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Rather than discriminating activity by belonging to self or non-self, danger theory 
extends its discrimination to be between non-self but harmless and self but harmful.  The 
danger theory states that the system does not respond only to foreignness (non-self) but to 
danger signals. In this dissertation, three methods performing host-based anomaly 
intrusion detection that use trails of system calls have been implemented and 
investigated.  One system (the lookahead-pairs method based IDS) was then enhanced by 
incorporating danger theory mechanisms to its original design.  The research consisted of 
two stages.  In the first stage, three intrusion detection systems (IDSs) have been
 v 
implemented based on the following methods: the sequence profile method, the 
lookahead-pairs methods, and overlap-relationship method.  All systems were unable to 
detect the system-call-denial-of-service attack and the lookahead-pairs method had the 
smallest storage requirements.  
In the second stage, the lookahead-pairs method based IDS has been enhanced 
with functionalities of the danger theory.  The original lookahead-pairs method based 
IDS can only detect intrusions resulting from mismatch instances.  In addition to 
detecting mismatches, the enhanced system considered the danger signals resulting from 
high usages of CPU and memory while in detection mode. Parameters corresponding to 
danger signals can be easily modified or added to our system.  The lookahead pairs 
method enhanced with danger theory IDS had better detection rate, false positive rate and 
false negative rate.  Both systems finished their detection stage in less than one second.  
Furthermore, when the lookahead pairs method based IDS is only enhanced with the iDC 
functionality, it will not experience any significant additional storage costs.  However, if 
the B cell functionality is added, the storage cost would double.  The systems were tested 
against the databases obtained from the university of New Mexico and in specific the 
datasets of the both the ?login? and ?ps? applications.  In addition, different test cases 
were created to test the functionalities of the modified system.  The implemented systems 
were also validated and verified and passed these tests.   
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CHAPTER 1 
 INTRODUCTION 
The human immune system has been successful in defending different human 
organs against a wide range of harmful attacks.  The Danger Theory is built on the idea 
that the immune system not only responds to foreignness (non-self) but also to danger 
signals resulting from damage to cells indicated by distress signals that are sent out when 
cells die an unnatural death as opposed to programmed cell death.  
In this dissertation, I investigated three methods of performing host-based 
anomaly intrusion detection to recognize malicious code execution and enhanced the 
performance of lookahead-pairs method based intrusion detection system (IDS) by 
incorporating danger theory concepts.  In particular, my research involves two major 
stages.  In the first stage, I have implemented and studied the performance of three 
techniques to perform host based intrusion detection using trails of system calls.  The first 
system, the sequence profile method, creates a database with fixed length sequences of 
system calls of a system?s normal behavior. While in detection mode the system?s current 
behavior is checked against this database and an intrusion is flagged if a deviation is 
discovered.  In general, running any single application will produce thousands of system 
calls.  The second system, the lookahead-pairs methods, improves the storage 
requirements of the sequence method but still creates a database of pairs of <current 
system call, previous system calls> within a fixed length threshold. Both systems create 
 2 
patterns (system call sequences) of fixed length.  The third system, overlap-relationship 
method, involves creating a database of variable length detector sets which enable better 
detector coverage. All methods were unable to detect the system-call-denial of service 
attack and the lookahead-pairs method had the smallest storage requirements.  
In the second stage, I investigated how to incorporate adaptive danger theory 
concepts to lookahead-pairs method and investigated the enhanced system?s performance.  
The following mechanisms have been implemented and their performance was analyzed.  
First, B cells are responsible for identifying bacteria signatures (deviations or intrusion 
signatures).   Dendritic cells are responsible for sensing safe and dangerous signals and 
along with the identification of bacteria (intrusions) decide if the system is under attack 
or not.  Gathered information is then sent to T cells that carry out the remaining actions of 
the immune system.  The original lookahead-pairs method can only detect intrusions 
resulting from mismatch instances.  The system may experience false positive instances 
especially when the system is not fully trained on all normal behavior.  False positives 
result from identifying a normal behavior as an intrusion.  Since the lookahead-pairs IDS 
relies only on mismatches, any new sequence will be flagged as an intrusion.   
Lookahead-pairs method enhanced with danger theory IDS improve the detection rate 
since it will identify more intrusions especially those that deviate generating mismatches 
or exceed the mismatch threshold.   It will also reduce the rate of false positive and false 
negative.  This is because an intrusion not only depends on mismatch instances but also 
on other factors (signals) that describe dangerous conditions.  The lookahead-pairs 
method enhanced with iDC and DC cells do not require additional storage cost and will 
give better detection results.  The IDS system enhanced with B cells will require double 
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storage requirements and will become more robust. If we choose to use both negative and 
positive detector sets for the B cell and iDC databases, the system could be distributed to 
other machines.  
1.1. Dissertation Hypotheses  
In this dissertation we investigated and proved the following hypotheses: 
? Enhanced lookahead-pairs method with iDC signal processing has better detection 
rate and a lower or similar false positive and false negative rates with similar 
space and delay costs than the original lookahead-pairs method.  
? Enhanced lookahead-pairs method with Danger Theory has a better detection rate, 
and a lower false positives rate and false negative rate than the original 
lookahead-pairs method with an additional space cost and similar delay.    
1.2. Dissertation Objectives and Accomplished Stages 
Host based intrusion detection systems are an important tool for detecting 
malicious activities on a single machine.  Relying on network based intrusion detection 
systems is not enough because many intrusions can be missed such as installing backdoor 
programs, Trojan horses, etc.  Identifying host based intrusions can be performed by 
analyzing and monitoring system calls generated by application processes.  In this 
dissertation we investigated three intrusion detection systems to better understand how 
host based intrusion detection is performed.  The systems are: sequence method based 
IDS, lookahead pairs method based IDS and variable length with overlap relationship 
method based IDS.  Then we enhanced the lookahead pairs method IDS by incorporating 
different functionalities of danger theory.   
The objectives accomplished during the dissertation are the following:  
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1. Investigated human immune system theories such as negative selection and 
danger theory and understood their underlining mechanisms and participating 
cells.  
2. Investigated and understood artificial immune system based intrusion detection 
system and in specific those based on danger theory concepts. 
3. Investigated host based intrusion detection systems in general, and immunity 
based host based intrusion detection systems in specific.  
4. Developed a framework and models explaining danger theory concepts and 
functionalities. 
5. Implemented the following to run on windows platform:  
square4 Sequence method based IDS using fixed length detector set. 
square4 Lookahead-pairs method based IDS using fixed length detector set. 
square4 Variable-length-patterns-with-an-overlap-relationship method based IDS. 
square4 Lookahead-pairs IDS enhanced with danger-theory concepts.  
1.3. Dissertation Contributions 
The main contribution of this dissertation is that I developed a danger theory 
based IDS and proved that it outperforms the original system that does not incorporate 
danger theory concepts.  We have implemented the lookahead-pairs method based IDS 
and enhanced its performance by using functionalities of danger theory.  We were able to 
prove that the modified IDS has better detection rate, lower false positives and false 
negatives and little impact on performance and storage requirements 
The following will explain additional contributions. First, I have re-implemented 
Sequence Method, Lookahead Method and Variable Length with Overlap Relationship 
 5 
Method to Run on a Windows Platform. The basic steps of each method were adapted 
from its respective paper.  The original implementation of each system was developed on 
Linux or UNIX machines. Some differences exist between a windows platform and 
UNIX platforms such as differences in language commands and data structures.   My 
system was implemented with Microsoft Visual Studio 2005 as a win 32 console 
application.  
Second I identified Some Limitations of Sequence, Lookahead Pairs, and Variable 
Length with Overlap Relationship Methods. All systems can only identify intrusions 
resulting from mismatches.  If the system is not fully trained, a false positive result from 
signaling a normal behavior as an intrusion because it does not match an entry in the 
database.  The systems can not identify any intrusions that do not generate any 
mismatches.  For example, if an attack can deviate producing mismatches or the 
mismatch instances do not exceed the allowable mismatch threshold, then the attack will 
go undetected.   Finally, the systems can not identify system-call-denial of service 
attacks.   In this attack, the tested sequences exist in the normal database and go 
undetected if this patter is repeated indefinitely.  
Third, I developed a danger theory model to detect host based intrusion detections 
by monitoring system call sequences.  A danger theory model incorporates many 
mechanisms and cells to perform its functionalities.  In this dissertation we have 
developed a model to represent such functionalities.  Since each problem is domain 
specific and has its own requirements, we decided to adapt a simple version of danger 
theory model that incorporates the basic functionalities.  The basic functionalities include 
B cell identification of bacteria, iDC identification of bacteria and signals sensing, T1 
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helper management of the immune system responses, T2 helper suppressing or priming B 
cell and T killer attacking the source of problem.    
Fourth, in the enhanced system with danger theory, I instantiated one instance of 
each danger theory cell type.  We took advantage of the danger theory functionality of an 
immune system and implemented it as an object oriented based system where only one 
instance of an object is instantiated.  In general, the immune system employs millions of 
B or T cells to perform the same functionality by having different sensors that identify 
different antigens (i.e. intrusion instances).  For example, a set of B cells is responsible 
for identifying a specific antigen signature.  Due to the overhead produced when creating 
many instances of such entities, and the need to maintain, manage and handle signaling 
among them, we approached the problem in a different way.  Our system is not 
represented as populations of autonomous agents that exist within a distributed 
environment similar to current systems implementing and deploying both innate and 
adaptive immune concepts.    Rather, in our system, each cell type within the adaptive 
immune system is instantiated once and handles all antigen signatures.   This is 
accomplished by associating a database of all antigen signatures that should be monitored 
to B cell and iDC objects.  At the same time our system allows the instantiation of more 
than one B cell object but we reserve such a choice to the following conditions. First, if 
we decide to monitor more than one application, then each application may have its own 
B cell object associated with its appropriate database. Second, on multi processor 
systems, the database can be divided and each part can be associated with an instance of 
the B cell and they can work concurrently.  
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1.4. Dissertation Organization 
This dissertation is organized as follows.   Chapters 2, 3 and 4 are background 
information about related information.  Chapter 2 explains intrusion detection systems 
and in specific process anomaly detection.  Chapter 3 explores the biological immune 
systems which inspired this work.  Chapter 4 explains artificial immune systems, 
implemented systems that are based on such concepts and different immune system 
approaches to IDS.  
Chapters 5, 6 and 7 are the work carried out in our dissertation.  In chapter 5 we 
explain our off-line investigation of intrusion detection systems that uses trails of system 
calls.  Three systems have been implemented and tested against each other.  Chapter 6 
explains our developed general danger theory model.  Chapter 7 explains our 
implementation and enhancements to lookahead-pairs method.   In general, enhancing 
lookahead-pairs method has been performed on three stages.  
Finally chapter 8 states the conclusion and future work of our dissertation.   
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CHAPTER 2 
 INTRUSION DETECTION SYSTEMS (IDS) 
2.1. General View of IDSs 
IDSs are software systems designed to identify and prevent the misuse of 
computer networks and systems.  James Anderson was one of the first people to discuss 
IDSs [Anderson 1980] and Dorothy Denning was the first to discuss an IDS 
implementation [Denning 1987].  There have been attempts to classify IDS such as in the 
works of [Axelsson 1999; Axelsson 2000; Debar, Dacier and Wespi 2000] where an IDS 
is classified in two classes: misuse and anomaly detection.  The misuse detection 
approach examines network and system activity for known misuses, usually through 
some form of pattern-matching algorithm.  In contrast, the anomaly detection approach 
bases its decisions on comparing against a profile of normal network or system behavior.  
Any event that does not conform to this profile is considered anomalous.  Both 
approaches have strengths and weaknesses. Misuse-based systems generally have very 
low false positive rates, but they are unable to identify novel attacks, which leads to high 
false negative rates.  On the other hand, anomaly-based systems are able to detect novel 
attacks but produce high number of false positives. This is because current anomaly-
based techniques don?t handle real world normal and legitimate computer usages that 
might have changed over time [Kim et al. 2007]. 
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IDSs can also be classified according to their placement which can be as host-
based, network-based or hybrid systems.  Host-based systems  are present on each 
monitored host, and collect log files of the host?s operation, network traffic to and from 
the host, or information on processes running on the host [Kim and Spafford 1993] [Xie 
et al. 2004].  In contrast, network-based IDSs monitor the network traffic on the network 
containing the hosts to be protected, and are usually run on a separate machine termed a 
sensor [Leach and Tedesco 2003].  Host-based systems are able to determine if an 
attempted attack was indeed successful.  It can also detect local attacks, privilege 
escalation attacks and attacks which are encrypted. However, such systems can be 
difficult to deploy and manage, especially as the number of hosts increase.  They are also 
unable to detect attacks against multiple targets of the network.  On the other hand, 
network-based systems are able to monitor a large number of hosts with relatively low 
deployment costs, and are able to identify attacks to and from multiple hosts.  However, 
they are unable to detect whether an attempted attack was indeed successful, and are 
unable to deal with local or encrypted attacks.  Therefore, hybrid systems, which 
incorporate host- and network-based elements, can offer the best protective capabilities to 
protect against attacks from multiple sources [Kim et al. 2007].  More advanced systems 
exist which detect high-level intrusion scenarios through correlation of multiple low-level 
events.  They allow for the detection of non-trivial or distributed intrusions spanning 
multiple events and sources.  They can also combine poor quality detection results from 
misuse and anomaly detectors to produce more reliable results. [Valdes and Skinner 
2001]?s approach finds statistical similarities between alerts.   [Dain and Cunningham 
2001]?s approach combines alerts into attack scenarios.   However, [Ning et al. 2004] 
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states that such approaches fail to detect an intrusion if the set of reported alerts does not 
constitute a complete intrusion scenario.  
Furthermore, IDSs can be classified according to the overall control strategy 
employed.  For example, in a centralized IDS, data analysis is performed and controlled 
in a fixed number of locations independent of the number of hosts being monitored.  
However, in a distributed IDS, analysis is performed in a number of locations, usually on 
the monitored hosts themselves and control is distributed throughout the system.  In a 
hierarchical IDS, information gathering occurs at leaf nodes and is passed to internal 
nodes that aggregate information.  This data is then passed through internal nodes until it 
reaches the root node which determines if an attack has occurred and issues appropriate 
responses.  Thus analysis is distributed over several different components; however there 
still exists a central controller.  Centralized IDSs are not very resilient to attacks because 
disabling the control components renders the entire system inoperable.  They are also are 
not very scalable or able to cope with high volume data environments due to their 
centralization of data analysis and processing.  Hierarchical IDSs overcome scalability 
and processing issues because of their more efficient communication strategy and partial 
distribution of components.   However, a distributed IDS can consume large amounts of 
resources on the monitored hosts, degrading the performance of the hosts to unacceptable 
levels if they are not carefully implemented [Twycross 2007].  
2.2. Process Anomaly Detection 
A process is a running instance of a program.  On modern multitasking operating 
systems many processes can be effectively running simultaneously.  A single running 
program executable may create several child processes by forking or threading.   For 
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example, an initial parent process acting as a web server typically starts a child process to 
handle individual connections as they are received. Child processes themselves may 
create children generating a complex process tree.  The parent of this tree is the process 
that was created when the executable was first run. The operating system is responsible 
for managing the execution of these running processes and associates a process identifier 
(PID) with each process.  This number uniquely identifies a process.  When a process is 
started, the operating system associates to it the PID of the parent process that created it, 
and the user who started the process.  The process is also allocated resources by the 
operating system such as memory, which stores the executable code and data, and file 
descriptors, which identify files or network sockets which belong to the process.   Often, 
the initial goal of an attack is to gain administrator privileges on a machine granting full 
and free control of the system.  Furthermore,   there are several general classification 
systems for attacks [Mell et al. 2003].  One of the most frequently used is the R2L and 
U2R classification. If the attacker does not have an account on the system then he may 
try to exploit a vulnerability in a network service running on the target remote machine to 
gain access.  This is termed a remote-to-local or R2L attack.  Buffer overflow exploits are 
often used to subvert remote services to execute code the attacker supplies and, for 
example, open a remote command shell on the target machine.  Sometimes, the attacked 
service will already be running with administrator privileges, in which the initial attack is 
complete.   Otherwise, the attacker will have access to the machine at the same privilege 
level as the attacked service is running at.  In this case the attacker will need to perform a 
privilege escalation attack, called a user-to-root or U2R attack. Often, this will involve 
attacking a privileged program, such as a program running with administrator privileges 
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and subverting its execution to create a command shell with administrator privileges.  
After gaining unrestricted access, the attacker may install root kits to hide their presence 
and facilitate later access.  Data can be copied to and from the machine, remote services 
such as file sharing and IRC daemons can be started.  In the case of worms all of this can 
be done automatically without human intervention.  In general, process anomaly 
detection systems are designed to detect and prevent the subversion of processes 
necessary in such R2L and U2R attacks [Twycross 2007]. 
2.2.1. System Calls 
Host-based IDSs monitor running processes to detect intrusions and collect 
information about a running process from a variety of sources such as log files created by 
the process.  Monitoring the behavior of a process will indicate if the process is behaving 
normally or has been subverted by an attack.  Although log files are an obvious starting 
point for such systems and are commonly used, attacks may not cause any logging to take 
place, and so evade detection.  This is why there has been a substantial amount of 
research into other data sources, usually collected by the operating system such as 
collecting system calls (syscalls). Syscalls are a low-level mechanism by which 
applications request system services such as peripheral I/O or memory allocation from an 
operating system.  As a process runs it cannot usually directly access memory or 
hardware devices.  Instead, the operating system manages these resources and provides a 
set of functions, called syscalls, which processes can call to access these resources.  On 
modern Linux systems there are around 300 syscalls, accessed via wrapper functions in 
the libc library.  At an assembly code level, when a process wants to make a system call it 
will load the system call number into the EAX register, and system call arguments into 
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registers such as EBX, ECX or EDX.  The process will then raise a 0x80 interrupt. This 
causes the process to halt execution and the operating system to execute the requested 
syscall. Once the syscall has been executed, the operating system places a return value in 
EAX and returns execution to the process.  Operating systems other than Linux differ 
slightly in these details, for example BSD puts the syscall number in EAX and pushes the 
arguments onto the stack [Bovet and Cesati 2002][syscalls].  Higher-level languages 
provide library calls which wrap syscalls in functions such as printf. 
Syscalls are a powerful data source for detecting attacks because any application 
that interacts with the network, file system, memory, and other hardware devices will use 
system calls.  Most attacks that manipulate the execution of an application will need to 
access some of these resources and initiate a number of system calls.  Therefore, it is 
more difficult to deceive a system call based IDS; however, monitoring syscalls is more 
complex and costly than reading data from a log file.  Monitoring system calls may 
require placing hooks or stubs which increases the runtime of the monitored process, 
since for each syscall the monitor will spend at least a few clock ticks pushing the data it 
has collected to a storage buffer.  There are other shortcomings from using system call 
based IDS.  For example, permitting or denying the syscall can add additional runtime 
overheads. Also, processes can generate hundreds of syscalls a second, making the data 
load significantly higher. Incorrect replication of operating system state or other race 
conditions may allow syscall monitoring to be evaded [Garfinkel 2003] [Twycross 2007].   
Programs such as strace [strace] intercept and log syscalls in user-space.  This is 
very similar to tracing a program with a debugger. Strace uses the ptrace service (itself 
made available through a syscall) provided by many operating systems to trace the 
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execution of a process, in this cases the monitored application. Whenever the traced 
process makes a system call, its execution is halted and handed back to the tracing 
process.   Strace then logs detailed information about the syscall before allowing the 
traced process to resume execution.  Modifying the kernel is another popular method of 
capturing syscall information and is used by systems such as Snare [snare] and the Linux 
Trace Toolkit [LTT] [Maniatty et al. 2005] [Yaghmour and Dagenais 2000].  Snare 
[snare] is a widely-used application for syscall logging and analysis available for a wide 
range of Linux, Solaris, Windows and other platforms.  A kernel patch is used to record 
syscall information for all processes running on the monitored system.  Snare takes the 
approach of only monitoring a certain subset of ?sensitive? syscalls which could be used 
to compromise security.  This reduces the amount of data recorded, and decreases 
performance overheads on the monitored system.  The recorded syscall information is 
collected by a user-space audit daemon, which processes the raw data and saves it in an 
event log.  An operator then uses a graphical front end to examine the event logs for signs 
of intrusions [Twycross 2007]. 
The Janus and Ostia syscall interposition systems of Wagner et al. [Garfinkel 
2003] [Garfinkel, Pfaff and Rosenblum 2004] [Goldberg et al 1996] [Janus] [Wagner 
1999] sandbox an application and resemble a firewall between an application and the 
operating system.  These systems are based on a kernel module which intercepts syscalls, 
and a user-space program to implement a syscall policy.  They specify a policy 
specification syntax indicating acceptable access to file system, memory, network and 
other resources.  Syscalls requesting resources not specified on this policy are denied.  
The capture and processing of kernel-space is faster than user-space methods since it 
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reduces overhead due to the switch from kernel to user space.  Ko et al. [Fraser, Badger 
and Feldman 1999] [GSWT] [Ko et al. 2000] have implemented the Generic Software 
Wrappers Toolkit, a system for UNIX and Windows platforms which integrates 
confinement and intrusion detection techniques.  Their system allows the integration of 
intrusion detection techniques into the kernel to address concerns about performance and 
security of user-space approaches.  
Tandon and Chan [Tandon and Chan 2003] [Tandon and Chan 2005] developed a 
representation which combines syscall arguments and sequences, and evaluate this 
representation using a rule-based learning classifier.  They found that the addition of 
syscall argument information to sequences of syscalls results in better detection of 
attacks.  Tandon et al. [Tandon, Chan and Mitra 2004] introduced the idea of a motif, 
which is a repeated subsequence of syscalls within a sequence, and showed how this 
representation can be used to improve anomaly detection performance.  
2.2.2. Approaches to Process Anomaly Detection 
The performance of modern computing systems has improved the computational 
overheads imposed by syscall monitoring and made syscalls an important data source for 
process anomaly detection systems.  In general, IDSs use syscalls to monitor an 
application for signs and possibly alerting an operator.  This detection may be done in 
real-time or offline to help audit previously gathered log files.  Additionally, some real-
time systems automatically take measures to actively prevent an attack from being 
successful.  These include denying syscalls identified as suspicious or delaying execution 
of the monitored application.  IDSs which actively respond to an intrusion are called 
intrusion prevention systems [Axelsson 2000]. 
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Ko et al. [Ko, Fink and Levitt 1994] [Ko, Ruschitzka and Levitt 1997] introduced 
Basic Security Module (BSM), which is the Sun Solaris audit daemon, and monitor audit 
logs to gather data on application syscalls.  Ko et al. restrict their analysis to a subset of 
syscall involved with file access and program execution.  Their specification-based 
approach describes the behavior of the permitted program by a policy specification 
language, and describes a specification language which allows a policy to be created 
specifying permissible operations on files and executables for an application.  Policies 
can either be generated by hand [Ko, Ruschitzka and Levitt 1997] [Sekar, Bowen and 
Segal 1999] or by using static program analysis techniques [Wagner and Dean 2001].  
Esponda et al. [Esponda, Forrest and Helman 2004] presented a formal 
framework for analyzing the tradeoffs between positive and negative approaches. 
Positive detection approaches compare current behavior against a database of permitted 
activity, whereas negative detection approaches compare current behavior against a 
database of anomalous activity [Esponda, Forrest and Helman 2004].  For small 
problems, they show that a positive approach is more effective than a negative one, and 
derive results which predict how large a problem must be in order for a negative 
approach to be advantageous. 
Stibor [Stibor 2006] shows that certain matching approaches such as Hamming 
distance work poorly with negative approaches, introducing an infeasible amount of 
complexity. Reduction of this complexity by generalization of the matching criteria 
results in a significant reduction in the classification performance. Based on these 
observations, Stibor concludes that negative approaches such as immune-inspired 
negative selection are unsuitable for real-world anomaly detection problems.  
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The systrace system of Provos [Provos 2003] [systrace] is a syscall-based IDS for 
Linux, BSD and OSX systems.  The kernel patch inserts various hooks into the kernel to 
intercept syscalls from the monitored process.  The user specifies a syscall policy which 
is a list or database of permitted syscalls and arguments. The monitored process is 
wrapped by a user-space program which compares any newly generated syscalls with this 
policy.  It then only allows the process to execute syscalls which are present on the 
normal list. Execution of the monitored process is halted while this decision is made, 
which, along with other factors such as the switch from kernel- to user-space, adds an 
overhead to the monitored process.  However, due to the simplicity of the decision-
making algorithm as well as a good balance of kernel versus user-space implementation, 
the performance impact on average is minimal.  As an IDS, systrace can be run to either 
automatically deny and log all syscall attempts not permitted by the policy, or to 
graphically prompt a user as to whether to permit or deny the syscall.  In the latter mode, 
a syscall can be added to the policy, adjusting it before using it in automatic mode.  
Gao et al. [Gao, Reiter and Song 2004b] introduced a new model of syscall 
behavior called an execution graph.  An execution graph is a model that is constructed 
from syscalls gathered during normal execution.   In addition to system call number, 
stack return addresses are also gathered and used in construction of the execution graph.  
The authors also introduce a course-grain classification of syscall-based IDSs into white-
box, black-box and gray-box approaches.   Black-box systems build their models from a 
sample of normal execution using only system call number and argument information.  
Gray-box approaches build their models from a sample of normal execution by using also 
additional runtime information.  White-box approaches do not use samples of normal 
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execution, but instead use static analysis techniques to derive their models.  A prototype 
gray-box anomaly detection system using execution graphs is introduced by the authors, 
and they compare this approach to other systems, and discuss possible evasion strategies 
in [Gao, Reiter and Song 2004a]. 
Sekar et al. [Sekar et al. 2001] implement a real-time IDS which uses finite state 
automata (FSA) to capture short and long term temporal relationships between syscalls.  
One advantage of using FSA to evaluate sequences of syscalls is that there is no limit to 
the length of the syscall sequence.  Yeung et al. [Yeung and Ding 2003] described an IDS 
which uses a discrete hidden Markov model trained using the Baum-Welch re-estimation 
algorithm to detect anomalous sequences of syscalls.  In [Kruegel et al. 2003], Krugel et 
al. describe a real-time IDS implemented using Snare under Linux.  Their system 
automatically detects anomalies in syscall arguments. They explore a number of 
statistical models which are learnt from observed normal usage.  Endler [Endler 1998] 
presents an offline IDS which examines BSM audit data.  It combines a multi-layer 
perception neural network which detects anomalies in syscall sequences with a histogram 
classifier which calculates the statistical likelihood of a syscall. Lee and Xiang [Lee and 
Xiang 2001] evaluate the performance of syscall-based anomaly detection models built 
on information-theoretic measures such as entropy and information cost.  They also used 
these models to automatically calculate parameter settings for other models. 
Forrest, Hofmeyr, Somayaji and other researchers at the University of New 
Mexico have developed several immune-inspired learning-based approaches.  Forrest et 
al. [Forrest et al 1996] [Forrest, Hofmeyr and Somayaji 1997] [Hofmeyr and Forrest 
1998] evaluated a real-time system which detects anomalous processes by analyzing 
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sequences of system calls.  Syscalls generated by an application are grouped together into 
sequences.  A database of normal sequences is constructed and stored as a tree during 
training. Sequences of syscalls are then compared to this database using a Hamming 
distance metric, and a sufficient number of mismatches generate an alert.  No user-
definable parameters are necessary, and the mismatch threshold is automatically derived 
from the training data. Similar approaches have also been applied by this group to 
network intrusion detection [Balthrop et al. 2002] [Balthrop, Forrest and Glickman 2002] 
[Hofmeyr 1999] [Hofmeyr and Forrest 2000] [Hofmeyr and Forrest 1999a]. 
Somayaji [Somayaji 2002] [Somayaji and Forrest 2000] developed the immune-
inspired pH intrusion prevention system which detects and actively responds to changes 
in program behavior in real-time.  Sequences of syscalls are gathered for all processes 
running on a host and compared to a normal database.  If an anomaly is detected, 
execution of the process that produced the syscalls will be delayed for a period of time.  
This method of response, as opposed to more malign responses such as killing a process, 
is more benign in that if the system makes a mistake and delays a process which is 
behaving normally, this may not have a perceptible impact from the perspective of the 
user.  
Greensmith [The Danger Project] has used Libtissue to implement an immune-
inspired process anomaly detection system [Greensmith, Aickelin and Twycross 2006] 
[Greensmith, Twycross and Aickelin 2006].   Their algorithm, called DCA, is inspired by 
biological Dendritic cells (DCs).  A population of artificial DCs is created and monitors a 
host, collecting process IDs (PIDs) of the processes currently running.  These PIDs are 
used as an antigen and stored by the DC.  DCs also monitor a number of statistics for the 
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host, such as outgoing packet and ICMP error message rates.  These statistics are used as 
input signals for the DCs and govern their behavior.  Different signals such as safe and 
danger signals are weighted and combined to create output signals for each DC.  Over 
time, if the summation of the output signals exceeds a user-defined threshold, the DC 
matures and is removed from the system. 
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CHAPTER 3 
 BIOLOGICAL IMMUNE SYSTEMS 
The Human Immune System (HIS) or the biological immune system is a robust, 
complex, adaptive system that defends the body from foreign pathogens.  It categorizes 
cells within the body as self-cells or non-self cells [Dasgupta 2004; Aickelin and 
Dasgupta 2005; Hofmeyr 2000].  The immune system is a multi-layered defense system 
that protects living organisms from disease.  These layers consist of physical and 
chemical barriers and specialized cells that can recognize and kill antigens.  The 
mechanical and chemical barriers such as skin, mucous secretions and enzymes with their 
changing pH and temperature features provide the first line of defense against antigens.   
Bacteria on the skin surface are generally unable to pass through the skin barriers.   The 
second line of defense is the innate immune system and it consists of a family of cells 
called phagocytes that recognize, attack, and then kills antigens.  The innate response is 
non antigen-specific and was meant to fight against any infection without the need of 
previous immunization.  It has two different actions: rapid action which lasts from four 
minutes to four hours performed by macrophages.  There is also a medium to slow action 
performed via inflammation or by natural killer (NK) cells [Pagnoni and Visconti 2005].  
When the innate system fails, an infection is established and the acquired immunity starts 
to develop.  The acquired immune response is based on a complex learning process that 
makes the immune system adaptively acquire better immunity during its lifetime
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[Aickelin and Dasgupta 2005].  The immune system uses multilevel defense both in 
parallel and sequential fashion.  Depending on the type of the pathogen, and the way it 
gets into the body, the immune system uses different response mechanisms either to 
neutralize the pathogenic effect or to destroy the infected cells.  The human immune 
system features that are relevant to intrusion detection are matching, diversity and 
distributed control.  Matching refers to the binding between antibodies and antigens.  
Diversity refers to achieving optimal antigen space coverage and distributed control 
means that there is no central controller.  This process depends on two important white 
blood cells called T-cells and B-cells. Both originate in the bone marrow, but T-cells pass 
on to the thymus to mature, before circulating in the blood.  The T-cells are of three 
types: helper T-cells which are essential to the activation of B-cells, killer T-cells which 
bind to foreign invaders to destroy them, and suppressor T-cells which inhibit the action 
of other immune cells thus preventing allergic reactions and autoimmune diseases.  
Finally, B-cells are responsible for the production and secretion of antibodies, which are 
specific proteins that bind to the antigen [Dasgupta 2004; Aickelin and Dasgupta 2005; 
Hofmeyr 2000].  
There have been several attempts to summarize immune system mechanisms.  
The following are five attempts:  
? Immune Network Theory: The hypothesis of the immune network theory 
states that the immune system maintains an idiotypic network of 
interconnected B-cells for antigen recognition.  These cells both stimulate and 
suppress each other in certain ways that lead to the stabilization of the 
network.  Two B-cells connect if their shared affinities exceed a certain 
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threshold, and the strength of the connection is directly proportional to the 
affinity they share [Dasgupta and Atooh-Okine 1997; Aickelin and Dasgupta 
2005].  
? Negative Selection Mechanism: The purpose of negative selection is to 
provide tolerance for self-cells.  It is concerned with the immune system?s 
ability to detect unknown antigens while not reacting to self cells. During the 
generation of T-cells, receptors are made through a pseudo-random genetic 
rearrangement process and then undergo a censoring process in the thymus, 
called the negative selection.  If T-cells react against self-proteins, they are 
destroyed allowing only the T-cells that don?t react to self-proteins to leave 
the thymus and circulate throughout the body to perform immunological 
functions and protect the body against foreign antigens [Dasgupta and Atooh-
Okine 1997; Aickelin 2004; Aickelin and Dasgupta 2005]. 
? Clonal Selection Principle [Aickelin 2004; Aickelin and Dasgupta 2005] 
describes the basic features of an immune response to an antigenic stimulus.  
Only the cells that recognize the antigen proliferate and are selected against 
those that do not.  
? Idiotypic Networks?Network Interactions (Suppression): The idiotypic 
network hypothesis [Aickelin and Dasgupta 2005; Cayzer and Aickelin 
2002b; Cayzer and Aickelin 2005] builds on the recognition that antibodies 
can match other antibodies as well as antigens.  This could be used to explain 
how the memory of past infections is maintained and could result in the 
suppression of similar antibodies and encouraging diversity in the antibody 
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pool.  In general, the nature of an idiotypic interaction can be either positive or 
negative and it?s matching function symmetric.  
? Danger Theory: The proposed Danger Theory [Matzinger 2002; Aickelin and 
Dasgupta 2005] is assumed to provide a method of ?grounding? the immune 
response.  The Danger Theory states that there must be discrimination 
happening other than the self?non-self distinction.  Danger theory 
discriminates ?some self from some non-self? or ?non-self but harmless? and 
of ?self but harmful?.   The central idea in the Danger Theory is that the 
immune system does not respond to non-self but to danger.  In this theory, 
danger is measured by damage to cells indicated by distress signals that are 
sent out when cells die an unnatural death, as opposed to programmed cell 
death.  Essentially, the danger signal establishes a danger zone, as shown in 
Figure 3.1, around itself. The B-cells producing antibodies that match antigens 
within the danger zone get stimulated and undergo the clonal expansion 
process.  Those that do not match or are too far away do not get stimulated.  In 
general, the danger signal can be a ?positive? signal or a ?negative? signal. 
[Matzinger 1994, Matzinger 2002] proposed the Danger model, which 
suggests that the immune system is more concerned with damage than with 
foreignness, and is called into action by alarm signals from injured tissues, 
rather than by the recognition of non-self only.  The danger theory proposed 
that APCs are activated by danger/alarm signals from injured cells, such as 
those exposed to pathogens, toxins, mechanical damage, and so forth.   
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Figure 3.1. Danger theory illustration [Aickelin and Dasgupta 2005] 
  
As shown in Figure 3.2., a B cell receives signal 1 from bacteria and sends signal 
1 to a T-helper cell (Th).  At the same time Antigen Presenting Cell (APC) 
receives signal 0 from both the bacteria and distressed cell.  This signal is 
transformed to signal 2 which is sent to Th along with signal 1 from APC which 
recognized a foreign body.  Then Th sends signal 2 to both B cell and other T-
killer cells (Tk).  At the same time Tk could have received signal 1 from cell 
infected by a virus.  
Structurally, the immune system is a collection of cells, molecules, tissue, organs 
and circulatory systems [Jeneway et al. 2005].  Immune system cells are produced and 
mature in specialized areas of the body called primary lymphoid organs such as the 
thymus or bone marrow. They are transported via the cardiovascular and lymphatic 
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circulatory systems to peripheral tissues or specialized secondary lymphoid organs such 
as the lymph nodes or spleen.  Microorganisms attempt to consume the body.  Damage to 
the body is called pathology, and the damaging agent, such as bacteria or virus, a 
pathogen.  Functionally, the human immune system is able to locate and remove many of 
these pathogens from the body and maintain the body in a healthy state for many years.   
 
Figure 3.2.  Danger theory viewed as immune signals [Matzinger 1994] 
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CHAPTER 4 
ARTIFICIAL IMMUNE SYSTEMS (AIS) 
4.1. Introduction 
Differentiating between normal and intrusive activities is one of the major 
challenges facing computer security.  AIS, which is a biologically inspired computing, is 
currently investigated to solve this problem. Such a method was inspired by the Human 
Immune System (HIS) that can detect and defend against harmful and previously unseen 
invaders.  An analogy can be drawn between the HIS and IDS.  The innate part of the 
HIS is similar to the misuse detector class of IDS whereas the adaptive immune system is 
closer to an anomaly based IDS.  Both the innate HIS and misuse detectors have prior 
knowledge of attackers and detect them based on this knowledge.  Both the adaptive 
immune system and anomaly detectors generate new detectors to find previously 
unknown attackers [Kim et al. 2007].  HIS protects the body against damage from an 
extremely large number of harmful bacteria, viruses, parasites and fungi, termed 
pathogens.  It does this usually without prior knowledge of the structure of these 
pathogens.  This property, along with being distributed, self-organized and 
lightweight [Kim 2002] made HIS the focus of computer science and intrusion detection 
communities. This is because it can be viewed as a form of anomaly detector with very 
low false positive and false negative rates.  AISs have been built for a wide range of 
application domains including document classification, fraud detection, and network- and 
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host-based intrusion detection.  In specific AIS approaches for intrusion detection has 
been reviewed by Aickelin et al. [Aickelin, Greensmith and Twycross 2004] AISs can be 
broadly divided into two categories based on the mechanism they implement: network-
based models and population-based models with the existence of many hybrid models.  
Network based models are based on Jerne?s idiotypic network theory which recognizes 
interactions between antibodies and antibodies as well as between antibodies and 
antigens. Population-based models use negative or clonal selection as the method of 
generating and maintaining a population of detectors [Twycross 2007].  
4.2. Artificial Immune Systems Basic Concepts 
To implement a basic artificial immune system, four decisions have to be made: 
encoding, similarity measure, selection and mutation.  After fixing a suitable encoding 
and choosing a suitable similarity measure, the algorithm will then perform selection and 
mutation; both based on the similarity measure, until the stopping criteria are met.  
4.2.1. Initialization/Encoding 
It is very important to choose a suitable encoding [Aickelin 2004; Aickelin and 
Dasgupta 2005]   for the algorithm?s success.  In order to perform encoding, the antigen 
and antibody should be defined in the context of an application domain.  Antigens 
represent intrusion data instances.  Antibodies bind to antigen identifying an intrusion.  
Sometimes there can be more than one antigen at a time and there are usually a large 
number of antibodies present simultaneously.  Both antigens and antibodies are 
represented or encoded in the same way.   
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4.2.2. Similarity or Affinity Measure 
It is very important to choose a good matching algorithm for the artificial immune 
system to work properly. The primary response in the immune system [Forrest and 
Hofmeyr 2001a] uses learning mechanism for new antigens that have not been detected 
by a detector before.  When a B cell is activated after binding to a pathogen, it starts 
cloning itself and the cloned cells then undergoes a somatic hyper mutation to create 
daughter B cells with mutated receptors and then the new B cells will compete with their 
parents.  In general, the higher the affinity of B cell for available pathogens the more 
likely it will be cloned resulting in a variation and selection process called affinity 
maturation.   
4.2.3. Negative Selection 
One of the common techniques used is the negative selection algorithm [Aickelin 
2004; Aickelin and Dasgupta 2005]   where a set of trusted behavior ?self? is defined. 
During the initialization of the algorithm, a large number of detectors (strings similar to 
intrusion instances) are created.  Then these detectors are subjected to a matching 
algorithm that compares them to ?self?.  Any matching detector would be eliminated and 
those that do not match are selected (negative selection).  All non-matching detectors will 
then form the final detector set.  This detector set is then used in the second phase of the 
algorithm to continuously monitor all network traffic.  In case a match occurs, this will be 
reported as a possible alert or ?non-self?.  
4.2.4. Somatic Hyper mutation 
Somatic hyper mutation [Aickelin 2004; Aickelin and Dasgupta 2005] is an 
optional process and associated with negative selection.  Rather than ignoring matching 
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detectors in the first phase of the algorithm, they can be mutated to save time and effort.  
Also, depending on the degree of matching, the mutation could be more or less strong.  
[Forrest and Hofmeyr 2001b] use, in their immune system, permutation masks to achieve 
diversity similar to the role of the major histo-compatibility complex (MHC).  MHC is 
responsible for transporting peptides from the interior regions of a cell and presents it on 
its surface.   A permutation mask defines a permutation of the bits in the string 
representation of the network packets.  In general, each detector has a unique randomly 
generated permutation mask. 
4.2.5. Cross-Reactivity and Associate Memories 
When a B-cell encounters subsequent antigens it responds quicker (secondary 
response) in which the memory cells for the earlier antigen quickly start producing large 
quantities of a specific antibody.  In general, B-cell receptors do not require an exact 
match to an antigen to be activated.  Therefore, some memory cells can react to new 
antigen producing a secondary response which is termed, the cross-reactive memory 
[Forrest and Hofmeyr 2001b]  
4.3. Artificial Immune System Applications 
This section briefly introduces some application areas where AIS have been 
applied. 
4.3.1 Virus Detection 
Since computer viruses have been identified as a destructive form of artificial life 
it is very natural for computer scientists to investigate the human immune system in order 
to understand its defense mechanism against harmful biological viruses.  Virus detection 
is viewed as a self-non-self discrimination problem.  Targets such as legal user activities, 
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legal application usage activities, and uncorrupted data are monitored as self and the AIS 
are expected to discriminate them from illegal user activities, illegal application usage 
activities, and virus infected data.  In general, detectors are generated from a standard 
binary executable .com file and then the generated detectors are checked to see if they 
can detect a virus infected .com file.  Another recent approach called Computer Virus 
Immune System (CVIS) employs the negative selection algorithm with some novel ideas 
that were used in [Hofmeyr 1999; Hofmeyr and Forrest 2000] such as life span, 
activation threshold and costimulation.  This new technique performs virus analysis, 
repairs infected files, analyze the results of other local systems and operates under a 
distributed environment using autonomous agents.   A different approach to using AIS for 
virus detection is undertaken at the IBM Research Centre.  They attempt to identify and 
understand useful processes of the human immune system, and to see how these can help 
in developing a new virus detection product. However, they do not attempt to implement 
the processes using the mechanism of the human immune system, only to mimic it at a 
high level of abstraction [Kim 2002]. 
4.3.2. Recommender Systems 
Collaborative filtering (CF) [Cayzer and Aickelin 2002a; Chao and Forrest 2002] 
is one of the common applications of AIS.  CF is the term for a broad range of algorithms 
that use similarity measures to obtain recommendations.  In general, any problem domain 
where users are required to rate items is amenable to CF techniques.  Usually, 
commercial applications are called recommender systems one of which is movie 
recommendation.  Traditionally, recommended items are treated as ?black boxes? and 
recommendations are based purely on the votes of neighbors, and not on the content of 
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the item. The preferences of a user, usually a set of votes on an item, comprise a user 
profile, and these profiles are compared to build a neighborhood.  Data encoding where a 
user profile is presented as a string of numbers and the similarity measure which is 
usually a correlation-based measure are the key decisions to be made. 
[Morrison and Aickelin 2002] applied idiotypic network theory to build their web site 
recommender AIS based system.  The idiotypic network theory states that interaction in 
the immune system do not only occur between antibodies and antigens but also between 
antibodies and each other.  Therefore, the antibody may be matched by other antibodies.   
This activation can continue to spread throughout the population.   This interaction may 
have a positive or a negative effect on a particular antibody-producing cell.  This theory, 
therefore, can explain how the memory of past infections is maintained and that could 
result in the suppression of similar antibodies thus encouraging diversity in the antibody 
pool.  Morrison and Aickelin idea? is that antibodies that are very similar to each other 
had their concentrations reduced.  This allowed the creation of a set of users that are 
similar to the user but quite different to each other and thus enhancing the 
recommendation accuracy of the system.  
4.3.3. Intrusion Detection  
The use of artificial immune system in intrusion detection is beneficial because 
immune systems can provide a high level of protection from invading pathogens in a 
robust, self-organized and distributed manner and is capable of coping with the dynamic 
and complex nature of computer system security [Aickelin, Greensmith and Twycross 
2004].  Human immune systems (HIS) can detect and defend against harmful and 
previously undetected pathogens and has the properties of being error tolerance, adaptive 
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and self-monitoring.  The HIS system protects the body from pathogens without any prior 
knowledge of their structure making the system distributed, self-organized and 
lightweight.  The HIS is also seen as a form of anomaly detector with low false positive 
and false negative rates.   
4.4. AIS Features and Principles for IDS 
[Somayaji, Hofmeyr and Forrest 1998; Hofmeyr 1999] [Kim 2002] [Somayaji 
2002] presented several immune features that are desirable for an effective IDS and 
identified the following principles that will guide the process of building an intrusion 
detection system based on immune system concepts:  
? Distributed protection: Lymphocytes in the immune system determine locally the 
presence of an infection with no central coordination taking place.  
? Scalability: the immune system is scalable since communication and interaction 
between components are localized and there is little overhead associated when the 
number of components is increased.  
? Multi-layered: In the immune system, security is achieved by combining multiple 
layers of different mechanisms to provide high overall security.  
? Diversity: diversity ensures that security vulnerabilities in one system are less 
likely to be widespread. 
? Robustness or Disposability: No single component or cell of the human immune 
system is essential and can be replaced.  
? Autonomy: The immune system does not require outside management or 
maintenance as it classifies and eliminates pathogens, and it repairs itself by 
replacing damaged cells.  
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? Adaptability: The immune system learns to detect new pathogens, and retains the 
ability to recognize previously seen pathogens through immune memory.  
? No secure layer: Any cell in the human body can be attacked by a pathogen 
including those of the immune system itself.  However, because lymphocytes are 
also cells, they can protect the body against other compromised lymphocytes.  
? Dynamically changing coverage: since the immune system cannot maintain a set 
of detectors large enough to cover the space of all pathogens, it maintains a random 
sample of its detector repertoire circulating throughout the body.  
? Identity via behavior: In cryptography, identity is proven through the use of a 
secret.  The human immune system, in contrast, does not depend on secrets; instead, 
identity is verified through the presentation of peptides, or protein fragments. 
? Anomaly detection: The immune system has the ability to detect pathogens that it 
has never encountered before thus performing anomaly detection. 
? Flexibility or Imperfect detection: By accepting imperfect detection, the immune 
system increases the flexibility with which it can allocate resources. 
? Detector replication: The human immune system replicates detectors to deal with 
replicating pathogens. 
? Memory (signature based detection):  Adaptation of an organism remains 
throughout its life time. Memory allows the immune system to react more rapidly 
the second time against pathogens that are similar to the ones that were encountered 
previously which is similar to signature based detection.  
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? Implicit policy specification:  definition of self in immune system is empirically 
defined by monitoring proteins that are currently in the body.  Self is defined as the 
actual normal behavior and not what it should be by defining it in a security policy.  
4.5. Conceptual Frameworks for AISs 
Stepney et al. [Stepney et al. 2005] developed a conceptual framework within 
which biologically-inspired models and algorithms can be developed and analyzed. In it 
the probes provide the experimenter with an incomplete and biased view of a complex 
biological system which allows the construction and validation of biologically-inspired 
algorithms.  This is achieved by simplifying the abstract representations analytical 
computational frameworks.   Stepney et al. also developed a meta-framework which 
allows common underlying properties of classes of models to be analyzed by asking 
questions, called meta-probes, of each of the models under consideration. Using this 
meta-framework, the authors analyze the commonalities of population and network 
models.  
Neal and Timmis [Neal and Timmis 2005] present a conceptual framework which 
integrates artificial neural networks, AISs and artificial endocrine systems in a 
biologically-realistic way.  The view the biological organism as a homeostatic system 
with self-organization is the driving force behind this homeostasis. Each of the neural, 
immune and endocrine systems interacts to achieve homeostasis.  The biological immune 
system is primarily concerned with self-assertion.  In their model, the artificial immune 
and endocrine systems control the artificial neural network.  Their AIS, modeled as an 
idiotypic immune network, removes cells that have a negative impact on the system. 
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4.6. Immune System Approaches to IDS 
[Kim et al. 2007] indicated that applying immune system concepts or approaches 
to IDS have the following major roots and distinct philosophies: 
1. Methods inspired by the immune system that employ conventional algorithms, for 
example, IBM?s virus detector [Kephart 1994].  
2. The negative selection paradigm as introduced by Forrest [Somayaji 2002] 
[Forrest et al. 1994]. 
3. Approaches that exploit the Danger Theory [Matzinger 1994]. 
4. Other algorithms. 
4.6.1. Conventional Algorithms in AIS 
[Kephart 1994; Kephart et al. 1998] designed their AIS with five major stages all 
inspired by the HIS.  For example, the first stage detected a previously unknown virus on 
a user's computer which is similar to the innate human immune system.  This was carried 
out using generic techniques and neural networks, which were used to build a generic 
classifier.  Their proposed system first detected viruses using either fuzzy matching from 
a pre-existing signature of viruses, or through the use of integrity monitors which 
monitored key system binaries and data files for changes.  In order to decrease the 
potential for false positives in the system, if a suspected virus was detected it was 
decoyed by the system to infect a set of decoy programs whose sole function was to 
become infected.  Then a proprietary algorithm was used to automatically extract a 
signature for the program and then sent to the neighboring systems and the infected 
binaries were cleaned.     
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[De Paula, de Castro and de Geus 2004] proposed another AIS based IDS called 
ADENOIDS.  They introduced eight different components taken from the innate and the 
adaptive immune system.  From the innate immune system, the evidence-based detector 
is responsible for detecting intrusions based on clear evidence such as a security policy 
violation.  The innate response agent reacts to attacks detected by the evidence-based 
detector.  The response was to limit bandwidth or disk access.  The behavior-based 
detector, which is an anomaly detector, is initiated only when it receives co-stimulation 
signals.  Similar to the adaptive immune system, the signature extractor extracts 
signatures of detected attacks and has a learning mechanism which allows attack 
signatures to mature. Some of the matured attack signatures are kept at the knowledge-
based detector which corresponds to the adaptive immune memory.  The signature 
extractor activates the response generator and the adaptive response agent. The response 
generator decides on the response type and the adaptive response agent performs the 
selected responses.  
4.6.2. Negative Selection (NS) 
  Negative selection concepts are concerned with eliminating immature cells that 
bind to self antigens.  This allows the HIS to detect non-self antigens without mistakenly 
detecting self-antigens.  
[Smith, Forrest and Perelson 1993][Forrest et al. 1994] proposed algorithms 
consisting of three phases: defining self, generating detectors and monitoring the 
occurrence of anomalies.  In the first phase, self cells are defined by regarding normal 
pattern profiles as self patterns.  In the second phase, a number of random patterns are 
generated and then compared to each of the self-patterns defined in the first phase.  If any 
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randomly generated pattern matches a self-pattern, this pattern is removed; otherwise, it 
becomes a detector pattern and monitors the system?s profiled patterns. During the 
monitoring stage, if a detector pattern matches any newly profiled pattern it is considered 
an anomaly.  
Forrest et al. [Forrest et al. 1994] [Forrest et al. 1996] viewed virus detection as a 
self-non-self discrimination problem within a computer.  They regarded monitoring 
targets (such as legal user activities, legal application usage activities, uncorrupted data, 
etc.) as self and expected the NS algorithm to discriminate them from others (such as 
illegal user activities, illegal application usage activities, virus infected data, etc.).  They 
randomly generated binary string detectors and selected the subset which did not match 
to self strings from a standard binary executable .com file.  The experimental results 
showed that the NS algorithm obtained a 100% detection rate under a relatively small 
scale problem: with 125 detectors when an infected file was encoded by 655 binary 
strings each string having 32 bits.   
The process of generating the repertoire is shown in Figure 4.1. using an r-
contiguous matching rule and r = 2, the string to be protected is logically segmented into 
four equal- length \self" strings (stored in S). To generate the repertoire, random strings 
are produced in the box labeled R0 and matched against each of the self strings. The first 
two strings, 1000 and 1100, are eliminated because they both match self string 0000 at 
least two contiguous positions. The string 1101 fails to match any string in self at least 
two contiguous positions, so it is accepted into the repertoire (box labeled ?R").   Figure 
4.2. explains the process of monitoring protected strings for changes.  
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Figure 4.1. Generating the repertoire [Forrest et al. 1994].   
 
