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Advanced rotor systems today consist of a lightweight rotor supported by radial active

magnetic bearings (AMB). These systems are widely used in flywheel applications and in

other fields where high rotational speeds are essential. Flywheels are most often made of

composite materials to ensure low weight and sufficient structural strength. It has been

shown in previous works that composite materials have high energy dissipation character-

istics, mainly due to internal damping. In applications where the rotor speed is subcritical,

this property is of low concern, whereas at supercritical speeds the effect of internal damp-

ing should not be ignored due to instability effects described in detail later. Therefore,

it is essential that one must have a detailed understanding of the sources and effects of

internal damping in these structures. This work addresses the application of Adaptive Dis-

turbance Rejection (ADR) control method to deal with the rotordynamic instability caused

by internal damping and synchronous vibrations caused by mass imbalance in rotor systems

operating at supercritical speeds. The three modeled systems are 1) a simple Jeffcott-rotor,

2) a rigid shaft with flexible hub and 3) a slim, flexible shaft. A detailed description of

v



the problems and the strategies for addressing them are discussed. A fixed-gain controller

was also developed for each model to better compare the results to the ones from the adap-

tive controllers. Simulation modeling and analysis results are presented and discussed to

illustrate the method and demonstrate its effectiveness.
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Chapter 1

Introduction

1.1 Background

High-speed machinery is used in a wide variety of applications, ranging from tur-

bomachines in power generation settings to industrial tools. Uncontrolled and undesired

vibrations in these systems can lead to catastrophic failures meaning extra costs due to

downtime and repair. Of particular interest to this work are the rotor systems engineered

using composite materials. Composites are often used in applications where high strength

and low weight must be combined in order to reach a certain engineering goal. Composite

flywheels represent the common area shared by high-speed machines and composite materi-

als. Advantages of composites also bring certain other properties which are of low concern

in other applications using composite structures but pose major questions in high-speed

applications. One of these properties is internal (material) damping. Internal damping in

composites stems from several sources, the main one being the interaction between the fibers

and matrix. While in subcritical speeds the internal damping helps reduce the vibrations,

in supercritical speed it causes rotordynamic instability, i.e. a subsynchronous vibration

which grows unbounded over time. Since this instability can occur in an otherwise perfectly

balanced rotor, it is difficult to design a static control law to suppress it. Instead, some sort

of adaptive method has to be considered which would help stabilize the system.
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1.2 Motivation for research

Rotordynamic instability due to internal damping is a more and more pressing prob-

lem in high-speed applications when combined with shafts made of composite materials.

With traditional (metallic) materials internal damping is of low concern but as engineering

solutions move toward stronger and lighter materials, composites represent a whole new

area in rotordynamics due to their unique characteristics. This research aims to show how

Adaptive Disturbance Rejection method can suppress the rotordynamic instability as well

as the synchronous vibrations resulting from static mass imbalance.

1.3 Organization of Dissertation

The research goal is to study and show the effectiveness of Adaptive Disturbance Re-

jection for reducing of rotordynamic instability as well as its ability to suppress synchronous

vibrations resulting from mass imbalance. Specifically, the work includes:

• Development of mathematical models

• Development of simulation models

• Simulation results and discussion

The dissertation is divided into seven major parts; Chapter 1 introduces the reader to

the argument which the research is based as well as describes the motivation for present

research. Chapter 2 gives details about the source, effect and nature of internal damping

in general as well as how it applies specifically to this work. Chapter 3 describes the active

magnetic bearings used in this work and includes background on Active Magnetic Bearings.
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Chapter 4 introduces the adaptive control method used in this work as well as contains

detailed development steps on how the controllers were constructed. Chapter 5 shows the

development of the three simulation models in great detail; the Jeffcott-rotor model with

internal damping, the rigid rotor model with a flexible hub and the slim, flexible shaft

model. Chapter 6 discusses the results and findings for each simulated model considered.

Chapter 7 concludes the dissertation by giving an overview of the results, findings and the

conclusions drawn.
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Chapter 2

Internal Damping

Damping is present in almost every engineering system in some form. It can be classi-

fied into three major groups; Coulomb, viscous, or hysteretic damping, depending on vari-

ous sources. Each describes different method of dissipation of vibration energy. Coulomb

damping is experienced as kinetic friction between two dry surfaces. Hysteretic damping

is caused by internal friction or hysteresis during deformation of solids. Viscous damping,

the most common form of damping, originates from fluid dynamics associated with flow

although it is widely used to describe damping which is proportional to velocity. In general,

having damping present in a system is an advantage as it lowers the vibration amplitude.

On the other hand, in some scenarios damping is a disadvantage, such as damping forces

in moving parts or frictional forces between moving parts which can generate self-excited

vibrations. Consider a simple mass-damper-spring system with no external excitation as

Figure 2.1: Simple mass-damper-spring system

shown on Figure 2.1, with the effects of gravity ignored. The equation of motion is:

mẍ+ cẋ+ kx = 0 (2.1)
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The system response from an arbitrary initial position x0 is described by Equation 2.2:

x(t) = x0e
−ζωnt cos (ωdt+ α) (2.2)

where ζ is the damping ratio, expressed as ζ = c
cc

where c is the actual damping in the

system and cc is the critical damping coefficient, defined as cc = 2
√
km for the system

described by Equation 2.1. The undamped and damped natural frequencies are ωn and ωd,

respectively. Expressing them with the help of k, m and ζ (Equation 2.3):

ωn =

√

k

m
ωd = ωn

√

1 − ζ2 (2.3)

As Equation 2.2 shows, the response of the system from an initial position is of decaying

amplitude, the rate of decay is governed by the damping ratio. In this scenario the presence

of damping is an advantage as it helps drive the response to zero over some time t. As it is

explained later, internal damping has the opposite effect in structures and would result in

rotordynamic instability i.e. the system response would grow infinitely large over time (in

real engineering systems this would equal to catastrophic failure).

There is a vast body of research on vibration damping, as well as on material damping.

The major works include Linacre’s discussion of material damping in steels [43, 44], the

published results on the investigation of the nature and characteristics of vibration damping

on some idealized models [42, 12] from Lazan and Crandall. Lazan’s work also contains a

detailed list of models for damping characterization as well as levels of damping for most

common materials along with the nature of testing. Sources on the most recent discussion

on the rotordynamic effects of internal damping include Wettergren’s work which provides a
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good starting point and discussion on the subject [75]. Other valuable sources also include

Crane’s paper [13] on damping in composite materials, Genin and Maybee’s work on external

and internal damping [21] and Gabrys’ overview on composite materials testing and design

[21]. The ASME handbook [16] and Chandra’s work also a good resource on damping in

composites [9].

Internal damping and material damping, in general are quite complex phenomena and

their properties are difficult to describe. As it has been pointed out in prior research [75],

internal damping and material damping, represents a pressing problem in high-speed appli-

cations employing composite materials. It is well known that internal damping in rotating

assemblies may lead to unstable behavior. The sources of internal damping in composites

can be due to several sources, which include but not limited to thermoelastic damping due

to heat flow [78], friction generated between the matrix and fiber, energy dissipation at

cracks and delaminations [22], as well as non-linear damping at large amplitude vibrations

[1]. The basic instability driver is the tangential follower force that results from the internal

damping. This results in a cross-coupling that produces a vibration mode that becomes

less stable with increasing rotor speed and will result in unstable behavior for super-critical

operation.

There has been considerable work in this area that is well-documented in the literature,

particularly with regard to internal friction arising from micro-slip at shrink-fit interconnec-

tions. The earliest published discussion on the topic was by Newkirk [57], who investigated

the failure of compressors and observed violent whirling at speeds above the first critical.

Kimball identified the source of this instability as being internal friction [38]. Gunter devel-

oped a linear rotordynamic model in which internal friction was modeled as a cross-coupled
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force. He was able to explain the instability behavior using this model as well as provide

insights into how external damping and support (foundation) flexibility can be used to sta-

bilize such systems [25]. Black investigated a variety of internal friction models (viscous,

Coulomb and hysteretic) for internal friction and differentiated between the various models

with regard to their ability to accurately predict the onset of instability [6]. Lund also inves-

tigated internal friction models, specifically due to micro-slip at axial splines and shrink fit

joints [47]. More recently, Jafri conducted further investigations into internal friction effects

in built-up rotors [33]. He demonstrated that the cross-coupled stiffness model often used

for such systems is incorrect and that the correct model uses cross-coupled internal mo-

ments instead. Additionally, Childs pointed out that for many traditional applications the

practical value of the linear (viscous damping) model for internal friction is limited because

of (1) the dominance of friction from shrink-fit rubbing for internal damping, as compared

to material hysteresis and (2) the practical success of minimizing shrink-fit rubbing [11].

However, the system that is considered in this work is not a traditional built-up ro-

tor. Rather, one of the models in this investigation is specifically a flywheel system with

a flexible composite hub serving as the interface between the rim and shaft. Baseline ex-

periments conducted by the authors using a simple rotor with a flexible hub/rim interface

have demonstrated that the primary unstable vibration mode is a relative displacement in

which the hub material is stretched [54]. The primary source of internal dissipation for this

system comes from the damping and flexibility of this composite interface between the rotor

shaft and the flywheel unit.
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If the damping is considered viscous, the basic governing equations are expressed in

Equations 2.4 and 2.5:

mẍ+ cẋ+ kx− cΩy = 0 (2.4)

mÿ + cẏ + ky + cΩx = 0 (2.5)

The internal damping within composite rotors has been estimated to be from ten to a hun-

dred times greater than that within a shaft built from conventional materials [75]. Energy

dissipating behavior of composite materials can be caused by frictional damping in the ma-

trix and fiber or by hysteretic damping at the fiber-matrix interface. For polymer matrix

composites (PMC) with ceramic fibers, the damping capacity of the matrix is expected to

be much higher than that of fibers. The damping capacity is a function of fiber volume frac-

tion, fiber orientation and lay-up, load frequency, amplitude and temperature [78]. Thus, in

general the true functional form of composite material damping can be quite complex. Most

investigators content themselves with identifying an equivalent viscous damping that is used

for transient and steady-state response analyses. A detailed characterization is certainly

beyond the scope of the present investigation. Rather, the primary concern is evaluating

the effectiveness of an adaptive control method for stabilizing rotor systems with internal

damping. So, for simplicity in this investigation, a linear (equivalent viscous) model for the

internal damping is used in the models developed in Sections 6.1 to 6.3.
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Chapter 3

Active Magnetic Bearings

To make high rotational speeds possible, the rotor is often supported by active magnetic

bearings. These bearings provide contactless and maintenance-free support of the rotor, al-

though they require active control for stable levitation. Active magnetic bearings (AMB)

have gone through remarkable development over the past 40 years. These electro-mechanical

devices replace conventional and oil-film bearings and provide non-contact support of the

rotor. These devices are most often used in high-speed applications [64] (such as turbo-

machines, high-speed electric motors, gas turbines, machine tools) and in situations where

the unique non-contact, lubrication-free nature of these devices can be utilized in hostile

environments. Due to necessary control, magnetic bearings also provide controllable bear-

ing parameters such as stiffness and damping and are successfully used in several other

rotordynamic fields for balancing and vibration suppression.

First report on magnetic levitation dates back from 1842, when Earnshaw performed

experiments [15] and has shown that magnetic levitation is inherently unstable. The first

practical implementation was performed by Beams in 1937 [5]. Later research in the field

of the magnetic bearing control and active magnetic bearings in general, has gained more

momentum in the second half of the 20th century. The first analog controllers were soon

replaced with digital ones as well as more and more sophisticated control methods have

been presented to tackle various imbalance, vibration and rotordynamic stability problems.

There have been several successful attempts to make these bearings simpler, cheaper to

manufacture and maintain by eliminating the need for position sensors; there were several
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papers published on the self-sensing AMB [49, 73]. As the geometrical, electromechanical

and magnetic properties of AMBs in general are very well known, the focus of research has

turned towards control methods to address several pressing rotordynamic problems. Use of

magnetic bearings to suppress rotor vibrations was first published by Humphris [30] using

analog controllers. Later, Allaire [2] has developed analog and digital controllers for the

same. Rotor vibration suppression using active magnetic bearings was also discussed in

[63, 59]. Nonami et al. [58] have compared the use of electromechanical actuators vs. active

magnetic bearings. In Knospe’s work [40], the use of magnetic bearing control robustness

to address rotor vibrations was investigated.

Most of the earlier works on rotor vibration suppression were geared towards fixed-

gain methods although later gain scheduling was also considered. Application of modern

control methods were also examined on magnetic bearings, such as fuzzy logic control [31],

vibration suppression using fuzzy sets [69], robust control, and nonlinear control. Reinig

and Desrochers have used a method called Adaptive Feedforward Compensation (AFC) to

estimate the disturbance force and use that information to drive the magnetic bearings

accordingly [61]. Lum also describes a similar method called adaptive autocentering [46].

Knospe have used different disturbance rejection methods [39].

Thanks to the advances in control theory and magnetic bearing technology, active

magnetic bearing-supported rotors have become successful candidates for adaptive control

methods for disturbance rejection. In previous works it was assumed that vibrations are

caused solely due to mass imbalance. This work however, also deals with the associated

internal damping of the shaft material which can result in rotordynamic instability at high

speeds.
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Operating principle and modeling

The levitated rotor is generally supported by four, symmetrically placed electromag-

nets. The electromagnetic levitation is achieved by using the attractive force exerted from

the electromagnets. The position of the levitated rotor is controlled by continuously adjust-

ing the current in the individual electromagnets. The general structure of a typical AMB is

shown on Figure 3.1. The electromagnetic force exerted by a single two-pole electromagnet

is described by Equation 3.1 [35]:

F = −µ0AgN
2
T

i2

x2
(3.1)

where i is the total current in the electromagnets and x is the airgap. Expressing the same

with the bias current description of the AMB is in Equation 3.2. The control current ic is

being superimposed on the constant bias current IB .

F = µ0AgN
2
T

(

(IB + ic)
2

(d− x)2
− (IB − ic)

2

(d+ x)2

)

(3.2)

Most applications of magnetic bearings, however, use the simpler, linearized approach to

express the electromagnetic force, which is sufficient when the expected movement of the

rotor is small compared to the airgap and the rotor is expected to stay in the close vicinity

of the center. This linear representation of the magnetic bearing assumes the force is

proportional to the control current and the actual position of the rotor, as shown in Equation

3.10. The linearization of Equation 3.2 is possible by using the first terms of its Taylor-series

expansion as:

F ≈ ∂F

∂x
x+

∂F

∂ic
ic x = 0, ic = 0 (3.3)
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The partial derivative of Equation 3.2 with respect to the position x is Kx, called position

stiffness.

Kx =
∂

∂x

(

µ0AgN
2
T

(

(IB + ic)
2

(d− x)2
− (IB − ic)

2

(d+ x)2

))

x = 0, ic = 0 (3.4)

Kx = 2µ0AgN
2
T

(

I2
B

d3
+
I2
B

d3

)

(3.5)

Kx = 4µ0AgN
2
T

I2
B

d3
(3.6)

Similarly, the partial derivative of Equation 3.2 with respect to the control current ic is the

current stiffness, Ki.

Ki =
∂

∂ic

(

µ0AgN
2
T

(

(IB + ic)
2

(d− x)2
− (IB − ic)

2

(d+ x)2

))

x = 0, ic = 0 (3.7)

Ki = 2µ0AgN
2
T

(

IB

d2
+
IB

d2

)

(3.8)

Ki = 4µ0AgN
2
T

IB

d2
(3.9)

The magnetic bearings used in this work have been modeled using the linear expression in

Equation 3.10, with the parameters from Equations 3.6 and 3.9.

F = Kxx+Kiic (3.10)
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Figure 3.1: Schematic of a radial active magnetic bearing

The shaft position is measured by the proximity sensors placed symmetrically around

the shaft. The control system adjusts the amount of current in the individual electromag-

nets to provide stable levitation. This allows unparalleled flexibility in terms of on-line

adjustment of bearing parameters. As shown in Equation 3.2, the relationship between the

electromagnetic force, the airgap and the necessary coil current is non-linear. In this case a

constant (bias) current IB is applied to each coil and the control current ic is being added

to or subtracted from. Using this approach, the rotor is supported by the difference of the

two counteracting forces. For this layout the net force is the difference of the two attractive

forces. More detailed analysis of magnetic bearing types and operating principles can be

found in Bleuler’s work [7], Schweitzer’s book [64] or Maslen’s work on AMB sizing [49],

among many others. Figure 3.2 shows the logical layout of a typical AMB controller.
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Figure 3.2: AMB control scheme for 1 degree-of-freedom

14



Chapter 4

Adaptive Disturbance Rejection

The development of high-performance aircraft and the requirements for autopilots was

one of the early motivations for research on adaptive control in the 1950-ies [3]. As aircrafts

operate over a large range of velocities and flight altitudes their flight dynamics are nonlinear

and generally time-varying. The complex dynamics of the aircraft can be approximated by

a linear (state-space) model with a continuously varying operating point. The linear model

for a given operating point i can be expressed as:

dx

dt
= Aix+Biu x(0) = x0 (4.1)

y = Cix+Diu (4.2)

where Ai, Bi, Ci and Di are the functions of the operating point, which - in turn - is a

function of the actual flight conditions. An adaptive controller should be able to ’learn’

the strategy for adjusting the gains for a given operating point. This argument has led to

the development of adaptive controllers as shown on Figure 4.1 [32]. The various adaptive

schemes differ in the strategy the gains of the controller are adjusted.

An adaptive controller is made up of a parameter estimator and a control law which

governs how the controller is adjusted according to the estimator. In indirect adaptive con-

trol, the plant parameters are used to calculate the controller parameters. In case of direct

adaptive control the plant model is parameterized in terms of the controller parameters. As

the detailed introduction and analysis of adaptive control in general is not the scope of this
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Figure 4.1: Adaptive control

work, the interested reader should consult Astrom’s book [4] or Iannoau’s work [32], among

many others.

