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Online in-situ estimation of network parameters is a potential tool to evaluate 
electrical network and conductor health. The integration of the physics-based models 
with stochastic models can provide important diagnostic and prognostic information. 
Correct diagnoses and prognoses using the model-based techniques therefore depend 
on accurate estimations of the physical parameters. As artificial excitation of the 
modeled dynamics is not always possible for in-situ applications, the information 
necessary to make accurate estimations can be intermittent over time. Continuous 
online estimation and tracking of physics-based parameters using recursive least-
squares with directional forgetting is proposed to account for the intermittency in the 
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excitation. This method makes optimal use of the available information while still 
allowing the solution to following time-varying parameter changes. Computationally 
efficient statistical inference measures are also provided to gauge the confidence of 
each parameter estimate. Additionally, identification requirements of the methods 
and multiple network and conductor models are determined. Finally, the method is 
shown to be effective in estimating and tracking parameter changes in both the DC 
and AC networks as well as both time and frequency domain models. 
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CHAPTER 1  
INTRODUCTION 
Recent trends in large vehicular design indicate an increased reliance on electrical 
networks for power delivery. Whether the vehicle is a naval ship, space shuttle, or space 
station, networks are typically characterized by low to medium voltages and known 
system configurations. Poor performance, undesired operation, or faults in these networks 
can severely degrade or even damage the system. In many networks, little indication of a 
potentially harmful disturbance or failure is given until an event actually occurs. 
Furthermore, disturbances such as weak connections, temporary faults, and changing 
environmental conditions are difficult to diagnose using offline tests. As a result, 
continuous in-situ monitoring of the network provides better information from which to 
evaluate the network?s health.  
 Assuming continuous in-situ monitoring (evaluation in the normal operating 
environment), online diagnostic evaluation can be achieved through direct analysis of 
measured waveforms and through estimation of characteristic parameters. In the first 
approach, measured voltage and current waveforms are compared to known ?good? 
waveforms or metrics to evaluate network conditions such as open and short-circuits. In 
the second approach, parameters characterizing the network?s physical properties can be 
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estimated from measured ?input-output? data. By defining model structures in terms of 
known physical relationships, also known as ?gray box? models, the estimated 
parameters can be compared to known acceptable ranges. As the monitoring is 
continuous, trending of estimates can distinguish normal changes from problematic 
conditions. Therefore, parameter identification and tracking provides an approach from 
which to evaluate both diagnostic and prognostic health. 
 Many online and offline diagnostic methods apply known external stimuli in order to 
excite particular dynamic responses [1]. These stimuli are typically tailored to a particular 
application and require some physical means by which to induce or inject the signals. 
However, controlling the input stimuli artificially is an unappealing option for a vehicle 
electrical network. The required stimulus is either too harmful for online applications, as 
with over-voltage tests, or too specific to be easily implemented for a wide variety of 
equipment and network configurations. Furthermore, the extra space and weight required 
to generate and inject the stimuli is prohibitive in mobile applications. For these reasons, 
passive monitoring of the network will be evaluated. The term passive is used here to 
indicate that no control or influence is exerted over the system inputs.  
 Still, without actively controlling the input stimuli there is no guarantee that the 
measured waveforms contain sufficiently ?rich? information to base the parameter 
estimates. As richness of the information depends upon the system?s normal and 
abnormal operation, sufficient excitation of the modeled dynamics will potentially vary 
over time. Under the assumption of passive monitoring, accurate estimation of the 
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characteristic network parameters requires a method that efficiently utilizes intermittently 
available information.  
The goal of this research is to identify and develop parameter estimation techniques 
which are suitable to the estimation of network parameters given passive monitoring of 
network elements in their operating environment. Once the approximations of the 
characteristic parameters are available, statistical analysis of these values over time 
provides diagnostic and prognostic measures of network health. The parameter estimates 
are therefore the foundation of the network health monitoring device illustrated in Figure 
1-1. Accuracy of the parameter estimates will obviously have a profound influence over 
the performance of the diagnostic and prognostic measures. Recursive least-squares 
techniques are selected to fit the parameter estimates to the measured data as these 
algorithms are numerically efficient and provide fast accurate estimates. Given their 
importance to the condition monitoring method, the criteria and conditions under which 
the algorithms provide accurate estimations are examined in detail in Chapter 3. 
Additionally, statistical inference measures are provided to gauge the level of confidence 
in the estimates.  
In order to be effective, the method represented in Figure 1-1 requires monitoring the 
network conditions over extended periods to ensure sufficient information concerning the 
dynamics is observed. Intuitively, the more information a data set contains about a 
modeled dynamic, the better the parameter estimate and consequently the diagnostic and 
prognostic measures. While system disturbances impact the estimates by increasing the 
dynamic content, the system is not intended as a fast acting protection device. In other 
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words, the monitoring system?s purpose is to observe the slow time varying parameter 
changes in an attempt to predict future disturbances. Additionally, the observations 
provide for prognostic evaluation via resulting parameter estimates as well as 
examination of the measurements themselves. However, the parameter identification 
procedures are not intended to be quick enough to provide fast acting protection from 
faults and other disturbances.   
 
Source System/Load
Measured Waveforms
Voltages
Currents
Parameter Estimation & 
Identification Algorithm
Monitored Device
Model-Based Diagnosis 
and Prognosis
Historical Measurement 
Data &
Signature Analysis
Data Reporting and Monitor 
Control
Filtering and 
A/D Conversion
System Monitoring Device
 
Figure 1-1. Continuous Online Diagnostic and Prognostic Monitor 
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As indicated in Figure 1-1, the estimations are reliant upon measurement type and 
location, accurate measurement and quantization, in addition to the parameter 
identification algorithm. However, another key factor is the model selected to represent 
the monitored element?s physical characteristics. It is assumed that the physical 
characteristics of the monitored network elements (single conductor and multiple 
conductor cables, etc.) are describable by linear differential equations. The identifiability 
requirements of potential two-conductor line models are examined in Chapter 4 along 
with the ability of the identification algorithms. These findings are then extrapolated 
further to branches with multiple conductors in Chapter 5. Additionally, the identifiability 
requirements of the network connected elements using frequency-domain measurement 
are examined in Chapter 6. While the derived models mostly consider wiring or cables, 
other networked equipment can be approached in the same manner as long as an accurate 
linear model can be specified. The parameter estimation algorithms and statistical 
inference measures were implemented in MATLAB and validated using test data 
generated in PSPICE. 
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CHAPTER 2  
LITERATURE REVIEW 
Condition monitoring is the use of advanced technologies in order to determine 
equipment condition and potentially predict failure. Methods of conditioning monitoring 
have been researched and successfully implemented in areas such as industrial 
applications and transportation. Regardless of the application, these methods share a 
common goal of detection and diagnosis of unacceptable changes in system parameters, 
also known as process faults. Accurate assessment of the monitored device?s health is 
therefore dependent on the ability to correctly detect and interpret characteristic 
parameters changes.  
 In general, fault detection and diagnosis approaches are divided into two categories: 
direct analysis methods and model-based methods. Direct analysis methods apply 
techniques such as logic reasoning, reflectometry, and signature analysis directly to the 
monitored or observed values. In contrast, model-based methods use the observations in 
combination with mathematical models to generate quantitative values which can also be 
analytically evaluated [2]. As Simani et al. stated in [3], ?If a fault occurs, the residual 
signal (i.e. the difference between the real system and model behavior) can be used to 
diagnose and isolate the malfunction.? The generation of the residual signal using a 
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model reference formulation is illustrated in Figure 2-1. Additionally, model-based 
approaches allow for fault detection through trending and limit checking of the estimated 
parameters as well as the monitored values. Previously known fault data can also be 
stored in historical databases to reference observed parameter changes to known fault 
conditions [4].  
 
 
Figure 2-1. Model Reference Approach 
 
 
Model-based techniques do introduce additional complexity in the form of model 
selection and parameter identification requirements. Benefits and costs of the model-
based techniques is highlighted in Figure 2-2 from a popular text on fault diagnosis and 
prognosis [5]. As illustrated, model-based prognostics provide better accuracy than other 
methods but are more application specific and require higher implementation costs. It 
should also be noted that in Figure 2-2 the methods which do not use a model are further 
subdivided into data-driven techniques, which rely on measurements, and experience-
based prognostics based on simple time-to-failure statistics.  
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Figure 2-2. Prognosis Technical Approaches [5] 
 
 
While model-based diagnostics have been successfully applied to a wide range of 
areas, very little research had investigated the use of model-based diagnostics for 
condition monitoring of low voltage electric cables or networks. Therefore, it may be 
instructive to first examine applications with similar diagnostic and prognostic concerns, 
but where model-based fault detection methods have been successfully applied. 
Specifically, the literature for diagnostic methods as applied to electric rotating machines 
and transformers is examined. Afterwards, the recent literature on the cable diagnostics is 
reviewed followed by a review of the current literature on cable parameter estimation.  
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2.1.  ELECTRICAL MACHINE AND TRANSFORMER CONDITION MONITORING 
A large body of research has focused on condition monitoring of rotating electric 
machines due to the high mechanical and electrical stress involved and the potential for 
catastrophic failure. Given their importance in industry, much of the literature has been 
directed towards induction motors. A comprehensive bibliography of induction motor 
condition monitoring methods was given in [6] and a good overview of fault detection in 
induction motors using signature analysis was provided in [7]. Background of 
implemented model-based methods can be found in [8, 9]. Additionally, a comparison 
between signature analysis methods and model-based methods for induction motor fault 
diagnostics was recently examined by Harihara et al. in [10]. For the given methods and 
selected models, Harihara et al. were able to show that the probability of false alarms was 
reduced by 40% when using the model-based solution. Furthermore, in a study performed 
by Nasiri et al. [11], tracking of modeled parameter estimates was shown to be a useful 
indicator of rotor fault conditions. 
 Model-based condition monitoring has been proposed for other machine types as 
well, for example [7, 12, 13]. In [12], a method was introduced for the offline diagnostic 
testing of electromechanical actuators to replace current hydraulic/pneumatic actuators in 
aircraft. The method represented the actuator?s brushless DC motor using a set of 
physically based discrete time transfer functions. Through perturbations introduced into 
the control signal, system identification techniques were used to estimate the physical 
parameters from the observed voltage, current, and rotor speed changes. Test bed 
evaluations demonstrated the method to be capable of accurately estimating key physical 
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parameters including resistance, inductance, and rotor inertia. A supervisory system using 
fuzzy logic was then shown to be successful at diagnosing potential faults from the 
estimated parameter changes. 
 In recent decades, significant research into electrical-based diagnostics of power 
transformers has also been conducted. A technique which received a great deal of 
attention is the transfer function (TF) method which derived multiple transfer function 
models from input-output measurements. Malewski and Poulin first proposed the use of 
transfer functions in 1988 to account for difficulties in obtaining comparable historic 
voltage and current waveform data [14]. As transfer functions are independent of the 
applied impulse, the historical transfer functions could be generated without requiring the 
a consistent input stimuli. Mechanical deformations in the winding arising from short-
circuits and mechanical stresses during installation could then be detected by comparing 
measured TF models to accepted reference models [15].  
 Initially transfer functions were generated through the application of broadband 
pulses and time-domain measurements. The transfer functions were then determined as 
the ratio of the Fourier transformed input-output measurements. A second method 
determined the transfer function directly in the frequency domain by using a variable 
frequency sinusoid. At each frequency, phasor input and output measurements describe 
the transfer function at that particular frequency. Hence, the transfer function was 
measured by sweeping the frequency of the sinusoidal input across the desired bandwidth 
and recording the quotient between the phasor input and output at each frequency. The 
frequency-domain approach has gained prominence in offline tests because it eliminates 
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signal-to-noise ratio, frequency resolution, and aliasing issues associated with the time-
domain approach [15]. However, the time-domain approach was often utilized as the 
default method for online applications where the input stimuli could not be controlled. 
 Leibfried and Feser examined both online and offline tests for in service power 
transformers in [16]. On-site ?offline? test inputs were applied by switching the high 
voltage side of the transformer in and out of service to create impulses. In contrast, 
?online? tests used transients induced by some external network event. Some of the 
difficulties expressed by Leibfried and Feser for the on-site tests were the requirements of 
identical tap-changer settings and similar temperatures in order to produce comparable 
transfer functions. In addition, reflected traveling waves from the interconnected network 
could potentially bias the transfer function estimation. In principle, reflected waveforms 
observed in input will not change the model estimate; however, reflections in the 
observed outputs may be misinterpreted as changes in the transformer. Wimmer and 
Feser revisited this issue and proposed limiting the calculation of the transfer function 
from single waveform peaks [17].  
 The simplest use of the TF method is a pass-fail test. If the measured transfer 
function is in agreement with the reference model, typically generated directly after it is 
manufactured, then no defect can be detected. However, if the measured TF deviates 
substantially from the reference, the transformer is deemed faulty and removed from 
service. This simple comparison, however, does not provide any information about what 
specific defect may have occurred. This limitation was pointed out by Leibfried and Feser 
who noted at the time that, ?there is no reliable information about the relationship 
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between changes ? mechanical or dielectric ? of the winding assembly and their effect on 
the transfer function? [16]. 
 Transfer functions are black-box models or models which do not contain a-priori 
knowledge of the underlying physical relationships. Recent endeavors have concentrated 
on correlating physical relationships with the transfer function in an effort to provide 
detailed fault diagnostics. A sensitivity test of the transfer function was performed by 
Mikkelson et al. in [18] which showed that physical changes in the oil, core, and winding 
insulation influenced the overall shape of the transfer function. A similar study was 
performed by Rahimpour et al. [19] that showed correlation between transfer function 
changes and a model of physical displacement in the transformer windings. In 
Rahimpour?s model, the parameters were determined analytically based on known 
physical relationships not through monitored conditions and parameter estimation 
techniques. While research in this area is ongoing, the lack of technical articles using 
parameter estimation techniques to determine physics-based parameters is demonstrative 
of the difficulties involved with proper model selection and subsequent estimation of 
characteristic parameters.  
2.2.  CABLE DIAGNOSTIC METHODS 
One of the simplest electrical cable tests is to measure the resistance of the cable. If 
the measured resistance is too high it is an indication that the wire is not connected or 
open circuited. Measurement of the capacitance or inductance can also be used to 
determine the length of the wire by comparing the cable?s known distributed capacitance 
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and inductance with the calculated values. As the lumped capacitance and inductance 
increase with the length of the wire, smaller than expected values can be used to 
approximate location of the open or short circuit fault. However, errors can occur in these 
fault locations estimation whenever the distributed parameter values are not constant over 
the length of the wire. Additionally, these tests cannot be performed while the wire is in 
use.  
In electrical networks, identification and protection of large abrupt faults is generally 
well understood. Slowly occurring or incipient faults are more difficult to detect and 
diagnose given the many factors involved. Experiences with incipient faults in cable 
splices led to the development of the fault specific relay detector described in [20]. The 
incipient faults resulted from accumulation of water in cable splices which eventually 
lead to an arcing event. The arc caused the water to evaporate but the resulting 
combination of pressure and moisture also cleared the fault. The whole process of arcing 
and self-clearing occurred within less that a quarter-cycle (4.16ms) which was 
insufficient to cause the overcurrent protection to operate. Due to the continued 
degradation of the splice, the frequency of these events tends to increase over time. The 
developed relay operation depends on a known relationship between the disturbance and 
its symptoms. In particular, the disturbance is characterized by flashovers at the voltage 
peaks, quarter-cycle overcurrents, and an increasing frequency of occurrence. Once these 
characteristics are observed, the relay acts by operating protection equipment or signaling 
an operator. Detection of other types of incipient faults in this manner would require 
similar a-priori knowledge. While most research utilizing signature analysis techniques 
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tends to concentrate on the diagnostic of medium and high voltage cables, reflectometry 
techniques have recently been investigated for the detection and location of faults in 
aircraft wiring [21-25]. However, these methods do not use model-based techniques and 
currently can only detect existing faulted conditions. 
A few recent studies have focused on incipient fault location in distribution networks 
in the United Kingdom. In [26] the transient voltage and current waveforms are recorded 
by a digital disturbance recorder. Assuming known cable impedance characteristics, the 
fault location was either extrapolated from measurements at multiple locations or through 
measured transient impedances. Experiences and common causes of incipient faults in 
underground low voltage networks were also explored by Walton in [27]. While Walton 
indicated that waveform analysis was used successfully to identify incipient fault 
locations, he also pointed out the need for online condition assessment.  
 Another application where cable condition assessment has received strong interest is 
within nuclear power plants. Exposure of cables to harsh environmental conditions in 
these plants raised interest in condition monitoring of low voltage cable insulation. 
Concerns over how to assess the aging and degradation of insulation have led to the 
requirement of long-term studies of cable materials in nuclear power plants by 
IEEE/ANSI Standard 383 [28]. Additionally, a detailed summary of aging factors and 
tests for electrical cables was published by the U.S. Office of Nuclear Regulatory 
Research in 1996 [29]. Non-electrical tests receiving recent attention include ultrasonic 
impulse, nuclear magnetic resonance, and optical techniques [30-32]. While new 
electrical-based tests have not been introduced, recent work has restated the effectiveness 
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of traditional electrical tests in diagnosing aging and degradation in insulation material. 
Sun et al. showed insulation resistive changes are correlated with changes in the 
mechanical and physical properties of ethylene propylene rubber (EPR) due to thermal 
aging [33]. Hsu et al. went further to show that EPR resistance changes were also 
correlated with moisture-related degradation [34]. This was a key finding as the lower 
dielectric stresses associated with low voltage cables could not provide the same 
indicators of moisture degradation as higher voltage conductor tests. 
 For 4 kV to 500 kV voltage levels, small discharges known as partial discharges 
(PD) can occur in small gas voids or cavities between the insulation and conductor. These 
voids result from manufacturing imperfections or insulation deterioration and are a useful 
indicator of the insulation?s integrity. Numerous studies and methods have been proposed 
for both offline and online detection of partial discharges in medium and high voltage 
cables [35-46]. For low voltage cables, partial discharge, also known as corona 
resistance, is not expected to be significant due to the low dielectric stress. According to 
IEEE Standard 141-1993, ?Although corona resistance is a property associated with 
cables over 600 V, in a properly designed and manufactured cable, damaging corona is 
not expected to be present at operating voltage.?  Nonetheless, an offline PD test was 
proposed by Steiner and Martzloff [47] for low-voltage cables. In their paper, Steiner and 
Martzloff recognized that low voltage cable insulation was not designed to limit PD, and 
discharges would occur along the entire length of the cable during over voltage 
conditions. They used statistical analyses to identify the increased partial discharge 
activity associated with the damaged portions of the insulation. While successful at 
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identifying the damaged locations, test voltages an order of magnitude higher than rated 
were required to achieve sufficient PD. Offline partial discharge tests for motors and 
other low voltage equipment were also investigated in [48, 49]. Once more, potentially 
damaging voltage levels were required by these tests in order to initiate the occurrence of 
partial discharges.  
2.3.  CABLE PARAMETER ESTIMATIONS METHODS 
Typically, estimation of cable or line parameters is performed deductively. Identified 
physical relationships in the form of tables or mathematical equations are used to relate 
known characteristics to modeled equivalents. That is to say, a cable?s parameters are 
deduced from assumed characteristics such as conductor and dielectric material, 
conductor configuration, and length. Deductive reasoning, however, is only as good as 
the accuracy of assumed characteristics. In most cases the assumed characteristics are 
sufficient. However, when considering changes over time, such as environmental 
conditions, faults, and insulation degradation, general assumptions concerning the cable 
properties may not be sufficient. Additionally, every factor influencing a cable?s 
parameters may not be known or accounted for by deductive reasoning. Experimental 
evaluations performed by Yu et al., for instance, recently showed that the metallic 
chassis? influence on vehicular power cables parameters was not accounted for in most 
lab tests or models [50]. Inductively determining the parameters from in-situ 
measurements may be a more viable alternative.  
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 Parameters can be estimated using either steady-state or dynamic measurements. 
However, the information provided by particular measurements types may not be 
sufficient to identify the desired characteristics. For instance, in a DC network inductive 
and capacitive values cannot be estimated from steady-state measurements, but these 
values can be estimated if dynamic measurements are available for the same network. 
Thus, effective condition monitoring requires agreement between the available 
information and modeled parameters.  
Modern energy management systems utilize telemetered measurements at a large 
number of locations in the network. The majority of recorded information consists of 
steady-state magnitudes. As the complete description of a sinusoidal waveform requires 
both the magnitude and phase angle, the estimation of AC line parameters from 
magnitude only measurements is generally not possible. However, new measurement 
techniques utilizing global positioning systems (GPS) provides the ability to measure the 
phase angles of the steady-state measurement as well [51]. Calculation of the line 
parameters using synchronized measurements is examined in [52, 53]. 
 Estimation of the cable parameters using actual waveforms or dynamic 
measurements has typically been done in offline tests. Harmonic impedance 
measurements of building distribution cables, for example, was performed by Du and 
Yuan in [54] by injecting harmonic currents into shorted cables. Using the measurements 
generated in the lab, transfer functions illustrating changes in resistance and inductance 
as a function of harmonic order were created. Yet, the application of these test 
measurements to diagnostic measures was not discussed.  
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Applying model-based techniques to cable diagnostics provides a potential avenue to 
increase the accuracy of the condition monitoring. Additionally, model-based techniques 
can be implemented online which is an advantage over many traditional cable diagnostic 
methods. While model-based diagnostics have been successfully applied to electric 
machines and transformers, little research has applied the techniques to cables and other 
network elements. Effective condition monitoring using model-based techniques, 
however, hinges upon accurate estimation of the desired parameters which can be heavily 
influenced by the availability of relevant information. The ability to accurately estimate 
characteristics parameters when the necessary excitation is intermittent over time 
provides a key first step in implementing a condition monitoring method using passive 
monitoring.  
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CHAPTER 3  
RECURSIVE PARAMETER ESTIMATION 
The recursive least-squares (RLS) solution is a popular and effective means of 
estimating linear model parameters in online applications. RLS has all the statistical 
properties of a least-squares solution, but its recursive formulation also efficiently 
updates the solution when provided new measurements. By exponentially forgetting or 
discounting past information, the recursive least-squares formulation can track time-
varying solutions by placing less weight on past measurements. However, exponential 
forgetting also means the retained information, or excitation, can vary with time as well. 
When the excitation is not artificially regulated, the solution accuracy is completely 
dependent on the system providing necessary levels of excitation.  
In this chapter, the ability of recursive least-squares methods to estimate and track 
parameters under intermittent excitation conditions is investigated. Multiple methods are 
presented and evaluated for their abilities to estimate and track time-varying parameters. 
Recognizing the accuracy of the solution depends on the uncontrolled excitation, 
statistical measures that indicate the level of confidence in the estimates is also presented. 
Finally, other factors that will influence the accuracy of the solution such as measurement 
noise are addressed.  
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3.1.  IDENTIFIABILITY  
Identifiability addresses the question of whether modeled parameters can be 
accurately identified (estimated) given an infinite amount of noise-free data. It can be 
shown that model identifiability is dependent on the solution method, the model structure, 
and the measured input-output data [55]. It is assumed that the modeled element?s 
dynamics can be represented by linear regression shown in (3.1); where the unknown 
parameter vector, ?
~
, is related to the current model output, y, and past input-output 
measurements contained in the regressor vector, ( )k?
~
. The variable k is used as a discrete 
time index where k indicates the most recent sample, k-1 the previous measurement set, 
and so on. Measurement noise and other sources of errors are represented by residual 
error, e, which is assumed to be white noise with zero mean and a defined variance, ? 
2
.  
 ( ) ( ) ( ) )(
~
~
kekkky
T
+= ??  (3.1) 
 
