or price-based) offers. Each unit submits its operating constraints in its 
profiles however its usage differs for each offer type [32].  
Cost-based offer in the PJM market consists of the incremental operating cost of 
the generation resource, plus a 10% and, plus variable operations and maintenance costs. 
The production cost method is the method of capping. Generators use no-load cost and 
start-up costs as classified hot, intermediate and cold in their offers. Generator offers 
consist of three parts, offers for energy ($/MWh), start-up ($/day) and no-load ($/hr). 
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  Historic LMP capped offers are determined by calculating the average LMP at the 
generation bus during all hours over the past six months in which the resource was 
dispatched above minimum. Generators also use start-up cost and no-load cost in their 
offers. Table 2.1 shows the summary of the offer characteristics [32]. 
 
Table 2.1. Comparison of offer types 
Offer Component Cost-Capped Offers LMP-capped offers Market-based offers 
Energy offer 
($/MWh) 
Production cost,  Average historic 
LMP 
No cap, support  
up to 10 blocks 
Start-up cost 
($/day) 
Production cost,  
plus 10% 
Production cost,  
plus 10% 
No cap 
No-load cost  
($/hr) 
Production cost, 
 plus 10% 
Production cost,  
plus 10% 
No cap 
 
Price-capped offers are offers that are not necessarily capped with costs. Firms bid 
on the market price and get paid the price determined with the respective auction 
procedure. The start-up cost and no-load cost are still submitted to the PJM but their 
usage is not same as the former two offer types. However, cost components for cost-
capped offers and historic LMP-capped offers directly impact their selection chance since 
if cost recovery is not possible for those generator, ISO chooses cheaper offers. Figure 
2.7 summarizes the characteristics of three types of offers including differences [32]. 
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Table 2.2. Bid components in offer types 
Component Cost & LMP-capped offers Market-based offers 
Start-up Daily- 3 types  Optional- every 6 months 
No-load Yes Optional- every 6 months 
Maintain Minimum Yes No 
Cooling Requirement  Basic Optional- every 6 months 
Incremental Cost ? Energy from min to max ? Energy from 0 to max 
Maximum Offer Based on cap methodology $1000/MWh 
 
Notice that in Table 2.2 there is a cap for start-up and no-load costs for cost-
capped offers, while there is no-cap for market-based offers. This is because market-
based offers bid on the price while cost based offers bid on their cost. PJM audits the 
costs if it is necessary. The unit?s offer type is initially set by the generator owner to 
indicate whether the unit is to be scheduled as a market-based offer or a cost-based offer. 
PJM also imposes the rule if the generator once chooses market-based offer and it cannot 
switch to another offer type [32].  
  SMDs usually use uniform-price auctions and pay-as-bid auctions to govern the 
market mechanism. After bids are submitted and the market is settled by the ISO, all 
dispatched generators in the uniform price auction are paid the market price where as 
they got paid their bid price in pay-as-bid auction. The selection process for winning 
generators and the equilibrium price are the same for both designs with the difference that 
the generators would make different revenues.  
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The pay-as-bid auction method motivates the lower cost generators to bid too high 
to increase the market price. However, in uniform price auctions generators need to bid 
lower than market price in order to be selected. Thus, it is accepted that uniform price 
auctions generally end up with lower market prices because of price pressure [31].  
 
  
2.2.7 Power Market Equilibrium 
 
SMD aims to increase competition and hence it is a good place where suppliers 
and consumers meet under the supervision of an ISO and economic fundamentals.  The 
balancing of supply and demand is always crucial in an economic market. However it is 
vital for an electricity market since the lack of electricity when needed can cause very 
costly consequences. After wholesale power suppliers bid sell offers and wholesale power 
customers bid demand offers into the market, the next step is to find an equilibrium point 
where supply and demand meet. The price at this point not only sets the market clearing 
price but also sets the market clearing quantity that makes social welfare an optimum. A 
power market is said to be in equilibrium if  i) all suppliers maximize their return at the 
given market clearing price and market determined dispatch schedule ii) all consumers 
maximize their utility at the given price and schedule iii) the total supply equals total 
demand [33]. 
Equilibrium approaches for power markets are constructed on the behavior of 
system participants, which involve the game theory approach. In [34], authors classify the 
modeling approaches of power market problems. They use exogenous price and demand-
price function methods to model optimization problems for a single firm.  
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Simulation models that consider all firms behaviors? are classified into equilibrium 
models and agent-based models. There have also been efforts to model power market 
equilibrium as Cournot, Bertrand and Supply Function Equilibrium (SFE). The SFE has 
been of most use in power market modeling [31], [35].  
Cournot models have not been found satisfactory for the power markets since 
quantity produced by each player, the decision variable, is not responsive to the effects of 
price sensitivity. The cournot model also has the assumption that the residual demand is 
elastic. But it is not considered as an issue for electricity markets [31], [35]. Cournot 
models also expect that player?s output will not change the rival?s output, but the offered 
quantity along with its price by the market participant actually affect the rival?s expected 
revenue in the market. On the other hand, Bertrand model which has the market price as a 
decision variable requires each player to build its strategy on expected market price. 
Bertrand leads to perfect competition if there were player with unlimited capacity. But it 
is known that as the market converges to equilibrium the players with small capacities 
will be out of the game. This strategy also does not cover all market?s issues [31], [35]. 
Klemperer and Meyer first developed SFE [36] and showed that each firm can 
express its decisions in terms of a quantity and a price in the absence of certainty and 
having an idea about competitors? strategic variables. It is after that SFE was applied to 
power markets by Green and Newbery showing that if a firm expose its decision tool in a 
form of supply function indication prices at which it is willing to offer various quantities 
to the market for a given demand curve, it can expect in general a greater profit in return 
[37].  SFE is more accurate comparing to former mentioned approaches since it reflects 
the bidding rules in SMD where players submit price-quantity offers as decision 
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variables. In [38], authors analyze SFE applications by assuming that the functions 
provided are linear and there are strategic players in the market with price and capacity 
cap. They show that SFE will be more effective than the other approaches in terms of 
representation and reaching to the equilibrium. In [39], authors work on SFE by modeling 
the market players as non-degreasing supply function providers and competing in a game. 
In [40], authors analyze the market power by modeling the equilibrium for large scale 
power systems. They briefly explain the equilibrium approaches and show that SFE can 
fit best to the power market. In [41], it is showed that if there are multiple players with 
identical marginal costs and asymmetric capacities, a unique piece-wise symmetric 
supply function exists. The authors show that small players will be eliminated at some 
point and larger players will use this advantage in their supply functions. In [31], authors 
analyze the equilibrium models in terms of transmission network, generator cost function 
and operating characteristics, bidding, demand and uncertainty. These are evaluated under 
the umbrella of economic, physical and commercial modeling.  
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            CHAPTER 3 
                       SPREADSHEET BASED SIMULATION FOR ELECTRIC 
    POWER OFFER EVALUATION 
3.1 Bid Simulator  
 
In order to evaluate a bidding strategy for given market price scenarios, a 
simulation method needs to be developed. The simulation method should include 
different price samples and should be able to work for different cost functions. We 
develop a simulation model called Bid Simulator in Excel that includes all parameters 
needed to evaluate a bidding curve. Bid Simulator is a spreadsheet based simulation 
model to assess the value of a given bid using market price samples. It provides 
supportive statistical outputs to the decision maker.  
The simulation model includes market price scenarios and calculates hourly 
profits according to the market prices. The pseudo code for the simulation is given in 
Figure 3.1. If the market price at a particular hour is larger or equal to any given price 
bid, the supplier would sale power. Otherwise it would not sell power at that hour.   
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               Figure 3.1. Pseudo code of the simulation model 
3.2 Simulation Functionality 
 
The model is implemented in Excel. The simulation spreadsheet consists of five 
modules: main screen, simulation, hourly profits, daily profits and output analysis. Figure 
3.2 and Figure 3.3 show the main screen and menu for the model respectively. 
 
Determine bid prices and quantities 
Generate N Price Samples each for 24 hours 
 For each N 
            For each hour 
  For each block in bidding curve 
                If bidding price <= Market price  
Calculate hourly profit  
              Else 
                Hourly profit=0 
   Next block  
 Next hour 
                        Daily Profit = Sum (Hourly profit) 
   Next sample 
   Average Profit = Sum (Daily Profit )/N 
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    Figure 3.2. Bid Simulator main screen 
 
 
 
   Figure 3.3. Bid Simulator menu 
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The simulation model generates up to 1000 market price samples for 24 hour, i.e. 
a total of 24000 market prices. The price sampling can be defined in terms of a 
probabilistic distribution of interest before the simulation. Figure 3.4 shows the 
simulation model. The results shown are for a generator whose cost function is 
20.004245)( qqqc +=  and maximum capacity 300 MW. The market prices are 
generated using a normal distribution with mean equal to day-ahead prices of April 20th , 
2008 of the PJM market and standard deviation 2 $/MWh. 
 
  Figure 3.4. Bid Simulator simulation and price generation 
 
For the hourly profits module, a given bid is evaluated for each hour using the 
sampled prices. Figure 3.5 shows the hourly profits. 
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   Figure 3.5. Bid Simulator hourly profits 
Daily profits are calculated for each day using hourly profits in the daily profits 
module of the package, i.e. 1000 profits. Figure 3.6 shows the hourly profits. 
 
