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Directed by Charles E. Stroud
Testing embedded memory resources in Field Programmable Gate Arrays (FPGAs) is
di cult because the collective signal fan-in and fan-out is much greater than the available
external I/O. A testing approach is needed that can test all of the memory resources in
parallel without out being limited to external I/O. Built-in Self Test (BIST) is a testing
method that incorporates test circuitry around the devices under test (DUT). The pro-
grammable nature of FPGAs allows the BIST circuitry to have no performance and size
overhead because the BIST circuitry can be downloaded to the FPGA while the system is
o ine. Once o ine, resources inside the FPGA can be tested and the results retrieved. If
the FPGA is found to be fault-free then the system function can be downloaded again and
brought back online.
BIST for embedded memory resources in Virtex 4 FPGAs is developed and test con-
 gurations are generated for all Virtex 4 devices. Twenty- ve total BIST con gurations
are developed to test memories operating in RAM, FIFO, ECC, and cascade modes. To
test each operating mode, a hardware design language (HDL) based test pattern generator
v
(TPG) is developed and then incorporated into an algorithmically placed BIST template
that contains two TPGs, DUTs, and output response analyzers (ORAs) to observe DUT
outputs. Partial recon guration is used to reduce both con guration bitstream storage and
test time. A total speed-up factor of 12 is observed when utilizing partial recon guration.
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Chapter 1
Introduction
Moore?s Law states that the complexity of Integrated Circuits (ICs) tends to double
every 24 months [7]. While this empirical observation was  rst observed in 1965, more
recently, the International Technology Roadmap for Semiconductors has predicted Moore?s
Law will persist at least until 2016 based upon industry data and forecasts [8]. One of
the earliest microprocessors, the Intel 4004, had approximately 2300 transistors [9]. For
contrast, recent state-of-the-art Field Programmable Gate Arrays (FPGAs) may contain
more than one billion transistors [10]. Clearly, one can see the exponential growth in
transistor count over the last four decades. The continuing problem with these higher
density ICs is that developing tests for such complex devices is becoming progressively
more di cult with each generation of new ICs. Recent IC fabrication technology has led
to larger chip sizes with smaller feature sizes, but also has introduced new types of defects
and subsequently increased the probability of defects [6].
Developing good tests for ICs is becoming a major factor in the cost of producing
working silicon ICs. One of the reasons for high costs is the disparity between the number
of Input/Output (I/O) pins in packaged ICs verses the number of transistors in the package.
Using external ?bed-of-nails? test equipment, the costs of testing are generally attributed to
the  xed cost of the test equipment and the speed at which the actual tests can be performed.
IC manufactures generally employ tests that minimize the cost of the test equipment while
minimizing the device test time [11]. Improvements in Design for Test (DFT) methodology
have produced scan design and Built-in Self Test (BIST) [6][11].
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1.1 Built-In Self Test (BIST)
DFT is a common practice in the VLSI design process. Traditionally, DFT for ICs has
involved using scan  ip- ops. Scan  ip- ops reduce the amount of time needed to generate
tests for sequential circuits because they can operate as a shift register to shift in a test
vector from an external Automated Test Equipment (ATE). When shifting a new test vector
into a scan chain, the output response from the previous vector is shifted out, which is then
can be compared to an expected value. Scan design eliminates the possibility of being
unable to initialize a  ip- op to a desired value. However, for many large VLSI circuits, the
number of test vectors that must be applied to achieve a necessary fault coverage percentage
has also increased. Coupled with a growing amount of test vectors and ATE not being able
to test at speed for newer ICs, a di erent approach for applying test vectors was introduced
[11].
BIST is a DFT technique that allows the Device Under Test (DUT) or a portion of
the DUT to tell the tester if it is fully functional. BIST implementations include a Test
Pattern Generator (TPG) which drives a DUT or many DUTs in parallel. The outputs of
the DUTs are then analyzed by an Output Response Analyzer (ORA) which determines
the correctness of the DUT. The general BIST architecture can be seen in Figure 1.1.
BIST solves two of the major issues with ATE based testing. First, the BIST circuitry is
implemented in the chip itself, and therefore it can perform at speed. Secondly, since the
BIST circuitry generates test vectors, the external tester merely needs to tell the device to
perform BIST and then report whether the device is faulty or not [6].
2
Figure 1.1: General BIST Architecture
Traditionally, BIST has been used to test logic and memory resources in VLSI cir-
cuits [6]. One caveat of BIST is that it usually implies an overhead in terms of in-
creased chip area which may in turn reduce the yield of the chip [6]. One may wonder
if it is possible to implement BIST with no overhead. BIST implementations proposed
in [12][13][14][15][16][17][18][19][20][21][22] suggest BIST for FPGAs can incur no overhead
penalty in terms of speed and area.
1.2 FPGAs
An FPGA can be described as \an array of logic blocks that can be programmably
interconnected to realize di erent designs" [23]. A general FPGA architecture, as seen
in Figure 1.2, contains I/O cells that facilitate signals entering and exiting the device.
Programmable Logic Blocks (PLBs) perform the necessary digital logic functions and the
programmable routing resources direct signals both between PLBs and the overall signal
path from inputs to outputs.
PLBs vary among manufactures, but a simple PLB can contain Look-up Tables (LUTs),
 ip- ops/latches, and multiplexers. A simple PLB architecture is illustrated in Figure
3
Figure 1.2: FPGA Architecture
Figure 1.3: Basic PLB Architecture
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1.3. LUTs can be con gured as the truth table for a given logical function and they can
implement small distributed random access memories (RAMs). The interconnection or
routing between PLBs is realized by con guring Programmable Interconnect Points (PIPs)
to create signal paths from wire segments inside the FPGA [23].
FPGA programming techniques vary among manufacturers, and include static RAM
(SRAM), fuse/anti-ifuse, and  oating gate methods. SRAM is the most popular program-
ming technique for advanced FPGAs because SRAM based designs allow high density and
fast con guration [23]. SRAM based FPGAs contain a con guration memory that, when
written to, speci es the operation of PLBS, I/O cells, and routing resources. Besides logic
blocks and routing resources, the con guration memory may con gure other embedded re-
sources in the FPGA such as embedded RAMs, multipliers, and digital signal processors
(DSP). The inclusion of additional embedded resources allows for higher PLB utilization
because the embedded resources can o oad much of the functionality of digital systems.
1.3 Embedded Memory Resources in FPGAs
FPGA manufacturers have incorporated embedded memories for many product genera-
tions [10][24]. Previously, storing large quantities of data internally required an appreciable
amount of PLB resources to implement a memory resource. While most designers frequently
utilize the memory resources as regular RAM modules, several FPGAs now allow system
designers to con gure memory resources as multi-port RAMs and First-In-First-Out (FIFO)
modules. The advent of dedicated memory resources extends the potential of FPGAs to act
as a programmable System-on-Chip (SoC). However, as advantageous as memory resources
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are, there are testability concerns that must be addressed. Traditionally, testing RAMs re-
quires applying test patterns that read and write data in such an order that within a set of
faults being tested, any such fault will be sensitized if present. These testing algorithms are
generally known as march tests. There have been many march tests developed for detecting
certain types of faults within memory resources [25][26]. Unfortunately, applying march
tests to embedded memories is complicated. ATE is generally used to verify production
ICs. However, ATEs usually provide test patterns to the external I/O pins of an IC. A
better testing approach is needed because most FPGAs contain many memory resources
whose collective fan-in and fan-out are much greater than the available I/O pins [10][24].
BIST is an ideal solution for testing embedded resources in FPGAs. A BIST approach
o ers more  exibility for testing than an external ATE because test pattern generation is
not limited by the external I/O availability. Previous implementations have shown that this
approach is quite feasible and e cient for testing embedded memories [27][17][28].
1.4 Thesis Statement
The goal of this thesis is to develop a BIST architecture and BIST con gurations
for testing embedded memories in Xilinx Virtex 4 FPGAs. This BIST architecture will
address minimizing both the test time required and the memory required to store the
BIST con gurations. This minimization is achieved by designing the BIST architecture
to e ciently utilize an FPGA con guration technique known as partial recon guration.
The remainder of this thesis is organized as follows: In Chapter 2, additional background
information on BIST for FPGAs will be given along with details toward testing SRAMs
in general and a detailed overview of the Virtex 4 FPGA architecture. In Chapter 3, a
6
BIST architecture for Virtex 4 embedded memories will be presented with applications to
memory resources con gured to operate in a basic RAM mode of operation. Chapters 4 and
5 will apply the presented BIST architecture to memory resources con gured to operate as
FIFOs and Error-Correcting Code (ECC) RAMs, respectively. Chapter 6 will summarize
the work presented in this thesis and include ideas for future research in this  eld.
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Chapter 2
Background
This chapter presents an overview of di erent BIST techniques for FPGAs found in
the literature. The architecture of the Xilinx Virtex 4 FPGA will also be presented with
an emphasis on the dedicated memory resources referred to as block RAMs (BRAMs).
Background on SRAM testing will be presented that predominately focuses on march tests
and the associated fault models for which they are designed.
2.1 Introduction to FPGAs
FPGAs di er from Application Speci c Integrated Circuits (ASICs) because they are
made of logic and routing resources capable of implementing most digital systems while not
being explicitly fabricated for a speci c task. For example, one might buy a microproces-
sor, an ASIC, as part of a digital system while another designer might use an FPGA to
implement a microprocessor and other supporting functions all in the same IC. Further-
more, another designer might use the exact same FPGA in a DSP application. Clearly, the
 exibility of FPGAs is its main advantage. Another advantage is the reduced non-recurring
engineering costs by eliminating the need to design and fabricate custom ASICs. The main
disadvantage, however, of FPGAs is higher chip area, higher power consumption, and lower
operational speeds as compared to a custom ASIC which is due to extra programming cir-
cuitry overhead. Also, FPGAs typically are more expensive than traditional ASICs so they
are usually relegated to low volume or prototype designs [23].
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In order for an FPGA to realize a digital system, it must be programmed [23]. Several
programming technologies exist, but SRAM based FPGAs are currently the most common
and popular. Other older programming technologies exist such as fuse or anti-fuse based
and mask-programmable FPGAs. However, these programming technologies only allow for
one-time programmability, either at the factory in the case of mask-programmed FPGAs or
in the  eld as is the case with fuse or anti-fuse based FPGAs. While SRAM based FPGAs
are advantageous in their capabilities of being programmed more than once, they also must
be reprogrammed each time the chip is power cycled. This is necessary because SRAM is
inherently a volatile storage medium [1].
When a FPGA is con gured, the con guration data, also known as a bitstream, is
downloaded to the device. The bitstream contains all of the con guration bits that, when
downloaded, implement a desired logic function. Con guration bits can control many re-
sources inside the FPGA such as a LUTs? contents, routing resources, and the operational
mode of embedded intellectual property (IP) cores such as BRAMs and DSP modules. Con-
 guration bits also can determine the initialization values of  ip- ops in PLBs and data
values stored in BRAMs [29][2]. Figure 2.1 illustrates the use of con guration bits. In Figure
2.1a, a con guration bit is used to block or pass a signal for implementing programmable
routing resources. In Figure 2.1b, con guration bits are used to implement a LUT such
that a 2-input truth table can be realized for a logical function. Con guration bits can also
initialize a BRAM as seen in Figure 2.1c.
As described in [1], con guration memory SRAM cells do not require fast read and
write performance, which allows FPGA designers to use a  ve transistor SRAM as shown
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Figure 2.1: Con guration Bits in FPGAs
in Figure 2.2 instead of a more standard six transistor SRAM cell that provides both the
complemented and uncomplemented form as seen in Figure 2.3.
Another important attribute concerning FPGA con guration is the ability for FPGAs
to be partially recon gured. Most modern FPGAs like the Xilinx Virtex series support
partial recon guration [3][29]. Partial recon guration allows for a reduction in bitstream size
by only storing the di erence between a previous full download and the changes needed to
implement the modi ed system function. Partial recon guration allows a designer to extract
more functionality from a smaller FPGA for usage scenarios where a subset of implemented
system functions can be swapped in and out of the FPGA without compromising critical
performance parameters. In terms of testing FPGAs, partial recon guration is a valuable
tool that allows the test con guration download time to be reduced.
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Figure 2.2: A Five Transistor Con guration SRAM Cell [1]
Figure 2.3: A Six Transistor Con guration SRAM Cell [1]
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2.2 Virtex 4 Architecture
Xilinx released the Virtex 4 FPGA family in 2004 and, at the time of its introduction,
it was one of the most complex FPGAs available on the market. For its production, Xilinx
used a 1.2V, 90nm, triple-oxide process and it is only available in a  ip-chip BGA package
[10]. The Virtex 4 PLB contains four slices and each slice features two 4-input LUTs and
two  ip- ops. Dedicated memory storage is provided via a programmable 18K-bit SRAM
called a block RAM. Previously in Virtex 2, an 18 x 18 multiplier module was available
[29]. In Virtex 4, the multiplier has grown into a complete DSP module that incorporates
a 48-bit accumulator attached to the 18 x 18 multiplier. The accumulator can also perform
addition and subtraction on two data words without  rst being processed by the multiplier.
Virtex 4 is available in three distinct product families: LX, SX, and FX as summarized
in Table 2.1. The LX family contains eight devices that have been tailored toward design
implementations that have high PLB usage. The SX family consists of three devices and
is targeted toward DSP-oriented designs due to higher number of DSP modules. The FX
family is a blend of the SX and LX family and provides more specialized modules which
include PowerPC (PPC) and high performance I/O Serial/Deserial (SERDES) modules.
Virtex 4 employs a column based architecture. Each device has a center column which
divides the FPGA into two halves. Beginning from the center column and moving in either
direction,  rst there are columns of PLBs. The width of the  rst columns of PLBs di ers
by device size and family. Moving outward again, the next resource will either be a column
of DSP or BRAM modules as illustrated in Figure 2.4. In FX family devices, either one or
two PPC modules will be positioned to the left of the center column.
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Table 2.1: Overview of Resources in Virtex 4 Family Devices [2]
Device Row x Col Slices DSPs BRAMs PPCs I/O
XC4VLX15 64 x 24 6,144 32 48 - 320
XC4VLX25 96 x 28 10,752 48 72 - 448
XC4VLX40 128 x 36 18,432 64 96 - 640
XC4VLX60 128 x 52 26,624 64 160 - 640
XC4VLX80 160 x 56 35,840 80 200 - 768
XC4VLX100 192 x 64 49,152 96 240 - 960
XC4VLX160 192 x 88 67,584 96 288 - 960
XC4VLX200 192 x 116 89,088 96 336 - 960
XC4VSX25 64 x 40 10,240 128 128 - 320
XC4VSX35 96 x 40 15,360 192 192 - 448
XC4VSX55 128 x 48 24,576 512 320 - 640
XC4VFX12 64 x 24 5,472 32 36 1 320
XC4VFX20 64 x 36 8,544 32 68 1 320
XC4VFX40 96 x 52 18,624 48 144 2 448
XC4VFX60 128 x 52 25,280 128 232 2 576
XC4VFX100 160 x 68 42,176 160 376 2 768
XC4VFX140 192 x 84 63,168 192 552 2 896
The smallest addressable unit of con guration memory in Virtex 4 is referred to as a
frame, and each frame consists of 41 32-bit words. During the creation of a con guration
bitstream, successive frame data along with frame addresses are written to the con gura-
tion bitstream. Designs utilizing regular structures, such as multiple identically con gured
BRAMs or replicated system logic in fault tolerant designs, can take further advantages of
multi-frame write capabilities. Multi-frame write capabilities allow the con guration bit-
stream to specify multiple frame addresses to be given the same frame data. This can allow
substantial reductions in con guration bitstream sizes and can be bene cial to reducing the
time to perform BIST as discussed in Chapter 3.
All or parts of the con guration memory can also be read back. Con guration memory
readback can be performed for various reasons such as con guration download veri cation,
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but for BIST, readback is used to retrieve ORA results. In order to capture the contents
of  ip- ops, the CAPTURE module must be instantiated in the design. The CAPTURE
module permits the current contents of  ip- ops to overwrite their initial speci ed state
stored in the con guration memory. Once the current  ip- op values have been captured,
the ORA results can be retrieved via con guration memory readback.
Figure 2.4: Basic Virtex 4 Architecture
2.2.1 Virtex 4 PLBs
Virtex 4 PLBs each consist of 2 SLICEMs and 2 SLICELs as pictured in Figure 2.5. A
simpli ed representation of a SLICE is shown in Figure 2.6. A SLICEL contains 2 LUTs and
2  ip- ops plus multiplexers and logic gates to allow implementation of complex switching
functions that span multiple SLICELs and even multiple PLBs. SLICEMs are a superset
of SLICELs and have additional specialized features that enable them to be used as small
distributed memories or function as a fast shift register. This thesis does not focus on
testing PLBs and the slices within them. PLBs will be used in the work presented in this
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thesis, however their use will only be to implement TPG and ORA components to facilitate
testing BRAMs.
Figure 2.5: Virtex 4 PLB [2]
2.2.2 Virtex 4 BRAMs
This thesis concentrates on the development of BIST for BRAMs in Virtex 4 FPGAs.
In [14], BIST was implemented for distributed RAMs, BRAMs, and multipliers in Xilinx?s
Virtex 2 series FPGAs. Distributed RAMs are memory resources created by using PLBs
to create small memories. The BRAMs available in both Virtex 2 and 4 share much of the
same functionality. The BRAM features present in Virtex 2 can be viewed as a subset of
those present in Virtex 4. The Virtex 4 BRAM, as seen in Figure 2.7, is a true dual-port
RAM meaning that is has dual address and data input and output buses. The memory array
can be con gured in multiple aspect ratios that utilize up to 18K of addressable memory as
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Figure 2.6: Simpli ed Virtex 4 Slice Diagram [2]
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outlined in Table 2.2. For word sizes of eight bits and larger there are additional parity bits
associated with each word. It is important to note, however, that the user is responsible
for writing data to the parity bit locations since parity over the written data word is not
calculated automatically. As for BRAM performance, all BRAM read and write operations
can be completed in a single clock period unless using a registered output mode.
Table 2.2: Summary of Virtex 2 and 4 BRAM Aspect Ratios
Word Depth Word Width Parity Width
512 32 4
1K 16 2
2K 8 1
4K 4 -
8K 2 -
16K 1 -
Table 2.3 lists all of the input and output signal names and functionality found in a
Virtex 4 BRAM. It should be noted that the Virtex 2 BRAM uses the same signal names
except for the cascade input and outputs. Unlike Virtex 2, Virtex 4 BRAMs support
cascading two 16K x 1-bit con gured BRAMs to create a 32K x 1-bit memory without
utilizing additional PLBs. All of the inputs are captured at either the rising or falling edge
of the input clock depending if the BRAM clock input is programmed to be rising or falling
edge triggered. Also, the following signals are programmable in their active levels: WE, EN,
SSR, and REGCE. The WE signal is actually a 4-bit bus which enables the ability to write
a single byte to a BRAM when con gured to have a data word wider than a byte. This
feature is most commonly used in conjunction with combining a PPC module and several
BRAMs such that they implement program and data storage for the processor.
Table 2.4 summarizes additional con guration parameters for each BRAM. The SAVE-
DATA con guration option determines if a partial recon guration will overwrite the present
17
Figure 2.7: Virtex 4 BRAM [2]
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Table 2.3: BRAM Signal Descriptions [2]
Port Name Description
DI[A,B] Data Input Bus
DIP[A,B] Data Input Parity Bus
ADDR[A,B] Address Bus
WE[A,B] Write Enable
EN[A,B] Port Enable
SSR[A,B] Set/Reset
CLK[A,B] Clock Input
DO[A,B] Data Output Bus
DOP[A,B] Data Output Parity Bus
REGCE[A,B] Output Register Clock Enable
CASCADEIN[A,B] Cascade input pin for 32K x 1 mode
CASCADEOUT[A,B] Cascade output pin for 32K x 1 mode
contents of a BRAM. This option is useful if the recon guration is targeted at changing
the system function that operates on data stored in the BRAM. The RAM EXTENSION
parameter for each port determines which BRAM is the UPPER or LOWER BRAM when
con gured in the cascade mode of operation. There are no restrictions on whether a partic-
ular BRAM can be UPPER or LOWER. This designation is decided by either the designer
or the constraints associated with the available resources during resource placement. It is
important to point out that the BRAMs located on a bottom row or directly above a PPC
modules do not have CASCADEIN[A,B] inputs. Likewise, BRAMs located on the top row
or directly below a PPC module do not have CASCADEOUT[A,B] ports. The DO REG
parameter determines if the output data bus is either latched or sent through an extra  ip-
 op. The READ WIDTH and WRITE WIDTH parameters determines the selected BRAM
aspect ratio per port. The WRITE MODE parameter selects one of three supported write
modes. READ FIRST brings the current contents of the addressed word to the output
during a write operation. Likewise, WRITE FRIST writes the input data to the addressed
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location while it also forces the input data to the output of the BRAM. The NO CHANGE
write mode prevents the data output from changing during a write operation. Only a read
operation will change the output data.
Table 2.4: BRAM Con guration Options [2]
Con guration Attribute Parameters
SAVEDATA TRUE, FALSE
RAM EXTENSION [A,B] LOWER, UPPER, NONE
DO [A,B] REG 0,1
INVERT CLK DO[A,B] REG TRUE, FALSE
READ WIDTH [A,B] 36,18,9,4,2,1,0
WRITE WIDTH [A,B] 36,18,9,4,2,1,0
WRITE MODE [A,B] READ FIRST, WRITE FIRST, NO CHANGE
BRAM Error Checking Code (ECC) and Cascade Operational Modes
A pair of BRAMs can be con gured to either implement a 512 x 72-bit ECC RAM
or a 32K x 1-bit RAM. However, there are several restrictions for these additional modes
concerning the actual placement during design implementation. An ECC BRAM can be
placed in a Virtex 4 so long as the bottom BRAM is located on an even row. For clarity,
the numbering convention Xilinx uses sets the bottom most row to be row zero. If an FX
devices is being used, an ECC BRAM can not use the BRAM directly below or above the
PowerPC core. Restrictions on the placement for cascaded BRAMs are somewhat less strict.
Any pair of BRAMs in a column can be cascaded so long as the two BRAMs are physically
adjacent and the pair does not span a PPC module when using FX family devices [2].
An ECC RAM is commonly used in systems that are designed to be fault tolerant. In
Virtex 4, when a data word is written to an ECC RAM, a Hamming code is generated for
the written data word and stored alongside the data. A Hamming code is a form of an
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error checking code that inserts Hamming bits throughout a data word. Each Hamming bit
contains parity over a subset of the data word. The contents of all the Hamming bits for a
given data word is what is referred to as the Hamming code associated with a data word.
The Hamming code is designed such that any single bit error in the Hamming code or in
the data word will be able to indicate the presence of a single-bit error and indicate which
bit is incorrect. If a Hamming bit is allocated to generate parity over the entire Hamming
code and the data, then it is possible to provide single-bit error correction and double-bit
error detection [30].
Virtex 4 uses what is termed a (72,64) Hamming code, meaning the Hamming codeword
is 72 bits with 64 of those bits being the actual data. Seven of the eight Hamming bits
are used to provide single-bit correction and the eighth bit is used to provide parity over
the entire Hamming codeword which enables double-bit error detection [30]. Figure 2.8
illustrates the architecture of an ECC BRAM. An ECC BRAM also generates status bits
that indicate if a single bit error was corrected or a double bit error was detected. Table 2.5
gives a description of the three valid ECC status words. It is important to note, however,
that when a single bit error is corrected in the Virtex 4 ECC implementation, only the data
at the output registers of the ECC BRAM are corrected. The contents stored in the BRAM
are not corrected automatically [2].
The cascade mode of operation is implemented by using the MSB of the ADDR[A,B]
bus, a single con guration bit, and dedicated routing to send the lower BRAM data output
to the upper BRAM in the cascade pair. Figure 2.9 illustrates two BRAMs con gured as a
cascade pair. Data written to a cascaded pair is routed to either the lower or upper BRAM
by the MSB of the address bus. In addition, the MSB of the address bus selects the data
