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Dissertation Abstract

Taylor Kriging Metamodeling For Simulation Interpolation,

Sensitivity Analysis And Optimization

Heping Liu

Doctor of Philosophy, May 09, 2009
(M.S., Auburn University, 2007)

(M.S., Chinese Academy of Sciences, 2003)
(B.S., Nanchang University, 1999)

197 Typed Pages

Directed by Saeed Maghsoodloo

The dissertation explores Kriging metamodeling for the interpolation, sensitivity anal-

ysis and optimization of simulation models with costly computational or economic expenses.

The key theoretical contribution is that a novel Kriging model based on Taylor expansion

is developed and named Taylor Kriging (TK) where Taylor expansion is used to identify

a drift function. Taylor expansion has excellent nonlinear function approximation capabil-

ities, thus enhancing the interpolation potentials of Kriging. Another contribution is the

use of sample standard deviation as the metric for influence distance of covariance, which

makes simulations with data of differing magnitudes have a consistent measurement unit.

The partial differentiation equation of Kriging is developed and used together with

analysis of variance to assist in sensitivity analysis on a simulation model. A physical

simulation case based on cost estimation shows that Kriging sensitivity analysis is effective.

While fitting metamodels, the dissertation compares the simulation interpolation accuracy
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of Kriging with those of regression and artificial neural networks. A significant feature is

that the comparison considers multicollinearity, heteroscedasticity and specification error.

A novel simulation optimization algorithm named SOAKEA is created. SOAKEA inte-

grates Kriging with evolutionary algorithms to optimize simulation models with costly run-

time expenses. The properties of SOAKEA are investigated, and some important empirical

conclusions about parameter settings are obtained. Several typical multimodal benchmark

functions are used to test and compare SOAKEA with other well-known metaheuristics.

The results indicate that SOAKEA is a promising optimization tool for simulation models

with expensive running costs.

The Kriging software is developed in order to satisfy application needs. The software

is multi-functional and user-friendly. The software can be used not only for simulation

interpolation but also for wider interpolation applications.

vi



Acknowledgments

The author is very grateful to Dr. Saeed Maghsoodloo for his guidance, patience,

attention to details and insight, to Dr. Alice E. Smith for initializing the dissertation topic

and her guidance, help and support in the graduate study. Special thanks go to Dr. Tin-

Yau Tam for serving on the committee and his valuable advice. Dr. Huajun Huang as a

outside reader is greatly appreciated.

The work is dedicated to his wife, Yanli Chen, for her love, and to his lovely daughter,

Lucy J. Liu.

The author appreciates two sisters, Minhua Liu and Minhong Liu, for their encourage-

ment. Finally, the author would like to express the deepest gratitude to his parents, Minglai

Liu and Shuai Yuan. Their unconditional love has been and always will be the source of

strength and driving force.

vii



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file auphd.sty, Visual C++ 6.0, Visual Basic 6.0,

Microsoft Excel, Minitab, and Matlab

viii



Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7
2.1 Origins of Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview of Kriging Applications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Kriging Applications in Simulation Interpolation . . . . . . . . . . . . . . . 10
2.4 Kriging Applications in Optimization . . . . . . . . . . . . . . . . . . . . . . 14

3 Kriging Methodology 17
3.1 Kriging Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Drift Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Mathematical Development . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Covariance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Typical Covariance Functions . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Neighbor Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Variance and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Analysis on Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Theoretical Developments Of Kriging For Simulation Interpolation 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 A Novel Kriging Model Based on Taylor Expansion . . . . . . . . . . . . . . 37

4.2.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



4.2.2 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 The Measurement of Influence Distance of Covariance . . . . . . . . . . . . 40
4.4 The Sensitivity Analysis Method Based on Kriging and ANOVA . . . . . . 40
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Kriging Metamodeling For Deterministic And Stochastic Simulation
Interpolation 44
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Generation of Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Kriging Interpolation for Deterministic Simulation . . . . . . . . . . . . . . 46

5.3.1 Test Functions and Procedures . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Kriging Interpolation for Stochastic Simulation . . . . . . . . . . . . . . . . 59
5.4.1 Test Functions and Procedures . . . . . . . . . . . . . . . . . . . . . 59
5.4.2 Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 Analysis on Replication and Variance . . . . . . . . . . . . . . . . . 61

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Kriging Metamodeling For Sensitivity Analysis On Simulation Models 76
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 The Chosen Simulation Problem . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Development of Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Kriging Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Regression Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Analysis on Different Metamodels . . . . . . . . . . . . . . . . . . . 92

6.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.1 Kriging Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.2 Regression Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Property Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.1 Applicability of Models . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.2 Accuracy of Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.3 Feasibility of Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . 105

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Simulation Optimization Based On Kriging And Evolutionary Algo-
rithms 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 A Novel Simulation Optimization Algorithm . . . . . . . . . . . . . . . . . . 108

7.2.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.2 Development of Simulation Optimization Algorithm (SOAKEA) . . 108
7.2.3 Analysis on SOAKEA . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Computational Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



7.3.1 Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . . 116
7.3.2 The Determination of Initial Sample Size . . . . . . . . . . . . . . . 118
7.3.3 Corrective Operations and Update of Kriging Models . . . . . . . . 121
7.3.4 The Empirical Investigation on SOAKEA . . . . . . . . . . . . . . . 128

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 The Kriging Application Software 135
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 The Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Kriging Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.1 Data Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3.2 Running the Software . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.3 Data Output File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Summary And Conclusions 155
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159

A Proof Of Kriging Estimator In Equation (3.11) 172

xi



List of Tables

2.1 Historical Table of Researchers’ Contributions to Kriging [18] . . . . . . . . 9

5.1 AARE of First Test Function (Hmb) (%) . . . . . . . . . . . . . . . . . . . 53

5.2 AARE of Second Test Function (SHC) (%) . . . . . . . . . . . . . . . . . . 54

5.3 AARE of Third Test Function (B2) (%) . . . . . . . . . . . . . . . . . . . . 55

5.4 AARE of Fourth Test Function (Ras) (%) . . . . . . . . . . . . . . . . . . . 56

5.5 Parameter Settings of Chosen Kriging Models for Four Test Functions . . . 57

5.6 ARE Comparison of Different Kriging Models for Four Test Functions (%) . 57

5.7 Paired t-test for Chosen Kriging Models in Table 5.1 . . . . . . . . . . . . . 58

5.8 Paired t-test for Chosen Kriging Models in Table 5.2 . . . . . . . . . . . . . 58

5.9 L2 Comparison of Different Kriging Models for Hmb Function - 1 . . . . . . 62

5.10 L2 Comparison of Different Kriging Models for Hmb Function - 2 . . . . . . 63

5.11 L2 Comparison of Different Kriging Models for Hmb Function - 3 . . . . . . 64

5.12 L2 Comparison of Different Kriging Models for Hmb Function - 4 . . . . . . 65

5.13 L2 Comparison of Different Kriging Models for SHC Function - 1 . . . . . . 66

5.14 L2 Comparison of Different Kriging Models for SHC Function - 2 . . . . . . 67

5.15 L2 Comparison of Different Kriging Models for SHC Function - 3 . . . . . . 68

5.16 L2 Comparison of Different Kriging Models for SHC Function - 4 . . . . . . 69

5.17 AARE Comparison of Different Replications and Variances for Hmb . . . . 72

5.18 AARE Comparison of Different Replications and Variances for SHC . . . . 72

xii



6.1 Table of Original Cost Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Table of Normalized Cost Data . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 AAREs of Cost Estimation from Different Kriging Models (%) . . . . . . . 84

6.4 AREs from TK of Order 3 with Nugget Covariance Function . . . . . . . . 85

6.5 ANOVA of Actual and Kriging-estimated Costs . . . . . . . . . . . . . . . . 86

6.6 Multicollinearity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7 Comparison of Estimated Costs from TK, LLR, MLR and ANN . . . . . . 93

6.8 Comparison of AREs from TK, MLR, LLR and ANN (%) . . . . . . . . . . 95

6.9 ANOVA of AREs from TK, LLR, MLR and ANN . . . . . . . . . . . . . . 97

6.10 ANOVA of AREs from TK, LLR and ANN . . . . . . . . . . . . . . . . . . 97

6.11 Sensitivity Analysis of TK with Nugget Covariance Function and Order 3 . 99

6.12 Sensitivity Analysis for TK of Order 3 with Nugget Covariance Function . . 101

6.13 Sensitivity Analysis for the MLR Metamodel . . . . . . . . . . . . . . . . . 102

6.14 Sensitivity Analysis for the LLR Metamodel . . . . . . . . . . . . . . . . . . 103

7.1 Simulation Optimization Algorithm Based on Kriging and EA . . . . . . . . 112

7.2 Sizes of Initial Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 The Chosen Kriging Models and Their AAREs under Different Scenarios . 119

7.4 AAREs of Different Kriging Models (The Size of Initial Samples=200)(%) . 120

7.5 The Test Results of Different Correction Strategies . . . . . . . . . . . . . . 123

7.6 Numbers of Simulation Evaluations for Different Correction Strategies . . . 126

7.7 Success Rates of Optimization Search for Different Correction Strategies (%) 127

7.8 Numbers of Simulation Evaluations Used in Different Correction Strategies 128

7.9 Chosen Kriging Models for Different Cases . . . . . . . . . . . . . . . . . . . 130

7.10 Parameter Settings of Correction Operations in SOAKEA for Different Cases 132

7.11 Performance Comparison of Different Algorithms . . . . . . . . . . . . . . . 133

xiii



List of Figures

5.1 Scatter Figure of 25 Samples from SRS . . . . . . . . . . . . . . . . . . . . . 47

5.2 Scatter Figure of 25 Samples from LHD . . . . . . . . . . . . . . . . . . . . 48

5.3 Scatter Figure of 150 Samples of First Test Function (Hmb) . . . . . . . . . 51

5.4 Scatter Figure of 50 Test Samples of First Test Function (Hmb) . . . . . . . 52

5.5 Actual and Predicted Output Means of 100 Replications of 50 Test Samples
(Hmb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Actual and Predicted Output Means of 100 Replications of 50 Test Samples
(SHC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Actual and Predicted Output Means of Different Replications of 50 Test
Samples under Different Variance Levels of Random Variable ε(X) (Hmb) . 74

5.8 Actual and Predicted Output Means of Different Replications of 50 Test
Samples under Different Variance Levels of Random Variable ε(X) (SHC) . 75

6.1 Scatter Figure of Sample Height . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Scatter Figure of Sample Diameter . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Scatter Figure of Sample Thickness . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Comparison of Actual and Kriging-estimated Costs . . . . . . . . . . . . . . 87

6.5 Comparison of Estimated Costs from Different Models . . . . . . . . . . . . 94

6.6 Comparison of AREs from Different Models . . . . . . . . . . . . . . . . . . 96

7.1 Operations of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . 110

7.2 The Flow Diagram of SOAKEA . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Flow Diagram of Fitting an Initial Kriging Model . . . . . . . . . . . . . . . 113

xiv



7.4 Diagrammatic Explanation of Correction Operations . . . . . . . . . . . . . 125

7.5 Optimal Result Comparison of Different Scenarios . . . . . . . . . . . . . . 129

8.1 The Welcome Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 The About Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 The Kriging Models Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 An Example of the Data Layout of the Input File . . . . . . . . . . . . . . . 141

8.5 The Results of Calling a Kriging Model . . . . . . . . . . . . . . . . . . . . 143

8.6 An Example of the Data Layout of the Output File (KrigOutputData.out) . 147

8.7 The Data Analysis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.8 The Results of Calling Data Analysis . . . . . . . . . . . . . . . . . . . . . . 151

8.9 The Graphics Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.10 The Working Interface of the Graphics Tool Package . . . . . . . . . . . . . 153

xv



Nomenclature

αi A component of Vector α

βi A component of Vector β

α The covariance coefficient vector of Dual Kriging

β The base-function coefficient vector of Dual Kriging

λ [λ1 · · ·λN ]T

ξ The unknown point in Taylor expansion

χ2(i) Chi-square distribution with the degree of freedom equal to i

ηi The regression coefficient of the ith term in the LLR model

γ(r) The variogram with the distance r between two points

φ̂ The estimator of φ

λi The coefficient of Z(Xi) in the estimator of Z(X)

µ(X) A drift function (i.e., a process mean)

ωi+1 An assumed linear correlation coefficient between points Zi and Zi+1

φ The regression coefficient of Variable PC in the LLR model

πj(i) The ith integer of the jth permutation in the LHS algorithm

ρij The correlation coefficient between variables Z(Xi) and Z(Xj)

xvi



σ The standard deviation

σ2 The variance of a normal distribution

σe The process standard deviation of interpolation errors

C(X) The partition matrix formed by the covariances of X and Xi

E A partition matrix in the inverse of Kriging coefficient matrix

F The partition matrix formed by the base functions in Kriging coefficient matrix

f(X) [fl(X) · · · fM (X)]T

G A partition matrix in the inverse of Kriging coefficient matrix

H A partition matrix in the inverse of Kriging coefficient matrix

K Kriging coefficient matrix

Pi The best position vector found by the ith particle in particle swarm optimization

Q A partition matrix in the inverse of Kriging coefficient matrix

S The partition matrix formed by covariances

U [u1 · · ·uM ]T

Vi The velocity vector of the ith particle in particle swarm optimization

X0 The position vector where Taylor expansion is conducted

Xi The ith position vector

Z [Z(X1) · · ·Z(XN )]T

xvii



ε(X) A random error term related to the point X

εi A random error term

ϕ The mean of εi

ϕ1 The cognition learning component in particle swarm optimization

ϕ2 The social learning component in particle swarm optimization

al The coefficient of the lth base function

b The exponent in a Power-function variogram

bi The regression coefficient of the ith term in a multivariable linear regression

C(r) The covariance function of two points with the Euclidean distance equaling r

C0 The constant coefficient in a covariance function

Ci The covariance between Z(Xi) and Z(X)

D The dimension number of a position vector X

d The influence distance of covariance

DN The number of points generated by LHS

DBF (xi) The derivative of Kriging base function with respect to xi

E0 The number of simulation inputs generated by computer experimental design in

SOAKEA

F F statistic

xviii



F (i, j) F distribution with the degrees of freedom equal to i and j

F (x1, · · · , xD) The multivariable linear regression model

F0.05;ij The inverse function of F distribution at the cumulative of 0.95 with numerator

degrees of freedom equal to i and denominator degrees of freedom j

F0 A specific value of F statistic

fl(X) The lth base function

G0 A correction strategy in SOAKEA: a correction per G0 updated generations

H0 Null hypothesis

H1 Alternative hypothesis

J A test in statistic

M The number of base functions

m The highest order of Taylor expansion

M0 The size of an initial population of an evolutionary algorithm

m0 The number of corrected individuals in SOAKEA

MCi The model coefficient of the ith base function

N The number of observed points in a fitting set

P P-value

p The constant coefficient in Power-function and Logarithmic variograms

xix



pij The jth component of Pi

r The Euclidian distance between two points in a vector space

R2 R-square

R2
a Adjusted R-square

ri The Euclidian distance between X and Xi

rand() A random disturbance term

S Sample standard deviation

Sij The covariance between Z(Xi) and Z(Xj)

t t statistic

t(i) t distribution with the degree of freedom equal to i

U(0, 1) A uniform distribution in the interval [0, 1]

U j
k A uniform variate generated from U(0, 1)

ul The Lagrange multiplier

vij The jth component of Vi

xi The ith component of the position vector X

x
′
i The normalized value of xi

xj
k The jth component of the kth position vector

ya The actual value of dependent variable y

xx



yp The predicted value of dependent variable y

Z(X) A stochastic function (or process)

xxi



Chapter 1

Introduction

This chapter first introduces the research background and motivation for the disserta-

tion, illustrates the objectives that the research needs to achieve, and then gives the research

methods adopted. Finally, the chapter shows how the dissertation is organized.

1.1 Background and Motivation

Many scientific disciplines use simulation to describe and analyze real-world compli-

cated systems in order to gain insights into such systems. Due to complexity of systems,

analytical modeling methods generally become infeasible. Although a simulation model is

only an abstraction of a real-world complicated system, it can consider numerous details

and constraints in the system, which enables it to closely resemble the real system and thus

become very useful.

However, simulation models are often computationally expensive. Under resource con-

strained environments, obtaining enough simulation outputs to satisfy the needs such as

performing sensitivity analysis and finding optimal inputs becomes very difficult. Thus,

it is desirable and necessary to use metamodeling methods (defined below) to establish a

functional relationship for known simulation inputs and outputs and then use the functional

relationship to estimate likely outputs for the inputs which have not yet been simulated. The

estimated output values could be used for sensitivity analysis, optimization, and decision

making.
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According to Wikipedia encyclopedia [56], metamodeling is to analyze, construct and

develop the frames, rules, constraints, models, and theories applicable that are useful for

modeling a predefined class of problems. Metamodeling was initially developed from neuro-

linguistics in the beginning of the twentieth century [79]. Kleijnen [73] discusses how to use

metamodeling to perform sensitivity analysis, optimization, and validation and verification.

From the perspective of simulation modeling, Kleijnen et al. [72] define a metamodel as an

approximation of the true input and output function implicitly defined by a given simulation

model. They think that a metamodel is much simpler than the underlying simulation model.

There are many different metamodeling methods such as design of experiments, re-

gression, neural networks, and so on, to build a functional relationship of simulation inputs

and outputs by bridging the gap between the known and unknown information. Essen-

tially, these methods can be called predictive modeling. Considered from the viewpoint of

statistical theory, predictive modeling is generally known as inference.

Kriging is a well-proven geostatistical metamodeling technique. Because of the precise

interpolation feature, Kriging has been applied to some areas and achieved success. Kriging

is named after Krige, a mining engineer in South Africa. In the 1950’s, Krige first applied

the technique to the estimation of gold deposits [17, 81]. Kriging estimates are Best Linear

Unbiased Estimators (BLUE). By identifying and mathematically representing the under-

lying functional relationship in known observation points, Kriging can predict the function

values of unobserved points.

In this dissertation, Kriging is proposed as a metamodeling method to build a functional

relationship for simulation inputs and outputs to realize the precise interpolation and to

assist the sensitivity analysis and optimization operations of simulation modeling. The
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simulation models considered here are (assumed to be) computationally expensive, and

they can be deterministic, stochastic or physical simulation models.

1.2 Research Objectives

The research objectives mainly include three aspects.

First, the dissertation explores Kriging metamodeling for simulation interpolation. The

main objective is to use Kriging to interpolate simulation outputs to reduce computational

expenses caused by running a simulation model. Kriging is improved by introducing Taylor

expansion to act as a base function and sample Standard Deviation (SD) as the metric

for influence distance of covariance. Simulation interpolation capabilities of Kriging are

compared with those of regression and artificial neural networks. Multicollinearity, het-

eroscedasticity, and specification errors of metamodeling are emphasized.

The second objective is to use Kriging to assist in sensitivity analysis of a simulation

model. The partial differentiation equation of Kriging is developed. A sensitivity analysis

method based on the partial differentiation equation and Analysis Of Variance (ANOVA)

is built for simulation modeling.

The third objective is involved in Kriging metamodeling for simulation optimization.

A novel simulation optimization algorithm is created which can integrate Kriging with

evolutionary algorithms to search for optimal inputs of a simulation model.

In addition, the multi-functional Kriging application software is developed in order to

satisfy wide application needs of Kriging.
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1.3 Research Methods

The theoretical research is an important feature. The dissertation theoretically im-

proves Kriging models. A novel Kriging model based on Taylor expansion is developed to

enhance the simulation interpolation capabilities of Kriging. In addition, sample standard

deviation is used as the metric for influence distance of covariance, thus making different

simulation problems have a consistent measurement.

Kriging models are explicit and differentiable, which makes it feasible to use their

analytic features to assist the sensitivity analysis on simulation models. A methodology

contribution to sensitivity analysis of simulation modeling is that a partial differentiation

equation of Kriging is developed and used together with ANOVA to assist sensitivity analysis

on simulation models.

Empirical research is another important aspect. The dissertation uses many empirical

cases to investigate the interpolation capabilities of Kriging metamodeling in deterministic,

stochastic and physical simulations. Kriging is empirically used to analyze the sensitivity of

a simulation model to inputs. For the developed simulation optimization algorithm, several

simulated benchmark functions are used to test its effectiveness.

Additionally, comparison and contrast is widely used. For a test case, different models

or methods are used to implement simulation interpolation or optimization to analyze and

compare their advantages and disadvantages.

1.4 Organization of Dissertation

The dissertation is divided into nine chapters, and the organization of contents is as

follows.
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In Chapter Two, the origins and applications of Kriging are reviewed. The Kriging

origins reviewed include its early formulation and development process. The application

review of Kriging focuses on simulation interpolation and optimization.

Chapter Three presents the Kriging methodology. The basic principles and structure

components of Kriging are introduced. The introduced components include drift functions,

covariance functions, neighbor structures, and variance of interpolation errors. The impor-

tant properties of Kriging are further discussed.

Chapter Four introduces the theoretical contributions of the dissertation. A novel

Kriging model based on Taylor expansion is developed and named Taylor Kriging. Its crucial

properties are provided. Sample standard deviation is used to define influence distance of

covariance in covariance functions of Kriging. A sensitivity analysis method using a partial

differentiation equation of Kriging and ANOVA is established.

Chapter Five empirically investigates the interpolation effectiveness of Taylor Kriging

for deterministic and stochastic simulation by using some simulated cases based on bench-

mark functions. The critical insights from the empirical investigation are given.

Chapter Six empirically analyzes how to use the sensitivity analysis method based on

Kriging and ANOVA to perform sensitivity analysis on a simulation model. The chosen

simulation model is a physical simulation related to cost estimation. The potentials of the

sensitivity analysis method are compared with those of regression.

Chapter Seven establishes a novel hybrid simulation optimization algorithm by inte-

grating Kriging and evolutionary algorithms. The properties and parameter settings of

algorithm are analyzed in detail. The empirical applications of the algorithm to simulation

optimization are investigated.
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Chapter Eight introduces the developed Kriging application software. The software has

a user-friendly graphic interface. The details about how to manipulate the multi-functional

application software are demonstrated.

Chapter Nine concludes the dissertation and illustrates the future research directions.
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Chapter 2

Literature Review

This chapter reviews the origins of Kriging and its applications in simulation interpola-

tion and optimization. The review on the development process of Kriging will be presented

in the third chapter.

2.1 Origins of Kriging

The roots of Kriging go back to the exploration research of Wold [158] and Kolmogorov

[77, 78] and Wiener [157], although their research is directly related to regression instead of

Kriging modeling. In 1951, Krige [81], a mining engineer in South Africa, first developed

the approach therefore bearing his name, and used this approach to gold mining valuation

problems.

The term “Kriging”, named by Matheron [94], was initially coined as “krigeage” by

Pierre Carlier [17]. Matheron [94] describes Kriging as a method which can predict the

grade of a panel by computing the weighted average of available samples. He emphasizes

that suitable weights should make variance smallest. Krige’s own understanding about the

term is that it is a multiple regression which is the best linear weighted moving average

of the ore grade of an ore block of any size by assigning an optimum set of weights to

all the available and relevant data inside and outside the ore block [82]. Ord [111] states

that Kriging is a method of interpolation for random spatial processes in the Encyclopedia

of Statistical Sciences. According to the opinion of Hemyari and Nofziger [52], Kriging

is a form of weighted average, where the weights depend upon the location and structure
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of covariance or semivariogram of observed points. The choice of weights must make the

prediction error less than that of any other linear sum. A semivariogram is a function used

to indicate spatial correlation in observations measured at sample locations [17].

In the early 1960’s, Matheron [92, 93] developed the mathematical theory associated

with Kriging models. Originally, Kriging was a linear predictor. In later developments

in geostatistics, Kriging was extended to nonlinear spatial prediction. Matheron [98] also

shows that Kriging and splines are formally equivalent. Dubrule [34] instead investigates

the differences between splines and Kriging.

An early comprehensive introduction to the origins of Kriging is given by Cressie [18].

Cressie investigates the origins of Kriging from the perspective of different disciplines and

states that Kriging is equal to spatial optimal linear prediction. An interesting historical

table of researchers’ contributions to Kriging is provided by Cressie. For Table 2.1, Cressie

explains that an index of “1” for Component 1 means that all possible covariances are used

to define weights, “1
2” means only some covariances are used, and “0” means some other

weights are used; an index of “1” for Component 2 means that the weighted least-squares

estimator of µ is used, “1
2” means that another estimator is used and “0” means µ is assumed

known; an index of “1” for Component 3 means that prediction is performed in a spatial

setting, “1
2” means a temporal setting is used and “0” means that neither a spatial nor a

temporal setting is considered. Table 2.1 shows that Wold, Kolmogorov and Wiener did

some early exploratory work, Krige established Kriging models, and Matheron [18] made

comprehensive analysis on Kriging models.
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Table 2.1: Historical Table of Researchers’ Contributions to Kriging [18]
Research 1938 1941-1949 1951 1956 1952 1963

Wold (1,0,12)
Kolmogorov (1,0,12)
Wiener (1,0,12)
Krige (1

2 ,12 ,0) (1,12 ,0)
Thompson (1,0,1)
Goldberger (1,1,0)
Matheron (1,1,1)
Gandin (1,1,1)
Whittle (1,1,12)
Moritz (1,0,1)
Henderson (1,1,0)

2.2 Overview of Kriging Applications

The applications of Kriging cover some disciplines which range from the classical ap-

plication fields of mining and geology to soil science, hydrology, meteorology, etc., and

recently to engineering design, cost estimation, wireless sensing and networks, simulation

interpolation, evolutionary optimization, etc..