  Figure 3.6. Bid Simulator daily profits 
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In the output analysis module, the descriptive statistics are calculated for the 
hourly generated prices, hourly profits and daily profits. Figure 3.7 shows the output 
analysis. The output analysis includes the following components. 
Statistics on hourly generated prices: 
-Expected market price for each hour 
 - Expected hourly market price graph 
Statistics on hourly profits: 
- Expected hourly profit 
- Expected hourly profit graph 
Statistics on daily profits: 
- Minimum daily profit 
- Maximum daily profit 
 - Expected daily profit 
 - Standard deviation of daily profits 
 - Variance of daily profits 
 - 5% and 95% percentile of daily profits 
 - 5% confidence interval on mean  
 - Probabilistic distribution of profits  
   - Histogram of probability density function (PDF) 
                                    - Histogram of cdf (cumulative distribution function) 
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    Figure 3.7. Bid Simulator output analysis 
 
 
3.3 Numerical Example 
 
 
We evaluate an offer using the Bid Simulator and we compute the probabilistic 
distribution of profits. The descriptive statistics and graphs mentioned above indicate to 
the decision maker how good the bidding solution is. We evaluate the bid given in Table 
3.1.  Figure 3.8 gives expected hourly prices and Figure 3.9 gives expected hourly profits. 
Table 3.2 gives the descriptive statistics. A 90% confidence interval mean profit lies 
between $55,934 and the $56,207. Figure 3.10 gives the plot of the histogram and Figure 
3.11 gives the cumulative distribution.  
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Table 3.1. An example bidding solution to the problem 
Block 1 2 3 4 5 6 7 8 9 10 
bi 45.12 45.50 45.75 46.00 46.26 46.51 46.76 47.01 47.26 47.52 
qi 30 60 90 120 150 180 210 240 270 300 
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             Figure 3.8. Expected hourly price graph from generated prices 
 
          Table 3.2. Descriptive Statistics for Daily Profits 
Maximum Profit ($) 64,066.00 
Minimum Profit ($) 49,248.06 
Expected Profit ($) 56,070.85 
Standard Deviation 2,204.29 
Variation 4,858,884.50 
95% Percentile ($) 59,652.06 
5% Percentile ($) 52,335.05 
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             Figure 3.9. Expected hourly profits based on generated prices 
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             Figure 3.10. Histogram of daily profits 
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             Figure 3.11. Cumulative histogram of daily profits 
 
 
3.4 Conclusion 
 
 
  In this chapter, the use of simulation to evaluate a bidding curve was explained. 
Its effectiveness was showed using a numerical example. A decision maker can use the 
simulator to estimate expected profit and variation under the market price uncertainty. 
The tool also gives expected profit and price for each hour which can be used as an input 
in unit scheduling problems. Especially if an efficient market price forecasting method is 
available, Bid Simulator method can be used to help decision maker to reach more 
accurate results. Different offers can be compared to further analyze the sensitivity. The 
Bid Simulator will be used in next chapters to verify the results found in the analysis.  
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            CHAPTER 4 
      ELECTRIC POWER BIDDING UNDER PRICE UNCERTAINITY 
 
4.1 Price Uncertainty 
 
Electricity is generally accepted as different from other commodities. It is not 
storable and its demand is instantaneous so it must be produced and used in real time. 
These unique characteristics of electricity and necessity of real time balance create a need 
for coordinated markets. As explained in previous chapters, LMP create diversified 
market prices by location. The price is strongly load-dependent, highly volatile, seasonal 
and consumption dependent [16], [17], [42]. The parameters are stochastic which gives a 
stochastic behavior to the electricity price [43]. Energy consumption, fuel costs, 
availability of fuels, equipment capacity and market participants? behavior are stochastic 
[31], [44],[49]. Figure 4.1 shows an example of day-ahead market prices and real time 
market prices for one day in the PJM power market. 
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          Figure 4.1. Day-ahead and real time prices for February 29, 2008 
 
 
In the literature there are many models that are used to forecast market clearing 
prices. In [45], the authors develop wavelets and multivariate time series based price 
modeling. They analyze the market price data statistically to determine the model 
parameters. In [46], the authors use artificial neural networks to model the market price 
changes. Neural networks are useful to reflect nonlinear changes that are difficult to 
predict otherwise. Automatic dynamic harmonic regression model is used in [47] to 
handle the regression among market prices. In [48], the authors develop an algorithm to 
calculate the mean and variance of the electricity market price. They also give a 
stochastic method for load estimation. 
The bidding models that consider the market price exogenous usually include the 
electricity price as an input. Market price forecasting methods can be used to determine 
the prices used in the model. As an alternative, electricity prices can be generated based 
on a probability distribution function.  
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The market price scenarios then can be included into the model and the developed 
bidding strategy is the offer that maximizes the expected profit across all scenarios.  
 
4.2 The bidding model 
 
We consider an electric power producer with a set of generating units and assume 
that the producer wishes to submit an offer curve to the day-ahead market for each of its 
units. We assume that the producer is a price-taker market player that obtains its revenues 
by selling power at the market clearing prices of the PJM pool. That is, if the power 
supplier produces electricity with its generating units at a particular hour, it is then 
willing to take the price prevailing in the market at that hour. We also assume a lack of 
market power, i.e. the power supplier does not perceive its decisions as affecting market 
prices.  
 The SBP is formulated under the following additional assumptions: 
 
i) An offer or bid, which consists of N price-quantity blocks at the most, needs to be 
determined for each generator separately. 
ii) The market clearing prices are considered exogenous to the model, i.e. they are not 
affected by the bidding decisions of the unit for which the model is being solved.  
iii) The market clearing price at each hour is considered a random variable whose 
probability distribution has known parameters. 
iv) The offer is determined before the market closes at 12 noon and is valid for the next 
twenty four hours, starting at 12 midnight the same day. 
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In finding an optimal offer curve for a particular generator (see Figure 4.2), there 
are N pairs of decision variables ib  and iq?  (i=1,..,N) that need to be determined. Figure 
4.2 shows the relations of ib  and iq?  (i=1,..,N) in the PJM market. The 
variable iq? denotes the amount of energy increase to get the bid price ib for delivery at 
any hour of the next day. These values are represented by the vectors?q and b, 
respectively. If the market clearing price at hour t is equal to or higher than the offered 
price ib , then all energy blocks offered at this price or lower are accepted by the market 
operator. Thus, the total energy to be produced at time t and sold to the market at a price 
Pt is given by: 
?
=
?=
)(
1
tPI
i
it qq , where tjt PbjPI ?=  such that  Max )(        for t=1..T; i=1..I(Pt)             (4.1) 
 
Figure 4.2. Bid prices and power quantity intervals 
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The objective function is total profit (revenue minus generation cost) over a 24-
hour period. The revenue during hour t is obtained from selling the quantity stipulated 
under the offer (only if the generator is dispatched) at the market price, Pt ($/MWh). The 
cost includes those of producing the energy. As mentioned above, Pt is a random variable, 
and therefore the total profit over a period of T hours is also a random variable. We 
assume that K samples of the hourly prices are available and they have equal probability 
of occurrence. We denote the price at hour t of sample k as Ptk. Thus, the objective is to 
maximize the expected profit over the time period T (usually 24 hours). The bidding 
problem, which is called ),P( b?q , is stated as follows: 
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1 1,
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?==
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Subject to the following constraints: 
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4.3 Quadratic Programming Model 
 
Mathematical Programming is one way to find an optimal solution to the bidding 
problem. However, it can solve relatively small sized problems. By setting the number of 
samples to the one and the number of maximum bidding blocks equal to the number of 
hours of the time horizon, a quadratic programming model can be formulated and solved 
using a commercial software package such as Cplex. Notice that when the market price 
consists of one sample and the number of blocks is equal to the number of hours, the 
optimal bidding price of a block of power is equal to one of the market prices. Therefore, 
the bidding problem ),P( b?q reduces to the following mathematical representation: 
Max Z = ?
=
??
T
t
tttt qaqaqP
1
2
32 ][               for t=1,..,N                                               (4.8) 
Subject to 
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       for t=1,..,N                                                                                    (4.9) 
max
1
Qq
N
i
i ???
=
       for i=1,..,N                                                                                    (4.10) 
0?? iq          for i=1,..,N                   (4.11) 
 
4.4 Nonlinear Programming Model 
 
Nonlinear Programming (NLP) is the process of solving a problem that includes 
equalities, inequalities, constraints and an objective function some of which is nonlinear.  
 
 38 
The process finds a set of unknown real variables that makes the objective function 
maximized or minimized. 
   
The bidding model is formulated as follows: 
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Subject to the following constraints: 
 
max
1
Qq
N
i
i ???
=
          (4.3) 
i
k
t
k
t bPiMz ?? 001.1)(    for  i = 1..N ; t = 1..T ; k = 1..K.                                     (4.12) 
i
k
t
k
t bPizM ??? )1)((    for i = 1..N ; t = 1..T ; k = 1..K.                                      (4.13) 
0)1()( ?+? iziz ktkt         for i = 1..N ; t = 1..T ; k = 1..K.                                     (4.14) 
1+? ii bb                           for i=1..N.                                                                       (4.15) 
max0 Bb
i ??           for i=1..N.      (4.4) 
max0 Qq
i ???           for i=1..N.      (4.5) 
ii qMr ???1                   for i=1..N.      (4.16) 
)1(max ii rQq ???           for i=1..N.      (4.17) 
1+? ii rr                            for i=1..N.      (4.18) 
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Note that M is a large number here, and z and r are binary variables. When we 
model the problem in AMPL and solve it using the NEOS solver MINLP, an optimal 
solution can be found for a limited number of price samples. 
 
4.5 Marginal Cost Bidding 
 
A power producer also can submit its marginal cost of production as its bid offer. 
As a matter of fact, in a perfectly competitive market it is expected that each player 
submits its marginal costs. To do so, a power producer could offer, for each generating 
unit, one energy block consisting of the maximum capacity and price equal to the 
marginal cost of producing this amount. Alternatively, the power supplier could split the 
maximum capacity into N blocks of identical size and offer them at prices equal to the 
marginal costs of producing each block. PJM accepts a maximum of ten energy blocks in 
its daily bidding process, so maximum capacity can be split into 10 blocks and marginal 
cost of these quantities can be offered to the market. 
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Subject to the following constraints: 
N
Qq
i
max
=?                                                         for  i=1..N.                                      (4.20) 
k
ti qaab 32 2+=                                                   for k=1..K;  t=1..T; i=1..N.              (4.21) 
(4.4), (4.6) and (4.7). 
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4.6 Numerical Example and Analysis 
 
 
We now present results obtained with the developed models. We use CPLEX for 
solving the quadratic programming model, NEOS MINLP for solving the nonlinear 
programming problem.  
 
4.6.1 Quadratic Programming Model 
 
  In order to solve the quadratic programming problem we use the generator used in 
Chapter 3 whose cost function is 20.004245)( qqqc +=  and maximum capacity 300 
MW. The time horizon is set to ten hours. The ten hourly market prices are given in Table 
4.1.  
 
 Table 4.1. Price sample for the example problem 
Hour 1 2 3 4 5 6 7 8 9 10 
Price($/MWh) 35.20  36.80  39.30  45.00  45.50  45.90  46.10  46.80  47.10  50.20  
 
 After solving the above model using Cplex 7.0, the optimal profit is found to be 
$1772.48. The optimal solution to the problem is given in Table 4.2. 
 
