ENHANCING HOST BASED INTRUSION DETECTION SYSTEMS WITH DANGER
THEORY OF ARTIFICIAL IMMUNE SYSTEMS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classified information.

Suhair Hafez Amer

Certificate of Approval:

Saad Biaz
Associate Professor
Computer Science and Software
Engineering

Richard Chapman
Associate Professor
Computer Science and Software
Engineering

Drew Hamilton, Chair
Associate Professor
Computer Science and Software
Engineering

Levent Yilmaz
Assistant Professor
Computer Science and Software
Engineering

 Joe F. Pittman
 Interim Dean
 Graduate School
ENHANCING HOST BASED INTRUSION DETECTION SYSTEMS WITH DANGER
THEORY OF ARTIFICIAL IMMUNE SYSTEMS

Suhair Hafez Amer

A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Doctor of Philosophy

Auburn, Alabama
May 10, 2008

 iii
ENHANCING HOST BASED INTRUSION DETECTION SYSTEMS WITH DANGER
THEORY OF ARTIFICIAL IMMUNE SYSTEMS

Suhair Hafez Amer

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author
reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv
DISSERTATION ABSTRACT

ENHANCING HOST BASED INTRUSION DETECTION SYSTEMS WITH DANGER
THEORY OF ARTIFICIAL IMMUNE SYSTEMS

Suhair Hafez Amer
Doctor of Philosophy, May 10, 2008
(M.S., American University in Cairo, 2000)
(B.S., American University in Cairo, 1998)

302 Typed Pages

Directed by Drew Hamilton, Jr.

Rather than discriminating activity by belonging to self or non-self, danger theory
extends its discrimination to be between non-self but harmless and self but harmful. The
danger theory states that the system does not respond only to foreignness (non-self) but to
danger signals. In this dissertation, three methods performing host-based anomaly
intrusion detection that use trails of system calls have been implemented and
investigated. One system (the lookahead-pairs method based IDS) was then enhanced by
incorporating danger theory mechanisms to its original design. The research consisted of
two stages. In the first stage, three intrusion detection systems (IDSs) have been
 v
implemented based on the following methods: the sequence profile method, the
lookahead-pairs methods, and overlap-relationship method. All systems were unable to
detect the system-call-denial-of-service attack and the lookahead-pairs method had the
smallest storage requirements.
In the second stage, the lookahead-pairs method based IDS has been enhanced
with functionalities of the danger theory. The original lookahead-pairs method based
IDS can only detect intrusions resulting from mismatch instances. In addition to
detecting mismatches, the enhanced system considered the danger signals resulting from
high usages of CPU and memory while in detection mode. Parameters corresponding to
danger signals can be easily modified or added to our system. The lookahead pairs
method enhanced with danger theory IDS had better detection rate, false positive rate and
false negative rate. Both systems finished their detection stage in less than one second.
Furthermore, when the lookahead pairs method based IDS is only enhanced with the iDC
functionality, it will not experience any significant additional storage costs. However, if
the B cell functionality is added, the storage cost would double. The systems were tested
against the databases obtained from the university of New Mexico and in specific the
datasets of the both the ?login? and ?ps? applications. In addition, different test cases
were created to test the functionalities of the modified system. The implemented systems
were also validated and verified and passed these tests.
 vi
ACKNOWLEDGMENTS
I thank God for giving me the well and the strength to accomplish my PhD.
I sincerely thank my advisor Dr. Drew Hamilton for his understanding and for
providing me with the opportunity to pursue my Ph.D. dream. I hold great admiration for
his continuous efforts to support his students and his dedication to his work.
Guidance from my chair and committee members Dr. Biaz, Dr. Chapman, and Dr.
Yilmaz were very valuable and worth pursuing. I thank and I will miss the members of
The Information Assurance Center (IAC), faculty, staff and students of the department of
Computer Science and Software Engineering (CSSE). The engineers at both CSSE and
Engineering Network Services were extremely prompt through my innumerable queries.
This work was supported, in part, by: Grants NSF Due 0516432, and is gratefully
acknowledged.
I have been blessed with the most wonderful and supportive family any one can
wish for. There is little I can say to thank you all. This dissertation would not have been
possible without the support, love, devotion and prayers of my parents "Hafez and
Khawla". The every day kindness, support, love and encouragement by my husband
"Bashar" has an enormous effect on accomplishing our dream. I thank God for granting
me two miracles, my beloved children, who provide sunshine and joy to my life. To
them "Kareem and Sarah" I dedicate this dissertation. Finally, I would like to thank the
members of my extended family and friends for their prayers.
 vii
Style manual or journal used: IEEE Standard

Computer software used: Microsoft Word 2007, Microsoft Excel 2007, and Microsoft
Visual Studio 2005.

 viii
TABLE OF CONTENTS

LISTS OF FIGURES?????????????????????????....xiii
LISTS OF TABLES???????????????????????..?? xviii
CHAPTER 1. INTRODUCTION .. 1
1.1. Dissertation Hypotheses... 3
1.2. Dissertation Objectives and Accomplished Stages.. 3
1.3. Dissertation Contributions ... 4
1.4. Dissertation Organization .. 7
CHAPTER 2. INTRUSION DETECTION SYSTEMS (IDS) .. 8
2.1. General View of IDSs.. 8
2.2. Process Anomaly Detection... 10
2.2.1. System Calls.. 12
2.2.2. Approaches To Process Anomaly Detection .. 15
CHAPTER 3. BIOLOGICAL IMMUNE SYSTEMS ... 21
CHAPTER 4. ARTIFICIAL IMMUNE SYSTEMS (AIS) ... 27
4.1. Introduction.. 27
4.2. Artificial Immune Systems Basic Concepts .. 28
4.2.1. Initialization/Encoding.. 28
4.2.2. Similarity or Affinity Measure.. 29
4.2.3. Negative Selection .. 29
 ix
4.2.4. Somatic Hypermutation .. 29
4.2.5. Cross-Reactivity and Associate Memories ... 30

4.3. Artificial Immune System Applications .. 30
4.3.1 Virus Detection .. 30
4.3.2. Recommender Systems... 31
4.3.3. Intrusion Detection.. 32
4.4. AIS Features and Principles for IDS.. 33
4.5. Conceptual Frameworks for AISs.. 35
4.6. Immune System Approaches to IDS.. 36
4.6.1. Conventional Algorithms in AIS .. 36
4.6.2. Negative Selection (NS) ... 37
4.6.3. Danger Theory .. 54
4.6.4. Other Algorithms .. 67
4.7. AIS Based Intrusion Detection Systems ? Summary .. 68
CHAPTER 5. INVESTIGATING INTRUSION DETECTION SYSTEMS THAT USES
TRAILS OF SYSTEM CALLS .. 71
5.1. Introduction.. 71
5.2. Experiment Setup... 72
5.3. Sequence Profile Method... 74
5.3.1. Background Information... 74
5.3.2 Implementation .. 76
5.3.3. Performance .. 80
 x
5.4. Lookahead-Pairs Profile method.. 84
5.4.1. Background Information... 84
5.4.2. Implementation ... 86
5.4.3. Performance .. 88
5.5. Variable-Length With Overlap- Relationship Profile Method 91
5.5.1. Background Information... 91
5.5.2. Implementation ... 94
5.5.3. Performance .. 101
5.6. Comparison.. 102
5.7. Evaluation .. 106
5.7.1. Sequence Method.. 107
5.7.2. Lookahead-Pairs Method.. 113
5.8. Validation and Verification.. 119
5.9. Summary.. 123
CHAPTER 6. A DANGER THEORY MODEL ... 127
CHAPTER 7. ENHANCING LOOKAHEAD-PAIRS METHOD WITH DANGER
THEORY .. 134
7.1. Introduction.. 134
7.2. Experiment Setup... 136
7.3. Lookahead Pairs Method Enhanced With iDC and DC Classes.......................... 139
7.3.1. Implementation ... 140
7.3.2. Performance .. 145
7.4. Positive and Negative Detector Sets.. 148
 xi
7.4.1. Implementation ... 149
7.4.2. Performance .. 151
7.5. Danger Theory ... 153
7.5.1. Implementation ... 154
7.5.2. Performance comparison .. 161
7.6. Validation and Verification.. 164
7.7. System Evaluation ... 170
7.8. Summary.. 179
CHAPTER 8. CONCLUSION AND FUTURE WORK ... 181
REFERENCES ... 184
APPENDICES .. 208
APPENDIX A. SEQUENCE METHOD BASED IDS SAMPLE CODE...................... 209
APPENDIX B. LOG FILE EXAMPLE OF NORMAL PATTERN DB FOR FILE
?INT_509.TXT?.. 215
APPENDIX C. LOOKAHEAD-PAIRS METHOD BASED IDS SOURCE CODE..... 218
APPENDIX D. VARIABLE LENGTH DETECTORS WITH OVERLAP
RELATIONSHIP METHOD BASED IDS SAMPLE CODE.. 224
APPENDIX E. 239 POSITIVE DETECTOR GENERATION...................................... 239
APPENDIX F. LOOKAHEAD PAIRS METHOD ENHANCED WITH DANGER
THEORY SAMPLE CODE.. 243
APPENDIX G. SAMPLE LOG FILE OF RUNNING LOOKAHEAD-PAIRS METHOD
BASED IDS .. 263
 xii
APPENDIX H. SAMPLE LOG FILE OF THE OUPUT PRODUCED WHEN TESTING
CASE 10 WITH THE LOOKAHEAD-PAIRS METHOD ENHANCED WITH
DANGER THEORY ?????????????????????????...270
APPENDIX I. PATTERNS GENERATED BY THE VARIABLE-LENGTH WITH
OVERLAP RELATIONSHIP BASED IDS... 281
 xiii
LISTS OF FIGURES
Figure 3.1. Danger theory illustration [Aickelin and Dasgupta 2005]??..?????25
Figure 3.2. Danger theory viewed as immune signals [Matzinger 1994]?..????...26
Figure 4.1. Generating the repertoire [Forrest et al. 1994]????????????39
Figure 4.2. Monitor Protected Strings for Changes. [Forrest et al. 1994]??????.39
Figure 4.3. Life cycle of a detector [Hofmeyr 1999; Hofmeyr and Forrest 1999a; Forrest
and Hofmeyr 2001a]???????????????????????.39
Figure 4.4. The existence of holes. Each dark circle represents a detector and a gray shape
in the middle is self-antigen data. The size of the dark circles reflects the
generality of detectors. Since all the detectors have an identical radii, and the
detectors are too general to match some non-self subspaces without matching self
antigen data, there inevitably exist holes [Hofmeyr 1999]?????????48
Figure 4.5. Modification of the Danger theory viewed as immune signals [Aickelin and
Cayzer 2002]?????????????????????????.?.53
Figure 4.6. The iDC, smDC and mDC behaviors and signals required for differentiation.
CKs: denote cytokines. [Greensmith, Aickelin and Cayzer 2005]??????57
Figure5.1. Hash table holding the sequence method profile entries. All entries are of
equal size and are equal to the window size?????????????..?78
Figure 5.2. Space cost while running and while saved to disk as the number of sequences
increases for the ?login? application dataset with sequence method?????.83
 xiv
Figure 5.3. Example explaining the mapping equation from one entry in a two
dimensional array to a one dimensional array?????????????...87
Figure 5.4. Space cost while running and while saved to disk as the number of pairs
increases for the ?login? application dataset with lookahead-pairs method??..89
Figure 5.5. Steps of extracting maximal candidate and maximal patterns [Jiang, Hua, and
Sheu 2002]???????????????????????????.93
Figure 5.6. (a) different subsequences starting with system call 90 can be expanded
concurrently. (b) Similar subsequences are grouped together. (c) Each group of
sequences are placed on a queue and processed until all subsequences are
examined??????????????????????????..?..99
Figure 5.7. Hash table storing Variable-Length with Overlap- Relationship Profile
Method entries. Each subsequence is of a variable size?????????..100
Figure 5.8. Space cost while running of the structures holding the normal pattern DB
entries of sequence, lookahead and Variable-Length with Overlap-Relationship
Profile Methods?????????????????????????104
Figure 5.9. number of sequences in normal database for both ?login? and ?ps?
applications datasets. The number of sequences is obtained after removing
redundant entries in the database and while using sequence method IDS?...?111
Figure 5.10. space cost of normal database while running and while saved to disk (in
bytes) for the ?login? application dataset when using the sequence method
IDS????????????????????????????..?.111
Figure 5.11. space cost of normal database while running and while saved to disk (in
bytes) for the ?ps? application dataset when using the sequence method IDS....112
 xv
Figure 5.12. number of sequences tested while running the sequence method IDS on both
?login? and ?ps? applications datasets????????????????112
Figure 5.13. mismatch percentage value obtained when testing the ?login? and ?ps?
applications datasets using the Sequence method????????????113
Figure 5.14. number of sequence in normal database for both ?login? and ?ps?
applications datasets. The number of sequences is obtained after removing
redundant entries in the database and while using lookahead-pairs method
IDS?????????????????????????????...115
Figure 5.15. Space cost of normal database while running and while saved to disk (in
bytes) for the ?login? application dataset when using the lookahead-pairs method
IDS??..???????????????????????????117
Figure 5.16. space cost of normal database while running and while saved to disk (in
bytes) for the ?ps? application dataset when using the lookahead-pairs method
IDS?????????????????????????????.117
Figure 5.17. number of pairs tested while running the lookahead-pairs method IDS on
both ?login? and ?ps? applications datasets??????????????118
Figure 5.18. mismatch percentage value obtained when testing the ?login? and ?ps?
applications datasets using the lookahead-pairs method?????????.118
Figure 6.1. Primary immune system response????????????????.129
Figure 6.2. Flow chart of the primary immune system response?????????.130
Figure 6.3. Secondary immune system response???????????????.131
Figure 6.4. Flow chart of the secondary immune system response????????.132
Figure 6.5. B and memory B cells life cycle?????????????????133
 xvi
Figure 7.1. iDC, and T cell differentiation?????????????????..140
Figure 7.2. Flow chart of DC and T cell differentiation???????????..?140
Figure 7.3. Pseudo code of the activity diagram of iDC????????????..144
Figure 7.4. Pseudo code of the activity diagram of DC???????????.......145
Figure 7.5. Sample output of running iDC and DC enhanced IDS. ?Handled window?:
string currently processed. ?Is a mismatch?: does not exist in the database or ?is
normal?: exist in the database. ?User present?: 1 is present, 0 is not. ?CPU usage?:
percentage of CPU usage. ?Mem usage?: percentage of memory usage. ?is an
abnormal signal?: 0 barb2right no, 1barb2right yes. ?previous CPU?, ?previous abnormal?,
?previous mismatches?, ?previous IC?: 0barb2rightlow, 1:high. ?Semi? or ?mat?: indicate
the resulting condition of the system: semibarb2right safe, matbarb2right dangerous????.146
Figure 7.6. Danger theory system overview architecture????????????155
Figure 7.7. flow chart of the steps carried out by the artificial immune based IDS
employing danger theory concepts?????????????????..155
Figure 7.8. Pseudo code of the activity diagram of B cell???????????...158
Figure 7.9 Pseudo code of the activity diagram of Th1???????????..?.159
Figure 7.10. Pseudo code of the activity diagram of Th2????????????160
Figure 7.11. Pseudo code of the activity diagram of Killer T cell???????.......160
Figure 7.12. Pseudo code of the activity diagram of Exit Engine????????...160
Figure 7.13. Sample output of the lookahead-pairs method enhanced with danger theory
IDS of test case 8. A mismatch has been identified and high CPU and memory
usages have been noticed. The output is ?Mat? indicating mature DC or
danger????????????????????????????...168
 xvii
Figure 7.14. number of patterns stored in the normal database if no redundant data is
removed and if redundant data is removed??????????????.175

 xviii
LISTS OF TABLES
Table 4.1. The Relationship between Biological Immune Features and Artificial Immune
Algorithms [Kim et al. 2007]????????????????????.69
Table 4.2. Summary of immune-based algorithms used by the complete systems [Kim et
al. 2007]????????????????????????????.70
Table 5.1. Expanded database produced when K= 4 and for the normal sequence {open,
read, mmap, mmap, open, getrlimit, mmap, close} [Forrest et al. 1996][Hofmeyr,
Forrest and Somayaji 1998]????????????????????...75
Table 5.2. Grouping entries that start with the same system call [Forrest et al. 1996][
Hofmeyr, Forrest and Somayaji 1998]????????????????...76
Table 5.3. Sequence method performance across several window sizes??????...82
Table 5.4. number of rows before and after removing redundant entries while running
sequence method IDS across different window sizes???????????83
Table 5.5. example showing how the window size affects the value of mismatch % while
running sequence method IDS???????????????????...83
Table 5.6. a sample profile generated for the system call sequence {execve, brk, open,
fstat, mmap, close, open, mmap, munmap}[Somayaji 2002]????????85
Table 5.7. a sample lookahead pair profile, with the pairs represented implicitly. Note
that there are multiple entries in the open and mmap rows [Somayaji 2002]??85
 xix
Table 5.8. A sample lookahead pair profile, with the pairs represented explicitly
[Somayaji 2002]?????????????????????????.86
Table 5.9. lookahead pairs method performance across several window sizes????.90
Table 5.10. Variable length with overlap relationship method performance????..102
Table 5.11. performance comparison of sequence method with a window size = 9,
lookahead-pairs method with window size = 9 and variable length with overlap
relationship method???????????????????????..103
Table 5.12. Sequence method performance across several window sizes for ?ps?
application???????????????????????????109
Table 5.13. lookahead-pairs method performance across several window sizes for ?ps?
application???????????????????????????116
Table 5.14. Explaining the graphic display validation?????????????123
Table 7.1. attack types that can be identified by a danger theory enhanced IDS???138
Table 7.2. Weights of different danger theory parameters used to calculate the different
cytokine concentrations of DC???????????????????143
Table 7.3. performance comparison between lookahead pairs IDS and lookahead-pairs
method enhanced with iDC and DC IDS???????????????.147
Table 7.4. performance comparison among positive and several negative pattern
generation???????????????????????????.153
Table 7.5. Intrusion types identified by the four types of IDS: lookahead pairs IDS, iDC
enhanced, danger theory enhanced with positive detectors for both B and iDC,
and danger theory enhanced with positive and negative detectors for B and iDC.
0: No attack. 1: an attack. Y: yes. N: no. FP: result in false positives????.163
 xx
Table 7.6. performance comparison of 4 versions of lookahead-pairs and its enhanced
systems????????????????????????????.164
Table 7.7. Test cases used to validate the lookahead pairs method enhanced with danger
theory?????????...???????????????????168
Table 7.8. Detection rate comparison???????????????????..170
Table 7.9. IDS evaluation criteria???????????????????...?.174
Table 7.10. performance comparison with mismatch threshold = 1 system call. N: normal
behavior, A: attack, OK: produced correct output, FP: False positive, and FN:
False negative?????????????????????????..176
Table 7.11. performance comparison with mismatch threshold = 2 system calls. N:
normal behavior, A: attack, OK: produced correct output, FP: False positive, and
FN: False negative???????????????????????..177
Table 7.12. performance comparison with mismatch threshold = 3 system calls. N:
normal behavior, A: attack, OK: produced correct output, FP: False positive, and
FN: False negative???????????????????????.178

 1
CHAPTER 1
 INTRODUCTION
The human immune system has been successful in defending different human
organs against a wide range of harmful attacks. The Danger Theory is built on the idea
that the immune system not only responds to foreignness (non-self) but also to danger
signals resulting from damage to cells indicated by distress signals that are sent out when
cells die an unnatural death as opposed to programmed cell death.
In this dissertation, I investigated three methods of performing host-based
anomaly intrusion detection to recognize malicious code execution and enhanced the
performance of lookahead-pairs method based intrusion detection system (IDS) by
incorporating danger theory concepts. In particular, my research involves two major
stages. In the first stage, I have implemented and studied the performance of three
techniques to perform host based intrusion detection using trails of system calls. The first
system, the sequence profile method, creates a database with fixed length sequences of
system calls of a system?s normal behavior. While in detection mode the system?s current
behavior is checked against this database and an intrusion is flagged if a deviation is
discovered. In general, running any single application will produce thousands of system
calls. The second system, the lookahead-pairs methods, improves the storage
requirements of the sequence method but still creates a database of pairs of <current
system call, previous system calls> within a fixed length threshold. Both systems create
 2
patterns (system call sequences) of fixed length. The third system, overlap-relationship
method, involves creating a database of variable length detector sets which enable better
detector coverage. All methods were unable to detect the system-call-denial of service
attack and the lookahead-pairs method had the smallest storage requirements.
In the second stage, I investigated how to incorporate adaptive danger theory
concepts to lookahead-pairs method and investigated the enhanced system?s performance.
The following mechanisms have been implemented and their performance was analyzed.
First, B cells are responsible for identifying bacteria signatures (deviations or intrusion
signatures). Dendritic cells are responsible for sensing safe and dangerous signals and
along with the identification of bacteria (intrusions) decide if the system is under attack
or not. Gathered information is then sent to T cells that carry out the remaining actions of
the immune system. The original lookahead-pairs method can only detect intrusions
resulting from mismatch instances. The system may experience false positive instances
especially when the system is not fully trained on all normal behavior. False positives
result from identifying a normal behavior as an intrusion. Since the lookahead-pairs IDS
relies only on mismatches, any new sequence will be flagged as an intrusion.
Lookahead-pairs method enhanced with danger theory IDS improve the detection rate
since it will identify more intrusions especially those that deviate generating mismatches
or exceed the mismatch threshold. It will also reduce the rate of false positive and false
negative. This is because an intrusion not only depends on mismatch instances but also
on other factors (signals) that describe dangerous conditions. The lookahead-pairs
method enhanced with iDC and DC cells do not require additional storage cost and will
give better detection results. The IDS system enhanced with B cells will require double
 3
storage requirements and will become more robust. If we choose to use both negative and
positive detector sets for the B cell and iDC databases, the system could be distributed to
other machines.
1.1. Dissertation Hypotheses
In this dissertation we investigated and proved the following hypotheses:
? Enhanced lookahead-pairs method with iDC signal processing has better detection
rate and a lower or similar false positive and false negative rates with similar
space and delay costs than the original lookahead-pairs method.
? Enhanced lookahead-pairs method with Danger Theory has a better detection rate,
and a lower false positives rate and false negative rate than the original
lookahead-pairs method with an additional space cost and similar delay.
1.2. Dissertation Objectives and Accomplished Stages
Host based intrusion detection systems are an important tool for detecting
malicious activities on a single machine. Relying on network based intrusion detection
systems is not enough because many intrusions can be missed such as installing backdoor
programs, Trojan horses, etc. Identifying host based intrusions can be performed by
analyzing and monitoring system calls generated by application processes. In this
dissertation we investigated three intrusion detection systems to better understand how
host based intrusion detection is performed. The systems are: sequence method based
IDS, lookahead pairs method based IDS and variable length with overlap relationship
method based IDS. Then we enhanced the lookahead pairs method IDS by incorporating
different functionalities of danger theory.
The objectives accomplished during the dissertation are the following:
 4
1. Investigated human immune system theories such as negative selection and
danger theory and understood their underlining mechanisms and participating
cells.
2. Investigated and understood artificial immune system based intrusion detection
system and in specific those based on danger theory concepts.
3. Investigated host based intrusion detection systems in general, and immunity
based host based intrusion detection systems in specific.
4. Developed a framework and models explaining danger theory concepts and
functionalities.
5. Implemented the following to run on windows platform:
square4 Sequence method based IDS using fixed length detector set.
square4 Lookahead-pairs method based IDS using fixed length detector set.
square4 Variable-length-patterns-with-an-overlap-relationship method based IDS.
square4 Lookahead-pairs IDS enhanced with danger-theory concepts.
1.3. Dissertation Contributions
The main contribution of this dissertation is that I developed a danger theory
based IDS and proved that it outperforms the original system that does not incorporate
danger theory concepts. We have implemented the lookahead-pairs method based IDS
and enhanced its performance by using functionalities of danger theory. We were able to
prove that the modified IDS has better detection rate, lower false positives and false
negatives and little impact on performance and storage requirements
The following will explain additional contributions. First, I have re-implemented
Sequence Method, Lookahead Method and Variable Length with Overlap Relationship
 5
Method to Run on a Windows Platform. The basic steps of each method were adapted
from its respective paper. The original implementation of each system was developed on
Linux or UNIX machines. Some differences exist between a windows platform and
UNIX platforms such as differences in language commands and data structures. My
system was implemented with Microsoft Visual Studio 2005 as a win 32 console
application.
Second I identified Some Limitations of Sequence, Lookahead Pairs, and Variable
Length with Overlap Relationship Methods. All systems can only identify intrusions
resulting from mismatches. If the system is not fully trained, a false positive result from
signaling a normal behavior as an intrusion because it does not match an entry in the
database. The systems can not identify any intrusions that do not generate any
mismatches. For example, if an attack can deviate producing mismatches or the
mismatch instances do not exceed the allowable mismatch threshold, then the attack will
go undetected. Finally, the systems can not identify system-call-denial of service
attacks. In this attack, the tested sequences exist in the normal database and go
undetected if this patter is repeated indefinitely.
Third, I developed a danger theory model to detect host based intrusion detections
by monitoring system call sequences. A danger theory model incorporates many
mechanisms and cells to perform its functionalities. In this dissertation we have
developed a model to represent such functionalities. Since each problem is domain
specific and has its own requirements, we decided to adapt a simple version of danger
theory model that incorporates the basic functionalities. The basic functionalities include
B cell identification of bacteria, iDC identification of bacteria and signals sensing, T1
 6
helper management of the immune system responses, T2 helper suppressing or priming B
cell and T killer attacking the source of problem.
Fourth, in the enhanced system with danger theory, I instantiated one instance of
each danger theory cell type. We took advantage of the danger theory functionality of an
immune system and implemented it as an object oriented based system where only one
instance of an object is instantiated. In general, the immune system employs millions of
B or T cells to perform the same functionality by having different sensors that identify
different antigens (i.e. intrusion instances). For example, a set of B cells is responsible
for identifying a specific antigen signature. Due to the overhead produced when creating
many instances of such entities, and the need to maintain, manage and handle signaling
among them, we approached the problem in a different way. Our system is not
represented as populations of autonomous agents that exist within a distributed
environment similar to current systems implementing and deploying both innate and
adaptive immune concepts. Rather, in our system, each cell type within the adaptive
immune system is instantiated once and handles all antigen signatures. This is
accomplished by associating a database of all antigen signatures that should be monitored
to B cell and iDC objects. At the same time our system allows the instantiation of more
than one B cell object but we reserve such a choice to the following conditions. First, if
we decide to monitor more than one application, then each application may have its own
B cell object associated with its appropriate database. Second, on multi processor
systems, the database can be divided and each part can be associated with an instance of
the B cell and they can work concurrently.

 7
1.4. Dissertation Organization
This dissertation is organized as follows. Chapters 2, 3 and 4 are background
information about related information. Chapter 2 explains intrusion detection systems
and in specific process anomaly detection. Chapter 3 explores the biological immune
systems which inspired this work. Chapter 4 explains artificial immune systems,
implemented systems that are based on such concepts and different immune system
approaches to IDS.
Chapters 5, 6 and 7 are the work carried out in our dissertation. In chapter 5 we
explain our off-line investigation of intrusion detection systems that uses trails of system
calls. Three systems have been implemented and tested against each other. Chapter 6
explains our developed general danger theory model. Chapter 7 explains our
implementation and enhancements to lookahead-pairs method. In general, enhancing
lookahead-pairs method has been performed on three stages.
Finally chapter 8 states the conclusion and future work of our dissertation.

 8
CHAPTER 2
 INTRUSION DETECTION SYSTEMS (IDS)
2.1. General View of IDSs
IDSs are software systems designed to identify and prevent the misuse of
computer networks and systems. James Anderson was one of the first people to discuss
IDSs [Anderson 1980] and Dorothy Denning was the first to discuss an IDS
implementation [Denning 1987]. There have been attempts to classify IDS such as in the
works of [Axelsson 1999; Axelsson 2000; Debar, Dacier and Wespi 2000] where an IDS
is classified in two classes: misuse and anomaly detection. The misuse detection
approach examines network and system activity for known misuses, usually through
some form of pattern-matching algorithm. In contrast, the anomaly detection approach
bases its decisions on comparing against a profile of normal network or system behavior.
Any event that does not conform to this profile is considered anomalous. Both
approaches have strengths and weaknesses. Misuse-based systems generally have very
low false positive rates, but they are unable to identify novel attacks, which leads to high
false negative rates. On the other hand, anomaly-based systems are able to detect novel
attacks but produce high number of false positives. This is because current anomaly-
based techniques don?t handle real world normal and legitimate computer usages that
might have changed over time [Kim et al. 2007].
 9
IDSs can also be classified according to their placement which can be as host-
based, network-based or hybrid systems. Host-based systems are present on each
monitored host, and collect log files of the host?s operation, network traffic to and from
the host, or information on processes running on the host [Kim and Spafford 1993] [Xie
et al. 2004]. In contrast, network-based IDSs monitor the network traffic on the network
containing the hosts to be protected, and are usually run on a separate machine termed a
sensor [Leach and Tedesco 2003]. Host-based systems are able to determine if an
attempted attack was indeed successful. It can also detect local attacks, privilege
escalation attacks and attacks which are encrypted. However, such systems can be
difficult to deploy and manage, especially as the number of hosts increase. They are also
unable to detect attacks against multiple targets of the network. On the other hand,
network-based systems are able to monitor a large number of hosts with relatively low
deployment costs, and are able to identify attacks to and from multiple hosts. However,
they are unable to detect whether an attempted attack was indeed successful, and are
unable to deal with local or encrypted attacks. Therefore, hybrid systems, which
incorporate host- and network-based elements, can offer the best protective capabilities to
protect against attacks from multiple sources [Kim et al. 2007]. More advanced systems
exist which detect high-level intrusion scenarios through correlation of multiple low-level
events. They allow for the detection of non-trivial or distributed intrusions spanning
multiple events and sources. They can also combine poor quality detection results from
misuse and anomaly detectors to produce more reliable results. [Valdes and Skinner
2001]?s approach finds statistical similarities between alerts. [Dain and Cunningham
2001]?s approach combines alerts into attack scenarios. However, [Ning et al. 2004]
 10
states that such approaches fail to detect an intrusion if the set of reported alerts does not
constitute a complete intrusion scenario.
Furthermore, IDSs can be classified according to the overall control strategy
employed. For example, in a centralized IDS, data analysis is performed and controlled
in a fixed number of locations independent of the number of hosts being monitored.
However, in a distributed IDS, analysis is performed in a number of locations, usually on
the monitored hosts themselves and control is distributed throughout the system. In a
hierarchical IDS, information gathering occurs at leaf nodes and is passed to internal
nodes that aggregate information. This data is then passed through internal nodes until it
reaches the root node which determines if an attack has occurred and issues appropriate
responses. Thus analysis is distributed over several different components; however there
still exists a central controller. Centralized IDSs are not very resilient to attacks because
disabling the control components renders the entire system inoperable. They are also are
not very scalable or able to cope with high volume data environments due to their
centralization of data analysis and processing. Hierarchical IDSs overcome scalability
and processing issues because of their more efficient communication strategy and partial
distribution of components. However, a distributed IDS can consume large amounts of
resources on the monitored hosts, degrading the performance of the hosts to unacceptable
levels if they are not carefully implemented [Twycross 2007].
2.2. Process Anomaly Detection
A process is a running instance of a program. On modern multitasking operating
systems many processes can be effectively running simultaneously. A single running
program executable may create several child processes by forking or threading. For
 11
example, an initial parent process acting as a web server typically starts a child process to
handle individual connections as they are received. Child processes themselves may
create children generating a complex process tree. The parent of this tree is the process
that was created when the executable was first run. The operating system is responsible
for managing the execution of these running processes and associates a process identifier
(PID) with each process. This number uniquely identifies a process. When a process is
started, the operating system associates to it the PID of the parent process that created it,
and the user who started the process. The process is also allocated resources by the
operating system such as memory, which stores the executable code and data, and file
descriptors, which identify files or network sockets which belong to the process. Often,
the initial goal of an attack is to gain administrator privileges on a machine granting full
and free control of the system. Furthermore, there are several general classification
systems for attacks [Mell et al. 2003]. One of the most frequently used is the R2L and
U2R classification. If the attacker does not have an account on the system then he may
try to exploit a vulnerability in a network service running on the target remote machine to
gain access. This is termed a remote-to-local or R2L attack. Buffer overflow exploits are
often used to subvert remote services to execute code the attacker supplies and, for
example, open a remote command shell on the target machine. Sometimes, the attacked
service will already be running with administrator privileges, in which the initial attack is
complete. Otherwise, the attacker will have access to the machine at the same privilege
level as the attacked service is running at. In this case the attacker will need to perform a
privilege escalation attack, called a user-to-root or U2R attack. Often, this will involve
attacking a privileged program, such as a program running with administrator privileges
 12
and subverting its execution to create a command shell with administrator privileges.
After gaining unrestricted access, the attacker may install root kits to hide their presence
and facilitate later access. Data can be copied to and from the machine, remote services
such as file sharing and IRC daemons can be started. In the case of worms all of this can
be done automatically without human intervention. In general, process anomaly
detection systems are designed to detect and prevent the subversion of processes
necessary in such R2L and U2R attacks [Twycross 2007].
2.2.1. System Calls
Host-based IDSs monitor running processes to detect intrusions and collect
information about a running process from a variety of sources such as log files created by
the process. Monitoring the behavior of a process will indicate if the process is behaving
normally or has been subverted by an attack. Although log files are an obvious starting
point for such systems and are commonly used, attacks may not cause any logging to take
place, and so evade detection. This is why there has been a substantial amount of
research into other data sources, usually collected by the operating system such as
collecting system calls (syscalls). Syscalls are a low-level mechanism by which
applications request system services such as peripheral I/O or memory allocation from an
operating system. As a process runs it cannot usually directly access memory or
hardware devices. Instead, the operating system manages these resources and provides a
set of functions, called syscalls, which processes can call to access these resources. On
modern Linux systems there are around 300 syscalls, accessed via wrapper functions in
the libc library. At an assembly code level, when a process wants to make a system call it
will load the system call number into the EAX register, and system call arguments into
 13
registers such as EBX, ECX or EDX. The process will then raise a 0x80 interrupt. This
causes the process to halt execution and the operating system to execute the requested
syscall. Once the syscall has been executed, the operating system places a return value in
EAX and returns execution to the process. Operating systems other than Linux differ
slightly in these details, for example BSD puts the syscall number in EAX and pushes the
arguments onto the stack [Bovet and Cesati 2002][syscalls]. Higher-level languages
provide library calls which wrap syscalls in functions such as printf.
Syscalls are a powerful data source for detecting attacks because any application
that interacts with the network, file system, memory, and other hardware devices will use
system calls. Most attacks that manipulate the execution of an application will need to
access some of these resources and initiate a number of system calls. Therefore, it is
more difficult to deceive a system call based IDS; however, monitoring syscalls is more
complex and costly than reading data from a log file. Monitoring system calls may
require placing hooks or stubs which increases the runtime of the monitored process,
since for each syscall the monitor will spend at least a few clock ticks pushing the data it
has collected to a storage buffer. There are other shortcomings from using system call
based IDS. For example, permitting or denying the syscall can add additional runtime
overheads. Also, processes can generate hundreds of syscalls a second, making the data
load significantly higher. Incorrect replication of operating system state or other race
conditions may allow syscall monitoring to be evaded [Garfinkel 2003] [Twycross 2007].
Programs such as strace [strace] intercept and log syscalls in user-space. This is
very similar to tracing a program with a debugger. Strace uses the ptrace service (itself
made available through a syscall) provided by many operating systems to trace the
 14
execution of a process, in this cases the monitored application. Whenever the traced
process makes a system call, its execution is halted and handed back to the tracing
process. Strace then logs detailed information about the syscall before allowing the
traced process to resume execution. Modifying the kernel is another popular method of
capturing syscall information and is used by systems such as Snare [snare] and the Linux
Trace Toolkit [LTT] [Maniatty et al. 2005] [Yaghmour and Dagenais 2000]. Snare
[snare] is a widely-used application for syscall logging and analysis available for a wide
range of Linux, Solaris, Windows and other platforms. A kernel patch is used to record
syscall information for all processes running on the monitored system. Snare takes the
approach of only monitoring a certain subset of ?sensitive? syscalls which could be used
to compromise security. This reduces the amount of data recorded, and decreases
performance overheads on the monitored system. The recorded syscall information is
collected by a user-space audit daemon, which processes the raw data and saves it in an
event log. An operator then uses a graphical front end to examine the event logs for signs
of intrusions [Twycross 2007].
The Janus and Ostia syscall interposition systems of Wagner et al. [Garfinkel
2003] [Garfinkel, Pfaff and Rosenblum 2004] [Goldberg et al 1996] [Janus] [Wagner
1999] sandbox an application and resemble a firewall between an application and the
operating system. These systems are based on a kernel module which intercepts syscalls,
and a user-space program to implement a syscall policy. They specify a policy
specification syntax indicating acceptable access to file system, memory, network and
other resources. Syscalls requesting resources not specified on this policy are denied.
The capture and processing of kernel-space is faster than user-space methods since it
 15
reduces overhead due to the switch from kernel to user space. Ko et al. [Fraser, Badger
and Feldman 1999] [GSWT] [Ko et al. 2000] have implemented the Generic Software
Wrappers Toolkit, a system for UNIX and Windows platforms which integrates
confinement and intrusion detection techniques. Their system allows the integration of
intrusion detection techniques into the kernel to address concerns about performance and
security of user-space approaches.
Tandon and Chan [Tandon and Chan 2003] [Tandon and Chan 2005] developed a
representation which combines syscall arguments and sequences, and evaluate this
representation using a rule-based learning classifier. They found that the addition of
syscall argument information to sequences of syscalls results in better detection of
attacks. Tandon et al. [Tandon, Chan and Mitra 2004] introduced the idea of a motif,
which is a repeated subsequence of syscalls within a sequence, and showed how this
representation can be used to improve anomaly detection performance.
2.2.2. Approaches to Process Anomaly Detection
The performance of modern computing systems has improved the computational
overheads imposed by syscall monitoring and made syscalls an important data source for
process anomaly detection systems. In general, IDSs use syscalls to monitor an
application for signs and possibly alerting an operator. This detection may be done in
real-time or offline to help audit previously gathered log files. Additionally, some real-
time systems automatically take measures to actively prevent an attack from being
successful. These include denying syscalls identified as suspicious or delaying execution
of the monitored application. IDSs which actively respond to an intrusion are called
intrusion prevention systems [Axelsson 2000].
 16
Ko et al. [Ko, Fink and Levitt 1994] [Ko, Ruschitzka and Levitt 1997] introduced
Basic Security Module (BSM), which is the Sun Solaris audit daemon, and monitor audit
logs to gather data on application syscalls. Ko et al. restrict their analysis to a subset of
syscall involved with file access and program execution. Their specification-based
approach describes the behavior of the permitted program by a policy specification
language, and describes a specification language which allows a policy to be created
specifying permissible operations on files and executables for an application. Policies
can either be generated by hand [Ko, Ruschitzka and Levitt 1997] [Sekar, Bowen and
Segal 1999] or by using static program analysis techniques [Wagner and Dean 2001].
Esponda et al. [Esponda, Forrest and Helman 2004] presented a formal
framework for analyzing the tradeoffs between positive and negative approaches.
Positive detection approaches compare current behavior against a database of permitted
activity, whereas negative detection approaches compare current behavior against a
database of anomalous activity [Esponda, Forrest and Helman 2004]. For small
problems, they show that a positive approach is more effective than a negative one, and
derive results which predict how large a problem must be in order for a negative
approach to be advantageous.
Stibor [Stibor 2006] shows that certain matching approaches such as Hamming
distance work poorly with negative approaches, introducing an infeasible amount of
complexity. Reduction of this complexity by generalization of the matching criteria
results in a significant reduction in the classification performance. Based on these
observations, Stibor concludes that negative approaches such as immune-inspired
negative selection are unsuitable for real-world anomaly detection problems.
 17
The systrace system of Provos [Provos 2003] [systrace] is a syscall-based IDS for
Linux, BSD and OSX systems. The kernel patch inserts various hooks into the kernel to
intercept syscalls from the monitored process. The user specifies a syscall policy which
is a list or database of permitted syscalls and arguments. The monitored process is
wrapped by a user-space program which compares any newly generated syscalls with this
policy. It then only allows the process to execute syscalls which are present on the
normal list. Execution of the monitored process is halted while this decision is made,
which, along with other factors such as the switch from kernel- to user-space, adds an
overhead to the monitored process. However, due to the simplicity of the decision-
making algorithm as well as a good balance of kernel versus user-space implementation,
the performance impact on average is minimal. As an IDS, systrace can be run to either
automatically deny and log all syscall attempts not permitted by the policy, or to
graphically prompt a user as to whether to permit or deny the syscall. In the latter mode,
a syscall can be added to the policy, adjusting it before using it in automatic mode.
Gao et al. [Gao, Reiter and Song 2004b] introduced a new model of syscall
behavior called an execution graph. An execution graph is a model that is constructed
from syscalls gathered during normal execution. In addition to system call number,
stack return addresses are also gathered and used in construction of the execution graph.
The authors also introduce a course-grain classification of syscall-based IDSs into white-
box, black-box and gray-box approaches. Black-box systems build their models from a
sample of normal execution using only system call number and argument information.
Gray-box approaches build their models from a sample of normal execution by using also
additional runtime information. White-box approaches do not use samples of normal
 18
execution, but instead use static analysis techniques to derive their models. A prototype
gray-box anomaly detection system using execution graphs is introduced by the authors,
and they compare this approach to other systems, and discuss possible evasion strategies
in [Gao, Reiter and Song 2004a].
Sekar et al. [Sekar et al. 2001] implement a real-time IDS which uses finite state
automata (FSA) to capture short and long term temporal relationships between syscalls.
One advantage of using FSA to evaluate sequences of syscalls is that there is no limit to
the length of the syscall sequence. Yeung et al. [Yeung and Ding 2003] described an IDS
which uses a discrete hidden Markov model trained using the Baum-Welch re-estimation
algorithm to detect anomalous sequences of syscalls. In [Kruegel et al. 2003], Krugel et
al. describe a real-time IDS implemented using Snare under Linux. Their system
automatically detects anomalies in syscall arguments. They explore a number of
statistical models which are learnt from observed normal usage. Endler [Endler 1998]
presents an offline IDS which examines BSM audit data. It combines a multi-layer
perception neural network which detects anomalies in syscall sequences with a histogram
classifier which calculates the statistical likelihood of a syscall. Lee and Xiang [Lee and
Xiang 2001] evaluate the performance of syscall-based anomaly detection models built
on information-theoretic measures such as entropy and information cost. They also used
these models to automatically calculate parameter settings for other models.
Forrest, Hofmeyr, Somayaji and other researchers at the University of New
Mexico have developed several immune-inspired learning-based approaches. Forrest et
al. [Forrest et al 1996] [Forrest, Hofmeyr and Somayaji 1997] [Hofmeyr and Forrest
1998] evaluated a real-time system which detects anomalous processes by analyzing
 19
sequences of system calls. Syscalls generated by an application are grouped together into
sequences. A database of normal sequences is constructed and stored as a tree during
training. Sequences of syscalls are then compared to this database using a Hamming
distance metric, and a sufficient number of mismatches generate an alert. No user-
definable parameters are necessary, and the mismatch threshold is automatically derived
from the training data. Similar approaches have also been applied by this group to
network intrusion detection [Balthrop et al. 2002] [Balthrop, Forrest and Glickman 2002]
[Hofmeyr 1999] [Hofmeyr and Forrest 2000] [Hofmeyr and Forrest 1999a].
Somayaji [Somayaji 2002] [Somayaji and Forrest 2000] developed the immune-
inspired pH intrusion prevention system which detects and actively responds to changes
in program behavior in real-time. Sequences of syscalls are gathered for all processes
running on a host and compared to a normal database. If an anomaly is detected,
execution of the process that produced the syscalls will be delayed for a period of time.
This method of response, as opposed to more malign responses such as killing a process,
is more benign in that if the system makes a mistake and delays a process which is
behaving normally, this may not have a perceptible impact from the perspective of the
user.
Greensmith [The Danger Project] has used Libtissue to implement an immune-
inspired process anomaly detection system [Greensmith, Aickelin and Twycross 2006]
[Greensmith, Twycross and Aickelin 2006]. Their algorithm, called DCA, is inspired by
biological Dendritic cells (DCs). A population of artificial DCs is created and monitors a
host, collecting process IDs (PIDs) of the processes currently running. These PIDs are
used as an antigen and stored by the DC. DCs also monitor a number of statistics for the
 20
host, such as outgoing packet and ICMP error message rates. These statistics are used as
input signals for the DCs and govern their behavior. Different signals such as safe and
danger signals are weighted and combined to create output signals for each DC. Over
time, if the summation of the output signals exceeds a user-defined threshold, the DC
matures and is removed from the system.
 21
CHAPTER 3
 BIOLOGICAL IMMUNE SYSTEMS
The Human Immune System (HIS) or the biological immune system is a robust,
complex, adaptive system that defends the body from foreign pathogens. It categorizes
cells within the body as self-cells or non-self cells [Dasgupta 2004; Aickelin and
Dasgupta 2005; Hofmeyr 2000]. The immune system is a multi-layered defense system
that protects living organisms from disease. These layers consist of physical and
chemical barriers and specialized cells that can recognize and kill antigens. The
mechanical and chemical barriers such as skin, mucous secretions and enzymes with their
changing pH and temperature features provide the first line of defense against antigens.
Bacteria on the skin surface are generally unable to pass through the skin barriers. The
second line of defense is the innate immune system and it consists of a family of cells
called phagocytes that recognize, attack, and then kills antigens. The innate response is
non antigen-specific and was meant to fight against any infection without the need of
previous immunization. It has two different actions: rapid action which lasts from four
minutes to four hours performed by macrophages. There is also a medium to slow action
performed via inflammation or by natural killer (NK) cells [Pagnoni and Visconti 2005].
When the innate system fails, an infection is established and the acquired immunity starts
to develop. The acquired immune response is based on a complex learning process that
makes the immune system adaptively acquire better immunity during its lifetime
 22
[Aickelin and Dasgupta 2005]. The immune system uses multilevel defense both in
parallel and sequential fashion. Depending on the type of the pathogen, and the way it
gets into the body, the immune system uses different response mechanisms either to
neutralize the pathogenic effect or to destroy the infected cells. The human immune
system features that are relevant to intrusion detection are matching, diversity and
distributed control. Matching refers to the binding between antibodies and antigens.
Diversity refers to achieving optimal antigen space coverage and distributed control
means that there is no central controller. This process depends on two important white
blood cells called T-cells and B-cells. Both originate in the bone marrow, but T-cells pass
on to the thymus to mature, before circulating in the blood. The T-cells are of three
types: helper T-cells which are essential to the activation of B-cells, killer T-cells which
bind to foreign invaders to destroy them, and suppressor T-cells which inhibit the action
of other immune cells thus preventing allergic reactions and autoimmune diseases.
Finally, B-cells are responsible for the production and secretion of antibodies, which are
specific proteins that bind to the antigen [Dasgupta 2004; Aickelin and Dasgupta 2005;
Hofmeyr 2000].
There have been several attempts to summarize immune system mechanisms.
The following are five attempts:
? Immune Network Theory: The hypothesis of the immune network theory
states that the immune system maintains an idiotypic network of
interconnected B-cells for antigen recognition. These cells both stimulate and
suppress each other in certain ways that lead to the stabilization of the
network. Two B-cells connect if their shared affinities exceed a certain
 23
threshold, and the strength of the connection is directly proportional to the
affinity they share [Dasgupta and Atooh-Okine 1997; Aickelin and Dasgupta
2005].
? Negative Selection Mechanism: The purpose of negative selection is to
provide tolerance for self-cells. It is concerned with the immune system?s
ability to detect unknown antigens while not reacting to self cells. During the
generation of T-cells, receptors are made through a pseudo-random genetic
rearrangement process and then undergo a censoring process in the thymus,
called the negative selection. If T-cells react against self-proteins, they are
destroyed allowing only the T-cells that don?t react to self-proteins to leave
the thymus and circulate throughout the body to perform immunological
functions and protect the body against foreign antigens [Dasgupta and Atooh-
Okine 1997; Aickelin 2004; Aickelin and Dasgupta 2005].
? Clonal Selection Principle [Aickelin 2004; Aickelin and Dasgupta 2005]
describes the basic features of an immune response to an antigenic stimulus.
Only the cells that recognize the antigen proliferate and are selected against
those that do not.
? Idiotypic Networks?Network Interactions (Suppression): The idiotypic
network hypothesis [Aickelin and Dasgupta 2005; Cayzer and Aickelin
2002b; Cayzer and Aickelin 2005] builds on the recognition that antibodies
can match other antibodies as well as antigens. This could be used to explain
how the memory of past infections is maintained and could result in the
suppression of similar antibodies and encouraging diversity in the antibody
 24
pool. In general, the nature of an idiotypic interaction can be either positive or
negative and it?s matching function symmetric.
? Danger Theory: The proposed Danger Theory [Matzinger 2002; Aickelin and
Dasgupta 2005] is assumed to provide a method of ?grounding? the immune
response. The Danger Theory states that there must be discrimination
happening other than the self?non-self distinction. Danger theory
discriminates ?some self from some non-self? or ?non-self but harmless? and
of ?self but harmful?. The central idea in the Danger Theory is that the
immune system does not respond to non-self but to danger. In this theory,
danger is measured by damage to cells indicated by distress signals that are
sent out when cells die an unnatural death, as opposed to programmed cell
death. Essentially, the danger signal establishes a danger zone, as shown in
Figure 3.1, around itself. The B-cells producing antibodies that match antigens
within the danger zone get stimulated and undergo the clonal expansion
process. Those that do not match or are too far away do not get stimulated. In
general, the danger signal can be a ?positive? signal or a ?negative? signal.
[Matzinger 1994, Matzinger 2002] proposed the Danger model, which
suggests that the immune system is more concerned with damage than with
foreignness, and is called into action by alarm signals from injured tissues,
rather than by the recognition of non-self only. The danger theory proposed
that APCs are activated by danger/alarm signals from injured cells, such as
those exposed to pathogens, toxins, mechanical damage, and so forth.
 25

Figure 3.1. Danger theory illustration [Aickelin and Dasgupta 2005]

As shown in Figure 3.2., a B cell receives signal 1 from bacteria and sends signal
1 to a T-helper cell (Th). At the same time Antigen Presenting Cell (APC)
receives signal 0 from both the bacteria and distressed cell. This signal is
transformed to signal 2 which is sent to Th along with signal 1 from APC which
recognized a foreign body. Then Th sends signal 2 to both B cell and other T-
killer cells (Tk). At the same time Tk could have received signal 1 from cell
infected by a virus.
Structurally, the immune system is a collection of cells, molecules, tissue, organs
and circulatory systems [Jeneway et al. 2005]. Immune system cells are produced and
mature in specialized areas of the body called primary lymphoid organs such as the
thymus or bone marrow. They are transported via the cardiovascular and lymphatic
 26
circulatory systems to peripheral tissues or specialized secondary lymphoid organs such
as the lymph nodes or spleen. Microorganisms attempt to consume the body. Damage to
the body is called pathology, and the damaging agent, such as bacteria or virus, a
pathogen. Functionally, the human immune system is able to locate and remove many of
these pathogens from the body and maintain the body in a healthy state for many years.