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from either the lower or upper BRAM during read operations. The lower BRAM outputs its
data to the dedicated routing between a cascade pair and is then output via a multiplexer
that is selected by the MSB of the address bus. Both lower and upper BRAMs in a cascade
pair output data during every read operation but the output of the upper BRAM is the
only valid output for a cascade con gured BRAM pair [2].
Table 2.5: ECC Status Description
Status[1:0] Condition
00 No error
01 Single Bit error corrected
10 Double Bit error detected
11 Invalid status condition
Figure 2.8: ECC BRAM Architecture [2]
2.2.3 Virtex 4 FIFOs
A First In, First Out (FIFO) memory is commonly used in digital systems to handle
data  ow control and bu ering. A FIFO holds data in a queue such that the  rst data stored
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Figure 2.9: BRAM Cascade Operational Diagram [2]
is also the  rst data able to be retrieved. In Virtex 4 each BRAM can be con gured as a
FIFO without utilizing any surrounding PLBs. The FIFO implementation, as illustrated
in Figures 2.10 and 2.11, generates both read and write pointers used to retrieve and store
data from the BRAM [2]. A description of each FIFO input and output is given in Table
2.8. Also, status  ags are generated to determine the state of the FIFO. In earlier FPGAs,
such as Virtex 2, implementing a FIFO required using a substantial number of PLBs for
this supporting logic.
Each Virtex 4 FIFO can be independently con gured to four di erent depths as sum-
marized in Table 2.6. Like BRAMs, the FIFO control signals RDCLK, WRCLK, RDEN,
WREN, and RST also have programmable active levels. The  rst-word fall-through (FWFT)
operational mode extends the depth of a FIFO by one data word. In this mode, the  rst
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data item written to the FIFO is not stored in the BRAM, but is immediately available at
the registered outputs. The remaining con guration options pertain to the programmable
Almost Full/Empty  ag limits. These programmable  ags are set by the designer to help
coordinate the status of the FIFO with surrounding logic.
Table 2.6: FIFO Con guration Options [2]
Con guration ALMOST EMPTY OFFSET ALMOST FULL OFFSET
Standard FWFT
4k x 4 5 to 4092 6 to 4093 4 to 4091
2k x 9 5 to 2044 6 to 2045 4 to 2043
1k x 18 5 to 1020 6 to 1021 4 to 1019
512 x 36 5 to 508 6 to 509 4 to 507
The timing characteristics of the various FIFO status  ags are given in Table 2.7. The
most interesting attribute in this table is the assertion of the FULL  ag. The FULL  ag
is asserted one clock cycle after the last possible data entry is written and deasserts 3 to
4 clock cycles later depending on whether the standard or FWFT operational modes is
used. This latency means that one could accidentally write to a FIFO when in actuality
it is already full. To remedy this problem, Xilinx recommends using the ALMOST FULL
 ag to signal the FIFO is full [2]. In terms of testing, the FIFO?s status  ag timing creates
several problems in terms of the ability to create test algorithms that fully test the device
in all modes of operation. This issue will be discussed in detail in Chapter 4.
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Figure 2.10: Virtex 4 FIFO Implementation [2]
Figure 2.11: Virtex 4 FIFO [2]
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Table 2.7: Virtex 4 Status Flag Clock Cycle Latency [2]
Clock Cycle Latency Assertion Deassertion
Standard FWFT Standard FWFT
EMPTY 0 0 3 4
FULL 1 1 3 3
ALMOST EMPTY 1 1 3 3
ALMOST FULL 1 1 3 3
READ ERROR 0 0 0 0
WRITE ERROR 0 0 0 0
Table 2.8: FIFO Port Signal Descriptions [2]
Port Name Direction Description
DI Input Data input.
DIP Input Parity-bit input.
WREN Input Write enable, Active high or low.
WRCLK Input Clock for write domain operation. Rising or
falling edge triggered.
RDEN Input Read enable, Active high or low.
RDCLK Input Clock for read domain operation. Rising or
falling edge triggered.
RESET Input Asynchronous reset of all FIFO functions,  ags,
and pointers. Active high or low.
DO Output Data output.
DOP Output Parity-bit output.
FULL Output All entries in FIFO memory are  lled. No addi-
tional write enable is performed.
ALMOSTFULL Output Almost all entries in FIFO memory have been
 lled.
EMPTY Output FIFO is empty. No additional read can be per-
formed.
ALMOSTEMPTY Output Almost all valid entries in FIFO have been read.
RDCOUNT Output The FIFO data read pointer.
WRCOUNT Output The FIFO data write pointer.
WRERR Output When the FIFO is full, any additional write op-
eration generates an error  ag.
RDERR Output When the FIFO is empty, any additional read
operation generates an error  ag.
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2.2.4 Virtex 4 CAD Tools
Xilinx provides a complete set of computer-aided design (CAD) tools that enable a
designer to implement digital systems using a high-level design methodology that supports
schematic entry, hardware description language (HDL) synthesis, and IP core integration.
A designer can either use a graphical user-interface (GUI), Project Navigator, to imple-
ment designs, or command-line tools can be used. By using command-line tools and batch
 les, one can automate the BIST con guration generation process. Table 2.9 summarizes
several Xilinx tools that are used to implement the BIST con gurations presented in this
thesis. BITGEN has several options that can be utilized in BIST con guration generation.
BITGEN supports the creation of partial con guration bitstream from a set of regular full
con guration bit- les. During the creation of partial bit- les BITGEN compares two NCD
design  les and generates a bit- le containing the di erence between the two. The XDL
command-line tool allows the conversion between an NCD  le and an XDL  le. An XDL
 le type contains a human-readable netlist description of a FPGA con guration. XDL can
convert an XDL  le to an NCD  le type which describes a given FPGA con guration, but
this  le type is a binary  le which is not human-readable [31].
2.2.5 Virtex 4 Boundary Scan
Virtex 4 implements boundary scan, also called JTAG, that meets IEEE Standard
1149.1-2001 [3]. Boundary scan was originally intended as a mechanism for testing inter-
connect between multiple IC chips on a system board. A boundary scan implementation
includes the following four signals: Test Clock (TCK), Test Mode Select (TMS), Test Data
In (TDI), and Test Data Out (TDO). By asserting TMS to either a logic high or low during
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Table 2.9: Summary of Xilinx Design Tools
Application Input Output Description
File Type File Type
XST VHDL, Verilog NGC Synthesis Tool - Compiles HDL and gener-
ates a design netlist compatible with Xil-
inx devices
NGDbuild NGC NGD Compiles designs to common format
MAP NGD NCD Translates post-synthesis design to a de-
vice speci c implementation
PAR NCD NCD Places and routes device speci c designs
BITGEN NCD .BIT, .RBT Creates bitstream con guration  les for
download
XDL XDL, NCD NCD, XDL Converts in between XDL and NCD de-
sign formats
TRCE NCD TWR TRACE - Generates con guration timing
analysis report
a rising transition on TCK, one can navigate a state machine termed the test access port
(TAP) controller as illustrated in Figure 2.12 [11]. However, the technology has evolved and
now most FPGAs allow for device programming via boundary scan [29][3]. Xilinx?s Virtex
series of FPGAs also allow connecting boundary scan signals to internal FPGA logic. This
connection is made via what Xilinx calls boundary scan (BSCAN) modules. In Virtex 4,
four BSCAN modules are available for use and each module is selected by shifting a speci c
data word into TAP?s instruction register as shown in Table 2.10. The convention that is
used when shifting data either into the data register when in state Shift-DR or the instruc-
tion register when in state Shift-IR is to assert TMS to a ?1? on the last data bit transmitted
over TDI.
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Figure 2.12: TAP Controller State Diagram [3]
Table 2.10: Virtex 4 BSCAN Module Access Commands [3]
Boundary Scan Binary Code Description
Command (9:0)
USER1 1111000010 Access user-de ned register 1
USER2 1111000011 Access user-de ned register 2
USER3 1111100010 Access user-de ned register 3
USER4 1111100011 Access user-de ned register 4
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2.3 SRAM Testing
Most digital systems incorporate some type of memory element whether it is an em-
bedded SRAM in a microprocessor?s cache or a standalone memory in a digital system.
Applications that utilize memories are quite abundant and thus there is a need to ensure
that memory devices such as SRAMs are fault-free. Figure 2.13 illustrates a functional
model of a common SRAM. As seen in this  gure, an array of memory cells and support-
ing functions such as decoders, sense ampli ers, and storage registers are all components
integral to a SRAM. Figure 2.14 shows how a two-port memory can be made by additional
word and bit lines that connect the the cross-coupled inverters.
Figure 2.13: SRAM Memory Functional Model
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Figure 2.14: Structural Model of a two-port SRAM cell
2.3.1 SRAM Fault Models
In [26], van de Goor shows that a simple stuck-at fault (SAF) model is not su cient
for modeling faults found in memory devices. Table 2.11 lists common types of faults for
SRAMs and are sometimes referred to as simple faults. Coupling faults can be further
classi ed into four subtypes: inversion coupling faults (CFin), idempotent coupling faults
(CFid), state coupling faults (CFst), and disturb coupling fault (CFdst). A CFin refers to
a " and/or # write operation in a coupling cell that causes an inversion in the coupled cell.
For example, if cell A and cell B are both ?1? and a ?0? is written to cell A, a CFin fault in
cell B would invert its value to a ?0? as well. In this case cell A is considered the coupling
cell and cell B is deemed the coupled cell. A CFid is similar to a CFin except that the
coupled cell is forced to either a 1 or 0 instead of an inversion. A CFst is slightly more
complicated as the coupled cell is only a ected if the coupling cell is in a certain state. For
example, a ?1? in cell A could force cell B to either a ?1? or ?0?, but if cell A is a ?0?, no fault
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e ect would be observed. Finally, a CFdst refers to a fault where the coupled cell undergoes
a transition due to a read or write operation to the coupling cell [32]. When coupling faults
are considered as part of a memory?s fault model, often the occurrence of multiple faults is
considered. These multiple faults are said to be linked and are referred to as linked faults.
The term linked is used because in the presence of multiple faults, each fault can possibly
in uence the e ect of the other faults [11].
Table 2.11: Common SRAM Fault Types
Fault Type Description
Stuck-At (SAF) A logic value of a memory cell always being 1 or 0
Transition Faults
(TF)
Memory cell not able to make a 0 to 1 or 1 to 0 transition
Coupling Faults
(CF)
A change in one memory cell, the coupling cell, causes an-
other cell , the coupled cell, to change its value
Address Decoder
Faults (AF)
The expected memory cell is not selected or another cell is
selected
Data Retention
Faults (DRF)
The expected stored data is corrupted
Pattern Sensitive
Faults (PSF)
The contents of a memory cell changes the value of another
memory cell
2.3.2 March Tests for Single-Port Memories
Memory devices are traditionally tested with march tests. March tests apply de ned
test patterns consisting of writing and reading varying patterns of 1s and 0s to and from
a memory device. Table 2.12 lists common notations used to describe march tests while
Table 2.13 lists several march tests of varying complexity. For example, when running the
MATS+ march test on a memory device, a ?0? is written to each memory location in either a
descending or ascending traversal. Next, starting at the lowest addressed memory location
and traversing upward, a ?0? is read and a ?1? is written to each memory location. The next
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Table 2.12: March Test Notation Descriptions
Notation Description
r A read operation
w A write operation
r0 Read a 0
w0 Write a 0
w1 Write a 1
" Traverse upward through memory addresses
# Traverse downward through memory addresses
l Traverse any direction through memory addresses
sequence begins at the highest memory location and traverses downward while reading a
?1? and then  nally writing a ?0? to each memory location.
In terms of fault detection, MATS+ is able to detect all SAF and all AF [11]. More
complex tests such as March Y can detect additional faults, those being TF and CFin
and some linked faults. In addition, March C- can detect most all types of CFs. The
general trend for march test fault detection is that longer, more complex tests o er higher
fault detection. While high fault detection is obviously desired, some tests like those used
speci cally to target pattern sensitive faults can be unpractical, especially if the DUT is of
any su cient size.
In [32], van de Goor presents March LR as \a test for simple faults and realistic linked
faults." The set of realistic linked faults further reduces the universe of possible linked
faults by removing combinations that are not likely to occur in actual devices. Realistic
linked faults do not include linked faults containing one or more CFins and linked faults
containing two CFids or two CFdsts are also removed. Van de Goor shows that March LR
is superior to March C- as it can also detect some neighborhood PSFs (NPSFs)[32].
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Table 2.13: Common March Tests for Single Port Memories
March Test Description Test time
MATS+ fl(w0);"(r0,w1);#(r1,w0)g 5N
March C- fl(w0);"(r0,w1);"(r1,w0);#(r0,w1);#(r1,w0);l(r0)g 10N
March Y fl(w0);"(r0,w1,r1);#(r1,w0,r0);l(r0)g 8N
March LR fl(w0);#(r0,wl);" (r1,w0,r0,wl);"(r1,w0);"(r0,w1,r1,w0);l(r0)g 14N
Note: N = Number of address locations
All of the march tests listed in Table 2.13 are designed for bit-oriented memories
(BOMs), meaning each memory word is a single bit. However, many memories, includ-
ing the Virtex 4 BRAM, perform as a word-oriented memory (WOM), meaning each word
is more than a single bit. Executing BOM-based march tests on WOM involves extending
the bit operation to the entire word. For example, if a w0 operation is to be applied to
a BOM of 4-bits it could be interpreted as w0000, meaning write all zeros to each bit in
the data word. Writing and reading either all zeros or ones in a WOM does not su -
ciently detect CF between cells in a data word. In [4], van de Goor et al. develop methods
for converting BOM march tests, speci cally March LR, to WOM march tests by using
background data sequences (BDS). Instead of writing either all zeros or ones, BDS involve
writing binary patterns consisting of alternating ones and zeros and alternating sets of ones
and zeros. Table 2.14 list all possible BDS for an eight bit word. The number of BDS
for a M-bit word is given by Equation 2.1. Figure 2.15 illustrates converting March LR to
March LR with 4-bit BDS. The test length increases from 14N to 30N, where N is number
of words in the memory. In general, Equation 2.2 gives the expected test length for a WOM
march test derived from a BOM march test. The variable ?M? in Equation 2.2 refers to the
number of bits in a data word. Converting March LR to incorporate BDS requires running
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f[l(w0000);#(r0000,wl111);"(r1111,w0000,r0000,wl111);
"(r1111,w0000);
"(r0000,w1111,r1111,w0000);l(r0000)]
["(r0000,w1111,r1111);#(r1111,w0000,r0000);
"(r0000,w0101,w1010,r1010);#(r1010,w0101,r0101);
"(r0101,w0011,w1100,r1100);#(r1100,w0011,r0011);"(r0011)]g
Figure 2.15: March LR with 4-bit BDS [4]
Table 2.14: Background Data Sequence for 8-bits
# Normal # Inverse
0 00000000 1 11111111
2 01010101 3 10101010
4 00110011 5 11001100
6 00001111 7 11110000
the original March LR test as enclosed in the  rst set of square brackets in Figure 2.15 and
then addition additional marches that incorporate BDS.
#BDS =dlog2 (M)e+ 1 (2.1)
Test Length = (16 + 7 dlog2 (M)e (2.2)
2.3.3 March Tests for Dual-Port Memories
In [5], Hamddioui and van de Goor describe two march tests for dual-port memories.
Speci c march tests are required for both ports in order to detect speci c faults in dual-
port memories. Dual-port memories generally support the following operations by the two
ports[5]:
 Simultaneous read and write operations to di erent addresses.
35
 Simultaneous read and write operations to the same address. For this case, however,
the write operation is assumed to have higher priority over the read operation.
 Two simultaneous reads to either the same or di erent addresses.
 Two simultaneous write operations to di erent addresses.
The only operation not allowed is simultaneous write operations to the same address
location. The Virtex 4 BRAM supports the same operations and limitations discussed
above. The faults associated with dual-port memories are classi ed as 2PF1 and 2PF2[5].
Faults classi ed as 2PF1 are sensitized by two simultaneous reads or both a read and write
operation. Two types of faults are associated with two simultaneous reads. In one case,
the correct data value is read through the sense ampli er in the SRAM cell, but the actual
data stored in the cell will  ip. The other case is when sense ampli er reads an incorrect
value and the actual data stored is also  ipped. Simultaneous read and write operations can
also cause the intended write operation to not occur. March s2pf, as seen in Figure 2.16,
detects all 2PF1 type faults. The ?:? symbol used in Figure 2.16 separates the operation on
each port. For example, ?r1:-? would indicate a read operation on one port and any allowed
operation on the second port.
Figure 2.16: March s2pf [5]
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2PF2 faults are similar to the 2PF1 type faults except the a ected cell is a neighboring
cell. For example, a fault may  ip a neighboring celli if two read operations occur on cellj.
Another type of fault occurs when a read occurs at celli and a write to cellj. During this
scenario, the fault will cause the read to return the wrong value [5]. March d2pf, as seen in
Figure 2.17, is able to detect all 2PF2 faults. The the variables ?c? and ?r? correspond to the
memory cell column and row location, respectively. The variables ?C? and ?R? represent the
number of memory cell columns and rows, respectively. The widest word size, 36-bits, is
assumed to be the memory array column size. When this march test is applied to BRAMs
in Virtex 4, ?C? is considered to be zero and R is ?512?.
Figure 2.17: March d2pf [5]
2.4 Overview of BIST for FPGAs
Developing BIST for FPGAs consists of designing test con gurations that fully test all
components within a FPGA. Traditionally, these components have been grouped into the
following types of tests: BIST for PLBs, BIST for I/O Bu ers, BIST for programmable rout-
ing resources, and BIST for specialized embedded cores such as large SRAMs [14][18][33].
The work presented in this thesis concentrates on testing Virtex 4 BRAMs which fall into
the category of testing specialized embedded cores. BIST for PLBs is also called Logic BIST
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and this is the most common BIST found in the literature. Logic BIST usually requires
repeatedly con guring PLBs in di erent modes of operations and applying test patterns the
PLBs under test. A general BIST architecture is illustrated in Figure 2.18. Two identical
TPGs drive alternating columns of blocks under tests (BUTs) whose outputs are observed
by two adjacent ORAs. For Logic BIST, all of the BIST components are implemented us-
ing PLBs. In certain implementations such as in [34], the TPGs can be implemented using
other available specialized cores. In order to test all PLBs in a FPGA, the entire BIST
architecture must be  ipped such that the PLBs acting as BUTs are now ORAs and the
PLBs previously implementing ORAs are now con gured to be BUTs [34].
Figure 2.18: A General Comparison Based BIST Architecture
Several di erent types of ORAs are used in BIST for FPGAs. A comparison-based
ORA design is the most common. Figures 2.20 and 2.21 illustrate two types of comparison-
based ORAs: one with a shift chain and one without a shift chain. Using an ORA design
without shift chains reduces the size of an ORA and can allow for more ORAs to be used
which increases diagnostic resolution [21]. In both designs, any mismatch from the BUTs
will cause the  ip- op to latch to a ?1? until the end of the test. The addition of the
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shift chain allows the results to be shifted out of the device at the end of testing [14]. A
comparison-based ORA with no shift chain can be used when the FPGA supports read
back of the contents of the  ip- ops in the each PLB via con guration memory readback.
Modern FPGAs such as the Virtex family from Xilinx support this readback operation
[29][3].
Figure 2.18 also presents an example of a general comparison-based ORA BIST archi-
tecture. This type of comparison has limitations in terms of diagnostic resolution for BUTs
located at the outer columns since they are only compared by a single ORA. In [14], cases
where a fault could escape detection are discussed. A circular-comparison based BIST archi-
tecture, as seen in Figure 2.19, eliminates the loss of fault detection around outer columns.
Circular-comparison based BIST architectures require a minimum of three BUTs for fault
detection and four BUTs for fault diagnosis [28]. The only condition for a fault to escape
detection is for all BUTs in a circular comparison chain to have identical equivalent faults.
If the comparison chain is su ciently long, then the probability of multiple equivalent fault
occurring is negligible.
Figure 2.19: A Circular Comparison Based BIST Architecture
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Figure 2.20: Comparison Based ORA with Shift Chain
Figure 2.21: Comparison Based ORA without a Shift Chain
2.4.1 BIST for BRAMs
In [17], Garimella developed BIST con gurations to test BRAMs in Virtex 2 FPGAs.
The work presented in this thesis borrows many of the same concepts and applies them to
BIST for BRAMs in Virtex 4. BRAMs in Virtex 2 only operate as a dual-port memory.
There are no built-in FIFOs or ECC or cascade modes of operation. Garimella?s approach
was to create a portable BIST architecture that could be adapted to di erent FPGAs. A
HDL was used to model, synthesize, and implement the entire BIST architecture. Garimella
used the comparison-based ORA design that includes the shift chain. The end of the shift
chain was connected to the boundary scan port TDO. The boundary scan pin TDI was
connected to each ORA such that a ?1? on TDI enabled all of the ORAs to become a shift
register. Likewise, a ?0? on TDI would disable the shift operation and the ORAs would
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Table 2.15: Virtex 2 BRAM Summary
BIST Test Address Data Clock
Con guration Algorithm Locations (A) Width (D) Cycles
1 March LR w/ BDS 512 36 58A
2
March LR
1K 18 14A
3 2K 9 14A
4 4K 4 14A
5 8K 2 14A
6 16K 1 14A
7 March s2pf 512 36 14A
8 March d2pf 512 36 9A
TOTAL BIST CLOCKS= 485,888
continue to compare BUT responses on each clock cycle. The system clock for the ORAs,
BUTs, and TPG was sent through the TCK port on the Boundary Scan port.
Table 2.15 summarizes the eight BIST con gurations generated by Garimella for Virtex
2 BRAMs. March LR was implemented as a TPG and used for each of the programmable
aspect ratios. March LR was chosen primarily because of its relatively low complexity and
high fault coverage. The 512 x 36 addressing mode used March LR modi ed to generate
BDS so that fault detection of intra-word coupling faults was maximized. March s2pf and
d2pf were also used to test dual-port functionality.
The advantages of Garimella?s approach was that the BIST architecture was described
in a HDL which allowed for very rapid development. There are, however, some important
disadvantages. BIST approaches such as in [34] take advantage of partial recon guration
FPGA techniques in order to reduce test time and the amount of con guration data needed
to download to a device during multiple BIST con gurations. In order for several FPGA
con gurations to use partial recon guration e ciently, there needs to be only small regular
changes between each con guration. In terms of BIST for PLBs, the changes made between
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each con guration is only to change the operational mode of the BUT and keep the rest of
the BIST circuitry static [34]. This approach yielded substantial test time and con guration
storage reductions when applied to BIST for PLBs in Virtex 2 and Virtex 4.
Garimella?s approach is not compatible with partial recon guration. The use of a HDL
to develop BIST con gurations removes the control over the placement of BIST circuitry.
The CAD tools that transform a HDL to a con guration ready for download are not able
to take advantage of the regularity of BIST architectures. The result is that the TPG and
ORA portions of the BIST circuitry are intermingled amongst the available logic resources
surrounding BRAMs. CAD tools also do not obtain identical results in repeated imple-
mentations. This severely limits the use of partial recon guration because at no time are
subsequent BIST con gurations guaranteed to be similar to previous con gurations. For
this reason, Garimella used full con guration downloads for each BIST con guration. An-
other disadvantage with the HDL approach is that developing BIST at a high level reduces
the controllability over the resource being tested. For example, in BIST con gurations that
used active low signals, the synthesis tool inverted the signals connected to the BRAM
instead of con guring the BRAM ports to the opposite level. This behavior was observed
when determining the portability of Garimella?s BIST approach to Virtex 4. As a result,
con guration bits and logic inverting BRAM control signals are not tested by Garimella?s
approach.
2.5 Thesis Restatement
The work by Garimella in developing BIST con gurations for Virtex 2 BRAMs is a
basis for the work presented in this thesis. The main disadvantage of Garimella?s approach
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is not being able to take advantage of partial recon guration techniques between each BIST
con guration following the initial full BIST con guration download. Downloading BIST
con gurations is the most time expensive portion of the entire time required for BIST. The
time spent applying BIST clock cycles is nominal compared to the con guration time re-
quired. This thesis presents the development of BIST con gurations for Virtex 4 BRAMs
compatible with partial recon guration. Using partial recon guration, a large portion of
the time needed to perform BIST can be reduced. Unlike Garimella, the BIST architecture
presented in this thesis does not rely on a HDL to describe the overall BIST architecture.
Instead, this approach uses custom created BIST programs to implement BIST con gura-
tions which enables much greater control of each BIST con guration as compared to the
HDL approach by Garimella. This improvement allows for testing BRAMs in all of their
con guration options gives higher fault coverage. Chapter 3 will introduce the general BIST
architecture for testing BRAMs. Also in Chapter 3, BIST con gurations testing BRAMs
