
Built-In Self Test of Configurable Memory Resources in Field

Programmable Gate Arrays

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Daniel Milton

Certificate of Approval:

Victor P. Nelson
Professor
Electrical and Computer Engineering

Charles E. Stroud, Chair
Professor
Electrical and Computer Engineering

Thaddeus A. Roppel
Associate Professor
Electrical and Computer Engineering

George T. Flowers
Interim Dean
Graduate School

Built-In Self Test of Configurable Memory Resources in Field

Programmable Gate Arrays

Daniel Milton

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
December 17, 2007

Built-In Self Test of Configurable Memory Resources in Field

Programmable Gate Arrays

Daniel Milton

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Daniel Milton, son of Thomas and Diane Milton, was born in Birmingham, Alabama

on April 25, 1983. In the Fall of 2005, he graduated Summa cum Laude with a Bachelor of

Electrical Engineering majoring in Computer Engineering. Upon graduation he immediately

began working on his Master of Science degree at Auburn University under the advisement

of Dr. Charles E. Stroud.

iv

Thesis Abstract

Built-In Self Test of Configurable Memory Resources in Field

Programmable Gate Arrays

Daniel Milton

Master of Science, December 17, 2007
(B.E.E., Auburn University, 2005)

151 Typed Pages

Directed by Charles E. Stroud

Testing embedded memory resources in Field Programmable Gate Arrays (FPGAs) is

difficult because the collective signal fan-in and fan-out is much greater than the available

external I/O. A testing approach is needed that can test all of the memory resources in

parallel without out being limited to external I/O. Built-in Self Test (BIST) is a testing

method that incorporates test circuitry around the devices under test (DUT). The pro-

grammable nature of FPGAs allows the BIST circuitry to have no performance and size

overhead because the BIST circuitry can be downloaded to the FPGA while the system is

offline. Once offline, resources inside the FPGA can be tested and the results retrieved. If

the FPGA is found to be fault-free then the system function can be downloaded again and

brought back online.

BIST for embedded memory resources in Virtex 4 FPGAs is developed and test con-

figurations are generated for all Virtex 4 devices. Twenty-five total BIST configurations

are developed to test memories operating in RAM, FIFO, ECC, and cascade modes. To

test each operating mode, a hardware design language (HDL) based test pattern generator

v

(TPG) is developed and then incorporated into an algorithmically placed BIST template

that contains two TPGs, DUTs, and output response analyzers (ORAs) to observe DUT

outputs. Partial reconfiguration is used to reduce both configuration bitstream storage and

test time. A total speed-up factor of 12 is observed when utilizing partial reconfiguration.

vi

Acknowledgments

I would like to thank Dr. Stroud for his support and advise during my tenure at Auburn

University during both my undergraduate and graduate studies. I would also like to thank

Dr. Nelson and Dr. Roppel for their contribution to this thesis by serving on my graduate

committee. To my research colleagues, Sachin, Sudheer, Bobby, Lee, Mustafa, Brad, David,

and Noah, I am grateful for all of your help and assistance throughout my research. Lastly,

I would like to acknowledge my parents, as their ever present support has always inspired

my to fulfill my potential.

vii

Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliography follows IEEE Transactions.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty. Plots were generated using

Microsoft Excel and figures were drawn in Microsoft Visio.

viii

Table of Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Built-In Self Test (BIST) . 2
1.2 FPGAs . 3
1.3 Embedded Memory Resources in FPGAs 5
1.4 Thesis Statement . 6

2 Background 8
2.1 Introduction to FPGAs . 8
2.2 Virtex 4 Architecture . 12

2.2.1 Virtex 4 PLBs . 14
2.2.2 Virtex 4 BRAMs . 15
2.2.3 Virtex 4 FIFOs . 22
2.2.4 Virtex 4 CAD Tools . 27
2.2.5 Virtex 4 Boundary Scan . 27

2.3 SRAM Testing . 30
2.3.1 SRAM Fault Models . 31
2.3.2 March Tests for Single-Port Memories 32
2.3.3 March Tests for Dual-Port Memories 35

2.4 Overview of BIST for FPGAs . 37
2.4.1 BIST for BRAMs . 40

2.5 Thesis Restatement . 42

3 Virtex 4 Block RAM BIST Implementation 44
3.1 Virtex 4 BRAM BIST Architecture . 44
3.2 TPG Development . 48
3.3 BRAM BIST Configurations . 51
3.4 Running BIST Configurations . 61
3.5 ORA Results Retrieval . 62
3.6 BIST Results . 63
3.7 BRAM BIST Summary . 68

ix

4 Virtex 4 FIFO BIST Implementation 69
4.1 Virtex 4 FIFO BIST Architecture . 69
4.2 FIFO TPG Development . 69
4.3 FIFO BIST Configuration Development . 74
4.4 Running FIFO BIST Configurations . 77
4.5 FIFO BIST Results . 78

5 Virtex 4 ECC and Cascade BIST Implementation 82
5.1 ECC and Cascade BIST Architecture . 82
5.2 ECC BRAM BIST Development . 85
5.3 Cascade TPG Development . 89
5.4 BIST Configurations . 91
5.5 Running BIST Configurations . 91
5.6 BIST Results . 93

6 Summary and Conclusion 98
6.1 Summary of Virtex 4 BIST Results . 98
6.2 Application to Virtex 5 . 100

Bibliography 101

Appendices 104

A MMTPG VHDL Source code 105

B FIFOTPG VHDL Source code 123

C ECCTPG VHDL Source code 127

D CASTPG VHDL Source code 131

E List of Acronyms 135

x

List of Figures

1.1 General BIST Architecture . 3

1.2 FPGA Architecture . 4

1.3 Basic PLB Architecture . 4

2.1 Configuration Bits in FPGAs . 10

2.2 A Five Transistor Configuration SRAM Cell [1] 11

2.3 A Six Transistor Configuration SRAM Cell [1] 11

2.4 Basic Virtex 4 Architecture . 14

2.5 Virtex 4 PLB [2] . 15

2.6 Simplified Virtex 4 Slice Diagram [2] . 16

2.7 Virtex 4 BRAM [2] . 18

2.8 ECC BRAM Architecture [2] . 22

2.9 BRAM Cascade Operational Diagram [2] 23

2.10 Virtex 4 FIFO Implementation [2] . 25

2.11 Virtex 4 FIFO [2] . 25

2.12 TAP Controller State Diagram [3] . 29

2.13 SRAM Memory Functional Model . 30

2.14 Structural Model of a two-port SRAM cell 31

2.15 March LR with 4-bit BDS [4] . 35

2.16 March s2pf [5] . 36

xi

2.17 March d2pf [5] . 37

2.18 A General Comparison Based BIST Architecture 38

2.19 A Circular Comparison Based BIST Architecture 39

2.20 Comparison Based ORA with Shift Chain 40

2.21 Comparison Based ORA without a Shift Chain 40

3.1 BRAM BIST Architecture . 45

3.2 BRAM ORA Orientation . 46

3.3 ORA Placement and Comparison in SX devices 47

3.4 ORA Placement and Comparison in FX devices 48

3.5 MMTPG Control Shift Register . 51

3.6 FX12 BRAM BIST . 55

3.7 LX25 BRAM BIST . 56

3.8 V4BRAMTPG Syntax . 59

3.9 V4BRAMBIST Syntax . 59

3.10 V4BRAMMOD Syntax . 59

3.11 Example BIST program execution . 59

3.12 Partial BRAM BIST in LX60 . 60

3.13 LX60 BRAM BIST Speed-up factors . 64

3.14 Timing Analysis (Slowest / Fastest) . 66

3.15 Timing Analysis per BRAM BIST Configuration 67

4.1 FIFO ORA Placement . 70

4.2 FULL Flag Transition Timing . 73

xii

4.3 FIFOTPG Control Register . 74

4.4 LX60 FIFO BIST Configuration . 75

4.5 FIFO BIST Timing Analysis . 79

4.6 LX60 FIFO Speed-up Factors . 81

4.7 Routed FX12 FIFO BIST Configuration . 81

5.1 ECC and Cascade BIST Architecture . 84

5.2 Expected Cascade ORA Failure Locations 85

5.3 Parity Tree TPG [6] . 87

5.4 Cascade BRAM Operational Diagram . 90

5.5 FX12 ECC BIST . 92

5.6 FX12 Cascade BIST . 92

5.7 LX60 ECC BIST Speed-up Factors . 95

5.8 LX60 CAS BIST Speed-up Factors . 95

5.9 ECC BIST Timing Analysis . 96

5.10 Cascade BIST Timing Analysis . 97

6.1 BIST Speed-up for LX60 . 99

xiii

List of Tables

2.1 Overview of Resources in Virtex 4 Family Devices [2] 13

2.2 Summary of Virtex 2 and 4 BRAM Aspect Ratios 17

2.3 BRAM Signal Descriptions [2] . 19

2.4 BRAM Configuration Options [2] . 20

2.5 ECC Status Description . 22

2.6 FIFO Configuration Options [2] . 24

2.7 Virtex 4 Status Flag Clock Cycle Latency [2] 26

2.8 FIFO Port Signal Descriptions [2] . 26

2.9 Summary of Xilinx Design Tools . 28

2.10 Virtex 4 BSCAN Module Access Commands [3] 29

2.11 Common SRAM Fault Types . 32

2.12 March Test Notation Descriptions . 33

2.13 Common March Tests for Single Port Memories 34

2.14 Background Data Sequence for 8-bits . 35

2.15 Virtex 2 BRAM Summary . 41

3.1 Virtex 4 TPG March Test Algorithms . 50

3.2 BRAM BIST Configuration Detail . 52

3.3 BRAM Initialization Values . 53

3.4 XDL Argument Summary . 58

3.5 BRAM BIST Execution Detail . 62

xiv

3.6 Summary of LX60 BRAM BIST Download Size and Test Times 65

4.1 Summary of Virtex 4 FIFO Configurations 76

4.2 Summary of LX60 FIFO BIST Download Size and Test Times 80

5.1 ECC BRAM BIST Configuration Settings 88

5.2 Summary of Cascade BIST Configuration Settings 91

5.3 Summary of LX60 CAS BIST Download Size and Test Times 94

5.4 Summary of LX60 ECC BIST Download Size and Test Times 94

xv

Chapter 1

Introduction

Moore’s Law states that the complexity of Integrated Circuits (ICs) tends to double

every 24 months [7]. While this empirical observation was first observed in 1965, more

recently, the International Technology Roadmap for Semiconductors has predicted Moore’s

Law will persist at least until 2016 based upon industry data and forecasts [8]. One of

the earliest microprocessors, the Intel 4004, had approximately 2300 transistors [9]. For

contrast, recent state-of-the-art Field Programmable Gate Arrays (FPGAs) may contain

more than one billion transistors [10]. Clearly, one can see the exponential growth in

transistor count over the last four decades. The continuing problem with these higher

density ICs is that developing tests for such complex devices is becoming progressively

more difficult with each generation of new ICs. Recent IC fabrication technology has led

to larger chip sizes with smaller feature sizes, but also has introduced new types of defects

and subsequently increased the probability of defects [6].

Developing good tests for ICs is becoming a major factor in the cost of producing

working silicon ICs. One of the reasons for high costs is the disparity between the number

of Input/Output (I/O) pins in packaged ICs verses the number of transistors in the package.

Using external ’bed-of-nails’ test equipment, the costs of testing are generally attributed to

the fixed cost of the test equipment and the speed at which the actual tests can be performed.

IC manufactures generally employ tests that minimize the cost of the test equipment while

minimizing the device test time [11]. Improvements in Design for Test (DFT) methodology

have produced scan design and Built-in Self Test (BIST) [6][11].

1

1.1 Built-In Self Test (BIST)

DFT is a common practice in the VLSI design process. Traditionally, DFT for ICs has

involved using scan flip-flops. Scan flip-flops reduce the amount of time needed to generate

tests for sequential circuits because they can operate as a shift register to shift in a test

vector from an external Automated Test Equipment (ATE). When shifting a new test vector

into a scan chain, the output response from the previous vector is shifted out, which is then

can be compared to an expected value. Scan design eliminates the possibility of being

unable to initialize a flip-flop to a desired value. However, for many large VLSI circuits, the

number of test vectors that must be applied to achieve a necessary fault coverage percentage

has also increased. Coupled with a growing amount of test vectors and ATE not being able

to test at speed for newer ICs, a different approach for applying test vectors was introduced

[11].

BIST is a DFT technique that allows the Device Under Test (DUT) or a portion of

the DUT to tell the tester if it is fully functional. BIST implementations include a Test

Pattern Generator (TPG) which drives a DUT or many DUTs in parallel. The outputs of

the DUTs are then analyzed by an Output Response Analyzer (ORA) which determines

the correctness of the DUT. The general BIST architecture can be seen in Figure 1.1.

BIST solves two of the major issues with ATE based testing. First, the BIST circuitry is

implemented in the chip itself, and therefore it can perform at speed. Secondly, since the

BIST circuitry generates test vectors, the external tester merely needs to tell the device to

perform BIST and then report whether the device is faulty or not [6].

2

Figure 1.1: General BIST Architecture

Traditionally, BIST has been used to test logic and memory resources in VLSI cir-

cuits [6]. One caveat of BIST is that it usually implies an overhead in terms of in-

creased chip area which may in turn reduce the yield of the chip [6]. One may wonder

if it is possible to implement BIST with no overhead. BIST implementations proposed

in [12][13][14][15][16][17][18][19][20][21][22] suggest BIST for FPGAs can incur no overhead

penalty in terms of speed and area.

1.2 FPGAs

An FPGA can be described as “an array of logic blocks that can be programmably

interconnected to realize different designs” [23]. A general FPGA architecture, as seen

in Figure 1.2, contains I/O cells that facilitate signals entering and exiting the device.

Programmable Logic Blocks (PLBs) perform the necessary digital logic functions and the

programmable routing resources direct signals both between PLBs and the overall signal

path from inputs to outputs.

PLBs vary among manufactures, but a simple PLB can contain Look-up Tables (LUTs),

flip-flops/latches, and multiplexers. A simple PLB architecture is illustrated in Figure

3

Figure 1.2: FPGA Architecture

Figure 1.3: Basic PLB Architecture

4

1.3. LUTs can be configured as the truth table for a given logical function and they can

implement small distributed random access memories (RAMs). The interconnection or

routing between PLBs is realized by configuring Programmable Interconnect Points (PIPs)

to create signal paths from wire segments inside the FPGA [23].

FPGA programming techniques vary among manufacturers, and include static RAM

(SRAM), fuse/anti-ifuse, and floating gate methods. SRAM is the most popular program-

ming technique for advanced FPGAs because SRAM based designs allow high density and

fast configuration [23]. SRAM based FPGAs contain a configuration memory that, when

written to, specifies the operation of PLBS, I/O cells, and routing resources. Besides logic

blocks and routing resources, the configuration memory may configure other embedded re-

sources in the FPGA such as embedded RAMs, multipliers, and digital signal processors

(DSP). The inclusion of additional embedded resources allows for higher PLB utilization

because the embedded resources can offload much of the functionality of digital systems.

1.3 Embedded Memory Resources in FPGAs

FPGA manufacturers have incorporated embedded memories for many product genera-

tions [10][24]. Previously, storing large quantities of data internally required an appreciable

amount of PLB resources to implement a memory resource. While most designers frequently

utilize the memory resources as regular RAM modules, several FPGAs now allow system

designers to configure memory resources as multi-port RAMs and First-In-First-Out (FIFO)

modules. The advent of dedicated memory resources extends the potential of FPGAs to act

as a programmable System-on-Chip (SoC). However, as advantageous as memory resources

5

are, there are testability concerns that must be addressed. Traditionally, testing RAMs re-

quires applying test patterns that read and write data in such an order that within a set of

faults being tested, any such fault will be sensitized if present. These testing algorithms are

generally known as march tests. There have been many march tests developed for detecting

certain types of faults within memory resources [25][26]. Unfortunately, applying march

tests to embedded memories is complicated. ATE is generally used to verify production

ICs. However, ATEs usually provide test patterns to the external I/O pins of an IC. A

better testing approach is needed because most FPGAs contain many memory resources

whose collective fan-in and fan-out are much greater than the available I/O pins [10][24].

BIST is an ideal solution for testing embedded resources in FPGAs. A BIST approach

offers more flexibility for testing than an external ATE because test pattern generation is

not limited by the external I/O availability. Previous implementations have shown that this

approach is quite feasible and efficient for testing embedded memories [27][17][28].

1.4 Thesis Statement

The goal of this thesis is to develop a BIST architecture and BIST configurations

for testing embedded memories in Xilinx Virtex 4 FPGAs. This BIST architecture will

address minimizing both the test time required and the memory required to store the

BIST configurations. This minimization is achieved by designing the BIST architecture

to efficiently utilize an FPGA configuration technique known as partial reconfiguration.

The remainder of this thesis is organized as follows: In Chapter 2, additional background

information on BIST for FPGAs will be given along with details toward testing SRAMs

in general and a detailed overview of the Virtex 4 FPGA architecture. In Chapter 3, a

6

BIST architecture for Virtex 4 embedded memories will be presented with applications to

memory resources configured to operate in a basic RAM mode of operation. Chapters 4 and

5 will apply the presented BIST architecture to memory resources configured to operate as

FIFOs and Error-Correcting Code (ECC) RAMs, respectively. Chapter 6 will summarize

the work presented in this thesis and include ideas for future research in this field.

7

Chapter 2

Background

This chapter presents an overview of different BIST techniques for FPGAs found in

the literature. The architecture of the Xilinx Virtex 4 FPGA will also be presented with

an emphasis on the dedicated memory resources referred to as block RAMs (BRAMs).

Background on SRAM testing will be presented that predominately focuses on march tests

and the associated fault models for which they are designed.