Figure 3.2. Danger theory viewed as immune signals [Matzinger 1994]

 27
CHAPTER 4
ARTIFICIAL IMMUNE SYSTEMS (AIS)
4.1. Introduction
Differentiating between normal and intrusive activities is one of the major
challenges facing computer security. AIS, which is a biologically inspired computing, is
currently investigated to solve this problem. Such a method was inspired by the Human
Immune System (HIS) that can detect and defend against harmful and previously unseen
invaders. An analogy can be drawn between the HIS and IDS. The innate part of the
HIS is similar to the misuse detector class of IDS whereas the adaptive immune system is
closer to an anomaly based IDS. Both the innate HIS and misuse detectors have prior
knowledge of attackers and detect them based on this knowledge. Both the adaptive
immune system and anomaly detectors generate new detectors to find previously
unknown attackers [Kim et al. 2007]. HIS protects the body against damage from an
extremely large number of harmful bacteria, viruses, parasites and fungi, termed
pathogens. It does this usually without prior knowledge of the structure of these
pathogens. This property, along with being distributed, self-organized and
lightweight [Kim 2002] made HIS the focus of computer science and intrusion detection
communities. This is because it can be viewed as a form of anomaly detector with very
low false positive and false negative rates. AISs have been built for a wide range of
application domains including document classification, fraud detection, and network- and
 28
host-based intrusion detection. In specific AIS approaches for intrusion detection has
been reviewed by Aickelin et al. [Aickelin, Greensmith and Twycross 2004] AISs can be
broadly divided into two categories based on the mechanism they implement: network-
based models and population-based models with the existence of many hybrid models.
Network based models are based on Jerne?s idiotypic network theory which recognizes
interactions between antibodies and antibodies as well as between antibodies and
antigens. Population-based models use negative or clonal selection as the method of
generating and maintaining a population of detectors [Twycross 2007].
4.2. Artificial Immune Systems Basic Concepts
To implement a basic artificial immune system, four decisions have to be made:
encoding, similarity measure, selection and mutation. After fixing a suitable encoding
and choosing a suitable similarity measure, the algorithm will then perform selection and
mutation; both based on the similarity measure, until the stopping criteria are met.
4.2.1. Initialization/Encoding
It is very important to choose a suitable encoding [Aickelin 2004; Aickelin and
Dasgupta 2005] for the algorithm?s success. In order to perform encoding, the antigen
and antibody should be defined in the context of an application domain. Antigens
represent intrusion data instances. Antibodies bind to antigen identifying an intrusion.
Sometimes there can be more than one antigen at a time and there are usually a large
number of antibodies present simultaneously. Both antigens and antibodies are
represented or encoded in the same way.

 29
4.2.2. Similarity or Affinity Measure
It is very important to choose a good matching algorithm for the artificial immune
system to work properly. The primary response in the immune system [Forrest and
Hofmeyr 2001a] uses learning mechanism for new antigens that have not been detected
by a detector before. When a B cell is activated after binding to a pathogen, it starts
cloning itself and the cloned cells then undergoes a somatic hyper mutation to create
daughter B cells with mutated receptors and then the new B cells will compete with their
parents. In general, the higher the affinity of B cell for available pathogens the more
likely it will be cloned resulting in a variation and selection process called affinity
maturation.
4.2.3. Negative Selection
One of the common techniques used is the negative selection algorithm [Aickelin
2004; Aickelin and Dasgupta 2005] where a set of trusted behavior ?self? is defined.
During the initialization of the algorithm, a large number of detectors (strings similar to
intrusion instances) are created. Then these detectors are subjected to a matching
algorithm that compares them to ?self?. Any matching detector would be eliminated and
those that do not match are selected (negative selection). All non-matching detectors will
then form the final detector set. This detector set is then used in the second phase of the
algorithm to continuously monitor all network traffic. In case a match occurs, this will be
reported as a possible alert or ?non-self?.
4.2.4. Somatic Hyper mutation
Somatic hyper mutation [Aickelin 2004; Aickelin and Dasgupta 2005] is an
optional process and associated with negative selection. Rather than ignoring matching
 30
detectors in the first phase of the algorithm, they can be mutated to save time and effort.
Also, depending on the degree of matching, the mutation could be more or less strong.
[Forrest and Hofmeyr 2001b] use, in their immune system, permutation masks to achieve
diversity similar to the role of the major histo-compatibility complex (MHC). MHC is
responsible for transporting peptides from the interior regions of a cell and presents it on
its surface. A permutation mask defines a permutation of the bits in the string
representation of the network packets. In general, each detector has a unique randomly
generated permutation mask.
4.2.5. Cross-Reactivity and Associate Memories
When a B-cell encounters subsequent antigens it responds quicker (secondary
response) in which the memory cells for the earlier antigen quickly start producing large
quantities of a specific antibody. In general, B-cell receptors do not require an exact
match to an antigen to be activated. Therefore, some memory cells can react to new
antigen producing a secondary response which is termed, the cross-reactive memory
[Forrest and Hofmeyr 2001b]
4.3. Artificial Immune System Applications
This section briefly introduces some application areas where AIS have been
applied.
4.3.1 Virus Detection
Since computer viruses have been identified as a destructive form of artificial life
it is very natural for computer scientists to investigate the human immune system in order
to understand its defense mechanism against harmful biological viruses. Virus detection
is viewed as a self-non-self discrimination problem. Targets such as legal user activities,
 31
legal application usage activities, and uncorrupted data are monitored as self and the AIS
are expected to discriminate them from illegal user activities, illegal application usage
activities, and virus infected data. In general, detectors are generated from a standard
binary executable .com file and then the generated detectors are checked to see if they
can detect a virus infected .com file. Another recent approach called Computer Virus
Immune System (CVIS) employs the negative selection algorithm with some novel ideas
that were used in [Hofmeyr 1999; Hofmeyr and Forrest 2000] such as life span,
activation threshold and costimulation. This new technique performs virus analysis,
repairs infected files, analyze the results of other local systems and operates under a
distributed environment using autonomous agents. A different approach to using AIS for
virus detection is undertaken at the IBM Research Centre. They attempt to identify and
understand useful processes of the human immune system, and to see how these can help
in developing a new virus detection product. However, they do not attempt to implement
the processes using the mechanism of the human immune system, only to mimic it at a
high level of abstraction [Kim 2002].
4.3.2. Recommender Systems
Collaborative filtering (CF) [Cayzer and Aickelin 2002a; Chao and Forrest 2002]
is one of the common applications of AIS. CF is the term for a broad range of algorithms
that use similarity measures to obtain recommendations. In general, any problem domain
where users are required to rate items is amenable to CF techniques. Usually,
commercial applications are called recommender systems one of which is movie
recommendation. Traditionally, recommended items are treated as ?black boxes? and
recommendations are based purely on the votes of neighbors, and not on the content of
 32
the item. The preferences of a user, usually a set of votes on an item, comprise a user
profile, and these profiles are compared to build a neighborhood. Data encoding where a
user profile is presented as a string of numbers and the similarity measure which is
usually a correlation-based measure are the key decisions to be made.
[Morrison and Aickelin 2002] applied idiotypic network theory to build their web site
recommender AIS based system. The idiotypic network theory states that interaction in
the immune system do not only occur between antibodies and antigens but also between
antibodies and each other. Therefore, the antibody may be matched by other antibodies.
This activation can continue to spread throughout the population. This interaction may
have a positive or a negative effect on a particular antibody-producing cell. This theory,
therefore, can explain how the memory of past infections is maintained and that could
result in the suppression of similar antibodies thus encouraging diversity in the antibody
pool. Morrison and Aickelin idea? is that antibodies that are very similar to each other
had their concentrations reduced. This allowed the creation of a set of users that are
similar to the user but quite different to each other and thus enhancing the
recommendation accuracy of the system.
4.3.3. Intrusion Detection
The use of artificial immune system in intrusion detection is beneficial because
immune systems can provide a high level of protection from invading pathogens in a
robust, self-organized and distributed manner and is capable of coping with the dynamic
and complex nature of computer system security [Aickelin, Greensmith and Twycross
2004]. Human immune systems (HIS) can detect and defend against harmful and
previously undetected pathogens and has the properties of being error tolerance, adaptive
 33
and self-monitoring. The HIS system protects the body from pathogens without any prior
knowledge of their structure making the system distributed, self-organized and
lightweight. The HIS is also seen as a form of anomaly detector with low false positive
and false negative rates.
4.4. AIS Features and Principles for IDS
[Somayaji, Hofmeyr and Forrest 1998; Hofmeyr 1999] [Kim 2002] [Somayaji
2002] presented several immune features that are desirable for an effective IDS and
identified the following principles that will guide the process of building an intrusion
detection system based on immune system concepts:
? Distributed protection: Lymphocytes in the immune system determine locally the
presence of an infection with no central coordination taking place.
? Scalability: the immune system is scalable since communication and interaction
between components are localized and there is little overhead associated when the
number of components is increased.
? Multi-layered: In the immune system, security is achieved by combining multiple
layers of different mechanisms to provide high overall security.
? Diversity: diversity ensures that security vulnerabilities in one system are less
likely to be widespread.
? Robustness or Disposability: No single component or cell of the human immune
system is essential and can be replaced.
? Autonomy: The immune system does not require outside management or
maintenance as it classifies and eliminates pathogens, and it repairs itself by
replacing damaged cells.
 34
? Adaptability: The immune system learns to detect new pathogens, and retains the
ability to recognize previously seen pathogens through immune memory.
? No secure layer: Any cell in the human body can be attacked by a pathogen
including those of the immune system itself. However, because lymphocytes are
also cells, they can protect the body against other compromised lymphocytes.
? Dynamically changing coverage: since the immune system cannot maintain a set
of detectors large enough to cover the space of all pathogens, it maintains a random
sample of its detector repertoire circulating throughout the body.
? Identity via behavior: In cryptography, identity is proven through the use of a
secret. The human immune system, in contrast, does not depend on secrets; instead,
identity is verified through the presentation of peptides, or protein fragments.
? Anomaly detection: The immune system has the ability to detect pathogens that it
has never encountered before thus performing anomaly detection.
? Flexibility or Imperfect detection: By accepting imperfect detection, the immune
system increases the flexibility with which it can allocate resources.
? Detector replication: The human immune system replicates detectors to deal with
replicating pathogens.
? Memory (signature based detection): Adaptation of an organism remains
throughout its life time. Memory allows the immune system to react more rapidly
the second time against pathogens that are similar to the ones that were encountered
previously which is similar to signature based detection.
 35
? Implicit policy specification: definition of self in immune system is empirically
defined by monitoring proteins that are currently in the body. Self is defined as the
actual normal behavior and not what it should be by defining it in a security policy.
4.5. Conceptual Frameworks for AISs
Stepney et al. [Stepney et al. 2005] developed a conceptual framework within
which biologically-inspired models and algorithms can be developed and analyzed. In it
the probes provide the experimenter with an incomplete and biased view of a complex
biological system which allows the construction and validation of biologically-inspired
algorithms. This is achieved by simplifying the abstract representations analytical
computational frameworks. Stepney et al. also developed a meta-framework which
allows common underlying properties of classes of models to be analyzed by asking
questions, called meta-probes, of each of the models under consideration. Using this
meta-framework, the authors analyze the commonalities of population and network
models.
Neal and Timmis [Neal and Timmis 2005] present a conceptual framework which
integrates artificial neural networks, AISs and artificial endocrine systems in a
biologically-realistic way. The view the biological organism as a homeostatic system
with self-organization is the driving force behind this homeostasis. Each of the neural,
immune and endocrine systems interacts to achieve homeostasis. The biological immune
system is primarily concerned with self-assertion. In their model, the artificial immune
and endocrine systems control the artificial neural network. Their AIS, modeled as an
idiotypic immune network, removes cells that have a negative impact on the system.
 36
4.6. Immune System Approaches to IDS
[Kim et al. 2007] indicated that applying immune system concepts or approaches
to IDS have the following major roots and distinct philosophies:
1. Methods inspired by the immune system that employ conventional algorithms, for
example, IBM?s virus detector [Kephart 1994].
2. The negative selection paradigm as introduced by Forrest [Somayaji 2002]
[Forrest et al. 1994].
3. Approaches that exploit the Danger Theory [Matzinger 1994].
4. Other algorithms.
4.6.1. Conventional Algorithms in AIS
[Kephart 1994; Kephart et al. 1998] designed their AIS with five major stages all
inspired by the HIS. For example, the first stage detected a previously unknown virus on
a user's computer which is similar to the innate human immune system. This was carried
out using generic techniques and neural networks, which were used to build a generic
classifier. Their proposed system first detected viruses using either fuzzy matching from
a pre-existing signature of viruses, or through the use of integrity monitors which
monitored key system binaries and data files for changes. In order to decrease the
potential for false positives in the system, if a suspected virus was detected it was
decoyed by the system to infect a set of decoy programs whose sole function was to
become infected. Then a proprietary algorithm was used to automatically extract a
signature for the program and then sent to the neighboring systems and the infected
binaries were cleaned.
 37
[De Paula, de Castro and de Geus 2004] proposed another AIS based IDS called
ADENOIDS. They introduced eight different components taken from the innate and the
adaptive immune system. From the innate immune system, the evidence-based detector
is responsible for detecting intrusions based on clear evidence such as a security policy
violation. The innate response agent reacts to attacks detected by the evidence-based
detector. The response was to limit bandwidth or disk access. The behavior-based
detector, which is an anomaly detector, is initiated only when it receives co-stimulation
signals. Similar to the adaptive immune system, the signature extractor extracts
signatures of detected attacks and has a learning mechanism which allows attack
signatures to mature. Some of the matured attack signatures are kept at the knowledge-
based detector which corresponds to the adaptive immune memory. The signature
extractor activates the response generator and the adaptive response agent. The response
generator decides on the response type and the adaptive response agent performs the
selected responses.
4.6.2. Negative Selection (NS)
 Negative selection concepts are concerned with eliminating immature cells that
bind to self antigens. This allows the HIS to detect non-self antigens without mistakenly
detecting self-antigens.
[Smith, Forrest and Perelson 1993][Forrest et al. 1994] proposed algorithms
consisting of three phases: defining self, generating detectors and monitoring the
occurrence of anomalies. In the first phase, self cells are defined by regarding normal
pattern profiles as self patterns. In the second phase, a number of random patterns are
generated and then compared to each of the self-patterns defined in the first phase. If any
 38
randomly generated pattern matches a self-pattern, this pattern is removed; otherwise, it
becomes a detector pattern and monitors the system?s profiled patterns. During the
monitoring stage, if a detector pattern matches any newly profiled pattern it is considered
an anomaly.
Forrest et al. [Forrest et al. 1994] [Forrest et al. 1996] viewed virus detection as a
self-non-self discrimination problem within a computer. They regarded monitoring
targets (such as legal user activities, legal application usage activities, uncorrupted data,
etc.) as self and expected the NS algorithm to discriminate them from others (such as
illegal user activities, illegal application usage activities, virus infected data, etc.). They
randomly generated binary string detectors and selected the subset which did not match
to self strings from a standard binary executable .com file. The experimental results
showed that the NS algorithm obtained a 100% detection rate under a relatively small
scale problem: with 125 detectors when an infected file was encoded by 655 binary
strings each string having 32 bits.
The process of generating the repertoire is shown in Figure 4.1. using an r-
contiguous matching rule and r = 2, the string to be protected is logically segmented into
four equal- length \self" strings (stored in S). To generate the repertoire, random strings
are produced in the box labeled R0 and matched against each of the self strings. The first
two strings, 1000 and 1100, are eliminated because they both match self string 0000 at
least two contiguous positions. The string 1101 fails to match any string in self at least
two contiguous positions, so it is accepted into the repertoire (box labeled ?R"). Figure
4.2. explains the process of monitoring protected strings for changes.
 39

Figure 4.1. Generating the repertoire [Forrest et al. 1994].

Figure 4.2. Monitor Protected Strings for Changes. [Forrest et al. 1994]

[Hofmeyr 1999; Hofmeyr and Forrest 1999a; Forrest and Hofmeyr 2001a]
developed an AIS that is based on the negative selection technique. The life cycle of a
detector is shown in Figure 4.3. and starts by having the detector randomly created and
then remains immature for a certain period of time, which is the tolerization period.
 40
 If the detector matches any sting a single time during tolerization, it is replaced by
a new randomly generated detector string. If a detector survives immaturity, it will exist
for a finite lifetime. At the end of that lifetime it is replaced by a new random detector
string, unless it has exceeded its match threshold and becomes a memory detector. If the
activation threshold is exceeded for a mature detector, it is activated. If an activated
detector does not receive costimulation, it dies (the implicit assumption is that its
activation was a false positive). However, if the activated detector receives
costimulation, it enters the competition to become a memory detector with an indefinite
lifespan. Memory detectors need only match once to become activated.

Figure 4.3. Life cycle of a detector [Hofmeyr 1999; Hofmeyr and Forrest 1999a;
Forrest and Hofmeyr 2001a].

[Hofmeyr and Forrest 1999b] employed the use of permutation masks to increase
the effectiveness of negative detection. They employed activation thresholds to allow the
 41
system to aggregate foreign activity over time, and they used adaptive thresholds that
allow the system to integrate foreign patterns from multiple locations. In general, the
work of Hofmeyr and Forrest [Hofmeyr 1999] [Hofmeyr and Forrest 1999a] involved the
development of an AIS for network intrusion detection, called LYSIS. LYSIS
implements the AIS architecture called ARTIS described in [Hofmeyr and Forrest 2000].
It employs the NS algorithm for binary detector generation and various features of the
HIS such as activation threshold, life span, memory detectors, costimulation, tolerization
period and a decay rate to monitor self and non-self. LYSIS is network-based and
examines TCP connections, classifying normal connections as self, and everything else as
non-self. This is achieved by extracting a data path triple consisting of <source host IP
address, destination host IP address, TCP service (port) number from TCIP/IP packet
headers>. This data path is used as input data to build self-profiles. Detectors in the
form of binary strings which do not match to self-profiles for a tolerization period are
generated using NS. These detectors are then used to match sniffed triplets from the
network using an r-contiguous bit matching scheme. In general, r-contiguous matching
measures the similarity between two binary strings by counting contiguously matching
bits. If a detector matches a number of strings above an activation threshold, an alarm is
raised. Detectors that produce many alarms are promoted to memory cells with a lower
activation threshold to form a secondary response system. Generated detectors monitor a
network for their life span periods. Co-stimulation is provided by a user confirming if an
alert is actually an intrusion attempt.
[Kim and Bentley 1999d] [Kim and Bentley 1999b] proposed system consists of a
primary IDS and secondary IDSs. The primary IDS are equivalent to the bone marrow
 42
and thymus and generate numerous detector sets. Each individual detector set describes
abnormal patterns of network traffic packets. Local hosts are considered as secondary
lymph nodes, detectors as antibodies and network intrusions as antigens. At the
secondary IDS?s, detectors are background processes which monitor whether non-self
network traffic patterns are present. There are three evolutionary stages: gene library
evolution, negative selection and clonal selection. During the negative selection stage,
the system generates diverse pre-detector patterns and selects mature detector patterns by
eliminating false pre-detector patterns by binding them to self patterns. Pre-detectors are
generated from a gene library containing various genes. To resolve the excessive
computational time caused from the random generation approach applied in negative
selection [Kim and Bentley 1999a] adapted the niching strategy to build a valid detector
set. The modified negative selection algorithm with niching simply replaces the random
generation of pre-detectors with the evolution of pre-detectors towards ?non-self?. In the
first phase, the modified negative selection algorithm builds self profiles. Then, the
profiles are encoded in an appropriate data representation. In the second phase, the
negative selection algorithm with niching starts generating detectors. This second phase
is repeated for each self profile until all the self profiles have their own detector sets. In
the third phase, the detector patterns in each detector set are compared to the new self
profile. If the similarity between any detector pattern and new self pattern is beyond a
predefined threshold, the algorithm generates an alarm signal.
In order to investigate the feasibility of the NS algorithm in a real network
environment, [Kim and Bentley 2001a; Kim 2002] studied the problem of scalability of
the NS algorithm. For this study, they used TCP packet headers covering around 20
 43
minutes and containing five specified attacks. A total of 33 different attributes were
extracted describing a specific network connection. These attributes contained the
following information: connection identifier, known port vulnerabilities, 3-way
handshake details and traffic intensity. For detector matching, the r-contiguous matching
method was used. Non-self detection rates for the various attacks were recorded as less
than 16% so the detector coverage in this case was not sufficient. It was estimated that for
an 80% detection rate it would take 1,429 years to produce a detector set large enough to
achieve this kind of accuracy, using just 20 minutes worth of data, and 6?108 detectors
would be needed. From these results, the authors concluded that the NS algorithm
produced poor performance due to scaling issues on real-world problems.
[Kim and Bentley 2002c] introduced dynamic clonal selection algorithm
DynamiCS which starts by seeding initial immature detectors with random genotypes.
DynamiCS then employs negative selection by comparing immature detectors to the
given antigen set. As the result, immature detectors that bind to any antigens are deleted
from the immature detector population and new immature detectors are generated until it
reaches the maximum size of the non-memory detector population. In their experiments,
three important parameters: tolerization period, activation threshold and life span were
tested. The system performance measured by true positives (TP) and false positives (FP)
rates was primarily controlled by the number of detector activations in total, and that this
number was directed by values of the three parameters. A large tolerization period
directly lowered FP by allowing more immature detectors to remain and pushing mature
detectors out. It was also found that both lowering the activation threshold and
increasing life span could guide the system to attain a higher TP rate. From analysis,
 44
lowering A and increasing L should be considered together in order to obtain an effective
application of DynamiCS.
[Kim and Bentley 2002b] extended DynamiCS, so that it can handle memory
detectors based on their detection results. The experiment results indicated the important
role of memory detectors. They indeed contribute to increase TP rates by detecting re-
encountering antigens. Without memory detectors, TP rates of DynamiCS fluctuate
irregularly within an unsatisfying range (between 0.1 and 0.8). To overcome this
problem Kim and extended DynamiCS to delete harmful memory detectors by applying
costimulation to memory detectors similar to activating mature detectors.
In [Kim and Bentley 2002a], the authors tried to overcome the problem of
requiring a large number of memory detector co-stimulation in order to obtain
satisfactory TP rates. The system continued to maintain three detector populations:
immature, mature and memory detector populations and treats a portion of the
memory detector population as a gene library. In order to let memory detectors evolve
towards existing non-self antigens without binding self antigens, the extended
DynamiCS uses hyper-mutation in a way to generate new detectors more tuned to
target non-self antigen detection. The test results of such extension achieved high TP
rates without increasing the amount of co-stimulation. The test results, also, confirmed
that hyper-mutation enabled the evolution of the virtual gene library and thus
produced immature detectors that were better tuned to cover existing non-self
antigens.
[Balthrop, Forrest and Clickman 2002; Balthrop et al. 2002] provided an in-depth
analysis of the LISYS immune-based IDS. In this analysis, the adaptive mechanisms of
 45
the LISYS immune-based IDS were examined with respect to machine-learning (ML)
counterparts, and the contribution of each individual component was quantified. Data
was collected from an internal restricted network of computers controlled by the authors.
After a week of normal activity, several attacks were performed and LISYS was able to
successfully identify them. In general, activation thresholds and sensitivity levels
contributed to reduce false positives and the incorporation of r-chunks and permutation
masking also reduced false positives and increased true positives.
Furthermore, [Balthrop, Forrest and Glickman 2002] introduced an improvement
to r-contiguous matching called an r-chunk scheme. In this scheme, only r contiguous bits
of the whole detector are specified (known as the window), with the remaining becoming
wild-cards and thus the partial matching is performed. However, [Esponda, Forrest and
Helman 2004] reported that the r-chunk matching shows linear-time complexity against
the number of self-patterns and windows but requires more space compared to the
original NS algorithm. Furthermore, [Stibor et al 2005; Stibor, Timmis and Eckert 2005]
has shown that the generated detector set under fits exponentially for small value r. Under
fitting behavior leads a user to set the matching threshold value r near l. However, this
verifies that the detector generation using the negative selection with r-chunk matching is
infeasible since all the proposed variants of the negative selection algorithm have a
runtime complexity which is exponential in r.
The Computer Virus Immune System (CVIS) approach [Harmer et al. 2002] is
able to perform virus analysis, repair infected files and propagate the analysis results to
other local systems. In addition, CVIS was designed to operate under a distributed
environment using autonomous agents. They tested the TIMID virus, which infects .com
 46
files only within a local directory. The test reports showed the sensitivity of detection
and error results on different matching thresholds. It showed a detection rate of up to 89%
but had a very high scalability problem since it required approximately 1.05 years for
generated antibodies to scan an 8GB hard disk drive. They employed some novel ideas
such as life span, activation threshold and co-stimulation. The test results showed that
the system was able to detect simulated intrusions without serious self detection errors.
The results also verified that the co-stimulation and affinity maturation help reducing
both FP and FN error rates. However, it was found that the affinity maturation required
far too much computation time to be applied to the second, larger, data set. They also
indicated that the high detection rates with low error rates might have been obtained
because the simulated intrusions were limited.
[Le Boudec and Sarafijanovic 2003][Le Boudec and Sarafijanovic
2004][Sarafijanovic and Le Boudec 2003][Sarafijanovic and Le Boudec 2005]] built an
immune-based system to detect misbehaving nodes in a mobile ad-hoc network. The
authors considered a node to be functioning correctly if it adhered to the rules laid down
by the Dynamic Source Routing (DSR) protocol. Each node in the network monitored its
neighboring nodes and collected one DSR protocol trace per monitored neighbor. Four
sequences of DSR protocol events were sampled over fixed, discrete time intervals to
create a series of data sets. This created a binary antigenic representation in which each
of the four genes recorded the frequency of their four sequences of protocol events. The
NS algorithm was used to eliminate any antibodies which match normal behavior. Once
a mature set of detectors had been generated, these antibodies were used to monitor
 47
further traffic from the node and, if they matched antigens from the node, it was
classified as suspicious.
[Ayara et al. 2002] modified the original NS algorithm to use somatic hyper
mutation. Somatic hyper mutation is the occurrence of a high level of mutation in the
variable regions of B cells with the possible purpose of increasing the binding affinity to
antigens. This new algorithm was called negative selection mutation (NSM) and
performed a guided mutation on the detector which matched self data during the detector
generation process. The specific parts of a detector used to match the bits to a self-string
were targeted for mutation. The mutation rate was dynamically set according to the
affinity between a detector and a self string: the greater the affinity, the higher the
mutation rate. The number of mutations performed on the same candidate detector was
restricted. The authors compared the NSM with the exhaustive NS through the tests
performed on randomly generated 8-bit self data. The results illustrated that the two
algorithms showed similar time complexity and detection rates with no statistical
significant differences. However, the authors argued that these results were likely to be
caused by the nature of randomly generated self data. This was because the executed
mutations resulted in the detectors being pushed towards or away from a self-string with
an equal probability.
[Gonzalez and Cannady 2004; Eiben, Hinterding, and Michalewicz 1999]
improved the NSM algorithm by adopting the self-adaptive strategy of evolutionary
algorithms to control the mutation rate. This strategy determines a mutation rate at every
generation by selecting the standard deviation from the fittest detectors selected via a
tournament selection, multiplied by Gaussian noise. A comparison with the NSM
 48
algorithm showed that the new algorithm performed better with respect to higher
detection rates, lower false detection rates, and computation time taken.
 [D?haeseleer, Forrest and Helman 1996; D?haeseleer 1996] discussed the
problem of holes when using the NS algorithm. Depending on matching methods and
strings used in the NS algorithm, there exist non-self strings called holes that are not
covered by a complete detector repertoire as shown in Figure 4.4.

Figure 4.4. The existence of holes. Each dark circle represents a detector and a gray
shape in the middle is self-antigen data. The size of the dark circles reflects the
generality of detectors. Since all the detectors have an identical radii, and the
detectors are too general to match some non-self subspaces without matching self
antigen data, there inevitably exist holes [Hofmeyr 1999].

Such a problem results from adapting a symmetrical string matching and its
generality. The existence of holes determines a lower bound on a false negative error
rate. To overcome this problem, [Hofmeyr 1999; Hofmeyr and Forrest 1999b] explained
that the permutation mask lets the NS algorithm randomly permutated the binary bits of
generated detectors. As a consequence, it has an additional set of detectors with different
representations reflecting an identical non-self space. Different representations would
have different holes in a non-self space and hence the union of coverage of non-self
 49
spaces by multiple sets of detectors is likely to reduce the number of holes. The
permutation mask demonstrated improved detection results by up to a factor of 3,
especially when LISYS attempted to detect a non-self string close to a self-string in a
search space. [Balthrop et al. 2002] investigated the effect of the permutation mask used
by the simplified version of LISYS but when employing r-chunk matching. They found
that the incorporation of r-chunks and permutation masking reduced false positives and
increased true positives. Additionally, they found that varying r had little effect, unlike
with full-length detectors. As the r-chunks scheme performed remarkably well the
authors investigated it further, and subsequently found that the dramatic increase in
performance was in part due to the configuration of their test network.
[Esponda and Forrest 2002] introduced positive detection as the scheme of
detecting valid patterns while negative detection is the scheme detecting invalid patterns.
They presented the r-contiguous bits match rule which allows both detection schemes to
exhibit the same generalization. Such a rule exhibits a reduced number of holes and is
able to better characterize what holes are. They concluded that negative detection is
more suitable for a distributed environment. [Esponda, Forrest and Helman 2003;
Esponda, Forrest and Helman 2004] showed that r-contiguous matching and permutation
mask is able to cover a larger space that would be recognized by Hamming distance
matching. Their study also showed that there are still non-self strings not detected by r-
contiguous matching augmented by the permutation mask. They introduced crossover
closure which occurs when all the possible sliding windows of each string, existing in a
universal string set, exactly match the corresponding windows of some self-strings. The
authors used this property to characterize two matching methods: r-contiguous and r-
 50
chunk matching. They concluded that both matching rules did not recognize all string
sets under crossover closure. As a result they estimated how many self-strings are
required for either negative or positive detection and approximated the number of holes
as a function of self-strings coupled with a string length and a size of r. They noticed that
the number of holes decreases as more self strings are added length. [Dasgupta and
Gonzalez 2002; Gonzalez and Dasgupta 2002; Gonzalez 2003]. They compared a
negative characterization approach to positive characterization. The positive approach
focused on generating rules covering the self-space and detected anomalies by
monitoring events that matched no self rules. Their implementation of the positive
selection algorithm used a k-dimensional tree, giving a quick nearest neighbor search.
On the other hand, their negative characterization approach employed a genetic algorithm
in order to generate detector rules covering niches of a non-self space. In order for
detector rules to evolve, the fitness function was defined by the volume of non-self space
covered by detector rules after a penalty have been applied according to the number of
matching self examples. The best detection rates they found were 95% and 85% for
positive and negative selection respectively. They concluded that it is possible to use NS
for IDS and that in their time series analysis, the choice of time window was important.
[Gonzalez 2003][Gomez, Gonzalez and Dasgupta 2003][Gonzalez and Dasgupta 2003]
extended the negative approach to generate detectors by employing fuzzy rules. They
also provided better definition of the boundary between a self and a non-self space and
were able to show improved detection accuracy because of the reduction of a search
space due to the fuzzy representation. [Gonzalez, Dasgupta and Kozma 2002] also
developed the real-valued negative selection (RNS) algorithm. The RNS algorithm
 51
employs two distinctive features: the use of real-value representation and hybridizing the
NS algorithm with a classifier. The RNS algorithm uses n-dimensional vectors as
detectors. Detectors have a radius r, representing hyper-spheres in combinations with a
fuzzy Euclidean matching function. In training, detectors are generated randomly and
then moved to both maximize the coverage of a non-self space and to minimize the
coverage of a self space. If the median distance to the detectors k-nearest neighbors is
less then r, a match is detected and matching detectors are discarded. Surviving detectors
are then sent to a multi-layer classifier. They authors were able to conclude that scaling
is not a problem in NS when real values are used. [Gonzalez et al. 2005]?work
hybridized the RNS algorithm with a Self-Organizing Map (SOM). This work attempted
to visualize anomalies in 2-dimensional map. In contrast, [Ji and Dasgupta 2004] further
extended the RNS algorithm by introducing the variable lengths of a detector radius.
They aimed to show an improvement in the detection accuracy and algorithm efficiency,
through covering a non-self space with fewer detectors, and cover the holes by using
detectors with a smaller radius. One of the problems of using the RNS algorithm is that
the number of detectors required to cover a non-self space and the radius of each detector
cannot be estimated in advance, and there is no guarantee of achieving the optimal space
coverage with minimum overlap. In order to solve these problems, a randomized real-
valued negative selection (RRNS) algorithm was introduced by [Gonzalez 2003;
Gonzalez, Dasgupta and Nino 2003]. The RRNS algorithm uses Monte Carlo
integration, which is a well-known randomized algorithm, to calculate the number of
detectors needed to cover a non-self space. It first estimates the volume of a self space
based on the assumption that the average minimum distances from collected self samples
 52
forms the boundary of self space. Then the number of detectors required to cover a non-
self space is calculated by defining a fixed length of detector radius, through obtaining
the volume of a non-self space as the complementary to the volume of an estimated self
space. Furthermore, simulated annealing is used to minimize the overlapping spaces
covered by detectors. The RRNS algorithm was able to provide better non-self space
coverage with the same or less computational effort compared to the RNS algorithm.
[Shapiro, Lamont, and Peterson 2005] generated hyper-ellipsoid detectors, which
used an evolutionary algorithm that reshaped randomly generated hyper-ellipsoid
detectors fit to a non-self space. In contrast, [Ji and Dasgupta 2005] attempted to solve
the coverage problem by integrating the statistical hypothesis test to the negative
selection algorithm. In this approach, the generation of detectors terminates when the
hypothesis test rejects the null hypothesis "The coverage of non-self space by all the
existing detectors is below an expected percentage".
Finally, hybrid approaches that combine NS with other algorithms are becoming
more common in recent literature. [Dozier et al. 2004; Hou and Dozier 2005] used a
steady-state genetic algorithm (GA) to discover the coverage of holes of LYSIS. Their
system (GENERTIA) generates additional detectors that can cover the holes discovered
by the steady-state GA. [Hang and Dai 2004] [Hang and Dai 2005] used anomaly
patterns as seeds to generate additional synthetic anomalies. Artificial anomalies are
generated by using a co-evolutionary GA and the NS algorithm. The co-evolutionary GA
abstracts the positive selection process of the HIS, which generalizes patterns of the self-
class. Then, new artificial anomaly patterns are generated from empty spaces which
neighbor a small number of anomaly patterns. The new patterns are then given to the
 53
negative selection algorithm with the evolved normal patterns to finalize an artificial
anomaly set.
To tackle the scalability problem, an approach based on the linear-time
algorithm [D?haeseleer, Forrest and Helman 1996] has been utilized that uses a greedy
algorithm that removes redundant detectors, and employing diverse ways of evolving
detectors [Ayara et al. 2002; Gonzalez and Cannady 2004]. Another group concentrated
on employing a new matching function, namely r-chunks matching [Balthrop, Forrest and
Glickman 2002; Esponda, Forrest and Helman 2004], possibly saving computation time
during detector generation and matching. Several methods have been investigated to
increase the non-self space coverage of detectors. For example, matching [Hofmeyr
1999; Hofmeyr and Forrest 1999a; Balthrop et al. 2002] investigated reducing the
number of holes existing in a binary detector space coupled with contiguous matching.
[Gonzalez 2003; Ji and Dasgupta 2004] proposed a real-valued detectors with
corresponding matching functions. Significant work on a formal framework for positive
and negative detection schemes was reported in [Esponda, Forrest and Helman 2004].
This work analyses the trade-offs between two schemes and hence estimates how many
self strings are required for either negative or positive detection to insure that it is
computationally advantageous. However, the most controversial problem of employing
the NS algorithm is based on its initial theory which is self-non-self discrimination and
that foreign patterns are detected as intrusions [Aickelin et al. 2003; Burgess 1998]. Non-
self patterns would not necessarily indicate intrusions and thus a high false positive error
rate caused from this assumption limits the benefits of employing the NS algorithm.
Many are trying to tackle this limitation by applying more flexible boundaries between
 54
self and non-self space using fuzzy rules such as [Gonzalez 2003; Gomez, Gonzalez and
Dasgupta 2003]. However, [Stibor et al 2005] [Stibor, Timmis and Eckert 2005] [Stibor
2006] pointed out that there may be inherent problems with the computational efficiency
of NS that can never be resolved.
4.6.3. Danger Theory
The Danger Theory can be beneficial with the artificial immune systems because
it does not describe the way the AIS should represent data but which data should be
represented. The focus should be on dangerous and interesting data. Danger is usually a
grounded signal, and non-self is a set of feature vectors. Therefore, the danger signal
helps in identifying which subset of feature vectors is of interest and overcomes many of
the limitations of self?non-self selection. With danger theory, the domain of non-self can
be restricted to a manageable size, there is no need to screen against all self, and can deal
with scenarios where self (or non-self) changes over time. One of the challenges faced
when trying to employ the danger theory is to define a suitable danger signal. In general,
the human body deals with this issue by responding to the interaction between antigen
presenting cells and various signals. The antigen-presenting cells (APCs) activate
according to the balance of apoptotic and necrotic cells and this activation leads to
protective immune responses. Similarly, the sensors in intrusion detection systems report
various low-level alerts and the correlation of these alerts will lead to the construction of
an intrusion scenario [Aickelin and Dasgupta 2005].
[Aickelin and Cayzer 2002] explain how an immune response would behave
according to the Danger Theory. A cell that is in distress sends out an alarm signal while
APC are collecting and capturing antigens that are in the neighborhood. Essentially, the
 55
danger signal establishes a danger zone around itself. Thus B cells producing antibodies
that match antigens within the danger zone get stimulated and undergo the clonal
expansion process. Those that do not match or are too far away do not get stimulated. In
general, the danger signal may be a ?positive? signal (for example heat shock protein
release) or a ?negative? signal (for example lack of synaptic contact with a dendritic
antigen-presenting cell). They also revised Matzinger?s [Matzinger 1994] view of danger
theory as shown in Figure 4.5. They added a fourth signal (signal 3) which is sent by Th
to other APCs in response to detecting bacteria and being under stress. These APCs then
are responsible for sending signal 2 to Tk cells. APC not only receives signal 3 from Th
cells but also can receive it from viruses.

Figure 4.5. Modification of the Danger theory viewed as immune signals [Aickelin
and Cayzer 2002]

4.6.3.1. Antigen Presenting Cells (APCs)
It is believed that danger signals are detected and processed through
?professional? antigen presenting cells known as Dendritic cells. Dendritic cells are
 56
viewed as one of the major control mechanisms of the immune system, influencing T-cell
responses, and acting as an interface between the innate and adaptive immune systems.
The Danger Theory rests on the detection of endogenous signals. Endogenous danger
signals arise as a result of damage or stress to the tissue cells.
According to the Danger Theory, the pathogens detected are the ones that induce
necrosis and cause actual damage to the host tissue. It is proposed that the exposure of
antigen presenting cells to danger signals modulates the cells? behavior, ultimately
leading to the activation of naive T-cells in the lymph nodes. Alternatively, the absence
of danger signals and the presence of cytokines released as a result of apoptosis can lead
to antigen presentation in a different context, deleting a matching T-cell. DCs have the
capability to combine signals from both endogenous and exogenous sources, and respond
appropriately.
Different combinations of input signals can ultimately lead to the differentiation
and activation of T-cells. DCs exist in a number of different states of maturity,
dependent on the type of environmental signals present in the surrounding fluid. They
can exist in immature, semi-mature or mature forms. Immature DCs reside in the tissue
where they collect antigenic material and are exposed to exogenous and endogenous
signals.
 Based on the combinations of signals, mature or semi-mature DCs are generated
as in Figure 4.6. Mature DCs have an activating effect while semi-mature DCs have a
suppressive effect [Greensmith, Aickelin and Cayzer 2005].
 57

Figure 4.6. The iDC, smDC and mDC behaviors and signals required for
differentiation. CKs: denote cytokines. [Greensmith, Aickelin and Cayzer 2005]