Adaptive control in rotordynamics

One of the most pressing problems in rotordynamics has been mass imbalance and the

synchronous vibrations as a result of imbalance. There have been several works addressing

this problem for rotors supported by rolling element or fluid film bearings as discussed in

the works of Gosiewski [23, 24] and Van de Vegte [71]. Adaptive techniques were applied

in Shi and Ni’s work to address the imbalance problem on flexible rotors [66]. Before the

use of magnetic bearings became widespread in rotordynamic applications, adaptive con-

trols were applied to adjustment of balancing weight(s) attached to the rotating shaft. As

the limitations of this balancing method were identified the focus of research has turned

towards using magnetic bearings’ adjustable properties to eliminate or reduce synchronous

rotor vibrations due to imbalance. Magnetic bearings can be used to compensate for the

vibration of the shaft or to cancel the force transmitted to the bearing foundations. First

Knospe and others [39, 40, 41, 59, 17] discussed an adaptive open-loop control scheme for
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the imbalance vibration control. Williams and colleagues have presented a discussion on

analog and digital methods in rotor vibration reduction with AMBs [76]. Shafai and col-

leagues presented an adaptive method for magnetic bearings to deal with imbalance-induced

vibrations [65] as well as other authors [66]. Adaptive feed-forward method was used in a

large number of works published, as in Na and Park’s discussion [56]. Adaptive methods

were often combined with other nonlinear controllers, such as fuzzy logic control. Recently,

Huang and Lin presented a fuzzy logic control-based output-feedback solution for imbal-

ance control with magnetic bearings [29]. Another fuzzy controller was used to deal with

harmonic disturbances in a rotor system supported by magnetic bearings [28]. Adaptive

vibration and imbalance control of rigid rotors supported by magnetic bearings were dis-

cussed in Hirschmanner’s works [26, 27]. With more detailed analysis and more powerful

computers becoming available, flexible rotor models have been developed. Shida et al. [67]

and Markert et al. [48] have presented two separate methods for unbalance compensation

and vibration control of flexible rotors in magnetic bearings. Some works discussed the

importance of actuator and sensor placement on rotor imbalance control [36]. Other works

focused on varying speed rotors due to the importance of crossing of critical speeds [68]

or multiple-plane balancing [14]. A survey from Zhou and Shi [77] presents the major

milestones of vibration control in rotating machinery, including adaptive vibration control,

active magnetic bearings and other active balancing methods.

Model reference adaptive control (MRAC) was derived from the model reference prob-

lem (MRC). In the latter a good understanding of the plant is required in order to create a

good model. The scheme known as Adaptive Disturbance Rejection (ADR) has been devel-

oped first to reduce the effects of persistent disturbances in large, complex structures. The

17



general form of this approach has been presented by Fuentes and Balas [19]. This method

is based on Model Reference Adaptive Control (MRAC), in which the disturbance rejection

is achieved through an internal reference model. The main advantage of this approach is

that the exact shape of the disturbance function does not need to be known in advance.

This work relies heavily on the results obtained by Alex Matras in his thesis and later in

his doctoral dissertation. Similar to this work, Matras used a radial active magnetic bearing

supported rotor system to simulate and to implement the ADR control scheme. As described

in [51], an existing magnetic bearing setup driven by an electric motor was used along with

an external simulated sinusoidal disturbance signal to investigate the effectiveness of the

ADR method. The rotor was modeled as a rigid-body with 2+2 degrees-of-freedom. Simula-

tions and experiments were carried out while taking into account the bandwidth limitations

of the power amplifiers and the effects of rotor speed on the disturbance rejection method’s

effectiveness. A simple PD-type controller was combined with the adaptive controller. It

has been shown that Strict Positive Realness (SPR) could only be guaranteed with current

feedback, which was not implemented at the time. Despite the lack of theoretical sufficient

conditions for stability the simulation and experimental results have shown that stability

can be achieved up to a certain disturbance frequency limit.

In his doctoral dissertation [52] and other works [53], Matras has extended the previous

research on Adaptive Disturbance Rejection. Similar to the previous work, a rigid rotor

with 2+2 degrees-of-freedom was supported by a pair of radial active magnetic bearings.

Amplifier dynamics were also taken into account. A simplified model was also developed

with the amplifier dynamics omitted. A linear PID-controller was used to achieve stable

levitation. Base motion was also taken into account in the simulations. While the simulated
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and experimental model was not SPR, stable adaptive control was achieved using output

redefinition. It was found that using redefined outputs the range of rejected frequencies

has increased. Experiments have also shown the effectiveness of the output redefinition

combined with adaptive disturbance rejection control on the spinning rotor. Similar to

Matras’ findings, it is also shown in this work that stability can be achieved by using the

ADR method despite the system being non-SPR.

Since this work discusses the application of Adaptive Disturbance Rejection, the fol-

lowing section contains the desription of the method as presented in [19].

Adaptive Disturbance Rejection

Consider the bounded vector disturbance function ud(t), i.e. the norm of ud must be

finite, as expressed by Equation 4.3.

‖ud‖ = sup{‖ud‖p} 1 ≤ 0 ≤ ∞ (4.3)

The disturbance function can be a combination of several scalar disturbance functions φk,

with amplitude αk and unit vector ek, where

‖φk‖∞ = 1 (4.4)

It follows that the disturbance function ud with l separate disturbance functions accounted

for is described as in Equation 4.5:

ud =
l
∑

k=1

ekφkαk (4.5)
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Also, the basis function φd is defined as shown in Equation 4.6:

φd = [φ1 φ2 . . . φk]
T (4.6)

The plant’s state space model with persistent disturbance ud is described by Equations

4.7–4.9.

dxp

dt
= Apxp + Bpup + Γpud (4.7)

yp = Cpxp (4.8)

x0
p = xp(0) ∈ ℜNp (4.9)

In Equation 4.7 Γp is a matrix operator mapping the disturbance ud into the state space

system. The reference model is described by Equations 4.10 - 4.12, which represent the

model of the plant with no disturbances.

dxm

dt
= Amxm + Bmum (4.10)

ym = Cmxm (4.11)

x0
m = xm(0) ∈ ℜNm Nm ≤ Np (4.12)

The disturbance rejection is achieved by forcing the plant to follow the output of the refer-

ence model by modifying the input up of the plant as:

up = S21xm + S22um + Gpey + Hpφd (4.13)
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Figure 4.2: Adaptive Disturbance Rejection schematic

with

ey = yp − ym (4.14)

dS21

dt
= −eyx

T
m∆1 (4.15)

dS22

dt
= −eyu

T
m∆2 (4.16)

dGp

dt
= −eye

T
y ∆G (4.17)

dHp

dt
= −eyφ

T
d ∆H (4.18)

with ∆1, ∆2, ∆G and ∆H positive definite. In this work the model is following a zero

reference, that is

ym = 0

xm = 0 (4.19)

S21 = 0

S22 = 0
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therefore the original expression for up reduces to

up = Gpey + Hpφd (4.20)

From Equation 4.14 the driving error ey of the model will also reduce to:

ey = yp (4.21)

yp = Cxq (4.22)

dGp

dt
= − (Cxq) (Cxq)T ∆G (4.23)

dHp

dt
= −eyφ

T
d ∆H (4.24)

The persistent disturbance due to mass imbalance is sinusoidal in nature, therefore a

straightforward choice for φd - considering the only synchronous components of the dis-

turbance - is:

φd = [sin (Ωt) cos (Ωt) 1]T (4.25)

With this choice of φd and ey the main task becomes to obtain an output matrix Cx which

would give the desired response by modifying Gp and Hp appropriately.

dq

dt
= (A− BKF)q + Gpey + Hpφd (4.26)

u = KFq + Gpey + Hpφd (4.27)

u = (KF + GpCx)q + Hpφd (4.28)
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The ADR control scheme used in this configuration has two adaptive gains, Gp and

Hp, each used for different purposes. Gp is a ’stabilizing’ gain, and as shown in Equation

4.23, it is driven by the deviation of the plant output from the reference. On the other hand,

Hp is used with the disturbance basis function φd, so that the disturbance is canceled out.

The number of elements of φd defines what disturbance functions are accounted for. As

Hp and φd are used to suppress the effects of persistent disturbances, in this work this

disturbance is due to mass imbalance. It can also be shown that Hp is a matrix gain; its

size is defined by the number of outputs of the plant and the number of elements of φd. In

general, by choosing to include more elements in φd - to account for disturbances of sub-

and supersynchronous frequencies, for example - more accurate disturbance rejection can

be achieved. The weighting matrices ∆G and ∆H are positive definite and their value acts

as a ’gain’ to Gp and Hp, controlling the overall speed and accuracy of adaptation.

In order to make the adaptive scheme work, the open loop system must be Almost

Strictly Positive Real (ASPR) i.e. the (Ap + BpGpCp,Bp,Cp) triple must be Strictly

Positive Real (SPR). According to the Kalman-Yakubovich lemma, a triple (A,B,C) is

SPR, if all of the three conditions are true: 1) A is stable, 2) (A,B) is controllable and 3)

there exist symmetric positive definite matrix operators Q and P such that

ATP + PA = −Q (4.29)

PB = CT (4.30)

In other words, for Almost Strict Positive Realness (ASPR), the product CpBp must be

positive definite and there must be no unstable zeros in the open-loop transfer function [74].
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Each simulation model is verified against these requirements later in Chapter 5. It is found

that the adaptive controller works even if these theoretical conditions are not met.
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Chapter 5

Simulation Models

There are three models used in this work, ranging from the simple Jeffcott-rotor model

to a very detailed flexible shaft model. In all three cases the synchronous disturbance is due

to a static mass imbalance and the rotordynamic instability is caused by internal damping

in the shaft material or in the flexible hub. The development of each model, complete with

equations of motion, controller design is presented below.

5.1 Jeffcott-rotor model

The first published analysis of a two-degrees-of-freedom model of a rigid rotor (viewed

as a spring-mass system) was performed by Rankine [60] to explain the critical speed be-

havior of such systems. He has predicted - incorrectly - that rotating machines would never

be able to rotate faster than their first critical speed. As a result of his work, engineers

have been focusing on designing rotors with high critical speed; meaning heavy shafts with

large diameters. Rankine used a model similar to the one on Figure 5.1, a uniform shaft

with the effects of friction ignored. The equations of motions developed for that model were

incorrectly missing the Coriolis-terms.

Jeffcott’s analysis [34] of a flexible rotor has shown that stable operation above the

critical speed was possible provided the system was properly balanced. Taylor’s work [70]

has verified Jeffcott’s findings. This prompted engineers to focus on higher operating speeds.
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Figure 5.1: Rankine rotor model

Figure 5.2: Jeffcott rotor model

Since it is practically impossible to build a perfectly balanced rotor in real engineer-

ing applications, rotating imbalance is the most often observed source for synchronous

vibrations. The Jeffcott-rotor, pictured in Figure 5.2, is the most often used model for

rotordynamic analysis. It consists of a large, unbalanced disk mounted on a flexible shaft,

placed symmetrically between the bearings. The equations of motion for this model are:

mẍ+ cẋ+ kx = mΩ2u cos (Ωt) (5.1)
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mÿ + cẏ + ky = mΩ2u sin (Ωt) (5.2)

where u is the amount of static imbalance. Gravity loads are omitted as they are often

insignificant compared to the rest of the loads in turbomachines. Assuming constant speed

Ω and disk mass m, shaft bending stiffness k, the viscous damping resulting from air drag

is denoted by c. The amplitude of the synchronous whirl is increasing as the running speed

is approaching the critical speed and then decreases at supercritical speeds until reaching

the value of static imbalance. Near the critical speed damping is the single most important

property which limits the amplitude of the synchronous whirl. There are three major

solutions to minimize the amplitude of the synchronous whirl [72]; balancing the rotor;

changing the rotor speed or to add damping to the system. Adding damping to the system

is possible only by the bearings as the Jeffcott-rotor does not include any damping terms

other than air drag. Internal damping, on the other hand, would cause non-synchronous

whirl.

Sub- and super-synchronous rotor whirl is often caused by shaft misalignment, rotor-

stator rubbing, and loose bearing housings, among others. The solution for these issues is

to reduce the underlying mechanical issues, such as alignment of the shaft, eliminate the

rub, etc. Rotordynamic instability has its history of causing expensive machine failures,

especially in centrifugal compressors used by the process industries. The core of the insta-

bility is the fact that while damping is positive (see Equations 5.1 and 5.2 above) it has

stabilizing effect. On the other hand, if the damping is negative, it results in rotordynamic

instability. In rotating machines this instability is most often caused by forces which are

tangential to the whirl path and acting in the same direction as the instantaneous motion.

The simulated Jeffcott-rotor is supported by two radial AMB, represented by their linear
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model. The effects of internal damping were added to the equations of motion as well as

the static mass imbalance.

The equations of motion for the Jeffcott-rotor model are shown in Equations 5.3 and

5.4. The equations were obtained by replacing the spring force in Equations 5.1 and 5.2

with the force from the magnetic bearings and adding the expressions for the cross-coupled

force due to internal damping. The force provided by the magnetic bearings is described

by the linear AMB model (discussed earlier) in Equation 5.6. The control currents icx and

icy are calculated by using a PD-type controller as shown in Equation 5.7.

mẍ+ ciẋ+ Ωciy = Fx,AMB + Fx,imb (5.3)

mÿ + ciẏ − Ωcix = Fy,AMB + Fy,imb (5.4)

Fx,imb = mΩ2u cos (Ωt) Fy,imb = mΩ2u sin (Ωt) (5.5)

Fx,AMB = Kxx+Kiicx Fy,AMB = Kxy +Kiicy (5.6)

icx = Kpx+Kdẋ icy = Kpy +Kdẏ (5.7)

Expressing the equations of motion in state-space (with state vector in Equation 5.9):

dq

dt
= Aq + Bu (5.8)

y = Cq
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q =











































x

y

ẋ

ẏ











































(5.9)

The state matrix A with the state-feedback:

A =























0 0 1 0

0 0 0 1

Kx+KiKp

m
−Ωci

m
KiKd−ci

m
0

Ωci

m

Kx+KiKp

m
0 KiKd−ci

m























(5.10)

B =























0 0

0 0

1 0

0 1























(5.11)

The control input u modified with the adaptive controller:

u =











icx

icy











+ GpeyG + Hpφd (5.12)

where eyG is the error signal driving Gp to stabilize the system, in this case

eyG = CGq (5.13)

dGp

dt
= −eyGeyG

T∆G (5.14)
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where CG has been selected as:

CG =







1 0 1 0

0 1 0 1






(5.15)

Also, eyH is the error signal driving Hp to reject the synchronous disturbances as:

eyH = CHq (5.16)

dHp

dt
= −eyHφd

T∆H (5.17)

for the best results, CH has been selected as:

CH =







1 0 1 0

0 1 0 1






(5.18)

The disturbance function φd has been chosen to include the synchronous components as

shown in Equation 5.19:

φd = [sin (Ωt) cos (Ωt) 1]T (5.19)

Verification of sufficient conditions for this model:

The product CGB (or CHB) must be positive definite and there must be no unstable

zeros in the open-loop transfer function [74]. The A matrix is expressed in Equation 5.10

and the B matrix is expressed in Equation 5.11 and the MATLAB script in Appendix A.10
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Name Value Dimension

N 330 –

Ag 3.22e−4 mm2

d 0.002 m

ib 1 A

µ0 4π e−7 H/m

m 10 kg

u 0.05 kgm

Kp -1000 –

Kd -5 –

ci 60 Ns/m

Table 5.1: Jeffcott rotor model parameters

shows that both these conditions are met for this model, as

CGB =







1 0

0 1






(5.20)

and the zeros of the state-space model built with the A, B and CG (or CH) matrices are all

positive. This model satisfies the sufficient conditions for Strict Positive Realness according

to [74].
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Figure 5.3: Flexible hub model, front view

5.2 Flexible hub model

The simulation model consists of two radial magnetic bearings, current amplifiers,

proximity sensors, a horizontally mounted rotor and the flexibly connected outer rim. The

effects of gravity were omitted in the simulations, as the weight of the rotor assembly can

be offset by applying constant current-offset in the top and bottom electromagnets in each

magnetic bearing. The simulation model was developed using MATLAB. For the sake of

simplicity, a rigid rotor is considered and, due to the small displacements, only lateral

motion (horizontal and vertical) have been considered. The model has 2+2 (shaft and rim)

DOF for lateral motion of the shaft and the rim in vertical and in horizontal directions,

respectively. These assumptions were based on previously experimentally observed and

verified results [50]. The model of the flexible hub flywheel is shown on Figures 5.3 and 5.4.