2.1 Introduction to FPGAs

FPGAs differ from Application Specific Integrated Circuits (ASICs) because they are

made of logic and routing resources capable of implementing most digital systems while not

being explicitly fabricated for a specific task. For example, one might buy a microproces-

sor, an ASIC, as part of a digital system while another designer might use an FPGA to

implement a microprocessor and other supporting functions all in the same IC. Further-

more, another designer might use the exact same FPGA in a DSP application. Clearly, the

flexibility of FPGAs is its main advantage. Another advantage is the reduced non-recurring

engineering costs by eliminating the need to design and fabricate custom ASICs. The main

disadvantage, however, of FPGAs is higher chip area, higher power consumption, and lower

operational speeds as compared to a custom ASIC which is due to extra programming cir-

cuitry overhead. Also, FPGAs typically are more expensive than traditional ASICs so they

are usually relegated to low volume or prototype designs [23].

8

In order for an FPGA to realize a digital system, it must be programmed [23]. Several

programming technologies exist, but SRAM based FPGAs are currently the most common

and popular. Other older programming technologies exist such as fuse or anti-fuse based

and mask-programmable FPGAs. However, these programming technologies only allow for

one-time programmability, either at the factory in the case of mask-programmed FPGAs or

in the field as is the case with fuse or anti-fuse based FPGAs. While SRAM based FPGAs

are advantageous in their capabilities of being programmed more than once, they also must

be reprogrammed each time the chip is power cycled. This is necessary because SRAM is

inherently a volatile storage medium [1].

When a FPGA is configured, the configuration data, also known as a bitstream, is

downloaded to the device. The bitstream contains all of the configuration bits that, when

downloaded, implement a desired logic function. Configuration bits can control many re-

sources inside the FPGA such as a LUTs’ contents, routing resources, and the operational

mode of embedded intellectual property (IP) cores such as BRAMs and DSP modules. Con-

figuration bits also can determine the initialization values of flip-flops in PLBs and data

values stored in BRAMs [29][2]. Figure 2.1 illustrates the use of configuration bits. In Figure

2.1a, a configuration bit is used to block or pass a signal for implementing programmable

routing resources. In Figure 2.1b, configuration bits are used to implement a LUT such

that a 2-input truth table can be realized for a logical function. Configuration bits can also

initialize a BRAM as seen in Figure 2.1c.

As described in [1], configuration memory SRAM cells do not require fast read and

write performance, which allows FPGA designers to use a five transistor SRAM as shown

9

Figure 2.1: Configuration Bits in FPGAs

in Figure 2.2 instead of a more standard six transistor SRAM cell that provides both the

complemented and uncomplemented form as seen in Figure 2.3.

Another important attribute concerning FPGA configuration is the ability for FPGAs

to be partially reconfigured. Most modern FPGAs like the Xilinx Virtex series support

partial reconfiguration [3][29]. Partial reconfiguration allows for a reduction in bitstream size

by only storing the difference between a previous full download and the changes needed to

implement the modified system function. Partial reconfiguration allows a designer to extract

more functionality from a smaller FPGA for usage scenarios where a subset of implemented

system functions can be swapped in and out of the FPGA without compromising critical

performance parameters. In terms of testing FPGAs, partial reconfiguration is a valuable

tool that allows the test configuration download time to be reduced.

10

Figure 2.2: A Five Transistor Configuration SRAM Cell [1]

Figure 2.3: A Six Transistor Configuration SRAM Cell [1]

11

2.2 Virtex 4 Architecture

Xilinx released the Virtex 4 FPGA family in 2004 and, at the time of its introduction,

it was one of the most complex FPGAs available on the market. For its production, Xilinx

used a 1.2V, 90nm, triple-oxide process and it is only available in a flip-chip BGA package

[10]. The Virtex 4 PLB contains four slices and each slice features two 4-input LUTs and

two flip-flops. Dedicated memory storage is provided via a programmable 18K-bit SRAM

called a block RAM. Previously in Virtex 2, an 18 x 18 multiplier module was available

[29]. In Virtex 4, the multiplier has grown into a complete DSP module that incorporates

a 48-bit accumulator attached to the 18 x 18 multiplier. The accumulator can also perform

addition and subtraction on two data words without first being processed by the multiplier.

Virtex 4 is available in three distinct product families: LX, SX, and FX as summarized

in Table 2.1. The LX family contains eight devices that have been tailored toward design

implementations that have high PLB usage. The SX family consists of three devices and

is targeted toward DSP-oriented designs due to higher number of DSP modules. The FX

family is a blend of the SX and LX family and provides more specialized modules which

include PowerPC (PPC) and high performance I/O Serial/Deserial (SERDES) modules.

Virtex 4 employs a column based architecture. Each device has a center column which

divides the FPGA into two halves. Beginning from the center column and moving in either

direction, first there are columns of PLBs. The width of the first columns of PLBs differs

by device size and family. Moving outward again, the next resource will either be a column

of DSP or BRAM modules as illustrated in Figure 2.4. In FX family devices, either one or

two PPC modules will be positioned to the left of the center column.

12

Table 2.1: Overview of Resources in Virtex 4 Family Devices [2]
Device Row x Col Slices DSPs BRAMs PPCs I/O

XC4VLX15 64 x 24 6,144 32 48 - 320
XC4VLX25 96 x 28 10,752 48 72 - 448
XC4VLX40 128 x 36 18,432 64 96 - 640
XC4VLX60 128 x 52 26,624 64 160 - 640
XC4VLX80 160 x 56 35,840 80 200 - 768
XC4VLX100 192 x 64 49,152 96 240 - 960
XC4VLX160 192 x 88 67,584 96 288 - 960
XC4VLX200 192 x 116 89,088 96 336 - 960
XC4VSX25 64 x 40 10,240 128 128 - 320
XC4VSX35 96 x 40 15,360 192 192 - 448
XC4VSX55 128 x 48 24,576 512 320 - 640
XC4VFX12 64 x 24 5,472 32 36 1 320
XC4VFX20 64 x 36 8,544 32 68 1 320
XC4VFX40 96 x 52 18,624 48 144 2 448
XC4VFX60 128 x 52 25,280 128 232 2 576
XC4VFX100 160 x 68 42,176 160 376 2 768
XC4VFX140 192 x 84 63,168 192 552 2 896

The smallest addressable unit of configuration memory in Virtex 4 is referred to as a

frame, and each frame consists of 41 32-bit words. During the creation of a configuration

bitstream, successive frame data along with frame addresses are written to the configura-

tion bitstream. Designs utilizing regular structures, such as multiple identically configured

BRAMs or replicated system logic in fault tolerant designs, can take further advantages of

multi-frame write capabilities. Multi-frame write capabilities allow the configuration bit-

stream to specify multiple frame addresses to be given the same frame data. This can allow

substantial reductions in configuration bitstream sizes and can be beneficial to reducing the

time to perform BIST as discussed in Chapter 3.

All or parts of the configuration memory can also be read back. Configuration memory

readback can be performed for various reasons such as configuration download verification,

13

but for BIST, readback is used to retrieve ORA results. In order to capture the contents

of flip-flops, the CAPTURE module must be instantiated in the design. The CAPTURE

module permits the current contents of flip-flops to overwrite their initial specified state

stored in the configuration memory. Once the current flip-flop values have been captured,

the ORA results can be retrieved via configuration memory readback.

Figure 2.4: Basic Virtex 4 Architecture

2.2.1 Virtex 4 PLBs

Virtex 4 PLBs each consist of 2 SLICEMs and 2 SLICELs as pictured in Figure 2.5. A

simplified representation of a SLICE is shown in Figure 2.6. A SLICEL contains 2 LUTs and

2 flip-flops plus multiplexers and logic gates to allow implementation of complex switching

functions that span multiple SLICELs and even multiple PLBs. SLICEMs are a superset

of SLICELs and have additional specialized features that enable them to be used as small

distributed memories or function as a fast shift register. This thesis does not focus on

testing PLBs and the slices within them. PLBs will be used in the work presented in this

14

thesis, however their use will only be to implement TPG and ORA components to facilitate

testing BRAMs.

Figure 2.5: Virtex 4 PLB [2]

2.2.2 Virtex 4 BRAMs

This thesis concentrates on the development of BIST for BRAMs in Virtex 4 FPGAs.

In [14], BIST was implemented for distributed RAMs, BRAMs, and multipliers in Xilinx’s

Virtex 2 series FPGAs. Distributed RAMs are memory resources created by using PLBs

to create small memories. The BRAMs available in both Virtex 2 and 4 share much of the

same functionality. The BRAM features present in Virtex 2 can be viewed as a subset of

those present in Virtex 4. The Virtex 4 BRAM, as seen in Figure 2.7, is a true dual-port

RAM meaning that is has dual address and data input and output buses. The memory array

can be configured in multiple aspect ratios that utilize up to 18K of addressable memory as

15

Figure 2.6: Simplified Virtex 4 Slice Diagram [2]

16

outlined in Table 2.2. For word sizes of eight bits and larger there are additional parity bits

associated with each word. It is important to note, however, that the user is responsible

for writing data to the parity bit locations since parity over the written data word is not

calculated automatically. As for BRAM performance, all BRAM read and write operations

can be completed in a single clock period unless using a registered output mode.

Table 2.2: Summary of Virtex 2 and 4 BRAM Aspect Ratios
Word Depth Word Width Parity Width

512 32 4
1K 16 2
2K 8 1
4K 4 -
8K 2 -
16K 1 -

Table 2.3 lists all of the input and output signal names and functionality found in a

Virtex 4 BRAM. It should be noted that the Virtex 2 BRAM uses the same signal names

except for the cascade input and outputs. Unlike Virtex 2, Virtex 4 BRAMs support

cascading two 16K x 1-bit configured BRAMs to create a 32K x 1-bit memory without

utilizing additional PLBs. All of the inputs are captured at either the rising or falling edge

of the input clock depending if the BRAM clock input is programmed to be rising or falling

edge triggered. Also, the following signals are programmable in their active levels: WE, EN,

SSR, and REGCE. The WE signal is actually a 4-bit bus which enables the ability to write

a single byte to a BRAM when configured to have a data word wider than a byte. This

feature is most commonly used in conjunction with combining a PPC module and several

BRAMs such that they implement program and data storage for the processor.

Table 2.4 summarizes additional configuration parameters for each BRAM. The SAVE-

DATA configuration option determines if a partial reconfiguration will overwrite the present

17

Figure 2.7: Virtex 4 BRAM [2]

18

Table 2.3: BRAM Signal Descriptions [2]
Port Name Description
DI[A,B] Data Input Bus
DIP[A,B] Data Input Parity Bus
ADDR[A,B] Address Bus
WE[A,B] Write Enable
EN[A,B] Port Enable
SSR[A,B] Set/Reset
CLK[A,B] Clock Input
DO[A,B] Data Output Bus
DOP[A,B] Data Output Parity Bus
REGCE[A,B] Output Register Clock Enable
CASCADEIN[A,B] Cascade input pin for 32K x 1 mode
CASCADEOUT[A,B] Cascade output pin for 32K x 1 mode

contents of a BRAM. This option is useful if the reconfiguration is targeted at changing

the system function that operates on data stored in the BRAM. The RAM EXTENSION

parameter for each port determines which BRAM is the UPPER or LOWER BRAM when

configured in the cascade mode of operation. There are no restrictions on whether a partic-

ular BRAM can be UPPER or LOWER. This designation is decided by either the designer

or the constraints associated with the available resources during resource placement. It is

important to point out that the BRAMs located on a bottom row or directly above a PPC

modules do not have CASCADEIN[A,B] inputs. Likewise, BRAMs located on the top row

or directly below a PPC module do not have CASCADEOUT[A,B] ports. The DO REG

parameter determines if the output data bus is either latched or sent through an extra flip-

flop. The READ WIDTH and WRITE WIDTH parameters determines the selected BRAM

aspect ratio per port. The WRITE MODE parameter selects one of three supported write

modes. READ FIRST brings the current contents of the addressed word to the output

during a write operation. Likewise, WRITE FRIST writes the input data to the addressed

19

location while it also forces the input data to the output of the BRAM. The NO CHANGE

write mode prevents the data output from changing during a write operation. Only a read

operation will change the output data.

Table 2.4: BRAM Configuration Options [2]
Configuration Attribute Parameters
SAVEDATA TRUE, FALSE
RAM EXTENSION [A,B] LOWER, UPPER, NONE
DO [A,B] REG 0,1
INVERT CLK DO[A,B] REG TRUE, FALSE
READ WIDTH [A,B] 36,18,9,4,2,1,0
WRITE WIDTH [A,B] 36,18,9,4,2,1,0
WRITE MODE [A,B] READ FIRST, WRITE FIRST, NO CHANGE

BRAM Error Checking Code (ECC) and Cascade Operational Modes

A pair of BRAMs can be configured to either implement a 512 x 72-bit ECC RAM

or a 32K x 1-bit RAM. However, there are several restrictions for these additional modes

concerning the actual placement during design implementation. An ECC BRAM can be

placed in a Virtex 4 so long as the bottom BRAM is located on an even row. For clarity,

the numbering convention Xilinx uses sets the bottom most row to be row zero. If an FX

devices is being used, an ECC BRAM can not use the BRAM directly below or above the

PowerPC core. Restrictions on the placement for cascaded BRAMs are somewhat less strict.

Any pair of BRAMs in a column can be cascaded so long as the two BRAMs are physically

adjacent and the pair does not span a PPC module when using FX family devices [2].

An ECC RAM is commonly used in systems that are designed to be fault tolerant. In

Virtex 4, when a data word is written to an ECC RAM, a Hamming code is generated for

the written data word and stored alongside the data. A Hamming code is a form of an

20

error checking code that inserts Hamming bits throughout a data word. Each Hamming bit

contains parity over a subset of the data word. The contents of all the Hamming bits for a

given data word is what is referred to as the Hamming code associated with a data word.

The Hamming code is designed such that any single bit error in the Hamming code or in

the data word will be able to indicate the presence of a single-bit error and indicate which

bit is incorrect. If a Hamming bit is allocated to generate parity over the entire Hamming

code and the data, then it is possible to provide single-bit error correction and double-bit

error detection [30].

Virtex 4 uses what is termed a (72,64) Hamming code, meaning the Hamming codeword

is 72 bits with 64 of those bits being the actual data. Seven of the eight Hamming bits

are used to provide single-bit correction and the eighth bit is used to provide parity over

the entire Hamming codeword which enables double-bit error detection [30]. Figure 2.8

illustrates the architecture of an ECC BRAM. An ECC BRAM also generates status bits

that indicate if a single bit error was corrected or a double bit error was detected. Table 2.5

gives a description of the three valid ECC status words. It is important to note, however,

that when a single bit error is corrected in the Virtex 4 ECC implementation, only the data

at the output registers of the ECC BRAM are corrected. The contents stored in the BRAM

are not corrected automatically [2].

The cascade mode of operation is implemented by using the MSB of the ADDR[A,B]

bus, a single configuration bit, and dedicated routing to send the lower BRAM data output

to the upper BRAM in the cascade pair. Figure 2.9 illustrates two BRAMs configured as a

cascade pair. Data written to a cascaded pair is routed to either the lower or upper BRAM

by the MSB of the address bus. In addition, the MSB of the address bus selects the data

21

from either the lower or upper BRAM during read operations. The lower BRAM outputs its

data to the dedicated routing between a cascade pair and is then output via a multiplexer

that is selected by the MSB of the address bus. Both lower and upper BRAMs in a cascade

pair output data during every read operation but the output of the upper BRAM is the

only valid output for a cascade configured BRAM pair [2].

Table 2.5: ECC Status Description
Status[1:0] Condition
00 No error
01 Single Bit error corrected
10 Double Bit error detected
11 Invalid status condition

Figure 2.8: ECC BRAM Architecture [2]

2.2.3 Virtex 4 FIFOs

A First In, First Out (FIFO) memory is commonly used in digital systems to handle

data flow control and buffering. A FIFO holds data in a queue such that the first data stored

22

Figure 2.9: BRAM Cascade Operational Diagram [2]

is also the first data able to be retrieved. In Virtex 4 each BRAM can be configured as a

FIFO without utilizing any surrounding PLBs. The FIFO implementation, as illustrated

in Figures 2.10 and 2.11, generates both read and write pointers used to retrieve and store

data from the BRAM [2]. A description of each FIFO input and output is given in Table

2.8. Also, status flags are generated to determine the state of the FIFO. In earlier FPGAs,

such as Virtex 2, implementing a FIFO required using a substantial number of PLBs for

this supporting logic.

Each Virtex 4 FIFO can be independently configured to four different depths as sum-

marized in Table 2.6. Like BRAMs, the FIFO control signals RDCLK, WRCLK, RDEN,

WREN, and RST also have programmable active levels. The first-word fall-through (FWFT)

operational mode extends the depth of a FIFO by one data word. In this mode, the first

23

data item written to the FIFO is not stored in the BRAM, but is immediately available at

the registered outputs. The remaining configuration options pertain to the programmable

Almost Full/Empty flag limits. These programmable flags are set by the designer to help

coordinate the status of the FIFO with surrounding logic.

Table 2.6: FIFO Configuration Options [2]
Configuration ALMOST EMPTY OFFSET ALMOST FULL OFFSET

Standard FWFT
4k x 4 5 to 4092 6 to 4093 4 to 4091
2k x 9 5 to 2044 6 to 2045 4 to 2043
1k x 18 5 to 1020 6 to 1021 4 to 1019
512 x 36 5 to 508 6 to 509 4 to 507

The timing characteristics of the various FIFO status flags are given in Table 2.7. The

most interesting attribute in this table is the assertion of the FULL flag. The FULL flag

is asserted one clock cycle after the last possible data entry is written and deasserts 3 to

4 clock cycles later depending on whether the standard or FWFT operational modes is

used. This latency means that one could accidentally write to a FIFO when in actuality

it is already full. To remedy this problem, Xilinx recommends using the ALMOST FULL

flag to signal the FIFO is full [2]. In terms of testing, the FIFO’s status flag timing creates

several problems in terms of the ability to create test algorithms that fully test the device

in all modes of operation. This issue will be discussed in detail in Chapter 4.