 
Figure 4.2. Monitor Protected Strings for Changes. [Forrest et al. 1994] 
 
[Hofmeyr 1999; Hofmeyr and Forrest 1999a; Forrest and Hofmeyr 2001a] 
developed an AIS that is based on the negative selection technique.  The life cycle of a 
detector is shown in Figure 4.3. and starts by having the detector randomly created and 
then remains immature for a certain period of time, which is the tolerization period.  
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 If the detector matches any sting a single time during tolerization, it is replaced by 
a new randomly generated detector string.  If a detector survives immaturity, it will exist 
for a finite lifetime.  At the end of that lifetime it is replaced by a new random detector 
string, unless it has exceeded its match threshold and becomes a memory detector. If the 
activation threshold is exceeded for a mature detector, it is activated.  If an activated 
detector does not receive costimulation, it dies (the implicit assumption is that its 
activation was a false positive).  However, if the activated detector receives 
costimulation, it enters the competition to become a memory detector with an indefinite 
lifespan. Memory detectors need only match once to become activated. 
 
Figure 4.3. Life cycle of a detector [Hofmeyr 1999; Hofmeyr and Forrest 1999a; 
Forrest and Hofmeyr 2001a]. 
 
[Hofmeyr and Forrest 1999b] employed the use of permutation masks to increase 
the effectiveness of negative detection.  They employed activation thresholds to allow the 
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system to aggregate foreign activity over time, and they used adaptive thresholds that 
allow the system to integrate foreign patterns from multiple locations.  In general, the 
work of Hofmeyr and Forrest [Hofmeyr 1999] [Hofmeyr and Forrest 1999a] involved the 
development of an AIS for network intrusion detection, called LYSIS. LYSIS 
implements the AIS architecture called ARTIS described in [Hofmeyr and Forrest 2000].  
It employs the NS algorithm for binary detector generation and various features of the 
HIS such as activation threshold, life span, memory detectors, costimulation, tolerization 
period and a decay rate to monitor self and non-self.  LYSIS is network-based and 
examines TCP connections, classifying normal connections as self, and everything else as 
non-self.  This is achieved by extracting a data path triple consisting of <source host IP 
address, destination host IP address, TCP service (port) number from TCIP/IP packet 
headers>.  This data path is used as input data to build self-profiles.  Detectors in the 
form of binary strings which do not match to self-profiles for a tolerization period are 
generated using NS.  These detectors are then used to match sniffed triplets from the 
network using an r-contiguous bit matching scheme. In general, r-contiguous matching 
measures the similarity between two binary strings by counting contiguously matching 
bits.   If a detector matches a number of strings above an activation threshold, an alarm is 
raised.  Detectors that produce many alarms are promoted to memory cells with a lower 
activation threshold to form a secondary response system.  Generated detectors monitor a 
network for their life span periods.  Co-stimulation is provided by a user confirming if an 
alert is actually an intrusion attempt.  
[Kim and Bentley 1999d] [Kim and Bentley 1999b] proposed system consists of a 
primary IDS and secondary IDSs.  The primary IDS are equivalent to the bone marrow 
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and thymus and generate numerous detector sets.  Each individual detector set describes 
abnormal patterns of network traffic packets.  Local hosts are considered as secondary 
lymph nodes, detectors as antibodies and network intrusions as antigens.  At the 
secondary IDS?s, detectors are background processes which monitor whether non-self 
network traffic patterns are present.  There are three evolutionary stages: gene library 
evolution, negative selection and clonal selection.  During the negative selection stage, 
the system generates diverse pre-detector patterns and selects mature detector patterns by 
eliminating false pre-detector patterns by binding them to self patterns.  Pre-detectors are 
generated from a gene library containing various genes.  To resolve the excessive 
computational time caused from the random generation approach applied in negative 
selection [Kim and Bentley 1999a] adapted the niching strategy to build a valid detector 
set.  The modified negative selection algorithm with niching simply replaces the random 
generation of pre-detectors with the evolution of pre-detectors towards ?non-self?.  In the 
first phase, the modified negative selection algorithm builds self profiles. Then, the 
profiles are encoded in an appropriate data representation.  In the second phase, the 
negative selection algorithm with niching starts generating detectors.  This second phase 
is repeated for each self profile until all the self profiles have their own detector sets.  In 
the third phase, the detector patterns in each detector set are compared to the new self 
profile. If the similarity between any detector pattern and new self pattern is beyond a 
predefined threshold, the algorithm generates an alarm signal. 
In order to investigate the feasibility of the NS algorithm in a real network 
environment, [Kim and Bentley 2001a; Kim 2002] studied the problem of scalability of 
the NS algorithm.  For this study, they used TCP packet headers covering around 20 
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minutes and containing five specified attacks.  A total of 33 different attributes were 
extracted describing a specific network connection.  These attributes contained the 
following information: connection identifier, known port vulnerabilities, 3-way 
handshake details and traffic intensity.  For detector matching, the r-contiguous matching 
method was used.  Non-self detection rates for the various attacks were recorded as less 
than 16% so the detector coverage in this case was not sufficient. It was estimated that for 
an 80% detection rate it would take 1,429 years to produce a detector set large enough to 
achieve this kind of accuracy, using just 20 minutes worth of data, and 6?108 detectors 
would be needed.  From these results, the authors concluded that the NS algorithm 
produced poor performance due to scaling issues on real-world problems. 
[Kim and Bentley 2002c] introduced dynamic clonal selection algorithm 
DynamiCS which starts by seeding initial immature detectors with random genotypes. 
DynamiCS then employs negative selection by comparing immature detectors to the 
given antigen set. As the result, immature detectors that bind to any antigens are deleted 
from the immature detector population and new immature detectors are generated until it 
reaches the maximum size of the non-memory detector population.  In their experiments, 
three important parameters: tolerization period, activation threshold and life span were 
tested.  The system performance measured by true positives (TP) and false positives (FP) 
rates was primarily controlled by the number of detector activations in total, and that this 
number was directed by values of the three parameters.  A large tolerization period 
directly lowered FP by allowing more immature detectors to remain and pushing mature 
detectors out.  It was also found that both lowering the activation threshold and 
increasing life span could guide the system to attain a higher TP rate.  From analysis, 
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lowering A and increasing L should be considered together in order to obtain an effective 
application of DynamiCS.    
[Kim and Bentley 2002b] extended DynamiCS, so that it can handle memory 
detectors based on their detection results.  The experiment results indicated the important 
role of memory detectors.  They indeed contribute to increase TP rates by detecting re-
encountering antigens. Without memory detectors, TP rates  of  DynamiCS  fluctuate  
irregularly  within  an  unsatisfying  range  (between  0.1  and  0.8).  To overcome this 
problem Kim and extended DynamiCS to delete harmful memory detectors by applying 
costimulation to memory detectors similar to activating mature detectors.   
In [Kim and Bentley 2002a], the authors tried to overcome the problem of 
requiring a large number of memory detector co-stimulation in order to obtain 
satisfactory TP rates.   The system continued to maintain three detector populations: 
immature, mature and memory detector  populations  and  treats  a  portion  of  the 
memory detector  population  as  a  gene  library.  In order to let memory detectors evolve 
towards existing non-self antigens  without  binding  self  antigens,  the extended  
DynamiCS uses  hyper-mutation  in  a  way  to  generate  new  detectors more tuned to 
target non-self antigen detection.  The test results of such extension achieved high TP 
rates without increasing the amount of co-stimulation.  The test results, also, confirmed  
that  hyper-mutation  enabled  the evolution  of  the  virtual  gene  library  and  thus  
produced immature  detectors  that  were  better  tuned  to  cover existing non-self 
antigens. 
[Balthrop, Forrest and Clickman 2002; Balthrop et al. 2002] provided an in-depth 
analysis of the LISYS immune-based IDS.  In this analysis, the adaptive mechanisms of 
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the LISYS immune-based IDS were examined with respect to machine-learning (ML) 
counterparts, and the contribution of each individual component was quantified.  Data 
was collected from an internal restricted network of computers controlled by the authors.  
After a week of normal activity, several attacks were performed and LISYS was able to 
successfully identify them.  In general, activation thresholds and sensitivity levels 
contributed to reduce false positives and the incorporation of r-chunks and permutation 
masking also reduced false positives and increased true positives.   
Furthermore, [Balthrop, Forrest and Glickman 2002] introduced an improvement 
to r-contiguous matching called an r-chunk scheme. In this scheme, only r contiguous bits 
of the whole detector are specified (known as the window), with the remaining becoming 
wild-cards and thus the partial matching is performed. However, [Esponda, Forrest and 
Helman 2004] reported that the r-chunk matching shows linear-time complexity against 
the number of self-patterns and windows but requires more space compared to the 
original NS algorithm.  Furthermore, [Stibor et al 2005; Stibor, Timmis and Eckert 2005] 
has shown that the generated detector set under fits exponentially for small value r. Under 
fitting behavior leads a user to set the matching threshold value r near l.  However, this 
verifies that the detector generation using the negative selection with r-chunk matching is 
infeasible since all the proposed variants of the negative selection algorithm have a 
runtime complexity which is exponential in r. 
The Computer Virus Immune System (CVIS) approach [Harmer et al. 2002] is 
able to perform virus analysis, repair infected files and propagate the analysis results to 
other local systems.  In addition, CVIS was designed to operate under a distributed 
environment using autonomous agents.  They tested the TIMID virus, which infects .com 
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files only within a local directory.  The test reports showed the sensitivity of detection 
and error results on different matching thresholds. It showed a detection rate of up to 89% 
but had a very high scalability problem since it required approximately 1.05 years for 
generated antibodies to scan an 8GB hard disk drive.  They employed some novel ideas 
such as life span, activation threshold and co-stimulation.  The test results showed that 
the system was able to detect simulated intrusions without serious self detection errors.  
The results also verified that the co-stimulation and affinity maturation help reducing 
both FP and FN error rates. However, it was found that the affinity maturation required 
far too much computation time to be applied to the second, larger, data set. They also 
indicated that the high detection rates with low error rates might have been obtained 
because the simulated intrusions were limited.  
[Le Boudec and Sarafijanovic 2003][Le Boudec and Sarafijanovic 
2004][Sarafijanovic and Le Boudec 2003][Sarafijanovic and Le Boudec 2005]] built an 
immune-based system to detect misbehaving nodes in a mobile ad-hoc network.  The 
authors considered a node to be functioning correctly if it adhered to the rules laid down 
by the Dynamic Source Routing (DSR) protocol. Each node in the network monitored its 
neighboring nodes and collected one DSR protocol trace per monitored neighbor. Four 
sequences of DSR protocol events were sampled over fixed, discrete time intervals to 
create a series of data sets.  This created a binary antigenic representation in which each 
of the four genes recorded the frequency of their four sequences of protocol events. The 
NS algorithm was used to eliminate any antibodies which match normal behavior.  Once 
a mature set of detectors had been generated, these antibodies were used to monitor 
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further traffic from the node and, if they matched antigens from the node, it was 
classified as suspicious.  
[Ayara et al. 2002] modified the original NS algorithm to use somatic hyper 
mutation.  Somatic hyper mutation is the occurrence of a high level of mutation in the 
variable regions of B cells with the possible purpose of increasing the binding affinity to 
antigens.  This new algorithm was called negative selection mutation (NSM) and 
performed a guided mutation on the detector which matched self data during the detector 
generation process.  The specific parts of a detector used to match the bits to a self-string 
were targeted for mutation. The mutation rate was dynamically set according to the 
affinity between a detector and a self string: the greater the affinity, the higher the 
mutation rate.  The number of mutations performed on the same candidate detector was 
restricted.  The authors compared the NSM with the exhaustive NS through the tests 
performed on randomly generated 8-bit self data.  The results illustrated that the two 
algorithms showed similar time complexity and detection rates with no statistical 
significant differences.  However, the authors argued that these results were likely to be 
caused by the nature of randomly generated self data.  This was because the executed 
mutations resulted in the detectors being pushed towards or away from a self-string with 
an equal probability.  
[Gonzalez and Cannady 2004; Eiben, Hinterding, and Michalewicz 1999] 
improved the NSM algorithm by adopting the self-adaptive strategy of evolutionary 
algorithms to control the mutation rate.  This strategy determines a mutation rate at every 
generation by selecting the standard deviation from the fittest detectors selected via a 
tournament selection, multiplied by Gaussian noise.  A comparison with the NSM 
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algorithm showed that the new algorithm performed better with respect to higher 
detection rates, lower false detection rates, and computation time taken.  
 [D?haeseleer, Forrest and Helman 1996; D?haeseleer 1996] discussed the 
problem of holes when using the NS algorithm. Depending on matching methods and 
strings used in the NS algorithm, there exist non-self strings called holes that are not 
covered by a complete detector repertoire as shown in Figure 4.4. 
 
Figure 4.4. The existence of holes. Each dark circle represents a detector and a gray 
shape in the middle is self-antigen data. The size of the dark circles reflects the 
generality of detectors. Since all the detectors have an identical radii, and the 
detectors are too general to match some non-self subspaces without matching self 
antigen data, there inevitably exist holes [Hofmeyr 1999]. 
 
Such a problem results from adapting a symmetrical string matching and its 
generality.  The existence of holes determines a lower bound on a false negative error 
rate.  To overcome this problem, [Hofmeyr 1999; Hofmeyr and Forrest 1999b] explained 
that the permutation mask lets the NS algorithm randomly permutated the binary bits of 
generated detectors.  As a consequence, it has an additional set of detectors with different 
representations reflecting an identical non-self space.  Different representations would 
have different holes in a non-self space and hence the union of coverage of non-self 
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spaces by multiple sets of detectors is likely to reduce the number of holes. The 
permutation mask demonstrated improved detection results by up to a factor of 3, 
especially when LISYS attempted to detect a non-self string close to a self-string in a 
search space.  [Balthrop et al. 2002] investigated the effect of the permutation mask used 
by the simplified version of LISYS but when employing r-chunk matching.  They found 
that the incorporation of r-chunks and permutation masking reduced false positives and 
increased true positives.  Additionally, they found that varying r had little effect, unlike 
with full-length detectors. As the r-chunks scheme performed remarkably well the 
authors investigated it further, and subsequently found that the dramatic increase in 
performance was in part due to the configuration of their test network.  
[Esponda and Forrest 2002] introduced positive detection as the scheme of 
detecting valid patterns while negative detection is the scheme detecting invalid patterns.  
They presented the r-contiguous bits match rule which allows both detection schemes to 
exhibit the same generalization.  Such a rule exhibits a reduced number of holes and is 
able to better characterize what holes are.  They concluded that negative detection is 
more suitable for a distributed environment.  [Esponda, Forrest and Helman 2003; 
Esponda, Forrest and Helman 2004] showed that r-contiguous matching and permutation 
mask is able to cover a larger space that would be recognized by Hamming distance 
matching.  Their study also showed that there are still non-self strings not detected by r-
contiguous matching augmented by the permutation mask.  They introduced crossover 
closure which occurs when all the possible sliding windows of each string, existing in a 
universal string set, exactly match the corresponding windows of some self-strings.  The 
authors used this property to characterize two matching methods: r-contiguous and r-
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chunk matching.  They concluded that both matching rules did not recognize all string 
sets under crossover closure.  As a result they estimated how many self-strings are 
required for either negative or positive detection and approximated the number of holes 
as a function of self-strings coupled with a string length and a size of r. They noticed that 
the number of holes decreases as more self strings are added length.  [Dasgupta and 
Gonzalez 2002; Gonzalez and Dasgupta 2002; Gonzalez 2003].  They compared a 
negative characterization approach to positive characterization.  The positive approach 
focused on generating rules covering the self-space and detected anomalies by 
monitoring events that matched no self rules.  Their implementation of the positive 
selection algorithm used a k-dimensional tree, giving a quick nearest neighbor search.  
On the other hand, their negative characterization approach employed a genetic algorithm 
in order to generate detector rules covering niches of a non-self space.  In order for 
detector rules to evolve, the fitness function was defined by the volume of non-self space 
covered by detector rules after a penalty have been applied according to the number of 
matching self examples.  The best detection rates they found were 95% and 85% for 
positive and negative selection respectively.  They concluded that it is possible to use NS 
for IDS and that in their time series analysis, the choice of time window was important. 
[Gonzalez 2003][Gomez, Gonzalez and Dasgupta 2003][Gonzalez and Dasgupta 2003] 
extended the negative approach to generate detectors by employing fuzzy rules.  They 
also provided better definition of the boundary between a self and a non-self space and 
were able to show improved detection accuracy because of the reduction of a search 
space due to the fuzzy representation.  [Gonzalez, Dasgupta and Kozma 2002] also 
developed the real-valued negative selection (RNS) algorithm.  The RNS algorithm 
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employs two distinctive features: the use of real-value representation and hybridizing the 
NS algorithm with a classifier.  The RNS algorithm uses n-dimensional vectors as 
detectors. Detectors have a radius r, representing hyper-spheres in combinations with a 
fuzzy Euclidean matching function. In training, detectors are generated randomly and 
then moved to both maximize the coverage of a non-self space and to minimize the 
coverage of a self space.  If the median distance to the detectors k-nearest neighbors is 
less then r, a match is detected and matching detectors are discarded. Surviving detectors 
are then sent to a multi-layer classifier.  They authors were able to conclude that scaling 
is not a problem in NS when real values are used.  [Gonzalez et al. 2005]?work 
hybridized the RNS algorithm with a Self-Organizing Map (SOM).  This work attempted 
to visualize anomalies in 2-dimensional map. In contrast, [Ji and Dasgupta 2004] further 
extended the RNS algorithm by introducing the variable lengths of a detector radius.  
They aimed to show an improvement in the detection accuracy and algorithm efficiency, 
through covering a non-self space with fewer detectors, and cover the holes by using 
detectors with a smaller radius.  One of the problems of using the RNS algorithm is that 
the number of detectors required to cover a non-self space and the radius of each detector 
cannot be estimated in advance, and there is no guarantee of achieving the optimal space 
coverage with minimum overlap.  In order to solve these problems, a randomized real-
valued negative selection (RRNS) algorithm was introduced by [Gonzalez 2003; 
Gonzalez, Dasgupta and Nino 2003].  The RRNS algorithm uses Monte Carlo 
integration, which is a well-known randomized algorithm, to calculate the number of 
detectors needed to cover a non-self space. It first estimates the volume of a self space 
based on the assumption that the average minimum distances from collected self samples 
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forms the boundary of self space.  Then the number of detectors required to cover a non-
self space is calculated by defining a fixed length of detector radius, through obtaining 
the volume of a non-self space as the complementary to the volume of an estimated self 
space. Furthermore, simulated annealing is used to minimize the overlapping spaces 
covered by detectors.  The RRNS algorithm was able to provide better non-self space 
coverage with the same or less computational effort compared to the RNS algorithm.  
[Shapiro, Lamont, and Peterson 2005] generated hyper-ellipsoid detectors, which 
used an evolutionary algorithm that reshaped randomly generated hyper-ellipsoid 
detectors fit to a non-self space. In contrast, [Ji and Dasgupta 2005] attempted to solve 
the coverage problem by integrating the statistical hypothesis test to the negative 
selection algorithm.  In this approach, the generation of detectors terminates when the 
hypothesis test rejects the null hypothesis "The coverage of non-self space by all the 
existing detectors is below an expected percentage".  
Finally, hybrid approaches that combine NS with other algorithms are becoming 
more common in recent literature. [Dozier et al. 2004; Hou and Dozier 2005] used a 
steady-state genetic algorithm (GA) to discover the coverage of holes of LYSIS.  Their 
system (GENERTIA) generates additional detectors that can cover the holes discovered 
by the steady-state GA. [Hang and Dai 2004] [Hang and Dai 2005] used anomaly 
patterns as seeds to generate additional synthetic anomalies.  Artificial anomalies are 
generated by using a co-evolutionary GA and the NS algorithm. The co-evolutionary GA 
abstracts the positive selection process of the HIS, which generalizes patterns of the self-
class.  Then, new artificial anomaly patterns are generated from empty spaces which 
neighbor a small number of anomaly patterns.  The new patterns are then given to the 
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negative selection algorithm with the evolved normal patterns to finalize an artificial 
anomaly set.  
To tackle the scalability problem, an approach based on the linear-time 
algorithm [D?haeseleer, Forrest and Helman 1996] has been utilized that uses a greedy 
algorithm that removes redundant detectors, and employing diverse ways of evolving 
detectors [Ayara et al. 2002; Gonzalez and Cannady 2004].  Another group concentrated 
on employing a new matching function, namely r-chunks matching [Balthrop, Forrest and 
Glickman 2002; Esponda, Forrest and Helman 2004], possibly saving computation time 
during detector generation and matching.  Several methods have been investigated to 
increase the non-self space coverage of detectors.  For example, matching [Hofmeyr 
1999; Hofmeyr and Forrest 1999a; Balthrop et al. 2002] investigated reducing the 
number of holes existing in a binary detector space coupled with contiguous matching.  
[Gonzalez 2003; Ji and Dasgupta 2004] proposed a real-valued detectors with 
corresponding matching functions.  Significant work on a formal framework for positive 
and negative detection schemes was reported in [Esponda, Forrest and Helman 2004].  
This work analyses the trade-offs between two schemes and hence estimates how many 
self strings are required for either negative or positive detection to insure that it is 
computationally advantageous.  However, the most controversial problem of employing 
the NS algorithm is based on its initial theory which is self-non-self discrimination and 
that foreign patterns are detected as intrusions [Aickelin et al. 2003; Burgess 1998].  Non-
self patterns would not necessarily indicate intrusions and thus a high false positive error 
rate caused from this assumption limits the benefits of employing the NS algorithm.  
Many are trying to tackle this limitation by applying more flexible boundaries between 
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self and non-self space using fuzzy rules such as [Gonzalez 2003; Gomez, Gonzalez and 
Dasgupta 2003].  However, [Stibor et al 2005] [Stibor, Timmis and Eckert 2005] [Stibor 
2006] pointed out that there may be inherent problems with the computational efficiency 
of NS that can never be resolved. 
4.6.3. Danger Theory 
The Danger Theory can be beneficial with the artificial immune systems because 
it does not describe the way the AIS should represent data but which data should be 
represented.  The focus should be on dangerous and interesting data.  Danger is usually a 
grounded signal, and non-self is a set of feature vectors. Therefore, the danger signal 
helps in identifying which subset of feature vectors is of interest and overcomes many of 
the limitations of self?non-self selection.  With danger theory, the domain of non-self can 
be restricted to a manageable size, there is no need to screen against all self, and can deal 
with scenarios where self (or non-self) changes over time.  One of the challenges faced 
when trying to employ the danger theory is to define a suitable danger signal.  In general, 
the human body deals with this issue by responding to the interaction between antigen 
presenting cells and various signals.  The antigen-presenting cells (APCs) activate 
according to the balance of apoptotic and necrotic cells and this activation leads to 
protective immune responses. Similarly, the sensors in intrusion detection systems report 
various low-level alerts and the correlation of these alerts will lead to the construction of 
an intrusion scenario [Aickelin and Dasgupta 2005]. 
[Aickelin and Cayzer 2002] explain how an immune response would behave 
according to the Danger Theory.  A cell that is in distress sends out an alarm signal while 
APC are collecting and capturing antigens that are in the neighborhood.   Essentially, the 
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danger signal establishes a danger zone around itself.  Thus B cells producing antibodies 
that match antigens within the danger zone get stimulated and undergo the clonal 
expansion process.  Those that do not match or are too far away do not get stimulated.  In 
general, the danger signal may be a ?positive? signal (for example heat shock protein 
release) or a ?negative? signal (for example lack of synaptic contact with a dendritic 
antigen-presenting cell). They also revised Matzinger?s [Matzinger 1994] view of danger 
theory as shown in Figure 4.5.  They added a fourth signal (signal 3) which is sent by Th 
to other APCs in response to detecting bacteria and being under stress.  These APCs then 
are responsible for sending signal 2 to Tk cells.   APC not only receives signal 3 from Th 
cells but also can receive it from viruses.  
 
Figure 4.5. Modification of the Danger theory viewed as immune signals [Aickelin 
and Cayzer 2002] 
 
4.6.3.1. Antigen Presenting Cells (APCs) 
It is believed that danger signals are detected and processed through 
?professional? antigen presenting cells known as Dendritic cells.  Dendritic cells are 
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viewed as one of the major control mechanisms of the immune system, influencing T-cell 
responses, and acting as an interface between the innate and adaptive immune systems.  
The Danger Theory rests on the detection of endogenous signals. Endogenous danger 
signals arise as a result of damage or stress to the tissue cells.  
According to the Danger Theory, the pathogens detected are the ones that induce 
necrosis and cause actual damage to the host tissue.  It is proposed that the exposure of 
antigen presenting cells to danger signals modulates the cells? behavior, ultimately 
leading to the activation of naive T-cells in the lymph nodes.  Alternatively, the absence 
of danger signals and the presence of cytokines released as a result of apoptosis can lead 
to antigen presentation in a different context, deleting a matching T-cell.  DCs have the 
capability to combine signals from both endogenous and exogenous sources, and respond 
appropriately.   
Different combinations of input signals can ultimately lead to the differentiation 
and activation of T-cells.  DCs exist in a number of different states of maturity, 
dependent on the type of environmental signals present in the surrounding fluid.  They 
can exist in immature, semi-mature or mature forms.  Immature DCs reside in the tissue 
where they collect antigenic material and are exposed to exogenous and endogenous 
signals.  
 Based on the combinations of signals, mature or semi-mature DCs are generated 
as in Figure 4.6.  Mature DCs have an activating effect while semi-mature DCs have a 
suppressive effect [Greensmith, Aickelin and Cayzer 2005]. 
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Figure 4.6. The iDC, smDC and mDC behaviors and signals required for 
differentiation. CKs: denote cytokines. [Greensmith, Aickelin and Cayzer 2005] 
 
In Greensmith, Aickelin and Cayzer?s [Greensmith, Aickelin and Cayzer 2005] 
system,  DCs are treated as processors of both exogenous and endogenous signal 
processors.  Input signals are categorized as PAMPs (P), Safe Signals (S), Danger Signals 
(D) or Inflammatory Cytokines (IC) and represent a concentration of signal.  They are 
transformed to output concentrations of costimulatory molecules (csm), smDC cytokines 
(semi) and mDC (mat) cytokines.  The signal processing is used with the empirically 
derived weightings.  These weightings represent the ratio of activated DCs in the 
presence and absence of the various stimuli e.g. approximately double the number of DCs 
mature on contact with PAMPs as opposed to Danger Signals.  Additionally, Safe Signals 
may reduce the action of PAMPS by the same order of magnitude.  Inflammatory 
cytokines are not sufficient to initiate maturation or presentation but can have an 
amplifying effect on the other signals present.  This function is used to combine each of 
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the input signals to derive values for each of the three output concentrations, where Cx is 
the input concentration and Wx is the weight. 
In general, a DC can only collect a finite amount of antigens; therefore, an antigen 
collection threshold must be incorporated so a DC stops collecting antigen and migrates 
from the sampling pool to a virtual lymph node.  On migration to the virtual lymph node, 
the antigens contained within an individual DC are presented with the DC?s maturation 
status.  If the concentration of mature cytokines is greater than the semi-mature 
cytokines, the antigen is presented in a ?mature? context.  It is possible to count how 
many times an antigen had been presented in either context to determine if the antigen is 
classified as anomalous [Greensmith, Aickelin and Cayzer 2005]. 
The four signals PAMP, danger signals, safe signals and IC [ Greensmith, 
Twycoross and Aickelin 2006][ [Greensmith and Aickelin 2006] can be incorporated into 
a model, implementing DC, each from a different source and producing different output 
cytokines as follows: 
? PAMPS (P) are based on pre-defined signatures. Exposure to PAMPS causes an 
increase in mDC cytokines. PAMPs are suppressed by safe signals.  They cause the 
maturation of immature DCs to mature DCs through expression of ?mature 
cytokines?. 
? Danger signals (D) cause an increase in mDC cytokines. Danger Signals can also 
be suppressed by safe signals.  Danger signals have a lower potency than PAMPs. 
Danger signals are released as a result of damage to tissue cells, also increasing 
mature DC cytokines, and having a lower potency than PAMPs. 
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? Safe signals (S) cause an increase in smDC cytokines and have a suppressive 
effect on both PAMPS and danger signals. Safe signals are released as a result of 
regulated cell death and cause an increase in semi-mature DC cytokines, and reduce 
the output of mature DC cytokines.  
? Inflammatory cytokines (IC) amplify the effects of the other three signals, but are 
not sufficient to cause any effect on DCs when used in isolation.  
The DCA [Greensmith, Aickelin and Twycross 2006] is a population based 
algorithm, with a user defined number of DCs created to form a sampling pool.  While in 
the sampling pool, each DC is exposed to current signal values and selects a slot in the 
antigen store. If an antigen is present in the antigen store, the DC collects the antigen and 
ingests it in the DC internal antigen storage.  Each DC has the opportunity to sample 
multiple antigens.  For every iteration of antigen collection, each DC re-calculates its 
internal cytokine values based on the input signals received. Each antigen can be sampled 
single or multiple times.  Migration is simulated by the removal of a DC from the pool.  
At this point, the output cytokines of each DC are measured. Antigen presented by cells 
expressing mature cytokines is labeled ?mature context antigen?.  Antigen from cells 
expressing semi-mature cytokines is labeled as ?semi-mature?.  Each presented antigen?s 
context is recorded and eventually a mean antigen context value (between 0 and 1) is 
derived.   
4.6.3.2. Innate and Adaptive immunity 
In innate immunity [Twycross and Aickelin 2005; Medzhtov and Janeway 2002], 
cells are the principal actors in the immune system.  Many immune system cells have 
access to their environment on two levels: the level of antigen and the level of signals.  
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Antigens are used by the immune system to sense the structure of its environment.  The 
structure is tightly coupled to the context of the environment, which is reflected by levels 
of signals.  Signals reflect what entities are doing on a structural level.  There exist many 
differences between the innate and adaptive immune systems.  The adaptive immune 
system is organized around two classes of cells: T cells and B cells, while the cells of the 
innate immune system are much more numerous, including natural killer (NK) cells, 
Dendritic cells (DCs), and macrophages.  The environment of a cell is the tissue in which 
it is located. Tissue is formed by specialized groups of differentiated cells, and forms 
major components of organs.  Cytokines are secreted molecules which mediate and 
regulate cell behavior, two important subsets of which are tissue factors, inflammation-
associated molecules expressed by tissue cells in response to pathogen invasion, and 
chemokines, cytokines which stimulate cell movement and activation.    
Twycross and Aickelin?s [Twycross and Aickelin 2005] artificial system is based 
on populations of interacting agents where cells are seen as autonomous agents.  An 
artificial tissue, in which these agents exist provide an environment in which agents can 
interact via signaling. As well as passing signals between agents, mechanisms such as 
antigen processing and presentation to Th cells by DCs suggest the need for agents with 
the ability to ?consume? process and pass on information to other agents.  The tissue 
according to the authors should also provide the services of presenting pathogens at 
multiple levels.  In general, the innate immune system relies on sensing the behavior as 
well as structure of pathogens.   
Accordingly, to adopt danger signals (apoptosis and necrosis) which trigger 
artificial immune responses within an AIS, [Bentley, Greensmith and Ujin 
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2005] introduced the concept of artificial tissue.  The authors stressed that the tissue is an 
integral part of immune function, with danger signals being released when tissue cells die 
under stressful conditions.  They also highlighted that the tissue could play the role of 
interface between immune responses and pathogenic attacks.  The authors argued that the 
absence of artificial tissue in conventional AIS caused difficulties, with every new AIS 
needing to be ?wired? to a specific problem.  This makes it difficult to compare, analyze, 
and apply such existing AIS to new problems.  The authors proposed new tissue growing 
algorithms designed for AIS that provided generic data representations and hence 
allowed the artificial tissue to play the role of an interface between a problem and an 
immune algorithm.  The algorithms took a series of input data stream formulating the 
tissue into a specific shape by linking input data cells.  When new input data was 
provided to the tissue, the structure of the tissue changed in response.  If danger signals 
are generated in a tissue, the tissue would provide a spatial and temporal structure, 
enabling the AIS to start immune responses which were spatially and temporarily 
focused. 
Libtissue [Twycross and Aickelin 2006b] is a software system which allows 
researches to implement and analyze novel AIS algorithms and apply them to real-world 
problems and has a client/server architecture.  An AIS algorithm is implemented as part 
of a Libtissue server, and Libtissue clients provide input data to the algorithm and 
response mechanisms which change the state of the monitored system.  This client/server 
architecture separates data collection by the Libtissue clients from data processing by the 
Libtissue servers and allows for relatively easy extensibility and testing of algorithms on 
new data sources.  Libtissue is implemented as a library which allows algorithms to be 
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compiled and run on other machines with no modification.  Client/server communication 
is socket-based. AIS algorithms are implemented within a Libtissue server as multi-agent 
systems of cells.  Cells exist within an environment, called a tissue compartment, along 
with other cells, antigen and signals. The problem to which the algorithm is being applied 
is represented by Libtissue as antigen and signals.  Libtissue allows data on implemented 
algorithms to be collected and logged.  Libtissue clients are of three types: antigen, signal 
and response.  Antigen clients collect and transform data into antigen which are 
forwarded to a Libtissue server. Currently, a systrace antigen client has been 
implemented which collects process system calls (syscalls).  Signal clients monitor 
system behavior and provide an AIS running on the tissue server with input signals.  A 
process monitor signal client that monitors a process and its children and records 
statistics such as CPU and memory usage, and a network signal client that monitors 
network interface statistics such as bytes per second, have been implemented.  
Twycross and Aickelin [Twycross and Aickelin 2006a] also implemented an 
algorithm to validate Libtissue and have two types of cells, labeled type 1 and 2.  Type 1 
cells are designed to emulate two key characteristics of biological APC cells: antigen and 
signal processing. In order to process the antigen, each type 1 cell is equipped with a 
number of antigen receptors and producers.  A cytokine receptor allows type 1 cells to 
respond to the value of an external signal. Type 2 cells emulate three of the 
characteristics of biological T cells: cellular binding, antigen matching, and response to 
antigen.  To accomplish this, each type 2 cell has a number of cell receptors specific for 
type 1 cells, receptors to match antigen, and a response producer which is triggered when 
antigen is matched.  A tissue compartment is created and populated with a number of 
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type 1 and 2 cells. The tissue compartment also stores antigen and signals received from 
Libtissue clients, which provides the input data to the system.  Type 1 cells ingest antigen 
through their antigen receptors and present it on their antigen producers.  The period for 
which the antigen is presented is determined by a signal read by a cytokine receptor on 
these cells. Type 2 cells attempt to bind with type 1 cells via their cell receptors.  If 
bound, receptors on these cells interact with antigen producers on the bound type 1 cell. 
If an exact match between a receptor lock and antigen producer key occurs, the response 
producer on type 2 cells produces a response. 
Previously, the innate immunity has been modeled in a layered architecture as the 
first layer of defense, and the adaptive as the second layer.  However, Twycorss 
[Twycross 2007], models the innate immune system as the controller of the adaptive 
immune system.  Singh and Nair [Singh and Nair 2005] outline a robot controller based 
on a combination of the innate and adaptive immune systems.  They test their approach 
on a robotics problem in which a learner robot must learn to accurately follow a track.  It 
can sense when it is on the track and when it looses it. If it looses the track, it first tries to 
find it on its own and then requests the assistance of a helper robot, who will guide it 
back to the track.  The general idea is to have the learner robot learn to navigate weak 
portions of the track autonomously, without losing the track and having to be guided back 
by the helper.  The proposed immune system has two type of response governed by 
separate innate and adaptive subsystems.  As the learner travels around the track it sees 
the track through a simple onboard infrared sensor, and is able to determine when it is on 
the track, losing the track, or has lost the track.  The adaptive component uses a clonal 
selection algorithm to determine the optimal velocity when the learner senses it is losing 
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the track.  The innate immune system, which uses a behavior arbitration mechanism, is 
activated when the learner senses it has lost the track.   
The system of [Kim et al. 2005a] captures syscalls (antigens) by using a system 
call policy checker tool.  The cooperative automated work response and detection 
immune algorithm (CARDINAL) [Kim et al. 2005b] system consists of periphery and 
lymph node processes.  Both processes reside on a monitoring host and any host running 
these two processes becomes a part of an artificial body which CARDINAL monitors.  
The periphery is comprised of DCs and various types of artificial T cells and they directly 
interact with input data that exists as a part of the periphery.  DCs gather and analyze the 
input data and carry their analysis results to the lymph node.  At the lymph node, na?ve T 
cells are created which subsequently differentiate into various types of effectors T cells 
based on the input data analysis results continuously passed from DCs.  Within 
CARDINAL, effector T cells are automated responders that react to worm related 
processes in the periphery.  Effector T cells are assigned to a response target, a response 
type, and the number of peer hosts polled. Before the effector T cells migrate from the 
lymph node to the periphery, they interact with other effector T cells passed from peer 
hosts.  This interaction allows locally generated effector T cells to determine whether 
they should perform assigned types of responses or not, and the numbers of peer hosts to 
be polled if they decide a response is appropriate.  
The work of Burgess [Burgess 1998] is inspired by the Danger Model.  
Dangerous programs are detected by the damaging effects they have on the system. 
Burgess makes the analogy between program termination and biological apoptotic or 
necrotic cell death.  Programs that terminate normally usually generate a SIGCHILD 
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signal, whereas programs that terminate abnormally often generate a SIGABRT or 
SIGSEGV signal. Normal or abnormal process termination signals can be seen as similar 
to signals produced by biological cells undergoing apoptosis or necrosis respectively.  
Burgess has developed Cfengine [Burgess 2000], an autonomous agent and a middle-to-
high level policy language for building expert systems to administrate and configure large 
computer networks.  In Burgess?s adapted danger model, emphasis of AIS are put on an 
autonomous and distributed feedback and healing mechanism, triggered when a small 
amount of damage could be detected at an initial attacking stage.  Cfengine automatically 
configures large numbers of systems on a heterogeneous network with an arbitrary degree 
of variety in the configuration.  After a human administrator initially specifies 
configuration policies at a very general level using an expert system shell, the system 
automatically monitors the state of each system and adapts specified policies.  Any 
change in a policy immediately triggers the modification of other policies affecting 
different hosts.  An agent framework which employs an expert system that locally 
optimizes the maintenance of each local host in a distributed environment is used.  
[Burgess 2000; Burgess 2001] reports that using Cfengine would save administrator?s 
time, scales well and imposes minimum load.  When Cfengine runs, it applies a 
configuration policy suitable for the classes of monitoring hosts and resources.  The class 
based generic policy is then locally optimized as Cfengine continues to change the policy 
depending on what is locally observed.  
A sophisticated anomaly detection engine was added recently to Cfengine along 
with several new features [Burgess 2002; Burgess 2004a; Burgess 2004b].  A statistical 
filter using a time-series prediction was used to detect the significance of deviation.  The 
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symbolic content of observed events determines how the system should respond.  A 
statistical anomaly was considered a danger signal and the content of the observed events 
characterizes the internal degree of the signal.  Scalability of the anomaly detection 
component is increased by incrementally updating the mean and variance of the sampled 
events.  Usually events may represent the number of users, the number of processes, 
average utilization of the system (load average), and number of incoming and outgoing 
connections based on each service.  Furthermore, [Begnum and Burgess 2003] extended 
Cfengine by employing the mechanism from pH [Somayaji 2002].  They combined 
signals from the two systems and intended that pH would be able to adjust its monitoring 
level based on inputs from Cfengine, and Cfengine would be able to adjust its behavior in 
response to signals from pH. 
[Sarafijanovic and Le Boudec 2004] extended their earlier work on mobile ad-hoc 
networks [Le Boudec and Sarafijanovic 2003; Le Boudec and Sarafijanovic 2004; 
Sarafijanovic and Le Boudec 2003] and considered packet loss in the network as a danger 
signal.  In their system the danger signal is used to stop the relevant antigens entering the 
NS process.  The sequences collected at the nodes belonging to the route at the time and 
where the packet loss is observed are considered as non-self antigens.  These non-self 
antigens are not passed to the detector generation process of the NS algorithm. In 
addition, danger signals are used as co-stimulation signals confirming successful 
detection through a detector.  Good performing detectors become memory detectors.  
Their results indicated that the use of danger signals strongly impacted on the reduction 
of false positive error rates and that adding memory-detectors also improved detection 
rates. 
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Pagnoni and Visconti?s [Pagnoni and Visconti 2005] NAIS intrusion detection 
system is inspired by innate immune mechanisms.  Their immune system is as a 
multilayer defense system, and the innate immune system as the first line of defense 
which is able to recognize self quickly.  Their system compiles a list of all observed 
process names during a training period containing only normal usage.  A set of ?digital 
macrophages? is then created which monitor the system and are activated and generate an 
alert when they observe any previously unseen process name.  
4.6.4. Other Algorithms 
Although negative selection and the danger theory are the most popular 
approaches in AIS for intrusion detection, some researchers choose to create AIS based 
on alternative ideas.  [Forrest et al. 1996] aimed to build an IDS based on an explicit 
notion of self within a computer system.  The system was host-based, examining 
specifically privileged processes.  The system collected self-information in the form of 
root user sendmail (a popular UNIX mail transport agent) command sequences to 
construct a database of normal commands.  Then, sendmail commands were examined 
and compared with entries in this database. The time complexity for this operation was O 
(N) where N is the length of the sequence.  A command-matching algorithm was 
implemented and compared with the defined behavior in the database.  Intrusions were 
detected when the level of mismatched exceeded a predefined threshold value.  
[Hofmeyr, Forrest and Somayaji 1998] worked on improving anomaly-based IDS.  
Misbehavior in privileged processes was examined and system call traces were presented 
in a window of system calls, a value of six selected by a trial-and-error.  This window 
was compared against a database of normal behavior, stored as a tree structure, and then 
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compiled during a training period. If a deviation from normal behavior was seen, then a 
mismatch was generated.  A sufficiently high level of mismatches generated an alert.  
The system was able to detect all intrusions, scaled well as well as being able to the find 
the optimum sequence length and mismatch threshold.  The results suggested that this 
approach could work using data from both real and controlled environments.  
[Stillerman, Marceau and Stillman 1999] introduced an immunity-based intrusion 
detection approach that was particularly applicable to Common Object Request Broker 
Architecture (CORBA) applications.  CORBA is a popular common messaging middle-
ware that enables the communication of distributed objects for distributed applications.  
The authors employed the same approach reported in [Hofmeyr, Forrest and Somayaji 
1998] to detect a misuse attacks performed by a legal user of the system.  The 
experimental results showed that the system was able to detect anomalies caused by this 
attack without high false positive error rates.  
[Dasgupta 1999] provided the conceptual view and a general framework of a 
multi-agent anomaly based intrusion detection system and response in networked 
computers.  The immunity based agents in the system roamed around nodes and 
monitored network situation.  Each agent can recognize others activities and can take 
appropriate actions according to its predefined security policies. The agent can adapt to 
its environment dynamically and can detect novel and known attacks.  Network activities 
were monitored on the user, system, process and packet levels.  
4.7. AIS Based Intrusion Detection Systems ? Summary 
 