In Greensmith, Aickelin and Cayzer?s [Greensmith, Aickelin and Cayzer 2005]
system, DCs are treated as processors of both exogenous and endogenous signal
processors. Input signals are categorized as PAMPs (P), Safe Signals (S), Danger Signals
(D) or Inflammatory Cytokines (IC) and represent a concentration of signal. They are
transformed to output concentrations of costimulatory molecules (csm), smDC cytokines
(semi) and mDC (mat) cytokines. The signal processing is used with the empirically
derived weightings. These weightings represent the ratio of activated DCs in the
presence and absence of the various stimuli e.g. approximately double the number of DCs
mature on contact with PAMPs as opposed to Danger Signals. Additionally, Safe Signals
may reduce the action of PAMPS by the same order of magnitude. Inflammatory
cytokines are not sufficient to initiate maturation or presentation but can have an
amplifying effect on the other signals present. This function is used to combine each of
 58
the input signals to derive values for each of the three output concentrations, where Cx is
the input concentration and Wx is the weight.
In general, a DC can only collect a finite amount of antigens; therefore, an antigen
collection threshold must be incorporated so a DC stops collecting antigen and migrates
from the sampling pool to a virtual lymph node. On migration to the virtual lymph node,
the antigens contained within an individual DC are presented with the DC?s maturation
status. If the concentration of mature cytokines is greater than the semi-mature
cytokines, the antigen is presented in a ?mature? context. It is possible to count how
many times an antigen had been presented in either context to determine if the antigen is
classified as anomalous [Greensmith, Aickelin and Cayzer 2005].
The four signals PAMP, danger signals, safe signals and IC [Greensmith,
Twycoross and Aickelin 2006][[Greensmith and Aickelin 2006] can be incorporated into
a model, implementing DC, each from a different source and producing different output
cytokines as follows:
? PAMPS (P) are based on pre-defined signatures. Exposure to PAMPS causes an
increase in mDC cytokines. PAMPs are suppressed by safe signals. They cause the
maturation of immature DCs to mature DCs through expression of ?mature
cytokines?.
? Danger signals (D) cause an increase in mDC cytokines. Danger Signals can also
be suppressed by safe signals. Danger signals have a lower potency than PAMPs.
Danger signals are released as a result of damage to tissue cells, also increasing
mature DC cytokines, and having a lower potency than PAMPs.
 59
? Safe signals (S) cause an increase in smDC cytokines and have a suppressive
effect on both PAMPS and danger signals. Safe signals are released as a result of
regulated cell death and cause an increase in semi-mature DC cytokines, and reduce
the output of mature DC cytokines.
? Inflammatory cytokines (IC) amplify the effects of the other three signals, but are
not sufficient to cause any effect on DCs when used in isolation.
The DCA [Greensmith, Aickelin and Twycross 2006] is a population based
algorithm, with a user defined number of DCs created to form a sampling pool. While in
the sampling pool, each DC is exposed to current signal values and selects a slot in the
antigen store. If an antigen is present in the antigen store, the DC collects the antigen and
ingests it in the DC internal antigen storage. Each DC has the opportunity to sample
multiple antigens. For every iteration of antigen collection, each DC re-calculates its
internal cytokine values based on the input signals received. Each antigen can be sampled
single or multiple times. Migration is simulated by the removal of a DC from the pool.
At this point, the output cytokines of each DC are measured. Antigen presented by cells
expressing mature cytokines is labeled ?mature context antigen?. Antigen from cells
expressing semi-mature cytokines is labeled as ?semi-mature?. Each presented antigen?s
context is recorded and eventually a mean antigen context value (between 0 and 1) is
derived.
4.6.3.2. Innate and Adaptive immunity
In innate immunity [Twycross and Aickelin 2005; Medzhtov and Janeway 2002],
cells are the principal actors in the immune system. Many immune system cells have
access to their environment on two levels: the level of antigen and the level of signals.
 60
Antigens are used by the immune system to sense the structure of its environment. The
structure is tightly coupled to the context of the environment, which is reflected by levels
of signals. Signals reflect what entities are doing on a structural level. There exist many
differences between the innate and adaptive immune systems. The adaptive immune
system is organized around two classes of cells: T cells and B cells, while the cells of the
innate immune system are much more numerous, including natural killer (NK) cells,
Dendritic cells (DCs), and macrophages. The environment of a cell is the tissue in which
it is located. Tissue is formed by specialized groups of differentiated cells, and forms
major components of organs. Cytokines are secreted molecules which mediate and
regulate cell behavior, two important subsets of which are tissue factors, inflammation-
associated molecules expressed by tissue cells in response to pathogen invasion, and
chemokines, cytokines which stimulate cell movement and activation.
Twycross and Aickelin?s [Twycross and Aickelin 2005] artificial system is based
on populations of interacting agents where cells are seen as autonomous agents. An
artificial tissue, in which these agents exist provide an environment in which agents can
interact via signaling. As well as passing signals between agents, mechanisms such as
antigen processing and presentation to Th cells by DCs suggest the need for agents with
the ability to ?consume? process and pass on information to other agents. The tissue
according to the authors should also provide the services of presenting pathogens at
multiple levels. In general, the innate immune system relies on sensing the behavior as
well as structure of pathogens.
Accordingly, to adopt danger signals (apoptosis and necrosis) which trigger
artificial immune responses within an AIS, [Bentley, Greensmith and Ujin
 61
2005] introduced the concept of artificial tissue. The authors stressed that the tissue is an
integral part of immune function, with danger signals being released when tissue cells die
under stressful conditions. They also highlighted that the tissue could play the role of
interface between immune responses and pathogenic attacks. The authors argued that the
absence of artificial tissue in conventional AIS caused difficulties, with every new AIS
needing to be ?wired? to a specific problem. This makes it difficult to compare, analyze,
and apply such existing AIS to new problems. The authors proposed new tissue growing
algorithms designed for AIS that provided generic data representations and hence
allowed the artificial tissue to play the role of an interface between a problem and an
immune algorithm. The algorithms took a series of input data stream formulating the
tissue into a specific shape by linking input data cells. When new input data was
provided to the tissue, the structure of the tissue changed in response. If danger signals
are generated in a tissue, the tissue would provide a spatial and temporal structure,
enabling the AIS to start immune responses which were spatially and temporarily
focused.
Libtissue [Twycross and Aickelin 2006b] is a software system which allows
researches to implement and analyze novel AIS algorithms and apply them to real-world
problems and has a client/server architecture. An AIS algorithm is implemented as part
of a Libtissue server, and Libtissue clients provide input data to the algorithm and
response mechanisms which change the state of the monitored system. This client/server
architecture separates data collection by the Libtissue clients from data processing by the
Libtissue servers and allows for relatively easy extensibility and testing of algorithms on
new data sources. Libtissue is implemented as a library which allows algorithms to be
 62
compiled and run on other machines with no modification. Client/server communication
is socket-based. AIS algorithms are implemented within a Libtissue server as multi-agent
systems of cells. Cells exist within an environment, called a tissue compartment, along
with other cells, antigen and signals. The problem to which the algorithm is being applied
is represented by Libtissue as antigen and signals. Libtissue allows data on implemented
algorithms to be collected and logged. Libtissue clients are of three types: antigen, signal
and response. Antigen clients collect and transform data into antigen which are
forwarded to a Libtissue server. Currently, a systrace antigen client has been
implemented which collects process system calls (syscalls). Signal clients monitor
system behavior and provide an AIS running on the tissue server with input signals. A
process monitor signal client that monitors a process and its children and records
statistics such as CPU and memory usage, and a network signal client that monitors
network interface statistics such as bytes per second, have been implemented.
Twycross and Aickelin [Twycross and Aickelin 2006a] also implemented an
algorithm to validate Libtissue and have two types of cells, labeled type 1 and 2. Type 1
cells are designed to emulate two key characteristics of biological APC cells: antigen and
signal processing. In order to process the antigen, each type 1 cell is equipped with a
number of antigen receptors and producers. A cytokine receptor allows type 1 cells to
respond to the value of an external signal. Type 2 cells emulate three of the
characteristics of biological T cells: cellular binding, antigen matching, and response to
antigen. To accomplish this, each type 2 cell has a number of cell receptors specific for
type 1 cells, receptors to match antigen, and a response producer which is triggered when
antigen is matched. A tissue compartment is created and populated with a number of
 63
type 1 and 2 cells. The tissue compartment also stores antigen and signals received from
Libtissue clients, which provides the input data to the system. Type 1 cells ingest antigen
through their antigen receptors and present it on their antigen producers. The period for
which the antigen is presented is determined by a signal read by a cytokine receptor on
these cells. Type 2 cells attempt to bind with type 1 cells via their cell receptors. If
bound, receptors on these cells interact with antigen producers on the bound type 1 cell.
If an exact match between a receptor lock and antigen producer key occurs, the response
producer on type 2 cells produces a response.
Previously, the innate immunity has been modeled in a layered architecture as the
first layer of defense, and the adaptive as the second layer. However, Twycorss
[Twycross 2007], models the innate immune system as the controller of the adaptive
immune system. Singh and Nair [Singh and Nair 2005] outline a robot controller based
on a combination of the innate and adaptive immune systems. They test their approach
on a robotics problem in which a learner robot must learn to accurately follow a track. It
can sense when it is on the track and when it looses it. If it looses the track, it first tries to
find it on its own and then requests the assistance of a helper robot, who will guide it
back to the track. The general idea is to have the learner robot learn to navigate weak
portions of the track autonomously, without losing the track and having to be guided back
by the helper. The proposed immune system has two type of response governed by
separate innate and adaptive subsystems. As the learner travels around the track it sees
the track through a simple onboard infrared sensor, and is able to determine when it is on
the track, losing the track, or has lost the track. The adaptive component uses a clonal
selection algorithm to determine the optimal velocity when the learner senses it is losing
 64
the track. The innate immune system, which uses a behavior arbitration mechanism, is
activated when the learner senses it has lost the track.
The system of [Kim et al. 2005a] captures syscalls (antigens) by using a system
call policy checker tool. The cooperative automated work response and detection
immune algorithm (CARDINAL) [Kim et al. 2005b] system consists of periphery and
lymph node processes. Both processes reside on a monitoring host and any host running
these two processes becomes a part of an artificial body which CARDINAL monitors.
The periphery is comprised of DCs and various types of artificial T cells and they directly
interact with input data that exists as a part of the periphery. DCs gather and analyze the
input data and carry their analysis results to the lymph node. At the lymph node, na?ve T
cells are created which subsequently differentiate into various types of effectors T cells
based on the input data analysis results continuously passed from DCs. Within
CARDINAL, effector T cells are automated responders that react to worm related
processes in the periphery. Effector T cells are assigned to a response target, a response
type, and the number of peer hosts polled. Before the effector T cells migrate from the
lymph node to the periphery, they interact with other effector T cells passed from peer
hosts. This interaction allows locally generated effector T cells to determine whether
they should perform assigned types of responses or not, and the numbers of peer hosts to
be polled if they decide a response is appropriate.
The work of Burgess [Burgess 1998] is inspired by the Danger Model.
Dangerous programs are detected by the damaging effects they have on the system.
Burgess makes the analogy between program termination and biological apoptotic or
necrotic cell death. Programs that terminate normally usually generate a SIGCHILD
 65
signal, whereas programs that terminate abnormally often generate a SIGABRT or
SIGSEGV signal. Normal or abnormal process termination signals can be seen as similar
to signals produced by biological cells undergoing apoptosis or necrosis respectively.
Burgess has developed Cfengine [Burgess 2000], an autonomous agent and a middle-to-
high level policy language for building expert systems to administrate and configure large
computer networks. In Burgess?s adapted danger model, emphasis of AIS are put on an
autonomous and distributed feedback and healing mechanism, triggered when a small
amount of damage could be detected at an initial attacking stage. Cfengine automatically
configures large numbers of systems on a heterogeneous network with an arbitrary degree
of variety in the configuration. After a human administrator initially specifies
configuration policies at a very general level using an expert system shell, the system
automatically monitors the state of each system and adapts specified policies. Any
change in a policy immediately triggers the modification of other policies affecting
different hosts. An agent framework which employs an expert system that locally
optimizes the maintenance of each local host in a distributed environment is used.
[Burgess 2000; Burgess 2001] reports that using Cfengine would save administrator?s
time, scales well and imposes minimum load. When Cfengine runs, it applies a
configuration policy suitable for the classes of monitoring hosts and resources. The class
based generic policy is then locally optimized as Cfengine continues to change the policy
depending on what is locally observed.
A sophisticated anomaly detection engine was added recently to Cfengine along
with several new features [Burgess 2002; Burgess 2004a; Burgess 2004b]. A statistical
filter using a time-series prediction was used to detect the significance of deviation. The
 66
symbolic content of observed events determines how the system should respond. A
statistical anomaly was considered a danger signal and the content of the observed events
characterizes the internal degree of the signal. Scalability of the anomaly detection
component is increased by incrementally updating the mean and variance of the sampled
events. Usually events may represent the number of users, the number of processes,
average utilization of the system (load average), and number of incoming and outgoing
connections based on each service. Furthermore, [Begnum and Burgess 2003] extended
Cfengine by employing the mechanism from pH [Somayaji 2002]. They combined
signals from the two systems and intended that pH would be able to adjust its monitoring
level based on inputs from Cfengine, and Cfengine would be able to adjust its behavior in
response to signals from pH.
[Sarafijanovic and Le Boudec 2004] extended their earlier work on mobile ad-hoc
networks [Le Boudec and Sarafijanovic 2003; Le Boudec and Sarafijanovic 2004;
Sarafijanovic and Le Boudec 2003] and considered packet loss in the network as a danger
signal. In their system the danger signal is used to stop the relevant antigens entering the
NS process. The sequences collected at the nodes belonging to the route at the time and
where the packet loss is observed are considered as non-self antigens. These non-self
antigens are not passed to the detector generation process of the NS algorithm. In
addition, danger signals are used as co-stimulation signals confirming successful
detection through a detector. Good performing detectors become memory detectors.
Their results indicated that the use of danger signals strongly impacted on the reduction
of false positive error rates and that adding memory-detectors also improved detection
rates.
 67
Pagnoni and Visconti?s [Pagnoni and Visconti 2005] NAIS intrusion detection
system is inspired by innate immune mechanisms. Their immune system is as a
multilayer defense system, and the innate immune system as the first line of defense
which is able to recognize self quickly. Their system compiles a list of all observed
process names during a training period containing only normal usage. A set of ?digital
macrophages? is then created which monitor the system and are activated and generate an
alert when they observe any previously unseen process name.
4.6.4. Other Algorithms
Although negative selection and the danger theory are the most popular
approaches in AIS for intrusion detection, some researchers choose to create AIS based
on alternative ideas. [Forrest et al. 1996] aimed to build an IDS based on an explicit
notion of self within a computer system. The system was host-based, examining
specifically privileged processes. The system collected self-information in the form of
root user sendmail (a popular UNIX mail transport agent) command sequences to
construct a database of normal commands. Then, sendmail commands were examined
and compared with entries in this database. The time complexity for this operation was O
(N) where N is the length of the sequence. A command-matching algorithm was
implemented and compared with the defined behavior in the database. Intrusions were
detected when the level of mismatched exceeded a predefined threshold value.
[Hofmeyr, Forrest and Somayaji 1998] worked on improving anomaly-based IDS.
Misbehavior in privileged processes was examined and system call traces were presented
in a window of system calls, a value of six selected by a trial-and-error. This window
was compared against a database of normal behavior, stored as a tree structure, and then
 68
compiled during a training period. If a deviation from normal behavior was seen, then a
mismatch was generated. A sufficiently high level of mismatches generated an alert.
The system was able to detect all intrusions, scaled well as well as being able to the find
the optimum sequence length and mismatch threshold. The results suggested that this
approach could work using data from both real and controlled environments.
[Stillerman, Marceau and Stillman 1999] introduced an immunity-based intrusion
detection approach that was particularly applicable to Common Object Request Broker
Architecture (CORBA) applications. CORBA is a popular common messaging middle-
ware that enables the communication of distributed objects for distributed applications.
The authors employed the same approach reported in [Hofmeyr, Forrest and Somayaji
1998] to detect a misuse attacks performed by a legal user of the system. The
experimental results showed that the system was able to detect anomalies caused by this
attack without high false positive error rates.
[Dasgupta 1999] provided the conceptual view and a general framework of a
multi-agent anomaly based intrusion detection system and response in networked
computers. The immunity based agents in the system roamed around nodes and
monitored network situation. Each agent can recognize others activities and can take
appropriate actions according to its predefined security policies. The agent can adapt to
its environment dynamically and can detect novel and known attacks. Network activities
were monitored on the user, system, process and packet levels.
4.7. AIS Based Intrusion Detection Systems ? Summary

There are several systems implemented utilizing one or more immune-inspired
algorithms or concepts. Table 4.1. summarizes the relationship between artificial immune
 69
algorithms employed to implement different AIS systems and the corresponding
biological immune features that inspired such development [Kim et al. 2007].
Table 4.2. presents the AIS based IDSs coupled with the artificial immune
algorithms and concepts that were used.
In general, the most commonly used mean of implementing an immune system is
through the use of a self-non-self model.

Human Immune
Features Artificial Immune Algorithms/Concepts
Distributed Idiotypic Immune Network, Multi-Agent Systems, Negative Selection
Multi-layered Multi-Agent Systems, Co-Stimulation
Self-Organized Gene Library Evolution, Clonal Selection, Negative Selection, Local Sensitivity by Cytokine
Lightweight Memory Cells, Imperfect Detection, Dynamic Cell Turnover
Diverse MHC(Permutation Mask)
Disposable Cell Life Span,
Self/Non-Self
Detection Negative Selection, Tolerization Period

Table 4.1. The Relationship between Biological Immune Features and Artificial
Immune Algorithms [Kim et al. 2007]

 70
AIS
M
ult
i a
ge
nt
Ne
ga
tiv
e s
ele
cti
on

Co
-st
im
ula
tio
n
Ge
ne
 lib
ra
rie
s
Cl
on
al
sel
ect
ion

Lo
ca
l s
en
sit
ivi
ty
ge
ne
ra
liz
ed
 de
tec
tio
n
Dy
na
mi
c c
ell
 tu
rn
ov
er
Pe
rm
uta
tio
n m
ask

Ce
ll l
ife
 sp
an

To
ler
iza
tio
n p
eri
od

Im
mu
ne
 m
em
or
y
Id
iot
yp
ic
im
mu
ne

ne
tw
or
ks

Re
sp
on
se
Se
lf-
no
n-s
elf

[Forrest et al. 1996] X
[Hofmeyr, Forrest
and Somayaji 1998] X
[Hofmeyr 1999] X X X X X X X X X X
[Balthrop, Forrest
and Glickman 2002;
Balthrop et al. 2002]
 X X X X X X X X
[Kephart 1994;
Kephart et al. 1998] X X X
[Burgess 2000;
Burgess
2001; Begnum and
Burgess 2003]
X X X X
Table 4.2. Summary of immune-based algorithms used by the complete systems
[Kim et al. 2007]
 71
CHAPTER 5
 INVESTIGATING INTRUSION DETECTION SYSTEMS THAT USES TRAILS
OF SYSTEM CALLS
5.1. Introduction
Intrusion detection using trails of system calls has been studied extensively over
the years. Several immune-inspired learning based approaches for host-based intrusion
detection have been developed especially for fixed length subsequences or patterns
[Forrest et al. 1994] [Forrest et al. 1996] [Forrest, Hofmeyr and Somayaji 1997]
[Hofmeyr and Forrest 2000] [Hofmeyr, Forrest and Somayaji 1998] [Warrender, Forrest
and Pearlmutter 1999]. For normal patterns, behavior can be generated by executing an
application under various normal scenarios. In such approaches anomalous behavior is
detected by analyzing sequences of system calls against normal behavior.
System-calls representing normal behavior are grouped into sequences and a
database is constructed and patterns are stored, for example, as a tree during training.
During detection phase, sequences of system calls are compared to this database using a
Hamming distance metric, and a sufficient number of mismatches generate an alert. No
user definable parameters are necessary, and the mismatch threshold is automatically
derived from the training data. [Somayaji 2000] developed the immune-inspired process
homeostasis (pH) intrusion prevention system which detects and actively responds to
 72
changes in program behavior in real-time. In his method, sequences of system calls are
gathered for all processes running on a host and compared to a normal database using a
similar immune-inspired model. However, if an anomaly is detected, execution of the
process that produced the system calls will be delayed for a period of time. Similar to the
process of generating fixed length detectors, variable length patterns [Jiang, Hua and Oh
2003] [Jiang, Hua and Sheu 2002] [Wespi, Dacier and Debar 1999] [Wespi, Dacier,
Debar 2000] can be generated to represent normal behavior.
Many proposals for host-based anomaly intrusion detection can be found in
literature. There are those that are based on system call sequences [Forrest et al. 1994][
Forrest et al. 1996][Hofmeyr, Forrest and Somayaji 1998][Somayaji 2002][Somayaji
and Forrest 2000][Warrender, Forrest, and Pearlmutter 1999][Wespi, Dacier and Debar
2000], data mining [Lee and Stolfo 1998][Lee, Stolfo, and Mok 1999], neural networks
[Ghosh, Schwartzbard and Schatz 1999], finite automata [Michael and Ghosh 2000],
hidden Markov models [Ourston 2002], and pattern matching in behavioral sequences
[Lane and Brodley 1997][Lane and Brodley 1999].
5.2. Experiment Setup
Three systems that are based on system call sequences are chosen and are
implemented with Microsoft Visual Studio 2005 as a win32 console application.
Sequence method based IDS, lookahead-pairs method based IDS and variable length with
overlap relationship method based IDS have been implemented. For off-line testing of
the implemented algorithms in this dissertation, the login application was investigated
and its input data sets for both training and testing were obtained from the website of the
 73
University of New Mexico (http://www.cs.unm.edu/~immsec). The login data set was
used to detect Trojan horse attacks.
At this web site there are several trace files. Each trace is the list of system calls
issued by a single process from the beginning of its execution to the end. Trace lengths
vary widely because of differences in program complexity and because some traces are
daemon processes and others are not. Each trace file (*.int) lists pairs of numbers, one
pair per line. The first number in a pair is the PID of the executing process, and the
second is a number representing the system call. Note that there may be multiple
processes within a single file, and they may be interleaved.
Data input pre-processing was conducted on these files to make them suitable for
processing by the three systems. To ensure unity across results, the same files were
inputted to the three systems in the same order and in the same format. There were two
normal execution logs of the login application. Each log consists of the traces of multiple
processes interleaved in the same log file. In general, each line in the log file listed pairs
of numbers. The first number is the PID of the executing process and the second number
is the ID of the system call. We performed pre-processing to the two log files to group
entries of the same PID together in one file in the same order they appeared in the
original log file. As a result, the first log contained 16 traces and the second contained 8
traces. For example, the log files resulted in several files such as int_509.txt, int_531.txt,
int_625.txt, etc. where ?int? indicates that the file hold integer values. The number, such
as ?531?, is the PID and ?.txt? is the file type. Furthermore, the file ?int_531.txt? holds
only integer values of the system calls that have been carried out by the process with the
PID= 531. All traces were used to train the 3 implemented systems and to generate their
 74
pattern databases. To test the systems, a stricter test of Trojan horse attack that was
designed by the University of New Mexico called ?home-grown? was used. During
evaluation, the testing input file is read one system call at a time. It goes through a pre-
processing stage which translates a system call to its corresponding ID and checks its
availability in the pattern DB.
5.3. Sequence Profile Method
5.3.1. Background Information
According to [Forrest et al. 1996] [Hofmeyr, Forrest and Somayaji 1998], a set of
system call sequences that can be produced by an application can be specified. These
sequences are determined by the ordering of system calls in the set of the possible
execution paths through the program text during normal execution. Despite being huge,
the short range ordering of system calls appears to be consistent, and can be used to
define normal behavior. To build up the normal database, a window of size k is slid
across the trace of system calls recording which system call follow which within the
sliding window. For example, the sequence of system calls {open, read, mmap, mmap,
open, getrlimit, mmap, close} with a window size k=4 will produce a database shown in
Table 5.1. In general, the input sequence of system calls will be scanned, one system call
at a time, storing the current system call and a number of system calls up to window size
k following this current system call. Each sub-sequence is stored as a row in a temporary
table until all sequences have been processed. Entries (rows) in the table may appear
more than once, such repeated entries are removed, keeping only one instance of the sub-
sequence. Furthermore, entries starting with the same system call are grouped together as
shown in Table 5.2. Finally, entries in the final table are stored in a tree structure. Each
 75
current system call is the root of the tree and the children of the root are expended
depending on which system call appears next while training. .
In the testing phase, when comparing against the normal system call profile, the
sequence {open, fstat, mmap, execve} will be signaled as anomalous because this
sequence is not listed in the normal database. There are many ways to reject this
sequence, depending on the security requirements of the application that is monitored.
Usually a mismatch threshold is associated with anomaly identification. For example,
with a window size k = 4 and the sequence {open, fstat, mmap, execve}, four threshold
values could be employed depending on how many mismatch system calls within the
sequence should be anomalous to flag an intrusion. If we have high security
requirements, only one anomalous system call within the sequence will flag an intrusion.
However, if we are more lenient, then 2 or even 3 system calls can be flagged as a
mismatch and still not be considered as an intrusion.

Current system call Position 1 Position 2 Position 3
open read mmap mmap
 Read Mmap Mmap Open
Mmap Mmap Open Getrlimit
Mmap Open Getrlimit Mmap
Open Getlmimit Mmap close
getrlimit mmap close
mmap close
close
Table 5.1. Expanded database produced when K= 4 and for the normal sequence
{open, read, mmap, mmap, open, getrlimit, mmap, close} [Forrest et al. 1996][
Hofmeyr, Forrest and Somayaji 1998].

 76

Current system call Position 1 Position 2 Position 3
Open read mmap mmap
 getrlimit mmap close
Read mmap mmap open
Mmap mmap open getrlimit
 close
 open getrlimit mmap
Getrlimit mmap close
Close
Table 5.2. Grouping entries that start with the same system call [Forrest et al. 1996][
Hofmeyr, Forrest and Somayaji 1998].

5.3.2 Implementation
The pattern generation idea was adapted from [Forrest et al. 1996]. Forrest et al.
stored their pattern normal database as a tree; however our normal patterns- database is
implemented as a hash table of the size of NUMBER_SYSCALLS representing the total
number of system calls. This number can be increased and decreased as desired with no
effect on our implementation. Each system call is mapped to an entry in the hash table.
Each entry in the table is a pointer to a linked list of all patterns starting with this system
call. All sequences are of the same length which is equal to window size.
The datasets used for training the system were obtained from the University of
New Mexico. However, our system has the ability to perform a pre-processing stage of
translating the system call sequences to their corresponding PID. This is achieved by
reading a system call in its original form and translating it according to a hash table to its
 77
corresponding PID. The content of the translation hash table is also available at the
university?s website.
The steps performed in the training phase are as follows:
1. Input training files were read one at a time and either processed immediately or
stored in a linked list of linked lists to allow easier processing. The first linked
list points to the first system call of each training file. Then the content of each
file is stored in another linked list. Storing input in such a data structure is not
necessary but facilitates the processing of the input data.
2. A 2 dimensional array is created to store the subsequences generated when
applying the sequence method concept depending on a pre-specified window size.
The number of columns of this 2D array is equal to the window size and the
number of rows is proportional to the number of system calls in all training files
and window size.
3. After filling the initial database with the input training file, the entries in the table
are scanned to remove redundant entries.
4. Finally, the content of the table are stored in a hash table data structure similar to
Figure 5.1. The size of the hash table is equal to the number of system calls that
can be generated by an application. Each entry in the table is a pointer to a linked
list of a data structure (a 1 dimensional array whose size is equal to the window
size) and a pointer to the next pattern (sub-sequence). Entries are added to the
hash table as appropriate.
 78

Figure 5.1. Hash table holding the sequence method profile entries. All entries are
of equal size and are equal to the window size.

The steps performed in the testing phase are as follows:
1. Start logging testing activities such as time, the subsequence currently under
consideration, detection rate, etc.
2. Open the log file containing intrusive signatures for reading.
3. We read one system call at a time until a subsequence of appropriate length (equal
to window size) is reached.
4. Compare the current subsequence with entries in the normal database and if it
does not appear in the normal database, we increment a counter representing the
threshold of maximum read mismatches. The system can display mismatches as
they are discovered, or display a mismatch if the total number of mismatches
reaches to a threshold.
5. Finally, when we finish processing the tested log file we display the following:
square4 Testing duration.
square4 Number of sequences handled while testing.
square4 Number of sequence anomalies.

256
1
2
3
4
5
4 6 90 90
1 44 90 2 1 40 33 21
 79
square4 Mismatch anomaly which indicates the percentage of mismatches with regard
to the total number of sequences handled while testing the system.
square4 Number of sequences in the normal database.
square4 Space cost while running the normal database.
square4 Space cost while saved to disk of the normal database.
The following were considered when implementing the system:
square4 In our experiments, we have scanned the entire log testing file and counted how
many times intrusive instances (mismatches) had occurred. Afterwards, we
displayed the mismatch anomaly value which is equal to the total number of
mismatches found divided by the total number of sequences handled while
testing.
square4 In the hash table of the normal database, each entry points to a linked list of all
possible normal patterns seen while training the system. This linked list will be
searched completely before deciding if there is a mismatch or not. If, for example,
the current tested sequence appears to be similar to a sequence in the normal
database but disagree with the last or middle system call. A mismatch will not be
declared unless it is the last tested sequence in the linked list. This is because
even though this sequence results in a mismatch, another sequence matching the
tested sequence may exist afterwards.
Sample code of the implemented sequence method IDS can be found in appendix A.

 80
5.3.3. Performance
In general, there is no correlation between the actual number of system calls in the
input training file and the number of sequences in the normal database. This is because
repeated patterns will be removed from it.
From table 5.3., we noted that the number of sequences increases as the window
size increases but does not follow a linear pattern. Originally, the number of patterns in
the database decrease by one as the window size increases by one since more system calls
builds a pattern and fewer patterns are required. This is evident from the log file
generated by our system. A sample of the output of the testing log files can be found in
Appendix B. In this log file we display the number of rows (patterns) before removing
redundant data and after. As we increase the widow size from 3 to 4, the number of
patterns before removing redundant data decrease by 1 and the number of patterns after
removing redundant data increase. For the input file int_509.txt, as shown in Table 5.4.,
and as the window size is increasing from 3 to 5 we find that the number of rows
decreases by one. However, since we are building an efficient data base of normal
behavior and because a number of similar patterns exist in the same input training file
and among other training files, the final number of rows that are added to the database are
different. Such number is affected by the number of redundant rows.
From table 5.3., the space cost while saved to disk is less than while running
because we are saving integer values to a file whereas while running we need to consider
the hash table and structures holding pattern information. The number of sequences in
the testing file decreases by one as the window size is increased by one because removing
similar entries are not performed here.
 81
The mismatch % is calculated as the number of total number of mismatches
divided by the total number of sequences handled while testing. The reason the
mismatch % threshold increases as the window size increases is because the system call
that causes a mismatch starts to appear in more sequences created from the testing file.
For example, suppose we have the following normal sequence {1, 2, 3, 4, 5, and 6} and
testing sequence {2, 9, 3, and 4} the output produced when performing sequence method
intrusion detection is shown in Table 5.5... As the window size increases, the system call
causing the mismatch starts to appear in more rows from the testing file and the number
of sequences in the testing log file tends to decrease. Therefore, the mismatch % which is
equal to the number of mismatches divided by the number of sequences in the testing log
files starts to increase.
Figure 5.2. shows an increase in the space cost of the system in both ?while
running? and ?while saved to disk? as the number of sequences (patterns) stored in the
normal database increases. In general, the space cost while running is higher than while
saved to disk because while running we are considering the space cost of the hash table,
linked lists, and arrays used to store the different data structures of the normal database.
However, we are only saving to disk the content of the patterns which is a list of integer
values. When the number of sequences is less than 400, the increase in space cost is
slower than the increase in space cost as. This is because the size of the array holding
each sequence is larger and the number of arrays required to hold the sequences is larger.
Meaning that more arrays are needed to store the pattern sequences and larger arrays are
needed to hold the longer sequences as shown in table 5.3.
 82

sys
calls
/ W
sequences
in normal
DB
space cost
while
running
(bytes)
space cost while
saved to disk
(bytes)
sequences in
testing
Mismatch %
threshold
2 142 4548 1136 1349 1.18
3 199 12740 2388 1348 2.22
4 235 22564 3760 1347 3.41
5 264 33796 5280 1346 4.46
6 291 46564 6984 1345 5.65
7 318 61060 8904 1344 6.84
8 341 76388 10915 1343 8.64
9 359 91908 12924 1342 10.13
10 375 108004 15000 1341 11.41
11 389 124484 17116 1340 12.46
12 402 141508 19296 1339 13.52
13 413 158596 21476 1338 14.42
14 423 175972 23688 1337 15.26
15 433 193988 25980 1336 16.09
16 441 211684 28224 1335 16.85
17 447 228868 30396 1334 17.61
18 451 245348 32472 1333 18.3
19 455 262084 34580 1332 18.99
20 459 279076 36720 1331 19.61
21 461 295044 38724 1330 20.15
22 463 311140 40744 1329 20.69
23 465 327364 42780 1328 21.23
24 467 343716 44833 1327 21.7
25 469 360196 46900 1326 22.17
26 471 376804 48984 1325 22.64
27 473 393540 51084 1324 23.11
28 475 410404 53200 1323 23.58
29 477 427396 55332 1322 24.05
30 479 444516 57480 1321 24.53
31 481 461764 59644 1320 25
32 483 479140 61824 1319 25.39
Table 5.3. Sequence method performance across several window sizes.

 83
space cost of "login" application dataset
with sequence method
0
100000
200000
300000
400000
500000
600000
0 100 200 300 400 500 600
number of sequences
by
tes
space cost while running (bytes)
space cost while saved to disk (bytes)

Figure 5.2. Space cost while running and while saved to disk as the number of
sequences increases for the ?login? application dataset with sequence method.

Window size # rows before removing
redundant data
rows after removing
redundant data
3 362 181
4 361 203
5 360 226
Table 5.4. number of rows before and after removing redundant entries while
running sequence method IDS across different window sizes.

W Rows in
normal
DB
Rows from
testing file
Number of
mismatches
Number of
sequences in
testing log file
Mismatch
%
2 1,2
2,3
3,4
4,5
5,6
2,9
9,3
3,4
2 3 66%
3 1,2,3
2,3,4
3,4,5
4,5,6
2,9,3
9,3,4
2 2 100%
Table 5.5. Example showing how the window size affects the value of mismatch %
while running sequence method IDS.

 84
5.4. Lookahead-Pairs Profile method
5.4.1. Background Information
Somayaji [Somayaji 2002] attempted to employ a different approach to store the
sequences of system calls, called the lookahead-pairs method. With this technique a
profile of the program's behavior consists of the pairs formed by the current and a past
system call(s) depending on the window size chosen. For example, with a window size w
= 4 and the trace of system calls :{ execve, brk, open, fstat, mmap, close, open, mmap,
munmap} the generated subsequences are shown in Table 5.6... In Table 5.7., the
sequence representation is compressed by joining together lines with the same current
value. From this table, three sets of lookahead pairs are generated creating the
lookahead-pairs profile database that is shown in Table 5.8... It consists of pairs of the
current system call and the system calls in position 1 (placed in row =2) and called set 0,
pairs of the current system call and the system calls in position 2 (placed in row =3) and
placed in set 1, and pairs of the current system call and the system calls in position 3
(placed in row =4) and placed in set 2.
This table is then stored using a fixed size bit array(s). Each set (row) in the table
is stored in a bit array of the size of (NUM SYS CALLS * NUM SYS CALLS). The
complete database is stored in multiple array equal to window size and the size of each
array is equal to (NUM SYS CALLS * NUM SYS CALLS). To efficiently take
advantage of bit manipulation of bytes on Linux and UNIX machines, a window size of 9
or 17 is preferred. This is because a window size of 9 means that we will end up with 8
sets that can be stored in a byte array = 8 bit arrays.
 85
In the detection phase, the sequence {open, fstat, mmap, execve} will be
identified as anomalous because the lookahead pairs (execve, mmap) (row = 2), (execve,
fstat) (row = 3), and (execve, open) (row = 4) are all not present in table.

Table 5.6. a sample profile generated for the system call sequence {execve, brk,
open, fstat, mmap, close, open, mmap, munmap} [Somayaji 2002].

Table 5.7. a sample lookahead pair profile, with the pairs represented implicitly.
Note that there are multiple entries in the open and mmap rows [Somayaji 2002].

 86

Table 5.8. A sample lookahead pair profile, with the pairs represented explicitly
[Somayaji 2002].

5.4.2. Implementation
The patterns? storage idea was adapted from [Somayaji 2002] where all possible
lookahead-pairs patterns can be stored in (window size - 1) bit arrays. An ideal window
size in Somayaji?s implementation was 9 since 9 -1 = 8 sets which can be stored in a c x c
byte array, where c is the number of system calls. On the other hand, our implementation
took advantage of the bit array in the <bitset> library. Here the values can be stored in a 1
dimensional array format and there is no limitation on the number of sets to store or
windows size.
The formula used to access individual points in the array is ((row value -1) *
WINDOW_SIZE) + column value + (WINDOW_SIZE * WINDOW_SIZE * array
number). Figure 5.3. shows how this formula is used to find the correct corresponding
cell in a 1 dimensional array that is equivalent to a value in one of the 2 dimensional bit
arrays.
 87

Figure 5.3. Example explaining the mapping equation from one entry in a two
dimensional array to a one dimensional array.

If at a given set there is a relation between two system calls, the location is set to
ON. At testing time, this location is checked, if in the testing profile two system calls
show that there is a relation but their connecting location is set to OFF an intrusion is
detected.
In general the following steps are carried out when training the system:
1. Input training files are open for processing.
2. We read one file at a time and we read a sequence whose length is equal to
WINDOW SIZE.
3. Ws start creating the pairs by pairing the current system call and the previous
system calls. Removing redundant entries is not important because if a repeated
entry is processed it will set the cell of the 1 dimensional array again which has no
effect.
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
Set 0
Set 1
Location = ((row value -1) * WINDOW_SIZE) + column
value + (WINDOW_SIZE * WINDOW_SIZE * array
number)
Example 1:
(Location 6 in 1D) ?= (row : 2 , col: 2, set: 0)
((2-1) * 4) + 2 + (4*4*0) = 6 (TRUE)
Example 2:
(Location 24 in 1D) ?= (row: 2, col : 4, set 1)
((2-1) * 4) + 4 + (4*4*1) = 24 (TRUE)
 88
In the testing phase the following will be performed:
1. The testing file is open for reading. We conduct, on line processing to this file by
reading and creating a subsequence equal to WINDOW SIZE, one subsequence at
a time.
2. We generate the associated pairs and then test them against the database. If the
cell is not set then there is a mismatch.
Sample code of our implementation to lookahead-pairs method intrusion detection
system can be found in Appendix C. Sample of a log file of running the lookahead pairs
method based IDS can be found in Appendix G.
5.4.3. Performance
Table 5.9. shows the performance of the lookahead-pairs method when the
window size is increased from 2 to 32. The number of pairs in the normal DB and testing
file and the space cost of maintaining the normal database while running and saved to
disk increases as window size increases. In general, the number of pairs of the normal
database increases as the window size increases and it depends on how the data in the
normal file relate. If more entries are similar then the number of pairs tends to be
smaller. Space cost while running is equal to the size of bit array used. Different from the
original implementation of lookahead-pairs method, our implementation does not favor a
specific window size. The space cost while saved to disk is smaller than while running
because in our implementation we are only storing the locations that are set to 1. Of
course, if the locations that are set to one increase then the cost while saved to disk will
increase having no affect on cost while running. The number of pairs being tested
increase as the window size increases because as the sequence length under consideration
 89
gets longer the number of pairs generated for it also increases. Finally, the mismatch %
is equal to the number of pairs that raise a mismatch divided by the total number of pairs
handled while testing.
Figure 5.4. shows an increase in the space cost of the system in both while
running and while saved to disk as the number of pairs stored in the normal database
increases. The slope of increase for the space cost while running is higher than while
being saved to disk. This is because while running, the space cost is equal to the number
and size of arrays used to store the relationship between pairs. This includes array
locations that are set to 1 (there is a relationship between associated pairs) and set to 0
(there is no relationship between associated pairs). However, the space cost while saved
to disk is only saving the locations that are set to 1 which is dependent on how many
locations in the arrays are set to one. The increase in number of pairs is also related to
the window size as shown in table 5.9.
Space cost
0
50000
100000
150000
200000
250000
300000
0 2000 4000 6000 8000 10000 12000
number of pairs
by
tes
space cost while running (bytes)
space cost while saved to disk
(bytes)

Figure 5.4. Space cost while running and while saved to disk as the number of pairs
increases for the ?login? application dataset with lookahead-pairs method.
 90

sys
calls
/ W
pairs in
Normal DB
space cost
while
running
(bytes)
space cost while
saved to disk
(bytes) # pairs in testing
Mismatch %
threshold
2 344 8192 1376 1349 1.18
3 687 16384 2748 2697 1.44
4 1029 24576 4116 4044 1.66
5 1370 32768 5480 5390 1.95
6 1710 40960 6840 6735 2.29
7 2049 49152 8196 8079 2.65
8 2387 57344 9548 9422 3.01
9 2724 65536 10896 10764 3.39
10 3060 73728 12240 12105 3.77
11 3395 81920 13580 13445 4.06
12 3729 90112 14916 14784 4.34
13 4062 98304 16248 16122 4.56
14 4394 106496 17576 17459 4.78
15 4725 114688 18900 18795 4.91
16 5055 122880 20220 20130 5.01
17 5384 131072 21536 21464 5.12
18 5712 139264 22848 22797 5.26
19 6039 147456 24156 24129 5.37
20 6365 155648 25460 25460 5.49
21 6690 163840 26760 26790 5.56
22 7014 172032 28056 28119 5.71
23 7337 180224 29348 29447 5.84
24 7659 188416 30636 30774 5.97
25 7980 196608 31920 32100 6.11
26 8300 204800 33200 33425 6.26
27 8619 212992 34476 34749 6.4
28 8937 221184 35748 36072 6.56
29 9254 229376 37016 37394 6.65
30 9570 237568 38280 38715 6.78
31 9885 245760 39540 40035 6.89
32 10199 253952 40796 41354 6.99
Table 5.9. lookahead pairs method performance across several window sizes.

 91

5.5. Variable-Length With Overlap- Relationship Profile Method
5.5.1. Background Information
Due to the limitations found with fixed length patterns, Debar et al. [Debar et al.
1998] [Wespi, Dacier and Debar 1999] [Wespi, Dacier and Debar 2000] presented a
novel technique to build a table of variable length patterns based on the TEIRESIAS
algorithm [Rigoutsos and Floratos 1998]. The system comprises two main parts: an off-
line part, which corresponds to training the system and an on-line part, which
corresponds to the detection system. In the training phase, system calls are sorted and
then translated to an internal format for processing. Consecutive occurrences of the same
character are aggregated and duplicate sequences are removed. Finally, the pattern table
is generated by the pattern-extraction module.
Jiang et al. [Jiang, Hua and Oh 2003] [Jiang, Hua, and Sheu 2002] proposed an
intrusion detection system employing variable-length patterns with overlap relationship.
It modifies some limitations in the TEIRESIAS-based method in that: it refines the
definition of maximal patterns, identifies overlap relationships between patterns (inter-
and intra-pattern anomalies), and does not need a look-ahead threshold. The system
consists of two components: offline training and online detection parts. Each component
consists of the following modules:
1. Data collection module: for capturing and recording sequences of system calls.
2. Data preprocessing module: to translate system calls to its corresponding ID
and perform aggregation on data.
3. Pattern extraction module: to extract maximal patterns.
 92
4. Pattern overlap relationship identification module: organize patterns into
adjacency lists and indicate overlap relationship between patterns.
5. Pattern matching module: to identify any deviation.
In pattern extraction, the training sequences are scanned for each never-seen-
before system call e. Then the maximal patterns starting with e are identified in an
iterative manner. The algorithm first identifies instances of a corresponding system call
and assigns each instance an index denoted by a parenthesis as shown in Figure 5.5.(a)
for the system call 4. Initially, every instance of each system call e forms a 1-pattern
instance. Each i-pattern p is expanded to create i+1-patterns. The instances of each of
these patterns are stored in a data structure called pinstance set. Then the system call
instances immediately following each occurrence of p in the training set are inspected.
Three mutually exclusive types of instances of p can occur:
Type 1: the element of the pinstance set under consideration is at the end of the training
sequence and is the last system call in its corresponding sequence.
Type 2: the system call following the current system call in a sequence does not follow
the same system call in the other sequences.
Type 3: the system call following this system call also follows at least one other instance
of this system call.
Both type-1 and type-2 are considered maximal pattern candidates. Type-1
cannot be further expanded in the forward direction. Type-2 instances can be expanded
into i+1-patterns, but they will not be frequent patterns. Each type-3 i-pattern instances
can be expanded to create i+1-pattern instances. These i+1-pattern instances are grouped
into different pinstance sets according to their last system call.
 93

Figure 5.5. Steps of extracting maximal candidate and maximal patterns [Jiang,
Hua, and Sheu 2002].

From Figure 5.5(a), there are five instances of system call 4, labeled as 4(1), 4(2),
4(3), 4(4), and 4(5) and they are copied into pinstance_set0 in Figure 5.5(b). From Figure
5.5(a), 4(5) is of type 2 because it is the only one of the five pattern instances followed by
system call 18. System call 27 is added to the system calls in pinstance_set2 to expand
 94
the remaining pattern instances into 2- pattern instances. The same technique is applied
until no more expansion can be performed.
The system call sequence identified in the last pinstance_set6 is considered a
maximal pattern. At this point, candidate maximal patterns are examined. To be
classified as a maximal pattern, the pattern should 1) not be a subsequence of another
maximal pattern and 2) either the system call preceding the system call in the pinstance
set does not precede any other instance of p or it is at the beginning of the training
sequence. The final stage is to collect standalone instances that participate in 1-patterns
by scanning the training sequences and output such patterns in the longest possible form.
5.5.2. Implementation
We adapt the variable-length with overlap-relationship profile generation idea
from [Jiang, Hua, and Sheu 2003] [Jiang, Hua, and Sheu 2002]. In general, the process
of generating patters is very expensive in terms of processing and memory requirements.
However, it is only performed once and the finial generated pattern database can be
stored and accessed by the application with no need to repeat this process for the same
monitored application. Simply our pattern generation model will perform similar to the
following examples.
Example 1:
For the input training files:
T1: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17}
T2: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17, 18, 2, 5}
T3: {4, 18, 2}
 95
We will start scanning from T1 and its first system call 105. We are looking for
the longest maximal patterns starting with system call 105. Finally stand alone instances
are added to the pattern database.
The following patterns will be added to the database:
P1: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17} appear at least 2 times
P2: {18, 2} appear at least 2 times and although it appears at a subsequence of another
pattern, it appears at the end of the training sequence.
P3: {5} stand alone pattern because it appears one time in the training files and does not
belong to a pattern.
P4: {4} stand alone pattern because it appears one time in the training files and does not
belong to a pattern.
Example 2:
For the input training file:
T1: {90, 7, 2, 3, 90, 6, 1, 4, 90, 7, 2, 3, 90, 6, 1, 4, 90, 3, 5, 2, 6, 90, 3, 5, 1, 90, 3, 5, 2, 6,
90, 90, 115}
The system will divide the training sequence to the different pinstance
subsequences with respect to the system call 90.
The following are sample of the subsequences starting with the system call 90:
{90, 7, 2, 3} barb2right (1)
{90, 6, 1, 4} barb2right (2)
{90, 7, 2, 3} barb2right (3)
{90, 6, 1, 4} barb2right (4)
{90, 3, 5, 2, 6} barb2right (5)
 96
{90, 3, 5, 1} barb2right (6)
{90, 3, 5, 2, 6} barb2right (7)
{90} barb2right (8)
{90, 115} barb2right (9)
Subsequences 1, 2, 3, 4, 5, 7 are maximal sequences and one instance of the
repeated patterns is added to the pattern database. Subsequences 6, 8 and 9 are stand
alone sequences and are added to the pattern database.
The final database will contain the following patterns:
{90, 7, 2, 3}
{90, 6, 1, 4}
{90, 3, 5, 2, 6}
{90, 3, 5, 1}
{90, 90, 115} the sequences 8 and 9 are combined together since they follow each other
in the input training file and they are collected as stand alone instances in their longest
form.
Several test cases were used to investigate the performance of the implemented
system such as:
square4 The tested sequence is normal and matches patterns in the database.
square4 The tested sequence contains a number of mismatches.
square4 A system call in the tested sequence may not belong to any pattern and is an
invalid system call. This system call may appear at the beginning of the tested
sequence or in another position. If it is found, the system will continue to the next
system call and will start matching against other patterns in the database.
 97
square4 The tested sequence may expand across several patterns in the database. This can
be in different entries in the hash table or in the same entry.
square4 Contiguous mismatches up to a predefined threshold that are checked against one
pattern will be backtracked and checked against another entry.
 Our implementation differs from [Jiang, Hua, and Sheu 2002] in that:
1. Since we are doing extensive processing on the input training data, we decided to
store its content in a linked list (adjacency lists) of linked lists. Each node in the
original linked list holds the contents of one file.
2. Finding maximal patterns required the use of a data structure to hold the different
values of pinstance values. We have chosen to implement this process with a tree
structure where the left child is a one dimensional array and the right child may hold a
number of one dimensional arrays. Left children are not expanded since they
represent a maximal pattern candidate. The right children are expanded further until
we have a right child holding only two subsequences. The last left child is considered
a maximal pattern and all left children are traversed to find another possible maximal
pattern. A pattern p is considered maximal if there is no other pattern q that contains
p and has the same number of occurrences. Also, if a sequence p appears as a
subsequence of q, p can be chosen if its last system call is followed by a NULL value.
For example, both {{4, 27, 17, NULL}, {4, 27, 17, 18, 2, NULL}} are considered
maximal.
3. Identifying type 2 was not simple as explained in the paper. For example,
identifying only one subsequence as type1 or type2 was not true. Furthermore, even
if one subsequence was identified as type1 or type2, this did not mean that the
 98
remaining subsequences were of type3. Type3 subsequences created disjoint groups
where each group can be expanded and processed separately. We handled, for
example, the following training sequences:
{{90 1 2 3 4}, {90 1 2 3 4}, {90 1 2 3 4}, {90 5 6 7 8},
{90 9 10 11 12}, {90 5 6 7 8 9 10 11}, {90 5 6 7 8 9 10 11}}
Such sequences required that the grouped sequences of the subsequence {90 1 2 3 4}
be completely processed. Then the system ?concurrently? process the grouped
sequences of {{90 5 6 7 8}, {90 5 6 7 8 9 10 11}}. This process is repeated until all
subgroups- if they exist- are processed.
4. The previous example also introduced a situation where not only would sequences
be grouped into subgroups but also a subgroup could be further grouped into
subgroups. Our solution was to insert each subgroup in a queue and process them
until no groups exist. Figure 20 elaborates on this problem.
5. We included a variable BELONG_TO_A_PATTERN for every system call in the
input file, to avoid re-processing it while looking for the never-seen-before system
call. Meaning that a never-seen-before system call should be a system call that does
not belong to a pattern and was not previously processed.
6. Patterns are stored in a hash table pointing to sequences of different lengths as
shown in Figure 5.7.

 99

(a)

(b)

(c)

Figure 5.6. (a) different subsequences starting with system call 90 can be expanded
concurrently. (b) Similar subsequences are grouped together. (c) Each group of
sequences are placed on a queue and processed until all subsequences are examined.

90
7
2
3
90
6
1
4
90
6
1
4
90
7
2
3
90
3
5
2
90
3
5
2
90
3
5
1
Queue
90
7
2
3
90
6
1
4
90
6
1
4
90
7
2
3
90
3
5
2
90
3
5
2
90
3
5
1
90 90
115
90
7
2
3
90
6
1
4
90
6
1
4
90
7
2
3
90
3
5
2
90
3
5
2
90
3
5
1
90 90
115
 100

Figure 5.7. Hash table storing Variable-Length with Overlap- Relationship Profile
Method entries. Each subsequence is of a variable size.

7. In some cases a sequence will be matched with a pattern in the normal data base
because it starts with a specific system call. However, as we continue matching the
rest of the string, a number of consecutive mismatches may start to accumulate. If
this exceeds a threshold value, for example, 2 or more, then our system will
automatically go back to the first system call causing the mismatch and match it
against another appropriate pattern. In such a case we backtrack to make sure that the
previously accepted system calls do not cause mismatches especially if they did not
completely match the sequence. For example, if we are testing the following
sequence {4, 1, 40, and 3} against the database in Figure 5.7., we find that the system
call 4 has an entry in the database. However, as we test the remaining system calls, a
number of mismatches will start to accumulate. If we chose in our system to start
checking other patterns if two consecutive mismatches happen, then we will
backtrack to system call 1 in our input training file and then check its entry in the
pattern database. In this case the sequence {1, 40, and 3} does exist and only one

256
1
2
3
4
5
4 6 6 70 22 3
1 44 90 2 1 40 3
 101
mismatch is identified which is for the system call 4. The sample code of our
implementation of variable-length-with-overlap-relationship method can be found in
Appendix D and Appendix I shows the generated patterns.
5.5.3. Performance
The variable length with overlap relationship intrusion detection system was run
on the datasets obtained from the website of the University of New Mexico
(http://www.cs.unm.edu/~immsec). The login data set was used to detect Trojan horse
attacks. Since the patterns generated with this method are variable length, they don?t
depend on a window size and require only one run to the program. The data obtained
from such a run is presented in table 5.10. In general the total time to perform testing
was less than 0 seconds. 32 patterns were generated holding 340 system calls. The
longest pattern had 43 system calls whereas the shortest pattern had only 2 system calls.
Space cost while running is large because it needs to include the size of the hash table,
the size of the data structure to hold the information of the pattern itself, pointers, etc.
It is important to explain what is meant with a mismatch in our variable length
intrusion detection system. The number of mismatches indicates how many individual
system calls were out of place or did not exist in the correct position in their
corresponding or appropriate pattern. This is why a large number of mismatches resulted
from our run to the program. This is different from flagging a complete sequence as
anomalous as in sequence method.

 102

 parameter length
Total testing time (seconds) 0
maximum length 43 system calls /pattern
minimum length 2 system calls / pattern
Average length 22 system calls / pattern
Size of normal DB 32
Patterns
Number of system calls in Normal DB 340
Size of testing input 1350 system calls
Space cost while running (bytes) 206848
Space cost while saved to disk (bytes) 1360
Number of mismatches flagged 766 patterns
% mismatches threshold 56.74 %
Table 5.10. Variable length with overlap relationship method performance.