24

Figure 2.10: Virtex 4 FIFO Implementation [2]

Figure 2.11: Virtex 4 FIFO [2]

25

Table 2.7: Virtex 4 Status Flag Clock Cycle Latency [2]
Clock Cycle Latency Assertion Deassertion

Standard FWFT Standard FWFT
EMPTY 0 0 3 4

FULL 1 1 3 3
ALMOST EMPTY 1 1 3 3

ALMOST FULL 1 1 3 3
READ ERROR 0 0 0 0

WRITE ERROR 0 0 0 0

Table 2.8: FIFO Port Signal Descriptions [2]
Port Name Direction Description
DI Input Data input.
DIP Input Parity-bit input.
WREN Input Write enable, Active high or low.
WRCLK Input Clock for write domain operation. Rising or

falling edge triggered.
RDEN Input Read enable, Active high or low.
RDCLK Input Clock for read domain operation. Rising or

falling edge triggered.
RESET Input Asynchronous reset of all FIFO functions, flags,

and pointers. Active high or low.
DO Output Data output.
DOP Output Parity-bit output.
FULL Output All entries in FIFO memory are filled. No addi-

tional write enable is performed.
ALMOSTFULL Output Almost all entries in FIFO memory have been

filled.
EMPTY Output FIFO is empty. No additional read can be per-

formed.
ALMOSTEMPTY Output Almost all valid entries in FIFO have been read.
RDCOUNT Output The FIFO data read pointer.
WRCOUNT Output The FIFO data write pointer.
WRERR Output When the FIFO is full, any additional write op-

eration generates an error flag.
RDERR Output When the FIFO is empty, any additional read

operation generates an error flag.

26

2.2.4 Virtex 4 CAD Tools

Xilinx provides a complete set of computer-aided design (CAD) tools that enable a

designer to implement digital systems using a high-level design methodology that supports

schematic entry, hardware description language (HDL) synthesis, and IP core integration.

A designer can either use a graphical user-interface (GUI), Project Navigator, to imple-

ment designs, or command-line tools can be used. By using command-line tools and batch

files, one can automate the BIST configuration generation process. Table 2.9 summarizes

several Xilinx tools that are used to implement the BIST configurations presented in this

thesis. BITGEN has several options that can be utilized in BIST configuration generation.

BITGEN supports the creation of partial configuration bitstream from a set of regular full

configuration bit-files. During the creation of partial bit-files BITGEN compares two NCD

design files and generates a bit-file containing the difference between the two. The XDL

command-line tool allows the conversion between an NCD file and an XDL file. An XDL

file type contains a human-readable netlist description of a FPGA configuration. XDL can

convert an XDL file to an NCD file type which describes a given FPGA configuration, but

this file type is a binary file which is not human-readable [31].

2.2.5 Virtex 4 Boundary Scan

Virtex 4 implements boundary scan, also called JTAG, that meets IEEE Standard

1149.1-2001 [3]. Boundary scan was originally intended as a mechanism for testing inter-

connect between multiple IC chips on a system board. A boundary scan implementation

includes the following four signals: Test Clock (TCK), Test Mode Select (TMS), Test Data

In (TDI), and Test Data Out (TDO). By asserting TMS to either a logic high or low during

27

Table 2.9: Summary of Xilinx Design Tools
Application Input Output Description

File Type File Type
XST VHDL, Verilog NGC Synthesis Tool - Compiles HDL and gener-

ates a design netlist compatible with Xil-
inx devices

NGDbuild NGC NGD Compiles designs to common format
MAP NGD NCD Translates post-synthesis design to a de-

vice specific implementation
PAR NCD NCD Places and routes device specific designs

BITGEN NCD .BIT, .RBT Creates bitstream configuration files for
download

XDL XDL, NCD NCD, XDL Converts in between XDL and NCD de-
sign formats

TRCE NCD TWR TRACE - Generates configuration timing
analysis report

a rising transition on TCK, one can navigate a state machine termed the test access port

(TAP) controller as illustrated in Figure 2.12 [11]. However, the technology has evolved and

now most FPGAs allow for device programming via boundary scan [29][3]. Xilinx’s Virtex

series of FPGAs also allow connecting boundary scan signals to internal FPGA logic. This

connection is made via what Xilinx calls boundary scan (BSCAN) modules. In Virtex 4,

four BSCAN modules are available for use and each module is selected by shifting a specific

data word into TAP’s instruction register as shown in Table 2.10. The convention that is

used when shifting data either into the data register when in state Shift-DR or the instruc-

tion register when in state Shift-IR is to assert TMS to a ’1’ on the last data bit transmitted

over TDI.

28

Figure 2.12: TAP Controller State Diagram [3]

Table 2.10: Virtex 4 BSCAN Module Access Commands [3]
Boundary Scan Binary Code Description

Command (9:0)
USER1 1111000010 Access user-defined register 1
USER2 1111000011 Access user-defined register 2
USER3 1111100010 Access user-defined register 3
USER4 1111100011 Access user-defined register 4

29

2.3 SRAM Testing

Most digital systems incorporate some type of memory element whether it is an em-

bedded SRAM in a microprocessor’s cache or a standalone memory in a digital system.

Applications that utilize memories are quite abundant and thus there is a need to ensure

that memory devices such as SRAMs are fault-free. Figure 2.13 illustrates a functional

model of a common SRAM. As seen in this figure, an array of memory cells and support-

ing functions such as decoders, sense amplifiers, and storage registers are all components

integral to a SRAM. Figure 2.14 shows how a two-port memory can be made by additional

word and bit lines that connect the the cross-coupled inverters.

Figure 2.13: SRAM Memory Functional Model

30

Figure 2.14: Structural Model of a two-port SRAM cell

2.3.1 SRAM Fault Models

In [26], van de Goor shows that a simple stuck-at fault (SAF) model is not sufficient

for modeling faults found in memory devices. Table 2.11 lists common types of faults for

SRAMs and are sometimes referred to as simple faults. Coupling faults can be further

classified into four subtypes: inversion coupling faults (CFin), idempotent coupling faults

(CFid), state coupling faults (CFst), and disturb coupling fault (CFdst). A CFin refers to

a ↑ and/or ↓ write operation in a coupling cell that causes an inversion in the coupled cell.

For example, if cell A and cell B are both ’1’ and a ’0’ is written to cell A, a CFin fault in

cell B would invert its value to a ’0’ as well. In this case cell A is considered the coupling

cell and cell B is deemed the coupled cell. A CFid is similar to a CFin except that the

coupled cell is forced to either a 1 or 0 instead of an inversion. A CFst is slightly more

complicated as the coupled cell is only affected if the coupling cell is in a certain state. For

example, a ’1’ in cell A could force cell B to either a ’1’ or ’0’, but if cell A is a ’0’, no fault

31

effect would be observed. Finally, a CFdst refers to a fault where the coupled cell undergoes

a transition due to a read or write operation to the coupling cell [32]. When coupling faults

are considered as part of a memory’s fault model, often the occurrence of multiple faults is

considered. These multiple faults are said to be linked and are referred to as linked faults.

The term linked is used because in the presence of multiple faults, each fault can possibly

influence the effect of the other faults [11].

Table 2.11: Common SRAM Fault Types
Fault Type Description
Stuck-At (SAF) A logic value of a memory cell always being 1 or 0
Transition Faults
(TF)

Memory cell not able to make a 0 to 1 or 1 to 0 transition

Coupling Faults
(CF)

A change in one memory cell, the coupling cell, causes an-
other cell , the coupled cell, to change its value

Address Decoder
Faults (AF)

The expected memory cell is not selected or another cell is
selected

Data Retention
Faults (DRF)

The expected stored data is corrupted

Pattern Sensitive
Faults (PSF)

The contents of a memory cell changes the value of another
memory cell

2.3.2 March Tests for Single-Port Memories

Memory devices are traditionally tested with march tests. March tests apply defined

test patterns consisting of writing and reading varying patterns of 1s and 0s to and from

a memory device. Table 2.12 lists common notations used to describe march tests while

Table 2.13 lists several march tests of varying complexity. For example, when running the

MATS+ march test on a memory device, a ’0’ is written to each memory location in either a

descending or ascending traversal. Next, starting at the lowest addressed memory location

and traversing upward, a ’0’ is read and a ’1’ is written to each memory location. The next

32

Table 2.12: March Test Notation Descriptions
Notation Description
r A read operation
w A write operation
r0 Read a 0
w0 Write a 0
w1 Write a 1
↑ Traverse upward through memory addresses
↓ Traverse downward through memory addresses
l Traverse any direction through memory addresses

sequence begins at the highest memory location and traverses downward while reading a

’1’ and then finally writing a ’0’ to each memory location.

In terms of fault detection, MATS+ is able to detect all SAF and all AF [11]. More

complex tests such as March Y can detect additional faults, those being TF and CFin

and some linked faults. In addition, March C- can detect most all types of CFs. The

general trend for march test fault detection is that longer, more complex tests offer higher

fault detection. While high fault detection is obviously desired, some tests like those used

specifically to target pattern sensitive faults can be unpractical, especially if the DUT is of

any sufficient size.

In [32], van de Goor presents March LR as “a test for simple faults and realistic linked

faults.” The set of realistic linked faults further reduces the universe of possible linked

faults by removing combinations that are not likely to occur in actual devices. Realistic

linked faults do not include linked faults containing one or more CFins and linked faults

containing two CFids or two CFdsts are also removed. Van de Goor shows that March LR

is superior to March C- as it can also detect some neighborhood PSFs (NPSFs)[32].

33

Table 2.13: Common March Tests for Single Port Memories
March Test Description Test time
MATS+ {l(w0);↑(r0,w1);↓(r1,w0)} 5N
March C- {l(w0);↑(r0,w1);↑(r1,w0);↓(r0,w1);↓(r1,w0);l(r0)} 10N
March Y {l(w0);↑(r0,w1,r1);↓(r1,w0,r0);l(r0)} 8N
March LR {l(w0);↓(r0,wl);↑ (r1,w0,r0,wl);↑(r1,w0);↑(r0,w1,r1,w0);l(r0)} 14N

Note: N = Number of address locations

All of the march tests listed in Table 2.13 are designed for bit-oriented memories

(BOMs), meaning each memory word is a single bit. However, many memories, includ-

ing the Virtex 4 BRAM, perform as a word-oriented memory (WOM), meaning each word

is more than a single bit. Executing BOM-based march tests on WOM involves extending

the bit operation to the entire word. For example, if a w0 operation is to be applied to

a BOM of 4-bits it could be interpreted as w0000, meaning write all zeros to each bit in

the data word. Writing and reading either all zeros or ones in a WOM does not suffi-

ciently detect CF between cells in a data word. In [4], van de Goor et al. develop methods

for converting BOM march tests, specifically March LR, to WOM march tests by using

background data sequences (BDS). Instead of writing either all zeros or ones, BDS involve

writing binary patterns consisting of alternating ones and zeros and alternating sets of ones

and zeros. Table 2.14 list all possible BDS for an eight bit word. The number of BDS

for a M-bit word is given by Equation 2.1. Figure 2.15 illustrates converting March LR to

March LR with 4-bit BDS. The test length increases from 14N to 30N, where N is number

of words in the memory. In general, Equation 2.2 gives the expected test length for a WOM

march test derived from a BOM march test. The variable ’M’ in Equation 2.2 refers to the

number of bits in a data word. Converting March LR to incorporate BDS requires running

34

{[l(w0000);↓(r0000,wl111);↑(r1111,w0000,r0000,wl111);
↑(r1111,w0000);
↑(r0000,w1111,r1111,w0000);l(r0000)]

[↑(r0000,w1111,r1111);↓(r1111,w0000,r0000);
↑(r0000,w0101,w1010,r1010);↓(r1010,w0101,r0101);
↑(r0101,w0011,w1100,r1100);↓(r1100,w0011,r0011);↑(r0011)]}

Figure 2.15: March LR with 4-bit BDS [4]

Table 2.14: Background Data Sequence for 8-bits
Normal # Inverse
0 00000000 1 11111111
2 01010101 3 10101010
4 00110011 5 11001100
6 00001111 7 11110000

the original March LR test as enclosed in the first set of square brackets in Figure 2.15 and

then addition additional marches that incorporate BDS.

#BDS = dlog2 (M)e+ 1 (2.1)

Test Length = (16 + 7 ∗ dlog2 (M)e (2.2)

2.3.3 March Tests for Dual-Port Memories

In [5], Hamddioui and van de Goor describe two march tests for dual-port memories.

Specific march tests are required for both ports in order to detect specific faults in dual-

port memories. Dual-port memories generally support the following operations by the two

ports[5]:

• Simultaneous read and write operations to different addresses.

35

• Simultaneous read and write operations to the same address. For this case, however,

the write operation is assumed to have higher priority over the read operation.

• Two simultaneous reads to either the same or different addresses.

• Two simultaneous write operations to different addresses.

The only operation not allowed is simultaneous write operations to the same address

location. The Virtex 4 BRAM supports the same operations and limitations discussed

above. The faults associated with dual-port memories are classified as 2PF1 and 2PF2[5].

Faults classified as 2PF1 are sensitized by two simultaneous reads or both a read and write

operation. Two types of faults are associated with two simultaneous reads. In one case,

the correct data value is read through the sense amplifier in the SRAM cell, but the actual

data stored in the cell will flip. The other case is when sense amplifier reads an incorrect

value and the actual data stored is also flipped. Simultaneous read and write operations can

also cause the intended write operation to not occur. March s2pf, as seen in Figure 2.16,

detects all 2PF1 type faults. The ’:’ symbol used in Figure 2.16 separates the operation on

each port. For example, ’r1:-’ would indicate a read operation on one port and any allowed

operation on the second port.

Figure 2.16: March s2pf [5]

36

2PF2 faults are similar to the 2PF1 type faults except the affected cell is a neighboring

cell. For example, a fault may flip a neighboring celli if two read operations occur on cellj .

Another type of fault occurs when a read occurs at celli and a write to cellj . During this

scenario, the fault will cause the read to return the wrong value [5]. March d2pf, as seen in

Figure 2.17, is able to detect all 2PF2 faults. The the variables ‘c’ and ’r’ correspond to the

memory cell column and row location, respectively. The variables ‘C’ and ‘R’ represent the

number of memory cell columns and rows, respectively. The widest word size, 36-bits, is

assumed to be the memory array column size. When this march test is applied to BRAMs

in Virtex 4, ’C’ is considered to be zero and R is ’512’.

Figure 2.17: March d2pf [5]

2.4 Overview of BIST for FPGAs

Developing BIST for FPGAs consists of designing test configurations that fully test all

components within a FPGA. Traditionally, these components have been grouped into the

following types of tests: BIST for PLBs, BIST for I/O Buffers, BIST for programmable rout-

ing resources, and BIST for specialized embedded cores such as large SRAMs [14][18][33].

The work presented in this thesis concentrates on testing Virtex 4 BRAMs which fall into

the category of testing specialized embedded cores. BIST for PLBs is also called Logic BIST

37

and this is the most common BIST found in the literature. Logic BIST usually requires

repeatedly configuring PLBs in different modes of operations and applying test patterns the

PLBs under test. A general BIST architecture is illustrated in Figure 2.18. Two identical

TPGs drive alternating columns of blocks under tests (BUTs) whose outputs are observed

by two adjacent ORAs. For Logic BIST, all of the BIST components are implemented us-

ing PLBs. In certain implementations such as in [34], the TPGs can be implemented using

other available specialized cores. In order to test all PLBs in a FPGA, the entire BIST

architecture must be flipped such that the PLBs acting as BUTs are now ORAs and the

PLBs previously implementing ORAs are now configured to be BUTs [34].

Figure 2.18: A General Comparison Based BIST Architecture

Several different types of ORAs are used in BIST for FPGAs. A comparison-based

ORA design is the most common. Figures 2.20 and 2.21 illustrate two types of comparison-

based ORAs: one with a shift chain and one without a shift chain. Using an ORA design

without shift chains reduces the size of an ORA and can allow for more ORAs to be used

which increases diagnostic resolution [21]. In both designs, any mismatch from the BUTs

will cause the flip-flop to latch to a ’1’ until the end of the test. The addition of the

38

shift chain allows the results to be shifted out of the device at the end of testing [14]. A

comparison-based ORA with no shift chain can be used when the FPGA supports read

back of the contents of the flip-flops in the each PLB via configuration memory readback.

Modern FPGAs such as the Virtex family from Xilinx support this readback operation

[29][3].

Figure 2.18 also presents an example of a general comparison-based ORA BIST archi-

tecture. This type of comparison has limitations in terms of diagnostic resolution for BUTs

located at the outer columns since they are only compared by a single ORA. In [14], cases

where a fault could escape detection are discussed. A circular-comparison based BIST archi-

tecture, as seen in Figure 2.19, eliminates the loss of fault detection around outer columns.

Circular-comparison based BIST architectures require a minimum of three BUTs for fault

detection and four BUTs for fault diagnosis [28]. The only condition for a fault to escape

detection is for all BUTs in a circular comparison chain to have identical equivalent faults.

If the comparison chain is sufficiently long, then the probability of multiple equivalent fault

occurring is negligible.

Figure 2.19: A Circular Comparison Based BIST Architecture

39

Figure 2.20: Comparison Based ORA with Shift Chain

Figure 2.21: Comparison Based ORA without a Shift Chain

2.4.1 BIST for BRAMs

In [17], Garimella developed BIST configurations to test BRAMs in Virtex 2 FPGAs.

The work presented in this thesis borrows many of the same concepts and applies them to

BIST for BRAMs in Virtex 4. BRAMs in Virtex 2 only operate as a dual-port memory.