in single and dual-port modes are presented. BIST con gurations for FIFO operational
modes are developed in Chapter 4 while ECC and cascade mode BIST con gurations are
presented in Chapter 5.
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Chapter 3
Virtex 4 Block RAM BIST Implementation
A BIST approach developed for BRAMs in Virtex 4 FPGAs is presented in this chapter.
The BIST architecture will be discussed as well as a TPG which is able to generate multiple
march tests. Finally, results from applying BIST to Virtex 4 devices are given and compared
to results obtained by Garimella in [17].
3.1 Virtex 4 BRAM BIST Architecture
In all Virtex 4 devices, BRAMs are located along columns that span the entire de-
vice. In between columns of BRAMs there are at least 4 columns of PLBs. In order to
achieve high fault coverage and diagnostic resolution, circular comparison-based ORAs are
used in conjunction with two identical TPGs which drive alternating rows of BRAMs as
seen in Figure 3.1. Each BRAM output is observed by ORAs immediately adjacent and
directly above each BRAM. The topmost BRAM outputs connect to adjacent ORAs as
well, however, there are no ORAs above the topmost BRAM. To enable all BRAMs to have
each output compared by two ORAs, the topmost BRAM?s outputs are compared by the
ORAs adjacent to the bottommost BRAM in each column. This arrangement implements
a circular comparison chain per column of BRAMs.
Each BRAM has 72 outputs, 36 per port. A Virtex 4 slice contains two 4-input LUTS
and two  ip- ops. With these resources, two comparison-based ORAs can be implemented
in each slice. Given that there are four slices per PLB, it would require nine PLBs to
implement all the ORAs needed to compare the outputs of two BRAMs. The Virtex 4
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Figure 3.1: BRAM BIST Architecture
architecture places four rows of PLBs per BRAM, which in turn yields 16 PLBs total
since there are four columns between each BRAM. From these 16 PLBs, nine PLBs are
used to implement ORAs beside each BRAM. Figure 3.2 illustrates the BRAM to ORA
connections. The  rst column of four PLBs compare DOA[31:0] while the second column
of 4 PLBs compares DOB[31:0]. A single PLB from a third column is used to compare the
parity bits DOPA[3:0] and DOPB[3:0]. The fourth column of 4 PLBs is unused. Locating
ORAs in an algorithmic method also facilitates the use of con guration memory readback
to retrieve the ORA results at the end of a test. The ORA results are stored in frame data
and the bit-locations of the ORAs within each frame can be obtained by generating a logic
allocation  le using the ?-l? argument in BITGEN.
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Figure 3.2: BRAM ORA Orientation
The FX and SX family of Virtex 4 devices require special ORA placements. In all SX
devices there are several columns of BRAMs that do not have four consecutive columns
of PLBs. In these devices a row of DSP modules bisects the 4 columns of PLBs leaving
two columns on each side. As illustrated in Figure 3.3, this case requires that the ORAs
comparing the parity bit outputs of each BRAM be shifted by one column. In FX family
devices there are two exceptions that must be handled. The  rst problem is the presence
of either one or two PPC modules. For BRAMs located in columns with PPC modules,
these BRAMs must correctly send their outputs to their directly adjacent ORAs and the
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Figure 3.3: ORA Placement and Comparison in SX devices
ORAs in the same column above the PPC module. The other exception is only applicable
to FX40, FX100, and FX140 devices wherein a column of BRAMs directly to the right of a
PPC module has only a single column of PLBs in between the BRAM column and the PPC
module. Instead of straddling ORAs across the PPC, the entire set of ORAs is shifted to the
left of the PPC module. Figure 3.4 illustrates the ORA placement and circular comparison
modi cation for BRAM BIST.
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Figure 3.4: ORA Placement and Comparison in FX devices
3.2 TPG Development
Unlike, the approach used by Garimella in [17], the BIST approach for Virtex 4 can
take advantage of partial recon guration. By being able to algorithmically place and route
all BRAMs and ORAs identically for each BIST con guration, the only change that must
be made between BIST con gurations is to modify the BRAMs? con guration. In order for
each BIST con guration to di er only by changes to the BRAMs, the TPG must be static
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throughout all BIST con gurations. These two modi cations are the most di erent aspects
of BIST developed for Virtex 2 by Garimella and the BIST presented in this thesis.
Garimella?s BIST architecture used di erent TPGs, with each TPG implementing a
single march test in each BIST con guration [17]. This approach was a logical choice since
each BIST con guration was developed exclusively using VHDL. The BIST architecture
developed for Virtex 4, however, requires a much more complicated TPG. In order for the
TPG to remain static between all BIST con gurations, it needs to be able to generate all of
the required test patterns for all con gurations. Garimella used March LR for all single-port
con gured BRAMs. March s2pf and d2pf were used to test dual-port functionality. March
LR was also converted to incorporate BDS and applied to BRAMs con gured in 512 x 36
mode of operation. Table 3.1 summarizes the march test selection for testing BRAMs in
this thesis. March LR with BDS ensures that most faults are detected in the memory array.
March LR with BDS is run on a BRAM con gured in its widest aspect ratio in order to
maximize the detection of intra-word faults with BDS and to minimize the number of BIST
clock cycles required to run the test. The regular BOM-based March LR cannot be applied
to a BRAM con gured in a 16K x 1-bit mode because this mode does not utilize 2K of the
parity memory space. March s2pf and d2pf are also used to detect the speci c dual-port
faults discussed in the previous chapter. MATS+ is used to test the remaining BRAM size
con gurations to detect faults within the programmable row and column decoders.
All four march tests were incorporated into a single multi-march TPG (MMTPG) and
implemented in VHDL. The MMTPG VHDL source code is given in Appendix A. Since the
Virtex 4 BRAM has programmable active levels for each of its control inputs, the MMTPG
must be able to allow inverting active levels of the march tests driving the BRAMs. In order
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Table 3.1: Virtex 4 TPG March Test Algorithms
Address Data Clock MMTPG
March Test Locations (A) Width Cycles Op Mode[3:0]
March LR with BDS 512 36 2*58*A 000
s2pf 512 36 14*A 011
d2pf 512 36 9*A 100
16K 1 2*5*A 010
8K 2 2*5*A 001
MATS+ 4K 4 2*5*A 110
2K 9 2*5*A 111
512 36 2*5*A 101
to control the march test selection and appropriate active levels, a control shift register was
added to the MMTPG. The control shift register was connected to one of four boundary
scan modules in a Virtex 4. Figure 3.5 summarizes the control function of each bit in the
control register. For example, if \000000" was shifted into the control register, this control
string would direct the MMTPG to execute March LR with BDS assuming the BRAM was
con gured for active low WE, SSR, REGCE, and EN control signals. Similarly, if \101010"
was shifted into the shift register (beginning with the zero), that would select MATS+ with
the BRAM con gured to have an active high WE, EN, and SSR and an active low REGCE.
For the single-port march tests, March LR with BDS and MATS+, each of these march
tests run twice; once through port A and then again through port B, after which the TPG
repeats the sequence. As seen in Table 3.1, this doubles the required number of clock cycles
to run each of the march tests. By designing the MMTPG to generate several march tests
along with programmable active levels, the MMTPG is able to apply appropriate march
tests to any size con gured Virtex 4 BRAM.
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Figure 3.5: MMTPG Control Shift Register
3.3 BRAM BIST Con gurations
Table 3.2 summarizes all of the BRAM BIST con gurations. By the end of the last
BIST con guration, all active levels and additional con guration options have been applied
and tested. Two March LR con gurations are listed, each with di erent initialization
values. March LR (Init A) initializes the BRAMs contents to all alternating ones and zeros
beginning with a zero in the list signi cant bit of BRAM. March LR (Init B) initializes
the BRAMs to the opposite values. Each ports? SR values are con gured to have values
opposite of the BRAMs? contents such that when the SSR signal is asserted, the output
response makes a transition. To test initialization values, a BRAM must be con gured as
READ FIRST which means an addressed memory cell outputs its contents before being
overwritten. Table 3.3 gives the initialization values for each BIST con guration. After
each March LR con guration, the initialization values remain constant such that when
generating partial con gurations, the number of con guration bits is reduced. Dual-port
testing using march s2pf and d2pf is accomplished with one con guration; however, to select
between the two march tests, a separate MMTPG control register value is applied. BRAM
BIST does not test BRAMs con gured in either the 4K x 4-bit or the 2K x 9-bit memory
aspect ratios. While the MMTPG has the ability to generate tests for these memory sizes,
the FIFO mode of operation also can be con gured in these two memory aspect ratios.
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Table 3.3: BRAM Initialization Values
Con g March Test Memory Srval Output
Num. Init Value Latch Init
1 March LR (Init A) 1010 0101 1010
2 March LR (Init B) 0101 1010 0101
3 s2pf / d2pf 0101 1010 0101
4 MATS+ 0101 1010 0101
5 MATS+ 0101 1010 0101
6 MATS+ 0101 1010 0101
BIST Con guration Development
Developing BIST con gurations that maximize the use of partial recon guration re-
quires that only the BUTs? con guration changes between subsequent con gurations. BRAM
BIST for Virtex achieves this by algorithmically placing ORAs and setting aside dedicated
logic to implement the MMTPG. However, implementing the required architecture violates
many of the design rules de ned by Xilinx. All inputs and outputs of a BRAM must be
connected at all times such that all possible BRAM modes can be tested without adding
modifying signals and altering the routing. Normally, Xilinx?s CAD tools tie any unused
input to BRAM to a global logic ?1?. In order to meet this convention, the MMTPG com-
plies with this design rule by driving any unused input to a ?1? for a given con guration.
For example, if the BRAM is con gured in a 16K x 1 mode, then the MMTPG drives both
DI ports with a ?1? except for the least signi cant bit.
The design  ow of BIST con gurations for PLBs presented by Dhingra in [34] can be
modi ed to generate BRAM BIST con gurations. Instead of the high-level HDL design
methodology used by Garimella in [17], Dhingra uses a low-level vendor speci c design
language called Xilinx Design Language (XDL). XDL is a human readable description of
the physical placement and routing of a design in a Xilinx FPGA. XDL allows one to have
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the utmost control over all aspects of a FPGA design, especially when developing BIST
con gurations. Dhingra used XDL to describe the placement of ORAs, BUTs, and TPGs
used in testing PLBs. This design process must be modi ed to allow for the creation of
BRAM BIST con gurations. For a TPG, Dhingra used a pseudo-random pattern generator
built from a Virtex 4 DSP module that continuously accumulated a prime number [34].
Dhingra?s TPG only required the XDL instantiation of a DSP module and then made
logical routing connections to the PLBs under test. Compared to Dhingra?s TPG, the
MMTPG is much larger, requiring 531 slices. Dhingra inserted the XDL TPG instantiation
into a program that generated BIST con gurations. However, inserting a 531-slice MMTPG
instantiation into a similar tool for BRAM BIST is impractical because any slight change
of the MMTPG during development would require modifying the program source code.
To overcome this problem, a TPG parsing tool, V4BRAMTPG, was developed that
accepts an XDL version of the HDL synthesized MMTPG. The parsing program removes
all instantiated components except the slices implementing the MMTPG. In order for the
MMTPG to synthesize without failing design rule checks by Xilinx?s CAD tools the TPG
was connected to a dummy BRAM, which the parsing tool also removes. The next program
created is called V4BRAMBIST. This program instantiates BRAMs, ORAs, and the parsed
XDL MMTPG. V4BRAMBIST also generates all of the logical routing for the entire BIST
con guration. When the program processes the MMTPG, it duplicates the TPG logic in
order to implement the two required MMTPGs. During synthesis and implementation, the
MMTPG is constrained in a Virtex 4 FX12 to  t in the  rst four columns of PLBs to the left
of the center line. This placement allows the XDL version of the MMTPG to be compatible
with all Virtex 4 devices. V4BRAMBIST shifts the slice coordinate of each MMTPG slice
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such that it is always aligned to the four columns of PLBs directly to the left and right
of the center line. Figure 3.6 and 3.7 show a logically connected (unrouted) BRAM BIST
con guration in an FX12 and LX25 device, respectively.
MMTPG1
MMTPG2
ORAs
BRAM
Figure 3.6: FX12 BRAM BIST
To control each BIST con guration, V4BRAMBIST instantiates two BSCAN modules:
one con gured as USER1 and the other as USER2. The USER1 BSCAN module uses TDI
to reset the TPG and TCK to apply clock cycles to BRAMs, ORAs, and the two MMTPGS.
The USER2 BSCAN module uses its TDI and TCK to serial shift control data into each
of the MMTPG control registers. Two di erent BSCAN modules are used such that when
changing the MMTPG mode, the rest of the BIST circuity is clock inhibited. This prevents
55
Figure 3.7: LX25 BRAM BIST
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the BIST circuitry from going in into an unknown state that could occur as the control
string is shifted into the control register.
The output of V4BRAMBIST is a logically connected (unrouted) XDL  le that is a
template for all BRAM con gurations. This XDL  le must be converted to an NCD  le type
such that Xilinx?s place and route tool (PAR) can operate on the  le. The template design
must then be modi ed to con gure all instantiated BRAMs such that their con guration
corresponds to the settings shown in Table 3.2. These modi cations are performed automat-
ically by another program called V4BRAMMOD. V4BRAMMOD retains the current physi-
cal routing between con gurations which is necessary to reduce the amount of partial con g-
uration bits. With the combination of Xilinx?s CAD tools, V4BRAMTPG,V4BRAMBIST,
and V4BRAMMOD all six BIST con gurations can be generated. The following procedure
outlines the process of generating a set of BRAM BIST con gurations:
1. Synthesize VHDL TPG
2. Place and Route TPG in FX12 with TPG constrained to the  rst four columns of
PLBs to the left of the center column
3. Convert TPG to XDL format using XDL with the -ncd2xdl -nopips -nocom -cfg brief
arguments (See Table 3.4 for a summary of XDL arguments).
4. Run V4BRAMTPG to parse and extract TPG
5. Build the BRAM BIST template with V4BRAMBIST.
6. Convert BRAM BIST template to NCD format using XDL with the -xdl2ncd -force
-nodrc arguments.
57
Table 3.4: XDL Argument Summary
XDL argument Description
-ncd2xdl Selects conversion from NCD to XDL
-xdl2ncd Selects conversion from XDL to NCD
-nopips Routing is removed from NCD when converted to XDL
-nocom XDL  le will not contain comment blocks
-cfg brief Unused con guration options are not listed during NCD to XDL conversion
-force Force conversion of XDL to NCD despite design rule errors
-nodrc Disables design rule checking during XDL to NCD conversion
7. Fully route the BIST template using PAR.
8. Convert BIST template to XDL format using XDL with the -ncd2xdl -nocom -cfg brief
arguments.
9. Run V4BRAMMOD for each of the six BRAM BIST con gurations.
10. Convert each BIST con guration to NCD format using XDL with the -xdl2ncd -force
-nodrc arguments.
11. Generate con guration bit- les for each BIST con guration using BITGEN.
Figures 3.8, 3.9, and 3.10 show the command-line options available in V4BRAMTPG,
V4BRAMBIST, and V4BRAMMOD, respectively. Each BRAM BIST con guration can be
constrained to test a subset of BRAMs in a device as long as there are four BRAMs in each
circular comparison ORA chain. Figure 3.11 demonstrates the use of these tools to create
the BIST con guration shown in Figure 3.12. Testing a subset of BRAMs in a device can
be used to increase the timing performance of a con guration and also can lower the BIST
power consumption.
Three di erent types of con guration bitstreams can be generated using BITGEN: full,
compress, and partial. Full con guration bit- les contain frame data for every addressable
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V4BRAMTPG.exe
V4BRAMTPG processes XDL from synthesis for use in XDL generation program\\
command line format:\\
V4BRAMTPG <XDLin_file> <XDLout\_file>}
notes: assumes input XDL file generated with ?xdl -ncd2xdl -cfg_brief -nocom?}
Figure 3.8: V4BRAMTPG Syntax
V4BRAMBIST.exe
V4BRAMBIST - generates template file for BRAM BIST config in any Virtex 4
command line format:
V4BRAMBIST <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part>
<tpgXDLfile>
dev part rows cols dev part rows cols dev part rows cols
lx 15 64 31 sx 25 64 55 fx 12 64 31
lx 25 96 35 sx 35 96 55 fx 20 64 47
lx 40 128 43 sx 55 128 69 fx 40 96 65
lx 60 128 61 fx 60 128 67
lx 80 160 65 fx 100 160 85
lx 100 192 73 fx 140 192 103
lx 160 192 98
lx 200 192 127
Figure 3.9: V4BRAMBIST Syntax
V4BRAMMOD.exe
V4BRAMMOD - modifies routed XDL for BRAM BIST
command line format:
V4BRAMMOD <xdl_in> <xdl_out> <phase>
where phase = MLRA,MLRB,DUALP,8K,16K,MATS512}
Figure 3.10: V4BRAMMOD Syntax
V4BRAMTPG TPG.xdl parsedTPG.xdl
V4BRAMBIST BRAM\_lx60 64 32 128 61 lx 60 parsedTPG.xdl
V4BRAMMOD BRAM_lx60.xdl BRAM_lx60_DUALP.xdl dualp
Figure 3.11: Example BIST program execution
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Figure 3.12: Partial BRAM BIST in LX60
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frame in a given device. Full con gurations are the default con guration bit- le type for
BITGEN. Executing BITGEN with the ?-g Compress? argument allows BITGEN to take
advantage of the multi-frame write capabilities that are usually used when generating par-
tial con guration  les. To create a partial con guration bit- le, the ?-r previouscon g.bit?
argument must be used. In the previous argument, ?previouscon g.bit? is used as a reference
for generating the partial con guration bit- le.
One of the most time expensive portions of generating BIST con gurations is routing
BIST con gurations. Garimella?s approach for generating BRAM BIST con gurations also
required the synthesis of the entire BIST architecture as well as the placement and routing.
These three processes were executed for each con guration. For Virtex 4, however, only the
synthesis of the TPG is required and only one con guration must be routed. As mentioned
earlier, each subsequent con guration retains the same routing.
3.4 Running BIST Con gurations
Once all of the con gurations have been generated using the aforementioned BIST tools,
the con gurations can be downloaded to the device via boundary scan. Table 3.5 lists the six
BRAM BIST con gurations and the MMTPG control string needed to con gure the TPG
along the the number of BIST clock cycles needed to run each march test to completion.
The three least signi cant bits of each control string de ne the march test for the MMTPG
as also shown in Table 3.1. A procedure for running BRAM BIST con gurations is as
follows:
1. Download BRAM BIST con guration to device.
2. Goto USER2 access register.
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Table 3.5: BRAM BIST Execution Detail
Con g March MMTPG Control BIST
Num. Test String [MSB:LSB] Clock Cycles
1 March LR (Init A) 111000 60,000
2 March LR (Init B) 111000 550
3a s2pf 111011 7,200
3b d2pf 111100 5,000
4 MATS+ (16K) 111010 165,000
5 MATS+ (8K) 000001 82,000
6 MATS+ (512) 000101 5,500
Total BRAM BIST Clock Cycles = 325,250
3. Clock in MMTPG control string LSB  rst and assert TMS on the MSB.
4. Goto USER1 access register.
5. Toggle TDI to reset MMTPG (Active high asynchronous reset).
6. Apply BIST clock cycles.
7. Retrieve ORA results via con guration memory readback.
8. Repeat steps 1-7 for each addition con guration.
Performing a con guration memory readback at the end of each BIST con guration
can indicate the mode of failure for a BUT. Delaying the con guration memory readback
until the last BIST con guration shortens the time required to perform BIST at the expense
of diagnostic resolution due to an uncertainty in the mode of failure recorded.
3.5 ORA Results Retrieval
The CAPTURE module is instantiated to transfer ORA  ip- op contents to the con-
 guration memory for con guration memory readback. Xilinx?s Virtex 4 Con guration
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Guide [2] provides a procedure for reading speci c frames of con guration memory through
boundary scan. It is important to point out that the readback  ip- op data is inverted.
During con guration bit- le creation, a the ?-l? BITGEN argument creates a logic allocation
 le that reports the con guration memory frame bit associate with each ORA. Retrieving
ORA results is e cient since all of the  ip- op contents for a column of 16 PLBs are located
within a single frame. Since four BRAMs span the height of 16 PLBs and each set of ORAs
for a single BRAM are contained in three PLB columns, only 3 frames are read for each
column of four BRAMs.
3.6 BIST Results
Previously in [17], Garimella calculated the total number of BIST clock cycles for
Virtex 2 BRAMs to be 485,888. From Table 3.5, the total BIST clock cycles needed for
Virtex 4 BRAMs are 325,250 which represents an overall savings of 160,638 clock cycles.
Table 3.6 summarizes the con guration time required to test an LX60 device. In Table
3.6 the con guration bit- le sizes and associated download and test times are given for an
LX60. The test clock frequency of 50 MHz is used because it is the maximum BSCAN clock
frequency supported in all Virtex 4 devices [3].
Table 3.6 also compares three di erent BIST download techniques: full, compressed,
and partial recon gurations. In full con gurations, all addresses are written with frame data
while the compressed technique allows for a reduction in con guration  le size by using the
multi-frame write capabilities. The partial con gurations are generated from a set of either
full or compressed con gurations and further reduces the con guration bit- le size by only
writing frame data that di ers between two given con gurations. Figure 3.13 illustrates the
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Figure 3.13: LX60 BRAM BIST Speed-up factors
BIST speed increase associated with using compress and partial con guration techniques
over full con gurations. Garimella?s BIST con gurations for Virtex 2 BRAMs can only be
compared to full BRAM BIST con gurations in Virtex 4 as also seen in Figure 3.13. It is
clear that the BIST architecture for Virtex 4 is superior to that used in Virtex 2.
Figures 3.14 and Figure 3.15 summarize the timing analysis of each BIST con guration
for several Virtex 4 devices. The last con guration \512" in Figure 3.15 refers to the MATS+
512 x 36-bit con guration and is approximately one-half as fast as the rest of the BRAM
BIST con gurations. This is due to the BUTs? inverted clock input which acts to halve
the available propagation delay. However, this con guration is necessary in order to test
BRAMs con gured for falling-edge triggered operation.
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3.7 BRAM BIST Summary
This chapter has described a BIST architecture for testing BRAMs in Virtex 4 FPGAs.
The architecture consists of BRAMs tested by a two TPGs driving alternating rows of
BRAMs. A circular comparison based ORA architecture was implemented such that each
column of BRAMs formed a separate circular comparison chain. Each TPG in a BRAM
BIST con guration can apply multiple march tests depending on a TPG control register
that communicates the current con guration of each BRAM such that an appropriate march
test is applied.
To implement the BRAM BIST architecture, several BIST programs were also devel-
oped to facilitate generating BRAM BIST con gurations for any Virtex 4 device. As shown
in the following chapters, these programs will be modi ed to support BIST for BRAMs
operating in FIFO, ECC, and cascade modes of operation.
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Chapter 4
Virtex 4 FIFO BIST Implementation
A BIST approach developed for BRAMs con gured in a FIFO mode of operation in
Virtex 4 FPGAs is presented in this chapter. The BIST architecture will be discussed as
well as a TPG for FIFO testing. Finally, results from applying BIST to Virtex 4 devices
are given.
4.1 Virtex 4 FIFO BIST Architecture
Each Virtex 4 BRAM can operate in a FIFO mode of operation which allows for the
same number of BUTs in both FIFO and BRAM BIST architecture. Also, the overall
BRAM BIST architecture developed in the previous chapter can be applied to FIFO BIST.
The logical connections from TPG to BUT and BUT to ORA must be modi ed slightly
because each FIFO has its own dedicated inputs and outputs. While there are 72 outputs
per BRAM, each FIFO has only 66 outputs. Fewer BUT outputs translates into fewer ORAs
per BUT. Figure 4.1 illustrates the location of the BUT output signal comparisons by the
ORAs. As with BRAM BIST, 9 PLBs are still required for FIFO BIST ORAs, but in the
ninth PLB, only a single slice is used. In addition, the ORA placement exceptions for SX
and FX device families discussed in Chapter 3 also are present in FIFO BIST con gurations.
4.2 FIFO TPG Development
In [35], a test algorithm is described for Atmel FIFOs without programmable AL-
MOSTFULL and ALMOSTEMPTY status  ags. The test algorithm of length 6N (where
69
Figure 4.1: FIFO ORA Placement
N is the number of address locations) is given below.
Atmel FIFO Test Algorithm (Test Length = 6N) [35]:
Step 1: Reset the FIFO
Step 2: Repeat N times: Write a word with all zeros and observe the FULL  ag assertion
after N writes and the EMPTY  ag deasserts after the  rst word written.
Step 3: Repeat N times: Read a word with all zeros and then write a word with all ones. The
FULL should toggle in between each read and write operation.
Step 4: Repeat N times: Read a word with all ones and then write a word with all zeros. The
FULL should toggle in between each read and write operation.
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Step 5: Repeat N times: Read a word expecting all zeros and observe the EMPTY  ag
assertion after N reads and the FULL disasserts after the  rst read word.
Steps 2 and 3 repeatedly read and write to the FIFO which fully test the FIFO read
and write pointers by walking each pointer through the entire memory space. A comparison
of read and write pointers along with the previous operation determines if the EMPTY or
FULL  ag asserts. The above test also ensures opposite logic values are written and read
to each memory location.
In [36], the Atmel FIFO algorithm was generalized to test FIFOs with programmable
ALMOSTFULL and ALMOSTEMPTY status  ags. These additional status  ags are tested