5.6. Comparison
All methods were able to detect the Trojan horse attack obtained from the website
of the University of New Mexico (http://www.cs.unm.edu/~immsec). Table 5.11
compares the three methods. All methods finished testing in less than a second. Window
size 9 for both sequence and lookahead pairs methods was chosen for this comparison
because it is the recommended in [Somayaji 2002] which is best for storing the sets in 8
bits = 1 byte. Although the number of patterns in the variable length method is much less
than the remaining other two methods, the total space cost of maintaining such patterns is
very high especially while running the program. However, it requires the least space
while saved to disk. Each method identifies mismatches in a different way. In general,
the threshold used to raise alarms can be adjusted around the mismatch %. This is equal
to the total number of mismatches identified divided by the total number of sequences in
 103
the testing file. Both sequence and lookahead-pairs methods were run on the same
training and testing sets while varying the window size from 2 to 32 system calls.
 Sequence method
(window = 9)
Lookahead pairs
(window = 9)
Variable
length
Total testing time
(seconds)
0 0 0
maximum length 9 system calls/
sequence
8 pairs / sequence 43 system calls
/pattern
minimum length 9 system calls
/sequence
6 pairs / sequence 2 system calls /
pattern
Average length 9 system calls
/sequence
7 pairs / sequence 22 system calls
/ pattern
Size of normal
DB
359 sequence 2724
pairs
32
Patterns
Number of
system calls in
Normal DB
3231 5448 340
Size of testing
input
1342 sequences 10764 pairs 1350 system
calls
Space cost while
running (bytes)
91908 65536 206848
Space cost while
saved to disk
(bytes)
12924 10896 1360
Number of
mismatches
flagged
136 sequences 365 pairs 766 patterns
% mismatches
threshold
10.13 % 3.39 % 56.74 %
Table 5.11. performance comparison of sequence method with a window size = 9,
lookahead-pairs method with window size = 9 and variable length with overlap
relationship method.

The % mismatch threshold is equal to the number of mismatches flagged divided
by the total number of sequences processed while testing. For the sequence method if
one system call within a pattern caused a mismatch then it is flagged as an anomaly. .
 104
Figure 5.8. shows the space cost of the three systems while running. We can
observe that the variable-length with overlap- relationship profile method does not
require a window size and therefore, the size of the database is the same no matter how
many times we re-generate the training profile. However, both sequence and lookahead-
pairs methods are affected by the window size which is considered one of their
drawbacks. As observed in Figure 5.8., variable-length-with overlap relationship method
will always have the same space cost. Below window size = 6 both sequence and
lookahead pairs methods had similar space cost. However, as the window size increases,
lookahead pairs starts to have better space cost. At window size = 15, the variable length
method starts to have better space cost than the sequence method and at window size = 24
it starts having better space cost than the lookahead pairs method.

Figure 5.8. Space cost while running of the structures holding the normal pattern
DB entries of sequence, lookahead and Variable-Length with Overlap-Relationship
Profile Methods.

Space cost while running
0
100000
200000
300000
400000
500000
600000
1 4 7 10 13 16 19 22 25 28 31
Window size
by
tes
sequence
lookahead
Variable length
 105
The order of inputting the training data files does not affect the produced database
profiles for both sequence and lookahead methods but does affect the generated database
profile for the variable-length method. This is because we are scanning files for the
never-seen-before system call and accordingly the first system call in the first file is our
first choice. The database patterns generated are slightly different but the detection rate
of intrusions is not affected.
We identify ?system-call-denial-of-service-attack? as malicious code that can
repeatedly call the same sequence of system calls indefinitely. We noticed that in the
training input files available at (http://www.cs.unm.edu/~immsec), system call 90, in one
file, has been repeated for example more than 10 times repetitively. Furthermore, even if
the preprocessing step is avoided and the complete sequence is processed, there is no data
structure for holding how many times such system-call was repeated or could be
maximally repeated. For example, for both the sequence and the lookahead pairs
methods, if the sequence {90,90,90,90,90,90,90,90} was accepted for processing, the
following database pattern entries will be generated for a window size of 4.
90 90 90 90
90 90 90 90
90 90 90 90
90 90 90 90
90 90 90 90
Rows 2 to 5 will be deleted because they are repeated and only one will be added
to the normal database.
 106
All variable-length-based IDSs developed [Jiang, Hua and Oh 2003] [Jiang, Hua,
and Sheu 2002] [Wespi et al. 1998] [Wespi, Dacier and Debar 1999] [Wespi, Dacier and
Debar 2000] perform aggregation to identical consecutive system call IDs. This means
that there systems cannot defeat the system-call based-denial-of-service attack. However,
if the step of aggregating identical system call IDs is removed, the system can generate
one pattern that holds such information and its length is equal to the number of times this
system call is repeated. For example for the input training sequence {1 2 3 90 90 90 90
90 90 90 1 2 3 1 2 3} the patterns generated with aggregation will be {{1 2 3}, {90}}.
However, without aggregation the patterns generated will be {{1 2 3}, {90 90 90 90 90
90 90}}. It is difficult, however, if the system is not fully trained on all possible
execution paths to predict - especially for some system calls - what is the allowable times
it can be consecutively called. It is worth mentioning that accepting such a long pattern
sequence may not be an efficient solution since such system calls may be called less or
more times and still be normal. Therefore, it is important to identify such system calls
and put a maximum allowable number of times to its repetition and accept similar
sequences with less lengths. This can be achieved by correctly assigning a repetition
threshold value. However, assume we have the following normal sequence in our DB
{90 90 90} and the repletion threshold is 3. If we are under a denial of service attack and
we are infinitely reading the system call 90 it will take the system 3 times to read the
sequence {90 90 90} before raising an alarm.
5.7. Evaluation
As explained in the previous sub-sections and for off-line testing of the
implemented algorithms in this paper, the ?login? application was investigated and its
 107
input data set for both training and testing were obtained from the website of the
University of New Mexico (http://www.cs.unm.edu/~immsec).
In this section we evaluated the system against another dataset for the ?ps?
application obtained from the website of the University of New Mexico
(http://www.cs.unm.edu/~immsec). The traces of the ?ps? application contained two log
files for normal behavior a stricter test of Trojan horse attack was designed by the
University of New Mexico called ?home-grown?.
Data input pre-processing was conducted on these files to make them suitable for
processing. In general, each log consists of the traces of multiple processes interleaved in
the same log file. In general, each line in the log file listed pairs of numbers. The first
number is the PID of the executing process and the second number is the ID of the
system call. We performed pre-processing to the two log files to group entries of the
same PID together in separate files. As a result, the first log contained 8 traces and the
second contained 15 traces. The system calls associated with every process where
grouped in a separate file maintaining the order of system calls. All traces were used to
train the implemented systems and to generate their pattern databases. The ?home-
grown? log file was used to test the systems.
5.7.1. Sequence Method
Table 5.12. show the results obtained when running the sequence method IDS on
the ?ps? application dataset. As the window size (number of system calls per window)
increases, the number of sequences to be stored in the normal database increases. The
number of sequences in the normal DB is obtained after removing redundant entries. The
number of sequences depends on the number of traces collected in normal behavior, how
 108
many subsequences are similar and the window size chosen. For example, if a sequence
is repeated several times in the normal database, the initial database will hold many
repeated entries and the final database will be smaller.
Suppose we have the following sequence repeated 10 times in the normal training
sequence: {90, 5, 20, 100, and 64} with a window size w = 2, a single instance of this
sequence will result into 4 patterns in the initial normal database. Since we have 10
instances of this sequence then the total number of entries in the normal database will be
equal to 10 * 4 = 40 entries. After removing redundant entries in the database, the
reduced normal database will contain only 4 entries or patterns. Therefore, the finial size
of the normal database depends on the following:
? The size of the original training dataset.
? The number of repeated sequences within this dataset.
? The window size used to generate patterns.
These elements differ from one trace to another and from one monitored
application to another. In table 5.12., the space cost of the normal database while running
and while being saved to disk increases as the window size increases since it is
proportional to the number of sequences in the normal database. The number of
sequences tested decreases by one system call as the window size increases because
repeated entries are not removed but they are processed in an online fashion (they are
processed as they are read). The mismatch % threshold is equal to the total number of
mismatches read divided by the total number of sequences generated from the testing log
file while testing.
 109

sys
calls
/ w
sequences
in normal
DB
space cost
while
running
(bytes)
space cost while
saved to disk
(bytes)
sequences in
testing
Mismatch %
threshold
2 55 1764 440 4339 0.89
3 78 4996 936 4338 2.37
4 96 9220 1536 4337 3.38
5 109 13956 2180 4336 4.40
6 125 20004 3000 4335 5.306
7 142 27268 3976 4334 6.206
8 158 35396 5056 4333 7.108
9 175 44804 6300 4332 8.12
10 192 55300 7680 4331 9.14
11 209 66884 9196 4330 10.16
12 227 79908 10896 4329 11.18
13 245 94084 12740 4328 12.22
14 263 109412 14728 4327 13.26
15 280 125444 16800 4326 14.33
16 296 142084 18944 4325 15.56
17 312 159748 21216 4324 16.79
18 327 177892 23544 4323 18.019
19 343 197572 26068 4322 19.25
20 359 218276 28720 4321 20.48
21 374 239364 31416 4320 21.73
22 388 260740 34144 4319 22.99
23 402 283012 36984 4318 24.17
24 416 306180 39936 4317 25.27
25 430 330244 43000 4316 26.36
26 443 354404 46072 4315 27.46
27 456 379396 49248 4314 28.55
28 469 405220 52528 4313 29.65
29 482 431876 55912 4312 30.77
30 495 459364 59400 4311 31.524
31 508 487684 62992 4310 32.18
32 521 516836 66688 4309 32.83
Table 5.12. Sequence method performance across several window sizes for ?ps?
application.

 110
Furthermore, the mismatch threshold increases as the window size increases because the
system call causing the mismatch will appear in more sequences in both the tested
sequence and the pattern sequences.
Figure 5.9. shows graphically the number of sequences in the normal databases
for both ?login? and ?ps? applications datasets. The number of sequences is obtained
after removing redundant entries in the database and while using sequence method IDS.
The numbers of patterns of both applications show positive correlation as the window
size increases. Both applications should not have the same slope of increase as they
contain different data but the graphs indicate that they behave similarly (increase as the
window size increases).
Figure 5.10. and Figure 5.11. show the space cost while running and while saved
to disk for both ?login? and ?ps? datasets. We observe the following: space cost while
running is greater than while saved to disk for both ?login? and ?ps? applications. This is
because while running we are considering the size of the data structures used to store
patterns in the normal database. However, we are storing to disk only the integer
contents of the patterns. When comparing figures 5.10. and 5.11. against each other we
note that the behavior is similar in both figures. Meaning that the cost is increasing as the
window size increases.
Figure 5.12. compares the behavior of the number of sequences handled while
testing and obtained from the testing log file of both ?login? and ?ps? application
datasets. Both decrease by one system call as 5.13. window size increases by one. The
range of each application is different because it depends on the size of the log file used
for testing each application. From figure 27 we observe that both applications ?ps? and
 111
?login? have positive correlation for the mismatch % threshold as the window size
increases. The slopes of their increase differ because their data is independent from each
other.
Number of sequence in normal DB
0
100
200
300
400
500
600
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
window size
s
eq
ue
nc
es
sequences in normal DB
of "login" application
sequences in normal DB
of "ps" application

Figure 5.9. number of sequences in normal database for both ?login? and ?ps?
applications datasets. The number of sequences is obtained after removing
redundant entries in the database and while using sequence method IDS.

Space cost of sequence method with "login" applicatin
0
100000
200000
300000
400000
500000
600000
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
window size
by
tes
space cost while running (bytes)
space cost while saved to disk
(bytes)

Figure 5.10. space cost of normal database while running and while saved to disk (in
bytes) for the ?login? application dataset when using the sequence method IDS.
 112
Space cost of sequence method with "ps" application
0
100000
200000
300000
400000
500000
600000
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
window size
by
tes
space cost while running (bytes)
space cost while saved to disk
(bytes)

Figure 5.11. space cost of normal database while running and while saved to disk (in
bytes) for the ?ps? application dataset when using the sequence method IDS.

number of sequences of the tested files
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
2 5 8 11 14 17 20 23 26 29 32
windows size
s
eq
ue
nc
es
sequences in
testing of "login"
application
sequences in
testing of "ps"
application

Figure 5.12. number of sequences tested while running the sequence method IDS on
both ?login? and ?ps? applications datasets.

 113
Mismatch % value
0
5
10
15
20
25
30
35
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
window size
m
ism
atc
h
%
Mismatch % threshold of " login" application
Mismatch % threshold of "ps" application

Figure 5.13. mismatch percentage value obtained when testing the ?login? and ?ps?
applications datasets using the Sequence method.

5.7.2. Lookahead-Pairs Method
Table 5.13. shows the results obtained when running the lookahead-pairs method
based IDS on the ?ps? application datasets. We note that as the window size increases
the number of pairs stored in the normal database increases. This number represents the
number of patterns kept after removing redundant entries. The space cost while the
system is running and while saved to disk is also increasing because it depends on the
number of pairs in the normal database. As the window size increases the number of
pairs considered while reading the testing log file will increase because we are not
removing redundant pairs. The mismatch % threshold is increasing as the window size
increases because the mismatching pair appears in more tested sequences as the window
size increases.
 114
Figure 5.14. shows the number of pairs of both ?login? and ?ps? applications
when using lookahead-pairs method. The slopes of the lines are different because the
data used to generate the pairs are different for each application. This figure show that
both lines have a positive correlation with the increase in the window size and that both
have the same behaviour.
Figures 5.15. and 5.16. show the space cost while running and while being saved
to disk for both ?login? and ?ps? applications normal datasets. For each application the
cost while running is larger than while being saved to disk because while running we are
considering the size of all the arrays being used.
However, we are only saving the locations set to 1 while saving to disk. When
comparing both figures together we notice that they are positively correlated as the
window size increases and that the lookahead-pairs method IDS have the same behaviour
for both data sets.
Figure 5.17. compares between the number of pairs resulting from reading the
testing log files of both ?login? and ?ps? applications. There is a positive correlation
between the number of pairs and the window size for both applications.
Both applications do not have the same slope because each has its own dataset
and the input files for generating the pairs differ and are independent. The number of
pairs will be affected by the duration of the testing log file, the number of system calls
collected and window size.
Figure 5.18. shows the mismatch % threshold of ?login? and ?ps? applications
when using lookahead-pairs method. Both systems show positive correlation as the
 115
window size increases. The systems differ in their slopes since they are independent from
each other and are using different log files for both training and testing.
With a smaller window size, ?ps? application tends to have a higher mismatch %
threshold (i.e. the number of identified mismatches divided by the total number of pairs
in the testing log file). However, around window size 9 the behaviour of the ?ps? dataset
tends to increase.

Number of pairs of lookahead-pairs method
0
2000
4000
6000
8000
10000
12000
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
window size
p
air
s
pairs in Normal DB of "login" application
pairs in Normal DB of "ps" application

Figure 5.14. Number of sequence in normal database for both ?login? and ?ps?
applications datasets. The number of sequences is obtained after removing
redundant entries in the database and while using lookahead-pairs method IDS.

 116
sys
calls
/ W
pairs in
Normal DB
space cost
while
running
(bytes)
space cost while
saved to disk
(bytes) # pairs in testing
Mismatch %
threshold
2 244 8192 976 4339 0.898
3 478 16384 1948 8677 1.52
4 729 24576 2916 13014 1.805
5 970 32768 3880 17350 1.86
6 1210 40960 4840 21685 1.77
7 1449 49152 5796 26019 1.93
8 1687 57344 6748 20253 1.841
9 1924 65536 4696 24684 1.92
10 2160 73728 8640 39015 1.99
11 2395 81920 9580 43345 2.09
12 2629 90112 10516 47674 2.215
13 2862 98304 11448 52002 2.33
14 3094 106496 12376 56329 2.499
15 3325 114688 13300 60655 2.710
16 3555 122880 14220 64980 2.899
17 3784 131072 15136 69304 3.066
18 4012 139264 16048 73627 3.271
19 4239 147456 16956 77949 3.491
20 4465 155648 17860 82270 3.733
21 4690 163840 18760 86590 3.951
22 4914 172032 19656 90909 4.14
23 5137 180224 20548 95227 4.368
24 5359 188416 21436 99544 4.591
25 5580 196608 22320 103860 4.79
26 5800 204800 23200 108175 5.005
27 6019 212992 24076 112489 5.196
28 6237 221184 24948 116802 5.376
29 6454 229376 25816 12114 5.52
30 6670 237568 26680 125425 5.655
31 6885 245760 27540 129735 5.786
32 1099 253952 28396 134044 5.919
Table 5.13. Lookahead-pairs method performance across several window sizes for
?ps? application.

 117
Space cost of lookahead pairs method of "login" appliation
0
50000
100000
150000
200000
250000
300000
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
window size
by
tes
space cost while running (bytes)
space cost while saved to disk (bytes)

Figure 5.15. Space cost of normal database while running and while saved to disk
(in bytes) for the ?login? application dataset when using the lookahead-pairs
method IDS.

space cost of lookahead pairs method with "ps" application
0
50000
100000
150000
200000
250000
300000
2 5 8 11 14 17 20 23 26 29 32
window size
by
tes
space cost while running
(bytes)
space cost while saved to
disk (bytes)

Figure 5.16. Space cost of normal database while running and while saved to disk
(in bytes) for the ?ps? application dataset when using the lookahead-pairs method
IDS.
 118

Number pairs while testing of lookahead pairs
0
20000
40000
60000
80000
100000
120000
140000
160000
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
window size
p
air
s
pairs in testing of "login" application
pairs in testing of "ps" application

Figure 5.17. Number of pairs tested while running the lookahead-pairs method IDS
on both ?login? and ?ps? applications datasets.

Mismatch %
0
1
2
3
4
5
6
7
8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Windows size
Mi
sm
atc
h
%
Mismatch % threshold of "login" application
Mismatch % threshold of "ps" application

Figure 5.18. Mismatch percentage value obtained when testing the ?login? and ?ps?
applications datasets using the lookahead-pairs method.

 119

5.8. Validation and Verification
Verifying the implemented systems was incrementally performed. Each
subsystem was tested against carefully designed test cases that cover all possible input
parameters and execute all possible paths of execution. For example, the sequence
method based IDS required implementing a subsystem for reading the input log files and
processing them to be suitable for further processing. The log files were read and then
divided according to PID (parent process ID) to several files. Each file holds the system
calls associated with a specific PID. First, on smaller sized files we tested the generated
files manually to make sure that the system actually and correctly performed its
functions. Another subsystem was to read the files and then start creating a database that
holds all possible patterns in an array format depending on the input parameters specified
which mainly the window size is. Tracing log files of all of the system activities have
been generated and are manually investigated to test if the system is performing correctly
or not. The array is then scanned to remove redundant rows and a finial array is produced.
The patterns in this finial array is then processed and stored in the normal pattern data
structure. The data structure for holding such information is a hash table where each
entry in the table points to a linked list of all patterns starting with a specific value. To
verify that this data structure is holding the correct information, its content is written to a
log file and compared with the original array. To verify that testing is working correctly,
several test cases have been created with predefined inputs. For example, several files
 120
have been created to test if the system will produce the desired output or not. The files,
for example, tested the following cases:
? The tested sequence is normal.
? The tested sequence is compared with one pattern (expands across one pattern)
? The tested sequence expands across several patterns and therefore is compared
with more than one pattern.
? The sequence contains only one mismatching system call.
? The sequence contains several mismatching system calls.
? The mismatching sequences are compared with one pattern.
? The mismatching sequence is compared with several patterns.
Finally, when the system passed its verification stage the system was tested on
real log files. The activities were recorded in a log file and examined to make sure that
the system is still performing correctly.
The same techniques were used to verify lookahead-pairs method IDS. Here the
data structure used to store the normal pattern database is one-dimensional array
behaving as several 2-dimensional arrays. The locations that are set to one were
examined and compared with the original array holding all possible pairs. Furthermore, a
list of test cases were generated to test if the system will produce the correct and expected
out put or not.
For the variable length with overlap relationship method, the verification was
incrementally performed. Since it is the most sophisticated and more time consuming
system, care was given to each subsystem. The input data for normal behavior was first
read to a data structure that consisted of linked list of linked lists (similar to tree
 121
structure). This is because extensive processing will be performed on the input data. The
content of such lists were checked to make sure that the data was correctly stored.
Identifying patterns was an extensive process where we had to re-read and re-process the
items in the data structure. Each performed step was recorded in a log file and manually
examined to insure correct execution. After generating the patterns and making sure that
they are correctly stored in the final normal data base structure, several test cases have
been implemented to test matching. Files for testing were created to check matching
against one, two or more patterns in the database. Both normal and intrusive sequences
have been checked. As a conclusion to this stage, the three implemented systems passed
the verification stage.
Three techniques have been used to validate the implemented systems: trace
validation, sensitivity validation and graphic displays. Trace validation is similar to
verification where a list of test cases has been created and all possible execution paths
have been identified. With this list of input cases the output has been observed and the
following is a sample of the possible input cases:
? Sequence is normal.
? Sequence contains one mismatch.
? Sequence contains several mismatches.
? The sequence does not exist in the normal database.
? The sequence is checked against only one pattern.
? The sequence is checked against several patterns.
Sensitivity validation was also used. Each system was originally tested against
the ?login? application dataset as shown and explained previously. To test if the systems
 122
pass the sensitivity validation test another dataset was examined. The results obtained
from using the ?ps? application dataset were shown and explained in Tables 5.12. and
5.13. The results indicate that the implemented systems are not sensitive to the input data
set. The third validation technique used is the graphic displays and which is summarized
and explained in Table 5.14.
Figures Systems compared Applications
compared
Observations
5.9. Sequence method Login and ps Number of sequences
of normal log files of
?login? and ?ps?
applications has a
positive correlation
with the increase of
window size.
5.10. and 5.11. Sequence method Login and ps The space cost of
normal log files
?login? and ?ps?
applications datasets
has a positive
correlation with the
increase in window
size.
5.12. Sequence method Login and ps The number of
sequences of tested
log files of both
?login? and a ?ps?
application behaves in
a similar fashion.
5.13. Sequence method Login and ps The mismatch #
threshold of the
testing log files of
?login? and ?ps?
applications behaves
similarly.
5.14. Lookahead-pairs
method
Login and ps Number of pairs of
normal log files of
?login? and ?ps?
applications has a
positive correlation
with the increase of
 123
window size.
5.15. and 5.16. Lookahead-pairs
method
Login and ps The space cost of
normal log files
?login? and ?ps?
applications datasets
has a positive
correlation with the
increase in window
size.
5.17. Lookahead-pairs
method
Login and ps The number of pairs
of tested log files of
both ?login? and a
?ps? application
behaves in a similar
fashion.
5.18. Lookahead-pairs
method
Login and ps The mismatch #
threshold of the
testing log files of
?login? and ?ps?
applications behaves
similarly.
Table 5.14. Explaining the graphic display validation

As shown in table 5.14. the behavior the systems are similar and consistent even
when tested against different normal and testing datasets.
5.9. Summary
Three host-based IDSs using system call profiles were examined. We tested
sequence method, lookahead-pairs method and variable-length with overlap-relationship
profile method. Testing lookahead-pairs method is straight forward. The system call and
its previous entries (up to window size) are checked against their corresponding entries in
its corresponding array and if it does not exist then a mismatch is raised. For both
sequence and variable length methods, as system calls are read they are checked against
their entries in the hash table and the closest match in a pattern in that entry are chosen
and expanded. If no exact match is found a mismatch is raised. For example, the
 124
following case is handled in our implementation. Suppose entry 90 in the hash table
contain the following sequence {90 4 8} and entry 105 contains the following sequences
{{105 4 27}, {105 18 2}}. Testing the input sequence {18 2} will raise 2 alarms since
entry 18 in the hash table is empty. Testing input sequence {105 90 4 8} will raise only 1
alarm, since our system will check the entries of 105 and find that the second system call
90 does not belong to any sequence at the 105 entries. However, we test to see if it
belongs to another entry in the hash table, which in this case is true and the remaining
subsequence {90 4 8} raises no alarms. Finally, testing the input sequence {90 18 2} will
raise 2 alarms since 90 does belong to the hash table and although {18 2} exist as
subsequences of another entry they should not be accepted. Our implementation differs
from the original papers in:
1. The systems were implemented on Windows-XP Operating System using
Microsoft Visual Studio 2005 as a win32 console application rather than using gcc
compilers on UNIX and LINUX Operating Systems.
2. Normal patterns of both sequence and variable length with overlap relationship
methods were stored in a hash table where each entry is pointing to the sequence
patterns.
3. Type 2 of variable length with overlap relationship was expanded to handle the
sub-grouping of sequences and furthermore sub of sub-grouping if exist.
The following were concluded:
1. All methods can not defeat system-call-denial-of-service attack.
 125
2. Input order of training files does not affect the final constructed databases for
sequence and lookahead-pairs methods but affects the variable-length patterns
method.
3. Keeping the same number and content of input training files for the variable length
method constant but changing the order and in specific the first system call handled
will result in different constructed database but will not affect the number and type
of intrusions detected.
In general, we observed the following:
T1: {90, 4, 7, 1}, T2: {4, 7, 2}, T3: {4, 7, 2, 90, 115}
If we start our training with T1 and system call 90 the following pattern set will be
generated:
{{90, 4, 7, and 1}, {4, 7, and 2}, {90, 115}}
However, if we start with T2 and system call 4 the following pattern set will be
generated:
{{4, 7}, {90}, {1}, {2}, {2, 90, 115}}
4. Lookahead pairs method had the best space cost while running, as long as its
window size is below 24. As the window size increase, the space cost of storing the
associated database also increases and variable length method starts to have a better
space cost.
5. In order to investigate whether the output or the behavior of the sequence method
and lookahead-pairs method IDSs performs similarly with other input datasets, the
two systems will also be tested with ?ps? application datasets. As shown in the
 126
previous section, the output parameters gathered for both systems performs in a
consistent manner when using both datasets.
Finally, each technique used in this dissertation to implement the associated
intrusion detection system has its benefits and drawbacks. All techniques experience
better detection as the window size increases especially for sequence and lookahead-pairs
methods. Variable length method produces better coverage and is considered a logical
representation to patterns. However, it is very expensive to generate the patterns and
require high storage requirements. In this dissertation we decided, after experimentation,
to continue with the data structure used with lookahead-pairs method. It is easy to
manipulate and access. With regard to space cost it had the best storage requirements and
it is very fast and easy to access the elements of its data structure.
 127
CHAPTER 6
 A DANGER THEORY MODEL

This chapter proposes a danger theory model for intrusion detection. Danger
theory can be applied to various application areas. Among these, intrusion detection is the
most closely linked to the human immune system. The literature survey presented in this
dissertation demonstrates attempts to build artificial immune models based on innate and
adaptive immunity. These artificial immune systems implemented a generic architecture
to model immunity response in general. They have incorporated both innate and adaptive
immunity concepts and built a framework where, after specifying a list of input
parameters, different components of the immune system may interact.
In this chapter, we focus on developing a model to represent the danger theory
interactions of an adaptive immune system. The danger theory model is designed for
distinguishing normal activities from abnormal activities and responding to invasions.
The danger theory based intrusion detection system response is governed by the output
produced by the antigen presenting cells (APCs).
Dentric Cells (DCs) are one type of APCs and process antigen signatures in their
context. The system operation is divided into 2 phases: Training and testing. In the
training phase a database of patterns representing normal behavior is created either using
positive or negative selection. B cells and DC cells are assigned patterns by which it can
 128
detect abnormal bacteria or intrusion signatures.
 In the testing phase, monitored system call sequences are scanned by B and DC
cells. DC also senses danger signals, if any, and present the bacteria signature in context
to T helper cells for further processing and handling.
Figure 6.1. explains the primary immune system response to the presence of
bacteria and danger signals. In Figure 6.2., the flow chart of the primary immune system
response is presented.
In general, B cell captures antigen (specific antigen) and at the same time DC
captures antigen (any antigen) and senses danger signals.
DC presents the antigen in context (antigen signature and surrounding status:
natural or un-natural death) and causes na?ve T cell maturation. T cell, accordingly,
differentiates to T helper 1, T helper 2 and T killer cells.
B cell presents antigen to Th1 and then Th1 primes or downgrades killer T and
Th2 cloning. Depending on the strength of the prime message, Killer T and Th2 start
their cloning expansion and generation of memory killer T, memory Th1 and memory
Th2.
Th1 confirms the antigen to B cell and B cell starts to secrete antibodies that bind
to antigen to flag it for destruction. B cell starts its cloning expansion and generation of
memory B cells. After B cell binds to the bacteria, the cloned Killer T cells starts
attacking the previously flagged bacteria. It is important to understand that only the
bacteria that was flagged for destruction will be eliminated by the Killer T cells. At the
same time other non-dangerous bacteria may exist in the same zone and will not be
killed.
 129

Figure 6.1. Primary immune system response.

Healthy cells
Damaged cell
1.3
Bacteria

Na?ve T
cell
iDC

B Cell
Killer T
cell
Th2

1.2
1.1
2
3.3 3.1
8
9
3.4
6.1
5.2 5.1
7.1
Th1
Memory
Killer T cell
3.2
Memory Th1 Memory Th2
memory
B Cell
7.2
4.1
4.2
5.3
5.4
5.5
6.2
 130

Figure 6.2. Flow chart of the primary immune system response.

Figure 6.3. and Figure 6.4. explain the secondary immune system response. It is
similar to the primary immune system response but differs in the fact that bacteria and
sensing danger it now performed by memory cells of both B and DC cells and that such
processing is performed faster. This is because in the secondary immune system
response, the bacteria have been seen before; therefore the immune system reaction will
be specific and faster.

1.1. B cell capture antigen (specific antigen).
1.2. DC capture antigen (any antigen).
1.3. DC sense danger signal.
2. DC present antigen in context (antigen signature and surrounding status: natural or un-natural death) and
cause na?ve T cell maturation.
3.1., 3.2., and 3.3. T cell differentiation.
3.4. B cell present antigen to Th1.
4.1. and 4.2. Th1 prime or downgrade killer T and Th2 cloning.
6.2 Prime B cell to secrete antibodies that bind to antigen to flag it for destruction.
5.1. and 5.2. Killer T and Th2 cloning expansion.
5.3. , 5.4., and 5.5. Generation of memory killer T, memory Th1 and memory Th2.
6.1. Th1 confirm antigen to B cell.
7.1. B cell cloning expansion.
7.2. Generation of memory B cells.
8. B cell bind to bacteria.
9. Killer T cell attack bacteria.
 131

Figure 6.3. Secondary immune system response.

Figure 6.5. explain the life cycle of both B and memory B cells. Each B and
memory B cell is given an activation threshold and a life span. B cell circulates the
system or the body. If it exceeds it activation threshold then it becomes a memory B cell.
On equal intervals, the activation threshold is checked and if it did not reach at least its
minimum activation threshold within its life span then it is deleted.

Healthy cells
Damaged cell
1.3
Bacteria

Memory
Th1
DC
Memory
B Cell
Memory
Killer T
cell
Memory
Th2

1.2
1.1
2.2
3.3 3.2
5.2
6
2.1
3.1
5.1
4.3
4.2
4.1
 132

Figure 6.4. Flow chart of the secondary immune system response.

However, if it is above its minimum activation threshold then it is sent to the bone
marrow where it undergoes hyper mutation and a new signature is created for the B cell.
Memory B cells also circulate the body or the system and on equal intervals their
associated activation threshold is checked. If it exceeds it maximum activation threshold
it is left to circulate the system. However, if it did not exceed its activation threshold
within its life span it is sent to the bone marrow where it undergoes hyper mutation and
new signature is created.
1.1. Memory B cell capture antigen.
1.2. DC capture antigen.
1.3. DC sense danger signal.
2.1. Memory B cell present antigen signature to Th1 cell.
2.2. DC present antigen in context to Th1 cell.

4. Expansion cloning of B, killer T and Th2 cells.
5.1. Th2 prime B cell to secrete antibodies.
5.2. B cell binds to antigen.
6. Killer T cell attack bacteria.
3.1. Memory Th1 cell confirms antigen presence to memory B cell.
3.2. Memory Th1 primes killer T to start cloning
3.3. Memory Th1 primes Th2 to start cloning.
 133

Figure 6.5. B and memory B cells life cycle.
B
cell
B circulating
B cell life
span
reached
B cell
maximum
activation
threshold
reached
No
B memory cell
circulating
B cell
minimum
activation
threshold
reached
Delete
detector
Send to bone marrow

B
memory
cell
Immature B
cell
B
memory
cell
minimum
activation
threshold
reached
B
memory
cell life
span
reached
No
No
No
No
Yes
Yes
Yes
Yes
Yes

Hyper mutate B cell
 134
CHAPTER 7
 ENHANCING LOOKAHEAD-PAIRS METHOD WITH DANGER THEORY

7.1. Introduction
Lookahead-pairs method has been used to implement an AIS based IDS for
monitoring system calls. It has outperformed sequence method and overlap-relationship
methods in terms of the storage requirements. Due to the smaller storage requirements
of lookahead-pairs, it has been chosen in this dissertation for further investigation. In this
chapter the lookahead-pairs based intrusion detection system, will be enhanced by
incorporating techniques of danger theory. The newly modified systems will be
examined and tested. What we mean with lookahead-pairs based intrusion detection
system, is an IDS that monitor system calls sequences to find deviations from normal
pattern database and uses several 2 dimensional arrays to store the relationships between
patterns in the normal database. The database was previously created after being trained
on normal behavior with a pre-specified window size. Usually, the current monitored
system calls are read and compared with the entries in the database. If a deviation is
observed, meaning that it does not exist in the database, a mismatch is flagged.
Lookahead-pairs method is affective in detecting deviations; however, in many
cases more advanced intrusion attempts go undetected because they are not only based on
system call deviations but also on other parameters such as high CPU and memory
usages. Such parameters indicate if the system is under stress or danger. Not only
 135
considering the mismatch instances but also other factors and conditions such as signals
of the system, is one of the basic concepts of danger theory. Danger theory states that we
should not only respond to foreignness (i.e. mismatches) but also to danger signals (i.e.
unacceptable system conditions such as high CPU or memory usages).
What we mean with enhancing lookahead-pairs method with danger theory
concepts is that we take the main characteristics of lookahead pairs method and then add
the functionalities of different danger theory components such as B cell, T cell and iDC
cells. The affect of each component on the overall performance will then be examined
and measured.
In general, despite the acceptable cost associated with such merge, the
performance (i.e. better detection, lower false negative and false positives) is enhanced.
This enhancement has been accomplished in three stages. In the first stage the
functionality of the APC cell was implemented and tested. APC cell is responsible for
detecting mismatches as well as sensing signals (both danger and safe). One type of APC
cell is iDC cell which differentiate to either semi mature DC (in case of normal behavior)
or mature DC (in case of intrusive behavior). In the second stage, we experimented with
generating positive and negative detector sets. A positive detector set is generated by
mapping normal behavior to a set of patterns and then stored in the database. Negative
detector sets are generated by mapping the complement of normal behavior to a set of
patterns. The benefits of each type of set are then examined. The third and final stage is
to incorporate all components of danger theory that are B, Th1, Th2, Killer T, iDC and
DC classes.
 136
7.2. Experiment Setup
The components of this system are implemented with Microsoft Visual Studio
2005 as a win32 console application. For off-line testing of the implemented algorithms
in this paper, two sets of training and testing datasets can be used.
The first was obtained from Danger Theory Project website
[http://cs.nott.ac.uk/~jpt]. The datasets provide traces of system calls and associated
CPU and Memory usages. For example, ?rpc.statd.normal1.tcr.log? which represents a 38
seconds tcreplay log file produced 398 antigens and 9 signals. The following is a sample
single line in the database. Personal communication with Twycross, explained the
following components of the line entry in the dataset.
1137704943.969283 signal 366 4 1 0.00000 1122104 335872
Column 1: timesec.timeusec
Column 2: type (in this case this entry in the data set represents a signal entry)
Column 3: process ID
Column 4: NUM signals
Column 5: total number of processes (self + children) (integer)
Column 6: total CPU usage for processes (%)
Column 7: total size of processes (bytes)
Column 8: total size of memory resident portion of processes (bytes).
These signals change over time since there is an interaction (either normal usage
or an attack) with the monitored processes (the rpc.statd server and its children), which
causes the monitored processes to use different CPU and memory resources.
 137
In order to closely test the performance of our system a second data set was used.
Since we are comparing the performance of the enhanced system against our initial
implementation of lookahead-pairs method IDS, we decided to use the same datasets
used previously and obtained from the website of the University of New Mexico
(http://www.cs.unm.edu/~immsec). This file contains traces of system calls generated
while running the login application. One problem with this file is that it does not hold
values for both CPU and memory usages. This is why we intentionally injected at
different time intervals and different locations signal values of CPU and memory usages,
creating several test cases to investigate.
Table 7.1. briefly indicates the different attack scenarios that can be handled with
the danger theory enhanced system. Our system, furthermore, is not only considering the
current situation of the system but also previous state of the system. This is because there
might be a normal burst in memory or CPU usage and this should not initiate a response.
If, however, such an action (i.e. high CPU, high memory usage, or mismatch) is higher
than an acceptable threshold value or has been high for a predefined time range then an
intrusion is flagged. Such a decision lowers false positives since the system ignores any
deviation of acceptable behavior within limitations. Such deviation results especially
when the system is not fully trained on all possible acceptable program execution paths.
We are also incorporating the parameters of having the user present or not. Since usually,
if there is an activity going on without the presence of a user then this is considered a
suspicious activity. We also considered monitoring for the use of abnormal signals that
intentionally kill a process.

 138
Type of attack Possible condition
Immediate attempt(s) to perform CPU
attack
Yes / No
Immediate attempt(s) to perform
memory attack
Yes / No
Immediate attempt(s) to perform
mismatch attack
Yes / No
Immediate attempt(s) to use abnormal
signals
Yes / No
Presence of user Yes / No
Table 7.1. attack types that can be identified by a danger theory enhanced IDS.

For example the login datasets were modified to incorporate different situations
and the following are some test case examples:
1. In the first scenario there are no mismatches identified and both the CPU and
memory levels are normal.
2. In the second scenario, a mismatch was identified but both CPU and memory
levels are normal. If previous conditions are normal then no intrusion is flagged.
However, if this mismatch is the ith of series and exceeds a predefined acceptable
threshold then an intrusion is flagged even if there is no affect on the CPU and
memory usages.
3. In some cases either CPU or memory will experience a burst in performance with
no mismatches identified. If the previous performance of both have been low and
this is the first encounter of such performance then no intrusion is flagged.
However, if such high usage of CPU or memory has been noticed and exceeds a
predefined period then an intrusion is flagged even if the system did not encounter
any mismatch instances. Such an attack can be performed by running a script or a
 139
Trojan horse code that continuously repeat acceptable sequence of system calls
indefinitely.
4. In the case that a mismatch and high CPU or memory is noticed, an intrusion is
flagged if the current condition as well previous conditions exceed a predefined
threshold.
7.3. Lookahead Pairs Method Enhanced With iDC and DC Classes
iDC and DC cells are types of APC cells that gather information from the
surrounding environment and act accordingly. The information gathered is mainly the
identification of bacteria (i.e. system call sequence mismatch) and sensing signals (i.e.
CPU and memory usages).
This does not mean that the iDC cell is only active when there is an attack, but it
can also indicate that the system is normal to other cells in the body such as T cells.
After identifying bacteria and sensing signals iDC differentiate and start secreting either
mature or semi-mature cytokines indicating an intrusion or normal behavior respectively.
These cytokines control the behavior of immature T cells that differentiate to
helper T1 (Th1) cell, helper T2 (Th2) cell and Killer T cells. Figures 7.1. and 7.2.
explain the general procedure of iDC and immature T cell differentiation.
After Th1 cells are responsible for controlling or managing the behavior of other
T cells such as Th2 and killer T cells. It is responsible for priming or suppressing their
behavior and cloning expansion degree. If, for example, Th1 is priming killer T cell, then
the degree of cloning will be much higher than if Th1 was suppressing killer T cell.
 140

Figure 7.1. iDC, and T cell differentiation.

Figure 7.2. Flow chart of DC and T cell differentiation

7.3.1. Implementation
 The iDC component of the danger theory is the controlling element of all
subsequent activities of intrusion detection systems. iDC is responsible for sensing the
system condition and indicates if the system is under attack or not by not only identifying
the existence of intrusion instances but also by noticing danger conditions of the system
resources. Therefore, iDC will react not only to deviations in the normal system call
1.1. Immature DC (iDC) capture antigen (intrusion)
1.2. iDC sense danger signal from stressed cell
2. iDC differentiate according to the concentration of both danger signal and antigen presence (both in duration
and strength) to mature DC (mDC) or semi-mature DC (smDC)
3. DCs release cytokines affecting the maturation of na?ve (immature) T cells.
4. Na?ve T cells differentiate to: killer T, Th1, and Th2 cells.
5.1. Th1 influences the cloning speed and quantity of killer T cells especially when they both identify the same
antigen.
5.2. Th1 influences Th2 by increasing or downgrading Th2 cloning speed.
iDC
Killer T
mDC smDC
Immature T cell
Th1 Th2
Bacteria Damaged cell
1.2 1.1
2
3
4.3 4.2 4.1
5.2 5.1
 141
sequences but also will react if any monitored system resource condition exceeds a
predefined acceptable threshold. The APC component (consisting of both iDC and DC) is
implemented in our system as two classes: iDC class and DC class. If we consider APC
as a black box then the input to this component is the following:
? PAMP: intrusion signatures (i.e. mismatches between current monitored system
calls and pattern entries in the normal database).
? Danger signal: high CPU and memory usages.
? Safe signal: normal CPU and memory usages.
? IC: user is present or not.
The output of this component will be as follows:
? Mature Cytokines: intrusion detected.
? Semi-mature Cytokines: normal or acceptable behavior.
 There are unlimited ways to calculate the output of APC. The security requirements
of each system can control such process. However, in our implementation the following
were considered while trying to indicate if the system is under attack or not:
? Current CPU usage.
? Previous CPU usage within a previously specified period.
? Current memory usage.
? Previous memory usage within a previously specified period.
? Current use of abnormal signals.
? Previous use of abnormal signals within a previously specified period.
? Current occurrence of a mismatch.
? Previous occurrences of mismatches within a previously specified period.
 142
 For each of the previous elements, an importance indicator is associated with it.
This indicator affect the overall value of the safe or danger signal calculated when all of
these elements are combined. For example, if the importance of the current CPU value is
10% when compared to the other elements and the importance of a current mismatch is
50 % when compared to the remaining elements, the occurrence of a mismatch will affect
the overall indication of an intrusion more heavily than the occurrence of a high CPU
burst. Such decision is heavily drawn from both the normal and intrusive behavior of a
system. For example, if an intrusion is usually associated with high memory usage than
with mismatch occurrence then memory usage is given a higher percentage when
calculating the finial system condition value. However, in any case all elements in the
list are included because they all have an affect on the finial decision but with different
strengths.
 For both CPU and memory usage values, the system keeps the following:
? MIN_ACCEPTABLE_THRESHOLD_VALUE
? MAX_ACCEPTABLE_THRESHOLD_VALUE.
 If CPU?s current value lies between both threshold values then it is normal and a
normalized value is calculated depending on where it falls within this normal range.
For example suppose that the following are previously defined:
CPU_MIN_ACCEPTABLE_THRESHOLD_VALUE;
CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE;
Then if (current_CPU_value < CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE)
Safe_normalized_CPU_value = ((current_CPU_value * 100) /
 CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE) / 100;
 143
 This will help identifying where does this normal value of CPU fall in the range
of acceptable behavior of the CPU. A similar procedure is used to calculate
danger_normalized_CPU_value if the current CPU value read is above the max threshold
value.
 After performing the same procedure for all signals under consideration, current
and previous values of these signals are used to calculate the normalized value of CP, CS
and CD (CP: normalized value of all signals related to PAMP condition, CS : normalized
value of all signals related to safe condition, and CD: normalized value of all signals
related to danger condition). Equation 2 is used to evaluate whether the system in under
attack by producing high mature DC values or in normal condition by producing high
semi-mature DC values. It is important to mention that we have calculated the
concentration of a signal with respect to the strength of an associated signal as well as
duration of the steady signal. The weights in equation 2 are obtained from table 7.2.

 (2)

W csm semi mat
PAMP 2 0 2
Danger signal 1 0 1
Safe signal 2 3 -3
IC 1 1 1
Table 7.2. Weights of different danger theory parameters used to calculate the
different cytokine concentrations of DC.

The intrusion detection system employing iDC and DC techniques is implemented
as an object oriented program where each cell is represented as a class. The code of the
program is available in Appendix F. In summary, the pseudo code of the activity
2
1
)(
))()()((
],,[
IC
WWW
CWCWCWC
DSP
DDSSPP
matsemicsm
+?
++
?+?+?=
 144
diagram of iDC is shown in Figure 7.3. iDC cell (object) is responsible for monitoring
the system calls generated by an application and as the sequence reaches a specific
window size, it is compared to the entries in the associated database. If it does not match
any entry, it is considered an anomaly. At the same time signals are gathered from the
system. Mainly we are testing the memory and CPU usages. According to different
inputs such as the current and previous conditions of several monitored activities, the
concentration signals of safe, danger, PAMP and IC are calculated. These values are then
sent to the DC object for further processing.
Figure 7.4. is the pseudo code of the activity diagram of DC. After receiving the
concentration values of danger signal, safe signal, PAMP and IC from iDC object, it
calculates the DC concentration value and decides if the system is in a dangerous or safe
normal environment. If it is the result of a dangerous situation then mature DC will be
high and DC will send a PRIME message to Th1 along with the string that was handled
and what is the source of this danger. The danger source can be a result of a mismatch,
or high CPU, high memory usage or a combination of any of them. If semi-mature DC
was the outcome then DC will send a SUPRESS message to Th1.

Figure 7.3. Pseudo code of the activity diagram of iDC

0 Do
1 Read system call
2 Until string reached window size
3 Match string with entries in database
4 If (identified bacteria)
5 Then
6 Sense signal values
7 Calculate CPAMP, Csafe, Cdanger, IC
8 Send values to DC object
9 Else go to 0

 145

Figure 7.4. Pseudo code of the activity diagram of DC

7.3.2. Performance
Figure 7.5. (a), (b), (c) are sample output of running the objects iDC and DC. In
general, we are logging the subsequence that is currently being processed. In our example
the window size is = 4 and if the tested subsequence does not exist in the normal
database, a message is displayed indicating that it is a mismatch. We keep track of
whether the user is present or not and we read the CPU and Memory usage values. Then,
we check if one of the system calls read in the handled subsequence is a dangerous signal
or not. With dangerous signal we mean that it is one of the signals that are abnormally
used to kill a process intentionally. After reading these values the appropriate data
structure holding the previous values of a parameter is updated. Then DC will use these
current and previous values to calculate the DC cytokine value. It will be either semi-
mature ?semi? indicating that the system is still under safe acceptable condition or mature
?mat? indicating an intrusion.
0 Read CPAMP :normalized value of mismatch detection
1 Read Csafe : normalized value of normal behavior
2 Read Cdanger :normalized value of dangerous behavior
3 Read IC: normalized value of presence of user
4 Read sources
5 Read string
6 calculate DC concentration cytokine values
7 if (semi-DC > mat-DC)
6 send Suppress message to Th1
7 send source value to Th1
8 Send string value to Th1
9 Else
10 send prime message to Th1
11 send source value to Th1
12 Send string value to Th1
13 end else
14 go to 0

 146

Figure 7.5. Sample output of running iDC and DC enhanced IDS. ?Handled
window?: string currently processed. ?Is a mismatch?: does not exist in the
database or ?is normal?: exist in the database. ?User present?: 1 is present, 0 is not.
?CPU usage?: percentage of CPU usage. ?Mem usage?: percentage of memory
usage. ?is an abnormal signal?: 0 barb2right no, 1barb2right yes. ?previous CPU?, ?previous
abnormal?, ?previous mismatches?, ?previous IC?: 0barb2rightlow, 1: high. ?Semi? or
?mat?: indicate the resulting condition of the system: semibarb2right safe, matbarb2right dangerous.

Table 7.3., shows the performance parameters collected while running the iDC
and DC enhanced IDS and compares it with the values obtained when running the
Handeled Window: 8 5 4 6
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 0 0 1 1 1 1 1 0
previous IC: 1 1 1 1 1 1 1 0 0 0
Semi
Handeled Window: 3 4 7 6
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 0 0 0 0 1 1 0 0 0 0
previous IC: 1 1 0 0 0 0 0 0 0 0
Semi
Handeled Window: 2 3 4 7
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 0 0 0 0 1 0 0 0 0 0
previous IC: 1 0 0 0 0 0 0 0 0 0
Semi
 147
original lookahead-pairs IDS. As observed both have exactly the same performance in
terms of testing time and storage requirements.