There are no built-in FIFOs or ECC or cascade modes of operation. Garimella’s approach

was to create a portable BIST architecture that could be adapted to different FPGAs. A

HDL was used to model, synthesize, and implement the entire BIST architecture. Garimella

used the comparison-based ORA design that includes the shift chain. The end of the shift

chain was connected to the boundary scan port TDO. The boundary scan pin TDI was

connected to each ORA such that a ’1’ on TDI enabled all of the ORAs to become a shift

register. Likewise, a ‘0’ on TDI would disable the shift operation and the ORAs would

40

Table 2.15: Virtex 2 BRAM Summary
BIST Test Address Data Clock

Configuration Algorithm Locations (A) Width (D) Cycles
1 March LR w/ BDS 512 36 58A

2

March LR

1K 18 14A
3 2K 9 14A
4 4K 4 14A
5 8K 2 14A
6 16K 1 14A

7 March s2pf 512 36 14A

8 March d2pf 512 36 9A

TOTAL BIST CLOCKS= 485,888

continue to compare BUT responses on each clock cycle. The system clock for the ORAs,

BUTs, and TPG was sent through the TCK port on the Boundary Scan port.

Table 2.15 summarizes the eight BIST configurations generated by Garimella for Virtex

2 BRAMs. March LR was implemented as a TPG and used for each of the programmable

aspect ratios. March LR was chosen primarily because of its relatively low complexity and

high fault coverage. The 512 x 36 addressing mode used March LR modified to generate

BDS so that fault detection of intra-word coupling faults was maximized. March s2pf and

d2pf were also used to test dual-port functionality.

The advantages of Garimella’s approach was that the BIST architecture was described

in a HDL which allowed for very rapid development. There are, however, some important

disadvantages. BIST approaches such as in [34] take advantage of partial reconfiguration

FPGA techniques in order to reduce test time and the amount of configuration data needed

to download to a device during multiple BIST configurations. In order for several FPGA

configurations to use partial reconfiguration efficiently, there needs to be only small regular

changes between each configuration. In terms of BIST for PLBs, the changes made between

41

each configuration is only to change the operational mode of the BUT and keep the rest of

the BIST circuitry static [34]. This approach yielded substantial test time and configuration

storage reductions when applied to BIST for PLBs in Virtex 2 and Virtex 4.

Garimella’s approach is not compatible with partial reconfiguration. The use of a HDL

to develop BIST configurations removes the control over the placement of BIST circuitry.

The CAD tools that transform a HDL to a configuration ready for download are not able

to take advantage of the regularity of BIST architectures. The result is that the TPG and

ORA portions of the BIST circuitry are intermingled amongst the available logic resources

surrounding BRAMs. CAD tools also do not obtain identical results in repeated imple-

mentations. This severely limits the use of partial reconfiguration because at no time are

subsequent BIST configurations guaranteed to be similar to previous configurations. For

this reason, Garimella used full configuration downloads for each BIST configuration. An-

other disadvantage with the HDL approach is that developing BIST at a high level reduces

the controllability over the resource being tested. For example, in BIST configurations that

used active low signals, the synthesis tool inverted the signals connected to the BRAM

instead of configuring the BRAM ports to the opposite level. This behavior was observed

when determining the portability of Garimella’s BIST approach to Virtex 4. As a result,

configuration bits and logic inverting BRAM control signals are not tested by Garimella’s

approach.

2.5 Thesis Restatement

The work by Garimella in developing BIST configurations for Virtex 2 BRAMs is a

basis for the work presented in this thesis. The main disadvantage of Garimella’s approach

42

is not being able to take advantage of partial reconfiguration techniques between each BIST

configuration following the initial full BIST configuration download. Downloading BIST

configurations is the most time expensive portion of the entire time required for BIST. The

time spent applying BIST clock cycles is nominal compared to the configuration time re-

quired. This thesis presents the development of BIST configurations for Virtex 4 BRAMs

compatible with partial reconfiguration. Using partial reconfiguration, a large portion of

the time needed to perform BIST can be reduced. Unlike Garimella, the BIST architecture

presented in this thesis does not rely on a HDL to describe the overall BIST architecture.

Instead, this approach uses custom created BIST programs to implement BIST configura-

tions which enables much greater control of each BIST configuration as compared to the

HDL approach by Garimella. This improvement allows for testing BRAMs in all of their

configuration options gives higher fault coverage. Chapter 3 will introduce the general BIST

architecture for testing BRAMs. Also in Chapter 3, BIST configurations testing BRAMs

in single and dual-port modes are presented. BIST configurations for FIFO operational

modes are developed in Chapter 4 while ECC and cascade mode BIST configurations are

presented in Chapter 5.

43

Chapter 3

Virtex 4 Block RAM BIST Implementation

A BIST approach developed for BRAMs in Virtex 4 FPGAs is presented in this chapter.

The BIST architecture will be discussed as well as a TPG which is able to generate multiple

march tests. Finally, results from applying BIST to Virtex 4 devices are given and compared

to results obtained by Garimella in [17].

3.1 Virtex 4 BRAM BIST Architecture

In all Virtex 4 devices, BRAMs are located along columns that span the entire de-

vice. In between columns of BRAMs there are at least 4 columns of PLBs. In order to

achieve high fault coverage and diagnostic resolution, circular comparison-based ORAs are

used in conjunction with two identical TPGs which drive alternating rows of BRAMs as

seen in Figure 3.1. Each BRAM output is observed by ORAs immediately adjacent and

directly above each BRAM. The topmost BRAM outputs connect to adjacent ORAs as

well, however, there are no ORAs above the topmost BRAM. To enable all BRAMs to have

each output compared by two ORAs, the topmost BRAM’s outputs are compared by the

ORAs adjacent to the bottommost BRAM in each column. This arrangement implements

a circular comparison chain per column of BRAMs.

Each BRAM has 72 outputs, 36 per port. A Virtex 4 slice contains two 4-input LUTS

and two flip-flops. With these resources, two comparison-based ORAs can be implemented

in each slice. Given that there are four slices per PLB, it would require nine PLBs to

implement all the ORAs needed to compare the outputs of two BRAMs. The Virtex 4

44

Figure 3.1: BRAM BIST Architecture

architecture places four rows of PLBs per BRAM, which in turn yields 16 PLBs total

since there are four columns between each BRAM. From these 16 PLBs, nine PLBs are

used to implement ORAs beside each BRAM. Figure 3.2 illustrates the BRAM to ORA

connections. The first column of four PLBs compare DOA[31:0] while the second column

of 4 PLBs compares DOB[31:0]. A single PLB from a third column is used to compare the

parity bits DOPA[3:0] and DOPB[3:0]. The fourth column of 4 PLBs is unused. Locating

ORAs in an algorithmic method also facilitates the use of configuration memory readback

to retrieve the ORA results at the end of a test. The ORA results are stored in frame data

and the bit-locations of the ORAs within each frame can be obtained by generating a logic

allocation file using the ’-l’ argument in BITGEN.

45

Figure 3.2: BRAM ORA Orientation

The FX and SX family of Virtex 4 devices require special ORA placements. In all SX

devices there are several columns of BRAMs that do not have four consecutive columns

of PLBs. In these devices a row of DSP modules bisects the 4 columns of PLBs leaving

two columns on each side. As illustrated in Figure 3.3, this case requires that the ORAs

comparing the parity bit outputs of each BRAM be shifted by one column. In FX family

devices there are two exceptions that must be handled. The first problem is the presence

of either one or two PPC modules. For BRAMs located in columns with PPC modules,

these BRAMs must correctly send their outputs to their directly adjacent ORAs and the

46

Figure 3.3: ORA Placement and Comparison in SX devices

ORAs in the same column above the PPC module. The other exception is only applicable

to FX40, FX100, and FX140 devices wherein a column of BRAMs directly to the right of a

PPC module has only a single column of PLBs in between the BRAM column and the PPC

module. Instead of straddling ORAs across the PPC, the entire set of ORAs is shifted to the

left of the PPC module. Figure 3.4 illustrates the ORA placement and circular comparison

modification for BRAM BIST.

47

Figure 3.4: ORA Placement and Comparison in FX devices

3.2 TPG Development

Unlike, the approach used by Garimella in [17], the BIST approach for Virtex 4 can

take advantage of partial reconfiguration. By being able to algorithmically place and route

all BRAMs and ORAs identically for each BIST configuration, the only change that must

be made between BIST configurations is to modify the BRAMs’ configuration. In order for

each BIST configuration to differ only by changes to the BRAMs, the TPG must be static

48

throughout all BIST configurations. These two modifications are the most different aspects

of BIST developed for Virtex 2 by Garimella and the BIST presented in this thesis.

Garimella’s BIST architecture used different TPGs, with each TPG implementing a

single march test in each BIST configuration [17]. This approach was a logical choice since

each BIST configuration was developed exclusively using VHDL. The BIST architecture

developed for Virtex 4, however, requires a much more complicated TPG. In order for the

TPG to remain static between all BIST configurations, it needs to be able to generate all of

the required test patterns for all configurations. Garimella used March LR for all single-port

configured BRAMs. March s2pf and d2pf were used to test dual-port functionality. March

LR was also converted to incorporate BDS and applied to BRAMs configured in 512 x 36

mode of operation. Table 3.1 summarizes the march test selection for testing BRAMs in

this thesis. March LR with BDS ensures that most faults are detected in the memory array.

March LR with BDS is run on a BRAM configured in its widest aspect ratio in order to

maximize the detection of intra-word faults with BDS and to minimize the number of BIST

clock cycles required to run the test. The regular BOM-based March LR cannot be applied

to a BRAM configured in a 16K x 1-bit mode because this mode does not utilize 2K of the

parity memory space. March s2pf and d2pf are also used to detect the specific dual-port

faults discussed in the previous chapter. MATS+ is used to test the remaining BRAM size

configurations to detect faults within the programmable row and column decoders.

All four march tests were incorporated into a single multi-march TPG (MMTPG) and

implemented in VHDL. The MMTPG VHDL source code is given in Appendix A. Since the

Virtex 4 BRAM has programmable active levels for each of its control inputs, the MMTPG

must be able to allow inverting active levels of the march tests driving the BRAMs. In order

49

Table 3.1: Virtex 4 TPG March Test Algorithms
Address Data Clock MMTPG

March Test Locations (A) Width Cycles Op Mode[3:0]
March LR with BDS 512 36 2*58*A 000

s2pf 512 36 14*A 011
d2pf 512 36 9*A 100

16K 1 2*5*A 010
8K 2 2*5*A 001

MATS+ 4K 4 2*5*A 110
2K 9 2*5*A 111
512 36 2*5*A 101

to control the march test selection and appropriate active levels, a control shift register was

added to the MMTPG. The control shift register was connected to one of four boundary

scan modules in a Virtex 4. Figure 3.5 summarizes the control function of each bit in the

control register. For example, if “000000” was shifted into the control register, this control

string would direct the MMTPG to execute March LR with BDS assuming the BRAM was

configured for active low WE, SSR, REGCE, and EN control signals. Similarly, if “101010”

was shifted into the shift register (beginning with the zero), that would select MATS+ with

the BRAM configured to have an active high WE, EN, and SSR and an active low REGCE.

For the single-port march tests, March LR with BDS and MATS+, each of these march

tests run twice; once through port A and then again through port B, after which the TPG

repeats the sequence. As seen in Table 3.1, this doubles the required number of clock cycles

to run each of the march tests. By designing the MMTPG to generate several march tests

along with programmable active levels, the MMTPG is able to apply appropriate march

tests to any size configured Virtex 4 BRAM.

50

Figure 3.5: MMTPG Control Shift Register

3.3 BRAM BIST Configurations

Table 3.2 summarizes all of the BRAM BIST configurations. By the end of the last

BIST configuration, all active levels and additional configuration options have been applied

and tested. Two March LR configurations are listed, each with different initialization

values. March LR (Init A) initializes the BRAMs contents to all alternating ones and zeros

beginning with a zero in the list significant bit of BRAM. March LR (Init B) initializes

the BRAMs to the opposite values. Each ports’ SR values are configured to have values

opposite of the BRAMs’ contents such that when the SSR signal is asserted, the output

response makes a transition. To test initialization values, a BRAM must be configured as

READ FIRST which means an addressed memory cell outputs its contents before being

overwritten. Table 3.3 gives the initialization values for each BIST configuration. After

each March LR configuration, the initialization values remain constant such that when

generating partial configurations, the number of configuration bits is reduced. Dual-port

testing using march s2pf and d2pf is accomplished with one configuration; however, to select

between the two march tests, a separate MMTPG control register value is applied. BRAM

BIST does not test BRAMs configured in either the 4K x 4-bit or the 2K x 9-bit memory

aspect ratios. While the MMTPG has the ability to generate tests for these memory sizes,

the FIFO mode of operation also can be configured in these two memory aspect ratios.

51

T
ab

le
3.

2:
B

R
A

M
B

IS
T

C
on

fig
ur

at
io

n
D

et
ai

l
C

on
fig

M
ar

ch
R

ea
d

W
id

th
W

R
IT

E
W

ID
T

H
D

O
A

R
E

G
In

ve
rt

D
O

R
A

M
E

X
T

E
N

SI
O

N
N

um
.

T
es

t
[A

,B
]

[A
,B

]
R

eg
is

te
r

C
L

K
[A

,B
]

1
M

ar
ch

L
R

(I
ni

t
A

)
36

36
0

FA
L

SE
N

O
N

E
2

M
ar

ch
L

R
(I

ni
t

B
)

36
36

0
FA

L
SE

N
O

N
E

3
s2

pf
/

d2
pf

36
36

1
FA

L
SE

N
O

N
E

4
M

A
T

S+
1

1
1

FA
L

SE
N

O
N

E
5

M
A

T
S+

8
8

1
T

R
U

E
N

O
N

E
6

M
A

T
S+

51
2

51
2

1
FA

L
SE

N
O

N
E

C
on

fig
W

ri
te

R
E

G
C

E
SS

R
W

E
E

N
C

L
K

N
um

.
M

od
e

1
R

E
A

D
F

IR
ST

H
ig

h
H

ig
h

H
ig

h
H

ig
h

H
ig

h
2

R
E

A
D

F
IR

ST
H

ig
h

H
ig

h
H

ig
h

H
ig

h
H

ig
h

3
R

E
A

D
F

IR
ST

H
ig

h
H

ig
h

H
ig

h
H

ig
h

H
ig

h
4

R
E

A
D

F
IR

ST
H

ig
h

H
ig

h
H

ig
h

H
ig

h
H

ig
h

5
N

O
C

H
A

N
G

E
L

ow
L

ow
L

ow
L

ow
H

ig
h

6
W

R
IT

E
F

IR
ST

L
ow

L
ow

L
ow

L
ow

L
ow

52

Table 3.3: BRAM Initialization Values
Config March Test Memory Srval Output
Num. Init Value Latch Init

1 March LR (Init A) 1010 0101 1010
2 March LR (Init B) 0101 1010 0101
3 s2pf / d2pf 0101 1010 0101
4 MATS+ 0101 1010 0101
5 MATS+ 0101 1010 0101
6 MATS+ 0101 1010 0101

BIST Configuration Development

Developing BIST configurations that maximize the use of partial reconfiguration re-

quires that only the BUTs’ configuration changes between subsequent configurations. BRAM

BIST for Virtex achieves this by algorithmically placing ORAs and setting aside dedicated

logic to implement the MMTPG. However, implementing the required architecture violates

many of the design rules defined by Xilinx. All inputs and outputs of a BRAM must be

connected at all times such that all possible BRAM modes can be tested without adding

modifying signals and altering the routing. Normally, Xilinx’s CAD tools tie any unused

input to BRAM to a global logic ’1’. In order to meet this convention, the MMTPG com-

plies with this design rule by driving any unused input to a ’1’ for a given configuration.

For example, if the BRAM is configured in a 16K x 1 mode, then the MMTPG drives both

DI ports with a ’1’ except for the least significant bit.

The design flow of BIST configurations for PLBs presented by Dhingra in [34] can be

modified to generate BRAM BIST configurations. Instead of the high-level HDL design

methodology used by Garimella in [17], Dhingra uses a low-level vendor specific design

language called Xilinx Design Language (XDL). XDL is a human readable description of

the physical placement and routing of a design in a Xilinx FPGA. XDL allows one to have

53

the utmost control over all aspects of a FPGA design, especially when developing BIST

configurations. Dhingra used XDL to describe the placement of ORAs, BUTs, and TPGs

used in testing PLBs. This design process must be modified to allow for the creation of

BRAM BIST configurations. For a TPG, Dhingra used a pseudo-random pattern generator

built from a Virtex 4 DSP module that continuously accumulated a prime number [34].

Dhingra’s TPG only required the XDL instantiation of a DSP module and then made

logical routing connections to the PLBs under test. Compared to Dhingra’s TPG, the

MMTPG is much larger, requiring 531 slices. Dhingra inserted the XDL TPG instantiation

into a program that generated BIST configurations. However, inserting a 531-slice MMTPG

instantiation into a similar tool for BRAM BIST is impractical because any slight change

of the MMTPG during development would require modifying the program source code.

To overcome this problem, a TPG parsing tool, V4BRAMTPG, was developed that

accepts an XDL version of the HDL synthesized MMTPG. The parsing program removes

all instantiated components except the slices implementing the MMTPG. In order for the

MMTPG to synthesize without failing design rule checks by Xilinx’s CAD tools the TPG

was connected to a dummy BRAM, which the parsing tool also removes. The next program

created is called V4BRAMBIST. This program instantiates BRAMs, ORAs, and the parsed

XDL MMTPG. V4BRAMBIST also generates all of the logical routing for the entire BIST

configuration. When the program processes the MMTPG, it duplicates the TPG logic in

order to implement the two required MMTPGs. During synthesis and implementation, the

MMTPG is constrained in a Virtex 4 FX12 to fit in the first four columns of PLBs to the left

of the center line. This placement allows the XDL version of the MMTPG to be compatible

with all Virtex 4 devices. V4BRAMBIST shifts the slice coordinate of each MMTPG slice

54

such that it is always aligned to the four columns of PLBs directly to the left and right

of the center line. Figure 3.6 and 3.7 show a logically connected (unrouted) BRAM BIST

configuration in an FX12 and LX25 device, respectively.