in Step 2 by repeatedly recon guring the ALMOSTFULL  ag from its minimum to its
maximum value while continuing to write and read data and observing the ALMOSTFULL
 ag toggle after each partial recon guration. The ALMOSTEMPTY  ag can be tested
in Step 5, during which the ALMOSTEMPTY  ag is repeatedly recon gured from its
maximum to its minimum allowed value while the FIFO is emptied with N reads. Also
during Step 5, the ALMOSTEMPTY  ag will toggle after each recon guration.
For testing Virtex 4 FIFOs, it is not critical that opposite logic values are both written
and read to and from each FIFO data word. March LR with BDS applied during BRAM
BIST ensures the memory array is fault-free which allows the Virtex 4 FIFO test algorithm
to concentrate on testing the status logic and read and write pointer logic. In Chapter
2, Table 2.7 summarizes the timing for FIFO status  ag assertion and deassertion. The
deassertion period for FULL and EMPTY  ags is at most 4 clock cycles when in the
FWFT mode. This latency becomes problematic for FIFO test algorithms. Steps 3 and 4
from the Atmel FIFO test algorithm are designed to test the FULL  ag generation logic,
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but if these steps were applied to a Virtex 4 FIFO, the FULL  ag would not deassert in time
for the next read and write operations. Fault coverage is reduced because the reassertion of
the FULL  ag would be masked since the FULL  ag does not deassert until several clock
cycles later.
In order to test the FULL and EMPTY  ags in Virtex 4 FIFOs several clock cycles
where no operation is performed are inserted between read and write operations. These
no operation (NO-OP) clock cycles allow the FULL to deassert before the read and write
sequence is repeated. The test algorithm for Virtex 4 FIFO testing is given below.
Virtex 4 FIFO Test Algorithm (Test Length = 8N):
Step 1: Reset the FIFO
Step 2: Repeat N times: Write a word with all zeros and observe the FULL  ag assertion
after N+2 writes and the EMPTY  ag deassertion after the  rst word written.
Step 3: Repeat N times: Read a word with all zeros
NO-OP
NO-OP
NO-OP
Write a word with all ones
Write a word with all ones
Step 4: Repeat N times: Read a word expecting all ones
By inserting the 3 NO-OP clock cycles, the FULL  ag deasserts before the write and
then read sequence. The repeated write in in Step 3 asserts the write error (WRERR)  ag
for one clock cycle to test the logic associated with this error indication. Figure 4.2 shows
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Figure 4.2: FULL Flag Transition Timing
a timing diagram to that describes the FIFO response to Step 3 in the Virtex 4 FIFO Test
Algorithm.
A TPG implementing the above Virtex 4 FIFO test algorithm was implemented in
VHDL and required 96 slices when implemented in a FX12 device. The TPG, named FI-
FOTPG, is able to generate the above test for the four di erent FIFO depth con gurations.
The VHDL source for the FIFOTPG is given in Appendix B. Like the BRAM MMTPG,
the FIFOTPG is also able to invert the active level of the FIFO control signals so that any
possible FIFO con guration can be tested with the FIFOTPG. In order to program the
FIFOTPG for the current FIFO con guration, a TPG control register is used to communi-
cate with the FIFOTPG. Figure 4.3 indicates the function of each bit in the shift register.
The three most signi cant bits control the active levels of the the FIFOTPG control signals
RDEN, WREN, and RST while the two least signi cant bits determine the operational
mode that corresponds to one of the four con gurable FIFO word depths. When writing
to the control register, the control string value is shifted in, LSB  rst. The control string
values for each FIFO BIST con guration is summarized in Table 4.1.
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Figure 4.3: FIFOTPG Control Register
4.3 FIFO BIST Con guration Development
Three custom BIST generation tools were developed to enable FIFO BIST con gura-
tion generation for all Virtex 4 devices using the same procedure discussed in Chapter 3
Section 3. V4FIFOTPG parses an XDL version of the FIFOTPG developed in the previous
section. V4FIFOBIST places all of the BIST circuitry into a speci ed device. Figure 4.4
shows a logically connected (unrouted) FIFO BIST con guration in a LX60 device. The
third program, V4FIFOMOD modi es each FIFO BIST con guration such that the con-
 guration options match those listed in Table 4.1. During each FIFO BIST con guration
the FIFOTPG to FIFO routing and the FIFO to ORA routing is not changed. The FI-
FOTPG also remains static throughout all of the con gurations. The only portion of the
BIST con guration changed during each modi cation is the FIFO con guration options.
The command-line options for these three programs are the same those shown for BRAMs
in Figures 3.8 3.9 3.10.
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Figure 4.4: LX60 FIFO BIST Con guration
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The ALMOST FULL and ALMOST EMPTY  ag values each are speci ed by 12 bits
of con guration memory. The 4K x 4-bit operation mode is used in testing the ALMOST
FULL and ALMOST EMPTY  ags because it requires 12 bits to specify values up to
4K-bits. In order to test these con guration bits, FIFO BIST con gurations 4 through
15 move both the ALMOST FULL and ALMOST EMPTY  ags higher such that each of
the 12 con guration bits undergo a transition from ?1? to a ?0?. Also, the number of BIST
con gurations is minimized by con guring the ALMOST FULL and ALMOST EMPTY
 ags to transition from the minimum allowed value in con guration 4 to the maximum
allowed con guration in 15. This minimization is achieved because con gurations 4-14
are designed to only test the ALMOST FULL and ALMOST EMPTY  ags and for those
con gurations, only the number of clock cycles needed to reach the con gured ALMOST
values are applied. In con guration 15, 32,768 clocks cycles are applied to fully execute the
FIFO test algorithm and to test the  nal ALMOST FULL and ALMOST EMPTY  ags
values.
4.4 Running FIFO BIST Con gurations
Running each of the FIFO BIST con gurations is similar to the procedure described
for BRAM BIST in Chapter 3. A minor di erence is that the FIFOTPG contains a 5-
bit control register compared to the 6-bit control register in each MMTPG. The following
procedure summarizes running each FIFO con guration:
1. Download FIFO BIST con guration to device.
2. Goto USER2 access register.
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3. Clock in FIFOTPG control string, LSB  rst, and assert TMS on the MSB.
4. Goto USER1 access register.
5. Toggle TDI to reset MMTPG (Active high asynchronous reset).
6. Apply BIST clock cycles.
7. Retrieve ORA results via con guration memory readback.
8. Repeat 1-7 for each addition con guration.
4.5 FIFO BIST Results
Table 4.2 provides a summary of all  fteen FIFO con gurations for a LX60. Due to
the larger number of con gurations, FIFO BIST bene ts more from partial recon gura-
tion than BRAM BIST. While BRAM BIST gained a ten times speed-up factor over full
con gurations, FIFO BIST gained over a 32 times speed-up factor as seen in Figure 4.6.
The number of BIST clock cycles for both BRAM and FIFO BIST is 390,811. This total
still represents 95,077 less clock cycles than Garimella required for only testing Virtex 2
BRAMs. A FX12 FIFO BIST is shown in Figure 4.7. The two FIFOTPGs and their as-
sociated routing have been highlighted. The FIFOTPG to the left of the center column is
highlighted green while the FIFOTPG to the right is highlighted in yellow. The FIFO to
ORA routing is also highlighted in blue. By highlighting the FIFOTPG routing, one can
see that each FIFOTPG is driving alternating rows of Virtex 4 FIFO modules. The timing
analysis for each FIFO BIST con guration is shown in Figure 4.5. The 4K x 4-bit FIFO
mode is only listed once because each of the 12 con gurations have the same timing analysis
result due to each FIFO being identically con gured.
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Figure 4.6: LX60 FIFO Speed-up Factors
Figure 4.7: Routed FX12 FIFO BIST Con guration
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Chapter 5
Virtex 4 ECC and Cascade BIST Implementation
A BIST approach developed for BRAMs con gured in both ECC and cascade modes
of operation in Virtex 4 FPGAs is presented in this chapter. The BIST architecture will
be discussed as well as TPGs for ECC and cascade testing. Finally, results from applying
BIST to Virtex 4 devices are given.
5.1 ECC and Cascade BIST Architecture
The BIST architectures presented in previous chapters considered a BUT to be a single
BRAM. For ECC and cascade BIST con gurations, the BUT is enlarged to encompass two
adjacent BRAMs because both ECC and cascade modes require a pair of adjacent BRAMs.
In order for the BUT to be a pair of BRAMs, the BIST architecture developed for BRAM
and FIFO BIST is modi ed such that instead of TPGs driving alternating rows of BRAMs,
the TPGs drive alternating pairs of BRAMs. BRAM to ORA routing is also modi ed such
that the outputs of the lower BRAM pair is compared with the outputs of the next lower
BRAM pair. The ORA comparison per BRAM output is identical to BRAM BIST. Figure
5.1 illustrates the con guration for the TPG to BUT and BUT to ORA connections.
All Virtex 4 devices contain an even number of BRAMs per column which allows for
complete ECC and cascade BRAM pairs per column. The only exception to this rule is the
in FX devices. For ECC BIST con gurations, the BRAMs directly above and below each
PPC module cannot operate in an ECC BRAM pair. As shown in Figure 5.1, ECC BRAM
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pairs in Virtex 4 devices are  xed and the even numbered rows are always con gured as the
LOWER ECC BRAM.
For cascade con gurations, problems arise when the cascade pair is separated by a
PPC module. Cascaded BRAMs can be either cascaded with the BRAM directly above
or below. Testing this attribute requires instantiating the bottom BRAM as a LOWER
BRAM and continuing to alternate between UPPER and LOWER con gured BRAM as
illustrated in Figure 5.1. A second con guration is required to test BRAMs that were
con gured as an UPPER BRAM in the LOWER cascade mode of operation and vice versa.
Due to the Virtex 4 BRAM cascade routing architecture, each cascade BIST con guration
is expected to have ORA failures in a fault-free device. At the top of each BRAM column
and directly below each PPC module, there are no cascade routes that wrap around to the
bottom BRAM in a column or route through a PPC module to the next BRAM. This causes
the bottom BRAM in a cascade pair located at the bottom of a BRAM column and also
directly above a PPC to generate incorrect results when compared to the other BRAMs
in a given con guration. The incorrect results stem from the cascade implementation as
shown in Chapter 2, Figure 2.9. In this implementation, the bottom BRAM outputs data
irrespective if the latched address targets the upper BRAM. The MSB of the address bus
acts to enable writing to the appropriate BRAM and it also selects the corresponding output
by selecting a multiplexer at the output of the upper BRAM in the cascade pair. In [2],
Xilinx recommends leaving the outputs of a lower BRAM in a cascade pair unconnected.
However, the BIST con gurations for both ECC and Cascade compare all of the BRAMs
outputs. For BRAMs not expected to generate ORA failures, this enhances the BIST
diagnostic resolution by enhancing the observability of cascade pair outputs.
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Figure 5.1: ECC and Cascade BIST Architecture
Figure 5.2 illustrates the expected ORA cascade failures in the LSB of each port?s data
outputs. In general, the number of expected failures can be calculated by Equation 5.1.
Four failures are expected per BRAM column because each data ouput is observed by two
ORAs. Eight failures are expected per PPC module because the width of the PPC module
spans two BRAM columns.
# Expected ORA Failures = 4 (# BRAM Columns ) + 8 (# PPC) (5.1)
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Figure 5.2: Expected Cascade ORA Failure Locations
5.2 ECC BRAM BIST Development
In [36], Stroud discusses a general testing methodology for ECC RAMs. ECC RAMs
are typically implemented with an ECC encode logic which generates Hamming bits for
written data and ECC decode logic which regenerates the Hamming bits when a data
word is read and compares the regenerated Hamming bits to the stored Hamming bits.
The problem with testing ECC memories is that they are inherently fault tolerant. For
example, in order to test if a ECC BRAM can detect Hamming bit errors, actual Ham-
ming bit errors would have to be introduced. Fortunately, Virtex 4 has two con guration
bits, EN ECC WRITE and EN ECC READ, which can either be con gured to TRUE or
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FALSE. When EN ECC WRITE is TRUE, the ECC encode logic is enabled and when
EN ECC READ is TRUE, the ECC decode logic is enabled.
The remaining issue with testing ECC BRAMs is how to test the ECC encode logic.
Out of the 72 data bits, 64 are data and 8 are Hamming bits. Generating all 264 possible
inputs to the ECC encode circuity is infeasible. The ECC encode logic consists of an XOR
parity tree and testing a parity tree can be completed with four test vectors if the structure
of the parity tree is known [37]. However, the structure of the parity tree in the ECC encode
circuit is not given in any Xilinx documentation so a more generic parity tree test is needed
that will yield high fault coverage irrespective of the parity tree structure. In [36] Stroud
shows that the following test vectors will achieve 100% fault coverage for any parity tree
implementation:
Generic Parity Tree Test Vectors:
 All zeros
 All combinations of a 1 in a  eld of zeros
 All combinations of two 1s in a  eld of zeros
In [6], Stroud implements a circuit that generates all of the above test vectors and
is shown in Figure 5.3 with modi cations for use with Virtex 4 ECC BRAMs. Given the
above circuit, a TPG, ECCTPG, was implemented in VHDL and required 192 slices when
implemented in a FX12. The source code is available in Appendix C.
In order to test the ECC decode and correction circuitry, all possible 28 Hamming
bit values must be read from an ECC BRAM. Without knowing the parity connections
for each Hamming bit, it is not feasible to write data to the ECC BRAM to generate all
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Figure 5.3: Parity Tree TPG [6]
256 Hamming bit values. Fortunately, an ECC BRAM can be initialized to contain all
256 Hamming bit values. These preloaded Hamming bit values will cause the ECC BRAM
to indicate and correct single-bit errors or indicate double-bit errors when each memory
address is read.
In order generate the parity tree test vectors and read the preloaded Hamming bit
values, a TPG with two test phases was developed. The ECC BRAM test algorithm is as
follows:
ECC BRAM Test Algorithm:
Phase 1: Read each address and observe a single-bit or double-bit read error along with cor-
recting single-bit erros when detected.
Phase 2: Write to and then read from a memory address the vectors listed for a generic parity
tree. Observe single-bit or double bit read error if EN ECC WRITE is FALSE.
The  rst phase tests the error detection and correction circuitry in the ECC decode
circuity by applying all possible Hamming bit combinations to the ECC decode circuity
by initializing all ECC BRAMs with all possible 256 Hamming bit combinations and then
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Table 5.1: ECC BRAM BIST Con guration Settings
Con g ECC WRITE EN ECC READ EN Phase 1 Phase 2
Num. Clock Cycles Clock Cycles
1 TRUE TRUE 512 5184
2 FALSE TRUE 512 5184
Total ECC BIST Clock Cycles = 11,392
reading the stored patterns. During this phase, a single-bit or double-bit error condition is
expected to occur during the read traversal through memory. The second phase further tests
the ECC decode parity tree and is also able to test the ECC encode circuitry depending on
the con guration of the ECC BRAM as discussed below.
Virtex 4 ECC BRAM BIST consists of two con gurations. Table 5.1 summarizes the
con guration settings for the two con gurations. During the  rst con guration, the  rst
phase of the TPG causes the ECC BRAM to generate single-bit and double-bit read errors,
while the second phase tests the ECC encode circuitry and does not cause read errors
because ECC WRITE EN is generating Hamming for each written data word. In the
second con guration, ECC WRITE EN is set to FALSE and tests the ECC decode parity
tree because in this mode all 72-bits of a data word are written. Phase 1 of the ECCTPG
algorithm is not needed for this second con guration, but this phase only requires 512 clock
cycles and it is applied during both con gurations so that the same ECCTPG can be used.
Applying the phase 2 test vectors causes single-bit and double-bit read errors because in
this con guration mode, the TPG is writing directly to the Hamming bit locations instead
of the ECC encode circuitry.
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5.3 Cascade TPG Development
Since the BRAM memory cell array is tested using March LR with BDS during BRAM
BIST, only address decoding faults need to be testing in cascade BIST con gurations. While
applying MATS+ in BRAM BIST was used to detect all AFs, applying MATS+ to 32K
x 1-bit memory requires 327,680 clock cycles which represents almost the total number of
clock cycles for all other BRAM BIST con gurations.
A cascaded BRAM is two 16K x 1-bit BRAMs con gured such that data in the bottom
half of the 32K-bit memory space is in the lower BRAM and the upper half is in the upper
BRAM. As seen in Figure 5.4, the MSB of the address bus and an inverter selects the write
enable for each BRAM. The MSB of the address bus also selects which cascade BRAM
data to output. Since all AF faults are tested in BRAM BIST, cascade BIST only needs
to test that opposite logic values can be read and written to the upper and lower cascaded
BRAMs. The MATS+ march test can still be used, however, the number of address locations
is reduced to two: one location in the upper BRAM and one location in the lower BRAM.
This simpli cation allows all but the MSB of the address bus to be grounded (set to logic
zero) as also seen in Figure 5.4. Applying MATS+ to both A and B BRAM ports of a
cascaded BRAM only requires 20 clock cycles. The MATS+ portion of the MMTPG was
modi ed to create the cascade TPG, CASTPG. The CASTPG implementation required 15
slices and was constrained to four PLB columns to the left of the FX12 center column. The
VHDL source code for the CASTPG is included in Appendix D.
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Figure 5.4: Cascade BRAM Operational Diagram
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Table 5.2: Summary of Cascade BIST Con guration Settings
Con g Upper BRAM Lower BRAM BIST
Num. RAM EXTENTION[A,B] RAM EXTENTION[A,B] Clock Cycles
1 UPPER LOWER 20
2 LOWER UPPER 20
5.4 BIST Con gurations
Two sets of BIST generation programs were developed. V4ECCTPG, V4ECCBIST,
and V4ECCMOD facilitate ECC BIST con guration generation while V4CASTPG, V4CASBIST,
and V4CASMOD generate CAS BIST con gurations. Each program in the the two sets
follows the same procedure outlined in BRAM BIST and FIFO BIST. Unlike BRAM and
FIFO BIST, ECC and cascade BIST con gurations do not require a TPG control register.
Table 5.1 summarizes the BRAM con guration settings for ECC BIST, and Table 5.2 out-
lines the BRAM con guration settings for cascade BIST. Figures 5.5 and 5.6 show unrouted
ECC and cascade BIST con gurations in a FX12, respectively.
5.5 Running BIST Con gurations
ECC and cascade BIST con gurations use a single BSCAN module to apply BIST
clock cylcles and reset the TPG. Previously, BRAM and FIFO BIST con gurations used
a second BSCAN module to shift in a control string. This feature is not needed for ECC
and cascade con gurations since the same TPG algorithm is applied in each of the two
con gurations. Specifying if the BUT is a upper or lower BRAM, or a portion of the ECC
circuitry is enabled or disabled does not necessitate a change in TPG outputs. The testing
procedure for ECC and cascade con gurations is given below:
1. Download BIST con guration to device
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Figure 5.5: FX12 ECC BIST
Figure 5.6: FX12 Cascade BIST
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2. Goto USER1 access register.
3. Toggle TDI to reset TPG (Active high asynchronous reset).
4. Apply BIST clock cycles.
5. Retrieve ORA results via con guration memory readback.
6. Repeat Steps 1-5 for each addition con guration.
5.6 BIST Results
For cascade BIST, the expected ORA failures discussed previously were observed when
ORA results were read back for both cascade con gurations generated for LX60 and FX12
devices. The observed failures for this device were 20, which is expected since the LX60
contains  ve columns of BRAMs. FX12 devices contain three columns of BRAM and a
single PPC which caused 20 expected failures.
Since both ECC and cascade BIST have only two con gurations, the advantage of
partial recon guration is minimized because even in partial recon guration, the  rst con-
 guration is a compressed full con guration. Tables 5.3 and 5.4 summarizes the download
size and test times for both cascade and ECC BIST con gurations. Figures 5.8 and 5.7
illustrate the speed-up factors attained by using both compressed and partial recon gura-
tion techniques. ECC and cascade BIST con guration timing analysis for several Virtex 4
devices are shown Figure 5.9 and Figure 5.10, respectively. For all devices, the the slowest
clock frequency is greater than the 50 MHz maximum boundary scan clock frequency.
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Table
5.3:
Summary
of
LX60
CAS
BIST
Do
wnload
Size
and
Test
Times
BIST
Con guration
Do
wnload
Size
(Bits)
Con guration
Time
@
50
Mhz
(seconds)
FULL
Compress
Partial
FULL
Compress
Partial
1
17,717,632
7,808,352
7,808,352
0.354
0.156
0.156
2
17,717,632
7,808,352
36,256
0.354
0.156
0.001
TOT
AL
35,435,264
15,616,704
7,844,608
0.709
0.312
0.157
Table
5.4:
Summary
of
LX60
ECC
BIST
Do
wnload
Size
and
Test
Times
BIST
Con guration
Do
wnload
Size
(Bits)
Con guration
Time
@
50
Mhz
(seconds)
FULL
Compress
Partial
FULL
Compress
Partial
1
17,717,632
10,121,376
10,121,376
0.354
0.202
0.202
2
17,717,632
10,121,376
113,920
0.354
0.202
0.002
TOT
AL
35,435,264
20,242,752
10,235,296
0.709
0.405
0.205
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Figure 5.7: LX60 ECC BIST Speed-up Factors
Figure 5.8: LX60 CAS BIST Speed-up Factors
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Figure
5.9:
ECC
BIST
Timing
Analysis
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Figure
5.10:
Cascade
BIST
Timing
Analysis
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Chapter 6
Summary and Conclusion
BIST results for all generated BIST con gurations are summarized along with a com-
parison to the  nal results attained by Garimella [17]. The BIST architecture detailed
in this thesis can also be applied to more recent FPGAs such as the Xilinx Virtex 5. In
Virtex 5, Xilinx has introduced several important testability improvements for BRAMs. A
potential BIST architecture for Virtex 5 BRAMs will outline future work in this  eld.
6.1 Summary of Virtex 4 BIST Results
The work contained in this thesis developed a BIST architecture for Virtex 4 BRAMs in
all modes of operations. Six BIST con gurations were generated to test BRAMs con gured
to operate as a regular RAM. Fifteen BIST con gurations were needed to test BRAMs
con gured to operate as a FIFO. Two BIST con gurations were generated to test both ECC
and Cascade BRAM operational modes. The 25 total BIST con gurations were generated
and downloaded to a LX60, SX35, and FX12 devices. Several faulty LX60 devices were
tested using these BIST con gurations and in one of the devices, an ORA failure indicated
that a single BRAM?s DOA[23] output was faulty.
The eight BIST con gurations developed by Garimella for Virtex 2 required a total
of 485,888 clock cycles [17]. The 25 BIST con gurations presented in this thesis require
402,243 clock cycles, a savings of 83,645 clock cycles. This BIST approach was able to
reduce the amount BIST clock cycles while testing BRAMs in more modes of operations.
Selecting MATS+ instead of March LR for testing additional memory sizes greatly reduced
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Figure 6.1: BIST Speed-up for LX60
the number of clock cycles. Moreover, the use of partial recon guration during each set of
BIST con gurations allowed for a considerable reduction in the total number of downloaded
con guration bits. As shown in the previous chapters, the number of con guration bits is
vastly greater than the number of BIST clock cycles. The Virtex 4 BIST con gurations
were able to take advantage of partial recon guration by keeping the TPG-to-BUT and
BUT-to-ORA routing static. TPGs capable of adapting to di erent BRAM con gurations
were developed and their physical placement was not modi ed during each set of BIST
con gurations. The speed-up factors for each con guration technique are shown in Figure
6.1. The speed-up factors are normalized to FULL con gurations. Clearly, utilizing partial
recon guration allows for signi cant gains in terms of test time and also BIST con guration
memory storage.
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6.2 Application to Virtex 5
In 2006, Xilnx released the successor to Virtex 4, the Virtex 5. The main distinction
between in the two device families is the transition from a 4-input LUT to a 6-input LUT
[38]. BRAMs for Virtex 5 have also been modi ed. Each Virtex 5 BRAM consists of two
Virtex 4 BRAMs and each Virtex 5 BRAM can also be cascaded to form a 64K x 1-bit
RAM. In Virtex 4, FIFO and BRAM output connections were in di erent locations, but
in Virtex 5, all FIFO and BRAM connections are located together. Having all BRAM and
FIFO outputs together allows for the MMTPG and FIFOTPG developed for Virtex 4 to
be combined to form an even larger TPG. A BIST architecture could be developed that
contains an initial full or compressed con guration and every con guration thereafter could
be done through partial recon gurations. This architecture would require two sets of ORAs:
one set of ORAs to compare BRAM, FIFO, and ECC modes, and the second set to compare
the cascade BRAM outputs. Another improvement in Virtex 5 is that the ECC encode and
decode logic can be tested separately. The encode and decode logic can be con gured such
that it?s outputs bypass the BRAM memory. In addition, the Hamming bits generated for
each data word are also available at the BRAM outputs. Virtex 4 did not output Hamming
bits.
Virtex 5 represents an excellent platform to develop BIST for BRAM due to the BIST-
friendly architectural improvements over Virtex 4. Using partial con guration, Virtex 5
BIST could potentially be more e cient.
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MMTPG VHDL Source code
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity fsm is
port (
Reset : in std_logic;
TDI,DRCK,UPDATE,SHIFT: in std_logic;    
Clk : in std_logic;
WEA : buffer std_logic;
WEB: buffer std_logic;
??OEN : out std_logic;
DIA : out std_logic_vector(35 downto 0);
DIB: out std_logic_vector(35 downto 0);
ADDRA : out std_logic_vector(13 downto 0);
ADDRB: out std_logic_vector(13 downto 0);
EnA: out std_logic;
EnB : out std_logic;
SSR : out std_logic; ??follows EN_LEVEL signal
REGCE: out std_logic);
   ??FINISHTEST: out std_logic);
   