There are several systems implemented utilizing one or more immune-inspired 
algorithms or concepts. Table 4.1. summarizes the relationship between artificial immune 
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algorithms employed to implement different AIS systems and the corresponding 
biological immune features that inspired such development [Kim et al. 2007].  
Table 4.2. presents the AIS based IDSs coupled with the artificial immune 
algorithms and concepts that were used.  
In general, the most commonly used mean of implementing an immune system is 
through the use of a self-non-self model.  
 
Human Immune 
Features Artificial Immune Algorithms/Concepts 
Distributed  Idiotypic Immune Network, Multi-Agent Systems, Negative Selection 
Multi-layered  Multi-Agent Systems, Co-Stimulation 
Self-Organized  Gene Library Evolution, Clonal Selection, Negative Selection, Local Sensitivity by Cytokine 
Lightweight  Memory Cells, Imperfect Detection, Dynamic Cell Turnover 
Diverse  MHC(Permutation Mask) 
Disposable  Cell Life Span,  
Self/Non-Self 
Detection  Negative Selection, Tolerization Period 
 
Table 4.1. The Relationship between Biological Immune Features and Artificial 
Immune Algorithms [Kim et al. 2007] 
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[Forrest et al.  1996]                X 
[Hofmeyr, Forrest 
and Somayaji 1998]                X 
[Hofmeyr 1999]   X X   X X X X X X X   X 
[Balthrop, Forrest 
and Glickman 2002; 
Balthrop et al. 2002]  
 X X    X X X X X    X 
[Kephart 1994; 
Kephart et al. 1998]   X      X       X  
[Burgess 2000; 
Burgess 
2001; Begnum and 
Burgess 2003] 
X  X           X X 
Table 4.2. Summary of immune-based algorithms used by the complete systems 
[Kim et al. 2007] 
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CHAPTER 5 
 INVESTIGATING INTRUSION DETECTION SYSTEMS THAT USES TRAILS 
OF SYSTEM CALLS 
5.1. Introduction 
Intrusion detection using trails of system calls has been studied extensively over 
the years. Several immune-inspired learning based approaches for host-based intrusion 
detection have been developed especially for fixed length subsequences or patterns 
[Forrest et al. 1994] [Forrest et al. 1996] [Forrest, Hofmeyr and Somayaji 1997] 
[Hofmeyr and Forrest 2000] [Hofmeyr, Forrest and Somayaji 1998] [Warrender, Forrest 
and Pearlmutter 1999].  For normal patterns, behavior can be generated by executing an 
application under various normal scenarios.  In such approaches anomalous behavior is 
detected by analyzing sequences of system calls against normal behavior. 
System-calls representing normal behavior are grouped into sequences and a 
database is constructed and patterns are stored, for example, as a tree during training.  
During detection phase, sequences of system calls are compared to this database using a 
Hamming distance metric, and a sufficient number of mismatches generate an alert.  No 
user definable parameters are necessary, and the mismatch threshold is automatically 
derived from the training data. [Somayaji 2000] developed the immune-inspired process 
homeostasis (pH) intrusion prevention system which detects and actively responds to 
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changes in program behavior in real-time.  In his method, sequences of system calls are 
gathered for all processes running on a host and compared to a normal database using a 
similar immune-inspired model.  However, if an anomaly is detected, execution of the 
process that produced the system calls will be delayed for a period of time.  Similar to the 
process of generating fixed length detectors, variable length patterns [Jiang, Hua and Oh 
2003] [Jiang, Hua and Sheu 2002] [Wespi, Dacier and Debar 1999] [Wespi, Dacier, 
Debar 2000] can be generated to represent normal behavior. 
Many proposals for host-based anomaly intrusion detection can be found in 
literature. There are those that are based on system call sequences [Forrest et al. 1994][ 
Forrest et al. 1996][ Hofmeyr, Forrest and Somayaji 1998][Somayaji 2002][ Somayaji 
and Forrest 2000][ Warrender, Forrest, and Pearlmutter 1999][ Wespi, Dacier and Debar 
2000], data mining [Lee and Stolfo 1998][ Lee, Stolfo, and Mok 1999], neural networks 
[Ghosh, Schwartzbard and Schatz 1999], finite automata [Michael and Ghosh 2000], 
hidden Markov models [Ourston 2002], and pattern matching in behavioral sequences 
[Lane and Brodley 1997][ Lane and  Brodley 1999]. 
5.2. Experiment Setup 
Three systems that are based on system call sequences are chosen and are 
implemented with Microsoft Visual Studio 2005 as a win32 console application.  
Sequence method based IDS, lookahead-pairs method based IDS and variable length with 
overlap relationship method based IDS have been implemented.  For off-line testing of 
the implemented algorithms in this dissertation, the login application was investigated 
and its input data sets for both training and testing were obtained from the website of the 
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University of New Mexico (http://www.cs.unm.edu/~immsec).  The login data set was 
used to detect Trojan horse attacks.  
At this web site there are several trace files.  Each trace is the list of system calls 
issued by a single process from the beginning of its execution to the end. Trace lengths 
vary widely because of differences in program complexity and because some traces are 
daemon processes and others are not.  Each trace file (*.int) lists pairs of numbers, one 
pair per line.  The first number in a pair is the PID of the executing process, and the 
second is a number representing the system call.  Note that there may be multiple 
processes within a single file, and they may be interleaved.  
Data input pre-processing was conducted on these files to make them suitable for 
processing by the three systems.  To ensure unity across results, the same files were 
inputted to the three systems in the same order and in the same format.  There were two 
normal execution logs of the login application. Each log consists of the traces of multiple 
processes interleaved in the same log file. In general, each line in the log file listed pairs 
of numbers.  The first number is the PID of the executing process and the second number 
is the ID of the system call.  We performed pre-processing to the two log files to group 
entries of the same PID together in one file in the same order they appeared in the 
original log file.  As a result, the first log contained 16 traces and the second contained 8 
traces. For example, the log files resulted in several files such as int_509.txt, int_531.txt, 
int_625.txt, etc. where ?int? indicates that the file hold integer values.  The number, such 
as ?531?, is the PID and ?.txt? is the file type.  Furthermore, the file ?int_531.txt? holds 
only integer values of the system calls that have been carried out by the process with the 
PID= 531.  All traces were used to train the 3 implemented systems and to generate their 
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pattern databases. To test the systems, a stricter test of Trojan horse attack that was 
designed by the University of New Mexico called ?home-grown? was used.  During 
evaluation, the testing input file is read one system call at a time.  It goes through a pre-
processing stage which translates a system call to its corresponding ID and checks its 
availability in the pattern DB. 
5.3. Sequence Profile Method 
5.3.1. Background Information 
According to [Forrest et al. 1996] [Hofmeyr, Forrest and Somayaji 1998], a set of 
system call sequences that can be produced by an application can be specified.  These 
sequences are determined by the ordering of system calls in the set of the possible 
execution paths through the program text during normal execution. Despite being huge, 
the short range ordering of system calls appears to be consistent, and can be used to 
define normal behavior.  To build up the normal database, a window of size k is slid 
across the trace of system calls recording which system call follow which within the 
sliding window.  For example, the sequence of system calls {open, read, mmap, mmap, 
open, getrlimit, mmap, close} with a window size k=4 will produce a database shown in 
Table 5.1. In general, the input sequence of system calls will be scanned, one system call 
at a time, storing the current system call and a number of system calls up to window size 
k following this current system call.  Each sub-sequence is stored as a row in a temporary 
table until all sequences have been processed.  Entries (rows) in the table may appear 
more than once, such repeated entries are removed, keeping only one instance of the sub-
sequence.  Furthermore, entries starting with the same system call are grouped together as 
shown in Table 5.2.  Finally, entries in the final table are stored in a tree structure.  Each 
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current system call is the root of the tree and the children of the root are expended 
depending on which system call appears next while training. .   
In the testing phase, when comparing against the normal system call profile, the 
sequence {open, fstat, mmap, execve} will be signaled as anomalous because this 
sequence is not listed in the normal database.  There are many ways to reject this 
sequence, depending on the security requirements of the application that is monitored.  
Usually a mismatch threshold is associated with anomaly identification. For example, 
with a window size k = 4 and the sequence {open, fstat, mmap, execve}, four threshold 
values could be employed depending on how many mismatch system calls within the 
sequence should be anomalous to flag an intrusion.  If we have high security 
requirements, only one anomalous system call within the sequence will flag an intrusion.  
However, if we are more lenient, then 2 or even 3 system calls can be flagged as a 
mismatch and still not be considered as an intrusion.   
 
Current system call Position 1 Position 2 Position 3 
open read mmap mmap 
 Read Mmap Mmap Open 
Mmap Mmap Open  Getrlimit 
Mmap Open  Getrlimit Mmap 
Open Getlmimit Mmap close 
getrlimit mmap close  
mmap close    
close       
Table 5.1. Expanded database produced when K= 4 and for the normal sequence 
{open, read, mmap, mmap, open, getrlimit, mmap, close} [Forrest et al. 1996][ 
Hofmeyr, Forrest and Somayaji 1998]. 
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Current system call Position 1 Position 2 Position 3 
Open read mmap mmap 
  getrlimit mmap close 
Read mmap mmap open 
Mmap mmap open getrlimit 
  close     
  open getrlimit mmap 
Getrlimit mmap close   
Close       
Table 5.2. Grouping entries that start with the same system call [Forrest et al. 1996][ 
Hofmeyr, Forrest and Somayaji 1998]. 
 
5.3.2 Implementation 
The pattern generation idea was adapted from [Forrest et al. 1996]. Forrest et al. 
stored their pattern normal database as a tree; however our normal patterns- database is 
implemented as a hash table of the size of NUMBER_SYSCALLS representing the total 
number of system calls.  This number can be increased and decreased as desired with no 
effect on our implementation.  Each system call is mapped to an entry in the hash table. 
Each entry in the table is a pointer to a linked list of all patterns starting with this system 
call.  All sequences are of the same length which is equal to window size.   
The datasets used for training the system were obtained from the University of 
New Mexico.  However, our system has the ability to perform a pre-processing stage of 
translating the system call sequences to their corresponding PID.  This is achieved by 
reading a system call in its original form and translating it according to a hash table to its 
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corresponding PID.  The content of the translation hash table is also available at the 
university?s website.  
The steps performed in the training phase are as follows: 
1.  Input training files were read one at a time and either processed immediately or 
stored in a linked list of linked lists to allow easier processing.  The first linked 
list points to the first system call of each training file. Then the content of each 
file is stored in another linked list. Storing input in such a data structure is not 
necessary but facilitates the processing of the input data.  
2.  A 2 dimensional array is created to store the subsequences generated when 
applying the sequence method concept depending on a pre-specified window size.  
The number of columns of this 2D array is equal to the window size and the 
number of rows is proportional to the number of system calls in all training files 
and window size. 
3. After filling the initial database with the input training file, the entries in the table 
are scanned to remove redundant entries.  
4.  Finally, the content of the table are stored in a hash table data structure similar to 
Figure 5.1.  The size of the hash table is equal to the number of system calls that 
can be generated by an application.  Each entry in the table is a pointer to a linked 
list of a data structure (a 1 dimensional array whose size is equal to the window 
size) and a pointer to the next pattern (sub-sequence).  Entries are added to the 
hash table as appropriate.   
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Figure 5.1.  Hash table holding the sequence method profile entries. All entries are 
of equal size and are equal to the window size. 
 
The steps performed in the testing phase are as follows: 
1. Start logging testing activities such as time, the subsequence currently under 
consideration, detection rate, etc.  
2. Open the log file containing intrusive signatures for reading. 
3. We read one system call at a time until a subsequence of appropriate length (equal 
to window size) is reached.  
4. Compare the current subsequence with entries in the normal database and if it 
does not appear in the normal database, we increment a counter representing the 
threshold of maximum read mismatches.  The system can display mismatches as 
they are discovered, or display a mismatch if the total number of mismatches 
reaches to a threshold.  
5. Finally, when we finish processing the tested log file we display the following:  
square4 Testing duration. 
square4 Number of sequences handled while testing.  
square4 Number of sequence anomalies. 
 
 
 
 
 
 
256 
1 
2 
3 
4 
5 
4   6  90  90 
1  44  90   2 1  40  33 21 
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square4 Mismatch anomaly which indicates the percentage of mismatches with regard 
to the total number of sequences handled while testing the system.  
square4 Number of sequences in the normal database. 
square4 Space cost while running the normal database. 
square4 Space cost while saved to disk of the normal database. 
The following were considered when implementing the system: 
square4 In our experiments, we have scanned the entire log testing file and counted how 
many times intrusive instances (mismatches) had occurred.  Afterwards, we 
displayed the mismatch anomaly value which is equal to the total number of 
mismatches found divided by the total number of sequences handled while 
testing. 
square4 In the hash table of the normal database, each entry points to a linked list of all 
possible normal patterns seen while training the system.  This linked list will be 
searched completely before deciding if there is a mismatch or not. If, for example, 
the current tested sequence appears to be similar to a sequence in the normal 
database but disagree with the last or middle system call.  A mismatch will not be 
declared unless it is the last tested sequence in the linked list.  This is because 
even though this sequence results in a mismatch, another sequence matching the 
tested sequence may exist afterwards.  
Sample code of the implemented sequence method IDS can be found in appendix A.  
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5.3.3. Performance  
In general, there is no correlation between the actual number of system calls in the 
input training file and the number of sequences in the normal database.  This is because 
repeated patterns will be removed from it. 
From table 5.3., we noted that the number of sequences increases as the window 
size increases but does not follow a linear pattern.  Originally, the number of patterns in 
the database decrease by one as the window size increases by one since more system calls 
builds a pattern and fewer patterns are required.  This is evident from the log file 
generated by our system.  A sample of the output of the testing log files can be found in 
Appendix B.  In this log file we display the number of rows (patterns) before removing 
redundant data and after.  As we increase the widow size from 3 to 4, the number of 
patterns before removing redundant data decrease by 1 and the number of patterns after 
removing redundant data increase.  For the input file int_509.txt, as shown in Table 5.4., 
and as the window size is increasing from 3 to 5 we find that the number of rows 
decreases by one.  However, since we are building an efficient data base of normal 
behavior and because a number of similar patterns exist in the same input training file 
and among other training files, the final number of rows that are added to the database are 
different.  Such number is affected by the number of redundant rows.  
From table 5.3., the space cost while saved to disk is less than while running 
because we are saving integer values to a file whereas while running we need to consider 
the hash table and structures holding pattern information.  The number of sequences in 
the testing file decreases by one as the window size is increased by one because removing 
similar entries are not performed here.  
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The mismatch % is calculated as the number of total number of mismatches 
divided by the total number of sequences handled while testing.  The reason the 
mismatch % threshold increases as the window size increases is because the system call 
that causes a mismatch starts to appear in more sequences created from the testing file.  
For example, suppose we have the following normal sequence {1, 2, 3, 4, 5, and 6} and 
testing sequence {2, 9, 3, and 4} the output produced when performing sequence method 
intrusion detection is shown in Table 5.5...  As the window size increases, the system call 
causing the mismatch starts to appear in more rows from the testing file and the number 
of sequences in the testing log file tends to decrease.  Therefore, the mismatch % which is 
equal to the number of mismatches divided by the number of sequences in the testing log 
files starts to increase. 
Figure 5.2. shows an increase in the space cost of the system in both ?while 
running? and ?while saved to disk? as the number of sequences (patterns) stored in the 
normal database increases.  In general, the space cost while running is higher than while 
saved to disk because while running we are considering the space cost of the hash table, 
linked lists, and arrays used to store the different data structures of the normal database.  
However, we are only saving to disk the content of the patterns which is a list of integer 
values.  When the number of sequences is less than 400, the increase in space cost is 
slower than the increase in space cost as.  This is because the size of the array holding 
each sequence is larger and the number of arrays required to hold the sequences is larger.  
Meaning that more arrays are needed to store the pattern sequences and larger arrays are 
needed to hold the longer sequences as shown in table 5.3.  
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# 
sys 
calls 
/ W 
# sequences 
in normal 
DB 
space cost 
while 
running 
(bytes) 
space cost while 
saved to disk 
(bytes) 
# sequences  in 
testing 
Mismatch % 
threshold 
2 142 4548 1136 1349 1.18 
3 199 12740 2388 1348 2.22 
4 235 22564 3760 1347 3.41 
5 264 33796 5280 1346 4.46 
6 291 46564 6984 1345 5.65 
7 318 61060 8904 1344 6.84 
8 341 76388 10915 1343 8.64 
9 359 91908 12924 1342 10.13 
10 375 108004 15000 1341 11.41 
11 389 124484 17116 1340 12.46 
12 402 141508 19296 1339 13.52 
13 413 158596 21476 1338 14.42 
14 423 175972 23688 1337 15.26 
15 433 193988 25980 1336 16.09 
16 441 211684 28224 1335 16.85 
17 447 228868 30396 1334 17.61 
18 451 245348 32472 1333 18.3 
19 455 262084 34580 1332 18.99 
20 459 279076 36720 1331 19.61 
21 461 295044 38724 1330 20.15 
22 463 311140 40744 1329 20.69 
23 465 327364 42780 1328 21.23 
24 467 343716 44833 1327 21.7 
25 469 360196 46900 1326 22.17 
26 471 376804 48984 1325 22.64 
27 473 393540 51084 1324 23.11 
28 475 410404 53200 1323 23.58 
29 477 427396 55332 1322 24.05 
30 479 444516 57480 1321 24.53 
31 481 461764 59644 1320 25 
32 483 479140 61824 1319 25.39 
Table 5.3. Sequence method performance across several window sizes. 
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Figure 5.2. Space cost while running and while saved to disk as the number of 
sequences increases for the ?login? application dataset with sequence method. 
 
 
Window size # rows before removing 
redundant data 
# rows after removing 
redundant data 
3 362 181 
4 361 203 
5 360 226 
Table 5.4. number of rows before and after removing redundant entries while 
running sequence method IDS across different window sizes. 
 
 
W Rows in 
normal 
DB 
Rows from 
testing file 
Number of 
mismatches 
Number of 
sequences in 
testing log file 
Mismatch 
% 
2 1,2 
2,3 
3,4 
4,5 
5,6 
2,9 
9,3 
3,4 
2 3 66% 
3 1,2,3 
2,3,4 
3,4,5 
4,5,6 
2,9,3 
9,3,4 
2 2 100% 
Table 5.5. Example showing how the window size affects the value of mismatch % 
while running sequence method IDS. 
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5.4. Lookahead-Pairs Profile method 
5.4.1. Background Information 
Somayaji [Somayaji 2002] attempted to employ a different approach to store the 
sequences of system calls, called the lookahead-pairs method. With this technique a 
profile of the program's behavior consists of the pairs formed by the current and a past 
system call(s) depending on the window size chosen.  For example, with a window size w 
= 4 and the trace of system calls :{ execve, brk, open, fstat, mmap, close, open, mmap, 
munmap} the generated subsequences are shown in Table 5.6...  In Table 5.7., the 
sequence representation is compressed by joining together lines with the same current 
value.  From this table, three sets of lookahead pairs are generated creating the 
lookahead-pairs profile database that is shown in Table 5.8...  It consists of pairs of the 
current system call and the system calls in position 1 (placed in row =2) and called set 0, 
pairs of the current system call and the system calls in position 2 (placed in row =3) and 
placed in set 1, and pairs of the current system call and the system calls in position 3 
(placed in row =4) and placed in set 2. 
This table is then stored using a fixed size bit array(s). Each set (row) in the table 
is stored in a bit array of the size of (NUM SYS CALLS * NUM SYS CALLS).  The 
complete database is stored in multiple array equal to window size and the size of each 
array is equal to (NUM SYS CALLS * NUM SYS CALLS).  To efficiently take 
advantage of bit manipulation of bytes on Linux and UNIX machines, a window size of 9 
or 17 is preferred.  This is because a window size of 9 means that we will end up with 8 
sets that can be stored in a byte array = 8 bit arrays.   
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In the detection phase, the sequence {open, fstat, mmap, execve} will be 
identified as anomalous because the lookahead pairs (execve, mmap) (row = 2), (execve, 
fstat) (row = 3), and (execve, open) (row = 4) are all not present in table. 
 
 
Table 5.6. a sample profile generated for the system call sequence {execve, brk, 
open, fstat, mmap, close, open, mmap, munmap}     [Somayaji 2002].  
 
 
  
Table 5.7. a sample lookahead pair profile, with the pairs represented implicitly. 
Note that there are multiple entries in the open and mmap rows [Somayaji 2002]. 
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Table 5.8.  A sample lookahead pair profile, with the pairs represented explicitly 
[Somayaji 2002]. 
 
5.4.2. Implementation 
The patterns? storage idea was adapted from [Somayaji 2002] where all possible 
lookahead-pairs patterns can be stored in (window size - 1) bit arrays.  An ideal window 
size in Somayaji?s implementation was 9 since 9 -1 = 8 sets which can be stored in a c x c 
byte array, where c is the number of system calls.  On the other hand, our implementation 
took advantage of the bit array in the <bitset> library. Here the values can be stored in a 1 
dimensional array format and there is no limitation on the number of sets to store or 
windows size.  
The formula used to access individual points in the array is ((row value -1) * 
WINDOW_SIZE) + column value + (WINDOW_SIZE * WINDOW_SIZE * array 
number).  Figure 5.3. shows how this formula is used to find the correct corresponding 
cell in a 1 dimensional array that is equivalent to a value in one of the 2 dimensional bit 
arrays.  
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Figure 5.3. Example explaining the mapping equation from one entry in a two 
dimensional array to a one dimensional array. 
 
If at a given set there is a relation between two system calls, the location is set to 
ON.  At testing time, this location is checked, if in the testing profile two system calls 
show that there is a relation but their connecting location is set to OFF an intrusion is 
detected. 
In general the following steps are carried out when training the system: 
1. Input training files are open for processing. 
2. We read one file at a time and we read a sequence whose length is equal to 
WINDOW SIZE.  
3. Ws start creating the pairs by pairing the current system call and the previous 
system calls. Removing redundant entries is not important because if a repeated 
entry is processed it will set the cell of the 1 dimensional array again which has no 
effect. 
1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 
17 18 19 20 
21 22 23 24 
25 26 27 28 
29 30 31 32 
Set 0 
Set 1 
Location = ((row value -1) * WINDOW_SIZE) + column 
value + (WINDOW_SIZE * WINDOW_SIZE * array 
number)       
Example 1:  
(Location 6 in 1D) ?= (row : 2 , col: 2, set: 0) 
((2-1) * 4 ) + 2 + (4*4*0) = 6  (TRUE) 
Example 2: 
(Location 24 in 1D) ?= (row: 2, col : 4, set 1) 
((2-1) * 4) + 4 + (4*4*1) = 24 (TRUE) 
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In the testing phase the following will be performed: 
1. The testing file is open for reading. We conduct, on line processing to this file by 
reading and creating a subsequence equal to WINDOW SIZE, one subsequence at 
a time.  
2. We generate the associated pairs and then test them against the database. If the 
cell is not set then there is a mismatch. 
Sample code of our implementation to lookahead-pairs method intrusion detection 
system can be found in Appendix C.  Sample of a log file of running the lookahead pairs 
method based IDS can be found in Appendix G.  
5.4.3. Performance  
Table 5.9. shows the performance of the lookahead-pairs method when the 
window size is increased from 2 to 32.  The number of pairs in the normal DB and testing 
file and the space cost of maintaining the normal database while running and saved to 
disk increases as window size increases.  In general, the number of pairs of the normal 
database increases as the window size increases and it depends on how the data in the 
normal file relate.  If more entries are similar then the number of pairs tends to be 
smaller. Space cost while running is equal to the size of bit array used. Different from the 
original implementation of lookahead-pairs method, our implementation does not favor a 
specific window size.  The space cost while saved to disk is smaller than while running 
because in our implementation we are only storing the locations that are set to 1.   Of 
course, if the locations that are set to one increase then the cost while saved to disk will 
increase having no affect on cost while running.  The number of pairs being tested 
increase as the window size increases because as the sequence length under consideration 
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gets longer the number of pairs generated for it also increases.  Finally, the mismatch % 
is equal to the number of pairs that raise a mismatch divided by the total number of pairs 
handled while testing.  
Figure 5.4. shows an increase in the space cost of the system in both while 
running and while saved to disk as the number of pairs stored in the normal database 
increases.  The slope of increase for the space cost while running is higher than while 
being saved to disk.  This is because while running, the space cost is equal to the number 
and size of arrays used to store the relationship between pairs.  This includes array 
locations that are set to 1 (there is a relationship between associated pairs) and set to 0 
(there is no relationship between associated pairs).  However, the space cost while saved 
to disk is only saving the locations that are set to 1 which is dependent on how many 
locations in the arrays are set to one.  The increase in number of pairs is also related to 
the window size as shown in table 5.9. 
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Figure 5.4. Space cost while running and while saved to disk as the number of pairs 
increases for the ?login? application dataset with lookahead-pairs method. 
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# sys 
calls 
/ W 
# pairs in 
Normal DB 
space cost 
while 
running 
(bytes) 
space cost while 
saved to disk 
(bytes) # pairs in testing 
Mismatch % 
threshold 
2 344 8192 1376 1349 1.18 
3 687 16384 2748 2697 1.44 
4 1029 24576 4116 4044 1.66 
5 1370 32768 5480 5390 1.95 
6 1710 40960 6840 6735 2.29 
7 2049 49152 8196 8079 2.65 
8 2387 57344 9548 9422 3.01 
9 2724 65536 10896 10764 3.39 
10 3060 73728 12240 12105 3.77 
11 3395 81920 13580 13445 4.06 
12 3729 90112 14916 14784 4.34 
13 4062 98304 16248 16122 4.56 
14 4394 106496 17576 17459 4.78 
15 4725 114688 18900 18795 4.91 
16 5055 122880 20220 20130 5.01 
17 5384 131072 21536 21464 5.12 
18 5712 139264 22848 22797 5.26 
19 6039 147456 24156 24129 5.37 
20 6365 155648 25460 25460 5.49 
21 6690 163840 26760 26790 5.56 
22 7014 172032 28056 28119 5.71 
23 7337 180224 29348 29447 5.84 
24 7659 188416 30636 30774 5.97 
25 7980 196608 31920 32100 6.11 
26 8300 204800 33200 33425 6.26 
27 8619 212992 34476 34749 6.4 
28 8937 221184 35748 36072 6.56 
29 9254 229376 37016 37394 6.65 
30 9570 237568 38280 38715 6.78 
31 9885 245760 39540 40035 6.89 
32 10199 253952 40796 41354 6.99 
Table 5.9. lookahead pairs method performance across several window sizes. 
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5.5. Variable-Length With Overlap- Relationship Profile Method  
5.5.1. Background Information 
Due to the limitations found with fixed length patterns, Debar et al. [Debar et al. 
1998] [Wespi, Dacier and Debar 1999] [Wespi, Dacier and Debar 2000] presented a 
novel technique to build a table of variable length patterns based on the TEIRESIAS 
algorithm [Rigoutsos and Floratos 1998].  The system comprises two main parts: an off-
line part, which corresponds to training the system and an on-line part, which 
corresponds to the detection system.  In the training phase, system calls are sorted and 
then translated to an internal format for processing.  Consecutive occurrences of the same 
character are aggregated and duplicate sequences are removed. Finally, the pattern table 
is generated by the pattern-extraction module. 
Jiang et al. [Jiang, Hua and Oh 2003] [Jiang, Hua, and Sheu 2002] proposed an 
intrusion detection system employing variable-length patterns with overlap relationship.  
It modifies some limitations in the TEIRESIAS-based method in that: it refines the 
definition of maximal patterns, identifies overlap relationships between patterns (inter- 
and intra-pattern anomalies), and does not need a look-ahead threshold. The system 
consists of two components: offline training and online detection parts.  Each component 
consists of the following modules:  
1. Data collection module: for capturing and recording sequences of system calls. 
2. Data preprocessing module: to translate system calls to its corresponding ID 
and perform aggregation on data. 
3. Pattern extraction module: to extract maximal patterns. 
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4. Pattern overlap relationship identification module: organize patterns into 
adjacency lists and indicate overlap relationship between patterns. 
5. Pattern matching module: to identify any deviation. 
In pattern extraction, the training sequences are scanned for each never-seen-
before system call e.  Then the maximal patterns starting with e are identified in an 
iterative manner.  The algorithm first identifies instances of a corresponding system call 
and assigns each instance an index denoted by a parenthesis as shown in Figure 5.5.(a) 
for the system call 4.  Initially, every instance of each system call e forms a 1-pattern 
instance. Each i-pattern p is expanded to create i+1-patterns.  The instances of each of 
these patterns are stored in a data structure called pinstance set.  Then the system call 
instances immediately following each occurrence of p in the training set are inspected.  
Three mutually exclusive types of instances of p can occur:  
Type 1: the element of the pinstance set under consideration is at the end of the training 
sequence and is the last system call in its corresponding sequence. 
Type 2: the system call following the current system call in a sequence does not follow 
the same system call in the other sequences. 
Type 3: the system call following this system call also follows at least one other instance 
of this system call. 
Both type-1 and type-2 are considered maximal pattern candidates.  Type-1 
cannot be further expanded in the forward direction.  Type-2 instances can be expanded 
into i+1-patterns, but they will not be frequent patterns. Each type-3 i-pattern instances 
can be expanded to create i+1-pattern instances.  These i+1-pattern instances are grouped 
into different pinstance sets according to their last system call. 
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Figure 5.5. Steps of extracting maximal candidate and maximal patterns [Jiang, 
Hua, and Sheu 2002]. 
 
From Figure 5.5(a), there are five instances of system call 4, labeled as 4(1), 4(2), 
4(3), 4(4), and 4(5) and they are copied into pinstance_set0 in Figure 5.5(b). From Figure 
5.5(a), 4(5) is of type 2 because it is the only one of the five pattern instances followed by 
system call 18.  System call 27 is added to the system calls in pinstance_set2 to expand 
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the remaining pattern instances into 2- pattern instances.  The same technique is applied 
until no more expansion can be performed. 
The system call sequence identified in the last pinstance_set6 is considered a 
maximal pattern.  At this point, candidate maximal patterns are examined.  To be 
classified as a maximal pattern, the pattern should 1) not be a subsequence of another 
maximal pattern and 2) either the system call preceding the system call in the pinstance 
set does not precede any other instance of p or it is at the beginning of the training 
sequence.  The final stage is to collect standalone instances that participate in 1-patterns 
by scanning the training sequences and output such patterns in the longest possible form. 
5.5.2. Implementation  
We adapt the variable-length with overlap-relationship profile generation idea 
from [Jiang, Hua, and Sheu 2003] [Jiang, Hua, and Sheu 2002].  In general, the process 
of generating patters is very expensive in terms of processing and memory requirements.  
However, it is only performed once and the finial generated pattern database can be 
stored and accessed by the application with no need to repeat this process for the same 
monitored application.  Simply our pattern generation model will perform similar to the 
following examples.   
Example 1:  
For the input training files: 
T1: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17} 
T2: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17, 18, 2, 5} 
T3: {4, 18, 2} 
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We will start scanning from T1 and its first system call 105.  We are looking for 
the longest maximal patterns starting with system call 105.  Finally stand alone instances 
are added to the pattern database. 
The following patterns will be added to the database: 
P1: {105, 4, 27, 17, 18, 2, 27, 17, 112, 4, 27, 17} appear at least 2 times 
P2: {18, 2} appear at least 2 times and although it appears at a subsequence of another 
pattern, it appears at the end of the training sequence.   
P3: {5} stand alone pattern because it appears one time in the training files and does not 
belong to a pattern.  
P4: {4} stand alone pattern because it appears one time in the training files and does not 
belong to a pattern.  
Example 2: 
For the input training file: 
T1: {90, 7, 2, 3, 90, 6, 1, 4, 90, 7, 2, 3, 90, 6, 1, 4, 90, 3, 5, 2, 6, 90, 3, 5, 1, 90, 3, 5, 2, 6, 
90, 90, 115} 
The system will divide the training sequence to the different pinstance 
subsequences with respect to the system call 90.  
The following are sample of the subsequences starting with the system call 90: 
{90, 7, 2, 3} barb2right (1) 
{90, 6, 1, 4} barb2right (2) 
{90, 7, 2, 3} barb2right (3) 
{90, 6, 1, 4} barb2right (4) 
{90, 3, 5, 2, 6} barb2right (5) 
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{90, 3, 5, 1} barb2right (6) 
{90, 3, 5, 2, 6} barb2right (7) 
{90} barb2right (8)  
{90, 115} barb2right (9) 
Subsequences 1, 2, 3, 4, 5, 7 are maximal sequences and one instance of the 
repeated patterns is added to the pattern database. Subsequences 6, 8 and 9 are stand 
alone sequences and are added to the pattern database. 
The final database will contain the following patterns: 
{90, 7, 2, 3} 
{90, 6, 1, 4}  
{90, 3, 5, 2, 6}  
{90, 3, 5, 1} 
{90, 90, 115} the sequences 8 and 9 are combined together since they follow each other 
in the input training file and they are collected as stand alone instances in their longest 
form.  
Several test cases were used to investigate the performance of the implemented 
system such as: 
square4 The tested sequence is normal and matches patterns in the database. 
square4 The tested sequence contains a number of mismatches. 
square4 A system call in the tested sequence may not belong to any pattern and is an 
invalid system call. This system call may appear at the beginning of the tested 
sequence or in another position. If it is found, the system will continue to the next 
system call and will start matching against other patterns in the database.  
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square4 The tested sequence may expand across several patterns in the database. This can 
be in different entries in the hash table or in the same entry.  
square4 Contiguous mismatches up to a predefined threshold that are checked against one 
pattern will be backtracked and checked against another entry.  
 Our implementation differs from [Jiang, Hua, and Sheu 2002] in that:  
1. Since we are doing extensive processing on the input training data, we decided to 
store its content in a linked list (adjacency lists) of linked lists.  Each node in the 
original linked list holds the contents of one file.  
2. Finding maximal patterns required the use of a data structure to hold the different 
values of pinstance values.  We have chosen to implement this process with a tree 
structure where the left child is a one dimensional array and the right child may hold a 
number of one dimensional arrays.  Left children are not expanded since they 
represent a maximal pattern candidate.  The right children are expanded further until 
we have a right child holding only two subsequences.  The last left child is considered 
a maximal pattern and all left children are traversed to find another possible maximal 
pattern.  A pattern p is considered maximal if there is no other pattern q that contains 
p and has the same number of occurrences. Also, if a sequence p appears as a 
subsequence of q, p can be chosen if its last system call is followed by a NULL value.  
For example, both {{4, 27, 17, NULL}, {4, 27, 17, 18, 2, NULL}} are considered 
maximal.  
3. Identifying type 2 was not simple as explained in the paper.  For example, 
identifying only one subsequence as type1 or type2 was not true.  Furthermore, even 
if one subsequence was identified as type1 or type2, this did not mean that the 
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remaining subsequences were of type3.  Type3 subsequences created disjoint groups 
where each group can be expanded and processed separately.  We handled, for 
example, the following training sequences: 
{{90 1 2 3 4}, {90 1 2 3 4}, {90 1 2 3 4}, {90 5 6 7 8}, 
{90 9 10 11 12}, {90 5 6 7 8 9 10 11}, {90 5 6 7 8 9 10 11}} 
Such sequences required that the grouped sequences of the subsequence {90 1 2 3 4} 
be completely processed. Then the system ?concurrently? process the grouped 
sequences of {{90 5 6 7 8}, {90 5 6 7 8 9 10 11}}. This process is repeated until all 
subgroups- if they exist- are processed. 
4. The previous example also introduced a situation where not only would sequences 
be grouped into subgroups but also a subgroup could be further grouped into 
subgroups.  Our solution was to insert each subgroup in a queue and process them 
until no groups exist. Figure 20 elaborates on this problem. 
5. We included a variable BELONG_TO_A_PATTERN for every system call in the 
input file, to avoid re-processing it while looking for the never-seen-before system 
call.  Meaning that a never-seen-before system call should be a system call that does 
not belong to a pattern and was not previously processed. 
6.  Patterns are stored in a hash table pointing to sequences of different lengths as 
shown in Figure 5.7. 
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(a) 
                                
(b) 
 
(c) 
 
Figure 5.6. (a) different subsequences starting with system call 90 can be expanded 
concurrently. (b) Similar subsequences are grouped together. (c) Each group of 
sequences are placed on a queue and processed until all subsequences are examined. 
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Figure 5.7. Hash table storing Variable-Length with Overlap- Relationship Profile 
Method entries. Each subsequence is of a variable size. 
 