MMTPG1 MMTPG2
ORAs BRAM

Figure 3.6: FX12 BRAM BIST

To control each BIST configuration, V4BRAMBIST instantiates two BSCAN modules:

one configured as USER1 and the other as USER2. The USER1 BSCAN module uses TDI

to reset the TPG and TCK to apply clock cycles to BRAMs, ORAs, and the two MMTPGS.

The USER2 BSCAN module uses its TDI and TCK to serial shift control data into each

of the MMTPG control registers. Two different BSCAN modules are used such that when

changing the MMTPG mode, the rest of the BIST circuity is clock inhibited. This prevents

55

Figure 3.7: LX25 BRAM BIST

56

the BIST circuitry from going in into an unknown state that could occur as the control

string is shifted into the control register.

The output of V4BRAMBIST is a logically connected (unrouted) XDL file that is a

template for all BRAM configurations. This XDL file must be converted to an NCD file type

such that Xilinx’s place and route tool (PAR) can operate on the file. The template design

must then be modified to configure all instantiated BRAMs such that their configuration

corresponds to the settings shown in Table 3.2. These modifications are performed automat-

ically by another program called V4BRAMMOD. V4BRAMMOD retains the current physi-

cal routing between configurations which is necessary to reduce the amount of partial config-

uration bits. With the combination of Xilinx’s CAD tools, V4BRAMTPG,V4BRAMBIST,

and V4BRAMMOD all six BIST configurations can be generated. The following procedure

outlines the process of generating a set of BRAM BIST configurations:

1. Synthesize VHDL TPG

2. Place and Route TPG in FX12 with TPG constrained to the first four columns of

PLBs to the left of the center column

3. Convert TPG to XDL format using XDL with the -ncd2xdl -nopips -nocom -cfg brief

arguments (See Table 3.4 for a summary of XDL arguments).

4. Run V4BRAMTPG to parse and extract TPG

5. Build the BRAM BIST template with V4BRAMBIST.

6. Convert BRAM BIST template to NCD format using XDL with the -xdl2ncd -force

-nodrc arguments.

57

Table 3.4: XDL Argument Summary
XDL argument Description
-ncd2xdl Selects conversion from NCD to XDL
-xdl2ncd Selects conversion from XDL to NCD
-nopips Routing is removed from NCD when converted to XDL
-nocom XDL file will not contain comment blocks
-cfg brief Unused configuration options are not listed during NCD to XDL conversion
-force Force conversion of XDL to NCD despite design rule errors
-nodrc Disables design rule checking during XDL to NCD conversion

7. Fully route the BIST template using PAR.

8. Convert BIST template to XDL format using XDL with the -ncd2xdl -nocom -cfg brief

arguments.

9. Run V4BRAMMOD for each of the six BRAM BIST configurations.

10. Convert each BIST configuration to NCD format using XDL with the -xdl2ncd -force

-nodrc arguments.

11. Generate configuration bit-files for each BIST configuration using BITGEN.

Figures 3.8, 3.9, and 3.10 show the command-line options available in V4BRAMTPG,

V4BRAMBIST, and V4BRAMMOD, respectively. Each BRAM BIST configuration can be

constrained to test a subset of BRAMs in a device as long as there are four BRAMs in each

circular comparison ORA chain. Figure 3.11 demonstrates the use of these tools to create

the BIST configuration shown in Figure 3.12. Testing a subset of BRAMs in a device can

be used to increase the timing performance of a configuration and also can lower the BIST

power consumption.

Three different types of configuration bitstreams can be generated using BITGEN : full,

compress, and partial. Full configuration bit-files contain frame data for every addressable

58

V4BRAMTPG.exe
V4BRAMTPG processes XDL from synthesis for use in XDL generation program\\
command line format:\\
V4BRAMTPG <XDLin_file> <XDLout_file>}
notes: assumes input XDL file generated with ’xdl -ncd2xdl -cfg_brief -nocom’}

Figure 3.8: V4BRAMTPG Syntax

V4BRAMBIST.exe
V4BRAMBIST - generates template file for BRAM BIST config in any Virtex 4
command line format:
V4BRAMBIST <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part>
<tpgXDLfile>

dev part rows cols dev part rows cols dev part rows cols
lx 15 64 31 sx 25 64 55 fx 12 64 31
lx 25 96 35 sx 35 96 55 fx 20 64 47
lx 40 128 43 sx 55 128 69 fx 40 96 65
lx 60 128 61 fx 60 128 67
lx 80 160 65 fx 100 160 85
lx 100 192 73 fx 140 192 103
lx 160 192 98
lx 200 192 127

Figure 3.9: V4BRAMBIST Syntax

V4BRAMMOD.exe
V4BRAMMOD - modifies routed XDL for BRAM BIST
command line format:
V4BRAMMOD <xdl_in> <xdl_out> <phase>

where phase = MLRA,MLRB,DUALP,8K,16K,MATS512}

Figure 3.10: V4BRAMMOD Syntax

V4BRAMTPG TPG.xdl parsedTPG.xdl
V4BRAMBIST BRAM_lx60 64 32 128 61 lx 60 parsedTPG.xdl
V4BRAMMOD BRAM_lx60.xdl BRAM_lx60_DUALP.xdl dualp

Figure 3.11: Example BIST program execution

59

Figure 3.12: Partial BRAM BIST in LX60

60

frame in a given device. Full configurations are the default configuration bit-file type for

BITGEN. Executing BITGEN with the ‘-g Compress’ argument allows BITGEN to take

advantage of the multi-frame write capabilities that are usually used when generating par-

tial configuration files. To create a partial configuration bit-file, the ‘-r previousconfig.bit’

argument must be used. In the previous argument, ’previousconfig.bit’ is used as a reference

for generating the partial configuration bit-file.

One of the most time expensive portions of generating BIST configurations is routing

BIST configurations. Garimella’s approach for generating BRAM BIST configurations also

required the synthesis of the entire BIST architecture as well as the placement and routing.

These three processes were executed for each configuration. For Virtex 4, however, only the

synthesis of the TPG is required and only one configuration must be routed. As mentioned

earlier, each subsequent configuration retains the same routing.

3.4 Running BIST Configurations

Once all of the configurations have been generated using the aforementioned BIST tools,

the configurations can be downloaded to the device via boundary scan. Table 3.5 lists the six

BRAM BIST configurations and the MMTPG control string needed to configure the TPG

along the the number of BIST clock cycles needed to run each march test to completion.

The three least significant bits of each control string define the march test for the MMTPG

as also shown in Table 3.1. A procedure for running BRAM BIST configurations is as

follows:

1. Download BRAM BIST configuration to device.

2. Goto USER2 access register.

61

Table 3.5: BRAM BIST Execution Detail
Config March MMTPG Control BIST
Num. Test String [MSB:LSB] Clock Cycles

1 March LR (Init A) 111000 60,000
2 March LR (Init B) 111000 550
3a s2pf 111011 7,200
3b d2pf 111100 5,000
4 MATS+ (16K) 111010 165,000
5 MATS+ (8K) 000001 82,000
6 MATS+ (512) 000101 5,500

Total BRAM BIST Clock Cycles = 325,250

3. Clock in MMTPG control string LSB first and assert TMS on the MSB.

4. Goto USER1 access register.

5. Toggle TDI to reset MMTPG (Active high asynchronous reset).

6. Apply BIST clock cycles.

7. Retrieve ORA results via configuration memory readback.

8. Repeat steps 1-7 for each addition configuration.

Performing a configuration memory readback at the end of each BIST configuration

can indicate the mode of failure for a BUT. Delaying the configuration memory readback

until the last BIST configuration shortens the time required to perform BIST at the expense

of diagnostic resolution due to an uncertainty in the mode of failure recorded.

3.5 ORA Results Retrieval

The CAPTURE module is instantiated to transfer ORA flip-flop contents to the con-

figuration memory for configuration memory readback. Xilinx’s Virtex 4 Configuration

62

Guide [2] provides a procedure for reading specific frames of configuration memory through

boundary scan. It is important to point out that the readback flip-flop data is inverted.

During configuration bit-file creation, a the ’-l’ BITGEN argument creates a logic allocation

file that reports the configuration memory frame bit associate with each ORA. Retrieving

ORA results is efficient since all of the flip-flop contents for a column of 16 PLBs are located

within a single frame. Since four BRAMs span the height of 16 PLBs and each set of ORAs

for a single BRAM are contained in three PLB columns, only 3 frames are read for each

column of four BRAMs.

3.6 BIST Results

Previously in [17], Garimella calculated the total number of BIST clock cycles for

Virtex 2 BRAMs to be 485,888. From Table 3.5, the total BIST clock cycles needed for

Virtex 4 BRAMs are 325,250 which represents an overall savings of 160,638 clock cycles.

Table 3.6 summarizes the configuration time required to test an LX60 device. In Table

3.6 the configuration bit-file sizes and associated download and test times are given for an

LX60. The test clock frequency of 50 MHz is used because it is the maximum BSCAN clock

frequency supported in all Virtex 4 devices [3].

Table 3.6 also compares three different BIST download techniques: full, compressed,

and partial reconfigurations. In full configurations, all addresses are written with frame data

while the compressed technique allows for a reduction in configuration file size by using the

multi-frame write capabilities. The partial configurations are generated from a set of either

full or compressed configurations and further reduces the configuration bit-file size by only

writing frame data that differs between two given configurations. Figure 3.13 illustrates the

63

Figure 3.13: LX60 BRAM BIST Speed-up factors

BIST speed increase associated with using compress and partial configuration techniques

over full configurations. Garimella’s BIST configurations for Virtex 2 BRAMs can only be

compared to full BRAM BIST configurations in Virtex 4 as also seen in Figure 3.13. It is

clear that the BIST architecture for Virtex 4 is superior to that used in Virtex 2.

Figures 3.14 and Figure 3.15 summarize the timing analysis of each BIST configuration

for several Virtex 4 devices. The last configuration “512” in Figure 3.15 refers to the MATS+

512 x 36-bit configuration and is approximately one-half as fast as the rest of the BRAM

BIST configurations. This is due to the BUTs’ inverted clock input which acts to halve

the available propagation delay. However, this configuration is necessary in order to test

BRAMs configured for falling-edge triggered operation.

64

T
ab

le
3.

6:
Su

m
m

ar
y

of
L

X
60

B
R

A
M

B
IS

T
D

ow
nl

oa
d

Si
ze

an
d

T
es

t
T

im
es

B
IS

T
C

on
fig

ur
at

io
n

D
ow

nl
oa

d
Si

ze
(B

it
s)

C
on

fig
ur

at
io

n
T

im
e

@
50

M
hz

(s
ec

on
ds

)
Fu

ll
C

om
pr

es
se

d
P

ar
ti

al
Fu

ll
C

om
pr

es
se

d
P

ar
ti

al
M

ar
ch

L
R

(I
ni

t
A

)
17

,7
17

,6
32

9,
51

6,
67

2
9,

51
6,

67
2

0.
35

4
0.

19
0

0.
19

0
M

ar
ch

L
R

(I
ni

t
B

)
17

,7
17

,6
32

9,
51

6,
67

2
44

6,
68

8
0.

35
4

0.
19

0
0.

00
89

3
s2

pf
/d

2p
f

17
,7

17
,6

32
9,

51
6,

67
2

24
,0

32
0.

35
4

0.
19

0
0.

00
04

81
M

A
T

S+
(1

6K
)

17
,7

17
,6

32
9,

51
6,

67
2

24
,0

32
0.

35
4

0.
19

0
0.

00
04

81
M

A
T

S+
(8

K
)

17
,7

17
,6

32
9,

51
6,

67
2

12
2,

68
8

0.
35

4
0.

19
0

0.
00

24
5

M
A

T
S+

(5
12

)
17

,7
17

,6
32

9,
51

6,
67

2
24

,0
32

0.
35

4
0.

19
0

0.
00

04
81

T
O

T
A

L
10

6,
30

5,
79

2
57

,1
00

,0
32

10
,1

58
,1

44
2.

13
1.

14
0.

20
3

65

F
ig

ur
e

3.
14

:
T

im
in

g
A

na
ly

si
s

(S
lo

w
es

t
/

Fa
st

es
t

)

66

F
ig

ur
e

3.
15

:
T

im
in

g
A

na
ly

si
s

pe
r

B
R

A
M

B
IS

T
C

on
fig

ur
at

io
n

67

3.7 BRAM BIST Summary

This chapter has described a BIST architecture for testing BRAMs in Virtex 4 FPGAs.

The architecture consists of BRAMs tested by a two TPGs driving alternating rows of

BRAMs. A circular comparison based ORA architecture was implemented such that each

column of BRAMs formed a separate circular comparison chain. Each TPG in a BRAM

BIST configuration can apply multiple march tests depending on a TPG control register

that communicates the current configuration of each BRAM such that an appropriate march

test is applied.

To implement the BRAM BIST architecture, several BIST programs were also devel-

oped to facilitate generating BRAM BIST configurations for any Virtex 4 device. As shown

in the following chapters, these programs will be modified to support BIST for BRAMs

operating in FIFO, ECC, and cascade modes of operation.

68

Chapter 4

Virtex 4 FIFO BIST Implementation

A BIST approach developed for BRAMs configured in a FIFO mode of operation in

Virtex 4 FPGAs is presented in this chapter. The BIST architecture will be discussed as

well as a TPG for FIFO testing. Finally, results from applying BIST to Virtex 4 devices

are given.

4.1 Virtex 4 FIFO BIST Architecture

Each Virtex 4 BRAM can operate in a FIFO mode of operation which allows for the

same number of BUTs in both FIFO and BRAM BIST architecture. Also, the overall

BRAM BIST architecture developed in the previous chapter can be applied to FIFO BIST.

The logical connections from TPG to BUT and BUT to ORA must be modified slightly

because each FIFO has its own dedicated inputs and outputs. While there are 72 outputs

per BRAM, each FIFO has only 66 outputs. Fewer BUT outputs translates into fewer ORAs

per BUT. Figure 4.1 illustrates the location of the BUT output signal comparisons by the

ORAs. As with BRAM BIST, 9 PLBs are still required for FIFO BIST ORAs, but in the

ninth PLB, only a single slice is used. In addition, the ORA placement exceptions for SX

and FX device families discussed in Chapter 3 also are present in FIFO BIST configurations.

4.2 FIFO TPG Development

In [35], a test algorithm is described for Atmel FIFOs without programmable AL-

MOSTFULL and ALMOSTEMPTY status flags. The test algorithm of length 6N (where

69

Figure 4.1: FIFO ORA Placement

N is the number of address locations) is given below.

Atmel FIFO Test Algorithm (Test Length = 6N) [35]:

Step 1: Reset the FIFO

Step 2: Repeat N times: Write a word with all zeros and observe the FULL flag assertion

after N writes and the EMPTY flag deasserts after the first word written.

Step 3: Repeat N times: Read a word with all zeros and then write a word with all ones. The

FULL should toggle in between each read and write operation.

Step 4: Repeat N times: Read a word with all ones and then write a word with all zeros. The

FULL should toggle in between each read and write operation.

70

Step 5: Repeat N times: Read a word expecting all zeros and observe the EMPTY flag

assertion after N reads and the FULL disasserts after the first read word.

Steps 2 and 3 repeatedly read and write to the FIFO which fully test the FIFO read

and write pointers by walking each pointer through the entire memory space. A comparison

of read and write pointers along with the previous operation determines if the EMPTY or

FULL flag asserts. The above test also ensures opposite logic values are written and read

to each memory location.

In [36], the Atmel FIFO algorithm was generalized to test FIFOs with programmable

ALMOSTFULL and ALMOSTEMPTY status flags. These additional status flags are tested

in Step 2 by repeatedly reconfiguring the ALMOSTFULL flag from its minimum to its

maximum value while continuing to write and read data and observing the ALMOSTFULL

flag toggle after each partial reconfiguration. The ALMOSTEMPTY flag can be tested

in Step 5, during which the ALMOSTEMPTY flag is repeatedly reconfigured from its

maximum to its minimum allowed value while the FIFO is emptied with N reads. Also

during Step 5, the ALMOSTEMPTY flag will toggle after each reconfiguration.

For testing Virtex 4 FIFOs, it is not critical that opposite logic values are both written

and read to and from each FIFO data word. March LR with BDS applied during BRAM

BIST ensures the memory array is fault-free which allows the Virtex 4 FIFO test algorithm

to concentrate on testing the status logic and read and write pointer logic. In Chapter

2, Table 2.7 summarizes the timing for FIFO status flag assertion and deassertion. The

deassertion period for FULL and EMPTY flags is at most 4 clock cycles when in the

FWFT mode. This latency becomes problematic for FIFO test algorithms. Steps 3 and 4

from the Atmel FIFO test algorithm are designed to test the FULL flag generation logic,

71

but if these steps were applied to a Virtex 4 FIFO, the FULL flag would not deassert in time

for the next read and write operations. Fault coverage is reduced because the reassertion of

the FULL flag would be masked since the FULL flag does not deassert until several clock

cycles later.

In order to test the FULL and EMPTY flags in Virtex 4 FIFOs several clock cycles

where no operation is performed are inserted between read and write operations. These

no operation (NO-OP) clock cycles allow the FULL to deassert before the read and write

sequence is repeated. The test algorithm for Virtex 4 FIFO testing is given below.

Virtex 4 FIFO Test Algorithm (Test Length = 8N):

Step 1: Reset the FIFO

Step 2: Repeat N times: Write a word with all zeros and observe the FULL flag assertion

after N+2 writes and the EMPTY flag deassertion after the first word written.