   Table 4.2. Optimum solution to the problem 
   Block 1 2 3 4 5 6 
   bi ($/Mwh) 45.50  45.90  46.10  46.80  47.10  50.20  
   qi (Mwh) 59.52 107.14 130.95 214.28 250.00 300.00 
 
4.6.2 Nonlinear Programming Model 
 
In order to solve the bidding problem under market price uncertainty, we use the 
same generator used in section 4.6.1 but the problem is solved for three day price 
 41 
samples. The problem was coded in AMPL and submitted to the one of the NEOS Servers 
MINLP to get a solution. Table 4.3 gives the price samples used in the model and Table 
4.4 provides the optimum solution. 
       Table 4.3. Price samples used in the problem  
Hour 1 2 3 
1 49.21 49.58 47.14 
2 47.56 46.78 46.52 
3 50.44 40.68 46.1 
4 43.48 44.59 46.59 
5 41.97 46.87 46.16 
6 43.78 48.8 49.83 
7 47.25 44.27 45.56 
8 57.28 54.37 55.42 
9 57.56 53.37 53.29 
10 58.59 52.87 55.02 
11 51.66 48.85 46.39 
12 45.54 48.36 49.36 
13 40.14 38.55 42.55 
14 37.39 40.44 38.28 
15 37.52 42.54 38.82 
16 39.45 34.4 37.2 
17 40.64 44.53 40.38 
18 53.45 53.41 53.71 
19 79.44 77.53 75.92 
20 72.7 75.02 74.5 
21 71.83 70.09 67.66 
22 60.39 62.78 64.41 
23 48.94 50.19 50.53 
24 40.8 44.97 45.43 
 
    Table 4.4. Optimum solution to the problem 
Block 1 2 3 4 5 6 7 8 9 
bi ($/MWh) 45.01 45.54 46.10 46.16 46.39 46.52 46.56 46.87 47.56 
qi (MWh) 51.19 65.47 130.94 138.08 165.46 180.93 211.88 222.59 261.28 
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The objective function of the optimum solution was $44,779.83. However, it takes 
about 5 hours to solve the problem with 3 price samples and 300 Mwh capacity. If we 
increase the capacity to 1500 Mwh and try to solve the problem with same price samples, 
we could not find an optimal solution after 24-hour run. Results show that it is not likely 
to solve the problem with more than 3 price samples. 
 
4.6.3 Marginal Cost Bidding  
The Marginal cost bidding model requires splitting the maximum capacity into 
equal block sizes. We solve the problem using the same generator with the price samples 
given in Table 4-3. Table 4.5 gives the bid prices and quantities for marginal cost bidding. 
 
Table 4.5. Bid prices and quantities for marginal cost bidding 
Block 1 2 3 4 5 6 7 8 9 10 
bi ($/MWh) 45.25 45.50 45.75 46.00 46.26 46.51 46.76 47.01 47.26 47.52 
qi (MWh) 30 60 90 120 150 180 210 240 270 300 
 
Marginal cost model is evaluated for both price samples given in Table 4.1 and 
4.3. The profit found for 10-hour price sample is $1766.58 where the optimum solution is 
$1,772.48. The profit found in for 3 day price samples is $44,750.86 where the optimum 
solution is $44,779.83. 
 
4.7 Conclusion 
 
  In this chapter the strategic bidding model was defined and possible solution 
approaches and their limitations were explained. One can solve a problem with 10 hours 
of market prices using quadratic programming. We also showed that it is possible to find 
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an optimum solution using 3 days price samples for a generator with 300 Mw capacity. It 
is clear that a more effective method is needed to solve the problems with more than 3 
days price samples and more generating capacity. The solution method should require 
low computational time since the bidding process is done daily. It might be that in same 
cases there are not much profit difference between bidding the marginal cost and 
optimum solution. We will show in Chapter 5 that this is not always the case.  
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                   CHAPTER 5 
       PARTICLE SWARM OPTIMIZATION FOR BIDDING 
 INTO MARKET UNDER PRICE UNCERTAINITY 
 
5.1 Rationale for Heuristics Approach 
 
      Heuristic approaches are commonly used when it is not possible to find optimum 
solutions to the problems, or when it takes much computational time to find optimum 
solutions. The approaches are generally accepted as easy to implement, easy to apply to 
the problems and require less computational time. They do not guarantee an optimum 
solution though. But in cases where an optimum solution and a good solution don?t make 
much difference, heuristics approaches are preferred because of the less effort that they 
require.  It is possible to find a solution using more than 3 days price samples using 
heuristics approaches whereas nonlinear programming could not find an optimum 
solution. We will show in this chapter that it is possible to find a good solution for every 
generator regardless of generator capacity. It will also be showed that the required 
computational time is dramatically less than the nonlinear programming method.  
 
 5.2 Particle Swarm Optimization 
 
Particle Swarm Optimization (PSO) is a computation technique, introduced by 
Kennedy and Eberhart in 1995 [50], which was inspired by social behavior of bird 
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flocking or fish schooling. Like genetic and evolutionary algorithms, PSO is a 
population-based search method, i.e. it moves from a set of points (particles? positions) to 
another set of points. The particles move through a D-dimensional space and each 
particle has a velocity that acts as an operator to obtain a new set of individuals. The 
particles adjust their movements depending on both their own experience and the 
population?s experience.  
The following pseudo code describes the PSO approach: 
 
   Figure 5.1. Pseudo code for the PSO method 
 
   (The symbol ? denotes the multiplication of two vectors component by component.) 
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At each iteration a particle moves in a direction computed from its best visited 
position and the best visited position of all the particles in its neighborhood. Among the 
several variants of PSO, the global variant considers the neighborhood as the whole 
population, called the swarm, which enables the global sharing of information. The basic 
elements of the PSO technique are particle, population, velocity, inertia weight, 
individual best, global, learning coefficients, and stopping criteria best [51]. These are 
briefly discussed below. 
 
I. Particle, Xj(t): a particle j represents an m-dimensional vector candidate solution. The 
value of m is determined by the number of decision variables. At time t the particle j 
can be described as Xj(t) = [x1,j,?, xm,j] where the x components are the decision 
variables. A value of xi,j denotes the position of particle j in the ith coordinate in the 
search space, i.e. the value of the ith decision variable in the candidate solution j. 
II. Population, POP(t): The population is a set of n particles at any given time t and it can 
be represented as POP(t)=[ X1(t) ?, Xn(t)]. 
III. Velocity, Vj(t): The velocity of moving particles at time t represented by an                 
m-dimensional vector Vj(t) = [v1,j,?, vm,j]. 
IV. Inertia weight, w: The parameter that controls and directs the impact of the previous 
velocities on the current velocity. If the inertia weight is large, the search becomes more 
global, while for smaller w the search becomes more local. 
V. Individual best, )(* tjX : When a particle flies through the search space it compares its 
fitness value at the current position to the best fitness value so far. The best position 
visited by the particle i at time t is denoted by ],...,[)( *,*,1* jmjj xxt =X . 
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VI. Global best, G(t): Represents the best position that gives the best fitness among all 
individual best positions achieved so far. It is defined by G(t) = [g1,?, gm]. 
VII. Learning factors, c1 and c2: these coefficients help particles to accelerate towards better 
areas of the solution space. 
VIII. Stopping Criteria: represent the conditions for which the search process will terminate 
and lead to a result. 
 
5.3 Conventional Particle Swarm Optimization 
 
The conventional PSO approach (cPSO) is used for solving the whole problem. 
The population size is set to ? particles. Decision variables bi and iq?  are evaluated 
using the price scenarios in fitness function below.  
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Notice that the function penalty (j) is used to penalize the objective function due 
to the violation of the maximum bid price and/or the maximum available capacity of the 
generating unit. Penalty functions are generally used to eliminate solutions that violate 
constraints. The following pseudo code describes the main procedure: 
 
 
 
Figure 5.2. Pseudo code for the cPSO method 
 
 
 
 
 
Main Procedure 
Randomly generate q? , b 
Set q?=*?q  and b=*b  
While Run < NRuns 
Run PSO and obtain solution?q, b 
If fitness of P(?q,b) > fitness of P( *?q , *b ) then    
Set ?q?q =*  and bb =*  
Endif 
EndWhile  
Output *?q and *b as the best solution of P 
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5.4 Decomposition Based Particle Swarm Optimization 
 
The decomposition-based PSO (dBPSO) consists of separating P into two sub-
problems. One of the sub-problems assumes that the values of the decision variables bi 
are known for each i. This sub-problem is called PQ. Using the given values of bi?s and 
price scenarios, the following variable is computed as in (5.4): 
 
k
ti
k
t PbiPI ?=  such that  Max )(      for k=1..K;  t=1..T.                                                  (5.9) 
 
Thus, the formulation of PQ is as follows: 
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Subject to: (5.3), (5.4), (5.5) and 
0?? iq                                                           for i=1..N                (5.11) 
The second sub-problem assumes that the values of the decision variables iq? are 
known for each i. The objective of this optimization problem is to find the values of bi 
that maximize the firm?s profits. This sub-problem is called PB. 
 
])([1]Profit[EMax
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k
t qCqPKb          for k=1..K;  t=1..T;             (5.12) 
Subject to: (5.2), (5.3), (5.4), (5.5), and (5.6) constraints. 
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5.5 dBPSO Genetic Representation 
 
The dBPSO is used for solving both sub-problems, PQ and PB. The sub-problem 
PB is solved first using the algorithm dBPSOB and its solution is then used to solve PQ 
using the algorithm dBPSOQ. Then the new solution of PQ is used to re-solve PB. This 
process is applied successively until no improvement is observed after two iterations. For 
both problems, the population size is set to ? particles. To initialize the population of 
dBPSOQ, we proceed as follows: we first sample ?q1 as the amount at which the marginal 
production cost is equal to the given bid price b1 plus a random uniformly distributed 
quantity in the interval [-Q, Q], where Q is a user defined parameter. Thus, 
),(2 )(
3
21
1 QQUa
abq ?+?=?                                                                   (5.13) 
and all other values ?qi (for i=2,..,N) are sampled as 
)1,0(2 )(
3
1 U
a
bbq ii
i
??=?        .     for  i=2,..,N                  (5.14) 
Similarly, we use the marginal cost function to initialize the population of dBPSOB. 
),(2 1321 BBUqaab ?+?+=                       (5.15) 
)1,0(2 3 Uqab ii ?=                                                                     for  i=2,..,N               (5.16) 
 
Since the objective functions of P, PQ, and PB are identical, we define the same 
fitness function for each problem. When b(j) and )(j?q denote a particular solution j 
(again a particle is not necessarily feasible), the fitness function is calculated as in (5.4), 
(5.5),  (5.7) and (5.8). 
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Notice that the same penalty function penalty (j) is used to penalize the objective 
function due to the violation of the maximum bid price and/or the maximum available 
capacity of the generating unit. The following pseudo code describes the main procedure: 
 