7. In some cases a sequence will be matched with a pattern in the normal data base 
because it starts with a specific system call.  However, as we continue matching the 
rest of the string, a number of consecutive mismatches may start to accumulate.  If 
this exceeds a threshold value, for example, 2 or more, then our system will 
automatically go back to the first system call causing the mismatch and match it 
against another appropriate pattern.  In such a case we backtrack to make sure that the 
previously accepted system calls do not cause mismatches especially if they did not 
completely match the sequence.  For example, if we are testing the following 
sequence {4, 1, 40, and 3} against the database in Figure 5.7., we find that the system 
call 4 has an entry in the database.  However, as we test the remaining system calls, a 
number of mismatches will start to accumulate.  If we chose in our system to start 
checking other patterns if two consecutive mismatches happen, then we will 
backtrack to system call 1 in our input training file and then check its entry in the 
pattern database.  In this case the sequence {1, 40, and 3} does exist and only one 
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mismatch is identified which is for the system call 4.  The sample code of our 
implementation of variable-length-with-overlap-relationship method can be found in 
Appendix D and Appendix I shows the generated patterns. 
5.5.3. Performance  
The variable length with overlap relationship intrusion detection system was run 
on the datasets obtained from the website of the University of New Mexico 
(http://www.cs.unm.edu/~immsec).  The login data set was used to detect Trojan horse 
attacks. Since the patterns generated with this method are variable length, they don?t 
depend on a window size and require only one run to the program.  The data obtained 
from such a run is presented in table 5.10.  In general the total time to perform testing 
was less than 0 seconds. 32 patterns were generated holding 340 system calls.  The 
longest pattern had 43 system calls whereas the shortest pattern had only 2 system calls.  
Space cost while running is large because it needs to include the size of the hash table, 
the size of the data structure to hold the information of the pattern itself, pointers, etc.   
It is important to explain what is meant with a mismatch in our variable length 
intrusion detection system. The number of mismatches indicates how many individual 
system calls were out of place or did not exist in the correct position in their 
corresponding or appropriate pattern.  This is why a large number of mismatches resulted 
from our run to the program.  This is different from flagging a complete sequence as 
anomalous as in sequence method.  
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 parameter length 
Total testing time (seconds) 0 
maximum length 43 system calls /pattern 
minimum length 2 system calls / pattern 
Average length 22 system calls / pattern 
Size of normal DB 32 
Patterns 
Number of system calls in Normal DB 340 
Size of testing input 1350 system calls 
Space cost while running (bytes) 206848 
Space cost while saved to disk (bytes) 1360 
Number of mismatches flagged 766 patterns 
% mismatches threshold 56.74 % 
Table 5.10. Variable length with overlap relationship method performance. 
 
5.6. Comparison  
All methods were able to detect the Trojan horse attack obtained from the website 
of the University of New Mexico (http://www.cs.unm.edu/~immsec).  Table 5.11 
compares the three methods. All methods finished testing in less than a second. Window 
size 9 for both sequence and lookahead pairs methods was chosen for this comparison 
because it is the recommended in [Somayaji 2002] which is best for storing the sets in 8 
bits = 1 byte.  Although the number of patterns in the variable length method is much less 
than the remaining other two methods, the total space cost of maintaining such patterns is 
very high especially while running the program.  However, it requires the least space 
while saved to disk. Each method identifies mismatches in a different way.  In general, 
the threshold used to raise alarms can be adjusted around the mismatch %. This is equal 
to the total number of mismatches identified divided by the total number of sequences in 
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the testing file.  Both sequence and lookahead-pairs methods were run on the same 
training and testing sets while varying the window size from 2 to 32 system calls.  
 Sequence method 
(window = 9) 
Lookahead pairs 
(window = 9) 
Variable 
length 
Total testing time 
(seconds) 
0 0 0 
maximum length 9 system calls/ 
sequence 
8 pairs / sequence 43 system calls 
/pattern 
minimum length 9 system calls 
/sequence 
6 pairs / sequence 2 system calls / 
pattern 
Average length 9 system calls 
/sequence 
7 pairs / sequence 22 system calls 
/ pattern 
Size of normal 
DB 
359 sequence 2724 
pairs 
32 
Patterns 
Number of 
system calls in 
Normal DB 
3231 5448 340 
Size of testing 
input 
1342 sequences 10764 pairs 1350 system 
calls 
Space cost while 
running (bytes) 
91908 65536 206848 
Space cost while 
saved to disk 
(bytes) 
12924 10896 1360 
Number of 
mismatches 
flagged 
136 sequences 365 pairs 766 patterns 
% mismatches 
threshold 
10.13 % 3.39 % 56.74 % 
Table 5.11.  performance comparison of sequence method with a window size = 9, 
lookahead-pairs method with window size = 9 and variable length with overlap 
relationship method. 
 
The % mismatch threshold is equal to the number of mismatches flagged divided 
by the total number of sequences processed while testing.  For the sequence method if 
one system call within a pattern caused a mismatch then it is flagged as an anomaly. .  
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Figure 5.8. shows the space cost of the three systems while running.   We can 
observe that the variable-length with overlap- relationship profile method does not 
require a window size and therefore, the size of the database is the same no matter how 
many times we re-generate the training profile. However, both sequence and lookahead-
pairs methods are affected by the window size which is considered one of their 
drawbacks.  As observed in Figure 5.8., variable-length-with overlap relationship method 
will always have the same space cost. Below window size = 6 both sequence and 
lookahead pairs methods had similar space cost.  However, as the window size increases, 
lookahead pairs starts to have better space cost. At window size = 15, the variable length 
method starts to have better space cost than the sequence method and at window size = 24 
it starts having better space cost than the lookahead pairs method. 
 
Figure 5.8. Space cost while running of the structures holding the normal pattern 
DB entries of sequence, lookahead and Variable-Length with Overlap-Relationship 
Profile Methods. 
 
Space cost while running
0
100000
200000
300000
400000
500000
600000
1 4 7 10 13 16 19 22 25 28 31
Window size
by
tes
sequence
lookahead
Variable length
 105 
The order of inputting the training data files does not affect the produced database 
profiles for both sequence and lookahead methods but does affect the generated database 
profile for the variable-length method.  This is because we are scanning files for the 
never-seen-before system call and accordingly the first system call in the first file is our 
first choice.  The database patterns generated are slightly different but the detection rate 
of intrusions is not affected. 
We identify ?system-call-denial-of-service-attack? as malicious code that can 
repeatedly call the same sequence of system calls indefinitely.  We noticed that in the 
training input files available at (http://www.cs.unm.edu/~immsec), system call 90, in one 
file, has been repeated for example more than 10 times repetitively.  Furthermore, even if 
the preprocessing step is avoided and the complete sequence is processed, there is no data 
structure for holding how many times such system-call was repeated or could be 
maximally repeated.  For example, for both the sequence and the lookahead pairs 
methods, if the sequence {90,90,90,90,90,90,90,90} was accepted for processing,  the 
following database pattern entries will be generated for a window size of 4. 
90 90 90 90 
90 90 90 90 
90 90 90 90 
90 90 90 90 
90 90 90 90 
Rows 2 to 5 will be deleted because they are repeated and only one will be added 
to the normal database. 
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All variable-length-based IDSs developed [Jiang, Hua and Oh 2003] [Jiang, Hua, 
and Sheu 2002] [Wespi et al. 1998] [Wespi, Dacier and Debar 1999] [Wespi, Dacier and 
Debar 2000] perform aggregation to identical consecutive system call IDs.  This means 
that there systems cannot defeat the system-call based-denial-of-service attack.  However, 
if the step of aggregating identical system call IDs is removed, the system can generate 
one pattern that holds such information and its length is equal to the number of times this 
system call is repeated.  For example for the input training sequence {1 2 3 90 90 90 90 
90 90 90 1 2 3 1 2 3} the patterns generated with aggregation will be {{1 2 3}, {90}}.  
However, without aggregation the patterns generated will be {{1 2 3}, {90 90 90 90 90 
90 90}}.  It is difficult, however, if the system is not fully trained on all possible 
execution paths to predict - especially for some system calls - what is the allowable times 
it can be consecutively called.  It is worth mentioning that accepting such a long pattern 
sequence may not be an efficient solution since such system calls may be called less or 
more times and still be normal.  Therefore, it is important to identify such system calls 
and put a maximum allowable number of times to its repetition and accept similar 
sequences with less lengths.  This can be achieved by correctly assigning a repetition 
threshold value.  However, assume we have the following normal sequence in our DB 
{90 90 90} and the repletion threshold is 3.  If we are under a denial of service attack and 
we are infinitely reading the system call 90 it will take the system 3 times to read the 
sequence {90 90 90} before raising an alarm.  
5.7. Evaluation  
As explained in the previous sub-sections and for off-line testing of the 
implemented algorithms in this paper, the ?login? application was investigated and its 
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input data set for both training and testing were obtained from the website of the 
University of New Mexico (http://www.cs.unm.edu/~immsec).  
In this section we evaluated the system against another dataset for the ?ps? 
application obtained from the website of the University of New Mexico 
(http://www.cs.unm.edu/~immsec).  The traces of the ?ps? application contained two log 
files for normal behavior a stricter test of Trojan horse attack was designed by the 
University of New Mexico called ?home-grown?. 
Data input pre-processing was conducted on these files to make them suitable for 
processing.  In general, each log consists of the traces of multiple processes interleaved in 
the same log file.  In general, each line in the log file listed pairs of numbers.  The first 
number is the PID of the executing process and the second number is the ID of the 
system call.  We performed pre-processing to the two log files to group entries of the 
same PID together in separate files.  As a result, the first log contained 8 traces and the 
second contained 15 traces.  The system calls associated with every process where 
grouped in a separate file maintaining the order of system calls.  All traces were used to 
train the implemented systems and to generate their pattern databases.  The ?home-
grown? log file was used to test the systems.  
5.7.1. Sequence Method 
Table 5.12. show the results obtained when running the sequence method IDS on 
the ?ps? application dataset.  As the window size (number of system calls per window) 
increases, the number of sequences to be stored in the normal database increases.  The 
number of sequences in the normal DB is obtained after removing redundant entries.  The 
number of sequences depends on the number of traces collected in normal behavior, how 
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many subsequences are similar and the window size chosen.  For example, if a sequence 
is repeated several times in the normal database, the initial database will hold many 
repeated entries and the final database will be smaller.   
Suppose we have the following sequence repeated 10 times in the normal training 
sequence: {90, 5, 20, 100, and 64} with a window size w = 2, a single instance of this 
sequence will result into 4 patterns in the initial normal database.  Since we have 10 
instances of this sequence then the total number of entries in the normal database will be 
equal to 10 * 4 = 40 entries.  After removing redundant entries in the database, the 
reduced normal database will contain only 4 entries or patterns.  Therefore, the finial size 
of the normal database depends on the following:  
? The size of the original training dataset.  
? The number of repeated sequences within this dataset. 
? The window size used to generate patterns.  
These elements differ from one trace to another and from one monitored 
application to another.  In table 5.12., the space cost of the normal database while running 
and while being saved to disk increases as the window size increases since it is 
proportional to the number of sequences in the normal database.  The number of 
sequences tested decreases by one system call as the window size increases because 
repeated entries are not removed but they are processed in an online fashion (they are 
processed as they are read).   The mismatch % threshold is equal to the total number of 
mismatches read divided by the total number of sequences generated from the testing log 
file while testing.   
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# 
sys 
calls 
/ w 
# sequences 
in normal 
DB 
space cost 
while 
running 
(bytes) 
space cost while 
saved to disk 
(bytes) 
# sequences  in 
testing 
Mismatch % 
threshold 
2 55 1764 440 4339 0.89 
3 78 4996 936 4338 2.37 
4 96 9220 1536 4337 3.38 
5 109 13956 2180 4336 4.40 
6 125 20004 3000 4335 5.306 
7 142 27268 3976 4334 6.206 
8 158 35396 5056 4333 7.108 
9 175 44804 6300 4332 8.12 
10 192 55300 7680 4331 9.14 
11 209 66884 9196 4330 10.16 
12 227 79908 10896 4329 11.18 
13 245 94084 12740 4328 12.22 
14 263 109412 14728 4327 13.26 
15 280 125444 16800 4326 14.33 
16 296 142084 18944 4325 15.56 
17 312 159748 21216 4324 16.79 
18 327 177892 23544 4323 18.019 
19 343 197572 26068 4322 19.25 
20 359 218276 28720 4321 20.48 
21 374 239364 31416 4320 21.73 
22 388 260740 34144 4319 22.99 
23 402 283012 36984 4318 24.17 
24 416 306180 39936 4317 25.27 
25 430 330244 43000 4316 26.36 
26 443 354404 46072 4315 27.46 
27 456 379396 49248 4314 28.55 
28 469 405220 52528 4313 29.65 
29 482 431876 55912 4312 30.77 
30 495 459364 59400 4311 31.524 
31 508 487684 62992 4310 32.18 
32 521 516836 66688 4309 32.83 
Table 5.12. Sequence method performance across several window sizes for ?ps? 
application. 
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Furthermore, the mismatch threshold increases as the window size increases because the 
system call causing the mismatch will appear in more sequences in both the tested 
sequence and the pattern sequences. 
Figure 5.9. shows graphically the number of sequences in the normal databases 
for both ?login? and ?ps? applications datasets.  The number of sequences is obtained 
after removing redundant entries in the database and while using sequence method IDS.  
The numbers of patterns of both applications show positive correlation as the window 
size increases.  Both applications should not have the same slope of increase as they 
contain different data but the graphs indicate that they behave similarly (increase as the 
window size increases).  
Figure 5.10. and Figure 5.11. show the space cost while running and while saved 
to disk for both ?login? and ?ps? datasets.  We observe the following: space cost while 
running is greater than while saved to disk for both ?login? and ?ps? applications.  This is 
because while running we are considering the size of the data structures used to store 
patterns in the normal database.  However, we are storing to disk only the integer 
contents of the patterns.  When comparing figures 5.10. and 5.11. against each other we 
note that the behavior is similar in both figures. Meaning that the cost is increasing as the 
window size increases.  
Figure 5.12. compares the behavior of the number of sequences handled while 
testing and obtained from the testing log file of both ?login? and ?ps? application 
datasets.  Both decrease by one system call as 5.13. window size increases by one.  The 
range of each application is different because it depends on the size of the log file used 
for testing each application.  From figure 27 we observe that both applications ?ps? and 
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?login? have positive correlation for the mismatch % threshold as the window size 
increases.  The slopes of their increase differ because their data is independent from each 
other.  
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Figure 5.9. number of sequences in normal database for both ?login? and ?ps? 
applications datasets. The number of sequences is obtained after removing 
redundant entries in the database and while using sequence method IDS. 
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Figure 5.10. space cost of normal database while running and while saved to disk (in 
bytes) for the ?login? application dataset when using the sequence method IDS. 
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Space cost of sequence method with "ps" application
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Figure 5.11. space cost of normal database while running and while saved to disk (in 
bytes) for the ?ps? application dataset when using the sequence method IDS. 
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Figure 5.12. number of sequences tested while running the sequence method IDS on 
both ?login? and ?ps? applications datasets. 
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Figure 5.13. mismatch percentage value obtained when testing the ?login? and ?ps? 
applications datasets using the Sequence method. 
 
 
5.7.2. Lookahead-Pairs Method 
Table 5.13. shows the results obtained when running the lookahead-pairs method 
based IDS on the ?ps? application datasets.  We note that as the window size increases 
the number of pairs stored in the normal database increases.  This number represents the 
number of patterns kept after removing redundant entries.  The space cost while the 
system is running and while saved to disk is also increasing because it depends on the 
number of pairs in the normal database.  As the window size increases the number of 
pairs considered while reading the testing log file will increase because we are not 
removing redundant pairs.  The mismatch % threshold is increasing as the window size 
increases because the mismatching pair appears in more tested sequences as the window 
size increases.  
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Figure 5.14. shows the number of pairs of both ?login? and ?ps? applications 
when using lookahead-pairs method.  The slopes of the lines are different because the 
data used to generate the pairs are different for each application.  This figure show that 
both lines have a positive correlation with the increase in the window size and that both 
have the same behaviour.   
Figures 5.15. and 5.16. show the space cost while running and while being saved 
to disk for both ?login? and ?ps? applications normal datasets.  For each application the 
cost while running is larger than while being saved to disk because while running we are 
considering the size of all the arrays being used.   
However, we are only saving the locations set to 1 while saving to disk.  When 
comparing both figures together we notice that they are positively correlated as the 
window size increases and that the lookahead-pairs method IDS have the same behaviour 
for both data sets.  
Figure 5.17. compares between the number of pairs resulting from reading the 
testing log files of both ?login? and ?ps? applications.  There is a positive correlation 
between the number of pairs and the window size for both applications.   
Both applications do not have the same slope because each has its own dataset 
and the input files for generating the pairs differ and are independent.  The number of 
pairs will be affected by the duration of the testing log file, the number of system calls 
collected and window size.  
Figure 5.18. shows the mismatch % threshold of ?login? and ?ps? applications 
when using lookahead-pairs method.  Both systems show positive correlation as the 
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window size increases. The systems differ in their slopes since they are independent from 
each other and are using different log files for both training and testing.   
With a smaller window size, ?ps? application tends to have a higher mismatch % 
threshold (i.e. the number of identified mismatches divided by the total number of pairs 
in the testing log file).  However, around window size 9 the behaviour of the ?ps? dataset 
tends to increase.  
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Figure 5.14. Number of sequence in normal database for both ?login? and ?ps? 
applications datasets. The number of sequences is obtained after removing 
redundant entries in the database and while using lookahead-pairs method IDS. 
 
 
 
 
 
 116 
# sys 
calls 
/ W 
# pairs in 
Normal DB 
space cost 
while 
running 
(bytes) 
space cost while 
saved to disk 
(bytes) # pairs in testing 
Mismatch % 
threshold 
2 244 8192 976 4339 0.898 
3 478 16384 1948 8677 1.52 
4 729 24576 2916 13014 1.805 
5 970 32768 3880 17350 1.86 
6 1210 40960 4840 21685 1.77 
7 1449 49152 5796 26019 1.93 
8 1687 57344 6748 20253 1.841 
9 1924 65536 4696 24684 1.92 
10 2160 73728 8640 39015 1.99 
11 2395 81920 9580 43345 2.09 
12 2629 90112 10516 47674 2.215 
13 2862 98304 11448 52002 2.33 
14 3094 106496 12376 56329 2.499 
15 3325 114688 13300 60655 2.710 
16 3555 122880 14220 64980 2.899 
17 3784 131072 15136 69304 3.066 
18 4012 139264 16048 73627 3.271 
19 4239 147456 16956 77949 3.491 
20 4465 155648 17860 82270 3.733 
21 4690 163840 18760 86590 3.951 
22 4914 172032 19656 90909 4.14 
23 5137 180224 20548 95227 4.368 
24 5359 188416 21436 99544 4.591 
25 5580 196608 22320 103860 4.79 
26 5800 204800 23200 108175 5.005 
27 6019 212992 24076 112489 5.196 
28 6237 221184 24948 116802 5.376 
29 6454 229376 25816 12114 5.52 
30 6670 237568 26680 125425 5.655 
31 6885 245760 27540 129735 5.786 
32 1099 253952 28396 134044 5.919 
Table 5.13. Lookahead-pairs method performance across several window sizes for 
?ps? application. 
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Figure 5.15. Space cost of normal database while running and while saved to disk 
(in bytes) for the ?login? application dataset when using the lookahead-pairs 
method IDS. 
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Figure 5.16. Space cost of normal database while running and while saved to disk 
(in bytes) for the ?ps? application dataset when using the lookahead-pairs method 
IDS. 
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Figure 5.17. Number of pairs tested while running the lookahead-pairs method IDS 
on both ?login? and ?ps? applications datasets. 
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Figure 5.18. Mismatch percentage value obtained when testing the ?login? and ?ps? 
applications datasets using the lookahead-pairs method. 
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5.8. Validation and Verification 
Verifying the implemented systems was incrementally performed.  Each 
subsystem was tested against carefully designed test cases that cover all possible input 
parameters and execute all possible paths of execution.  For example, the sequence 
method based IDS required implementing a subsystem for reading the input log files and 
processing them to be suitable for further processing.  The log files were read and then 
divided according to PID (parent process ID) to several files.  Each file holds the system 
calls associated with a specific PID.   First, on smaller sized files we tested the generated 
files manually to make sure that the system actually and correctly performed its 
functions.  Another subsystem was to read the files and then start creating a database that 
holds all possible patterns in an array format depending on the input parameters specified 
which mainly the window size is.  Tracing log files of all of the system activities have 
been generated and are manually investigated to test if the system is performing correctly 
or not. The array is then scanned to remove redundant rows and a finial array is produced.   
The patterns in this finial array is then processed and stored in the normal pattern data 
structure.  The data structure for holding such information is a hash table where each 
entry in the table points to a linked list of all patterns starting with a specific value.  To 
verify that this data structure is holding the correct information, its content is written to a 
log file and compared with the original array.  To verify that testing is working correctly, 
several test cases have been created with predefined inputs.  For example, several files 
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have been created to test if the system will produce the desired output or not. The files, 
for example, tested the following cases: 
? The tested sequence is normal. 
? The tested sequence is compared with one pattern (expands across one pattern) 
? The tested sequence expands across several patterns and therefore is compared 
with more than one pattern. 
? The sequence contains only one mismatching system call. 
? The sequence contains several mismatching system calls. 
? The mismatching sequences are compared with one pattern. 
? The mismatching sequence is compared with several patterns.  
Finally, when the system passed its verification stage the system was tested on 
real log files.  The activities were recorded in a log file and examined to make sure that 
the system is still performing correctly.  
The same techniques were used to verify lookahead-pairs method IDS.  Here the 
data structure used to store the normal pattern database is one-dimensional array 
behaving as several 2-dimensional arrays.  The locations that are set to one were 
examined and compared with the original array holding all possible pairs.  Furthermore, a 
list of test cases were generated to test if the system will produce the correct and expected 
out put or not. 
For the variable length with overlap relationship method, the verification was 
incrementally performed.  Since it is the most sophisticated and more time consuming 
system, care was given to each subsystem.  The input data for normal behavior was first 
read to a data structure that consisted of linked list of linked lists (similar to tree 
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structure).  This is because extensive processing will be performed on the input data.  The 
content of such lists were checked to make sure that the data was correctly stored.  
Identifying patterns was an extensive process where we had to re-read and re-process the 
items in the data structure.  Each performed step was recorded in a log file and manually 
examined to insure correct execution.  After generating the patterns and making sure that 
they are correctly stored in the final normal data base structure, several test cases have 
been implemented to test matching.  Files for testing were created to check matching 
against one, two or more patterns in the database.  Both normal and intrusive sequences 
have been checked.   As a conclusion to this stage, the three implemented systems passed 
the verification stage.  
Three techniques have been used to validate the implemented systems: trace 
validation, sensitivity validation and graphic displays.  Trace validation is similar to 
verification where a list of test cases has been created and all possible execution paths 
have been identified.  With this list of input cases the output has been observed and the 
following is a sample of the possible input cases: 
? Sequence is normal.  
? Sequence contains one mismatch. 
? Sequence contains several mismatches. 
? The sequence does not exist in the normal database. 
? The sequence is checked against only one pattern. 
? The sequence is checked against several patterns.  
Sensitivity validation was also used.  Each system was originally tested against 
the ?login? application dataset as shown and explained previously.  To test if the systems 
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pass the sensitivity validation test another dataset was examined.  The results obtained 
from using the ?ps? application dataset were shown and explained in Tables 5.12. and 
5.13.  The results indicate that the implemented systems are not sensitive to the input data 
set.  The third validation technique used is the graphic displays and which is summarized 
and explained in Table 5.14.  
Figures Systems compared Applications 
compared 
Observations 
5.9. Sequence method Login and ps Number of sequences 
of normal log files of 
?login? and ?ps? 
applications has a 
positive correlation 
with the increase of 
window size.   
5.10. and 5.11. Sequence method Login and ps The space cost of 
normal log files 
?login? and ?ps? 
applications datasets 
has a positive 
correlation with the 
increase in window 
size.  
5.12.  Sequence method Login and ps The number of 
sequences of tested 
log files of both 
?login? and a ?ps? 
application behaves in 
a similar fashion.  
5.13. Sequence method Login and ps The mismatch # 
threshold of the 
testing log files of 
?login? and ?ps? 
applications behaves 
similarly.  
5.14. Lookahead-pairs 
method 
Login and ps Number of pairs of 
normal log files of 
?login? and ?ps? 
applications has a 
positive correlation 
with the increase of 
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window size.   
5.15. and 5.16. Lookahead-pairs 
method 
Login and ps The space cost of 
normal log files 
?login? and ?ps? 
applications datasets 
has a positive 
correlation with the 
increase in window 
size.  
5.17. Lookahead-pairs 
method 
Login and ps The number of pairs 
of tested log files of 
both ?login? and a 
?ps? application 
behaves in a similar 
fashion.  
5.18. Lookahead-pairs 
method 
Login and ps The mismatch # 
threshold of the 
testing log files of 
?login? and ?ps? 
applications behaves 
similarly.  
Table 5.14. Explaining the graphic display validation 
 
As shown in table 5.14. the behavior the systems are similar and consistent even 
when tested against different normal and testing datasets.  
5.9. Summary   
Three host-based IDSs using system call profiles were examined.  We tested 
sequence method, lookahead-pairs method and variable-length with overlap-relationship 
profile method.  Testing lookahead-pairs method is straight forward.  The system call and 
its previous entries (up to window size) are checked against their corresponding entries in 
its corresponding array and if it does not exist then a mismatch is raised.  For both 
sequence and variable length methods, as system calls are read they are checked against 
their entries in the hash table and the closest match in a pattern in that entry are chosen 
and expanded.  If no exact match is found a mismatch is raised.  For example, the 
 124 
following case is handled in our implementation.  Suppose entry 90 in the hash table 
contain the following sequence {90 4 8} and entry 105 contains the following sequences 
{{105 4 27}, {105 18 2}}.  Testing the input sequence {18 2} will raise 2 alarms since 
entry 18 in the hash table is empty.  Testing input sequence {105 90 4 8} will raise only 1 
alarm, since our system will check the entries of 105 and find that the second system call 
90 does not belong to any sequence at the 105 entries.  However, we test to see if it 
belongs to another entry in the hash table, which in this case is true and the remaining 
subsequence {90 4 8} raises no alarms.  Finally, testing the input sequence {90 18 2} will 
raise 2 alarms since 90 does belong to the hash table and although {18 2} exist as 
subsequences of another entry they should not be accepted.  Our implementation differs 
from the original papers in: 
1. The systems were implemented on Windows-XP Operating System using 
Microsoft Visual Studio 2005 as a win32 console application rather than using gcc 
compilers on UNIX and LINUX Operating Systems. 
2. Normal patterns of both sequence and variable length with overlap relationship 
methods were stored in a hash table where each entry is pointing to the sequence 
patterns. 
3. Type 2 of variable length with overlap relationship was expanded to handle the 
sub-grouping of sequences and furthermore sub of sub-grouping if exist.  
The following were concluded: 
1. All methods can not defeat system-call-denial-of-service attack. 
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2. Input order of training files does not affect the final constructed databases for 
sequence and lookahead-pairs methods but affects the variable-length patterns 
method. 
3. Keeping the same number and content of input training files for the variable length 
method constant but changing the order and in specific the first system call handled 
will result in different constructed database but will not affect the number and type 
of intrusions detected. 
In general, we observed the following: 
T1: {90, 4, 7, 1}, T2: {4, 7, 2}, T3: {4, 7, 2, 90, 115} 
If we start our training with T1 and system call 90 the following pattern set will be 
generated:  
{{90, 4, 7, and 1}, {4, 7, and 2}, {90, 115}} 
However, if we start with T2 and system call 4 the following pattern set will be 
generated:  
{{4, 7}, {90}, {1}, {2}, {2, 90, 115}} 
4. Lookahead pairs method had the best space cost while running, as long as its 
window size is below 24.  As the window size increase, the space cost of storing the 
associated database also increases and variable length method starts to have a better 
space cost.   
5.  In order to investigate whether the output or the behavior of the sequence method 
and lookahead-pairs method IDSs performs similarly with other input datasets, the 
two systems will also be tested with ?ps? application datasets.  As shown in the 
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previous section, the output parameters gathered for both systems performs in a 
consistent manner when using both datasets.  
Finally, each technique used in this dissertation to implement the associated 
intrusion detection system has its benefits and drawbacks.  All techniques experience 
better detection as the window size increases especially for sequence and lookahead-pairs 
methods.  Variable length method produces better coverage and is considered a logical 
representation to patterns.  However, it is very expensive to generate the patterns and 
require high storage requirements. In this dissertation we decided, after experimentation, 
to continue with the data structure used with lookahead-pairs method.  It is easy to 
manipulate and access.  With regard to space cost it had the best storage requirements and 
it is very fast and easy to access the elements of its data structure.  
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CHAPTER 6 
 A DANGER THEORY MODEL 
 
This chapter proposes a danger theory model for intrusion detection. Danger 
theory can be applied to various application areas. Among these, intrusion detection is the 
most closely linked to the human immune system. The literature survey presented in this 
dissertation demonstrates attempts to build artificial immune models based on innate and 
adaptive immunity.  These artificial immune systems implemented a generic architecture 
to model immunity response in general.  They have incorporated both innate and adaptive 
immunity concepts and built a framework where, after specifying a list of input 
parameters, different components of the immune system may interact.  
In this chapter, we focus on developing a model to represent the danger theory 
interactions of an adaptive immune system.  The danger theory model is designed for 
distinguishing normal activities from abnormal activities and responding to invasions.  
The danger theory based intrusion detection system response is governed by the output 
produced by the antigen presenting cells (APCs).   
Dentric Cells (DCs) are one type of APCs and process antigen signatures in their 
context.  The system operation is divided into 2 phases: Training and testing.  In the 
training phase a database of patterns representing normal behavior is created either using 
positive or negative selection. B cells and DC cells are assigned patterns by which it can
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detect abnormal bacteria or intrusion signatures.  
 In the testing phase, monitored system call sequences are scanned by B and DC 
cells.   DC also senses danger signals, if any, and present the bacteria signature in context 
to T helper cells for further processing and handling.   
Figure 6.1. explains the primary immune system response to the presence of 
bacteria and danger signals. In Figure 6.2., the flow chart of the primary immune system 
response is presented.    
In general, B cell captures antigen (specific antigen) and at the same time DC 
captures antigen (any antigen) and senses danger signals.   
DC presents the antigen in context (antigen signature and surrounding status: 
natural or un-natural death) and causes na?ve T cell maturation.  T cell, accordingly, 
differentiates to T helper 1, T helper 2 and T killer cells.    
B cell presents antigen to Th1 and then Th1 primes or downgrades killer T and 
Th2 cloning.  Depending on the strength of the prime message, Killer T and Th2 start 
their cloning expansion and generation of memory killer T, memory Th1 and memory 
Th2.  
Th1 confirms the antigen to B cell and B cell starts to secrete antibodies that bind 
to antigen to flag it for destruction.  B cell starts its cloning expansion and generation of 
memory B cells.   After B cell binds to the bacteria, the cloned Killer T cells starts 
attacking the previously flagged bacteria.   It is important to understand that only the 
bacteria that was flagged for destruction will be eliminated by the Killer T cells.  At the 
same time other non-dangerous bacteria may exist in the same zone and will not be 
killed.  
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Figure 6.1. Primary immune system response. 
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Figure 6.2. Flow chart of the primary immune system response. 
 
Figure 6.3. and Figure 6.4. explain the secondary immune system response.  It is 
similar to the primary immune system response but differs in the fact that bacteria and 
sensing danger it now performed by memory cells of both B and DC cells and that such 
processing is performed faster.  This is because in the secondary immune system 
response, the bacteria have been seen before; therefore the immune system reaction will 
be specific and faster.  
 
1.1. B cell capture antigen (specific antigen). 
1.2. DC capture antigen (any antigen).  
1.3. DC sense danger signal.  
2. DC present antigen in context (antigen signature and surrounding status: natural or un-natural death) and 
cause na?ve T cell maturation.   
3.1., 3.2., and 3.3. T cell differentiation.    
3.4. B cell present antigen to Th1.  
4.1. and 4.2. Th1 prime or downgrade killer T and Th2 cloning.   
6.2 Prime B cell to secrete antibodies that bind to antigen to flag it for destruction.   
5.1. and 5.2. Killer T and Th2 cloning expansion. 
5.3. , 5.4., and 5.5. Generation of memory killer T, memory Th1 and memory Th2. 
6.1.  Th1 confirm antigen to B cell.  
7.1.  B cell cloning expansion.  
7.2. Generation of memory B cells.  
8.  B cell bind to bacteria.  
9.   Killer T cell attack bacteria.  
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Figure 6.3. Secondary immune system response. 
 
Figure 6.5. explain the life cycle of both B and memory B cells.  Each B and 
memory B cell is given an activation threshold and a life span. B cell circulates the 
system or the body.  If it exceeds it activation threshold then it becomes a memory B cell.  
On equal intervals, the activation threshold is checked and if it did not reach at least its 
minimum activation threshold within its life span then it is deleted.   
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Figure 6.4. Flow chart of the secondary immune system response. 
 
However, if it is above its minimum activation threshold then it is sent to the bone 
marrow where it undergoes hyper mutation and a new signature is created for the B cell.  
Memory B cells also circulate the body or the system and on equal intervals their 
associated activation threshold is checked. If it exceeds it maximum activation threshold 
it is left to circulate the system.  However, if it did not exceed its activation threshold 
within its life span it is sent to the bone marrow where it undergoes hyper mutation and 
new signature is created.  
1.1. Memory B cell capture antigen. 
1.2. DC capture antigen.  
1.3. DC sense danger signal.  
2.1. Memory B cell present antigen signature to Th1 cell.  
2.2. DC present antigen in context to Th1 cell.  
 
4. Expansion cloning of B, killer T and Th2 cells.  
5.1. Th2 prime B cell to secrete antibodies. 
5.2. B cell binds to antigen.  
6. Killer T cell attack bacteria.  
3.1. Memory Th1 cell confirms antigen presence to memory B cell.  
3.2. Memory Th1 primes killer T to start cloning 
3.3. Memory Th1 primes Th2 to start cloning.  
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Figure 6.5. B and memory B cells life cycle. 
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CHAPTER 7 
 ENHANCING LOOKAHEAD-PAIRS METHOD WITH DANGER THEORY 
 
7.1. Introduction 
Lookahead-pairs method has been used to implement an AIS based IDS for 
monitoring system calls.  It has outperformed sequence method and overlap-relationship 
methods in terms of the storage requirements.   Due to the smaller storage requirements 
of lookahead-pairs, it has been chosen in this dissertation for further investigation.  In this 
chapter the lookahead-pairs based intrusion detection system, will be enhanced by 
incorporating techniques of danger theory.  The newly modified systems will be 
examined and tested. What we mean with lookahead-pairs based intrusion detection 
system, is an IDS that monitor system calls sequences to find deviations from normal 
pattern database and uses several 2 dimensional arrays to store the relationships between 
patterns in the normal database.  The database was previously created after being trained 
on normal behavior with a pre-specified window size.  Usually, the current monitored 
system calls are read and compared with the entries in the database.  If a deviation is 
observed, meaning that it does not exist in the database, a mismatch is flagged.  
Lookahead-pairs method is affective in detecting deviations; however, in many 
cases more advanced intrusion attempts go undetected because they are not only based on 
system call deviations but also on other parameters such as high CPU and memory 
usages.  Such parameters indicate if the system is under stress or danger.  Not only 
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considering the mismatch instances but also other factors and conditions such as signals 
of the system, is one of the basic concepts of danger theory.  Danger theory states that we 
should not only respond to foreignness (i.e. mismatches) but also to danger signals (i.e. 
unacceptable system conditions such as high CPU or memory usages).  
What we mean with enhancing lookahead-pairs method with danger theory 
concepts is that we take the main characteristics of lookahead pairs method and then add 
the functionalities of different danger theory components such as B cell, T cell and iDC 
cells. The affect of each component on the overall performance will then be examined 
and measured.  
In general, despite the acceptable cost associated with such merge, the 
performance (i.e. better detection, lower false negative and false positives) is enhanced.  
This enhancement has been accomplished in three stages.  In the first stage the 
functionality of the APC cell was implemented and tested.  APC cell is responsible for 
detecting mismatches as well as sensing signals (both danger and safe).  One type of APC 
cell is iDC cell which differentiate to either semi mature DC (in case of normal behavior) 
or mature DC (in case of intrusive behavior).  In the second stage, we experimented with 
generating positive and negative detector sets.  A positive detector set is generated by 
mapping normal behavior to a set of patterns and then stored in the database.  Negative 
detector sets are generated by mapping the complement of normal behavior to a set of 
patterns.  The benefits of each type of set are then examined. The third and final stage is 
to incorporate all components of danger theory that are B, Th1, Th2, Killer T, iDC and 
DC classes.  
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7.2. Experiment Setup 
The components of this system are implemented with Microsoft Visual Studio 
2005 as a win32 console application.  For off-line testing of the implemented algorithms 
in this paper, two sets of training and testing datasets can be used.  
The first was obtained from Danger Theory Project website 
[http://cs.nott.ac.uk/~jpt].  The datasets provide traces of system calls and associated 
CPU and Memory usages. For example, ?rpc.statd.normal1.tcr.log? which represents a 38 
seconds tcreplay log file produced 398 antigens and 9 signals.  The following is a sample 
single line in the database. Personal communication with Twycross, explained the 
following components of the line entry in the dataset.  
1137704943.969283  signal  366  4  1  0.00000  1122104  335872 
Column 1: timesec.timeusec 
Column 2: type (in this case this entry in the data set represents a signal entry) 
Column 3: process ID  
Column 4: NUM signals  
Column 5: total number of processes (self + children) (integer) 
Column 6: total CPU usage for processes (%) 
Column 7: total size of processes (bytes) 
Column 8: total size of memory resident portion of processes (bytes). 
These signals change over time since there is an interaction (either normal usage 
or an attack) with the monitored processes (the rpc.statd server and its children), which 
causes the monitored processes to use different CPU and memory resources. 
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In order to closely test the performance of our system a second data set was used.  
Since we are comparing the performance of the enhanced system against our initial 
implementation of lookahead-pairs method IDS, we decided to use the same datasets 
used previously and obtained from the website of the University of New Mexico 
(http://www.cs.unm.edu/~immsec).  This file contains traces of system calls generated 
while running the login application. One problem with this file is that it does not hold 
values for both CPU and memory usages.  This is why we intentionally injected at 
different time intervals and different locations signal values of CPU and memory usages, 
creating several test cases to investigate.  
Table 7.1. briefly indicates the different attack scenarios that can be handled with 
the danger theory enhanced system.  Our system, furthermore, is not only considering the 
current situation of the system but also previous state of the system.  This is because there 
might be a normal burst in memory or CPU usage and this should not initiate a response.  
If, however, such an action (i.e. high CPU, high memory usage, or mismatch) is higher 
than an acceptable threshold value or has been high for a predefined time range then an 
intrusion is flagged. Such a decision lowers false positives since the system ignores any 
deviation of acceptable behavior within limitations.  Such deviation results especially 
when the system is not fully trained on all possible acceptable program execution paths.  
We are also incorporating the parameters of having the user present or not. Since usually, 
if there is an activity going on without the presence of a user then this is considered a 
suspicious activity.  We also considered monitoring for the use of abnormal signals that 
intentionally kill a process.  
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Type of attack Possible condition 
Immediate attempt(s) to perform CPU 
attack 
Yes / No 
Immediate attempt(s) to perform 
memory attack 
Yes / No 
Immediate attempt(s) to perform 
mismatch attack 
Yes / No 
Immediate attempt(s) to use abnormal 
signals 
Yes / No 
Presence of user Yes / No 
Table 7.1. attack types that can be identified by a danger theory enhanced IDS. 
 
For example the login datasets were modified to incorporate different situations 
and the following are some test case examples: 
1. In the first scenario there are no mismatches identified and both the CPU and 
memory levels are normal.  
2. In the second scenario, a mismatch was identified but both CPU and memory 
levels are normal. If previous conditions are normal then no intrusion is flagged.  
However, if this mismatch is the ith of series and exceeds a predefined acceptable 
threshold then an intrusion is flagged even if there is no affect on the CPU and 
memory usages. 
3. In some cases either CPU or memory will experience a burst in performance with 
no mismatches identified.  If the previous performance of both have been low and 
this is the first encounter of such performance then no intrusion is flagged.  
However, if such high usage of CPU or memory has been noticed and exceeds a 
predefined period then an intrusion is flagged even if the system did not encounter 
any mismatch instances.  Such an attack can be performed by running a script or a 
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Trojan horse code that continuously repeat acceptable sequence of system calls 
indefinitely.  
4. In the case that a mismatch and high CPU or memory is noticed, an intrusion is 
flagged if the current condition as well previous conditions exceed a predefined 
threshold.  
7.3. Lookahead Pairs Method Enhanced With iDC and DC Classes 
iDC and DC cells are types of APC cells that gather information from the 
surrounding environment and act accordingly.  The information gathered is mainly the 
identification of bacteria (i.e. system call sequence mismatch) and sensing signals (i.e. 
CPU and memory usages).   
This does not mean that the iDC cell is only active when there is an attack, but it 
can also indicate that the system is normal to other cells in the body such as T cells.  
After identifying bacteria and sensing signals iDC differentiate and start secreting either 
mature or semi-mature cytokines indicating an intrusion or normal behavior respectively.   
These cytokines control the behavior of immature T cells that differentiate to 
helper T1 (Th1) cell, helper T2 (Th2) cell and Killer T cells.  Figures 7.1. and 7.2. 
explain the general procedure of iDC and immature T cell differentiation.  
After Th1 cells are responsible for controlling or managing the behavior of other 
T cells such as Th2 and killer T cells.  It is responsible for priming or suppressing their 
behavior and cloning expansion degree.  If, for example, Th1 is priming killer T cell, then 
the degree of cloning will be much higher than if Th1 was suppressing killer T cell.  
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Figure 7.1.  iDC, and T cell differentiation. 
 
Figure 7.2. Flow chart of DC and T cell differentiation 
 
7.3.1. Implementation  
  The iDC component of the danger theory is the controlling element of all 
subsequent activities of intrusion detection systems.  iDC is responsible for sensing the 
system condition and indicates if the system is under attack or not by not only identifying 
the existence of intrusion instances but also by noticing danger conditions of the system 
resources.  Therefore, iDC will react not only to deviations in the normal system call 
1.1. Immature DC (iDC) capture antigen (intrusion) 
1.2. iDC sense danger signal from stressed cell 
2. iDC differentiate according to the concentration of both danger signal and antigen presence (both in duration 
and strength) to mature DC (mDC) or semi-mature DC (smDC) 
3. DCs release cytokines affecting the maturation of na?ve (immature) T cells.  
4. Na?ve T cells differentiate to: killer T, Th1, and Th2 cells.  
5.1. Th1 influences the cloning speed and quantity of killer T cells especially when they both identify the same 
antigen.  
5.2. Th1 influences Th2 by increasing or downgrading Th2 cloning speed.  
iDC 
Killer T 
mDC smDC 
Immature T cell 
Th1 Th2 
Bacteria Damaged cell 
1.2 1.1 
2 
3 
4.3 4.2 4.1 
5.2 5.1 
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sequences but also will react if any monitored system resource condition exceeds a 
predefined acceptable threshold. The APC component (consisting of both iDC and DC) is 
implemented in our system as two classes: iDC class and DC class.  If we consider APC 
as a black box then the input to this component is the following:  
? PAMP: intrusion signatures (i.e. mismatches between current monitored system 
calls and pattern entries in the normal database).  
? Danger signal: high CPU and memory usages. 
? Safe signal: normal CPU and memory usages. 
? IC: user is present or not.  
The output of this component will be as follows:  
? Mature Cytokines: intrusion detected. 
? Semi-mature Cytokines: normal or acceptable behavior.  
 There are unlimited ways to calculate the output of APC.  The security requirements 
of each system can control such process.  However, in our implementation the following 
were considered while trying to indicate if the system is under attack or not:  
? Current CPU usage. 
? Previous CPU usage within a previously specified period. 
? Current memory usage. 
? Previous memory usage within a previously specified period. 
? Current use of abnormal signals. 
? Previous use of abnormal signals within a previously specified period.  
? Current occurrence of a mismatch. 
? Previous occurrences of mismatches within a previously specified period. 
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  For each of the previous elements, an importance indicator is associated with it.  
This indicator affect the overall value of the safe or danger signal calculated when all of 
these elements are combined.  For example, if the importance of the current CPU value is 
10% when compared to the other elements and the importance of a current mismatch is 
50 % when compared to the remaining elements, the occurrence of a mismatch will affect 
the overall indication of an intrusion more heavily than the occurrence of a high CPU 
burst. Such decision is heavily drawn from both the normal and intrusive behavior of a 
system.  For example, if an intrusion is usually associated with high memory usage than 
with mismatch occurrence then memory usage is given a higher percentage when 
calculating the finial system condition value.  However, in any case all elements in the 
list are included because they all have an affect on the finial decision but with different 
strengths.  
  For both CPU and memory usage values, the system keeps the following: 
? MIN_ACCEPTABLE_THRESHOLD_VALUE 
? MAX_ACCEPTABLE_THRESHOLD_VALUE.   
  If CPU?s current value lies between both threshold values then it is normal and a 
normalized value is calculated depending on where it falls within this normal range.  
For example suppose that the following are previously defined: 
CPU_MIN_ACCEPTABLE_THRESHOLD_VALUE; 
CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE; 
Then if (current_CPU_value <  CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE) 
Safe_normalized_CPU_value = ((current_CPU_value * 100) /  
 CPU_MAX_ACCEPTABLE_THRESHOLD_VALUE) / 100; 
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  This will help identifying where does this normal value of CPU fall in the range 
of acceptable behavior of the CPU.  A similar procedure is used to calculate 
danger_normalized_CPU_value if the current CPU value read is above the max threshold 
value.  
  After performing the same procedure for all signals under consideration, current 
and previous values of these signals are used to calculate the normalized value of CP, CS 
and CD (CP: normalized value of all signals related to PAMP condition, CS : normalized 
value of all signals related to safe condition, and CD: normalized value of all signals 
related to danger condition).  Equation 2 is used to evaluate whether the system in under 
attack by producing high mature DC values or in normal condition by producing high 
semi-mature DC values.  It is important to mention that we have calculated the 
concentration of a signal with respect to the strength of an associated signal as well as 
duration of the steady signal.  The weights in equation 2 are obtained from table 7.2.  
 