Step 3: Repeat N times: Read a word with all zeros

NO-OP

NO-OP

NO-OP

Write a word with all ones

Write a word with all ones

Step 4: Repeat N times: Read a word expecting all ones

By inserting the 3 NO-OP clock cycles, the FULL flag deasserts before the write and

then read sequence. The repeated write in in Step 3 asserts the write error (WRERR) flag

for one clock cycle to test the logic associated with this error indication. Figure 4.2 shows

72

Figure 4.2: FULL Flag Transition Timing

a timing diagram to that describes the FIFO response to Step 3 in the Virtex 4 FIFO Test

Algorithm.

A TPG implementing the above Virtex 4 FIFO test algorithm was implemented in

VHDL and required 96 slices when implemented in a FX12 device. The TPG, named FI-

FOTPG, is able to generate the above test for the four different FIFO depth configurations.

The VHDL source for the FIFOTPG is given in Appendix B. Like the BRAM MMTPG,

the FIFOTPG is also able to invert the active level of the FIFO control signals so that any

possible FIFO configuration can be tested with the FIFOTPG. In order to program the

FIFOTPG for the current FIFO configuration, a TPG control register is used to communi-

cate with the FIFOTPG. Figure 4.3 indicates the function of each bit in the shift register.

The three most significant bits control the active levels of the the FIFOTPG control signals

RDEN, WREN, and RST while the two least significant bits determine the operational

mode that corresponds to one of the four configurable FIFO word depths. When writing

to the control register, the control string value is shifted in, LSB first. The control string

values for each FIFO BIST configuration is summarized in Table 4.1.

73

Figure 4.3: FIFOTPG Control Register

4.3 FIFO BIST Configuration Development

Three custom BIST generation tools were developed to enable FIFO BIST configura-

tion generation for all Virtex 4 devices using the same procedure discussed in Chapter 3

Section 3. V4FIFOTPG parses an XDL version of the FIFOTPG developed in the previous

section. V4FIFOBIST places all of the BIST circuitry into a specified device. Figure 4.4

shows a logically connected (unrouted) FIFO BIST configuration in a LX60 device. The

third program, V4FIFOMOD modifies each FIFO BIST configuration such that the con-

figuration options match those listed in Table 4.1. During each FIFO BIST configuration

the FIFOTPG to FIFO routing and the FIFO to ORA routing is not changed. The FI-

FOTPG also remains static throughout all of the configurations. The only portion of the

BIST configuration changed during each modification is the FIFO configuration options.

The command-line options for these three programs are the same those shown for BRAMs

in Figures 3.8 3.9 3.10.

74

FIFOTPG1 FIFOTPG2 FIFOs and
ORAs

Figure 4.4: LX60 FIFO BIST Configuration

75

T
ab

le
4.

1:
Su

m
m

ar
y

of
V

ir
te

x
4

F
IF

O
C

on
fig

ur
at

io
ns

R
ST

,
R

D
E

N
,

W
R

E
N

A
L

M
O

ST
A

L
M

O
ST

F
IF

O
T

P
G

B
IS

T
C

on
fig

F
IF

O
A

C
T

IV
E

E
M

P
T

Y
F

U
L

L
C

on
tr

ol
St

ri
ng

C
lo

ck
N

um
.

M
O

D
E

L
E

V
E

L
F

W
F

T
L

E
V

E
L

L
E

V
E

L
[M

SB
:L

SB
]

C
yc

le
s

1
2K

x
9-

bi
ts

L
O

W
T

R
U

E
15

2,
04

3
00

00
1

16
,3

84
2

51
2

x
36

-b
it

s
H

IG
H

FA
L

SE
15

49
6

11
11

1
4,

09
6

3
1K

x
18

-b
it

s
H

IG
H

FA
L

SE
5

50
7

11
11

0
8,

19
2

4
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

5
5

11
10

0
7

5
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

6
7

11
10

0
8

6
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

8
8

11
10

0
10

7
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

16
16

11
10

0
18

8
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

32
32

11
10

0
34

9
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

64
64

11
10

0
66

10
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

12
8

12
8

11
10

0
13

0
11

4K
x

4-
bi

ts
H

IG
H

FA
L

SE
25

6
25

6
11

10
0

25
8

12
4K

x
4-

bi
ts

H
IG

H
FA

L
SE

51
2

51
2

11
10

0
51

4
13

4K
x

4-
bi

ts
H

IG
H

FA
L

SE
1,

02
4

1,
02

4
11

10
0

1,
02

6
14

4K
x

4-
bi

ts
H

IG
H

FA
L

SE
2,

04
8

2,
04

8
11

10
0

2,
05

0
15

4K
x

4-
bi

ts
H

IG
H

FA
L

SE
4,

09
2

4,
09

2
11

10
0

32
,7

68
T

O
T

A
L

B
IS

T
C

L
O

C
K

C
Y

C
L

E
S

=
65

,5
61

76

The ALMOST FULL and ALMOST EMPTY flag values each are specified by 12 bits

of configuration memory. The 4K x 4-bit operation mode is used in testing the ALMOST

FULL and ALMOST EMPTY flags because it requires 12 bits to specify values up to

4K-bits. In order to test these configuration bits, FIFO BIST configurations 4 through

15 move both the ALMOST FULL and ALMOST EMPTY flags higher such that each of

the 12 configuration bits undergo a transition from ’1’ to a ’0’. Also, the number of BIST

configurations is minimized by configuring the ALMOST FULL and ALMOST EMPTY

flags to transition from the minimum allowed value in configuration 4 to the maximum

allowed configuration in 15. This minimization is achieved because configurations 4-14

are designed to only test the ALMOST FULL and ALMOST EMPTY flags and for those

configurations, only the number of clock cycles needed to reach the configured ALMOST

values are applied. In configuration 15, 32,768 clocks cycles are applied to fully execute the

FIFO test algorithm and to test the final ALMOST FULL and ALMOST EMPTY flags

values.

4.4 Running FIFO BIST Configurations

Running each of the FIFO BIST configurations is similar to the procedure described

for BRAM BIST in Chapter 3. A minor difference is that the FIFOTPG contains a 5-

bit control register compared to the 6-bit control register in each MMTPG. The following

procedure summarizes running each FIFO configuration:

1. Download FIFO BIST configuration to device.

2. Goto USER2 access register.

77

3. Clock in FIFOTPG control string, LSB first, and assert TMS on the MSB.

4. Goto USER1 access register.

5. Toggle TDI to reset MMTPG (Active high asynchronous reset).

6. Apply BIST clock cycles.

7. Retrieve ORA results via configuration memory readback.

8. Repeat 1-7 for each addition configuration.

4.5 FIFO BIST Results

Table 4.2 provides a summary of all fifteen FIFO configurations for a LX60. Due to

the larger number of configurations, FIFO BIST benefits more from partial reconfigura-

tion than BRAM BIST. While BRAM BIST gained a ten times speed-up factor over full

configurations, FIFO BIST gained over a 32 times speed-up factor as seen in Figure 4.6.

The number of BIST clock cycles for both BRAM and FIFO BIST is 390,811. This total

still represents 95,077 less clock cycles than Garimella required for only testing Virtex 2

BRAMs. A FX12 FIFO BIST is shown in Figure 4.7. The two FIFOTPGs and their as-

sociated routing have been highlighted. The FIFOTPG to the left of the center column is

highlighted green while the FIFOTPG to the right is highlighted in yellow. The FIFO to

ORA routing is also highlighted in blue. By highlighting the FIFOTPG routing, one can

see that each FIFOTPG is driving alternating rows of Virtex 4 FIFO modules. The timing

analysis for each FIFO BIST configuration is shown in Figure 4.5. The 4K x 4-bit FIFO

mode is only listed once because each of the 12 configurations have the same timing analysis

result due to each FIFO being identically configured.

78

05010
0

15
0

20
0

FX
12

FX
20

FX
40

FX
60

FX
10

0
S

X
25

S
X

35
S

X
55

LX
15

LX
25

LX
40

LX
60

LX
80

LX
10

0

FREQUENCY(MHz)

4K 2K 1K 51
2K

F
ig

ur
e

4.
5:

F
IF

O
B

IS
T

T
im

in
g

A
na

ly
si

s

79

T
ab

le
4.

2:
Su

m
m

ar
y

of
L

X
60

F
IF

O
B

IS
T

D
ow

nl
oa

d
Si

ze
an

d
T

es
t

T
im

es
B

IS
T

C
on

fig
ur

at
io

n
D

ow
nl

oa
d

Si
ze

(B
it

s)
C

on
fig

ur
at

io
n

T
im

e
@

50
M

H
z

(s
ec

on
ds

)
F

U
L

L
C

om
pr

es
s

P
ar

ti
al

F
U

L
L

C
om

pr
es

s
P

ar
ti

al
1

17
,7

17
,6

32
7,

77
7,

72
8

7,
77

7,
72

8
0.

35
4

0.
15

6
0.

15
56

2
17

,7
17

,6
32

7,
77

7,
72

8
12

1,
85

6
0.

35
4

0.
15

6
0.

00
04

64
3

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
4

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
5

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
6

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
7

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
8

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
9

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
10

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
11

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
12

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
13

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
14

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
15

17
,7

17
,6

32
7,

77
7,

72
8

23
,2

00
0.

35
4

0.
15

6
0.

00
04

64
T

O
T

A
L

26
5,

76
4,

48
0

11
6,

66
5,

92
0

8,
20

1,
18

4
5.

31
5

2.
33

3
0.

16
2

80

Figure 4.6: LX60 FIFO Speed-up Factors

Figure 4.7: Routed FX12 FIFO BIST Configuration

81

Chapter 5

Virtex 4 ECC and Cascade BIST Implementation

A BIST approach developed for BRAMs configured in both ECC and cascade modes

of operation in Virtex 4 FPGAs is presented in this chapter. The BIST architecture will

be discussed as well as TPGs for ECC and cascade testing. Finally, results from applying

BIST to Virtex 4 devices are given.

5.1 ECC and Cascade BIST Architecture

The BIST architectures presented in previous chapters considered a BUT to be a single

BRAM. For ECC and cascade BIST configurations, the BUT is enlarged to encompass two

adjacent BRAMs because both ECC and cascade modes require a pair of adjacent BRAMs.

In order for the BUT to be a pair of BRAMs, the BIST architecture developed for BRAM

and FIFO BIST is modified such that instead of TPGs driving alternating rows of BRAMs,

the TPGs drive alternating pairs of BRAMs. BRAM to ORA routing is also modified such

that the outputs of the lower BRAM pair is compared with the outputs of the next lower

BRAM pair. The ORA comparison per BRAM output is identical to BRAM BIST. Figure

5.1 illustrates the configuration for the TPG to BUT and BUT to ORA connections.

All Virtex 4 devices contain an even number of BRAMs per column which allows for

complete ECC and cascade BRAM pairs per column. The only exception to this rule is the

in FX devices. For ECC BIST configurations, the BRAMs directly above and below each

PPC module cannot operate in an ECC BRAM pair. As shown in Figure 5.1, ECC BRAM

82

pairs in Virtex 4 devices are fixed and the even numbered rows are always configured as the

LOWER ECC BRAM.

For cascade configurations, problems arise when the cascade pair is separated by a

PPC module. Cascaded BRAMs can be either cascaded with the BRAM directly above

or below. Testing this attribute requires instantiating the bottom BRAM as a LOWER

BRAM and continuing to alternate between UPPER and LOWER configured BRAM as

illustrated in Figure 5.1. A second configuration is required to test BRAMs that were

configured as an UPPER BRAM in the LOWER cascade mode of operation and vice versa.

Due to the Virtex 4 BRAM cascade routing architecture, each cascade BIST configuration

is expected to have ORA failures in a fault-free device. At the top of each BRAM column

and directly below each PPC module, there are no cascade routes that wrap around to the

bottom BRAM in a column or route through a PPC module to the next BRAM. This causes

the bottom BRAM in a cascade pair located at the bottom of a BRAM column and also

directly above a PPC to generate incorrect results when compared to the other BRAMs

in a given configuration. The incorrect results stem from the cascade implementation as

shown in Chapter 2, Figure 2.9. In this implementation, the bottom BRAM outputs data

irrespective if the latched address targets the upper BRAM. The MSB of the address bus

acts to enable writing to the appropriate BRAM and it also selects the corresponding output

by selecting a multiplexer at the output of the upper BRAM in the cascade pair. In [2],

Xilinx recommends leaving the outputs of a lower BRAM in a cascade pair unconnected.

However, the BIST configurations for both ECC and Cascade compare all of the BRAMs

outputs. For BRAMs not expected to generate ORA failures, this enhances the BIST

diagnostic resolution by enhancing the observability of cascade pair outputs.

83

Figure 5.1: ECC and Cascade BIST Architecture

Figure 5.2 illustrates the expected ORA cascade failures in the LSB of each port’s data

outputs. In general, the number of expected failures can be calculated by Equation 5.1.

Four failures are expected per BRAM column because each data ouput is observed by two

ORAs. Eight failures are expected per PPC module because the width of the PPC module

spans two BRAM columns.

Expected ORA Failures = 4 ∗ (# BRAM Columns) + 8 ∗ (# PPC) (5.1)

84

Figure 5.2: Expected Cascade ORA Failure Locations

5.2 ECC BRAM BIST Development

In [36], Stroud discusses a general testing methodology for ECC RAMs. ECC RAMs

are typically implemented with an ECC encode logic which generates Hamming bits for

written data and ECC decode logic which regenerates the Hamming bits when a data

word is read and compares the regenerated Hamming bits to the stored Hamming bits.

The problem with testing ECC memories is that they are inherently fault tolerant. For

example, in order to test if a ECC BRAM can detect Hamming bit errors, actual Ham-

ming bit errors would have to be introduced. Fortunately, Virtex 4 has two configuration

bits, EN ECC WRITE and EN ECC READ, which can either be configured to TRUE or

85

FALSE. When EN ECC WRITE is TRUE, the ECC encode logic is enabled and when

EN ECC READ is TRUE, the ECC decode logic is enabled.

The remaining issue with testing ECC BRAMs is how to test the ECC encode logic.

Out of the 72 data bits, 64 are data and 8 are Hamming bits. Generating all 264 possible

inputs to the ECC encode circuity is infeasible. The ECC encode logic consists of an XOR

parity tree and testing a parity tree can be completed with four test vectors if the structure

of the parity tree is known [37]. However, the structure of the parity tree in the ECC encode

circuit is not given in any Xilinx documentation so a more generic parity tree test is needed

that will yield high fault coverage irrespective of the parity tree structure. In [36] Stroud

shows that the following test vectors will achieve 100% fault coverage for any parity tree

implementation:

Generic Parity Tree Test Vectors:

• All zeros

• All combinations of a 1 in a field of zeros

• All combinations of two 1s in a field of zeros

In [6], Stroud implements a circuit that generates all of the above test vectors and

is shown in Figure 5.3 with modifications for use with Virtex 4 ECC BRAMs. Given the

above circuit, a TPG, ECCTPG, was implemented in VHDL and required 192 slices when

implemented in a FX12. The source code is available in Appendix C.

In order to test the ECC decode and correction circuitry, all possible 28 Hamming

bit values must be read from an ECC BRAM. Without knowing the parity connections

for each Hamming bit, it is not feasible to write data to the ECC BRAM to generate all

86

Figure 5.3: Parity Tree TPG [6]

256 Hamming bit values. Fortunately, an ECC BRAM can be initialized to contain all

256 Hamming bit values. These preloaded Hamming bit values will cause the ECC BRAM

to indicate and correct single-bit errors or indicate double-bit errors when each memory

address is read.

In order generate the parity tree test vectors and read the preloaded Hamming bit

values, a TPG with two test phases was developed. The ECC BRAM test algorithm is as

follows:

ECC BRAM Test Algorithm:

Phase 1: Read each address and observe a single-bit or double-bit read error along with cor-

recting single-bit erros when detected.

Phase 2: Write to and then read from a memory address the vectors listed for a generic parity

tree. Observe single-bit or double bit read error if EN ECC WRITE is FALSE.

The first phase tests the error detection and correction circuitry in the ECC decode

circuity by applying all possible Hamming bit combinations to the ECC decode circuity

by initializing all ECC BRAMs with all possible 256 Hamming bit combinations and then

87

Table 5.1: ECC BRAM BIST Configuration Settings
Config ECC WRITE EN ECC READ EN Phase 1 Phase 2
Num. Clock Cycles Clock Cycles

1 TRUE TRUE 512 5184
2 FALSE TRUE 512 5184

Total ECC BIST Clock Cycles = 11,392

reading the stored patterns. During this phase, a single-bit or double-bit error condition is

expected to occur during the read traversal through memory. The second phase further tests

the ECC decode parity tree and is also able to test the ECC encode circuitry depending on

the configuration of the ECC BRAM as discussed below.

Virtex 4 ECC BRAM BIST consists of two configurations. Table 5.1 summarizes the

configuration settings for the two configurations. During the first configuration, the first

phase of the TPG causes the ECC BRAM to generate single-bit and double-bit read errors,

while the second phase tests the ECC encode circuitry and does not cause read errors

because ECC WRITE EN is generating Hamming for each written data word. In the

second configuration, ECC WRITE EN is set to FALSE and tests the ECC decode parity

tree because in this mode all 72-bits of a data word are written. Phase 1 of the ECCTPG

algorithm is not needed for this second configuration, but this phase only requires 512 clock

cycles and it is applied during both configurations so that the same ECCTPG can be used.

Applying the phase 2 test vectors causes single-bit and double-bit read errors because in

this configuration mode, the TPG is writing directly to the Hamming bit locations instead

of the ECC encode circuitry.

88

5.3 Cascade TPG Development

Since the BRAM memory cell array is tested using March LR with BDS during BRAM

BIST, only address decoding faults need to be testing in cascade BIST configurations. While

applying MATS+ in BRAM BIST was used to detect all AFs, applying MATS+ to 32K

x 1-bit memory requires 327,680 clock cycles which represents almost the total number of

clock cycles for all other BRAM BIST configurations.