             Figure 5.3. Pseudo code for the dBPSO method 
 
In this procedure, the initial values of ?qare randomly selected from a uniform 
distribution as follows: 
?q1 = U(0, Qmax/N)                        (5.17) 
?qi = U(qi-1, Qmax) ? q i-1, where ?
=
?=
i
k
ki qq
1
                 for  i=2,..,N  (5.18) 
Main Procedure 
Set 0?q =*  and 0b =*  
Randomly generate ?q 
NoImprovement = 0 
While NoImprovement < 2 
Run dBPSOB and obtain solution b  
Using this b as input, run dBPSOQ and obtain solution ?q 
If fitness of P(?q,b) > fitness of P( *?q , *b ) then                   
Set ?q?q =*  and bb =*  
NoImprovement = 0 
Else 
NoImprovement = NoImprovement + 1 
Endif 
EndWhile  
Output *?q and *b as the best solution of P 
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 5.6 Numerical Example and Analysis 
 
The cPSO and dBPSO methods were coded in C. We run the methods using c1=2, 
c2=2, w=0.5 [52], and ?=30 [51]. We compute the quantity-price offers for two different 
generators say GEN-1 and GEN-2. The maximum capacity of GEN-1 is 400 MW and its 
cost function is equal to 56.52q + 0.0139q2 ($/MWh). This cost function is obtained by 
multiplying the heat-input function of the generator given in [29] by the current fuel cost 
of oil-fired units (7.2 $/MBtu) [52]. Similarly, the maximum capacity of GEN-2 is 600 
MW and its cost function is equal to 43.2q + 0.108q2 ($/MWh). This cost function is 
obtained by multiplying the function of the generator given in [53] by 7.2 as well. In both 
cases, the aim is to have the marginal cost of the unit within the range of the sampled 
prices. Otherwise, the solution of the SBP would be trivial. 
In market price generation procedure, we first choose the date of May 17th, 2007, 
arbitrarily, and use the PJM day-ahead market prices to produce twelve 24-hour price 
scenarios.  At each hour twelve prices are generated by sampling values from a normal 
distribution with mean equal to the price at that hour of May 17th and a standard deviation 
equal to 4 ($/MWh). For example, for hour 1 AM twelve prices are sampled from a 
normal distribution with mean 27.14 ($/MWh) and standard deviation 4. The price 
scenarios for all twenty four hours are given in Table 5.1. To show the variability among 
samples and the hourly fluctuations in the market price, we plot the prices in Figure 5.4.  
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Table 5.1. Day-ahead market price samples for PSO 
 Sample 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 
1 29.36 26.54 29.47 25.30 25.09 31.33 24.26 27.05 23.79 25.17 28.28 26.59 
2 24.62 24.04 24.26 24.74 26.44 31.88 28.00 26.45 21.09 24.37 24.28 24.87 
3 26.09 21.12 25.66 20.57 20.29 21.28 18.79 20.80 21.50 23.20 21.96 22.31 
4 21.04 16.80 19.94 21.71 23.34 21.25 22.54 21.38 19.46 21.54 18.82 20.58 
5 24.16 24.30 21.24 18.89 22.24 20.51 18.20 21.63 18.25 22.61 25.04 24.29 
6 24.89 23.56 25.21 26.88 25.16 25.70 25.15 27.25 25.60 23.45 27.76 23.77 
7 36.87 33.02 33.47 34.77 33.24 36.83 31.67 34.86 32.51 31.01 35.13 35.82 
8 43.27 46.09 44.46 44.99 44.43 44.75 46.92 43.09 47.58 46.53 47.04 48.78 
9 50.33 48.31 45.03 47.86 47.85 45.83 48.64 48.90 48.45 48.01 47.12 47.92 
10 50.09 51.61 54.90 54.44 52.08 55.02 52.34 51.52 54.34 50.53 50.23 50.53 
11 58.65 54.42 56.90 58.72 57.59 52.62 56.27 56.17 58.57 56.40 53.20 56.75 
12 58.97 57.09 57.96 57.88 56.81 57.02 58.60 56.35 54.99 63.38 56.13 59.27 
13 62.51 55.20 59.87 56.92 59.85 59.02 54.83 57.97 56.97 58.22 57.82 59.38 
14 60.64 63.48 61.66 55.30 60.85 58.96 58.68 60.22 58.82 64.52 58.21 61.70 
15 59.63 59.17 62.39 60.45 59.99 60.60 59.86 60.68 63.71 62.35 59.85 59.16 
16 56.70 58.07 59.67 58.83 61.24 61.37 56.58 61.36 60.53 58.92 63.00 61.66 
17 65.77 61.57 65.12 63.23 64.56 67.54 65.22 64.65 62.40 61.77 62.87 61.79 
18 58.31 59.13 59.22 57.99 64.11 56.78 56.24 57.55 59.78 55.91 57.63 58.52 
19 49.60 48.38 50.14 50.82 48.86 49.97 52.34 52.97 52.01 50.92 53.74 53.00 
20 47.06 48.48 49.13 48.45 47.35 49.46 49.05 48.82 48.19 48.52 48.74 48.76 
21 59.66 61.85 55.34 58.47 60.59 58.58 58.35 57.67 59.93 61.16 59.85 62.18 
22 61.14 55.29 59.71 56.65 61.09 56.54 58.43 58.51 63.87 60.14 54.70 62.94 
23 34.77 36.46 33.50 34.29 37.06 35.50 29.80 32.79 36.34 35.31 35.58 36.44 
24 19.95 28.45 24.52 26.64 23.69 26.28 29.70 30.15 26.51 26.80 29.55 27.38 
 
 
 
Figure 5.4. Hourly day-ahead market price samples 
 54 
5.6.1 Comparison Analysis of cPSO and Marginal Cost based Bidding 
 
We first compare the results provided by the cPSO and the marginal cost method 
(MC). The MC method consists of dividing the maximum capacity into ten blocks of 
equal size and then offering them at prices equal to their marginal cost. We plotted GEN-
1 and GEN-2 in Figure 5.5a and Figure 5.5b respectively. We compute the quantity-price 
offer for two different generators say GEN-1 and GEN-2. Notice that although the cost 
function of GEN-1 is quadratic, the curve is approximately linear in the range 0 to 400 
MWh; whereas, the curve of GEN-2 is clearly quadratic. In addition, we assume that each 
generator bids into the PJM market (Bmax =999) where the maximum number of blocks is 
ten (N=10). 
 
 
      Figure 4.5.a. Cost function of GEN-1                          Figure 4.5.b. Cost function of GEN-2 
 
We run the cPSO algorithm using 10 replications and 400 cycles, and choose the 
solution with the highest fitness value.  The MC and cPSO solutions are given in Table 
5.2. For GEN-1, the expected profit of the MC solution is $2,766. The cPSO provides a 
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solution with a slightly higher expected profit of $2,819. For GEN-2, the expected profit 
of the MC solution is $5,525, whereas cPSO provides a solution with a higher expected 
profit of $6,619.  
 
Table 5.2. Quantity-price solutions for GEN-1 and GEN-2  
Block GEN-1- MC GEN-1- cPSO GEN-2 ?MC GEN-2- cPSO 
i 
 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 57.64   40 57.37   68.43 56.16 60 40.10  24.55 
2 58.75   80 59.20 124.17 69.12 120 52.75  64.29 
3 59.87 120 60.83 177.19 82.08 180 59.55  86.30 
4 60.99 160 62.02 220.51 95.04 240 98.79 179.08 
5 62.11 200 63.05 258.47 108.00 300 98.89 479.77 
6 63.22 240 64.41 294.94 120.96 360 99.20 480.27 
7 64.34 280 65.69 312.82 133.92 420 99.30 480.77 
8 65.46 320 65.79 332.54 146.88 480 99.49 481.27 
9 66.58 360 66.68 396.18 159.84 540 155.02 481.77 
10 67.64 400 67.64 400.00 172.80 600 172.80 600.00 
              
 
The cPSO approach is more effective for GEN-2 than for GEN-1. The small 
difference in profit for GEN-1 seems to be due to the small value of the quadratic 
coefficient of its cost function. To show that, we change the quadratic coefficient a3 of 
GEN-1 between 0.0139 and 0.1139 in steps of 0.01 and compute the quantity-price 
solutions for each of these values using the MC and cPSO methods. We plot the 
difference of profits in relation to the MC solution in Figure 5.6 below. 
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Figure 5.6. Percentage of increase of cPSO solution in relation to MC 
5.6.2. Comparison Analysis of cPSO and dBPSO 
 
For the comparison analysis of cPSO and dBPSO, we use GEN-2 and the same 
price samples and PSO parameters. To compare the performance of both methods in 
terms of the fitness value, we use three different combinations of replications and cycles 
(see Table 5.3). Notice that the dBPSO algorithm evaluates two fitness functions at each 
iteration, which we refer to as a ?cycle?, while cPSO evaluates one function at each 
cycle. We compare both methods using different numbers of cycles and replications. A 
replication is a complete run of the algorithm using a different starting seed for 
generating the random numbers. We select three combinations of numbers of cycles and 
replications to reach a total of 4,000 function evaluations in each PSO. These values are 
given in Table 5.3. To assure that these combinations are indeed different settings, we 
conduct an ANOVA test for cPSO and dBPSO. This procedure allows us to properly 
compare both approaches under similar parameters and diverse setting. 
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           Table 5.3: Parameter set for the experiment 
Parameter cPSO dBPSO 
Number of Replication (R) 10 20 40 10 20 40 
Number of Cycles (C ) 400 200 100 200 100 50 
Total Function Evaluations 4000 4000 4000 4000 4000 4000 
 
First, we run the cPSO for each combination. In Table 5.4 I give the averages, 
standard deviations, and the best fitness values. The bid prices and quantities that provide 
the best fitness are given in Table 5.5. Second, we conduct the one-way ANOVA test on 
means to determine whether there is a statistical difference among these results. The 
values of the ANOVA table are given in Table 5.6. The results of the test show that with 
a p-value=0.15 and level of significance ?=0.05 there is no statistical evidence to show 
that the setting conditions are different. This result indicates that cPSO is robust with 
regard to changes to R and C.   
    Table 5.4. Statistical summary of the results of the cPSO solutions 
Parameter set Average fitness($) Standard deviation ($) Best fitness ($) 
R=10, C=400 6,346.84 143.08 6,530.02 
R=20, C=200 6,304.85 125.24 6,529.35 
R=40, C=100 6,315.40 127.89 6,524.05 
 