                                                                                                             (2) 
 
W csm semi mat 
PAMP 2 0 2 
Danger signal 1 0 1 
Safe signal 2 3 -3 
IC 1 1 1 
Table 7.2. Weights of different danger theory parameters used to calculate the 
different cytokine concentrations of DC. 
 
The intrusion detection system employing iDC and DC techniques is implemented 
as an object oriented program where each cell is represented as a class.  The code of the 
program is available in Appendix F.  In summary, the pseudo code of the activity 
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diagram of iDC is shown in Figure 7.3.  iDC cell (object) is responsible for monitoring 
the system calls generated by an application and as the sequence reaches a specific 
window size, it is compared to the entries in the associated database.  If it does not match 
any entry, it is considered an anomaly.  At the same time signals are gathered from the 
system. Mainly we are testing the memory and CPU usages.  According to different 
inputs such as the current and previous conditions of several monitored activities, the 
concentration signals of safe, danger, PAMP and IC are calculated.  These values are then 
sent to the DC object for further processing.  
Figure 7.4. is the pseudo code of the activity diagram of DC.  After receiving the 
concentration values of danger signal, safe signal, PAMP and IC from iDC object, it 
calculates the DC concentration value and decides if the system is in a dangerous or safe 
normal environment.  If it is the result of a dangerous situation then mature DC will be 
high and DC will send a PRIME message to Th1 along with the string that was handled 
and what is the source of this danger.  The danger source can be a result of a mismatch, 
or high CPU, high memory usage or a combination of any of them.  If semi-mature DC 
was the outcome then DC will send a SUPRESS message to Th1.  
                                           
Figure 7.3. Pseudo code of the activity diagram of iDC 
 
0 Do  
1       Read system call 
2 Until string reached window size 
3 Match string with entries in database 
4 If (identified bacteria) 
5 Then  
6      Sense signal values 
7      Calculate CPAMP, Csafe, Cdanger, IC 
8      Send values to DC object 
9 Else go to 0 
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Figure 7.4. Pseudo code of the activity diagram of DC 
 
7.3.2. Performance  
Figure 7.5. (a), (b), (c) are sample output of running the objects iDC and DC.  In 
general, we are logging the subsequence that is currently being processed. In our example 
the window size is = 4 and if the tested subsequence does not exist in the normal 
database, a message is displayed indicating that it is a mismatch.  We keep track of 
whether the user is present or not and we read the CPU and Memory usage values.  Then, 
we check if one of the system calls read in the handled subsequence is a dangerous signal 
or not.  With dangerous signal we mean that it is one of the signals that are abnormally 
used to kill a process intentionally.  After reading these values the appropriate data 
structure holding the previous values of a parameter is updated.  Then DC will use these 
current and previous values to calculate the DC cytokine value. It will be either semi-
mature ?semi? indicating that the system is still under safe acceptable condition or mature 
?mat? indicating an intrusion.  
0 Read CPAMP :normalized value of mismatch detection    
1 Read Csafe : normalized value of normal behavior 
2 Read Cdanger :normalized value of dangerous behavior 
3 Read IC: normalized value of presence of user 
4 Read sources 
5 Read string 
6 calculate DC concentration cytokine values 
7 if (semi-DC > mat-DC)  
6      send Suppress message to Th1 
7     send source value to Th1 
8     Send string value to Th1  
9 Else  
10     send prime message to Th1 
11     send source value to Th1 
12     Send string value to Th1  
13 end else 
14 go to 0 
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Figure 7.5. Sample output of running iDC and DC enhanced IDS. ?Handled 
window?:  string currently processed. ?Is a mismatch?: does not exist in the 
database or ?is normal?: exist in the database. ?User present?: 1 is present, 0 is not. 
?CPU usage?: percentage of CPU usage. ?Mem usage?: percentage of memory 
usage. ?is an abnormal signal?: 0 barb2right no, 1barb2right yes. ?previous CPU?, ?previous 
abnormal?, ?previous mismatches?, ?previous IC?: 0barb2rightlow, 1: high. ?Semi? or 
?mat?: indicate the resulting condition of the system: semibarb2right safe, matbarb2right dangerous. 
 
Table 7.3., shows the performance parameters collected while running the iDC 
and DC enhanced IDS and compares it with the values obtained when running the 
Handeled Window:    8   5   4   6
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU:    0   0   0   0   0   0   0   0   0   0
previous memory:    0   0   0   0   0   0   0   0   0   0
previous abnormal:    0   0   0   0   0   0   0   0   0   0
previous mismatches:    1   1   0   0   1   1   1   1   1   0
previous IC:    1   1   1   1   1   1   1   0   0   0
Semi
Handeled Window:    3   4   7   6
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU:    0   0   0   0   0   0   0   0   0   0
previous memory:    0   0   0   0   0   0   0   0   0   0
previous abnormal:    0   0   0   0   0   0   0   0   0   0
previous mismatches:    0   0   0   0   1   1   0   0   0   0
previous IC:    1   1   0   0   0   0   0   0   0   0
Semi
Handeled Window:    2   3   4   7
Is a mismatch
User present: 1
CPU usage: 30.8
Mem usage: 40.6
Is an abnormal signal: 0
previous CPU:    0   0   0   0   0   0   0   0   0   0
previous memory:    0   0   0   0   0   0   0   0   0   0
previous abnormal:    0   0   0   0   0   0   0   0   0   0
previous mismatches:    0   0   0   0   1   0   0   0   0   0
previous IC:    1   0   0   0   0   0   0   0   0   0
Semi
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original lookahead-pairs IDS.  As observed both have exactly the same performance in 
terms of testing time and storage requirements.   
 
Parameter Lookahead pairs IDS iDC and DC enhanced 
IDS 
W 4 system calls 4 system calls 
Testing time 0 seconds 0 seconds 
# pairs in Normal DB 1029 1029 
Space cost while 
running (bytes) 
24576 24576 
Space cost while 
saved to disk (bytes) 
4116 4116 
# pairs in testing 4044 4044 
 
Table 7.3.  Performance comparison between lookahead pairs IDS and lookahead-
pairs method enhanced with iDC and DC IDS 
 
In general, several types of attacks can exploit a system.  An attack can result 
from accumulative mismatches, accumulative high CPU usages, accumulative high 
memory usages, accumulative or single use of abnormal signals or a combination of any 
of them. 
Lookahead pairs based IDS will only be able to detect an attack that involves 
mismatches between the sequences currently under consideration and normal database.  It 
will not be able to detect attacks that deviate producing mismatches or exceeding the 
allowable threshold value. However, the iDC and the DC enhanced IDS will be able to 
detect more attack types.    
In general, if a system is fully trained, any identified mismatch must indicate an 
intrusion and such system will not produce any false positives.  However, it is important 
to note that if the system is not fully trained, the lookahead-pairs method will give a false 
positive rate equal to the number of mismatches identified while testing that may include 
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normal behavior.  However, the iDC and DC enhanced IDSs will balance its decision not 
only on identifying mismatches but also the environment condition (i.e. signals collected 
at the time the mismatch was identified) and accordingly will decide if it is an intrusion 
or not.  
In the case of false negatives, where the system misses an intrusion instance, 
lookahead pairs method performs poorly.  The original lookahead-pairs method based 
IDS does not miss any mismatches but it misses intrusions that deviate producing a 
number of mismatches that exceed the specified threshold.  As a result the iDC and DC 
enhanced IDS will identify the intrusions associated with high CPU and memory usages 
as well as using abnormal signals the lookahead pairs method will miss such attacks 
producing higher false negative rate.  
7.4. Positive and Negative Detector Sets  
Generating suitable patterns has been a hot topic for several years. Identifying 
patterns that can represent the considered problem is a very important issue especially for 
artificially immune system based IDS.   Building a database with positive detectors 
means that the database contains instances of normal behavior.  However, a database with 
negative detectors means that the database has instances of the complement of the normal 
behavior.  The advantages and disadvantages of each type can be found in [Esponda, 
Forrest and Helman 2004].  In general, for a small sized problem, positive detector sets 
outperform negative detector sets especially with regard to storage requirements.  What 
we mean with small sized problem is that the normal behavior can be identified in a 
limited and small number of sequences.  The human immune body uses both negative 
and positive selection to perform different immune based functionalities.  We found it 
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important to implement both aspects and to compare between them.  The system has two 
databases that are used to check for anomalies.  One is used by the B cell and the other by 
iDC cell. If we choose to use either positive, negative or both selection algorithms, 
different scenarios can exist.  For example, we may choose to have the B cell?s database 
created with positive detectors or negative detectors sets and the same applies for the 
other database. In the following sections a comparison is presented.  
7.4.1. Implementation 
Simply the difference between positive and negative detector generation can be 
explained by the following example.  If the number of system calls = 100 and are 
represented as {1, 2... 100}.  If we choose a window size = 4 and have the following 
training sequences: { 1,2,3,4,5,6,7,8}. 
The generated positive detectors will be: 
{{1,   2,   3,   4} 
  {2, 3,   4,   5} 
  {3,   4,   5, 6} 
  {4,   5,   6,   7} 
  {5, 6,   7,   8}} 
However, to generate negative detectors for this specific training sequence we 
need to find the complement sequences of the patterns found in the positive detector 
database.  The number of entries in such a database if we are looking for a complete 
database is indefinite.  For example, we will start doing the following: 
{{1,   2,   3,   and 5}, 
 {1,   2,   3,   6}, 
 150 
{1,   2,   3,   7}, 
{1,   2,   3,   8}, 
 ?.             } 
As we attempt to fill the database, we find that the number of entries increases 
indefinitely.  In our system we compared between using positive and negative detector 
generation with lookahead-pairs method. In our positive detector generation, we scan 
normal training files and then depending on the window size, we start creating the 
patterns.  For each pattern, we generate the associated pairs and then set their respective 
locations in the appropriate set array to one.  During testing we compare the currently 
tested sequence against the entries in the normal database and if it is not found then an 
anomaly is flagged. 
Generating negative detectors can belong to two types: 1) negative detectors 
generated for methods that store patterns in a linked list data structure or the structure, or 
2) negative detectors generated for methods that store patterns in an array such as 
lookahead-pairs method.   
For the negative detectors generated for methods that store patterns in a linked list 
or a tree data structure such as sequence method we perform the following steps.  First, 
the normal behavior patterns are identified.  Second, we randomly generate a candidate 
pattern of the same size and compare it with the patterns in the normal database.  If the 
candidate pattern match any entry in the normal database, this candidate pattern is deleted 
and a new pattern is generated. Otherwise, the candidate pattern is added to the selected 
patterns list.  We repeat this step until we have enough (i.e. previously identified) number 
of patterns.  In the detection stage, the tested sequence is checked against the database 
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and if a match occurs then an intrusion have been identified.  Furthermore, as the number 
of patterns generated by negative selection increase, the storage cost increases.  
For the negative detectors generated for methods that store pattern in an array 
such as lookahead pairs, we simply generate all possible normal pattern sequences.  We 
then find the associated pairs and set their locations to ones.  The database that is based 
on negative selection is the complement of the normal database.  Meaning we 
complement the cell values of the arrays. If it is set to 1, we unset it and if it is not set, we 
set it.  In this method we don?t need to randomly generate any sequence and no additional 
storage requirements are needed.  Our code to carry out the comparison between positive 
and negative detectors can be found in Appendix E.  
7.4.2. Performance  
With a size-limited representation of normal behaviour, positive detectors are the 
better choice since the pattern database generated will be of acceptable size.  This is true 
for methods that do not use the lookahead-pairs method data structure to store its 
database.  With lookahead pairs method, both positive and negative detectors will occupy 
the same storage requirements and only requires the appropriate matching to be 
performed.  
However, this is not the case with other methods that employ for example trees or 
linked lists to store their patterns.  In such methods and if the normal behaviour is 
represented in a small finite manner, negative detectors will be infinite.  In such a case we 
will be required to decide on the acceptable or allowable number of negative detectors 
that will represent our problem efficiently.  The more allowable number of negative 
detectors the better the detection rate.  As shown in table 7.4., we have tried to generate a 
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pool of negative detectors while increasing the number of generated sequences to achieve 
a similar mismatch of that of positive detectors. It has been found that we are powered by 
the random generator that produce candidate detectors and may or may not cover the 
required set of patterns. For example, from table 7.4., 199 positive detector sequences can 
identify 67 mismatches.  We would like to have a pool of negative detectors that are not 
only randomly generated but also identify almost 67 matches of anomalous behaviour.  In 
particular the following has been noticed from table 7.4.: 
square4 There is no guarantee that the negative detectors created will cover better the 
intrusive instances even if the allowable number of detector sequences is 
increased.  
square4 We need to correctly identify what should be randomly generated.  From table 
7.4., sequences of the complement of normal behaviour have been randomly 
generated.  If we decide to use these complement sequences with lookahead-
pairs method, high false positives will result such as in the case of having 95 
matches with 900 detector sequences.  This can be explained by the following 
example: 
Suppose we have the following normal sequence {1, 2, 3, 4}, the pair (2, 1) will be 
added to the normal positive selection database at set 1.  If we are generating the 
complement of the normal sequence, the random generator will provide the 
sequence {1, 2, 3, and 5} as an acceptable pattern.  If we convert this sequence to its 
lookahead-pairs equivalent, the pair (2, 1) will be added to the negative selection 
database at set 1 as well.  Such pairs will be responsible for producing false 
positives.  
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 Pos. Neg. 
# 
mismatches 
67                
# matches  30 36 6 8 10 11 20 3 22 61 79 16 69 95 40 
# pairs 500 537 539 540 596 595 597 898 896 898 2073 2073 2075 2670 2662 2669 
# detector 
sequences 
199 180 180 180 199 199 199 300 300 300 700 700 700 900 900 900 
Cost saved 
to disk 
6000 6444 6468 6480 7152 7140 7164 10776 10752 10776 24876 24876 24900 32040 31944 32028 
Table 7.4.  Performance comparison among positive and several negative pattern 
generation. 
 
7.5. Danger Theory 
Matzinger [Matzinger 1994] introduced the idea that the immune system does not 
respond only to foreignness depending on self-non-self discrimination but also to danger 
signals generated when a cell dies an unnatural way.  Many cells such as B cell, Th1 cell, 
Th2 cell, APC, and killer T cell play a role in the adaptive reaction of the immune system 
and especially with danger theory.  B cell is responsible for identifying bacteria (intrusion 
instances) and presenting it to Th1.  APC is responsible for processing the environment 
and identifying bacteria as well as distress signals and presenting it to Th1. Th1, Th2 and 
Killer T cells are responsible for managing the immune reaction.  
Previous attempts to model immune systems were implemented as a pool of 
agents mimicking different cells. In our implementation we are instantiating only one 
instance or object of each cell type.  For example, rather than having a pool of B cells, 
and each cell identifies a number of antigens or intrusions, we have implemented an 
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object B cell that is associated with a database of all possible patterns and it reads a 
sequence and compares it with this database.  The same is applied to all other cells.   
7.5.1. Implementation 
Our implementation of danger theory concepts are summarized in the object 
diagram displayed in Figure 7.6.  Figure 7.7. shows the associated data flow diagram of 
the activities performed by the different cells (objects).   
B cell object is responsible for capturing antigens or intrusion instances.  This is 
achieved by comparing a suitable sized sequence with the entries in the database of 
normal behavior associated with B cell object.   
The iDC object is responsible for identifying intrusion instances as well as 
gathering statistics from the system such as memory and CPU usages.  The collected data 
by the iDC object is then translated to concentrations of danger, safe, IC and PAMP 
signals and then they are passed to the DC object.   
The DC object then decides if this information corresponds to an intrusion or if it 
is normal. Both B cell and DC cell objects present their information to the Th1 cell object 
that is responsible for priming Th2 and killer T cells in case of danger and suppressing 
Th2 in case of safe operation.   
Th2 then either suppresses or primes B cell object. In case of intrusion, killer T 
cell will display a message to the user with the type of intrusion identified.   This will 
include the sources of such intrusion.  For example, it will indicate if it is a mismatch, 
high memory, high CPU usages, or a combination of them.  It will also display other 
related information such as what is the system calls that caused the mismatch and what 
application.  
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Figure 7.6. Danger theory system overview architecture. 
 
Figure 7.7.  flow chart of the steps carried out by the artificial immune based IDS 
employing danger theory concepts 
 
1.1. B cell capture antigen (intrusion instance ? a mismatch) 
1.2. Immature DC (iDC) capture antigen (intrusion instance -  a mismatch) 
1.3. iDC sense danger signal from stressed cell 
2. iDC differentiate according to the concentration of both danger signal and antigen to DC 
 
3.1. B cell present antigen to Th1.   
4.1.  Th1 PRIME or SUPRESS Th2.  
 
4.2.  Th1 PRIME killer T cell.  
5.1.  Th2 PRIME or SUPRESS B cell. 
5.2. Killer T cell display message to user 
3.2. DC present antigen in context (antigen signature and surrounding status: natural or un-natural death) to Th1 
Healthy cells 
Damaged cell Bacteria 
 
    B Cell 
Killer T cell Th2  Th1 
DC 
1.1 
1.2 1.3 
2 
3.1 
5.1 
4.1 
3.2 
4.2 5.2 
iDC 
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Implementing this system required the definition of several classes to handle the 
different functionalities of the danger theory based IDS that are: 
square4 iDC  
square4 DC  
square4 B cell 
square4 Th1 
square4 Th2 
square4 Killer T 
square4 Exit engine 
square4 IDS system 
The code of the different objects can be found in Appendix F.  Both iDC and DC 
activity has been explained in section 6.3 of this dissertation.  The B cell object is 
responsible for reading system calls produced by the application and then comparing 
subsequences with entries in the database.  The database in our system consists of normal 
behavior patterns. If the tested subsequence does not match any entry in the database then 
an intrusion is flagged. The B cell object then informs Th1 object of the mismatch and 
which subsequence caused it.  At the same time, the B cell object listens to Th2 which 
can send a suppress or a prime signal to B cell object.  Th2 informs B cell object of the 
string under consideration and whether it is an intrusion by the prime signal or a normal 
activity by the suppress signal.  For each entry in the B cell database there is an 
associated threshold value.  This threshold value indicates how many times an entry has 
been seen or has matched a sequence.  A minimum acceptable threshold as well as a 
maximum acceptable threshold values are previously identified by an officer and indicate 
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the minimum and maximum values that govern the lifespan of an entry in the B cell 
database.  If Th2 primes B cell then the threshold value associated with the string is 
increased. If Th2 suppresses B cell then the associated threshold value is decreased.  If 
the threshold goes below the minimum accepted threshold then this entry is removed 
from the database.  We decided to perform such action especially because the system is 
usually not fully trained and some new sequences will cause a mismatch but will not be 
associated with any dangerous signals.  Therefore, our system should tolerate such new 
changes.  The pseudo code of the activity diagram of B cell is shown in Figure 7.8.  
When there is no more system calls to be examined or when the IDS is shut down, B cell 
object calls ExitEngine object which is responsible for finalizing IDS activities.  
Th1 object can receive input from both B cell object and DC objects. If Th1 
receives input from B cell and DC object, then it will check the threshold value 
associated with the string sent by B cell object.  If it exceeds the maximum acceptable 
threshold value no confirmation from DC is required to prime killer T cell and an 
intrusion is flagged. If the threshold value is within an acceptable range but DC sent a 
prime message then killer T cell is primed.  In both cases Th2 is primed. Otherwise a 
suppress message is sent to Th2.  If Th1 receives input from B cell only, the threshold 
value is checked.  If it exceeds the threshold value then Th2 and killer T cell objects are 
primed; otherwise Th2 is suppressed.  If Th1 receives input from DC only, it checks its 
cytokine value.  If it is a mature signal, then killer T cell is primed; otherwise nothing is 
activated.  The pseudo code of the activity diagram of Th1 cell is shown in Figure 7.9.  
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Figure 7.8. Pseudo code of the activity diagram of B cell 
 
Th2 object is responsible for receiving suppress or prime messages from Th1 
object and then contacting B cell object to either suppress or prime its actions regarding a 
specific sequence.  The pseudo code of the activity of Th2 is shown in Figure 7.10.  
Killer T cells are responsible for responding to any attack against the immune 
human system by attacking the invader cells.  In computer security killer T cell response 
can be by: 1) displaying a detailed message to the security officer explaining the intrusion 
conditions, 2) killing the process responsible for the attack, or 3) slowing down carrying 
out the system call which in many cases can defeat an attack.  In our implementation and 
because we are performing off-line analysis, we choose the first option which is 
displaying the conditions of the attack.  Therefore, killer T cell object displays to the user 
0 Do 
1  if (receive input from Th2) 
2 then  
3  if (input = Suppress) 
4  Then  
5   decrement threshold-array of string 
6   if (threshold < MIN-Threshold) 
7   then remove entry from table 
8   end then 
9   end if 
10  end then    
11  else // input is Prime 
12   increment threshold-array of string 
13  end else 
14  end if  
15 end then  
16 end if 
17 Do 
18         Read system call 
19  Until string reached window size 
20 Match string with entries in database 
21  If (identified bacteria) 
22 Then  
23  send string to Th1 
24  send threshold-array to Th1 
25 end then 
26 Until no more system calls to read 
27 call ExitEngine 
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or security officer the type of attack and conditions resulting from such attack.  The 
pseudo code of the activities of killer T cell is shown in Figure 7.11.  
 
                     
Figure 7.9 Pseudo code of the activity diagram of Th1 
 
 
0 if (received input from B and DC) 
1 then 
0 if (threshold of string > MAX-allowable-threshold)  
0 Then  
0  send Prime message to killer T 
0  send prime message to Th2 
0 end then 
0 end if 
0 if (mature DC) 
0 then 
0  send prime message to killer T  
0  send prime message to Th2 
0 end then 
0 else 
0  send suppress message to Th2  
0 end else 
0 end if 
0 end then 
0 else     if (received input from B and not from DC) 
0  then 
0  if (threshold of string > MAX-allowable-threshold)  
0  Then  
0   send Prime message to killer T 
0   send prime message to Th2 
0  end then 
0  else 
0   send suppress message to Th2    
0  end else 
0  end if 
0  end then 
0 else  if (received input from DC and not from B) 
0   then  
0   if (mature DC) 
0   then 
0    send prime message to killer T  
0   end then 
0   end if 
0  end then 
0  end if 
0 end else 
0 end if 
0 end else 
0 end if 
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Figure 7.10. Pseudo code of the activity diagram of Th2 
    
     
Figure 7.11. Pseudo code of the activity diagram of Killer T cell 
  
 
Figure 7.12. Pseudo code of the activity diagram of Exit Engine 
 
ExitEngine is an object that is responsible for making sure that the IDS is shut 
down and the statistics are displayed only when both B cell and iDC cells have existed.  
The pseudo code of ExitEngine object is shown in Figure 7.12.  
 
0 Receive string from Th1 
1 Receive source from Th1 
2 Receive system identifying engines from Th1 
3 print string to user  
4 print source to user  
5 print identifying engines to user  
 
0   Receive exiting IDS message  
1   if exit message from B cell 
2   then  
3         if received exit message from iDC 
4         then  
5      Finalize exiting IDS program 
6   Print statistics 
7   Goto 18 
8        Else go to 0 
9   else if exit message from iDC 
10  then  
11        if received exit message from B cell 
12        then  
13   Finalize exiting IDS program 
14   Print statistics 
15   Goto 18 
16       Else go to 0 
17 End then 
18 Exit program 
 
0 Receive string and attack type from Th1  
1 if (attack type = suppress) 
2 then  
3       send suppress message to B 
4       send string to B  
5 else   
6      send prime string message to B  
8 end else 
9 go to 0 
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7.5.2. Performance Comparison 
In this section we will compare the performance of the original lookahead pairs 
method IDS with other enhanced versions that use the same data structure used by 
lookahead pairs method.  Enhancing danger theory method was performed in 3 steps: 
1. iDC and DC functionalities of danger theory were added to the original lookahead 
pairs method. This means that we are not only looking at mismatches but also 
searching for distress signals associated with such mismatches. 
2. Added the functionality of B cells with it associated database. In this case we 
have two databases to compare against. One associated with B cells and another 
with iDC.   
3. All cell components of danger theory are added and examined. 
In general, a danger theory based IDS can identify the following: 
square4 Mismatch identified by B cell only. 
square4 Mismatch and distress identified by DC cell only. 
square4 Mismatch by B and DC cells and distress by DC cells.  
Whereas the original lookahead-pairs method IDS can only identify intrusions 
caused by a mismatch.  
In Table 7.5., we have identified 9 scenarios and compared the performance of the 
four IDSs.  The 9 scenarios explain the different attack types a system may encounter.  
The different scenarios are related to the different controlling factors that indicate an 
intrusion such as the existence of a mismatch, high CPU usage and high memory usage.  
We have compared four systems.  The original lookahead-pairs method IDS can only 
identify intrusions producing a number of mismatches that exceed a previously identified 
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threshold value.  It will not identify an attack that deviate or produce mismatches that 
don?t exceed the threshold value but produce dangerous signals.  The dangerous signals 
checked in our system are the high CPU and high memory usages.  False positives can 
also be encountered with lookahead-pairs method especially when there is a mismatch 
identified but with no associated dangerous signal.  This could happen when the system is 
not fully trained on all possible system call sequences and a new sequence may be 
produced.  Lookahead pairs will identify it as an intrusion despite being sometimes 
normal.  When enhancing lookahead-pairs method with the functionality of iDC and DC, 
all attacks will be identified.  If we are limited with space requirements, enhancing an 
IDS with iDC and DC characteristics is a good option.  Because such enhancement will 
not have any significant additional storage and processing time affects.  However, it will 
enhance detection tremendously and lower false positives.  
Incorporating all cell types of danger theory especially B and iDC who are 
associated with a database has similar detection rate obtained from the iDC enhanced 
IDS.  Meaning that it does not identify any additional types of attacks.  However, it 
makes the system more robust because if one of the databases gets tampered with the 
other database will be able to identify the attack.  This, of course comes with a cost of 
doubling the storage requirements of the IDS.  The databases of B and iDC cells can hold 
either positive or negative detector patterns. In our 4 systems we are using positive 
detector database.  However, since lookahead-pairs is not affected with the size of 
complement sequences of normal behavior, both databases will have the same storage 
requirements.  One of the benefits of using negative detectors is the ability to distribute 
the system to other systems easily.  
 163 
Table 7.6. compares the performance of the 4 versions of lookahead-pairs IDS 
and its enhanced version with respect to storage requirements.  Both the original version 
of lookahead pairs and its enhanced version with iDC and DC have the same storage 
requirements.  However, if we use another database for B cell the storage requirement is 
doubled.  
 
 
CPU 
attack 
MEM 
attack 
Mismatch 
attack 
Lookahead 
pairs 
Lookahead 
pairs & 
iDC 
Lookahead 
pairs & 
danger 
theory with 
+ve 
detectors 
Lookahead 
pairs & 
danger 
theory with 
+ve & -ve 
detectors 
0 0 0 Y Y Y Y 
0 0 1 Y Y Y Y 
0 1 0 N Y Y Y 
0 1 1 Y Y Y Y 
1 0 0 N Y Y Y 
1 0 1 Y Y Y Y 
1 1 0 N Y Y Y 
1 1 1 Y Y Y Y 
Added characteristic Better 
detection  
Robust Distribution 
Table 7.5. Intrusion types identified by the four types of IDS: lookahead pairs IDS, 
iDC enhanced, danger theory enhanced with positive detectors for both B and iDC, 
and danger theory enhanced with positive and negative detectors for B and iDC. 0: 
No attack. 1: an attack. Y: yes. N: no. FP: result in false positives. 
 
 
 
 
 
 
 
 
 
 164 
 Lookahead 
pairs 
Lookahead 
pairs & iDC 
Lookahead 
pairs & danger 
theory with 
+ve detectors 
Lookahead 
pairs & danger 
theory with 
+ve & -ve 
detectors 
Total testing 
time (sec) 
0 0 0 0 
Space cost of 1 
DB while 
running 
65536 65536 65536 65536 
Space cost of 2 
DBs while 
running 
65536 65536 131072 131072 
Space cost of 1 
DB while 
saved to disk 
10896 10896 10896 10896 
Space cost of 2 
DBs while 
saved to disk 
10896 10896 21792 21792+ 
Table 7.6.  Performance comparison of 4 versions of lookahead-pairs and its 
enhanced systems. 
 
7.6. Validation and Verification  
One technique used to validate and verify our modified intrusion detection system 
is the conference test as a dynamic functional testing.  Dynamic testing involves 
executing the system by choosing a number of test cases and its input test data. The input 
test cases are used to determine output test results.  With functional testing, we identify 
and test all functions of the system as defined in requirements.  With the conference test, 
we choose different input values then design test cases that invoke every functional 
requirement in the specification at least once.  Our validation hypothesis is that the 
danger theory based intrusion detection system will only pass the conference test if an 
only if there is no failures.  The purpose of validating the implemented system is 
governed with the purpose of the new enhanced system.  The purpose of this project is to 
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enhance the lookahead-pairs method based intrusion detection system with danger theory 
concepts and enhance the detection rate of the original system.  The purpose of the 
validation phase is to make sure that given different input sets that the output produced 
by the system is correct.  In general, the intrusion detection system takes as an input the 
following: 
- System-call sequences that contain both normal and intrusive instances. 
- CPU current values 
- Memory usage current values 
System calls are read one by one and then are formatted as a sequence.  The 
appropriate number of system calls is grouped to form a testing subsequence; they are 
checked against the database.  As long as no intrusive instance is discovered the system 
continues monitoring system calls.  In case an intrusion has been discovered the values 
for the CPU and memory usages are read.   At the same time, on equal intervals the CPU 
and memory usage values are read to check for attacks that do not involve mismatched 
system calls.  Table 7.7. shows the different test cases used to test the system output and 
compare between the original and enhanced systems outputs. In total there are 64 test 
cases.  We have 6 different input combinations that are the current values of CPU usage, 
memory usage and identification of a mismatch.  We are also examining the previous 
immediate condition of the system.  The ?expected output? column indicates what the 
system should produce given the specified conditions.  The ?actual output? is the output 
produced by the system.  When comparing both the lookahead-pairs method with the 
enhanced version with danger theory we calculated the number of accurate outputs 
produced.  Both the original lookahead pairs method IDS and the enhanced system were 
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able to identify correctly all 64 case inputs. Accuracy here does not mean that the system 
identified an intrusion correctly but for validation and verification purposes, it means that 
the system performed what it is supposed to perform correctly.  Figure 7.13. is an 
example of the output produced by the enhanced IDS when testing against test case 8.  In 
this case a current mismatch is identified and is associated with high CPU and memory 
usages. Appendix H is an example output produced when testing the enhanced system 
with test case 10. In this test case we are making sure that the enhanced IDS identify a 
contiguous mismatch attack.  Although the lookahead-pairs method enhanced with 
danger theory IDS is best known to identify attacks with danger signals, the system 
should be able to identify as well attacks that do not cause dangerous signals.  A 
mismatch threshold is identified for the system and if a number of mismatches exceed 
this number the system will display an attack message to the user.  
 
Lookahead 
pairs with 
mismatch 
threshold = N 
Lookahead-
pairs method 
enhanced with 
danger theory  
Test 
Case 
Previous 
(N) 
High 
CPU 
values 
Previous 
(N) 
High 
MEM 
values 
Previous 
(N) 
identified 
mismatches 
Current 
High 
CPU 
 
Current 
High 
MEM 
 
Current 
Identified 
Mismatch 
 
Desirable 
output 
Expected 
output 
Actual 
output 
Expected 
output 
Actual 
output 
1 0 0 0 0 0 0 normal normal normal normal normal 
2 0 0 0 0 0 1 normal normal normal normal normal 
3 0 0 0 0 1 0 normal normal normal normal normal 
4 0 0 0 0 1 1 attack normal normal attack attack 
5 0 0 0 1 0 0 normal normal normal normal normal 
6 0 0 0 1 0 1 attack normal normal attack attack 
7 0 0 0 1 1 0 normal normal normal normal normal 
8 0 0 0 1 1 1 attack normal normal attack attack 
9 0 0 1 0 0 0 attack attack attack attack attack 
10 0 0 1 0 0 1 attack attack attack attack attack 
11 0 0 1 0 1 0 attack attack attack attack attack 
12 0 0 1 0 1 1 attack attack attack attack attack 
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13 0 0 1 1 0 0 attack attack attack attack attack 
14 0 0 1 1 0 1 attack attack attack attack attack 
15 0 0 1 1 1 0 attack attack attack attack attack 
16 0 0 1 1 1 1 attack attack attack attack attack 
17 0 1 0 0 0 0 attack normal normal attack attack 
18 0 1 0 0 0 1 attack normal normal attack attack 
19 0 1 0 0 1 0 attack normal normal attack attack 
20 0 1 0 0 1 1 attack normal normal attack attack 
21 0 1 0 1 0 0 attack normal normal attack attack 
22 0 1 0 1 0 1 attack normal normal attack attack 
23 0 1 0 1 1 0 attack normal normal attack attack 
24 0 1 0 1 1 1 attack normal normal attack attack 
25 0 1 1 0 0 0 attack attack attack attack attack 
26 0 1 1 0 0 1 attack attack attack attack attack 
27 0 1 1 0 1 0 attack attack attack attack attack 
28 0 1 1 0 1 1 attack attack attack attack attack 
29 0 1 1 1 0 0 attack attack attack attack attack 
30 0 1 1 1 0 1 attack attack attack attack attack 
31 0 1 1 1 1 0 attack attack attack attack attack 
32 0 1 1 1 1 1 attack attack attack attack attack 
33 1 0 0 0 0 0 attack normal normal attack attack 
34 1 0 0 0 0 1 attack normal normal attack attack 
35 1 0 0 0 1 0 attack normal normal attack attack 
36 1 0 0 0 1 1 attack normal normal attack attack 
37 1 0 0 1 0 0 attack normal normal attack attack 
38 1 0 0 1 0 1 attack normal normal attack attack 
39 1 0 0 1 1 0 attack normal normal attack attack 
40 1 0 0 1 1 1 attack normal normal attack attack 
41 1 0 1 0 0 0 attack attack attack attack attack 
42 1 0 1 0 0 1 attack attack attack attack attack 
43 1 0 1 0 1 0 attack attack attack attack attack 
44 1 0 1 0 1 1 attack attack attack attack attack 
45 1 0 1 1 0 0 attack attack attack attack attack 
46 1 0 1 1 0 1 attack attack attack attack attack 
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47 1 0 1 1 1 0 attack attack attack attack attack 
48 1 0 1 1 1 1 attack attack attack attack attack 
49 1 1 0 0 0 0 attack normal normal attack attack 
50 1 1 0 0 0 1 attack normal normal attack attack 
51 1 1 0 0 1 0 attack normal normal attack attack 
52 1 1 0 0 1 1 attack normal normal attack attack 
53 1 1 0 1 0 0 attack normal normal attack attack 
54 1 1 0 1 0 1 attack normal normal attack attack 
55 1 1 0 1 1 0 attack normal normal attack attack 
56 1 1 0 1 1 1 attack normal normal attack attack 
57 1 1 1 0 0 0 attack attack attack attack attack 
58 1 1 1 0 0 1 attack attack attack attack attack 
59 1 1 1 0 1 0 attack attack attack attack attack 
60 1 1 1 0 1 1 attack attack attack attack attack 
61 1 1 1 1 0 0 attack attack attack attack attack 
62 1 1 1 1 0 1 attack attack attack attack attack 
63 1 1 1 1 1 0 attack attack attack attack attack 
64 1 1 1 1 1 1 attack attack attack attack attack 
Accuracy 100% 100% 
Table 7.7. Test cases used to validate the lookahead pairs method enhanced with 
danger theory. 
 
current testing input row:  90 125 106 5 
mismatch pair: <5,106> at plain: 0
mismatch pair: <5,125> at plain: 1
mismatch pair: <5,90> at plain: 2
Handeled Window:   90 125 106   5
Is a mismatch
User present: 1
CPU usage: 97.3
Mem usage: 97.4
Is an abnormal signal: 0
previous CPU:    1   0   0   0   0   0   0   0   0   0
previous memory:    1   0   0   0   0   0   0   0   0   0
previous abnormal:    0   0   0   0   0   0   0   0   0   0
previous mismatches:    1   0   0   0   0   0   0   0   0   0
previous IC:    1   0   0   0   0   0   0   0   0   0
Mat
 
Figure 7.13. Sample output of the lookahead-pairs method enhanced with danger 
theory IDS of test case 8. A mismatch has been identified and high CPU and 
memory usages have been noticed. The output is ?Mat? indicating mature DC or 
danger. 
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In table 7.7, we verity that the system is implemented correctly and also helped us 
to validate or demonstrate that the results obtained are correct, which is an example of 
trace validation.   
In general, to validate the enhanced system requires a two fold validation.  Since 
the enhanced system is based on an already built and validated system the first part of 
validation is checked.  The original lookahead pairs method has been validated in section 
5.8. of this dissertation.   
The added functionalities of the danger theory to the original lookahead pairs 
method will be validated next.  Since the enhanced system is composed of the original 
lookahead pairs method to create its normal database, the system or in particular the 
generated datasets are not sensitive to a particular input dataset.  The other part of the 
enhanced system which is testing a sequence and indicating if it results in an intrusion or 
not, has been validated as follows.   
The same data set used to test the original lookahead pairs method has been tested 
with the enhanced system and both produced the same results and identified the same 
intrusions.  The enhanced system is created to detect more intrusions instances that have 
been missed by the lookahead pairs method.  Table 7.7. shows the output of running the 
original and enhanced system over a set of test cases and shows that the enhanced system 
identified more attacks.    
From table 7.8., and when comparing the desirable output with the actual output 
produced by the original system and the enhanced system, we note that the original 
system had a 57.8% detection rate and the enhanced system identified all intrusions.   
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 Original lookahead pairs 
method IDS 
Lookahead pairs method 
enhanced with danger 
theory IDS 
Number of attacks 
identified out of 64  
37 64 
Accuracy or detection rate = 
number of identified attacks 
/ number of expected 
attacks to be identified.  
57.8% 100% 
Table 7.8. Detection rate comparison. 
 
7.7. System Evaluation  
 
An intrusion detection system is evaluated according to their performance in the 
following areas (evaluation criteria): 
? Detection rate. 
? False positive rate. 
? False negative rate. 
? Size of normal repository or the number of patterns in the normal database and 
their storage requirements. 
? Speed of detection. 
Our aim is building a system that will provide the following: 
? High detection rate or in particular we aim of building a system that will detect 
more intrusion types and preferably novel attacks. 
? Low false positive rate by not identifying normal behavior as an intrusion. 
? Low false negative rate by not missing an intrusion. 
? Small storage cost which results from smaller number of patterns and smaller 
pattern size. 
? Fast detection speed.  
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In this dissertation we aimed to improve the performance of the original 
lookahead-pairs method IDS by incorporating danger theory?s signal processing 
capability.  In this section we will compare between the original lookahead-pairs method 
IDS and it?s enhanced with danger theory IDS version with regard to the previously 
identified evaluation criteria.  Table 7.9. elaborates on the evaluation of the criterions of 
the implemented IDSs.  
Evaluation 
criteria 
Procedure used for evaluation Observations 
Detection 
rate. 
 
This is indicated in two folds: 
1. The number of attacks identified 
from the total test cases tested in the 
system. 
2. Mismatch threshold which is equal 
to the total number of pair- 
mismatches identified by the system 
divided by the number of pairs in the 
testing file. 
Tables 7.7. and 7.8.  
indicate the number of 
attacks identified by the 
original lookahead-pairs 
method compared with the 
enhanced lookahead pairs 
method with danger theory. 
For the 64 attack scenarios, 
the enhance system was 
able to detect all attacks. 
However, the original 
system only had a 57.8% 
accuracy rate.  
 
We are performing a 
controlled experiment 
where we, ourselves, inject 
the attacks and check if they 
are identified or not. Both 
systems identified the same 
number of mismatches 
since this depends on the 
system calls that deviate 
from the patterns in the 
normal database.  
False 
positive 
rate. 
 
In a fully trained system the false positive 
rate is equal to 0.0, since any identified 
mismatch must be considered as an 
intrusion. However, usually, training the 
IDS on all possible patterns is not feasible.  
Different systems use different techniques to 
With the original lookahead 
pairs method IDS, we 
simulated a false positive as 
mismatch that is not 
associated with any danger 
signal (high CPU or 
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handle false positives such as:   
? Set an allowable mismatch threshold.  
If the number of mismatches 
identified exceeds this threshold then 
an intrusion is identified. However, it 
is difficult sometimes to identify a 
universal threshold value for patterns 
or sequences. 
? Ask the security administrator to 
manually indicate if this sequence is 
normal or intrusive. 
? Danger theory allows the system to 
experience mismatches and if they 
are moderate in number (i.e. don?t 
exceed a maximum threshold value) 
and are not associated with danger 
signals, to be added to the normal 
database.  
 
Our system has a minimum and maximum 
threshold values associated with 
mismatches. We have several scenarios:  
? If the mismatches exceed a 
maximum threshold and are not 
associated with dangerous signals, it 
is considered an intrusion and the 
information related to such instance 
is displayed to the user. If he decides 
to accept it, he must modify the 
database to include such pattern. 
?  If the mismatches exceed the 
maximum threshold and is associated 
with dangerous signals then this is 
defiantly an intrusion. 
? If the number of mismatches is 
below the minimum threshold and is 
not associated with danger signals 
then it is considered normal.  
? If the number of mismatches is 
between the minimum and maximum 
allowable threshold and not 
associated with danger signals 
nothing is reported.  
? If the number of mismatches is 
between the minimum and maximum 
memory usages).  When the 
system is not fully trained, 
some new sequences will 
appear and will result in a 
mismatch since they do not 
exist in the normal 
database.  
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allowable threshold value and danger 
signals are associated with it, the 
system uses an estimation equation 
(i.e. each parameter affecting the 
overall identification of an intrusion 
is given an associated percentage) to 
calculate whether there is an 
intrusion attempt or not.  
In general, our system removes any entry 
from the database that is identified later on 
as an intrusion instance. This is because our 
normal database is build using positive 
selection algorithm.  
False 
negative 
rate. 
 
Many intrusions attempt to deviate the 
implemented IDS.  The original lookahead-
pairs method can not detect, for example, 
any pattern that is repeated indefinitely and 
exist in the normal database.  
The enhanced lookahead-pairs method with 
danger theory overcomes this shortcoming 
by monitoring other parameters as well as 
mismatches for intrusion instances.  
Our systems monitor for mismatches as well 
as CPU and memory usages associated with 
running processing. The CPU and memory 
usage parameters can be exchanged easily 
with any other appropriate parameter as seen 
fit for the security problem at hand. If an 
intrusion deviates the mismatch detection 
scheme which results in a false negative, the 
other parameters should (if chosen correctly) 
should indicate an intrusion instance.   
With the original lookahead 
pairs method the false 
negative result from an 
intrusion that does not 
produce any mismatches. 
Such an intrusion is when 
the attacker, for example, 
writes an attack that will 
produce an acceptable 
sequence of system calls or 
a sequence that will produce 
very low mismatches that 
will not exceed the 
allowable mismatch 
threshold.  
Attacks that deviate the 
maximum threshold value 
but introduce overhead on 
other system parameters 
such as CPU or memory 
will be detected by the 
lookahead-pairs method 
enhanced with danger 
theory. 
 