The application of Kriging is mainly in geological settings [20, 21, 81, 65, 136]. Kriging

is extensively used to produce contour maps [22, 23, 43, 109, 145]. More relevant references

can be found in some review papers [33, 122]. Kriging has been used as a means to predict

the values of soil attributes at unsampled locations [49, 105, 120, 135, 152, 156]. In the field

of hydrology, Kriging has had wide applications [9, 13, 16, 26, 27, 112], and some related

review papers are [51, 144, 150]. Additionally, Kriging is applied to meteorology [25].

The literature demonstrates that in recent years Kriging has been applied to engineering

design [42, 89, 101, 132, 133], material sciences [35, 68, 91, 143], biomechanical engineering
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[3, 28, 11], wireless wave propagation [86, 30, 31, 119, 147, 160, 87, 88], economic sensitivity

analysis and cost estimation [151, 12], simulation interpolation [104, 6, 75], and optimization

[63, 61, 60].

Next, the dissertation will in detail review the Kriging applications in simulation in-

terpolation and optimization.

2.3 Kriging Applications in Simulation Interpolation

The application of Kriging to simulation interpolation first occurred in the area of

deterministic simulation. The classic reference refers to Sacks et al. [124]. In this reference,

Sacks et al. consider the computer experiments which are computationally expensive to run

and whose outputs are deterministic. For such computer experiments, they use Kriging to

fit an inexpensive but efficient predictor to reduce the computational cost.

In the reference [104], Mitchell and Morris investigate Kriging as an alternative to

conventional response surface methodology for use in simulation experiments. Mitchell and

Morris treat Kriging as a Bayesian method. They use Kriging to evaluate the importance of

input parameters, consider how to use Kriging to optimize a dependent variable, and discuss

the Kriging applications in inverse problems according to a simulation experiment on the

model of groundwater flow. Although much of their focus is on deterministic simulations,

they show how modifications can be made to handle the simulation interpolation with

random outputs.

Trochu et al. [146] apply Dual Kriging as an interpolation method to simulating the

macroscopic mechanic behavior of shape memory alloys. They use Dual Kriging to yield an
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explicit equation of any partial cycle inside the main hysteretic domain, thus presenting a

general material law for shape memory alloys.

The early application of Kriging to random simulations was proposed by Barton [6].

In his introduction to Kriging, he regards Kriging as a spatial correlation metamodel. He

indicates that although the fitting capability of the spatial correlation method is exciting,

it is based on a small set of examples, and the more extensive computational comparison

of different methods would have to wait for more generally available computer codes. Ad-

ditionally, Koehler and Owen [76] provide some extra introduction and discussion of the

simulation interpolation based on Kriging.

Régnire and Sharov [118] discuss the application of Kriging to the interpolation of

the spatial and temporal output data of the simulation model for male gypsy moth flight

phenology. Universal Kriging (UK) and multivariate linear regression are compared in

their simulation interpolation. According to experimental results, they think that these

two methods are nearly equally precise in interpolating the output data of a simulation

model; however, Kriging requires more computing time than does regression. But, they

indicate that the success of regression may be due to the relatively simple physical processes

simulated, and UK offers an alternative in cases where simple polynomial terms cannot

mimic more complex response surfaces. As van Beers and Kleijnen [148] later noticed,

the multivariate linear regression compared with UK by Régnire and Sharov is a rather

complicated metamodel (involving terms of order six), which is perhaps one reason why its

resulting prediction accuracy is similar to that of Kriging.

The recent representative work of Kriging applications to simulation interpolation is

given by Kleijnen and van Beers [75, 74, 59, 148]. Their work mainly focuses on three areas:
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1. Investigate the application of Kriging in random simulation when the variances of

simulation outputs are not constant. They show that Ordinary Kriging (OK) is a

robust interpolation method and seems not very sensitive to variance heterogeneity

[75].

2. Propose a novel experimental design method based on Kriging for deterministic sim-

ulation interpolation. The method proposed [74] is sequential and application-driven

or customized through cross-validation and jackknife. Kleijnen and van Beers [74]

indicate that the method applies to other types of metamodels and stochastic simu-

lation. Van Beers and Kleijnen [59] also establish a customized sequential design for

interpolation in random simulation, especially discrete event simulation. The tool for

this customization is bootstrapping which estimates the variances of Kriging predic-

tions. The candidate input with the largest bootstrap variance is selected as the next

actual input to be simulated. However, it is noticed that although what they discuss

is discrete-event simulation, the interpolated variables are still continuous.

3. Discuss the Kriging interpolation for random simulation and in detail illustrate De-

trended Kriging that they develop [148].

Additionally, van Beers and Kleijnen [149] review the Kriging application to simulation

interpolation. They note that the Kriging interpolation is attractive in deterministic simu-

lation, and the Kriging interpolation in discrete-event simulation has just started. Santner,

et al. [125] provide some details of the application of Kriging to simulation interpolation.

Meckesheimer et al. [62] develop the efficient methods to assess the validity of Kriging and

other metamodels in simulation interpolation. They investigate computationally inexpen-

sive assessment methods for metamodel validation based on leave-k-out cross validation,
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and develop guidelines about how to select k. Based on the results from two sets of test

problems, k = 0.1N or the square root of N is recommended for the Kriging metamodel,

where N is the number of sample points used to construct the metamodel. Hertog, et al.

[53] discuss the Kriging variance. They prove that the classic Kriging variance formula

widely used in geostatistics is wrong, and the formula underestimates the Kriging expected

variance. And they develop a parametric bootstrapping method to estimate the Kriging

variance.

The literature review shows that although some researchers applied Kriging to sim-

ulation interpolation, their work mainly focused on Simple Kriging (SK) and OK. The

drift functions of SK and OK are a zero constant and an unknown nonzero constant, re-

spectively. These drift functions are simple, and it is not possible for them to capture the

non-constant mean drift of data in some simulation problems. Note that some references

used UK, but the drift function of UK is a general polynomial, and its base function forms

are not identified. There exist difficulties in choosing specific base functions for UK. How

to give a non-constant drift function for Kriging with specified base function forms deserves

exploration.

Similar to computer simulation with costly computational expense, physical simulation

has the similar difficulties to obtain data with adequate sample size because of economic

and time constraints. Exploring Kriging interpolation for physical simulation has been very

few in the literature, and more work is needed in this area.

Although some references compared the interpolation capabilities of Kriging and re-

gression, they did not consider multicollinearity, heteroscedasticity, and specification errors

in regression. Methodologically, the comparison is incomplete, and the results can not be
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trusted without any suspicion. It is needed to redo the comparison of Kriging and regression

with these considerations.

Sensitivity analysis is another critical problem of simulation modeling. Kriging meta-

models are explicit and differentiable, and it could be possible to use these analytic features

of Kriging to assist sensitivity analysis on simulation models, which has not been seen in

the literature. As a result, its exploration is justified.

2.4 Kriging Applications in Optimization

Recently Kriging has been applied to optimization areas. The applications in opti-

mization can be divided into two types. One is that Kriging is used to assist evolutionary

optimization by acting as temporal fitness functions; the other is called Sequential Krig-

ing Optimization (SKO) where Kriging itself serves as an optimization tool to search for

optimization solutions.

When evolutionary algorithms are used to solve optimization problems, explicit fitness

functions may not exist. The application of Kriging in evolutionary algorithms is to build

an approximate fitness function so that evolutionary algorithms can use this approximate

function to guide further search. The literature indicates that the early research in this area

was conducted by Ratle [115, 116]. Ratle proposed a hybrid algorithm by integrating Kriging

and a real-coded Genetic Algorithm (GA). The new algorithm has the good approximation

performance of Kriging with effective and robust evolutionary searching capability of GA.

El-Beltagy et al. [36] investigate the same problem and suggest that the issue of balancing

the concerns of optimization with those of design of experiments should be addressed. Song
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et al. [137] couple a real-coded GA with Kriging for firtree structural optimization. Zhou et

al. [110, 161] present a hierarchical surrogate-assisted evolutionary optimization framework.

Another form of Kriging applications to optimization is SKO, also called the Efficient

Global Optimization (EGO) method. Its basic concept is to approximate the objective

function of an optimization problem with a Kriging model, and then use the Kriging model

to obtain the most promising point for sequential sampling. SKO focuses on solving ex-

pensive noisy black-box problems. Some related references are [61, 63, 127, 131]. If the

system of interest is very complicated, it is often necessary to draw data with less cost from

surrogate experimental systems used to mimic production systems, called “lower-fidelity

systems”, or from computer simulations used to approximate physical experiments. The

system of interest is called the “highest fidelity” system. Leary et al. [85] use the low

fidelity data as prior knowledge to be incorporated in the training of neural network and

the generation of Kriging model. Huang et al. [70, 60] propose an extension of SKO that

utilizes multiple fidelity data to reduce total evaluation cost.

The literature review shows that Kriging applications in optimization concentrate on

using its interpolation capabilities to reduce the computational cost of optimizing a com-

plex system. The main feature of the application is that Kriging temporarily replaces an

objective function to assist optimization search. Note that the integration application of

Kriging and evolutionary algorithms to optimization is just starting. The clear structure

of the integration algorithm is not given and there are no extensive analysis and discussion

on the algorithm itself. In the literature, the evolutionary algorithm used to be integrated

with Kriging focuses on GA. However, evolutionary algorithms have been improved. The
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improved algorithms with stronger optimization capabilities should be considered. In ad-

dition, Kriging may be improved, and its interpolation capabilities can be enhanced in the

integration algorithm. The integration algorithm is seldom applied to simulation optimiza-

tion which is a key problem of simulation modeling. Exploring its application to simulation

optimization with costly computational expenses is meaningful.
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Chapter 3

Kriging Methodology

From the perspective of methodology, this chapter briefly introduces the basic principles

of Kriging, and gives some advanced discussion. Subsequently, some key components of

Kriging are analyzed which are drift function, covariance function, neighbor structure, and

variance of interpolation errors. Finally, the properties of Kriging are discussed.

3.1 Kriging Methodology

3.1.1 Basic Principles

Consider a stochastic function with the form below:

Z(X) = µ(X) + ε(X) (3.1)

where X is a position vector, µ(X) is a mean term or a drift function showing the average

behavior of Z(X), and ε(X) is a random error term with E[ε(X)] = 0. In geology, Z(X)

may represent the gold deposit in a location X, µ(X) correspondingly the expected amount

of gold deposit, and ε(X) the associated random error from the mean. Suppose N observed

values are Z(X1), Z(X2), · · · , Z(XN ). Kriging uses a linear combination of the observed

values to estimate the function value at an unobserved point X.

Ẑ(X) =
N∑

i=1

λiZ(Xi) (3.2)
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where the coefficients λi are selected in such a manner that the above estimator satisfies

the following constraints:

1. Ẑ(X) must be the unbiased estimator of Z(X);

2. The variance of estimation errors must be minimized, i.e., Ẑ(X) must be the BLUE.

According to the unbiased requirement, the equation below can be obtained:

E[Ẑ(X)] =
N∑

i=1

λiE[Z(Xi)] (3.3)

which can be transferred to the following form:

µ(X) =
N∑

i=1

λiµ(Xi) (3.4)

Without loss of generality, suppose the drift function µ(X) consists of M basis functions

fl(X), l = 1, 2, · · · ,M , that is,

µ(X) =
M∑

l=1

alfl(X) (3.5)

where al (l = 1, 2, · · · , M) are unknown constant coefficients that are later determined in

Eq. (3.22) and fl(X) is named a base function in Kriging literature. Then the unbiased

requirement leads to:

fl(X) =
N∑

i=1

λifl(Xi) l = 1, · · · ,M (3.6)
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Thus, minimizing the variance of estimation error becomes a constrained optimization prob-

lem outlined below:

Minimize: V ar[Ẑ(X)− Z(X)] =
N∑

i=1

N∑

j=1

λiλjCov[Z(Xi), Z(Xj)]

−2
N∑

i=1

λiCov[Z(Xi), Z(X)] + V ar[Z(X)]

Subject to: fl(X) =
N∑

i=1

λifl(Xi) l = 1, 2, · · · ,M (3.7)

Kriging models transform the problem into the following unconstrained optimization by

introducing Lagrange multipliers ul, l = 1, 2, · · · ,M .

Minimize: V ar[Ẑ(X)− Z(X)] =
N∑

i=1

N∑

j=1

λiλjCov[Z(Xi), Z(Xj)]

−2
N∑

i=1

λiCov[Z(Xi), Z(X)] + V ar[Z(X)]

+2
M∑

l=1

ul[
N∑

i=1

λifl(Xi)− fl(X)] (3.8)

Partially differentiating the right side of Eq. (3.8) with respect to λi (i = 1, · · · , N) and ul

(l = 1, · · · ,M) generates the well-known “Universal Kriging system” as follows:

N∑

i=1

λifl(Xi) = fl(X) l = 1, · · · ,M (3.9)

M∑

l=1

ulfl(Xi) +
N∑

j=1

λjCov[Z(Xi), Z(Xj)] = Cov[Z(Xi), Z(X)] i = 1, · · · , N (3.10)
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which can be expressed in matrix form as:




0 FT

F S







U

λ


 =




f(X)

C(X)


 (3.11)

where

λ =
[

λ1 · · · λN

]T

(3.12)

U =
[

u1 · · · uM

]T

(3.13)

C(X) =
[

C1 · · · CN

]T

(3.14)

f(X) =
[

f1(X) · · · fM (X)
]T

(3.15)

S =




S11 · · · S1N

...
. . .

...

SN1 · · · SNN




(3.16)
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F =




f1(X1) · · · fM (X1)
...

. . .
...

f1(XN ) · · · fM (XN )




(3.17)

In the above matrices, Sij represents Cov[Z(Xi), Z(Xj)] which is the covariance between

the sample points Z(Xi) and Z(Xj), and Ci denotes Cov[Z(Xi), Z(X)]. The coefficient

matrix with dimensions (N +M)× (N +M) in the left side of Eq. (3.11) is termed Kriging

matrix. If Kriging coefficient matrix is nonsingular, coefficients λi (i = 1, · · · , N) can be

obtained and thus Eq. (3.2) can provide the estimate of Z(X).

3.1.2 Advanced Analysis

According to equations (3.2) and (3.11), some researchers such as Hertog et al. [53]

provide the following Kriging estimator whose proof is provided by Appendix A:

Ẑ(X) = λ̂TZ = âT f(X) + CT (X)S−1(Z− Fâ) (3.18)

where

λ̂ = S−1[C(X)− FÛ] (3.19)

Û = (FTS−1F)−1[FTS−1C(X)− f(X)] (3.20)

a =
[

a1 · · · aM

]T

(3.21)

â = (FTS−1F)−1FTS−1Z (3.22)
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Z =
[

Z(X1) · · · Z(XN )
]T

(3.23)

An extensive analysis on the Kriging estimator leads to the following results:

1. Eq. (3.18) shows that the key parts of the Kriging estimator are the chosen observa-

tion points X1, · · · ,XN , the covariance matrix S whose core is actually a covariance

function of Kriging, and the drift function aT f(X). The prerequisite of performing

Kriging estimation is to have a set of observation points. This prerequisite means that

it is necessary to design a good experiment to obtain pertinent observation points.

Essentially, obtaining observation points is the selection problem of neighboring struc-

tures. Kriging adopts the method of Generalized Least Squares (GLS) to estimate

the coefficients of the drift function. GLS is a robust method and also can consider

heteroscedasticity. The drift function coefficients can be estimated accurately.

2. The Kriging estimator consists of two parts. One is the estimator of the drift function

âT f(X) based on the GLS estimator (FTS−1F)−1FTS−1Z; the other is the weighted

correction part of prediction errors of the estimator of the drift function, where Z−Fâ

is a prediction error vector. If CT (X)S−1 is treated as weighted coefficients of the

prediction error vector, a larger correlation between a predicted point and an observed

point results in a larger weighted coefficient.

3. If a predicted point is far away from an observed point, the correlation between the

predicted point and the observed point is very weak. That is to say, CT (X) will

become very small, which leads to CT (X)S−1(Z−Fâ) close to zero. Clearly, Kriging

is actually using the regression of GLS, that is, âT f(X), to estimate the value of Z(X).

In this case, Kriging can only estimate the mean drift behavior of the predicted point.
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Note that â is the GLS estimator of the vector [a1 · · · aM ]T in Eq. (3.5). Because of sim-

ilarities of Kriging and regression, next the chapter methodologically compares Kriging with

regression to better illustrate the features and properties of Kriging. Additionally, Artificial

Neural Network (ANN) is a classic artificial intelligence technique to perform interpolation.

Therefore, the comparison covers ANN to show the comparison comprehensiveness.

Regression uses observation values X1, · · · ,XN and Z(X1), · · · , Z(XN ) to establish a

regression model. The direct objective is to find an explicit relationship between X1, · · · ,XN

and Z(X). Based on regression assumptions, the methods of Ordinary Least Squares (OLS)

or GLS are used to estimate the coefficients of polynomials in a regression equation. OLS

or GLS can minimize the variances of coefficient estimators of polynomials and make the

estimators unbiased. Similar to regression, ANN uses observation values X1, · · · ,XN and

Z(X1), · · · , Z(XN ) to fit a network. The objective of ANN is to directly construct a re-

lationship between X1, · · · ,XN and Z(X) by minimizing Mean Square Errors (MSE) of

actual and predicted values. However, ANN can capture a nonlinear relationship between

independent and dependent variables but in an implicit way. As for Kriging, its direct

objective is to establish a functional relationship between Z(X1), · · · , Z(XN ) and Z(X) by

minimizing the variance of prediction errors of Z(X) and by making the estimator of Z(X)

unbiased, which is different from regression and ANN. However, similar to regression, Krig-

ing assumes a functional form of E[Z(X)], and uses the GLS to estimate the coefficients

of polynomials in the assumed function. The final Kriging estimator of Z(X) is actually a

relationship between X1, · · · ,XN and Z(X).
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3.2 Drift Functions

3.2.1 Literature Review

According to the differences of drift functions, Kriging models are generally divided

into three types, which are Simple Kriging (SK), Ordinary Kriging (OK) and Universal

Kriging (UK). The drift part of SK is the zero constant. SK is the most basic form of

Kriging [109]. The Kriging model most often used is OK, which was developed by Matheron

[93] in the early sixties. The drift function of OK is an unknown nonzero constant. The

general form of Kriging models is UK, which was introduced by Matheron in 1969 [96].

UK is a non-stationary geostatistical method and its drift function is modeled as a general

linear function of coordinates. When a drift function is defined externally through some

auxiliary variables, the corresponding Kriging model is named Kriging with External Drift

(KED)[14, 153]. Ahmed and de Marsily [2] suggest that the drift and residuals can be fitted

separately and then summed. Odeh et al. [107, 108] call this form of Kriging Regression

Kriging (RK), and Goovaets [50] names it “kriging after detrending”.

Some other drift functions can refer to Disjunctive Kriging (DK)[97], Indicator Kriging

(IK)[17], and Lognormal Kriging (LK)[82]. DK is for nonlinear problems and it is a nonlinear

generalization of Kriging [97]. IK is used for the estimation of discrete variables and it uses

indicator functions to estimate transition probabilities [64]. Multiple Indicator Kriging is

another version of Indicator Kriging. Multiple Indicator Kriging works with a family of

indicator functions instead of one indicator function. LK is assumed for highly skewed

distributions of ε(X) and it can only interpolate positive data [17].

When Kriging interpolation is based on blocks instead of points in space, the corre-

sponding Kriging model is called Block Kriging (BK). BK provides a mean estimate for a
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discrete area around an interpolation point. When Matheron [93] formulates Kriging, he

presents it in the form of BK. The possible reasons why he chooses this form are the need

of mathematical generality and his immediate concern about the estimation of average ore

content of mining blocks. The only difference of BK from point Kriging is that the estimated

point is replaced by a block. BK is usually more appropriate to be applied to the problems

related to environment. In these two problems the block is defined as the rectangular area

around a point.

Dual Kriging [145] is an alternative formulation to Kriging. The value estimated by

Dual Kriging is a linear combination of covariance functions. Dual Kriging is a powerful

mathematical interpolation method, and is particularly useful when estimations are needed

for a global area with a large number of locations or when the availability of an analytical

expression is advantageous. With an analytical expression, Dual Kriging is very useful for

sensitivity analysis. By concentrating on local neighbors, Aunon et al. [5], present an

alternative implementation of dual ordinary Kriging to provide an analytical expression

within each subsection instead of the global area. And they suggest a procedure to remove

the potential discontinuity across subsection boundaries.

Factorial Kriging Analysis (FKA) is one more form of Kriging, and it is developed by

Matheron [99]. The literature review shows that it has wide applications [49, 138]. The

main advantage of FKA is that it can be used to extract components from a variable which

may be mapped separately for analysis. Galli and Sandjivy [44] theoretically compare FKA

and spectral analysis and demonstrate their formal equivalence. However, they indicate

that spectral analysis is not directly applicable to irregularly spaced data, which makes

FKA advantageous.
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3.2.2 Mathematical Development

In the stochastic process (3.1), if drift function µ(X) is the zero constant, there does

not exist the constraint (3.9). The matrix form of Kriging system (3.11) correspondingly

becomes:




S11 · · · S1N

...
. . .

...

SN1 · · · SNN







λ1

...

λN




=




C1

...

CN




(3.24)

The Kriging model is called SK. If drift function µ(X) is an unknown non-zero constant,

the constraint (3.9) becomes a simple equation as follows:

λ1 + · · ·+ λN = 1 (3.25)

The matrix form of Kriging system (3.11) is correspondingly formulated as:




0 1 · · · 1

1 S11 · · · SNN

...
...

. . .
...

1 SN1 · · · SNN







u1

λ1

...

λN




=




1

C1

...

CN




(3.26)

This Kriging model is named OK. Equation (3.11) gives the general form of Kriging in

matrix form, and it is named UK.

Furthermore, assume the inverse of Kriging coefficient matrix in Eq. (3.11) exists.

Then, the Kriging system in Eq. (3.11) can be solved and their solutions λi can be expressed
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as:




Û

λ̂


 =




E G

Q H







f(X)

C(X)


 (3.27)

where E, G, Q, and H are the partitioned matrices of the inverse of Kriging coefficient

matrix. Then the estimation value of Z(X) can be carried out by using the following

formula:

Ẑ(X) =
[

Z(X1) . . . Z(XN )
]
Qf(X) +

[
Z(X1) . . . Z(XN )

]
HC(X) (3.28)

Noting that Z(X1), . . . , Z(XN ), Q and H are all known, in order to simplify the above

expression, the dissertation defines a new set of coefficients below:

α̂ =
[

α̂1 · · · α̂N

]
=

[
Z(X1) · · · Z(XN )

]
Q (3.29)

β̂ =
[

β̂1 · · · β̂N

]
=

[
Z(X1) · · · Z(XN )

]
H (3.30)

Thus the estimator of Z(X) is simplified as:

Ẑ(X) = α̂f(X) + β̂C(X) (3.31)

This Kriging model is called Dual Kriging.

27



3.3 Covariance Functions

3.3.1 Literature Review

In Kriging models, selecting a proper covariance function is a crucial problem. The

research on covariance functions mainly focuses on investigating the influence of misspecified

covariance function on estimates. Diamond and Armstrong [29], Sukhatme [142], Warnes

[155], Armstrong and Myers [4] investigate the influence of small perturbations of covariance

function on a Kriging model. Yakowitz and Szidarovszky [159], Stein [140], and Stein and

Handock [141] study the behavior of Kriging models caused by an incorrect covariance

function as the number of observations in some fixed region increases. Stein [140] shows that

when the number of observed points increases, the impact caused by an incorrect covariance

function is asymptotically negligible if the adopted covariance function is “compatible” with

the actual covariance function in the region of interest. Journal and Huijbregts [65] indicate

that the spherical covariance function is inappropriate for most three-dimensional fields.

3.3.2 Typical Covariance Functions

If the covariance function of a stochastic process only depends on the distance between

two points and is not influenced by their particular fixed locations, the process is said to

be second-order stationary. When a stochastic process has the same covariance structure

in all directions, it is said to be homogeneous and isotropic. Homogeneity means that any

two points have the same finite covariance if the distance between them is equal. Isotropy

means that the covariance has the property of being independent of direction. For simplicity,

Kriging models generally assume that covariance functions are homogeneous and isotropic.