  Table 5.5. Bid prices and quantities for best solutions of cPSO  
 R=10, C=400 R=20, C=200 R=40, C=100 
Block i bi ($/MWh) qi (MWh) bi ($/MWh) qi (MWh) bi ($/MWh) qi (MWh) 
1 46.72 31.57 46.89 31.60 45.86 27.66 
2 54.75 75.58 54.80 75.58 54.70 75.69 
3 114.76 109.02 107.84 348.03 77.03 290.36 
4 136.21 298.12 131.37 430.19 77.13 386.62 
5 136.31 432.95 166.70 448.01 80.01 417.34 
6 136.41 477.58 166.80 448.51 80.11 481.06 
7 136.51 478.08 166.90 449.01 80.39 503.23 
8 136.61 480.47 167.00 449.51 80.49 503.73 
9 136.71 480.97 167.10 450.01 80.59 504.23 
10 172.80 600.00 172.80 600.00 172.80 600.00 
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           Table 5.6. ANOVA test results for cPSO 
Source of Variation Sum of Square DF Mean Square F0 P-Value 
Factor 11959 2 5980 0.36 0.701 
Error 1120190 67 16719   
Total 1132149 69    
 
 
Similarly, we run dBPSO for each of the setting conditions. In Table 5.7, I show 
the averages, standard deviations, and the best fitness values. The bid prices and 
quantities that provide the best fitness are given in Table 5.8. The same ANOVA test on 
means was applied to the experimental data of dBPSO. The results of the statistical test 
are given in Table 5.9. This ANOVA table also shows no evidence of statistical 
difference among the setting conditions with a level of significance ?=0.05 and p-
value=0.488. dBPSO is also robust with regard to changes to its parameters.  
          Table 5.7. Statistical summary of dBPSO solutions 
Parameter  Set Average fitness ($) Standard Deviation ($) Best fitness ($) 
R=10, C=200 6,607.18 64.91 6,691.43 
R=20, C=100 6,630.04 52.10 6,701.11 
R=40, C= 50 6,612.69 61.29 6,689.76 
 
 
          Table 5.8: Bid prices and quantities for best solutions of dBPSO 
R=10, C=200 R=20, C=100 R=40, C=50 
Block 
i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1   46.45   27.71   46.17   27.72   46.20   27.02 
2   52.48   57.18   52.48   57.18   52.29   56.36 
3   57.54   74.03   57.18   71.46   57.46   73.54 
4   57.64   74.53   59.84   81.74   61.08   89.17 
5   61.57   91.34   59.94   82.24   61.18   89.67 
6   61.67   91.84   60.04   82.74   61.28   90.17 
7   61.77   92.34   62.85   96.58   61.38   90.67 
8   61.87   92.84   62.95   97.08   61.48   91.17 
9   61.97   93.34   63.05   97.58   61.58   91.67 
10 172.80 600.00 172.80 600.00 172.80 600.00 
 
 
 59 
 
           Table 5.9. ANOVA test results for dBPSO 
Source of Variation Sum of Square Df Mean Square F0 P-Value 
Factor 5,106 2 2,553 0.72 0.488 
Error 236,012 67 3,523   
Total 241,118 69    
 
Using an analysis of means and a t-test, we test whether the mean of the fitness 
values of dBPSO is greater than that of cPSO. The results are given in Table 5.10. It 
shows strong evidence with p=0.00 and confidence level ?=0.05 that dBPSO provides 
better solutions than cPSO on the average. 
 
            Table 5.10. ANOVA test results for dBPSO for method comparisons 
Sample Sample Size Mean St. Deviation T-Value P-Value 
dBPSO 70   6616.9    59.10 16.57 0.00 
cPSO 70  6316.9   128.10   
Difference 70 300.00 151.50   
 
5.6.3. Converging Process of dBPSOB and dBPSOQ 
To illustrate the converging process of the two sub problems, dBPSOB and 
dBPSOQ, of the dBPSO approach, we plot the evolution of the fitness function of each 
sub problem with respect to the number of iterations. In Figures 5.7 through 5.9, we show 
the evolution of the fitness value for the number of cycles equal to 200, 100, and 50, 
respectively. Notice that in the three plots the fitness value of the dBPSOB starts at a low 
value, whereas the dBPSOQ starts at a higher value. This is because we begin by solving 
dBPSOB using randomly selected bi values, while dBPSOQ uses ?qi values that are 
determined by dBPSOB. Also notice that for the three cases the two sub-problems 
converge before the 25th iteration. 
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 Figure 5.7: Converging process of dBPSOB and dBPSOQ to the solution (C=200) 
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             Figure 5.8: Converging process of dBPSOB and dBPSOQ to the solution (C=100) 
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               Figure 5.9: Converging process of dBPSOB and dBPSOQ to the solution (C=50) 
 
5.6.4 Impact of the order of dBPSOB and dBPSOQ 
In order to analyze the impact of the order of solving dBPSOB and dBPSOQ, we 
solve the problem using dBPSOB first and then dBPSOQ. In this procedure, the initial 
values of b are randomly selected from a uniform distribution as follows: 
b1 = U(0, Bmax/N)                                     (5.19) 
bi = U(bi-1, Bmax) ? b i-1,                                             for  i=2,..,N               (5.20) 
 
In Figures 13 through 15, we show the evolution of the fitness value for number of cycles 
equal to 200, 100, and 50, respectively.  
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Figure 5.10: Converging process of dBPSOB and dBPSOQ to the solution (C=200) 
 
 
-1000
1000
3000
5000
7000
0 5 10 15 20 25
Cycle (C)
Pr
of
it 
($
)
dBPSOQ
dBPSOB
 
Figure 5.11: Converging process of dBPSOB and dBPSOQ to the solution (C=100) 
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Figure 5.12: Converging process of dBPSOB and dBPSOQ to the solution (C=50) 
 
Similarly to the former case of dBPSO, in the three plots the fitness value of the 
dBPSOQ starts at a low value, whereas the dBPSOB starts at a higher value. This is 
because we begin by solving dBPSOQ using randomly selected ?qi values, while dBPSOB 
uses bi values that are determined by dBPSOQ. Notice that for the three cases the two 
sub-problems converge again before the 25th iteration. Table 5.11 gives a summary of the 
results. After comparing the plots and Table 5.11 with Table 5.7, the order of the sub-
problems is not relevant for solving the problem. 
 Table 5.11: Statistical summary of dBPSO solutions 
Parameter  Set Average fitness ($) Standard Deviation ($) Best fitness ($) 
R=10, C=200 6,615.90 73.83 6,688.56 
R=20, C=100 6,635.57 55.67 6,688.72 
R=40, C= 50 6,614.85 69.28 6,689.48 
 
 5.7 Conclusion 
 
Results showed that PSO outperforms the MC method on determining price-
quantity pairs that will be submitted to the day-ahead market. The percentage of 
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improvement is accentuated when the quadratic coefficient of the generator?s cost 
function is significant. In terms of time and experimentation burden, both models took 
three minutes on average to find a solution. All three experiments of dBPSO showed that 
we need less than 25 iterations to obtain a good solution. The results also showed that 
dBPSO give much better solutions than cPSO. This tells us that the decomposition 
technique can be applied to problems that have two or more decision variable sets. The 
problems can be decomposed into two or more parts, and one or more decision sets can 
be used as components of the solution of the other parts of the problem. This process 
continues until no improvement is observed. The model discussed here can be further 
improved by including a forecasting technique for the market prices. If the characteristics 
of the generating unit and constraints change, the model and solution approach still may 
remain valid. 
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                                                            CHAPTER 6 
 AGENT BASED PARTICLE SWARM OPTIMIZATION FOR SUPPLY  
    FUNCTION EQUILIBRIUM 
6.1 Introduction 
In the previous chapters, we developed models for an individual generator which 
submits a bidding curve to the PJM Day-ahead market. We developed two PSO methods 
to find a heuristic solution to the problem. The models did not include the behavior of all 
market participants. In this chapter, we include the strategic change in competitors? 
behavior for a particular generator. The model assumes that the strategy employed by one 
player is affected by the others? behavior. Game theory and agent based models are two 
ways to represent this market interaction. We develop an agent based simulation method 
to simulate the behaviors of all firms in the market. We combine the dBPSO approach 
and agent based model to compute an equilibrium solution. 
 
6.2 Supply Function Equilibrium Model 
This model assumes that there are m participants in a power pool who may be 
referred to as power suppliers. These power suppliers may either have individual 
generators or even a portfolio of generators.  All these participants bid into the day-ahead 
market and aims to maximize their profit by using bidding strategies that represent their 
expectations best.  The ISO collects the buy bids simultaneously and it starts the security 
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constrained optimum dispatch algorithm to set the equilibrium for the market. The ISO 
sorts the sell offers starting from minimum price offers to more expensive ones and sorts 
the buy offers starting from the maximum price offers to less expensive ones. The ISO 
sets the equilibrium market price where the aggregated supply and demand meet. Figure 
6.1 shows the equilibrium process in the day-ahead market [54]. In this figure, supply 
represents the power quantities offered and demand represents the respective buy offers; 
bij and qij represent the offered bid price and the power quantity respectively. Notice that 
the day-ahead equilibrium price is used for uniform bid auctions, and the winners will be 
paid the MCP.  
bij
Equilibrium
Pt
Market 
Price ($/Mwh)
Power Allocation
(Bid Quantities Mwh)
Demand
Supply
qij
(Bid Prices)
 
The model is formulated under the following additional assumptions: 
Figure 6.1. Equilibrium process in day-ahead power market 
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i. An offer or bid, which consists of N price-quantity blocks at the most, needs 
to be determined for each firm separately. 
ii. Each firm can build its strategy based on separate resources or on its portfolio 
of power resources.  
iii. The equilibrium for each day is determined before the market closes at noon 
and is valid for the next twenty four hours, starting at midnight the same day. 
iv. Demand can be forecasted and is known for the analysis 
v. The transmission constraints are not included in the model. 
vi. Equilibrium of interest occurs in a single-round auction market.  
 