The shaft and the rim are treated as two discrete masses (mS and mR) connected by

the flexible hub, which is represented by two sets of springs and dampers in the vertical and
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Figure 5.4: Flexible hub model, side view

horizontal directions. The damper and spring constants have been obtained from previous

experimental results [54, 55]. The magnetic bearings are described by their linearized model

and the forces exerted by the individual magnetic bearings (called bearing A and B) in x

and y direction is denoted by FxA, FyA and FxB, FyB , respectively. The equations of motion

of the entire system are described by Equations 5.37–5.40. For the sake of simplicity the

hub stiffness kH and damping cH terms are assumed to be equal in both vertical and

horizontal directions (isotropic case), although this is not always true, due to the inherent

manufacturing inaccuracies of composites or other geometrical and material imperfections of

the rotor assembly. The model development is presented in detail below. The development

starts with expressions for the potential energy T and kinetic energy V :

T =
1

2
mS

(

ẋ2
S + ẏ2

S

)

+
1

2
mR

(

ẋ2
R + ẏ2

R

)

(5.21)

V =
1

2
kHX (xR − xS)2 +

1

2
kHY (yR − yS)2 +

1

2
kBXx

2
S +

1

2
kBY y

2
S (5.22)
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The dissipation force FD acting on the hub-rim interface, expressed in the frame fixed to

the rotating assembly:

FD = −cHX

[(

ẋrot
R − ẋrot

S

)

x
]

− cHY

[(

ẏrot
R − ẏrot

S

)

y
]

(5.23)

The dissipation force FB due to the bearings:

FB = −cBX ẋSx̂− cBY ẏS ŷ (5.24)

The coordinate transformation from rotating system to the fixed:











xrot

yrot











=







cos (Ωt) sin (Ωt)

− sin (Ωt) cos (Ωt)

















x

y











(5.25)

Expressing the unit vectors x̄ and ȳ:











x̄

ȳ











=







cos (Ωt) sin (Ωt)

− sin (Ωt) cos (Ωt)

















x̂

ŷ











(5.26)

The equations of motion for the system can be obtained by expressing the Lagrangian and

solving the following set of equations:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
q = {xS yS xR yR}T i = 1 . . . 4 (5.27)

which gives:

mS ẍS − kHX (xR − xS) + kBXxS = Q1 (5.28)
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mS ẍS − kHY (yR − yS) + kBY yS = Q2 (5.29)

mRẍR + kHX (xR − xS) = Q3 (5.30)

mRẍR + kHY (yR − yS) = Q4 (5.31)

Expressing FD in the stationary coordinate system:

FD = ((cHX cos2(Ωt) + cHY sin2(Ωt))((ẋS − ẋR) + Ω(yS − yR)) +

sin(Ωt) cos(Ωt)((ẏR − ẏS) − Ω(xR − xS))(cHY − cHX))x̂+ (5.32)

((cHX sin2(Ωt) + cHY cos2(Ωt))((ẏS − ẏR) − Ω(xS − xR)) +

sin(Ωt) cos(Ωt)((ẋR − ẋS) + Ω(yR − yS))(cHY − cHX))ŷ

Next, let us take into consideration that Q is composed of FD and FB:

Q1 = −
(

cHX cos2 (Ωt) + cHY sin2 (Ωt)
)

((ẋS − ẋR) + Ω (yS − yR)) −

sin (Ωt) cos (Ωt) ((ẏR − ẏS) − Ω (xR − xS)) (cHY − cHX) − cBY ẋS (5.33)

Q2 = −
(

cHX sin2 (Ωt) + cHY cos2 (Ωt)
)

((ẏS − ẏR) − Ω (xS − xR)) −

sin (Ωt) cos (Ωt) ((ẋR − ẋS) + Ω (yR − yS)) (cHY − cHX) − cBY ẏS (5.34)

Q3 =
(

cHX cos2 (Ωt) + cHY sin2 (Ωt)
)

((ẋS − ẋR) + Ω (yS − yR)) +

sin (Ωt) cos (Ωt) ((ẏR − ẏS) − Ω (xR − xS)) (cHY − cHX) (5.35)
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Q4 =
(

cHX sin2 (Ωt) + cHY cos2 (Ωt)
)

((ẏS − ẏR) − Ω (xS − xR)) +

sin (Ωt) cos (Ωt) ((ẋR − ẋS) + Ω (yR − yS)) (cHY − cHX) (5.36)

Now all four equations (Equations 5.33 – 5.36) can be simplified by assuming the isotropic

case (i.e. kB=kBX=kBY , cB=cBX=cBY , kH=kHX=kHY and cH=cHX=cHY ). The bearing

forces have been replaced by the forces from the linearized magnetic bearing models for

each magnetic bearing (FxA, FxB, FyA and FyB).

mSẍS + FxA + FxB + Fx,imb + cH (ẋS − ẋR) + kH (xS − xR) = −ΩcH (yS − yR) (5.37)

mS ÿS + FyA + FyB + Fy,imb + cH (ẏS − ẏR) + kH (yS − yR) = ΩcH (xS − xR) (5.38)

mRẍR + cH (ẋR − ẋS) + kH (xR − xS) = −ΩcH (yR − yS) (5.39)

mRÿR + cH (ẏR − ẏS) + kH (yR − yS) = ΩcH (xR − xS) (5.40)

The imbalance forces due to the static imbalance u (Fx,imb and Fy,imb) are expressed as

Fx,imb = uΩ2 sin (Ωt) (5.41)

Fy,imb = uΩ2 cos (Ωt) (5.42)

The cross-coupled stiffness terms are due to the transformation of the damping forces from

the coordinate system fixed to the rotor to the stationary coordinate system of the rim.

These cross-coupling terms are causing instability of the system as soon as the running

speed becomes sufficiently high (see Figure 5.5). The controller is a typical PD-type, with
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Kp and Kd values obtained from previous experiments [18, 69] (see Equations 3.5 and

3.9) and known to give stable levitation with the magnetic bearings used in this work.

It is also assumed that both magnetic bearings have the same electrical, magnetic and

geometrical parameters, shown in Table 5.2. The currents in the coils are provided by

switching amplifiers of moderate bandwidth. Direct measurement of the rim coordinates

(xR, yR) is impractical due to the flexible attachment to the shaft and the expected range

of motion can be quite large. Additional proximity sensors and their wiring would also

increase the overall mechanical and electrical complexity of the setup. For these reasons a

reduced-order observer has been designed to estimate the rim coordinates. These estimates,

as well as the measured shaft coordinates, were used in the calculation of the adaptive gains

of the controller.

The levitation is achieved by using a PD-type controller with the appropriate Kp and

Kd values as shown in Equations 5.45 and 5.46. Assuming a rigid shaft the basic equation

of motion for the stationary shaft is

mẍ = Fx (5.43)

where m=mS+mR and based on the linearized AMB model and Fx can be expressed as

Fx = Kxx+Kiic (5.44)

also, assuming a PD controller for ic, the complete model for the levitation is

mẍ = Kxx+Ki (Kpx+Kdẋ) ic = Kpx+Kdẋ (5.45)
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therefore the state space model with state feedback is











ẋ

ẍ











=







0 1
(

(Kx+KiKp)
m

) (

KiKd

m

)

















x

ẋ











(5.46)

which results in Kp < −500 and Kd < −1 as minimum values for stable levitation using

the simulation parameters listed in Table 5.2.

State estimator development

Since the direct measurement of the rim coordinates is a somewhat impractical and

unreliable solution, it became apparent that those coordinates should be estimated instead.

Therefore a reduced-order state-estimator has been developed which estimates the rim po-

sition and - in turn - the rim velocity.

Consider the general form of a mathematical model expressed in the state-space form

where x and y is the state vector and output vector, respectively:

dx

dt
= Ax + Bu

y = Cx (5.47)

38



For the model discussed here the matrices are as follows:

A =





















































0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−2Kx−kH

mS
−ΩcH

mS

kH

mS

ΩcH

mS
− cH

mS
0 cH

mS
0

ΩcH

mS

−2Kx−kH

mS
−ΩcH

mS

kH

mS
0 − cH

mS
0 cH

mS

kH

mR

ΩcH

mR
− kH

mR
−ΩcH

mR

cH

mR
0 − cH

mR
0

−ΩcH

mR

kH

mR

ΩcH

mR
− kH

mR
0 cH

mR
0 − cH

mR





















































(5.48)

B =





















































0 0

0 0

0 0

0 0

−2Ki

mS
0

0 −2Ki

mS

0 0

0 0





















































(5.49)

C =























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0























(5.50)
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With an appropriate state feedback (u = −KKx) the system is modified as

dx

dt
= (A− BKK)x

y = Cx (5.51)

The state feedback matrix KK contains the gains of the PD-controller described earlier:

KK =







Kp 0 0 0 Kd 0 0 0

0 Kp 0 0 0 Kd 0 0






(5.52)

For the state feedback to work properly it is necessary that all states are available. In

this case some of the states are unavailable due to the limitations mentioned above so

the missing states would be replaced with estimated ones. After obtaining the solution

for the Lyapunov-equation (TA − FT = LC), one can proceed with the calculation of the

estimated states. The detailed development is not shown here, as it follows the standard

method which developed by Luenberger [45] as well as presented in many control text books,

such as [8, 10, 37]

L =























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1























(5.53)
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F =























-1000 0 0 0

0 -2000 0 0

0 0 -3000 0

0 0 0 -4000























(5.54)

The estimate of the state vector x is x̂ which is obtained by solving Equation 5.56:

x̂ =







C

T







−1








y

z











(5.55)

dx̂

dt
= (A − LC) x̂ + Bu + Ly (5.56)

The dynamics for z are described by Equation 5.57:

dz

dt
= Fz + TBu + Ly (5.57)

After obtaining the estimates states the overall state matrix for the model is

x =







































































































xS

yS

x̂R

ŷR

ẋS

ẏS

˙̂xR

˙̂yR







































































































(5.58)
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Name Value Dimension Name Value Dimension

Ag 3.28e−4 m2 Kd -5

N 330 Ki 11.02 N/A

d 2 mm Kx 5508.1 N/m

µ0 4πe−7 H/m mS 0.238 kg

ib 1 A mR 0.567 kg

kH 2000 N/m ∆G 1500

cH 4.84 Ns/m ∆H 100

Kp -1000 u 0.005 kgm

Table 5.2: Flexible hub model parameters

The error signal eyG which is used to calculate the adaptive part of controller is made of

the estimated rim coordinates for Gp and the shaft velocity for Hp, as shown in Equations

5.59 and 5.60:

dGp

dt
= −eyGeT

yG∆G (5.59)

dHp

dt
= −eyHφ

T
d∆H (5.60)

where the error inputs eyG and eyH are expressed as

eyG =











x̂R

ŷR











(5.61)

eyH =











ẋS

ẏS











(5.62)
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Figure 5.5: Maximum of real part of eigenvalue as a function of rotor speed

Verification of sufficient conditions for this model:

As stated before, the product of CxB matrices must be positive definite and there

must be no unstable zeros in the open-loop transfer function [74]. The state matrix for

this model is (A − BKK) as expressed in Equations 5.48 and 5.52. The input matrix B

is expressed in Equation 5.49. The MATLAB script in Appendix A.11 shows that one of

the two conditions are met for this model, as the eigenvalues of the CxB product are all

positive.

CxB =







92.57 0

0 92.57






(5.63)

Some zeros of the state-space model built with the (A − BKK), B and Cx matrices are 0,

suggesting that the model does not satisfy the sufficient theoretical conditions.
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Figure 5.6: Nodal distribution for flexible shaft model

5.3 Flexible shaft model

The simulation model consists of a slender, flexible shaft supported by two radial active

magnetic bearings at both ends. The rotor is modeled by using the free-free bending mode

shapes and natural frequencies obtained from finite element (FE) model. The FE model

uses 73 nodes and the first four mode shapes (two rigid body modes and two flexible modes)

are included in the simulation. Although the model includes the flexible shaft modes, due

to the insufficient number of position sensor locations those flexible modes can not be used

for controller design. The laminated parts of the shaft at the nodes where the magnetic

bearings are located (nb1, nb2) as well as at the position sensors (np1, np2) are represented

by additional masses. The imbalance is modeled as a single point-mass acting at the midspan

of the bearings - defined by the imbalance vector ψ - although it is not included in the finite

element analysis. Figure 5.6 shows the representation of the finite element model which was

developed using ANSYS. Figures 5.7 to 5.10 show each of the four mode shapes obtained

from the FE analysis.
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Figure 5.7: First mode shape of flexible shaft model (1st rigid body mode)
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Figure 5.8: Second mode shape of flexible shaft model (2nd rigid body mode)
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Figure 5.9: Third mode shape of flexible shaft model (1st flexible mode)
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Figure 5.10: Fourth mode shape of flexible shaft model (2nd flexible mode)
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According to Ryan [62], the equations of motion for a flexible shaft in nodal coordinates

can be expressed as:

q̈x = −ω2
nqx + ΩΓq̇y + Fhoriz (5.64)

q̈y = −ω2
nqy − ΩΓq̇x + Fvert (5.65)

The horizontal and vertical forcing is provided by the magnetic bearings and the imbalance:

Fhoriz = φTFx + φTFx,imb (5.66)

Fvert = φTFy + φTFy,imb (5.67)

In Equations 5.66 and 5.67, Fx and Fy are the forces from the magnetic bearings in hori-

zontal and vertical direction, respectively. Similarly, Fx,imb and Fy,imb are the imbalance

forces in horizontal and vertical direction as shown in Equations 5.68 and 5.69.

Fx,imb = ψΩ2 cos (Ωt) (5.68)

Fy,imb = ψΩ2 sin (Ωt) (5.69)

Fx = Fx1 + Fx2 (5.70)

Fy = Fy1 + Fy2 (5.71)
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The force provided by the magnetic bearings can be expressed in terms of the right and left

side bearing as shown in Equations 5.72 – 5.75:

Fx1 = µ0Ag,1N
2
T,1

(

I2
13

(d1 − xb1)
2 − I2

14

(d1 + xb1)
2

)

(5.72)

Fx2 = µ0Ag,2N
2
T,2

(

I2
23

(d2 − xb2)
2 − I2

24

(d2 + xb2)
2

)

(5.73)

Fy1 = µ0Ag,1N
2
T,1

(

I2
11

(d1 − yb1)
2 − I2

12

(d1 + yb1)
2

)

(5.74)

Fy2 = µ0Ag,2N
2
T,2

(

I2
21

(d2 − yb2)
2 − I2

22

(d2 + yb2)
2

)

(5.75)

In the simulation model, however, the bearing forces (Fx1, Fx2, Fy1 and Fy2), are rep-

resented by the linearized expression as described in Equations 3.6 and 3.10. The simple

model described by Equations 5.64 and 5.65 is now being extended to account for the effects

of internal damping and imbalance, as shown in Equations 5.76 and 5.77.

q̈x = −ω2
nqx + ΩCIqy + ΩΓq̇y − CIq̇x + φTFx + φTFx,imb (5.76)

q̈y = −ω2
nqy − ΩCIqx − ΩΓq̇x − CIq̇y + φT Fy + φTFy,imb (5.77)

The individual coil currents in the magnetic bearings are the sum of the control currents i

and bias currents IB :

I1k = IB
1k + i1k (k = 1 . . . 4) (5.78)

I2k = IB
2k + i2k (k = 1 . . . 4) (5.79)
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The bias currents are assumed to be linearly proportional to the bias voltages:

IB
1i = kA1V

B
1i (i = 1 . . . 4) (5.80)

IB
2i = kA2V

B
2i (i = 1 . . . 4) (5.81)

In this work it is assumed that the internal damping terms are in the form of ζωi, therefore

the damping matrix takes the form as expressed by Equation 5.82:

CI = ζ























ω1 0 0 0

0 ω2 0 0

0 0 ω3 0

0 0 0 ω4























(5.82)

The simulation model used in this work is described by 20 states which are defined as

follows: four states for each mode-shape for the displacement of the shaft in vertical (x)

and in horizontal (y) direction as well as their time-derivatives, respectively, and the four

augmented current states. The current states are a combination of the bias currents IB and

control currents i.
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q =












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


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










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
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

















qx

qy

q̇x

q̇y

IB
11i11 − IB

12i12

IB
13i13 − IB

14i14

IB
21i21 − IB

22i22

IB
23i23 − IB

24i24












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The individual coil currents are not observable. Following the results from [18], with some

manipulation the system can be made observable by introducing the new current state

variables:

IB
11i11 − IB

12i12

IB
13i13 − IB

14i14 (5.85)

IB
21i21 − IB

22i22

IB
23i23 − IB

24i24
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The amplifiers providing current to the active magnetic bearings are of pulse width mod-

ulation (PWM) type with moderate bandwidth. Each power amplifier’s bandwidth is de-

pendent upon the actual airgap between the rotor and electromagnet surface in a particular

direction. Based on earlier experimental results [18] the coil and amplifier dynamics can be

described by Equations 5.86 - 5.93.

di11

dt
= (kA,1v11 − i11) (h1 − h2 (d1 − yb1)) (5.86)

di12

dt
= (kA,1v12 − i12) (h1 − h2 (d1 + yb1)) (5.87)

di13

dt
= (kA,1v13 − i13) (h1 − h2 (d1 − xb1)) (5.88)

di14

dt
= (kA,1v14 − i14) (h1 − h2 (d1 + xb1)) (5.89)

di21

dt
= (kA,2v21 − i21) (h1 − h2 (d2 − yb2)) (5.90)

di22

dt
= (kA,2v22 − i22) (h1 − h2 (d2 + yb2)) (5.91)

di23

dt
= (kA,2v23 − i23) (h1 − h2 (d2 − xb2)) (5.92)

di24

dt
= (kA,2v24 − i24) (h1 − h2 (d2 + xb2)) (5.93)

The displacement of the rotor at the magnetic bearing locations (xb1, yb1, xb2 and yb2) can

be calculated by using the following coordinate transformations (Equation 5.94):

xb1 =
4
∑

i=1

φnb1,iqx,i yb1 =
4
∑

i=1

φnb1,iqy,i xb2 =
4
∑

i=1

φnb2,iqx,i yb2 =
4
∑

i=1

φnb2,iqy,i (5.94)
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Similarly, the displacements at the proximity sensors (xp1, yp1, xp2 and yp2) can be obtained

by using the expressions in Equation 5.95:

xp1 =
4
∑

i=1

φnp1,iqx,i yp1 =
4
∑

i=1

φnp1,iqy,i xp2 =
4
∑

i=1

φnp2,iqx,i yp2 =
4
∑

i=1

φnp2,iqy,i

(5.95)

The state-space representation of the system, in general, is expressed by Equation 5.96:

dq

dt
= Aq + Bu

y = Cq (5.96)

The model with no internal damping is described by Equations 5.97 and 5.98. Similarly,

the model with internal damping considered is described by Equations 5.99 and 5.100. Due

to the nature of the FE analysis the mass matrix M is normalized so that in Equations 5.97

and 5.99 the inverse of the mass matrix (M−1) is a unit matrix.