The vector-matrix form of (3.1) is given in 2(3.2); where y
~
 is the vector of observed 
output variables, ? contains past input-output vectors, and ?
~
 is a vector containing the 
unknown parameters. If there are n measurements and p unknown parameters, the n x
 
p 
matrix ? contains n vectors as shown in (3.3) with each vector ?
~
 containing p regressors 
or past input-output measurements for that particular instant in time.   
 ey += ?
~
~
?  (3.2) 
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A model is termed identifiable provided the estimate for the unknown parameter 
vector, ?
~
, always converges to a single solution. In this case the estimate is said to be 
consistent and the solution is unique. Provided a large enough sample set, the over-
determined set of equations in 2(3.2) can be used to formulate parameter estimates which 
predict the system output. Hence, the goal is to find a solution which minimizes the 
residuals or the difference between the estimated and measured outputs. One such 
approach is to minimize the sum of the squared residuals shown in the cost function (3.4) 
using the classic least-squares method provided in 2(3.5).  
 () () ()
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1
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1
???  (3.4) 
 { } y
TT ~
~
? ?? 
1-
=?  (3.5) 
  
However, in cases where the matrix ?
?
?  is singular, a unique solution for the 
parameter estimates cannot be determined. Therefore, identifiability of the linear model is 
coupled to the non-singularity of the least-squares solution or more specifically the 
matrix ?
?
?. The matrix ?
?
?  becomes singular whenever the modeled dynamics are not 
contained in the measurements. Depending on the viewpoint, singularity is the result of 
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the particular measurements not containing sufficient information about the modeled 
dynamics, or the selected model contains more dynamics than the system is capable of 
generating.  
Assuming a regression model where the regressors are composed purely of past 
inputs, a finite impulse response (FIR) model can be defined completely in terms of past 
inputs as shown in (3.6). The dimensions of ? are determined by the total number of 
equations used in the least squares solution, n, and the number of unknown parameters to 
be estimated, p.5 
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?
?
? is then simply the sum of the products of the inputs as shown in 2(3.7) which is a 
square p x p matrix. Therefore, the inputs must contain sufficient excitation to guarantee 
?
?
?  will be of full rank, also known as the excitation condition [56].  
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Let us assume a simple case where the input, u, is a constant nonzero value for all 
instances of time. For this input, all the entries in (3.6) are identical and 2(3.7) is rank one. 
Thus, a constant nonzero input provides enough information to derive the DC gain but 
not enough excitation to determine higher order dynamics.  
Conversely, singularity of ?
?
? can result when the model is over-parameterized or 
contains more independent parameters than the actual system. In this case, some of the 
modeled parameters cannot be excited and subsequently estimated. For example, assume 
the plant in (3.8) represents the true plant dynamics [57]. 
 ( )1)()1()(
101
?++??= kubkubkyaky  (3.8) 
Now assume that a higher order model (3.9) is selected to determine the parameters from 
the input and output. The ?^? is used here to distinguish estimates from true values.  
 ( )()2
?
1
?
)(
?
)2(?)1(?)(
21021
?+?++????= kubkubkubkyakyaky  (3.9) 
The regressor vector for the model is then 
 [])2()1()()2()1()(
~
??????= kukukukykyk
T
?  (3.10) 
Examination of (3.8) indicates that the regressors in (3.10) will be linearly related as 
defined by 0)1(
~~
=+k
T
??  where []
101
01
~
bba?=? . 
This linear relationship between the regressors means that at least one column in 
(3.6) can be expressed as a linear combination of the other columns. Consequently, both 
? and ?
?
? are rank deficient or singular. The singularity of (3.7) again results in a non-
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unique minimum solution to the least-squares method. Informally, the dynamics of the 
system do not warrant the over complexity of the model, and multiple solutions can be 
found which provide an identical output response to the given set of data. 
 Conversely, it should be noted that a model which does not represent all the 
parameters cannot be expected to converge to the unique or ?true? parameters. 
Obviously, a model which does not include all of the dynamics cannot accurately predict 
the output, and a converged solution cannot guarantee correspondence of ?
~
 with the 
?true? values. In this case, the unmodeled dynamics will show up in the residuals 
violating the assumption that the residuals error is white noise. In fact, residual whiteness 
tests are commonly employed to check for unmodeled characteristics and potential bias in 
the estimates. Additionally, the excitation conditions discussed here are not limited to 
FIR models. The regressors can be defined by any combination of past inputs and outputs 
without alteration to the overall conclusions. 
3.2.  RECURSIVE LEAST-SQUARES 
For online applications, the standard least-squares solution is not the most efficient 
method for updating the solution as new measurements become available. In fact, 
updating the least-squares solution for each new measurement would require solving 
(3.5) using all the available past data. As time goes to infinity, the computational and 
storage burdens become unacceptable. Additionally, tracking parameters as they slowly 
change over time requires newer data to be more heavily weighted in the solution than 
older data. While weighted least-squares could be used, it would also increase the 
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computation times required. Fortunately, the least-squares estimate can be expressed in a 
recursive form, thus reducing computation time and allowing for efficient weighting of 
the past data. 
The least-squares solution shown in (3.5) can be examined in two parts shown in 
(3.11) and (3.12). In much of the literature, P is termed the covariance matrix as the 
solution?s covariances are defined by scaling P by the residual error variance, ?
 2
. 
Therefore, the diagonals of P represent the unscaled variances of the individual parameter 
estimates.  
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Expressing (3.12) as an update given the most recently observed output and regressors, as 
illustrated in (3.13), the solution update is shown in (3.14).  
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The previous output can also be defined in terms of the previous regressor matrix 
and parameter estimates, (3.15), allowing the solution update to be expressed as shown in 
(3.16).  
 )1(
~
*)1()1(
~
??=? kkky ??  (3.15) 
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Recognizing the covariance matrix of the previous update, P(k-1), gives 
 () () ( ) ()()[ ]kykkkkk ???
~
1
~
)1(*
~
1
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?
PP  (3.17) 
 
Examination of P(k)
-1
 shows that the covariance matrix formulation can be also 
expressed as a matrix update as shown in (3.18). Equation (3.18) illustrates how the 
current information contained in the current regressor vector )(
~
k?  is used to update the 
covariance matrix. Given this relationship, the inverse of the covariance matrix, ?
?
?, is 
called the information matrix and denoted by R. Therefore, the update in (3.18) can also 
be restated in terms of the information matrix as shown in (3.19). 
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Substituting (3.18) for P(k-1)
-1
, the solution updated in (3.17) is restated as 
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Multiplying (3.20) by P(k) and manipulating the expression yields  
 () ( ) ( ) ( ) ( ) ( ) ( ){ }1
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1
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??+?= kkkykkkk
T
????? P . (3.21) 
In (3.21), it is shown that the previous estimates are updated by scaling the step-ahead 
prediction error by the updated covariance matrix.  
Using the matrix inversion lemma (3.22) and defining the corresponding values in 
(3.18) as ()
1
1
?
?= kPA , ( )k?
~
=B , IC = , and ( )
T
k?
~
=D , a new expression for P(k) is 
shown in (3.23). 
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Reducing the expression algebraically, (3.24), and replacing ( )()kk ?
~
P  in (3.21) gives the 
recursive least-squares algorithm shown in (3.25). Each new sample set requires updates 
to both the solution in (3.25) and covariance matrix using (3.23). While both updates 
contain a matrix inversion, the inverted matrix will always be a scalar value as long as the 
selected model has a single output y(k). 
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The recursive least-squares solution is commonly expressed as three update calculations 
as presented in (3.26) through (3.28). The matrix I in (3.28) is the p x p identity matrix. 
As the vector ( )kL
~
 is used to scale the prediction error before updating the estimates, as 
shown in (3.26), it is commonly termed the parameter update gain.  
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Before the first iteration, both the covariance matrix and unknown parameter guesses 
in ?
~
 must be set to initial values. If prior knowledge concerning the parameters is not 
available, the initial values of ?
~
 can be set to zero. As magnitudes in P(0) reflect the 
level of confidence of the current solution, P(0) is typically initialized with large 
diagonals values. The large covariance matrix results in large prediction errors gains as 
defined by (3.26) and large step changes in the solution. Provided sufficiently exciting 
data is available, the prediction error scaling will decrease along with the covariance 
matrix as the estimates converge to a solution.  
It is important to note that as the number of sample measurements goes to infinity, 
the uncertainty in the parameter estimates will decrease as long as sufficiently exciting 
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measurements are available. This decrease in uncertainty is governed by the dyadic 
product used to update the information matrix shown in (3.19). Therefore, both P(k) and 
( )kL
~
 will either trend towards zero or remain unchanged depending on the level of 
information contained in ()k?
~
. Furthermore, the covariance matrix will tend towards zero 
even in the presence of Gaussian noise. However, the decreasing gain also means the 
method will become increasingly less sensitive to prediction errors. As a consequence the 
RLS method will eventually be unable to follow or track parameter changes. This is 
easily demonstrated by introducing a zero matrix for P(k) in (3.21). Clearly in this case, 
updates to the parameter estimates will not occur regardless of the prediction errors.  
To permit tracking parameter changes it is necessary to discount or forget past data. 
This can be done through an exponential forgetting factor ? [56], where 0 < ? ?1 and ?=1 
corresponds to recursive least-squares without any discounting. The effect of including 
the forgetting factor in the solution is shown through the updated cost function in 
(3.29). For values of ? less than 1, the past residuals are exponentially decreased by a rate 
determined by ? until their influence is negligible, thus emphasis is placed on recent 
measurements. Therefore, inclusion of the forgetting factor in the least-squares solution is 
equivalent to a weighted least-squares formulation. 
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The discounting of past information can also be expressed in terms of the 
information matrix update given in (3.30). During each update of the information matrix, 
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the previous information matrix is scaled by ? before it is updated by the current 
information contained in ()k?
~
. Therefore, the information at a given instant in time is 
exponentially reduced during each subsequent update. 
 ( ) ( ) ( )
T
kkkk ???
~~
)1(* +?= RR  (3.30) 
The new RLS formulation is shown in (3.31) through (3.33). Fortunately, inclusion of the 
forgetting factor in the RLS formulation does not represent a significant increase to the 
overall computational effort. 
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Assuming constant excitation in ( )k?
~
 and ? < 1, the information matrix is bounded 
and cannot become infinite. Accordingly, P can no longer trend fully to zero which is a 
necessary condition for tracking parameter changes. As shown in (3.33), the solution?s 
sensitivity to prediction errors is determined by the size of ?. The higher the sensitivity 
the faster the solution will track changes in the parameters. However, increased 
sensitivity also means the influence of measurement errors is increased as well. 
Consequently, a trade-off exists between parameter tracking and sensitivity to noise. The 
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selection of ? will therefore need to be performed on an ad-hoc basis to ensure necessary 
tracking capabilities are provided without undue sensitivity to noise.  
The discounting rate can be selected based on the desired exponential-decay time 
constant, T
0
, and the time between measurements, T, using the relationship shown in 
(3.34). This approach requires prior knowledge about the nature of the parameter changes 
and acceptable tracking rates. For instance, approximately four to five time constants are 
required to converge to the new solution after an abrupt step change in a parameter. 
Therefore, lower values of ? should be expected. However, in the case of slowly varying 
parameter changes, larger values of ? will provide less sensitivity to measurement noise 
while retaining the ability to track the parameter changes. As model-based diagnostic and 
prognostic evaluations are not meant to facilitate fast acting protection, selecting ? as 
0.99 or higher is expected to provide sufficient tracking capabilities.   
 