In finding an equilibrium, there are Nxm pairs of decision variables bji and ?qji 
(j=1,?M) (i=1,..,N) for each firm j that need to be determined.. The variable ?qji denotes 
the amount of energy increase in firm j in block i, to get the bid price bji for delivery at 
any hour of the next day. Total energy to be produced at time t and sold to the market at a 
price Pt  by the firm j is given by: 
 
?
=
?=
)(
1
)(
tPI
i
jitjt qPq , tjit PbiPI ?=  such that  Max )(     for j=1...m;  t=1...T; i=1..I(Pt)   (6.1)          
                                                                                             
In equilibrium, it is accepted that firms cannot make more profit by bidding other 
than their current bid. Also the cost of dispatching is minimized for the system operator at 
this state [33]. 
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The maximum profit for the firm j in equilibrium can be expressed as: 
 
?
=
?=?=
T
t
tjttjttjj PqCPqP
jj 1
j, ))(()( Max),P( b?qb?q      for j=1...m;  t=1..T;                 (6.2) 
 
Subject to the following constraints [55]: 
))(),(())(),(( *** tjttjtjtjttjtj PqPqPqPq ?? ???      for j=1...m;  t=1...T;          (6.3) 
max
1
j
N
i
ji Qq ???
=
                                                                  for  i=1..N; j=1...m;          (6.4) 
max0 Bb
ji ??                                                           for j=1...m; i=1...N;           (6.5) 
max0
jji Qq ???                                                           for j=1...m; i=1...N;           (6.6) 
?
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i
jitjt qPq ,             (6.7) 
 Where tjit PbiPI ?=  such that  Max )(                               for j=1..m;  t=1..T; i=1...N; 
2
321 ))(()())(( tjtjtjtjjtjt PqaPqaaPqC ++=                       for j=1..m;  t=1..T;            (6.8) 
 
 
The equilibrium in an economic system requires supply and demand to be equal. 
As equilibrium constraint, the total amount of power generated is equal to total supply as 
given below: 
t
m
j
tjt DPq =?
=1
)(                                                   t=1..T;                                          (6.9) 
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6.3 Agent Based Modeling and Simulation 
 
Agent-Based Modeling and Simulation (ABMS) is a computational approach to 
model economic systems which have interacting components or dynamic agents. Agents 
usually interact among themselves and between environments by updating themselves 
sequentially rather than simultaneously. In building an ABMS, the definition of agents 
and their interaction environment are crucial. Figure 6.2 shows the ABMS building 
process [56].  
 
Figure 6.2. Agent based modeling and simulation  
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ABMS is applied to very complex systems where interdependencies are difficult 
to capture and traditional models are hard to apply. ABMS replaces its framework with an 
individual agent?s behavioral rules that are updated over time [57]. ABMS is a descriptive 
method which aims to model the behavior of agents rather than optimality. ABMS models 
are useful in economics models. In a micro-economic point of view, agents assume that 
1) they behave in a rational manner that aims to  optimize their well-defined objectives 2) 
they have identical characteristics that make them alike 3) they will have decreasing 
marginal utility as the number of agents increase 4) long-run equilibrium of the system is 
of primary interest to the model [58], [59]. Figure 6.3 shows the process of a typical 
ABMS [57], [58], [59]. 
 
 
                  Figure 6.3. General flow of a typical ABMS   
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ABMS, like many other heuristic methods, searches for the best feasible solution 
by an updating process. The process is evolutionary, in which updating, learning and 
convergence are involved. ABMS has been used in flow management of evacuation, 
traffic, stock market, strategic simulation of market, organizational design, and in other 
areas where players dynamically move [56], [58], [60]. In [61], an agent-based model is 
developed for a supply chain in which the flow of a commodity finds a way between 
factories, distributors, wholesalers, retailers and customers. The goal of supply chain 
agents is to minimize their cost on their way. These are the research assumptions that are 
made for the agent based modeling to work. In [57], authors develop an agent based 
model for modeling the human immune system. Authors in [62] address the agent-based 
modeling approach in financial markets by explaining trading behaviors of firms.  
In [54], [59] authors develop an agent-based simulation approach for modeling 
the day-ahead power trading in the US wholesale power market. The model is developed 
for wholesale power suppliers, individual power generators and wholesale power 
consumers that are bidding into the day-ahead market. Their hypothesis is that agent-
based approach is as good as other approaches like neural networks. They show the 
effectiveness of the model using data provided in PJM west. Agents bid into the market 
and they update their bidding strategies in each run of the simulation based on a learning 
factor until the equilibrium is reached.  
In [63], an agent-based model was developed for the wholesale electricity market, 
operating in a short-term environment under capacity conditions and double auction 
rules. A simulation model that uses a multi-adaptive agent model for generators bidding 
in the UK power market was developed in [64]. It shows that agents learn bidding 
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strategies in a manner similar to their behavior in real world. In [65], authors use an agent 
based simulation model to show how companies use market power during the electricity 
market bidding process. They compare the production cost bidding with the bidding 
strategies based on physical and economic withholding, including congestion 
management. 
 
6.4 Agent based particle swarm optimization model  
 
It was demonstrated in Chapter 5 that the dBPSO method is an effective way to 
find a solution for an individual generator. Now let?s assume that m firms compete in the 
day-ahead market using dBPSO. The objective of this chapter is to show that the model 
can reach an equilibrium point at which each player?s payoff is maximized and the 
equilibrium conditions are met using ABMS and dBPSO. Each firm participating in the 
day-ahead market is modeled as an agent. Figure 6.4 shows the details for the ABMS 
method with dBPSO applied. Each agent has a unique cost function, a capacity and pairs 
of quantity-price bids as attributes. The agents? interaction occurs in the pool where 
offered quantities and corresponding prices are submitted. Agents aim to allocate their 
price-quantity offers in a way that their profit is maximized. In other words, their 
interaction occurs based on power quantities and offered prices.  
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Figure 6.4: Components of ABMS method 
 
The model assumes that the day-ahead market demand is known and the final 
objective is to reach equilibrium for the next day. The model starts with an initial price 
scenario and given demand for 24 hours. It runs until the equilibrium is reached. Each 
agent?s objective is to maximize its profit by bidding into the environment using dBPSO. 
Figure 6.5 shows a flow chart of the Agent Based Particle Swarm Optimization 
(ABPSO). 
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                                     Figure 6.5: The flow of the ABPSO 
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Notice that each agent in the model is a price-taker while bidding into market. The 
cleared prices that are set at each iteration are the result of bidding strategies submitted 
by each agent. Since the analysis is for a single-round auction market, an agent can use 
the simulation to test the behavior of its rivals.  Agents update their price and quantity 
bids at each iteration until the equilibrium is reached. The particular agents simulating the 
model would be able to observe the behavior of their competitors during this process. 
This iterative process ensures that each generator minimizes its risk of cost recovery and 
infeasibility of its offer.  
The definition of stopping criteria is important in ABSM since it shows whether 
the equilibrium is reached or not. In [21], authors propose two kinds of stopping criteria. 
First criterion stops the equilibrium process when the prices are too low. This is because 
the demand is not sufficiently covered at this price since some units will be eliminated 
due to low prices. At this point, iteration goes 2 steps back and defines the point as 
equilibrium point. The second criterion calculates demand-weighted average price and 
total financial loss for all players and it compares the values with those of the previous 
ones. When the current average prices are higher than those of the previous two iterations 
the process stops.  
The submission of the same or similar strategies at each iteration could lead to 
similar market prices. It might indicate that market price is converging and strategies 
submitted are reaching equilibrium. However, we need to verify that this state actually 
satisfies equilibrium conditions. We evaluate three new stopping rules to end the agent-
based process in order to find the best stopping rule that satisfies equilibrium conditions 
most of the time. In the first stopping rule, we calculate the percentage of differences of 
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resulting market prices and previous iterations? market prices for each hour. When the 
absolute value percentage of market price differences for the 24 hours are less than a 
value ?1 the process stops. It can be represented mathematically as: 
 
1
1||
???=?
?
r
t
r
t
r
tr
t P
PP                  t=1..T.                                              (6.10) 
 
In the second stopping rule, we calculate the average of differences of resulting 
market prices and previous iterations? market prices for each hour. At each iteration, 
current market prices are compared with previous market prices. When the absolute 
average value of market price differences for 24 hours are less than a small value ?2 the 
process stops. It can also be represented mathematically as: 
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In the third stopping rule, we calculate the weight of each hour?s demand with 
regard to the total demand for 24 hours. At each iteration, we multiply this percentage for 
each hour with the price difference percentage found in the first stopping condition. 
When the average value of this calculation is less than a small value ?3 the process stops. 
The mathematical representation is: 
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Notice that at each iteration, agents could have available strategies from which 
they choose the best strategy for themselves. This strategy is selected based on  
interactions with other agents and interaction with the environment. The interaction with 
the environment occurs in a way that total supply of all agents should be equal to total 
demand. The amount of power allocated to an agent affects other agents. The interaction 
between agents occurs based on the offer prices and offer quantities. If the offer of an 
agent is selected, the agent can either maintain this strategy or update it in the next 
iteration in order to get better results. This process continues until the price difference in 
the two iterations is so low that it might lead to convergence.  
In order to test whether the results of the experiments actually satisfy the 
equilibrium conditions, we define conditions for equilibrium.  
 
I. Supply should be equal to demand as an essential rule of equilibrium. 
II. In equilibrium, all suppliers maximize their return at the given prices. Also according to 
the Nash equilibrium, if a player deviates from its strategy it will loose in the long run 
[38], [39], [40]. We will let each firm behave separately and run the dBPSO to get a 
separate bidding strategy and profit. The results found in dBPSO will be compared with 
the ABPSO results for each firm. It is expected that firms find a close strategy in 
dBPSO to the strategy found in equilibrium. If the difference is less than 1%, we will 
accept this as a satisfied condition.  
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6.5 Numerical Example and Analysis 
 
We coded the model in C and used the same dBPSO parameters we used in 
Chapter 5. We are more interested in the supply side bidding rather than demand side 
bidding. The demand for next day is known and is given in Table 6.1.  
                                  Table 6.1. Day-Ahead demand for next day 
Hour Demand(Mwh) Hour Demand(Mwh) 
1 3115 13 4510 
2 3711 14 5142 
3 3346 15 3424 
4 3771 16 3287 
5 3298 17 4501 
6 4266 18 5236 
7 4117 19 5790 
8 5176 20 6084 
9 5751 21 6561 
10 6513 22 6411 
11 6280 23 4411 
12 4472 24 4664 
 
6.5.1 ABPSO Experiment with Duopoly 
We start with a duopoly SMD that has m=2 firms competing. The cost functions 
of the firms and their capacities are given in Table 6.2.  
 