A =















0 I 0

M−1K −M−1D M−1KI

0 0 KA















(5.97)

B =







0

KB






(5.98)

AC =















0 I 0

M−1KC −M−1DC M−1KI

0 0 KA















(5.99)
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BC =







0

KB






(5.100)

The uncontrolled system (either A or AC) is unstable. Therefore, a basic state feedback

controller has been developed by changing all the positive real parts of the eigenvalues of

A negative. This step was necessary, since the uncontrolled system is unstable due to the

unstable dynamics of the active magnetic bearings. Also, the system represented by AC is

unstable as well, due to the presence of internal damping terms. The controller designed

to stabilize A, however, is unable to counter the effects of internal damping as it has been

developed using the system model which did not take internal damping into consideration.

The state feedback matrix KF is obtained from MATLAB simulation. The model with state

feedback is expressed in Equation 5.101. With the state feedback to the original system,

the state-space model can be described as

dq

dt
= (A− BKF)q

u = KFq (5.101)

The state feedback matrix designed for the system with no internal damping (A) will be

used on the actual system (AC) which includes the effects of internal damping. Based on

the simulation results the state feedback designed for the original system is not able to

suppress the instability resulting from the effects of internal damping. For this reason the

Adaptive Disturbance Rejection method is being considered to help the controller deal with

rotordynamic instability resulting from internal damping.
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It has been found that by using the terms which were used to describe internal damping

in Equation 5.99, the output matrix can be successfully be laid out to have the desired effect

on Gp, as shown in Equation 5.102. As it is readily apparent, the output matrix used in

conjunction with Gp has little resemblance to an actual output, therefore this matrix could

be called a ’pseudo’-output matrix.

CG = ζ























0 0 Ωω3 Ωω4 0 0 −Ωω3 −Ωω4

0 0 −Ωω3 −Ωω4 0 0 −Ωω3 −Ωω4

0 0 −Ωω3 −Ωω4 0 0 Ωω3 Ωω4

0 0 Ωω3 Ωω4 0 0 Ωω3 Ωω4

0 0 ω3 ω4 0 0 −ω3 −ω4 0 0 0 0

0 0 ω3 ω4 0 0 ω3 ω4 0 0 0 0

0 0 −ω3 −ω4 0 0 ω3 ω4 0 0 0 0

0 0 −ω3 −ω4 0 0 −ω3 −ω4 0 0 0 0























(5.102)

The output matrix (CH) used with Hp is shown in Equation 5.103. This matrix

appears as a ’normal’ output matrix would in this configuration except that it contains

both the position and the velocity components. The argument for the selection of output

matrices as described above is the following; the effect of internal damping has been acting

on the system in an indirect fashion, therefore a similarly indirect method (i.e. indirect

output matrix) has been chosen to properly address the unstable eigenvalues in the system

matrix. The layout of the CG matrix helps drive the gains of Gp to a form which is very

similar to a fixed state-feedback. The values of CG were actually determined from the static

state-feedback values acting as guidelines.
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The effect of static imbalance appears as a direct term in the equations of motion, thus

it is sufficient to use a direct output matrix, i.e. one that very closely resembles the original

one. The output matrix for the disturbance rejection part is CH and is built by combining

the position and velocity terms for the original output matrix C.

CH =























φnp1,1 φnp1,2 φnp1,3 φnp1,4 0 0 0 0

0 0 0 0 φnp1,1 φnp1,2 φnp1,3 φnp1,4

φnp2,1 φnp2,2 φnp2,3 φnp2,4 0 0 0 0

0 0 0 0 φnp2,1 φnp2,2 φnp2,3 φnp2,4

φnp1,1 φnp1,2 φnp1,3 φnp1,4 0 0 0 0 0 0 0 0

0 0 0 0 φnp1,1 φnp1,2 φnp1,3 φnp1,4 0 0 0 0

φnp2,1 φnp2,2 φnp2,3 φnp2,4 0 0 0 0 0 0 0 0

0 0 0 0 φnp2,1 φnp2,2 φnp2,3 φnp2,4 0 0 0 0























(5.103)

Verification of sufficient conditions for the flexible shaft model:

As stated before, the product of CGB (or CHB) matrices must be positive definite and

there must be no unstable zeros in the open-loop transfer function [74]. The state matrix

for this model is AC as expressed in Equations 5.99. The input matrix B is expressed

in Equation 5.100. The MATLAB script in Appendix A.11 shows that one of the two

conditions are met for this model, as the eigenvalues of both the CGB product and the
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Name Value Dim. Name Value Dim.

NT,1 160 kA,1 0.45 V/A

NT,2 160 kA,2 0.45 V/A

Ag,1 3.23e−4 m2 nb1 54

Ag,2 3.23e−4 m2 nb2 34

d1 1.25e−3 m np1 51

d2 1.25e−3 m np2 30

h1 2.87e6 τ1 2.53e−5 s

h2 2700 τ2 2.53e−5 s

IB
1• 0.5 A IB

2• 0.5 A

µ0 4πe−7 H/m ω3 39.6 rad/s

ω1,2 0 rad/s ω4 95.6 rad/s

Table 5.3: Flexible shaft model parameters

CHB are all positive.

CGB =























0.05 0 0 0

0 0.05 0 0

0 0 0.05 0

0 0 0 0.05























(5.104)

CHB =























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1























(5.105)

Some zeros of the state-space model built with the (AC − BKF), B and CG matrices are

0, proving that the flexible shaft model does not satisfy the sufficient theoretical conditions.
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As shown later, despite the fact that the model does not pass these requirements, it performs

well in the face of persistent disturbance and internal damping induced instability.
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Chapter 6

Simulation Results

This section presents the simulation results for all three models used in this work.

First the simple Jeffcott-rotor is being considered with added internal damping (ci) and

static mass imbalance (u). The combined effects of both imbalance and internal damping

are also discussed. It is shown how the ADR control scheme can be utilized to suppress

synchronous vibrations and rotordynamic imbalance at the same time. Next, the same

analysis is presented for the rigid rotor with a rim attached to it by a flexible hub in Section

6.2. In that model, the flexible hub simulates the effect of internal damping with added

static mass imbalance. Finally, a flexible shaft model is considered with a mass imbalance

and internal damping in Section 6.3. A fixed-gain controller was also developed for each

model to better illustrate the effectiveness of the adaptive controller.

6.1 Jeffcott-rotor model results

First, the model for the Jeffcott-rotor has been developed which is a rigid disk on a

flexible shaft. The effect of internal damping was added to the equations of motion as well

as the static mass imbalance. As the model presented here is a purely theoretical one, the

values for various parameters such as internal damping, mass, etc. were selected to present

the argument.

As Figure 6.1 shows the uncontrolled response of the model grows unstable at super-

critical speed when internal damping is present. Furthermore, as Figure 6.2 shows the

combined effect of internal damping and mass imbalance further complicates the problem
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by driving the system unstable even faster. When considering only internal damping, the

stabilizing part of the ADR scheme (Gp) drives the response stable as shown on Figure

6.3. To counter the combined effect of mass imbalance and internal damping, both the

stabilizing and disturbance rejection parts of the ADR are used, as shown on Figure 6.4

the response is stable. It is shown that the stabilizing part of ADR has successfully dealt

with the rotordynamic instability due to internal damping and the disturbance rejection

part (Hp) has also reduced the amplitude of the synchronous vibration.
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Figure 6.1: Jeffcott-rotor response, Ω=50 rad/s, u=0, ∆G=0, ∆H=0

Fixed-gain controller results

The fixed-gain baseline controller has been developed to better illustrate the ADR

scheme’s effectiveness in face of varying model parameters, such as internal damping, mass

imbalance. As expected, the response is stable as shown on Figure 6.5, when the simulation
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Figure 6.2: Jeffcott-rotor response, Ω=50 rad/s, u=0.005, ∆G=0, ∆H=0

is run with the same parameters as the fixed-gain controller is designed for. On the other

hand, the controller is not able to stabilize the system when the internal damping is increased

(Figure 6.6) or combined with persistent disturbance, such as mass imbalance, as shown on

Figure 6.7.

6.2 Flexible hub model results

This section discusses the results observed from the simulation on the model described

previously. The simulations were performed with no external disturbance (i.e. mass imbal-

ance) taken into consideration. Thus, the only source of rotordynamic instability was the

effect of internal damping. The first simulations were performed to test how a simple PD-

type controller would deal with the rotordynamic instability as a result of internal damping.
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Figure 6.3: Jeffcott-rotor response, Ω=50 rad/s, u=0, ∆G=5000, ∆H=0

Therefore, it is first assumed that Hp = 0 and ∆H = 0. Figure 6.8 shows the results of a

test run while the rotor speed is subcritical; in this case the internal damping has a stabiliz-

ing effect on the system. The response is stable, as expected from the steady-state solution

of Equations 5.28–5.31.

Internal damping induced instability with no external disturbance

According to simulations the critical speed of this model with the presented parameters

is expected around the Ω=70 rad/s speed as shown on Figure 5.5. While the rotor speed

is below the critical value, the response is stable, as shown on Figure 6.8. Increasing

running speed Ω results in longer settling time and eventually unstable behavior as the

critical speed is exceeded. The rotordynamic instability shown on Figure 6.9 takes effect

and the controller is not able to compensate for the increasing destabilizing forces. The
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Figure 6.4: Jeffcott-rotor response, Ω=50 rad/s, u=0.005, ∆G=5000, ∆H=500

results on the actual experiments would result in severe mechanical damage to the structure.

As shown on Figure 6.9 the plant response becomes unstable at Ω=80 rad/s due to the

internal damping induced destabilizing forces. Using the adaptive controller described above

combined with the reduced order state estimator the response becomes stable and balanced

despite the destabilizing forces. By choosing an appropriate value for ∆G the adaptive

disturbance rejection scheme is successfully rejecting the destabilizing effects. Figure 6.10

shows the stable response which was achieved with ∆G=500. The settling time is longer

than with ∆G=1500 (see Figure 6.8), although with proper adjustment of ∆G this can be

fine-tuned, striking a balance between slower stabilization (with smaller ∆G) or shorter

settling time (using higher ∆G value), which is, on the other hand, limited by the physical

limitations of the plant (i.e. current amplifier and proximity sensor bandwidth, amplifier
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Figure 6.5: Jeffcott-rotor model, fixed gain, Ω=50 rad/s, u=0

slew rate, etc.). Increase of ∆G results in shorter settling time, as shown on Figure 6.11.

The suppression of the internal damping induced instability with no external disturbance

represents a meaningful finding. In order to fully take advantage of ADR, the effect of

external disturbances, such as mass imbalance should also be considered. This combined

problem is presented in the next section.

Internal damping induced instability with persistent synchronous distur-

bance

In this section the effect of a persistent disturbance is discussed and the relevant simula-

tion results are being presented. The simulation model is the same one used in the previous

subsection. In this case, however, a static mass imbalance is also considered, which results

in synchronous sinusoidal disturbance. A series of simulations were performed to assess this
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Figure 6.6: Jeffcott-rotor model, fixed gain, increased ci, Ω=50 rad/s, u=0
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Figure 6.7: Jeffcott-rotor model, fixed gain, Ω=50 rad/s, u=0.005
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Figure 6.8: Flexible hub model response at Ω=60 rad/s, u=0, ∆G=0, ∆H=0
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Figure 6.9: Flexible hub model response at Ω=80 rad/s, u=0, ∆G=0, ∆H=0
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Figure 6.10: Flexible hub model response at Ω=80 rad/s, u=0, ∆G=500, ∆H=0
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Figure 6.11: Flexible hub model response at Ω=80 rad/s, u=0, ∆G=1500, ∆H=0
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method’s ability to deal with the synchronous disturbance in the plant. The mass imbalance

u is located at the midspan of the shaft. Figure 6.12 shows the effect of the mass imbalance

on a system with Ω=70 rad/s, i.e. in the sub-critical speed region. Next, on Figure 6.13

the response is shown at Ω=80 rad/s (supercritical region), with the ADR scheme inactive,

that is, with ∆G=0 and ∆H=0. The unstable response is due to the rotordynamic insta-

bility as a result of internal damping. Figure 6.11 shows how the synchronous disturbance

is canceled with the ADR scheme by using the Hp part of the ADR. Note that on Figures

6.14 and 6.15 the ADR controller is activated at 1 second in order to avoid effects from the

initial transients. The same method (i.e. Hp only) is used when the rotor is operating in the

supercritical region, as shown on Figure 6.15; the internal damping still drives the response

unstable. Figures 6.14 and 6.15 show the disturbance rejection part of the controller is

successful in rejecting the synchronous disturbance. Also, Figures 6.10 and 6.11 show that

the stabilization component of the controller is also effective. The combined effect of both

Gp and Hp is shown on Figures 6.16 and 6.17, which reflect stable response even at rotor

speeds well above the critical value. Here both internal damping as well as mass imbalance

is acting on the model; hence the need for both stabilization and disturbance rejection. The

response is stable at the supercritical speed of Ω=80 rad/s and, additionally, the same gains

(∆G and ∆H) can be successfully used at even higher speed (Ω=120 rad/s) showing the

robustness of the adaptive control scheme.

Fixed-gain controller results

The fixed-gain controller was developed with known model parameters, such as running

speed, internal damping. The stable response is shown on Figure 6.18. Increased internal

damping is driving the model unstable as the fixed gain controller is not able to stabilize
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Figure 6.12: Flexible hub model response at Ω=70 rad/s, u=0.005, ∆G=0, ∆H=0
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Figure 6.13: Flexible hub model response at Ω=80 rad/s, u=0.005, ∆G=0, ∆H=0
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Figure 6.14: Flexible hub model response at Ω=70 rad/s, u=0.005, ∆G=0, ∆H=100
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Figure 6.15: Flexible hub model response at Ω=80 rad/s, u=0.005, ∆G=0, ∆H=100
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Figure 6.16: Flexible hub model response at Ω=80 rad/s, u=0.005, ∆G=1500, ∆H=100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

D
is

pl
ac

em
en

t, 
[m

m
]

Simulation time [s]

Shaft X
Rim X

Figure 6.17: Flexible hub model response at Ω=120 rad/s, u=0.005, ∆G=1500, ∆H=100
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Figure 6.18: Flexible hub model, fixed gain, at Ω=80 rad/s, u=0.0

the response, shown on Figure 6.19. Also, when disturbance is introduced, such as mass

imbalance, the fixed-gain controller can’t stabilize the system, as shown on Figure 6.20.

6.3 Flexible shaft model results

Internal damping

Figure 6.21 shows the stable response when the rotor speed is below the first critical

speed and no internal damping is acting on the model. Similarly, Figure 6.22 also shows

a stable response although in this case internal damping is present but the rotor speed is

subcritical. Since the rotor speed is below the first critical, the internal damping is not

causing rotordynamic instability. As shown on Figure 6.23 the increasing speed enables

the internal damping to destabilize the system. In order to counter the rotordynamic
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Figure 6.19: Flexible hub model, fixed gain, at Ω=80 rad/s, u=0.0, increased cH
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Figure 6.20: Flexible hub model, fixed gain, at Ω=80 rad/s, u=0.005, increased cH
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instability, the ADR scheme has been developed and applied as described earlier. With a

choice of ∆G=50 or ∆G=100 stable response can be observed, which is shown on Figures

6.24 and 6.25, respectively. The exact value of ∆G is of secondary importance in this case,

as it can be ’fine-tuned’ to give the desired response parameters (overshoot, settling time,

etc.). In this case the range of appropriate gain is quite large, in the order of magnitudes.

Mass imbalance

Next, the effect of mass imbalance is being considered on the basic rotor system. A

constant mass imbalance is simulated. The mass imbalance is located in the bearing mid-

span, at node 44. The model is capable of handling several separate mass imbalances, each

located at different nodes of the model and at different relative phase angles. In this work

a single mass imbalance is being considered.

As it is widely known, the effect of a static mass imbalance is a sinusoidal force of

synchronous frequency. The first run of simulation is shown on Figure 6.26 and 6.27 with no

adaptive control (∆G=0 and ∆H=0), where the effect of mass imbalance can be observed for

various imbalance values. The result is a persistent disturbance which does not decay over

time. Figure 6.28 shows the suppressed synchronous response after the ADR disturbance

rejection part (Hp) has been activated at Ω=150 rad/s with no internal damping acting on

the system.

Mass imbalance and internal damping

As the internal damping terms are included in the model output (Cx and in turn, ey,

as shown in Eqns. 4.21 to 4.24), it is difficult to separate the two simple cases (i.e. internal

damping or mass imbalance alone) therefore the most general case will be considered next.

Internal damping (ζ=0.01) and mass imbalance (φ44=0.005) is being combined in the next
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Figure 6.21: Flexible shaft model response at Ω=120 rad/s, ζ=0, u=0, ∆G=0, ∆H=0
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Figure 6.22: Flexible shaft model response at Ω=150 rad/s, ζ=0, u=0, ∆G=0, ∆H=0
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Figure 6.23: Flexible shaft model response at Ω=150 rad/s, ζ=0.01, u=0, ∆G=0, ∆H=0
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Figure 6.24: Flexible shaft model response at Ω=150 rad/s, ζ=0.01, u=0, ∆G=50, ∆H=0
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Figure 6.25: Flexible shaft model response at Ω=150 rad/s, ζ=0.01, u=0, ∆G=100, ∆H=0
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Figure 6.26: Flexible shaft model response at Ω=150 rad/s, ζ=0, u=0.01, ∆G=0, ∆H=0
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Figure 6.27: Flexible shaft model response at Ω=150 rad/s, ζ=0, u=0.005, ∆G=0, ∆H=0
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Figure 6.28: Flexible shaft model response at Ω=150 rad/s, ζ=0, u=0.005, ∆G=0,
∆H=1000
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Figure 6.29: Flexible shaft model response at Ω=150 rad/s, ζ=0.01, u=0.005, ∆G=0, ∆H=0

series of simulations. As shown on Figure 6.29, the rotordynamic imbalance is very strong

when the two effect co-exist; the rotor response grows unstable almost immediately with no

adaptive control (∆G=0 and ∆H=0). As Figure 6.30 shows the introduction of both parts

of the ADR scheme (Gp and Hp) helps to reach stable response as well as rejecting some

of the persistent disturbances with the proper selection of gains.