Of course, the assumptions are not the prerequisites of Kriging models. Calculation of a
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covariance function needs to have the knowledge of µ(X1) and µ(X2). In order to avoid this,

geologists develop another measurement of joint variation that can be calculated without

the means. This measurement is called variogram. Variogram is the variance of difference

between Z(X1) and Z(X2). Mathematically, it is defined as [14]:

2γ(r) = V ar(Z(X1)− Z(X2)) (3.32)

where γ(r) is named semi-variogram. The relationship between covariance and semi-

variogram is

Cov(Z(X1), Z(X2)) = V ar(Z(X1))− γ(r) (3.33)

Some typical covariance functions and variogram frequently used under the homogeneous

and isotropic assumptions are listed below.

1. Pure nugget effect covariance:

C(r) =





C0 , if r = 0

0 , otherwise
(3.34)

2. Triangle model or tent (linear) covariance:

C(r) =





C0(1− r
d) , if r ≤ d

0 , otherwise
(3.35)
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3. Cubic covariance (1):

C(r) =





C0(1− 3 r2

d2 + 2 r3

d3 ) , if r ≤ d

0 , otherwise
(3.36)

4. “Cubic” covariance (2):

C(r) =





C0(1− 7 r2

d2 + 8.75 r3

d3 − 3.5 r5

d5 + 0.75 r7

d7 ) , if r ≤ d

0 , otherwise
(3.37)

where Chiles et al. [14] name the above polynomial as the “cubic” covariance function.

5. Spherical covariance:

C(r) =





C0(1− 3r
2d + r3

2d3 ) , if r ≤ d

0 , otherwise
(3.38)

6. Exponential covariance:

C(r) = C0e
(− r

d
) (3.39)

7. Gaussian covariance:

C(r) = C0e
−( r

d
)2 (3.40)

8. Power-function variogram:

γ(r) = prb, b ∈ (0, 2) (3.41)
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9. Logarithmic or De Wijsian variogram [82]:

γ(r) = p log (r) (3.42)

where d is the influence distance of a covariance function.

Generally, the triangle covariance function is used in a one-dimensional space. Cubic

and spherical covariance functions are used in the space one to three dimensions. Exponen-

tial and Gaussian covariance functions could be used in any space.

3.4 Neighbor Structures

The application of Kriging models involves how to select some proper data points to

perform interpolation. Theoretically, the more points included, the better, because any

smaller neighbors can be regarded as a constrained optimization with weights zero placed

on the discarded points. However, the problem is that when more data points are used, the

corresponding Kriging coefficient matrix will become dimensionally larger, which will result

in the difficulties of calculating the inverse of the Kriging coefficient matrix. In general,

Kriging models work well for up to 100 points. Davis and Grivet [24] further point out that

for some special purposes Kriging models can accommodate up to 400 points. However, it

is possible by using faster computers to accommodate more data points.

Two important guidelines about selecting neighbors are screening and relay effects.

Mathematically, the screening effect is to concentrate non-zero Kriging weights on a subset

of samples in the immediate vicinity of an estimated point, and block off the influence

of all other data. The relay effect shows the necessity to include more data points. The

relay effect indicates that data points can influence each other by virtue of relay even if
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the distance between them is large. A simple example is that suppose there are a series of

random points Zi, Zi+1, · · ·, and they follow a normal distribution N(0, σ2). If there is a

function relationship Zi+1 = ωiZi between Zi and Zi+1. Then the covariance between Zi

and Zi+1 can be calculated as follows:

Cov(Zi, Zi+1) = Cov(Zi, ωiZi) = ωiσ
2 (3.43)

However, according to the relay effect, it can be further noted that there is a covariance

between Zi and Zi+2 which is computed as follows:

Cov(Zi, Zi+2) = Cov(Zi, ωi+1Zi+1) = Cov(Zi, ωi+1ωiZi) = ωi+1ωiσ
2 (3.44)

It is important to balance the need of screening and relay effects to choose neighbors. The

need is embodied by choosing a proper influence distance in a covariance function. When

a larger influence distance is chosen, more points are included and the relay effect can be

satisfied. However, including more points will increase the computational complexity of

Kriging. The screening effect shows that it is feasible to limit the influence distance of

covariance to decrease data points and to control the computational complexity of Kriging.

3.5 Variance and Accuracy

Kriging can provide the variance of interpolation errors σ̂2
e . The variance can be used

to measure the accuracy of Kriging estimator. For the stochastic process (3.1), combining
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equations (3.8, 3.9, 3.10) results in the variance of interpolation errors as follows:

σ̂2
e = V ar[Z(X)]−

N∑

i=1

λ̂iCov[Z(Xi), Z(X)]−
N∑

i=1

λ̂i

M∑

l=1

ûlfl(Xi) (3.45)

The references [14, 53] provide similar versions of Eq. (3.45). In reference [14], the covariance

in Eq. (3.45) is a specific Gaussian covariance function. For SK, the base function is a zero

constant, and σ̂2
e reduces to

σ̂2
e = V ar[Z(X)]−

N∑

i=1

λ̂iCov[Z(Xi), Z(X)] (3.46)

For OK, the base function is an unknown non-zero constant, and σ̂2
e becomes

σ̂2
e = V ar[Z(X)]−

N∑

i=1

λ̂iCov[Z(Xi), Z(X)]− û1 (3.47)

where û1 is the only Lagrange multiplier estimator in the matrix system (3.26) of OK.

According to (3.8, 3.9, 3.10), σ̂2
e is greater than zero.

3.6 Analysis on Properties

3.6.1 Algorithm Complexity

The algorithm complexity of Kriging is dominated by calculating the inverse of Kriging

coefficient matrix. Therefore, the analysis on its algorithm complexity will focus on com-

puting this inverse matrix. The typical algorithm in linear algebra to compute the inverse of

a matrix is Gaussian elimination or Gauss-Jordan elimination, named after mathematician

Karl Friedrich Gauss and Wilhelm Jordan.
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The computational complexity of Gaussian elimination is O(N3), which means that

when the matrix size is N × N , the computation required in Gaussian elimination is pro-

portional to N3. However, this algorithm is numerically unstable, at least on pathological

examples. For example, the floating-point errors committed throughout the computation

are accumulated, which makes the actual results far from correct solutions. For very large

matrix systems, Gauss-Jordan elimination is not a very good method because of its numeri-

cal instability and prohibitive computational cost, and iterative methods are more preferred.

For some special matrix systems, there exist some better computational methods. Some

classic references about how to compute an inverse matrix can be found in [66, 67].

When N increases, it will become more difficult for Gaussian elimination to compute

an inverse matrix. However, it is unnecessary for Kriging to use a large number of observed

points to estimate the values of unknown points. According to covariance functions, the

covariances between an estimated point and the observed points far away from the esti-

mated point are close to zero, and thus these observed points can be removed. In addition,

for a cluster of observed points close to each other, the similarity among them is strong.

Thus, only several representative points are needed, because according to screening effect it

is obviously redundant to use all of the observed points in this cluster. After these consid-

erations, the known points used to estimate the unknown points become very limited even

if the actual number of points is large. Thus the computational complexity of Kriging can

be well controlled. Additionally, a finite covariance function often causes Kriging coefficient

matrix to become sparse, which makes possible the use of sparse matrix solvers. A sparse

matrix is a matrix populated primarily with zeros.
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3.6.2 Parameter Settings

One of the main issues of applying Kriging is to choose its parameters. A significant

advantage of Kriging is that its parameter settings are limited. For SK and OK, only two

parameters which are covariance functions and influence distances of covariance need be set.

In some practical problems, the selection of covariance functions and influence distances of

covariance is very obvious or defined by the problems. In this case, no parameters need be

set. Although parameter settings in Kriging are few, they are important and determine the

accuracy and efficiency of Kriging interpolation.

3.7 Conclusions

This chapter introduced the basic principles of Kriging, and gave an advanced discus-

sion. The discussion analyzed some important structure properties of Kriging estimator,

and pointed out the similarities and differences of Kriging, regression, and ANN. Subse-

quently, the chapter investigated some key structure components of Kriging. Finally, some

important properties of Kriging were discussed.
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Chapter 4

Theoretical Developments Of Kriging For Simulation Interpolation

4.1 Introduction

The main goal of the chapter is to discuss three important theoretical developments of

Kriging which include a novel Kriging model based on Taylor expansion, the measurement

of influence distance of covariance, and the sensitivity analysis method based on Kriging

and Analysis of Variance (ANOVA). These developments can benefit Kriging interpolation

and sensitivity analysis for simulation models.

For Simple Kriging (SK) and Ordinary Kriging (OK), the drift functions of models are

zero and an unknown nonzero constant, respectively, which limit the simulation interpola-

tion capabilities of these two Kriging models. Mathematically, Taylor expansion has strong

nonlinear function approximation abilities. If Taylor expansion can be integrated with Krig-

ing to describe the mean drift behavior of data, the simulation interpolation abilities of the

integrated Kriging may be stronger. With this idea in mind, this chapter develops a novel

Kriging model based on Taylor expansion.

The influence distance in a covariance function impacts the simulation interpolation

performance of Kriging. Thus, it is essential to choose a proper value for it. However, this is

difficult because different simulation problems have different data magnitudes. This chapter

suggests sample standard deviation to be the metric for influence distance of covariance.

The objective is to simplify the setting of this parameter.

Sensitivity analysis can offer insights into the variation in simulation outputs caused

by inputs. The outcome of sensitive analysis is to quantify the influence of input factors
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on outputs and to find critical input factors, which can help decision makers improve a

simulation model. Kriging models are explicit and differentiable. Thus, it is feasible to apply

partial differentiation to perform sensitivity analysis on independent variables of Kriging.

When Kriging is used to construct a metamodel for inputs and outputs of a complicated

simulation model, the sensitivity analysis on Kriging can assist model developers to analyze

the output sensitivity to inputs. The partial differentiation equation of Kriging has not been

seen in references. This chapter devises its mathematical form. Together with ANOVA, it

is used to build a sensitivity analysis method for simulation models.

The organization of the chapter is as follows. First, a novel Kriging model based on

Taylor expansion is developed, and its key properties are discussed. Second, the use of

sample standard deviation to define influence distance of covariance is described. Then, the

sensitivity analysis based on Kriging and ANOVA is presented. Finally, some conclusions

are given.

4.2 A Novel Kriging Model Based on Taylor Expansion

4.2.1 Model Development

Suppose µ(X) has continuous derivatives up to the (m + 1)th order at point X0. Then

the Taylor expansion of µ(X) at the point X0 is:

µ(X) = µ(X0) + µ
′
(X0)(X−X0) +

µ(2)(X0)
2!

(X−X0)2 + · · ·

+
µ(m)(X0)

m!
(X−X0)m +

µ(m+1)(ξ)
(m + 1)!

(X−X0)m+1 (4.1)
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where ξ is a vector in the Taylor expansion such that each of its components lies within the

corresponding components of X and X0. Obviously, the base functions in Eq. (4.1) are

fl(X) = (X−X0)l, l = 0, · · · ,m + 1 (4.2)

The Kriging matrix system therefore becomes:




0 FT

F S







U

λ


 =




1
...

(X−X0)m+1

C(X)




(4.3)

where

F =




1 · · · (X1 −X0)m (X1 −X0)m+1

...
. . .

...
...

1 · · · (XN −X0)m (XN −X0)m+1




(4.4)

Since this Kriging system is developed according to Taylor expansion, the Kriging model is

termed Taylor Kriging (TK).

4.2.2 Model Properties

Next the properties of TK are investigated. Compared with SK and OK, TK has one

more important parameter, m, to be determined. A Taylor expansion with high order (large

m) has better approximation capabilities. However, the computation complexity of TK will

quickly increase as m increases.
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As discussed in Chapter 3, the computation complexity of Kriging is dominated by cal-

culating the inverse of Kriging coefficient matrix K =




0 FT

F S


. If Gaussian elimination

is used to invert K, the computational complexity of Kriging is O(N3), where N denotes

the matrix size. In TK, the size of K is determined by the number of known points used

to estimate an unknown point plus the order of Taylor expansion and the dimension of

independent variables. Suppose there are N known points, the order of Taylor expansion is

m, and the dimension of independent variables is D; then, the computational complexity of

TK is O((N +f(m,D))3). When the order in Taylor expansion is 1, the computational com-

plexity of the corresponding TK is O((N +(1+D))3). When the order in Taylor expansion

is 2 or 3, the computational complexity of TK becomes O((N +(1+D +D(D +1)/2))3) or

O((N +(1+D+D(D+1)/2+D2 +D(D−1)(D−2)/(3×2×1))3), respectively. Clearly, as

the order of Taylor expansion m increases, the computation complexity of TK will increase

rapidly. For example, when N is equal to 5, the order of Taylor expansion is 2, and the

dimension of independent variables is 3, the size of K becomes 15 by 15, which is much

larger than those of SK (5 by 5) and OK (6 by 6).

However, like regression, a too high order could cause the overfitting problem. Consid-

ering computational complexity and overfitting, generally the value of m is a positive integer

less than 4. Another important parameter in the complexity formula is the dimension num-

ber D of variable X. If D substantially increases, Taylor expansion will be complicated and

the computational expenses of TK will increase rapidly.
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4.3 The Measurement of Influence Distance of Covariance

The influence distance of covariance represents the parameter d in Eq. (3.34, 3.35, 3.36,

3.37, 3.38, 3.39, 3.40). Once a covariance function is chosen, the parameter d need be set.

Note that a covariance function only has a parameter, that is d, which makes its selection

crucial. Since different simulation problems have differing data magnitudes, the choosing

process becomes very difficult. Here sample standard deviation denoted by S is adopted

and used as the measurement unit of influence distance of covariance. S is calculated as

follows:

S =

√√√√ 1
N − 1

N∑

i=1

[Z(Xi)− Z]2 (4.5)

where Z = 1
N

∑N
i=1 Z(Xi). The advantages of using sample standard deviation are as

follows:

1. Sample standard deviation is easily understood and calculated;

2. Using sample standard deviation as the measurement unit of influence distance of

covariance can make different problems have a consistent measurement.

In addition, sample standard deviation is a relative measurement unit instead of an absolute

or fixed value. For example, if S = 0.2, two units of the sample standard deviation are equal

to 0.4; however, if S = 0.4, two units of the sample standard deviation become 0.8.

4.4 The Sensitivity Analysis Method Based on Kriging and ANOVA

Sensitivity analysis on a simulation model implies how simulation inputs influence

outputs. If a slight change in the value of an input variable has a large impact on its
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corresponding output, the simulation model is said to be very sensitive to the input vari-

able. This section uses the explicit and differentiable properties of Kriging to develop its

partial differentiation equation which is used to perform sensitivity analysis on independent

variables. Suppose that Kriging is utilized to fit a metamodel for inputs and outputs of

a complex simulation model. The sensitivity analysis on dependent variables of the fitted

Kriging metamodel can be used to analyze the output sensitivity of the simulation model

to inputs.

The partial derivative of Eq. (3.31) with respect to variable xj is calculated as follows:

∂

∂xj
Ẑ(X) = α̂




∂
∂xj

f1(X)
...

∂
∂xj

fM (X)




+ β̂




∂
∂xj

C1

...

∂
∂xj

CN




(4.6)

If the covariance function below is adopted to compute the covariance between two points

in a space,

Ci = C(ri) i = 1, · · · , N (4.7)

where

ri =

√√√√
N∑

j=1

(xj − xij)2 (4.8)

the partial derivative of Ci with respect to xj is given by:

∂Ci

∂xj
=

∂C(ri)
∂ri

∂ri

∂xj
=

∂C(ri)
∂ri

(xj − xij)√∑N
j=1(xj − xij)2

(4.9)
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Once the specific covariance and base functions are chosen, ∂
∂xj

Ẑ(X) will become explicit.

For example, assume that the chosen covariance function is a cubic covariance (2) function.

Then the partial derivative of the covariance function with respect to xj becomes

∂Ci

∂xj
=

(xj − xij)√∑N
j=1(xj − xij)2

C0(1− 14
ri

d2
+ 26.25

r2
i

d3
− 17.5

r4
i

d5
+ 5.25

r6
i

d7
) (4.10)

For SK and OK, the base functions are constants and thus their partial derivatives with re-

spect to xj become zero. For Taylor Kriging, although the base functions are not constants,

their partial derivatives with respect to xj can be calculated easily.

When a fitted Kriging metamodel is given, its partial derivative can be used to assist in

sensitivity analysis of a simulation model. However, it is necessary to first determine which

fitted Kriging metamodel should be chosen. Here analysis of variance (ANOVA) is used

to select a fitted Kriging metamodel. ANOVA developed by Sir R. A. Fisher is a powerful

tool to analyze experimental data. It is a statistical procedure to allocate the amount of

variation in a process and to determine if a factor’s impact on outputs is significant or caused

by random noise [129]. Average Absolute Relative Error (AARE) between actual values

and Kriging outputs is a chosen evaluation standard. ANOVA tests significant differences

of AAREs and then determines which Kriging metamodel is more effective and should

be used for the following simulation interpolation and sensitivity analysis. If ANOVA

indicates multiple significant metamodels, theoretically any of them can be adopted. In

the dissertation the Kriging metamodel with a smallest AARE and/or a simplest function

form among these models will be chosen and used subsequently.
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4.5 Conclusions

Chapter 4 used Taylor expansion to approximate a drift function, thus developing a

novel Kriging model. Taylor expansion has strong functional approximating capabilities

and can help Kriging better capture the mean drift behavior of data, thereby enhancing

the simulation interpolation potentials of Kriging. Influence distance of covariance is an

important parameter of a Kriging model. Sample standard deviation is suggested to be

its metric. One significant advantage of using sample standard deviation is that different

simulation problems have a consistent measurement unit for influence distance of covari-

ance. Sensitivity analysis can investigate the variation in simulation outputs caused by

inputs. The chapter developed a partial differentiation equation of Kriging and used it to

analyze the sensitivity of a dependent variable to independent variables in a Kriging meta-

model, thus indirectly realizing the sensitivity analysis of simulation outputs on inputs in

its corresponding simulation model.
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Chapter 5

Kriging Metamodeling For Deterministic And Stochastic Simulation

Interpolation

5.1 Introduction

Interpolation is a key problem of simulation modeling. The objective of interpolation

is to significantly reduce the expense of running simulation models. Chapter 4 theoretically

establishes a Kriging model based on Taylor expansion named Taylor Kriging (TK) to

enhance the potentials of Kriging simulation interpolation. This chapter will conduct the

empirical research to show its superiority. Some simulated test cases under deterministic

and stochastic environments will be used to compare and analyze the interpolation accuracy

and efficiency of Simple Kriging (SK) where the drift function is zero, Ordinary Kriging

(OK) where the drift function is an unknown nonzero constant, and TK. These test cases

are based on some multimodal benchmark functions.

The chapter is organized as follows. First, the generation of initial simulation inputs

based on Latin Hypercube Sampling (LHS) will be introduced. Second, the interpolation

accuracy and effectiveness of SK, OK and TK under deterministic environments will be

compared and analyzed by using four simulated cases. Next, the stochastic simulation

interpolation of SK, OK and TK will be conducted, and some problems related to stochastic

simulation interpolation will be investigated. Finally, some conclusions will be provided.
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5.2 Generation of Simulation Data

Latin Hypercube Sampling (LHS) is chosen to generate initial simulation input values.

LHS is proposed by McKay, Beckman and Conover [90]. They point out that LHS has a

smaller variance than Simple Random Sampling (SRS). Stein [139] and Owen [113] give a

specific expression for the variance. Sacks, Welch, Mitchell and Wynn [124] indicate that

LHS is an extension of stratified sampling which ensures that each of input variables has all

portions of its range represented. The main advantages of LHS are that it is computationally

less expensive to generate, and can deal with a large number of runs and input variables.

The procedure of LHS is as follows [39]:

1. Let πj(1), · · · , πj(N) be a random permutation of the integers 1, · · · , N . Generate s

permutations (j = 1, · · · , s), thus obtaining a Latin Hypercube Design (LHD) ex-

pressed as LHD(N, s);

2. Next generate a matrix of N × s uniform variates (also called random numbers in

Monte Carlo methods) U j
k ∼ U(0, 1), k = 1, · · · , N ; j = 1, · · · , s, which are mutually

independent. Let Xk = (xk1, · · · , xks), where,

xkj =
πj(k)− U j

k

N
k = 1, · · · , N ; j = 1, · · · , s. (5.1)

where 0 ≤ xkj ≤ 1. Then DN = {X1, · · · ,XN} is an LHS denoted by LHS(N, s).

Scatter figures 5.1 and 5.2 are two sampling examples, each including 25 observations,

from SRS and LHS, respectively. For Figure 5.2, corresponding to the algorithm above,

N is equal to 25, s equal to 2 which means that each point has two dimensions, and the

algorithm generates an LHS(25, 2) design. In Figure 5.2, each row and each column only
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have a randomly representative point. However, in Figure 5.1, it is possible that there

are no points or more than one point in a row or column. Clearly, LHS avoids redundant

sampling and ensures that there is sufficient observations.

5.3 Kriging Interpolation for Deterministic Simulation

5.3.1 Test Functions and Procedures

Four deterministic simulation cases based on multimodal benchmark functions are used

to compare the simulation interpolation capabilities of SK, OK and TK. These functions

are as follows.

1. The Himmelblau Function (Hmb). The search domain of function is −6 < xi < 6, i =

1, 2. The function has several local minima and one global minimum [71].

Hmb = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 + 0.1((x1 − 3)2 + (x2 − 2)2) (5.2)

2. The Six Hump Camelback Function (SHC). The search domain of function is −3 <

x1 < 3 and −2 < x2 < 2. The function has six local minima and two global minima

[8].

SHC = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2 (5.3)

3. The B2 Function. The search domain of function is −100 < xi < 100, i = 1, 2. The

function has several local minima and one global minimum [38].

B2 = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(3πx2) + 0.7 (5.4)
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Figure 5.1: Scatter Figure of 25 Samples from SRS
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Figure 5.2: Scatter Figure of 25 Samples from LHD
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4. The Rastrigin Function (Ras). The search domain of function is −5.12 ≤ xi ≤

5.12, i = 1, 2, · · · , D. D is the dimension number. The function has several local

minima and one global minimum [38].

Ras = 10D +
D∑

i=1

(x2
i − 10 cos(2πxi)) (5.5)

In the Ras function, D is arbitrarily set at 10.

The test process is divided into four steps. The first step is to use LHS to generate

150 simulation inputs in the feasible region of independent variables, and to obtain their

corresponding simulation outputs (function values). Using LHS to generate 150 simulation

inputs means that in the LHS algorithm N is set to 150, which is similar to the example

of N equal to 25 in Section 5.2. The second step is to use the 150 inputs and outputs to

fit Kriging models with different parameter settings. Next, 50 inputs generated uniformly

and randomly in the feasible region are used to test the fitted Kriging models. Finally,

the average absolute relative error (AARE) percentages of 50 predicted outputs are used as

the standard of performance measurement to evaluate the performance of Kriging models.

Here, Absolute Relative Error (ARE) is calculated as follows:

ARE = |yp − ya

ya
| × 100% (5.6)

where ya and yp are the actual and predicted simulation outputs, respectively, and |yp− ya|

expresses the absolute error.
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5.3.2 Result Comparison

Scatter figures 5.3 and 5.4 graphically describe the simulation inputs of the first test

function. The simulation inputs in Figure 5.3 are generated by using LHS in the feasible

regions of the Hmb function. The simulation inputs in Figure 5.4 are uniformly and stochas-

tically generated. The AARE percentages of 50 interpolated outputs from different Kriging

models for the four test functions are shown in Tables 5.1, 5.2, 5.3 and 5.4, respectively.

In these tables, SD represents standard deviation. The column of SD gives the values of

the influence distance of covariance which could be 2SD, or 5SD, etc.. According to these

tables, the best fitted models for different types of Kriging are listed in Table 5.5.

The Kriging models with smallest AARE percentages from SK, OK and TK, respec-

tively, are compared in Table 5.6 which indicates the averages, minima and maxima of ARE

percentages of 50 tested simulation outputs. These values consistently indicate that for the

four functions, TK performs best. Since drift functions of SK, OK, and TK are zero, a

nonzero constant, and a polynomial whose order is usually less than 5, respectively, TK has

the strongest approximation potentials. As expected, TK has the best performance. For

example, the Taylor expansion with order 3 serving as a drift function is very close to the

Hmb function. The Kriging model with the Taylor expansion exhibits the best performance.

In Table 5.1, the AAREs of the OK models with cubic (2) covariance function and

the TK models of order 3 with Cubic (2) covariance function are close. It is difficult to

tell whether the outputs from these two types of Kriging models are significantly different.

Here the paired t-test is used to test the AARE differences, and Table 5.7 gives the results.