Parameter Lookahead pairs IDS iDC and DC enhanced
IDS
W 4 system calls 4 system calls
Testing time 0 seconds 0 seconds
pairs in Normal DB 1029 1029
Space cost while
running (bytes)
24576 24576
Space cost while
saved to disk (bytes)
4116 4116
pairs in testing 4044 4044

Table 7.3. Performance comparison between lookahead pairs IDS and lookahead-
pairs method enhanced with iDC and DC IDS

In general, several types of attacks can exploit a system. An attack can result
from accumulative mismatches, accumulative high CPU usages, accumulative high
memory usages, accumulative or single use of abnormal signals or a combination of any
of them.
Lookahead pairs based IDS will only be able to detect an attack that involves
mismatches between the sequences currently under consideration and normal database. It
will not be able to detect attacks that deviate producing mismatches or exceeding the
allowable threshold value. However, the iDC and the DC enhanced IDS will be able to
detect more attack types.
In general, if a system is fully trained, any identified mismatch must indicate an
intrusion and such system will not produce any false positives. However, it is important
to note that if the system is not fully trained, the lookahead-pairs method will give a false
positive rate equal to the number of mismatches identified while testing that may include
 148
normal behavior. However, the iDC and DC enhanced IDSs will balance its decision not
only on identifying mismatches but also the environment condition (i.e. signals collected
at the time the mismatch was identified) and accordingly will decide if it is an intrusion
or not.
In the case of false negatives, where the system misses an intrusion instance,
lookahead pairs method performs poorly. The original lookahead-pairs method based
IDS does not miss any mismatches but it misses intrusions that deviate producing a
number of mismatches that exceed the specified threshold. As a result the iDC and DC
enhanced IDS will identify the intrusions associated with high CPU and memory usages
as well as using abnormal signals the lookahead pairs method will miss such attacks
producing higher false negative rate.
7.4. Positive and Negative Detector Sets
Generating suitable patterns has been a hot topic for several years. Identifying
patterns that can represent the considered problem is a very important issue especially for
artificially immune system based IDS. Building a database with positive detectors
means that the database contains instances of normal behavior. However, a database with
negative detectors means that the database has instances of the complement of the normal
behavior. The advantages and disadvantages of each type can be found in [Esponda,
Forrest and Helman 2004]. In general, for a small sized problem, positive detector sets
outperform negative detector sets especially with regard to storage requirements. What
we mean with small sized problem is that the normal behavior can be identified in a
limited and small number of sequences. The human immune body uses both negative
and positive selection to perform different immune based functionalities. We found it
 149
important to implement both aspects and to compare between them. The system has two
databases that are used to check for anomalies. One is used by the B cell and the other by
iDC cell. If we choose to use either positive, negative or both selection algorithms,
different scenarios can exist. For example, we may choose to have the B cell?s database
created with positive detectors or negative detectors sets and the same applies for the
other database. In the following sections a comparison is presented.
7.4.1. Implementation
Simply the difference between positive and negative detector generation can be
explained by the following example. If the number of system calls = 100 and are
represented as {1, 2... 100}. If we choose a window size = 4 and have the following
training sequences: { 1,2,3,4,5,6,7,8}.
The generated positive detectors will be:
{{1, 2, 3, 4}
 {2, 3, 4, 5}
 {3, 4, 5, 6}
 {4, 5, 6, 7}
 {5, 6, 7, 8}}
However, to generate negative detectors for this specific training sequence we
need to find the complement sequences of the patterns found in the positive detector
database. The number of entries in such a database if we are looking for a complete
database is indefinite. For example, we will start doing the following:
{{1, 2, 3, and 5},
 {1, 2, 3, 6},
 150
{1, 2, 3, 7},
{1, 2, 3, 8},
 ?. }
As we attempt to fill the database, we find that the number of entries increases
indefinitely. In our system we compared between using positive and negative detector
generation with lookahead-pairs method. In our positive detector generation, we scan
normal training files and then depending on the window size, we start creating the
patterns. For each pattern, we generate the associated pairs and then set their respective
locations in the appropriate set array to one. During testing we compare the currently
tested sequence against the entries in the normal database and if it is not found then an
anomaly is flagged.
Generating negative detectors can belong to two types: 1) negative detectors
generated for methods that store patterns in a linked list data structure or the structure, or
2) negative detectors generated for methods that store patterns in an array such as
lookahead-pairs method.
For the negative detectors generated for methods that store patterns in a linked list
or a tree data structure such as sequence method we perform the following steps. First,
the normal behavior patterns are identified. Second, we randomly generate a candidate
pattern of the same size and compare it with the patterns in the normal database. If the
candidate pattern match any entry in the normal database, this candidate pattern is deleted
and a new pattern is generated. Otherwise, the candidate pattern is added to the selected
patterns list. We repeat this step until we have enough (i.e. previously identified) number
of patterns. In the detection stage, the tested sequence is checked against the database
 151
and if a match occurs then an intrusion have been identified. Furthermore, as the number
of patterns generated by negative selection increase, the storage cost increases.
For the negative detectors generated for methods that store pattern in an array
such as lookahead pairs, we simply generate all possible normal pattern sequences. We
then find the associated pairs and set their locations to ones. The database that is based
on negative selection is the complement of the normal database. Meaning we
complement the cell values of the arrays. If it is set to 1, we unset it and if it is not set, we
set it. In this method we don?t need to randomly generate any sequence and no additional
storage requirements are needed. Our code to carry out the comparison between positive
and negative detectors can be found in Appendix E.
7.4.2. Performance
With a size-limited representation of normal behaviour, positive detectors are the
better choice since the pattern database generated will be of acceptable size. This is true
for methods that do not use the lookahead-pairs method data structure to store its
database. With lookahead pairs method, both positive and negative detectors will occupy
the same storage requirements and only requires the appropriate matching to be
performed.
However, this is not the case with other methods that employ for example trees or
linked lists to store their patterns. In such methods and if the normal behaviour is
represented in a small finite manner, negative detectors will be infinite. In such a case we
will be required to decide on the acceptable or allowable number of negative detectors
that will represent our problem efficiently. The more allowable number of negative
detectors the better the detection rate. As shown in table 7.4., we have tried to generate a
 152
pool of negative detectors while increasing the number of generated sequences to achieve
a similar mismatch of that of positive detectors. It has been found that we are powered by
the random generator that produce candidate detectors and may or may not cover the
required set of patterns. For example, from table 7.4., 199 positive detector sequences can
identify 67 mismatches. We would like to have a pool of negative detectors that are not
only randomly generated but also identify almost 67 matches of anomalous behaviour. In
particular the following has been noticed from table 7.4.:
square4 There is no guarantee that the negative detectors created will cover better the
intrusive instances even if the allowable number of detector sequences is
increased.
square4 We need to correctly identify what should be randomly generated. From table
7.4., sequences of the complement of normal behaviour have been randomly
generated. If we decide to use these complement sequences with lookahead-
pairs method, high false positives will result such as in the case of having 95
matches with 900 detector sequences. This can be explained by the following
example:
Suppose we have the following normal sequence {1, 2, 3, 4}, the pair (2, 1) will be
added to the normal positive selection database at set 1. If we are generating the
complement of the normal sequence, the random generator will provide the
sequence {1, 2, 3, and 5} as an acceptable pattern. If we convert this sequence to its
lookahead-pairs equivalent, the pair (2, 1) will be added to the negative selection
database at set 1 as well. Such pairs will be responsible for producing false
positives.
 153
 Pos. Neg.

mismatches
67
matches 30 36 6 8 10 11 20 3 22 61 79 16 69 95 40
pairs 500 537 539 540 596 595 597 898 896 898 2073 2073 2075 2670 2662 2669
detector
sequences
199 180 180 180 199 199 199 300 300 300 700 700 700 900 900 900
Cost saved
to disk
6000 6444 6468 6480 7152 7140 7164 10776 10752 10776 24876 24876 24900 32040 31944 32028
Table 7.4. Performance comparison among positive and several negative pattern
generation.

7.5. Danger Theory
Matzinger [Matzinger 1994] introduced the idea that the immune system does not
respond only to foreignness depending on self-non-self discrimination but also to danger
signals generated when a cell dies an unnatural way. Many cells such as B cell, Th1 cell,
Th2 cell, APC, and killer T cell play a role in the adaptive reaction of the immune system
and especially with danger theory. B cell is responsible for identifying bacteria (intrusion
instances) and presenting it to Th1. APC is responsible for processing the environment
and identifying bacteria as well as distress signals and presenting it to Th1. Th1, Th2 and
Killer T cells are responsible for managing the immune reaction.
Previous attempts to model immune systems were implemented as a pool of
agents mimicking different cells. In our implementation we are instantiating only one
instance or object of each cell type. For example, rather than having a pool of B cells,
and each cell identifies a number of antigens or intrusions, we have implemented an
 154
object B cell that is associated with a database of all possible patterns and it reads a
sequence and compares it with this database. The same is applied to all other cells.
7.5.1. Implementation
Our implementation of danger theory concepts are summarized in the object
diagram displayed in Figure 7.6. Figure 7.7. shows the associated data flow diagram of
the activities performed by the different cells (objects).
B cell object is responsible for capturing antigens or intrusion instances. This is
achieved by comparing a suitable sized sequence with the entries in the database of
normal behavior associated with B cell object.
The iDC object is responsible for identifying intrusion instances as well as
gathering statistics from the system such as memory and CPU usages. The collected data
by the iDC object is then translated to concentrations of danger, safe, IC and PAMP
signals and then they are passed to the DC object.
The DC object then decides if this information corresponds to an intrusion or if it
is normal. Both B cell and DC cell objects present their information to the Th1 cell object
that is responsible for priming Th2 and killer T cells in case of danger and suppressing
Th2 in case of safe operation.
Th2 then either suppresses or primes B cell object. In case of intrusion, killer T
cell will display a message to the user with the type of intrusion identified. This will
include the sources of such intrusion. For example, it will indicate if it is a mismatch,
high memory, high CPU usages, or a combination of them. It will also display other
related information such as what is the system calls that caused the mismatch and what
application.
 155

Figure 7.6. Danger theory system overview architecture.

Figure 7.7. flow chart of the steps carried out by the artificial immune based IDS
employing danger theory concepts

1.1. B cell capture antigen (intrusion instance ? a mismatch)
1.2. Immature DC (iDC) capture antigen (intrusion instance - a mismatch)
1.3. iDC sense danger signal from stressed cell
2. iDC differentiate according to the concentration of both danger signal and antigen to DC

3.1. B cell present antigen to Th1.
4.1. Th1 PRIME or SUPRESS Th2.

4.2. Th1 PRIME killer T cell.
5.1. Th2 PRIME or SUPRESS B cell.
5.2. Killer T cell display message to user
3.2. DC present antigen in context (antigen signature and surrounding status: natural or un-natural death) to Th1
Healthy cells
Damaged cell Bacteria

 B Cell
Killer T cell Th2 Th1
DC
1.1
1.2 1.3
2
3.1
5.1
4.1
3.2
4.2 5.2
iDC
 156
Implementing this system required the definition of several classes to handle the
different functionalities of the danger theory based IDS that are:
square4 iDC
square4 DC
square4 B cell
square4 Th1
square4 Th2
square4 Killer T
square4 Exit engine
square4 IDS system
The code of the different objects can be found in Appendix F. Both iDC and DC
activity has been explained in section 6.3 of this dissertation. The B cell object is
responsible for reading system calls produced by the application and then comparing
subsequences with entries in the database. The database in our system consists of normal
behavior patterns. If the tested subsequence does not match any entry in the database then
an intrusion is flagged. The B cell object then informs Th1 object of the mismatch and
which subsequence caused it. At the same time, the B cell object listens to Th2 which
can send a suppress or a prime signal to B cell object. Th2 informs B cell object of the
string under consideration and whether it is an intrusion by the prime signal or a normal
activity by the suppress signal. For each entry in the B cell database there is an
associated threshold value. This threshold value indicates how many times an entry has
been seen or has matched a sequence. A minimum acceptable threshold as well as a
maximum acceptable threshold values are previously identified by an officer and indicate
 157
the minimum and maximum values that govern the lifespan of an entry in the B cell
database. If Th2 primes B cell then the threshold value associated with the string is
increased. If Th2 suppresses B cell then the associated threshold value is decreased. If
the threshold goes below the minimum accepted threshold then this entry is removed
from the database. We decided to perform such action especially because the system is
usually not fully trained and some new sequences will cause a mismatch but will not be
associated with any dangerous signals. Therefore, our system should tolerate such new
changes. The pseudo code of the activity diagram of B cell is shown in Figure 7.8.
When there is no more system calls to be examined or when the IDS is shut down, B cell
object calls ExitEngine object which is responsible for finalizing IDS activities.
Th1 object can receive input from both B cell object and DC objects. If Th1
receives input from B cell and DC object, then it will check the threshold value
associated with the string sent by B cell object. If it exceeds the maximum acceptable
threshold value no confirmation from DC is required to prime killer T cell and an
intrusion is flagged. If the threshold value is within an acceptable range but DC sent a
prime message then killer T cell is primed. In both cases Th2 is primed. Otherwise a
suppress message is sent to Th2. If Th1 receives input from B cell only, the threshold
value is checked. If it exceeds the threshold value then Th2 and killer T cell objects are
primed; otherwise Th2 is suppressed. If Th1 receives input from DC only, it checks its
cytokine value. If it is a mature signal, then killer T cell is primed; otherwise nothing is
activated. The pseudo code of the activity diagram of Th1 cell is shown in Figure 7.9.
 158

Figure 7.8. Pseudo code of the activity diagram of B cell

Th2 object is responsible for receiving suppress or prime messages from Th1
object and then contacting B cell object to either suppress or prime its actions regarding a
specific sequence. The pseudo code of the activity of Th2 is shown in Figure 7.10.
Killer T cells are responsible for responding to any attack against the immune
human system by attacking the invader cells. In computer security killer T cell response
can be by: 1) displaying a detailed message to the security officer explaining the intrusion
conditions, 2) killing the process responsible for the attack, or 3) slowing down carrying
out the system call which in many cases can defeat an attack. In our implementation and
because we are performing off-line analysis, we choose the first option which is
displaying the conditions of the attack. Therefore, killer T cell object displays to the user
0 Do
1 if (receive input from Th2)
2 then
3 if (input = Suppress)
4 Then
5 decrement threshold-array of string
6 if (threshold < MIN-Threshold)
7 then remove entry from table
8 end then
9 end if
10 end then
11 else // input is Prime
12 increment threshold-array of string
13 end else
14 end if
15 end then
16 end if
17 Do
18 Read system call
19 Until string reached window size
20 Match string with entries in database
21 If (identified bacteria)
22 Then
23 send string to Th1
24 send threshold-array to Th1
25 end then
26 Until no more system calls to read
27 call ExitEngine

 159
or security officer the type of attack and conditions resulting from such attack. The
pseudo code of the activities of killer T cell is shown in Figure 7.11.

Figure 7.9 Pseudo code of the activity diagram of Th1

0 if (received input from B and DC)
1 then
0 if (threshold of string > MAX-allowable-threshold)
0 Then
0 send Prime message to killer T
0 send prime message to Th2
0 end then
0 end if
0 if (mature DC)
0 then
0 send prime message to killer T
0 send prime message to Th2
0 end then
0 else
0 send suppress message to Th2
0 end else
0 end if
0 end then
0 else if (received input from B and not from DC)
0 then
0 if (threshold of string > MAX-allowable-threshold)
0 Then
0 send Prime message to killer T
0 send prime message to Th2
0 end then
0 else
0 send suppress message to Th2
0 end else
0 end if
0 end then
0 else if (received input from DC and not from B)
0 then
0 if (mature DC)
0 then
0 send prime message to killer T
0 end then
0 end if
0 end then
0 end if
0 end else
0 end if
0 end else
0 end if

 160

Figure 7.10. Pseudo code of the activity diagram of Th2

Figure 7.11. Pseudo code of the activity diagram of Killer T cell

Figure 7.12. Pseudo code of the activity diagram of Exit Engine

ExitEngine is an object that is responsible for making sure that the IDS is shut
down and the statistics are displayed only when both B cell and iDC cells have existed.
The pseudo code of ExitEngine object is shown in Figure 7.12.

0 Receive string from Th1
1 Receive source from Th1
2 Receive system identifying engines from Th1
3 print string to user
4 print source to user
5 print identifying engines to user

0 Receive exiting IDS message
1 if exit message from B cell
2 then
3 if received exit message from iDC
4 then
5 Finalize exiting IDS program
6 Print statistics
7 Goto 18
8 Else go to 0
9 else if exit message from iDC
10 then
11 if received exit message from B cell
12 then
13 Finalize exiting IDS program
14 Print statistics
15 Goto 18
16 Else go to 0
17 End then
18 Exit program

0 Receive string and attack type from Th1
1 if (attack type = suppress)
2 then
3 send suppress message to B
4 send string to B
5 else
6 send prime string message to B
8 end else
9 go to 0

 161
7.5.2. Performance Comparison
In this section we will compare the performance of the original lookahead pairs
method IDS with other enhanced versions that use the same data structure used by
lookahead pairs method. Enhancing danger theory method was performed in 3 steps:
1. iDC and DC functionalities of danger theory were added to the original lookahead
pairs method. This means that we are not only looking at mismatches but also
searching for distress signals associated with such mismatches.
2. Added the functionality of B cells with it associated database. In this case we
have two databases to compare against. One associated with B cells and another
with iDC.
3. All cell components of danger theory are added and examined.
In general, a danger theory based IDS can identify the following:
square4 Mismatch identified by B cell only.
square4 Mismatch and distress identified by DC cell only.
square4 Mismatch by B and DC cells and distress by DC cells.
Whereas the original lookahead-pairs method IDS can only identify intrusions
caused by a mismatch.
In Table 7.5., we have identified 9 scenarios and compared the performance of the
four IDSs. The 9 scenarios explain the different attack types a system may encounter.
The different scenarios are related to the different controlling factors that indicate an
intrusion such as the existence of a mismatch, high CPU usage and high memory usage.
We have compared four systems. The original lookahead-pairs method IDS can only
identify intrusions producing a number of mismatches that exceed a previously identified
 162
threshold value. It will not identify an attack that deviate or produce mismatches that
don?t exceed the threshold value but produce dangerous signals. The dangerous signals
checked in our system are the high CPU and high memory usages. False positives can
also be encountered with lookahead-pairs method especially when there is a mismatch
identified but with no associated dangerous signal. This could happen when the system is
not fully trained on all possible system call sequences and a new sequence may be
produced. Lookahead pairs will identify it as an intrusion despite being sometimes
normal. When enhancing lookahead-pairs method with the functionality of iDC and DC,
all attacks will be identified. If we are limited with space requirements, enhancing an
IDS with iDC and DC characteristics is a good option. Because such enhancement will
not have any significant additional storage and processing time affects. However, it will
enhance detection tremendously and lower false positives.
Incorporating all cell types of danger theory especially B and iDC who are
associated with a database has similar detection rate obtained from the iDC enhanced
IDS. Meaning that it does not identify any additional types of attacks. However, it
makes the system more robust because if one of the databases gets tampered with the
other database will be able to identify the attack. This, of course comes with a cost of
doubling the storage requirements of the IDS. The databases of B and iDC cells can hold
either positive or negative detector patterns. In our 4 systems we are using positive
detector database. However, since lookahead-pairs is not affected with the size of
complement sequences of normal behavior, both databases will have the same storage
requirements. One of the benefits of using negative detectors is the ability to distribute
the system to other systems easily.
 163
Table 7.6. compares the performance of the 4 versions of lookahead-pairs IDS
and its enhanced version with respect to storage requirements. Both the original version
of lookahead pairs and its enhanced version with iDC and DC have the same storage
requirements. However, if we use another database for B cell the storage requirement is
doubled.

CPU
attack
MEM
attack
Mismatch
attack
Lookahead
pairs
Lookahead
pairs &
iDC
Lookahead
pairs &
danger
theory with
+ve
detectors
Lookahead
pairs &
danger
theory with
+ve & -ve
detectors
0 0 0 Y Y Y Y
0 0 1 Y Y Y Y
0 1 0 N Y Y Y
0 1 1 Y Y Y Y
1 0 0 N Y Y Y
1 0 1 Y Y Y Y
1 1 0 N Y Y Y
1 1 1 Y Y Y Y
Added characteristic Better
detection
Robust Distribution
Table 7.5. Intrusion types identified by the four types of IDS: lookahead pairs IDS,
iDC enhanced, danger theory enhanced with positive detectors for both B and iDC,
and danger theory enhanced with positive and negative detectors for B and iDC. 0:
No attack. 1: an attack. Y: yes. N: no. FP: result in false positives.

 164
 Lookahead
pairs
Lookahead
pairs & iDC
Lookahead
pairs & danger
theory with
+ve detectors
Lookahead
pairs & danger
theory with
+ve & -ve
detectors
Total testing
time (sec)
0 0 0 0
Space cost of 1
DB while
running
65536 65536 65536 65536
Space cost of 2
DBs while
running
65536 65536 131072 131072
Space cost of 1
DB while
saved to disk
10896 10896 10896 10896
Space cost of 2
DBs while
saved to disk
10896 10896 21792 21792+
Table 7.6. Performance comparison of 4 versions of lookahead-pairs and its
enhanced systems.

7.6. Validation and Verification
One technique used to validate and verify our modified intrusion detection system
is the conference test as a dynamic functional testing. Dynamic testing involves
executing the system by choosing a number of test cases and its input test data. The input
test cases are used to determine output test results. With functional testing, we identify
and test all functions of the system as defined in requirements. With the conference test,
we choose different input values then design test cases that invoke every functional
requirement in the specification at least once. Our validation hypothesis is that the
danger theory based intrusion detection system will only pass the conference test if an
only if there is no failures. The purpose of validating the implemented system is
governed with the purpose of the new enhanced system. The purpose of this project is to
 165
enhance the lookahead-pairs method based intrusion detection system with danger theory
concepts and enhance the detection rate of the original system. The purpose of the
validation phase is to make sure that given different input sets that the output produced
by the system is correct. In general, the intrusion detection system takes as an input the
following:
- System-call sequences that contain both normal and intrusive instances.
- CPU current values
- Memory usage current values
System calls are read one by one and then are formatted as a sequence. The
appropriate number of system calls is grouped to form a testing subsequence; they are
checked against the database. As long as no intrusive instance is discovered the system
continues monitoring system calls. In case an intrusion has been discovered the values
for the CPU and memory usages are read. At the same time, on equal intervals the CPU
and memory usage values are read to check for attacks that do not involve mismatched
system calls. Table 7.7. shows the different test cases used to test the system output and
compare between the original and enhanced systems outputs. In total there are 64 test
cases. We have 6 different input combinations that are the current values of CPU usage,
memory usage and identification of a mismatch. We are also examining the previous
immediate condition of the system. The ?expected output? column indicates what the
system should produce given the specified conditions. The ?actual output? is the output
produced by the system. When comparing both the lookahead-pairs method with the
enhanced version with danger theory we calculated the number of accurate outputs
produced. Both the original lookahead pairs method IDS and the enhanced system were
 166
able to identify correctly all 64 case inputs. Accuracy here does not mean that the system
identified an intrusion correctly but for validation and verification purposes, it means that
the system performed what it is supposed to perform correctly. Figure 7.13. is an
example of the output produced by the enhanced IDS when testing against test case 8. In
this case a current mismatch is identified and is associated with high CPU and memory
usages. Appendix H is an example output produced when testing the enhanced system
with test case 10. In this test case we are making sure that the enhanced IDS identify a
contiguous mismatch attack. Although the lookahead-pairs method enhanced with
danger theory IDS is best known to identify attacks with danger signals, the system
should be able to identify as well attacks that do not cause dangerous signals. A
mismatch threshold is identified for the system and if a number of mismatches exceed
this number the system will display an attack message to the user.

Lookahead
pairs with
mismatch
threshold = N
Lookahead-
pairs method
enhanced with
danger theory
Test
Case
Previous
(N)
High
CPU
values
Previous
(N)
High
MEM
values
Previous
(N)
identified
mismatches
Current
High
CPU

Current
High
MEM

Current
Identified
Mismatch

Desirable
output
Expected
output
Actual
output
Expected
output
Actual
output
1 0 0 0 0 0 0 normal normal normal normal normal
2 0 0 0 0 0 1 normal normal normal normal normal
3 0 0 0 0 1 0 normal normal normal normal normal
4 0 0 0 0 1 1 attack normal normal attack attack
5 0 0 0 1 0 0 normal normal normal normal normal
6 0 0 0 1 0 1 attack normal normal attack attack
7 0 0 0 1 1 0 normal normal normal normal normal
8 0 0 0 1 1 1 attack normal normal attack attack
9 0 0 1 0 0 0 attack attack attack attack attack
10 0 0 1 0 0 1 attack attack attack attack attack
11 0 0 1 0 1 0 attack attack attack attack attack
12 0 0 1 0 1 1 attack attack attack attack attack
 167
13 0 0 1 1 0 0 attack attack attack attack attack
14 0 0 1 1 0 1 attack attack attack attack attack
15 0 0 1 1 1 0 attack attack attack attack attack
16 0 0 1 1 1 1 attack attack attack attack attack
17 0 1 0 0 0 0 attack normal normal attack attack
18 0 1 0 0 0 1 attack normal normal attack attack
19 0 1 0 0 1 0 attack normal normal attack attack
20 0 1 0 0 1 1 attack normal normal attack attack
21 0 1 0 1 0 0 attack normal normal attack attack
22 0 1 0 1 0 1 attack normal normal attack attack
23 0 1 0 1 1 0 attack normal normal attack attack
24 0 1 0 1 1 1 attack normal normal attack attack
25 0 1 1 0 0 0 attack attack attack attack attack
26 0 1 1 0 0 1 attack attack attack attack attack
27 0 1 1 0 1 0 attack attack attack attack attack
28 0 1 1 0 1 1 attack attack attack attack attack
29 0 1 1 1 0 0 attack attack attack attack attack
30 0 1 1 1 0 1 attack attack attack attack attack
31 0 1 1 1 1 0 attack attack attack attack attack
32 0 1 1 1 1 1 attack attack attack attack attack
33 1 0 0 0 0 0 attack normal normal attack attack
34 1 0 0 0 0 1 attack normal normal attack attack
35 1 0 0 0 1 0 attack normal normal attack attack
36 1 0 0 0 1 1 attack normal normal attack attack
37 1 0 0 1 0 0 attack normal normal attack attack
38 1 0 0 1 0 1 attack normal normal attack attack
39 1 0 0 1 1 0 attack normal normal attack attack
40 1 0 0 1 1 1 attack normal normal attack attack
41 1 0 1 0 0 0 attack attack attack attack attack
42 1 0 1 0 0 1 attack attack attack attack attack
43 1 0 1 0 1 0 attack attack attack attack attack
44 1 0 1 0 1 1 attack attack attack attack attack
45 1 0 1 1 0 0 attack attack attack attack attack
46 1 0 1 1 0 1 attack attack attack attack attack
 168
47 1 0 1 1 1 0 attack attack attack attack attack
48 1 0 1 1 1 1 attack attack attack attack attack
49 1 1 0 0 0 0 attack normal normal attack attack
50 1 1 0 0 0 1 attack normal normal attack attack
51 1 1 0 0 1 0 attack normal normal attack attack
52 1 1 0 0 1 1 attack normal normal attack attack
53 1 1 0 1 0 0 attack normal normal attack attack
54 1 1 0 1 0 1 attack normal normal attack attack
55 1 1 0 1 1 0 attack normal normal attack attack
56 1 1 0 1 1 1 attack normal normal attack attack
57 1 1 1 0 0 0 attack attack attack attack attack
58 1 1 1 0 0 1 attack attack attack attack attack
59 1 1 1 0 1 0 attack attack attack attack attack
60 1 1 1 0 1 1 attack attack attack attack attack
61 1 1 1 1 0 0 attack attack attack attack attack
62 1 1 1 1 0 1 attack attack attack attack attack
63 1 1 1 1 1 0 attack attack attack attack attack
64 1 1 1 1 1 1 attack attack attack attack attack
Accuracy 100% 100%
Table 7.7. Test cases used to validate the lookahead pairs method enhanced with
danger theory.

current testing input row: 90 125 106 5
mismatch pair: <5,106> at plain: 0
mismatch pair: <5,125> at plain: 1
mismatch pair: <5,90> at plain: 2
Handeled Window: 90 125 106 5
Is a mismatch
User present: 1
CPU usage: 97.3
Mem usage: 97.4
Is an abnormal signal: 0
previous CPU: 1 0 0 0 0 0 0 0 0 0
previous memory: 1 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 0 0 0 0 0 0 0 0 0
previous IC: 1 0 0 0 0 0 0 0 0 0
Mat

Figure 7.13. Sample output of the lookahead-pairs method enhanced with danger
theory IDS of test case 8. A mismatch has been identified and high CPU and
memory usages have been noticed. The output is ?Mat? indicating mature DC or
danger.
 169
In table 7.7, we verity that the system is implemented correctly and also helped us
to validate or demonstrate that the results obtained are correct, which is an example of
trace validation.
In general, to validate the enhanced system requires a two fold validation. Since
the enhanced system is based on an already built and validated system the first part of
validation is checked. The original lookahead pairs method has been validated in section
5.8. of this dissertation.
The added functionalities of the danger theory to the original lookahead pairs
method will be validated next. Since the enhanced system is composed of the original
lookahead pairs method to create its normal database, the system or in particular the
generated datasets are not sensitive to a particular input dataset. The other part of the
enhanced system which is testing a sequence and indicating if it results in an intrusion or
not, has been validated as follows.
The same data set used to test the original lookahead pairs method has been tested
with the enhanced system and both produced the same results and identified the same
intrusions. The enhanced system is created to detect more intrusions instances that have
been missed by the lookahead pairs method. Table 7.7. shows the output of running the
original and enhanced system over a set of test cases and shows that the enhanced system
identified more attacks.
From table 7.8., and when comparing the desirable output with the actual output
produced by the original system and the enhanced system, we note that the original
system had a 57.8% detection rate and the enhanced system identified all intrusions.

 170
 Original lookahead pairs
method IDS
Lookahead pairs method
enhanced with danger
theory IDS
Number of attacks
identified out of 64
37 64
Accuracy or detection rate =
number of identified attacks
/ number of expected
attacks to be identified.
57.8% 100%
Table 7.8. Detection rate comparison.

7.7. System Evaluation

An intrusion detection system is evaluated according to their performance in the
following areas (evaluation criteria):
? Detection rate.
? False positive rate.
? False negative rate.
? Size of normal repository or the number of patterns in the normal database and
their storage requirements.
? Speed of detection.
Our aim is building a system that will provide the following:
? High detection rate or in particular we aim of building a system that will detect
more intrusion types and preferably novel attacks.
? Low false positive rate by not identifying normal behavior as an intrusion.
? Low false negative rate by not missing an intrusion.
? Small storage cost which results from smaller number of patterns and smaller
pattern size.
? Fast detection speed.
 171
In this dissertation we aimed to improve the performance of the original
lookahead-pairs method IDS by incorporating danger theory?s signal processing
capability. In this section we will compare between the original lookahead-pairs method
IDS and it?s enhanced with danger theory IDS version with regard to the previously
identified evaluation criteria. Table 7.9. elaborates on the evaluation of the criterions of
the implemented IDSs.
Evaluation
criteria
Procedure used for evaluation Observations
Detection
rate.

This is indicated in two folds:
1. The number of attacks identified
from the total test cases tested in the
system.
2. Mismatch threshold which is equal
to the total number of pair-
mismatches identified by the system
divided by the number of pairs in the
testing file.
Tables 7.7. and 7.8.
indicate the number of
attacks identified by the
original lookahead-pairs
method compared with the
enhanced lookahead pairs
method with danger theory.
For the 64 attack scenarios,
the enhance system was
able to detect all attacks.
However, the original
system only had a 57.8%
accuracy rate.

We are performing a
controlled experiment
where we, ourselves, inject
the attacks and check if they
are identified or not. Both
systems identified the same
number of mismatches
since this depends on the
system calls that deviate
from the patterns in the
normal database.
False
positive
rate.

In a fully trained system the false positive
rate is equal to 0.0, since any identified
mismatch must be considered as an
intrusion. However, usually, training the
IDS on all possible patterns is not feasible.
Different systems use different techniques to
With the original lookahead
pairs method IDS, we
simulated a false positive as
mismatch that is not
associated with any danger
signal (high CPU or
 172
handle false positives such as:
? Set an allowable mismatch threshold.
If the number of mismatches
identified exceeds this threshold then
an intrusion is identified. However, it
is difficult sometimes to identify a
universal threshold value for patterns
or sequences.
? Ask the security administrator to
manually indicate if this sequence is
normal or intrusive.
? Danger theory allows the system to
experience mismatches and if they
are moderate in number (i.e. don?t
exceed a maximum threshold value)
and are not associated with danger
signals, to be added to the normal
database.

Our system has a minimum and maximum
threshold values associated with
mismatches. We have several scenarios:
? If the mismatches exceed a
maximum threshold and are not
associated with dangerous signals, it
is considered an intrusion and the
information related to such instance
is displayed to the user. If he decides
to accept it, he must modify the
database to include such pattern.
? If the mismatches exceed the
maximum threshold and is associated
with dangerous signals then this is
defiantly an intrusion.
? If the number of mismatches is
below the minimum threshold and is
not associated with danger signals
then it is considered normal.
? If the number of mismatches is
between the minimum and maximum
allowable threshold and not
associated with danger signals
nothing is reported.
? If the number of mismatches is
between the minimum and maximum
memory usages). When the
system is not fully trained,
some new sequences will
appear and will result in a
mismatch since they do not
exist in the normal
database.
 173
allowable threshold value and danger
signals are associated with it, the
system uses an estimation equation
(i.e. each parameter affecting the
overall identification of an intrusion
is given an associated percentage) to
calculate whether there is an
intrusion attempt or not.
In general, our system removes any entry
from the database that is identified later on
as an intrusion instance. This is because our
normal database is build using positive
selection algorithm.
False
negative
rate.

Many intrusions attempt to deviate the
implemented IDS. The original lookahead-
pairs method can not detect, for example,
any pattern that is repeated indefinitely and
exist in the normal database.
The enhanced lookahead-pairs method with
danger theory overcomes this shortcoming
by monitoring other parameters as well as
mismatches for intrusion instances.
Our systems monitor for mismatches as well
as CPU and memory usages associated with
running processing. The CPU and memory
usage parameters can be exchanged easily
with any other appropriate parameter as seen
fit for the security problem at hand. If an
intrusion deviates the mismatch detection
scheme which results in a false negative, the
other parameters should (if chosen correctly)
should indicate an intrusion instance.
With the original lookahead
pairs method the false
negative result from an
intrusion that does not
produce any mismatches.
Such an intrusion is when
the attacker, for example,
writes an attack that will
produce an acceptable
sequence of system calls or
a sequence that will produce
very low mismatches that
will not exceed the
allowable mismatch
threshold.
Attacks that deviate the
maximum threshold value
but introduce overhead on
other system parameters
such as CPU or memory
will be detected by the
lookahead-pairs method
enhanced with danger
theory.

The system enhanced with
danger theory will detect
both intrusions producing
mismatches or inducing
overhead on the CPU or
memory of the system.
 174
However, any attack that
does not affect these three
parameters will not be
detected.
Size of
normal
repository

For a given training data set and if the
number of patterns generated for a specific
window size w is N. If redundant entries are
not removed then as the window size w
increases by one the number of patterns N
decreases by one. As shown in figure 7.14.,
the total number of patterns decreases by
one as the window size increases. The
number of patterns when the redundant
entries are removed increase as the window
size increases. The final number of patterns
depends on the size of the log file used to
train the system. It also depends on the
frequency of a pattern appearing in the log
file.
The more patterns added to
the normal database the
better the detection and
lower false positives are
generated.
This is true with the original
lookahead pairs method
IDS.
With the lookahead pairs
method enhanced with
danger theory we assumed
that adding the signal
processing functionalities
will allow us to lower the
number of patterns added to
the database. This is true
with sequence and variable
length with overlap
relationship methods
because the size of the
database is dependent on
the number of patterns
stored.
With lookahead pairs
method storage technique,
to reduce memory
requirements we need to
remove one array or more
from consideration.
Speed of
detection.

This measured the time it takes for the off-
line testing file to be read and each entry in
it compared to the normal database entries
and reporting the mismatches to the user.
Both lookahead-pairs
method and enhanced
lookahead-pairs method
with dander theory IDSs
finished processing and
identifying the testing files
(for the login and ps
applications) in less than 1
second.
Table 7.9. IDS evaluation criteria

 175

Number of patterns for sequence method for "int_159.txt" file
0
20
40
60
80
100
120
140
160
180
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
window size
nu
m
be
r o
f p
att
er
ns
total # patterns
patterns after removing
redundant

Figure 7.14. Number of patterns stored in the normal database if no redundant data
is removed and if redundant data is removed.

To better evaluate the two systems and compare between their performances we
constructed test cases to measure the detection rate, false positive and false negatives of
both systems. Tables 7.10., 7.11. and 7.12. are examples of test cases that measure such
criterions. We performed an incremental approach to test the behavior of the systems.
For example, in table 7.10. we are comparing between the original lookahead pairs
method and the enhanced version. We assumed 8 test cases, where we either have one
mismatch (indicated by 1) or not (indicated by 0). If the CPU and memory
concentrations are equal to 1 then there is a CPU or memory attack. We compared
between two cases, either the identified mismatch is considered an intrusion or it is a new
normal behavior. The same concept has been adapted for tables 7.11. and 7.12. In table
7.11., the mismatch threshold is 2 system calls and in table 7.12. the mismatch threshold
is 3 system calls.
 176
In general, if the sequence intention is normal and the system identified it as
normal then this is correct output. If the sequence intention is an attack and the system
identified it as an attack then this is a correct output. If the sequence intention is an
attack and the system identified it as normal then this is considered as a false negative. If
the system identified the sequence as normal and it was an attack then this is considered
as a false positive.

 any mismatch is an intrusion mismatches are normal
CP
U
co
nc
en
tra
tio
n
M
em
or
y c
on
cen
tra
tio
n
On
e s
yst
em
 ca
ll m
ism
atc
h
seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s m
eth
od
 ID
S
ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od
 en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y I
DS

ex
pla
na
tio
n o
f e
nh
an
ced

seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s m
eth
od
 ID
S
ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od
 en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y I
DS

ex
pla
na
tio
n o
f e
nh
an
ced

0 0 0 N N OK N OK N N OK N OK
0 0 1 A A OK A OK N A FP A FP
0 1 0 A N FN A OK A N FN A OK
0 1 1 A A OK A OK A A OK A OK
1 0 0 A N FN A OK A N FN A OK
1 0 1 A A OK A OK A A OK A OK
1 1 0 A N FN A OK A N FN A OK
1 1 1 A A OK A OK A A OK A OK
Detection rate 62.5% 100% 50.0% 87.5%
FP 0.0% 0.0% 12.5% 12.5%
FN 37.5% 0.0% 37.5% 0.0 %
Table 7.10. Performance comparison with mismatch threshold = 1 system call. N:
normal behavior, A: attack, OK: produced correct output, FP: False positive, and
FN: False negative.

The results obtained indicated that the enhanced system always performed better
than or similar to the original lookahead pairs method based IDS with regard to detection
 177
rate, false positive and false negative rates. Both systems have less than 1 second testing
time. When comparing between the original lookahead pairs method based IDS and the
enhanced with iDC IDS, both have the same storage costs. However, if we are using the
B cell functionalities then the cost will be doubled.
 any mismatch is an intrusion mismatches are normal
CP
U
co
nc
en
tra
tio
n
M
em
or
y c
on
cen
tra
tio
n
an
oth
er
sys
tem
 ca
ll m
ism
atc
h
On
e s
yst
em
 ca
ll m
ism
atc
h
seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s m
eth
od
 ID
S
ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od
 en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y I
DS

ex
pla
na
tio
n o
f e
nh
an
ced

seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s m
eth
od
 ID
S
ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od
 en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y I
DS

ex
pla
na
tio
n o
f e
nh
an
ced

0 0 0 0 N N OK N OK N N OK N OK
0 0 0 1 A N FN N FN N N OK N OK
0 1 0 0 A N FN A OK A N FN A OK
0 1 0 1 A N FN A OK A N FN A OK
1 0 0 0 A N FN A OK A N FN A OK
1 0 0 1 A N FN A OK A N FN A OK
1 1 0 0 A N FN A OK A N FN A OK
1 1 0 1 A N FN A OK A N FN A OK
0 0 1 0 A N FN N OK N N OK N OK
0 0 1 1 A A OK A FN N A FP A FP
0 1 1 0 A N FN A OK A N FN A OK
0 1 1 1 A A OK A OK A A OK A OK
1 0 1 0 A N FN A OK A N FN A OK
1 0 1 1 A A OK A OK A A OK A OK
1 1 1 0 A N FN A OK A N FN A OK
1 1 1 1 A A OK A OK A A OK A OK
Detection rate 31.25 87.5 37.5 93.75
FP 0 0 6.25 6.25
FN 68.75 12.5

56.25 0
Table 7.11. Performance comparison with mismatch threshold = 2 system calls. N:
normal behavior, A: attack, OK: produced correct output, FP: False positive, and
FN: False negative.

 178
 any mismatch is an intrusion mismatches are normal
CP
U
co
nc
en
tra
tio
n
M
em
or
y c
on
cen
tra
tio
n
an
oth
er
sys
tem
 ca
ll m
ism
atc
h
an
oth
er
sys
tem
 ca
ll m
ism
atc
h
On
e s
yst
em
 ca
ll m
ism
atc
h
seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s
me
tho
d I
DS

ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od

en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y
ID
S
ex
pla
na
tio
n o
f e
nh
an
ced

seq
ue
nc
e i
nte
nti
on

Or
igi
na
l lo
ok
ah
ea
d p
air
s
me
tho
d I
DS

ex
pla
na
tio
n o
f o
rig
ina
l
Lo
ok
ah
ea
d p
air
s m
eth
od

en
ha
nc
ed
 w
ith
 da
ng
er
the
or
y
ID
S
ex
pla
na
tio
n o
f e
nh
an
ced

0 0 0 0 0 N N OK N OK N N OK N OK
0 0 0 0 1 A N FN N FN N N OK N OK
0 1 0 0 0 A N FN A OK A N FN A OK
0 1 0 0 1 A N FN A OK A N FN A OK
1 0 0 0 0 A N FN A OK A N FN A OK
1 0 0 0 1 A N FN A OK A N FN A OK
1 1 0 0 0 A N FN A OK A N FN A OK
1 1 0 0 1 A N FN A OK A N FN A OK
0 0 0 1 0 A N FN N FN A N FN N FN
0 0 0 1 1 A N FN N FN N N OK N OK
0 1 0 1 0 A N FN A OK A N FN A OK
0 1 0 1 1 A N FN A OK A N FN A OK
1 0 0 1 0 A N FN A OK A N FN A OK
1 0 0 1 1 A N FN A OK A N FN A OK
1 1 0 1 0 A N FN A OK A N FN A OK
1 1 0 1 1 A N FN A OK A N FN A OK
0 0 1 0 0 A N FN A OK N N OK N OK
0 0 1 0 1 A N FN N FN N N OK N OK
0 1 1 0 0 A N FN A OK A N FN A OK
0 1 1 0 1 A N FN A OK A N FN A OK
1 0 1 0 0 A N FN A OK A N FN A OK
1 0 1 0 1 A N FN A OK A N FN A OK
1 1 1 0 0 A N FN A OK A N FN A OK
1 1 1 0 1 A N FN A OK A N FN A OK
0 0 1 1 0 A N FN N FN N N OK N OK
0 0 1 1 1 A A OK A OK N A FP A FP
0 1 1 1 0 A N FN A OK A N FN A OK
0 1 1 1 1 A AA OK A OK A A OK A OK
1 0 1 1 0 A N FN A OK A N FN A OK
1 0 1 1 1 A A OK A OK A A OK A OK
1 1 1 1 0 A N FN A OK A N FN A OK
1 1 1 1 1 A A OK A OK A A OK A OK
Detection rate 15.625 84.375 28.175 93.75
FP 0 0 3.125 3.125
FN 84.375 15.625

68.75 3.125
Table 7.12. Performance comparison with mismatch threshold = 3 system calls. N:
normal behavior, A: attack, OK: produced correct output, FP: False positive, and
FN: False negative.

 179

7.8. Summary
Danger theory enhances the performance of system call based IDSs that are
governed by a mismatch threshold. An attack may not produce mismatches or produce
mismatches that do not exceed the mismatch threshold. However if an attack, including
mismatches, is associated with unacceptable performance degradation (i.e. high CPU and
memory usages) then the attack will be identified. In case the system identified
mismatches but all monitored system conditions are normal then the system will not
benefit from danger theory but will rely on it threshold to identify mismatches.
In our implementation only one object is generated for each class (cell) created in
the system. For example, we have one B, one Th1, one Th2, one killer T, and one iDC
and DC cells. This is different from other attempts to implement innate or adaptive based
immunity based systems. The systems are usually populated by many instances or agents
of such cells that circulate the system. Our system is not an agent based system. Rather,
each type of cell in the immune system is represented with one object that carries out all
the functionalities and duties of a population of this cell. This can be accomplished since
all of them perform the same functionalities and only differ with respect to the monitored
string or activity. As a result a database is associated with B and iDC classes holding the
normal or abnormal strings (activities) to be monitored. Our system can be modified in
many ways to handle more advanced and sophisticated tasks. For example, we can have
different B cells each responsible for a specific application. We can also have more than
one B cell responsible for portion of the whole problem of a specific application. This is
 180
beneficial if we have more than one processor and each B cell will run concurrently
monitoring the same application.
 181
CHAPTER 8
 CONCLUSION AND FUTURE WORK

In this dissertation the concepts of adaptive immunity and in specific danger
theory has been tested. The hypothesis of this dissertation was that incorporating
properties of danger theory, the performance of lookahead pairs method which is an
intrusion detection system that uses trails of system calls was enhanced. As explained
earlier in tables 7.10. to 7.12., the lookahead pairs method based IDS enhanced with
danger theory had better detection rate, better or similar false positive and false negative
rates than the original lookahead pairs method. Both systems finished processing the
input data file in less than one second. The storage requirement of the enhanced system
with iDC is similar to the original lookahead pairs method IDS but the storage
requirement of the system enhanced with B cell functionality is doubled.
Lookahead-pairs method has been previously proven to perform better with
regard to storage requirements when compared with other intrusion detection systems
such as sequence method and overlap-relationship method. However, this performance
was tested on positive detectors. Positive detectors are generated by examining the
normal behavior of the system and generating a database that hold this normal behavior.
In general, with a specified and small number of patterns representing normal behavior,
the negative detector set which represents the complement of normal behavior tend to be
huge. As the number of negative detectors increase, the storage requirements of storing
 182
them also increase especially when using sequence and variable length detector methods
that use data structures such as trees and linked lists to store such patterns. In this
dissertation we identified that the characteristics of lookahead pairs method of storing
pair relationships in a 2 dimensional array format does not required an additional storage.
Modeling danger theory functionalities can be achieved by instantiating one
instance of each cell type. Rather than associating a different and specific signature
string to each B or iDC cell of which it uses to identify intrusions, our system instantiated
one object of each cell type. The B and iDC cells are associated with a database of all
possible normal behavior signatures.
The original sequence method, lookahead pairs method and variable length with
overlap relationship method were unable to detect system-call-denial-of-service-attack.
Enhancing them with danger theory will enable them to identify such attack since
consuming system resources will indicate an intrusion and will be identified by the
enhanced system.
Danger theory is currently investigated to solve many security and non-security
related problems. Exploring immune system concepts and theory are exciting and
interesting. In this dissertation we deployed danger theory to enhance an IDS. Our
future work will continue in the following fields:
square6 Enhancing the performance of our system and detect intrusions that deviate
monitored parameters.
square6 Implement danger theory inspired intrusion detection system for hand held
devices.
 183
square6 Enhance other intrusion detection systems with danger theory concepts and in
particular sequence and variable length with overlap relationship methods.
square6 Investigate other suitable parameters to be used to indicate dangerous signals to
the danger theory cells.
square6 Investigate techniques to reduce the cost of storing pattern databases by using
different data structures.
square6 Implement an on ? line intrusion detection system performing the functionalities
tested in the off-line systems implemented in this dissertation.
This dissertation explored the different mechanisms employed to detect host
based intrusions by examining sequences of system calls produced by a specific
application. Artificial immune systems and in specific danger theory concepts were
employed to enhance the performance of lookahead pairs method and it was successful in
outperforming the original form of the IDS. Better detection rate and lower or similar
false positive and false negative rates were achieved.