Fixed-gain controller results

In order to better emphasize the results from the non-controlled case as well as the

adaptive controller, a fixed-gain controller was developed for the flexible shaft model. This

output-feedback controller was designed with the internal damping known beforehand. To

show how the fixed-gain controller performs in certain scenarios, the internal damping was

changed and the controller response is investigated. The fixed-gain controller as developed

with the damping ratio ζ=0.01 and the stable response is shown on Figure 6.31. As expected
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Figure 6.30: Flexible shaft model response at Ω=150 rad/s, ζ=0.01, u=0.001, ∆G=50,
∆H=25

the response is stable since the internal damping and the running speed matches the value

this controller was designed for. Figure 6.32 shows the unstable response of the fixed-gain

controller when the internal damping is increased but the gains have not been changed from

the original values. As expected, the response grows unstable after a time. Small increase

in ζ from ζ=0.01 to ζ=0.05 results in unstable response in shorter time. Overall it is shown

that a fixed-gain controller is unable to properly stabilize a system in which the internal

damping is changed; running speed is increased or mass imbalance acting on the system as

shown on Figure 6.33.
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Figure 6.31: Flexible shaft model with fixed gain, Ω=150 rad/s, ζ=0.01, u=0
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Figure 6.32: Flexible shaft model with fixed gain, Ω=150 rad/s, ζ=0.05, u=0
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Figure 6.33: Flexible shaft model with fixed gain, Ω=150 rad/s, ζ=0.05, u=0.001
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Chapter 7

Conclusions and Future Work

The research presented in this dissertation provides an investigation of using adaptive

control method to suppress rotordynamic instability and synchronous disturbance. The

Adaptive Disturbance Rejection control scheme was used to stabilize rotors with persistent

synchronous, sinusoidal disturbance represented by constant mass imbalance. There were

three different rotor models developed, each with increasing complexity. First a simple

Jeffcott-rotor was investigated, then a rigid rotor with a flexibly connected outer rim and

finally a flexible shaft by using finite element analysis results. The internal damping in

each of the three models was modeled as a simple viscous damping. The modeled rotors

were supported by a pair of radial AMBs described by their linearized model. The power

amplifier and circuitry dynamics were also included.

The Jeffcott-rotor model is a relatively simple one with 2 degrees-of-freedom. The ADR

scheme was successfully used to stabilize the system as well as to reduce the synchronous

vibrations due to the static imbalance. The Jeffcott-rotor model also satisfies the exact

conditions for Strict Positive Realness. The second model is a rigid rim attached to a rigid

shaft by a flexible hub, as analyzed next. For practical reasons a reduced-order observer was

developed to estimate the rim positions. The ADR scheme was successfully used to stabilize

the system as well as to reduce the synchronous vibrations due to the static imbalance.

This model also satisfies the conditions for Strict Positive Realness. The third model was

a flexible shaft represented by a 73-node lumped-mass parameter model where the flexible

mode shapes and eigenfrequencies were obtained from finite element analysis. It was found
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that by modifying the ADR algorithm this model can be successfully stabilized. As the

internal damping acting on the system dynamics in an indirect fashion, the corresponding

output matrix had to be shaped in a way which drives Gp in the required manner. On the

other hand, the effect of static mass imbalance is directly tied into the system dynamics,

requiring an output matrix laid out similarly to the original one. It was shown that even

though the flexible shaft model was not SPR (some zeros in the open-loop transfer function

were positive), the model worked well and the ADR scheme was able to stabilize the system

and reject the persistent disturbances by using a modified output matrix. This method of

output redefinition is very much similar to Matras’ earlier works.

A fixed-gain baseline controller has been developed for each model in order to better

illustrate the effectiveness of the adaptive method. As expected, the fixed-gain controller is

unable to stabilize the system when the model parameters change or external disturbance

is introduced.

In order to gain more insight from the application of ADR to rotordynamic instability

and synchronous disturbance, additional research and work should be conducted, such as:

• Investigation of the effectiveness of disturbance rejection with mass imbalance in more

than one plane, i.e. several masses mounted on the flexible shaft in different node

locations and different relative phase angles.

• Experimental verification of the results obtained from the flexible shaft and flexible

hub models.

• Development of finite element model to investigate the effectiveness of ADR on real

rotor structures assembled from several parts and replacing the cross-coupled stiffness

with cross-coupled moments according to the newest observations.
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• Investigation the effect of different linear and nonlinear expressions for the internal

damping models.
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Appendix A

Flexible shaft model calculation details
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Appendix B

MATLAB code listing for jeff1.m

%

% jeff1.m - simple Jeffcott rotor with internal damping and

% mass imbalance

%

clc;

clear all;

format compact;

format short g;

diary off;

% AMB parameters

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

ib = 1.0;

% AMB position stiffness

Kx = Ag*N*N*ib*ib*mu0/(d*d*d);

% AMB current stiffness

Ki = Ag*N*N*ib*mu0/(d*d);

% mass [kg]

m=10;

%internal damping

%ci=4.4158; % critical value for w=1000; m=1

ci=60.0; % critical value for w=50; m=10

ci=0.0;%5;

% running speed [rad/s]

w=50;

% static imbalance [kgm]
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imb = 0.001;

% sampling frequency [Hz]

ws = 5000;

dt = 1/ws;

t_end = 5.0;

t1 = 0;

steps = t_end/dt;

q = zeros(4,1);

% initial conditions

% % q(1) = 0.5e-3;

% % q(2) = -1.2e-3;

% simple PD controller

Kp= -1000;

Kd= -5;

icx=0;

icy=0;

xx = zeros(steps,1);

yy = zeros(steps,1);

tt = zeros(steps,1);

A=[zeros(2,2), eye(2,2);

(Kx+(Ki*Kp))/m, -w*ci/m, ((Ki*Kd)-ci)/m,0;

w*ci/m, (Kx+(Ki*Kp))/m, 0, ((Ki*Kd)-ci)/m];

eig(A)

nd = 3;

b = [0,0; 0,0; 1,0; 0,1];

Gp = zeros(2,2);

Hp = zeros(2,nd);
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% gain for Gp

DG = 0;

% gain for Hp

qq = 500; %%1000; %250; %5000;

DH = qq; %*eye(nd,nd);

% output matrix

Cx = [1,0,1,0; 0,1,0,1];

%Cx = [.01,0,2,0; 0,.01,0,2];

%Cx = [0,0,1,0; 0,0,0,1];

%Cx = [1,0,0,0; 0,1,0,0];

%Cx = [-1,-1,-1,-1; -1,-1,-1,-1];

u=[0;0];

phid = zeros(nd,steps);

imbx = zeros(steps,1);

imby = zeros(steps,1);

wd=w;

%wd=100;

for k=1:steps

tt(k)=dt*(k-1);

imbx(k) = w*w*imb*cos(wd*2.0*pi*dt*k);

imby(k) = w*w*imb*sin(wd*2.0*pi*dt*k);

end;

%wdp=2*wd/(nd-1);

wdp=wd/(nd-1);

for k=1:steps

for n=1:((nd-1)/2)

phid(n,k) = cos(((wd)-((n-1)*wdp))*dt*k*2.0*pi);

phid(((nd-1)/2)+n,k)= sin(((wd)-((n-1)*wdp))*dt*k*2.0*pi);

end;

phid(nd,k) = 1.0;

end;

disp(’Simulation is running...’);
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Fx=0;

Fy=0;

dx_r=0;

dy_r=0;

tic;

cxx=zeros(2,4);

cxx(:,3:4) = ones(2,2);

for k=1:steps

x_old=q(1);

y_old=q(2);

q(3) = dx_r;

q(4) = dy_r;

[t,Q] = ode45(@jeff1_ode,[t1, t1+dt],q,[],...

ci,w,m,u,b,Fx,Fy,imbx(k),imby(k));

q = Q(size(t,1),:)’;

t1 = t1+dt;

dx_r = q(3);

dy_r = q(4);

% manual differentiation for velocity calculation

q(3)=(q(1)-x_old)/dt;

q(4)=(q(2)-y_old)/dt;

% simple PD control for current to AMB

icx = (Kp*q(1))+(Kd*q(3));

icy = (Kp*q(2))+(Kd*q(4));

Fx = (Kx*q(1))+(Ki*icx);

Fy = (Kx*q(2))+(Ki*icy);

xx(k)=q(1);

yy(k)=q(2);

ey = Cx*q;
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Gp = Gp+(-ey*(ey’)*dt*DG);

if(t1>1)

eyy=Cx*q;

% eyy = [-q(3); -q(4)];

% eyy = [q(1); q(2)];

% eyy =cxx*q;

Hp = Hp+(-eyy*(phid(:,k)’)*dt*DH);

end;

u=(Gp*ey)+(Hp*phid(:,k));

if(mod(k,ws)==0)

disp(k);

end;

end;

toc;

figure;

plot(tt(1:k),xx(1:k),’b-’,tt(1:k),yy(1:k),’r-’);

%axis([0 t1 -d d]);

%axis([0 t1 -0.1 0.1]);

%axis([0 t1 -5e-5 5e-5]);

legend(’x’,’y’);

title(strcat(’\omega=’,num2str(w),’ \Delta_{G}=’,num2str(DG),...

’ \Delta_{H}=’,num2str(qq)));

disp(’done.’);

% A=[zeros(2,2), eye(2,2);

% (Kx+(Ki*Kp))/m, -w*ci/m, ((Ki*Kd)-ci)/m,0;

% w*ci/m, (Kx+(Ki*Kp))/m, 0, ((Ki*Kd)-ci)/m];

%

% disp(’After adaptation:’);

% eig(A+(b*Gp*Cx))

%

% the end

%
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Appendix C

MATLAB code listing for jeff1ode.m

%

% jeff1_ode.m dynamics for the Jeffcott-rotor model

%

function dq = jeff1_ode(t,q,ci,w,m,u,b,Fx,Fy,imbx,imby)

dq = zeros(4,1); %#ok<MFAMB>

dq(1) = q(3);

dq(2) = q(4);

dq(3) = ((Fx-(ci*q(3))-(w*ci*q(2)))/m)+imbx;

dq(4) = ((Fy-(ci*q(4))+(w*ci*q(1)))/m)+imby;

% additional input from ADR

dq = dq+(b*u);

return;

%

% the end

%
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Appendix D

MATLAB code listing for flexhub10.m

%

% flexhub10.m

%

% Simulation of flexible hub with internal damping

%

clear all;

clc;

% rotational speed [rad/s]

w = 70; %80; % 80 crit.

% disturbance frequency [Hz]

wd = w;

% static imbalance [kg*m]

imb = 0.005;

DG = 1500*1e6;%-1000; %100;%10000;

nd = 3; % number of members of disturbance vector

qq = -100; %-100;

DH = qq; %*eye(nd,nd);

%

% sampling frequency [Hz]

%

%ws = 10000;

ws = 5000;

dt = (1.0/ws);

% simulation time [s]

t_end = 5.0;
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%

% AMB properties

%

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

i_b = 1.0;

%

% linearized AMB parameters

%

%K = Ag*N*N*mu0/4.0;

% position stiffness

Kd = Ag*N*N*i_b*i_b*mu0/(d*d*d);

% current stiffness

Kc = Ag*N*N*i_b*mu0/(d*d);

%

% PD controller gains

%

Kp = 1000;

Kd = 10;

%

% Rotor properties

%

mS = 0.238;

mR = 0.567;

cH = 4.84; %1.84;

kH = 2000; %26994;

q = zeros(8,1);

%

% initial conditions of shaft (xS,yS)

% (for the shaft it should not be larger than the AMB airgap (2 mm)

%

q(1) = 1.5e-3;
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q(2) = -1.0e-3;

%

% initial conditions for the Rim position (xRr,yRr) and for the

% estimated Rim position (xRe,yRe)

%

xRe = q(1);

yRe = q(2);

Gp = zeros(2,2);

%dGp = zeros(2,2);

Hp = zeros(2,nd);

%dHp = zeros(2,nd);

steps = (t_end/dt);

i_cx = 0;

i_cy = 0;

kk = [(-2*Kc/mS), 0; 0,(-2*Kc/mS)];

B = [zeros(4,2); kk; zeros(2,2)];

clear kk;

KK = [Kp,0,0,0,Kd,0,0,0; 0,Kp,0,0,0,Kd,0,0];

A1 = [(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS, (w*cH)/mS;

(w*cH)/mS,(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS;

kH/mR,(w*cH)/mR,(-kH)/mR,(-w*cH)/mR;

(-w*cH)/mR,kH/mR,(w*cH)/mR,(-kH)/mR];

A2 = [-cH/mS,0,cH/mS,0;

0,-cH/mS,0,cH/mS;

cH/mR,0,-cH/mR,0;

0,cH/mR,0,-cH/mR];

A = [zeros(4,4), eye(4,4); A1, A2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% reduced order state-estimator for Rim position and velocity

%
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AA = (A+(B*KK));

F = eye(4,4);

%tmp = min(real(eig(AA)));

F(1,1) = -1000; %2*tmp;

F(2,2) = -2000; %2.1*tmp;

F(3,3) = -3000; %2.2*tmp;

F(4,4) = -4000; %2.3*tmp;

L = eye(4,4);

C = [eye(2,2), zeros(2,6);

zeros(2,4), eye(2,2), zeros(2,2)];

%disp(’Rank of controllability matrix F|L (min.4):’);

%rank(ctrb(F,L))

%disp(’Eigenvalues of A+(B*KK) (state feedback + linear AMB):’);

eig(A+(B*KK))

%

% solve the Lyapunov-equation for T in (T*(A+(B*KK)) - F*T = L*C)

%

T = lyap(-F,AA,-(L*C));

%disp(’Error in solution of Lyapunov equation (should be small):’);

(T*(AA))-(F*T)-(L*C)

TB = T*B;

invCT = inv([C;T]);

z = zeros(4,1);

dz = zeros(4,1);

gp_tmp = [0; 0];

hp_tmp = [0; 0];

% set up storage variables for plotting

DTpos_xS = zeros(steps,1);

DTpos_yS = zeros(steps,1);

DTpos_xRr = zeros(steps,1);
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DTpos_yRr = zeros(steps,1);

DTpos_xRe = zeros(steps,1);

DTpos_yRe = zeros(steps,1);

DTgp = zeros(steps,1);

DThp_x = zeros(steps,1);

DThp_y = zeros(steps,1);

DTctr_x = zeros(steps,1);

DTctr_y = zeros(steps,1);

DTphid = zeros(steps,nd);

DTtt = zeros(steps,1);

phid = zeros(nd,steps);

for k=1:steps

tmpx = wd*2.0*pi*dt*k;

imbx(k) = w*w*imb*cos(tmpx);

imby(k) = w*w*imb*sin(tmpx);

end;

clear tmpx;

wdp=wd/(nd-1);

for k=1:steps

for n=1:((nd-1)/2)

phid(n,k) = cos((wd-((n-1)*wdp))*dt*k*2.0*pi);

phid(((nd-1)/2)+n,k)= sin((wd-((n-1)*wdp))*dt*k*2.0*pi);

end;

phid(nd,k) = 1.0;

end;

disp(’Simulation is running...’);

t1 = 0;

xSdot_real = 0;

ySdot_real = 0;

xRrdot_real = 0;

yRrdot_real = 0;

%

% main simulation loop

%
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tic;

for k=1:steps

%

% simple PD control

%

i_cx = (Kp*q(1))+(Kd*q(5));

i_cy = (Kp*q(2))+(Kd*q(6));

i_cx = i_cx+gp_tmp(1)+hp_tmp(1);

i_cy = i_cy+gp_tmp(2)+hp_tmp(2);

Fx = (Kd*q(1))+(Kc*i_cx)+imbx(k);

Fy = (Kd*q(2))+(Kc*i_cy)+imby(k);

% restore real velocities for ODE()

q(5) = xSdot_real;

q(6) = ySdot_real;

q(7) = xRrdot_real;

q(8) = yRrdot_real;

[t,Q] = ode45(@flexhub_dyn,[t1,t1+dt],q,[],mS,mR,cH,kH,w,Fx,Fy);

xS_old = q(1);

yS_old = q(2);

xRr_old = q(3);

yRr_old = q(4);

q = Q(size(t,1),:)’;

t1 = t1+dt;

xS = q(1);

yS = q(2);

xRr = q(3);

yRr = q(4);

%

% velocities obtained from ODE solution

%
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xSdot_real = q(5);

ySdot_real = q(6);

xRrdot_real = q(7);

yRrdot_real = q(8);

%

% velocities calculated manually from measured positions

%

xSdot = (q(1)-xS_old)/dt;

ySdot = (q(2)-yS_old)/dt;

xRrdot = (q(3)-xRr_old)/dt;

yRrdot = (q(4)-yRr_old)/dt;

dz = (F*z)+(TB*[i_cx;i_cy])+(L*[q(1); q(2); q(5); q(6)]);

z = z+(dz*dt);

xRe_old = xRe;

yRe_old = yRe;

ztx = invCT*[q(1);q(2);q(5);q(6);z];

xRe = ztx(3);

yRe = ztx(4);

% xRedot = ztx(7);

% yRedot = ztx(8);

xRedot = (xRe-xRe_old)/dt;

yRedot = (yRe-yRe_old)/dt;

%

% ADR parts calculated here (xRe and yRe are estimated)

%

% if(t1>0.5)

% Gp = Gp+(((-[xRr; yRr])*[xRr; yRr]’)*DG)*dt;

% gp_tmp = Gp*[xRr; yRr];

Gp = Gp+(((-[xRe; yRe])*[xRe; yRe]’)*DG)*dt;

gp_tmp = Gp*[xRe; yRe];

% Gp = Gp+(((-[xSdot; ySdot])*[xSdot; ySdot]’)*DG)*dt;

% gp_tmp = Gp*[xSdot; ySdot];

% end;

if(t1>1)
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% Hp = Hp+((-[xRe; yRe])*(phid(:,k)’)*DH)*dt;

% Hp = Hp+((-[xRr; yRr])*(phid(:,k)’)*DH)*dt;

% Hp = Hp+((-[xS; yS])*(phid(:,k)’)*DH)*dt;

Hp = Hp+((-[xSdot; ySdot])*(phid(:,k)’)*DH)*dt;

hp_tmp = Hp*phid(:,k);

end;

% u = (Gp*[xRe; yRe])+(Hp*phid(:,k));

DTpos_xS(k) = q(1)*1000.0;

DTpos_yS(k) = q(2)*1000.0;

% real Rim positions from mechanical model

DTpos_xRr(k) = q(3)*1000.0;

DTpos_yRr(k) = q(4)*1000.0;

% estimated Rim positions from estimator

DTpos_xRe(k) = xRe*1000.0;

DTpos_yRe(k) = yRe*1000.0;

DThp_x(k) = hp_tmp(1);

DThp_y(k) = hp_tmp(2);

DTctr_x(k) = i_cx;

DTctr_y(k) = i_cy;

DTtt(k) = t1;

if(mod(k,ws)==0)

disp(k);

end;

end;

disp(’complete’);

beep;

toc;

figure;

%plot(DTtt,DTpos_xS,DTtt,DTpos_yS,DTtt,DTpos_xRr,DTtt,DTpos_yRr);

plot(DTtt,DTpos_xS,DTtt,DTpos_xRr);

axis([0, t_end, -(d*1000.0), d*1000.0]);

tit = strcat(’\Omega=’,num2str(w),’ \Delta_{G}=’,...

num2str(DG),’ \Delta_{H}=’, num2str(qq),’ n_{d}=’,num2str(nd),...