In Table 5.7, Variables 1 and 2 represent the OK models with cubic (2) covariance function
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Figure 5.3: Scatter Figure of 150 Samples of First Test Function (Hmb)
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Figure 5.4: Scatter Figure of 50 Test Samples of First Test Function (Hmb)
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Table 5.1: AARE of First Test Function (Hmb) (%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3 4

Nugget 0 100 205.3478 205.3478 205.0371 115.8544 106.6875
Linear 1 10.7457 10.7088 10.7088 10.6995 8.3727 8.4311

2 10.7269 10.7088 10.7088 10.6995 8.3727 8.4311
3 10.7208 10.7088 10.7088 10.6995 8.3727 8.4311
4 10.7177 10.7088 10.7088 10.6995 8.3727 8.4311
5 10.7159 10.7088 10.7088 10.6995 8.3727 8.4311

Cubic (2) 1 1.3279 1.3046 1.3046 1.3048 1.1597 1.1636
2 1.3161 1.3041 1.3041 1.3042 1.1597 1.1641
3 1.3115 1.3031 1.3031 1.3049 1.1602 1.1636
4 1.3086 1.3041 1.3041 1.3023 1.1583 1.1630
5 1.3052 1.3008 1.3008 1.3010 1.1595 1.1588

Spherical 1 10.7633 10.7071 10.7071 10.6978 8.3721 8.4306
2 10.7357 10.7084 10.7084 10.6991 8.3725 8.4310
3 10.7267 10.7086 10.7086 10.6993 8.3726 8.4311
4 10.7222 10.7087 10.7087 10.6994 8.3726 8.4311
5 10.7195 10.7087 10.7087 10.6994 8.3726 8.4311

Exponential 1 10.7446 10.7099 10.7099 10.7003 8.3729 8.4314
2 10.7267 10.7091 10.7091 10.6997 8.3727 8.4312
3 10.7207 10.7090 10.7090 10.6996 8.3727 8.4312
4 10.7177 10.7089 10.7089 10.6995 8.3727 8.4312
5 10.7159 10.7089 10.7089 10.6995 8.3727 8.4311

Minimum= 1.1583
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Table 5.2: AARE of Second Test Function (SHC) (%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3 4

Nugget 0 100 78.9620 78.9620 80.4530 69.6518 764.9876
Linear 1 29.3027 51.1483 51.1483 51.2805 41.9032 35.1451

2 29.3737 51.1483 51.1483 51.2805 41.9032 35.1451
3 29.3946 51.1483 51.1483 51.2805 41.9032 35.1451
4 29.4047 51.1483 51.1483 51.2805 41.9032 35.1451
5 29.4105 51.1483 51.1483 51.2805 41.9032 35.1451

Cubic (2) 1 3.7112 4.0921 4.0921 4.0936 4.0055 3.4727
2 3.6456 4.1018 4.1018 4.1022 4.0112 3.4778
3 3.6213 4.1035 4.1035 4.1038 4.0122 3.4786
4 3.6087 4.1040 4.1040 4.1045 4.0124 3.4791
5 3.6015 4.1045 4.1045 4.1042 4.0132 3.4790

Spherical 1 29.3269 51.0731 51.0731 51.2141 42.0161 35.0955
2 29.3637 51.1230 51.1230 51.2571 41.9311 35.1327
3 29.3838 51.1365 51.1365 51.2696 41.9155 35.1396
4 29.3951 51.1415 51.1415 51.2743 41.9101 35.1420
5 29.4022 51.1440 51.1440 51.2765 41.9076 35.1431

Exponential 1 29.3259 51.1874 51.1874 51.3364 41.8479 35.1699
2 29.3796 51.1526 51.1526 51.2935 41.8892 35.1513
3 29.3974 51.1482 51.1482 51.2863 41.8970 35.1478
4 29.4063 51.1470 51.1470 51.2837 41.8997 35.1467
5 29.4116 51.1468 51.1468 51.2826 41.9009 35.1461

Minimum= 3.4727
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Table 5.3: AARE of Third Test Function (B2) (%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3 4

Nugget 0 100 139.1253 139.1253 140.0583 0.0049 0.0050
Linear 1 1.0818 1.0698 1.0698 1.0753 0.0051 0.0051

2 1.0757 1.0698 1.0698 1.0753 0.0051 0.0051
3 1.0737 1.0698 1.0698 1.0753 0.0051 0.0051
4 1.0728 1.0698 1.0698 1.0753 0.0051 0.0051
5 1.0722 1.0698 1.0698 1.0753 0.0051 0.0051

Cubic (2) 1 0.0248 0.0236 0.0236 0.0236 0.0073 0.0073
2 0.0243 0.0236 0.0236 0.0238 0.0075 0.0079
3 0.0250 0.0251 0.0251 0.0241 0.0097 0.0112
4 0.0334 0.0357 0.0357 0.0347 0.0140 0.0135
5 0.0457 0.0425 0.0425 0.0406 0.0269 0.0244

Spherical 1 1.0876 1.0695 1.0695 1.0749 0.0051 0.0051
2 1.0786 1.0697 1.0697 1.0752 0.0051 0.0051
3 1.0757 1.0698 1.0698 1.0752 0.0051 0.0051
4 1.0742 1.0698 1.0698 1.0752 0.0051 0.0051
5 1.0733 1.0698 1.0698 1.0752 0.0051 0.0051

Exponential 1 1.0814 1.0699 1.0699 1.0754 0.0051 0.0051
2 1.0756 1.0698 1.0698 1.0753 0.0051 0.0051
3 1.0737 1.0698 1.0698 1.0753 0.0051 0.0051
4 1.0727 1.0698 1.0698 1.0753 0.0051 0.0051
5 1.0721 1.0698 1.0698 1.0753 0.0051 0.0051

Minimum= 0.0049
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Table 5.4: AARE of Fourth Test Function (Ras) (%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3 4

Nugget 0 100 15.77 15.77 16.113 14.334 1012.61
Linear 1 13.801 12.377 12.377 12.468 14.733 990.789

2 12.614 12.377 12.377 12.468 14.733 1182.203
3 12.468 12.377 12.377 12.468 14.733 489.747
4 12.429 12.377 12.377 12.468 14.733 3172.592
5 12.408 12.377 12.377 12.468 14.733 4221.687

Cubic (2) 1 16.288 15.257 15.257 14.987 16.287 1459.488
2 15.096 15.227 15.227 15.122 16.135 11049.384
3 15.139 15.195 15.195 15.132 16.091 1042.38
4 15.146 15.179 15.179 15.135 16.074 9381.389
5 15.147 15.169 15.169 15.136 16.066 65029.349

Spherical 1 15.156 12.423 12.423 12.518 14.744 859.771
2 12.834 12.39 12.39 12.479 14.736 2257.75
3 12.59 12.383 12.383 12.473 14.734 8957.383
4 12.491 12.381 12.381 12.471 14.734 818.743
5 12.449 12.379 12.379 12.47 14.734 6815.851

Exponential 1 12.705 12.328 12.328 12.45 14.728 775.231
2 12.489 12.354 12.354 12.463 14.732 14370.155
3 12.433 12.364 12.364 12.466 14.733 12770.434
4 12.41 12.368 12.368 12.467 14.733 8664.75
5 12.396 12.37 12.37 12.467 14.733 4070.494

Minimum= 12.328
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Table 5.5: Parameter Settings of Chosen Kriging Models for Four Test Functions
Problem Kriging Covariance Influence Distance Order

Type Function (SD)

Hmb Simple Cubic (2) 5 · · · · · ·
Ordinary Cubic (2) 5 · · · · · ·
Taylor Cubic (2) 4 3

SHC Simple Cubic (2) 5 · · · · · ·
Ordinary Cubic (2) 1 · · · · · ·
Taylor Cubic (2) 1 4

B2 Simple Cubic (2) 2 · · · · · ·
Ordinary Cubic (2) 1 · · · · · ·
Taylor Nugget 0 3

Ras Simple Exponential 5 · · · · · ·
Ordinary Exponential 1 · · · · · ·
Taylor Exponential 1

Table 5.6: ARE Comparison of Different Kriging Models for Four Test Functions (%)
Test ARE Simple Ordinary Taylor
Tunction Kriging Kriging Kriging

Hmb Average 1.305 1.301 1.158
Minimum 0.003 0.001 0.000
Maximum 10.219 10.196 9.424

SHC Average 3.601 4.092 3.473
Minimum 0.014 0.014 0.024
Maximum 37.904 59.654 38.853

B2 Average 0.024 0.024 0.005
Minimum 0.000 0.000 0.000
Maximum 0.343 0.336 0.024

Ras Average 12.396 12.328 12.328
Minimum 0.11 0.158 0.158
Maximum 42.022 41.715 41.482
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Table 5.7: Paired t-test for Chosen Kriging Models in Table 5.1
Variable 1 Variable 2

Mean 1.3034 1.1595
Degree of freedom 4
t0 180.9594
P(T ≥ t0) one-tail 0.0000
t0.05 Critical one-tail 2.1318

Table 5.8: Paired t-test for Chosen Kriging Models in Table 5.2
Variable 1 Variable 2

Mean 3.6377 3.4774
Degree of freedom 4
t0 7.6133
P(T ≥ t0) one-tail 0.0008
t0.05 Critical one-tail 2.1318

and the TK models of order 3 with cubic (2) covariance function, respectively. The test

results show that their AAREs are significantly different, and the TK models are better.

Similarly, Table 5.8 gives the t-test result of the AAREs from the SK models with cubic

(2) covariance function and the TK models of order 4 with cubic (2) covariance function

in Table 5.2 where Variables 1 and 2 are the SK models with cubic (2) covariance function

and the TK models of order 4 with cubic (2) covariance function, respectively. The tested

AAREs show that the TK models are better. For Table 5.3, the TK models are obviously

best and there are no needs to conduct a statistical test.
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5.4 Kriging Interpolation for Stochastic Simulation

5.4.1 Test Functions and Procedures

The following stochastic function is designed to analyze the stochastic simulation in-

terpolation capabilities of SK, OK and TK:

F (X) = J(X) + ε(X) (5.7)

J(X) is a multimodal benchmark function which is simulated to generate trend data. The

chosen benchmark functions are Hmb and SHC, respectively, and ε(X) is a normal random

variable.

The interpolation procedure is divided into four steps. The first step is similar to the

deterministic simulation interpolation, and LHS is used to generate 150 simulation inputs

in the feasible region of independent variables. Simulating J(X) can generate their corre-

sponding trend data. The function “randn” in Matlab is used to generate standard NIID

(normal independent and identical distribution) random values which are then transformed

to the values ε(X) with N(0, σ2). Thus, 150 simulation outputs of F (X) can be obtained

according to Eq. (5.7). In the second step, the 150 input and output values of F (X) are

used to fit Kriging models with different parameter settings. In the third step, 50 inputs

are stochastically sampled in the feasible region of independent variables. The stochastic

sampling follows a uniform distribution. Similarly, the function “randn” in Matlab is used

to generate random values of ε(X). The 50 inputs and outputs of F (X) are then utilized to

test the fitted Kriging models. In the fourth step, a number of replications are conducted

since F (X) is stochastic. For the two constructed test problems, the number of replications
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are 100. The norm L2 of the errors of 50 predicted outputs for each replication is calculated

according to the following formula:

‖Xe‖ =

√√√√
50∑

i=1

x2
ei (5.8)

The extreme values, means, standard deviations, and quantiles Q0.1 and Q0.9 of L2 of 100

replications are then used to evaluate the stochastic simulation interpolation performance

of different Kriging models.

5.4.2 Result Comparison

The L2 comparison results of the replications from different Kriging models for Hmb

and SHC functions are shown in Tables 5.9, 5.10, 5.11 5.12, (5.13, 5.14, 5.15 and 5.16).

In these tables, “TK-O3-Cubic(2)-3” represents a TK model of order 3 with cubic (2)

covariance function and influence distance of covariance equal to 3 standard deviations

(SD). For other expressions, readers can refer to the explanation.

According to the mean columns of these tables, the best fitted Kriging models for

Hmb and SHC are a TK model of order 4 with cubic (2) covariance function and influence

distance of covariance equal to 1, and a TK model of order 2 with cubic (2) covariance

function and influence distance of covariance equal to 1, respectively. Figures 5.5 and 5.6

are drawn to show the interpolation effectiveness of these two Kriging models. In the two

figures, actual Y implies the average values of function outputs of 100 replications for each

of 50 test points, and predicted Y represents the average values of predicted outputs from

Kriging of 100 replications for each of 50 test points. The graphical trends show that the
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means of actual and predicted outputs are very close, which indicates that the two Kriging

models have good prediction capabilities.

5.4.3 Analysis on Replication and Variance

In the Kriging interpolation for stochastic simulation, there are two crucial parame-

ters which need be investigated. They are the number of simulation replications and the

variance of random variable ε(X). That is, how many simulation replications are needed

so that Kriging can provide valid mean outputs by interpolation? How does the variance

of ε(X) influence the interpolation performance of Kriging? For the simulation with costly

computational expense, the selection of replication numbers becomes more important. It

is necessary to limit the number of replications while obtaining valid Kriging interpolation

values. This part is to test different numbers of simulation replications and different vari-

ance values of random variable ε(X) to investigate their influence on Kriging interpolation

performance.

For each point of 50 test samples, actual and predicted output means of 100 replications

are calculated, and then the AREs of actual and predicted output means can be obtained.

The average of 50 AREs from 50 test samples, that is AARE, is used to evaluate the

interpolation performance of different Kriging models. The related results are shown in

Tables 5.17 and 5.18.

Figures 5.7 and 5.8 are drawn to show the change trend of the AAREs for different

replications and variance values. From the two figures, it can be concluded that as variance

values increase, AAREs increase, and as replications increase, AAREs decrease. That is, a

larger variance value for random variable ε(X) makes Kriging interpolation less accurate,
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Table 5.9: L2 Comparison of Different Kriging Models for Hmb Function - 1
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

SK-Nugget-0 2697.059 2703.110 2700.274 1.162 2698.793 2701.664
SK-Linear-1 225.215 231.029 228.177 1.115 226.819 229.572
SK-Linear-2 224.786 230.599 227.747 1.115 226.390 229.143
SK-Linear-3 224.647 230.459 227.608 1.115 226.251 229.004
SK-Linear-4 224.578 230.390 227.539 1.115 226.183 228.935
SK-Linear-5 224.537 230.349 227.497 1.115 226.142 228.894

SK-Cubic(1)-1 44.953 53.165 48.923 1.602 46.899 50.687
SK-Cubic(1)-2 44.556 52.774 48.530 1.603 46.504 50.294
SK-Cubic(1)-3 44.420 52.627 48.400 1.602 46.374 50.177
SK-Cubic(1)-4 44.364 52.587 48.337 1.604 46.314 50.069
SK-Cubic(1)-5 44.257 52.489 48.299 1.604 46.282 50.081
SK-Cubic(2)-1 45.122 53.331 49.094 1.601 47.072 50.857
SK-Cubic(2)-2 44.646 52.861 48.621 1.603 46.594 50.384
SK-Cubic(2)-3 44.487 52.703 48.462 1.603 46.435 50.226
SK-Cubic(2)-4 44.402 52.628 48.383 1.604 46.353 50.145
SK-Cubic(2)-5 44.337 52.571 48.336 1.603 46.313 50.094
SK-Spherical-1 225.627 231.442 228.590 1.114 227.230 229.984
SK-Spherical-2 224.990 230.804 227.952 1.115 226.594 229.348
SK-Spherical-3 224.782 230.595 227.744 1.115 226.387 229.140
SK-Spherical-4 224.679 230.492 227.641 1.115 226.284 229.037
SK-Spherical-5 224.618 230.430 227.579 1.115 226.223 228.975
OK-Nugget-0 1826.512 1831.189 1828.974 0.987 1827.633 1830.200
OK-Linear-1 224.374 230.185 227.334 1.116 225.979 228.731
OK-Linear-2 224.374 230.185 227.334 1.116 225.979 228.731
OK-Linear-3 224.374 230.185 227.334 1.116 225.979 228.731
OK-Linear-4 224.374 230.185 227.334 1.116 225.979 228.731
OK-Linear-5 224.374 230.185 227.334 1.116 225.979 228.731

OK-Cubic(1)-1 44.179 52.397 48.159 1.603 46.129 49.919
OK-Cubic(1)-2 44.176 52.400 48.153 1.604 46.121 49.916
OK-Cubic(1)-3 44.183 52.384 48.151 1.603 46.121 49.922
OK-Cubic(1)-4 44.178 52.390 48.151 1.606 46.116 49.887
OK-Cubic(1)-5 44.148 52.284 48.155 1.601 46.141 49.873
OK-Cubic(2)-1 44.210 52.427 48.194 1.602 46.164 49.952
OK-Cubic(2)-2 44.183 52.402 48.164 1.603 46.133 49.925
OK-Cubic(2)-3 44.179 52.394 48.156 1.604 46.124 49.920
OK-Cubic(2)-4 44.167 52.395 48.153 1.605 46.119 49.915
OK-Cubic(2)-5 44.159 52.384 48.152 1.602 46.129 49.907
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Table 5.10: L2 Comparison of Different Kriging Models for Hmb Function - 2
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

OK-Spherical-1 224.344 230.155 227.304 1.116 225.949 228.701
OK-Spherical-2 224.366 230.178 227.327 1.116 225.971 228.724
OK-Spherical-3 224.370 230.182 227.331 1.116 225.976 228.728
OK-Spherical-4 224.372 230.183 227.332 1.116 225.977 228.730
OK-Spherical-5 224.373 230.184 227.333 1.116 225.978 228.730

TK-O1-Nugget-0 1826.512 1831.189 1828.974 0.987 1827.633 1830.200
TK-O1-Linear-1 224.374 230.185 227.334 1.116 225.979 228.731
TK-O1-Linear-2 224.374 230.185 227.334 1.116 225.979 228.731
TK-O1-Linear-3 224.374 230.185 227.334 1.116 225.979 228.731
TK-O1-Linear-4 224.374 230.185 227.334 1.116 225.979 228.731
TK-O1-Linear-5 224.374 230.185 227.334 1.116 225.979 228.731

TK-O1-Cubic(1)-1 44.179 52.397 48.159 1.603 46.129 49.919
TK-O1-Cubic(1)-2 44.176 52.400 48.153 1.604 46.121 49.916
TK-O1-Cubic(1)-3 44.183 52.384 48.151 1.603 46.121 49.922
TK-O1-Cubic(1)-4 44.178 52.390 48.151 1.606 46.116 49.887
TK-O1-Cubic(1)-5 44.148 52.284 48.155 1.601 46.141 49.873
TK-O1-Cubic(2)-1 44.210 52.427 48.194 1.602 46.164 49.952
TK-O1-Cubic(2)-2 44.183 52.402 48.164 1.603 46.133 49.925
TK-O1-Cubic(2)-3 44.179 52.394 48.156 1.604 46.124 49.920
TK-O1-Cubic(2)-4 44.167 52.395 48.153 1.605 46.119 49.915
TK-O1-Cubic(2)-5 44.159 52.384 48.152 1.602 46.129 49.907
TK-O1-Spherical-1 224.344 230.155 227.304 1.116 225.949 228.701
TK-O1-Spherical-2 224.366 230.178 227.327 1.116 225.971 228.724
TK-O1-Spherical-3 224.370 230.182 227.331 1.116 225.976 228.728
TK-O1-Spherical-4 224.372 230.183 227.332 1.116 225.977 228.730
TK-O1-Spherical-5 224.373 230.184 227.333 1.116 225.978 228.730
TK-O2-Nugget-0 1787.354 1792.224 1790.028 1.026 1788.667 1791.174
TK-O2-Linear-1 221.807 227.581 224.740 1.117 223.398 226.147
TK-O2-Linear-2 221.807 227.581 224.740 1.117 223.398 226.147
TK-O2-Linear-3 221.807 227.581 224.740 1.117 223.398 226.147
TK-O2-Linear-4 221.807 227.581 224.740 1.117 223.398 226.147
TK-O2-Linear-5 221.807 227.581 224.740 1.117 223.398 226.147
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Table 5.11: L2 Comparison of Different Kriging Models for Hmb Function - 3
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

TK-O2-Cubic(1)-1 44.170 52.389 48.146 1.604 46.116 49.908
TK-O2-Cubic(1)-2 44.168 52.390 48.146 1.604 46.114 49.910
TK-O2-Cubic(1)-3 44.190 52.372 48.146 1.603 46.123 49.894
TK-O2-Cubic(1)-4 44.162 52.389 48.144 1.601 46.129 49.889
TK-O2-Cubic(1)-5 44.114 52.414 48.152 1.605 46.132 49.880
TK-O2-Cubic(2)-1 44.192 52.412 48.169 1.604 46.138 49.931
TK-O2-Cubic(2)-2 44.173 52.395 48.152 1.604 46.122 49.914
TK-O2-Cubic(2)-3 44.173 52.391 48.149 1.604 46.120 49.918
TK-O2-Cubic(2)-4 44.175 52.394 48.148 1.604 46.118 49.903
TK-O2-Cubic(2)-5 44.168 52.390 48.147 1.603 46.122 49.902
TK-O2-Spherical-1 221.771 227.545 224.704 1.117 223.362 226.111
TK-O2-Spherical-2 221.798 227.572 224.731 1.117 223.389 226.138
TK-O2-Spherical-3 221.803 227.577 224.736 1.117 223.394 226.143
TK-O2-Spherical-4 221.805 227.578 224.738 1.117 223.396 226.145
TK-O2-Spherical-5 221.806 227.579 224.739 1.117 223.397 226.146
TK-O3-Nugget-0 972.240 975.865 974.217 0.875 973.060 975.299
TK-O3-Linear-1 165.315 171.507 168.544 1.210 167.073 170.082
TK-O3-Linear-2 165.315 171.507 168.544 1.210 167.073 170.082
TK-O3-Linear-3 165.315 171.507 168.544 1.210 167.073 170.082
TK-O3-Linear-4 165.315 171.507 168.544 1.210 167.073 170.082
TK-O3-Linear-5 165.315 171.507 168.544 1.210 167.073 170.082

TK-O3-Cubic(1)-1 38.465 46.799 42.486 1.622 40.398 44.188
TK-O3-Cubic(1)-2 38.458 46.807 42.486 1.623 40.396 44.184
TK-O3-Cubic(1)-3 38.474 46.795 42.486 1.624 40.387 44.184
TK-O3-Cubic(1)-4 38.518 46.790 42.485 1.621 40.391 44.170
TK-O3-Cubic(1)-5 38.487 46.831 42.491 1.623 40.337 44.228
TK-O3-Cubic(2)-1 38.448 46.783 42.471 1.622 40.382 44.172
TK-O3-Cubic(2)-2 38.461 46.793 42.482 1.622 40.393 44.183
TK-O3-Cubic(2)-3 38.464 46.794 42.484 1.622 40.395 44.182
TK-O3-Cubic(2)-4 38.461 46.802 42.486 1.623 40.397 44.181
TK-O3-Cubic(2)-5 38.484 46.800 42.486 1.623 40.397 44.191
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Table 5.12: L2 Comparison of Different Kriging Models for Hmb Function - 4
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

TK-O3-Spherical-1 165.308 171.500 168.537 1.210 167.066 170.074
TK-O3-Spherical-2 165.313 171.505 168.543 1.210 167.071 170.080
TK-O3-Spherical-3 165.314 171.506 168.544 1.210 167.072 170.081
TK-O3-Spherical-4 165.315 171.507 168.544 1.210 167.073 170.081
TK-O3-Spherical-5 165.315 171.507 168.544 1.210 167.073 170.081
TK-O4-Nugget-0 812.664 816.649 814.652 0.875 813.591 815.811
TK-O4-Linear-1 163.578 169.955 167.048 1.283 165.486 168.720
TK-O4-Linear-2 163.578 169.955 167.048 1.283 165.486 168.720
TK-O4-Linear-3 163.578 169.955 167.048 1.283 165.486 168.720
TK-O4-Linear-4 163.578 169.955 167.048 1.283 165.486 168.720
TK-O4-Linear-5 163.578 169.955 167.048 1.283 165.486 168.720

TK-O4-Cubic(1)-1 35.518 44.362 39.800 1.557 37.716 41.569
TK-O4-Cubic(1)-2 35.533 44.366 39.800 1.556 37.716 41.570
TK-O4-Cubic(1)-3 35.531 44.380 39.800 1.557 37.711 41.564
TK-O4-Cubic(1)-4 35.445 44.342 39.806 1.555 37.745 41.589
TK-O4-Cubic(1)-5 35.456 44.362 39.799 1.548 37.787 41.576
TK-O4-Cubic(2)-1 35.510 44.353 39.790 1.557 37.707 41.560
TK-O4-Cubic(2)-2 35.518 44.359 39.797 1.556 37.715 41.567
TK-O4-Cubic(2)-3 35.521 44.361 39.799 1.556 37.716 41.567
TK-O4-Cubic(2)-4 35.524 44.345 39.799 1.556 37.713 41.567
TK-O4-Cubic(2)-5 35.497 44.360 39.800 1.556 37.740 41.562
TK-O4-Spherical-1 163.571 169.948 167.041 1.283 165.479 168.713
TK-O4-Spherical-2 163.577 169.953 167.046 1.283 165.484 168.718
TK-O4-Spherical-3 163.578 169.954 167.047 1.283 165.485 168.719
TK-O4-Spherical-4 163.578 169.954 167.047 1.283 165.486 168.719
TK-O4-Spherical-5 163.578 169.954 167.047 1.283 165.486 168.719