 184
REFERENCES

[Aickelin 2004] U. Aickelin. Artificial Immune Systems: A new paradigm For Heuristic
Decision Making. Invited Keynote Talk, Annual Operational Research Conference
46, York, UK. 2004.
[Aickelin and Cayzer 2002] U. Aickelin and S. Cayzer S. The Danger Theory and Its
Application to AIS, 1st International Conference on AIS, pp 141-148. 2002.
[Aickelin and Dasgupta 2005] U. Aickelin and D. Dasgupta. Artificial Immune Systems
Tutorial. To appear in Introductory Tutorials in Optimization, Decision Support and
Search Methodology (eds. E. Burke and G. Kendall), Kluwer. 2005.
[Aickelin et al. 2003] U. Aickelin, P. Bentley, S. Cayzer, J. Kim and J. McLeod. Danger
Theory: The Link between AIS and IDS. Proceedings ICARIS-2003, 2nd
International Conference on Artificial Immune. 2003.
[Aickelin, Greensmith and Twycross 2004] U. Aickelin, J. Greensmith and J. Twycross.
Immune system approaches to intrusion detection-a review. In: Proc. ICARIS-04,
3rd Int. Conf. on Artificial Immune Systems (Catania, Italy), Lecture Notes in
Computer Science, Vol. 3239, pp. 316--329, Springer, Berlin. 2004.
 [Anderson 1980] J. P. Anderson. Computer Security Threat Monitoring and
Surveillance. James P. Anderson Co., Fort Washington, PA, 1980.
 185
[Axelsson 1999] Stefan Axelsson. Research in intrusion-detection systems: a survey.
Technical report 98-17. Department of Computer Engineering, Chalmers University
of Technology, December 1998.
[Axelsson 2000] S. Axelsson. Intrusion detection systems: A survey and taxonomy.
Technical Report No 99-15, Chalmers University of Technology, Sweden, 2000.
[Ayara et al. 2002] M. Ayara, J. Timmis, R. D. Lemos, D. Castro, and R. Duncan.
Negative Selection: How to Generate Detectors. In: J. Timmis and P. Bentley
(eds.): Proceedings of 1st International Conference on Artificial Immune Systems
(ICARIS). Canterbury, UK, pp. 89-98. 2002.
[Balthrop et al. 2002] Justin Balthrop, Fernando Esponda, Stephanie Forrest and Matthew
Glickman. Coverage and Generalization in an Artificial Immune System.
Proceedings of the 2002 Genetic and Evolutionary Computation Conference
(GECCO 2002).
[Balthrop, Forrest and Glickman 2002] J. Balthrop, S. Forrest and M. Glickman.
Revisiting lisys: Parameters and normal behavior. Proc. of the Congress on
Evolutionary Computation, pages 1045?1050. In CEC-2002.
[Begnum and Burgess 2003] K. Begnum and M. Burgess. A scaled, immunological
approach to anomaly countermeasures (combining ph with cfengine). Integrated
Network Management, pages 31-42, 2003.
[Bentley, Greensmith and Ujjin 2005] P. Bentley, J. Greensmith, and S. Ujjin. Two ways
to grow tissue for artificial immune systems. In International Conference on
Artificial Immune Systems (ICARIS), LNCS 3627, pages 139?152, 2005.
 186
[Burgess 1998] M Burgess. Computer immunology. In Proc. of the Systems
Administration Conference (LISA-98), pages 283--297, 1998.
[Burgess 2000] M. Burgess. Evaluating cfegine's immunity model of site maintenance.
In Proceeding of the 2nd SANE System Administration Conference
(USENIX/NLUUG), 2000.
[Burgess 2001] M. Burgess. Recent developments in cfengine. In Proceedings of the 2nd
Unix.nl conference, Netherlands, 2001.
[Burgess 2002] M. Burgess. Two dimensional time-series for anomaly detection and
regulation in adaptive systems. In M. Feridum et al., editor, Proceedings of 13th
IFIP/IEEE International Workshop on Distributed System, Operations and
Management (DSOM 2002), volume 2506 of Lecture Notes in Computer Science,
pages 169-180. Springer-Verlag, 2002.
[Burgess 2004a] M. Burgess. Configurable immunity for evolving human-computer
systems. Science of Computer Programming, 51:197-213, 2004.
[Burgess 2004b] M. Burgess. Principle components and importance ranking of
distributed anomalies. Machine Learning, 58:217-230, 2004.
[Cayzer and Aickelin 2002a] S. Cayzer and U. Aickelin. A Recommender System based
on the Immune Network. Proceedings CEC, pp 807-813. 2002.
[Cayzer and Aickelin 2002b] S. Cayzer and U. Aickelin. On the Effects of Idiotypic
Interactions for Recommendation Communities in Artificial Immune Systems.
Research Report BICAS-2002-15, HP Labs, Bristol, UK. 2002
 187
[Cayzer and Aickelin 2005] Steve Cayzer1 and Uwe Aickelin. A Recommender System
based on Idiotypic Artificial Immune Networks. Submitted & Under Review by
JMMA.
[Chao and Forrest 2002] D. L. Chao and S. Forrest. Information Immune Systems. In
Proceedings of the First International Conference on Artificial Immune Systems
(ICARIS), pp. 132-140 2002.
[D?haeseleer 1996] P. D?haeseleer. An immunological approach to change detection:
theoretical results. In Proceedings of the 9th IEEE computer Security Foundations
Workshop. IEEEE computer Society Press, 1996.
[D?haeseleer, Forrest and Helman, 1996] P. D?haeseleer, S. Forrest, and P. Helman. An
immunological approach to change detection: algorithms, analysis and implications.
In proceedings of the 1996 IEEE Symposium on Computer Security and Privacy.
IEEE Press, 1996.
[Dain and Cunnigham 2001] O. Dain and R. K. Cunningham. Fusing a heterogeneous
alert stream into scenarios. In ACM Workshop on Data Mining for Security
Applications, pages 1-13, 2001.
[Dasgupta 1999] D. Dasgupta. Immunity-based intrusion detection systems: A general
framework. In Proc. of the 22nd National Information Systems Security Conference
(NISSC), October 1999.
[Dasgupta 2004] D. Dasgupta. Immuno-Inspired Autonomic System for Cyber Defense.
Computer Science Technical Report, May, 2004.
[Dasgupta and Attoh-Okine 1997] D. Dasgupta and N. Attoh-Okine. Immunity-based
systems: A survey. In Proceedings of the IEEE International Conference on
 188
Systems, Man, and Cybernetics, pp. 363-374, Orlando, Florida, October 12-15
1997.
 [Dasgupta and Gonzalez 2002] D. Dasgupta and F. Gonzalez. An Immunity-Based
Technique to Characterize Intrusions in Computer Networks. IEEE Trans.
Evolution Computer. Vol. 6; 3, pp 1081-1088. 2002.
[De Paula, De Castro and De Geus 2004] F. S. de Paula, L. N. de Castro, and P. L.
de Geus. An intrusion detection system using ideas from the immune system. In
Proceeding of IEEE Congress on Evolutionary Computation (CEC-2004), pages
1059-1066, Portland, Oregon, USA, June 2004.
[Debar et al. 1998] Herv? Debar , Marc Dacier , Mehdi Nassehi , Andreas Wespi, Fixed
vs. Variable-Length Patterns for Detecting Suspicious Process Behavior.
Proceedings of the 5th European Symposium on Research in Computer Security,
p.1-15, September 16-18, 1998
[Debar, Cacier and Wespi 2000] H. Debar, M. Dacier, and A. Wespi. A revised
taxonomy of intrusion-detection systems. Annales des Telecommunications, 55:83-
100, 2000.
[Denning 1987] D. E. Denning. An Intrusion Detection Model. IEEE Transactions on
Software Engineering, 13(2):222?232, 1987.
[Dozier et al. 2004] G. Dozier, D. Brown, J. Hurley, and K. Cain. Vulnerability analysis
of immunity-based intrusion detection systems using evolutionary hackers. In
K. Deb et al, editor, Genetic and Evolutionary Computation - GECCO-2004, Part I,
volume 3102 of Lecture Notes in Computer Science, pages 263-274, Seattle, WA,
USA, 26-30 June 2004. ISGEC, Springer-Verlag.
 189
[Eiben, Hinterding and Michalewicz 1999] A. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 3:124-141, 1999.
[Endler 1998] D. Endler. Intrusion Detection Applying Machine Learning to Solaris
Audit Data. In Proc. of the IEEE Annual Computer Security Applications
Conference, pages 268?279, Scottsdale, AZ, 1998.
[Esponada, Forrest and Helman 2003] F. Esponda, S. Forrest, and P. Helman. The
crossover closure and partial match detection. In J Timmis, P Bentley, and E Hart,
editors, Proceedings of the 2nd International Conference on Artificial Immune
Systems (ICARIS'-03), volume 2787 of Lecture Notes in Computer Science, pages
249-260, Edinburgh, UK, September 2003. Springer-Verlag.
[Esponda and Forrest 2002] F. Esponda and S. Forrest. Defining Self: Positive and
Negative detection . Technical Report TR-CS-2002-03, University of New Mexico,
2002.
[Esponda, Forrest and Helman 2004] Fernando Esponda, Stephanie Forrest and Paul
Helman. A formal Framework for Positive and Negative Detection Schemes. IEEE
Transactions on Systems. Man and Cybernetics 2004.
 [Forrest and Hofmeyr 2001a] Stephanie Forrest and Steven A. Hofmeyr. Immunology as
information processing, In Design Principles for the Immune System and Other
Distributed Autonomous Systems, edited by L.A. Segel and I. Cohen. Santa Fe
Institute Studies in the Sciences of Complexity. New York: Oxford University
Press. (2001).
 190
[Forrest and Hofmeyr 2001b] S. Forrest, S. Hofmeyr. Engineering an Immune System.
Graft, Vol. 4, No. 5, 2001, 5-9
[Forrest et al. 1994] Stephanie Forrest, Alan S Perelson, Lawrence Allen and Rajesh
Cherukuri. Self-Non-self Discrimination in a Computer. Proceedings of the IEEE
Symposium on Research in Security and Privacy, IEEE Press(1994).
[Forrest et al. 1996] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A
sense of self for Unix processes. In Proceedings of 1996 IEEE Symposium on
Computer Security and Privacy, pp. 120-128 (1996).
[Forrest, Hofmeyr and Somayaji 1997] S. Forrest, S. Hofmeyr, and A. Somayaji.
Computer immunology. Communications of the ACM, 40(10):88?96, 1997.
[Fraser, Badger and Feldman 1999] T. Fraser, L. Badger, and M. Feldman. Hardening
COTS software with generic software wrappers. In Proc. of the IEEE Symposium
on Security and Privacy, pages 2?16, 1999.
[Gao, Reiter and Song 2004a] D. Gao, M. K. Reiter, and D. Song. Gray-Box Extraction
of Execution Graphs for Anomaly Detection. In Proc. of the ACM Conference on
Computer and Communications Security, pages 318?329, 2004.
[Gao, Reiter and Song 2004b] D. Gao, M. K. Reiter, and D. Song. On Gray-Box Program
Tracking for Anomaly Detection. In Proc. of the 13th USENIX Security
Symposium, pages 103?118, San Diego, CA, August 2004.
[Garfinkel 2003] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition based Security Tools. In Proc. of the Network and Distributed Systems
Security Symposium, pages 162?177, 2003.
 191
[Garfinkel, Pfaff and Rosenblum 2004] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia:
A Delegating Architecture for Secure System Call Interposition. In Proc. of the
Network and Distributed Systems Security Symposium, pages 52?69, 2004.
[Ghosh, Schwartzbard and Schatz 1999] A. K. Ghosh, A. Schwartzbard and M. Schatz.
Learning Program Behavior Profiles for Intrusion Detection. 1st USENIX
Workshop on Intrusion Detection & Networking Monitoring, 1999.
[Goldberg 1996] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure
environment for un-trusted helper applications: Confining the wily hacker. In Proc.
of the 6th USENIX Security Symposium, pages 1?13, San Jose, CA, July 1996.
[Gomez, Gonzalez and Dasgupta 2003] J. Gomez, F. Gonzalez, and D. Dasgupta. An
immuno-fuzzy approach to anomaly detection. In proceedings of the 12th IEEE
International Conference on Fuzzy Systems (FUZZIEEE), volume 2, pages 1219-
1224, May 2003.
[Gonzalez 2003] F. Gonzalez. A Study of Artificial Immune Systems Applied to
Anomaly Detection. PhD thesis, The University of Memphis, May 2003.
[Gonzalez and Cannady 2004] L. J. Gonzalez and J. Cannady. A self-adaptive negative
selection approach for anomaly detection. In Proceedings of the 2004 Congress of
Evolutionary Computation (CEC-2004), pages 1561-1568. IEEE Computer Society,
2004.
[Gonzalez and Dasgupta 2002] F. Gonzalez and D. Dasgupta. An immunogenetic
technique to detect anomalies in network traffic. In Proceedings of the genetic and
evolutionary computation conference, GECCO 2002.
 192
[Gonzalez and Dasgupta 2003] F. Gonzalez, and D. Dasgupta. Anomaly detection using
real-valued negative selection. In Genetic Programming and Evolvable Machines,
Vol. 4, pp. 383--403. 2003.
[Gonzalez et al. 2005] F. A. Gonzalez, J. C. Galeano, D. A. Rojas, and A. Veloza-Suan.
Discriminating and visualizing anomalies using negative selection and self-
organizing maps. In H.-G. Beyer et al., editor, GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary computation, volume 1, pages 297-
304, Washington DC, USA, 25-29, June 2005. ACM SIGEVO (formerly ISGEC),
ACM Press.
[Gonzalez, Dasgupta and Kozma 2002] F. Gonzalez, D. Dasgupta, , and R. Kozma.
Combining negative selection and classification techniques for anomaly detection.
In IEEE, editor, Proceedings of the Congress on Evolutionary Computation (CEC-
2002), pages 705-710, Honolulu, HI, May 2002.
[Gonzalez, Dasgupta and Nino 2003] F. Gonzalez, D. Dasgupta, and L. F. Nino. A
randomized real-valued negative selection algorithm. In J Timmis, P Bentley, and
E Hart, editors, Proceedings of the 2nd International Conference on Artificial
Immune Systems (ICARIS-2003), volume 2787 of Lecture Notes in Computer
Science, pages 261-272, Edinburgh, UK, September 2003. Springer.
[Greensmith and Aickelin 2006] J. Greensmith and U. Aickelin. Dendritic Cells for Real-
Time Anomaly Detection. Proceedings of the Workshop on Artificial Immune
Systems and Immune System Modeling (AISB 2006), pp 7-8, Bristol, UK. 2006.
 193
[Greensmith, Aickelin and Cayzer 2005] J. Greensmith, U. Aickelin and S. Cayzer.
Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly
Detection. Research Report HPL-2005-117, HP Labs, Bristol, UK. 2005.
[Greensmith, Aickelin and Twycross 2006] J. Greensmith, U. Aickelin and J. Twycross,
J. Articulation and Clarification of the Dentric Cell Algorithm. Proceedings of the
5th International Conference on Artificial Immune Systems. (ICARIS 2006) LNCS
4163, pp 404-417. Oeiras, Portugal. 2006.
[Greensmith, Twycross and Aickelin 2006] J. Greensmith, J. Twycross and U. Aickelin.
Dendritic Cells for Anomaly Detection. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2006), pp XXX, Vancouver, Canada. 2006.
[GSWT] GSWT homepage. http://opensource.nailabs.com/wrappers/, 2007.
[Hang and Dai 2004] X. Hang and H. Dai. Constructing detectors in schema
complementary space for anomaly detection. In K. Deb et al., editor, Proceedings of
GECCO'2004, volume 3102 of Lecture Notes in Computer Science, pages 275-286.
Springer-Verlag, 2004.
[Hang and Dai 2005] X. Hang and H. Dai. Applying both positive and negative selection
to supervised learning for anomaly detection. In H.-G. Beyer et al., editor, GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, volume 1, pages 345-352, Washington DC, USA, 25-29 June 2005.
ACM SIGEVO (formerly ISGEC), ACM Press.
[Harmer et al. 2002] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont. An
artificial immune system architecture for computer security applications. IEEE
Transactions on Evolutionary Computation, 6(3):252-280, June 2002.
 194
[Hofmeyr 1999] Steven Hofmeyr. An immunological model of distributed detection and
its application to computer security. PhD thesis, University Of New Mexico, 1999.
[Hofmeyr 2000] S. A. Hofmeyr. An Interpretative Introduction to the Immune System.
In: Segel, L.A., Cohen, I.R. (Eds.), Design Principles for the Immune System and
Other Distributed Autonomous Systems, Oxford University Press, New York. pp.
3-26. 2000.
[Hofmeyr and Forrest 1998] S. Hofmeyr and S. Forrest. Intrusion Detection using
Sequences of System Calls. Journal of Computer Security, 6(3):151?180, 1998.
[Hofmeyr and Forrest 1999a] S. Hofmeyr and S. Forrest. Immunity by design: An
artificial immune system. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1289-1296, San Francisco, CA, 1999.
Morgan-Kaufmann.
[Hofmeyr and Forrest 1999b] Steven A. Hofmeyr and Stephanie Forrest. Immunizing
Computer Networks: Getting All the Machines in Your Network to Fight the
Hacker Disease. Proc. 1999 IEEE Symposium on Security and Privacy.
[Hofmeyr and Forrest 2000] Hofmeyr S. and Forrest S. Architecture for an Artificial
Immune System. Evolutionary Computation, 8,(4), 443-473. 2000.
[Hofmeyr, Forrest and Somayaji 1998] S. A. Hofmeyr, S. Forrest and A. Somayaji.
Intrusion detection using sequences of system calls. Journal of Computer Security,
6 (1998), 151--180.
[Hou and Dozier 2005] Haiyu Hou and Gerry Dozier. Immunity-based intrusion detection
system design, vulnerability analysis, and GENERTIA's genetic arms race.
 195
Symposium on Applied Computing archive Proceedings of the 2005 ACM
symposium on Applied computing . 2005.
[Janeway et al. 2005] C. A. Janeway, P. Travers, M. Walport, and M. Shlomchik.
Immuno-biology: The Immune System in Health and Disease. Garland
Publishing.Available online at http://www.ncbi.nlm.nih.gov/books/, 6th edition,
2005.
[janus] janus homepage. http://www.cs.berkeley.edu/~daw/janus/,2007.
[Ji and Dasgupta 2004] Z. Ji and D. Dasgupta. Augmented negative selection algorithm
with variable-coverage detectors. In Proceedings of Congress on Evolutionary
Computation (CEC-04), pages 1081-1088, Portland, Oregon (U.S.A.), June 2004.
[Ji and Dasgupta 2005] Z. Ji and D. Dasgupta. Estimating the detector coverage in a
negative selection algorithm. In H.-G. Beyer et al., editor, GECCO 2005:
Proceedings of the 2005 conference on Genetic and evolutionary computation,
volume 1, pages 281-288, Washington DC, USA, 25-29 June 2005. ACM SIGEVO
(formerly ISGEC), ACM Press.
[Jiang, Hua and Oh 2003] N. Jiang, K. Hua and J-H. Oh. Exploiting Pattern Relationship
for Intrusion Detection. Proceedings of the 2003 Symposium on Applications and
the Internet (SAINT?03). IEEE. 2003.
[Jiang, Hua and Sheu] N. Jiang, K. Hua and S. Sheu. Considering Both Intra- Pattern and
Inter-Pattern Anomalies for Intrusion Detection. IEEE. 2002.
[Kephart 1994] J. Kephart. A biologically inspired immune system for computers. In
Proceedings of the Fourth International Workshop on Synthesis and Simulation of
Living Systems, Artificial Life IV, pages 130-139, 1994.
 196
[Kephart et al. 1998] J. O. Kephart, G. B. Sorkin, M. Swimmer, and S. R. White.
Blueprint for a Computer Immune System. pages 241-261. Artificial Immune
Systems and Their Applications. Springer-Verlag, 1998.
[Kim 2002] J. Kim. Integrating Artificial Immune Algorithms for Intrusion Detection.
PhD Thesis, University College London. 2002.
[Kim and Bentley 1999a] J. Kim, and P. Bentley. An Artificial Immune Model for
Network Intrusion Detection. 7th European Congress on Intelligent Techniques and
Soft Computing (EUFIT'99). 1999.
[Kim and Bentley 1999b] J. Kim and P. Bentley. Negative selection and niching by an
artificial immune system for network intrusion detection. In GECCO-99
Proceedings, p. 149--158, 1999.
[Kim and Bentley 1999c] J. Kim and P. Bentley. The artificial immune model for
network intrusion detection. In Proc. of European Congress on Intelligent
Techniques and Soft Computing (EUFIT '99), Aachen, Germany, September 1999.
[Kim and Bentley 1999d] J. Kim and P. Bentley. The Human Immune System and
Network Intrusion Detection. In Proceedings of the 7th European Congress on
Intelligent Techniques and Soft Computing (EUFIT'99). 1999.
[Kim and Bentley 2001a] Jungwon Kim and Peter J. Bentley. An evaluation of negative
selection in an artificial immune system for network intrusion detection. In Lee
Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt,
Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and
Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001.
 197
[Kim and Bentley 2001b] J. Kim and P. J Bentley. Towards an artificial immune system
for network intrusion detection: An investigation of clonal selection with a negative
selection operator. In Proceeding of the Congress on Evolutionary Computation
(CEC-2001), Seoul, Korea, pages 1244-1252, 2001.
[Kim and Bentley 2002a] J. Kim and P. Bentley. A Model of Gene Library Evolution in
the Dynamic Clonal Selection Algorithm. Proceedings of the First International
Conference on Artificial Immune Systems (ICARIS) Canterbury, pp.175-182,
September 9-11, 2002.
[Kim and Bentley 2002b] J. Kim and P. Bentley. Immune Memory in the Dynamic
Clonal Selection Algorithm. Proceedings of the First International Conference on
Artificial Immune Systems (ICARIS) Canterbury, pp.57-65, September 9-11, 2002.
[Kim and Bentley 2002c] J. Kim, P. Bentley. Towards an AIS for Network Intrusion
Detection: An Investigation of Dynamic Clonal Selection. The Congress on
Evolutionary Computation 2002, pp 1015-1020.
[Kim et al. 2005a] J. Kim, J. Greensmith, J. Twycross and U. Aickelin. Malicious Code
Execution Detection and Response Immune System inspired by the Danger Theory.
Adaptive and Resilient Computing Security Workshop (ARCS 2005), Santa Fe,
USA
[Kim et al. 2005b] J. Kim, W. Wilson, U. Aickelin, and J. McLeod. Cooperative
automated worm response and detection immune algorithm (cardinal) inspired by t-
cell immunity and tolerance. In C. Jacob, M. J. Pilat, P. J.Bentley, and J. Timmis,
editors, Proceeding of the 4th International Conference on Artificial Immune
 198
Systems (ICARIS-2005), volume 3627 of Lecture Notes in Computer Science,
pages 168-181, Banff, Alberta, Canada, August 2005. Springer.
[Kim et al. 2007] J. Kim, P. Bentley, U. Aickelin, J. Greensmith, G. Tedesco and J.
Twycross. Immune System Approaches to Intrusion Detection - A Review. Natural
Computing, Springer, in print, pp XXX. 2007.
[Ko et al. 2000] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and countering
system intrusions using software wrappers. In Proc. of the 9th USENIX Security
Symposium, pages 145?146, Denver, Colorado, August 2000.
[Ko, Fink and Levitt 1994] C. Ko, G. Fink, and K. Levitt. Automated detection of
vulnerabilities in privileged programs by execution monitoring. In Proc. of the
IEEE Annual Computer Security Applications Conference, pages 134?144,
Orlando, FL, 1994.
[Ko, Ruschitzka and Levitt 1997] C. Ko, M. Ruschitzka, and K. Levitt. Execution
monitoring of security-critical programs in distributed systems: a specification
based approach. In Proc. of the IEEE Symposium on Security and Privacy, pages
175?187, 1997.
[Kruegel et al. 2003] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of
Anomalous System Call Arguments. In Proc. of the 8th European Symposium on
Research in Computer Security, pages 326?343, Gjovik, Norway, October 2003.
[Lane and Brodley 1997] T. Lane and C. E. Brodley. Sequence Matching and Learning in
Anomaly Detection for Computer Security. AAAI Workshop: AI Approaches to
Fraud Detection and Risk Management, pp.49, 1997.
 199
[Lane and Brodley 1999] T. Lane, and C. E. Brodley. Temporal Sequence Learning and
Data Reduction for Anomaly Detection. ACM Trans. Information & System
Security, vol. 2, no. 3, pp. 295-331, 1999.
[Le Boudec and Sarafijanovic 2003] J. Le Boudec and S. Sarafijanovic. An artificial
immune system approach to misbehavior detection in mobile ad-hoc networks.
Technical Report IC/2003/59, Ecole Polytechnique Federale de Lausanne, 2003.
[Le Boudec and Sarafijanovic 2004] J. Le Boudec and S. Sarafijanovic. An artificial
immune system approach to misbehavior detection in mobile ad-hoc networks. In
Proceedings of Bio-ADIT 2004 (The First International Workshop on Biologically
Inspired Approaches to Advanced Information Technology), pages 96-111,
Lausanne, Switzerland, January 2004.
[Leach and Tedesco 2003] J. Leach and G. Tedesco. Firestorm network intrusion
detection system. Firestorm Documentation, 2003.
[Lee and Stolfo 1998] W. Lee and S. J. Stolfo. Data Mining Approaches for Intrusion
Detection. 7th USENIX Security Symposium, 1998.
[Lee and Xiang 2001] W. Lee and D. Xiang. Information-theoretic measures for anomaly
detection. In Proc. of the IEEE Symposium on Security and Privacy, pages 130?
143, 2001.
[Lee, Stolfo and Mok 1999] W. Lee, S. J. Stolfo and K. Mok. A Data Mining Framework
for Building Intrusion Detection Models. IEEE Symposium on Security & Privacy,
1999.
 200
[Lodish et al. 1999] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P.
Scott, L. Zipursky, and J. Darnell. Molecular Cell Biology. W. H. Freeman and Co..
Available online at http://www.ncbi.nlm.nih. gov/books/, 4th edition, 1999.
[LTT] Linux Trace Toolkit (LTT) homepage. http://www.opersys.com/ LTT/, 2007.
[Maniatty et al. 2005] W. A. Maniatty, A. Baykal, V. Aggarwal, J. Brooks, A. Krymer,
and S. Maura. A Linux kernel auditing tool for host-based intrusion detection. In
Proc. of the IEEE Annual Computer Security Applications Conference, pages 307?
313, Tucson, AZ, 2005.
[Matzinger 1994] P. Matzinger. Tolerance, Danger and the Extended Family. Annual
Review of Immunology, 12:991-1045, 1994.
[Matzinger 2002] P. Matzinger. The Danger Model: A Renewed Sense of Self. Science
296: 301-305. 2002.
[Medzhitov and Janeway 2002] R. Medzhitov and C. A. Janeway. Decoding the patterns
of self and non-self by the innate immune system. Science, 296(5566):298-300.
2002.
[Mell et al. 2003] P. M. Mell, V. C. Hu, R. Lippmann, J. Haines, and M. Zissman. An
Overview of Issues in Testing Intrusion Detection Systems. Technical Report NIST
Interagency Reports 7007, National Institute of Standards and Technology, July
2003.
[Michael and Ghosh 2000] C. Michael, A. Ghosh. Using Finite Automata to Mine
Execution Data for Intrusion Detection: A Preliminary Report. RAID 2000, LNCS
1907, pp.66-79, 2000.
 201
[Morrison and Aickelin 2002] T. Morriso and U. Aickelin. An AIS as a Recommender
System for Web Sites. 1st International Conference on AIS, pp 161-169. 2002.
[Neal and Timmis 2005] M. Neal and J. Timmis. Once More Unto the Breach: Towards
Artificial Homeostasis. In L. N. D. Castro and F. J. V. Zuben, editors, Recent
Developments in Biologically Inspired Computing, pages 340? 365. Idea
Publishing Group, 2005.
[Ning et al. 2004] P. Ning, D. Xu, C. G. Healey, and R. S. Amant. Building attack
scenarios through integration of complementary alert correlation method. In NDSS,
2004.
[Ourston et al. 2002] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Applications
of Hidden Markov Models to Detecting Multistage Network Attacks. Proceedings
of the 36th Hawaii International Conference on System Sciences (HICSS?03).
IEEE. 2002.
[Pagnoni and Visconti 2005] A. Pagnoni and A. Visconti. An innate immune system for
the protection of computer networks. In Proc. of the 4th International Symposium
on Information and Communication Technologies, pages 63?68. Trinity College
Dublin, 2005.
[Provos 2003] N. Provos. Improving Host Security with System Call Policies. In Proc. of
the 12th USENIX Security Symposium, pages 257?272, Washington, D.C., August
2003.
[Rigoutsos and Floratos 1998] I. Rigoutsos, and Aristidis Floratos. Combinatorial Pattern
Discovery in Biological Sequences: The TEIRESIAS Algorithm. Bioinformatics,
14(1): 55-67, 1998.
 202
 [Sarafaijanovic and Le Boudec 2004] S. Sarafijanovic and J. Le Boudec. An artificial
immune system for misbehavior detection in mobile ad-hoc networks with virtual
thymus, clustering, danger signal and memory detectors. In Proceedings of the 3rd
International Conference on Artificial Immune Systems (ICARIS'-04), pages 342-
356, Catania, Italy, September 2004.
[Sarafijanovic and Le Boudec 2003] S. Sarafijanovic and J. Le Boudec. An artificial
immune system approach with secondary response for misbehavior detection in
mobile ad-hoc networks. Technical Report IC/2003/65, Ecole Polytechnique
Federale de Lausanne, 2003.
[Sarafijanovic and Le Boudec 2005] S. Sarafijanovic and J.-Y. Le Boudec. An Artificial
Immune System Approach with Secondary Response for Misbehavior Detection in
Mobile Ad-Hoc Networks. IEEE Transactions on Neural Networks, Special Issue
on Adaptive Learning Systems in Communication Networks, 16(5):1076?1087,
2005.
[Sekar et al. 2001] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast
Automaton-Based Method for Detecting Anomalous Program Behaviors. In Proc.
of the IEEE Symposium on Security and Privacy, pages 144?155, 2001.
[Sekar, Bowen and Segal 1999] R. Sekar, T. Bowen, and M. Segal. On Preventing
Intrusions by Process Behavior Monitoring. In Proc. of the USENIX Workshop on
Intrusion Detection and Network Monitoring, pages 29?40, Santa Clara, CA, April
1999.
[Shapiro, Lamont and Peterson 2005] J. M. Shapiro, G. B. Lamont, and G. L. Peterson.
An evolutionary algorithm to generate hyper-ellipsoid detectors for negative
 203
selection. In H.-G. Beyer et al., editor, GECCO 2005: Proceedings of the 2005
conference on Genetic and evolutionary computation, volume 1, pages 337-344,
Washington DC, USA, 25-29, June 2005. ACM SIGEVO (formerly ISGEC), ACM
Press.
[Singh and Nair 2005] C. T. Singh and S. B. Nair. An Artificial Immune System for a
Multi Agent Robotics System. In Proc. of the 4th World Enformatika International
Conference on Automation Robotics and Autonomous Systems (ARAS 2005),
pages 308?311, 2005.
[Smith, Forrest and Perelson 1993] R. E. Smith, S. Forrest, and A. S. Perelson. Searching
for diverse, cooperative population with genetic algorithms. Evolutionary
Computation, 1(2):127-149, 1993.
[snare] snare homepage. http://www.intersectalliance.com/projects/ Snare/, 2007.
[Somayaji 2002] A. Somayaji. Operating System Stability and Security through Process
Homeostasis. PhD thesis, University Of New Mexico, 2002.
[Somayaji and Forrest 2000] A. Somayaji and S. Forrest. Automated response using
system-call delays. In Proc. of the 9th USENIX Security Symposium, pages 185?
198, Denver, CO, August 2000.
[Somayaji, Hofmeyr and Forrest 1998] A. Somayaji, S. Hofmeyr, and S. Forrest.
Principles of a Computer Immune System. 1997 New Security Paradigms
Workshop, pp. 75-82, ACM (1998).
[Stepney et al. 2005] S. Stepney, R. Smith, J. Timmis, A. Tyrrell, M. Neal, and A. Hone.
Conceptual Frameworks for Artificial Immune Systems. International Journal of
Unconventional Computing, 1(3):315?338, 2005.
 204
[Stibor 2006] T. Stibor. On the Appropriateness of Negative Selection for Anomaly
Detection and Network Intrusion Detection. PhD thesis, Darmstadt University of
Technology, Germany, 2006.
[Stibor et al. 2005] T. Stibor, P. Mohr, J. Timmis, and C. Eckert. Is negative selection
appropriate for anomaly detection. In H.-G. Beyer et al., editor, GECCO 2005:
Proceedings of the 2005 conference on Genetic and evolutionary computation,
volume 1, pages 321-328, Washington DC, USA, 25-29, June 2005. ACM SIGEVO
(formerly ISGEC), ACM Press.
[Stibor, Timmis and Eckert 2005] T. Stibor, J. Timmis, and C. Eckert. On the
appropriateness of negative selection defined over hamming shape-space as a
network intrusion detection system. In Proceedings of the Congress on Evolutionary
Computation (CEC-2005), pages 995-1002, Edinburgh, UK, September 2005. IEEE
Press.
[Stillerman, Marceau and Stillman 1999] M. Stillerman, C. Marceau, and M. Stillman.
Intrusion detection for distributed application. Communications of the ACM,
42(7):62-69, July 1999.
[strace] strace homepage. http://sourceforge.net/projects/strace/, 2007.
[syscalls] syscalls. Linux man page (2), 2007.
[systrace] http://www.systrace.org [September 11, 2006]
[Tandon and Chan 2003] G. Tandon and P. Chan. Learning rules from system call
arguments and sequences for anomaly detection. In ICDM Workshop on Data
Mining for Computer Security (DMSEC), pages 20--29, 2003.
 205
 [Tandon and Chan 2005] G. Tandon and P. K. Chan. Learning Useful System Call
Attributes for Anomaly Detection. In Proc. of the 18th International FLAIRS
Conference, pages 405?411, 2005.
[Tandon, Chan and Mitra 2004] G. Tandon, P. K. Chan, and D. Mitra. MORPHEUS:
motif oriented representations to purge hostile events from unlabeled sequences. In
Proc. of the ACM workshop on Visualization and Data Mining for Computer
Security, pages 16?25. ACM Press, 2004.
[The Danger Project] The Danger Project website. http://www.dangertheory.com/, 2007.
[Twycorss and Aickelin 2005] J. Twycross and U. Aickelin. Towards a Conceptual
Framework for Innate Immunity. Proceedings of the 4th International Conference
on Artificial Immune Systems (ICARIS 2005), LNCS 3627, pp 112-125, Banff,
Canada. 2005.
[Twycorss and Aickelin 2006a] J. Twycross and U. Aickelin. Experimenting with innate
immunity. Proceedings of the Workshop on Artificial Immune Systems and
Immune System Modeling (AISB 2006), pp 18-19, Bristol, UK. 2006.
[Twycorss and Aickelin 2006b] J. Twycross and U. Aickelin. Libtissue - implementing
innate immunity. Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2006), pp XXX, Vancouver, Canada. 2006.
[Twycross 2007]. Jamie Paul Twycross. Integrated Innate and Adaptive Artificial
Immune Systems Applied to Process Anomaly Detection. PhD thesis. University of
Nottingham, 2007.
 206
[Valdes and Skinner 2001] A. Valdes and K. Skinner. Probabilistic alert correlation. In
RAID '00: Proceedings of the 4th International Symposium on Recent Advances in
Intrusion Detection, pages 54-68. Springer-Verlag, 2001.
[Wagner 1999] D. Wagner. Janus: an Approach for Confinement of Un-trusted
Applications. Technical Report CSD-99-1056, University of California at Berkeley,
December 1999.
[Wagner and Dean 2001] D. Wagner and D. Dean. Intrusion detection via static analysis.
In Proc. of IEEE Symposium on Security and Privacy, pages 156?169, 2001.
[Warrender, Forrest and Pearlmutter] C. Warrender, S. Forrest, and B. Pearlmutter.
Detecting Intrusions using system calls: alternative data models. IEEE Symposium
on Security and Privacy. May 1999.
[Wespi, Dacier and Debar 1999] A. Wespi, M. Dacier, and H. Debar. An intrusion
detection system based on the teiresias pattern discovery algorithm. In EICAR
Annual Conference Proceedings, pp. 1-15, 1999.
[Wespi, Dacier and Debar 2000]Andreas Wespi , Marc Dacier , Herv? Debar, Intrusion
Detection Using Variable-Length Audit Trail Patterns. Proceedings of the Third
International Workshop on Recent Advances in Intrusion Detection, p.110-129,
October 02-04, 2000
[Xie et al. 2004] Y. Xie, H. Kim, D. R. O'Hallaron, M. K. Reiter, and H. Zhang. Seurat:
A pointillist approach to anomaly detection. In RAID, pages 238-257, 2004.
[Yaghmour and Dagenais 2000] K. Yaghmour and M. R. Dagenais. Measuring and
characterizing system behavior using kernel-level event logging. In Proc. of the 9th
USENIX Annual Technical Conference, pages 13?26, San Diego, CA, June 2000.
 207
[Yeung and Ding 2003] D. Y. Yeung and Y. Ding. Host-based intrusion detection using
dynamic and static behavioral models. Pattern Recognition, 36(1):229? 243, 2003.
 208
APPENDICES

 209
APPENDIX A
 SEQUENCE METHOD BASED IDS SAMPLE CODE

//,,
//SEQUENCE METHOD BASED IDS
//,,

//---
//TESTING
//---
void testing(Seqhash<int> table[NUM_SYS_CALLS])
{
 ofstream outPrintFile2 ("sequence_results.txt", ios::out);
 if (!outPrintFile2)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 time_t begining_time;
 time(&begining_time);
 outPrintFile2 << "Begining Time= "<<begining_time<<endl;

 char raw_filename[LINE_SIZE];
 strcpy_s(raw_filename,"int_login_homegrown.txt");
 ifstream inClientFile (raw_filename,ios::in);
 if (!inClientFile)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }

 ofstream outPrintFile1 ("testing_profile.txt", ios::out);
 if (!outPrintFile1)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 outPrintFile1 <<endl<<endl<<endl;
 outPrintFile1 <<"Start debugging"<<endl<<endl<<endl;
 int number_mismatches=0;
 int number_rows_in_testing_profile=0;
 int asyscall;
 int window_sized_array[WINDOW_SIZE];
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array[i] =-1;
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)
 210
 {
 if(inClientFile >> asyscall) window_sized_array[abc]=asyscall;
 }
 while (inClientFile >> asyscall)
 {
 window_sized_array[WINDOW_SIZE-1]=asyscall;
 number_rows_in_testing_profile++;
 outPrintFile1 <<"current testing input row: ";
 for (int def=0;def<WINDOW_SIZE;def++)
outPrintFile1 << window_sized_array[def] << " ";
 outPrintFile1 <<endl;

 if (table[window_sized_array[0]].isEmpty())
 {
 outPrintFile1 <<"the sequence: ";
 for (int x=0;x<WINDOW_SIZE;x++)
outPrintFile1 << setw(5) << window_sized_array[x];
 outPrintFile1 <<" does not have an entry in the training profile"<<endl;
 number_mismatches++;
 }else
 {
 SeqhashNode< int > *currentPtr = table[window_sized_array[0]].firstPtr;
 int seen=0;
 while(currentPtr != 0)
 {
 int same_size=0;
 for (int j=0;j<WINSIZE_MINUS_ONE;j++)
if (currentPtr->sequence[j]== window_sized_array[j+1])
same_size ++;
 if (same_size == WINSIZE_MINUS_ONE)seen++;
 currentPtr = currentPtr->nextPtr;
 }

 if(seen==0)
 {
 outPrintFile1 <<"the sequence: ";
 for (int x=0;x<WINDOW_SIZE;x++)
outPrintFile1 << setw(5) << window_sized_array[x];
 outPrintFile1 <<" caused a mismatch"<<endl;
 number_mismatches ++;
 }
 }
 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)
 window_sized_array[ghi]=window_sized_array[ghi+1];
 window_sized_array[WINDOW_SIZE-1]=-1;
 }
 time_t ending_time;
 time(&ending_time);
 outPrintFile2 << "Ending Time= "<<ending_time<<endl;
 outPrintFile2 << "Total testing Time= "<<ending_time-begining_time<<" seconds"<<endl<<endl;
 float mismatches_percentage= ((float)number_mismatches /
 (float)number_rows_in_testing_profile) * 100.00;
 outPrintFile2 <<"windows size "<<WINDOW_SIZE<<endl;
 outPrintFile2 <<"number of patterns in testing file "<<number_rows_in_testing_profile<<endl;
 211
 outPrintFile2 <<"Number of mismatches= "<<number_mismatches<<endl;
 outPrintFile2 <<"Percentage mismatches = "<<mismatches_percentage<< " %"<<endl;
 SeqhashNode< int > *currentPtr;
 int number_of_patterns=0;
 for (int xx=0;xx<NUM_SYS_CALLS;xx++)
 {
 if (table[xx].isEmpty()){/*NOTHING*/}
 else
 {
 currentPtr = table[xx].firstPtr;
 while(currentPtr != 0)
 {
 number_of_patterns++;
 currentPtr = currentPtr->nextPtr;
 }
 }
 }
 int any_table[WINSIZE_MINUS_ONE];
 outPrintFile2 <<"Number of patterns in normal database profile= "<<number_of_patterns<<endl;
 outPrintFile2 <<"Space cost of profile while at running time= "<<(sizeof (table) +
 (sizeof (Seqhash<int>) * sizeof(any_table) *number_of_patterns))<<" bytes"<<endl;
outPrintFile2 <<"Space cost of profile while saved to disk= "
<<sizeof(int)*WINDOW_SIZE*number_of_patterns<<" bytes"<<endl;
}
//---
//MAIN
//---
int main()
{
 int num_files=0;
 int total_number_profile_rows =0;
 char filename[LINE_SIZE];
 char filename_table[NUMBER_TRAINING_FILES][LINE_SIZE];
 strcpy_s(filename,"int_files_names.txt");
 ifstream inClientFile (filename,ios::in);
 if (!inClientFile)
 {
 cerr <<"File could not be opened" <<endl;
 exit(1);
 }
 char one_filename[LINE_SIZE];
 while (inClientFile >> one_filename)
 {
 strcpy_s (filename_table[num_files], one_filename);
 num_files++;
 }
 ofstream outPrintFile4 ("tracing.txt", ios::out);
 if (!outPrintFile4)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 int temp_sequence [MAX_SEQ_SIZE];
 Seqhash<int> seq_hash_table[NUM_SYS_CALLS];
 for (int file_counter=0;file_counter<num_files;file_counter++)
 212
 {
 int sequence_profile_array[PROFILE_ROWS][WINDOW_SIZE];
 for (int i=0;i < PROFILE_ROWS; i++)
 for (int j=0;j<WINDOW_SIZE; j++)
 sequence_profile_array[i][j] =-1;

 for (int i=0;i<MAX_SEQ_SIZE;i++) temp_sequence [i] = -1;
 strcpy_s (one_filename,filename_table[file_counter]);
 ifstream inClientFile1 (one_filename,ios::in);
 if (!inClientFile1)
 {
 cerr <<"File could not be opened" <<endl;
 exit(1);
 }
 int seq_len=0;
 while (inClientFile1 >> temp_sequence[seq_len])seq_len++;
 int temp_row=0;
 for (int p=0;p<seq_len;p++)
 {
 for (int k=0; k<WINDOW_SIZE; k++)
 {
 sequence_profile_array[temp_row][k]=temp_sequence[p+k];
 }
 temp_row++;
 }
 temp_row=temp_row-(WINDOW_SIZE-1);
 //ignoring the rows at the lower pyramid that

 outPrintFile4 <<"number of rows before removing redundant rows" <<
temp_row <<endl;
 //---
 //removing redundant rows
 //---
 for (int i=0;i<temp_row-1;i++)
 for (int j=i+1;j<temp_row;j++)
 {
 int alength=0;
 for (int k=0;k<WINDOW_SIZE;k++)
if(sequence_profile_array[i][k]==
sequence_profile_array[j][k]) alength++;
 if (alength==WINDOW_SIZE) sequence_profile_array[j][0]=-1;

 }
 int temp_sequence_profile_array[PROFILE_ROWS][WINDOW_SIZE];
 for (int i=0;i<PROFILE_ROWS;i++)
 for (int j=0;j<WINDOW_SIZE;j++)
 temp_sequence_profile_array[i][j]=-1;
 int row_counter=0;
 for (int i=0;i<temp_row;i++)
 {
 if(sequence_profile_array[i][0]!=-1)
 {
 for (int j=0;j<WINDOW_SIZE;j++)
 {
 213
temp_sequence_profile_array[row_counter][j]=
sequence_profile_array[i][j];
 }
 row_counter++;
 }

 }
 outPrintFile4 <<"number_profile_rows after removing redundant rows" <<
 row_counter <<endl;
 for (int i = 0;i<row_counter;i++)
 {
 for (int j=0;j<WINDOW_SIZE;j++)
 outPrintFile4 << temp_sequence_profile_array[i][j]<<" " ;
 outPrintFile4 <<endl;
 }
 //---
 //save table information in sequence format
 //---
 SeqhashNode< int > *currentPtr;
 int one_seq[WINDOW_SIZE];
 int partial_seq[WINDOW_SIZE-1];

 for (int i=0;i<row_counter;i++)
 {
for(int j=0;j<WINDOW_SIZE;j++) one_seq[j]=
temp_sequence_profile_array[i][j];

 if (one_seq[0]!=-1)
 {
 for (int j=1;j<WINDOW_SIZE;j++) partial_seq[j-1] =one_seq[j];
 if (seq_hash_table[one_seq[0]].isEmpty())
 {
 seq_hash_table[one_seq[0]].insertAtBack(partial_seq);
 }
 else
 {
 currentPtr = seq_hash_table[one_seq[0]].firstPtr;
 int found_match=0;
 while(currentPtr != 0)
 {
 int xlen=0;
 for(int x=0;x<WINDOW_SIZE-1;x++)
 if (currentPtr->sequence[x]==
partial_seq[x])xlen++;
 if (xlen==WINDOW_SIZE-1)found_match++;
 currentPtr = currentPtr->nextPtr;
 }
 if (found_match==0)
 seq_hash_table[one_seq[0]].insertAtBack(partial_seq);
 }

 }

 }

 214
 }

 testing(seq_hash_table);
 return 0;
}
 215
APPENDIX B
 LOG FILE EXAMPLE OF NORMAL PATTERN DB FOR FILE ?INT_509.TXT?

This section shows portions of the log file collected while generating fixed length detectors with different
window sizes. The patterns (sub sequences) generated are for the file (int_509.txt) and mainly show the
window size and then the nmber of rows before and after removing redundant entries. As shown the
number of rows before removing redunadant data decresess by one as the window size increass by one.
However the number of rows after removing redundant data (rows) does not follow any linear increase or
decrease but depend on the data itself.