()?ln?
=
T
T
o
 (3.34) 
 
It can be shown the time constant in terms of the number of samples N is 
approximated by (3.35) for values of ? close to one. One study states that (3.35) 
represents the rectangular sliding window size necessary to approximate the solution 
provided by the exponentially discounted window [58]. However, a common rule of 
thumb is to approximate the ?memory? of the estimator as twice the time constant given 
in (3.35) [56].  
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??
=
1
1
N  (3.35) 
 
In cases where the observed measurements are not sufficiently exciting, the inclusion 
of the forgetting factor has a marked effect on the covariance matrix P(k). Without the 
forgetting factor the covariance matrix would either remain constant or decrease 
depending on the information contained in the regressors. However, when the excitation 
is insufficient and ? < 1, the covariance matrix can increase without bound. This is 
commonly termed estimator windup or estimator blowup. For instance examine the 
simple case of 0
~
=?  for all values of k; the update relationship given in (3.33) shows that 
the covariance matrix will grow exponentially or ?blow up? by a rate defined by ?. The 
larger the covariance matrix becomes the more sensitive the estimates are to 
measurement noise. Hence, if information contained in the regressors is completely 
discounted without being replaced, the increased sensitivity will cause the estimations to 
?drift? from their previously converged values.  
Exponentially discounting past information also allows the rank of ?
?
?  to change 
dynamically along with changes in the excitation. If the exponential discounting is 
considered an exponentially decaying sliding window, information can be completely 
discounted before any additional information is observed. Furthermore, ?
?
?  is not 
actually inverted in during the RLS solution. Instead, the covariance matrix P is updated 
via (3.33) with each new sample set. Therefore, a solution is always provided when using 
RLS. All the same, the solution will only be unique under the same conditions in which 
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the covariance matrix is non-singular. Obviously, these excitation properties of RLS with 
exponential forgetting are a concern when the excitation is intermittent.  
When applying recursive solutions the excitation condition is known as the 
persistence of excitation. Persistence of excitation simply means that the signal contains 
sufficient excitation to keep the information matrix from becoming singular over infinite 
time. A signal u is termed persistently exciting (PE) of order n if it results in the n x n 
?
?
?  matrix being full rank. As the information matrix?s dimension equals the number of 
unknown parameters, a unique solution is only determined when the signal?s PE equals 
the number unknown parameters. It is important to note that the number of unknown 
parameters directly determines the required level of excitation.  
Excitation in the regressors can be examined by the dynamic content contained in the 
observed waveforms. For example, it can be shown that a step function is PE order of 1 
while a signal containing k sinusoids is PE of order 2k [56]. Therefore, a possible test for 
sufficient excitation might be to use Fourier analysis to determine the number of nonzero 
sinusoids in the measurements and compare this to the number of parameters to be 
estimated. Another test would be to determine the rank of the information matrix. 
Parameters could then be updated only if the excitation is sufficient to estimate all the 
modeled parameters. Such methods are known in the controls literature as conditional 
updating methods.  
A rank deficient covariance matrix indicates that incoming information is not equally 
distributed among the parameter space. While some dimensions of the parameter space 
may be excited, or contain new data, other dimensions may not. Conditional updating 
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methods do not take advantage of the available information as they only update the 
covariance matrix when information exists in all dimensions of the parameter space. If 
the covariance matrix is not bounded, however, estimator windup will occur in the 
unexcited region of the parameter space. A method which bounds the covariance matrix 
in all dimensions while still updating the excited regions represents a more efficient use 
of the available information.  
3.2.1. DIRECTIONAL FORGETTING  
Numerous methods have been proposed to address covariance windup, typically 
through enforcement of some type of upper bound on the covariance matrix. One of the 
earliest solutions varies the forgetting factor as a function of the prediction error and the 
excitation [59]. During periods of low excitation, when limited information is being 
received, the forgetting factor is forced towards unity to limit the loss of past information 
and bound the covariance matrix. In [60] resetting of the covariance matrix during low 
periods of excitation was proposed. However, both variable forgetting (VF) and resetting 
methods are applied equally in all directions of the parameter space regardless of the 
distribution of information.  
In contrast, directional forgetting (DF) methods only discount past data in those 
directions in which newer data is available. This means the parameters associated with 
newer information can be updated without causing estimator windup to occur in the other 
parameters. Initial methods of direction forgetting were given in [61, 62]. However, these 
methods did not bound the covariance matrix from below [63-65]. Consequently, the 
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originally proposed directional forgetting method?s covariance matrix could trend fully to 
zero causing in the method to lose its ability to track parameter changes.  
Analogous to directional forgetting, a method was proposed in [66] which uses the 
eigenvectors of the information matrix to determine the directional distribution of the 
information. Individual forgetting factors were then assigned to the eigenvalues to ensure 
upper and lower bounds were enforced upon the covariance matrix. As individual 
forgetting factors were allocated to each eigenvector (dimension), discounting of the past 
information was performed selectively in each direction of the parameter space. 
Accordingly, this method was termed ?selective? forgetting (SF) and was shown to be 
effective when estimating time-varying parameters which vary at different rates [67].  As 
the eigen-structure must be calculated for every new sample, a good deal of computation 
effort was required by the method.  
A new directional forgetting algorithm was proposed in [68, 69] that determines 
what dimensions of the parameter space can be safely discounted through decomposition 
of the information matrix. This method has been shown to have the benefit of bounding 
the covariance matrix from above (preventing estimator windup) and below (preventing 
loss of tracking). Additionally, the algorithm does not require calculation of the 
eigenvalues and eigenvectors as performed by the SF method. The algorithm decomposes 
the information matrix into two parts as shown in (3.36), R
1
(k-1) which contains the 
information orthogonal to the new information and R
2
(k-1) which contains the 
information projected onto the parameter space of the current excitation. Exponential 
forgetting is only applied to the portion of the information matrix in the same parameter 
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space as the current excitation. Consequently, information associated with a particular 
parameter is only discounted when newer information is available. This is highly 
advantageous as relevant information about each parameter can be retained even when it 
is obtained at different rates. The algorithm?s equations are provided below in (3.37) 
through (3.42) and detailed derivations can be found in [68, 69].  
 () ( ) ( ) ( ) ( )kkkkk
T
???
~~
1*1
21
+?+?= RRR  (3.36) 
 () ( )
( ) ( ) ( )
()( )()kkk
kkk
k
T
T
??
??
?
~
1
~
~~
1
1
?
?
?=
R
R
M  (3.37) 
 ( ) ( )[ ] ( ) ( ) ( )kkkkk
T
??
~~
1 +??= RMIR  (3.38) 
 ()()
( ) ( )
()( )()kkk
kk
kk
T
T
??
??
?
?
~
1
~
~~
1
11
*
?
?
+?=?
R
PP  (3.39) 
 () ( )
( ) ( ) ( ) ( )
() ( )()kkk
kkkk
kk
T
T
??
??
~
1
~
1
1
~~
1
1
*
**
*
?+
??
??=
P
PP
PP  (3.40) 
 () ( )() () ( )(){ }
1
** ~
1
~~
1
~
?
?+?= kkkkkkL
T
??? PIP  (3.41) 
 () ( ) ( )( )1
~
)(
~
)()(
~
1
~~
??+?= kkkykLkk
T
????  (3.42) 
  
Note that (3.37) and (3.40) will be undefined when the regressor vector is zero 
( () 0
~
=k? ). A dead zone is applied through (3.43) to keep the algorithm from being 
activated unless the regressor vector contains some amount of information greater than an 
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assumed noise level ?. When the test in (3.43) is satisfied, the DF method is altered by 
(3.44) and (3.45). Therefore, discounting will not occur when the measurements contain 
only noise.  
 ( ) ?? ?k
~
  (3.43) 
 0)( =kM  (3.44) 
 ( ) ( )11
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?=? kk PP  (3.45) 
3.2.2. VARIABLE DIRECTIONAL FORGETTING 
An interesting design consideration arises when considering long-term passive 
monitoring requirements. Specifically, how much weight should be applied to older data 
when significant gaps exist between periods of sufficient excitation or when significantly 
abrupt parameter changes occur? Suppose that after converging to the ?true? solution, 
new information about a parameter is unavailable for a long period of time. During this 
time the actual value of the parameter varies slowly but significantly from the last 
parameter estimate. When the excitation returns to that parameter space the change will 
appear as an abrupt step change in the estimation and the estimates will be biased until 
the past information is replaced.  
As past information is discounted only as new information becomes available, the 
actual rate at which past data is discounted is a function of ? as well as a function of the 
rate at which newer information becomes available. Therefore, it is more convenient to 
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consider the retained information in terms of the equivalent memory size as defined 
(3.35) versus a time constant. For example, an equivalent memory size of 200 data points 
results when ? is 0.99. When an abrupt parameter change occurs, 200 new relevant data 
points will need to be observed before the all past information is discounted. As a result, 
directional forgetting may exhibit slower parameter tracking capabilities compared to 
standard exponential forgetting. However, this assumes the excitation is sufficient to 
overcome estimator windup and the influence of measurement errors when using 
standard exponential forgetting.     
One option to account for abrupt parameter changes is to dynamically alter the 
memory size by adjusting ?. The amount of past data retained in the calculations is then 
determined by how well the model predicts current observations. When the prediction 
error (3.46) is larger than a set tolerance, ? is set to a low value then exponentially 
increased. As the information which triggered the high prediction error may not exist in 
subsequent observation, ? is exponentially increased back to its original set-point. This 
allows increased discounting to occur in any parameter space associated with incoming 
information. 
 () () () ( ){ }1
~
~
??= kkkyk
T
???  (3.46) 
 
 
 
39
3.2.3. COVARIANCE RESETTING 
Another option is to simply remove all the past data when a large abrupt step-change 
occurs. Given indications that the model is inadequately predicting the observations (i.e. 
the error in (3.46) is larger than a set tolerance) the covariance matrix P could be reset to 
its initial value P=?*I; where ? is a large scalar value and I is the identity matrix. 
Resetting the covariance matrix indicates that there is little confidence in the current 
estimations and essentially restarts the estimation process using the current parameter 
estimates as the initial starting point. When P (and consequently R) is reset the past 
information for every parameter is lost, and all of the parameters estimates will deviate 
from their previously converged values until sufficient excitation for each parameter is 
again obtained. Obviously, covariance resetting represents a drastic response. In cases 
where the excitation is extremely intermittent, resetting the covariance matrix will keep 
past data from biasing the estimates over longer periods of time.  
 Other system identification methods and methods to prevent estimator windup exist 
and a detailed examination of these methods can be found in [55]. Determination of 
which method to use should be based on the complexity of the model and the expected 
excitation. A summary of the various recursive estimation variations discussed here are 
presented in Table 3-1 along with a brief discussion of potential applications as well as 
pros and cons.  
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Disadvantages 
Unable to track parameter changes. Requires pe
r
sisten
tly 
exciting information to keep estimator windup from occurring. Potentially slower tracking response than recursive leas
t-squa
re
s with 
exponential forgetting. Requires the ad-hoc selection of two additional parameters and can be overwhelmed by noise.    Suffic
i
ent e
x
cita
tion is 
required after resetting to obtain convergence 
Advantages 
The estimate variance approaches zero as the number of observations incre
ases to infin
ity. 
Discounts past information at a fixed rate allowing for parameter tracking.  Past info
rma
tion fo
r each
 
parameter is discounted only if newer information is available thereby preventing estimator windup.  Allows faster discounting of past data in a given parameter s
pace when the 
prediction error is high. Discounts all past information to remove any bias in the e
stimate
s fro
m 
past information. 
Potentia
l Applications
 
Situations containing high signal to noise ratios but constant parameter values.  Situations w
h
ere th
e nor
mal 
operation of the system is expected to provide persistent excitation.  Situations w
h
ere th
e 
excitation is only sufficient during in
ter
mittent syste
m
 
operations.  Situations w
h
ere sign
if
ic
ant 
individual parameter changes are expected between periods of sufficient excitation. Situations w
h
ere sign
if
ic
ant 
changes in a
ll pa
rame
ter are 
expected b
e
tween period
s 
of sufficient excitation. 
Table 3-1. R
ecursive L
e
a
s
t-Squares 
Methods 
Method 
Least-squ
a
res  
 Recursive least- squares with exponential forgetting  (RLS) Recursive least- squares with directional forgetting  (RLS/DF) Recursive least- squares with variable directional forgetting  (RLS /VDF)
 
Recursive least- squares with covariance resetting 
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3.2.4. MULTIVARIABLE SOLUTIONS 
The presented recursive formulations are applicable to models where a single output 
is specified. However, the formulations are also applicable to models with multiple inputs 
and multiple outputs (MIMO models). One approach is to divide the model into 
individual multiple input single output (MISO) models which are fitted to the data 
separately using the previously derived techniques. Conversely, it can be recognized that 
the multiple inputs are shared by each MISO model signifying that the regressors are 
shared by each model. If each model is weighted equally in the overall cost function, only 
(3.31) must be updated to account for the increased dimensions as denoted in (3.47) 
where ?(k) contains multiple parameter vectors. For m outputs, ?(k) is a p x m matrix and 
()ky
~
 is a 1 x m vector containing the output variables.  
 ()() ()( )1
~~
~
1 ??+?= k(k)(k)y(k)Lkk
T
??? ?  (3.47) 
 
While the multivariable formulation appears more efficient than solving the 
individual MISO models, the parameter vectors composing ?(k) are still independent 
from each other. The same unknown modeled in multiple locations of ?(k) will have  
multiple independent solutions. Additionally, the multivariable solution requires that each 
of the MISO models share the same regressors. Consequently, the MIMO model may not 
represent the most optimal form to estimate the desired parameters. However, the 
multivariable models should be considered in cases where these limitations are not a 
significant factor. 
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3.3.  MODEL AND PARAMETER VALIDATION  
As previously noted, the RLS algorithm always provides a solution regardless of the 
current or past level of excitation. Because the excitation is not artificially regulated, 
there is no assurance that the current estimation set is representative of the true 
parameters. More specifically, without sufficient past excitation the collected information 
may not be adequate for satisfactory convergence. In response, statistical inference 
measures were implemented to validate or judge the level of confidence in the parameter 
estimates. Additional tests are also introduced to quantify the regressors? linear 
independence. Finally, model validation through residual analysis is discussed.  
The statistical measures will be useful in the diagnosis and prognosis sections of the 
condition monitor and will be stored along with the estimates, ?
~
, as shown in Figure 3-1. 
Both the unknown estimates and the statistical measures are determined using the 
sampled measurements (v
1
(k), i
1
(k), ...) which are filtered and normalized (v
1
 (k)
*
, i
1
(k)
*
, 
...) before applying the solution method. The stored statistical measures include the 
prediction error, ?, determined by the solution method as well as the variance of the 
unknown parameter estimates, ? 
2
, and the calculated confidence intervals (CI) which are 
determined from the covariance matrix, P, and ?. Other forms of expressing the estimates 
accuracy, such as margins or error, could be stored instead of the confidence intervals. 
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Figure 3-1. Condition Monitor Parameter Estimation and Validation Block  
 
3.3.1. MARGINS OF ERROR 
Statistical inference about the parameter estimates requires knowledge about the 
estimate variance. As previously noted, the actual matrix of covariances for the parameter 
estimates is found by scaling P by noise variance as indicated in (3.48).  
 ( ) P
2
cov ?? =  (3.48) 
While P is readily available from the recursive least-squares formulations, the error or 
noise variance, ?
 2
, is not. Revisiting (3.1), ?
 2 
is the variance of the residuals between the 
true and predicted output values for a particular estimated parameter set. One possible 
approach is to recalculate the residual errors for each new parameter solution and re-
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estimate the variance. This approach represents a large computation burden and requires 
the storage of a large amount of past regressor data. If the parameters are assumed 
constant, both the residual and prediction error variances are equal to the noise variance. 
Thus, ?
 2 
can be approximated using the prediction error instead. 
The sample variance of the prediction error can be estimated using (3.49). 
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Taking into account that the number of samples N used to estimate the parameters is 
defined by (3.35), the sample variance can be rewritten as shown in (3.50).  
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When the parameter estimates ?(N) are constant over a sufficient period of time, the 
predictions errors, ?, over this period are good predictors of the residuals. In this case, 
(3.50) can be restated in a recursive form with the past estimates discounted in the same 
manner as the parameter estimates. Therefore, the approximation of ?
 2
 can change over 
time in a manner similar to the parameter estimations.  
 () ( )( ) ()[ ]NNN
222
11?? ????? ?+?=  (3.51) 
Furthermore, it was shown in [70, 71] that the estimations of the residual from the 
prediction errors could be improved by accounting for the past information contained in 
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P.  The final version of the residual variance estimate is given in (3.52). The forgetting 
factor used in (3.52) is the same value used to discount the observed information.  
 () ( )( ) () ()()[ ] () () ( )[ ]1
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~~
1*11??
22
????+?= kkkykkkkk
TT
???????? P  (3.52) 
 
 The noise variance estimate of (3.52) can be used in (3.48) to estimate the variance 
and covariance values necessary to determine the confidence intervals. Assuming the 
error is zero mean white noise and insignificant correlation between the parameters, the 
100(1-?)% confidence interval for each parameter can be estimated using (3.53), where n 
and p are again the number of observations and unknown parameters respectively and P
jj
 
is the j
th
 diagonal term in the covariance matrix. The parameter estimations follow a chi-
squared distribution [72] and the Student-t value with n-p degrees of freedom is chosen to 
scale the interval. Recalling that the number of observations used by the calculations is 
governed by the forgetting factor, the value of n is approximated as five times the 
memory size defined in (3.35).  
 ( )
jjj
Ppnt ??? ?*;2/1 ???  (3.53) 
 
However, the univariate confidence interval in (3.53) only addresses the hypothesis 
that a particular parameter?s true value is contained within the interval. A more 
conservative hypothesis is whether all the intervals simultaneously contain their 
respective true values. In other words, what confidence space simultaneously contains the 
model?s true parameters for a specified confidence level? Bonferroni confidence intervals 
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are the simplest simultaneous test to account for the joint evaluation of multiple 
parameters as this approach divides the confidence level (1-?) by the number of 
parameters to be estimated, as seen in (3.54). Accordingly, the Bonferroni confidence 
intervals are easily calculated and provide a conservative interval range. The benefit of 
the Bonferroni confidence intervals as applied to online synchronous machine parameter 
estimation was recently examined in [73]. 
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The added/subtracted value in (3.54) is termed the margin of error which is often 
reported in lieu of an actual confidence interval. During the online application, the 
margins of error could be tested against preset tolerances to decide whether an estimate is 
sufficiently accurate to warrant action or storage for later evaluation. However, in order 
for the confidence intervals to accurately reflect upon the accuracy of the estimations, the 
assumption that the residuals are white noise must still be satisfied.  
3.3.2. MULTICOLLINEARITY TESTS 
It was previously shown that identifiability is determined by the singularity or non-
singularity of the information matrix, R = ?
?
?. Intrinsically, singularity of the matrix is 
determined by the linear independence of the regressors which form the columns of ?. 
Therefore, the level of excitation is decreased whenever linear dependence or 
multicollinearity exists between the regressors. A multiple regression statistic known as 
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the variance inflation factor (VIF) is a commonly used indicator of linear dependence 
between multiple variables. Typically, the VIF is defined in the form shown in (3.55) 
where the j
th
 column of ? is denoted by 
j
?
~
.  
 ()
j
T
j
jj
VIF
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=
~~
*var
2
?
?  (3.55) 
 