Minimum= 35.445 44.342 39.790 0.875 37.707 41.560
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Table 5.13: L2 Comparison of Different Kriging Models for SHC Function - 1
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

SK-Nugget-0 170.537 175.568 172.799 1.030 171.755 174.322
SK-Linear-1 16.120 21.293 19.191 1.143 17.833 20.599
SK-Linear-2 15.940 21.122 19.023 1.142 17.658 20.430
SK-Linear-3 15.888 21.073 18.974 1.142 17.609 20.380
SK-Linear-4 15.862 21.050 18.951 1.142 17.586 20.357
SK-Linear-5 15.848 21.036 18.937 1.142 17.572 20.343

SK-Cubic(1)-1 8.649 19.362 13.436 2.126 10.811 16.181
SK-Cubic(1)-2 8.659 19.323 13.414 2.130 10.770 16.179
SK-Cubic(1)-3 8.664 19.307 13.409 2.132 10.764 16.182
SK-Cubic(1)-4 8.667 19.299 13.407 2.133 10.762 16.183
SK-Cubic(1)-5 8.668 19.294 13.406 2.134 10.761 16.185
SK-Cubic(2)-1 8.647 19.400 13.426 2.123 10.810 16.171
SK-Cubic(2)-2 8.658 19.337 13.414 2.129 10.774 16.179
SK-Cubic(2)-3 8.663 19.316 13.410 2.131 10.764 16.182
SK-Cubic(2)-4 8.665 19.305 13.408 2.132 10.762 16.183
SK-Cubic(2)-5 8.667 19.299 13.407 2.133 10.761 16.184
SK-Spherical-1 16.244 21.415 19.303 1.144 17.954 20.713
SK-Spherical-2 16.007 21.183 19.085 1.142 17.721 20.492
SK-Spherical-3 15.932 21.115 19.016 1.142 17.650 20.422
SK-Spherical-4 15.896 21.081 18.982 1.142 17.617 20.388
SK-Spherical-5 15.875 21.061 18.962 1.142 17.597 20.368
OK-Nugget-0 139.172 143.610 141.195 0.961 139.741 142.287
OK-Linear-1 15.791 20.984 18.884 1.141 17.520 20.290
OK-Linear-2 15.791 20.984 18.884 1.141 17.520 20.290
OK-Linear-3 15.791 20.984 18.884 1.141 17.520 20.290
OK-Linear-4 15.791 20.984 18.884 1.141 17.520 20.290
OK-Linear-5 15.791 20.984 18.884 1.141 17.520 20.290

OK-Cubic(1)-1 8.676 19.269 13.404 2.138 10.759 16.200
OK-Cubic(1)-2 8.675 19.272 13.403 2.137 10.758 16.194
OK-Cubic(1)-3 8.675 19.272 13.403 2.137 10.758 16.192
OK-Cubic(1)-4 8.675 19.272 13.403 2.137 10.758 16.192
OK-Cubic(1)-5 8.675 19.273 13.403 2.137 10.758 16.191
OK-Cubic(2)-1 8.672 19.324 13.386 2.132 10.746 16.187
OK-Cubic(2)-2 8.675 19.284 13.399 2.136 10.755 16.193
OK-Cubic(2)-3 8.675 19.278 13.401 2.136 10.757 16.193
OK-Cubic(2)-4 8.675 19.275 13.402 2.137 10.757 16.192
OK-Cubic(2)-5 8.675 19.274 13.402 2.137 10.757 16.192
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Table 5.14: L2 Comparison of Different Kriging Models for SHC Function - 2
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

OK-Spherical-1 15.731 20.927 18.826 1.141 17.460 20.233
OK-Spherical-2 15.776 20.969 18.870 1.141 17.505 20.275
OK-Spherical-3 15.784 20.977 18.878 1.141 17.513 20.283
OK-Spherical-4 15.787 20.980 18.881 1.141 17.516 20.286
OK-Spherical-5 15.789 20.982 18.882 1.141 17.517 20.288

TK-O1-Nugget-0 139.172 143.610 141.195 0.961 139.741 142.287
TK-O1-Linear-1 15.791 20.984 18.884 1.141 17.520 20.290
TK-O1-Linear-2 15.791 20.984 18.884 1.141 17.520 20.290
TK-O1-Linear-3 15.791 20.984 18.884 1.141 17.520 20.290
TK-O1-Linear-4 15.791 20.984 18.884 1.141 17.520 20.290
TK-O1-Linear-5 15.791 20.984 18.884 1.141 17.520 20.290

TK-O1-Cubic(1)-1 8.676 19.269 13.404 2.138 10.759 16.200
TK-O1-Cubic(1)-2 8.675 19.272 13.403 2.137 10.758 16.194
TK-O1-Cubic(1)-3 8.675 19.272 13.403 2.137 10.758 16.192
TK-O1-Cubic(1)-4 8.675 19.272 13.403 2.137 10.758 16.192
TK-O1-Cubic(1)-5 8.675 19.273 13.403 2.137 10.758 16.191
TK-O1-Cubic(2)-1 8.672 19.324 13.386 2.132 10.746 16.187
TK-O1-Cubic(2)-2 8.675 19.284 13.399 2.136 10.755 16.193
TK-O1-Cubic(2)-3 8.675 19.278 13.401 2.136 10.757 16.193
TK-O1-Cubic(2)-4 8.675 19.275 13.402 2.137 10.757 16.192
TK-O1-Cubic(2)-5 8.675 19.274 13.402 2.137 10.757 16.192
TK-O1-Spherical-1 15.731 20.927 18.826 1.141 17.460 20.233
TK-O1-Spherical-2 15.776 20.969 18.870 1.141 17.505 20.275
TK-O1-Spherical-3 15.784 20.977 18.878 1.141 17.513 20.283
TK-O1-Spherical-4 15.787 20.980 18.881 1.141 17.516 20.286
TK-O1-Spherical-5 15.789 20.982 18.882 1.141 17.517 20.288
TK-O2-Nugget-0 140.294 145.073 142.598 0.962 141.147 143.698
TK-O2-Linear-1 15.752 20.964 18.860 1.142 17.490 20.267
TK-O2-Linear-2 15.752 20.964 18.860 1.142 17.490 20.267
TK-O2-Linear-3 15.752 20.964 18.860 1.142 17.490 20.267
TK-O2-Linear-4 15.752 20.964 18.860 1.142 17.490 20.267
TK-O2-Linear-5 15.752 20.964 18.860 1.142 17.490 20.267
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Table 5.15: L2 Comparison of Different Kriging Models for SHC Function - 3
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

TK-O2-Cubic(1)-1 8.675 19.273 13.402 2.136 10.757 16.190
TK-O2-Cubic(1)-2 8.675 19.273 13.402 2.136 10.757 16.190
TK-O2-Cubic(1)-3 8.675 19.273 13.402 2.136 10.757 16.190
TK-O2-Cubic(1)-4 8.675 19.273 13.402 2.136 10.757 16.190
TK-O2-Cubic(1)-5 8.675 19.273 13.402 2.136 10.757 16.190
TK-O2-Cubic(2)-1 8.668 19.332 13.383 2.129 10.743 16.168
TK-O2-Cubic(2)-2 8.673 19.288 13.398 2.135 10.754 16.184
TK-O2-Cubic(2)-3 8.674 19.280 13.400 2.136 10.756 16.187
TK-O2-Cubic(2)-4 8.674 19.277 13.401 2.136 10.756 16.188
TK-O2-Cubic(2)-5 8.674 19.275 13.402 2.136 10.757 16.189
TK-O2-Spherical-1 15.690 20.906 18.801 1.142 17.429 20.207
TK-O2-Spherical-2 15.736 20.949 18.845 1.142 17.475 20.252
TK-O2-Spherical-3 15.745 20.958 18.854 1.142 17.483 20.260
TK-O2-Spherical-4 15.748 20.960 18.857 1.142 17.486 20.263
TK-O2-Spherical-5 15.749 20.962 18.858 1.142 17.488 20.264
TK-O3-Nugget-0 79.911 85.980 82.950 1.038 81.727 84.230
TK-O3-Linear-1 12.421 17.847 15.666 1.137 14.118 17.119
TK-O3-Linear-2 12.421 17.847 15.666 1.137 14.118 17.119
TK-O3-Linear-3 12.421 17.847 15.666 1.137 14.118 17.119
TK-O3-Linear-4 12.421 17.847 15.666 1.137 14.118 17.119
TK-O3-Linear-5 12.421 17.847 15.666 1.137 14.118 17.119

TK-O3-Cubic(1)-1 8.741 19.004 13.496 2.193 10.812 16.340
TK-O3-Cubic(1)-2 8.741 19.004 13.496 2.193 10.812 16.340
TK-O3-Cubic(1)-3 8.741 19.004 13.496 2.193 10.812 16.340
TK-O3-Cubic(1)-4 8.741 19.004 13.496 2.193 10.812 16.340
TK-O3-Cubic(1)-5 8.741 19.004 13.496 2.193 10.812 16.340
TK-O3-Cubic(2)-1 8.742 19.012 13.497 2.195 10.812 16.347
TK-O3-Cubic(2)-2 8.741 19.006 13.497 2.193 10.812 16.342
TK-O3-Cubic(2)-3 8.741 19.005 13.496 2.193 10.812 16.341
TK-O3-Cubic(2)-4 8.741 19.005 13.496 2.193 10.812 16.341
TK-O3-Cubic(2)-5 8.741 19.004 13.496 2.193 10.812 16.340
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Table 5.16: L2 Comparison of Different Kriging Models for SHC Function - 4
Kriging Min Max Mean Stdev Percentile Percentile
Models 0.1 0.9

TK-O3-Spherical-1 12.413 17.840 15.659 1.137 14.111 17.112
TK-O3-Spherical-2 12.419 17.845 15.664 1.137 14.116 17.118
TK-O3-Spherical-3 12.420 17.846 15.665 1.137 14.117 17.119
TK-O3-Spherical-4 12.420 17.846 15.666 1.137 14.118 17.119
TK-O3-Spherical-5 12.421 17.846 15.666 1.137 14.118 17.119
TK-O4-Nugget-0 80.460 86.396 83.350 1.013 82.126 84.631
TK-O4-Linear-1 12.172 17.751 15.517 1.154 14.028 17.070
TK-O4-Linear-2 12.172 17.751 15.517 1.154 14.028 17.070
TK-O4-Linear-3 12.172 17.751 15.517 1.154 14.028 17.070
TK-O4-Linear-4 12.172 17.751 15.517 1.154 14.028 17.070
TK-O4-Linear-5 12.172 17.751 15.517 1.154 14.028 17.070

TK-O4-Cubic(1)-1 8.788 19.083 13.501 2.209 10.810 16.465
TK-O4-Cubic(1)-2 8.788 19.083 13.501 2.209 10.810 16.465
TK-O4-Cubic(1)-3 8.788 19.083 13.501 2.209 10.810 16.465
TK-O4-Cubic(1)-4 8.788 19.083 13.501 2.209 10.810 16.465
TK-O4-Cubic(1)-5 8.788 19.083 13.501 2.209 10.810 16.465
TK-O4-Cubic(2)-1 8.789 19.089 13.502 2.211 10.810 16.472
TK-O4-Cubic(2)-2 8.788 19.085 13.501 2.209 10.810 16.467
TK-O4-Cubic(2)-3 8.788 19.084 13.501 2.209 10.810 16.466
TK-O4-Cubic(2)-4 8.788 19.084 13.501 2.209 10.810 16.465
TK-O4-Cubic(2)-5 8.788 19.084 13.501 2.209 10.810 16.465
TK-O4-Spherical-1 12.166 17.745 15.510 1.154 14.023 17.063
TK-O4-Spherical-2 12.171 17.749 15.515 1.154 14.027 17.068
TK-O4-Spherical-3 12.172 17.750 15.516 1.154 14.028 17.069
TK-O4-Spherical-4 12.172 17.751 15.517 1.154 14.028 17.069
TK-O4-Spherical-5 12.172 17.751 15.517 1.154 14.028 17.069

Minimum= 8.647 17.745 13.383 0.961 10.743 16.168
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Figure 5.5: Actual and Predicted Output Means of 100 Replications of 50 Test Samples
(Hmb)
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Figure 5.6: Actual and Predicted Output Means of 100 Replications of 50 Test Samples
(SHC)
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Table 5.17: AARE Comparison of Different Replications and Variances for Hmb
Replications AARE (%)
Number N(0, 12) N(0, 52) N(0, 102) N(0, 502)

10 1.55 3.11 4.97 17.59
20 1.37 2.39 3.65 13.26
30 1.31 2.27 3.59 14.00
40 1.26 1.97 3.12 12.84
50 1.25 1.68 2.42 9.04
60 1.22 1.60 2.40 9.48
70 1.22 1.57 2.29 9.01
80 1.21 1.64 2.42 10.05
90 1.21 1.59 2.31 9.90
100 1.19 1.49 2.11 8.82

Table 5.18: AARE Comparison of Different Replications and Variances for SHC
Replications AARE (%)
Number N(0, 0.22) N(0, 12) N(0, 52) N(0, 102)

10 7.74 75.57 394.41 120.92
20 7.37 908.90 67.46 131.10
30 5.34 35.51 280.64 106.84
40 4.75 54.85 47.96 100.37
50 5.01 87.33 84.20 219.21
60 4.95 31.06 93.50 228.74
70 5.08 22.24 116.89 177.93
80 4.24 14.18 38.66 100.37
90 3.96 12.00 53.06 299.97
100 3.90 11.11 57.19 108.86
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and more replications result in more accurate interpolation, as expected. Whether a variance

value is too large depends on J(X). For example, in Figure 5.5 the output means from Hmb

are around 200, and a variance value equal to 102 in Figure 5.7 does not result in a severe

volatile AAREs; however, in Figure 5.6, the output means from SHC are around 10, and

Figure 5.8 shows a variance value equal to 10 makes AAREs very unstable, which indicates

that a variance equaling 102 is unacceptable for SHC. In Figure 5.7, it seems that a variance

value equal to 502 is too large for Hmb. Regarding replications, these two figures show that

when the number of replications is greater than 50, the corresponding AAREs become stable,

which implies that 50 may be a good threshold for the selection of replication numbers.

5.5 Conclusions

The chapter empirically investigated the deterministic and stochastic simulation inter-

polation capabilities of SK, OK and TK. The results are that TK has the best interpolation

performance for both deterministic and stochastic simulations. For stochastic simulations, it

is noted that 50 may be a good threshold for the selection of simulation replication numbers,

and running a number of replications greater than 50 can improve the Kriging interpolation

accuracy for simulation output means. The selection of replication numbers is important

for stochastic simulation with costly computational expense because it is necessary to limit

the number of replications to reduce computational expenses. In addition, the variance of

random variable ε(X) in a stochastic simulation can influence the interpolation performance

for output means. The empirical result shows that a large variance makes interpolation less

accurate, as expected.
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Figure 5.7: Actual and Predicted Output Means of Different Replications of 50 Test Samples
under Different Variance Levels of Random Variable ε(X) (Hmb)
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Figure 5.8: Actual and Predicted Output Means of Different Replications of 50 Test Samples
under Different Variance Levels of Random Variable ε(X) (SHC)
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Chapter 6

Kriging Metamodeling For Sensitivity Analysis On Simulation Models

6.1 Introduction

Sensitivity analysis is a key problem of simulation modeling. Sensitivity analysis is

to quantify the influence of input factors on outputs, and to find the input factors in a

simulation model which have critical influence on outputs. The results of sensitivity analysis

can help decision makers to select optimal settings for a simulation model. One method

of conducting sensitivity analysis is an analytical approach, that is, using the analytical

feature of a model to perform sensitivity analysis. However, a simulation model is usually

not explicit or invisible and thus not differentiable. Using the analytical approach to directly

perform sensitivity analysis on a simulation model is difficult. An alternative is to use the

analytical feature of its corresponding fitted metamodel to assist in sensitivity analysis

of a simulation model. The fitted metamodel must be an effective replacement of the

corresponding simulation model.

Kriging is a precise interpolator and it is explicit and differentiable. Using a Kriging

metamodel to assist in sensitivity analysis on a simulation model is methodogically feasible,

which, however, has not been seen in the literature. This chapter will empirically investigate

this problem. Besides Kriging, Regression Analysis (RA) is a simple and effective interpo-

lation tool. RA is straightforward and differentiable, and thus a regression metamodel can

be used to assist in sensitivity analysis on its corresponding simulation model. The chapter

will effectively compare the potentials of Kriging with those of RA in this aspect.
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A physical simulation case based on cost estimation is chosen for the empirical inves-

tigation. Physical simulation means that its simulator is a scaled replica of a real system,

and a simulation is the actual operation of the system [37]. The main goal of physical

simulation is to evaluate inputs and find critical input factors. Physical simulation has

wide applications. For example, it was used to simulate a wastewater treatment system

to evaluate its features and economic feasibilities [103], and in industrial production it can

be used to simulate manufacturing systems to determine their product qualities and costs

[19, 40]. However, similar to computer simulation with costly computational expense, phys-

ical simulation has the same difficulties in obtaining data of adequate sample size due to

economic and time constraints. It has the realistic meaning to use a metamodel to perform

sensitivity analysis of a physical simulation model to find critical input factors.

In order to conduct sensitivity analysis, the first step is to fit an effective metamodel.

Based on this procedure, the chapter is organized as follows. First, a fitted Taylor Kriging

(TK) is chosen for the above physical simulation. Next, the interpolation accuracy and

effectiveness of Kriging, RA and artificial neural networks (ANN) are compared. While

establishing regression metamodels, multicollinearity, heteroscedasticity and specification

errors are the focus other than the regression metamodels themselves. The goal is to illu-

minate how to develop an effective regression metamodel so that the comparison between

Kriging and RA will be effective. The results of ANN are cited from a reference. Sec-

ond, after the fitted Kriging and regression metamodels are chosen, the sensitivity analysis

assisted by them on the physical simulation model is formulated, and the results are ana-

lyzed. Third, according to the empirical results, several important theoretical properties of
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Kriging, RA and ANN for simulation problems are discussed. These properties include the

applicability of model, accuracy of interpolation, and feasibility of sensitivity analysis.

6.2 The Chosen Simulation Problem

The chosen simulation problem is a physical simulation case related to cost estimation

(interpolation). Cost estimation is used to establish an initial budget that assures an ex-

pected profit. For a product, estimating its cost requires the production of some alternatives

in order to collect cost data. However, because of budget constraint, it is difficult to obtain

cost-driven data of adequate sample sizes for evaluation and comparison. Thus, using some

mathematical methods to estimate the costs of some alternatives is necessary. Especially, in

order to manage and control cost, recognizing key cost factors is important, which requires

that the chosen method should have the capability to perform sensitivity analysis. Kriging

has the potentials in this aspect.

The case is the pressure vessel cost as a function of the height, diameter and wall

thickness obtained from a manufacturer. The sample data are listed in Table 6.1. Scatter

diagrams of the height, diameter and thickness of products are created to show the distribu-

tion features of the sample data. In the scatter plots, the height and actual cost of sample

1, the diameters of samples 6 and 19, and the height, thickness and actual cost of sample 20

are the extreme values. These extreme values imply that the estimation methods have to

extrapolate the data rather than interpolate them. However, extrapolation tends to yield

a less precise and more erratic estimate and should be avoided.
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Table 6.1: Table of Original Cost Data
Sample Height Diameter Thickness Actual Cost

1 1200 1066 10 $10,754
2 4500 1526 15 $18,172
3 6500 1500 16 $23,605
4 12250 1200 12 $23,956
5 21800 1050 12 $28,400
6 23300 900 14 $31,400
7 26700 1500 15 $42,200
8 12100 3000 11 $47,970
9 17500 2400 12 $48,000
10 26500 1348 14 $51,000
11 28300 1800 14 $53,900
12 14700 2400 10 $54,600
13 26600 1500 15 $58,040
14 24800 2500 13 $61,790
15 25000 2100 14 $61,800
16 24700 2000 16 $67,460
17 29500 2250 13 $80,400
18 21900 3150 12 $85,750
19 32300 5100 17 $207,800
20 53500 3000 29 $240,000
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Figure 6.1: Scatter Figure of Sample Height

Figure 6.2: Scatter Figure of Sample Diameter
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Figure 6.3: Scatter Figure of Sample Thickness

Since the data of height, diameter and thickness have different magnitudes, they are

normalized to the interval [0, 1]. The normalization formula is as follows:

x
′
i =

xi −min(xi)
max(xi)−min(xi)

(6.1)

where max(xi) and min(xi) mean the maximum and minimum values that xi can be,

respectively. Thus, x
′
i lies within the interval [0, 1]. The inverse process of (6.1) is used to

get actual costs. Certainly, the output of metamodels may occur outside the interval [0, 1].

If it happens, the actual value is set to 0 if the output is less than 0, and adjusted to 1 if

greater than 1. The normalized data are shown in Table 6.2.

The cross validation method using jackknife is adopted to avoid data re-substitution

while metamodels are fitted. Twenty samples from [10] are used to establish twenty groups,
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Table 6.2: Table of Normalized Cost Data
Sample Height Diameter Thickness Normalized Cost

1 0.0000 0.0395 0.0000 0.0000
2 0.0631 0.1490 0.2632 0.0324
3 0.1013 0.1429 0.3158 0.0561
4 0.2113 0.0714 0.1053 0.0576
5 0.3939 0.0357 0.1053 0.0770
6 0.4226 0.0000 0.2105 0.0901
7 0.4876 0.1429 0.2632 0.1372
8 0.2084 0.5000 0.0526 0.1623
9 0.3117 0.3571 0.1053 0.1625
10 0.4837 0.1067 0.2105 0.1756
11 0.5182 0.2143 0.2105 0.1882
12 0.2581 0.3571 0.0000 0.1913
13 0.4857 0.1429 0.2632 0.2063
14 0.4512 0.3810 0.1579 0.2226
15 0.4551 0.2857 0.2105 0.2227
16 0.4493 0.2619 0.3158 0.2474
17 0.5411 0.3214 0.1579 0.3038
18 0.3958 0.5357 0.1053 0.3271
19 0.5946 1.0000 0.3684 0.8595
20 1.0000 0.5000 1.0000 1.0000
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and each group only has a sample. Any nineteen groups are adopted to estimate the cost

of the remaining one-sample group.

6.3 Development of Metamodels

6.3.1 Kriging Metamodeling

Each product design (Ht, Dr, Ts) is regarded as a point in a three-dimensional space,

where Ht, Dr and Ts imply the height, diameter and thickness of product, respectively.

The covariance function of Kriging is supposed to only depend on the distance of two

points relative to each other, and is not influenced by their specific locations, i.e., the

covariance structure is homogeneous and isotropic. Simple Kriging (SK), Ordinary Kriging

(OK) and TK are used to estimate the costs, respectively. For these Kriging models, the

covariance functions (3.34, 3.35, 3.36, 3.37, 3.38), respectively, are adopted to construct

Kriging coefficient matrices. In these covariance functions, five different levels of covariance

influence distance are tested. The average absolute relative error (AARE) of the twenty

estimated values is used to evaluate the performance of different metamodels.

The results of the Kriging models with different parameter settings are shown in Table

6.3. Table 6.3 shows that a TK model of order 3 with the nugget covariance function has

the smallest AARE percentage, which indicates that this Kriging model better describes

the relationship between the cost and the height, diameter and thickness and is chosen to

estimate product cost. The estimation results are shown in Table 6.4 where the minimal

and maximal AREs are 0.00% and 30.99%, respectively.