end fsm;
architecture  BEHAVIORAL of fsm is
type testmodes is (MarchLR,MATS,March_s2pf,March_d2pf);
type phases is (Init,dummy,Phase1,phase2,phase3,phase4,phase5,phase6,phase7,phase8,p
hase9,phase10,phase11,phase12,phase13,phase14,phase15,phase16);
type elements is (ele1,ele2,ele3,ele4,ele5);
signal testmode: testmodes :=MarchLR;
signal phase : phases := dummy;
signal Element : elements := ele1;
signal Address : std_logic_vector (13 downto 0);
signal AddressB: std_logic_vector(13 downto 0);
signal MAXADDRESS : std_logic_vector ( 13 downto 0);
constant MINADDRESS : std_logic_vector ( 13 downto 0) := (others => ?0?);
signal portBtested: std_logic:=?0?;
signal tempdata: std_logic_vector(35 downto 0); ??to comply with design consideratio
ns by Xilinx
signal tempdataB: std_logic_vector(35 downto 0); ??to comply with design considerati
ons by Xilinx
signal ENATEMP,ENBTEMP,SSRTEMP,WEAtemp,WEBtemp,EN_LEVEL, WEN_ACTIVE, REGCE_ACTIVE: s
td_logic;
signal MODE: std_logic_vector(2 downto 0);
signal SR, PDO : std_logic_vector(5 downto 0);
   