Revisiting (3.7), it can be seen that 
j
T
j
??
~~
 is the j
th
 diagonal of the information 
matrix R. Additionally, a parameter estimate?s variance is given by the j
th
 diagonal of 
(3.48). Therefore, (3.55) can be simplified to the form shown in (3.56). Recalling that P 
and R are inverses, the VIF reflects the degree in which a diagonal in P is increased due 
to nonzero off-diagonals in the information matrix. For example when R is diagonal, R
jj
 
and P
jj
 are direct inverses and the value of VIF must be one. Conversely when perfect 
linear dependence exists between the regressors, both P
jj
 and VIF
j
 are infinite.  
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 While the variance inflation factor is a useful diagnostic, the square root of the VIF 
is more functional because it directly specifies how the standard error, and consequently 
the confidence interval, is enlarged by the multicollinearity. In [74] this value is termed 
the standard-error inflation factor (SIF) and its calculation is given in (3.57). An obvious 
 
48
benefit of the SIF is the required data is already generated by the recursive algorithms. 
Storage of the SIF will be a valuable offline tool for evaluating a model?s effectiveness.  
 
jjjjj
RPSIF =  (3.57) 
 
While the SIF is a good indicator of multicollinearity, it does not indicate which 
regressor terms are strongly correlated. While examining the model identifiability 
requirements, collinearities between the regressors are established through examination 
of the correlation matrix. The correlation matrix is determined by scaling the entries in P 
by the associated standard deviations as indicated in (3.58). The off-diagonal entries of 
the correlation matrix indicate the level of correlation that exists between the regressors; 
values close to one indicate a strong positive correlation while values close to negative 
one indicate a strong negative correlation.   
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3.3.3. RESIDUAL ANALYSIS 
Whether the chosen model sufficiently represents the true characteristics of the 
device is a subjective question of validation. A simple evaluation is whether the estimated 
parameters are physically viable. For example, a negative resistance model would be a 
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red flag to revisit the selected model. Another useful validation test is to inspect the 
confidence intervals to determine if a modeled parameter could be removed from the 
model. For example, a confidence interval which consistently crosses zero might indicate 
that a variable could be removed from the model. However, an unmodeled variable could 
bias the estimates when conditions change. This selection is often described as a trade off 
between model flexibility and parsimony [55]. Simply put, the model can be flexible and 
better at explaining more of the dynamics (reducing bias), or the number of parameters 
can be reduced which typically reduces the variance (fewer parameters reduces the 
potential for multicollinearity). In fact, large standard deviations may be a sign of an 
over-defined model. 
As previously noted, the confidence intervals proposed in the previous section are 
dependent on the residuals being zero mean white noise. Otherwise, the residuals contain 
additional content which could be modeled. Consequently, non-white residuals are a sign 
of inaccuracy in the model structure. Model validation is a process that is best achieved 
offline when necessary corrections are easier to recognize and implement. Some general 
solutions to non-white residuals are: 
1. Modify the model structure to account for any unmodeled physical dynamics,  
2. Modify the model and/or solution method to include an error model (i.e. 
extended least squares), 
3. Filter the extra dynamic content, or 
4. Deem the bias to be at an acceptable level for the given application. 
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While there are numerous tests which could be applied to evaluate the residuals? 
whiteness (autocorrelation, Durbin-Watson test, etc.) each test requires significant 
calculations and data storage to recalculate the residuals at each time step. Moreover, 
temporary dynamic residual content arising from parameter changes and subsequent 
tracking could also be interpreted falsely by an automated test. The proposed online 
model validations are limited to the parameter feasibility and confidence intervals 
mentioned earlier. However, the historical data portion of Figure 1-1 could be used to 
periodically generate whiteness test reports if desired.   
Assuming that a sufficiently representative model is utilized, analysis of the residuals 
between the measured and predicted output could provide valuable diagnostic 
information. For example, a model reference approach as shown in Figure 2-1 could be 
used to indicate when the device operates in a manner which cannot be accounted for by 
the model. Therefore, storage and evaluation of the prediction error in (3.46) should be 
considered along with the parameter estimates. 
3.4.  MEASUREMENT NOISE 
Any parameter estimate cannot be more accurate than the data used in the 
approximation. Increasing the memory size can reduce the influence of noise but results 
in slower tracking of time-varying parameters. Measurement noise also influences the 
confidence interval estimates by increasing the noise variance in (3.48). To some extent, 
the amount of measurement noise is determined by the method used to collect the sample 
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data. Hence, common filtering and quantization design criteria which affect the accuracy 
of the estimates require examination. 
3.4.1. QUANTIZATION AND SAMPLING RATE 
As shown in Figure 1-1, the proposed parameter online diagnostic monitor requires 
discrete measurements provided by an analog-to-digital converter. Assuming the analog 
signal can take on any value, the resulting quantization error is typically considered 
uniformly distributed white noise with the probability density shown in (3.59). The limits 
of the uniform distribution are defined by the incremental step size q used by the A/D 
process while the step size is determined by the number of bits, n, used in the A/D 
process and the full scale over which the analog values are discretized 
minmax
rrr ?=? . 
This relationship is illustrated in (3.60). While the actual noise variance ?
 2
 is dependent 
on many factors, in general larger measurement noise will result in larger noise variance. 
Therefore, the noise variance, and hence the estimate variance, can be improved by 
increasing the number of bits used in the A/D process. 
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The sampling rate of the A/D conversion also influences the estimates by determining 
the content contained in the sample observations. To keep from aliasing the sample data 
the sampling frequency should be twice the highest expected frequency. As the frequency 
content cannot be known ahead of time, anti-aliasing filters are necessary to ensure 
frequency content above the Nyquist frequency is not contained in the sample data. 
Potentially, any sampling rate could then be implemented as long as sufficient filtering is 
applied, though sampling at lower frequencies will potentially capture less information. 
In general, the measurements should be sampled as fast and with as much accuracy as 
hardware will allow.  
3.4.2. FILTERING 
 As noted in the previous sections, filtering is an important component of the 
parameter estimation procedure. Proper filter selection prevents aliasing and reduces the 
noise variance. However, identical filters must be applied to every measurement to keep 
from artificially biasing the input-output relationship. While filtering can be viewed as 
biasing estimates toward a particular frequency range, it can be shown that when identical 
filters are applied to each measurement the input-output relationships are unaltered. 
Consequently, filter design issues such as ripple in the pass band are not a significant 
concern. Therefore, filters characterized by sharper transitions between the passband and 
stopbands, such as high order Chebyshev filters, can be used.  
Given some of the gathered information may result from transient events whose 
frequency content cannot be predicted, sampling at a high rate alone cannot guarantee 
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aliasing will not occur. Thus, anti-aliasing filters must be implemented by analog devices 
before the measurements are fed into the A/D device. However, additional digital 
filtering can be applied as needed. For example, digital filters may be needed to remove 
unmodeled content from the observations not removed by the anti-aliasing filters. This is 
an important design consideration as any unmodeled content will bias the parameter and 
confidence interval estimates. Therefore, filter design must be performed for each 
monitoring device considering the model?s dynamic characteristics. 
3.5.  NORMALIZATION 
Measured input-output data and the parameters estimates themselves will typically 
exist in different scales. Significantly dissimilar scales are a concern as they can result in 
numerical errors during the estimation process. One solution is to normalize or per-
unitize the input-output data, and consequently the estimations, by scaling the data using 
carefully chosen bases. Each data type (voltage, current, time, etc.) shares a single base 
value and any physical relationships between these data types must be enforced.  
In the time domain the per-unit bases for the physical or electrical parameters can be 
expressed in terms of v, i, and t [75]. The relationships between v-i-t bases and the bases 
representing the physical parameters are provided in Table 3-2. It is necessary that three 
of the bases shown in Table 3-2 be specified. All unspecified bases will be determined 
using the relationships given in the fourth column of Table 3-2. However, care must be 
taken to ensure the selected bases fully span all three dimensions of v-i-t. Other bases 
could be introduced given additional measurement types and model configurations.  
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Table 3-2. Time Domain Per-Unit Base Relationships 
Base Quantity Units 
v-i-t  
Relationship 
V
base
 Voltage Voltage (v) v 
I
base
 Current Amperes (A) i 
t
base
 Time Seconds (s) t 
S
base
 Power Volt-Amperes (VA) vi 
R
base
 Resistance Ohms (?) v/i 
L
base
 Inductance Henries (H) vt/i 
C
base
 Capacitance Farads (F) it/v 
 
 
Proper base selection is essential when utilizing RLS with directional forgetting. 
Projecting the information matrix onto a parameter space which is overly skewed will 
result in numerical errors that influence the convergence and tracking abilities of the 
method. Specifically, past information associated with the smaller scaled regressors will 
not accurately be projected onto the space parallel to the incoming information. Hence, 
discounting of past information associated with these regressors will be limited. As such, 
base selection can intentionally or inadvertently influence parameter tracking when 
directional forgetting is used.  
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CHAPTER 4  
TWO-CONDCUTOR MODELS 
As mentioned in section 3.1, parameter identifiability is dependent on the solution 
method, the model structure, and the measured input-output data. Model-based 
diagnostics of network health is therefore reliant upon the available measurements and 
selected model as much as the estimation algorithm. In this chapter estimation of two 
conductor electrical parameters is evaluated using time-domain measurements. The 
identifiability requirements of multiple conductors using time-domain measurements are 
subsequently evaluated in Chapter 4. Finally, estimation of network parameters using 
frequency-domain observations is examined in Chapter 5. 
The distributed parameter model or incremental model for a two-conductor line is 
shown in Figure 4-1. The model represents a single conductor using either a second 
conductor or a common ground plane as the return. Examples of the common grounds in 
vehicular applications include military and commercial aircraft which commonly use the 
metal hull as a return to reduce weight of the aircraft. In either case, the return path is 
modeled by an equivalent conductor model. As shown, the voltages and currents at the 
sending and receiving ends are related through incremental values of the resistance and 
inductance as well as the shunt conductance and capacitance. While a resistance and 
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inductance is associated with each conductor, these terms are modeled by an equivalent 
single resistance and inductance as shown in Figure 4-1. As the length of the increment, 
?x, increases, the corresponding parameter values also increase. For long spans (or high 
frequency content), accuracy of the line model can be improved by using multiple 
sections of the distributed parameter model of Figure 4-1 connected in series. While 
distributed parameter estimation techniques are available, estimation of distributed 
parameters is computationally costly making them an undesirable option for an online 
application.  
In many applications a lumped parameter model accurately represents the electrical 
characteristics of the entire line. In lumped parameter models the distributed parameters 
are collected or ?lumped? together into a finite model represented by an ordinary 
differential equation. However, line length and frequency content must be considered to 
ensure that the selected model accurately represents the electrical characteristics.  
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Figure 4-1. Distributed Parameter Line 
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Specifying the line length by d, hyperbolic functions, (4.1) and (4.2), can be 
determined which relate the voltage and current relationships defined in Figure 4-1, [76, 
77]. As frequency cannot be assumed constant, the equations are given here in terms of 
the Laplacian operator, s. The presented parameter estimation techniques cannot yet be 
applied as the equations are nonlinear. However given assumptions about line length and 
frequency content, equivalent lumped parameter models can be developed which satisfy 
the linear constraints of the least-squares parameter estimation techniques.  
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The conductor?s electrical parameters are dependent on many factors including 
conductor size, insulation/jacketing, as well as environmental conditions. Literature and 
standards relating to electrical parameter models can be found in [1, 78-85]. In the 
following sections the models are based on specified assumptions concerning equivalent 
lumped parameter models from (4.1) and (4.2). It is expected that other models can be 
selected which satisfy specific circumstances based on prior knowledge of the 
conductors, available measurements, and network operation.   
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4.1.  SHORT TRANSMISSION LINE MODEL 
Assuming the length of the line is relatively short with respect to the expected 
frequencies, (4.1) and (4.2) are reasonably approximated by the circuit in Figure 4-2. This 
circuit is commonly referred to as the short transmission line model. The differential 
equation for the circuit is provided in (4.3) where ? is the differential operator d/dt.  
 
 
Figure 4-2. Short Transmission Line Circuit Model 
 
 ( )
Rss
vLRiv ++= ?  (4.3) 
 
Considering the potential difference between the two terminal voltages as a single 
term, the transfer function relating the current and voltages is shown here in (4.4). As 
there is a single input and output the model is called a single input single output (SISO) 
system. In contrast, a multiple input single output (MISO) model could be defined simply 
by considering each voltage as separate inputs.  
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Because the proposed monitoring method uses sampled data, discrete-time models 
are required. The bilinear transform (4.5) is used to approximate the continuous-time 
behavior because it preserves model stability and does not exhibit aliasing in the 
frequency response. The bilinear approximation can cause warping in the frequencies 
close to the Nyquist frequency. However, as long as sufficient filtering is imposed and 
sampling period, T, is small, the approximation of the continuous-time system should be 
sufficiently accurate. Selecting y = i
s
 and u = v
s
-v
r
 , the resulting difference equation is 
shown in (4.6), where k is again used to indicate the current sample. In this case, the 
output is selected to keep the transfer function from being improper, but this is not a 
requirement for selecting the model?s form. 
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The three coefficients in (4.6) can be reduced by collecting the common parameter 
terms as shown in (4.7). The new regressor vector is composed of two newly defined 
terms (4.8) and is a function of both the input and output.  
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In order to find a solution using linear regression techniques, the model must be 
considered ?linear in the parameters.? Linear in the parameters implies the unknown 
coefficients are not functions of each other or raised to any power. Clearly, the 
coefficients are not linear in terms of the R and L parameters but can be redefined or 
reparameterized with respect to the parameters to be estimated. The reparameterized 
model is given in (4.9) and (4.10). 
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There is a penalty for reparameterizing the model. Specifically, the physical 
relationships designated in (4.9) between R and L are not enforced by the estimation 
procedure. In other words, the parameters D
1
 and D
2
 are determined merely on how well 
the curve fit of (4.10) models the observed input-output data. Nevertheless if the model is 
a good physical representation of the line and a unique solution is found for the 
parameters, the estimated parameters provide good approximations of the physics-based 
parameters. That is, R and L can be approximated from the D
1
 and D
2
 using the 
relationships given in (4.11). Reparameterization can lead to unidentifiable parameters if 
a mapping does not exist between the estimated and physics-based parameters. In these 
instances, diagnosis and prognosis measures could be based on the estimated coefficients.  
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Reparameterization of this model can be avoided though a different selection of 
which variable to model as the output as shown in (4.12) and (4.13). While this model 
contains a derivative in the regressors, the numerical sensitivity to measurement errors is 
not any better or worse than that associated with the reparameterization. Additionally, 
models that permit the direct estimation of the physics-based parameters are intuitively 
easier to analyze. In contrast, the variances of R and L using (4.11) are dependent on 
nonlinear relationships between the variances of D
1
 and D
2
. When possible, direct 
estimation of the physics-based parameters is preferred.  
 LR
i
vv
u
y
S
RS
?+=
?
=  (4.12) 
 () ( ) () ( )[]()
?
?
?
?
?
?
??+?+=?+ )1()(*
2
11 kuku
T
LkukuRkyky  (4.13) 
4.2.  NOMINAL PI CIRCUIT MODEL 
A two-conductor line model is presented in Figure 4-3 with both conductors 
retaining their individual resistance and inductance terms. Additionally, the model 
includes the shunt capacitance (equally divided at the two ends of the line) as well as 
 
62
mutual coupling between the lines. As a negligible amount of leakage current is assumed, 
the shunt conductance is not modeled. This circuit is a reasonable approximation of lines 
with relatively longer lengths compared to the short transmission line model. One 
analysis estimates that the model is acceptable for power cables less than one mile in 
length and operating at 60Hz [76]. If significantly higher frequencies are expected, the 
acceptable line length under which this model is accurate will need to be evaluated 
accordingly. 
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Figure 4-3. Two-Conductor Mutually Coupled Circuit 
 
 
Applying Kirchhoff?s voltage law about the inner loop of Figure 4-3, the voltage and 
current relationships are defined by (4.14). 
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Collecting the voltage and current terms of (4.14) gives (4.15) with the derivative of the 
time varying terms denoted by the number of dots above the variables. 
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Assuming current injected into either conductor is equal in magnitude but opposite in 
sign (i.e. 
1,1, na
ii ?= ), equation (4.15) reduces to (4.16). As indicated in (4.16), the 
resistance and inductances were lumped together in order to reduce the number of 
unknowns. While the individual conductor parameters cannot be determined 
independently, the overall health can still be gauged by estimating of the equivalent 
parameters. More importantly, by reducing the number of unknown parameters the 
required excitation is reduced accordingly. The reduced two-conductor model can now be 
represented by the nominal pi equivalent circuit presented in Figure 4-4; the terminal 
voltages and currents were renamed to reduce notation. This circuit could also be derived 
from the distributed parameter model of (4.1) and (4.2).  
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Figure 4-4. Nominal Pi Equivalent Circuit 
 