 
The system enhanced with 
danger theory will detect 
both intrusions producing 
mismatches or inducing 
overhead on the CPU or 
memory of the system. 
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However, any attack that 
does not affect these three 
parameters will not be 
detected.  
Size of 
normal 
repository  
 
For a given training data set and if the 
number of patterns generated for a specific 
window size w is N.  If redundant entries are 
not removed then as the window size w 
increases by one the number of patterns N 
decreases by one. As shown in figure 7.14., 
the total number of patterns decreases by 
one as the window size increases. The 
number of patterns when the redundant 
entries are removed increase as the window 
size increases.  The final number of patterns 
depends on the size of the log file used to 
train the system. It also depends on the 
frequency of a pattern appearing in the log 
file.  
The more patterns added to 
the normal database the 
better the detection and 
lower false positives are 
generated.  
This is true with the original 
lookahead pairs method 
IDS. 
With the lookahead pairs 
method enhanced with 
danger theory we assumed 
that adding the signal 
processing functionalities 
will allow us to lower the 
number of patterns added to 
the database. This is true 
with sequence and variable 
length with overlap 
relationship methods 
because the size of the 
database is dependent on 
the number of patterns 
stored. 
With lookahead pairs 
method storage technique, 
to reduce memory 
requirements we need to 
remove one array or more 
from consideration.  
Speed of 
detection. 
 
This measured the time it takes for the off-
line testing file to be read and each entry in 
it compared to the normal database entries 
and reporting the mismatches to the user.   
Both lookahead-pairs 
method and enhanced 
lookahead-pairs method 
with dander theory IDSs 
finished processing and 
identifying the testing files 
(for the login and ps 
applications) in less than 1 
second. 
Table 7.9. IDS evaluation criteria 
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Number of patterns for sequence method for "int_159.txt" file 
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Figure 7.14. Number of patterns stored in the normal database if no redundant data 
is removed and if redundant data is removed. 
 
To better evaluate the two systems and compare between their performances we 
constructed test cases to measure the detection rate, false positive and false negatives of 
both systems.  Tables 7.10., 7.11. and 7.12. are examples of test cases that measure such 
criterions.  We performed an incremental approach to test the behavior of the systems.  
For example, in table 7.10. we are comparing between the original lookahead pairs 
method and the enhanced version.  We assumed 8 test cases, where we either have one 
mismatch (indicated by 1) or not (indicated by 0).  If the CPU and memory 
concentrations are equal to 1 then there is a CPU or memory attack. We compared 
between two cases, either the identified mismatch is considered an intrusion or it is a new 
normal behavior. The same concept has been adapted for tables 7.11. and 7.12.  In table 
7.11., the mismatch threshold is 2 system calls and in table 7.12. the mismatch threshold 
is 3 system calls.  
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In general, if the sequence intention is normal and the system identified it as 
normal then this is correct output.  If the sequence intention is an attack and the system 
identified it as an attack then this is a correct output.  If the sequence intention is an 
attack and the system identified it as normal then this is considered as a false negative.  If 
the system identified the sequence as normal and it was an attack then this is considered 
as a false positive.  
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0 0 0  N  N  OK  N  OK  N  N  OK  N  OK 
0 0 1  A  A  OK  A  OK  N  A  FP  A  FP 
0 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
0 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
1 0 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 0 1  A  A  OK  A  OK  A  A  OK  A  OK 
1 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
Detection rate 62.5% 100% 50.0% 87.5% 
FP 0.0% 0.0% 12.5% 12.5% 
FN 37.5% 0.0%  37.5% 0.0 % 
Table 7.10. Performance comparison with mismatch threshold = 1 system call. N: 
normal behavior, A: attack, OK: produced correct output, FP: False positive, and 
FN: False negative. 
 
 
The results obtained indicated that the enhanced system always performed better 
than or similar to the original lookahead pairs method based IDS with regard to detection 
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rate, false positive and false negative rates.  Both systems have less than 1 second testing 
time.  When comparing between the original lookahead pairs method based IDS and the 
enhanced with iDC IDS, both have the same storage costs.   However, if we are using the 
B cell functionalities then the cost will be doubled.  
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0 0 1 1  A  A  OK  A  FN  N  A  FP  A  FP 
0 1 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
0 1 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
1 0 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 0 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
1 1 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
Detection rate 31.25 87.5 37.5 93.75 
FP 0 0 6.25 6.25 
FN 68.75 12.5 
 
56.25 0 
Table 7.11. Performance comparison with mismatch threshold = 2 system calls. N: 
normal behavior, A: attack, OK: produced correct output, FP: False positive, and 
FN: False negative. 
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1 1 0 0 1  A  N  FN  A  OK  A  N  FN  A  OK 
0 0 0 1 0  A  N  FN  N  FN  A  N  FN  N  FN 
0 0 0 1 1  A  N  FN  N  FN  N  N  OK  N  OK 
0 1 0 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
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1 1 0 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 0 1 1  A  N  FN  A  OK  A  N  FN  A  OK 
0 0 1 0 0  A  N  FN  A  OK  N  N  OK  N  OK 
0 0 1 0 1  A  N  FN  N  FN  N  N  OK  N  OK 
0 1 1 0 0  A  N  FN  A  OK  A  N  FN  A  OK 
0 1 1 0 1  A  N  FN  A  OK  A  N  FN  A  OK 
1 0 1 0 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 0 1 0 1  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 1 0 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 1 0 1  A  N  FN  A  OK  A  N  FN  A  OK 
0 0 1 1 0  A  N  FN  N  FN  N  N  OK  N  OK 
0 0 1 1 1  A  A  OK  A  OK  N  A  FP  A  FP 
0 1 1 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
0 1 1 1 1  A  AA  OK  A  OK  A  A  OK  A  OK 
1 0 1 1 0  A  N  FN  A OK   A  N  FN  A  OK 
1 0 1 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
1 1 1 1 0  A  N  FN  A  OK  A  N  FN  A  OK 
1 1 1 1 1  A  A  OK  A  OK  A  A  OK  A  OK 
Detection rate 15.625 84.375 28.175 93.75 
FP 0 0 3.125 3.125 
FN 84.375 15.625 
 
68.75 3.125 
Table 7.12.  Performance comparison with mismatch threshold = 3 system calls. N: 
normal behavior, A: attack, OK: produced correct output, FP: False positive, and 
FN: False negative. 
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7.8. Summary 
Danger theory enhances the performance of system call based IDSs that are 
governed by a mismatch threshold.  An attack may not produce mismatches or produce 
mismatches that do not exceed the mismatch threshold.  However if an attack, including 
mismatches, is associated with unacceptable performance degradation (i.e. high CPU and 
memory usages) then the attack will be identified.  In case the system identified 
mismatches but all monitored system conditions are normal then the system will not 
benefit from danger theory but will rely on it threshold to identify mismatches.   
In our implementation only one object is generated for each class (cell) created in 
the system.  For example, we have one B, one Th1, one Th2, one killer T, and one iDC 
and DC cells.  This is different from other attempts to implement innate or adaptive based 
immunity based systems.  The systems are usually populated by many instances or agents 
of such cells that circulate the system.  Our system is not an agent based system.  Rather, 
each type of cell in the immune system is represented with one object that carries out all 
the functionalities and duties of a population of this cell.  This can be accomplished since 
all of them perform the same functionalities and only differ with respect to the monitored 
string or activity.  As a result a database is associated with B and iDC classes holding the 
normal or abnormal strings (activities) to be monitored.  Our system can be modified in 
many ways to handle more advanced and sophisticated tasks.  For example, we can have 
different B cells each responsible for a specific application.  We can also have more than 
one B cell responsible for portion of the whole problem of a specific application.  This is 
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beneficial if we have more than one processor and each B cell will run concurrently 
monitoring the same application.  
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CHAPTER 8 
 CONCLUSION AND FUTURE WORK 
 
In this dissertation the concepts of adaptive immunity and in specific danger 
theory has been tested.  The hypothesis of this dissertation was that incorporating 
properties of danger theory, the performance of lookahead pairs method which is an 
intrusion detection system that uses trails of system calls was enhanced.  As explained 
earlier in tables 7.10. to 7.12., the lookahead pairs method based IDS enhanced with 
danger theory had better detection rate, better or similar false positive and false negative 
rates than the original lookahead pairs method.  Both systems finished processing the 
input data file in less than one second.  The storage requirement of the enhanced system 
with iDC is similar to the original lookahead pairs method IDS but the storage 
requirement of the system enhanced with B cell functionality is doubled.   
Lookahead-pairs method has been previously proven to perform better with 
regard to storage requirements when compared with other intrusion detection systems 
such as sequence method and overlap-relationship method.  However, this performance 
was tested on positive detectors. Positive detectors are generated by examining the 
normal behavior of the system and generating a database that hold this normal behavior.  
In general, with a specified and small number of patterns representing normal behavior, 
the negative detector set which represents the complement of normal behavior tend to be 
huge.  As the number of negative detectors increase, the storage requirements of storing 
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them also increase especially when using sequence and variable length detector methods 
that use data structures such as trees and linked lists to store such patterns.  In this 
dissertation we identified that the characteristics of lookahead pairs method of storing 
pair relationships in a 2 dimensional array format does not required an additional storage.  
Modeling danger theory functionalities can be achieved by instantiating one 
instance of each cell type.   Rather than associating a different and specific signature 
string to each B or iDC cell of which it uses to identify intrusions, our system instantiated 
one object of each cell type.  The B and iDC cells are associated with a database of all 
possible normal behavior signatures.  
The original sequence method, lookahead pairs method and variable length with 
overlap relationship method were unable to detect system-call-denial-of-service-attack.  
Enhancing them with danger theory will enable them to identify such attack since 
consuming system resources will indicate an intrusion and will be identified by the 
enhanced system.  
Danger theory is currently investigated to solve many security and non-security 
related problems.  Exploring immune system concepts and theory are exciting and 
interesting.  In this dissertation we deployed danger theory to enhance an IDS.  Our 
future work will continue in the following fields:  
square6 Enhancing the performance of our system and detect intrusions that deviate 
monitored parameters.  
square6 Implement danger theory inspired intrusion detection system for hand held 
devices.  
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square6 Enhance other intrusion detection systems with danger theory concepts and in 
particular sequence and variable length with overlap relationship methods.  
square6 Investigate other suitable parameters to be used to indicate dangerous signals to 
the danger theory cells.  
square6 Investigate techniques to reduce the cost of storing pattern databases by using 
different data structures.  
square6 Implement an on ? line intrusion detection system performing the functionalities 
tested in the off-line systems implemented in this dissertation.  
This dissertation explored the different mechanisms employed to detect host 
based intrusions by examining sequences of system calls produced by a specific 
application. Artificial immune systems and in specific danger theory concepts were 
employed to enhance the performance of lookahead pairs method and it was successful in 
outperforming the original form of the IDS.  Better detection rate and lower or similar 
false positive and false negative rates were achieved.  
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APPENDIX A 
 SEQUENCE METHOD BASED IDS SAMPLE CODE 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//SEQUENCE METHOD BASED IDS  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
 
//--------------------------------------------------------------------------------------------------------------------- 
//TESTING 
//--------------------------------------------------------------------------------------------------------------------- 
void testing( Seqhash<int> table[NUM_SYS_CALLS]) 
{ 
 ofstream outPrintFile2 ("sequence_results.txt", ios::out); 
  if (!outPrintFile2) 
  { 
   cerr <<"int files names file could not be opened" <<endl; 
   exit(1); 
  } 
 time_t begining_time; 
 time(&begining_time); 
 outPrintFile2 << "Begining Time= "<<begining_time<<endl; 
  
 char raw_filename[LINE_SIZE]; 
 strcpy_s(raw_filename,"int_login_homegrown.txt");  
 ifstream inClientFile (raw_filename,ios::in); 
 if (!inClientFile) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 } 
  
 ofstream outPrintFile1 ("testing_profile.txt", ios::out); 
 if (!outPrintFile1) 
 { 
  cerr <<"int files names file could not be opened" <<endl; 
  exit(1); 
 } 
 outPrintFile1 <<endl<<endl<<endl; 
 outPrintFile1 <<"Start debugging"<<endl<<endl<<endl; 
 int number_mismatches=0; 
 int number_rows_in_testing_profile=0; 
 int asyscall; 
 int window_sized_array[WINDOW_SIZE]; 
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array[i] =-1; 
 for (int abc=0;abc<WINDOW_SIZE-1;abc++) 
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  { 
   if(inClientFile >> asyscall) window_sized_array[abc]=asyscall; 
  } 
 while (inClientFile >> asyscall) 
 { 
  window_sized_array[WINDOW_SIZE-1]=asyscall; 
  number_rows_in_testing_profile++; 
  outPrintFile1 <<"current testing input row:  "; 
  for (int def=0;def<WINDOW_SIZE;def++)  
outPrintFile1 << window_sized_array[def] << " "; 
  outPrintFile1 <<endl; 
 
 
  if (table[window_sized_array[0]].isEmpty()) 
  { 
   outPrintFile1 <<"the sequence: "; 
   for (int x=0;x<WINDOW_SIZE;x++)  
outPrintFile1 << setw(5) << window_sized_array[x]; 
   outPrintFile1 <<"  does not have an entry in the training profile"<<endl; 
   number_mismatches++; 
  }else 
  { 
   SeqhashNode< int > *currentPtr = table[window_sized_array[0]].firstPtr; 
   int seen=0; 
   while(currentPtr != 0) 
   { 
    int same_size=0; 
    for (int j=0;j<WINSIZE_MINUS_ONE;j++)  
if (currentPtr->sequence[j]== window_sized_array[j+1]) 
same_size ++; 
    if (same_size == WINSIZE_MINUS_ONE)seen++; 
    currentPtr =  currentPtr->nextPtr;  
   } 
    
   if(seen==0)  
   { 
    outPrintFile1 <<"the sequence: "; 
    for (int x=0;x<WINDOW_SIZE;x++)  
outPrintFile1 << setw(5) << window_sized_array[x]; 
    outPrintFile1 <<"  caused a mismatch"<<endl; 
    number_mismatches ++; 
   } 
  } 
  for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)  
   window_sized_array[ghi]=window_sized_array[ghi+1]; 
  window_sized_array[WINDOW_SIZE-1]=-1; 
 } 
 time_t ending_time; 
 time(&ending_time); 
 outPrintFile2 << "Ending Time= "<<ending_time<<endl; 
 outPrintFile2 << "Total testing Time= "<<ending_time-begining_time<<" seconds"<<endl<<endl; 
 float mismatches_percentage= ((float)number_mismatches /  
  (float)number_rows_in_testing_profile) * 100.00; 
 outPrintFile2 <<"windows size "<<WINDOW_SIZE<<endl; 
 outPrintFile2 <<"number of patterns in testing file  "<<number_rows_in_testing_profile<<endl; 
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 outPrintFile2 <<"Number of mismatches= "<<number_mismatches<<endl; 
 outPrintFile2 <<"Percentage mismatches  = "<<mismatches_percentage<< " %"<<endl; 
 SeqhashNode< int > *currentPtr; 
 int number_of_patterns=0; 
 for (int xx=0;xx<NUM_SYS_CALLS;xx++) 
 { 
  if (table[xx].isEmpty()){/*NOTHING*/} 
  else 
  { 
   currentPtr = table[xx].firstPtr; 
   while(currentPtr != 0) 
   { 
    number_of_patterns++; 
    currentPtr =  currentPtr->nextPtr;  
   } 
  } 
 } 
 int any_table[WINSIZE_MINUS_ONE]; 
 outPrintFile2 <<"Number of patterns in normal database profile= "<<number_of_patterns<<endl; 
 outPrintFile2 <<"Space cost of profile while at running time= "<<(sizeof (table) + 
  ( sizeof ( Seqhash<int>) * sizeof(any_table) *number_of_patterns) )<<" bytes"<<endl; 
outPrintFile2 <<"Space cost of profile while saved to disk= " 
<<sizeof(int)*WINDOW_SIZE*number_of_patterns<<" bytes"<<endl; 
} 
//--------------------------------------------------------------------------------------------------------------------- 
//MAIN 
//--------------------------------------------------------------------------------------------------------------------- 
int main() 
{ 
 int num_files=0; 
 int total_number_profile_rows =0; 
 char filename[LINE_SIZE]; 
 char filename_table[NUMBER_TRAINING_FILES][LINE_SIZE]; 
 strcpy_s(filename,"int_files_names.txt"); 
 ifstream inClientFile (filename,ios::in); 
 if (!inClientFile) 
 { 
  cerr <<"File could not be opened" <<endl; 
  exit(1); 
 } 
 char one_filename[LINE_SIZE]; 
 while (inClientFile >> one_filename) 
 { 
  strcpy_s (filename_table[num_files], one_filename); 
  num_files++; 
 } 
 ofstream outPrintFile4 ("tracing.txt", ios::out); 
  if (!outPrintFile4) 
  { 
   cerr <<"int files names file could not be opened" <<endl; 
   exit(1); 
  } 
 int temp_sequence [ MAX_SEQ_SIZE]; 
 Seqhash<int> seq_hash_table[NUM_SYS_CALLS]; 
 for (int file_counter=0;file_counter<num_files;file_counter++) 
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 { 
  int sequence_profile_array[PROFILE_ROWS][WINDOW_SIZE]; 
  for (int i=0;i < PROFILE_ROWS; i++) 
   for (int j=0;j<WINDOW_SIZE; j++) 
    sequence_profile_array[i][j] =-1; 
  
  for (int i=0;i<MAX_SEQ_SIZE;i++) temp_sequence [ i] = -1; 
  strcpy_s (one_filename,filename_table[file_counter]); 
  ifstream inClientFile1 (one_filename,ios::in); 
  if (!inClientFile1) 
  { 
   cerr <<"File could not be opened" <<endl; 
   exit(1); 
  } 
  int seq_len=0; 
  while (inClientFile1 >> temp_sequence[seq_len])seq_len++; 
  int temp_row=0; 
  for (int p=0;p<seq_len;p++) 
  { 
   for (int k=0; k<WINDOW_SIZE; k++) 
   { 
    sequence_profile_array[temp_row][k]=temp_sequence[p+k]; 
   } 
   temp_row++; 
  } 
  temp_row=temp_row-(WINDOW_SIZE-1); 
  //ignoring the rows at the lower pyramid that 
 
  outPrintFile4 <<"number of rows before removing redundant rows" << 
temp_row <<endl; 
  //----------------------------------------------------------------------------- 
  //removing redundant rows 
  //-----------------------------------------------------------------------------   
  for (int i=0;i<temp_row-1;i++) 
   for (int j=i+1;j<temp_row;j++) 
   { 
    int alength=0; 
    for (int k=0;k<WINDOW_SIZE;k++) 
if(sequence_profile_array[i][k]== 
sequence_profile_array[j][k]) alength++; 
    if (alength==WINDOW_SIZE) sequence_profile_array[j][0]=-1; 
    
   } 
  int temp_sequence_profile_array[PROFILE_ROWS][WINDOW_SIZE]; 
  for (int i=0;i<PROFILE_ROWS;i++) 
   for (int j=0;j<WINDOW_SIZE;j++) 
    temp_sequence_profile_array[i][j]=-1; 
  int row_counter=0; 
  for (int i=0;i<temp_row;i++) 
  { 
   if(sequence_profile_array[i][0]!=-1)  
   { 
    for (int j=0;j<WINDOW_SIZE;j++) 
    { 
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temp_sequence_profile_array[row_counter][j]= 
sequence_profile_array[i][j]; 
    } 
    row_counter++; 
   } 
 
  } 
  outPrintFile4 <<"number_profile_rows after removing redundant rows" << 
 row_counter <<endl; 
  for (int i = 0;i<row_counter;i++) 
  { 
   for (int j=0;j<WINDOW_SIZE;j++) 
    outPrintFile4 << temp_sequence_profile_array[i][j]<<" " ; 
   outPrintFile4 <<endl; 
  } 
  //----------------------------------------------------------------------------- 
  //save table information in sequence format  
  //-----------------------------------------------------------------------------  
  SeqhashNode< int > *currentPtr; 
  int one_seq[WINDOW_SIZE]; 
  int partial_seq[WINDOW_SIZE-1]; 
 
  for (int i=0;i<row_counter;i++) 
  { 
for(int j=0;j<WINDOW_SIZE;j++) one_seq[j]= 
temp_sequence_profile_array[i][j]; 
    
   if (one_seq[0]!=-1) 
   { 
    for (int j=1;j<WINDOW_SIZE;j++) partial_seq[j-1] =one_seq[j]; 
    if (seq_hash_table[one_seq[0]].isEmpty()) 
    { 
     seq_hash_table[one_seq[0]].insertAtBack(partial_seq); 
    } 
    else 
    { 
     currentPtr = seq_hash_table[one_seq[0]].firstPtr; 
     int found_match=0; 
     while(currentPtr != 0) 
     { 
      int xlen=0; 
      for(int x=0;x<WINDOW_SIZE-1;x++) 
       if (currentPtr->sequence[x]== 
partial_seq[x])xlen++; 
      if (xlen==WINDOW_SIZE-1)found_match++; 
      currentPtr =  currentPtr->nextPtr;  
     } 
     if (found_match==0)  
      seq_hash_table[one_seq[0]].insertAtBack(partial_seq); 
    } 
     
   } 
    
  } 
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 } 
  
 testing( seq_hash_table); 
 return 0; 
} 
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APPENDIX B 
 LOG FILE EXAMPLE OF NORMAL PATTERN DB FOR FILE ?INT_509.TXT? 
 
This section shows portions of the log file collected while generating fixed length detectors with different 
window sizes.  The patterns (sub sequences) generated are for the file (int_509.txt) and mainly show the 
window size and then the nmber of rows before and after removing redundant entries.  As shown the 
number of rows before removing redunadant data decresess by one as the window size increass by one.  
However the number of rows after removing redundant data (rows) does not follow any linear increase or 
decrease but depend on the data itself.  
 
File name : int_509.txt 
Window size = 3 
number of rows before removing redundant rows = 362 
number_profile_rows after removing redundant rows = 181 
90 125 106  
125 106 5  
106 5 90  
5 90 6  
90 6 5  
6 5 3  
5 3 90  
3 90 6  
90 6 125  
6 125 5  
125 5 3  
6 125 91  
125 91 125  
91 125 136  
125 136 49  
136 49 24  
49 24 47  
24 47 50  
47 50 67  
50 67 27  
67 27 67  
. 
. 
. 
. 
4 6 76  
6 76 75  
75 5 67  
5 67 3  
67 3 67  
3 67 6  
67 6 106 
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6 106 67  
106 67 23  
67 23 12  
23 12 2  
12 2 67  
2 67 114  
67 114 67  
114 67 5  
67 5 108  
75 24 102  
24 102 13  
76 75 91  
75 91 1  
File name : int_509.txt 
Window size = 4 
number of rows before removing redundant rows361 
number_profile_rows after removing redundant rows206 
90 125 106 5  
125 106 5 90  
106 5 90 6  
5 90 6 5  
90 6 5 3  
6 5 3 90  
5 3 90 6  
3 90 6 5  
3 90 6 125  
90 6 125 5  
6 125 5 3  
125 5 3 90  
90 6 125 91  
6 125 91 125  
125 91 125 136  
91 125 136 49  
125 136 49 24  
136 49 24 47  
49 24 47 50  
24 47 50 67  
. 
. 
. 
. 
23 12 2 67  
12 2 67 114  
2 67 114 67  
67 114 67 5  
114 67 5 108  
67 5 108 90  
76 75 24 102  
75 24 102 13  
24 102 13 20  
6 76 75 91  
76 75 91 1  
File name : int_509.txt 
Window size = 5 
number of rows before removing redundant rows = 360 
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number_profile_rows after removing redundant rows = 226 
90 125 106 5 90  
125 106 5 90 6  
106 5 90 6 5  
5 90 6 5 3  
90 6 5 3 90  
6 5 3 90 6  
5 3 90 6 5  
3 90 6 5 3  
5 3 90 6 125  
3 90 6 125 5  
90 6 125 5 3  
6 125 5 3 90  
125 5 3 90 6  
3 90 6 125 91  
90 6 125 91 125  
6 125 91 125 136  
125 91 125 136 49  
91 125 136 49 24  
. 
. 
.  
67 114 67 5 108  
114 67 5 108 90  
67 5 108 90 3  
91 76 75 24 102  
76 75 24 102 13  
75 24 102 13 20  
24 102 13 20 4  
4 6 76 75 91  
6 76 75 91 1 
 218 
APPENDIX C 
 LOOKAHEAD-PAIRS METHOD BASED IDS SOURCE CODE 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//LOOKAHEAD PAIRS MEHTOD IDS  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//--------------------------------------------------------------------------------------------------------------------- 
//MAIN 
//--------------------------------------------------------------------------------------------------------------------- 
void main() 
{ 
 const int size = (WINDOW_SIZE-1)* NUM_SYS_CALLS*NUM_SYS_CALLS; 
 std::bitset<size> b_array; 
 int number_syscalls; 
 char syscall_hashtable[NUM_SYS_CALLS][LINE_SIZE]; 
 number_syscalls = create_syscalls_hashtable(syscall_hashtable); 
 char filename_table[NUMBER_TRAINING_FILES][LINE_SIZE]; 
 char filename[LINE_SIZE]; 
  strcpy_s(filename,"int_files_names.txt"); 
 ifstream inClientFile (filename,ios::in); 
 if (!inClientFile) 
 { 
  cerr <<"File could not be opened" <<endl; 
  exit(1); 
 } 
 char one_filename[LINE_SIZE]; 
 int counter=0;//number of files to be read 
 while (inClientFile >> one_filename) 
 { 
  strcpy_s (filename_table[counter], one_filename); 
  counter++; 
 } 
 Tree <int> TreeObject; 
 List< int > listObject[NUMBER_TRAINING_FILES]; 
 for (int temp_counter =0;temp_counter<counter;temp_counter++) 
 { 
  TreeObject.insertAtRight(temp_counter+1); 
  strcpy_s(filename, filename_table[temp_counter]); 
  ifstream inClientFile1 (filename,ios::in); 
  if (!inClientFile1) 
  { 
   cerr <<"File could not be opened" <<endl; 
   exit(1); 
  } 
  int value;
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  while (inClientFile1 >> value)  
 listObject[temp_counter].insertAtBack(value); 
  TreeObject.lastPtr->downPtr = listObject[temp_counter].firstPtr; 
 } 
  
 ofstream outPrintFile ("tracing.txt", ios::out); 
 if (!outPrintFile) 
 { 
  cerr <<"int files names file could not be opened" <<endl; 
  exit(1); 
 } 
 int number_pairs; 
 
 TreeNode< int > *currentPtr = TreeObject.firstPtr; 
 ListNode<int> *listCurrentPtr; 
  
 while ( currentPtr!=0) 
 { 
  int temp_row=0; 
  int temp_sequence [MAX_SEQ_SIZE]; 
 
  int profile_array[PROFILE_ROWS][WINDOW_SIZE]; 
  for (int i=0;i < PROFILE_ROWS; i++) 
   for (int j=0;j<WINDOW_SIZE; j++) 
    profile_array[i][j] =-1; 
 
  for (int i=0;i<MAX_SEQ_SIZE;i++) temp_sequence [ i] = -1; 
  listCurrentPtr= currentPtr->downPtr; 
  int seq_len=0; 
  while (listCurrentPtr != 0) 
  { 
   temp_sequence[seq_len] = listCurrentPtr->data; 
   listCurrentPtr =  listCurrentPtr->nextPtr; 
   seq_len++; 
  } 
  for (int p=0;p<seq_len;p++) 
  { 
   for (int k=0; k<WINDOW_SIZE ; k++) 
   { 
    profile_array[temp_row][k]=temp_sequence[p+k]; 
     
   } 
   temp_row++; 
  } 
   
  int number_profile_rows =0; 
  for (int i=0; i<=temp_row;i++) 
  { 
   if (profile_array[i][WINDOW_SIZE-1] != -1) 
   { 
    number_profile_rows ++; 
   }else for (int j=0;j<WINDOW_SIZE;j++)profile_array[i][j]=-1; 
   //removing entries at the lower pyramid of profile 
  } 
  //adding the remaining upper pyramid data to the end of the array_profile 
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  int pyramid_row_entries =  WINDOW_SIZE-2; 
  int y=1; 
  for(int i=number_profile_rows;i<(number_profile_rows+pyramid_row_entries);i++) 
  {  
   for(int j=0;j<WINDOW_SIZE-y;j++) 
   { 
    profile_array[i][j+y] =profile_array[0][j]; 
   } 
   y++; 
  } 
   
  number_pairs=number_profile_rows*(WINDOW_SIZE-1); 
  number_pairs=number_pairs+((pyramid_row_entries*(WINDOW_SIZE-1))/2); 
  number_profile_rows = number_profile_rows + pyramid_row_entries; 
  for (int i=number_profile_rows;i<PROFILE_ROWS;i++) 
   for(int j=0;j<WINDOW_SIZE;j++) 
    profile_array[i][j]=-1; 
  outPrintFile <<"number_profile_rows before removing redundant rows= " <<  
   number_profile_rows <<endl; 
  outPrintFile <<"array content with pyramid data at end of array"<<endl; 
  for (int i = 0;i<number_profile_rows;i++) 
  { 
   for (int j=0;j<WINDOW_SIZE;j++) 
    outPrintFile << profile_array[i][j]<<" " ; 
   outPrintFile <<endl; 
  } 
  //----------------------------------------------------------------------------- 
  //REMOVING REDUNDANT ENTRIES 
  //----------------------------------------------------------------------------- 
 
  for (int i=0;i<number_profile_rows-1;i++) 
   for (int j=i+1;j<number_profile_rows;j++) 
   { 
    int alength=0; 
    for (int k=0;k<WINDOW_SIZE;k++) 
     if(profile_array[i][k]==profile_array[j][k]) alength++; 
    if (alength==WINDOW_SIZE) profile_array[j][WINDOW_SIZE-1]=-
1; 
    
   } 
  int temp_profile_array[PROFILE_ROWS][WINDOW_SIZE]; 
  for (int i=0;i<PROFILE_ROWS;i++) 
   for (int j=0;j<WINDOW_SIZE;j++) 
    temp_profile_array[i][j]=-1; 
  int row_counter=0; 
  for (int i=0;i<PROFILE_ROWS;i++) 
  { 
   if(profile_array[i][WINDOW_SIZE-1]!=-1)  
   { 
    for (int j=0;j<WINDOW_SIZE;j++) 
    { 
     temp_profile_array[row_counter][j]=profile_array[i][j]; 
    } 
    row_counter++; 
   } 
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  } 
  for (int i=0;i<PROFILE_ROWS;i++) 
   for (int j=0;j<WINDOW_SIZE;j++) 
    profile_array[i][j]=-1; 
 
  for (int i=0;i<=row_counter;i++) 
   for (int j=0;j<WINDOW_SIZE;j++) 
    profile_array[i][j]=temp_profile_array[i][j]; 
  number_profile_rows=row_counter; 
  outPrintFile <<"number_profile_rows after removing redundant rows= " <<  
   number_profile_rows <<endl; 
 
  for (int i = 0;i<number_profile_rows;i++) 
  { 
   for (int j=0;j<WINDOW_SIZE;j++) 
    outPrintFile << profile_array[i][j]<<" " ; 
   outPrintFile <<endl; 
  } 
  //----------------------------------------------------------------------------- 
  //Save table information in lookahead format 
  //----------------------------------------------------------------------------- 
 
  outPrintFile<<"the locations that are set to 1:"<<endl; 
  int array_num =0; 
  for(int j=WINDOW_SIZE-2;j>=0;j--) 
  { 
   for(int i=0;i<number_profile_rows;i++) 
   { 
 
    int row=profile_array[i][WINDOW_SIZE-1]; 
    int col=profile_array[i][j];  
    if((row==-1)||(col==-1)) 
    { 
     //NOTHING 
    }else  
    { 
outPrintFile <<"<"<<row<<","<<col<<">"<<" at plane: "<< 
array_num<<endl; 
     b_array.set(  ((row-1)*NUM_SYS_CALLS) 
+col+ 
(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num)  ); 
    } 
   } 
   array_num++; 
  }  
  currentPtr = currentPtr->rightPtr; 
 }//while (currentPtr!=0)  
  
 //------------------------------------------------------------------------------------------- 
 //START TESTING 
 //------------------------------------------------------------------------------------------- 
 time_t begining_time; 
 time(&begining_time); 
 outPrintFile << "Begining Time= "<<begining_time<<endl; 
 char filename1[LINE_SIZE]; 
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 strcpy_s(filename1,"int_ps_homegrown.txt"); 
 ifstream inClientFile1(filename1,ios::in); 
 if (!inClientFile1) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 } 
 int number_rows_in_testing_profile=0; 
 int number_of_pairs_in_testing_profile=0; 
 int value; 
 int window_sized_array[WINDOW_SIZE]; 
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array[i] =-1; 
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)  
  { 
   if(inClientFile >> value) window_sized_array[abc]=value; 
  } 
 double percentage; 
 int mismatches=0; 
 int row, col; 
 while (inClientFile1 >> value) 
 { 
  window_sized_array[WINDOW_SIZE-1]=value; 
  number_rows_in_testing_profile++; 
  outPrintFile <<"current testing input row:  "; 
  for (int def=0;def<WINDOW_SIZE;def++) outPrintFile <<  
window_sized_array[def] << " "; 
  outPrintFile <<endl; 
 
  for (int i=0;i<WINDOW_SIZE-1;i++) 
  { 
   row=window_sized_array[WINDOW_SIZE-1]; 
   col=window_sized_array[WINDOW_SIZE-2-i]; 
   if ((row==-1)||(col==-1)) 
   { 
    //NOTHING 
   }else 
   { 
    number_of_pairs_in_testing_profile++; 
    if (b_array.test(  ((row-1)*NUM_SYS_CALLS) +col +  
    (NUM_SYS_CALLS*NUM_SYS_CALLS*i)  )==0)  
    { 
     mismatches ++; 
     outPrintFile <<"mismatch pair: <"<<row<<","<<col<< 
"> at plain: "<<i<<endl; 
    } 
   } 
  } 
  for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)  
   window_sized_array[ghi]=window_sized_array[ghi+1]; 
  window_sized_array[WINDOW_SIZE-1]=-1; 
 } 
 //------------------------------------------------------------------------------------------------------------ 
 time_t ending_time; 
 time(&ending_time); 
 outPrintFile << "Number of rows in testing profile= "<< 
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number_rows_in_testing_profile-1<<endl; 
 outPrintFile << "Number of pairs in testing profile= "<< 
number_of_pairs_in_testing_profile<<endl; 
 outPrintFile << "Ending Time= "<<ending_time<<endl; 
 outPrintFile << "Total testing Time= "<<ending_time-begining_time<<" seconds"<<endl<<endl; 
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0; 
 outPrintFile << "Number of lookahead mismatches= "<<mismatches<<endl; 
 outPrintFile << "Percentage of mismatches (anomaly sensitivity)= "<<percentage<<" %"<<endl; 
 outPrintFile <<" Maximum number of lookahead-pairs SETS= "<<WINDOW_SIZE<< 
" sets"<<endl; 
 outPrintFile <<" Minimum number of lookahead-pairs SETS= "<<WINDOW_SIZE-2<< 
" sets"<<endl; 
 outPrintFile <<" Number of lookahaead pairs= "<<number_pairs<<endl; 
 outPrintFile <<"Number of sets (planes)= "<<WINDOW_SIZE-1<< 
"planes. Each is a 256 x 256 bit array and NUM_SYS_CALLS=256"<<endl; 
 outPrintFile <<"Space cost of profile while at running time= "<<b_array.size() << 
" bits. = "<<(b_array.size()/8)<<" bytes."<< endl; 
 outPrintFile <<"Space cost of profile while saved to disk= "<<sizeof(int)*number_pairs<< 
" bytes"<<endl; 
 cout <<"exiting"<<endl; 
} 
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APPENDIX D 
 VARIABLE LENGTH DETECTORS WITH OVERLAP RELATIONSHIP 
METHOD BASED IDS SAMPLE CODE 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//VARIABLE LENGTH DETECTPRS BASED IDS 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
 
//----------------------------------------------------------------------------- 
//TESTING 
//----------------------------------------------------------------------------- 
 
void testing() 
{ 
 Seqhash<int> table[NUMBER_SYSCALLS]; //hash table of normal pattern database 
 ofstream outPrintFile22 ("tracing_variable.txt", ios::out); 
 if (!outPrintFile22) 
 { 
  cerr <<"int files names file could not be opened" <<endl; 
  exit(1); 
 } 
 time_t begining_time; 
 time(&begining_time); 
 outPrintFile22 << "Begining Time= "<<begining_time<<endl; 
 int number_mismatches=0; 
 int number_systecalls_read=0; 
 strcpy_s(filename,"int_login_homegrown.txt"); 
 ifstream inClientFile (filename,ios::in); 
 if (!inClientFile) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 } 
 int going_to_new_pattern; 
 int value; 
 int not_seen_syscall=0; 
 int prev_value; 
 if (inClientFile >> value) 
 { 
 do 
 { 
 number_systecalls_read++;
 225 
 int counter =0; 
 int type=0; 
 prev_value = value; 
 if (table[value].isEmpty()) 
 { 
  number_mismatches++; 
  not_seen_syscall++; 
 }else 
 { 
  SeqhashNode< int > *currentPtr = table[value].firstPtr; 
  if (inClientFile >> value) 
  { 
    
   int s=1; 
    do 
    { 
   number_systecalls_read++; 
   going_to_new_pattern =0; 
   prev_value = value; 
   while ((currentPtr->nextPtr != 0) &&(currentPtr->sequence[s]!=value))  
   { 
    currentPtr =  currentPtr->nextPtr; 
   } 
   if ((currentPtr == 0) || (currentPtr->sequence[s]!=value)) 
   { 
    number_mismatches ++; 
    counter++; 
   } 
   else if (currentPtr->sequence[s]== value) 
   { 
   int j=s+1; 
   int count2=0; 
   int there_is_systemcalls=1; 
   while ((currentPtr != 0) &&(currentPtr->sequence[j]!= -1) 
    &&(there_is_systemcalls ==1)) 
   { 
   there_is_systemcalls=0; 
   if (inClientFile >> value) 
   { 
   number_systecalls_read++; 
   there_is_systemcalls =1; 
   prev_value = value; 
    
   //the following to handle overlaping patterns 
   if ((currentPtr->sequence[j]!= value)  
     &&(table[value].isEmpty())&& (count2>2)) 
   { 
    count2++; 
    type=1; 
   } 
   if ((currentPtr->sequence[j]!= value)  
    &&(!table[value].isEmpty())&& (count2>2)) 
   { 
    count2++; 
    type=2; 
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   } 
   if ((currentPtr->sequence[j]!= value)  
    &&(!table[prev_value].isEmpty())&& (count2>2)) 
   { 
    count2++; 
    type=3; 
   } 
   if (currentPtr->sequence[j]!= value)  
   { 
    number_mismatches ++; 
   } 
   if (count2>2) 
   switch (type) 
   { 
   case 1: 
     
    number_mismatches ++; 
    not_seen_syscall++; 
    break; 
   case 2: 
    currentPtr = table[value].firstPtr; 
    j=0; 
    break; 
   case 3: 
    currentPtr = table[prev_value].firstPtr;  
    j=1; 
    break; 
   } 
   j++; 
   }//if    
   }//while 
   if (currentPtr->sequence[j]== -1) going_to_new_pattern = 1; 
   }//elseif 
   s++; 
   }while((going_to_new_pattern ==0)&&(counter <3)&&(inClientFile >> value)); 
  }//if 
 }//else 
 }while (inClientFile >> value); 
 }//if 
 time_t ending_time; 
 time(&ending_time); 
 outPrintFile22 << "Ending Time= "<<ending_time<<endl; 
 outPrintFile22 << "Total testing Time= "<<ending_time-begining_time<< 
" seconds"<<endl<<endl; 
 outPrintFile22 << "number of mismatches: "<<number_mismatches<<endl; 
 outPrintFile22 <<"size of testing file: "<<number_systecalls_read<<" system calls"<<endl; 
 float mismatches_percentage= ((float)number_mismatches / (float)number_systecalls_read) * 
 100.00; 
 outPrintFile22 <<"Percentage of sequence mismatches= "<<mismatches_percentage<< 
" %"<<endl; 
 int number_of_patterns=0; 
 int max_pattern_length=0; 
 int min_pattern_length=100; 
 int number_of_syscalls_in_patterns=0; //number of system calls in all patterns in training database 
 for (int xx=1;xx<NUMBER_SYSCALLS;xx++) 
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 { 
  if (table[xx].isEmpty()) 
  { 
   //NOTHING    
  }else  
  { 
   SeqhashNode< int > *currentPtr = table[xx].firstPtr; 
   while(currentPtr != 0) 
   { 
   number_of_patterns++; 
   int yy=0; 
   while(currentPtr->sequence[yy] != -1) 
   { 
    number_of_syscalls_in_patterns++; 
    yy++; 
   } 
   if (yy>max_pattern_length) max_pattern_length = yy; 
   if (yy<min_pattern_length) min_pattern_length = yy; 
 
   currentPtr =  currentPtr->nextPtr; 
   } 
  } 
 } 
 int for_testing[PINSTANCE_SIZE]; 
 outPrintFile22 << "number of patterns in training database: "<<number_of_patterns<<endl; 
 outPrintFile22 << "Max pattern length: "<<max_pattern_length<<endl; 
 outPrintFile22 << "Min pattern lenfth: "<<min_pattern_length<<endl; 
 outPrintFile22 << "Average pattern length: " 
 <<((max_pattern_length+min_pattern_length)/2)<<endl; 
 outPrintFile22 <<"size of normal file: "<<number_of_syscalls_in_patterns<< 
" system calls"<<endl; 
 outPrintFile22 <<"Space cost of profile while at running time= "<<(sizeof (table) + 
  (sizeof ( Seqhash<int>) * sizeof(for_testing)* number_of_patterns) )<<" bytes"<<endl; 
outPrintFile22 <<"Space cost of profile while saved to disk= " 
<<sizeof(int)*number_of_syscalls_in_patterns<<" bytes"<<endl; 
} 
//----------------------------------------------------------------------------- 
//READING TRAINING FILES AND GENERATING NORMAL PATTERN DATABASE WITH 
POSITIVE DETECTORS 
//----------------------------------------------------------------------------- 
 
int pattern_candidates_array[PINSTANCE_SIZE][PINSTANCE_SIZE];//first row contain the size of the 
pattern starting from row1 
fill_array_with_negone(pattern_candidates_array); 
char filename_table[NUMBER_SYSCALLS][LINE_SIZE]; 
 
Seqhash<int> adjacency_list[NUMBER_SYSCALLS]; 
int number_syscalls; 
 
int max_seq_size= 0; 
char filename[LINE_SIZE]; 
strcpy_s(filename,"all_training_files2.txt"); 
ifstream inClientFile (filename,ios::in); 
if (!inClientFile) 
{ 
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 cerr <<"File could not be opened" <<endl; 
 exit(1); 
} 
char one_filename[LINE_SIZE]; 
int counter=0;//number of files to be read 
while (inClientFile >> one_filename) 
{ 
 strcpy_s (filename_table[counter], one_filename); 
 counter++; 
} 
 