begin
   bsync: 
process (DRCK, UPDATE,SHIFT) begin ?? sync circuitry on BSCAN clock
if (DRCK?event and DRCK = ?1?) then
if (SHIFT = ?1?) then               ?? shift
for I in 0 to 4 loop
SR(I) <= SR(I+1);
end loop;
SR(5) <= TDI;
?? TDO <= SR(0);  
end if;
end if;
if (UPDATE = ?1?) then PDO <= SR;   ?? update
end if;
end process bsync;
EN_LEVEL <= PDO(3);
WEN_ACTIVE <=PDO(5);
REGCE_ACTIVE <= PDO(4);
MODE(0)<=PDO(0);
MODE(1)<= PDO(1);
MODE(2) <= PDO(2);      
   
??begin  
   p0: 
Process(clk,Reset,MODE,MAXADDRESS,tempdata,tempdataB,Address,AddressB,WEA)
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begin
if ( Reset = ?1? ) then
ADDRB <= (others => ?1?);
ADDRA <= (others => ?1?);
DIA <= (others => ?0?);
DIB <= (others => ?0?);
REGCE <= REGCE_ACTIVE;
EnA <= not EN_LEVEL;
EnB <= not EN_LEVEL;
WEA <= not WEN_ACTIVE;
WEB <= not WEN_ACTIVE;
SSR <= not EN_LEVEL;
elsif (Clk = ?1? and Clk?Event) then
case MODE is
when "000" =>
MAXADDRESS<="00000111111111"; ??512 X 36 with BDS
DIA<=tempdata;
DIB<=tempdata;
ADDRA<=Address(8 downto 0)&"11111";
ADDRB<=Address(8 downto 0)&"11111";
REGCE <=(REGCE_ACTIVE);
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
testmode <= MarchLR;     
when "001" =>
MAXADDRESS<="01111111111111"; ??8k X 2
DIA<="1111111111111111111111111111111111"&tempdata(1 downto 0);
DIB<="1111111111111111111111111111111111"&tempdata(1 downto 0);
ADDRA<=Address(12 downto 0)&?1?;
ADDRB<=Address(12 downto 0)&?1?;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
Testmode <= MATS;
REGCE <= REGCE_ACTIVE;
          