                               Table 6.2. Cost functions and market capacities of the firms for m=2 
 
 
 
Firm(m) a1 a2 a3 Unit 
1 0 41.73 0.0063 8085 
2 0 47.25 0.0057 6281 
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We start with the first stopping condition set to the value ?1 = 1%, in other words, 
the percentage price difference for each of the 24 hours is less than 1%. The equilibrium 
prices found are given in Table 6.3.  
Table 6.3. Equilibrium prices for first stopping rule (m=2) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 77.15 13 77.15 
2 77.15 14 77.15 
3 77.15 15 77.15 
4 77.15 16 77.15 
5 77.15 17 77.15 
6 77.15 18 77.15 
7 77.15 19 80.29 
8 77.15 20 80.29 
9 80.29 21 83.98 
10 83.68 22 83.68 
11 83.68 23 77.15 
12 77.15 24 77.15 
Table 6.4 shows the bids found for each firm at the equilibrium and their profits.  
                           Table 6.4. Results found in first stopping rule (m=2) 
Firm-1 Firm-2 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 70.79 2856.23 77.15 2642.64 
2 70.89 2861.75 77.42 2887.47 
3 70.99 2862.25 83.68 3200.27 
4 80.29 3254.57 83.78 3200.77 
5 80.47 3338.97 83.88 3218.77 
6 84.57 3450.30 83.98 3247.07 
7 86.50 3503.35 84.08 3254.22 
8 86.60 3507.39 84.18 3254.72 
9 86.70 3507.89 84.28 3255.22 
10 143.60 8085.00 118.85 6281.00 
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?1 = 1% was chosen because values smaller than 1% increase the computational 
time and in some cases the stopping condition could not be reached in a reasonable time. 
In the second stopping rule we set ?2 = $0.25. In other words, the average price 
difference for the 24 hours should be less than $0.25. The values less than $0.25 also 
increase computational time and many times return no results. The equilibrium prices 
found are given in Table 6.5.  
Table 6.5. Equilibrium prices for second stopping rule (m=2) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 77.15 13 77.15 
2 77.15 14 77.15 
3 77.15 15 77.15 
4 77.15 16 77.15 
5 77.15 17 77.15 
6 77.15 18 77.15 
7 77.15 19 80.29 
8 77.15 20 80.29 
9 80.29 21 83.98 
10 83.68 22 83.68 
11 83.68 23 77.15 
12 77.15 24 77.15 
 
Table 6.6 shows the bids submitted by each firm at the equilibrium and firms? profits.  
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                           Table 6.6. Results found in second stopping rule (m=2) 
Firm-1 Firm-2 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 70.79 2856.23 77.15 2642.64 
2 70.89 2861.75 77.42 2887.47 
3 70.99 2862.25 83.68 3200.27 
4 80.29 3254.57 83.78 3200.77 
5 80.47 3338.97 83.88 3218.77 
6 84.57 3450.30 83.98 3247.07 
7 86.50 3503.35 84.08 3254.22 
8 86.60 3507.39 84.18 3254.72 
9 86.70 3507.89 84.28 3255.22 
10 143.60 8085.00 118.85 6281.00 
In the third stopping rule we set ?3 =1%. In other words, the load weighted 
average for the 24 hours should be less than 1%.The equilibrium prices found are given 
in Table 6.7.  
Table 6.7. Equilibrium prices for the third stopping rule (m=2) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 78.45 13 78.45 
2 78.45 14 78.45 
3 78.45 15 78.45 
4 78.45 16 78.45 
5 78.45 17 78.45 
6 78.45 18 78.45 
7 78.45 19 79.77 
8 78.45 20 79.77 
9 79.77 21 84.17 
10 84.17 22 82.6 
11 82.6 23 78.45 
12 78.45 24 78.45 
Table 6.8 gives the bids submitted by each firm at the equilibrium and profits.  
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                           Table 6.8: Results found in third stopping condition (m=2) 
Firm-1 Firm-2 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 58.01 1343.58 78.45 2744.24 
2 78.32 2955.50 78.59 2795.03 
3 79.77 3318.26 82.60 3168.58 
4 93.90 3832.65 84.17 3247.16 
5 94.00 3840.36 84.27 3275.26 
6 94.38 3840.86 84.37 3275.76 
7 94.48 3841.36 84.47 3276.26 
8 94.58 3841.86 84.57 3276.76 
9 94.68 3863.55 84.67 3277.26 
10 143.60 8085.00 118.85 6281.00 
 
Using the equilibrium prices found, we run dBPSO to find a solution for each 
firm separately. The summary of the results are given in Table 6.9.          
                          Table 6.9: Overview of the results found in each method (m=2) 
Method Firm-1 Profit ($) Firm-2 Profit ($) 
First stopping rule 1,302,689 1,043,974 
Second stopping rule 1,302,689 1,043,974 
Third stopping rule 1,355,414 1,094,031 
All three stopping rules satisfy the balance condition, which is supply equals 
demand. The second and third stopping rules generally require close computational times 
which is around 15 minutes. Notice that rule-1 and rule-2 return the same values, i.e., 
they both satisfy each rule. We let each firm develop a separate strategy. To do so, we use 
the equilibrium prices found in each rule and run dBPSO. Table 6.10 shows the 
percentage of profit increase in dBPSO comparing with the equilibrium solution. 
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 Results show that three rules give similar profit increases which are smaller than 
acceptable level 1%. However, the profits found in rule-1 are almost same with the 
ABPSO solution.  
                              Table 6.10: Profit increases in each rule (m=2) 
 Rule 1 Rule 2 Rule 3 
Firm 1 0.08% 0.08% 0.15% 
Firm 2 0.00% 0.00% 0.01% 
 
6.5.2 ABPSO experiment with m=5 
We now suppose that there is a SMD that has m=5 firms computing. The cost 
functions of the firms and their capacities are given in Table 6.11. 
 
                             Table 6.11. Cost functions and market capacities of the firms for (m=5) 
Firm(m) a1 a2 a3 Unit 
1 0 47.273 0.0074 3450 
2 0 45.18 0.0048 1600 
3 0 44.76 0.0066 2935 
4 0 45.35 0.0087 4950 
5 0 46.72 0.0061 2281 
 
We set the ?1 = 1% and the find the results with firs stopping condition. The 
equilibrium prices found are given in Table 6.12 and the results for each firm are given in 
Table 6.13 and Table 6.14.  
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Table 6.12. Equilibrium prices for first stopping rule (m=5) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 56.24 13 57.83 
2 56.30 14 59.18 
3 56.24 15 56.24 
4 56.30 16 56.24 
5 56.24 17 57.83 
6 57.17 18 60.46 
7 56.30 19 63.11 
8 60.46 20 63.21 
9 63.11 21 63.90 
10 63.51 22 63.24 
11 63.24 23 57.83 
12 57.83 24 58.36 
         
 Table 6.13. Results found for firm 1, 2 and 3 in first stopping rule (m=5) 
         
 
            
                       
 
                   
 
 
 
 
 
 
 
Firm-1 Firm-2 Firm-3 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 54.76 636.21 52.77 1090.48 53.57 922.97 
2 57.83 829.31 54.67 1090.98 60.46 1365.98 
3 63.11 1061.94 55.88 1199.05 64.78 1610.22 
4 63.21 1082.94 58.36 1397.38 64.88 1617.56 
5 63.31 1083.44 58.86 1500.82 64.98 1618.06 
6 63.41 1088.85 58.96 1501.32 65.08 1627.13 
7 63.51 1101.42 59.06 1576.97 65.18 1627.63 
8 63.61 1105.74 59.16 1577.47 65.28 1648.61 
9 63.71 1128.88 59.26 1595.29 65.38 1649.11 
10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
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Table 6.14. Results found for firm 4 and 5 in first stopping rule (m=5) 
Firm-4 Firm-5 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 56.24 690.41 56.30 788.31 
2 63.24 1031.96 56.40 814.21 
3 63.34 1061.27 57.17 908.10 
4 64.42 1112.65 59.18 1128.05 
5 64.68 1181.62 63.16 1359.23 
6 65.25 1182.12 63.33 1383.06 
7 65.35 1182.62 63.43 1386.21 
8 65.45 1185.39 63.53 1386.75 
9 65.55 1185.89 63.90 1414.27 
10 131.48 4950.00 74.55 2281.00 
 
In the second stopping rule we keep the same value and set the ?2 = $0.25. The 
equilibrium prices found are given in Table 6.15. Table 6.16 and Table 6.17 below show 
the bids submitted by each firm at the equilibrium.  
Table 6.15. Equilibrium prices for second stopping rule (m=5) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 54.61 13 57.69 
2 54.95 14 59.65 
3 54.61 15 54.61 
4 56.16 16 54.61 
5 54.61 17 57.69 
6 57.29 18 60.54 
7 57.29 19 61.86 
8 59.65 20 62.18 
9 61.86 21 63.95 
10 63.75 22 63.75 
11 62.67 23 57.69 
12 57.69 24 57.89 
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Table 6.16. Results found for firm 1, 2 and 3 in second stopping rule (m=5) 
 
 
 
 
 
 
 
 
           Table 6.17. Results found for firm 4 and 5 in second stopping rule (m=5) 
Firm-4 Firm-5 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 46.40 532.01 54.61 663.56 
2 50.27 604.27 54.71 685.44 
3 56.16 764.99 57.29 928.55 
4 61.86 967.41 58.93 1078.69 
5 63.72 967.91 61.41 1287.72 
6 63.82 994.97 63.75 1396.49 
7 63.93 1009.70 63.85 1396.99 
8 64.03 1057.48 63.95 1400.27 
9 64.13 1057.98 64.10 1414.97 
10 131.48 4950.00 74.55 2281.00 
 
For the third stopping rule we also go with the same stopping value and set ?3 = 
1%. The equilibrium prices found are given in Table 6.18.  
Firm-1 Firm-2 Firm-3 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 53.21 527.86 53.12 835.03 50.71 781.89 
2 56.61 769.26 53.28 877.46 57.69 1052.93 
3 61.25 1001.89 54.07 982.34 62.18 1338.63 
4 61.35 1006.83 54.95 1113.52 62.67 1433.25 
5 61.87 1007.33 57.89 1330.21 62.77 1439.68 
6 61.97 1007.83 57.99 1332.43 67.37 1463.38 
7 62.60 1040.61 58.13 1390.31 67.47 1474.14 
8 62.70 1064.30 59.65 1511.66 67.57 1475.78 
9 63.17 1114.08 59.75 1569.86 67.67 1479.80 
10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
 87 
Table 6.18. Equilibrium prices for third stopping rule (m=5) 
Hour Price($/Mwh) Hour Price($/Mwh) 
1 54.07 13 58.75 
2 54.07 14 60.85 
3 54.07 15 54.07 
4 54.10 16 54.07 
5 54.07 17 58.75 
6 57.36 18 60.85 
7 57.13 19 62.23 
8 60.85 20 62.43 
9 62.23 21 63.88 
10 62.76 22 62.43 
11 62.43 23 57.36 
12 58.75 24 60.54 
Table 6.19 and Table 6.20 below show the bids submitted by each firm at the 
equilibrium with third stopping rule. The summary of the results are given in Table 6.21.          
Table 6.19. Results found for firm 1, 2 and 3 in third stopping condition (m=5) 
 