’ u=’,num2str(imb));

title(tit);

ylabel(’Displacement, [mm]’);
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xlabel(’Simulation time [s]’);

legend(’Shaft X’,’Rim X’);

%

% the end

%
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Appendix E

MATLAB code listing for flexhubdyn.m

%

% Rigid shaft and flexibly attached rim equations of motion

%

function qdot = flexhub_dyn(t,q,mS,mR,cH,kH,w,Fx,Fy)

qdot = zeros(8,1);

%

% 4-DOF model, only lateral movement; assumes symmetric AMB operation

%

a1 = ((q(5)-q(7))+(w*(q(2)-q(4))));

a2 = ((q(6)-q(8))-(w*(q(1)-q(3))));

qdot(1) = q(5);

qdot(2) = q(6);

qdot(3) = q(7);

qdot(4) = q(8);

qdot(5) = ((kH*(q(3)-q(1)))-(2.0*Fx)-(a1*cH))/mS;

qdot(6) = ((kH*(q(4)-q(2)))-(2.0*Fy)-(a2*cH))/mS;

qdot(7) = ((kH*(q(1)-q(3)))+(a1*cH))/mR;

qdot(8) = ((kH*(q(2)-q(4)))+(a2*cH))/mR;

return;

%

% the end

%
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Appendix F

MATLAB code listing for FlexDamp.m

%

% George T. Flowers and Andras Simon

%

% Flex_Damp.m

%

%**********************************************************************

% Program to simulate a flexible rotor with internal damping and

% supported by two radial magnetic bearings.

%**********************************************************************

%

% this script is using the FLEX_SHAFT2 Ansys model and generated files

%

clc;

clear all;

format compact;

format short g;

%

% 1st crit. speed: 39 rad/s

% 2nd crit. speed: 96 rad/s

%

% simulation time [s]

%

t_end = 10;

global a1 ac1 b1;

global nm zeta;

% running speed [rad/s]

global w;

w = 200;

wd = w;

% range multipliers for phid[] components (lower and upper limit)
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pll=0.0; %0.05

plu=1.0; %1.0

% ADR gain

% % D3 = 500*eye(4,4);

DG = 150; % 50; %50;

% number of disturbances taken into account (MUST be odd number)

global nd

nd=3; %101;

%nd=51;

nd=71;

qq=400; %<-----

DH = qq;

%DH = qq*eye(nd,nd);

% for k=1:nd

% DH(k,k)=DH(k,k)*k;

% end;

ss = 4;

% ADR stabilizing part

Gp = zeros(ss,ss);

% ADR disturbance rejection part

Hp = zeros(ss,nd);

% time when Gp is activated [s]

tgp = 1.0;

% time when Hp is activated [s]

thp = 1.0;

% internal damping ratio (best leave at 1%)

zeta = 0.0;

zeta = 0.01;

%

% setting up state-space model and AMB parameters (Model.m)

%
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Model;

q = zeros((4*nm)+4,1);

%initial bearing positions

q(1) = 0.0005;

q(5) = -0.0001;

pcon = eig(a1);

%

% poles for state f/b (change real parts of eig(a1))

%

%

for k=1:((4*nm)+4)

if(real(pcon(k))>0)

pcon(k) = -pcon(k);

end;

if(abs(real(pcon(k)))<1.0e-5)

pcon(k) = 0+(imag(pcon(k))*sqrt(-1));

end;

end;

% state feedback for model *without* internal damping

Kc = place(a1,b1,pcon);

Kc(1:4,(4*nm)+1:(4*nm)+4) = 0;

%Kc(1:4,11:12)=0;

%Kc(1:4,15:16)=0;

a11 = a1-(b1*Kc);

ac1 = ac-(b1*Kc);

% eig(ac1)

% return;

%

% sampling frequency [Hz]

%

%ws = 10000.0;

ws = 5000.0;

dt = 1.0/ws;
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t1 = 0.0;

steps = (t_end-t1)/dt;

%hp_mat = zeros(ss,nd,steps);

%gp_mat = zeros(ss,ss,steps);

cx1 = [0,0, om(3), om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0,-om(3),-om(4);

0,0, om(3), om(4), 0,0,-om(3),-om(4)];

cx2 = [0,0, om(3), om(4), 0,0,-om(3),-om(4);

0,0, om(3), om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0,-om(3),-om(4)];

cx = zeta*[w*cx1,cx2,zeros(4,4)]; % pad it with zeros to fit size

cxx = [w*cx1,cx2,zeros(4,4)];

clear cx1 cx2

Kcxx = zeros(4,20);

% how many imbalances are accounted for

ni = 1;

% imbalance node locations (for each imbalance)

iml = ones(ni,1)*37;

% imbalance values (for each imbalance)

imm = zeros(ni,1);

% imbalance phase shifts (for each imbalance)

imph = zeros(ni,1);

% imbalance matrix

phi_imb = zeros(nn,ni);

imphase = zeros(ni,1);

% node locations where imbalances are located (1 per node)

iml(1) = 37;

%iml(2) = 30;

% individual imbalances [kg-m]
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%imm(1) = 2e-3; %1e-2;

%imm(1) = 1e-1; % for w=10

%imm(1) = 1e-2; % for w=1000

imm(1) = 5e-3; %<-----

% phase shift of imbalances [degrees]

imph(1) = 0;

%imph(2) = 90;

for i=1:ni

phi_imb(iml(i),i)=imm(i); % place imbalances into imbalance matrix

imph(i) = imph(i)*(pi/180.0); % convert [degree] -> [rad]

end;

imbtmp = (phi’)*phi_imb*w*w;

imbx = zeros(nm,steps);

imby = zeros(nm,steps);

imbal_angle_cos = zeros(ni,steps);

imbal_angle_sin = zeros(ni,steps);

phid = zeros(nd,steps);

tt = zeros(steps,1);

for k=1:steps

tmp_imb = (wd*2.0*pi*dt*k*ones(ni,1))+imph;

imbal_angle_cos(:,k) = cos(tmp_imb);

imbal_angle_sin(:,k) = sin(tmp_imb);

tt(k) = dt*k;

% imbalance force in X direction

imbx(:,k) = imbtmp*imbal_angle_cos(:,k);

% imbalance force in Y direction

imby(:,k) = imbtmp*imbal_angle_sin(:,k);

end;

wdp=(plu-pll)*wd/(nd-1);

for k=1:steps

for n=1:((nd-1)/2)

tmpx = ((pll*wd)+((n-1)*wdp))*dt*k*2.0*pi;

% tmpx = ((plu*wd)-((n-1)*wdp))*dt*k*2.0*pi;
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phid(n,k) = cos(tmpx);

phid(((nd-1)/2)+n,k)= sin(tmpx);

end;

phid(nd,k) = 1.0;

end;

clear tmpx;

%QQ = zeros((4*nm)+4,steps);

ey = zeros(4,1);

eyy = zeros(4,1);

eyyd = zeros(4,1);

x_old = zeros(nm,1);

y_old = zeros(nm,1);

dx_real = zeros(nm,1);

dy_real = zeros(nm,1);

dx_calc = zeros(nm,1);

dy_calc = zeros(nm,1);

pos_bear = zeros(nm,steps);

pos_prox = zeros(nm,steps);

u = zeros(4,1);

cvprox = cprox;

cvprox(:,9:16) = cprox(:,1:8);

cvvprox = zeros(4,20);

cvvprox(:,9:16) = cprox(:,1:8);

%ccc = zeros(20,4);

%cvprox(:,1:8) = zeros(4,8);

disp(’Simulation is running...’);

tic;

cx3 = zeros(4,20);

cx3(:,17:20)=ones(4,4);

for k=1:steps
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% save previous positions for manual differentiation

x_old = q(1:4);

y_old = q(5:8);

% restore real velocities for ODE45()

q(9:12) = dx_real;

q(13:16) = dy_real;

[t,Q] = ode45(@flex_ode_L1,[t1, t1+dt],q,[],...

b1,ac1,u,imbx(:,k),imby(:,k));

q = Q(size(t,1),:)’;

t1 = t1+dt;

% save real velocities (from ODE solution)

dx_real = q(9:12);

dy_real = q(13:16);

% calculate actual velocities from position inputs

% by using simple differentiation

q(9:12) = (q(1:4)-x_old)/dt;

q(13:16) = (q(5:8)-y_old)/dt;

% positions at the prox. sensors

pos_prox(:,k) = cprox*q;

% positions at the bearings

pos_bear(:,k) = cbear*q;

% ADR stabilizing part

if(t1>tgp)

%ey = cprox*q;

ey = cx*q;

Gp = Gp+((-ey)*(ey’)*dt*DG);

% gp_mat(:,:,k) = Gp;

end;

% ADR disturbance rejection part

if(t1>thp)

eyy = cvprox*q; %100

% eyy = cprox*q; %100

118



% eyy = cvvprox*q;

Hp = Hp+((-eyy)*(phid(:,k)’)*dt*DH);

% hp_mat(:,:,k) = Hp;

end;

% actual control input from ADR for next cycle

u = (Gp*ey)+(Hp*phid(:,k));

if(mod(k,ws)==0)

disp(k);

end;

% if(max(pos_prox(:,k))>1 || min(pos_prox(:,k))<-1)

% disp(’Oooopssss...’); % if response grows unstable

% break;

% end;

end;

toc;

% plot X and Y positions at each bearing on a single figure

figure;

plot(tt(1:k),pos_prox(1,:),’b-’,tt(1:k),pos_prox(3,:),’r-’,...

tt(1:k),pos_prox(2,:),’k-’,tt(1:k),pos_prox(4,:),’g-’);

tit = strcat(’\Omega=’,num2str(w),’ \Delta_{G}=’,...

num2str(DG),’ \Delta_{H}=’, num2str(qq),’ n_{d}=’,num2str(nd),...

’ u=’,num2str(imm(1)));

title(tit);

legend(’x_{p1}’,’x_{p2}’,’y_{p1}’,’y_{p2}’);

axis([0 t1 -0.002 0.002]);

disp(’completed.’);

%

% the end

%
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Appendix G

MATLAB code listing for Model.m

%

% George T. Flowers and Andras Simon

%

% Model.m

%

%**********************************************************************

% This program sets up the state-space model of the flexible shaft with

% internal damping, various imbalances, supported by two radial AMB.

%

% This routine is called from Flex_Damp.m

%

%**********************************************************************

%

% this script is using the FLEX_SHAFT2 Ansys model and generated files

%

% running speed (rad/s)

global w;

% number of mode shapes from ANSYS solution

global nm;

nm = 4;

% internal damping ratio (best leave at 1%)

global zeta;

% node location of AMB 1 (right)

nb1 = 54;

% node location of AMB 2 (left)

nb2 = 34;

% node location of position sensors for AMB 1 (right)

np1 = 51;
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% node location of position sensors for AMB 2 (left)

np2 = 30;

% number of nodes in ANSYS model

nn = 73;

%

% Simulation model

%

% 4 inputs, 4 outputs, 4 modeshapes

%

% modal displacement matrix

phi = zeros(nn,nm); %#ok<NASGU>

% modal rotation matrix

psi = zeros(nn,nm); %#ok<NASGU>

% array of eigenfrequencies

om = zeros(nm,1);

% mass moment of inertia matrix

ainx = zeros(nn,nn);

% mass matrix

am = zeros(nn,nn);

%

% read ANSYS-generated files

%

massdata = load(’massdata2.dat’);

phi = load(’displace2.dat’); % nodal displacement matrix

psi = load(’rotate2.dat’); % nodal rotation matrix

omega = load(’omega2.dat’); % critical speeds in Hz

% trim psi and phi to the first 4 modeshapes

phi = phi(:,1:nm);

psi = psi(:,1:nm);

% fix ANSYS results for rigid body modes

omega(1,2) = 0.0;

omega(2,2) = 0.0;
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%**********************************************************************

% AMB properties begin here

%**********************************************************************

% permeability of air, H/m

mu = 4*pi*1e-7;

% parameters for AMB 2 (left)

ld = 1.25e-3; % airgap [m]

lnt = 160; % number of turns on one leg

laa = 3.2258e-4; % face area [m^2]

lka = 0.45; % amplifier gain (Volt to Amps)

% bias voltages/currents for Left AMB

%lvb = [0.85, 0.2, 0.5, 0.5];

lvb = [0.5, 0.5, 0.5, 0.5];

lib = lvb*lka;

% bearing constant

lk1 = (mu*laa*(2*lnt)^2.0)/4.0;

% amplifier bandwidth constants

lba1 = 2.87*1e6;

lba2 = 2700;

% lk2 is 1/tau (amplifier time constant)

lk2 = 2.0*pi*(lba2+(lba1*ld));

lk3 = lka*lk2;

% elastic stiffness, left AMB, at each coil and both modeshapes

% left AMB, for ib1...ib4, mode 1...nm

lKx = zeros(4,nm);

for j=1:4 % 4 currents top, bottom, right, left

for i=1:2 %...for rigid body modes only

lKx(j,i) = (2.0*laa*mu*((lnt*lib(j))^2)/(ld^3))*phi(nb2,i);

end;

end;

% left AMB current stiffness, for mode 1 and 2

lKi = zeros(nm,1);

for i=1:2

lKi(i) = (2.0*laa*mu*(lnt^2)/(ld^2))*phi(nb2,i);

end;

% parameters for AMB 1 (right)

rd = 1.25e-3; % airgap [m]
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rnt = 160; %number of turns on one leg

raa = 3.2258e-4; % face area [m^2]

rka = 0.45; % amplifier gain (V->A)

% bias voltages/currents

%rvb = [0.85, 0.2, 0.5, 0.5];

rvb = [0.5, 0.5, 0.5, 0.5];

rib = rvb*rka;

% bearing constant

rk1 = (mu*raa*(2*rnt)^2.0)/4.0;

% amplifier bandwidth constants

rba1 = 2.87*1e6;

rba2 = 2700;

% rk2 is 1/tau (amplifier time constant)

rk2 = 2.0*pi*(rba2+(rba1*rd));

rk3 = rka*rk2;

% elastic stiffness, right AMB, at each coil and both modeshapes

% right AMB, for ib1...ib4, mode 1...nm

rKx = zeros(4,nm);

for j=1:4 % 4 currents top, bottom, right, left

for i=1:2 %...for rigid body modes only

rKx(j,i) = (2.0*raa*mu*((rnt*rib(j))^2)/(rd^3))*phi(nb1,i);

end;

end;

%

% right AMB current stiffness, mode 1 and 2

rKi = zeros(nm,1);

for i=1:2

rKi(i) = (2.0*raa*mu*(rnt^2)/(rd^2))*phi(nb1,i);

end;

%**********************************************************************

% AMB properties end here

%**********************************************************************

%**********************************************************************

% Setting up A, B and C matrices for state-space model

%**********************************************************************

global a1 ac ac1 b1 cprox cbear; %#ok<NUSED,NUSED>

a = zeros((4*nm)+4,(4*nm)+4);
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a1 = zeros((4*nm)+4,(4*nm)+4);

ac = a1; %#ok<NASGU>

a2 = zeros((4*nm)+4,(4*nm)+4);

a3 = a2;

b1 = zeros((4*nm)+4,4);

% mass matrix (normalized)

mass = eye(2*nm,2*nm);

% stiffness matrix (from AMB Kx)

stiffkx = zeros(2*nm,2*nm);

% stiffness matrix (from AMB Ki)

stiffki = zeros(2*nm,4);