 
It is initially assumed that voltage and current measurements on either end of the line 
are available. The vector matrix relationship between the currents and voltages in the 
circuit are defined by matrix 3(4.17). As with the short transmission line model, any of the 
currents or voltages can be considered as the output or dependent variable.   
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4.2.1. SISO MODEL 
A SISO model was generated by subtracting the two rows of 3(4.17) and treating the 
resulting voltage difference and current summation as single measurements. As shown in 
3(4.18), selection of these input-output relations results in the cancellation of the R and L 
terms. The bilinear transform was again employed to derive the equivalent difference 
equation presented in (4.20). 
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Another SISO model can be examined by writing the equations as the difference 
between the voltage terms (or sum of the currents) as shown in (4.21). While the R and L 
parameters are contained in the model, evaluation of (4.21) indicates they cannot be 
directly estimated.  
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Utilizing the same process used previously to derive the simplified regression model, the 
regressor model for this SISO model is given in (4.22) and (4.23).  
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In this model, five parameters must be estimated before the three physical quantities can 
be approximated, but the consequences of the reparameterization are more severe than 
just increasing the required excitation. That is to say, if the excitation is ever insufficient 
to determine the third parameter (1/?) all the physics-based parameter approximations 
will be inaccurate. Clearly, this interdependence is unacceptable. The limitations of this 
model highlight the benefits of selecting a model that permits the physics-based 
parameters to be directly estimated. Other input-output combinations were investigated 
but with similar shortcomings. 
4.2.2. MISO MODEL 
While a MIMO model could be derived from 3(4.17), the resulting model would not 
permit direct estimation of R or L. The transfer function relationships in (4.17) are 
therefore examined as individual MISO models. One possible MISO model is presented 
in (4.24) which defines relationship between the terminal voltages and sending end 
current injection shown in Figure 4-4.  
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Selecting y= v
R
, u
1
= v
S
, and u
2
= i
S
, the corresponding difference equation is expressed in 
4(4.25). The regressors for the model, (4.26) through (4.29), are expressed in terms of the 
input-output observations and the reparameterized coefficients are expressed in terms of 
the physical parameters as shown in (4.30). The receiving end voltage was selected as the 
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dependent variable, as it provided the least amount of reparameterization of the estimated 
coefficients. Reparameterization of the coefficients was unavoidable, however, and 
results in a model requiring a minimum 4
th
 order excitation. While the excitation 
requirement appears large at first, other forms of the model can be shown to require no 
less than 5
th
 order excitation.  
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The unavoidable reparameterization of the physics-based parameters is not without 
repercussions. Most importantly, the physical relationships designated in 4(4.30) are not 
enforced. As a result, the capacitance is unidentifiable. While a secondary calculation can 
be performed to approximate C, the accuracy of the approximation depends on the 
accuracy of the individual parameter estimates. Additionally, there are two potential 
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approximations of C each requiring separate statistical evaluation. Therefore, the 
estimates for the RC and LC parameters were treated as the final results required by the 
proposed monitoring method. Rewriting (4.17) so that the MISO models use the two 
current measurements results in similar reparameterization issues except, in this case, the 
resistance and inductance will be unidentifiable. 
As the algebraic relationships between the estimated coefficients are known, not 
enforcing these relationships could be viewed as not taking advantage of all the available 
information. Constraints could possibly be introduced to enforce the known physical 
relationships. However, the resulting constraints are nonlinear and would require a 
nonlinear optimization method.  
4.2.3. SISO/MISO MODEL 
The number of parameters in 4(4.25) can be reduced further when voltage and current 
measurements at both ends of the line are available. In these cases, 4(4.20) is used to first 
update the estimate of C which is subsequently used in 4(4.25) to reduce the unknowns to 
R and L. The updated MISO model is provided in (4.31) through 4(4.33) with the most 
recent update of C shown in the regressors. Given its dependence, the MISO portion of 
the model requires an accurate estimation of C. In most cases the actual shunt capacitance 
is relatively small compared to other parameters. As long as the error variance associated 
with the estimate of C is not too great, its influence on the other estimates should be 
minimal. If the shunt capacitance is negligible, (4.31) can be shown to be equivalent to 
the short transmission line model of (4.13).  
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Not only does this two-tier method directly estimate the physics-based parameters, it 
also reduces the minimum excitation to 2
nd
 order. Therefore if both voltages and currents 
are available, the parameters can be estimated given only the fundamental frequency. 
However, when one of the currents is unavailable, the loss of information supplied from 
the measurement must be offset by doubling the minimum required excitation.  
4.2.4. SHUNT CONDUCTANCE  
Shunt conductance can be included in the nominal pi circuit model if leakage 
currents through the dielectric material are expected, or if it is a key measure of the 
cable?s health. Inclusion of this parameter does not significantly influence the general 
form of the models previously developed. However, it does introduce an additional 
parameter which increases the excitation requirement in some models. For instance, the 
SISO model difference equation is easily updated to include the shunt conductance as 
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shown in (4.34). Comparison with (4.20) shows that the only significant change is an 
increase of the required persistence of excitation to 2
nd
 order.  
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Similarly, the MISO model can be updated to include the shunt conductance. 
However, this update does not alter the regressor portion of the model. Therefore, 
equations (4.25) through  (4.29) will remain the same. However, the redefined parameters 
are now given by (4.35). Note that an accurate approximation of the shunt conductance 
using this model not only relies on an accurate estimation of D
2
 but the accuracy of the 
other three parameters as well.  
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4.3.  MODEL EVALUATIONS 
In order to evaluate the estimation techniques and derived models, test data was 
generated in PSPICE using the single-phase two bus system shown in Figure 4-5. The 
nominal pi circuit model, connecting bus 1 and bus 2, represents one hundred feet of two 
conductor 14-AWG cable characterized by R = 505 m?, L = 33.47 ?H, and C = 0.895 
pF. The load is represented by a constant impedance and the source is modeled by a 120 
V  60 Hz voltage source with an internal impedance of 1 ?. It should be noted that while 
the fundamental frequency was chosen as 60 Hz, other fundamental frequencies would 
provide the same order of excitation and therefore similar results. However, different 
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operating frequencies necessitate different sampling criteria and possibly model 
structures.  
 
 
Figure 4-5.  Single-Phase Test Circuit  
 
 
Gaussian white noise with variance ?
 2 
= 50x10
-6
 was introduced into the recorded 
values to signify noise induced into the measurements before quantization. The values 
were then quantized based on equivalent 16-bit data acquisition (DAQ) hardware set to 
quantize the voltage and current on [-200, 200] V and [-20, 20] A ranges. While these 
factors were chosen arbitrarily, changes to either are expected to influence the estimates 
accordingly. It is recognized that steps to reduce both factors are key design criteria when 
implementing the monitoring method.  
Finally, before it is used by the solution algorithm, the measurement data is per-
unitized using the bases given in Table 4-1. The voltage, current, and time bases were 
chosen to provide relatively uniform regressors values, while the parameter bases were 
subsequently determined using the relationships defined in Table 3-2. While the voltage 
base was selected to match the rated fundamental voltage, the current base is not as easily 
selected given load variations. Therefore, a base of 10 A was heuristically selected to 
emphasize the regressors associated with the resistance and inductance parameters of the 
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MISO model. The selection was made based on experience which indicated that during 
low periods of excitation the R and L parameters show more signs of convergence than 
the RC and LC estimates. Finally, the time base was selected to counter the radian 
frequency scaling which occurs in the derivative terms. While the per-unit base values 
were chosen based on the expected content in the fundamental frequency, varying 
loading conditions, harmonics, and other system conditions will all influence the size of 
the parameter space spanned by the regressors. Therefore, selection of the base values 
must be done on an ad-hoc basis. Dynamic adjustments of the bases can be implemented 
by the monitoring controller, but would require re-initializing the estimation algorithm.  
 
Table 4-1. Test System Per-Unit Bases 
Base Units 
V
base
 120 (V) 
I
base
 10 (A) 
t
base
 2.653 (ms) 
S
base
 120 (VA) 
R
base
 120 (?) 
L
base
 318.3 (mH)
C
base
 22.10 (?F) 
 
 
In each of the following cases, the sampling period was fixed at T = 100 ?s and a 
forgetting factor of ? = 0.99 were specified in the MATLAB code implementing the 
parameter estimation techniques. Additionally, the unknown parameter vector ?
~
 was set 
to zero and the diagonals in P set to large values (1x10
4
) to indicate little confidence in 
the initial values in ?
~
. The SISO/MISO model combination was examined first to 
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illustrate the influence of measurement noise and ?. As the normal operation of the test 
system was sufficient to meet the model?s excitation requirements, RLS with standard 
exponential forgetting was used.  
In order to evaluate the performance of the proposed method during abrupt changes 
in the observations, a significant step change in the load was examined. The observed 
voltage and current waveforms, during the load change, are illustrated in Figure 4-6. As 
shown in Figure 4-7, the parameter estimates, using (4.20) and 4(4.31), quickly converge 
to the true solutions, indicated by the dashed lines, but are not significantly influenced by 
the load change. As the network change did not represent a change to the modeled 
parameters, the extra excitation slightly improves the estimates. 
 
 
 
Figure 4-6. Test Case Voltages and Currents 
 (a) Sending End and (b) Receiving End 
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Figure 4-7. SISO/MISO Model Parameter Estimates during 
a Load Change. 
 
 
As previously noted, parameter estimate accuracy is dependent on the measurement 
noise. To illustrate the sensitivity, the test was performed again but with a 32-bit 
quantization. The lower quantization error decreased the variance in each parameter 
estimate as shown in Figure 4-8. However, the capacitance estimation is especially 
sensitive to the noise given its dependence on the current differential between the line 
terminals. This current is small by nature (as is the capacitance) which can be easily 
overwhelmed by the noise contained in the two measurements. This is an inherent 
difficulty when estimating the capacitance in general indicating the level of accuracy 
required. 
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Figure 4-8. Parameter Estimates with 32-Bit Quantization 
Error. 
 
 
 The sensitivity to measurement errors is also influenced by the equivalent memory 
size determined by the forgetting factor. When the forgetting factor of the SISO model 
was increased to 0.999, representing an order of magnitude increase to the equivalent 
memory size, the variance was reduced significantly, as shown in Figure 4-9. As R and L 
are estimated by a model with the original setting for ?, their potential tracking ability 
was not altered but their variance was still reduced through their dependence on the 
estimate of C. 
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Figure 4-9. Parameter Estimates with 16-Bit Quantization 
Error and ?
c
 = 0.999. 
 
 
The chosen algorithm must also be capable of tracking parameter changes. Still 
utilizing the SISO/MISO model combination, the resulting estimates for a step change in 
R are shown in Figure 4-10. The estimate of R exponentially converges to the new 
solution in approximately 50 ms, or five times the time constant associated. A similar 
step change in C was evaluated and the resulting estimations are given in Figure 4-11.  
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Figure 4-10. Parameter Estimates for Step Change in R. 
 
 
 
Figure 4-11. Parameter Estimates for Step Change in C. 
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Recursive parameter estimation using the MISO model is evaluated in the same 
manner as with the SISO/MISO evaluations. The model contains four parameters which 
increases the required excitation to a minimum 4
th
 order. To stress the MISO model?s 
increased identifiability requirements, the parameters were first estimated using RLS with 
standard exponential forgetting and the same load change used before. The estimated 
parameters are provided in Figure 4-12. Until the transient from the load change occurs, 
the 60Hz signal alone does not provide sufficient excitation for convergence of the 
estimates to occur. However during the transient, the excitation temporarily increases and 
the solution converges to the true values. Nonetheless, after the transient decays the 
exciting information is eventually discounted and the parameters drift from the converged 
solution. Note that both the mean and variance of the parameter estimates are affected.  
The loss of information was also indicated by the 95% confidence margins or error 
shown in Figure 4-13. The values in Figure 4-13 represent the margin or error which 
contains the true solution with confidence level of 95%. During the transient, the 
confidence interval decreased significantly but increases once the information was 
discounted. The principle factors in the changing confidence intervals were similar trends 
in the covariance matrix diagonals. As P increased, the increased sensitivity to noise gave 
rise to increased estimate variance as seen in Figure 4-12. Given the lack of constant 
excitation in this scenario, some form of estimator windup prevention is clearly desirable.  
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Figure 4-12.  MIMO Model Parameter Estimates  
 
 
  
Figure 4-13.  95% Confidence Margins of Error 
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When RLS with directional forgetting is applied to the same data, Figure 4-14, the 
estimates initially converge in a similar fashion as before. However, the estimates retain 
their values once the transient fully decayed. Examination of Figure 4-15 indicates that 
these improvements are also reflected in the margins of error. The bias in the LC 
estimates for both the standard exponential as well as the directional forgetting 
evaluations is attributed to non-white noise in the residuals. The autocorrelation of the 
last five hundred prediction errors, shown in Figure 4-16, falls outside of the 95% 
confidence intervals. Therefore, the white noise hypothesis is rejected with 95% 
confidence. During the creation of the test data, the ideal sampling and operation of the 
test system results in repeated errors which appear as correlated white noise in the 
residuals and prediction error. The lack of sufficient past information and the relatively 
small value of LC made these estimates more sensitive to the bias than the others.  
 
 
 
Figure 4-14.  MISO Model Parameter Estimates using 
RLS/DF  
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Figure 4-15.  95% Confidence Margins of Error 
 
 
 
Figure 4-16. Prediction Error Autocorrelation 
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The information contained in the switching transient increases the excitation of the 
dynamics well beyond the 4
th
 order excitation required by the MISO model. In order to 
show that accurate parameter estimates can be made given the minimum required 
excitation, the next example used a 5
th
 harmonic current injection to temporarily increase 
the excitation to 4
th
 order. The harmonic is injected at the load starting at 250 ms and for 
a period of 500 ms. No other system or load changes occur during this time. Voltage and 
current waveforms before and after the start of the harmonic injection are shown in 
Figure 4-17 to illustrate the change in the measured waveforms. As shown in Figure 4-18, 
the RLS solution quickly converged during the harmonic injection due to the increased 
excitation. However, the estimates again drift once the additional excitation is removed. 
In contrast, the RLS with directional forgetting shows no signs of drifting estimates as 
seen in Figure 4-19. It is also interesting to note that information observed during the 
harmonic injection results in the estimate of LC being less sensitive to bias than in Figure 
4-14.   
 
Figure 4-17.  Sending End Voltage and Current Waveforms 
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Figure 4-18. Parameter Estimates using RLS 
 
 
 
Figure 4-19. Parameter Estimates using RLS/DF 
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 As past data is discounted by the directional forgetting method only as newer 
information becomes available, it is still capable of tracking parameter changes. The 
tracking response of the RLS/DF for a step change in resistance is illustrated in Figure 
4-20. The order of excitation was increased to the required level by the injection of the 5
th
 
harmonic current over the duration of the observations. Note that the estimates were not 
governed by the forgetting time constant. Given that the directional forgetting method 
only discounts past data as newer data becomes available, slower tracking rates result 
when information concerning the parameter is not available in each sample. Additionally, 
even though the step change only occurred in R and RC, L and LC diverge from their 
converged solutions. However, the bias in the other estimates is reduced as R converges 
to the new solution. Additionally, the more information observed about an unknown 
parameter before an abrupt change, the smaller the deviations. This is demonstrated 
through the small deviations in L.  
 
 
Figure 4-20.  Parameter Estimates using RLS/DF  
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The parameter estimates using RLS with standard forgetting for the same dataset is 
provided in Figure 4-21. Note that similar deviations in the parameters estimated 
occurred using this method as well. Obviously, tracking the parameter changes using 
directional forgetting takes considerably longer when compared to the standard method 
of discounting. Nevertheless, in situations where the excitation is intermittent in nature 
the prevention of parameter drift greatly outweighs a faster tracking ability. Still, for 
certain applications it may be sufficient to estimate the parameters with RLS and then 
only retain estimates whose margins of error satisfy predetermined tolerances.  
 
 
Figure 4-21.  Parameter Estimates using RLS 
 
 
 The tracking response of the directional forgetting method to the abrupt change 
might be improved by varying ? in response to the prediction error. The results when 
variable directional forgetting, as discussed in section 3.2.2, was applied to the dataset are 
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shown in Figure 4-22. As ? is no longer constant it is also provided in Figure 4-22. As 
shown, dynamically altering the memory size allowed the solution to more quickly track 
the parameter changes. Notice the variance of L is also significantly larger than in Figure 
4-20 due to the increased discounting of information relevant to this parameter.  
 
Figure 4-22.  Parameter Estimates using RLS/VDF  
 
 
Model selection should consider many factors such as the necessary parameters for 
accurate condition monitoring and the expected parameter magnitudes relative to the 
noise levels and/or measurement accuracy. The capacitance associated with short spans 
of wire is particularly difficult to estimate due to its relatively small value. This was seen 
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not only in the SISO/MISO model combination, but also in the MISO results which 
indicate the estimates of RC and LC are far from ideal.  
 If the estimation of a particular parameter is unnecessary, or unfeasible, one option is 
to reduce the model order by discarding the parameter. Removing the variable from the 
model not only reduces the required level of excitation but also reduces variance in the 
parameter estimates due to parsimony. On the other hand, this does not mean that just any 
parameter can be removed from the model without consequence. In fact, any unmodeled 
content will end up in the residuals of the least-squares solution violating the assumption 
that the residuals consist of white noise. The non-white signals in the residuals will in 
turn result in biased parameter estimates as well as inaccurate variance estimates.  
Multiple models could be estimated in parallel if different models are expected to 
offer better estimations during varying conditions. A comparison of the 95% confidence 
intervals for three model types is given in Table 4-2; the SISO/MISO model combination, 
the MISO model alone, and the short transmission line model (RL). Each model?s 
parameters were estimated using one second of data containing the fundamental and 5
th
 
harmonic waveforms. While the results in Table 4-2 are not meant to be statistically 
conclusive, the results do support earlier conclusions. For example, the SISO model 
(which has the benefit of the additional information from the 2
nd
 current measurement) 
provides the most accurate means to estimate the capacitance. Obviously the wide 
variances associated with the estimates of RC and LC will result in a low level of 
confidence if either is used to approximate C. Moreover, the confidence intervals for both 
RC and LC cross zero which indicates that these parameters can potentially be removed 
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from the model. Another interpretation would be that the margin of error is larger than 
the estimate itself. Actually, the margins of error for these parameters are nearly twice the 
estimates. Consequently, very little if any bias is present when the capacitance terms are 
removed as seen by the results for the short transmission line model (RL) model. 
However, the estimates of RC and LC are not without merit as the capacitance could 
increase over time to a level where its dynamic contributions were no longer negligible. 
If this were the case, it would be very important to have the capacitance modeled as not 
to introduce bias into the estimations. Including the capacitance did not show signs of 
significantly increasing the other parameter variances. 
 