when "010" =>
MAXADDRESS<="11111111111111"; ??16k X 1
DIA<="11111111111111111111111111111111111"&tempdata(0);
DIB<="11111111111111111111111111111111111"&tempdata(0);
ADDRA<=Address( 13 downto 0);
ADDRB<=Address( 13 downto 0);
REGCE <= REGCE_ACTIVE;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
Testmode <= MATS;
when "101" =>
MAXADDRESS<="00000111111111"; ??512 X 36
DIA<=tempdata;
DIB<=tempdata;
ADDRA<=Address(8 downto 0)&"11111";
ADDRB<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
Testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
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when "011" =>
MAXADDRESS<="00000111111111"; ??s2pf
DIA<=tempdata;
DIB<=tempdataB;
ADDRB<=Address(8 downto 0)&"11111";
ADDRA<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
testmode <= March_s2pf;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
      
when "100" =>
MAXADDRESS<="00000111111111"; ??d2pf
DIA<=tempdata;
DIB<=tempdataB;
ADDRB<=AddressB(8 downto 0)&"11111";
ADDRA<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
testmode <= March_d2pf;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
      
when "110" =>
MAXADDRESS<="00111111111111"; ??4k x 4
DIA<="11111111111111111111111111111111"&tempdata(3 downto 0);
DIB<="11111111111111111111111111111111"&tempdata(3 downto 0);
ADDRB<=AddressB(11 downto 0)&"11";
ADDRA<=Address(11 downto 0)&"11";
REGCE <= (REGCE_ACTIVE);
testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
      
when "111" =>
MAXADDRESS<="00011111111111"; ??2k x 9
DIA<="111111111111111111111111111"&tempdata(8 downto 0);
DIB<="111111111111111111111111111"&tempdata(8 downto 0);
ADDRB<=AddressB(10 downto 0)&"111";
ADDRA<=Address(10 downto 0)&"111";
REGCE <= (REGCE_ACTIVE);
testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
when others =>
end case;
end if;
??  end if;
end process;
         
p1:
Process(Clk)
begin
if (Reset =?1?) then
tempdata <= (others => ?0?);
tempdataB <= (others => ?0?);           
AddressB <= (others => ?0?);
108
Address <= (others => ?0?);
Element <= ele1;
Phase <= dummy;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
SSRtemp <= not EN_LEVEL;
EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;
??       
elsif (Clk = ?1? and Clk?Event) then
              
case testmode is
 
 ??????????????????????????????MARCH LR??????????????????????????????
when MarchLR=>
case Phase is
when dummy =>
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;
Phase <= Init;
when Init =>
SSRtemp<= not(EN_LEVEL);
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Element <= ele1;
Phase <= Phase1;
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);
when phase1 => ??  U w 000000000000000000000000000000000000
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
Element <= ele1;
tempdata <= (others => ?0?);
else ?? D r 000000000000000000000000000000000000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Phase <= Phase2;
Element <= ele2;
end if;
when phase2 => ??  D r 000000000000000000000000000000000000 w 1111111
11111111111111111111111111111
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?1?);
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ?0?);
else ?? U r 111111111111111111111111111111111111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?1?);
Phase <= Phase3;
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Element <= ele2;
end if;
when others => 
end case;
when phase3 => ??  U r 111111111111111111111111111111111111 w 0000000
00000000000000000000000000000 r 000000000000000000000000000000000000 r 0000000000000000000
00000000000000000 w 111111111111111111111111111111111111
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Element <= ele5;
when ele5 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?1?);
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <=not WEN_ACTIVE;
Element <= ele2;
tempdata <= (others => ?1?);
else ?? U r 111111111111111111111111111111111111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?1?);
Phase <= Phase4;
Element <= ele2;
end if;
when others => 
end case;
when phase4 => ??  U r 111111111111111111111111111111111111 w 0000000
00000000000000000000000000000
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?; ??was ?
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ?1?);
else ?? U r 000000000000000000000000000000000000
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Phase <= Phase5;
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Element <= ele2;
end if;
when others => 
end case;
when phase5 => ??  U r 000000000000000000000000000000000000 w 1111111
11111111111111111111111111111 r 111111111111111111111111111111111111 r 1111111111111111111
11111111111111111 w 000000000000000000000000000000000000
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?1?);
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?1?);
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?1?);
Element <= ele5;
when ele5 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ?0?);
else ?? D r 000000000000000000000000000000000000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Phase <= Phase6;
Element <= ele2;
end if;
when others => 
end case;
when phase6 => ??  D r 000000000000000000000000000000000000 w 0101010
10101010101010101010101010101 w 101010101010101010101010101010101010 r 1010101010101010101
01010101010101010
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "010101010101010101010101010101010101";
Element <= ele3;
when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "101010101010101010101010101010101010";
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "101010101010101010101010101010101010";
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
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WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ?0?);
else ?? U r 101010101010101010101010101010101010
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "101010101010101010101010101010101010";
Phase <= Phase7;
Element <= ele2;
end if;
when others => 
end case;
when phase7 => ??  U r 101010101010101010101010101010101010 w 0101010
10101010101010101010101010101 r 010101010101010101010101010101010101
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "010101010101010101010101010101010101";
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "010101010101010101010101010101010101";
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "101010101010101010101010101010101010";
else ?? D r 010101010101010101010101010101010101
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "010101010101010101010101010101010101";
Phase <= Phase8;
Element <= ele2;
end if;
when others => 
end case;
when phase8 => ??  D r 010101010101010101010101010101010101 w 0011001
10011001100110011001100110011 w 110011001100110011001100110011001100 r 1100110011001100110
01100110011001100
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "001100110011001100110011001100110011";
Element <= ele3;
when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "110011001100110011001100110011001100";
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "110011001100110011001100110011001100";
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
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Element <= ele2;
tempdata <= "010101010101010101010101010101010101";
else ?? U r 110011001100110011001100110011001100
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "110011001100110011001100110011001100";
Phase <= Phase9;
Element <= ele2;
end if;
when others => 
end case;
when phase9 => ??  U r 110011001100110011001100110011001100 w 0011001
10011001100110011001100110011 r 001100110011001100001100110011001100
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "001100110011001100110011001100110011";
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "001100110011001100001100110011001100";
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "110011001100110011001100110011001100";
else ?? D r 001100110011001100110011001100110011
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "001100110011001100110011001100110011";
Phase <= Phase10;
Element <= ele2;
end if;
when others => 
end case;
when phase10 => ??  D r 001100110011001100110011001100110011 w 000011
110000111100001111000011110000 w 111100001111000011110000111100001111 r 111100001111000011
110000111100001111
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000011110000111100001111000011110000";
Element <= ele3;
when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "111100001111000011110000111100001111";
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111100001111000011110000111100001111";
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
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tempdata <= "001100110011001100110011001100110011";
else ?? U r 111100001111000011110000111100001111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111100001111000011110000111100001111";
Phase <= Phase11;
Element <= ele2;
end if;
when others => 
end case;
when phase11 => ??  U r 111100001111000011110000111100001111 w 000011
110000111100001111000011110000 r 000011110000111100001111000011110000
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
   
tempdata <= "000011110000111100001111000011110000";
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000011110000111100001111000011110000";
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111100001111000011110000111100001111";
else ?? D r 000011110000111100001111000011110000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000011110000111100001111000011110000";
Phase <= Phase12;
Element <= ele2;
end if;
when others => 
end case;
when phase12 => ??  D r 000011110000111100001111000011110000 w 000000
001111111100000000111111110000 w 111111110000000011111111000000001111 r 111111110000000011
111111000000001111
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000000001111111100000000111111110000";
Element <= ele3;
when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "111111110000000011111111000000001111";
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111110000000011111111000000001111";
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
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tempdata <= "000011110000111100001111000011110000";
else ?? U r 111111110000000011111111000000001111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111110000000011111111000000001111";
Phase <= Phase13;
Element <= ele2;
end if;
when others => 
end case;
when phase13 => ??  U r 111111110000000011111111000000001111 w 000000
001111111100000000111111110000 r 000000001111111100000000111111110000
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
   
tempdata <= "000000001111111100000000111111110000"; 
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000001111111100000000111111110000";
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111111110000000011111111000000001111";
else ?? D r 000000001111111100000000111111110000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000001111111100000000111111110000";
Phase <= Phase14;
Element <= ele2;
end if;
when others => 
end case;
when phase14 => ??  D r 000000001111111100000000111111110000 w 000000
000000000000111111111111111100 w 111111111111111100000000000000001111 r 111111111111111100
000000000000001111
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
   
tempdata <= "000000000000000000111111111111111100";
Element <= ele3;
when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
   
tempdata <= "111111111111111100000000000000001111";
Element <= ele4;
when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not WEN_ACTIVE;
tempdata <= "111111111111111100000000000000001111";
Element <= ele1;
when ele1 =>
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
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WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "000000001111111100000000111111110000";
else ?? U r 111111111111111100000000000000001111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111111111111100000000000000001111";
Phase <= Phase15;
Element <= ele2;
end if;
when others => 
end case;
when phase15 => ??  U r 111111111111111100000000000000001111 w 000000
000000000000111111111111111100 r 000000000000000000111111111111111100
case Element is
when ele2 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000000000000000000111111111111111100";
Element <= ele3;
when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000000000000000111111111111111100";
Element <= ele1;
when ele1 =>
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111111111111111100000000000000001111";
else ?? D r 000000000000000000111111111111111100
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000000000000000111111111111111100";
Phase <= Phase16;
Element <= ele1;
end if;
when others =>
end case; 
when phase16 => ??  D r 000000000000000000111111111111111100
if ( Address /= MINADDRESS ) then
Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele1;
tempdata <= "000000000000000000111111111111111100";
else ?? U w 000000000000000000000000000000000000
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;                         
tempdata <= (others => ?0?);
if ( portBtested = ?1? ) then ?? change testing mode
portBtested<=?0?;
phase<=Init;
Element<=ele1;
else
portBtested<=?1?;
Phase <=Phase1;
EnBtemp <= EN_LEVEL;
EnAtemp <= not(EN_LEVEL);
Element <= ele1;
end if;
end if;
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end case;   
   
   ??????????????????????????????MATS???????DTM??????????????????????
when MATS=>
case Phase is
when dummy =>
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;
Phase <= Init;
portbtested <=?0?;
   
when Init =>
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE; ??changed from not
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Phase <= Phase1;
if (portbtested =?1?) then
EnAtemp <= not EN_LEVEL;
EnBtemp <= (EN_LEVEL);
portbtested<=?0?;
else
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);
end if;
SSRtemp <=not(EN_LEVEL);
when phase1=>  
if ( Address /= MAXADDRESS ) then
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?0?);
Address <= Address+?1?;
elsif (Address = MAXADDRESS) then
    
tempdata <= (others => ?0?);
WEAtemp <=not WEN_ACTIVE;
WEBtemp <=not WEN_ACTIVE;
Phase <=Phase2;
Address <= MINADDRESS;     
end if;
when phase2 => ??  up R0 , W1
if ( Address /= MAXADDRESS ) then
case element is
when ele1 => ??read zeros
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ?1?);
element <=ele2;
when ele2 => ??write ones
WEAtemp <=  not WEN_ACTIVE;
WEBtemp <=  not WEN_ACTIVE;
tempdata <= (others => ?0?);
Address <= Address +?1?;
element <=ele1;   
when others =>
end case;
elsif (Address = MAXADDRESS) then
case element is
when ele1 => ??read zeros
WEAtemp <=  WEN_ACTIVE;
WEBtemp <=  WEN_ACTIVE;
tempdata <= (others => ?1?);
element <=ele2;
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when ele2 => ??write ones
WEAtemp <=   not WEN_ACTIVE;
WEBtemp <=   not WEN_ACTIVE;
   ??Address <= MAXADDRESS ; already at MAX!!!
tempdata <= (others => ?1?);
element <=ele1;
Phase <= Phase3;
Address <= MAXADDRESS ;
tempdata <= (others => ?1?);
when others =>
end case;
end if;
when phase3 => ??  Down R1,WO
                              
if ( Address /= MINADDRESS ) then
case element is
when ele1 => ??read ones
WEAtemp <=  WEN_ACTIVE;
WEBtemp <=  WEN_ACTIVE;
tempdata <= (others => ?0?);
element <=ele2;
when ele2 => ??write zeros
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;
tempdata <= (others => ?0?);
Address <= Address ??1?;
element <=ele1;   
when others =>
end case;
elsif (Address = MINADDRESS) then
case element is
when ele1 => ??read 1s
WEAtemp <= WEN_ACTIVE;
WEBtemp <=WEN_ACTIVE;
tempdata <= (others => ?0?);
element <=ele2;
when ele2 => ??write ones
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;
Phase <=phase4;
element <=ele1;
when others =>
end case;
end if;
when phase4 =>             
if (portBtested=?1?) then
portBtested<=?0?;
else
portBtested<=?1?;
Phase <= init; 
end if;
when others =>  
end case;
            
   
   
   ????????????????????????????MARCH S2PF???????DTM??????????????????????
when March_s2pf =>
case Phase is
when dummy =>
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;
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Phase <= Init;
when Init =>
element<=ele1;
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
SSRtemp <= not EN_LEVEL;
tempdata <= (others => ?0?);
tempdatab <= (others => ?0?);
Phase <= Phase1;
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
when phase1=>??  M0 up write 0s
if ( Address /= MAXADDRESS ) then
Address <= Address + ?1?;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
  
else
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
Phase <=Phase2;
end if;
when Phase2=>
case element is
when ele1 => ??2
tempdata<=(others => ?0?);
element<=ele2;
when ele2=>??3  
element<=ele3;
when ele3=>   ??4
WEAtemp<=(WEN_ACTIVE);
tempdata <= (others => ?1?);
tempdataB <= (others => ?0?);
   ??port B output should have zero?s on it still.
element<=ele4;
when ele4 =>  ??goes to next RAM address or next march
if (Address /=MAXADDRESS) then
Address <=Address +?1?;
WEAtemp<=not(WEN_ACTIVE);
element <=ele1;
else ?? done with March M1
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
element<=ele1;
Phase <=Phase3;
end if;
when others =>
end case;
when Phase3 => ??M2
case element is
when ele1 => ??5
element<=ele2; ??reading 1s from each port and then reading 
again.
when ele2=> ??6
element<=ele3; ??done reading same address twice
when ele3=>   ??7 
WEAtemp<=(WEN_ACTIVE);
tempdata <= (others => ?0?);
tempdataB <= (others => ?1?);
      ??port B output should have 1s on it still.
element<=ele4;
when ele4 =>
if (Address /=MAXADDRESS) then
Address <=Address +?1?;
WEAtemp<=not(WEN_ACTIVE);
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element <=ele1;
else ?? done with March M2
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
   ??OEN <= OEN_ACTIVE;
tempdata <= (others => ?0?);
Phase <=Phase4;
element <=ele1;
end if;
when others =>
end case;
when Phase4 => ??M3
case element is
when ele1 => ??8
element<=ele2; ??reading zeros from each port and then readi
ng again.
when ele2=>  ??9
element<=ele3; ??done reading same address twice
when ele3=>  ??10
WEAtemp <= (WEN_ACTIVE);
tempdata <= (others => ?1?);
tempdataB <= (others => ?0?);
      ??port B output should have zero?s on it still.
element<=ele4;
when ele4 =>
if (Address /=MINADDRESS) then
Address <=Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
element <=ele1;
else ?? done with March M3
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
element<=ele1;
Phase <=Phase5;
end if;
when others =>
end case;
            
when Phase5 =>
case element is
when ele1 => ??11
element<=ele2; ??reading zeros from each port and then readi
ng again.
when ele2=>  ??12
element<=ele3; ??done reading same address twice
when ele3=>  ??13
WEAtemp <= (WEN_ACTIVE);
tempdata <= (others => ?0?);
tempdataB <= (others => ?1?);
      ??port B output should have zero?s on it still.
element<=ele4;
when ele4 =>
if (Address /=MINADDRESS) then
Address <=Address ? ?1?;
WEAtemp <=not(WEN_ACTIVE);
element <=ele1;
else ?? done with March M4
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
   ??OEN <= OEN_ACTIVE;
tempdata <= (others => ?0?);
element<=ele1;
Phase <=Phase6;
end if;
when others =>
end case;
when Phase6 => ??14
if ( Address /= MINADDRESS ) then
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Address <= Address ? ?1?;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
else
Element <= ele1;
Phase <=init;
??    testmode <= March_s2pf; ??ADDRESS already at LOWER BOUND for
 next test session
end if;    
when others =>
end case;             
                              
???????????????????????????????MARCH D2PF??????????????????????????????
  