% stiffness matrix associated with internal damping

stiffcc = zeros(2*nm,2*nm);

% damping matrix

damp = zeros(2*nm,2*nm);

for i=1:nm,

% psi(:,i) = rotate(:,i); % extract psi (nodal rotation matrix)

% phi(:,i) = displace(:,i); % extract phi (nodal displacement matrix)

om(i) = 2.0*pi*omega(i,2); % critical speeds in rad/s

end

% mass (am) and inertia (ainx) values at each node location

for i=1:nn,

am(i,i) = massdata(i,2);

ainx(i,i) = massdata(i,3);

end

% total mass

%m = trace(am);

%clear omega;

%clear rotate;

%clear displace;

%clear massdata;

% form Gamma matrix
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%

gamm = (psi’)*ainx*(psi);

%clear ainx;

%clear psi;

% !!! check signs on gamma terms !!!

damp(1:nm,nm+1:(2*nm)) = -gamm(1:nm,1:nm)*w;

damp(nm+1:(2*nm),1:nm) = gamm(1:nm,1:nm)*w;

%

% stiffness matrix from internal damping

%

for i=1:nm,

stiffcc(i,i+nm) = w*zeta*om(i); %+

stiffcc(i+nm,i) = -w*zeta*om(i); %-

end

%

% stiffness matrix assoc. with position stiffness (Kx) of AMB

%

% rKx/lKx summed up in one direction, for both AMBs, rigid modes only

%

for i=1:nm

for j=1:2

tmp = ((rKx(1,i)+rKx(2,i))*phi(nb1,j));

stiffkx(i,j) = tmp + ((lKx(1,i)+lKx(2,i))*phi(nb2,j));

tmp = ((rKx(3,i)+rKx(4,i))*phi(nb1,j));

stiffkx(i+nm,j+nm) = tmp + ((lKx(3,i)+lKx(4,i))*phi(nb2,j));

end;

end;

%

% stiffness matrix assoc. with current stiffness (Ki) of AMB

%

for i=1:nm

stiffki(i,1) = rKi(i);

stiffki(nm+i,2) = rKi(i);

stiffki(i,3) = lKi(i);

stiffki(nm+i,4) = lKi(i);

end;

stiff2 = stiffkx + stiffcc;
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% build A matrix

for i=1:nm,

a(i+(2*nm),i)= -(om(i)^2);

a(i+(3*nm),i+nm) = -(om(i)^2);

end;

a2(1:(2*nm),((2*nm)+1):(4*nm)) = eye(2*nm,2*nm);

a2((2*nm)+1:(4*nm),1:(2*nm)) = inv(mass)*stiffkx(1:(2*nm),1:(2*nm));

a2((2*nm)+1:(4*nm),(2*nm)+1:(4*nm)) = -inv(mass)*damp;

a2((2*nm)+1:(4*nm),(4*nm)+1:(4*nm)+4) = inv(mass)*stiffki;

a3(1:(2*nm),((2*nm)+1):(4*nm)) = eye(2*nm,2*nm);

a3((2*nm)+1:(4*nm),1:(2*nm)) = inv(mass)*stiff2(1:(2*nm),1:(2*nm));

a3((2*nm)+1:(4*nm),(2*nm)+1:(4*nm)) = -inv(mass)*damp;

a3((2*nm)+1:(4*nm),(4*nm)+1:(4*nm)+4) = inv(mass)*stiffki;

for i=1:nm

a3(i+(2*nm),i+(2*nm))= -zeta*om(i);

a3(i+(3*nm),i+(3*nm))= -zeta*om(i);

end;

% a1 is the state matrix A *without* internal damping

a1 = a2 + a;

% ac is the state matrix Ac *with* internal damping included

ac = a3 + a;

% Current states

a1((4*nm)+1,(4*nm)+1) = -rk3;

a1((4*nm)+2,(4*nm)+2) = -rk3;

a1((4*nm)+3,(4*nm)+3) = -lk3;

a1((4*nm)+4,(4*nm)+4) = -lk3;

ac((4*nm)+1,(4*nm)+1) = -rk3;

ac((4*nm)+2,(4*nm)+2) = -rk3;

ac((4*nm)+3,(4*nm)+3) = -lk3;

ac((4*nm)+4,(4*nm)+4) = -lk3;

% input matrix B

b1((4*nm)+1,1) = rk3*(rib(1)+rib(2));
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b1((4*nm)+2,2) = rk3*(rib(3)+rib(4));

b1((4*nm)+3,3) = lk3*(lib(1)+lib(2));

b1((4*nm)+4,4) = lk3*(lib(3)+lib(4));

%

% output matrix C with proximitor positions (cprox)

cprox = zeros(4,(4*nm)+4);

for i=1:nm

cprox(1,i) = phi(np1,i);

cprox(2,nm+i) = phi(np1,i);

cprox(3,i) = phi(np2,i);

cprox(4,nm+i) = phi(np2,i);

end;

% output matrix C with bearing positions (cbear)

cbear = zeros(4,(4*nm)+4);

for i=1:nm

cbear(1,i) = phi(nb1,i);

cbear(2,nm+i) = phi(nb1,i);

cbear(3,i) = phi(nb2,i);

cbear(4,nm+i) = phi(nb2,i);

end;

%**********************************************************************

% A, B and C matrices are now completed for the state-space model

%**********************************************************************

return;

%

% the end

%
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Appendix H

MATLAB code listing for flexode.m

%

% flex_ode.m - describes the dynamics of the rotor system model

%

% called from Flex_Damp.m

%

function dq = flex_ode(t,q,b1,ac1,u,imbx,imby) %#ok<INUSL>

dq = (ac1*q)+(b1*u);

dq(9:16) = dq(9:16)+[imbx;imby];

return;

%

% the end

%
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Appendix I

ANSYS code listing for FlexShaft2.inp

/COM

/COM Flexible shaft model

/COM

/COM Long, slender steel shaft with two radial AMB and proximitors

/COM

/FILNAME,FLEX_SHAFT2,1

!number of nodes

nodes=73

!number of mode shapes to be calculated

shapes=10

! bearing 1 node

nb1=54

!bearing 2 node

nb2=34

! proximitor 1 node

np1=51

!proximitor 2 node

np2=30

!total shaft length [m]

lenT = 1.5

!distance of nodes

lenS=(lenT/(nodes-1))

! Pi constant

pi=acos(-1)
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! steel density [kg/m^3]

rho = 7800

! shaft radius [m]

rad=0.005

mTot = rad*rad*pi*lenT*rho

*DIM,masses,ARRAY,nodes,3

*DIM,phi_array,ARRAY,nodes,shapes

*DIM,psi_array,ARRAY,nodes,shapes

*DIM,w_vector,ARRAY,shapes,2

*DIM,tmp,ARRAY,nodes,1

*DO,var1,1,nodes,1

masses(var1,1) = var1

*ENDDO

/PREP7

/TITLE,Flexible shaft with 2 AMB

! Rotor properties

DENS,1,0.0

GXY,1,8.0E10

GYZ,1,8.0E10

GXZ,1,8.0E10

EX,1,2.0E11

EY,1,2.0E11

EZ,1,2.0E11

NUXY,1,0.284

NUYZ,1,0.284

NUXZ,1,0.284

! Elastic beams

ET,1,BEAM3

R,221,7.53828E-5,4.52204E-10,1.0
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! Rigid masses

ET,2,MASS21

! axis of symmetry is X

! solid slender shaft (S)

mS=mTot/(nodes-1)

IxS=(mS*rad*rad)/2.0

IyS=(mS*((4*rad*rad)+(lenS*lenS)))/12.0

IzS=IyS

! elements at shaft ends (E)

mE=mS/2.0

IxE=(mE*rad*rad)/2

IyE=(mE*((4*rad*rad)+(lenS*lenS/4)))/12.0

IzE=IyE

! mass at position sensors (P)

mP=0.1211

IxP=0.2072e-4

IyP=0.1196e-4

IzP=IyP

! mass at magnetic bearings (B)

mB=0.5414

IxB=0.2276e-3

IyB=0.1425e-3

IzB=IyB

R,1,mE,mE,mE,IxE,IyE,IzE

R,2,mS,mS,mS,IxS,IyS,IzS

R,3,mP,mP,mP,IxP,IyP,IzP

R,4,mB,mB,mB,IxB,IyB,IzB

! Coordinate system

CSYS,0,0,0,0

! Define nodes

N,1,0,0,0

NGEN,nodes,1,1,nodes,1,lenS,0,0

! End of node print
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! 2D Elastic beam elements

TYPE,1

MAT,1

REAL,221

E,1,2

EGEN,(nodes-1),1,1,(nodes-1),1

! End of beam elements

! Generalized mass elements

TYPE,2

! shaft endpoints

REAL,1

E,1

E,nodes

masses(1,2) = mE

masses(nodes,2) = mE

masses(1,3) = IxE

masses(nodes,3) = IxE

! slender solid shaft (except endpoints)

REAL,2

E,2

EGEN,(nodes-2),1,(nodes+2),((2*nodes)-1),1

*DO,var1,2,(nodes-1),1

masses(var1,2) = mS

masses(var1,3) = IxS

*ENDDO

! proximitor assembly at np1 and np2

REAL,3

E,np1

E,np2

masses(np1,2) = masses(np1,2)+mP

masses(np2,2) = masses(np2,2)+mP

masses(np1,3) = masses(np1,3)+IxP

masses(np2,3) = masses(np2,3)+IxP

! laminated bearing assembly at nb1 and nb2

REAL,4

E,nb1

E,nb2
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masses(nb1,2) = masses(nb1,2)+mB

masses(nb2,2) = masses(nb2,2)+mB

masses(nb1,3) = masses(nb1,3)+IxB

masses(nb2,3) = masses(nb2,3)+IxB

! End of mass elements

! Constraints: no axial movement

D,ALL,UX

FINISH

! End of rotor model

! End of element print

/SOLU

ANTYPE,MODAL

MODOPT,REDUC,shapes

TOTAL,shapes

MXPAND,shapes

!LUMPM,ON

SAVE

SOLVE

SAVE

FINISH

/SOLU

EXPASS,ON

MXPAND,shapes

SOLVE

FINISH

! write results into files

/POST1

*DO,var1,1,shapes,1

SET,1,var1

*VGET,tmp,NODE,1,U,Y,,0

*DO,var2,1,nodes,1

phi_array(var2,var1)=tmp(var2)

*ENDDO

*VGET,tmp,NODE,1,ROT,Z,,0

*DO,var2,1,nodes,1

psi_array(var2,var1)=tmp(var2)
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*ENDDO

*ENDDO

! save natural frequencies to w_vector

*DO,var1,1,shapes,1

w_vector(var1,1) = var1

*GET,w_vector(var1,2),MODE,var1,FREQ

*ENDDO

! write nodal displacements to DISPLACE2.DAT

*MWRITE,phi_array,displace2,dat,,JIK,shapes,nodes,1

%15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G

! write nodal rotations to ROTATE2.DAT

*MWRITE,psi_array,rotate2,dat,,JIK,shapes,nodes,1

%15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G %15.7G

! write eigenfrequencies to OMEGA2.DAT

*MWRITE,w_vector,omega2,dat,,JIK,2,shapes,1

%D %G

! write nodal masses to MASSDATA2.DAT

*MWRITE,masses,massdata2,dat,,JIK,3,nodes,1

%D %G %G

SAVE

FINISH
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Appendix J

MATLAB code listing for jeff1ver.m

%

% jeff1_ver.m - Jeffcott rotor with internal damping and mass imbalance

%

% verification of theoretical conditions for stability

%

clc;

clear all;

format compact;

format short g;

diary off;

% AMB parameters

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

ib = 1.0;

% AMB position stiffness

Kx = Ag*N*N*ib*ib*mu0/(d*d*d);

% AMB current stiffness

Ki = Ag*N*N*ib*mu0/(d*d);

% mass

m=10;

%internal damping

ci=60.0; % critical value for w=50; m=10

% running speed, rad/s

w=50;

% simple PD controller

Kp= -1000;
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Kd= -5;

icx=0;

icy=0;

A=[zeros(2,2), eye(2,2);

(Kx+(Ki*Kp))/m, -w*ci/m, ((Ki*Kd)-ci)/m,0;

w*ci/m, (Kx+(Ki*Kp))/m, 0, ((Ki*Kd)-ci)/m];

b = [0,0; 0,0; 1,0; 0,1];

% output matrix

Cx = [1,0,1,0; 0,1,0,1];

disp(’C*B matrix:’);

Cx*b

rank(Cx*b)

sys = ss(A,b,Cx,zeros(2,2));

[z,p,k] = zpkdata(sys);

disp(’Zeros of the OLTF:’);

z{1}

z{2}

z{3}

z{4}

%

% the end

%
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Appendix K

MATLAB code listing for flexhub11ver.m

% flexhub11_ver.m

%

% Simulation of flexible hub with internal damping

%

% Verification of theoretical conditions

%

clear all;

clc;

% rotational speed [rad/s]

w = 80;

% disturbance frequency [Hz]

wd = w;

% static imbalance [kg*m]

imb = 0.0; %0.005; %0.005;

%

% AMB properties

%

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

i_b = 1.0;

%

% linearized AMB parameters

%

%K = Ag*N*N*mu0/4.0;

% position stiffness

Kd = Ag*N*N*i_b*i_b*mu0/(d*d*d);
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% current stiffness

Kc = Ag*N*N*i_b*mu0/(d*d);

%

% PD controller gains

%

Kp = 1000;

Kd = 10;

%

% Rotor properties

%

mS = 0.238;

mR = 0.567;

cH = 4.84; %1.84;

kH = 2000; %26994;

kk = [(-2*Kc/mS), 0; 0,(-2*Kc/mS)];

B = [zeros(4,2); kk; zeros(2,2)];

clear kk;

KK = [Kp,0,0,0,Kd,0,0,0; 0,Kp,0,0,0,Kd,0,0];

A1 = [(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS, (w*cH)/mS;

(w*cH)/mS,(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS;

kH/mR,(w*cH)/mR,(-kH)/mR,(-w*cH)/mR;

(-w*cH)/mR,kH/mR,(w*cH)/mR,(-kH)/mR];

A2 = [-cH/mS,0,cH/mS,0;

0,-cH/mS,0,cH/mS;

cH/mR,0,-cH/mR,0;

0,cH/mR,0,-cH/mR];

A = [zeros(4,4), eye(4,4); A1, A2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% reduced order state-estimator for Rim position and velocity

%

AA = (A+(B*KK));
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F = eye(4,4);

%tmp = min(real(eig(AA)));

F(1,1) = -1000; %2*tmp;

F(2,2) = -2000; %2.1*tmp;

F(3,3) = -3000; %2.2*tmp;

F(4,4) = -4000; %2.3*tmp;

L = eye(4,4);

C = [eye(2,2), zeros(2,6);

zeros(2,4), eye(2,2), zeros(2,2)];

%Cx = [-1,0,0,0, -1,0,0,0; 0,-1,0,0, 0,-1,0,0];

Cx = [-1,0,1,0, -1,0,1,0; 0,-1,0,1, 0,-1,0,1];

%disp(’Rank of controllability matrix F|L (min.4):’);

%rank(ctrb(F,L))

%disp(’Eigenvalues of A+(B*KK) (state feedback + linear AMB):’);

eig(A+(B*KK))

disp(’C*B matrix:’);

Cx*B

eig(Cx*B)

sys = ss(AA,B,Cx,zeros(2,2));

[z,p,k] = zpkdata(sys);

disp(’Zeros of the open loop transfer function:’);

z{1}

z{2}

z{3}

z{4}

%

% the end

%
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Appendix L

MATLAB code listing for FlexDampver.m

%

% George T. Flowers and Andras Simon

%

% Flex_Damp20_ver.m

%

%**********************************************************************

% Program to simulate a flexible rotor with internal damping and

% supported by two radial magnetic bearings.