Figure 6.4 is drawn to describe the graphical trend change of actual and estimated

costs of twenty samples in Table 6.4. Figure 6.4 indicates that the estimation accuracy
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Table 6.3: AAREs of Cost Estimation from Different Kriging Models (%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3

Nugget 0 72.12 91.65 91.65 26.39 13.31
Linear 1 33.20 75.44 75.44 19.51 16.69

2 27.81 55.60 55.60 14.95 14.71
3 25.74 44.16 44.16 15.65 15.90
4 29.46 35.85 35.85 15.56 16.00
5 23.36 29.89 29.89 15.21 15.93

Cubic(1) 1 98.91 120.91 120.91 111.00 241.11
2 236.59 227.83 227.83 125.70 200.68
3 117.46 121.31 121.31 120.31 158.10
4 113.05 116.13 116.13 123.78 159.59
5 115.59 117.82 117.82 121.96 160.98

Cubic(2) 1 50.74 91.47 91.47 45.85 95.99
2 88.09 98.67 98.67 83.07 241.20
3 110.70 112.42 112.42 103.91 180.84
4 110.05 112.15 112.15 110.99 168.44
5 113.87 116.54 116.54 115.65 165.84

Spherical 1 36.66 81.74 81.74 20.13 16.53
2 28.66 61.59 61.59 15.28 16.32
3 24.36 51.21 51.21 15.59 16.06
4 26.09 43.65 43.65 15.54 16.03
5 24.10 37.35 37.35 15.50 16.03
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Table 6.4: AREs from TK of Order 3 with Nugget Covariance Function
Sample Actual Cost Estimated

Cost
ARE

1 10754 10754 0.00%
2 18172 17267 4.98%
3 23605 26047 10.35%
4 23956 24293 1.41%
5 28400 35749 25.88%
6 31400 37056 18.01%
7 42200 53200 26.07%
8 47970 56316 17.40%
9 48000 51949 8.23%
10 51000 42845 15.99%
11 53900 59936 11.20%
12 54600 43069 21.12%
13 58040 48614 16.24%
14 61790 74810 21.07%
15 61800 60472 2.15%
16 67460 55505 17.72%
17 80400 68385 14.94%
18 85750 87777 2.36%
19 207800 143405 30.99%
20 240000 240000 0.00%

AARE= 13.31%
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Table 6.5: ANOVA of Actual and Kriging-estimated Costs
Source DF SeqSS AdjSS AdjMS F P

Treatment
(Cost)

1 88645058 88645058 88645058 0.67 0.424

Block 19 1.11E+11 1.11E+11 5.83E+09 43.81 0
Error 19 2.53E+09 2.53E+09 1.33E+08
Total 39 1.13E+11

R-Sq=97.77% R-Sq(adj)= 95.42%

of the chosen Taylor Kriging is adequate. Besides the graphic trend comparison, analysis

of variance (ANOVA) is used to test whether there is a significant difference between the

actual and estimated costs in Table 6.4. The ANOVA results are in Table 6.5. The P-value

in this table shows that statistically there is no significant difference between the actual

and estimated costs, which confirms the conclusion from Figure 6.4. The R-square and

adjusted R-square in Table 6.5 are more than 90%, indicating that the results from the

chosen TK model are quite satisfactory. In this table, DF, AdjSS and AdjMS indicate

degree of freedom, adjusted sum of square and adjusted mean square, respectively.

6.3.2 Regression Metamodeling

Gerrard et al. [10, 45] and Smith et al.[134] use Multivariable Linear Regression (MLR)

to estimate the product cost by interpolation. However, their analysis does not consider

multicollinearity, heteroscedasticity and specification errors, and does not discuss the pos-

sibility of adopting other regression models. Although this part uses MLR to estimate the

product cost, multicollinearity, heteroscedasticity and specification errors, instead of MLR,
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Figure 6.4: Comparison of Actual and Kriging-estimated Costs
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are mainly considered. And how to choose an effective linear or nonlinear regression model

is emphasized.

Multicollinearity

The Gauss-Markov theorem states that among all of the linear unbiased estimators, the

least squares estimator has the smallest variance. However, it does not assure that the least

squares estimator has a small variance in any absolute sense. If two regressors are perfectly

correlated, the variance of the least squares estimator is infinite. The case of an exact or

highly linear relationship among regressors is a serious failure of the model assumptions,

not of the data. The problems caused by highly correlated regressors include the following

symptoms:

1. Small changes in the data produce wide swings in parameter estimates.

2. Coefficients may have very high standard errors and low significance levels even though

they are jointly significant, and the R2 for the regression is quite high.

3. Coefficients may have implausible magnitudes.

The Fisher transformation is used to test the existence of multicollinearity in the three

regressors which are the Height, Diameter and Thickness of product. The constructed

hypothesis is: H0 : ρij = 0; H1 : At least a ρij is not 0, where ρij means the correlation

coefficient between two explanatory variables xi and xj . The statistic adopted is

t =
rij

√
N − 2√

1− r2
ij

∼ t(N − 2) (6.2)
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Table 6.6: Multicollinearity Results
Explanatory Variables Fisher Transformation

Ht and Dr Ht and Ts Ht and Dr Ht and Ts
Dr and Ts Dr and Ts

Correlation Coefficients t0

0.3965 0.7217 1.8324 4.4235
0.2714 1.1961

t0.05,18 = 1.7341

where rij is the estimator of ρij . The specific test results are given in Table 6.6. Table

6.6 shows that any two explanatory variables except for the Diameter and Thickness are

statistically significantly correlated under the significant level of 5% for the two-tailed t test.

For the Diameter and Thickness, there is not sufficient evidence to support their significant

correlation.

Heteroscedasticity

The presence of heteroscedascity often means that a misspecification in RA has taken

place, which may be in terms of a missing interaction effect. In this part, the White’s general

test is formulated to test the heteroscedasticity of the cost data. First, the regression of

Actual Cost (AC) on Ht, Dr and Ts is performed to obtain the estimation errors from

the regression equation. Then, the regression of the square of estimation errors on Ht, Dr,

Ts, Height Square of the Product (HS), Diameter Square of the Product (DS), Thickness

Square of the Product (TS), Height × Diameter of the Product (HD), Height × Thickness

of the Product (HT) and Diameter × Thickness of the Product (DT) is conducted, and

the corresponding R2 is 0.8388. A hypothesis is constructed: H0 : σ2
i = σ2 for all i ; H1 :
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Not all σ2
i equal to σ2. The statistic below is adopted to test the significance of hypothesis.

NR2 ∼ χ2(K − 1) (6.3)

where K is the number of explanatory variables (including the constant term) in the second

regression equation. The test result is χ2
0.95(9) = 16.92 > NR2 = 16.7755. According to

the White’s general test, the null hypothesis can not be rejected under the significant level

of 5% and statistically there is insufficient evidence to support the significant existence of

heteroscedasticity.

Specification Errors

Specification errors are caused by omitted variables, an incorrect functional form, or

errors in measurement. Here the Ramsey regression equation specification error test (RE-

SET) is used to examine whether the fitted MLR model has misspecification errors. For a

detailed introduction to RESET, readers can refer to [57, 58, 114]. The RESET is performed

as follows.

According to the regression of AC on Ht, Dr and Ts, the variables ÂC
2
, ÂC

3
and ÂC

4

are first created, where ÂC is the estimator of AC. Then, the regression of AC on Ht, Dr,

Ts and ÂC
2

is conducted. The hypothesis is:

H0 : The coefficient of ÂC
2

is equal to zero;

H1 : The coefficient of ÂC
2

is not equal to zero.

The F statistic is used to test the hypothesis:

F =
(ESS1 − ESS2)/1
ESS2/(N −K − 1)

∼ F (1, N −K − 1) (6.4)
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where ESS1 and ESS2 are the Error Sum of Squares (ESS) from the first and second

regression equations, respectively. The test result is its P − value equal to 7.45E − 07.

Similarly, the regression of AC on Ht, Dr, Ts, ÂC
2

and ÂC
3
, and the regression of AC on

Ht, Dr, Ts, ÂC
2
, ÂC

3
and ÂC

4
are performed. And their P − values of corresponding F

statistic are 7.18E − 06 and 6.44E − 05, respectively. All of these values show that there

are statistically significant specification errors in the fitted MLR model.

An Alternative Regression Model

The statistically significant existences of multicollinearity and specification errors show

that it is necessary to establish a better alternative for the MLR. The alternative meta-

model developed is named Logarithmic Linear Regression (LLR) and mathematically it is

expressed as (6.5).

Ln(AC) = η0 + η1Ln(Ht) + η2Ln(Dr) + η3Ts (6.5)

The J test is used to determine which of two regression metamodels, the MLR and LLR, is

more valid. The test procedure consists of first regressing AC on Ht, Dr and Ts, and then

Ln(AC) being regressed on Ln(Ht), Ln(Dr), Ts and Predicted Cost by MLR (PC). Suppose

the regression coefficient of PC is φ. The hypothesis is: H0 : φ = 0; H1 : φ 6= 0, and the

corresponding statistic is:

t =
φ̂

se(φ̂)
∼ t(N −K) (6.6)
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where se(φ̂) is the standard error of the estimator φ̂. The test result is t0 = 3.23 and the

degree of freedom of t distribution is 15. Note P-value = P (|t| > 3.23) = 0.0056, which

indicates that the J test is significant and statistically the first model is rejected.

6.3.3 Analysis on Different Metamodels

This section analyzes the results of the different metamodels and discusses their esti-

mation capabilities. The results of the ANN are from [134]. The estimated values from the

metamodels are in Table 6.7 where the estimated value of the first sample from the MLR

is truncated to 0 from -30603 because the cost can not be a negative number.

Figure 6.5 shows the change in trends of the costs estimated by TK, LLR, MLR and

ANN. It is clear that TK, LLR and ANN give the better results. Table 6.8 provides the ARE

comparison to show the performance of different metamodels, and the means of AREs of

20 and 16 samples for each metamodel are given. The sample size 16 implies that samples

1, 6, 19 and 20 are excluded. These means investigate the average estimation effects of

models and the possible invalidity of extrapolation. The AREs of 16 and 20 samples show

TK is better than LLR and MLR, but worse than ANN. However, the means of TK, LLR

and ANN are close, which, to some extent, demonstrates that these three metamodels have

similar estimation capabilities. Figure 6.6 give the graphic trend changes of AREs from

these models.

Furthermore, ANOVA is used to test whether there exist significant differences among

AREs of TK, LLR, MLR(Truncated) and ANN. The results are listed in Table 6.9 where

the P-value shows that statistically the ARE differences of different metamodels are highly

significant. Then the AREs from MLR (Truncated) are removed and ANOVA is conducted
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Table 6.7: Comparison of Estimated Costs from TK, LLR, MLR and ANN
Sample Actual TK LLR MLR MLR ANN

Cost (Truncated)

1 10754 10754 5003 -30603 0 10904
2 18172 17267 25566 33014 33014 22691
3 23605 26047 29554 42548 42548 23725
4 23956 24293 26210 9059 9059 22941
5 28400 35749 29873 17674 17674 29665
6 31400 37056 27894 27916 27916 33913
7 42200 53200 51216 60241 60241 52673
8 47970 56316 58555 65921 65921 53942
9 48000 51949 57371 57478 57478 49440
10 51000 42845 42781 46901 46901 47959
11 53900 59936 58677 65798 65798 60063
12 54600 43069 47150 38868 38868 40081
13 58040 48614 49430 58396 58396 53263
14 61790 74810 71941 77578 77578 72069
15 61800 60472 63528 70023 70023 64632
16 67460 55505 65403 78381 78381 63756
17 80400 68385 68523 73872 73872 69240
18 85750 87777 78130 87376 87376 81911
19 207800 143405 164557 177543 177543 208266
20 240000 240000 176939 185351 185351 217750
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Figure 6.5: Comparison of Estimated Costs from Different Models
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Table 6.8: Comparison of AREs from TK, MLR, LLR and ANN (%)
Sample TK LLR MLR MLR ANN

(Truncated)

1 0.00 53.48 384.57 100.00 1.39
2 4.98 40.69 81.64 81.64 24.87
3 10.35 25.20 80.23 80.23 0.51
4 1.41 9.41 62.18 62.18 4.24
5 25.88 5.19 37.78 37.78 4.45
6 18.01 11.17 11.11 11.11 8.00
7 26.07 21.36 42.75 42.75 24.82
8 17.40 22.07 37.42 37.42 12.45
9 8.23 19.52 19.74 19.74 3.00
10 15.99 16.12 8.04 8.04 5.96
11 11.20 8.86 22.07 22.07 11.43
12 21.12 13.64 28.82 28.82 26.59
13 16.24 14.83 0.61 0.61 8.23
14 21.07 16.43 25.55 25.55 16.64
15 2.15 2.80 13.30 13.30 4.58
16 17.72 3.05 16.19 16.19 5.49
17 14.94 14.77 8.12 8.12 13.88
18 2.36 8.89 1.90 1.90 4.48
19 30.99 20.81 14.56 14.56 0.22
20 0.00 26.28 22.77 22.77 9.27

Mean 13.31 17.73 45.97 31.74 9.53
(20 Samples)
Mean 13.57 15.18 30.40 30.40 10.73
(16 Samples)

95



Figure 6.6: Comparison of AREs from Different Models
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Table 6.9: ANOVA of AREs from TK, LLR, MLR and ANN
Source DF Seq SS Adj SS Adj MS F P

Models 3 5654.7 5654.7 1884.9 6.79 0.000
Error 76 21087.4 21087.4 277.5
Total 79 26742.1

Table 6.10: ANOVA of AREs from TK, LLR and ANN
Source DF Seq SS Adj SS Adj MS F P

Models 2 674.3 674.3 337.2 3.3 0.044
Error 57 5817.8 5817.8 102.1
Total 59 6492.1

again. The related results are in Table 6.10 where the P-value indicates that the significance

of ARE differences from the rest of three metamodels are reduced, which confirms our

conclusions from the graphical trend change that the estimation results from TK, LLR and

ANN are close.

6.4 Sensitivity Analysis

After the fitted Kriging and regression metamodels were chosen, this section will use

them to conduct sensitivity analysis on cost factors. The sensitivity analysis is based on

the analytical (differentiable) method developed in the fourth chapter. Since the function

relationship in the ANN is completely hidden, the sensitivity analysis based on the ANN

becomes difficult and impractical, and therefore is not investigated.
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6.4.1 Kriging Metamodel

For the investigated case, the best fitted Kriging model is TK of order 3 with the nugget

covariance function. For a Kriging model with a nugget covariance function, Ci is equal to

0. The derivative of Z(X) with respect to xj becomes

∂

∂xj
Ẑ(X) =




∂
∂xj

f1(X)
...

∂
∂xj

fM (X)




(6.7)

Table 6.11 is designed to calculate the derivative of TK with respect to xj . In this table,

MC represents model coefficient. In Table 6.11,

DBF (xi)∗: represents the derivative of base functions with respect to xi;

MCi: represents the model coefficient of the ith base function in the Kriging model;

X0=(x01, x02, x03): represents the center point of Taylor expansion.

Since the case has 20 samples, there are 20 Taylor Kriging models, that is, a Taylor

Kriging model per sample. For each model, the partial derivatives with respect to three

independent variables (Ht, Dr and Ts) are calculated, respectively. The average of the

partial derivatives of 20 Taylor Kriging models with respect to an independent variable is

used to describe the sensitivity of cost function to the variable. Since the data are normalized

by use of Eq. (6.1), the sensitivity of the actual cost (AC) to an independent variable (xi)

has to be computed by using the following formula:

∂AC

∂xi
=

∂AC

∂AC ′ ×
∂AC ′

∂x′i
× ∂x′i

∂xi
=

max(AC)−min(AC)
max(xi)−min(xi)

× ∂AC ′

∂x′i
(6.8)
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Table 6.11: Sensitivity Analysis of TK with Nugget Covariance Function and Order 3
MC Base DBF( x1) DBF (x2) DBF (x3)

Function

MC1 C1 0 0 0
MC2 C2 0 0 0
MC3 C3 0 0 0
MC4 C4 0 0 0
MC5 C5 0 0 0
MC6 C6 0 0 0
MC7 C7 0 0 0
MC8 C8 0 0 0
MC9 C9 0 0 0
MC10 C10 0 0 0
MC11 C11 0 0 0
MC12 C12 0 0 0
MC13 C13 0 0 0
MC14 C14 0 0 0
MC15 C15 0 0 0
MC16 C16 0 0 0
MC17 C17 0 0 0
MC18 C18 0 0 0
MC19 C19 0 0 0
MC20 1 0 0 0
MC21 x3 − x03 0 0 MC21

MC22 x2 − x02 0 MC22 0
MC23 x1 − x01 MC23 0 0
MC24 (x3 − x03)2 0 0 2MC24(x3 − x03)
MC25 (x2 − x02)(x3 − x03) 0 MC25(x3 − x03) MC25(x2 − x02)
MC26 (x2 − x02)2 0 2MC26(x2 − x02) 0
MC27 (x1 − x01)(x3 − x03) MC27(x3 − x03) 0 MC27(x1 − x01)
MC28 (x1 − x01)(x2 − x02) MC28(x2 − x02) MC28(x1 − x01) 0
MC29 (x1 − x01)2 2MC29(x1 − x01) 0 0

Sum
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The results based on Eq. (6.8) and Table 6.11 are shown in Table 6.12 where it is noted

that the cost function is extremely sensitive to the vessel thickness but insensitive to vessel

height.

6.4.2 Regression Metamodel

Similarly, for the MLR and LLR, the method of partial derivative is used to analyze

the sensitivity of the product cost to the different cost factors. Suppose a MLR is:

F (x1, · · · , xD) = β0 + β1x1 + · · ·+ βDxD + εi (6.9)

Eq. (6.10) gives its one-order partial derivative with respect to variable xi.

∂

∂xi
F (x1, · · · , xD) = βi (6.10)

It can be seen that the coefficient βi can be used to describe the sensitivity of F (x1, · · · , xD)

to xi. Note that the investigated case has 20 MLR models. For each cost factor, the average

of the corresponding cost factor coefficients in the 20 MLR models is used to express the

sensitivity of the product cost to this factor. The obtained results are in Table 6.13 which

shows that in the MLR model the product cost is most sensitive to the vessel thickness and

insensitive to vessel height.

For the LLR model, the partial derivatives of the product cost with respect to the

Height, Diameter and Thickness are calculated according to Eq. (6.11, 6.12, 6.13), respec-

tively. The numerical results are in Table 6.13. These results are similar to those of TK

and MLR. However, if the means in three tables are scrutinized, it can be found that the
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Table 6.12: Sensitivity Analysis for TK of Order 3 with Nugget Covariance Function
Number DBF(x1) DBF(x2) DBF(x3)

1 0.3092 -0.1245 -0.0054
2 0.4271 -0.2009 0.2100
3 0.3810 -0.2033 0.3286
4 0.2515 0.0962 0.0988
5 0.2464 0.2745 -0.0881
6 0.0657 0.1826 0.3808
7 0.2882 0.3641 0.3117
8 0.6312 0.4995 -0.2220
9 0.6044 0.4083 -0.1075
10 0.1480 0.4525 0.2280
11 0.4179 0.5257 0.0934
12 0.5515 0.4152 -0.0719
13 0.2555 0.4305 0.1704
14 0.6413 0.5944 -0.0986
15 0.4823 0.4823 0.0516
16 0.5215 0.3163 0.1278
17 0.2630 0.6594 0.1377
18 0.8838 0.6622 -0.3355
19 1.6363 0.3873 -0.8832
20 0.6508 0.6657 3.0254

Mean 0.4828 0.3444 0.1676
(Normalization)
Mean 2.1164 18.7984 2022.2842
(Actual)
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Table 6.13: Sensitivity Analysis for the MLR Metamodel
Regression Intercept Height Diameter Thickness
Model Coefficient Coefficient Coefficient

1 -124528.99 1.79 33.00 5659.62
2 -118154.40 1.18 32.30 6436.68
3 -119383.71 1.12 32.21 6645.07
4 -118932.45 1.46 32.74 5903.32
5 -119364.47 1.35 32.93 6085.58
6 -117036.19 1.40 32.49 5932.13
7 -114592.89 1.50 31.37 5852.63
8 -115166.67 1.32 33.66 5827.14
9 -115323.73 1.41 32.51 5842.40
10 -117111.85 1.39 32.46 5956.96
11 -114615.13 1.50 31.84 5760.76
12 -119687.64 1.41 31.66 6177.10
13 -116367.14 1.42 32.21 5914.37
14 -114589.90 1.48 32.54 5702.88
15 -115651.46 1.44 32.18 5856.95
16 -116674.42 1.41 32.11 5993.31
17 -117596.26 1.36 32.27 6057.62
18 -116256.68 1.42 32.33 5891.16
19 -107666.81 1.48 27.04 5845.56
20 -82059.01 1.36 32.55 3342.52

Average -115037.99 1.41 32.12 5834.19
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Table 6.14: Sensitivity Analysis for the LLR Metamodel
Sample ∂AC

∂Ht
∂AC
∂Dr

∂AC
∂Ts

1 5.3188 9.1275 391.6208
2 1.5709 10.7099 835.2653
3 1.4941 14.0267 1051.4364
4 0.8507 17.6891 970.5041
5 0.5707 23.9846 1149.9118
6 0.5733 32.3473 1284.9085
7 0.7021 24.6664 1734.1056
8 1.6905 14.9382 1843.7481
9 1.1930 18.2511 1876.3872
10 0.8140 34.8059 2111.3825
11 0.8359 26.7422 2184.9641
12 1.6124 20.0371 2371.7608
13 0.9298 35.3284 2366.1904
14 1.0931 22.4540 2443.8109
15 1.0758 26.3991 2521.6337
16 1.1846 30.2508 2751.0212
17 1.1605 31.8493 3417.1017
18 1.6967 23.9886 3613.6524
19 2.8197 33.8747 8379.5383
20 1.9866 71.1230 6111.5578

Mean 1.4587 26.1297 2470.5251

means from TK and LLR are closer, which probably implies that TK and LLR are better

in this case.

∂AC

∂Ht
=

∂AC

∂Ln(AC)
∂Ln(AC)
∂Ln(Ht)

∂Ln(Ht)
∂Ht

= η1
AC

Ht
(6.11)

∂AC

∂Dr
=

∂AC

∂Ln(AC)
∂Ln(AC)
∂Ln(Dr)

∂Ln(Dr)
∂Dr

= η2
AC

Dr
(6.12)

∂AC

∂Ts
=

∂AC

∂Ln(AC)
∂Ln(AC)

∂Ts
= η3AC (6.13)
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6.5 Property Analysis

6.5.1 Applicability of Models

Kriging, RA and ANN all depend on reliable driver data from simulation models. Any

of them does not mitigate the difficulties associated with collecting simulation data. Kriging

requires that a Kriging coefficient matrix be nonsingular. The singularity requirement

makes Kriging applications limited. RA faces the problems related to multicollinearity and

heteroscedasticity. ANN can readily accommodate multicollinearity and heteroscedasticity.

Three methods can encounter potential specification errors. However, the specification

errors from ANN are most difficult to be recognized.

It is expected that Kriging will be considered a viable alternative to regression if the

underlying data relationship from a simulation model has significant spatial correlation and

nonlinearities. If the data behavior is functional discontinuities and significant nonlinearities

and has large independent variable dimensionality, ANN will have better potential. How-

ever, the applicability concerns of ANN, such as its network architecture, training methods

and stopping criteria, should not be ignored. These concerns represent formidable hurdles

to widespread use and acceptance of ANN. Moreover, the selection of ANN structure and

parametric settings more depends on the experience with the less supportive theories [134].

However, the parametric settings of RA and Kriging are easier.

6.5.2 Accuracy of Interpolation

What is interesting in Table 6.8 is that the average value of twenty AREs of the chosen

TK metamodel is much less than that of the MLR metamodel, less than that of the LLR

metamodel, greater than that of the ANN metamodel, but close to those of the LLR and
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ANN metamodel. These results may reflect the simulation interpolation or estimation ca-

pabilities of Kriging. When the function relationship between dependent and independent

variables in a simulation model is unknown, ANN can be a good method to capture the func-

tion relationship, and its simulation interpolation accuracy is better. If a suitable regression

metamodel can be established, the simulation interpolation accuracy from regression can

be acceptable. For example, for the investigated case, the LLR metamodel is acceptable.

However, the diversities of regression metamodeling make it difficult to select a good re-

gression metamodel. The drift function of Kriging has the features of regression. However,

Kriging further has the capabilities to capture the spatial correlation of observation values,

which makes it have stronger interpolation potentials.

6.5.3 Feasibility of Sensitivity Analysis

Although RA, especially MLR, has more difficulties in capturing a function relationship

among simulation data because of the limitation of model structures, regression metamod-

eling can give a specific and simple function form, which can benefit sensitivity analysis of a

simulation model. For ANN, the fitted function form for a simulation model is completely

hidden and invisible and resembles a “black box”. Essentially, it will be a complicated

nonlinear function. Because of the function invisibility, sensitivity analysis on simulation

input variables is difficult. In comparing with RA and ANN, Kriging can provide an ex-

plicit function as specific as that given by regression metamodeling, and sensitivity analysis

based on a Kriging metamodel is feasible. However, because Kriging must consider the spa-

tial correlation of observation values, its metamodel form and thus its sensitivity analysis

process are usually more complicated.
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6.6 Conclusions

The chapter empirically investigated Kriging metamodeling for sensitivity analysis by

using a physical simulation case. In order to obtain an effective metamodel, the interpola-

tion accuracy of different Kriging metamodels, regression metamodels and ANN was first

compared. Among different Kriging metamodels, a TK metamodel provides the best in-

terpolation results which are consistent with the empirical results from deterministic and

random simulations in the previous chapter. While compared with regression metamodels

(MLR and LLR) and ANN, the chosen Kriging metamodel works better than regression

metamodels but worse than ANN. Regression metamodeling are effectively validated by

considering multicollinearity, heteroscedasticity, and specification errors. Therefore, the

comparison is credible.
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Chapter 7

Simulation Optimization Based On Kriging And Evolutionary Algorithms

7.1 Introduction

Simulation can be used to model real complex systems. These simulation models can

be used to calculate approximate outputs of real systems, perform sensitivity analysis on

inputs, and search for optimal inputs. Due to the complexity of systems, simulation models

are often computer expensive, which makes the above three operations difficult. In the pre-

vious chapters, Kriging was used to build metamodels for inputs and outputs of simulation

models. These metamodels were utilized to perform the interpolation operation to reduce

the computational expense of running simulation models. Furthermore, Kriging metamod-

els were used to assist sensitivity analysis on simulation models. The objective of this

chapter is to discuss how to optimize a simulation model. A novel simulation optimization

algorithm based on Kriging and Evolutionary Algorithm (EA) will be developed.