Table 4-2. 95% Univariate Confidence Intervals 
R (m?) L (?H) C (nF) RC (n?F) LC (pHF) 
 
Low High Low High Low High Low High Low High 
SISO/MISO 504.99 505.01 33.47 33.48 0.790 1.085 NA NA NA NA 
MISO 504.90 505.00 33.42 33.59 NA NA -5.983 13.320 -11.84 39.32 
RL 504.94 505.03 33.40 33.63 NA NA NA NA NA NA 
 
 
The techniques are also applicable to DC networks. While constant DC values only 
provide a 1
st
 order excitation, i.e. sufficient excitation to estimate the line resistance, 
transient events increase the excitation to sufficient levels to estimate other model 
parameters. If we assume that these events will not occur with any predictable regularity, 
directional forgetting should provide better estimates than standard directional forgetting. 
In order to examine how well the directional forgetting algorithm handles periods of low 
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excitation between short bursts of high excitation, a case consisting of a periodically 
switched RL load connected to a 24 V DC system is evaluated. The observed voltage and 
currents at both ends of the line are presented in Figure 4-23 and the same example line 
of the previous simulations is assumed to connect the load to the 24 V source. During the 
estimations, base values of V
base
 = 24 V, I
base
 = 10 A, and T
base
 = 10 ?s were used to 
normalize the measurements. The values were again heuristically chosen in an attempt to 
provide regressors whose magnitudes would be within the same general range. 
 
 
Figure 4-23.  DC Signals for a Switching DC Load  
(a) Sending End and (b) Receiving End 
 
 
For this example, the sampling period was increased to 10 ?s in order to better 
observe the faster dynamics of the transient while the forgetting factor was left at ? = 
0.99. While the switching transients increase the excitation, they also contain frequencies 
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higher than the Nyquist frequency. For that reason, anti-aliasing filters were introduced 
during the generation of the test data. Identical second order low-pass filters with 5 kHz 
cutoff frequencies were used as the anti-aliasing filters for each measurement. The high 
sampling frequency also results in five thousand samples being observed between each 
switching transient. Even though the transients occur at fixed intervals, the resulting 
excitation can still be considered intermittent in nature. 
The parameter estimations for the short transmission line model using the RLS/DF 
algorithm are given in Figure 4-24. As expected, during the steady-state periods only 
information concerning the resistance is available and this parameter quickly converges 
to its ?true? value. However, during the transient periods the dynamics associated with 
the inductor are excited and the estimate begins to approach a converged solution. While 
the switching transients in the example are equally spaced this is not a requirement as the 
directional forgetting algorithm clearly shows no signs of estimate drift during the low 
excitation periods.  
In contrast, the solution using standard discounting, as shown in Figure 4-25, clearly 
drifts during each period of low excitation. The estimates using directional forgetting also 
show indications of improving over time. This improvement can be attributed to the 
retention of the relevant information during each event whereas the standard method 
steadily discounts information as time progresses. For instance, based on the time 
constant approximation of (3.35) and the selected forgetting factor, the information 
gained during the transient is completely discounted after 500 samples. Given that there 
is an order of magnitude more samples between the transients, there is ample time for the 
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information to be completely discounted before the next transient. Although it is not 
shown in Figure 4-25, the loss of information is reflected in the estimates as they 
eventually drift back to zero in between switching transients.  
 
 
Figure 4-24.  Parameter Estimates using RLS/DF 
 
 
Figure 4-25. Parameter Estimates using RLS 
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4.4.   SUMMARY 
In cases where the excitation is intermittently sufficient, directional forgetting is 
clearly a better alternative to standard exponential discounting. The method has been 
shown to provide accurate solutions of two-conductor wiring physical-based parameters 
under intermittent conditions while retaining the ability to track parameter changes. 
Accuracy of the physically-based parameter estimates was also shown to be dependent 
upon the measurement type, measurement noise, as well as the model formulation. The 
level of accuracy was gauged by recursively calculated margins of error which are not 
only easily calculated but necessary to interface the estimates with stochastic prognosis 
techniques. The same techniques as applied to multiple conductor models are examined 
in the next chapter. While the multiple conductor models are innately more complex, the 
conclusions derived in this chapter concerning the effectiveness of the parameter 
estimation techniques still hold true. 
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CHAPTER 5  
MULTIPLE CONDUCTOR MODELS  
In this chapter the identifiability requirements of multiple conductor network 
elements are examined. The presented models are based on general assumptions 
concerning conductor characteristics and the availability of time-domain measurements. 
Due to the additional interactions that exist between conductors in close proximity, the 
models and identifiability requirements in this chapter represent an increased complexity 
compared to the models of the previous chapter. The identifiability requirements are 
examined under the assumption of intermittent excitation, as the identifiability 
requirements are intended to facilitate the monitoring method described in Chapter 1.  
Lines with more than two conductors can be approached in a similar fashion as two-
conductor lines except for the obvious increase to the number of required measurements 
and unknown parameters. A multiple conductor model including mutual coupling and 
capacitance between conductors 1 through n is shown in Figure 5-1. It is assumed that the 
n
th
 conductor models the return path, whether it is a neutral conductor, shield, vehicle 
hull, or combination of the three. Given voltage measurements at both ends of the 
conductors and currents at only one side, the relationships between the measured values 
and the unknown parameters values can be described by (5.1) and (5.2). In the matrix of 
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(5.1) the diagonals represent the total capacitance connected to the node (i.e., C
11
 = 
C
12
+C
1n
+..., C
22
 = C
12
+C
2n
+..., etc.). However, measurement using the equipotential 
reference depicted in Figure 5-1 is not practical in many applications. It is also beneficial 
to reduce the number of unknown parameters by lumping the neutral?s parameters in with 
the other conductors.  
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Figure 5-1. Multiple Conductor Line Model 
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By subtracting the last equation in (5.2) from the rest of the rows, the voltages are 
redefined as between the individual phases and the neutral, as shown in (5.3), eliminating 
the need for the equipotential plane shown in Figure 5-1.    
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Kirchhoff?s current law states that at every instant in time the sum of the currents across 
any cut-set equals zero. Hence, the currents (and their derivatives) sum to zero and the 
bottom row of (5.4) can be set to one.  
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Finally, through matrix and vector manipulations, it can be shown that (5.4) reduces to 
(5.5).   
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As shown in (5.6), the inductances can be defined by equivalent lumped values and 
alphabetical subscripts introduced in order to simplify the notation. The neutral?s 
resistance, R
nn
, is also factored out from the matrix of resistances to reduce the number of 
unknown parameters.  
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
*
*
*
*
*
*
*
*
*
2,1,
2,1,
2,1,
111
111
111
00
00
00
N
b
a
NNbNaN
bNbbab
aNabaa
N
b
a
nn
N
b
a
NN
bb
aa
NnNn
bnbn
anan
i
i
i
dt
d
LLL
LLL
LLL
i
i
i
R
i
i
i
R
R
R
vv
vv
vv
M
L
MOM
L
M
L
MOM
L
M
L
MOM
L
M
 (5.6) 
 
Recognizing the neutral as the new reference, (5.1) can be restated in the form shown 
in (5.7). In (5.7), the matrix diagonals still represent the total capacitance connected to 
that node (i.e. C
aa
=C
ab
+C
an
+...). Finally, if desired, an additional equation relating the 
current outputs could be found as provided in (5.8).  
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Substituting (5.7) into (5.6) and collecting like regressors, the linear regression model for 
the multiple conductor line can be written as (5.9).  
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(5.9)
 
As the number of conductors increase, so do the number of unknowns in each model. 
However, it can be shown that when modeling N>2 conductors, equation (5.9) requires N 
less parameters than the line model of Figure 5-1.  
The equivalent model for a four conductor cable is provided in Figure 5-2.  
Examining the equations individually, as done during the two-conductor model analyses, 
each phase can be evaluated using individual MISO models. Note that the individual 
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phase models each require the estimation of eleven parameters as shown in the a-phase 
conductor model provided in (5.10). To simplify (5.10), the number of dots above the 
regressor terms indicates that it is a 1
st
 or 2
nd
 order derivative. As with the two-conductor 
models, the capacitance cannot be directly identified and is instead accounted for by RC 
and LC parameters. Similar expressions to (5.10) can be derived for both b and c phases 
with the only common directly estimated parameters between the models being the 
neutral resistance and the mutual inductances. Additionally, the neutral current could be 
measured directly. While this constitutes an additional measurement requirement, it may 
reduce the variance resulting from summing the quantized currents.  
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Figure 5-2. F
o
ur-Conuctor Line Model 
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Numerous other model configurations can be derived based on various conductor 
configurations and characteristic assumptions. If the mutual coupling is assumed to be 
equal in each phase, the unknowns can be reduced by modeling the mutual coupling by a 
single term, L
m
. Additionally, given current and voltage measurements at both ends of the 
conductors, the capacitances could be determined independently of the resistance and 
inductance terms as indicated by the three-phase model shown in (5.11). Equation (5.11) 
was derived using the relationships in (5.7) and (5.8). 
 
?
?
?
?
?
?
?
?
?
?
+
+
+
?
?
?
?
?
?
?
?
?
?
??
??
??
=
?
?
?
?
?
?
?
?
?
?
?
?
?
2,1,
2,1,
2,1,
2,1,
2,1,
2,1,
cncn
bnbn
anan
ccbcac
bcbbab
acabaa
cc
bb
aa
vv
vv
vv
dt
d
CCC
CCC
CCC
ii
ii
ii
 (5.11) 
 
 While the multi-conductor models are considerably more complex, the estimation 
algorithms remain unchanged. The same generalized conclusions concerning 
convergence, estimator drift, and parameter tracking equally apply to the multi-conductor 
models as to the two-conductor models. However, interactions between the conductors 
results in linearly dependent regressors for most system conditions. Hence, identification 
of the modeled parameters requires more than sufficient harmonic content. It should also 
be noted that additional models could be produced as long as the derived models are 
linear.  
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5.1.  IDENTIFIABILITY  
The excitation requirements of the multiple conductor models are not only 
complicated by the number of parameters, but the interactions between the measurements 
as well. More specifically, when these inputs operate in balanced conditions, they mask 
interactions that are necessary to estimate the parameters. Therefore, sufficient excitation 
not only depends on harmonic content but unbalanced operation as well. Analysis of the 
multi-conductor models? identifiability requirements first requires reexamination of the 
persistence of excitation introduced in Chapter 3.  
 The persistence of excitation is inherently determined by the steady-state behavior of 
the regressors. As noted in section 3.2, a periodic signal of k sinusoids provides a 2k 
order excitation. Therefore, the level of excitation during the steady-state operation of the 
branch can be evaluated through the frequency domain phasor components of the model?s 
regressors. As the multiple conductor models will contain multiple regressors of the same 
type (i.e. i
a
, i
b
, i
c
, etc.) each potentially containing multiple frequencies, relationships 
between regressors will be easier to evaluate in the frequency domain.    
The excitation requirement for a system with two unknown parameters is expressed 
in (5.12) by equivalent phasors for the input ( y ) and regressors (
1
u  and 
2
u ). As long as 
1
u  and 
2
u  are not scalar multiples of each other, a unique solution exists between the 
unknown scalar parameters A and B. In fact, this relationship is commonly used to 
perform spectral analysis using least-squares techniques.   
 
21
uBuAy +=  (5.12) 
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 Multi-phase power systems are typically operated as near to balanced conditions as 
possible. However, balanced operation actually limits the excitation in the measurements. 
Consider the estimation of three unknowns using three phasor measurements, 
1
u , 
2
u , and 
3
u . If only a single frequency is considered, only two equations ? the real and imaginary 
portions of (5.13) ? can be written relating these three parameters. As an infinite number 
of regressor vector combinations will provide the predicted output vector, a unique 
solution cannot be determined.     
 
321
uCuBuAy ++=  (5.13) 
If an additional sinusoid is included, the number of equations appears to increase to a 
sufficient level as indicated in (5.14).  
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However, if the phasors are related through a scalar, as shown in (5.15), the number of 
effective equations reduces to two.  
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Consequently, balanced operation will always limit the persistence of excitation to 2
nd
 
order regardless of the number of harmonics or phases involved. The conditions under 
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which the excitation will increase beyond 2
nd
 order are determined via examination of the 
physics-based models.  
Before analyzing a full MISO model such as (5.10), a simpler model where the 
capacitance is assumed to be negligible is examined. This model, as shown in (5.16), 
requires at least a 5
th
 order excitation. The frequency-domain regressor matrix for the 
minimal frequency case is given in (5.17) where the derivatives are expressed in terms of 
the original current phasors. During steady-state operation, the rank of (5.17) is 
equivalent to the rank of the time-domain regressor matrix. Hence, the operational 
criterion that determines if ?  is full rank is defined by the model?s identifiability 
requirements.  
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Unbalanced operation itself is not a sufficient condition for identifiability. The 
imbalance must also cause neutral current to flow. Obviously, if current is not flowing in 
the neutral, the R
nn
 cannot be estimated. This in itself will reduce the rank of (5.17). 
However if the neutral is not involved with the imbalance, the line currents must still sum 
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to zero. Thus, the line currents are linearly dependent by definition. The imbalance must 
therefore result from either a fault or load that allows current to flow into the neutral. 
Neutral +current alone is also not a sufficient condition either as a balanced fault only 
provides a 3
rd
 order excitation. 
Excitation requirements for a capacitance only model, such as (5.11), are similar in 
nature to that of (5.16). The voltage regressors must contain sufficient harmonic content 
as well linear independence in order to provide the necessary excitation. The equivalent 
regressor matrix for this model is shown in (5.18). Again, linear dependence between the 
regressors is governed by unbalanced system operation that results in current in the 
neutral. When no voltage drop occurs in the neutral, the voltages in (5.18) are forced to 
sum to zero. Consequently, (5.11)and (5.16) share the same general identifiability 
requirements.  
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 Models such as (5.10), which consider both the series and shunt terms, will 
obviously increase both the required harmonic content as well as the complexity of the 
imbalance required. Linear independence between the regressors is additionally 
challenging for (5.10) as some type of underlying physical relationship will potentially 
exist between the current and voltage based regressors. The associated regressor matrix 
for the full model of (5.10) is given in (5.19) through (5.23). The fundamental frequency 
term ? was factored out of the derivative terms in order to simplify the expressions. 
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 [ ]DCBA? =  (5.19) 
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Nonetheless, the excitation requirements associated with the resistive and inductive 
parameters of (5.10) do not differ from those of (5.16) despite the inclusion of the 
additional parameters. However, there is obviously more potential for rank deficiency to 
occur. Given imbalance and sufficient harmonic content in the currents, the order of the 
excitation will be at least 3
rd
 order. But sufficient harmonics must also exist in the 
voltages as well or the overall excitation can be no larger than 7
th
 order. Furthermore, a 
direct linear relationship cannot exist between voltages and currents. Therefore, the 
necessary but not sufficient conditions for determining a unique solution for (5.10) are: 
? A minimum of six harmonics in the voltage and currents 
? Unbalanced operation and neutral current, and 
? Linear independence between the voltage and currents.    
These conditions are necessary but not sufficient to guarantee sufficient excitation as 
other forms of linear dependence can arise given various configurations and operating 
conditions.   
5.2.  MODEL EVALUATIONS 
Parameters  representing 100 feet of 1 kV 6AWG belted cable [86] were selected to 
examine the estimation techniques? performance when estimating the three-phase line 
parameters in Figure 5-2. The cable is assumed to have balanced characteristics with the 
parameters listed in Table 5-1. PSPICE was again used to create pseudo-observation data 
for various system configurations and modes of operation. Samples were recorded at a 
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rate of 50 kHz and stored using eight significant digits. The same MATLAB codes used 
in the two-conductor model evaluations are used again here.   
 
Table 5-1. Four-Conductor Example Parameters 
 
Name Value Name Value Name Value 
R
aa
 47.3 m? L
aa
 11.6 ?H C
ab
 1.21 nF 
R
bb
 47.3 m? L
bb
 11.6 ?H C
ac
 1.21 nF 
R
cc
 47.3 m? L
cc
 11.6 ?H C
bc
 1.21 nF 
R
nn
 52.0 m? L
ab
 1.97 ?H C
an
 4.34 nF 
  L
ac
 1.97 ?H C
bn
 4.34 nF 
  L
bc
 1.97 ?H C
cn
 4.34 nF 
 
 
 Per-unitization or normalization of the data is handled in exactly the same manner as 
outlined for the two-conductor models, except now it is necessary to account for potential 
use of three-phase quantities. Multi-conductor models such as (5.9) can be rewritten 
using line-to-line instead of line-to-neutral voltage measurements. However, no clear 
benefit is gained by using three-phase quantities in the derived models. As a result, all the 
voltage measurements here are assumed to be line?to-neutral, and the base relationships 
contained in Table 3-2 are directly applied. The bases were again selected to provide an 
acceptable scaling of the regressor values during the expected range of operation and are 
listed in Table 5-2.  
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Table 5-2. Test System Per-Unit Bases  
Base Units 
V
base
 200 (v) 
I
base
 20 (A) 
t
base
 2.653 (ms) 
S
base
 4,000 (VA)
R
base
 10 (?) 
L
base
 26.53 (mH)
C
base
 265.3 (?F) 
 
 
The test system is illustrated by Figure 5-3. The three-phase source is modeled by a 
set of balanced three-phase voltage sources each with an internal impedance of 3 ? 
connected in grounded wye. The large internal resistance was selected to insure a 
sufficient amount of the harmonic currents produced by the rectifier would translate into 
voltage harmonics. A three-phase diode bridge rectifier was selected as the load to ensure 
enough harmonic content was generated to achieve the necessary excitation conditions.  
 