File name : int_509.txt
Window size = 3
number of rows before removing redundant rows = 362
number_profile_rows after removing redundant rows = 181
90 125 106
125 106 5
106 5 90
5 90 6
90 6 5
6 5 3
5 3 90
3 90 6
90 6 125
6 125 5
125 5 3
6 125 91
125 91 125
91 125 136
125 136 49
136 49 24
49 24 47
24 47 50
47 50 67
50 67 27
67 27 67
.
.
.
.
4 6 76
6 76 75
75 5 67
5 67 3
67 3 67
3 67 6
67 6 106
 216
6 106 67
106 67 23
67 23 12
23 12 2
12 2 67
2 67 114
67 114 67
114 67 5
67 5 108
75 24 102
24 102 13
76 75 91
75 91 1
File name : int_509.txt
Window size = 4
number of rows before removing redundant rows361
number_profile_rows after removing redundant rows206
90 125 106 5
125 106 5 90
106 5 90 6
5 90 6 5
90 6 5 3
6 5 3 90
5 3 90 6
3 90 6 5
3 90 6 125
90 6 125 5
6 125 5 3
125 5 3 90
90 6 125 91
6 125 91 125
125 91 125 136
91 125 136 49
125 136 49 24
136 49 24 47
49 24 47 50
24 47 50 67
.
.
.
.
23 12 2 67
12 2 67 114
2 67 114 67
67 114 67 5
114 67 5 108
67 5 108 90
76 75 24 102
75 24 102 13
24 102 13 20
6 76 75 91
76 75 91 1
File name : int_509.txt
Window size = 5
number of rows before removing redundant rows = 360
 217
number_profile_rows after removing redundant rows = 226
90 125 106 5 90
125 106 5 90 6
106 5 90 6 5
5 90 6 5 3
90 6 5 3 90
6 5 3 90 6
5 3 90 6 5
3 90 6 5 3
5 3 90 6 125
3 90 6 125 5
90 6 125 5 3
6 125 5 3 90
125 5 3 90 6
3 90 6 125 91
90 6 125 91 125
6 125 91 125 136
125 91 125 136 49
91 125 136 49 24
.
.
.
67 114 67 5 108
114 67 5 108 90
67 5 108 90 3
91 76 75 24 102
76 75 24 102 13
75 24 102 13 20
24 102 13 20 4
4 6 76 75 91
6 76 75 91 1
 218
APPENDIX C
 LOOKAHEAD-PAIRS METHOD BASED IDS SOURCE CODE

//,,
//LOOKAHEAD PAIRS MEHTOD IDS
//,,
//---
//MAIN
//---
void main()
{
 const int size = (WINDOW_SIZE-1)* NUM_SYS_CALLS*NUM_SYS_CALLS;
 std::bitset<size> b_array;
 int number_syscalls;
 char syscall_hashtable[NUM_SYS_CALLS][LINE_SIZE];
 number_syscalls = create_syscalls_hashtable(syscall_hashtable);
 char filename_table[NUMBER_TRAINING_FILES][LINE_SIZE];
 char filename[LINE_SIZE];
 strcpy_s(filename,"int_files_names.txt");
 ifstream inClientFile (filename,ios::in);
 if (!inClientFile)
 {
 cerr <<"File could not be opened" <<endl;
 exit(1);
 }
 char one_filename[LINE_SIZE];
 int counter=0;//number of files to be read
 while (inClientFile >> one_filename)
 {
 strcpy_s (filename_table[counter], one_filename);
 counter++;
 }
 Tree <int> TreeObject;
 List< int > listObject[NUMBER_TRAINING_FILES];
 for (int temp_counter =0;temp_counter<counter;temp_counter++)
 {
 TreeObject.insertAtRight(temp_counter+1);
 strcpy_s(filename, filename_table[temp_counter]);
 ifstream inClientFile1 (filename,ios::in);
 if (!inClientFile1)
 {
 cerr <<"File could not be opened" <<endl;
 exit(1);
 }
 int value;
 219
 while (inClientFile1 >> value)
 listObject[temp_counter].insertAtBack(value);
 TreeObject.lastPtr->downPtr = listObject[temp_counter].firstPtr;
 }

 ofstream outPrintFile ("tracing.txt", ios::out);
 if (!outPrintFile)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 int number_pairs;

 TreeNode< int > *currentPtr = TreeObject.firstPtr;
 ListNode<int> *listCurrentPtr;

 while (currentPtr!=0)
 {
 int temp_row=0;
 int temp_sequence [MAX_SEQ_SIZE];

 int profile_array[PROFILE_ROWS][WINDOW_SIZE];
 for (int i=0;i < PROFILE_ROWS; i++)
 for (int j=0;j<WINDOW_SIZE; j++)
 profile_array[i][j] =-1;

 for (int i=0;i<MAX_SEQ_SIZE;i++) temp_sequence [i] = -1;
 listCurrentPtr= currentPtr->downPtr;
 int seq_len=0;
 while (listCurrentPtr != 0)
 {
 temp_sequence[seq_len] = listCurrentPtr->data;
 listCurrentPtr = listCurrentPtr->nextPtr;
 seq_len++;
 }
 for (int p=0;p<seq_len;p++)
 {
 for (int k=0; k<WINDOW_SIZE ; k++)
 {
 profile_array[temp_row][k]=temp_sequence[p+k];

 }
 temp_row++;
 }

 int number_profile_rows =0;
 for (int i=0; i<=temp_row;i++)
 {
 if (profile_array[i][WINDOW_SIZE-1] != -1)
 {
 number_profile_rows ++;
 }else for (int j=0;j<WINDOW_SIZE;j++)profile_array[i][j]=-1;
 //removing entries at the lower pyramid of profile
 }
 //adding the remaining upper pyramid data to the end of the array_profile
 220
 int pyramid_row_entries = WINDOW_SIZE-2;
 int y=1;
 for(int i=number_profile_rows;i<(number_profile_rows+pyramid_row_entries);i++)
 {
 for(int j=0;j<WINDOW_SIZE-y;j++)
 {
 profile_array[i][j+y] =profile_array[0][j];
 }
 y++;
 }

 number_pairs=number_profile_rows*(WINDOW_SIZE-1);
 number_pairs=number_pairs+((pyramid_row_entries*(WINDOW_SIZE-1))/2);
 number_profile_rows = number_profile_rows + pyramid_row_entries;
 for (int i=number_profile_rows;i<PROFILE_ROWS;i++)
 for(int j=0;j<WINDOW_SIZE;j++)
 profile_array[i][j]=-1;
 outPrintFile <<"number_profile_rows before removing redundant rows= " <<
 number_profile_rows <<endl;
 outPrintFile <<"array content with pyramid data at end of array"<<endl;
 for (int i = 0;i<number_profile_rows;i++)
 {
 for (int j=0;j<WINDOW_SIZE;j++)
 outPrintFile << profile_array[i][j]<<" " ;
 outPrintFile <<endl;
 }
 //---
 //REMOVING REDUNDANT ENTRIES
 //---

 for (int i=0;i<number_profile_rows-1;i++)
 for (int j=i+1;j<number_profile_rows;j++)
 {
 int alength=0;
 for (int k=0;k<WINDOW_SIZE;k++)
 if(profile_array[i][k]==profile_array[j][k]) alength++;
 if (alength==WINDOW_SIZE) profile_array[j][WINDOW_SIZE-1]=-
1;

 }
 int temp_profile_array[PROFILE_ROWS][WINDOW_SIZE];
 for (int i=0;i<PROFILE_ROWS;i++)
 for (int j=0;j<WINDOW_SIZE;j++)
 temp_profile_array[i][j]=-1;
 int row_counter=0;
 for (int i=0;i<PROFILE_ROWS;i++)
 {
 if(profile_array[i][WINDOW_SIZE-1]!=-1)
 {
 for (int j=0;j<WINDOW_SIZE;j++)
 {
 temp_profile_array[row_counter][j]=profile_array[i][j];
 }
 row_counter++;
 }
 221
 }
 for (int i=0;i<PROFILE_ROWS;i++)
 for (int j=0;j<WINDOW_SIZE;j++)
 profile_array[i][j]=-1;

 for (int i=0;i<=row_counter;i++)
 for (int j=0;j<WINDOW_SIZE;j++)
 profile_array[i][j]=temp_profile_array[i][j];
 number_profile_rows=row_counter;
 outPrintFile <<"number_profile_rows after removing redundant rows= " <<
 number_profile_rows <<endl;

 for (int i = 0;i<number_profile_rows;i++)
 {
 for (int j=0;j<WINDOW_SIZE;j++)
 outPrintFile << profile_array[i][j]<<" " ;
 outPrintFile <<endl;
 }
 //---
 //Save table information in lookahead format
 //---

 outPrintFile<<"the locations that are set to 1:"<<endl;
 int array_num =0;
 for(int j=WINDOW_SIZE-2;j>=0;j--)
 {
 for(int i=0;i<number_profile_rows;i++)
 {

 int row=profile_array[i][WINDOW_SIZE-1];
 int col=profile_array[i][j];
 if((row==-1)||(col==-1))
 {
 //NOTHING
 }else
 {
outPrintFile <<"<"<<row<<","<<col<<">"<<" at plane: "<<
array_num<<endl;
 b_array.set(((row-1)*NUM_SYS_CALLS)
+col+
(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num));
 }
 }
 array_num++;
 }
 currentPtr = currentPtr->rightPtr;
 }//while (currentPtr!=0)

 //---
 //START TESTING
 //---
 time_t begining_time;
 time(&begining_time);
 outPrintFile << "Begining Time= "<<begining_time<<endl;
 char filename1[LINE_SIZE];
 222
 strcpy_s(filename1,"int_ps_homegrown.txt");
 ifstream inClientFile1(filename1,ios::in);
 if (!inClientFile1)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }
 int number_rows_in_testing_profile=0;
 int number_of_pairs_in_testing_profile=0;
 int value;
 int window_sized_array[WINDOW_SIZE];
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array[i] =-1;
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)
 {
 if(inClientFile >> value) window_sized_array[abc]=value;
 }
 double percentage;
 int mismatches=0;
 int row, col;
 while (inClientFile1 >> value)
 {
 window_sized_array[WINDOW_SIZE-1]=value;
 number_rows_in_testing_profile++;
 outPrintFile <<"current testing input row: ";
 for (int def=0;def<WINDOW_SIZE;def++) outPrintFile <<
window_sized_array[def] << " ";
 outPrintFile <<endl;

 for (int i=0;i<WINDOW_SIZE-1;i++)
 {
 row=window_sized_array[WINDOW_SIZE-1];
 col=window_sized_array[WINDOW_SIZE-2-i];
 if ((row==-1)||(col==-1))
 {
 //NOTHING
 }else
 {
 number_of_pairs_in_testing_profile++;
 if (b_array.test(((row-1)*NUM_SYS_CALLS) +col +
 (NUM_SYS_CALLS*NUM_SYS_CALLS*i))==0)
 {
 mismatches ++;
 outPrintFile <<"mismatch pair: <"<<row<<","<<col<<
"> at plain: "<<i<<endl;
 }
 }
 }
 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)
 window_sized_array[ghi]=window_sized_array[ghi+1];
 window_sized_array[WINDOW_SIZE-1]=-1;
 }
 //--
 time_t ending_time;
 time(&ending_time);
 outPrintFile << "Number of rows in testing profile= "<<
 223
number_rows_in_testing_profile-1<<endl;
 outPrintFile << "Number of pairs in testing profile= "<<
number_of_pairs_in_testing_profile<<endl;
 outPrintFile << "Ending Time= "<<ending_time<<endl;
 outPrintFile << "Total testing Time= "<<ending_time-begining_time<<" seconds"<<endl<<endl;
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0;
 outPrintFile << "Number of lookahead mismatches= "<<mismatches<<endl;
 outPrintFile << "Percentage of mismatches (anomaly sensitivity)= "<<percentage<<" %"<<endl;
 outPrintFile <<" Maximum number of lookahead-pairs SETS= "<<WINDOW_SIZE<<
" sets"<<endl;
 outPrintFile <<" Minimum number of lookahead-pairs SETS= "<<WINDOW_SIZE-2<<
" sets"<<endl;
 outPrintFile <<" Number of lookahaead pairs= "<<number_pairs<<endl;
 outPrintFile <<"Number of sets (planes)= "<<WINDOW_SIZE-1<<
"planes. Each is a 256 x 256 bit array and NUM_SYS_CALLS=256"<<endl;
 outPrintFile <<"Space cost of profile while at running time= "<<b_array.size() <<
" bits. = "<<(b_array.size()/8)<<" bytes."<< endl;
 outPrintFile <<"Space cost of profile while saved to disk= "<<sizeof(int)*number_pairs<<
" bytes"<<endl;
 cout <<"exiting"<<endl;
}
 224
APPENDIX D
 VARIABLE LENGTH DETECTORS WITH OVERLAP RELATIONSHIP
METHOD BASED IDS SAMPLE CODE

//,,
//VARIABLE LENGTH DETECTPRS BASED IDS
//,,

//---
//TESTING
//---

void testing()
{
 Seqhash<int> table[NUMBER_SYSCALLS]; //hash table of normal pattern database
 ofstream outPrintFile22 ("tracing_variable.txt", ios::out);
 if (!outPrintFile22)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 time_t begining_time;
 time(&begining_time);
 outPrintFile22 << "Begining Time= "<<begining_time<<endl;
 int number_mismatches=0;
 int number_systecalls_read=0;
 strcpy_s(filename,"int_login_homegrown.txt");
 ifstream inClientFile (filename,ios::in);
 if (!inClientFile)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }
 int going_to_new_pattern;
 int value;
 int not_seen_syscall=0;
 int prev_value;
 if (inClientFile >> value)
 {
 do
 {
 number_systecalls_read++;
 225
 int counter =0;
 int type=0;
 prev_value = value;
 if (table[value].isEmpty())
 {
 number_mismatches++;
 not_seen_syscall++;
 }else
 {
 SeqhashNode< int > *currentPtr = table[value].firstPtr;
 if (inClientFile >> value)
 {

 int s=1;
 do
 {
 number_systecalls_read++;
 going_to_new_pattern =0;
 prev_value = value;
 while ((currentPtr->nextPtr != 0) &&(currentPtr->sequence[s]!=value))
 {
 currentPtr = currentPtr->nextPtr;
 }
 if ((currentPtr == 0) || (currentPtr->sequence[s]!=value))
 {
 number_mismatches ++;
 counter++;
 }
 else if (currentPtr->sequence[s]== value)
 {
 int j=s+1;
 int count2=0;
 int there_is_systemcalls=1;
 while ((currentPtr != 0) &&(currentPtr->sequence[j]!= -1)
 &&(there_is_systemcalls ==1))
 {
 there_is_systemcalls=0;
 if (inClientFile >> value)
 {
 number_systecalls_read++;
 there_is_systemcalls =1;
 prev_value = value;

 //the following to handle overlaping patterns
 if ((currentPtr->sequence[j]!= value)
 &&(table[value].isEmpty())&& (count2>2))
 {
 count2++;
 type=1;
 }
 if ((currentPtr->sequence[j]!= value)
 &&(!table[value].isEmpty())&& (count2>2))
 {
 count2++;
 type=2;
 226
 }
 if ((currentPtr->sequence[j]!= value)
 &&(!table[prev_value].isEmpty())&& (count2>2))
 {
 count2++;
 type=3;
 }
 if (currentPtr->sequence[j]!= value)
 {
 number_mismatches ++;
 }
 if (count2>2)
 switch (type)
 {
 case 1:

 number_mismatches ++;
 not_seen_syscall++;
 break;
 case 2:
 currentPtr = table[value].firstPtr;
 j=0;
 break;
 case 3:
 currentPtr = table[prev_value].firstPtr;
 j=1;
 break;
 }
 j++;
 }//if
 }//while
 if (currentPtr->sequence[j]== -1) going_to_new_pattern = 1;
 }//elseif
 s++;
 }while((going_to_new_pattern ==0)&&(counter <3)&&(inClientFile >> value));
 }//if
 }//else
 }while (inClientFile >> value);
 }//if
 time_t ending_time;
 time(&ending_time);
 outPrintFile22 << "Ending Time= "<<ending_time<<endl;
 outPrintFile22 << "Total testing Time= "<<ending_time-begining_time<<
" seconds"<<endl<<endl;
 outPrintFile22 << "number of mismatches: "<<number_mismatches<<endl;
 outPrintFile22 <<"size of testing file: "<<number_systecalls_read<<" system calls"<<endl;
 float mismatches_percentage= ((float)number_mismatches / (float)number_systecalls_read) *
 100.00;
 outPrintFile22 <<"Percentage of sequence mismatches= "<<mismatches_percentage<<
" %"<<endl;
 int number_of_patterns=0;
 int max_pattern_length=0;
 int min_pattern_length=100;
 int number_of_syscalls_in_patterns=0; //number of system calls in all patterns in training database
 for (int xx=1;xx<NUMBER_SYSCALLS;xx++)
 227
 {
 if (table[xx].isEmpty())
 {
 //NOTHING
 }else
 {
 SeqhashNode< int > *currentPtr = table[xx].firstPtr;
 while(currentPtr != 0)
 {
 number_of_patterns++;
 int yy=0;
 while(currentPtr->sequence[yy] != -1)
 {
 number_of_syscalls_in_patterns++;
 yy++;
 }
 if (yy>max_pattern_length) max_pattern_length = yy;
 if (yy<min_pattern_length) min_pattern_length = yy;

 currentPtr = currentPtr->nextPtr;
 }
 }
 }
 int for_testing[PINSTANCE_SIZE];
 outPrintFile22 << "number of patterns in training database: "<<number_of_patterns<<endl;
 outPrintFile22 << "Max pattern length: "<<max_pattern_length<<endl;
 outPrintFile22 << "Min pattern lenfth: "<<min_pattern_length<<endl;
 outPrintFile22 << "Average pattern length: "
 <<((max_pattern_length+min_pattern_length)/2)<<endl;
 outPrintFile22 <<"size of normal file: "<<number_of_syscalls_in_patterns<<
" system calls"<<endl;
 outPrintFile22 <<"Space cost of profile while at running time= "<<(sizeof (table) +
 (sizeof (Seqhash<int>) * sizeof(for_testing)* number_of_patterns))<<" bytes"<<endl;
outPrintFile22 <<"Space cost of profile while saved to disk= "
<<sizeof(int)*number_of_syscalls_in_patterns<<" bytes"<<endl;
}
//---
//READING TRAINING FILES AND GENERATING NORMAL PATTERN DATABASE WITH
POSITIVE DETECTORS
//---

int pattern_candidates_array[PINSTANCE_SIZE][PINSTANCE_SIZE];//first row contain the size of the
pattern starting from row1
fill_array_with_negone(pattern_candidates_array);
char filename_table[NUMBER_SYSCALLS][LINE_SIZE];

Seqhash<int> adjacency_list[NUMBER_SYSCALLS];
int number_syscalls;

int max_seq_size= 0;
char filename[LINE_SIZE];
strcpy_s(filename,"all_training_files2.txt");
ifstream inClientFile (filename,ios::in);
if (!inClientFile)
{
 228
 cerr <<"File could not be opened" <<endl;
 exit(1);
}
char one_filename[LINE_SIZE];
int counter=0;//number of files to be read
while (inClientFile >> one_filename)
{
 strcpy_s (filename_table[counter], one_filename);
 counter++;
}

Tree <int> TreeObject;
Pinstance <int> PinstanceObject;
List< int > listObject[NUMBER_TRAINING_FILES];
int seen[NUMBER_SYSCALLS];
for (int k=0;k<NUMBER_SYSCALLS;k++) seen[k]=-1;
int number_tobe_processed=0;
for (int temp_counter =0;temp_counter<counter;temp_counter++)
{
 TreeObject.insertAtRight(temp_counter+1);
 strcpy_s(filename, filename_table[temp_counter]);
 ifstream inClientFile1 (filename,ios::in);
 if (!inClientFile1)
 {
 cerr <<"File could not be opened" <<endl;
 exit(1);
 }
 int value;
 while (inClientFile1 >> value)
 {
 seen[value]=0;
 listObject[temp_counter].insertAtBack(value);
 }
 TreeObject.lastPtr->downPtr = listObject[temp_counter].firstPtr;
}
for (int k=0;k<NUMBER_SYSCALLS;k++)
 if(seen[k]==0)number_tobe_processed++;
TreeNode<int> *headTempPtr,*headTempPtrOuter;
ListNode<int> *tempPtr;
headTempPtrOuter = TreeObject.firstPtr;
int instance_counter=0;
int temp_pinstance[PINSTANCE_SIZE][PINSTANCE_SIZE];

int temp_e = TreeObject.firstPtr->downPtr->data;//starting from first element as the
 //never seen before system call
seen[temp_e]=1;
for(int temp_counter=1;temp_counter <= counter; temp_counter++)
{
 tempPtr=headTempPtrOuter->downPtr;
 do
 {
 if (tempPtr->data == temp_e)
 {
 instance_counter++;
 tempPtr->instance_value=instance_counter;
 229
 }
 tempPtr=tempPtr->nextPtr;
 }while ((tempPtr !=0)&&(headTempPtr != 0));
 for (int i=0;i<PINSTANCE_SIZE; i++)
 for (int j=0;j<PINSTANCE_SIZE; j++)
 {
 temp_pinstance[i][j]=-1;
 }
 headTempPtr = TreeObject.firstPtr;
 for(int temp_counter=1;temp_counter <=instance_counter; temp_counter++)
 {
 tempPtr=headTempPtr->downPtr;
 while ((tempPtr->data != temp_e)&&(tempPtr != 0))
 {
 tempPtr=tempPtr->nextPtr;
 }
 while((tempPtr !=0)&&(headTempPtr != 0))
 {
 if (tempPtr !=0)
 {
 if (tempPtr->data == temp_e)
 {
 int temp_row =0;
 int temp_col =tempPtr->instance_value;
 temp_pinstance[temp_row][temp_col] = tempPtr->data;
 tempPtr=tempPtr->nextPtr;
 temp_row++;
 while ((tempPtr != 0)&&(tempPtr->data != temp_e))
 {
 if (tempPtr != 0)
 {
 temp_pinstance[temp_row][temp_col] = tempPtr->data;
 tempPtr=tempPtr->nextPtr;
 temp_row ++;
 }
 if (tempPtr == 0)
 {
 temp_pinstance[temp_row][temp_col] = -1;
 temp_row ++;
 }
 }
 if (temp_row > max_seq_size) max_seq_size = temp_row;
 }
 }
 }

 }
 int temp_array [PINSTANCE_SIZE][PINSTANCE_SIZE];
 fill_array_with_negone(temp_array);
 int pinstance_value=0;
 int num_maximal_pattern_candidates =0;
 for (int j=0;j<PINSTANCE_SIZE;j++) temp_array[0][j]=temp_pinstance[0][j];
 Pinstance <int> pinstanceObject;
 pinstanceObject.insertRootNode (pinstance_value, temp_array);
 pinstance_value++;
 230
 int i=1;
 int number_columns = instance_counter;
 int last_temp_array [PINSTANCE_SIZE][PINSTANCE_SIZE];
 int temp_temp_pinstance[PINSTANCE_SIZE][PINSTANCE_SIZE];
 for(int z =0;z<PINSTANCE_SIZE;z++)
 for(int x=0;x<PINSTANCE_SIZE;x++)
 temp_temp_pinstance[z][x]=temp_pinstance[z][x];

 //---
 //START TYPE CHECKING
 //---
 int num_repeated[NUMBER_SYSCALLS];
 Type5List< int > type5ListObject;
 int num_subsections =1;
 int temp_last_cols =1;
 while ((num_subsections > 0)&&(number_columns>1))
 {
 int just_done_type5=0;
 int type1Found =0;
 int type2Found =0;
 int type3Found=0;
 int type4Found=0; //there is a type 1 and a type 2
 int type5Found=0; //type 2 is divided into two or more sections
 for(int j=0;j<PINSTANCE_SIZE;j++)
 temp_array[i][j]=temp_temp_pinstance[i][j];
 fill_array_with_negone(last_temp_array);
 int temp_holder = temp_array[i][1];
 for (int c=1;c<=number_columns;c++)
 {
 if (temp_array[i][c] == -1) type1Found =1;
 if ((temp_holder != temp_array[i][c]) &&(temp_array[i][c]!=-1)) type2Found
=1;
 }
 if ((type1Found ==1) && (type2Found ==1))
 {
 type4Found =1;
 }
 if (type2Found ==1)
 {
 for (int countKK=0;countKK<NUMBER_SYSCALLS;countKK++)
 num_repeated[countKK]=0;
 for (int countKK=1;countKK<=number_columns;countKK++)
if (temp_array[i][countKK]!=-1)
num_repeated[temp_array[i][countKK]]++;
 int more_than_1=0;
 for (int countKK=1;countKK<NUMBER_SYSCALLS;countKK++)
 if ((num_repeated[countKK])>1) more_than_1 ++;
 if (more_than_1 >1) type5Found =1;
 }
 if ((type1Found == 0)&&(type2Found ==0)) type3Found =1;
 else type3Found =0;

 if ((type1Found ==1)&&(type2Found==1)&&(number_columns <=2))
 {
 type1Found =0;
 231
 type2Found =0;
 type3Found=0;
 type4Found=0;
 type5Found=0;
 num_subsections=0;
 number_columns=0;
 }
 //-------------------------------TYPE4--
 if (type4Found == 1)
 {
 int temp_right_col=1;
 int temp_left_col=1;
 for (int c=1;c<=number_columns;c++)
 {
 if (temp_array[i][c] == -1)
 {
 for(int m =0;m <i;m ++)
 last_temp_array[m][temp_left_col]=temp_array[m][c];
 temp_left_col ++;
 for (int abc=0;abc<PINSTANCE_SIZE;abc++)
 temp_temp_pinstance[abc][c]=-1;
 for (int abc=0;abc<PINSTANCE_SIZE;abc++)
temp_array[abc][c]=-1;
 }
 }
 pinstanceObject.insertNode(pinstance_value,last_temp_array,0);//left
 pinstance_value++;
 num_maximal_pattern_candidates ++;
 for (int m=1;m<=number_columns;m++)
 {
 if (temp_array[i][m]==-1)
 {
 for (int n=m;n<=number_columns-1;n++)
 for (int p=0;p<PINSTANCE_SIZE;p++)
 {
 temp_array[p][n]=temp_array[p][n+1];
 temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1];
 }
 number_columns--;
 }
 }
 for (int m=1;m<=number_columns;m++)
 {
 if (temp_array[i][m]!=-1) if (num_repeated[temp_array[i][m]]==1)
 {
 for (int n=m;n<=number_columns-1;n++)
 for (int p=0;p<PINSTANCE_SIZE;p++)
 {
 temp_array[p][n]=temp_array[p][n+1];
 temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1];
 }
 number_columns--;
 }
 }
 pinstanceObject.insertNode(pinstance_value,temp_array,1);//right
 232
 pinstance_value++;
 i++;
 //-------------------------------TYPE1--
 }else if (type1Found == 1)
 {
 int temp_right_col=1;
 int temp_left_col=1;
 for (int c=1;c<=number_columns;c++)
 {
 if (temp_array[i][c] == -1)
 {
 for(int m =0;m <i;m ++)
 last_temp_array[m][temp_left_col]=temp_array[m][c];
 temp_left_col ++;
 for (int abc=0;abc<PINSTANCE_SIZE;abc++)temp_temp_pinstance[abc][c]
=-1;
 for (int abc=0;abc<PINSTANCE_SIZE;abc++)temp_array[abc][c]=-1;
 }
 }
 pinstanceObject.insertNode(pinstance_value,last_temp_array,0);//left
 pinstance_value++;
 num_maximal_pattern_candidates ++;
 for (int m=1;m<=number_columns;m++)
 {
 if (temp_array[i][m]==-1)
 {
 for (int n=m;n<=number_columns-1;n++)
 for (int p=0;p<PINSTANCE_SIZE;p++)
 {
 temp_array[p][n]=temp_array[p][n+1];
 temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1];
 }
 number_columns--;
 }
 }
 pinstanceObject.insertNode(pinstance_value,temp_array,1);//right
 pinstance_value++;
 i++;
 //-------------------------------TYPE2 AND TYPE5--
 }else if (type2Found == 1)
 {
 for (int m=1;m<=number_columns;m++)
 {
 if (temp_array[i][m]!=-1)if (num_repeated[temp_array[i][m]]==1)
 {
 for (int n=m;n<=number_columns-1;n++)
 for (int p=0;p<PINSTANCE_SIZE;p++)
 {
 temp_array[p][n]=temp_array[p][n+1];
 temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1];
 }
 number_columns--;
 }
 }
 if (type5Found == 1)
 233
 {
 num_subsections--;
 int getting_size;
 int maximum_size=0;
 for (int hh=1;hh<NUMBER_SYSCALLS;hh++)
 if (num_repeated[hh] >1)
 {
 type5ListObject.insertAtBack();
 int counter3=1;
 for (int counter1=0;counter1<PINSTANCE_SIZE;counter1++)
 {
 if (temp_temp_pinstance[i][counter1]==hh)
 {
 getting_size=0;
 for (int counter2=0;counter2<PINSTANCE_SIZE;counter2++)
 {
 if (temp_temp_pinstance[counter2][counter1]!=-1)
 getting_size++;
 type5ListObject.lastPtr->data[counter2][counter3]
 =temp_temp_pinstance[counter2][counter1];
 type5ListObject.lastPtr->starting_row=i;
 }
 if (getting_size > maximum_size) maximum_size = getting_size;
 counter3++;
 }
 }
 type5ListObject.lastPtr->max_seq_len=maximum_size+1;
 type5ListObject.lastPtr->num_columns=counter3-1;
 num_subsections++;
 }
 //filling temp_temp_pinstance with -1
 for (int yy=0;yy< PINSTANCE_SIZE;yy++)
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 temp_temp_pinstance[yy][xx]=-1;
 for (int yy=0;yy< PINSTANCE_SIZE;yy++)
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 temp_array[yy][xx]=-1;

 just_done_type5=1;
 }
 i++;
 //-------------------------------TYPE3--
 }else if (type3Found == 1)
 {
 i++;
 int number_of_minus_ones=0;
 for (int x=1;x<=number_columns;x++)
 {
 temp_array[i][x] = temp_temp_pinstance[i][x];
 if(temp_array[i][x]==-1) number_of_minus_ones++;
 }

 if (number_of_minus_ones>=number_columns)
 {
 num_subsections--;
 234

 }else pinstanceObject.modifyNode(temp_array);

 }
 //-------------------------------END ALL TYPE CHECKING-----------------------------
 if (just_done_type5==1)
 {
 if (type5ListObject.firstPtr != 0)
 {
 for (int yy=0;yy< PINSTANCE_SIZE;yy++)
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 temp_temp_pinstance[yy][xx]=-1;
 for (int yy=0;yy< PINSTANCE_SIZE;yy++)
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 temp_temp_pinstance[yy][xx]=
 type5ListObject.firstPtr->data[yy][xx];
 i=type5ListObject.firstPtr->starting_row;
 for (int xx=0;xx<i;xx++)
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 temp_array[xx][yy]=temp_temp_pinstance[xx][yy];
 max_seq_size=type5ListObject.firstPtr->max_seq_len;
 number_columns=type5ListObject.firstPtr->num_columns;
 type5ListObject.removeFromFront();
 num_subsections--;
 }
 }
 }//End of while

 //---
 filling_pattern_candidates_array(pinstanceObject.rootPtr, pattern_candidates_array,0);

 int aa_pattern_candidate_array[PINSTANCE_SIZE][PINSTANCE_SIZE];
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 aa_pattern_candidate_array[xx][yy]=-1;
 int temp_yy=1;
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 if(pattern_candidates_array[1][yy] != -1)
 {
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)

 aa_pattern_candidate_array[xx][temp_yy]=pattern_candidates_array[xx][yy];
 temp_yy ++;
 }
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 pattern_candidates_array[xx][yy]=aa_pattern_candidate_array[xx][yy];

 num_maximal_pattern_candidates =0;
 for (int x=0;x<PINSTANCE_SIZE;x++)
 if(pattern_candidates_array[1][x]!=-1)
 {
 num_maximal_pattern_candidates++;
 int seq_size=0;
 for (int y=1;y<PINSTANCE_SIZE;y++)
 235
 if (pattern_candidates_array[y][x]!=-1)seq_size++;
 pattern_candidates_array[0][x]=seq_size;
 }
 //removing one element sequences
 for (int i=1;i<=num_maximal_pattern_candidates;i++)
 {
 if (pattern_candidates_array[0][i] < 2)
 for (int j=0;j<PINSTANCE_SIZE; j++) pattern_candidates_array[j][i]=-1;
 }

 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 aa_pattern_candidate_array[xx][yy]=-1;
 temp_yy=1;

 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 if(pattern_candidates_array[1][yy] != -1)
 {
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)

 aa_pattern_candidate_array[xx][temp_yy]=pattern_candidates_array[xx][yy];
 temp_yy ++;
 }
 for (int xx=0;xx<PINSTANCE_SIZE;xx++)
 for (int yy=0;yy<PINSTANCE_SIZE;yy++)
 pattern_candidates_array[xx][yy]=aa_pattern_candidate_array[xx][yy];

 char syscall_hashtable[NUMBER_SYSCALLS][LINE_SIZE];
 number_syscalls = create_syscalls_hashtable(syscall_hashtable);
 int one_seq[PINSTANCE_SIZE];
 for (int j=0;j<PINSTANCE_SIZE;j++) one_seq[j]=-1;
 num_maximal_pattern_candidates=temp_yy-1;
 for (int i=1;i<=num_maximal_pattern_candidates;i++)
 {
 if (pattern_candidates_array[0][i] != -1)
 {
 for (int j=0;j<PINSTANCE_SIZE-1;j++)
 {
 one_seq[j]=pattern_candidates_array[j+1][i];
 }
 int seq_length =0;
 while(one_seq[seq_length]!=-1)seq_length++;
 seq_length++;
 int pattern_exist=0;

 if (!adjacency_list[one_seq[0]].isEmpty())
 {
 int a=0;
 SeqhashNode< int > *currentPointer = adjacency_list[one_seq[0]].firstPtr;
 int CCC=0;
 for (int ee=0;ee<PINSTANCE_SIZE;ee++) if (one_seq[ee]!=-1)CCC++;
 while(currentPointer != 0)
 {
 int CCC2=0;
 for(int ee=0;ee<PINSTANCE_SIZE;ee++)
 236
 if ((currentPointer->sequence[ee]!=-1)&&
(currentPointer->sequence[ee]==one_seq[ee]))
 CCC2++;
 if(CCC=CCC2) pattern_exist=1;

 currentPointer = currentPointer->nextPtr;
 }
 }

 if (pattern_exist==0)
 {
 int sizeC=0;
 for (int CC=0;CC<PINSTANCE_SIZE;CC++)
 if(one_seq[CC] !=-1)sizeC++;
 if (sizeC>1)
 {
 adjacency_list[one_seq[0]].insertAtBack(one_seq);
 TreeNode<int> *headPtrB;
 ListNode<int> *tempPtrB;
 ListNode<int> *temptempPtrB;
 headPtrB=TreeObject.firstPtr;
 while (headPtrB !=0)
 {
 tempPtrB=headPtrB->downPtr;
 while (tempPtrB !=0)
 {
 if(tempPtrB->data == one_seq[0])
 {
 temptempPtrB=tempPtrB;
 int temp_seq_size =0;
 int same=1;
 while ((temptempPtrB !=0)&&(temp_seq_size<seq_length-1))
 {
 if (temptempPtrB->data != one_seq[temp_seq_size]) same =0;
 temp_seq_size++;
 temptempPtrB=temptempPtrB->nextPtr;
 }
 if (temp_seq_size != seq_length-1)
 {
 same =0;
 }
 if (same ==1)
 {
 for (int p=0;p<seq_length-1;p++)
 {
 if (tempPtrB != 0)
 {
 tempPtrB->belong_to_a_pattern =1;
 tempPtrB= tempPtrB->nextPtr;
 }
 }
 }
 }
 if (tempPtrB != 0) tempPtrB=tempPtrB->nextPtr;
 }
 237
 headPtrB=headPtrB->rightPtr;
 }
 }
 }
 }
 }

//,,
//COLLECTING STAND ALONE SEQUENCES
//,,

int sequenceS[PINSTANCE_SIZE];
TreeNode<int> *headPtrS;
ListNode<int> *tempPtrS;
headPtrS=TreeObject.firstPtr;
int seq_exsist;
while (headPtrS !=0)
{
 tempPtrS=headPtrS->downPtr;
 while (tempPtrS !=0)
 {
 while ((tempPtrS !=0)&&(tempPtrS->belong_to_a_pattern==1))
tempPtrS=tempPtrS->nextPtr;
 int countS=0;
 for (int j=0;j<PINSTANCE_SIZE;j++) sequenceS[j]=-1;
 while ((tempPtrS !=0)&&(tempPtrS->belong_to_a_pattern==0))
 {
 sequenceS[countS]= tempPtrS->data;
 countS++;
 tempPtrS=tempPtrS->nextPtr;
 }
 if (sequenceS[0]!=-1)
 {
 seq_exsist =0;
 if (!adjacency_list[sequenceS[0]].isEmpty())
 {
 SeqhashNode< int > *currentPointer = adjacency_list[sequenceS[0]].firstPtr;
 while((currentPointer != 0)&&(seq_exsist==0))
 {

 int seqC2=0;
 int seqC3=0;
 for (int vv=0;vv<PINSTANCE_SIZE;vv++)
 {
 if (sequenceS[vv]!=-1)seqC2++;
 if ((currentPointer->sequence[vv] ==sequenceS[vv])&&
(sequenceS[vv]!=-1))seqC3++;
 }
 if(seqC2 == seqC3)
 {
 seq_exsist =1;
 }
 if(currentPointer !=0) currentPointer = currentPointer->nextPtr;
 238
 }
 }
 if (seq_exsist==0)
 {
 int sizeC=0;
 for (int CC=0;CC<PINSTANCE_SIZE;CC++)
 if(sequenceS[CC]!=-1) sizeC++;
 if (sizeC>1)adjacency_list[sequenceS[0]].insertAtBack(sequenceS);
 }
 }
 }
 if(headPtrS!=0)headPtrS=headPtrS->rightPtr;
}
 239
APPENDIX E
 POSITIVE DETECTOR GENERATION
//,,
//NEGATIVE DETECTOR GENERATION
//,,

 //---
 // GENERATING AND SAVING NEGATIVE DETECTORS
 //---
 ofstream outPrintFile777 ("naiveR0.txt", ios::out);
 if (!outPrintFile777)
 {
 cerr <<" file could not be opened" <<endl;
 exit(1);
 }
 int max_number_detectors =160; //CHANGE IT TO THE SIZE OF DECTORS NEEDED
 int R0_naive_array[R0_NAIVE_ROWS][WINDOW_SIZE];
 int R0_array[R0_ROWS][WINDOW_SIZE];
 srand(time(0));
 for (int abc=0;abc<R0_ROWS;abc++)
 {
 for (int def=0;def<WINDOW_SIZE;def++)
 {
 R0_naive_array[abc][def]=1+rand()% number_syscalls;
 outPrintFile777 <<setw(5)<<R0_naive_array[abc][def];
 }
 outPrintFile777 <<endl;
 }
 int abc=0;
 int number_inserted=0;
 for (int row_counter=0;row_counter<max_number_detectors;row_counter++)
 {
 int found_similar=0;
 for (int ghi=0;ghi<number_profile_rows;ghi++)
 {
 if (R0_naive_array[abc][0]==profile_array[ghi][0])
 {
 int same_count=0;
 for (int def=1;def<WINDOW_SIZE;def++)

 if(R0_naive_array[abc][def]==
profile_array[ghi][def])same_count++;
 if (same_count >= WINDOW_SIZE-1)found_similar=1;
 }
 240
 }
 if(found_similar ==0)
 {
 int exists=0;
 for (int ghi=0;ghi<number_inserted;ghi++)
 {
 if (R0_naive_array[abc][0]==R0_array[ghi][0])
 {
 int same_count=0;
 for (int def=1;def<WINDOW_SIZE;def++)

 if(R0_naive_array[abc][def]==R0_array[ghi][def])same_count++;
 if (same_count >= WINDOW_SIZE-1)exists=1;
 }
 }
 if(exists ==1)
 {

 row_counter=row_counter-1;

 }else
 {
 number_inserted++;
 for (int def=0;def<WINDOW_SIZE;def++)
 R0_array[row_counter][def]=R0_naive_array[abc][def];
 }
 }
 abc++;

 }

 ofstream outPrintFile888 ("R0.txt", ios::out);
 if (!outPrintFile888)
 {
 cerr <<" file could not be opened" <<endl;
 exit(1);
 }
 for (int abc=0;abc<max_number_detectors;abc++)
 {
 for (int def=0;def<WINDOW_SIZE;def++)
 {

 outPrintFile888 <<setw(5)<<R0_array[abc][def];
 }
 outPrintFile888 <<endl;
 }
 std::bitset<size> c_array;
 int array_num =0;
 for(int j=WINDOW_SIZE-2;j>=0;j--)
 {
 for(int i=0;i<max_number_detectors;i++)
 {
 int row=R0_array[i][WINDOW_SIZE-1];
 int col=R0_array[i][j];
 if((row==-1)||(col==-1))
 241
 {
 //NOTHING
 }else
 {

 c_array.set(((row-
1)*NUM_SYS_CALLS)+col+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num));
 }
 }
 array_num++;
 }

 //---
 // TESTING with negative detectors modified form
 //---

 ofstream outPrintFile1000 ("tracing_neg.txt", ios::out);
 if (!outPrintFile1000)
 {
 cerr <<" file could not be opened" <<endl;
 exit(1);
 }
 time(&begining_time);
 outPrintFile1000 << "Begining Time= "<<begining_time<<endl;
 char filename1000[LINE_SIZE];
 strcpy_s(filename1000,"int_login_homegrown.txt");
 ifstream inClientFile1000(filename1000,ios::in);
 if (!inClientFile1000)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }
 int number_rows_in_testing_profile1000=0;
 int number_of_pairs_in_testing_profile1000=0;
 int value1000;
 int window_sized_array1000[WINDOW_SIZE];
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array1000[i] =-1;
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)
 {
 if(inClientFile1000 >> value1000) window_sized_array1000[abc]=value1000;
 }
 double percentage1000;
 int mismatches1000=0;
 int row1000, col1000;
 while (inClientFile1000 >> value1000)
 {
 window_sized_array1000[WINDOW_SIZE-1]=value1000;
 number_rows_in_testing_profile1000++;
 outPrintFile1000 <<"current testing input row: ";
 for (int def=0;def<WINDOW_SIZE;def++) outPrintFile1000 <<
window_sized_array1000[def] << " ";
 outPrintFile1000 <<endl;

 for (int i=0;i<WINDOW_SIZE-1;i++)
 242
 {
 row1000=window_sized_array1000[WINDOW_SIZE-1];
 col1000=window_sized_array1000[WINDOW_SIZE-2-i];
 if ((row1000==-1)||(col1000==-1))
 {
 //NOTHING
 }else
 {
 number_of_pairs_in_testing_profile1000++;
 if (c_array.test(((row1000-
1)*NUM_SYS_CALLS)+col1000+(NUM_SYS_CALLS*NUM_SYS_CALLS*i))==1)
 {
 mismatches1000 ++;
 outPrintFile1000 <<"mismatch pair:
<"<<row1000<<","<<col1000<<"> at plain: "<<i<<endl;
 }
 }
 }
 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)
window_sized_array1000[ghi]=window_sized_array1000[ghi+1];
 window_sized_array1000[WINDOW_SIZE-1]=-1;
 }
 int number_neg_pairs=0;
 for (int a1=0;a1<array_num;a1++)
 for (int a2=1;a2<NUM_SYS_CALLS;a2++)
 for (int a3=1;a3<NUM_SYS_CALLS;a3++)
 if (c_array.test(((a2-
1)*NUM_SYS_CALLS)+a3+(NUM_SYS_CALLS*NUM_SYS_CALLS*a1))==1)
 number_neg_pairs++;

 int number_pos_pairs=0;
 for (int a1=0;a1<array_num;a1++)
 for (int a2=1;a2<NUM_SYS_CALLS;a2++)
 for (int a3=1;a3<NUM_SYS_CALLS;a3++)
 if (b_array.test(((a2-
1)*NUM_SYS_CALLS)+a3+(NUM_SYS_CALLS*NUM_SYS_CALLS*a1))==1)
 number_pos_pairs++;

 outPrintFile1000 << "number of pos mismatches= "<<mismatches<<endl;
 outPrintFile1000 << "number of neg mismatches= "<<mismatches1000<<endl;
 outPrintFile1000 <<" number of pos pairs= "<<number_pos_pairs<<endl;
 outPrintFile1000 <<" number of neg pairs= "<<number_neg_pairs<<endl;
 outPrintFile1000 <<" number of pos detectors= "<<number_profile_rows<<endl;
 outPrintFile1000 <<" number of neg detectors= "<<max_number_detectors<<endl;
 outPrintFile1000 <<" space cost while running of pos= "<<(b_array.size()/8)<<endl;
 outPrintFile1000 <<" space cost while running of neg= "<<(c_array.size()/8)<<endl;
 outPrintFile1000 <<" space cost while saved to disk of pos=
"<<sizeof(int)*number_pos_pairs*3<<endl;
 outPrintFile1000 <<" space cost while saved to disk of neg=
"<<sizeof(int)*number_neg_pairs*3<<endl;

 //---

 243
APPENDIX F
 LOOKAHEAD PAIRS METHOD ENHANCED WITH DANGER THEORY
SAMPLE CODE

//,,
//IDS MAIN . H
//,,
#include "IDSSystem.h"
void main()
{
 IDSSystem IDSsystem;
 cout <<"exiting program"<<endl;
}
//,,
//IDSSYSTEM . H (IDS SYSTEM HEADER FILE) // CONTROLS STARTING IDS FUNCTIONS
//,,
#ifndef IDSSYSTEM_H
#define IDSSYSTEM_H
#include "Th2.h"
#include "Th1.h"
#include "KillerT.h"
#include "iDC.h"
#include "DC.h"
#include "Bcell.h"
#include "ExitEngine.h"
class IDSSystem
{
public:
 IDSSystem();
 ~IDSSystem();
private:
 KillerT one_KillerT;
 Th1 one_Th1;
 Th2 one_Th2;
 DC one_DC;
 ExitEngine one_ExitEngine;
 Bcell one_Bcell;
 iDC one_iDC;
};
#endif
//,,
 244

//IDSSYSTEM . CPP (IDS SYSTEM SOURCE FILE) CONTROLS IDS FUNCTIONS
//,,
#include "IDSSystem.h"
//---
//CONSTRUCTOR
//---

IDSSystem::IDSSystem()
 :one_Th2(one_Bcell),
 one_Th1(one_Th2,one_KillerT),
 one_Bcell(one_Th1,one_ExitEngine),
 one_DC(one_Th1),
 one_iDC(one_DC,one_ExitEngine)

{
 time_t begining_time;
 cout <<"IDS started"<<endl;
 time(&begining_time);
 one_ExitEngine.set_begining_time(begining_time);

}

//---
//DESTRUCTOR
//---

IDSSystem::~IDSSystem()
{
 cout <<"IDS shut down"<<endl;
}

//,,
//IDC . H (IDC CELL HEADER FILE)
//,,
#ifndef IDC_H
#define IDC_H
#include "constant_values.h"
class DC;
class ExitEngine;
class iDC{
public:
 iDC(DC &, ExitEngine &);
 void admin();
 int calculate_cytokines_iDC(int , int [CYCLE_THRESHOLD], double, double, int,
 int [CYCLE_THRESHOLD],
 int [CYCLE_THRESHOLD], int [CYCLE_THRESHOLD],int ,
int [CYCLE_THRESHOLD],int [WINDOW_SIZE]);
private:
 double C_PAMP;
 double IC;
 double C_safe;
 double C_danger;
 DC &one_DC;
 ExitEngine &one_ExitEngine;
 245
 std::bitset<SIZE> the_array;
};
#endif
//,,
//IDC . CPP (IDC CELL SOURCE FILE)
//,,

#include "iDC.h"
#include "DC.h"
#include "ExitEngine.h"
//---
//CONSTRUCTOR
//---
iDC::iDC(DC &Ref_DC, ExitEngine &Ref_ExitEngine)
:one_DC(Ref_DC),
one_ExitEngine(Ref_ExitEngine)
{
 C_PAMP=0;
 IC=0;
 C_safe=0;
 C_danger=0;

 cout<<"constrcut iDC"<<endl;
 admin();
}
//---
//CALCULATE IDC
//---
int iDC::calculate_cytokines_iDC(int user_present1, int prev_mismatches1[CYCLE_THRESHOLD],
 double CPU_usage1,
 double mem_usage1, int abnormal_signal1,
 int prev_CPU1 [CYCLE_THRESHOLD], int prev_mem1 [CYCLE_THRESHOLD],
 int prev_abnormal1 [CYCLE_THRESHOLD],int location1,
 int prev_IC1[CYCLE_THRESHOLD],
 int an_array[WINDOW_SIZE])
{
 int number_mis=0;
 int identified_CPU_attack=0;
 int identified_MEM_attack=0;
 int identified_mismatch_attack=0;
 int number_IC=0;
 prev_IC1[location1]=user_present1;
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 {
 if (prev_mismatches1[i]==1)number_mis ++;
 if (prev_IC1[i]==1) number_IC++;

 }
 if (number_IC>0)
 IC = (double)(number_IC/CYCLE_THRESHOLD);
 else IC =0.0;
 if (number_mis>0)
 {
 C_PAMP = (double) (number_mis/CYCLE_THRESHOLD);
 identified_mismatch_attack=1;
 246
 }
 else C_PAMP =0.0;

 if (abnormal_signal1 == 1)
 {
 prev_abnormal1[location1]=1;
 }else
 {
 prev_abnormal1[location1]=0;
 }
 double normalized_safe_CPU;
 double normalized_danger_CPU;

 double normalized_safe_mem;
 double normalized_danger_mem;

 if (CPU_usage1 <= CPU_THRESHOLD)
 {
 normalized_safe_CPU =CPU_usage1;
 normalized_danger_CPU =0;
 prev_CPU1[location1]=0;
 }else
 {
 identified_CPU_attack=1;
 normalized_danger_CPU = CPU_usage1;
 normalized_safe_CPU= 0;
 prev_CPU1[location1]=1;
 }

 if (mem_usage1 <= MEM_THRESHOLD)
 {
 normalized_safe_mem = mem_usage1;
 normalized_danger_mem =0;
 prev_mem1[location1]=0;

 }else
 {
 identified_MEM_attack=1;
 normalized_danger_mem = mem_usage1;
 normalized_safe_mem= 0;
 prev_mem1[location1]=1;
 }
 int prev_CPU_count=0;
 int prev_mem_count=0;
 int prev_abnormal_count=0;
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 {
 if (prev_CPU1[i]==1) prev_CPU_count ++;
 if (prev_mem1[i]==1) prev_mem_count ++;
 if (prev_abnormal1[i] ==1) prev_abnormal_count ++;
 }
 double normalized_CPU = double (prev_CPU_count/CYCLE_THRESHOLD);
 double normalized_mem = double (prev_mem_count/CYCLE_THRESHOLD);
 double normalized_abnormal = double (prev_abnormal_count/CYCLE_THRESHOLD);
 247