 
 
 
 
 
 
 
 
Firm-1 Firm-2 Firm-3 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 54.12 623.77 55.47 1075.35 55.24 814.10 
2 59.82 934.01 55.67 1224.07 55.88 1010.89 
3 63.23 1084.28 58.32 1377.30 60.30 1237.79 
4 63.33 1088.76 58.42 1377.80 63.27 1404.40 
5 63.43 1095.11 58.52 1378.30 63.37 1404.90 
6 63.56 1095.61 58.62 1378.80 63.47 1412.75 
7 63.66 1115.29 58.72 1379.30 63.59 1418.85 
8 63.76 1115.79 58.82 1460.73 63.69 1432.33 
9 63.86 1116.29 58.92 1461.23 63.79 1440.80 
10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
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Table 6.20. Results found for firm 4 and 5 in third stopping condition (m=5) 
Firm-4 Firm-5 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 54.38 641.24 46.25 0.50 
2 59.40 894.78 54.62 802.07 
3 62.08 965.90 60.51 1134.85 
4 62.33 998.53 60.61 1159.17 
5 62.67 999.03 60.71 1170.19 
6 62.77 999.53 61.58 1263.43 
7 63.30 1034.49 63.29 1367.16 
8 63.40 1042.20 63.39 1367.66 
9 63.50 1059.84 63.49 1398.41 
10 131.48 4950.00 74.55 2281.00 
 
Table 6.21. Overview of the results found in each method (m=5) 
 
Firm-1 
Profit($) 
Firm-2 
Profit ($) 
Firm-3 
Profit($) 
Firm-4 
Profit($) 
Firm-5 
Profit($) 
First rule 121,337 252,427 195,799 133,962 141,900 
Second rule 112,390 235,851 182,632 127,743 149,483 
Third  rule 110,166 240,275 182,493 126,768 149,629 
 
In terms of computational time, again first stopping rule is the most time 
consuming. The second and third stopping rules took around 35 minutes. Again we let 
each firm develop a separate strategy. Table 6.22 shows the percentage of profit increase 
in dBPSO comparing with the equilibrium solution.  
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                                  Table 6.22. Profit increases in each rule (m=5) 
 
 
6.5.3 ABPSO Experiment with m=10 
We now suppose that there is a SMD that has m=10 firms competing. Based on 
the results found for m=2 and m=5 it is better to use rule-2 as stopping rule. The cost 
functions of the firms and their capacities are given in Table 6.23 below. 
 
 
Table 6.23. Cost functions and market capacities of the firms (m=10) 
 
                                
 
 
 
 
 
  Rule 1 Rule 2 Rule 3 
Firm 1 0.46% 0.14% 4.28% 
Firm 2 0.17% 0.40% 0.11% 
Firm 3 0.51% 0.85% 2.20% 
Firm 4 2.87% 0.72% 2.30% 
Firm 5 13.51% 0.06% 1.54% 
Firm(m) a1 a2 a3 Capacity 
1 0 46.18000 0.00477 500 
2 0 32.95070 0.002357 600 
3 0 42.40000 0.004664 250 
4 0 40.12000 0.004364 1100 
5 0 41.75679 0.003896 585 
6 0 46.26748 0.007919 3000 
7 0 42.71000 0.016201 1528 
8 0 44.68000 0.017737 2000 
9 0 42.45727 0.006044 403 
10 0 43.19774 0.006153 4400 
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For given ?2 = $0.45, the equilibrium prices found are given in Table 6.24. Table 
6.25 through Table 6.28 below show the bids submitted by each firm at the equilibrium. 
The summary of the results and profit increase percentages are given in Table 6.29 and 
table 6.30 respectively.          
Table 6.24:.Equilibrium prices for second stopping rule (m=10) 
Hour Price($/MWh) Hour Price($/MWh) 
1 47.18 13 50.28 
2 48.56 14 53.26 
3 47.18 15 47.18 
4 48.56 16 47.18 
5 47.18 17 50.28 
6 49.04 18 53.26 
7 49.03 19 57.32 
8 53.26 20 57.33 
9 57.32 21 59.15 
10 59.08 22 58.94 
11 57.42 23 49.92 
12 50.18 24 51.57 
           
           Table 6.25. Results found for firm 1, 2 and 3 (m=10 
 
 
 
 
 
 
 
 
Firm-1 Firm-2 Firm-3 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 46.90 117.39 20.91 0.50 14.03 1.96 
2 48.56 283.36 22.02 85.45 14.13 3.18 
3 49.92 394.32 22.27 99.43 14.23 3.68 
4 50.18 425.57 22.37 114.02 14.33 12.13 
5 50.28 455.75 22.55 122.16 14.43 23.87 
6 50.38 456.25 22.65 124.67 14.53 33.95 
7 50.48 478.10 22.75 145.18 14.63 41.91 
8 50.58 478.78 22.85 149.52 14.73 51.55 
9 50.68 479.28 22.95 152.46 14.83 56.99 
10 50.95 500.00 35.78 600.00 44.73 250.00 
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Table 6.26. Results found for Firm 4, 5 and 6 (m=10) 
 
 
 
 
 
 
 
 
 
 
                           Table 6.27. Results found for firm 7 and 8 (m=10) 
Firm-7 Firm-8 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 46.71 187.75 44.57 116.03 
2 52.99 347.34 51.57 261.76 
3 56.30 451.20 54.82 390.04 
4 58.18 479.35 59.08 452.94 
5 58.28 479.85 59.19 453.44 
6 58.38 480.35 59.29 453.94 
7 58.48 480.85 59.39 456.96 
8 58.58 502.14 59.49 457.46 
9 58.68 502.64 59.59 457.96 
10 92.22 1528.00 115.63 2000.00 
 
Firm-4 Firm-5 Firm-6 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 47.18 809.78 24.65 0.50 49.03 363.19 
2 47.28 825.15 27.70 343.13 57.33 784.18 
3 48.32 973.01 27.95 368.73 58.94 866.18 
4 49.04 1028.94 28.07 383.73 59.04 878.95 
5 49.14 1040.43 28.17 385.00 59.14 889.98 
6 49.24 1042.02 28.27 396.61 59.24 913.65 
7 49.34 1047.96 28.37 400.68 59.34 914.15 
8 49.44 1057.33 28.47 411.19 59.44 921.36 
9 49.54 1057.83 28.57 423.03 59.54 921.86 
10 49.72 1100.00 46.32 585.00 90.37 3000.00 
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                           Table 6.28. Results found for Firm 9 and 10 (m=10) 
Firm-9 Firm-10 
Block i 
bi 
($/MWh) 
qi 
(MWh) 
bi 
($/MWh) 
qi 
(MWh) 
1 46.41 343.69 45.34 454.83 
2 46.51 347.94 53.26 875.22 
3 46.61 351.35 57.32 1149.35 
4 46.71 354.55 57.42 1216.91 
5 46.85 368.00 57.52 1222.98 
6 46.95 373.18 58.85 1255.57 
7 47.05 383.41 58.95 1256.07 
8 47.15 392.15 59.05 1258.21 
9 47.25 399.01 59.15 1284.19 
10 47.33 403.00 97.34 4400.00 
 
 
 
                                              Table 6.29. Unit?s profits (m=10) 
 
Unit Profit ($) Unit Profit ($) 
1 46,867 6 38,681 
2 254,940 7 38,759 
3 51,019 8 24,115 
4 190,774 9 69,412 
5 112,786 10 93,351 
 
    Table 6.30. Profit increases in rule 2 (m=10) 
 Rule 2 
Firm 1 0.05% 
Firm 2 0.00% 
Firm 3 0.00% 
Firm 4 0.01% 
Firm 5 0.00% 
Firm 6 0.96% 
Firm 7 0.30% 
Firm 8 0.97% 
Firm 9 0.00% 
Firm 10 0.37% 
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6.6 Conclusion 
 
In this chapter, we showed that ABMS with dBPSO applied can be used to 
simulate the bidding process and to find a nash equilibrium solution. The defined 
stopping conditions and their results confirm the equilibrium conditions. In terms of 
computational time, relatively not much time is required to reach to the results. The 
model can further be applied to the real market if anyhow real operational cost and 
demand data is provided.  
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CHAPTER 7 
CONCLUSION AND FUTURE RESEARCH 
 
 
In this research, models of electric power bidding in power markets were 
introduced. The fundamentals of a market design were described and related current 
literature was discussed. In order to evaluate a given bid, a spreadsheet based simulation 
algorithm was developed. The results found in the numerical examples were verified 
using the Bid Simulator. It was shown that the nonlinear and quadratic programming 
models were able to give an optimal solution for a limited number of price samples. 
However, due to the stochastic nature of market prices more price samples needed to be 
included. This limitation was overcome using two particle swarm optimization models. 
From experimental results, both approaches did not carry much computational time 
burden.  
Based on the statistical analysis, the decomposition based approach gave better 
results than the conventional particle swarm optimization. The bids obtained were 
compared with the marginal cost bidding method. The comparison showed that the 
quadratic term of the cost function plays an important role in determining the bid 
strategy. An additional method that models the bidding behaviors of power suppliers for a 
fixed demand was developed. The method uses the decomposition based particle swarm 
optimization and agent based simulation. Three stopping conditions to find the Nash
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equilibrium were tested. The results found were analyzed using the equilibrium 
conditions needed for a competitive power market.  
Although the models described cover the fundamental process of bidding, they 
can be improved in future research. One improvement to the models is to include 
transmission constraints and congestion. Thus, the new models could be used to analyze 
the effect of transmission constraints on market prices as well as on bidding behaviors. 
Another improvement is to include operational constraints such as minimum up-down 
times, start-up costs and ramp-up limits of generating units. The models could provide a 
more realistic competition environment.  
Another extension could be considering operating reserve and contracts in the 
power market. Firms might choose to sell their power with fixed contracts or can be part 
of the operating reserve market. Thus, the bidding model could include these additional 
markets.  
The models developed in this dissertation consider uniform price auctions. 
However, there are markets that use the pay-as bid price auction mechanism. Therefore, 
new bidding models can be developed that include the pay-as bid auction type. Also, each 
power market has their own rules for the bidding process including number of blocks and 
the time period that the bid is valid for. The developed models can further be applied to 
those markets and perform economic comparisons. 
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