 
Figure 5-3. Single Line Diagram of the Three-Phase Test 
System  
 
 
The harmonic currents produced by the rectifier during normal conditions can be 
approximated by dividing the fundamental rms current, 
1
I , by the harmonic number, h, as 
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shown in (5.24) where h = 5, 7, 11, etc. and the even and triplen harmonics are zero. The 
chosen 50 kHz sampling rate, however, has a Nyquist frequency of 25 kHz and any 
discernable harmonics above this frequency will cause aliasing in the sampled 
measurements. Given the small physical values to be estimated, any aliasing can result in 
significant bias in the estimations which must be avoided. For the 60 Hz system in Figure 
5-3, the first harmonic produced by the rectifier beyond the Nyquist is the 421
st
 harmonic 
(25.26 kHz) which is approximately 421
h
I . While the harmonics beyond the Nyquist 
are small in comparison to the fundamental, they must be small enough to not be 
detectable from the measurement noise. The quantization error, (3.59), could be used to 
determine whether the normally generated harmonics have a strong signal-to-noise ratio 
and would be expected to influence the measurements. However, this process cannot 
account for transients or other operating conditions which increase the harmonic 
magnitudes. Additionally, accurately estimating the small parameter values requires 
minimizing the measurement noise which increases the likelihood of detecting these 
higher frequencies. Therefore, when designing the monitoring device either the sampling 
rate must be set high enough to insure harmonics above the Nyquist frequency cannot be 
observed or anti-aliasing filters should be introduced to remove the higher frequency 
content. In this case, 2
nd
 order low pass filters with 10 kHz corner frequencies were 
introduced during simulation in PSPICE to limit aliasing.  
 
h
I
I
h
1
?  (5.24) 
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The parameter estimation techniques used are exactly the same as those applied for 
the two-conductor models. All the conclusions about the estimation techniques? 
parameter tracking abilities, convergence, and estimator windup apply to the multi-
conductor models. The main concern with the multi-conductor models then is the 
increased difficulties with achieving sufficient excitation.   
5.2.1. SERIES ELEMENT MODEL 
It is convenient to begin by examining the characteristics of a simple model such as 
(5.16). In this case, neither the simulations nor the model included the conductor?s shunt 
capacitances. As discussed in the previous section, excitation is limited to 2
nd
 order 
during balanced three-phase conditions regardless of the harmonic content. To achieve 
independence between the regressors, a 1 ? resistive fault is introduced at the load 
between the a-phase and neutral conductors. The voltage and current waveforms before 
and after the fault is introduced, at 250 ms, are given in Figure 5-4. The Fourier series 
rms voltages and currents before and after the fault are also provided in Table 5-3 
through Table 5-6.  
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Figure 5-4. Test System Voltage and Current Waveforms  
(a) Before and (b) After the Fault 
 
 
Table 5-3. Voltage Fourier Components for Balanced Conditions 
Harmonic
Fouri er 
Component
Phase (Deg)
Fourier 
Com ponent
P hase (Deg)
Fourier 
Component
Phase (Deg)
1 111.51 -1. 04 111.51 -121.10 111.51 119.00
5 6.29 -5.12 6.30 114.70 6.31 -125.10
7 3.13 -7.37 3.13 -127.30 3.13 112.70
11 1.97 168. 60 1.97 -71.48 1.97 48.68
13 1.40 166. 60 1.40 46.46 1.40 -73.41
17 0.77 -17.48 0.77 102.50 0.77 -137.40
19 0.61 -19. 25 0.61 -139.50 0.61 100.70
Phase A Phase B Phase C
 
 
Table 5-4. Current Fourier Components for Balanced Conditions 
Harmonic
Fouri er 
Component
Phase (Deg)
Fourier 
Com ponent
P hase (Deg)
Fourier 
Component
Phase (Deg)
1 9.81 -1.10 9.81 -121.10 9.81 118.90
5 2.07 174. 52 2.07 -65.50 2.07 54.50
7 1.03 172. 26 1.03 52.20 1.03 -67.70
11 0.65 -12.00 0.65 107.96 0.65 -132.04
13 0.46 -14. 20 0.46 -134.22 0.46 105.79
17 0.25 161. 54 0.25 -78.50 0.25 41.50
19 0.20 159. 54 0.20 39.50 0.20 -80.46
Phase A Phase B Phase C
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Table 5-5. Voltage Fourier Components for Unbalanced Conditions 
Harmonic
Fouri er 
Component
Phase (Deg)
Fourier 
Com ponent
P hase (Deg)
Fourier 
Component
Phase (Deg)
1 30.94 -1. 10 115.33 -125.00 115.33 123.00
5 1.04 -5.40 2.23 161.50 2.23 -171.50
7 0.77 172. 40 3.01 -64.94 3.02 50.67
11 0.37 -12. 00 0.79 175.70 0.79 162.10
13 0.23 -14. 02 0.48 166.60 0.48 167.50
17 0.11 161. 60 0.84 56.68 0.84 -91.17
19 0.17 -20. 38 0.40 -172.20 0.40 134.30
Phase A Phase B Phase C
 
 
Table 5-6. Current Fourier Components for Unbalanced Conditions 
Harmonic
Fouri er 
Component
Phase (Deg)
Fourier 
Com pone nt
P hase (Deg)
Fourier 
Compone nt
Phase (Deg)
1 35.72 -1. 10 9.16 -107.33 9.17 105.15
5 0.36 174. 36 0.72 -19.30 0.71 8.40
7 0.26 -8.00 0.98 113.83 0.98 -129.21
11 0.13 167.34 0.25 -5.30 0.25 -19.00
13 0.08 165. 38 0.16 -14.80 0.15 -13.60
17 0.04 -19. 20 0.27 -124.32 0.27 87.21
19 0.06 158. 52 0.13 6.60 0.13 -47.80
Phase A Phase B Phase C
 
 
 Using RLS with directional forgetting resulted in the parameter estimations given in 
Figure 5-5. Before the fault is applied the excitation is insufficient to result in 
convergence to a unique solution. Once imbalance is introduced, however, the excitation 
rises to sufficient levels for the estimates to converge to their actual values. Additionally, 
the margins of error for the estimates, shown in Figure 5-6, indicate a strong level of 
confidence for the estimates. It is interesting to note that the resistance, R
aa
, can be 
determined even before the imbalance is introduced. While the individual solutions for 
each inductance parameters cannot be determined during balanced conditions, their 
influence is still accounted for in the estimates. Analysis of the parameter estimates 
during this period confirms that estimates are approximately L
aa
-L
ab 
? L
aa
-L
ac  
? 9.64 ?H 
which is easily shown to be the equivalent positive-sequence inductance.  
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Figure 5-5. Multi-conductor Parameter Estimates  
(a) R
aa
 (b) R
nn
 (c) L
aa
 (d) L
ab
 (e) L
ac 
  
Figure 5-6. 95% Confidence Margins of Error  
(a)
 R
aa
 (b) R
nn
 (c) L
aa
 (d) L
ab
 (e) L
ac 
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To illustrate that improvements in the estimates are due to the introduced imbalance, 
the correlation matrices, before and after the fault, are depicted in Figure 5-7. These 
figures graphically illustrate the regressors? correlation coefficients as colors with the red 
and blue hues denoting positive and negative correlation, respectively. The axes of the 
figure denote the variables associated with each particular regressor. Before the fault, the 
inductance terms are strongly correlated, as seen in Figure 5-7(a), resulting in infinite 
solutions to the parameter estimates. In comparison, the correlation matrix after the fault 
in shown in Figure 5-7(b) and indicates little correlation between the regressors except 
for some negative correlation between the a-phase and the neutral. This correlation is 
somewhat expected given the nature of the applied fault. While perfectly balanced 
conditions may be unlikely, strong correlations between the regressors will still occur 
when the imbalance is small. This case is examined further in a later example.   
   
  
                               (a)                                                                    (b) 
Figure 5-7. A-Phase Correlation Matrices  
(a) Balanced and (b) Line to Ground Fault Conditions 
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As previously noted, models for both b and c phases can be written that are similar in 
form to (5.10) and can each be estimated using the same sampled data. To illustrate, b-
phase parameter estimates, using the same data as before, are plotted in Figure 5-8. The 
estimation of the parameters for the b-phase models using the same data set is important 
as it proves the disturbance does not have to occur in a modeled phase. As expected, the 
correlation between the b-phase and neutral current is not significant during the fault as 
illustrated by the covariance matrix displayed in Figure 5-9.  
 
 
Figure 5-8. Multi-conductor Parameter Estimates 
(a) R
bb
 (b) R
nn
 (c) L
bb
 (d) L
ab
 (e) L
bc
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Figure 5-9. B-Phase Correlation Matrix
 
 
 
The parameter tracking abilities of the algorithm are unchanged by the increased 
model complexity as shown in Figure 5-10. In this case, the fault results in a large step 
change in the neutral resistance, R
nn
. The estimates successfully track the parameter 
change, but the abrupt change also causes bias in the estimates. The estimated margins of 
error are also influenced by the abrupt change as indicated in Figure 5-11. The changing 
parameter estimates result in non-white content in the residual and prediction errors. 
Consequently, both parameter and error margin estimates are biased during this period. 
However, any non-white noise in the prediction error also increases the noise variance 
estimate and consequently the margins of error. While they are not an accurate measure 
of the confidence, the large margins of error are clear indicators of general inaccuracy in 
the estimates during this period. Once the estimates have converged to the new unique 
solution, the margins of error will again accurately reflect the level of confidence in the 
parameter estimates.  
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Figure 5-10. Multi-conductor Parameter Estimates  
(a) R
bb
 (b) R
nn
 (c) L
bb
 (d) L
ab
 (e) L
bc
 
 
 
Figure 5-11. 95% Confidence Margins of Error  
(a)
 R
aa
 (b) R
nn
 (c) L
aa
 (d) L
ab
 (e) L
ac 
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In the next example the excitation provided from a small single phase load is 
examined. Instead of the 1 ? fault, a 20 ? single phase load is introduced to the a-phase 
terminals. Additionally, the load is already in service at the start of the observations. 
Therefore, the estimates do not benefit from extra excitation induced by a switching 
transient. The resulting parameter estimates are shown in Figure 5-12. As with the line-
to-ground fault example, R
aa
 quickly converged. Yet, the level of independent excitation 
provided by the load is not as great as the faulted case, as shown by the correlation matrix 
in Figure 5-13. Consequently, the calculated estimations do not converge as quickly. The 
influence of multicollinearity is also seen in the margins of error, shown in Figure 5-14, 
which are an order of magnitude larger than those in Figure 5-6.  
 
 
Figure 5-12. Parameter Estimates using RLS/DF 
(a) R
cc
 (b) R
nn
 (c) L
cc
 (d) L
ac
 (e) L
bc
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Figure 5-13. Correlation Matrix for A-phase Estimations
 
 
 
 
 
Figure 5-14. 95% Margins of Error 
(a) R
cc
 (b) R
nn
 (c) L
cc
 (d) L
ac
 (e) L
bc
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  Even though the parameter estimates shown in Figure 5-12 are far from ideal, they 
are better than those provided by discounting the data at a fixed rate. The estimates in 
Figure 5-15, for example, generated using standard exponential discounting have a much 
larger variance than the estimates in Figure 5-12. The large variance of the estimates 
when using exponential discounting indicates that the relevant excitation is not observed 
in each sample set. If the small influence of the single phase load is discernable only in 
particular points in the waveform, the resulting excitation may indeed be intermittent in 
nature. Directional forgetting in this case clearly makes better use of the available 
information. 
 
 
Figure 5-15. Parameter Estimates using RLS 
(a) R
cc
 (b) R
nn
 (c) L
cc
 (d) L
ac
 (e) L
bc
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5.2.2. SHUNT ELEMENT MODEL 
Before returning to the complete four-conductor model of Figure 5-2, estimation of 
the capacitances via (5.11) is examined. Estimating capacitance in multiphase lines 
displays the same difficulties expressed earlier for the two-conductor models. Namely, 
accurate estimation of the relatively small capacitances is influenced by the accuracy of 
the measurements. In this example, the PSPICE model was updated to include the 
capacitances as well as the resistive and inductive values denoted in Table 5-2 and the 
test data was generated using the identical line-to-neutral fault scenario as before. The 
ensuing parameter estimates along with each estimated margins of error are documented 
in Figure 5-16. As expected, the estimates do not converge until the application of the 
fault. Even after the fault occurs, the margins of error do not indicate a strong degree of 
confidence in the estimates. In particular, the margins of error for C
ab
 and C
ac
 indicate 
little confidence in the estimates. Statistically, it cannot be concluded that these values 
are not indeed zero. In diagnostic terms, however, this could also be interpreted as 
negligible values. As before, improving the capacitance estimations requires either 
reducing the measurement noise or increasing ?. 
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Figure 5-16. Parameter Estimates using RLS (Upper) and 95% Confidence 
Margins of Error (Lower)  
C
aa
 (a & d) C
ab
 (b & e) and C
ac
 (c & f) 
 
 
5.2.3. FULL PARAMETER MODEL 
 As previously noted, estimation of the parameters using (5.10) requires a higher 
degree of excitation since the overall number of parameters is significantly higher. One of 
the more significant difficulties will be achieving linear independence between the 
multiple regressor terms. Evaluation of the full model is examined by looking at the same 
fault scenario used in the previous model evaluations. However, a change to the system 
model is necessary to satisfy linear independence between the voltage and current 
derivatives. Specifically, the 60 Hz source impedance was changed from 3 ? to a 
impedance of ?+= 377.02 jZ
s
. The source inductance was necessary to remove the 
strong linear relationship between the currents and voltages caused by the source 
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resistance. The resulting parameters estimates are shown in Figure 5-17 and the 
corresponding margins of error are shown in Figure 5-18. The results demonstrate many 
of the expected difficulties with the model including the fact that the RC and LC terms do 
not converge to acceptable values. Still, once the fault occurs, the resistance and 
inductance estimates converge to within acceptable ranges. The large margins of error in 
Figure 5-18 are an indication that many of the parameters estimated by the full model 
may be unnecessary. Therefore, the same parameter set is used to fit the model in (5.16). 
As shown in Figure 5-19, the estimates using this model show little signs of bias due to 
minimal influence of the capacitances.  
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Figure 5-17. Parameter Estimates using RLS/DF 
(a) R
aa
 (b) R
nn
 (c) L
aa
 (d) L
ab
 (e) L
ac
 (f) R
aa
C
aa
+R
nn
C
nn
 (g) -R
aa
C
ab
+R
nn
C
bn  
(h) -R
aa
C
ac
+R
nn
C
cn
 (i) L
aa
C
aa
-L
ab
C
ab
-L
ac
C
ac
 (j) L
ab
C
bb
-L
aa
C
ab
-L
ac
C
bc
  
(k) L
ac
C
cc
-L
aa
C
ac
-L
ab
C
bc
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Figure 5-18. 95% Confidence Margins of Error 
(a) R
aa
 (b) R
nn
 (c) L
aa
 (d) L
ab
 (e) L
ac
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C
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Figure 5-19. Parameter Estimates using RLS/DF  
(a) R
cc
 (b) R
nn
 (c) L
cc
 (d) L
ac
 (e) L
bc 
 
5.3.  SUMMARY  
As demonstrated, recursive least-squares with directional forgetting is applicable to 
multiple conductor models as well as two-conductor models. However, the increased 
complexity of the multiple conductor models does change the conditions under which 
sufficient excitation is achieved. Specifically, accurate estimation of the physical 
parameters describing the interactions between the cables requires unbalanced conditions, 
current in the neutral conductor, linear dependence between the voltages and currents, as 
well as sufficient dynamic content. Once these conditions were satisfied, directional 
forgetting was shown to provide good parameter estimates and tracking capabilities. 
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Directional forgetting was also shown to provide good estimates when the intermittency 
is increased by strong correlations between the measurements, as evidenced in Figure 
4-12. The proposed methods show good results using time-domain measurements and 
models of both two and multiple conductor models. Estimation of network parameter 
using frequency-domain measurements and models is examined in Chapter 6.  
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CHAPTER 6  
FREQUENCY-DOMAIN MODELS   
The estimation and tracking techniques utilized in the time domain models are 
equally applicable to frequency-domain models. In fact, sufficient excitation can be more 
difficult to achieve in the steady-state frequency domain as the excitation cannot be 
increased through additional harmonic content. Consequently, excitation can only occur 
through changes in the phasor values over time. While the nature of the excitation is 
different between time-domain and frequency domain, the requirements of the estimation 
methods are unchanged. In this chapter, estimation of network characteristics using 
frequency-domain measurements is examined. While the line parameters can be 
indentified using frequency-domain measurements, estimation and tracking of the 
Thevenin equivalent provides the most benefit by allowing monitoring of network 
characteristics even with limited measurements. 
6.1.  LINE MODELS 
An equivalent frequency domain model can be derived for all of the time-domain 
models presented in Chapters 4 and 5. The two-conductor MISO model equivalent is 
provided in (6.1) - (6.4). There are still four unknown parameters, the real and imaginary 
 