Tree <int> TreeObject; 
Pinstance <int> PinstanceObject; 
List< int > listObject[NUMBER_TRAINING_FILES]; 
int seen[NUMBER_SYSCALLS]; 
for (int k=0;k<NUMBER_SYSCALLS;k++) seen[k]=-1; 
int number_tobe_processed=0; 
for (int temp_counter =0;temp_counter<counter;temp_counter++) 
{ 
 TreeObject.insertAtRight(temp_counter+1); 
 strcpy_s(filename, filename_table[temp_counter]); 
 ifstream inClientFile1 (filename,ios::in); 
 if (!inClientFile1) 
 { 
  cerr <<"File could not be opened" <<endl; 
  exit(1); 
 } 
 int value; 
 while (inClientFile1 >> value) 
 { 
  seen[value]=0; 
  listObject[temp_counter].insertAtBack(value); 
 } 
 TreeObject.lastPtr->downPtr = listObject[temp_counter].firstPtr; 
} 
for (int k=0;k<NUMBER_SYSCALLS;k++) 
 if(seen[k]==0)number_tobe_processed++; 
TreeNode<int> *headTempPtr,*headTempPtrOuter; 
ListNode<int> *tempPtr; 
headTempPtrOuter = TreeObject.firstPtr; 
int instance_counter=0; 
int temp_pinstance[PINSTANCE_SIZE][PINSTANCE_SIZE]; 
 
int temp_e = TreeObject.firstPtr->downPtr->data;//starting from first element as the  
     //never seen before system call 
seen[temp_e]=1; 
for(int temp_counter=1;temp_counter <= counter; temp_counter++)  
{ 
 tempPtr=headTempPtrOuter->downPtr; 
 do 
 { 
  if (tempPtr->data == temp_e) 
  { 
   instance_counter++; 
   tempPtr->instance_value=instance_counter; 
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  } 
  tempPtr=tempPtr->nextPtr; 
 }while ((tempPtr !=0)&&(headTempPtr != 0)); 
 for (int i=0;i<PINSTANCE_SIZE; i++) 
  for (int j=0;j<PINSTANCE_SIZE; j++) 
  { 
   temp_pinstance[i][j]=-1; 
  } 
 headTempPtr = TreeObject.firstPtr; 
 for(int temp_counter=1;temp_counter <=instance_counter; temp_counter++)  
 { 
  tempPtr=headTempPtr->downPtr; 
  while ((tempPtr->data != temp_e)&&(tempPtr != 0))  
  { 
   tempPtr=tempPtr->nextPtr; 
  } 
  while((tempPtr !=0)&&(headTempPtr != 0)) 
  { 
   if (tempPtr !=0) 
   { 
   if (tempPtr->data == temp_e) 
   { 
   int temp_row =0; 
   int temp_col =tempPtr->instance_value; 
   temp_pinstance[temp_row][temp_col] = tempPtr->data; 
   tempPtr=tempPtr->nextPtr; 
   temp_row++; 
   while ((tempPtr != 0)&&(tempPtr->data != temp_e)) 
   { 
   if (tempPtr != 0) 
   { 
    temp_pinstance[temp_row][temp_col] = tempPtr->data; 
    tempPtr=tempPtr->nextPtr;  
    temp_row ++; 
   } 
   if (tempPtr == 0) 
   { 
    temp_pinstance[temp_row][temp_col] = -1;  
    temp_row ++; 
   } 
   } 
   if (temp_row > max_seq_size) max_seq_size = temp_row; 
   } 
   } 
  } 
   
 } 
 int temp_array [PINSTANCE_SIZE][PINSTANCE_SIZE]; 
 fill_array_with_negone(temp_array); 
 int pinstance_value=0; 
 int num_maximal_pattern_candidates =0; 
 for (int j=0;j<PINSTANCE_SIZE;j++) temp_array[0][j]=temp_pinstance[0][j]; 
 Pinstance <int> pinstanceObject; 
 pinstanceObject.insertRootNode (pinstance_value, temp_array); 
 pinstance_value++; 
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 int i=1; 
 int number_columns = instance_counter; 
 int last_temp_array [PINSTANCE_SIZE][PINSTANCE_SIZE]; 
 int temp_temp_pinstance[PINSTANCE_SIZE][PINSTANCE_SIZE]; 
 for(int z =0;z<PINSTANCE_SIZE;z++) 
   for(int x=0;x<PINSTANCE_SIZE;x++) 
    temp_temp_pinstance[z][x]=temp_pinstance[z][x]; 
 
 //----------------------------------------------------------------------------- 
 //START TYPE CHECKING 
 //----------------------------------------------------------------------------- 
 int num_repeated[NUMBER_SYSCALLS]; 
 Type5List< int > type5ListObject; 
 int num_subsections =1; 
 int temp_last_cols =1; 
 while ((num_subsections > 0)&&(number_columns>1)) 
 { 
  int just_done_type5=0; 
  int type1Found =0; 
  int type2Found =0; 
  int type3Found=0; 
  int type4Found=0; //there is a type 1 and a type 2 
  int type5Found=0; //type 2 is divided into two or more sections 
  for(int j=0;j<PINSTANCE_SIZE;j++) 
   temp_array[i][j]=temp_temp_pinstance[i][j]; 
  fill_array_with_negone(last_temp_array); 
  int temp_holder = temp_array[i][1]; 
  for (int c=1;c<=number_columns;c++) 
  { 
   if (temp_array[i][c] == -1) type1Found =1; 
   if ((temp_holder != temp_array[i][c]) &&(temp_array[i][c]!=-1)) type2Found 
=1; 
  } 
  if ((type1Found ==1) && (type2Found ==1) )  
  { 
   type4Found =1; 
  } 
  if (type2Found ==1) 
  { 
   for (int countKK=0;countKK<NUMBER_SYSCALLS;countKK++) 
    num_repeated[countKK]=0; 
   for (int countKK=1;countKK<=number_columns;countKK++) 
if (temp_array[i][countKK]!=-1) 
num_repeated[temp_array[i][countKK]]++; 
   int more_than_1=0; 
   for (int countKK=1;countKK<NUMBER_SYSCALLS;countKK++) 
    if ((num_repeated[countKK])>1) more_than_1 ++; 
   if (more_than_1 >1) type5Found =1; 
  } 
  if ((type1Found == 0)&&(type2Found ==0)) type3Found =1; 
  else type3Found =0; 
   
  if ((type1Found ==1)&&(type2Found==1)&&(number_columns <=2)) 
  { 
   type1Found =0; 
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   type2Found =0; 
   type3Found=0; 
   type4Found=0;  
   type5Found=0; 
   num_subsections=0; 
   number_columns=0; 
  } 
  //-------------------------------TYPE4---------------------------------------- 
  if  (type4Found == 1) 
  { 
   int temp_right_col=1; 
   int temp_left_col=1; 
   for (int c=1;c<=number_columns;c++) 
   { 
    if (temp_array[i][c] == -1) 
    { 
     for(int m =0;m <i;m ++) 
     last_temp_array[m][temp_left_col]=temp_array[m][c]; 
     temp_left_col ++; 
     for (int abc=0;abc<PINSTANCE_SIZE;abc++)  
     temp_temp_pinstance[abc][c]=-1; 
     for (int abc=0;abc<PINSTANCE_SIZE;abc++) 
temp_array[abc][c]=-1; 
    } 
   } 
   pinstanceObject.insertNode(pinstance_value,last_temp_array,0);//left 
   pinstance_value++; 
   num_maximal_pattern_candidates ++; 
   for (int m=1;m<=number_columns;m++) 
   { 
   if (temp_array[i][m]==-1) 
   { 
   for (int n=m;n<=number_columns-1;n++) 
   for (int p=0;p<PINSTANCE_SIZE;p++) 
   { 
    temp_array[p][n]=temp_array[p][n+1]; 
    temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1]; 
   } 
   number_columns--; 
   } 
   } 
   for (int m=1;m<=number_columns;m++) 
   { 
   if (temp_array[i][m]!=-1) if (num_repeated[temp_array[i][m]]==1) 
   { 
   for (int n=m;n<=number_columns-1;n++) 
   for (int p=0;p<PINSTANCE_SIZE;p++) 
   { 
    temp_array[p][n]=temp_array[p][n+1]; 
    temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1]; 
   } 
   number_columns--; 
   } 
   } 
   pinstanceObject.insertNode(pinstance_value,temp_array,1);//right 
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   pinstance_value++; 
   i++; 
  //-------------------------------TYPE1---------------------------------------- 
  }else if  (type1Found == 1) 
  { 
   int temp_right_col=1; 
   int temp_left_col=1; 
   for (int c=1;c<=number_columns;c++) 
   { 
   if (temp_array[i][c] == -1) 
   { 
   for(int m =0;m <i;m ++) 
    last_temp_array[m][temp_left_col]=temp_array[m][c]; 
   temp_left_col ++; 
   for (int abc=0;abc<PINSTANCE_SIZE;abc++)temp_temp_pinstance[abc][c] 
=-1; 
   for (int abc=0;abc<PINSTANCE_SIZE;abc++)temp_array[abc][c]=-1; 
   } 
   } 
   pinstanceObject.insertNode(pinstance_value,last_temp_array,0);//left 
   pinstance_value++; 
   num_maximal_pattern_candidates ++; 
   for (int m=1;m<=number_columns;m++) 
   { 
   if (temp_array[i][m]==-1) 
   { 
   for (int n=m;n<=number_columns-1;n++) 
   for (int p=0;p<PINSTANCE_SIZE;p++) 
   { 
    temp_array[p][n]=temp_array[p][n+1]; 
    temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1]; 
   } 
   number_columns--; 
   } 
   } 
   pinstanceObject.insertNode(pinstance_value,temp_array,1);//right 
   pinstance_value++; 
   i++; 
  //-------------------------------TYPE2 AND TYPE5---------------------------------------- 
  }else if (type2Found == 1) 
  { 
   for (int m=1;m<=number_columns;m++) 
   { 
   if (temp_array[i][m]!=-1)if (num_repeated[temp_array[i][m]]==1) 
   { 
   for (int n=m;n<=number_columns-1;n++) 
   for (int p=0;p<PINSTANCE_SIZE;p++) 
   { 
    temp_array[p][n]=temp_array[p][n+1]; 
    temp_temp_pinstance[p][n]=temp_temp_pinstance[p][n+1]; 
   } 
   number_columns--; 
   } 
   } 
   if (type5Found == 1) 
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   { 
   num_subsections--; 
   int getting_size; 
   int maximum_size=0; 
   for (int hh=1;hh<NUMBER_SYSCALLS;hh++) 
    if (num_repeated[hh] >1) 
    { 
    type5ListObject.insertAtBack(); 
    int counter3=1; 
    for (int counter1=0;counter1<PINSTANCE_SIZE;counter1++) 
    { 
    if (temp_temp_pinstance[i][counter1]==hh) 
    { 
    getting_size=0; 
    for (int counter2=0;counter2<PINSTANCE_SIZE;counter2++) 
    { 
     if (temp_temp_pinstance[counter2][counter1]!=-1)  
     getting_size++; 
     type5ListObject.lastPtr->data[counter2][counter3]  
     =temp_temp_pinstance[counter2][counter1]; 
     type5ListObject.lastPtr->starting_row=i; 
    } 
    if (getting_size > maximum_size) maximum_size = getting_size; 
    counter3++; 
    } 
    } 
    type5ListObject.lastPtr->max_seq_len=maximum_size+1; 
    type5ListObject.lastPtr->num_columns=counter3-1; 
    num_subsections++; 
    } 
   //filling temp_temp_pinstance with -1 
   for (int yy=0;yy< PINSTANCE_SIZE;yy++) 
     for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
      temp_temp_pinstance[yy][xx]=-1; 
   for (int yy=0;yy< PINSTANCE_SIZE;yy++) 
     for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
      temp_array[yy][xx]=-1; 
 
   just_done_type5=1; 
   } 
   i++;    
  //-------------------------------TYPE3---------------------------------------- 
  }else if (type3Found == 1)  
  { 
   i++; 
   int number_of_minus_ones=0; 
   for (int x=1;x<=number_columns;x++) 
   { 
    temp_array[i][x] =  temp_temp_pinstance[i][x]; 
    if(temp_array[i][x]==-1) number_of_minus_ones++; 
   } 
 
   if (number_of_minus_ones>=number_columns) 
   { 
    num_subsections--; 
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   }else pinstanceObject.modifyNode(temp_array); 
    
  } 
  //-------------------------------END ALL TYPE CHECKING----------------------------- 
  if (just_done_type5==1) 
  { 
   if ( type5ListObject.firstPtr != 0 ) 
   { 
    for (int yy=0;yy< PINSTANCE_SIZE;yy++) 
     for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
      temp_temp_pinstance[yy][xx]=-1; 
    for (int yy=0;yy< PINSTANCE_SIZE;yy++) 
     for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
      temp_temp_pinstance[yy][xx]=  
      type5ListObject.firstPtr->data[yy][xx]; 
    i=type5ListObject.firstPtr->starting_row; 
    for (int xx=0;xx<i;xx++) 
     for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
      temp_array[xx][yy]=temp_temp_pinstance[xx][yy]; 
    max_seq_size=type5ListObject.firstPtr->max_seq_len; 
    number_columns=type5ListObject.firstPtr->num_columns; 
    type5ListObject.removeFromFront(); 
    num_subsections--; 
   } 
  } 
 }//End of while 
  
 //------------------------------------------------------------------------------------- 
 filling_pattern_candidates_array(pinstanceObject.rootPtr, pattern_candidates_array,0); 
     
 int aa_pattern_candidate_array[PINSTANCE_SIZE][PINSTANCE_SIZE]; 
 for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
  for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
   aa_pattern_candidate_array[xx][yy]=-1; 
 int temp_yy=1; 
 for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
  if(pattern_candidates_array[1][yy] != -1) 
  { 
   for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
   
 aa_pattern_candidate_array[xx][temp_yy]=pattern_candidates_array[xx][yy]; 
   temp_yy ++; 
  } 
 for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
  for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
   pattern_candidates_array[xx][yy]=aa_pattern_candidate_array[xx][yy]; 
 
 num_maximal_pattern_candidates =0; 
 for (int x=0;x<PINSTANCE_SIZE;x++) 
  if(pattern_candidates_array[1][x]!=-1) 
  { 
   num_maximal_pattern_candidates++; 
   int seq_size=0; 
   for (int y=1;y<PINSTANCE_SIZE;y++) 
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    if (pattern_candidates_array[y][x]!=-1)seq_size++; 
   pattern_candidates_array[0][x]=seq_size; 
  } 
 //removing one element sequences 
 for (int i=1;i<=num_maximal_pattern_candidates;i++) 
 { 
  if (pattern_candidates_array[0][i] < 2) 
   for (int j=0;j<PINSTANCE_SIZE; j++) pattern_candidates_array[j][i]=-1; 
 } 
  
 for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
  for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
   aa_pattern_candidate_array[xx][yy]=-1; 
  temp_yy=1; 
  
  for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
   if(pattern_candidates_array[1][yy] != -1) 
   { 
    for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
    
 aa_pattern_candidate_array[xx][temp_yy]=pattern_candidates_array[xx][yy]; 
    temp_yy ++; 
   } 
 for (int xx=0;xx<PINSTANCE_SIZE;xx++) 
  for (int yy=0;yy<PINSTANCE_SIZE;yy++) 
   pattern_candidates_array[xx][yy]=aa_pattern_candidate_array[xx][yy]; 
  
 char syscall_hashtable[NUMBER_SYSCALLS][LINE_SIZE]; 
 number_syscalls = create_syscalls_hashtable(syscall_hashtable); 
 int one_seq[PINSTANCE_SIZE]; 
 for (int j=0;j<PINSTANCE_SIZE;j++) one_seq[j]=-1; 
 num_maximal_pattern_candidates=temp_yy-1; 
 for (int i=1;i<=num_maximal_pattern_candidates;i++) 
 { 
  if (pattern_candidates_array[0][i] != -1) 
  { 
  for (int j=0;j<PINSTANCE_SIZE-1;j++) 
  { 
   one_seq[j]=pattern_candidates_array[j+1][i]; 
  } 
  int seq_length =0; 
  while(one_seq[seq_length]!=-1)seq_length++; 
  seq_length++; 
  int pattern_exist=0;  
   
   if (!adjacency_list[one_seq[0]].isEmpty()) 
   { 
   int a=0; 
   SeqhashNode< int > *currentPointer = adjacency_list[one_seq[0]].firstPtr; 
   int CCC=0; 
   for (int ee=0;ee<PINSTANCE_SIZE;ee++) if (one_seq[ee]!=-1)CCC++; 
   while(currentPointer != 0) 
   { 
   int CCC2=0; 
   for(int ee=0;ee<PINSTANCE_SIZE;ee++)  
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    if ((currentPointer->sequence[ee]!=-1)&& 
(currentPointer->sequence[ee]==one_seq[ee])) 
     CCC2++; 
   if(CCC=CCC2) pattern_exist=1; 
     
   currentPointer =  currentPointer->nextPtr; 
   } 
   } 
    
  if (pattern_exist==0) 
  { 
   int sizeC=0; 
   for (int CC=0;CC<PINSTANCE_SIZE;CC++) 
    if(one_seq[CC] !=-1)sizeC++; 
   if (sizeC>1) 
   { 
   adjacency_list[one_seq[0]].insertAtBack(one_seq);  
   TreeNode<int> *headPtrB; 
   ListNode<int> *tempPtrB; 
   ListNode<int> *temptempPtrB; 
   headPtrB=TreeObject.firstPtr; 
   while (headPtrB !=0) 
   { 
   tempPtrB=headPtrB->downPtr; 
   while (tempPtrB !=0) 
   { 
   if(tempPtrB->data == one_seq[0]) 
   { 
   temptempPtrB=tempPtrB; 
   int temp_seq_size =0; 
   int same=1; 
   while ((temptempPtrB !=0)&&(temp_seq_size<seq_length-1)) 
   { 
    if (temptempPtrB->data != one_seq[temp_seq_size]) same =0; 
    temp_seq_size++; 
    temptempPtrB=temptempPtrB->nextPtr; 
   } 
   if (temp_seq_size != seq_length-1)  
   { 
    same =0; 
   } 
   if (same ==1) 
   { 
   for (int p=0;p<seq_length-1;p++) 
   { 
   if (tempPtrB != 0) 
   { 
    tempPtrB->belong_to_a_pattern =1; 
    tempPtrB= tempPtrB->nextPtr; 
   } 
   } 
   } 
   } 
   if (tempPtrB != 0) tempPtrB=tempPtrB->nextPtr; 
   } 
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   headPtrB=headPtrB->rightPtr; 
   } 
   } 
  } 
  } 
 } 
    
 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//COLLECTING STAND ALONE SEQUENCES 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
 
int sequenceS[PINSTANCE_SIZE]; 
TreeNode<int> *headPtrS; 
ListNode<int> *tempPtrS; 
headPtrS=TreeObject.firstPtr; 
int seq_exsist; 
while (headPtrS !=0) 
{ 
 tempPtrS=headPtrS->downPtr; 
 while (tempPtrS !=0) 
 { 
  while ((tempPtrS !=0)&&(tempPtrS->belong_to_a_pattern==1)) 
tempPtrS=tempPtrS->nextPtr; 
  int countS=0; 
  for (int j=0;j<PINSTANCE_SIZE;j++) sequenceS[j]=-1; 
  while ((tempPtrS !=0)&&(tempPtrS->belong_to_a_pattern==0)) 
  { 
   sequenceS[countS]= tempPtrS->data; 
   countS++; 
   tempPtrS=tempPtrS->nextPtr; 
  } 
  if (sequenceS[0]!=-1) 
  { 
  seq_exsist =0; 
  if (!adjacency_list[sequenceS[0]].isEmpty()) 
  { 
  SeqhashNode< int > *currentPointer = adjacency_list[sequenceS[0]].firstPtr; 
  while((currentPointer != 0)&&(seq_exsist==0)) 
  { 
    
  int seqC2=0; 
  int seqC3=0; 
  for (int vv=0;vv<PINSTANCE_SIZE;vv++) 
  { 
   if (sequenceS[vv]!=-1)seqC2++; 
   if ((currentPointer->sequence[vv] ==sequenceS[vv])&& 
(sequenceS[vv]!=-1))seqC3++; 
  } 
  if(seqC2 == seqC3) 
  { 
   seq_exsist =1; 
  } 
  if(currentPointer !=0) currentPointer =  currentPointer->nextPtr; 
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  } 
  } 
  if (seq_exsist==0) 
  { 
   int sizeC=0; 
   for (int CC=0;CC<PINSTANCE_SIZE;CC++) 
   if(sequenceS[CC]!=-1) sizeC++; 
   if (sizeC>1)adjacency_list[sequenceS[0]].insertAtBack(sequenceS); 
  } 
  } 
 } 
 if(headPtrS!=0 )headPtrS=headPtrS->rightPtr; 
} 
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APPENDIX E 
 POSITIVE DETECTOR GENERATION 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//NEGATIVE DETECTOR GENERATION 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
 
 //------------------------------------------------------------------------------------------- 
 // GENERATING AND SAVING NEGATIVE DETECTORS 
 //------------------------------------------------------------------------------------------- 
 ofstream outPrintFile777 ("naiveR0.txt", ios::out); 
 if (!outPrintFile777) 
 { 
  cerr <<" file could not be opened" <<endl; 
  exit(1); 
 } 
 int max_number_detectors =160; //CHANGE IT TO THE SIZE OF DECTORS NEEDED 
 int R0_naive_array[R0_NAIVE_ROWS][WINDOW_SIZE]; 
 int R0_array[R0_ROWS][WINDOW_SIZE]; 
 srand(time(0)); 
 for (int abc=0;abc<R0_ROWS;abc++) 
 { 
  for (int def=0;def<WINDOW_SIZE;def++) 
  { 
   R0_naive_array[abc][def]=1+rand()% number_syscalls; 
   outPrintFile777 <<setw(5)<<R0_naive_array[abc][def];  
  } 
  outPrintFile777 <<endl;  
 } 
 int abc=0; 
 int number_inserted=0; 
 for (int row_counter=0;row_counter<max_number_detectors;row_counter++) 
 { 
  int found_similar=0; 
  for (int ghi=0;ghi<number_profile_rows;ghi++) 
  { 
   if (R0_naive_array[abc][0]==profile_array[ghi][0]) 
   { 
    int same_count=0; 
    for (int def=1;def<WINDOW_SIZE;def++) 
            
    if(R0_naive_array[abc][def]== 
profile_array[ghi][def])same_count++; 
    if (same_count >= WINDOW_SIZE-1)found_similar=1; 
   }
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  } 
  if(found_similar ==0) 
  { 
   int exists=0; 
   for (int ghi=0;ghi<number_inserted;ghi++) 
   { 
    if (R0_naive_array[abc][0]==R0_array[ghi][0]) 
    { 
     int same_count=0; 
     for (int def=1;def<WINDOW_SIZE;def++) 
     
 if(R0_naive_array[abc][def]==R0_array[ghi][def])same_count++; 
     if (same_count >= WINDOW_SIZE-1)exists=1; 
    } 
   } 
   if(exists ==1)  
   { 
     
    row_counter=row_counter-1; 
 
   }else 
   { 
    number_inserted++; 
    for (int def=0;def<WINDOW_SIZE;def++) 
     R0_array[row_counter][def]=R0_naive_array[abc][def]; 
   } 
  } 
  abc++; 
   
 } 
 
 ofstream outPrintFile888 ("R0.txt", ios::out); 
 if (!outPrintFile888) 
 { 
  cerr <<" file could not be opened" <<endl; 
  exit(1); 
 } 
 for (int abc=0;abc<max_number_detectors;abc++) 
 { 
  for (int def=0;def<WINDOW_SIZE;def++) 
  { 
    
   outPrintFile888 <<setw(5)<<R0_array[abc][def];  
  } 
  outPrintFile888 <<endl;  
 } 
 std::bitset<size> c_array; 
 int array_num =0; 
 for(int j=WINDOW_SIZE-2;j>=0;j--) 
 { 
  for(int i=0;i<max_number_detectors;i++) 
  { 
   int row=R0_array[i][WINDOW_SIZE-1]; 
   int col=R0_array[i][j];  
   if((row==-1)||(col==-1)) 
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   { 
     //NOTHING 
   }else  
   { 
     
    c_array.set(  ((row-
1)*NUM_SYS_CALLS)+col+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num)  ); 
   } 
  } 
  array_num++; 
 }  
 
 
 //------------------------------------------------------------------------------------------- 
 // TESTING  with negative detectors modified form 
 //------------------------------------------------------------------------------------------- 
  
 ofstream outPrintFile1000 ("tracing_neg.txt", ios::out); 
 if (!outPrintFile1000) 
 { 
  cerr <<" file could not be opened" <<endl; 
  exit(1); 
 } 
 time(&begining_time); 
 outPrintFile1000 << "Begining Time= "<<begining_time<<endl; 
 char filename1000[LINE_SIZE]; 
 strcpy_s(filename1000,"int_login_homegrown.txt"); 
 ifstream inClientFile1000(filename1000,ios::in); 
 if (!inClientFile1000) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 } 
 int number_rows_in_testing_profile1000=0; 
 int number_of_pairs_in_testing_profile1000=0; 
 int value1000; 
 int window_sized_array1000[WINDOW_SIZE]; 
 for (int i=0;i<WINDOW_SIZE;i++) window_sized_array1000[i] =-1; 
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)  
  { 
   if(inClientFile1000 >> value1000) window_sized_array1000[abc]=value1000; 
  } 
 double percentage1000; 
 int mismatches1000=0; 
 int row1000, col1000; 
 while (inClientFile1000 >> value1000) 
 { 
  window_sized_array1000[WINDOW_SIZE-1]=value1000; 
  number_rows_in_testing_profile1000++; 
  outPrintFile1000 <<"current testing input row:  "; 
  for (int def=0;def<WINDOW_SIZE;def++) outPrintFile1000 << 
window_sized_array1000[def] << " "; 
  outPrintFile1000 <<endl; 
 
  for (int i=0;i<WINDOW_SIZE-1;i++) 
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  { 
   row1000=window_sized_array1000[WINDOW_SIZE-1]; 
   col1000=window_sized_array1000[WINDOW_SIZE-2-i]; 
   if ((row1000==-1)||(col1000==-1)) 
   { 
    //NOTHING 
   }else 
   { 
    number_of_pairs_in_testing_profile1000++; 
    if (c_array.test(  ((row1000-
1)*NUM_SYS_CALLS)+col1000+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)  )==1)  
    { 
     mismatches1000 ++; 
     outPrintFile1000 <<"mismatch pair: 
<"<<row1000<<","<<col1000<<"> at plain: "<<i<<endl; 
    } 
   } 
  } 
  for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++) 
window_sized_array1000[ghi]=window_sized_array1000[ghi+1]; 
  window_sized_array1000[WINDOW_SIZE-1]=-1; 
 } 
 int number_neg_pairs=0; 
 for (int a1=0;a1<array_num;a1++) 
  for (int a2=1;a2<NUM_SYS_CALLS;a2++) 
   for (int a3=1;a3<NUM_SYS_CALLS;a3++) 
    if (c_array.test(  ((a2-
1)*NUM_SYS_CALLS)+a3+(NUM_SYS_CALLS*NUM_SYS_CALLS*a1)  )==1) 
     number_neg_pairs++; 
 
 int number_pos_pairs=0; 
 for (int a1=0;a1<array_num;a1++) 
  for (int a2=1;a2<NUM_SYS_CALLS;a2++) 
   for (int a3=1;a3<NUM_SYS_CALLS;a3++) 
    if (b_array.test(  ((a2-
1)*NUM_SYS_CALLS)+a3+(NUM_SYS_CALLS*NUM_SYS_CALLS*a1)  )==1) 
     number_pos_pairs++; 
 
 
 outPrintFile1000 << "number of pos mismatches= "<<mismatches<<endl; 
 outPrintFile1000 << "number of neg mismatches= "<<mismatches1000<<endl; 
 outPrintFile1000 <<" number of pos pairs= "<<number_pos_pairs<<endl; 
 outPrintFile1000 <<" number of neg pairs= "<<number_neg_pairs<<endl; 
 outPrintFile1000 <<" number of pos detectors= "<<number_profile_rows<<endl; 
 outPrintFile1000 <<" number of neg detectors= "<<max_number_detectors<<endl; 
 outPrintFile1000 <<" space cost while running of pos= "<<(b_array.size()/8)<<endl; 
 outPrintFile1000 <<" space cost while running of neg= "<<(c_array.size()/8)<<endl; 
 outPrintFile1000 <<" space cost while saved to disk of pos= 
"<<sizeof(int)*number_pos_pairs*3<<endl; 
 outPrintFile1000 <<" space cost while saved to disk of neg= 
"<<sizeof(int)*number_neg_pairs*3<<endl; 
 
 //------------------------------------------------------------------------------------------- 
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APPENDIX F 
 LOOKAHEAD PAIRS METHOD ENHANCED WITH DANGER THEORY 
SAMPLE CODE 
 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//IDS MAIN . H 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "IDSSystem.h" 
void main() 
{ 
 IDSSystem IDSsystem; 
 cout <<"exiting program"<<endl; 
} 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//IDSSYSTEM . H ( IDS SYSTEM HEADER FILE) // CONTROLS STARTING  IDS FUNCTIONS  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef IDSSYSTEM_H 
#define IDSSYSTEM_H 
#include "Th2.h" 
#include "Th1.h" 
#include "KillerT.h" 
#include "iDC.h" 
#include "DC.h" 
#include "Bcell.h" 
#include "ExitEngine.h" 
class IDSSystem 
{ 
public: 
 IDSSystem(); 
 ~IDSSystem(); 
private: 
 KillerT one_KillerT; 
 Th1 one_Th1; 
 Th2 one_Th2; 
 DC one_DC; 
 ExitEngine one_ExitEngine; 
 Bcell one_Bcell; 
 iDC one_iDC; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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//IDSSYSTEM . CPP (IDS SYSTEM SOURCE FILE) CONTROLS IDS FUNCTIONS 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "IDSSystem.h" 
//----------------------------------------------------------------------------- 
//CONSTRUCTOR 
//----------------------------------------------------------------------------- 
 
IDSSystem::IDSSystem() 
   :one_Th2(one_Bcell), 
 one_Th1(one_Th2,one_KillerT), 
 one_Bcell(one_Th1,one_ExitEngine), 
 one_DC(one_Th1), 
 one_iDC(one_DC,one_ExitEngine) 
  
{ 
 time_t begining_time; 
 cout <<"IDS started"<<endl; 
 time(&begining_time); 
 one_ExitEngine.set_begining_time(begining_time); 
  
} 
 
//----------------------------------------------------------------------------- 
//DESTRUCTOR 
//----------------------------------------------------------------------------- 
 
IDSSystem::~IDSSystem() 
{ 
 cout <<"IDS shut down"<<endl; 
} 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//IDC . H (IDC CELL HEADER FILE)  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef IDC_H 
#define IDC_H 
#include "constant_values.h" 
class DC; 
class ExitEngine; 
class iDC{ 
public: 
 iDC(DC &, ExitEngine &); 
 void admin(); 
 int calculate_cytokines_iDC(int , int [CYCLE_THRESHOLD], double, double, int, 
 int [CYCLE_THRESHOLD],  
  int [CYCLE_THRESHOLD], int [CYCLE_THRESHOLD],int ,  
int [CYCLE_THRESHOLD],int [WINDOW_SIZE]); 
private: 
 double C_PAMP; 
 double IC; 
 double C_safe; 
 double C_danger; 
 DC &one_DC; 
 ExitEngine &one_ExitEngine; 
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 std::bitset<SIZE> the_array; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//IDC . CPP (IDC CELL SOURCE FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
 
#include "iDC.h" 
#include "DC.h" 
#include "ExitEngine.h" 
//----------------------------------------------------------------------------- 
//CONSTRUCTOR 
//----------------------------------------------------------------------------- 
iDC::iDC(DC &Ref_DC, ExitEngine &Ref_ExitEngine) 
:one_DC(Ref_DC), 
one_ExitEngine(Ref_ExitEngine) 
{ 
 C_PAMP=0; 
 IC=0; 
 C_safe=0; 
 C_danger=0; 
 
 cout<<"constrcut iDC"<<endl; 
 admin(); 
} 
//----------------------------------------------------------------------------- 
//CALCULATE IDC 
//----------------------------------------------------------------------------- 
int iDC::calculate_cytokines_iDC(int user_present1, int prev_mismatches1[CYCLE_THRESHOLD], 
  double CPU_usage1,  
  double mem_usage1, int abnormal_signal1,  
  int prev_CPU1 [CYCLE_THRESHOLD], int prev_mem1 [CYCLE_THRESHOLD],  
  int prev_abnormal1 [CYCLE_THRESHOLD],int location1, 
 int prev_IC1[CYCLE_THRESHOLD], 
  int an_array[WINDOW_SIZE]) 
{ 
 int number_mis=0; 
 int identified_CPU_attack=0; 
 int identified_MEM_attack=0; 
 int identified_mismatch_attack=0; 
 int number_IC=0; 
 prev_IC1[location1]=user_present1; 
 for (int i=0;i<CYCLE_THRESHOLD;i++) 
 { 
  if (prev_mismatches1[i]==1)number_mis ++; 
  if (prev_IC1[i]==1) number_IC++; 
   
 } 
 if (number_IC>0) 
   IC = (double)(number_IC/CYCLE_THRESHOLD); 
 else IC =0.0; 
 if (number_mis>0) 
 { 
  C_PAMP = (double) (number_mis/CYCLE_THRESHOLD); 
  identified_mismatch_attack=1; 
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 } 
 else C_PAMP =0.0; 
 
 
 if (abnormal_signal1 == 1) 
 { 
  prev_abnormal1[location1]=1; 
 }else 
 { 
  prev_abnormal1[location1]=0; 
 } 
 double normalized_safe_CPU; 
 double normalized_danger_CPU; 
 
 double normalized_safe_mem; 
 double normalized_danger_mem; 
 
 if (CPU_usage1 <= CPU_THRESHOLD) 
 {  
   normalized_safe_CPU =CPU_usage1;  
   normalized_danger_CPU =0; 
  prev_CPU1[location1]=0; 
 }else 
 { 
  identified_CPU_attack=1; 
  normalized_danger_CPU = CPU_usage1; 
  normalized_safe_CPU= 0; 
  prev_CPU1[location1]=1; 
 } 
 
 if (mem_usage1 <= MEM_THRESHOLD) 
 {  
   normalized_safe_mem = mem_usage1; 
   normalized_danger_mem =0; 
  prev_mem1[location1]=0; 
 
 }else 
 { 
  identified_MEM_attack=1; 
  normalized_danger_mem = mem_usage1; 
  normalized_safe_mem= 0; 
  prev_mem1[location1]=1; 
 } 
 int prev_CPU_count=0; 
 int prev_mem_count=0; 
 int prev_abnormal_count=0; 
 for (int i=0;i<CYCLE_THRESHOLD;i++) 
 { 
  if (prev_CPU1[i]==1) prev_CPU_count ++; 
  if (prev_mem1[i]==1) prev_mem_count ++; 
  if (prev_abnormal1[i] ==1) prev_abnormal_count ++; 
 } 
 double normalized_CPU = double (prev_CPU_count/CYCLE_THRESHOLD); 
 double normalized_mem = double (prev_mem_count/CYCLE_THRESHOLD); 
 double normalized_abnormal = double (prev_abnormal_count/CYCLE_THRESHOLD); 
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  C_safe = ((CPU_AFFECT_ON_S * normalized_safe_CPU)+  
(MEM_AFFECT_ON_S* normalized_safe_mem) +  
  (PREV_CPU_AFFECT_ON_S*(CYCLE_THRESHOLD- normalized_CPU))+  
  (PREV_MEM_AFFECT_ON_S*(CYCLE_THRESHOLD-normalized_mem))+ 
  (PREV_ABNORMAL_DEATH_AFFECT_ON_S* 
(CYCLE_THRESHOLD-normalized_abnormal))); 
 
  C_danger = ((CPU_AFFECT_ON_D*normalized_danger_CPU)+  
  (MEM_AFFECT_ON_D*normalized_danger_mem) +  
  (ABNORMAL_DEATH_AFFECT_ON_D * abnormal_signal1)+ 
  (PREV_CPU_AFFECT_ON_D* normalized_CPU)+  
  (PREV_MEM_AFFECT_ON_D*normalized_mem)+ 
  (PREV_ABNORMAL_DEATH_AFFECT_ON_D*normalized_abnormal)); 
 
 int attack_type; 
 
 
if ((identified_CPU_attack==0)&&(identified_MEM_attack==0)&& 
(identified_mismatch_attack==0)) 
  { 
   attack_type = iDC_ATTACK_TYPE1; 
}else if ((identified_CPU_attack==0)&&(identified_MEM_attack==0)&& 
(identified_mismatch_attack==1)) 
  { 
   attack_type = iDC_ATTACK_TYPE2; 
  } 
  else if((identified_CPU_attack==0)&&(identified_MEM_attack==1)&& 
(identified_mismatch_attack==0)) 
  { 
   attack_type = iDC_ATTACK_TYPE3; 
  } 
  else if((identified_CPU_attack==0)&&(identified_MEM_attack==1)&& 
(identified_mismatch_attack==1)) 
  { 
   attack_type = iDC_ATTACK_TYPE4; 
  } 
  else if((identified_CPU_attack==1)&&(identified_MEM_attack==0)&& 
(identified_mismatch_attack==0)) 
  { 
   attack_type = iDC_ATTACK_TYPE5; 
  } 
  else if((identified_CPU_attack==1)&&(identified_MEM_attack==0)&& 
(identified_mismatch_attack==1)) 
  { 
   attack_type = iDC_ATTACK_TYPE6; 
  } 
  else if((identified_CPU_attack==1)&&(identified_MEM_attack==1)&& 
(identified_mismatch_attack==0)) 
  { 
   attack_type = iDC_ATTACK_TYPE7; 
  } 
  else if((identified_CPU_attack==1)&&(identified_MEM_attack==1)&& 
(identified_mismatch_attack==1)) 
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  { 
   attack_type = iDC_ATTACK_TYPE8; 
  } 
   
 
 int temp_return_value; 
 
  temp_return_value= one_DC.calculate_cytokines_DC(C_PAMP, C_safe, C_danger, IC,  
  an_array, attack_type); 
  return temp_return_value; 
//----------------------------------------------------------------------------- 
//ADMIN 
//----------------------------------------------------------------------------- 
void iDC::admin() 
{ 
 int value; 
 ifstream inClientFile ("lookahead_values1.txt",ios::in); 
 if (!inClientFile) 
 { 
  cerr <<"File could not be opened2" <<endl; 
  exit(1); 
 } 
 int row1; 
 int col1; 
 int array_num1; 
 while ((inClientFile >> row1)&&(inClientFile >> col1)&& (inClientFile >> array_num1)) 
 { 
the_array.set(  ((row1-1)*NUM_SYS_CALLS)+ 
col1+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num1)  ); 
 } 
 int user_present;//boolean either present or not 
 double CPU_usage; 
 double mem_usage; 
 int abnormal_signal =0; //boolean either used or not.  
 int prev_CPU[CYCLE_THRESHOLD]; 
 int prev_mem[CYCLE_THRESHOLD]; 
 int prev_abnormal[CYCLE_THRESHOLD]; 
 int prev_mismatches[CYCLE_THRESHOLD]; 
 int prev_IC[CYCLE_THRESHOLD]; 
 for (int i=0;i<CYCLE_THRESHOLD;i++) 
 { 
  prev_CPU[i]=0; 
  prev_mem[i]=0; 
  prev_abnormal[i]=0; 
  prev_mismatches[i]=0; 
  prev_IC[i]=0; 
 } 
 char filename1[LINE_SIZE]; 
 strcpy_s(filename1,"anomalies_testing.txt");  
 ifstream inClientFile1(filename1,ios::in); 
 if (!inClientFile1) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 }  
 249 
 char filename222[LINE_SIZE]; 
 strcpy_s(filename222,"CPU_MEM_usages1.txt"); 
 ifstream inClientFile222(filename222,ios::in); 
 if (!inClientFile222) 
 { 
  cerr <<"file could not be opened6" <<endl; 
  exit(1); 
 } 
 ofstream outPrintFile222 ("iDC_tracing.txt", ios::out); 
 if (!outPrintFile222) 
 { 
  cerr <<"int files names file could not be opened" <<endl; 
  exit(1); 
 } 
 int number_rows_in_testing_profile=0; 
 int number_of_pairs_in_testing_profile=0; 
 int window_sized_array[WINDOW_SIZE]; 
 int threshold_sized_array[WINDOW_SIZE]; 
 for (int i=0;i<WINDOW_SIZE;i++)  
 { 
  window_sized_array[i] =-1; 
  threshold_sized_array[i]=0; 
 } 
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)  
  { 
   if(inClientFile1 >> value) window_sized_array[abc]=value; 
  } 
 double percentage; 
 int mismatches=0; 
 int row, col; 
 int mismatch_counter =0; 
 int location=0; 
 int starting_point=0; 
 while (inClientFile1 >> value) 
 { 
  int there_is_a_mismatch=0; 
  window_sized_array[WINDOW_SIZE-1]=value; 
  number_rows_in_testing_profile++; 
  outPrintFile222 <<"current testing input row:  "; 
  for (int def=0;def<WINDOW_SIZE;def++) outPrintFile222 <<  
window_sized_array[def] << " "; 
  outPrintFile222 <<endl; 
  for (int i=0;i<WINDOW_SIZE-1;i++) 
  { 
   row=window_sized_array[WINDOW_SIZE-1]; 
   col=window_sized_array[WINDOW_SIZE-2-i]; 
    
   if ((row == 36 ) || ( col==36)) abnormal_signal=1;  
 
   if ((row==-1)||(col==-1)) 
   { 
    //NOTHING 
   }else 
   { 
    number_of_pairs_in_testing_profile++; 
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 if (the_array.test(  ((row-1)*NUM_SYS_CALLS)+  
 col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)  )==0)  
    { 
     mismatches ++; 
     if(i==0) starting_point=((row-1)*NUM_SYS_CALLS)+ 
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i); 
     there_is_a_mismatch=1; 
     outPrintFile222 <<"mismatch pair: <"<<row<<","<<col<< 
"> at plain: "<<i<<endl; 
    } 
   } 
  } 
  if ((there_is_a_mismatch==1)||  
((number_rows_in_testing_profile % MOD_VALUE)==0)) 
  { 
   prev_mismatches[mismatch_counter]=1; 
   mismatch_counter ++; 
   if (mismatch_counter == CYCLE_THRESHOLD-1) mismatch_counter =0; 
   (inClientFile222 >> user_present); 
   (inClientFile222 >> CPU_usage); 
   (inClientFile222 >> mem_usage); 
   int cytokine; 
    cytokine= calculate_cytokines_iDC(user_present, prev_mismatches,  
CPU_usage, mem_usage, abnormal_signal,  
prev_CPU, prev_mem, prev_abnormal, location, prev_IC,window_sized_array 
); 
   location++; 
   if (location == CYCLE_THRESHOLD-1) location =0; 
   outPrintFile222 <<"Handeled Window: "; 
   for (int i=0;i<WINDOW_SIZE;i++) 
    outPrintFile222 << setw(4)<<  window_sized_array[i]; 
   outPrintFile222 <<endl; 
   if (there_is_a_mismatch==1)outPrintFile222 << "Is a mismatch"<<endl; 
   else outPrintFile222 << "Is normal"<<endl; 
   outPrintFile222 << "User present: "<< user_present<<endl; 
   outPrintFile222 << "CPU usage: "<< CPU_usage<<endl; 
   outPrintFile222 << "Mem usage: "<< mem_usage<<endl; 
   outPrintFile222 << "Is an abnormal signal: "<< abnormal_signal<<endl; 
   outPrintFile222 <<"previous CPU: "; 
   for (int i=0;i<CYCLE_THRESHOLD;i++) 
    outPrintFile222 << setw(4)<<  prev_CPU[i]; 
   outPrintFile222 <<endl; 
   outPrintFile222 <<"previous memory: "; 
   for (int i=0;i<CYCLE_THRESHOLD;i++) 
    outPrintFile222 << setw(4)<<  prev_mem[i]; 
   outPrintFile222 <<endl; 
   outPrintFile222 <<"previous abnormal: "; 
   for (int i=0;i<CYCLE_THRESHOLD;i++) 
    outPrintFile222 << setw(4)<<  prev_abnormal[i]; 
   outPrintFile222 <<endl; 
   outPrintFile222 <<"previous mismatches: "; 
   for (int i=0;i<CYCLE_THRESHOLD;i++) 
    outPrintFile222 << setw(4)<<  prev_mismatches[i]; 
   outPrintFile222 <<endl; 
   outPrintFile222 <<"previous IC: "; 
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   for (int i=0;i<CYCLE_THRESHOLD;i++) 
    outPrintFile222 << setw(4)<<  prev_IC[i]; 
   outPrintFile222 <<endl; 
   if (cytokine==1) outPrintFile222 << "Semi"<<endl; 
   else if (cytokine==2) outPrintFile222 << "Mat"<<endl; 
   outPrintFile222 <<"------------------------------------"<<endl; 
  }else  
  { 
   prev_mismatches[mismatch_counter]=0; 
   mismatch_counter ++; 
   if (mismatch_counter == CYCLE_THRESHOLD-1)  
    mismatch_counter =0; 
  } 
   
 for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)  
 window_sized_array[ghi]=window_sized_array[ghi+1]; 
  window_sized_array[WINDOW_SIZE-1]=-1; 
 } 
 outPrintFile222 << "Number of rows in testing profile= "<<  
number_rows_in_testing_profile-1<<endl; 
 outPrintFile222 << "Number of pairs in testing profile= " 
<<number_of_pairs_in_testing_profile<<endl; 
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0; 
 outPrintFile222 << "Number of lookahead mismatches= "<<mismatches<<endl; 
 outPrintFile222 << "Percentage of mismatches (anomaly sensitivity)= "<<percentage 
<<" %"<<endl; 
 one_ExitEngine.iDC_finished(); 
} 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//B CELL . H 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef BCELL_H 
#define BCELL_H 
#include "constant_values.h" 
class Th1; 
class ExitEngine; 
class Bcell{ 
public: 
 Bcell(Th1 &, ExitEngine&); 
 void admin(); 
 void receive_input_from_Th2(int, int); 
private: 
 std::bitset<SIZE> the_array; 
 int threshold_array[SIZE]; 
 Th1 &one_Th1; 
 ExitEngine &one_ExitEngine; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//B CELL . CPP 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "Bcell.h" 
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#include "Th1.h" 
#include "ExitEngine.h" 
 