 C_safe = ((CPU_AFFECT_ON_S * normalized_safe_CPU)+
(MEM_AFFECT_ON_S* normalized_safe_mem) +
 (PREV_CPU_AFFECT_ON_S*(CYCLE_THRESHOLD- normalized_CPU))+
 (PREV_MEM_AFFECT_ON_S*(CYCLE_THRESHOLD-normalized_mem))+
 (PREV_ABNORMAL_DEATH_AFFECT_ON_S*
(CYCLE_THRESHOLD-normalized_abnormal)));

 C_danger = ((CPU_AFFECT_ON_D*normalized_danger_CPU)+
 (MEM_AFFECT_ON_D*normalized_danger_mem) +
 (ABNORMAL_DEATH_AFFECT_ON_D * abnormal_signal1)+
 (PREV_CPU_AFFECT_ON_D* normalized_CPU)+
 (PREV_MEM_AFFECT_ON_D*normalized_mem)+
 (PREV_ABNORMAL_DEATH_AFFECT_ON_D*normalized_abnormal));

 int attack_type;

if ((identified_CPU_attack==0)&&(identified_MEM_attack==0)&&
(identified_mismatch_attack==0))
 {
 attack_type = iDC_ATTACK_TYPE1;
}else if ((identified_CPU_attack==0)&&(identified_MEM_attack==0)&&
(identified_mismatch_attack==1))
 {
 attack_type = iDC_ATTACK_TYPE2;
 }
 else if((identified_CPU_attack==0)&&(identified_MEM_attack==1)&&
(identified_mismatch_attack==0))
 {
 attack_type = iDC_ATTACK_TYPE3;
 }
 else if((identified_CPU_attack==0)&&(identified_MEM_attack==1)&&
(identified_mismatch_attack==1))
 {
 attack_type = iDC_ATTACK_TYPE4;
 }
 else if((identified_CPU_attack==1)&&(identified_MEM_attack==0)&&
(identified_mismatch_attack==0))
 {
 attack_type = iDC_ATTACK_TYPE5;
 }
 else if((identified_CPU_attack==1)&&(identified_MEM_attack==0)&&
(identified_mismatch_attack==1))
 {
 attack_type = iDC_ATTACK_TYPE6;
 }
 else if((identified_CPU_attack==1)&&(identified_MEM_attack==1)&&
(identified_mismatch_attack==0))
 {
 attack_type = iDC_ATTACK_TYPE7;
 }
 else if((identified_CPU_attack==1)&&(identified_MEM_attack==1)&&
(identified_mismatch_attack==1))
 248
 {
 attack_type = iDC_ATTACK_TYPE8;
 }

 int temp_return_value;

 temp_return_value= one_DC.calculate_cytokines_DC(C_PAMP, C_safe, C_danger, IC,
 an_array, attack_type);
 return temp_return_value;
//---
//ADMIN
//---
void iDC::admin()
{
 int value;
 ifstream inClientFile ("lookahead_values1.txt",ios::in);
 if (!inClientFile)
 {
 cerr <<"File could not be opened2" <<endl;
 exit(1);
 }
 int row1;
 int col1;
 int array_num1;
 while ((inClientFile >> row1)&&(inClientFile >> col1)&& (inClientFile >> array_num1))
 {
the_array.set(((row1-1)*NUM_SYS_CALLS)+
col1+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num1));
 }
 int user_present;//boolean either present or not
 double CPU_usage;
 double mem_usage;
 int abnormal_signal =0; //boolean either used or not.
 int prev_CPU[CYCLE_THRESHOLD];
 int prev_mem[CYCLE_THRESHOLD];
 int prev_abnormal[CYCLE_THRESHOLD];
 int prev_mismatches[CYCLE_THRESHOLD];
 int prev_IC[CYCLE_THRESHOLD];
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 {
 prev_CPU[i]=0;
 prev_mem[i]=0;
 prev_abnormal[i]=0;
 prev_mismatches[i]=0;
 prev_IC[i]=0;
 }
 char filename1[LINE_SIZE];
 strcpy_s(filename1,"anomalies_testing.txt");
 ifstream inClientFile1(filename1,ios::in);
 if (!inClientFile1)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }
 249
 char filename222[LINE_SIZE];
 strcpy_s(filename222,"CPU_MEM_usages1.txt");
 ifstream inClientFile222(filename222,ios::in);
 if (!inClientFile222)
 {
 cerr <<"file could not be opened6" <<endl;
 exit(1);
 }
 ofstream outPrintFile222 ("iDC_tracing.txt", ios::out);
 if (!outPrintFile222)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 int number_rows_in_testing_profile=0;
 int number_of_pairs_in_testing_profile=0;
 int window_sized_array[WINDOW_SIZE];
 int threshold_sized_array[WINDOW_SIZE];
 for (int i=0;i<WINDOW_SIZE;i++)
 {
 window_sized_array[i] =-1;
 threshold_sized_array[i]=0;
 }
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)
 {
 if(inClientFile1 >> value) window_sized_array[abc]=value;
 }
 double percentage;
 int mismatches=0;
 int row, col;
 int mismatch_counter =0;
 int location=0;
 int starting_point=0;
 while (inClientFile1 >> value)
 {
 int there_is_a_mismatch=0;
 window_sized_array[WINDOW_SIZE-1]=value;
 number_rows_in_testing_profile++;
 outPrintFile222 <<"current testing input row: ";
 for (int def=0;def<WINDOW_SIZE;def++) outPrintFile222 <<
window_sized_array[def] << " ";
 outPrintFile222 <<endl;
 for (int i=0;i<WINDOW_SIZE-1;i++)
 {
 row=window_sized_array[WINDOW_SIZE-1];
 col=window_sized_array[WINDOW_SIZE-2-i];

 if ((row == 36) || (col==36)) abnormal_signal=1;

 if ((row==-1)||(col==-1))
 {
 //NOTHING
 }else
 {
 number_of_pairs_in_testing_profile++;
 250
 if (the_array.test(((row-1)*NUM_SYS_CALLS)+
 col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i))==0)
 {
 mismatches ++;
 if(i==0) starting_point=((row-1)*NUM_SYS_CALLS)+
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i);
 there_is_a_mismatch=1;
 outPrintFile222 <<"mismatch pair: <"<<row<<","<<col<<
"> at plain: "<<i<<endl;
 }
 }
 }
 if ((there_is_a_mismatch==1)||
((number_rows_in_testing_profile % MOD_VALUE)==0))
 {
 prev_mismatches[mismatch_counter]=1;
 mismatch_counter ++;
 if (mismatch_counter == CYCLE_THRESHOLD-1) mismatch_counter =0;
 (inClientFile222 >> user_present);
 (inClientFile222 >> CPU_usage);
 (inClientFile222 >> mem_usage);
 int cytokine;
 cytokine= calculate_cytokines_iDC(user_present, prev_mismatches,
CPU_usage, mem_usage, abnormal_signal,
prev_CPU, prev_mem, prev_abnormal, location, prev_IC,window_sized_array
);
 location++;
 if (location == CYCLE_THRESHOLD-1) location =0;
 outPrintFile222 <<"Handeled Window: ";
 for (int i=0;i<WINDOW_SIZE;i++)
 outPrintFile222 << setw(4)<< window_sized_array[i];
 outPrintFile222 <<endl;
 if (there_is_a_mismatch==1)outPrintFile222 << "Is a mismatch"<<endl;
 else outPrintFile222 << "Is normal"<<endl;
 outPrintFile222 << "User present: "<< user_present<<endl;
 outPrintFile222 << "CPU usage: "<< CPU_usage<<endl;
 outPrintFile222 << "Mem usage: "<< mem_usage<<endl;
 outPrintFile222 << "Is an abnormal signal: "<< abnormal_signal<<endl;
 outPrintFile222 <<"previous CPU: ";
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 outPrintFile222 << setw(4)<< prev_CPU[i];
 outPrintFile222 <<endl;
 outPrintFile222 <<"previous memory: ";
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 outPrintFile222 << setw(4)<< prev_mem[i];
 outPrintFile222 <<endl;
 outPrintFile222 <<"previous abnormal: ";
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 outPrintFile222 << setw(4)<< prev_abnormal[i];
 outPrintFile222 <<endl;
 outPrintFile222 <<"previous mismatches: ";
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 outPrintFile222 << setw(4)<< prev_mismatches[i];
 outPrintFile222 <<endl;
 outPrintFile222 <<"previous IC: ";
 251
 for (int i=0;i<CYCLE_THRESHOLD;i++)
 outPrintFile222 << setw(4)<< prev_IC[i];
 outPrintFile222 <<endl;
 if (cytokine==1) outPrintFile222 << "Semi"<<endl;
 else if (cytokine==2) outPrintFile222 << "Mat"<<endl;
 outPrintFile222 <<"------------------------------------"<<endl;
 }else
 {
 prev_mismatches[mismatch_counter]=0;
 mismatch_counter ++;
 if (mismatch_counter == CYCLE_THRESHOLD-1)
 mismatch_counter =0;
 }

 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)
 window_sized_array[ghi]=window_sized_array[ghi+1];
 window_sized_array[WINDOW_SIZE-1]=-1;
 }
 outPrintFile222 << "Number of rows in testing profile= "<<
number_rows_in_testing_profile-1<<endl;
 outPrintFile222 << "Number of pairs in testing profile= "
<<number_of_pairs_in_testing_profile<<endl;
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0;
 outPrintFile222 << "Number of lookahead mismatches= "<<mismatches<<endl;
 outPrintFile222 << "Percentage of mismatches (anomaly sensitivity)= "<<percentage
<<" %"<<endl;
 one_ExitEngine.iDC_finished();
}

//,,
//B CELL . H
//,,
#ifndef BCELL_H
#define BCELL_H
#include "constant_values.h"
class Th1;
class ExitEngine;
class Bcell{
public:
 Bcell(Th1 &, ExitEngine&);
 void admin();
 void receive_input_from_Th2(int, int);
private:
 std::bitset<SIZE> the_array;
 int threshold_array[SIZE];
 Th1 &one_Th1;
 ExitEngine &one_ExitEngine;
};
#endif
//,,
//B CELL . CPP
//,,
#include "Bcell.h"
 252
#include "Th1.h"
#include "ExitEngine.h"

//---
//CONSTRUCTOR
//---

Bcell::Bcell(Th1 &Ref_Th1, ExitEngine &Ref_ExitEngine)
:one_Th1(Ref_Th1),
one_ExitEngine(Ref_ExitEngine)
{
 for (int i=0;i<SIZE;i++) threshold_array[i]=0;
 cout <<"construct Bcell"<<endl;
 admin();
}
//---
//RECEIVE INPUT FROM TH2
//---

void Bcell::receive_input_from_Th2(int answer,int start_location)
{
 if (answer==PRIME)
 {
 for (int cc=0;cc<WINDOW_SIZE;cc++)
 {
 threshold_array[start_location+cc]++;

 }
 }else
 {
 for (int cc=0;cc<WINDOW_SIZE;cc++)
 {
 if(threshold_array[cc]<MIN_THRESHOLD_VALUE)
 {
 the_array.reset(start_location+cc);
 threshold_array[start_location+cc]=0;
 }else
 {
 threshold_array[start_location+cc]--;
 }
 }
 }
}

//---
//ADMIN
//---

void Bcell::admin()

{
 int value;
 ifstream inClientFile ("lookahead_values.txt",ios::in);
 if (!inClientFile)
 {
 253
 cerr <<"File could not be opened2" <<endl;
 exit(1);
 }
 int row1;
 int col1;
 int array_num1;
 while (inClientFile >> row1)
 {
 (inClientFile >> col1);
 (inClientFile >> array_num1);
 the_array.set(((row1-1)*NUM_SYS_CALLS)+
col1+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num1));
 }
 char filename1[LINE_SIZE];

 strcpy_s(filename1,"anomalies_testing.txt");
 ifstream inClientFile1(filename1,ios::in);
 if (!inClientFile1)
 {
 cerr <<"anomalous file could not be opened" <<endl;
 exit(1);
 }

 ofstream outPrintFile222 ("Bcell_tracing.txt", ios::out);
 if (!outPrintFile222)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 int number_rows_in_testing_profile=0;
 int number_of_pairs_in_testing_profile=0;

 int window_sized_array[WINDOW_SIZE];
 int threshold_sized_array[WINDOW_SIZE];
 for (int i=0;i<WINDOW_SIZE;i++)
 {
 window_sized_array[i] =-1;
 threshold_sized_array[i]=0;
 }
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)
 {
 if(inClientFile1 >> value) window_sized_array[abc]=value;
 }
 double percentage;
 int mismatches=0;
 int row, col;
 int mismatch_counter =0;
 int location=0;
 int starting_point=0;

 while (inClientFile1 >> value)
 {
 int there_is_a_mismatch=0;
 window_sized_array[WINDOW_SIZE-1]=value;
 254
 number_rows_in_testing_profile++;
 outPrintFile222 <<"current testing input row: ";
 for (int def=0;def<WINDOW_SIZE;def++) outPrintFile222 <<
window_sized_array[def] << " ";
 outPrintFile222 <<endl;

 for (int i=0;i<WINDOW_SIZE-1;i++)
 {
 row=window_sized_array[WINDOW_SIZE-1];
 col=window_sized_array[WINDOW_SIZE-2-i];
 if ((row==-1)||(col==-1))
 {
 //NOTHING
 }else
 {
 number_of_pairs_in_testing_profile++;
 if (the_array.test(((row-1)*NUM_SYS_CALLS)+
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i))==0)
 {
 mismatches ++;
 if(i==0) starting_point=((row-1)*NUM_SYS_CALLS)+
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i);
 threshold_array[((row-1)*NUM_SYS_CALLS)+
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)]++;
 threshold_sized_array[i]=
 threshold_array[((row-1)*NUM_SYS_CALLS)+
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)];
 there_is_a_mismatch=1;
 outPrintFile222 <<"mismatch pair: <"<<row<<","<<col
<<"> at plain: "<<i<<endl;

 }

 }
 }
 if (there_is_a_mismatch==1)
 {
 one_Th1.receive_input_from_B(window_sized_array,
threshold_sized_array,starting_point);

 }
 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)
 window_sized_array[ghi]=window_sized_array[ghi+1];
 window_sized_array[WINDOW_SIZE-1]=-1;
 }
 outPrintFile222 << "Number of rows in testing profile= "<<
number_rows_in_testing_profile-1<<endl;
 outPrintFile222 << "Number of pairs in testing profile= "<<
number_of_pairs_in_testing_profile<<endl;
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0;
 outPrintFile222 << "Number of lookahead mismatches= "<<mismatches<<endl;
 outPrintFile222 << "Percentage of mismatches (anomaly sensitivity)= "<<percentage<<
" %"<<endl;

 one_ExitEngine.Bcell_finished();
 255

}
//,,
//DC . H (DC CELL HEADER FILE)
//,,
#ifndef DC_H
#define DC_H
#include "constant_values.h"
class Th1;
class DC{
public:
 DC(Th1 &);
 int calculate_cytokines_DC(double, double, double, double,
 int[WINDOW_SIZE],int);
private:
 double C_csm;
 double C_semi;
 double C_mat;
 Th1 &one_Th1;
};
#endif
//,,
//DC . CPP (DC CELL SOURCE FILE)
//,,
#include "DC.h"
#include "Th1.h"
//--
DC::DC(Th1 &Ref_Th1)
:one_Th1(Ref_Th1)
{
 cout <<"construct DC"<<endl;
}
//--
int DC::calculate_cytokines_DC(double C_PAMP, double C_safe, double C_danger, double IC,
 int asequence[WINDOW_SIZE], int type_of_attack)
{

 C_csm = (((W_PAMP_CSM*C_PAMP)+(W_DANGER_CSM*C_danger)+
(W_SAFE_CSM*C_safe))/
 (W_PAMP_CSM+W_DANGER_CSM+W_SAFE_CSM))*((1+IC)/2);

 C_semi = (((W_PAMP_SEMI*C_PAMP)+(W_DANGER_SEMI*C_danger)+
(W_SAFE_SEMI*C_safe))/
 (W_PAMP_SEMI+W_DANGER_SEMI+W_SAFE_SEMI))*((1+IC)/2);

 C_mat = ((W_PAMP_MAT*C_PAMP)+(W_DANGER_MAT*C_danger)+
(W_SAFE_MAT*C_safe))*((1+IC)/2);

 int temp_attack_type=type_of_attack;
 int temp_sequence[WINDOW_SIZE];
 for (int ll=0;ll<WINDOW_SIZE;ll++)
 temp_sequence[ll]=asequence[ll];

 if (C_semi > C_mat)
 {
 256
 int temp=SUPRESS;

 one_Th1.receive_input_from_DC(temp, temp_sequence,temp_attack_type); //semi

 return SUPRESS;
 }
 else
 {
 int temp=PRIME;

 one_Th1.receive_input_from_DC(temp, temp_sequence,temp_attack_type);//mat

 return PRIME;

 }

}
//--

//,,
//TH1 . H (HELPER TH1 HEADER FILE)
//,,
#ifndef TH1_H
#define TH1_H
#include "constant_values.h"
class Th2;
class KillerT;
class Th1{
public:
 Th1(Th2 &, KillerT &);
 void receive_input_from_DC(int , int [WINDOW_SIZE] , int);
 void receive_input_from_B(int [WINDOW_SIZE],int [WINDOW_SIZE],int);
 void admin();
private:
 int cyto;
 int DC_sequence[WINDOW_SIZE];
 int B_sequence[WINDOW_SIZE];
 int B_threshold_seq[WINDOW_SIZE];
 int B_seq_starting_point;
 int received_B_input;
 int DC_input;
 int attack_type;
 Th2 &one_Th2;
 KillerT &one_KillerT;
};
#endif
//,,
//TH1 . CPP (HELPER TH1 SOURCE FILE)
//,,
#include "Th1.h"
#include "Th2.h"
#include "KillerT.h"

//---
//CONSTRUCTOR
 257
//---

Th1::Th1(Th2 &Ref_Th2, KillerT &Ref_KillerT)
 :one_Th2(Ref_Th2),
 one_KillerT(Ref_KillerT),
 received_B_input(0),
 DC_input(0),
 cyto(0),
 B_seq_starting_point(0),
 attack_type(0)
{

 for (int hh=0;hh<WINDOW_SIZE;hh++)
 {
 DC_sequence[hh]=0;
 B_sequence[hh]=0;
 B_threshold_seq[hh]=0;
 }
}

//---
//RECEIVE INPUT FROM B CELL
//---

void Th1::receive_input_from_B(int sequence_from_B[WINDOW_SIZE],int
threshold_sequence_from_B[WINDOW_SIZE],
 int starting_point)
{
 received_B_input=1;
 for (int i=0;i<WINDOW_SIZE;i++)
 {
 B_sequence[i]=sequence_from_B[i];
 B_threshold_seq[i]=threshold_sequence_from_B[i];
 }
 B_seq_starting_point=starting_point;
 admin();
}
//---
//ADMIN
//---

void Th1::admin()
{
 int counter=0;
 int B_attacked=0;
 if ((received_B_input ==1)&&(DC_input ==0))
 {

 for (int i=0;i <WINDOW_SIZE;i++)
 if (B_threshold_seq[i]>MAX_THRESHOLD_VALUE) counter++;
 if(counter>0)
 {
 B_attacked=1;
 one_KillerT.receive_input(B_sequence,ATTACK_TYPE2,
 iDC_ATTACK_TYPE1);
 258
 }
 counter=0;
 received_B_input =0;
 }else if ((received_B_input ==0)&&(DC_input ==1))
 {

 if (cyto==PRIME)
 {
 one_KillerT.receive_input(DC_sequence, ATTACK_TYPE1,
 attack_type);
 DC_input=0;

 }else if ((cyto == SUPRESS)&&(B_attacked==0))// B threshold is low
 {
 int same=0;
 for (int i=0;i<WINDOW_SIZE;i++)
 if (DC_sequence[i]==B_sequence[i])same ++;
 if (same>0) one_Th2.receive_input(SUPRESS,
 B_seq_starting_point);
 }

 } else if ((DC_input==1)&&(received_B_input==1))
 {

 if (cyto==PRIME)
 {
 one_KillerT.receive_input(DC_sequence, ATTACK_TYPE3,
 attack_type);
 int same=0;
 for (int i=0;i<WINDOW_SIZE;i++)
 if (DC_sequence[i]==B_sequence[i])same ++;
 if (same>0) one_Th2.receive_input(PRIME,
 B_seq_starting_point);

 }else if (cyto == SUPRESS)
 {
 int same=0;
 for (int i=0;i<WINDOW_SIZE;i++)
 if (DC_sequence[i]==B_sequence[i])same ++;
 if (same>0) one_Th2.receive_input(SUPRESS,
 B_seq_starting_point);

 }

 DC_input=0;
 received_B_input=0;
 }
}
//---
//RECEIVE INPUT FROM DC CELL
//---

void Th1::receive_input_from_DC(int value1, int value2[WINDOW_SIZE], int value3)
{
 259

 DC_input=1;

 cyto=value1;
 for (int ii=0;ii<WINDOW_SIZE;ii++)
 DC_sequence[ii]=value2[ii];
 attack_type= value3;
 admin();
}
//,,
//TH2 . H (HELPER TH2 HEADER FILE)
//,,
#ifndef TH2_H
#define TH2_H
#include "constant_values.h"
class Bcell;
class Th2{
public:
 Th2(Bcell &);
 void receive_input(int,int);
private:
 Bcell &one_Bcell;
};
#endif
//,,
//TH2 . CPP (HELPER TH2 SOURCE FILE)
//,,
#include "Th2.h"
#include "Bcell.h"
//--
Th2::Th2(Bcell &Ref_Bcell)
:one_Bcell(Ref_Bcell)
{
 cout <<"constrcut th2"<<endl;
}
//--
void Th2::receive_input(int cytokine_type, int B_seq_starting_point)
{
 one_Bcell.receive_input_from_Th2(cytokine_type,B_seq_starting_point);
}

//,,
//KILLERT . H (KILLER T CELL HEADER FILE)
//,,
#ifndef KILLERT_H
#define KILLERT_H
#include "constant_values.h"
class KillerT{
public:
 KillerT();
 void receive_input(int [WINDOW_SIZE], int , int);
};
#endif
//,,
//KILLERT . CPP (KILLER T CELL SOURCE FILE)
 260
//,,
#include "KillerT.h"
//---
//CONSTRUCTOR
//---

KillerT::KillerT()
{
 cout <<"constrcut killer t"<<endl;
}
//---
//RECEIVE INPUT
//---
void KillerT::receive_input(int sequence[WINDOW_SIZE], int attacktype1, int attacktype2)
{
 cout <<"Sequence: ";
 for (int mm=0;mm<WINDOW_SIZE;mm++)
 cout <<setw(4)<<sequence[mm];
 cout <<" Generated following problems."<<endl;
 if (attacktype1 == ATTACK_TYPE2)
 {
 cout <<"Attack identified by Bcells only and no danger signals is sensed"<<endl;
 }
 else if (attacktype1==ATTACK_TYPE1)
 {
 cout <<"Attack identified by DC only and no deviaion in sys call sequences identified"<<
endl;
 }else if (attacktype1==ATTACK_TYPE3)
 {
 cout <<"Attack idenified by both DC and B cells"<<endl;
 }
 if ((attacktype1==ATTACK_TYPE1)||(attacktype1==ATTACK_TYPE3))
 {
 switch (attacktype2)
 {
 case iDC_ATTACK_TYPE1:
 cout << " DC identified following attacks CPU 0 MEM 0 Mismatch 0"
<<endl;
 break;
 case iDC_ATTACK_TYPE2:
 cout << " DC identified following attacksCPU 0 MEM 0 Mismatch 1"
<<endl;
 break;
 case iDC_ATTACK_TYPE3:
 cout << " DC identified following attacksCPU 0 MEM 1 Mismatch 0"
<<endl;
 break;
 case iDC_ATTACK_TYPE4:
 cout<< " DC identified following attacksCPU 0 MEM 1 Mismatch 1"
<<endl;
 break;
 case iDC_ATTACK_TYPE5:
 cout << " DC identified following attacks CPU 1 MEM 0 Mismatch 0"
<<endl;
 break;
 261
 case iDC_ATTACK_TYPE6:
 cout << " DC identified following attacks CPU 1 MEM 0 Mismatch 1"
<<endl;
 break;
 case iDC_ATTACK_TYPE7:
 cout << " DC identified following attacks CPU 1 MEM 1 Mismatch 0"
<<endl;
 break;
 case iDC_ATTACK_TYPE8:
 cout << " DC identified following attacks CPU 1 MEM 1 Mismatch 1"
<<endl;
 break;
 }
 }

}
//,,
//EXITENGINE . H (EXIT ENGINE HEADER FILE)
//,,
#ifndef EXITENGINE_H
#define EXITENGINE_H
#include "constant_values.h"
class ExitEngine{
public:
 ExitEngine();
 void Bcell_finished();
 void iDC_finished();
 void set_begining_time(time_t);
private:
 int Bfinished;
 int iDCfinished;
 time_t begining_time;
 time_t ending_time;
};
#endif
//,,
//EXITENGINE . CPP (EXIT ENGINE SOURCE FILE) HANDLES EXITING IDS
//,,
#include "ExitEngine.h"

ExitEngine::ExitEngine()
:Bfinished(0),
iDCfinished(0)
{
 cout <<"construct exit engine"<<endl;
}
//--
void ExitEngine::Bcell_finished()
{
 Bfinished=1;
 if (iDCfinished ==1)
 {

 time(&ending_time);
 262

 ofstream outPrintFile ("times.txt", ios::out);
 if (!outPrintFile)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 outPrintFile << "Begining Time= "<<begining_time<<endl;
 outPrintFile << "Ending Time= "<<ending_time<<endl;
 outPrintFile << "Total testing Time= "<<ending_time-begining_time<<"
seconds"<<endl<<endl;
 }
}
//--
void ExitEngine::iDC_finished()
{
 iDCfinished=1;
 if (Bfinished==1)
 {

 time(&ending_time);
 ofstream outPrintFile ("times.txt", ios::out);
 if (!outPrintFile)
 {
 cerr <<"int files names file could not be opened" <<endl;
 exit(1);
 }
 outPrintFile << "Begining Time= "<<begining_time<<endl;
 outPrintFile << "Ending Time= "<<ending_time<<endl;
 outPrintFile << "Total testing Time= "<<ending_time-begining_time<<"
seconds"<<endl<<endl;
 }
}
//--
void ExitEngine::set_begining_time(time_t aTime)
{
 begining_time=aTime;
}

 263
APPENDIX G
 SAMPLE LOG FILE OF RUNNING LOOKAHEAD-PAIRS METHOD BASED
IDS

In this appendix sample of the log file created while running lookahead pairs method IDS is presented. The
data here show portions of the content of the log file. In particular we print the number of rows generated
before removing redundant entries (rows) and then the content of these rows. Then we print the number of
entries after removing redundant rows and the entries are then displayed.
Then pairs are generated and displayed as their respective locations are set to one (ON). The log file print
the pair and its plane or array set. Then finally testing begins by displaying the sequence currently under
investigation and highlight if a mismatch if found in this string.

Start of training
number_profile_rows before removing redundant rows= 363
array content with pyramid data at end of array
90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3
125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90
106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6
5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125
90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5
6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3
5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90
3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6
90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125
6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91
5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125
3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136
90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49
6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24
125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47
5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50
3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67
90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27
6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67
125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97
5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122
3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122 45
90 6 125 91 125 136 49 24 47 50 67 27 67 97 122 45 5
6 125 91 125 136 49 24 47 50 67 27 67 97 122 45 5 106
125 91 125 136 49 24 47 50 67 27 67 97 122 45 5 106 6
.
.
 264
.
.6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75
106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24
67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102
23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13
12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20
2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4
67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6
114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76
67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75
5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91
108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91 1
-1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5
-1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125
-1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6
-1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90
-1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3
-1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5
-1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6
-1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90
-1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125

number_profile_rows after removing redundant rows= 357
90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3
125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90
106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6
5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125
90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5
6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3
5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90
3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6
90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125
6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91
5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125
3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136
90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49
6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24
125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47
5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50
3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67
90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27
6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67
125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97
5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122
.
.
.
4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 67
6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 67 5
 265
76 75 5 67 3 67 6 106 67 23 12 2 67 114 67 5 108
75 5 67 3 67 6 106 67 23 12 2 67 114 67 5 108 90
5 67 3 67 6 106 67 23 12 2 67 114 67 5 108 90 3
67 3 67 6 106 67 23 12 2 67 114 67 5 108 90 3 6
3 67 6 106 67 23 12 2 67 114 67 5 108 90 3 6 91
67 6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76
6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75
106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24
67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102
23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13
12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20
2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4
67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6
114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76
67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75
5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91
108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91 1
-1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5
-1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125
-1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6
-1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90
-1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3
-1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5
-1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6
-1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90
-1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125
the locations that are set to 1:
<3,5> at plane: 0
<90,3> at plane: 0
<6,90> at plane: 0
<125,6> at plane: 0
<5,125> at plane: 0
<3,5> at plane: 0
<90,3> at plane: 0
<6,90> at plane: 0
<125,6> at plane: 0
<91,125> at plane: 0
<125,91> at plane: 0
<136,125> at plane: 0
<49,136> at plane: 0
<24,49> at plane: 0
<47,24> at plane: 0
<50,47> at plane: 0
<67,50> at plane: 0
<27,67> at plane: 0
<67,27> at plane: 0
<97,67> at plane: 0
<122,97> at plane: 0
<45,122> at plane: 0
 266
<5,45> at plane: 0
<106,5> at plane: 0
<6,106> at plane: 0
<54,6> at plane: 0
<108,54> at plane: 0
<106,108> at plane: 0
<5,106> at plane: 0
<55,5> at plane: 0
<45,55> at plane: 0
<141,45> at plane: 0
.
.
.,91> at plane: 1
<49,125> at plane: 1
<24,136> at plane: 1
<47,49> at plane: 1
<50,24> at plane: 1
<67,47> at plane: 1
<27,50> at plane: 1
<67,67> at plane: 1
<97,27> at plane: 1
<122,67> at plane: 1
<45,97> at plane: 1
<5,122> at plane: 1
<106,45> at plane: 1
<6,5> at plane: 1
<54,106> at plane: 1
<108,6> at plane: 1
<106,54> at plane: 1
<5,108> at plane: 1
<55,106> at plane: 1
<45,5> at plane: 1
<141,55> at plane: 1
<106,45> at plane: 1
<6,141> at plane: 1
<57,106> at plane: 1
<54,6> at plane: 1
<16,57> at plane: 1
<15,54> at plane: 1
<54,16> at plane: 1
<67,15> at plane: 1
<111,54> at plane: 1
<67,67> at plane: 1
<66,111> at plane: 1
<5,67> at plane: 1
<6,66> at plane: 1
<63,5> at plane: 1
.
.
.
<91,90> at plane: 2
<106,6> at plane: 2
<5,125> at plane: 2
<90,91> at plane: 2
<6,106> at plane: 2
 267
<5,5> at plane: 2
<3,90> at plane: 2
<90,6> at plane: 2
<6,5> at plane: 2
<125,3> at plane: 2
<5,90> at plane: 2
<3,6> at plane: 2
<90,125> at plane: 2
<6,5> at plane: 2
<125,3> at plane: 2
<91,90> at plane: 2
<106,6> at plane: 2
<5,125> at plane: 2
<90,91> at plane: 2
<6,106> at plane: 2
<5,5> at plane: 2
<3,90> at plane: 2
<90,6> at plane: 2
<6,5> at plane: 2
.
.
.
.
.
<23,13> at plane: 15
<12,6> at plane: 15
<2,102> at plane: 15
<67,13> at plane: 15
<114,20> at plane: 15
<67,4> at plane: 15
<5,6> at plane: 15
<108,76> at plane: 15
<90,75> at plane: 15
<3,5> at plane: 15
<6,67> at plane: 15
<91,3> at plane: 15
<76,67> at plane: 15
<75,6> at plane: 15
<24,106> at plane: 15
<102,67> at plane: 15
<13,23> at plane: 15
<20,12> at plane: 15
<4,2> at plane: 15
<6,67> at plane: 15
<76,114> at plane: 15
<75,67> at plane: 15
<91,5> at plane: 15
<1,108> at plane: 15
Begining Time= 1196614999
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6
 268
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3
current testing input row: -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90
current testing input row: -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6
current testing input row: -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5
current testing input row: -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3
current testing input row: -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90
current testing input row: -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6
current testing input row: -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125
current testing input row: -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5
current testing input row: 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3
current testing input row: 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90
current testing input row: 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6
current testing input row: 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125
current testing input row: 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5
current testing input row: 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3
current testing input row: 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90
current testing input row: 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6
current testing input row: 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125
current testing input row: 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91
current testing input row: 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125
current testing input row: 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136
current testing input row: 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49
current testing input row: 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24
current testing input row: 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47
current testing input row: 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50
.
.
.
.
current testing input row: 13 6 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23
current testing input row: 6 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12
current testing input row: 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2
current testing input row: 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67
current testing input row: 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114
current testing input row: 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 11
mismatch pair: <11,114> at plain: 0
mismatch pair: <11,67> at plain: 1
mismatch pair: <11,2> at plain: 2
mismatch pair: <11,12> at plain: 3
mismatch pair: <11,23> at plain: 4
mismatch pair: <11,67> at plain: 5
mismatch pair: <11,106> at plain: 6
mismatch pair: <11,6> at plain: 7
mismatch pair: <11,67> at plain: 8
mismatch pair: <11,3> at plain: 9
mismatch pair: <11,67> at plain: 10
mismatch pair: <11,5> at plain: 11
mismatch pair: <11,75> at plain: 12
mismatch pair: <11,76> at plain: 13
mismatch pair: <11,6> at plain: 14
mismatch pair: <11,4> at plain: 15
current testing input row: 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 11 67
mismatch pair: <67,11> at plain: 0
mismatch pair: <67,114> at plain: 1
 269
mismatch pair: <67,2> at plain: 3
mismatch pair: <67,12> at plain: 4
mismatch pair: <67,23> at plain: 5
current testing input row: 76 75 5 67 3 67 6 106 67 23 12 2 67 114 11 67 5
mismatch pair: <5,11> at plain: 1
mismatch pair: <5,114> at plain: 2
mismatch pair: <5,2> at plain: 4
mismatch pair: <5,12> at plain: 5
mismatch pair: <5,23> at plain: 6
mismatch pair: <5,75> at plain: 14
mismatch pair: <5,76> at plain: 15
current testing input row: 75 5 67 3 67 6 106 67 23 12 2 67 114 11 67 5 108
mismatch pair: <108,11> at plain: 2
mismatch pair: <108,114> at plain: 3
mismatch pair: <108,2> at plain: 5
mismatch pair: <108,12> at plain: 6
mismatch pair: <108,23> at plain: 7
mismatch pair: <108,75> at plain: 15
current testing input row: 5 67 3 67 6 106 67 23 12 2 67 114 11 67 5 108 90
mismatch pair: <90,11> at plain: 3
mismatch pair: <90,114> at plain: 4
mismatch pair: <90,2> at plain: 6
mismatch pair: <90,12> at plain: 7
mismatch pair: <90,23> at plain: 8
current testing input row: 67 3 67 6 106 67 23 12 2 67 114 11 67 5 108 90 3
mismatch pair: <3,11> at plain: 4
mismatch pair: <3,114> at plain: 5
mismatch pair: <3,67> at plain: 6
mismatch pair: <3,2> at plain: 7
mismatch pair: <3,12> at plain: 8
.
.
.
.
mismatch pair: <11,24> at plain: 8
mismatch pair: <11,75> at plain: 9
mismatch pair: <11,76> at plain: 10
mismatch pair: <11,91> at plain: 11
mismatch pair: <11,6> at plain: 12
mismatch pair: <11,3> at plain: 13
mismatch pair: <11,90> at plain: 14
mismatch pair: <11,108> at plain: 15
Number of system calls handeled while testing= 1350
Ending Time= 1196614999
Total testing Time= 0 seconds

Number of lookahead mismatches= 1098
Percentage of mismatches (anomaly sensitivity)= 5.11554 %
 Maximum number of lookahead-pairs SETS= 17 sets
 Minimum number of lookahead-pairs SETS= 15 sets
 Number of lookahaead pairs= 5384
Number of sets (planes)= 16planes. Each is a 256 x 256 bit array and NUM_SYS_CALLS=256
Space cost of profile while at running time= 131072 bits. = 16384 bytes.
Space cost of profile while saved to disk= 21536 bytes
 270
APPENDIX H
 SAMPLE LOG FILE OF THE OUPUT PRODUCED WHEN TESTING CASE 10
WITH THE LOOKAHEAD-PAIRS METHOD ENHANCED WITH DANGER
THEORY.

The following is a sample log file of the output produced when testing the lookahead-pairs method
enhanced with danger theory IDS. The ouput is produced when testing the system on case 10 where CPU
and memory usages are normal but a number of contigous mismataches occur. The number of allowable
mismatches is determined by the system adminstrator in advance. In our system the mismatch threshold is
equal to 10. The system will continue to produce a ?semi? or normal behavior output, as shown in the
following 9 sections of the output, and then start producing ?mat? or intrusive behavior output afterwards.

current testing input row: 90 125 106 5
mismatch pair: <5,106> at plain: 0
mismatch pair: <5,125> at plain: 1
mismatch pair: <5,90> at plain: 2
Handeled Window: 90 125 106 5
Is a mismatch
User present: 1
CPU usage: 20.5
Mem usage: 30.3
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 0 0 0 0 0 0 0 0 0
previous IC: 1 0 0 0 0 0 0 0 0 0
Semi

current testing input row: 125 106 5 90
mismatch pair: <90,5> at plain: 0
mismatch pair: <90,106> at plain: 1
mismatch pair: <90,125> at plain: 2
Handeled Window: 125 106 5 90
Is a mismatch
User present: 1
CPU usage: 21.3
Mem usage: 25.2
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
 271
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 0 0 0 0 0 0 0 0
previous IC: 1 1 0 0 0 0 0 0 0 0
Semi

current testing input row: 106 5 90 6
mismatch pair: <6,90> at plain: 0
mismatch pair: <6,5> at plain: 1
mismatch pair: <6,106> at plain: 2
Handeled Window: 106 5 90 6
Is a mismatch
User present: 1
CPU usage: 20.3
Mem usage: 30.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 0 0 0 0 0 0 0
previous IC: 1 1 1 0 0 0 0 0 0 0
Semi

current testing input row: 5 90 6 5
mismatch pair: <5,6> at plain: 0
mismatch pair: <5,90> at plain: 1
mismatch pair: <5,5> at plain: 2
Handeled Window: 5 90 6 5
Is a mismatch
User present: 1
CPU usage: 21.3
Mem usage: 31.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 0 0 0 0 0 0
previous IC: 1 1 1 1 0 0 0 0 0 0
Semi

current testing input row: 90 6 5 3
mismatch pair: <3,5> at plain: 0
mismatch pair: <3,6> at plain: 1
mismatch pair: <3,90> at plain: 2
Handeled Window: 90 6 5 3
Is a mismatch
User present: 1
CPU usage: 22.3
Mem usage: 30.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 0 0 0 0 0
previous IC: 1 1 1 1 1 0 0 0 0 0
 272
Semi

current testing input row: 6 5 3 90
mismatch pair: <90,3> at plain: 0
mismatch pair: <90,5> at plain: 1
mismatch pair: <90,6> at plain: 2
Handeled Window: 6 5 3 90
Is a mismatch
User present: 1
CPU usage: 21.7
Mem usage: 33.2
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 0 0 0 0
previous IC: 1 1 1 1 1 1 0 0 0 0
Semi

current testing input row: 5 3 90 20
mismatch pair: <20,90> at plain: 0
mismatch pair: <20,3> at plain: 1
mismatch pair: <20,5> at plain: 2
Handeled Window: 5 3 90 20
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 30.2
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 0 0 0
previous IC: 1 1 1 1 1 1 1 0 0 0
Semi

current testing input row: 3 90 20 6
mismatch pair: <6,20> at plain: 0
mismatch pair: <6,90> at plain: 1
Handeled Window: 3 90 20 6
Is a mismatch
User present: 1
CPU usage: 20.1
Mem usage: 31.4
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 0 0
previous IC: 1 1 1 1 1 1 1 1 0 0
Semi

current testing input row: 90 20 6 3
mismatch pair: <3,6> at plain: 0
mismatch pair: <3,20> at plain: 1
 273
mismatch pair: <3,90> at plain: 2
Handeled Window: 90 20 6 3
Is a mismatch
User present: 1
CPU usage: 20.5
Mem usage: 30.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 0
previous IC: 1 1 1 1 1 1 1 1 1 0
Semi

current testing input row: 20 6 3 89
mismatch pair: <89,3> at plain: 0
mismatch pair: <89,6> at plain: 1
mismatch pair: <89,20> at plain: 2
Handeled Window: 20 6 3 89
Is a mismatch
User present: 1
CPU usage: 19.6
Mem usage: 28.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 6 3 89 33
mismatch pair: <33,89> at plain: 0
mismatch pair: <33,3> at plain: 1
mismatch pair: <33,6> at plain: 2
Handeled Window: 6 3 89 33
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 3 89 33 19
mismatch pair: <19,33> at plain: 0
mismatch pair: <19,89> at plain: 1
mismatch pair: <19,3> at plain: 2
Handeled Window: 3 89 33 19
Is a mismatch
User present: 1
 274
CPU usage: 20.1
Mem usage: 29.5
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 89 33 19 20
mismatch pair: <20,33> at plain: 1
mismatch pair: <20,89> at plain: 2
Handeled Window: 89 33 19 20
Is a mismatch
User present: 1
CPU usage: 20.9
Mem usage: 29.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 33 19 20 33
mismatch pair: <33,20> at plain: 0
mismatch pair: <33,19> at plain: 1
mismatch pair: <33,33> at plain: 2
Handeled Window: 33 19 20 33
Is a mismatch
User present: 1
CPU usage: 21.4
Mem usage: 28.2
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 19 20 33 1
mismatch pair: <1,33> at plain: 0
mismatch pair: <1,20> at plain: 1
mismatch pair: <1,19> at plain: 2
Handeled Window: 19 20 33 1
Is a mismatch
User present: 1
CPU usage: 22.1
Mem usage: 30.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
 275
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 20 33 1 4
mismatch pair: <4,1> at plain: 0
mismatch pair: <4,33> at plain: 1
mismatch pair: <4,20> at plain: 2
Handeled Window: 20 33 1 4
Is a mismatch
User present: 1
CPU usage: 22.3
Mem usage: 35.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 33 1 4 29
mismatch pair: <29,4> at plain: 0
mismatch pair: <29,1> at plain: 1
mismatch pair: <29,33> at plain: 2
Handeled Window: 33 1 4 29
Is a mismatch
User present: 1
CPU usage: 21.9
Mem usage: 34.8
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 1 4 29 3
mismatch pair: <3,29> at plain: 0
mismatch pair: <3,4> at plain: 1
mismatch pair: <3,1> at plain: 2
Handeled Window: 1 4 29 3
Is a mismatch
User present: 1
CPU usage: 21.6
Mem usage: 34.8
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat
 276

current testing input row: 4 29 3 7
mismatch pair: <7,3> at plain: 0
mismatch pair: <7,29> at plain: 1
Handeled Window: 4 29 3 7
Is a mismatch
User present: 1
CPU usage: 20.1
Mem usage: 34.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 29 3 7 38
mismatch pair: <38,7> at plain: 0
mismatch pair: <38,3> at plain: 1
mismatch pair: <38,29> at plain: 2
Handeled Window: 29 3 7 38
Is a mismatch
User present: 1
CPU usage: 19.9
Mem usage: 33.1
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 3 7 38 20
mismatch pair: <20,38> at plain: 0
mismatch pair: <20,7> at plain: 1
mismatch pair: <20,3> at plain: 2
Handeled Window: 3 7 38 20
Is a mismatch
User present: 1
CPU usage: 19.9
Mem usage: 30.2
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 7 38 20 90
mismatch pair: <90,20> at plain: 0
mismatch pair: <90,38> at plain: 1
mismatch pair: <90,7> at plain: 2
 277
Handeled Window: 7 38 20 90
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 38 20 90 106
mismatch pair: <106,90> at plain: 0
mismatch pair: <106,20> at plain: 1
mismatch pair: <106,38> at plain: 2
Handeled Window: 38 20 90 106
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 20 90 106 29
mismatch pair: <29,106> at plain: 0
mismatch pair: <29,90> at plain: 1
mismatch pair: <29,20> at plain: 2
Handeled Window: 20 90 106 29
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 90 106 29 33
mismatch pair: <33,29> at plain: 0
mismatch pair: <33,106> at plain: 1
mismatch pair: <33,90> at plain: 2
Handeled Window: 90 106 29 33
Is a mismatch
User present: 1
CPU usage: 21.1
 278
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 106 29 33 22
mismatch pair: <22,33> at plain: 0
mismatch pair: <22,29> at plain: 1
mismatch pair: <22,106> at plain: 2
Handeled Window: 106 29 33 22
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 29 33 22 40
mismatch pair: <40,22> at plain: 0
mismatch pair: <40,33> at plain: 1
mismatch pair: <40,29> at plain: 2
Handeled Window: 29 33 22 40
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 33 22 40 19
mismatch pair: <19,40> at plain: 0
mismatch pair: <19,22> at plain: 1
mismatch pair: <19,33> at plain: 2
Handeled Window: 33 22 40 19
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
 279
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 22 40 19 29
mismatch pair: <29,19> at plain: 0
mismatch pair: <29,40> at plain: 1
mismatch pair: <29,22> at plain: 2
Handeled Window: 22 40 19 29
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 40 19 29 3
mismatch pair: <3,29> at plain: 0
mismatch pair: <3,19> at plain: 1
mismatch pair: <3,40> at plain: 2
Handeled Window: 40 19 29 3
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

current testing input row: 19 29 3 44
mismatch pair: <44,3> at plain: 0
mismatch pair: <44,29> at plain: 1
mismatch pair: <44,19> at plain: 2
Handeled Window: 19 29 3 44
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat
 280

current testing input row: 29 3 44 1
mismatch pair: <1,44> at plain: 0
mismatch pair: <1,3> at plain: 1
mismatch pair: <1,29> at plain: 2
Handeled Window: 29 3 44 1
Is a mismatch
User present: 1
CPU usage: 21.1
Mem usage: 29.9
Is an abnormal signal: 0
previous CPU: 0 0 0 0 0 0 0 0 0 0
previous memory: 0 0 0 0 0 0 0 0 0 0
previous abnormal: 0 0 0 0 0 0 0 0 0 0
previous mismatches: 1 1 1 1 1 1 1 1 1 1
previous IC: 1 1 1 1 1 1 1 1 1 0
Mat

Number of rows in testing profile= 31
Number of pairs in testing profile= 96
Number of lookahead mismatches= 93
Percentage of mismatches (anomaly sensitivity)= 96.875 %
 281

APPENDIX I
 PATTERNS GENERATED BY THE VARIABLE-LENGTH WITH OVERLAP
RELATIONSHIP BASED IDS
Number of patterns in training database: 32
Max pattern length: 43
Min pattern length: 2
Average pattern length: 22
Space cost of profile while at running time= 206848 bytes
Space cost of profile while saved to disk= 1360 bytes
The following table shows the different patterns generated by our system.
3 19
3 6 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 67
3 6 13 20 4 6 76 75 102 13 4 5 67 3 67 6 106 108 90 54 4 67 23 12 2
67 114
5 108
5 45 108 90 3
5 81
6 125 91 3
6 91
13 5
13 54 13 4 54 3 54 4
13 6 54 108
13 4 6
 282
16 15 46 49
27 24 50 71 70 33 23 70 71 20 5 3 13 19 4 6 5 67 27 143 27 4 143 6
5 19 3 5 3 6 13 108 90 54 4 19 13 4 6
76 75 24 76 75
76 75 24 54 108
76 75 24 13 20 4 6 76 75 91 1
76 75 24 102 13 20 4 6 76 75 91 1
90 3 19 6 91 13 5 13 76 75 5 108
90 6 5 3
90 6 125 5 3
90 3 106 5
90 6 125 91 106 5
90 3 6 91 76 75 24 5 108
90 125 106 5
90 6 125 91 125 136 49 24 47 50 67 27 67 97 122 45 5 106 6 54 108 106 5
55 45 141 106 6 57 54 16 15 54 67 111 67 66 5 6 63 6 54 106
90 19
106 5 55 141
106 6 5 3
106 6 5 3 13 6 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67
114 67
106 6 5 3 13 6 102 13 20 4 6 76 75 102 13 4 5 67 3 67 6 106 4 67
23 12 2 67 114
106 6 5 3 13 6 102 13 20 4 6 76 75 102 13 4 5 67 3 67 6 106 4 67
23 12 2 67 114 67