The chapter is organized as follows. First, EAs are briefly introduced, and then a novel

simulation optimization algorithm is created which integrates Kriging with EAs. Second, the

properties and parameter settings of the algorithm are analyzed, and some computational

cases are presented to investigate the effectiveness of the algorithm. Finally, summary and

conclusions are given.
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7.2 A Novel Simulation Optimization Algorithm

7.2.1 Evolutionary Algorithms

The typical evolutionary algorithms (EAs) include Evolutionary Programming [41],

Genetic Algorithms (GA) [55], Evolutionary Strategy (ES)[117, 130], Genetic Evolution of

Data Structures [102], Genetic Evolution of Programs [80], Tabu Search [46, 47], Artificial

Immune Systems [54], Cultural Algorithms [121], DNA Computing [1], Ant Colony Opti-

mization [32], Particle Swarm Optimization (PSO)[69], Memetic Algorithms [48], Estima-

tion of Distribution Algorithms [84], etc.. For the specific introductions to these algorithms,

a reader can refer to the related references. Figure 7.1 gives the basic optimization pro-

cess of these algorithms. EAs use fitness functions to calculate fitness values of candidate

solutions, and use these values as a standard to evaluate the qualities of solutions. Accord-

ing to fitness values, EAs perform evolutionary operations such as crossover and mutation

to generate some new evolved solutions. The evolved solutions have to be evaluated by

fitness functions. Then, part of the evolved solutions and current solutions are chosen to

become the next generation solutions. The algorithms continue this optimization loop until

a stopping criterion is satisfied.

7.2.2 Development of Simulation Optimization Algorithm (SOAKEA)

EAs are an effective simulation optimization tool and have been used to optimize sim-

ulation models. However, EAs frequently need to evaluate fitness functions. A simulation

evaluation means to run a simulation model only once. When running a simulation model is

computer expensive, EAs for simulation optimization will encounter essential difficulties be-

cause of computer limitations such as memory capacity and processor speed. The dash lines
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in Figure 7.1 show that evolutionary operations in EAs will be stopped due to insufficient

fitness values.

One way to solve this problem is to adopt known observation values of a simulation

model to fit a surrogate fitness function which is computationally inexpensive, and to use

it to evaluate inputs. Thus, simulation evaluations can be reduced. Kriging is an effective

interpolation tool for a simulation model, which makes it feasible to use a fitted Kriging

metamodel to replace its corresponding simulation model to evaluate inputs. With the

assistance of Kriging metamodels, EAs can continuously perform evolution optimization to

search for optimal solutions of simulation inputs.

With this idea in mind, the chapter integrates Kriging with EAs to develop a novel

simulation optimization algorithm based on Kriging and EAs where Kriging serves as a

surrogate fitness function. The new algorithm is named Simulation Optimization Algorithm

based on Kriging and EA (SOAKEA). Figure 7.2 is its flow diagram. The specific details

of SOAKEA are in Table 7.1.

7.2.3 Analysis on SOAKEA

Fitting an initial Kriging model: In the initialization process, fitting a Kriging model is

important. A method of computer experimental design such as Latin Hypercube Sampling

(LHS) can be used to generate 3E0/4 simulation inputs (individuals). Running a simulation

model can provide their corresponding outputs. For EAs, these outputs are actual fitness

values. The inputs and outputs are used to fit different Kriging metamodels. To select a

best fitted metamodel among them, a validation process is needed. E0/4 simulation inputs

are randomly sampled from a uniform distribution of the feasible domain, and used to
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Figure 7.1: Operations of Evolutionary Algorithms
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Figure 7.2: The Flow Diagram of SOAKEA
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Table 7.1: Simulation Optimization Algorithm Based on Kriging and EA
BEGIN
Initialize:
(1) Use a method of computer experimental design to generate E0 simulation

inputs (individuals) in the feasible region of independent variables, and
run a corresponding simulation model to obtain their outputs called
fitness values for an EA;

(2) Name the E0 inputs and outputs an observation set;
(3) Use the E0 inputs and outputs to fit different Kriging metamodels ac-

cording to a cross-validation method and set the best one to be a current
Kriging metamodel;

(4) Record the input with the best output in the observation set, and name
it bestIndividual ;

(5) Randomly generate an initial population of size M0 for a chosen evolu-
tionary algorithm and name it the current population;

(6) Use the current Kriging metamodel to evaluate the individuals in the
current population;

While (Global stopping criterion) {
(1) Perform evolutionary operations to generate some evolved individuals;
(2) Use the current Kriging metamodel to evaluate them;
(3) Use generation operations to generate a new population from the evolved

individuals and the individuals in the current population;
(4) Name the new population the current population;
(5) If (corrective condition) {

(5.1) Correct the fitness values of m0 individuals in the current popula-
tion by running the simulation model to evaluate them;
(5.2) Add the simulation inputs and corrected outputs to the observation
set;
(5.3) Update bestIndividual
(5.4) Fit a new Kriging model by using the individuals in the observation
set and name it the current Kriging model;
}

}
End While
ReportResults:
(1) Evaluate the optimal individual in the current population by running

the simulation model;
(2) Add the optimal individual to the observation set, and update bestIndi-

vidual ;
(3) Report the results.
END
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Figure 7.3: Flow Diagram of Fitting an Initial Kriging Model

test the fitted Kriging metamodels. The random sampling from a uniform distribution can

better show the robustness of chosen metamodel. Figure 7.3 gives the flow diagram to fit

an initial Kriging model.

Optimization capability of SOAKEA: SOAKEA uses an EA to search for optimal sim-

ulation inputs. In the EA, a simulation model is essentially an implicit fitness function.

Because the prohibitive computational expense of running the simulation model blocks the
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EA optimization operations, a fitted Kriging model temporarily replaces the simulation

model to assist in the EA. The fitted Kriging model serves as a surrogate fitness function.

If each simulation input is allowed to be evaluated by the simulation model, SOAKEA be-

comes the EA itself. Therefore, the upper bound of optimization capability of SOAKEA is

the optimization capability of EA, which makes it necessary to choose an EA with strong

optimization capability.

Corrective operation: Since Kriging models in SOAKEA are surrogate fitness functions,

fitness values from Kriging will have some errors. Thus, a corrective operation is needed

in order to avoid errors misguiding evolutionary search. In the corrective operation, the

corrective condition can be a given number of function evaluations or generations or an

improvement rate, etc.. A trial-and-error method can be applied in order to find a suitable

value. Frequent corrections can increase computational expenses caused by running a sim-

ulation model. However, insufficient corrections can cause error accumulation. Achieving a

good tradeoff between these two aspects is a standard to choose a corrective procedure.

Potential corrective operations can be the corrections of partial and complete fitness

values in a generation. Suppose the number of corrected fitness values in a generation is m0.

If m0 < M0 (see Table 7.1), the operation is a partial correction. Otherwise, it is a complete

correction. A disadvantage of correcting a complete generation is that its computational

cost is expensive. However, a partial correction will result in individuals with uncorrected

outputs continuing to misguide evolutionary search.

Correction operations make fitting Kriging models become a dynamic process. When

SOAKEA corrects fitness values by running a simulation model, more actual outputs can

be obtained. With more actual outputs, SOAKEA will update a current Kriging model,
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resulting in a Kriging model which can better approximate its simulation model. If a

correction can only provide a small number of simulation outputs, the update may be

delayed to accumulate actual outputs. Thus, the expense related to fitting Kriging models

can be reduced. Usually, an update adopts the same Kriging structure and only changes

its coefficients.

As optimization and corrective operations continue, a current Kriging model will be

frequently updated and become more and more accurate. Thus, a possible improved correc-

tion strategy is that it has a high correction frequency in the initial optimization stage and

then little by little decreases the frequency as the optimization operation of SOAKEA con-

tinues. In the corrective operation, the distance between two points may be considered. If

the points needed to be corrected are close to those already simulated, it may not be needed

to correct them or use them to update a current Kriging model because they can not add

much information. However, a disadvantage is that frequently calculating and comparing

distances of points will tremendously increase the computational complexity of SOAKEA.

Stopping criterion: In SOAKEA, selecting a global stopping criterion deserves discus-

sion. Most references of EAs use a certain number of function evaluations or generations

to terminate optimization search. A drawback is that the number of function evaluations

necessary for convergence is unknown. Thus, a trial-and-error method may be needed to

search for a suitable number. Zielinski et al. [162, 163] investigate some other stopping

criteria that include reference criteria, exhaustion-based criteria, improvement-based crite-

ria, movement-based criteria, distribution-based criteria, and combined criteria. For the

detailed introductions to these criteria, a reader can refer to [162, 163].
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In summary, the idea behind SOAKEA is to integrate the precise interpolation features

of Kriging with the optimization capabilities of an EA to search for optimal simulation inputs

according to limited simulation observations. If SOAKEA, under a tolerated error level, can

efficiently find optimal inputs, it can be concluded that it is effective for the optimization

of a simulation model whose run-time is computationally expensive.

7.3 Computational Experience

Several simulation cases based on benchmark functions will be used to empirically

investigate the effectiveness of SOAKEA. Particle Swarm Optimization (PSO) is the cho-

sen evolutionary algorithm used in SOAKEA, and will be introduced in the next section.

Then the settings of some important parameters in SOAKEA will be empirically analyzed.

These parameters include the size of initial sample used to fit an initial Kriging model, the

correction strategy, and the number of corrected points used to update a current Kriging

model.

7.3.1 Particle Swarm Optimization (PSO)

PSO is a population-based stochastic optimization method, and was developed by Eber-

hart and Kennedy [69]. PSO uses a fitness function to calculate fitness values of particles.

According to fitness values, PSO performs evolution operations to update position vectors.

PSO continues this loop until stopping criteria are satisfied. In PSO, each particle has

several common attributes: xV ector, pV ector, vV ector, xFitness and pF itness. xV ector

records the current position of a particle. If the investigated space is D dimensions, xV ector

can be denoted by Xi = (xi1, xi2, . . . , xiD). pV ector is the best position found so far by
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a particle and can be represented by Pi = (pi1, pi2, . . . , piD). vV ector is a velocity vector,

represented as Vi = (vi1, vi2, . . . , viD). xFitness and pF itness record the fitness values of

xV ector and pV ector, respectively.

The evolutionary operation of each particle mainly includes two steps which can be

described as follows ([69]):

1. Step 1: The algorithm finds particle g with the best pF itness in the neighborhood

of particle i, and then combines the pV ector of particle g and the pV ector of particle

i to generate a new vV ector for particle i. Meanwhile, the algorithm introduces

the random disturbance rand() to increase the search pressure. The following is the

formula that updates the dth dimension of vV ector:

vid = vid + ϕ1 ∗ rand() ∗ (pid − xid) + ϕ2 ∗ rand() ∗ (pgd − xid) (7.1)

2. Step 2: The algorithm uses the updated vV ector to obtain a new xV ector for particle

i. The related formula is:

xid = xid + vid (7.2)

In the above formulae, the two constants ϕ1 and ϕ2 are the cognition and social learning

components, respectively. In 1999, Maurice Clerc introduced a constriction factor K to

control the growth speed of vV ector, and it is calculated as follows:

K =
2

|2− ϕ−√
ϕ2 − 4ϕ| (7.3)
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where ϕ = ϕ1 + ϕ2 and ϕ > 4. The update operation of the dth dimension of vV ector then

becomes

vid = K[vid + ϕ1 ∗ rand() ∗ (pid − xid) + ϕ2 ∗ rand() ∗ (pgd − xid)] (7.4)

The typical structures of PSO include ring and star topologies.

7.3.2 The Determination of Initial Sample Size

This section will discuss how to select a size of initial samples used to fit an initial

Kriging model. Too large a size of samples will increase the computational expenses of

running a simulation model. An insufficient sample size will result in an inaccurate fitted

Kriging interpolation model. One simulated case based on a benchmark function is used

to empirically investigate the selection problem of sample sizes. The chosen benchmark

function is SHC. The different scenarios of sample sizes investigated are in Table 7.2. The

table shows that the numbers of fitting and testing samples are about 3/4 and 1/4 of total

initial samples, respectively. For these scenarios, the best fitted Kriging models are shown

in Table 7.3. Table 7.4 uses Scenario 4 to illustrate how to use AAREs as the performance

standard to choose a best fitted Kriging model.

Table 7.3 indicates that different scenarios of sample sizes result in different best-fitted

Kriging models. However, in the four scenarios, TK is always chosen. As the sample size

increases, a cubic (2) covariance function is further considered to be adequate. Four scenar-

ios show that in the chosen TK models, the orders of Taylor expansion are greater than or

equal to 3, and the influence distances of covariance are 1 or 5 standard deviations. AAREs
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Table 7.2: Sizes of Initial Samples
Fitting Testing
Samples Samples

15 5
60 20
100 30
150 50

Table 7.3: The Chosen Kriging Models and Their AAREs under Different Scenarios
Scenario Size of Samples Kriging Models and Parameters AARE

Fitting Validating Model Covariance Order SD (%)
Function

1 15 5 TK Gaussian 4 1 28.940
2 60 20 TK Cubic (2) 3 5 13.906
3 100 30 TK Cubic (2) 3 1 12.839
4 150 50 TK Cubic (2) 4 1 3.473
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Table 7.4: AAREs of Different Kriging Models (The Size of Initial Samples=200)(%)
Covariance SD SK OK Order of Taylor Kriging
Function 1 2 3 4

Nugget 0 100.0000 78.9620 78.9620 80.4530 69.6518 764.9876
Linear 1 29.3027 51.1483 51.1483 51.2805 41.9032 35.1451

2 29.3737 51.1483 51.1483 51.2805 41.9032 35.1451
3 29.3946 51.1483 51.1483 51.2805 41.9032 35.1451
4 29.4047 51.1483 51.1483 51.2805 41.9032 35.1451
5 29.4105 51.1483 51.1483 51.2805 41.9032 35.1451

Cubic (2) 1 3.7112 4.0921 4.0921 4.0936 4.0055 3.4727
2 3.6456 4.1018 4.1018 4.1022 4.0112 3.4778
3 3.6213 4.1035 4.1035 4.1038 4.0122 3.4786
4 3.6087 4.1040 4.1040 4.1045 4.0124 3.4791
5 3.6015 4.1045 4.1045 4.1042 4.0132 3.4790

Spherical 1 29.3269 51.0731 51.0731 51.2141 42.0161 35.0955
2 29.3637 51.1230 51.1230 51.2571 41.9311 35.1327
3 29.3838 51.1365 51.1365 51.2696 41.9155 35.1396
4 29.3951 51.1415 51.1415 51.2743 41.9101 35.1420
5 29.4022 51.1440 51.1440 51.2765 41.9076 35.1431

Exponential 1 29.3259 51.1874 51.1874 51.3364 41.8479 35.1699
2 29.3796 51.1526 51.1526 51.2935 41.8892 35.1513
3 29.3974 51.1482 51.1482 51.2863 41.8970 35.1478
4 29.4063 51.1470 51.1470 51.2837 41.8997 35.1467
5 29.4116 51.1468 51.1468 51.2826 41.9009 35.1461

Minimum= 3.4727
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state that Scenario 4 gives the best fitted Kriging model. When an initial sample size in-

creases, more information of a simulation model can be obtained, and a corresponding fitted

Kriging model will become more accurate. With a more accurate Kriging model, correc-

tive operations in later optimization can be reduced, which can decrease the computational

expenses related to simulation correction. However, a large number of initial observations

will tremendously increase the initial computational expense of simulation sampling, which

should be avoided. When two important parameters of a Kriging model, such as model

type and covariance function, can be determined, their corresponding initial sample size

can be considered to be sufficient. For TK, the order of Taylor expansion also need be

considered. In the initialization process, the main goal is to find an effective Kriging model

structure. The specific model coefficients can be improved in later optimization. Based on

this consideration, 80 may be a good initial sample size.

7.3.3 Corrective Operations and Update of Kriging Models

Corrective operations in SOAKEA are a crucial component. Two important problems

related to such operations need be considered. First, when should a corrective operation

be conducted, or what correction strategy is adopted? Second, after a corrective operation,

how are corrected points used to update a current Kriging model? One simulated case based

on the benchmark function SHC will be used to empirically analyze these two problems.

In SOAKEA, PSO is used to perform optimization operations. The population size

of PSO is set at 10, and the cognition and social learning rates are both set at 2.05,

consistent with [38, 69, 162]. The global stopping criterion is the number of Kriging function

evaluations, and it is set at 1000. The corrective condition is the number of updated
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generations. For every G0 updated generations, a corrective operation will be conducted. A

correction per G0 generations is called a correction strategy. In order to investigate the first

problem, different correction strategies are tested. These strategies are that G0 are set to

10, 20, 40, and 80, respectively. G0 equal to 10 implies that for every 10 generations or 100

(10× 10) Kriging function evaluations, a correction will be conducted. A correction means

that xV ector and vV ector of all 10 particles in a current population will be corrected. If

an xV ector or vV ector is the same as one of the vectors which were already corrected, its

simulation output can be directly obtained and running a simulation model is not needed.

After one correction, all of the corrected vectors are added to an observation set and utilized

to update a current Kriging model. The size of initial samples is set to 80. The algorithm

is run 30 times for each correction strategy.

Table 7.5 provides the test results. In this table, the total number of simulation evalu-

ations is decreased to 96 from 220 while G0 is increased to 80 from 10. When a simulation

evaluation is computationally expensive, the significant decrease of simulation evaluations

has evident advantages for simulation optimization. In the table, Kriging points are defined

as the known observation points used to fit a Kriging model, and the number is finally

decreased to 95 from 219. Decreasing the number of Kriging points can effectively reduce

the computational complexity of fitting a Kriging model. However, as G0 is increased to 80

from 10, a disadvantage of SOAKEA is that the success rate of searching optimal solutions

is decreased to 6.67% from 100%, which is unacceptable.

Although a strategy with frequent corrections, or G0 equal to a small value, ensures

that optimal solutions of a simulation model can be found more easily, frequent corrections

will significantly increase the correction expenses caused by running a simulation model.
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Table 7.5: The Test Results of Different Correction Strategies
Correction Kriging Kriging Simulation Success
Strategy Evaluation Points Evaluation Rate (%)

0 80 80
110 80 80
210 99 99
310 109 109
410 123 123

10 510 137 137 100
610 153 153
710 167 167
810 183 183
910 201 201
1000 219 220

0 80 80
210 80 80

20 410 98 98 100
610 113 113
810 129 129
1000 145 145

0 80 80
40 410 80 80 83.33

810 97 97
1000 111 112

0 80 80
80 810 80 80 6.67

1000 95 96
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However, if G0 is too large, the corresponding correction strategy may not be able to provide

enough corrections. It is then difficult for the algorithm to find optimal solutions. Figure

7.4 provides an intuitive explanation for this problem. Suppose the current position of a

particle is Circle 1. The optimal solution is Circle 2. The current search direction of particle

is shown in the figure. In the search process, assume there are three possible correction

points which are Corr1, Corr2 and Corr3. According to the distance of points, it can be

concluded that point Corr1 corresponds to a frequent correction. Point Corr3 represents

an insufficient correction. Figure 7.4 indicates that the correction in point Corr1 may be

unnecessary because the particle can move closer to the optimal solution. This correction

will waste some simulation evaluations but may not be able to improve the search direction.

However, point Corr3 is far away from the current position of particle and the optimal

solution. The correction at point Corr3 will waste some Kriging evaluations but can not

provide more useful information. The search direction can not be surely improved. An

effective correction point may be Corr2. Point Corr2 is closer to the optimal solution. The

simulation output in this point can provide more information of the optimal solution from

the distance perspective. The search direction of particle can be more effectively improved

because when the corrected output of point Corr2 is added to the observation set, a new

Kriging model can be fitted, and it can capture more information about the optimal solution

or Circle 2.

In the initial stage of optimization operations, there are less known observation points

and a fitted Kriging model can not provide precise interpolation values. In order to avoid

errors misguiding evolutionary search, frequent corrections are needed. As fitted Kriging
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Figure 7.4: Diagrammatic Explanation of Correction Operations
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Table 7.6: Numbers of Simulation Evaluations for Different Correction Strategies
Correction Strategy in the Second Half Stage

Correction 10 20 40 80
Strategy 10 220 173 156 156
in the 20 145 132 132
First Half 40 112 112
Stage 80 96

models become more accurate, Kriging evaluations can better approximate simulation eval-

uations. Thus, the correction frequency can be reduced. Based on this idea, a combination

correction strategy is created. [N1, N2] is used to express a combination correction strategy.

It implies that in the first half of optimization stage, a correction per N1 generations is

conducted, and in the second half a correction per N2 generations is used.

The effectiveness of combination correction strategies is empirically investigated. Ta-

bles 7.6 and 7.7 provide the results. The numbers of simulation evaluations and success

rates for different strategies show that combination correction strategies have significant

advantages. They can substantially reduce simulation evaluations while achieving com-

parable success rates. For example, if [10, 10] is replaced by the combination correction

strategy [10, 80], the number of simulation evaluations is reduced to 156 from 220 but the

100% success rate is maintained.

Combination correction strategies can have different mutations. A combination strat-

egy can consist of more than two strategies. These strategies could be combined during

any stage of optimization process. In the above empirical research, only a simple half-half

combination of two strategies is adopted.
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Table 7.7: Success Rates of Optimization Search for Different Correction Strategies (%)
Correction Strategy in the Second Half Stage

Correction 10 20 40 80
Strategy 10 100 100 100 100
in the 20 100 100 100
First Half 40 83.33 83.33
Stage 80 6.67

After a corrective operation, more simulation outputs are available. These outputs

could be used to update a current Kriging model. During the fitting process, as more

simulation outputs are adopted, a more accurate fitted Kriging model can be generated.

However, a negative influence is that adopting more simulation outputs will increase the

computational complexity of fitting a Kriging model. How to balance the interpolation

accuracy and computational complexity of Kriging will be investigated next. In the investi-

gation, the correction strategy G0 is set to 10. The parameter settings of PSO are the same

as before. Two scenarios are investigated. Scenario 1 is that all simulation outputs in the

observation set are used to update a current Kriging model; in scenario 2, as the number

of observation points in the observation set increases to 100, the algorithm continues to

use the current Kriging model fitted by the initial 100 simulation observations and stops

updating it, although corrective operations will be continuously conducted and the number

of points in the observation set will increase.

The empirical results are shown in Table 7.8. These results demonstrate that in the ini-

tial optimization stage, increasing Kriging points can significantly improve current optimal

values. Kriging points imply the known simulation observation points in the observation

set used to fit Kriging models. However, in the following optimization search, the increase
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Table 7.8: Numbers of Simulation Evaluations Used in Different Correction Strategies
Kriging Scenario 1 Scenario 2 Increase Improvement

Evaluation Kriging Current Kriging Current of Rate Rate of
Points Optimal Points Optimal Kriging Optimal

Value Value Points (%) Values (%)

0 80 -0.4739 80 -0.4739 0.0 0.000
110 80 -0.9850 80 -0.9850 0.0 0.000
210 99 -1.0306 99 -1.0306 0.0 0.000
310 100 -1.0306 109 -1.0315 9.0 0.093
410 100 -1.0310 123 -1.0316 23.0 0.058
510 100 -1.0314 137 -1.0316 37.0 0.024
610 100 -1.0315 153 -1.0316 53.0 0.015
710 100 -1.0316 167 -1.0316 67.0 0.007
810 100 -1.0316 183 -1.0316 83.0 0.000
910 100 -1.0316 201 -1.0316 101.0 0.000
1000 100 -1.0316 219 -1.0316 119.0 0.000

of Kriging points can not significantly improve current optimal values. For example, as

Kriging points in Scenario 1 increase to 219 from 137, Kriging points in Scenario 2 are

always 100 and the current optimal values in two scenarios are very close. It is evident that

fitting a Kriging model in Scenario 1 has higher computational complexity and thus wastes

some computational resources. Furthermore, the two scenarios can both eventually reach

the optimal value of a test function. Figure 7.5 shows that the trend changes of current

optimal values in the optimization search of the two scenarios are close.