when March_d2pf =>
case Phase is
when dummy =>
phase <= init;
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
Phase <= Init;
SSRtemp <= EN_LEVEL;
when init =>
SSRtemp <= not(EN_LEVEL);
phase <= Phase1;  
Address <= MAXADDRESS;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ?0?);
tempdataB <= (others => ?0?);
element <= ele2;
when  Phase1 =>
if ( Address = MINADDRESS) then
Phase <= Phase2;
AddressB <= MINADDRESS + ?1?;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>?1?);
tempdataB <= (others=>?0?);
element <= ele1;
elsif (Address /= MINADDRESS and element /= ele2) then
Address <= Address ? ?1?;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>?0?);
tempdataB <= (others=>?0?);
elsif ( Address /= MINADDRESS and element = ele2 ) then           
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>?0?);
tempdataB <= (others=>?0?);
element <= ele1;  
end if;
when Phase2 =>
if ( element = ele1 ) then
if ( Address = MINADDRESS) then
AddressB <= MAXADDRESS; ?? (r1_r:r0_MAX) for low address
WEBtemp <= not(WEN_ACTIVE);
tempdataB <= (others=>?0?);
elsif ( Address /= MINADDRESS) then
AddressB  <= Address ? ?1?;
WEBtemp <= WEN_ACTIVE;
tempdataB <= (others=>?1?);
end if;?? r1_r : w1_r?1
WEAtemp <= not WEN_ACTIVE;
tempdata <= (others=>?1?);    
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   ??tempdataB <= (others=>?1?);
element <= ele2;
elsif ( element = ele2 ) then  ?? w0_r: r1_r?1
if ( Address = MINADDRESS) then
AddressB <= MAXADDRESS; ?? (w0_r:r0_MAX) for low address    
                        
tempdataB <= (others=>?0?);
elsif ( Address /= MINADDRESS) then
AddressB  <= Address ? ?1?;               
tempdataB <= (others=>?1?);
end if;
WEBtemp <= not(WEN_ACTIVE);
WEAtemp <= WEN_ACTIVE;
tempdata <= (others=>?0?);                            
element <= ele3;
   
elsif (element = ele3 ) then   ?? r0_r:w0_r+1
AddressB <= Address + ?1?;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= WEN_ACTIVE;
tempdata <= (others=>?0?);
tempdataB <= (others=>?0?);
element <= ele4;
elsif ( element = ele4) then
   
if ( Address = MAXADDRESS ? ?1?) then
Phase <= init; 
Address <= MAXADDRESS;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>?0?);
tempdataB <= (others=>?0?);
element <= ele1;
   
elsif ( Address /= MAXADDRESS ? ?1?) then
Address <= Address + ?1?;
AddressB <= Address + "10";
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>?1?);
tempdataB <= (others=>?0?);
element <= ele1; 
end if;
end if;
when others =>
   
end case;
when others =>
end case;
end if;
end process;
end;
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library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity FIFO_TPG is
Port ( CLK,DRCK,UPDATE,SHIFT,TDI : in  STD_LOGIC;
  Reset: in STD_LOGIC;
  DI: out STD_LOGIC_VECTOR(31 downto 0);
  DIP: out STD_LOGIC_VECTOR(3 downto 0);
  RST,WREN,RDEN: out STD_LOGIC);
end FIFO_TPG;
architecture Behavioral of FIFO_TPG is
type phases is (RESET_FIFO,Phase1,phase2,phase4);
type elements is(ele1,ele2,ele3,ele4,ele5,ele6);
signal element : elements :=ele1;
signal phase : phases := reset_fifo;
signal MAXCOUNT: STD_LOGIC_VECTOR(12 downto 0);
signal MINCOUNT: STD_LOGIC_VECTOR(12 downto 0);
signal COUNT:    STD_LOGIC_VECTOR(12 downto 0);
signal tempdata: STD_LOGIC_VECTOR(35 downto 0);
signal SR, PDO : STD_LOGIC_VECTOR(4 downto 0);
signal MODE: std_logic_vector(1 downto 0);
signal RDENtemp,WRENtemp,RDEN_level,WREN_level, RST_level: std_logic;
begin
MINCOUNT <= (others =>?0?);
bsync: 
process (DRCK, UPDATE,SHIFT,SR) begin
if (DRCK?event and DRCK = ?1?) then
if (SHIFT = ?1?) then 
for I in 0 to 3 loop
SR(I) <= SR(I+1);
end loop;
SR(4) <= TDI;  
end if;
end if;
if (UPDATE = ?1?) then PDO <= SR;
end if;
end process bsync;
RDEN_level <= PDO(2);
WREN_level <=PDO(3);
RST_level <= PDO(4);
MODE(0)<=PDO(0);
MODE(1)<= PDO(1); 
 
Process(MODE,tempdata,WRENtemp,RDENtemp)
begin
if (MODE="00") then
MAXCOUNT <= "1000000000000"; ??4096
DI       <= X"0000000"&tempdata(3 downto 0);
DIP      <= "0000";
WREN <= WRENtemp;
RDEN <= RDENtemp;
elsif (MODE="01") then
MAXCOUNT <= "0100000000000"; ??2049
DI       <= X"000000"&tempdata(7 downto 0);
DIP      <= "000"&tempdata(35);   
WREN <= WRENtemp;
RDEN <= RDENtemp;
elsif (MODE="10") then
MAXCOUNT <= "0010000000000"; ??1025
DI       <=X"0000"&tempdata(15 downto 0);
DIP      <= "00"&tempdata(35 downto 34);
WREN <= WRENtemp;
RDEN <= RDENtemp;          
elsif (MODE="11") then
MAXCOUNT <= "0001000000000"; ??513
DI       <= tempdata(31 downto 0);
DIP      <= tempdata(35 downto 32);
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WREN <= WRENtemp;
RDEN <= RDENtemp;
end if;
end process;    
Process(Reset, Clk,RDEN_level,WREN_level,RST_level )
begin
if ( Reset = ?1? ) then
tempdata<=(others =>?0?);
COUNT <= MINCOUNT;
phase <= RESET_FIFO;
rst<=RST_level;
RDENtemp<=not(RDEN_level);
WRENtemp<=not(WREN_level);       
elsif (Clk = ?1? and Clk?Event) then
case Phase is
when RESET_FIFO =>
case element is
when ele1 =>
rst <=RST_level;
element <= ele2;
when ele2 =>
rst <= RST_level;                  
element <=ele3;
when ele3 =>                  
element <= ele4;
when ele4 =>                     
element <=ele5;
when ele5 =>
phase <= phase1;
element <=ele1;
count <= MINCOUNT;
RDENtemp <= not RDEN_level;
WRENtemp <= WREN_level;
rst <= not RST_level;
when others =>
end case;               
when Phase1=>
if ( COUNT <= MAXCOUNT) then
COUNT <= COUNT + ?1?;
WRENtemp <= WREN_level;
tempdata <= (others => ?0?);
else
COUNT <=MINCOUNT; 
Phase <=Phase2;
WRENtemp <= not (WREN_level);
RDENtemp <= RDEN_level;
tempdata <=(others =>?0?);
end if;
when phase2 =>
case Element is
when ele1 =>
if ( COUNT <=MAXCOUNT) then
RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>?1?);
Element <= ele2;
end if;
when ele2 =>
RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>?1?);
Element <= ele3;
when ele3 =>
RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>?1?);
Element <= ele4;
when ele4 =>
RDENtemp <=not RDEN_level;
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WRENtemp <=(WREN_level);
Element <= ele5;
when ele5 =>
RDENtemp <= not RDEN_level;
WRENtemp <=(WREN_level);
element <= ele6;
when ele6=>
RDENtemp <=(RDEN_level);
WRENtemp <=not WREN_level;
tempdata <=(others =>?0?);
COUNT <= COUNT + ?1?;
if ( COUNT=MAXCOUNT) then
Phase <= phase4;
COUNT<=MINCOUNT;
RDENtemp <=(RDEN_level);
WRENtemp <=not WREN_level;
tempdata <= (others => ?1?);
end if;
Element <= ele1;
when others =>                   
end case;
when phase4 =>  ??read 001s from FIFO
if ( COUNT <= MAXCOUNT ) then
RDENtemp <=RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>?1?);
COUNT <= COUNT + ?1?;
else
COUNT<=MINCOUNT;
WRENtemp <= not WREN_level;
RDENtemp <= not RDEN_level;
tempdata <= (others => ?0?);
Phase <=reset_fifo;
end if;
end case;
end if;
end process;
end Behavioral;
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library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ECC_TPG is
Port (CLK : in  STD_LOGIC;
     RESET : in  STD_LOGIC;
     Data : out std_logic_vector(71 downto 0);
     ADDRB : out std_logic_vector(8 downto 0);
     WREN,RDEN: out std_logic);
end ECC_TPG;
architecture Behavioral of ECC_TPG is
  
signal CLK_EN: std_logic;
type phases is (Init_RAMS,Write_RAMS) ;
signal phase : phases := Init_RAMS ;
type elements is (ele1,ele2,ele3) ;
signal element : elements :=ele1 ;
signal Address : std_logic_vector ( 8 downto 0):= (others => ?0?) ;
signal MAXADDRESS : std_logic_vector ( 8  downto 0):= (others =>?1?) ;
component ECC_fsm is
port (
CLK: in std_logic;
CLK_EN: in std_logic;
RESET: in std_logic;
DATA_OUT: out std_logic_vector(71 downto 0));
end component;
begin  
ECC_fsm_inst: ECC_fsm port map(clk,CLK_EN,reset,data) ;
   
   
Process( Reset, Clk )
begin
if ( Reset = ?1? ) then
Address <= "111111110";
CLK_EN <=?1?;
RDEN <= ?0?;
WREN <= ?1?;
Phase <= Init_RAMs;
element <= ele1;
elsif (Clk = ?1? and Clk?Event) then
  
case Phase is
when Init_RAMS=>
if (Address < MAXADDRESS) then
case element is
when ele1 =>
Address <= "111111110";
element<=ele2;
when ele2 =>
element <= ele3;
CLK_EN <=?0?;
WREN <=?0?;
RDEN <=?1?;
Address <= (others =>?0?);
when ele3 =>
Address <=Address + ?1?;   
end case;
else
RDEN <=?0?;
WREN <= ?1?;
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Phase <= Write_RAMs;
element <=ele1;
end if;
   
when Write_RAMS =>
Address <= (others => ?0?);
case Element is
when ele1 =>
CLK_EN <= ?1?;
RDEN <= ?0?;
WREN <= ?1?;
element <= ele2;
when ele2 =>
CLK_EN <= ?0?;
WREN <= ?0?;
RDEN <=?1?;
element <= ele1;
when others =>
end case;
end case;
end if;
end process;
ADDRB <= Address;
end Behavioral;
entity ECC_fsm is
port (
CLK: in std_logic;
CLK_EN: in std_logic;
RESET: in std_logic;
DATA_OUT: out std_logic_vector(71 downto 0));
end ECC_fsm;
architecture Behavioral of ECC_fsm is
component shifter is
Port ( 
CLK_EN: in std_logic;
CLK : in std_logic;
RESET: in std_logic;
ENABLE: in std_logic;    
BIT_IN: in std_logic;
BIT_OUT: out std_logic;
DOUT: out std_logic_vector(71 downto 0));
end component;
signal DONE_check,BIT_IN1,BIT_IN2,BIT_OUT1: std_logic;
signal DOUT1, DOUT2 : std_logic_vector(71 downto 0);
begin
SR1: shifter port map(
CLK_EN => CLK_EN,
CLK => CLK,
RESET => RESET,
ENABLE => ?1?,
BIT_IN => BIT_IN1,
BIT_OUT => BIT_OUT1,
DOUT => DOUT1
);
SR2: shifter port map(
CLK_EN => CLK_EN,
CLK => CLK,
RESET => RESET,
ENABLE => BIT_OUT1,
BIT_IN => BIT_IN2,
DOUT => DOUT2
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);
process(DOUT1, DOUT2,BIT_IN1,BIT_IN2)
variable temp2:std_logic;
variable temp1:std_logic;
begin
temp1:=?0?;
temp2:=?0?;
for i in 0 to 71 loop
temp1:=temp1 OR DOUT1(i);
end loop;
   
for i in 0 to 71 loop
temp2:=temp2 OR DOUT2(i);
end loop;
   
BIT_IN1<=not temp1;
BIT_IN2<=not temp2;
end process;
DATA_OUT <= DOUT1 OR DOUT2;
   
end Behavioral; 
entity shifter is
Port ( 
CLK_EN: in std_logic;
CLK : in std_logic;
RESET: in std_logic;
ENABLE: in std_logic;    
BIT_IN: in std_logic;
BIT_OUT: out std_logic;
DOUT: out std_logic_vector(71 downto 0));
   
end shifter;
architecture Behavioral of shifter is
signal DATA: std_logic_vector(71 downto 0);
begin
process(CLK,RESET)
variable temp:std_logic :=?0?;
begin
temp:=Data(63);
if (RESET=?1?) then
DATA <=X"000000000000000000";
elsif (CLK=?1? and CLK?event)  then  
if (enable=?1? and CLK_EN =?1?) then
for i in 0 to 70 loop
DATA(i+1)<=Data(i);
Data(0)<=BIT_IN;
              
end loop;  
end if;
end if;
BIT_OUT<=temp;
end process;
DOUT <=DATA;
end Behavioral;
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity fsm is
generic(
EN_Level: std_logic := ?1?;
WEN_ACTIVE: std_logic := ?1?);
port (
Reset : in std_logic;
Clk : in std_logic;
WEA : buffer std_logic;
DIA : out std_logic_vector( 0 downto 0);
ADDRA : out std_logic;
EnA: out std_logic;
EnB : out std_logic);
   
end fsm;
architecture  BEHAVIORAL of fsm is
type phases is (Init,dummy,Phase1,phase2,phase3,phase4,phase5,phase6);
type elements is (ele1,ele2);
signal phase : phases := dummy;
signal Element : elements := ele1;
signal Address : std_logic;
signal portBtested: std_logic:=?0?;
signal tempdata: std_logic;
signal ENATEMP,ENBTEMP,WEAtemp: std_logic;
   
   
begin
   p0: 
Process(clk,Reset,tempdata,Address,WEA)
begin
if ( Reset = ?1? ) then
ADDRA <= ?0?;
DIA(0) <= ?0?;
EnA <= not EN_LEVEL;
EnB <= not EN_LEVEL;
WEA <= not WEN_ACTIVE;
elsif (Clk = ?1? and Clk?Event) then
    
      
DIA(0)<=tempdata;
ADDRA<=Address;
WEA<=WEAtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
      
end if;
end process;
         
p1:
Process(Clk)
begin
if (Reset =?1?) then
tempdata <= ?0?;
Address <= ?0?;
Element <= ele1;
Phase <= dummy;
WEAtemp <= not(WEN_ACTIVE);
EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;
??       
elsif (Clk = ?1? and Clk?Event) then
              
                
case Phase is
when dummy =>
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EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;
Phase <= Init;
portbtested <=?0?;
         
when Init =>
Address <= ?0?;
WEAtemp <= WEN_ACTIVE;
tempdata <= ?0?;
Phase <= Phase1;
element <= ele1;
if (portbtested =?1?) then
EnAtemp <= not EN_LEVEL;
EnBtemp <= (EN_LEVEL);
portbtested<=?0?;
else
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);
end if;
      
when phase1=>??  
case element is
when ele1 =>
Address <= ?1?;
WEAtemp <= WEN_ACTIVE;
element <= ele2;
when ele2 =>
Address <=?0?;
WEAtemp <=not WEN_ACTIVE;
tempdata <= ?1?;
Phase <= Phase2;
element <= ele1;
end case;
               
when phase2=>??  
case element is
when ele1 =>
Address <= ?0?;
WEAtemp <= WEN_ACTIVE;
element <= ele2;
when ele2 =>
Address <=?1?;
WEAtemp <=not WEN_ACTIVE;
Phase <= Phase3;
element <= ele1;
end case;
               
when phase3=>??  
case element is
when ele1 =>
Address <= ?1?;
WEAtemp <= WEN_ACTIVE;
element <= ele2;
when ele2 =>
Address <=?0?;
WEAtemp <=not WEN_ACTIVE;
tempdata <= ?0?;
Phase <= Phase4;
element <= ele1;
end case;
               
when phase4=>  
case element is
when ele1 =>
Address <= ?0?;
WEAtemp <= WEN_ACTIVE;
element <= ele2;
when ele2 =>
Address <=?1?;
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WEAtemp <=not WEN_ACTIVE;
tempdata <= ?0?;
Phase <= Phase5;
element <= ele1;
end case;
               
when phase5=>??  
case element is
when ele1 =>
Address <= ?1?;
WEAtemp <= WEN_ACTIVE;
element <= ele1;
Phase <= Phase6;
when others =>
end case;      
when phase6 =>
            
if (portBtested=?1?) then
portBtested<=?0?;
else
portBtested<=?1?;
Phase <= init; 
end if;
when others =>  
end case;
end if;
end process;
end;
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List of Acronyms
ATE - Automatic Test Equipment
BIST - Built-in Self Test
BRAM- Block RAM
BSCAN - Boundary Scan
BUT - Block under Test
CAD - Computer-aided Design
CUT - Circuit under Test
DFT - Design for Test
DSP - Digital Signal Processor
DUT - Device under Test
ECC - Error Correcting Code
FF - Flip- op
FIFO - First-in First-out
FPGA - Field Programmable Gate Array
FWFT - First-Word-Fall-Through
GUI - Graphical User Interface
HDL - Hardware Description Language
I/O - Input / Output
IC - Integrated Circuit
IP - Intellectual Property
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LUT - Look-up Table
LSB - Least Signi cant Bit
MMTPG - Multi-march Test Pattern Generator
MSB - Most Signi cant Bit
ORA - Output Response Analyzer
PIP - Programmable Interconnect Point
PLB - Programmable Logic Block
PowerPC - PPC
RAM - Random Access Memory
SERDES - Serial / Deserial
SoC - System-on-Chip
SRAM - Static Random Access Memory
TCK - Test Clock
TDI - Test Data In
TDO - Test Data Out
TMS - Test Mode Select
TPG - Test Pattern Generator
VLSI - Very Large Scale Integration
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