%**********************************************************************

%

% this script is using the FLEX_SHAFT2 Ansys model and generated files

%

% verification of theoretical conditions for (A)SPR-ness

%

clc;

clear all;

format compact;

format short g;

%

% 1st crit. speed: 54 rad/s

% 2nd crit. speed: 133 rad/s

%

% simulation time

%

t_end = 5;

global a1 ac1 b1;

global nm zeta;

% running speed [rad/s]

global w;

w = 100;%150; %800;

wd = w;
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%DG=50000;

% internal damping ratio (best leave at 1%)

zeta = 0.01;

%zeta = 0.01;

zeta = 0.05;

%zeta=0;

%

% setting up state-space model and AMB parameters

%

Model;

pcon = eig(a1);

%

% poles for state f/b (change real parts of eig(a1))

%

for k=1:((4*nm)+4)

if(real(pcon(k))>0)

pcon(k) = -pcon(k);

end;

if(abs(real(pcon(k)))<1.0e-5)

pcon(k) = 0+(imag(pcon(k))*sqrt(-1));

end;

end;

% state feedback for model *without* internal damping

Kc = place(a1,b1,pcon);

Kc(:,17:20) = 0;

a11 = a1-(b1*Kc);

ac1 = ac-(b1*Kc);

Kc2 = place(ac,b1,pcon);

ws = 5000.0;

cx1 = [0,0, om(3), om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0,-om(3),-om(4);

0,0, om(3), om(4), 0,0,-om(3),-om(4)];
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cx2 = [0,0, om(3), om(4), 0,0,-om(3),-om(4);

0,0, om(3), om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0, om(3), om(4);

0,0,-om(3),-om(4), 0,0,-om(3),-om(4)];

cx = zeta*[w*cx1,cx2,eye(4,4)/400];

cxx = [w*cx1,cx2,zeros(4,4)];

clear cx1 cx2

Kcxx = zeros(4,20);

disp(’C*B matrix:’);

cx*b1

eig(cx*b1)

sys = ss(ac1,b1,cx,zeros(4,4))

disp(’Zeros of the open loop t.f.:’)

[z,p,k] = zpkdata(sys)

z{1}

%

% the end
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Appendix M

MATLAB code listing for jefffixed.m

%

% jeff_fixed.m - simple Jeffcott rotor with internal damping and

% mass imbalance

% fixed-gain version

clc;

clear all;

format compact;

format short g;

diary off;

% AMB parameters

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

ib = 1.0;

% AMB position stiffness

Kx = Ag*N*N*ib*ib*mu0/(d*d*d);

% AMB current stiffness

Ki = Ag*N*N*ib*mu0/(d*d);

% mass

m=10;

%internal damping

%ci=4.4158; % critical value for w=1000; m=1

ci=60.0; % critical value for w=50; m=10

%ci=0.0;%5;

% running speed, rad/s

w=50;
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% static imbalance

imb = 0.005; %0.005;%0.001;

% sampling frequency

ws = 5000;

dt = 1/ws;

t_end = 5.0;

t1 = 0;

steps = t_end/dt;

q = zeros(4,1);

% initial conditions

q(1) = 0.5e-3;

q(2) = -1.2e-3;

% simple PD controller

Kp= -1000;

Kd= -5;

icx=0;

icy=0;

xx = zeros(steps,1);

yy = zeros(steps,1);

tt = zeros(steps,1);

A=[zeros(2,2), eye(2,2);

(Kx+(Ki*Kp))/m, -w*ci/m, ((Ki*Kd)-ci)/m,0;

w*ci/m, (Kx+(Ki*Kp))/m, 0, ((Ki*Kd)-ci)/m];

pcon = eig(A);

%

% poles for state f/b (change real parts of eig(a1))

%

%

for k=1:4

if(real(pcon(k))>0)
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pcon(k) = -pcon(k);

end;

if(abs(real(pcon(k)))<1.0e-5)

pcon(k) = 0+(imag(pcon(k))*sqrt(-1));

end;

end;

eig(A)

b = [0,0; 0,0; 1,0; 0,1];

K = place(A,b,pcon);

AA = A-(b*K);

eig(AA)

imbx = zeros(steps,1);

imby = zeros(steps,1);

wd=w;

%wd=100;

% 20 rad/s : 250

% 50 rad/s : 12500

% 60 rad/s : 15000

for k=1:steps

tt(k)=dt*(k-1);

imbx(k) = w*w*imb*cos(wd*2.0*pi*dt*k);

imby(k) = w*w*imb*sin(wd*2.0*pi*dt*k);

end;

disp(’Simulation is running...’);

ci = 10;

Fx=0;

Fy=0;

dx_r=0;

dy_r=0;

tic;
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for k=1:steps

x_old=q(1);

y_old=q(2);

q(3) = dx_r;

q(4) = dy_r;

[t,Q] = ode45(@jeff_fix_ode,[t1,t1+dt],q,...

[],ci,w,m,K,b,Fx,Fy,imbx(k),imby(k));

q = Q(size(t,1),:)’;

t1 = t1+dt;

dx_r = q(3);

dy_r = q(4);

% manual differentation for velocity calculation

q(3)=(q(1)-x_old)/dt;

q(4)=(q(2)-y_old)/dt;

% simple PD control for current to AMB

icx = (Kp*q(1))+(Kd*q(3));

icy = (Kp*q(2))+(Kd*q(4));

Fx = (Kx*q(1))+(Ki*icx);

Fy = (Kx*q(2))+(Ki*icy);

xx(k)=q(1);

yy(k)=q(2);

if(mod(k,ws)==0)

disp(k);

end;

end;

toc;

figure;

plot(tt(1:k),xx(1:k),’b--’,tt(1:k),yy(1:k),’r-’);

axis([0 t1 -d d]);

%axis([0 t1 -0.1 0.1]);
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%axis([0 t1 -5e-5 5e-5]);

legend(’x’,’y’);

xlabel(’Simulation time, [s]’);

ylabel(’Displacement, [m]’);

disp(’done.’);

%

% the end

%
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Appendix N

MATLAB code listing for flexhubfixed.m

%

% flexhub_fixed.m

%

% Simulation of flexible hub with internal damping

% Fixed-gain version

clear all;

clc;

% rotational speed [rad/s]

w = 80; %80; % 80 crit.

% disturbance frequency [Hz]

wd = w;

% static imbalance [kg*m]

imb = 0.0; %0.005; %0.005;

%

% sampling frequency [Hz]

%

%ws = 10000;

ws = 5000;

dt = (1.0/ws);

% simulation time [s]

t_end = 5.0;

%

% AMB properties

%

N = 330;

Ag = 3.22e-4;

mu0 = 4*pi*1e-7;

d = 2.0e-3;

148



i_b = 1.0;

%

% linearized AMB parameters

%

%K = Ag*N*N*mu0/4.0;

% position stiffness

Kd = Ag*N*N*i_b*i_b*mu0/(d*d*d);

% current stiffness

Kc = Ag*N*N*i_b*mu0/(d*d);

%

% PD controller gains

%

Kp = 1000;

Kd = 10;

%

% Rotor properties

%

mS = 0.238;

mR = 0.567;

cH = 4.84; %1.84;

kH = 2000; %26994;

q = zeros(8,1);

%

% initial conditions of shaft (xS,yS)

% (for the shaft it should not be larger than the AMB airgap (2 mm)

%

q(1) = 1.5e-3;

q(2) = -1.0e-3;

%

% initial conditions for the Rim position (xRr,yRr) and for the

% estimated Rim position (xRe,yRe)

%

xRe = q(1);

yRe = q(2);
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steps = (t_end/dt);

i_cx = 0;

i_cy = 0;

kk = [(-2*Kc/mS), 0; 0,(-2*Kc/mS)];

B = [zeros(4,2); kk; zeros(2,2)];

clear kk;

KK = [Kp,0,0,0,Kd,0,0,0; 0,Kp,0,0,0,Kd,0,0];

A1 = [(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS, (w*cH)/mS;

(w*cH)/mS,(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS;

kH/mR,(w*cH)/mR,(-kH)/mR,(-w*cH)/mR;

(-w*cH)/mR,kH/mR,(w*cH)/mR,(-kH)/mR];

A2 = [-cH/mS,0,cH/mS,0;

0,-cH/mS,0,cH/mS;

cH/mR,0,-cH/mR,0;

0,cH/mR,0,-cH/mR];

A = [zeros(4,4), eye(4,4); A1, A2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% reduced order state-estimator for Rim position and velocity

%

AA = (A+(B*KK));

pcon = eig(AA);

%

% poles for state f/b

%

%

for k=1:8

if(real(pcon(k))>0)

pcon(k) = -pcon(k);

end;

if(abs(real(pcon(k)))<1.0e-5)

pcon(k) = 0+(imag(pcon(k))*sqrt(-1));

end;
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end;

K2 = place(AA,B,pcon);

AAA = AA-(B*K2);

% recalc matrices with higher speed or higher cH

cH = 10.0; % was 4.84

%w = 100; % was 80

A1 = [(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS, (w*cH)/mS;

(w*cH)/mS,(-(2*Kd)-kH)/mS, (-w*cH)/mS, kH/mS;

kH/mR,(w*cH)/mR,(-kH)/mR,(-w*cH)/mR;

(-w*cH)/mR,kH/mR,(w*cH)/mR,(-kH)/mR];

A2 = [-cH/mS,0,cH/mS,0;

0,-cH/mS,0,cH/mS;

cH/mR,0,-cH/mR,0;

0,cH/mR,0,-cH/mR];

A = [zeros(4,4), eye(4,4); A1, A2];

AA = (A+(B*KK));

F = eye(4,4);

%tmp = min(real(eig(AA)));

F(1,1) = -1000; %2*tmp;

F(2,2) = -2000; %2.1*tmp;

F(3,3) = -3000; %2.2*tmp;

F(4,4) = -4000; %2.3*tmp;

L = eye(4,4);

C = [eye(2,2), zeros(2,6);

zeros(2,4), eye(2,2), zeros(2,2)];

cc = [-1,0,0,0,-1,0,0,0; 0,-1,0,0,0,-1,0,0];

%disp(’Rank of controllability matrix F|L (min.4):’);

%rank(ctrb(F,L))
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%disp(’Eigenvalues of A+(B*KK) (state feedback + linear AMB):’);

%eig(A+(B*KK))

%

% solve the Lyapunov-equation for T in (T*(A+(B*KK)) - F*T = L*C)

%

%T = lyap(-F,AA,-(L*C));

T = lyap(-F,AAA,-(L*C));

%disp(’Error in solution of Lyapunov equation (should be small):’);

%(T*(AA))-(F*T)-(L*C)

TB = T*B;

invCT = inv([C;T]);

z = zeros(4,1);

dz = zeros(4,1);

% set up storage variables for plotting

DTpos_xS = zeros(steps,1);

DTpos_yS = zeros(steps,1);

DTpos_xRr = zeros(steps,1);

DTpos_yRr = zeros(steps,1);

DTpos_xRe = zeros(steps,1);

DTpos_yRe = zeros(steps,1);

DTctr_x = zeros(steps,1);

DTctr_y = zeros(steps,1);

DTtt = zeros(steps,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:steps

tmpx = wd*2.0*pi*dt*k;

imbx(k) = w*w*imb*cos(tmpx);

imby(k) = w*w*imb*sin(tmpx);

end;

clear tmpx;

disp(’Simulation is running...’);

t1 = 0;
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xSdot_real = 0;

ySdot_real = 0;

xRrdot_real = 0;

yRrdot_real = 0;

%

% main simulation loop

%

tic;

for k=1:steps

%

% simple PD control

%

i_cx = (Kp*q(1))+(Kd*q(5));

i_cy = (Kp*q(2))+(Kd*q(6));

Fx = (Kd*q(1))+(Kc*i_cx)+imbx(k);

Fy = (Kd*q(2))+(Kc*i_cy)+imby(k);

% restore real velocities for ODE()

q(5) = xSdot_real;

q(6) = ySdot_real;

q(7) = xRrdot_real;

q(8) = yRrdot_real;

[t,Q] = ode45(@flexhub_dyn2,[t1,t1+dt],q,...

[],mS,mR,cH,kH,w,Fx,Fy,B*K2);

xS_old = q(1);

yS_old = q(2);

xRr_old = q(3);

yRr_old = q(4);

q = Q(size(t,1),:)’;

t1 = t1+dt;

xS = q(1);

yS = q(2);

xRr = q(3);
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yRr = q(4);

%

% velocities obtained from ODE solution

%

xSdot_real = q(5);

ySdot_real = q(6);

xRrdot_real = q(7);

yRrdot_real = q(8);

%

% velocities calculated manually from measured positions

%

xSdot = (q(1)-xS_old)/dt;

ySdot = (q(2)-yS_old)/dt;

xRrdot = (q(3)-xRr_old)/dt;

yRrdot = (q(4)-yRr_old)/dt;

dz = (F*z)+(TB*[i_cx;i_cy])+(L*[q(1); q(2); q(5); q(6)]);

z = z+(dz*dt);

xRe_old = xRe;

yRe_old = yRe;

ztx = invCT*[q(1);q(2);q(5);q(6);z];

xRe = ztx(3);

yRe = ztx(4);

% xRedot = ztx(7);

% yRedot = ztx(8);

xRedot = (xRe-xRe_old)/dt;

yRedot = (yRe-yRe_old)/dt;

DTpos_xS(k) = q(1);

DTpos_yS(k) = q(2);

DTpos_xRr(k) = q(3); % real Rim positions from mechanical model

DTpos_yRr(k) = q(4);

DTpos_xRe(k) = xRe; % estimated Rim positions from estimator

DTpos_yRe(k) = yRe;

DTctr_x(k) = i_cx;

DTctr_y(k) = i_cy;
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DTtt(k) = t1;

if(mod(k,ws)==0)

disp(k);

end;

end;

disp(’complete’);

beep;

toc;

dist=1;

msteps = steps/dist;

xmark = zeros(msteps,1);

ymark = xmark;

for k=1:msteps

xmark(k) = DTpos_xS(dist*k);

ymark(k) = DTtt(dist*k);

end;

figure;

%plot(DTtt,DTpos_xS,DTtt,DTpos_yS,DTtt,DTpos_xRr,DTtt,DTpos_yRr);

plot(DTtt,DTpos_xS,’b-’,DTtt,DTpos_xRr,’r:’);

axis([0, t_end, -d, d]);

tit = strcat(’\Omega=’,num2str(w),’ u=’,num2str(imb));

title(tit);

ylabel(’Displacement, [m]’);

xlabel(’Simulation time [s]’);

legend(’Shaft X’,’Rim X’);

%

% the end

%
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Appendix O

MATLAB code listing for FixedGain1.m

%

% George T. Flowers and Andras Simon

%

% FixedGain1.m

%

%**********************************************************************

% Program to simulate a flexible rotor with internal damping and

% supported by two radial magnetic bearings.

%**********************************************************************

%

% this script is using the FLEX_SHAFT2 Ansys model and generated files

%

% Fixed gain controller (Baseline)

%

clc;

clear all;

format compact;

format short g;

%

% 1st crit. speed: 54 rad/s

% 2nd crit. speed: 133 rad/s

%

% simulation time

%

t_end = 5;

global a1 ac1 b1;

global nm zeta;

% running speed [rad/s]

global w;

w = 150;%150; %800;

wd = w;
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% internal damping ratio (best leave at 1%)

zeta = 0.01;

%

% setting up state-space model and AMB parameters

%

Model;

pcon = eig(a1);

%

% poles for state f/b (change real parts of eig(a1))

%

%

for k=1:((4*nm)+4)

if(real(pcon(k))>0)

pcon(k) = -pcon(k);

end;

if(abs(real(pcon(k)))<1.0e-5)

pcon(k) = 0+(imag(pcon(k))*sqrt(-1));

end;

end;

% state feedback for model *with* internal damping

Kc2 = place(ac,b1,pcon);

%Kc2(:,17:20) = 0;

ac2 = ac-(b1*Kc2);

%

% change zeta to trick fixed gain controller

%

%zeta = 0.05;

%

% re-calculate system matrices

%

%Model;

q = zeros((4*nm)+4,1);
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%initial bearing positions

q(1) = 0.0005;

q(5) = -0.0001;

% sampling frequency [Hz]

%

ws = 5000.0;

dt = 1.0/ws;

t1 = 0.0;

steps = (t_end-t1)/dt;

% how many imbalances are accounted for

ni = 1;

% imbalance node locations (for each imbalance)

iml = ones(ni,1)*44;

% imbalance values (for each imbal.)

imm = zeros(ni,1);

% imbalance phase shifts (for each imbalance)

imph = zeros(ni,1);

% imbalance matrix

phi_imb = zeros(nn,ni);

imphase = zeros(ni,1);

% node locations where imbalances are located (1 per node)

iml(1) = 44;

%iml(2) = 30;

% individual imbalances [kg-m]

%imm(1) = 5e-3;

imm(1) = 1e-3;

% phase shift of imbalances [degrees]

imph(1) = 0;

%imph(2) = 90;

for i=1:ni

phi_imb(iml(i),i)=imm(i); % place imbalances into imbalance matrix
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imph(i) = imph(i)*(pi/180.0); % [degree] -> [rad]

end;

imbtmp = (phi’)*phi_imb*w*w;

imbx = zeros(nm,steps);

imby = zeros(nm,steps);

imbal_angle_cos = zeros(ni,steps);

imbal_angle_sin = zeros(ni,steps);

tt = zeros(steps,1);

for k=1:steps

tmp_imb = (wd*2.0*pi*dt*k*ones(ni,1))+imph;

imbal_angle_cos(:,k) = cos(tmp_imb);

imbal_angle_sin(:,k) = sin(tmp_imb);

tt(k) = dt*k;

% imbalance force in X direction

imbx(:,k) = imbtmp*imbal_angle_cos(:,k);

% imbalance force in Y direction

imby(:,k) = imbtmp*imbal_angle_sin(:,k);

end;

x_old = zeros(nm,1);

y_old = zeros(nm,1);

dx_real = zeros(nm,1);

dy_real = zeros(nm,1);

dx_calc = zeros(nm,1);

dy_calc = zeros(nm,1);

pos_bear = zeros(nm,steps);

pos_prox = zeros(nm,steps);

u = zeros(4,1);

disp(’Simulation is running...’);

tic;

for k=1:steps
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% save previous positions for manual differentation

x_old = q(1:4);

y_old = q(5:8);

% restore real velocities for ODE45()

q(9:12) = dx_real;

q(13:16) = dy_real;

[t,Q] = ode45(@flex_ode20,[t1, t1+dt],q,[],...

b1,ac2,u,imbx(:,k),imby(:,k));

q = Q(size(t,1),:)’;

t1 = t1+dt;

% save real velocities (from ODE solution)

dx_real = q(9:12);

dy_real = q(13:16);

% calculate actual velocities from position inputs

% by using simple differentiation

q(9:12) = (q(1:4)-x_old)/dt;

q(13:16) = (q(5:8)-y_old)/dt;

% positions at the prox. sensors

pos_prox(:,k) = cprox*q;

% positions at the bearings

pos_bear(:,k) = cbear*q;

if(mod(k,ws)==0)

disp(k);

end;

end;

toc;

% plot X and Y positions at each bearing on a single figure

figure;

plot(tt(1:k),pos_prox(1,:),’b-’,tt(1:k),pos_prox(2,:),’r:’);

tit = strcat(’\Omega=’,num2str(w),’ u=’,num2str(imm(1)));

title(tit);
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legend(’x_{p1}’,’y_{p1}’);

axis([0 t1 -0.002 0.002]);

ylabel(’Displacement, [m]’);

xlabel(’Simulation time, [s]’);

disp(’completed.’);

%

% the end

%

161