7.3.4 The Empirical Investigation on SOAKEA

After some important parameter settings of SOAKEA are analyzed, this section uses

four simulated cases based on benchmark functions to investigate its optimization capa-

bilities. The four benchmark functions are SHC, B2, Hmb, and Ras whose dimension of
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Figure 7.5: Optimal Result Comparison of Different Scenarios
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Table 7.9: Chosen Kriging Models for Different Cases
Benchmark Chosen Covariance Order SD
Function Kriging Type Function

SHC TK Cubic (2) 4 5
B2 TK Nugget 3 0
Hmb TK Cubic (2) 3 4
Ras TK Exponential 1 1

independent variables is arbitrarily set to 5. The chosen evolutionary algorithm in SOAKEA

is still PSO. The population size of PSO is set at 10, and the cognitional and social learning

rates are both 2.05. The size of initial samples of each case is 80. Specifically, 60 simulation

inputs are generated by LHS, and their outputs are obtained by running the corresponding

simulation model. These inputs and outputs are used to fit different Kriging models. The

rest of 20 simulation inputs are randomly sampled from a uniform distribution and utilized

to validate the fitted Kriging models. The best fitted model is used as a surrogate fitness

function in later optimization operations. According to this procedure, for each case, 10

different initial sample sets are generated and used to optimize a constructed simulation

model to test the robustness of SOAKEA. For four test cases, the best fitted Kriging models

are shown in Table 7.9. These models are used as surrogate fitness functions while PSO

searches for optimal solutions. In order to further examine the robustness of SOAKEA, 10

different initial populations for each initial sample set are randomly generated for PSO, and

thus SOAKEA is run 10 times for each initial sample set. Totally, the algorithm is run for

100 times for each case.

For the four test cases, the crucial parameter settings of SOAKEA are shown in Table

7.10. The parameter settings of test case based on the benchmark function SHC are used to
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explain Table 7.10. The global optimization condition (stopping criterion) of SOAKEA is

the total number of Kriging evaluations. A Kriging evaluation denotes that SOAKEA uses

a fitted Kriging model to evaluate a solution only once. The global optimization condition is

1000 Kriging evaluations, which means that when the number of Kriging evaluations reaches

1000, SOAKEA will stop optimization search. Kriging points imply the known simulation

observation points used to fit Kriging models. The column of Kriging points in Table 7.10

provides the upper bound of numbers of Kriging points. For instance, a number in the

column being 100 implies that as the number of points in the observation set increases to

and then exceed 100, the following optimization operation in SOAKEA will still use the

Kriging model fitted by the initial 100 points. Based on the structure of dual Kriging model,

it means that SOAKEA will not need to calculate inverse Kriging coefficient matrices later

and the computational complexity caused by Kriging can be effectively controlled.

SOAKEA uses combination correction strategies to correct fitness values from Kriging

in the four test cases. The general form of a combination correction strategy is defined as

[(N11, N12), (N21, N22), · · · , (Nm1, Nm2)]. That is, the combination strategy is combined by

m simple correction strategies. When the ratio of current and total numbers of Kriging

evaluations is less than N11+···+Ni1
N11+···+Nm1

and greater than or equal to N11+···+Ni−1,1

N11+···+Nm1
, the current

correction strategy is one correction per Ni2 generations. The ratio (N11 : N21 : · · · : Nm1)

determines when SOAKEA needs to adjust a current correction strategy, and therefore is

defined as the correction adjustment ratio. For example, in the first test case, SOAKEA

adopts a combination correction strategy [(1, 20), (1, 80)]. The correction adjustment ratio is

1:1. Since the total Kriging evaluations are 1000, the ratio 1:1 indicates that the correction

adjustment point is the number equal to 500 which is given by 1000× 1
2 = 500. That is, for
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Table 7.10: Parameter Settings of Correction Operations in SOAKEA for Different Cases
Benchmark Total Kriging Kriging Correction Correction Frequency
Function Evaluations Points Point 1 2

SHC 1000 100 1 : 1 20 80
B2 2000 150 1 : 2 3 10
Hmb 2000 100 1 : 2 10 40
Ras 2500 150 1 : 2 5 20

the first 500 Kriging evaluations, the corresponding correction strategy is one correction per

20 generations, and after that one correction per 80 generations. In a combination correction

strategy, initial simple correction strategies should provide frequent corrections so that

SOAKEA can frequently update current Kriging models and make them more precise. The

first row of Table 7.10 shows that for the benchmark function SHC, the correction frequency

of the first correction strategy is four times that of the second correction strategy.

The results from SOAKEA are compared with PSO without Kriging and two other

well known metaheuristics Simulated Annealing (SA) and Evolutionary Strategy (ES). For

SA, ES and PSO without Kriging, actual fitness functions or simulation evaluations are

used. Thus, it can be seen how many simulation evaluations are needed for optimization

algorithms without Kriging. The comparison results are in Table 7.11. These algorithms

record the number of simulation evaluations as soon as the defined optimal solution is

reached. The average value of used simulation evaluations in successful optimization search

of running an algorithm for 100 times is given in the column of simulation evaluations of

Table 7.11. These values are used to compare the optimization performance of different

algorithms. Table 7.11 indicates that SOAKEA uses far fewer simulation evaluations but

achieves better or comparable success rates. It must be mentioned that SOAKEA has
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Table 7.11: Performance Comparison of Different Algorithms
Benchmark Simulation Evaluations Success Rate (%)
Function SA ES PSO Krig-PSO SA ES PSO Krig-PSO

SHC 1203 460 250 119 95 97 99 99
B2 4247 1184 650 221 95 99 100 100
Hmb 2440 843 511 108 42 78 82 80
Ras 300145 3456 2365 141 2 7 21 40

some additional computational burden of building Kriging models frequently. But since

the number of Kriging points is limited and small in SOAKEA, the incurred additional

computational burden can be controlled, and not have critical influences on optimization

search.

7.4 Conclusions

This chapter developed an optimization algorithm based on Kriging and evolutionary

algorithms for simulation problems with costly computational expenses. The developed

algorithm is named SOAKEA. Kriging is its surrogate fitness function and evolutionary

algorithms are used to search optimal solutions. Building a surrogate fitness function is

an efficient approach to reducing computational cost of running a simulation model when

it is computationally prohibitive for standard metaheuristics. The accurate interpolation

feature of Kriging is an important factor of selecting it for SOAKEA. Taylor Kriging devel-

oped can provide more effective interpolation and thus benefit SOAKEA. The optimization

capabilities of SOAKEA are determined by the chosen evolutionary algorithm, and it is

necessary to choose an evolutionary algorithm with strong optimization capabilities.
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The empirical investigation on some important parameters in SOAKEA, the size of

initial samples, correction strategies and Kriging points, provides some critical insights for

the settings of these parameters. The empirical comparison of SOAKEA with SA, ES

and PSO without Kriging indicates that SOAKEA has significant advantages in optimizing

complex simulation models.
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Chapter 8

The Kriging Application Software

8.1 Introduction

In this chapter, the Kriging software named Kriging Modeling is developed. The intro-

duction to the software is divided into four parts, which are the overview, Kriging Models,

Data Analysis, and Graphics. Kriging Models, Data Analysis, and Graphics are the three

tool packages of the Kriging Modeling software.

8.2 The Overview

The Kriging software makes use of Visual C++ 6.0 and Visual Basic 6.0. The software

includes four files which are KrigModels.dll, KrigModeling.exe, KrigInformation.ini and

KrigHelp.pdf. KrigModels.dll is a dynamic-link library and developed in Visual C++ 6.0.

KrigModeling.exe is an executive file coded in Visual Basic 6.0. KrigInformation.ini is an

information file and KrigHelp.pdf is a help file in PDF format which provides the instructions

about how to manipulate the software.

The installation of software is simple, and the specific procedure is as follows:

1. Create a file fold: C:\ KrigModels;

2. Save the following files to this designated file folder:

KrigModels.dll

KrigModeling.exe
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KrigInformation.ini

KrigHelp.pdf

When a user double clicks KrigModeling.exe, two windows like Figure 8.1 will pop up. The

small window is the welcome interface of software. It could be displayed while other func-

tions are used. A simple way to remove it is to click the welcome window. The welcome

window gives a brief introduction to the software. More introduction information can be ob-

tained by clicking on “About” in the Help submenu under the main menu. Correspondingly,

a smaller window like Figure 8.2 will pop up.

In the main menu, the software provides the functions of document editing and file

manipulation. Since these functions are very similar to those in Microsoft Word, they are

self-explanatory. The software has a help file which is located under the Help submenu

in the main menu. If Content in the Help submenu is chosen, a PDF file will open and

specific help information will be available. The software has a Windows menu under the

main menu. This submenu provides the facility to arrange several working windows in the

homepage of Kriging Modeling. The Tools submenu under the main menu gives the three

tool packages which are Kriging Models, Data Analysis, and Graphics.

8.3 Kriging Models

By clicking Kriging Models in the Tools submenu under the main menu, a user can

open the tool package named Kriging Models. The interface of this tool package is like

Figure 8.3. The interface mainly includes two types of parameter settings. One type is the

input settings, the other is the output settings. The input settings include the selection

of Kriging models, covariance functions and covariance ranges (influence distances). When
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Figure 8.1: The Welcome Interface
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Figure 8.2: The About Interface
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the chosen Kriging model is Taylor Kriging, one more parameter, namely order, needs to

be specified. Similarly, when the chosen covariance function is the Power-function, a value

for powLambda needs to be set. When the chosen covariance range is “Define the Range”,

a value for influence distance of covariance needs to be provided. The requirements of these

parameters are that the highest order of Taylor expansion should be an integer among 1, 2,

3, and 4, the power of the power-function covariance function, that is b in Eq. (3.41), must

be less than 2 but greater than 0, and the chosen value of covariance range must be greater

than 0. The interface output settings define the output data files.

8.3.1 Data Input File

The data layout in the data input file needs to follow specific rules. Figure 8.4 gives an

example of data layout. In this file, the first row of the data file needs to list the number

of known points, the number of predicted points and the dimension number of independent

variables of each point. In the following rows, the file needs to give known observed points

and predicted points. Specifically, in the first set of rows, the known observed points are

given with the last column as the dependent variable and the preceding columns representing

the independent variables. After the known observed points, the predicted points are given.

For these predicted points, the file gives only their independent variable values and Kriging

will predict the values of the dependent variable. The dependent variable can only be

one dimension, but the Kriging software can simultaneously predict the dependent variable

values of multiple points by only running a Kriging Model once.
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Figure 8.3: The Kriging Models Interface
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Figure 8.4: An Example of the Data Layout of the Input File
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8.3.2 Running the Software

The interface of Kriging Models provides three buttons which are named Clear, Run

and Exit. If a user wants to clear current settings, s/he clicks the Clear button to reset

the program in the default status. If a user wants to exit this tool package, s/he clicks the

Exit button. If the Run button is clicked, the program will call a related Kriging model to

perform required estimation operations. However, if any parameter settings do not satisfy

the requirements of the program, the program will report parameter selection mistakes and

the failure of calling the program, and at the same time identify the sources of mistakes by

changing the color of incorrect parameter settings like Figure 8.5. If the process of calling

a Kriging model is successful, the program will give a corresponding report, and ask a user

whether s/he needs to see output results. If the user wants to check output results, the

program will automatically open the file KrigOutputData.out.

8.3.3 Data Output File

Kriging Models can output some data files which are KrigOutputData.out, Simp-

KrigOutputData.out, MatrixLeft.out, MatrixRight.out, DualModelCoefficients.out, and Lamb-

daLagrangian.out. The interface in Figure 8.6 provides some choices to decide which files

need be output. Notice that KrigOutputData.out and SimpKrigOutputData.out will be

automatically output, and SimpKrigOutputData.out is the simplified version of KrigOut-

putData.out.

Figure 8.6 gives an example of KrigOutputData.out. In this file, the first several rows

log the following information:

1. The date and time of running the Kriging model;
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Figure 8.5: The Results of Calling a Kriging Model
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2. The path of input data file;

3. The index of chosen Kriging model;

4. The index of chosen covariance function;

5. The order of Power covariance function;

6. The index of chosen covariance range;

7. The chosen covariance range value;

8. The highest order in Taylor Expansion;

9. Input data;

10. Output data;

The index of a chosen Kriging model can equal to -1, 0, 1, or 2. These numbers cor-

respond to the indices under “Please Select the Kriging Model” in the interface of Kriging

Models. The matching relationship is as follows:

-1 → Kriging Models (Or, not identifying any Kriging model)

0 → Simple Kriging

1 → Ordinary Kriging

2 → Taylor Kriging

When Taylor Kriging is chosen, the software will ask a user to input the highest order

of Taylor expansion. The highest order must be equal to 1, 2, 3 or 4.

The index of the chosen covariance function can be equal to -1, 0, 1, 2, 3, 4, 5, 6, 7, or

8. These numbers correspond to the indices under “Please Select the Covariance Function”
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in the interface of Kriging Models. The matching relationship is:

-1 → Covariance Functions (Or, not identifying any covariance function)

0 → Pure Nugget Covariance

1 → Linear Covariance

2 → Cubic-1 Covariance

3 → Cubic-2 Covariance

4 → Spherical Covariance

5 → Exponential Covariance

6 → Gaussian Covariance

7 → Power-function Covariance

8 → Logarithmic (de Wijsian) Covariance

The index of the chosen covariance range can be equal to -1, 0, 1, 2, 3, 4, 5, or 6.

These numbers correspond to the indices under “Please Select the Covariance Range” in

the interface of Kriging Models. And the matching relationship is:

-1 → Covariance Range (Or, not identifying any covariance range)

0 → Default (Five Standard Deviations)

1 → One Standard Deviation

2 → Two Standard Deviations

3 → Three Standard Deviations

4 → Four Standard Deviations

5 → Five Standard Deviations
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6 → Define the Range

By checking output parameter settings, a user can know whether s/he chose the de-

sired settings. Besides these parameter values, KrigOutputData.out also outputs input and

output data.

SimpKrigOutputData.out is the simplified version of KrigOutputData.out. In Simp-

KrigOutputData.out, there are only the data of interpolated points, which makes it easier

to manipulate output data.

Additionally, in the frame “Data Output”, the software provides four options to choose

if more data will be output. These four choices are four data output files MatrixLeft.out, Ma-

trixRight.out, DualModelCoefficients.out, and LambdaLagrangian.out. MatrixLeft.out and

MatrixRight.out output the left coefficient matrix and the right matrix in Kriging matrix

system, respectively. DualModelCoefficients.out gives the coefficients of the corresponding

dual Kriging model. And LambdaLagrangian.out gives the coefficients λi(i = 1, · · · , n) and

Lagrangian multipliers ul(l = 1, · · · ,M). The data from these output files can help a user

conduct more thorough analysis. However, in the default status, to increase the run-time

efficiency of the program, the software will not output these files.

8.4 Data Analysis

The software provides a tool package named Data Analysis which is in the Tools sub-

menu under the main menu. To perform the interpolation using Kriging, normalizing the

input data or finding the extreme or mean values in the input data are often done. This

tool performs the above operations. Its interface is like Figure 8.7. Similar to Kriging
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Figure 8.6: An Example of the Data Layout of the Output File (KrigOutputData.out)
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Models, Data Analysis needs an input file. In the input file, the data layout has to follow

the same rules as those of the input file of Kriging Models. That is, the number of points

and the dimensions of each point must be placed in the first row of the input file. From the

second row, the file then gives the data that will be normalized, or the point vectors. If the

points have multiple dimensions, the tool package will normalize the data by dimension.

After finishing the required operations, Data Analysis creates a data output file named

DataAnalysis.out. In the data output file, the following parameters are output:

1. The date and time of running data analysis;

2. The path of the input data file;

3. The normalized data (by dimension);

4. The mean (by dimension);

5. The mean of all of the data;

6. The maximum and minimum values (by dimension);

However, if the option of any operation is set to “No”, the corresponding data results will

not be output. For example, for the operation of Data Mean, if its operation option is “No”,

the data output file will not output any mean values.

The interface of Data Analysis provides three buttons which are Clear, Run and Exit.

A user clicks the Clear button to set the program in the default status. If the Exit button

is clicked, the program will exit this tool package. If the Run button is clicked, the program

will perform required operations, such as normalizing input data. However, if all operation

options are “No”, the program will report parameter selection mistakes. After finishing
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Figure 8.7: The Data Analysis Interface
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required operations, the program will report if the process of data analysis is successful.

If the calling process fails, the program will identify the mistake source by changing the

color of the mistaken parameter setting as shown in Figure 8.8. If the calling process is

successful, the program will ask a user whether s/he needs to see output results which are

in a file named DataAnalysis.out.

8.5 Graphics

Kriging Modeling also provides a tool package named Graphics to do graphic analysis

on data. The Graphics tool package is in the Tools submenu under the main menu in the

window of Kriging Modeling. Figure 8.9 gives the interface of the Graphics tool package.

In order to start drawing a figure, a user needs to double click the area of the figure in the

interface.

After double clicking the interface figure in the Graphics window, the user will see a

working interface like Figure 8.10. For the convenience of later operations, the user could

make this window full-screen by double clicking the blue bar of the Graphics window. The

Graphics window itself provides a main menu with some functions which can help users

perform needed graphic operations.

Data input is the first step in the procedure for drawing a figure. One way to input

data is that a user could click Datasheet under the View submenu in the Graphics window.

The datasheet window will then pop up. By following the rules of data layout in this sheet,

the user can input data. The other way to input data is to directly identify the input data

file by clicking “Import File · · ·” under the Edit submenu in the Graphics window. The

identified input file must be an excel file.
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Figure 8.8: The Results of Calling Data Analysis
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Figure 8.9: The Graphics Interface
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Figure 8.10: The Working Interface of the Graphics Tool Package
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The Chart submenu in the Graphics window provides some functions to set the graphic

parameters. After clicking Chart Type under the Chart submenu, a user can see an interface

like Figure 8.10. Here, a user can choose which type of figure to draw, and can decide which

parameters to set or make some adjustments as would be usually done for the figures in an

excel file. For example, a user can change legends, the title of a figure and the titles of axes,

and so on.

One more important submenu in the Graphics window is the Data submenu, which

provides two methods to set data series in the drawn figure, that is, Series in Rows and

Series in Columns.

After a user finishes drawing a figure, the Copy command under the Edit submenu in

the Graphics window is used to copy the drawn figure to any identified file. To exit the

operation of drawing a figure, press the Esc key.

8.6 Conclusions

The chapter developed the Kriging software named Kriging Modeling which includes

three tool packages called Kriging Models, Data Analysis and Graphics, respectively. The

application instructions of these tool packages were presented in detail. The installation of

software is simple. The simulation cases in the previous chapters show that the software

is a powerful interpolation and data analysis tool. In addition, it is not only effective for

simulation interpolation but also for any other areas needing interpolation.
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Chapter 9

Summary And Conclusions

This chapter concludes the dissertation and discusses the future research directions.

9.1 Conclusions

It has been established in Kriging literature that Kriging metamodeling is applied to

the interpolation, sensitivity analysis and optimization of simulation models. Kriging has

the properties of precise interpolation, explicitness and differentiation. Based on these prop-

erties, Kriging is used to conduct simulation interpolation in order to reduce the expenses

of running a simulation model, to assist sensitivity analysis on a simulation model, and to

optimize a simulation model. Simulation models considered are computationally expensive

and obtaining their sufficient outputs is difficult. Some important results of the dissertation

are as follows:

1. Taylor expansion is introduced to construct a drift function of Kriging. The new drift

function can capture complicated drift behaviors of data so that simulation interpola-

tion capabilities of Kriging are enhanced. A Kriging model with Taylor expansion is

defined as Taylor Kriging (TK). The empirical results from deterministic, stochastic

and physical simulations demonstrate that TK has stronger interpolation capabilities.

In addition, sample standard deviation is suggested to measure influence distance of

covariance, which makes different problems have a consistent measurement unit for

influence distance of covariance.
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The simulation interpolation capabilities of Kriging, regression and artificial neural

networks (ANN) are compared theoretically and empirically. A significant feature in

the comparison is that multicollinearity, heteroscedasticity and specification error are

considered. The conclusions of the comparison are that for interpolation accuracy,

Kriging is better than regression but worse than ANN. Regression and Kriging have

explicit fitted functions, but the function relationship of ANN is completely hidden.

2. The partial differentiation equation of Kriging is developed and used together with

analysis of variance (ANOVA) to assist sensitivity analysis on a simulation model.

Sensitivity analysis can help modelers to find critical input factors of a simulation

model. Thus, controlling, improving and optimizing a simulation model become easier.

The empirical results show that the sensitivity analysis assisted by Kriging is effective.

3. The dissertation integrates Kriging with evolutionary algorithms to search for optimal

inputs of a simulation model with costly computational expenses. A novel algorithm

is developed and named SOAKEA. The properties of SOAKEA are analyzed. Its

parameter settings are empirically investigated, and some important conclusions about

how to set parameters for SOAKEA are obtained. Several simulation cases are used

to examine the optimization capabilities of SOAKEA. The results indicate that it is

a promising optimization tool for simulation models with expensive running costs.

4. The Kriging application software is developed. The software has a user-friendly

graphic interface. It is flexible and powerful and manipulating it is simple. The

software is not only for simulation interpolation but for wider areas which need inter-

polation operations.
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9.2 Future Research Directions

Kriging metamodeling has some attractive properties for simulation interpolation, sen-

sitivity analysis and optimization. The potential research directions include the following

aspects:

1. If a Kriging coefficient matrix is singular, its corresponding Kriging matrix system can

not be obtained. The Kriging estimator thus does not exist. Finding a good method

to avoid this problem is important.

2. While constructing a Kriging model, a modeler has to choose among some potential

covariance functions. Generating an approach to efficiently identifying a covariance

function with limited observations deserves further consideration.

3. Kriging usually assumes that the covariance between any two points only depends on

their distance and is not influenced by their locations. However, this is not always

true. When this assumption is partially or completely relaxed, how to make Kriging

accommodate the relaxed assumption need be investigated.

4. Taylor expansion relies on the premise that continuous partial derivatives of a drift

function have to exist. However, if this premise does not exist, it is worthy to inves-

tigate how to identify an approximate drift function to describe complicated drift of

data.

5. The fundamental objective of SOAKEA is to integrate the prediction features of Krig-

ing with optimization functions of an evolutionary algorithm in order to search for

optimal inputs of a simulation model. Improving SOAKEA can be done from two as-

pects. One is to enhance the interpolation capabilities of Kriging; another is to find a
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better optimization algorithm. More work is needed in these two aspects. In addition,

currently SOAKEA is only applied to deterministic simulation optimization. How to

extend SOAKEA to optimize stochastic simulation models should be examined.

6. The simulation models investigated in this dissertation have multiple input variables

but only one output variable. However, some simulation models may have several

output variables. How to use Kriging to address such simulation models deserves ex-

ploration. A Kriging model with two or more dependent variables is named cokriging.

Cokriging has the potentials to fit simulation models with multiple output variables.

Similarly, its partial differentiation equation can be developed and used to assist in

sensitivity analysis of simulation models. Some evolutionary algorithms can handle

multi-objective optimization problems. The integration of cokriging and these evo-

lutionary algorithms can be applied to optimizing simulation models with multiple

output variables.
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Appendix A

Proof Of Kriging Estimator In Equation (3.11)

According to Eq. (3.11), the following equations can be obtained:

FT λ = f(X) (A.1)

FU + Sλ = C(X) (A.2)

Equation (A.2) can be transformation into the form below:

FTS−1FU + FTS−1Sλ = FTS−1C(X) (A.3)

That is,
FTS−1FU = FTS−1C(X)− FT λ (A.4)

If FTS−1F is invertible, the estimator of U can be calculated:

Û = (FTS−1F)−1(FTS−1C(X)− FT λ) (A.5)

Based on Eq. (3.2), the estimator Û becomes

Û = (FTS−1F)−1(FTS−1C(X)− f(X)) (A.6)

Substituting U in Eq. (A.2) with Eq. (A.6) leads to the following equation.

FÛ + Sλ = C(X) (A.7)

which can be further transformed into

S−1FÛ + S−1Sλ = S−1C(X) (A.8)

Here S is supposed to be invertible. Then the estimator of λ̂ is

λ̂ = S−1(C(X)− FÛ) (A.9)

Note that the estimator of Ẑ(X) is

Ẑ(X) = λ̂TZ = (S−1(C(X)− FÛ))TZ = (CT (X)− Û
T
FT )S−1Z (A.10)

According to Eq. (A.6), the estimator of Ẑ(X) becomes:

Ẑ(X) = CT (X)S−1Z− ((FTS−1F)−1(FTS−1C(X)− f(X)))TFTS−1Z (A.11)
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That is,

Ẑ(X) = CT (X)S−1Z−CT (X)S−1F(FTS−1F)−1FTS−1Z +
fT (X)(FTS−1F)−1FTS−1Z (A.12)

Let
â = (FTS−1F)−1FTS−1Z (A.13)

Eq. (A.12) is simplified:

Ẑ(X) = CT (X)S−1Z−CT (X)S−1Fâ + fT (X)â (A.14)

That is,

Ẑ(X) = âT f(X) + CT (X)S−1(Z− Fâ) (A.15)

Thus Eq. (3.11) is proved.
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