129
parts of each unknown, which require a minimum 4
th
 order excitation. However, as 
previously stated, the excitation can no longer be increased through additional harmonic 
content. Sufficient excitation must then arise from changes in the steady-state 
measurements over time. Recognizing that a particular operating point essentially 
provides two equations, the minimum excitation will be satisfied when at least two 
different operating points are observed. Thus, each different operating point increases the 
order of excitation by two. Additional operating points will increase the order of 
excitation and also improve the estimates by accounting for measurement errors. Given 
that frequency-domain models are solely reliant upon changes in the time-domain to 
supply the necessary excitation, it is more convenient to describe the excitation 
requirements by the number of different operating points required.  
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In general, estimation of line models using frequency domain data is well understood 
with recent literature taking advantage of new phasor synchronization techniques [52, 
53]. The method proposed in [53] is especially interesting as it uses online phasor 
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measurements to determine both the positive and zero sequence impedances. 
Furthermore, the excitation requirements mirror those determined for the multi-conductor 
models. Specifically, synchronized phasor measurements obtained during ground faults 
were needed to estimate the zero sequence impedance and mutual coupling terms.  
Estimation of the models in [53] was performed using least-squares, (3.5), and a 
minimal number of measurements. Tracking capabilities could be added by using RLS 
with some form of discounting as the estimation method. Recalling that parameter drift 
(estimator windup) is a function of solution method and not the data type, retention of 
sufficiently exciting information is still an important issue. This is especially true for line 
models at frequencies other than the fundamental where the excitation is dependent on 
factors such as harmonic injections and system configuration. As repeated measurement 
of the same operating conditions does not provide additional information at any 
frequency, intermittency can occur even at the fundamental frequency. In general, 
directional forgetting RLS is beneficial to any online automated application where the 
excitation is potentially intermittent.  
6.2.  THEVENIN EQUIVALENT  
Measurements at both terminals of a branch in the network are not always possible; 
however, some form of evaluating the network health is still desirable. In these cases, 
tracking the Thevenin equivalent provides potentially useful information about the 
network or device. Before examining steady-state approaches using frequency domain 
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measurements it is enlightening to first examine estimation of the Thevenin equivalent in 
the time domain. 
6.2.1. TIME-DOMAIN  
Time-domain information can be used to estimate the Thevenin equivalent at each 
frequency, but the estimates are interdependent on the selected impedance model. For 
example, assume that the time-domain model in (6.5) is used to model the fundamental 
frequency Thevenin equivalent using time-domain voltage and current measurements (v 
and i). In this case, it is assumed that the R and L components are adequate to represent 
the Thevenin impedances over all observed frequencies. Additionally, a and b parameters 
are introduced to estimate the real and imaginary parts of the open-circuit voltage through 
the inclusion of the cos(?t) and sin(?t) regressors where ? is the radian frequency for the 
modeled voltage source. In this formulation the reference angle is defined by cos(?t) and 
the phase angle of the terminal voltage can be found by estimating the terminal voltage 
phasor using (6.6). 
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 When a constant fundamental frequency current and voltage are observed, the 
excitation is insufficient to provide a converged solution. If the excitation is increased by 
a transient or harmonic, the Thevenin equivalent can be estimated. However, if the 
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Thevenin impedance model inaccurately represents the impedance of the additional 
harmonic content, the voltage source estimate will be biased. Therefore, selection of an 
impedance model that is accurate over all the observed frequencies is critical.  
Time-domain estimation of the network impedance model has been examined before 
using high order transfer functions [87, 88]. In this case, the Thevenin impedances are 
represented by an n
th
 order discrete transfer function shown in (6.7). Modeling the 
Thevenin impedances in this manner not only increases the minimum excitation by 2n, 
but also removes the direct correlation between estimates and known physical quantities. 
Nonetheless, impedance for each frequency can easily be extrapolated from the transfer 
function estimate. Furthermore, each harmonic source in the modeled portion of the 
network must be represented by an additional open-circuit voltage model. Otherwise, the 
unmodeled information will introduce bias in the estimates.  
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It should be noted that the application of directional forgetting could allow for better 
estimation and tracking of the transfer impedance using high order transfer functions. As 
the transfer function?s order increases so does the number of parameters; the excitation 
requirements for these models will require significant harmonic content to estimate each 
parameter. Recalling that directional forgetting only replaces information as newer 
information becomes available, the transfer function poles and zeros would not drift 
during periods of insufficient excitation. This allows for an accurate estimation of the 
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transfer impedance even when the chosen model is over-parameterized. Thus, higher 
order models could be used to improve the results in [87]. However, it is unclear how the 
past information might bias the general shape of the transfer impedance when network 
changes occur and an incomplete harmonic spectrum is available.  
Unmodeled frequencies could be filtered from the observations to eliminate the 
influence of the transfer impedance model. For instance, all but the fundamental 
frequency could theoretically be removed from the data used to fit the model in (6.5). In 
this case, sufficient excitation is only achieved by changes in the fundamental frequency 
content. Note that there are four unknown parameters but two are associated with 
regressors representing steady-state values. At least one outside change in the current 
regressor terms is required for sufficient excitation. This formulation is analogous to a 
frequency domain approach. 
6.2.2. FREQUENCY-DOMAIN 
While estimation of the Thevenin equivalent is possible in the time domain, there are 
several reasons why it may be an unattractive approach: 
? Difficulties in defining an accurate model,  
? Design and implementation of multiple filters, 
? Availability of time-domain measurements, and 
? Measurements must be sampled at a fixed rate 
An alternative is to use steady-state phasor measurements to independently estimate the 
Thevenin equivalent at each frequency. In this approach, methods for providing the 
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phasor quantities act as the filter and the Thevenin impedance models are independent. 
Therefore, a simple model can be used for the Thevenin impedance at each frequency. 
Additionally, estimating the parameters in the frequency domain eliminates the need to 
update the parameter estimates based on a fixed sampling rate.  
Assuming phasor measurements are available, the Thevenin equivalent shown in 
Figure 6-1 can be fit to the measured phasor for each harmonic h. The complex-space 
regression model then takes the form given in (6.8) - (6.11). Estimation of the Thevenin 
equivalent using recursive least-squares has been recently examined in [89] with 
favorable results. However, the proposed recursive identification method does not 
implement any discounting of past data; and therefore, is not capable of tracking of the 
parameter changes. Nevertheless, the recursive least-squares solution methods using the 
various discounting methods proposed earlier are still valid in complex space; that is 
?y ?, ??
~
?, and ?? ?.  
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Figure 6-1. Thevenin Equivalent Circuit for h
th
 Order Harmonic Frequency 
 
 
 
 
135
 ()k(k)(k)y
T
??
~
~
=  (6.8) 
 ( )kV(k)y
h
=  (6.9) 
 ()[ ]
hh
T
ckIk =)(
~
?  (6.10) 
 ()
( )
()
?
?
?
?
?
?
=
kV
kZ
k
o,h
h
?
~
 (6.11) 
When an abrupt change occurs in the modeled network, the past information will 
bias the estimates until this information is replaced. This was not as significant an issue 
when examining the time-domain models because the intermittent information was 
expected to come in adequately sampled bursts. In contrast, frequency-domain 
observations only provide a single data point for each observed change in the loading. 
Recognizing an abrupt change in the model network will change all of the Thevenin 
equivalent parameters, covariance resetting is proposed in conjunction with directional 
forgetting. By resetting the covariance matrix to an initial starting value, all of the past 
information is thrown out and a new solution is quickly determined using subsequent 
observations.  
The proposed frequency-domain estimation procedure is shown in Figure 6-2. The 
methods in [52, 53] rely on phasor measurement units (PMUs) to provide synchronized 
phasor measurements of the fundamental frequency content. Given the small distance 
associated with vehicular networks, synchronization of the measurements is not a 
significant issue. However, any delays associated with transferring the measurements 
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could, for example, be accounted for by introducing delays in the model. Once the 
discrete sampled measurements are synchronized, multiple options exist for converting 
the measurements into the frequency domain including the fast Fourier transform, 
Kalman filtering, and least-squares spectral analysis. The fast Fourier transform was used 
in the following the model evaluations.  
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Figure 6-2. Frequency-Domain Thevenin Equivalent Estimation Method 
 
 
6.3.  PARAMETER ESTIMATE ACCURACY 
As with the time-domain models it is desirable to statistically evaluate the accuracy 
of the steady-state model parameter estimates. Interpretation of the complex covariance 
matrix is therefore needed. The complex covariance matrix of two random variables U  
and V  is defined in terms of a covariance matrix of its real and imaginary parts as shown 
in (6.12) and (6.13). 
 
137
 () ()( ) ( )()( )
IRRIIIRR
VUVUjVUVUV,U ,cov,cov,cov,covcov +++=  (6.12) 
 
()
( ) ( ) ( )()
()() ()()
() () ( ) ( )
()() ()()
?
?
?
?
?
?
??
??
+
?
?
?
?
?
?
++
++
=
RIIRRI
IRRIRI
IRIIRR
IIRRIR
VVVUVU
VUVUUU
j
VVVUVU
VUVUUU
V,U
varvar,cov,cov
,cov,covvarvar
*
varvar,cov,cov
,cov,covvarvar
cov
 (6.13) 
 
The least-squares matrices P and R are positive definite, so the diagonal terms of the 
covariance matrix are always positive real values. If (6.13) is also positive definite, the 
variance of the real and imaginary parts of the complex random variables U  and V  must 
be equal. The covariance matrix shown in (6.13) also demonstrates that the real diagonal 
entries of P are indicative of the variance of only the complex random variable associated 
with each regressor. Additionally, it agrees with a common definition of the complex 
random variable variance given in (6.14). Therefore, the real numbers contained in the 
diagonal entries of P directly indicate the variance of the phasor magnitude as defined by 
(6.15).  
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The prediction error is also a complex random variable. The residual variance can 
still be estimated using (3.52) but the variance of the real and imaginary portions of the 
prediction error must be determined separately as shown in (6.16) and (6.17). The 
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variance needed in (6.15) can then be found as the sum of these two variances using the 
relationship in (6.14).  
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6.4.  MODEL EVALUATIONS 
The test system used to evaluate the Thevenin equivalent estimations is shown in 
Figure 6-3. The general goal of the following example is to determine and track the 
Thevenin equivalent looking into the transformer at bus 3. A general description of the 
loads at bus 3 is provided in the figure. However, a series of step-changes will be 
imposed in both the impedance and rectifier loads in order to generate the needed 
excitation. Due to the stiffness of the source, step changes to the constant impedance load 
were necessary to provide sufficient changes to the fundamental observations.  
PSPICE was again used to generate the discrete time data under different system 
configurations and successive loading conditions. The discrete measurements were 
recorded with a sampling frequency of 10240 Hz followed by the application of the fast 
Fourier transform (FFT) to determine the Fourier components. The window size of the 
FFT was selected as 1024 samples resulting in phasor measurements updates every 100 
ms. As the frequency-domain models are independent of the time, the frequency of the 
updates is immaterial. However, the changes in the test system were selected to ensure at 
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least ten sample points of the same phasors were generated for each change in the 
loading. The equivalent memory size was also decreased, by fixing ? = 0.9, to 
sufficiently test the directional forgetting algorithm.  
 
 
 
Figure 6-3. Single-Phase Test Network 
 
 
 Evaluation of parameter tracking ability is tested by alteration of the Thevenin 
equivalent via the switched capacitor located at bus 1. The capacitor is switched into 
service during the simulation corresponding to reactive compensation at the substation. A 
frequency scan of the transfer impedance looking into the network with and without the 
capacitor in service is shown in Figure 6-4. While the diode rectifier generates numerous 
odd harmonics, it is not necessary to fit a model for every harmonic. Instead, only those 
harmonic frequencies listed in Table 6-1, along with their relevant Thevenin equivalent 
values, are evaluated.  
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Figure 6-4. Network Transfer Impedances Seen at Bus 3 
 
 
Table 6-1. Thevenin Equivalent Circuit Data 
Capacitor No Cap 
Frequency 
(Hz) 
|Z| (m?) ? (?)  
Vo (V) 
|Z| (m?) ? (?)  
Vo (V) 
60 17.95 82.9 ?? 6.20.122 18.09 83.1 ?? 0.28.116
300 78.05 46.7 0 88.18 85.9 0 
420 85.05 85.8 0 122.20 85.3 0 
660 153.90 89.3 0 187.20 84.3 0 
 
 
 During the simulation six network events are enacted. A brief description of the 
network events is provided in Table 6-2 along with their influence on the measured 
fundamental components in Figure 6-5. The phasor components plotted in Figure 6-5 are 
provided to illustrate the nature of the exact information provided to the recursive least-
square solution method. This allows for direct correlation between changes in the 
excitation and changes to the parameter estimates.  Given their usefulness, similar plots 
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will be provided for each harmonic model evaluated. The terminal voltage, V , is used as 
the reference for each harmonic and therefore V
I
 is zero at each instant and not plotted. 
 
Table 6-2. Test System Events 
Event # Description 
1 Switching in of Load 2 
2 Three successive increases to Load 3 
3 Step increase in Load 2 
4 Switching in of capacitor at Bus 1 
5 Removal of Load 2 
6 Three successive decreases to Load 3 
 
 
Figure 6-5. Input-Output Phasor Components at 60 Hz 
 
 
 Estimation of the complex space model (6.8)-(6.11) was performed using RLS with 
directional forgetting and covariance resetting. Resetting the covariance matrix was 
selected to occur whenever the prediction error was larger than 20%. Tracking small 
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variations in the Thevenin equivalent was provided for by selecting a value for ? of 0.99. 
The resulting parameter estimates are illustrated in Figure 6-6.  
As expected, the estimates do not start to show signs of convergence until the second 
operating point. Still, the inaccuracy resulting from the flat start and the initial 
insufficient conditions results in a large prediction error causing the resetting of the 
covariance matrix as indicated in Figure 6-7. The next event to occur consists of step 
changes in the rectifier load which increases the real power demand of the rectifier. 
However, the resetting of the covariance matrix results in little confidence in the current 
parameter estimates at this point. Therefore, when changes occur only in I
R
 but not in I
I
, 
as shown in
 
Figure 6-5, the past excitation is insufficient to provide a good estimate of the 
Thevenin equivalent. Effectively, the regressor I
I
 is constant over all the retained 
observations and therefore linearly dependent with the constant voltage source regressors. 
Consequently, the Thevenin impedance is interpreted as being entirely real as indicated 
by the angle of the estimated impedance. This suggests that this method cannot be 
applied to estimate the Thevenin equivalent seen by a purely real or inductive load. Still 
when the inductive load increases during event #3, the change is observed in both phasor 
components. As a result, the excitation contained in all the regressors is sufficient for the 
solution to converge to reasonable estimates.  
The estimates are accurate until the Thevenin equivalent is altered by the capacitor 
switching at bus 1. The abrupt change in the network model results in a large prediction 
error which again triggers the resetting of the covariance matrix. By discounting all of the 
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previous information, the process is started anew and sufficient excitation in the observed 
phasors must again be obtained.  
 
 
Figure 6-6. 60 Hz Thevenin Equivalent Parameter Estimates 
 
 
 
Figure 6-7. Covariance Matrix Diagonals 
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 The same test system and procedures were applied to the 5
th
 harmonic (300Hz) 
measurements shown in Figure 6-8. Examination of the phasor components at this 
frequency indicates that the changes in load 2 have very little influence on the 5
th
 
harmonic content. Hence, rectifier load changes are the sole source of excitation for the 
Thevenin equivalent model at this frequency. Nonetheless, the Thevenin equivalent 
estimations shown in Figure 6-9 demonstrate that the method provides good estimation 
and tracking properties in response to the load changes. Note that estimations accurately 
reflect the lack of a voltage source at this frequency in the modeled network. Similar 
examples can be generated for any of the harmonics observed in the network. 
 
 
Figure 6-8. Input-Output Phasor Components at 300 Hz  
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Figure 6-9. 300 Hz Thevenin Equivalent Parameter Estimates 
 
6.5.  SUMMARY 
Continuous online estimation of the Thevenin equivalent provides a powerful tool 
from which to characterize the network and system components. This is especially true 
when only terminal measurements are available for some devices. The proposed 
frequency-domain methods have been shown to provide good parameter estimation and 
tracking abilities under the intermittent conditions. The parameter estimation methods 
given in Chapter 3 were also shown to require minimal changes when applied to complex 
numbers. Depending of the available measurements, the frequency-domain and time-
domain parameter estimation techniques can provide sufficiently accurate estimates 
needed to monitor the health of not only individual devices but the overall network health 
as well. 
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CHAPTER 7  
CONCLUSIONS  
Parameter estimation techniques suitable to online estimation and tracking of 
network parameters under the assumed monitoring procedures have been presented. As 
the excitation is uncontrolled but must be sufficient to determine the characteristics of 
interest, the presented recursive least-squares methods were examined under the 
assumption that the excitation is intermittently spaced over time. These techniques have 
shown good estimation and tracking properties under the assumed conditions and will 
serve as the foundation for subsequent development of online model-based condition 
monitors. As the nature of the intermittency is also intrinsically linked to the chosen 
model, the techniques were evaluated and shown to be effective for multiple models in 
both the time and frequency domains. 
7.1.  SUMMARY 
The recursive least-squares techniques were presented and examined in detail in 
Chapter 3. In order to follow time-varying parameters, the estimation method must 
discount past data in favor of more recently sampled information. The recursive least-
squares method augmented with directional forgetting was proposed to provide better 
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retention of the intermittent information while still providing tracking capabilities. 
Variable directional forgetting and covariance resetting were also introduced to increase 
tracking capabilities of the method when large abrupt parameter changes occur.   
As sufficient excitation cannot be guaranteed by the monitoring method, statistical 
measures in the form of confidence intervals, multicollinearity tests, and residual analysis 
were introduced to gauge the accuracy of the estimates. Additionally, the online statistical 
measures were designed to require minimal additional computation effort. The accuracy 
of the estimation is also intrinsically tied to the accuracy of the sample data. Design 
criteria for the filtering and the A/D conversion process governing the accuracy of the 
estimation algorithms were also documented.  
Identifiability of the modeled parameters is not only determined by the solution 
method and the observed sample measurements but by the model as well. The 
identifiability requirements of two-conductor lines were examined in Chapter 4. Standard 
models representing different assumptions about the line and available measurements 
were developed in forms allowing for direct and accurate approximation of the desired 
physics-based parameters. The proposed identification algorithms and models were 
evaluated through MATLAB calculations using test data generated in PSPICE. The 
algorithms were shown to be effective in estimating and tracking the physics-based 
parameters even under intermittent conditions.  
The ability to estimate and track physics-based parameters of multiple conductor 
network elements was evaluated in Chapter 5. It was shown that the interaction between 
the multiple conductors could result in strong multicollinearity. The additional excitation 
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criteria required to overcome these linear dependencies was also identified and 
documented. The parameter estimation algorithms were shown to provide accurate 
estimation and tracking characteristics for the developed multi-conductor models. In 
addition, directional forgetting was shown to provide better estimates than traditional 
discounting methods when strong multicollinearity existed between the regressors. 
The parameter estimation algorithms were are also applicable to frequency-domain 
models as demonstrated in Chapter 6. As excitation in the frequency-domain is dependent 
upon external changes to the system, intermittency will arise whenever these changes do 
not occur frequently with respect to the sampling rate. It was shown that the proposed 
methods again provided the desired characteristics by estimating and tracking Thevenin 
equivalent parameters using steady-state phasor measurements. 
7.2.  FUTURE WORK 
The parameter estimation and statistical techniques presented here represent the 
initial investigations into a model-based monitoring method. The next steps will be to 
develop and identify performance metrics from which to base the diagnoses and 
prognoses. These performance metrics can be developed by integrating the physical 
models with stochastic modeling techniques [5]. Incorporation of the model-based 
techniques will also be necessary to provide a complete health monitoring device. 
Additionally, future work could examine extending the developed techniques to nonlinear 
devices.  
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Another area of consideration is applying the benefits of directional forgetting to 
applications where more accurate models are needed. For instance, errors in the network 
model of power system state-estimators are known to influence the state estimations, as 
examined in [90]. A real-time recursive parameter estimation technique to improve the 
network estimates was proposed in [91]. This method used Kalman filters to estimate and 
track changes in the network impedances over time. Future work could investigate 
whether recursive least-squares with directional forgetting provides a better alternative 
than Kalman filtering. 
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