A cascaded BRAM is two 16K x 1-bit BRAMs configured such that data in the bottom

half of the 32K-bit memory space is in the lower BRAM and the upper half is in the upper

BRAM. As seen in Figure 5.4, the MSB of the address bus and an inverter selects the write

enable for each BRAM. The MSB of the address bus also selects which cascade BRAM

data to output. Since all AF faults are tested in BRAM BIST, cascade BIST only needs

to test that opposite logic values can be read and written to the upper and lower cascaded

BRAMs. The MATS+ march test can still be used, however, the number of address locations

is reduced to two: one location in the upper BRAM and one location in the lower BRAM.

This simplification allows all but the MSB of the address bus to be grounded (set to logic

zero) as also seen in Figure 5.4. Applying MATS+ to both A and B BRAM ports of a

cascaded BRAM only requires 20 clock cycles. The MATS+ portion of the MMTPG was

modified to create the cascade TPG, CASTPG. The CASTPG implementation required 15

slices and was constrained to four PLB columns to the left of the FX12 center column. The

VHDL source code for the CASTPG is included in Appendix D.

89

Figure 5.4: Cascade BRAM Operational Diagram

90

Table 5.2: Summary of Cascade BIST Configuration Settings
Config Upper BRAM Lower BRAM BIST
Num. RAM EXTENTION[A,B] RAM EXTENTION[A,B] Clock Cycles

1 UPPER LOWER 20
2 LOWER UPPER 20

5.4 BIST Configurations

Two sets of BIST generation programs were developed. V4ECCTPG, V4ECCBIST,

and V4ECCMOD facilitate ECC BIST configuration generation while V4CASTPG, V4CASBIST,

and V4CASMOD generate CAS BIST configurations. Each program in the the two sets

follows the same procedure outlined in BRAM BIST and FIFO BIST. Unlike BRAM and

FIFO BIST, ECC and cascade BIST configurations do not require a TPG control register.

Table 5.1 summarizes the BRAM configuration settings for ECC BIST, and Table 5.2 out-

lines the BRAM configuration settings for cascade BIST. Figures 5.5 and 5.6 show unrouted

ECC and cascade BIST configurations in a FX12, respectively.

5.5 Running BIST Configurations

ECC and cascade BIST configurations use a single BSCAN module to apply BIST

clock cylcles and reset the TPG. Previously, BRAM and FIFO BIST configurations used

a second BSCAN module to shift in a control string. This feature is not needed for ECC

and cascade configurations since the same TPG algorithm is applied in each of the two

configurations. Specifying if the BUT is a upper or lower BRAM, or a portion of the ECC

circuitry is enabled or disabled does not necessitate a change in TPG outputs. The testing

procedure for ECC and cascade configurations is given below:

1. Download BIST configuration to device

91

Figure 5.5: FX12 ECC BIST

Figure 5.6: FX12 Cascade BIST

92

2. Goto USER1 access register.

3. Toggle TDI to reset TPG (Active high asynchronous reset).

4. Apply BIST clock cycles.

5. Retrieve ORA results via configuration memory readback.

6. Repeat Steps 1-5 for each addition configuration.

5.6 BIST Results

For cascade BIST, the expected ORA failures discussed previously were observed when

ORA results were read back for both cascade configurations generated for LX60 and FX12

devices. The observed failures for this device were 20, which is expected since the LX60

contains five columns of BRAMs. FX12 devices contain three columns of BRAM and a

single PPC which caused 20 expected failures.

Since both ECC and cascade BIST have only two configurations, the advantage of

partial reconfiguration is minimized because even in partial reconfiguration, the first con-

figuration is a compressed full configuration. Tables 5.3 and 5.4 summarizes the download

size and test times for both cascade and ECC BIST configurations. Figures 5.8 and 5.7

illustrate the speed-up factors attained by using both compressed and partial reconfigura-

tion techniques. ECC and cascade BIST configuration timing analysis for several Virtex 4

devices are shown Figure 5.9 and Figure 5.10, respectively. For all devices, the the slowest

clock frequency is greater than the 50 MHz maximum boundary scan clock frequency.

93

T
ab

le
5.

3:
Su

m
m

ar
y

of
L

X
60

C
A

S
B

IS
T

D
ow

nl
oa

d
Si

ze
an

d
T

es
t

T
im

es
B

IS
T

C
on

fig
ur

at
io

n
D

ow
nl

oa
d

Si
ze

(B
it

s)
C

on
fig

ur
at

io
n

T
im

e
@

50
M

hz
(s

ec
on

ds
)

F
U

L
L

C
om

pr
es

s
P

ar
ti

al
F

U
L

L
C

om
pr

es
s

P
ar

ti
al

1
17

,7
17

,6
32

7,
80

8,
35

2
7,

80
8,

35
2

0.
35

4
0.

15
6

0.
15

6
2

17
,7

17
,6

32
7,

80
8,

35
2

36
,2

56
0.

35
4

0.
15

6
0.

00
1

T
O

T
A

L
35

,4
35

,2
64

15
,6

16
,7

04
7,

84
4,

60
8

0.
70

9
0.

31
2

0.
15

7

T
ab

le
5.

4:
Su

m
m

ar
y

of
L

X
60

E
C

C
B

IS
T

D
ow

nl
oa

d
Si

ze
an

d
T

es
t

T
im

es
B

IS
T

C
on

fig
ur

at
io

n
D

ow
nl

oa
d

Si
ze

(B
it

s)
C

on
fig

ur
at

io
n

T
im

e
@

50
M

hz
(s

ec
on

ds
)

F
U

L
L

C
om

pr
es

s
P

ar
ti

al
F

U
L

L
C

om
pr

es
s

P
ar

ti
al

1
17

,7
17

,6
32

10
,1

21
,3

76
10

,1
21

,3
76

0.
35

4
0.

20
2

0.
20

2
2

17
,7

17
,6

32
10

,1
21

,3
76

11
3,

92
0

0.
35

4
0.

20
2

0.
00

2
T

O
T

A
L

35
,4

35
,2

64
20

,2
42

,7
52

10
,2

35
,2

96
0.

70
9

0.
40

5
0.

20
5

94

Figure 5.7: LX60 ECC BIST Speed-up Factors

Figure 5.8: LX60 CAS BIST Speed-up Factors

95

F
ig

ur
e

5.
9:

E
C

C
B

IS
T

T
im

in
g

A
na

ly
si

s

96

F
ig

ur
e

5.
10

:
C

as
ca

de
B

IS
T

T
im

in
g

A
na

ly
si

s

97

Chapter 6

Summary and Conclusion

BIST results for all generated BIST configurations are summarized along with a com-

parison to the final results attained by Garimella [17]. The BIST architecture detailed

in this thesis can also be applied to more recent FPGAs such as the Xilinx Virtex 5. In

Virtex 5, Xilinx has introduced several important testability improvements for BRAMs. A

potential BIST architecture for Virtex 5 BRAMs will outline future work in this field.

6.1 Summary of Virtex 4 BIST Results

The work contained in this thesis developed a BIST architecture for Virtex 4 BRAMs in

all modes of operations. Six BIST configurations were generated to test BRAMs configured

to operate as a regular RAM. Fifteen BIST configurations were needed to test BRAMs

configured to operate as a FIFO. Two BIST configurations were generated to test both ECC

and Cascade BRAM operational modes. The 25 total BIST configurations were generated

and downloaded to a LX60, SX35, and FX12 devices. Several faulty LX60 devices were

tested using these BIST configurations and in one of the devices, an ORA failure indicated

that a single BRAM’s DOA[23] output was faulty.

The eight BIST configurations developed by Garimella for Virtex 2 required a total

of 485,888 clock cycles [17]. The 25 BIST configurations presented in this thesis require

402,243 clock cycles, a savings of 83,645 clock cycles. This BIST approach was able to

reduce the amount BIST clock cycles while testing BRAMs in more modes of operations.

Selecting MATS+ instead of March LR for testing additional memory sizes greatly reduced

98

Total BIST Speed-up Factors

1.80

1.00

12.15

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Full

Compressed

Partial

Figure 6.1: BIST Speed-up for LX60

the number of clock cycles. Moreover, the use of partial reconfiguration during each set of

BIST configurations allowed for a considerable reduction in the total number of downloaded

configuration bits. As shown in the previous chapters, the number of configuration bits is

vastly greater than the number of BIST clock cycles. The Virtex 4 BIST configurations

were able to take advantage of partial reconfiguration by keeping the TPG-to-BUT and

BUT-to-ORA routing static. TPGs capable of adapting to different BRAM configurations

were developed and their physical placement was not modified during each set of BIST

configurations. The speed-up factors for each configuration technique are shown in Figure

6.1. The speed-up factors are normalized to FULL configurations. Clearly, utilizing partial

reconfiguration allows for significant gains in terms of test time and also BIST configuration

memory storage.

99

6.2 Application to Virtex 5

In 2006, Xilnx released the successor to Virtex 4, the Virtex 5. The main distinction

between in the two device families is the transition from a 4-input LUT to a 6-input LUT

[38]. BRAMs for Virtex 5 have also been modified. Each Virtex 5 BRAM consists of two

Virtex 4 BRAMs and each Virtex 5 BRAM can also be cascaded to form a 64K x 1-bit

RAM. In Virtex 4, FIFO and BRAM output connections were in different locations, but

in Virtex 5, all FIFO and BRAM connections are located together. Having all BRAM and

FIFO outputs together allows for the MMTPG and FIFOTPG developed for Virtex 4 to

be combined to form an even larger TPG. A BIST architecture could be developed that

contains an initial full or compressed configuration and every configuration thereafter could

be done through partial reconfigurations. This architecture would require two sets of ORAs:

one set of ORAs to compare BRAM, FIFO, and ECC modes, and the second set to compare

the cascade BRAM outputs. Another improvement in Virtex 5 is that the ECC encode and

decode logic can be tested separately. The encode and decode logic can be configured such

that it’s outputs bypass the BRAM memory. In addition, the Hamming bits generated for

each data word are also available at the BRAM outputs. Virtex 4 did not output Hamming

bits.

Virtex 5 represents an excellent platform to develop BIST for BRAM due to the BIST-

friendly architectural improvements over Virtex 4. Using partial configuration, Virtex 5

BIST could potentially be more efficient.

100

Bibliography

[1] S. Trimberger, D. McCarty, and T. Whitney, Field Programmable Gate Array Tech-
nology, S. Trimberger, Ed. Kluwer, 1994.

[2] Virtex-4 User Guide, User Guide UG070 (v1.4), Xilinx, Inc., 2005 (avaiable at
www.xilinx.com).

[3] Virtex-4 Configuration Guide , Configuration Guide UG071, Xilinx, Inc., (available at
www.xilinx.com).

[4] A. Van De Goor, I. Tlili, and S. Hamdioui, “Converting march tests for bit-oriented
memories into tests for word-oriented memories,” in Memory Technology, Design and
Testing, 1998. Proceedings. International Workshop on, 24-25 Aug. 1998, pp. 46–52.

[5] S. Hamdioui and A. van de Goor, “Efficient tests for realistic faults in dual-port
SRAMs,” Computers, IEEE Transactions on, vol. 51, no. 5, pp. 460–473, May 2002.

[6] C. Stroud, A Designer’s Guide to Built-In Self-Test. Kluwer Academic Publishers,
2002.

[7] D. Patterson and J. Hennessy, Computer Organization and Design: The Hardware /
Software Infterface. Elsevier, New York, 2005.

[8] International Technology Roadmap for Semiconductors 2001, http://public.itrs.net.

[9] Intel Corp., www.intel.com/products.

[10] Xilinx Corp., www.xilinx.com/products.

[11] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, 2000.

[12] M. Abramovici, J. Emmert, and C. Stroud, “Roving STARS: an integrated approach
to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing
systems,” in Evolvable Hardware, 2001. Proceedings. The Third NASA/DoD Workshop
on, 12-14 July 2001, pp. 73–92.

[13] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FPGAs,” in On-Line
Testing Workshop, 2002. Proceedings of the Eighth IEEE International, 8-10 July 2002,
pp. 131–134.

[14] ——, “BIST-based test and diagnosis of FPGA logic blocks,” Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, vol. 9, no. 1, pp. 159–172, Feb. 2001.

101

[15] ——, “BIST-based detection and diagnosis of multiple faults in FPGAs,” in Test Con-
ference, 2000. Proceedings. International, 3-5 Oct. 2000, pp. 785–794.

[16] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST and BIST-based diagnosis of
FPGA logic blocks,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 12, no. 12, pp. 1284–1294, Dec 2004.

[17] S. Garimella, “Built-in self test for regular structured embedded cores in system-on-
chip,” Master’s thesis, Auburn Unversity, 2005.

[18] S. Garimella and C. Stroud, “A system for automated built-in self-test of embedded
memory cores in system-on-chip,” in System Theory, 2005. SSST ’05. Proceedings of
the Thirty-Seventh Southeastern Symposium on, 20-22 March 2005, pp. 50–54.

[19] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-test of FPGA
interconnect,” in Test Conference, 1998. Proceedings. International, 18-23 Oct. 1998,
pp. 404–411.

[20] C. Stroud, M. Lashinsky, J. Nall, J. Emmert, and M. Abramovici, “On-line BIST and
diagnosis of FPGA interconnect using roving STARS,” in On-Line Testing Workshop,
2001. Proceedings. Seventh International, 9-11 July 2001, pp. 27–33.

[21] C. Stroud, K. Leach, and T. Slaughter, “BIST for Xilinx 4000 and Spartan series
FPGAs: a case study,” in Test Conference, 2003. Proceedings. ITC 2003. International,
vol. 1, Sept. 30-Oct. 2, 2003, pp. 1258–1267.

[22] C. Stroud, E. Lee, and M. Abramovici, “BIST-based diagnostics of FPGA logic blocks,”
in Test Conference, 1997. Proceedings., International, 1-6 Nov. 1997, pp. 539–547.

[23] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-
programmable gate arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp. 1013–1029,
July 1993.

[24] Altera Corp., www.altera/products.

[25] S. Hamdioui, Testing Static Random Access Memories Defects, Fault Models and Test
Patterns. Kluwer Academic Publishers, 2004.

[26] A. Van de Goor, Testing Semiconductor Memories: Theory and Practice. John Wiley
& Sons, 1991.

[27] S. Jain and C. Stroud, “Built-in self testing of embedded memories,” Design & Test of
Computers, IEEE, vol. 3, no. 5, pp. 27–37, 1986.

[28] C. Stroud and S. Garimella, “Built-in self-test and diagnosis of multiple embedded cores
in socs,” in Proc. International Conference on Embedded Systems and Applications,
2005.

102

[29] Virtex-II Pro / Virtex II Pro X Complete Data Sheet, Data Sheet DS083 (v4.5), Xilinx,
Inc., 2005 (available at www.xilinx.com).

[30] Single Error Correction and Double Error Detection, Xilinx Application Note
XAPP645, 2006 (available at www.xilinx.com).

[31] Development System Reference Guide (v8.2i), Xilinx, Inc., 2005 (available at
www.xilinx.com).

[32] A. van de Goor, G. Gaydadjiev, V. Mikitjuk, and V. Yarmolik, “March LR: a test for
realistic linked faults,” in VLSI Test Symposium, 1996., Proceedings of 14th, 28 April-1
May 1996, pp. 272–280.

[33] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris, “Built-in self-test for system-on-
chip: a case study,” in Test Conference, 2004. Proceedings. ITC 2004. International,
2004, pp. 837–846.

[34] S. Dhingra, “Built-in self-test of logic resources in field programmable gate arrays using
partial reconfiguration,” Master’s thesis, Auburn University, 2006.

[35] Atmel Corp. Combined Megacell Testing, Application Note AN0696C, 1999.

[36] L. Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures: Nanometer
Design for Testability. Elsevier, 2007.

[37] S. Mourad and E. McCluskey, “Testability of parity checkers,” Industrial Electronics,
IEEE Transactions on, vol. 36, no. 2, pp. 254–262, May 1989.

[38] Virtex-5 User Guide UG190 (v3.0), Xilinx, Inc., 2007 (available at www.xilinx.com).