//----------------------------------------------------------------------------- 
//CONSTRUCTOR 
//----------------------------------------------------------------------------- 
 
Bcell::Bcell(Th1 &Ref_Th1, ExitEngine &Ref_ExitEngine ) 
:one_Th1(Ref_Th1), 
one_ExitEngine(Ref_ExitEngine) 
{ 
 for (int i=0;i<SIZE;i++) threshold_array[i]=0; 
 cout <<"construct Bcell"<<endl; 
 admin(); 
} 
//----------------------------------------------------------------------------- 
//RECEIVE INPUT FROM TH2 
//----------------------------------------------------------------------------- 
 
void Bcell::receive_input_from_Th2(int answer,int start_location) 
{ 
 if (answer==PRIME) 
 { 
  for (int cc=0;cc<WINDOW_SIZE;cc++) 
  { 
   threshold_array[start_location+cc]++; 
    
  } 
 }else 
 { 
  for (int cc=0;cc<WINDOW_SIZE;cc++) 
  { 
   if(threshold_array[cc]<MIN_THRESHOLD_VALUE) 
   { 
    the_array.reset(start_location+cc); 
    threshold_array[start_location+cc]=0; 
   }else 
   { 
    threshold_array[start_location+cc]--; 
   } 
  } 
 } 
} 
 
//----------------------------------------------------------------------------- 
//ADMIN 
//----------------------------------------------------------------------------- 
 
void Bcell::admin() 
 
{ 
 int value; 
 ifstream inClientFile ("lookahead_values.txt",ios::in); 
 if (!inClientFile) 
 { 
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  cerr <<"File could not be opened2" <<endl; 
  exit(1); 
 } 
 int row1; 
 int col1; 
 int array_num1; 
 while (inClientFile >> row1) 
 { 
  (inClientFile >> col1); 
  (inClientFile >> array_num1); 
  the_array.set(  ((row1-1)*NUM_SYS_CALLS)+ 
col1+(NUM_SYS_CALLS*NUM_SYS_CALLS*array_num1)  ); 
 } 
 char filename1[LINE_SIZE]; 
 
 strcpy_s(filename1,"anomalies_testing.txt");  
 ifstream inClientFile1(filename1,ios::in); 
 if (!inClientFile1) 
 { 
  cerr <<"anomalous file could not be opened" <<endl; 
  exit(1); 
 } 
  
 
 ofstream outPrintFile222 ("Bcell_tracing.txt", ios::out); 
 if (!outPrintFile222) 
 { 
  cerr <<"int files names file could not be opened" <<endl; 
  exit(1); 
 } 
 int number_rows_in_testing_profile=0; 
 int number_of_pairs_in_testing_profile=0; 
 
 int window_sized_array[WINDOW_SIZE]; 
 int threshold_sized_array[WINDOW_SIZE]; 
 for (int i=0;i<WINDOW_SIZE;i++)  
 { 
  window_sized_array[i] =-1; 
  threshold_sized_array[i]=0; 
 } 
 for (int abc=0;abc<WINDOW_SIZE-1;abc++)  
  { 
   if(inClientFile1 >> value) window_sized_array[abc]=value; 
  } 
 double percentage; 
 int mismatches=0; 
 int row, col; 
 int mismatch_counter =0; 
 int location=0; 
 int starting_point=0; 
  
 while (inClientFile1 >> value) 
 { 
  int there_is_a_mismatch=0; 
  window_sized_array[WINDOW_SIZE-1]=value; 
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  number_rows_in_testing_profile++; 
  outPrintFile222 <<"current testing input row:  "; 
  for (int def=0;def<WINDOW_SIZE;def++) outPrintFile222 <<  
window_sized_array[def] << " "; 
  outPrintFile222 <<endl; 
 
  for (int i=0;i<WINDOW_SIZE-1;i++) 
  { 
   row=window_sized_array[WINDOW_SIZE-1]; 
   col=window_sized_array[WINDOW_SIZE-2-i]; 
   if ((row==-1)||(col==-1)) 
   { 
    //NOTHING 
   }else 
   { 
    number_of_pairs_in_testing_profile++; 
    if (the_array.test(  ((row-1)*NUM_SYS_CALLS)+ 
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)  )==0)  
    { 
     mismatches ++; 
     if(i==0) starting_point=((row-1)*NUM_SYS_CALLS)+ 
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i); 
     threshold_array[((row-1)*NUM_SYS_CALLS)+ 
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)]++; 
     threshold_sized_array[i]= 
      threshold_array[((row-1)*NUM_SYS_CALLS)+ 
col+(NUM_SYS_CALLS*NUM_SYS_CALLS*i)]; 
     there_is_a_mismatch=1; 
     outPrintFile222 <<"mismatch pair: <"<<row<<","<<col 
<<"> at plain: "<<i<<endl; 
      
    } 
     
   } 
  } 
  if (there_is_a_mismatch==1) 
  { 
   one_Th1.receive_input_from_B(window_sized_array, 
threshold_sized_array,starting_point); 
    
  } 
  for (int ghi=0;ghi<WINDOW_SIZE-1;ghi++)  
   window_sized_array[ghi]=window_sized_array[ghi+1]; 
  window_sized_array[WINDOW_SIZE-1]=-1; 
 } 
 outPrintFile222 << "Number of rows in testing profile= "<< 
number_rows_in_testing_profile-1<<endl; 
 outPrintFile222 << "Number of pairs in testing profile= "<< 
number_of_pairs_in_testing_profile<<endl; 
 percentage = ((double) mismatches / number_of_pairs_in_testing_profile)* 100.0; 
 outPrintFile222 << "Number of lookahead mismatches= "<<mismatches<<endl; 
 outPrintFile222 << "Percentage of mismatches (anomaly sensitivity)= "<<percentage<< 
" %"<<endl; 
  
 one_ExitEngine.Bcell_finished(); 
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} 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//DC . H (DC CELL HEADER FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef DC_H 
#define DC_H 
#include "constant_values.h" 
class Th1; 
class DC{ 
public: 
 DC(Th1 &); 
 int calculate_cytokines_DC(double, double, double, double,  
  int[WINDOW_SIZE],int); 
private: 
 double C_csm; 
 double C_semi; 
 double C_mat; 
 Th1 &one_Th1; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//DC . CPP (DC CELL SOURCE FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "DC.h" 
#include "Th1.h" 
//-------------------------------------------------------------- 
DC::DC(Th1 &Ref_Th1) 
:one_Th1(Ref_Th1) 
{ 
 cout <<"construct DC"<<endl; 
} 
//-------------------------------------------------------------- 
int DC::calculate_cytokines_DC(double C_PAMP, double C_safe, double C_danger, double IC,  
 int asequence[WINDOW_SIZE], int type_of_attack) 
{ 
  
  C_csm = (((W_PAMP_CSM*C_PAMP)+(W_DANGER_CSM*C_danger)+ 
(W_SAFE_CSM*C_safe))/ 
 (W_PAMP_CSM+W_DANGER_CSM+W_SAFE_CSM))*((1+IC)/2); 
  
  C_semi = (((W_PAMP_SEMI*C_PAMP)+(W_DANGER_SEMI*C_danger)+ 
(W_SAFE_SEMI*C_safe))/ 
  (W_PAMP_SEMI+W_DANGER_SEMI+W_SAFE_SEMI))*((1+IC)/2); 
 
  C_mat = ((W_PAMP_MAT*C_PAMP)+(W_DANGER_MAT*C_danger)+ 
(W_SAFE_MAT*C_safe))*((1+IC)/2); 
     
  int temp_attack_type=type_of_attack; 
  int temp_sequence[WINDOW_SIZE]; 
  for (int ll=0;ll<WINDOW_SIZE;ll++) 
   temp_sequence[ll]=asequence[ll]; 
 
 if (C_semi > C_mat)  
 { 
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  int temp=SUPRESS; 
   
  one_Th1.receive_input_from_DC(temp, temp_sequence,temp_attack_type); //semi  
   
  return SUPRESS; 
 } 
 else 
 { 
  int temp=PRIME; 
   
  one_Th1.receive_input_from_DC(temp, temp_sequence,temp_attack_type);//mat 
   
  return PRIME; 
   
 } 
 
} 
//------------------------------------------------------------------------------ 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//TH1 . H (HELPER TH1 HEADER FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef TH1_H 
#define TH1_H 
#include "constant_values.h" 
class Th2; 
class KillerT; 
class Th1{ 
public: 
 Th1(Th2 &, KillerT &); 
 void receive_input_from_DC(int , int [WINDOW_SIZE] , int); 
 void receive_input_from_B(int [WINDOW_SIZE],int [WINDOW_SIZE],int); 
 void admin(); 
private: 
 int cyto; 
 int DC_sequence[WINDOW_SIZE]; 
 int B_sequence[WINDOW_SIZE]; 
 int B_threshold_seq[WINDOW_SIZE]; 
 int B_seq_starting_point; 
 int received_B_input; 
 int DC_input; 
 int attack_type; 
 Th2 &one_Th2; 
 KillerT &one_KillerT; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//TH1 . CPP (HELPER TH1 SOURCE FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "Th1.h" 
#include "Th2.h" 
#include "KillerT.h" 
 
//----------------------------------------------------------------------------- 
//CONSTRUCTOR 
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//----------------------------------------------------------------------------- 
 
Th1::Th1(Th2 &Ref_Th2, KillerT &Ref_KillerT) 
 :one_Th2(Ref_Th2), 
 one_KillerT(Ref_KillerT), 
 received_B_input(0), 
 DC_input(0), 
 cyto(0), 
 B_seq_starting_point(0), 
 attack_type(0) 
{ 
  
 for (int hh=0;hh<WINDOW_SIZE;hh++) 
 { 
  DC_sequence[hh]=0; 
  B_sequence[hh]=0; 
  B_threshold_seq[hh]=0; 
 } 
} 
 
//----------------------------------------------------------------------------- 
//RECEIVE INPUT FROM B CELL 
//----------------------------------------------------------------------------- 
 
void Th1::receive_input_from_B(int sequence_from_B[WINDOW_SIZE],int 
threshold_sequence_from_B[WINDOW_SIZE], 
 int starting_point) 
{ 
 received_B_input=1; 
 for (int i=0;i<WINDOW_SIZE;i++) 
 { 
  B_sequence[i]=sequence_from_B[i]; 
  B_threshold_seq[i]=threshold_sequence_from_B[i]; 
 } 
 B_seq_starting_point=starting_point; 
 admin(); 
} 
//----------------------------------------------------------------------------- 
//ADMIN 
//----------------------------------------------------------------------------- 
 
void Th1::admin() 
{ 
  int counter=0; 
  int B_attacked=0; 
  if ((received_B_input ==1)&&(DC_input ==0)) 
  { 
    
   for (int i=0;i <WINDOW_SIZE;i++) 
    if (B_threshold_seq[i]>MAX_THRESHOLD_VALUE) counter++; 
   if(counter>0) 
   { 
    B_attacked=1; 
    one_KillerT.receive_input(B_sequence,ATTACK_TYPE2,  
    iDC_ATTACK_TYPE1); 
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   } 
   counter=0;  
   received_B_input =0; 
  }else if ((received_B_input ==0)&&(DC_input ==1)) 
  { 
    
   if (cyto==PRIME) 
   { 
    one_KillerT.receive_input(DC_sequence, ATTACK_TYPE1,  
     attack_type); 
    DC_input=0; 
     
   }else if ((cyto == SUPRESS)&&(B_attacked==0))// B threshold is low  
   { 
     int same=0; 
     for (int i=0;i<WINDOW_SIZE;i++) 
      if (DC_sequence[i]==B_sequence[i])same ++; 
     if (same>0) one_Th2.receive_input(SUPRESS,   
      B_seq_starting_point); 
   }  
     
  } else if ((DC_input==1)&&(received_B_input==1)) 
  { 
    
   if (cyto==PRIME) 
   { 
    one_KillerT.receive_input(DC_sequence, ATTACK_TYPE3,  
     attack_type); 
    int same=0; 
    for (int i=0;i<WINDOW_SIZE;i++) 
     if (DC_sequence[i]==B_sequence[i])same ++; 
    if (same>0) one_Th2.receive_input(PRIME,    
     B_seq_starting_point); 
     
   }else if (cyto == SUPRESS) 
   { 
    int same=0; 
    for (int i=0;i<WINDOW_SIZE;i++) 
     if (DC_sequence[i]==B_sequence[i])same ++; 
    if (same>0) one_Th2.receive_input(SUPRESS,   
     B_seq_starting_point); 
     
   } 
 
 
   DC_input=0; 
   received_B_input=0; 
  } 
} 
//----------------------------------------------------------------------------- 
//RECEIVE INPUT FROM DC CELL 
//----------------------------------------------------------------------------- 
 
void Th1::receive_input_from_DC(int value1, int value2[WINDOW_SIZE], int value3) 
{ 
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 DC_input=1; 
  
 cyto=value1; 
 for (int ii=0;ii<WINDOW_SIZE;ii++) 
  DC_sequence[ii]=value2[ii]; 
 attack_type= value3; 
 admin(); 
} 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//TH2 . H   (HELPER TH2 HEADER FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef TH2_H 
#define TH2_H 
#include "constant_values.h" 
class Bcell; 
class Th2{ 
public: 
 Th2(Bcell &); 
 void receive_input(int,int); 
private: 
 Bcell &one_Bcell; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//TH2 . CPP (HELPER TH2 SOURCE FILE)  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "Th2.h" 
#include "Bcell.h" 
//---------------------------------------------------------------------------- 
Th2::Th2(Bcell &Ref_Bcell) 
:one_Bcell(Ref_Bcell) 
{ 
 cout <<"constrcut th2"<<endl; 
} 
//---------------------------------------------------------------------------- 
void Th2::receive_input(int cytokine_type, int B_seq_starting_point) 
{ 
 one_Bcell.receive_input_from_Th2(cytokine_type,B_seq_starting_point); 
} 
 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//KILLERT . H (KILLER T CELL HEADER FILE)  
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef KILLERT_H 
#define KILLERT_H 
#include "constant_values.h" 
class KillerT{ 
public: 
 KillerT(); 
 void receive_input(int [WINDOW_SIZE], int , int ); 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//KILLERT . CPP (KILLER T CELL SOURCE FILE) 
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//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "KillerT.h" 
//----------------------------------------------------------------------------- 
//CONSTRUCTOR 
//----------------------------------------------------------------------------- 
 
KillerT::KillerT() 
{ 
 cout <<"constrcut killer t"<<endl; 
} 
//----------------------------------------------------------------------------- 
//RECEIVE INPUT 
//----------------------------------------------------------------------------- 
void KillerT::receive_input(int sequence[WINDOW_SIZE], int attacktype1, int attacktype2) 
{ 
 cout <<"Sequence: "; 
 for (int mm=0;mm<WINDOW_SIZE;mm++) 
  cout <<setw(4)<<sequence[mm]; 
 cout <<"    Generated following problems."<<endl; 
 if (attacktype1 == ATTACK_TYPE2) 
 { 
  cout <<"Attack identified by Bcells only and no danger signals is sensed"<<endl; 
 } 
 else if (attacktype1==ATTACK_TYPE1) 
 { 
  cout <<"Attack identified by DC only and no deviaion in sys call sequences identified"<< 
endl; 
 }else if (attacktype1==ATTACK_TYPE3) 
 {  
  cout <<"Attack idenified by both DC and B cells"<<endl; 
 } 
 if ((attacktype1==ATTACK_TYPE1)||(attacktype1==ATTACK_TYPE3)) 
 { 
  switch (attacktype2) 
  { 
   case iDC_ATTACK_TYPE1: 
    cout << " DC identified following attacks CPU 0 MEM 0 Mismatch 0" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE2: 
    cout << " DC identified following attacksCPU 0 MEM 0 Mismatch 1" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE3: 
    cout << " DC identified following attacksCPU 0 MEM 1 Mismatch 0" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE4: 
    cout<< " DC identified following attacksCPU 0 MEM 1 Mismatch 1" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE5: 
    cout << " DC identified following attacks CPU 1 MEM 0 Mismatch 0" 
<<endl; 
    break; 
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   case iDC_ATTACK_TYPE6: 
    cout << " DC identified following attacks CPU 1 MEM 0 Mismatch 1" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE7: 
    cout << " DC identified following attacks CPU 1 MEM 1 Mismatch 0" 
<<endl; 
    break; 
   case iDC_ATTACK_TYPE8: 
    cout << " DC identified following attacks CPU 1 MEM 1 Mismatch 1" 
<<endl; 
    break; 
  } 
 } 
 
} 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//EXITENGINE . H (EXIT ENGINE HEADER FILE) 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#ifndef EXITENGINE_H 
#define EXITENGINE_H 
#include "constant_values.h" 
class ExitEngine{ 
public: 
 ExitEngine(); 
 void Bcell_finished(); 
 void iDC_finished(); 
 void set_begining_time(time_t); 
private: 
 int Bfinished; 
 int iDCfinished; 
 time_t begining_time; 
 time_t ending_time; 
}; 
#endif 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
//EXITENGINE . CPP (EXIT ENGINE SOURCE FILE) HANDLES EXITING IDS 
//,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
#include "ExitEngine.h" 
 
ExitEngine::ExitEngine() 
:Bfinished(0), 
iDCfinished(0) 
{ 
 cout <<"construct exit engine"<<endl; 
} 
//---------------------------------------------------------------------------- 
void ExitEngine::Bcell_finished() 
{ 
 Bfinished=1; 
 if (iDCfinished ==1) 
 { 
 
  
  time(&ending_time); 
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  ofstream outPrintFile ("times.txt", ios::out); 
  if (!outPrintFile) 
  { 
   cerr <<"int files names file could not be opened" <<endl; 
   exit(1); 
  } 
  outPrintFile << "Begining Time= "<<begining_time<<endl; 
  outPrintFile << "Ending Time= "<<ending_time<<endl; 
  outPrintFile << "Total testing Time= "<<ending_time-begining_time<<" 
seconds"<<endl<<endl; 
 } 
} 
//---------------------------------------------------------------------------- 
void ExitEngine::iDC_finished() 
{ 
 iDCfinished=1; 
 if (Bfinished==1) 
 { 
 
  time(&ending_time); 
  ofstream outPrintFile ("times.txt", ios::out); 
  if (!outPrintFile) 
  { 
   cerr <<"int files names file could not be opened" <<endl; 
   exit(1); 
  } 
  outPrintFile << "Begining Time= "<<begining_time<<endl; 
  outPrintFile << "Ending Time= "<<ending_time<<endl; 
  outPrintFile << "Total testing Time= "<<ending_time-begining_time<<" 
seconds"<<endl<<endl; 
 } 
} 
//---------------------------------------------------------------------------- 
void ExitEngine::set_begining_time(time_t aTime) 
{ 
 begining_time=aTime; 
} 
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APPENDIX G 
 SAMPLE LOG FILE OF RUNNING LOOKAHEAD-PAIRS METHOD BASED 
IDS 
 
In this appendix sample of the log file created while running lookahead pairs method IDS is presented.  The 
data here show portions of the content of the log file. In particular we print the number of rows generated 
before removing redundant entries (rows) and then the content of these rows.  Then we print the number of 
entries after removing redundant rows and the entries are then displayed.  
Then pairs are generated and displayed as their respective locations are set to one (ON).  The log file print 
the pair and its plane or array set. Then finally testing begins by displaying the sequence currently under 
investigation and highlight if a mismatch if found in this string.  
 
Start of training  
number_profile_rows before removing redundant rows= 363 
array content with pyramid data at end of array 
90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3  
125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90  
106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6  
5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125  
90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5  
6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3  
5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90  
3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6  
90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125  
6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91  
5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125  
3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136  
90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49  
6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24  
125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47  
5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50  
3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67  
90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27  
6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67  
125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97  
5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122  
3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122 45  
90 6 125 91 125 136 49 24 47 50 67 27 67 97 122 45 5  
6 125 91 125 136 49 24 47 50 67 27 67 97 122 45 5 106  
125 91 125 136 49 24 47 50 67 27 67 97 122 45 5 106 6  
. 
.
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. 
.6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75  
106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24  
67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102  
23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13  
12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20  
2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4  
67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6  
114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76  
67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75  
5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91  
108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91 1  
-1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5  
-1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125  
-1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6  
-1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90  
-1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3  
-1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5  
-1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6  
-1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90  
-1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125  
 
number_profile_rows after removing redundant rows= 357 
90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3  
125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90  
106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6  
5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125  
90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5  
6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3  
5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90  
3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6  
90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125  
6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91  
5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125  
3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136  
90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49  
6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24  
125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47  
5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50  
3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67  
90 6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27  
6 125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67  
125 5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97  
5 3 90 6 125 91 125 136 49 24 47 50 67 27 67 97 122  
. 
. 
.  
4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 67  
6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 67 5  
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76 75 5 67 3 67 6 106 67 23 12 2 67 114 67 5 108  
75 5 67 3 67 6 106 67 23 12 2 67 114 67 5 108 90  
5 67 3 67 6 106 67 23 12 2 67 114 67 5 108 90 3  
67 3 67 6 106 67 23 12 2 67 114 67 5 108 90 3 6  
3 67 6 106 67 23 12 2 67 114 67 5 108 90 3 6 91  
67 6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76  
6 106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75  
106 67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24  
67 23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102  
23 12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13  
12 2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20  
2 67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4  
67 114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6  
114 67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76  
67 5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75  
5 108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91  
108 90 3 6 91 76 75 24 102 13 20 4 6 76 75 91 1  
-1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5  
-1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125  
-1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6  
-1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90  
-1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3  
-1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5  
-1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6  
-1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90  
-1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125  
the locations that are set to 1: 
<3,5> at plane: 0 
<90,3> at plane: 0 
<6,90> at plane: 0 
<125,6> at plane: 0 
<5,125> at plane: 0 
<3,5> at plane: 0 
<90,3> at plane: 0 
<6,90> at plane: 0 
<125,6> at plane: 0 
<91,125> at plane: 0 
<125,91> at plane: 0 
<136,125> at plane: 0 
<49,136> at plane: 0 
<24,49> at plane: 0 
<47,24> at plane: 0 
<50,47> at plane: 0 
<67,50> at plane: 0 
<27,67> at plane: 0 
<67,27> at plane: 0 
<97,67> at plane: 0 
<122,97> at plane: 0 
<45,122> at plane: 0 
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<5,45> at plane: 0 
<106,5> at plane: 0 
<6,106> at plane: 0 
<54,6> at plane: 0 
<108,54> at plane: 0 
<106,108> at plane: 0 
<5,106> at plane: 0 
<55,5> at plane: 0 
<45,55> at plane: 0 
<141,45> at plane: 0 
. 
. 
.,91> at plane: 1 
<49,125> at plane: 1 
<24,136> at plane: 1 
<47,49> at plane: 1 
<50,24> at plane: 1 
<67,47> at plane: 1 
<27,50> at plane: 1 
<67,67> at plane: 1 
<97,27> at plane: 1 
<122,67> at plane: 1 
<45,97> at plane: 1 
<5,122> at plane: 1 
<106,45> at plane: 1 
<6,5> at plane: 1 
<54,106> at plane: 1 
<108,6> at plane: 1 
<106,54> at plane: 1 
<5,108> at plane: 1 
<55,106> at plane: 1 
<45,5> at plane: 1 
<141,55> at plane: 1 
<106,45> at plane: 1 
<6,141> at plane: 1 
<57,106> at plane: 1 
<54,6> at plane: 1 
<16,57> at plane: 1 
<15,54> at plane: 1 
<54,16> at plane: 1 
<67,15> at plane: 1 
<111,54> at plane: 1 
<67,67> at plane: 1 
<66,111> at plane: 1 
<5,67> at plane: 1 
<6,66> at plane: 1 
<63,5> at plane: 1 
. 
. 
. 
<91,90> at plane: 2 
<106,6> at plane: 2 
<5,125> at plane: 2 
<90,91> at plane: 2 
<6,106> at plane: 2 
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<5,5> at plane: 2 
<3,90> at plane: 2 
<90,6> at plane: 2 
<6,5> at plane: 2 
<125,3> at plane: 2 
<5,90> at plane: 2 
<3,6> at plane: 2 
<90,125> at plane: 2 
<6,5> at plane: 2 
<125,3> at plane: 2 
<91,90> at plane: 2 
<106,6> at plane: 2 
<5,125> at plane: 2 
<90,91> at plane: 2 
<6,106> at plane: 2 
<5,5> at plane: 2 
<3,90> at plane: 2 
<90,6> at plane: 2 
<6,5> at plane: 2 
. 
. 
. 
. 
. 
<23,13> at plane: 15 
<12,6> at plane: 15 
<2,102> at plane: 15 
<67,13> at plane: 15 
<114,20> at plane: 15 
<67,4> at plane: 15 
<5,6> at plane: 15 
<108,76> at plane: 15 
<90,75> at plane: 15 
<3,5> at plane: 15 
<6,67> at plane: 15 
<91,3> at plane: 15 
<76,67> at plane: 15 
<75,6> at plane: 15 
<24,106> at plane: 15 
<102,67> at plane: 15 
<13,23> at plane: 15 
<20,12> at plane: 15 
<4,2> at plane: 15 
<6,67> at plane: 15 
<76,114> at plane: 15 
<75,67> at plane: 15 
<91,5> at plane: 15 
<1,108> at plane: 15 
Begining Time= 1196614999 
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6  
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current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90  
current testing input row:  -1 -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6  
current testing input row:  -1 -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5  
current testing input row:  -1 -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3  
current testing input row:  -1 -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90  
current testing input row:  -1 -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6  
current testing input row:  -1 -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125  
current testing input row:  -1 90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5  
current testing input row:  90 125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3  
current testing input row:  125 106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90  
current testing input row:  106 5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6  
current testing input row:  5 90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125  
current testing input row:  90 6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5  
current testing input row:  6 5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3  
current testing input row:  5 3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90  
current testing input row:  3 90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6  
current testing input row:  90 6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125  
current testing input row:  6 5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91  
current testing input row:  5 3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125  
current testing input row:  3 90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136  
current testing input row:  90 6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49  
current testing input row:  6 125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24  
current testing input row:  125 5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47  
current testing input row:  5 3 90 6 125 5 3 90 6 125 91 125 136 49 24 47 50  
. 
. 
. 
. 
current testing input row:  13 6 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23  
current testing input row:  6 102 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12  
current testing input row:  102 13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2  
current testing input row:  13 20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67  
current testing input row:  20 4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114  
current testing input row:  4 6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 11  
mismatch pair: <11,114> at plain: 0 
mismatch pair: <11,67> at plain: 1 
mismatch pair: <11,2> at plain: 2 
mismatch pair: <11,12> at plain: 3 
mismatch pair: <11,23> at plain: 4 
mismatch pair: <11,67> at plain: 5 
mismatch pair: <11,106> at plain: 6 
mismatch pair: <11,6> at plain: 7 
mismatch pair: <11,67> at plain: 8 
mismatch pair: <11,3> at plain: 9 
mismatch pair: <11,67> at plain: 10 
mismatch pair: <11,5> at plain: 11 
mismatch pair: <11,75> at plain: 12 
mismatch pair: <11,76> at plain: 13 
mismatch pair: <11,6> at plain: 14 
mismatch pair: <11,4> at plain: 15 
current testing input row:  6 76 75 5 67 3 67 6 106 67 23 12 2 67 114 11 67  
mismatch pair: <67,11> at plain: 0 
mismatch pair: <67,114> at plain: 1 
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mismatch pair: <67,2> at plain: 3 
mismatch pair: <67,12> at plain: 4 
mismatch pair: <67,23> at plain: 5 
current testing input row:  76 75 5 67 3 67 6 106 67 23 12 2 67 114 11 67 5  
mismatch pair: <5,11> at plain: 1 
mismatch pair: <5,114> at plain: 2 
mismatch pair: <5,2> at plain: 4 
mismatch pair: <5,12> at plain: 5 
mismatch pair: <5,23> at plain: 6 
mismatch pair: <5,75> at plain: 14 
mismatch pair: <5,76> at plain: 15 
current testing input row:  75 5 67 3 67 6 106 67 23 12 2 67 114 11 67 5 108  
mismatch pair: <108,11> at plain: 2 
mismatch pair: <108,114> at plain: 3 
mismatch pair: <108,2> at plain: 5 
mismatch pair: <108,12> at plain: 6 
mismatch pair: <108,23> at plain: 7 
mismatch pair: <108,75> at plain: 15 
current testing input row:  5 67 3 67 6 106 67 23 12 2 67 114 11 67 5 108 90  
mismatch pair: <90,11> at plain: 3 
mismatch pair: <90,114> at plain: 4 
mismatch pair: <90,2> at plain: 6 
mismatch pair: <90,12> at plain: 7 
mismatch pair: <90,23> at plain: 8 
current testing input row:  67 3 67 6 106 67 23 12 2 67 114 11 67 5 108 90 3  
mismatch pair: <3,11> at plain: 4 
mismatch pair: <3,114> at plain: 5 
mismatch pair: <3,67> at plain: 6 
mismatch pair: <3,2> at plain: 7 
mismatch pair: <3,12> at plain: 8 
. 
. 
. 
. 
mismatch pair: <11,24> at plain: 8 
mismatch pair: <11,75> at plain: 9 
mismatch pair: <11,76> at plain: 10 
mismatch pair: <11,91> at plain: 11 
mismatch pair: <11,6> at plain: 12 
mismatch pair: <11,3> at plain: 13 
mismatch pair: <11,90> at plain: 14 
mismatch pair: <11,108> at plain: 15 
Number of system calls handeled while testing= 1350 
Ending Time= 1196614999 
Total testing Time= 0 seconds 
 
Number of lookahead mismatches= 1098 
Percentage of mismatches (anomaly sensitivity)= 5.11554 % 
 Maximum number of lookahead-pairs SETS= 17 sets 
 Minimum number of lookahead-pairs SETS= 15 sets 
 Number of lookahaead pairs= 5384 
Number of sets (planes)= 16planes. Each is a 256 x 256 bit array and NUM_SYS_CALLS=256 
Space cost of profile while at running time= 131072 bits. = 16384 bytes. 
Space cost of profile while saved to disk= 21536 bytes 
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APPENDIX H 
 SAMPLE LOG FILE OF THE OUPUT PRODUCED WHEN TESTING CASE 10 
WITH THE LOOKAHEAD-PAIRS METHOD ENHANCED WITH DANGER 
THEORY. 
 
The following is a sample log file of the output produced when testing the lookahead-pairs method 
enhanced with danger theory IDS.  The ouput is produced when testing the system on case 10 where CPU 
and memory usages are normal but a number of contigous mismataches occur. The number of allowable 
mismatches is determined by the system adminstrator in advance. In our system the mismatch threshold is 
equal to 10.  The system will continue to produce a ?semi? or normal behavior output, as shown in the 
following 9 sections of the output, and then start producing ?mat? or intrusive behavior output afterwards.  
 
current testing input row:  90 125 106 5  
mismatch pair: <5,106> at plain: 0 
mismatch pair: <5,125> at plain: 1 
mismatch pair: <5,90> at plain: 2 
Handeled Window:   90 125 106   5 
Is a mismatch 
User present: 1 
CPU usage: 20.5 
Mem usage: 30.3 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   0   0   0   0   0   0   0   0   0 
previous IC:    1   0   0   0   0   0   0   0   0   0 
Semi 
------------------------------------ 
current testing input row:  125 106 5 90  
mismatch pair: <90,5> at plain: 0 
mismatch pair: <90,106> at plain: 1 
mismatch pair: <90,125> at plain: 2 
Handeled Window:  125 106   5  90 
Is a mismatch 
User present: 1 
CPU usage: 21.3 
Mem usage: 25.2 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0
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previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   0   0   0   0   0   0   0   0 
previous IC:    1   1   0   0   0   0   0   0   0   0 
Semi 
------------------------------------ 
current testing input row:  106 5 90 6  
mismatch pair: <6,90> at plain: 0 
mismatch pair: <6,5> at plain: 1 
mismatch pair: <6,106> at plain: 2 
Handeled Window:  106   5  90   6 
Is a mismatch 
User present: 1 
CPU usage: 20.3 
Mem usage: 30.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   0   0   0   0   0   0   0 
previous IC:    1   1   1   0   0   0   0   0   0   0 
Semi 
------------------------------------ 
current testing input row:  5 90 6 5  
mismatch pair: <5,6> at plain: 0 
mismatch pair: <5,90> at plain: 1 
mismatch pair: <5,5> at plain: 2 
Handeled Window:    5  90   6   5 
Is a mismatch 
User present: 1 
CPU usage: 21.3 
Mem usage: 31.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   0   0   0   0   0   0 
previous IC:    1   1   1   1   0   0   0   0   0   0 
Semi 
------------------------------------ 
current testing input row:  90 6 5 3  
mismatch pair: <3,5> at plain: 0 
mismatch pair: <3,6> at plain: 1 
mismatch pair: <3,90> at plain: 2 
Handeled Window:   90   6   5   3 
Is a mismatch 
User present: 1 
CPU usage: 22.3 
Mem usage: 30.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   0   0   0   0   0 
previous IC:    1   1   1   1   1   0   0   0   0   0 
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Semi 
------------------------------------ 
current testing input row:  6 5 3 90  
mismatch pair: <90,3> at plain: 0 
mismatch pair: <90,5> at plain: 1 
mismatch pair: <90,6> at plain: 2 
Handeled Window:    6   5   3  90 
Is a mismatch 
User present: 1 
CPU usage: 21.7 
Mem usage: 33.2 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   0   0   0   0 
previous IC:    1   1   1   1   1   1   0   0   0   0 
Semi 
------------------------------------ 
current testing input row:  5 3 90 20  
mismatch pair: <20,90> at plain: 0 
mismatch pair: <20,3> at plain: 1 
mismatch pair: <20,5> at plain: 2 
Handeled Window:    5   3  90  20 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 30.2 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   0   0   0 
previous IC:    1   1   1   1   1   1   1   0   0   0 
Semi 
------------------------------------ 
current testing input row:  3 90 20 6  
mismatch pair: <6,20> at plain: 0 
mismatch pair: <6,90> at plain: 1 
Handeled Window:    3  90  20   6 
Is a mismatch 
User present: 1 
CPU usage: 20.1 
Mem usage: 31.4 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   0   0 
previous IC:    1   1   1   1   1   1   1   1   0   0 
Semi 
------------------------------------ 
current testing input row:  90 20 6 3  
mismatch pair: <3,6> at plain: 0 
mismatch pair: <3,20> at plain: 1 
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mismatch pair: <3,90> at plain: 2 
Handeled Window:   90  20   6   3 
Is a mismatch 
User present: 1 
CPU usage: 20.5 
Mem usage: 30.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   0 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Semi 
------------------------------------ 
current testing input row:  20 6 3 89  
mismatch pair: <89,3> at plain: 0 
mismatch pair: <89,6> at plain: 1 
mismatch pair: <89,20> at plain: 2 
Handeled Window:   20   6   3  89 
Is a mismatch 
User present: 1 
CPU usage: 19.6 
Mem usage: 28.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  6 3 89 33  
mismatch pair: <33,89> at plain: 0 
mismatch pair: <33,3> at plain: 1 
mismatch pair: <33,6> at plain: 2 
Handeled Window:    6   3  89  33 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  3 89 33 19  
mismatch pair: <19,33> at plain: 0 
mismatch pair: <19,89> at plain: 1 
mismatch pair: <19,3> at plain: 2 
Handeled Window:    3  89  33  19 
Is a mismatch 
User present: 1 
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CPU usage: 20.1 
Mem usage: 29.5 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  89 33 19 20  
mismatch pair: <20,33> at plain: 1 
mismatch pair: <20,89> at plain: 2 
Handeled Window:   89  33  19  20 
Is a mismatch 
User present: 1 
CPU usage: 20.9 
Mem usage: 29.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  33 19 20 33  
mismatch pair: <33,20> at plain: 0 
mismatch pair: <33,19> at plain: 1 
mismatch pair: <33,33> at plain: 2 
Handeled Window:   33  19  20  33 
Is a mismatch 
User present: 1 
CPU usage: 21.4 
Mem usage: 28.2 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  19 20 33 1  
mismatch pair: <1,33> at plain: 0 
mismatch pair: <1,20> at plain: 1 
mismatch pair: <1,19> at plain: 2 
Handeled Window:   19  20  33   1 
Is a mismatch 
User present: 1 
CPU usage: 22.1 
Mem usage: 30.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
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previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  20 33 1 4  
mismatch pair: <4,1> at plain: 0 
mismatch pair: <4,33> at plain: 1 
mismatch pair: <4,20> at plain: 2 
Handeled Window:   20  33   1   4 
Is a mismatch 
User present: 1 
CPU usage: 22.3 
Mem usage: 35.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  33 1 4 29  
mismatch pair: <29,4> at plain: 0 
mismatch pair: <29,1> at plain: 1 
mismatch pair: <29,33> at plain: 2 
Handeled Window:   33   1   4  29 
Is a mismatch 
User present: 1 
CPU usage: 21.9 
Mem usage: 34.8 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  1 4 29 3  
mismatch pair: <3,29> at plain: 0 
mismatch pair: <3,4> at plain: 1 
mismatch pair: <3,1> at plain: 2 
Handeled Window:    1   4  29   3 
Is a mismatch 
User present: 1 
CPU usage: 21.6 
Mem usage: 34.8 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
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------------------------------------ 
current testing input row:  4 29 3 7  
mismatch pair: <7,3> at plain: 0 
mismatch pair: <7,29> at plain: 1 
Handeled Window:    4  29   3   7 
Is a mismatch 
User present: 1 
CPU usage: 20.1 
Mem usage: 34.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  29 3 7 38  
mismatch pair: <38,7> at plain: 0 
mismatch pair: <38,3> at plain: 1 
mismatch pair: <38,29> at plain: 2 
Handeled Window:   29   3   7  38 
Is a mismatch 
User present: 1 
CPU usage: 19.9 
Mem usage: 33.1 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  3 7 38 20  
mismatch pair: <20,38> at plain: 0 
mismatch pair: <20,7> at plain: 1 
mismatch pair: <20,3> at plain: 2 
Handeled Window:    3   7  38  20 
Is a mismatch 
User present: 1 
CPU usage: 19.9 
Mem usage: 30.2 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  7 38 20 90  
mismatch pair: <90,20> at plain: 0 
mismatch pair: <90,38> at plain: 1 
mismatch pair: <90,7> at plain: 2 
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Handeled Window:    7  38  20  90 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  38 20 90 106  
mismatch pair: <106,90> at plain: 0 
mismatch pair: <106,20> at plain: 1 
mismatch pair: <106,38> at plain: 2 
Handeled Window:   38  20  90 106 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  20 90 106 29  
mismatch pair: <29,106> at plain: 0 
mismatch pair: <29,90> at plain: 1 
mismatch pair: <29,20> at plain: 2 
Handeled Window:   20  90 106  29 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  90 106 29 33  
mismatch pair: <33,29> at plain: 0 
mismatch pair: <33,106> at plain: 1 
mismatch pair: <33,90> at plain: 2 
Handeled Window:   90 106  29  33 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
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Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  106 29 33 22  
mismatch pair: <22,33> at plain: 0 
mismatch pair: <22,29> at plain: 1 
mismatch pair: <22,106> at plain: 2 
Handeled Window:  106  29  33  22 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  29 33 22 40  
mismatch pair: <40,22> at plain: 0 
mismatch pair: <40,33> at plain: 1 
mismatch pair: <40,29> at plain: 2 
Handeled Window:   29  33  22  40 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  33 22 40 19  
mismatch pair: <19,40> at plain: 0 
mismatch pair: <19,22> at plain: 1 
mismatch pair: <19,33> at plain: 2 
Handeled Window:   33  22  40  19 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
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previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  22 40 19 29  
mismatch pair: <29,19> at plain: 0 
mismatch pair: <29,40> at plain: 1 
mismatch pair: <29,22> at plain: 2 
Handeled Window:   22  40  19  29 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  40 19 29 3  
mismatch pair: <3,29> at plain: 0 
mismatch pair: <3,19> at plain: 1 
mismatch pair: <3,40> at plain: 2 
Handeled Window:   40  19  29   3 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
current testing input row:  19 29 3 44  
mismatch pair: <44,3> at plain: 0 
mismatch pair: <44,29> at plain: 1 
mismatch pair: <44,19> at plain: 2 
Handeled Window:   19  29   3  44 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
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------------------------------------ 
current testing input row:  29 3 44 1  
mismatch pair: <1,44> at plain: 0 
mismatch pair: <1,3> at plain: 1 
mismatch pair: <1,29> at plain: 2 
Handeled Window:   29   3  44   1 
Is a mismatch 
User present: 1 
CPU usage: 21.1 
Mem usage: 29.9 
Is an abnormal signal: 0 
previous CPU:    0   0   0   0   0   0   0   0   0   0 
previous memory:    0   0   0   0   0   0   0   0   0   0 
previous abnormal:    0   0   0   0   0   0   0   0   0   0 
previous mismatches:    1   1   1   1   1   1   1   1   1   1 
previous IC:    1   1   1   1   1   1   1   1   1   0 
Mat 
------------------------------------ 
Number of rows in testing profile= 31 
Number of pairs in testing profile= 96 
Number of lookahead mismatches= 93 
Percentage of mismatches (anomaly sensitivity)= 96.875 % 
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APPENDIX I 
 PATTERNS GENERATED BY THE VARIABLE-LENGTH WITH OVERLAP 
RELATIONSHIP BASED IDS 
Number of patterns in training database: 32 
Max pattern length: 43 
Min pattern length: 2 
Average pattern length: 22 
Space cost of profile while at running time= 206848 bytes 
Space cost of profile while saved to disk= 1360 bytes 
The following table shows the different patterns generated by our system. 
3   19    
3    6   13   20    4    6   76   75    5   67    3   67    6  106   67   23   12    2   67  114   67 
3    6   13   20    4    6   76   75  102   13    4    5   67    3   67    6  106  108   90   54    4   67   23   12    2   
67  114 
5  108   
5   45  108   90    3   
5   81      
6  125   91    3    
6   91    
13    5   
13   54   13    4   54    3   54    4   
13    6   54  108   
13    4    6   
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16   15   46   49   
27   24   50   71   70   33   23   70   71   20    5    3   13   19    4    6    5   67   27  143   27    4  143    6    
5   19    3    5    3    6   13  108   90   54    4   19   13    4    6   
76   75   24   76   75   
76   75   24   54  108   
76   75   24   13   20    4    6   76   75   91    1 
76   75   24  102   13   20    4    6   76   75   91    1   
90    3   19    6   91   13    5   13   76   75    5  108    
90    6    5    3   
90    6  125    5    3   
90    3  106    5     
90    6  125   91  106    5   
90    3    6   91   76   75   24    5  108    
90  125  106    5    
90    6  125   91  125  136   49   24   47   50   67   27   67   97  122   45    5  106    6   54  108  106    5   
55   45  141  106    6   57   54   16   15   54   67  111   67   66    5    6   63    6   54  106   
90   19    
106    5   55  141 
106    6    5    3    
106    6    5    3   13    6  102   13   20    4    6   76   75    5   67    3   67    6  106   67   23   12    2   67  
114   67    
106    6    5    3   13    6  102   13   20    4    6   76   75  102   13    4    5   67    3   67    6  106    4   67   
23   12    2   67  114    
106    6    5    3   13    6  102   13   20    4    6   76   75  102   13    4    5   67    3   67    6  106    4   67   
23   12    2   67  114   67 
 