103

Appendices

104

Appendix A

MMTPG VHDL Source code

105

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity fsm is

port (
Reset : in std_logic;
TDI,DRCK,UPDATE,SHIFT: in std_logic;
Clk : in std_logic;
WEA : buffer std_logic;
WEB: buffer std_logic;
−−OEN : out std_logic;
DIA : out std_logic_vector(35 downto 0);
DIB: out std_logic_vector(35 downto 0);
ADDRA : out std_logic_vector(13 downto 0);
ADDRB: out std_logic_vector(13 downto 0);
EnA: out std_logic;
EnB : out std_logic;
SSR : out std_logic; −−follows EN_LEVEL signal
REGCE: out std_logic);

 −−FINISHTEST: out std_logic);

end fsm;
architecture BEHAVIORAL of fsm is

type testmodes is (MarchLR,MATS,March_s2pf,March_d2pf);
type phases is (Init,dummy,Phase1,phase2,phase3,phase4,phase5,phase6,phase7,phase8,p

hase9,phase10,phase11,phase12,phase13,phase14,phase15,phase16);
type elements is (ele1,ele2,ele3,ele4,ele5);
signal testmode: testmodes :=MarchLR;
signal phase : phases := dummy;
signal Element : elements := ele1;
signal Address : std_logic_vector (13 downto 0);
signal AddressB: std_logic_vector(13 downto 0);
signal MAXADDRESS : std_logic_vector (13 downto 0);
constant MINADDRESS : std_logic_vector (13 downto 0) := (others => ’0’);
signal portBtested: std_logic:=’0’;
signal tempdata: std_logic_vector(35 downto 0); −−to comply with design consideratio

ns by Xilinx
signal tempdataB: std_logic_vector(35 downto 0); −−to comply with design considerati

ons by Xilinx
signal ENATEMP,ENBTEMP,SSRTEMP,WEAtemp,WEBtemp,EN_LEVEL, WEN_ACTIVE, REGCE_ACTIVE: s

td_logic;
signal MODE: std_logic_vector(2 downto 0);
signal SR, PDO : std_logic_vector(5 downto 0);

begin
 bsync:

process (DRCK, UPDATE,SHIFT) begin −− sync circuitry on BSCAN clock
if (DRCK’event and DRCK = ’1’) then

if (SHIFT = ’1’) then −− shift
for I in 0 to 4 loop

SR(I) <= SR(I+1);
end loop;
SR(5) <= TDI;

−− TDO <= SR(0);
end if;

end if;
if (UPDATE = ’1’) then PDO <= SR; −− update
end if;

end process bsync;
EN_LEVEL <= PDO(3);
WEN_ACTIVE <=PDO(5);
REGCE_ACTIVE <= PDO(4);
MODE(0)<=PDO(0);
MODE(1)<= PDO(1);
MODE(2) <= PDO(2);

−−begin
 p0:

Process(clk,Reset,MODE,MAXADDRESS,tempdata,tempdataB,Address,AddressB,WEA)

106

begin
if (Reset = ’1’) then

ADDRB <= (others => ’1’);
ADDRA <= (others => ’1’);
DIA <= (others => ’0’);
DIB <= (others => ’0’);
REGCE <= REGCE_ACTIVE;
EnA <= not EN_LEVEL;
EnB <= not EN_LEVEL;
WEA <= not WEN_ACTIVE;
WEB <= not WEN_ACTIVE;
SSR <= not EN_LEVEL;

elsif (Clk = ’1’ and Clk’Event) then

case MODE is
when "000" =>

MAXADDRESS<="00000111111111"; −−512 X 36 with BDS
DIA<=tempdata;
DIB<=tempdata;
ADDRA<=Address(8 downto 0)&"11111";
ADDRB<=Address(8 downto 0)&"11111";
REGCE <=(REGCE_ACTIVE);
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
testmode <= MarchLR;

when "001" =>
MAXADDRESS<="01111111111111"; −−8k X 2
DIA<="1111111111111111111111111111111111"&tempdata(1 downto 0);
DIB<="1111111111111111111111111111111111"&tempdata(1 downto 0);
ADDRA<=Address(12 downto 0)&’1’;
ADDRB<=Address(12 downto 0)&’1’;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
Testmode <= MATS;
REGCE <= REGCE_ACTIVE;

when "010" =>

MAXADDRESS<="11111111111111"; −−16k X 1
DIA<="11111111111111111111111111111111111"&tempdata(0);
DIB<="11111111111111111111111111111111111"&tempdata(0);
ADDRA<=Address(13 downto 0);
ADDRB<=Address(13 downto 0);
REGCE <= REGCE_ACTIVE;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;
Testmode <= MATS;

when "101" =>
MAXADDRESS<="00000111111111"; −−512 X 36
DIA<=tempdata;
DIB<=tempdata;
ADDRA<=Address(8 downto 0)&"11111";
ADDRB<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
Testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

107

when "011" =>

MAXADDRESS<="00000111111111"; −−s2pf
DIA<=tempdata;
DIB<=tempdataB;
ADDRB<=Address(8 downto 0)&"11111";
ADDRA<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
testmode <= March_s2pf;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

when "100" =>

MAXADDRESS<="00000111111111"; −−d2pf
DIA<=tempdata;
DIB<=tempdataB;
ADDRB<=AddressB(8 downto 0)&"11111";
ADDRA<=Address(8 downto 0)&"11111";
REGCE <= (REGCE_ACTIVE);
testmode <= March_d2pf;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

when "110" =>

MAXADDRESS<="00111111111111"; −−4k x 4
DIA<="11111111111111111111111111111111"&tempdata(3 downto 0);
DIB<="11111111111111111111111111111111"&tempdata(3 downto 0);
ADDRB<=AddressB(11 downto 0)&"11";
ADDRA<=Address(11 downto 0)&"11";
REGCE <= (REGCE_ACTIVE);
testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

when "111" =>

MAXADDRESS<="00011111111111"; −−2k x 9
DIA<="111111111111111111111111111"&tempdata(8 downto 0);
DIB<="111111111111111111111111111"&tempdata(8 downto 0);
ADDRB<=AddressB(10 downto 0)&"111";
ADDRA<=Address(10 downto 0)&"111";
REGCE <= (REGCE_ACTIVE);
testmode <= MATS;
WEA<=WEAtemp;
WEB<=WEBtemp;
SSR<=SSRtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

when others =>
end case;

end if;
−− end if;
end process;

p1:

Process(Clk)
begin

if (Reset =’1’) then
tempdata <= (others => ’0’);
tempdataB <= (others => ’0’);
AddressB <= (others => ’0’);

108

Address <= (others => ’0’);
Element <= ele1;
Phase <= dummy;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
SSRtemp <= not EN_LEVEL;
EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;

−−
elsif (Clk = ’1’ and Clk’Event) then

case testmode is

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MARCH LR−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

when MarchLR=>

case Phase is
when dummy =>

EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;
Phase <= Init;

when Init =>
SSRtemp<= not(EN_LEVEL);
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Element <= ele1;
Phase <= Phase1;
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);

when phase1 => −− U w 000000000000000000000000000000000000
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
Element <= ele1;
tempdata <= (others => ’0’);

else −− D r 000000000000000000000000000000000000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Phase <= Phase2;

Element <= ele2;
end if;

when phase2 => −− D r 000000000000000000000000000000000000 w 1111111
11111111111111111111111111111

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’1’);
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ’0’);

else −− U r 111111111111111111111111111111111111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’1’);
Phase <= Phase3;

109

Element <= ele2;
end if;

when others =>
end case;

when phase3 => −− U r 111111111111111111111111111111111111 w 0000000
00000000000000000000000000000 r 000000000000000000000000000000000000 r 0000000000000000000
00000000000000000 w 111111111111111111111111111111111111

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Element <= ele5;

when ele5 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’1’);
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <=not WEN_ACTIVE;
Element <= ele2;
tempdata <= (others => ’1’);

else −− U r 111111111111111111111111111111111111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’1’);
Phase <= Phase4;

Element <= ele2;
end if;

when others =>
end case;

when phase4 => −− U r 111111111111111111111111111111111111 w 0000000
00000000000000000000000000000

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’; −−was −
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ’1’);

else −− U r 000000000000000000000000000000000000
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Phase <= Phase5;

110

Element <= ele2;
end if;

when others =>
end case;

when phase5 => −− U r 000000000000000000000000000000000000 w 1111111
11111111111111111111111111111 r 111111111111111111111111111111111111 r 1111111111111111111
11111111111111111 w 000000000000000000000000000000000000

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’1’);
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’1’);
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’1’);
Element <= ele5;

when ele5 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ’0’);

else −− D r 000000000000000000000000000000000000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Phase <= Phase6;

Element <= ele2;
end if;

when others =>
end case;

when phase6 => −− D r 000000000000000000000000000000000000 w 0101010
10101010101010101010101010101 w 101010101010101010101010101010101010 r 1010101010101010101
01010101010101010

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "010101010101010101010101010101010101";
Element <= ele3;

when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "101010101010101010101010101010101010";
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "101010101010101010101010101010101010";
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);

111

WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= (others => ’0’);

else −− U r 101010101010101010101010101010101010
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "101010101010101010101010101010101010";
Phase <= Phase7;

Element <= ele2;
end if;

when others =>
end case;

when phase7 => −− U r 101010101010101010101010101010101010 w 0101010
10101010101010101010101010101 r 010101010101010101010101010101010101

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "010101010101010101010101010101010101";
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "010101010101010101010101010101010101";
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "101010101010101010101010101010101010";

else −− D r 010101010101010101010101010101010101
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "010101010101010101010101010101010101";
Phase <= Phase8;

Element <= ele2;
end if;

when others =>
end case;

when phase8 => −− D r 010101010101010101010101010101010101 w 0011001
10011001100110011001100110011 w 110011001100110011001100110011001100 r 1100110011001100110
01100110011001100

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "001100110011001100110011001100110011";
Element <= ele3;

when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "110011001100110011001100110011001100";
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "110011001100110011001100110011001100";
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);

112

Element <= ele2;
tempdata <= "010101010101010101010101010101010101";

else −− U r 110011001100110011001100110011001100
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "110011001100110011001100110011001100";
Phase <= Phase9;

Element <= ele2;
end if;

when others =>
end case;

when phase9 => −− U r 110011001100110011001100110011001100 w 0011001
10011001100110011001100110011 r 001100110011001100001100110011001100

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "001100110011001100110011001100110011";
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "001100110011001100001100110011001100";
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "110011001100110011001100110011001100";

else −− D r 001100110011001100110011001100110011
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "001100110011001100110011001100110011";
Phase <= Phase10;

Element <= ele2;
end if;

when others =>
end case;

when phase10 => −− D r 001100110011001100110011001100110011 w 000011
110000111100001111000011110000 w 111100001111000011110000111100001111 r 111100001111000011
110000111100001111

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000011110000111100001111000011110000";
Element <= ele3;

when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "111100001111000011110000111100001111";
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111100001111000011110000111100001111";
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;

113

tempdata <= "001100110011001100110011001100110011";
else −− U r 111100001111000011110000111100001111

Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111100001111000011110000111100001111";
Phase <= Phase11;

Element <= ele2;
end if;

when others =>
end case;

when phase11 => −− U r 111100001111000011110000111100001111 w 000011
110000111100001111000011110000 r 000011110000111100001111000011110000

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;

tempdata <= "000011110000111100001111000011110000";
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000011110000111100001111000011110000";
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111100001111000011110000111100001111";

else −− D r 000011110000111100001111000011110000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000011110000111100001111000011110000";
Phase <= Phase12;

Element <= ele2;
end if;

when others =>
end case;

when phase12 => −− D r 000011110000111100001111000011110000 w 000000
001111111100000000111111110000 w 111111110000000011111111000000001111 r 111111110000000011
111111000000001111

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000000001111111100000000111111110000";
Element <= ele3;

when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "111111110000000011111111000000001111";
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111110000000011111111000000001111";
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;

114

tempdata <= "000011110000111100001111000011110000";
else −− U r 111111110000000011111111000000001111

Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111110000000011111111000000001111";
Phase <= Phase13;

Element <= ele2;
end if;

when others =>
end case;

when phase13 => −− U r 111111110000000011111111000000001111 w 000000
001111111100000000111111110000 r 000000001111111100000000111111110000

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;

tempdata <= "000000001111111100000000111111110000";
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000001111111100000000111111110000";
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111111110000000011111111000000001111";

else −− D r 000000001111111100000000111111110000
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000001111111100000000111111110000";
Phase <= Phase14;

Element <= ele2;
end if;

when others =>
end case;

when phase14 => −− D r 000000001111111100000000111111110000 w 000000
000000000000111111111111111100 w 111111111111111100000000000000001111 r 111111111111111100
000000000000001111

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;

tempdata <= "000000000000000000111111111111111100";
Element <= ele3;

when ele3 =>
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;

tempdata <= "111111111111111100000000000000001111";
Element <= ele4;

when ele4 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not WEN_ACTIVE;
tempdata <= "111111111111111100000000000000001111";
Element <= ele1;

when ele1 =>
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);

115

WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "000000001111111100000000111111110000";

else −− U r 111111111111111100000000000000001111
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "111111111111111100000000000000001111";
Phase <= Phase15;

Element <= ele2;
end if;

when others =>
end case;

when phase15 => −− U r 111111111111111100000000000000001111 w 000000
000000000000111111111111111100 r 000000000000000000111111111111111100

case Element is
when ele2 =>

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= "000000000000000000111111111111111100";
Element <= ele3;

when ele3 =>
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000000000000000111111111111111100";
Element <= ele1;

when ele1 =>
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele2;
tempdata <= "111111111111111100000000000000001111";

else −− D r 000000000000000000111111111111111100
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
tempdata <= "000000000000000000111111111111111100";
Phase <= Phase16;

Element <= ele1;
end if;

when others =>
end case;

when phase16 => −− D r 000000000000000000111111111111111100
if (Address /= MINADDRESS) then

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= not(WEN_ACTIVE);
Element <= ele1;
tempdata <= "000000000000000000111111111111111100";

else −− U w 000000000000000000000000000000000000
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
if (portBtested = ’1’) then −− change testing mode

portBtested<=’0’;
phase<=Init;
Element<=ele1;

else
portBtested<=’1’;
Phase <=Phase1;
EnBtemp <= EN_LEVEL;
EnAtemp <= not(EN_LEVEL);
Element <= ele1;

end if;
end if;

116

end case;

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MATS−−−−−−−DTM−−−−−−−−−−−−−−−−−−−−−−

when MATS=>
case Phase is

when dummy =>
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;
Phase <= Init;
portbtested <=’0’;

when Init =>

Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE; −−changed from not
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Phase <= Phase1;
if (portbtested =’1’) then

EnAtemp <= not EN_LEVEL;
EnBtemp <= (EN_LEVEL);
portbtested<=’0’;

else
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);

end if;
SSRtemp <=not(EN_LEVEL);

when phase1=>
if (Address /= MAXADDRESS) then

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
Address <= Address+’1’;

elsif (Address = MAXADDRESS) then

tempdata <= (others => ’0’);
WEAtemp <=not WEN_ACTIVE;
WEBtemp <=not WEN_ACTIVE;
Phase <=Phase2;
Address <= MINADDRESS;

end if;

when phase2 => −− up R0 , W1
if (Address /= MAXADDRESS) then

case element is
when ele1 => −−read zeros

WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’1’);
element <=ele2;

when ele2 => −−write ones
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;
tempdata <= (others => ’0’);
Address <= Address +’1’;
element <=ele1;

when others =>
end case;

elsif (Address = MAXADDRESS) then
case element is

when ele1 => −−read zeros
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’1’);
element <=ele2;

117

when ele2 => −−write ones
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;

 −−Address <= MAXADDRESS ; already at MAX!!!
tempdata <= (others => ’1’);
element <=ele1;
Phase <= Phase3;
Address <= MAXADDRESS ;
tempdata <= (others => ’1’);

when others =>
end case;

end if;

when phase3 => −− Down R1,WO

if (Address /= MINADDRESS) then
case element is

when ele1 => −−read ones
WEAtemp <= WEN_ACTIVE;
WEBtemp <= WEN_ACTIVE;
tempdata <= (others => ’0’);
element <=ele2;

when ele2 => −−write zeros
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;
tempdata <= (others => ’0’);
Address <= Address −’1’;
element <=ele1;

when others =>
end case;

elsif (Address = MINADDRESS) then
case element is

when ele1 => −−read 1s
WEAtemp <= WEN_ACTIVE;
WEBtemp <=WEN_ACTIVE;
tempdata <= (others => ’0’);
element <=ele2;

when ele2 => −−write ones
WEAtemp <= not WEN_ACTIVE;
WEBtemp <= not WEN_ACTIVE;
Phase <=phase4;
element <=ele1;

when others =>
end case;

end if;
when phase4 =>

if (portBtested=’1’) then
portBtested<=’0’;

else
portBtested<=’1’;
Phase <= init;

end if;
when others =>

end case;

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−MARCH S2PF−−−−−−−DTM−−−−−−−−−−−−−−−−−−−−−−

when March_s2pf =>
case Phase is

when dummy =>
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
SSRtemp <= EN_LEVEL;

118

Phase <= Init;
when Init =>

element<=ele1;
Address <= MINADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
SSRtemp <= not EN_LEVEL;
tempdata <= (others => ’0’);
tempdatab <= (others => ’0’);
Phase <= Phase1;
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;

when phase1=>−− M0 up write 0s
if (Address /= MAXADDRESS) then

Address <= Address + ’1’;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);

else

Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
Phase <=Phase2;

end if;
when Phase2=>

case element is
when ele1 => −−2

tempdata<=(others => ’0’);
element<=ele2;

when ele2=>−−3
element<=ele3;

when ele3=> −−4
WEAtemp<=(WEN_ACTIVE);
tempdata <= (others => ’1’);
tempdataB <= (others => ’0’);

 −−port B output should have zero’s on it still.
element<=ele4;

when ele4 => −−goes to next RAM address or next march
if (Address /=MAXADDRESS) then

Address <=Address +’1’;
WEAtemp<=not(WEN_ACTIVE);
element <=ele1;

else −− done with March M1
Address <= MINADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
element<=ele1;
Phase <=Phase3;

end if;
when others =>

end case;
when Phase3 => −−M2

case element is
when ele1 => −−5

element<=ele2; −−reading 1s from each port and then reading
again.

when ele2=> −−6
element<=ele3; −−done reading same address twice

when ele3=> −−7
WEAtemp<=(WEN_ACTIVE);
tempdata <= (others => ’0’);
tempdataB <= (others => ’1’);

 −−port B output should have 1s on it still.
element<=ele4;

when ele4 =>
if (Address /=MAXADDRESS) then

Address <=Address +’1’;
WEAtemp<=not(WEN_ACTIVE);

119

element <=ele1;
else −− done with March M2

Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);

 −−OEN <= OEN_ACTIVE;
tempdata <= (others => ’0’);
Phase <=Phase4;
element <=ele1;

end if;
when others =>

end case;
when Phase4 => −−M3

case element is
when ele1 => −−8

element<=ele2; −−reading zeros from each port and then readi
ng again.

when ele2=> −−9
element<=ele3; −−done reading same address twice

when ele3=> −−10
WEAtemp <= (WEN_ACTIVE);
tempdata <= (others => ’1’);
tempdataB <= (others => ’0’);

 −−port B output should have zero’s on it still.
element<=ele4;

when ele4 =>
if (Address /=MINADDRESS) then

Address <=Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
element <=ele1;

else −− done with March M3
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
element<=ele1;
Phase <=Phase5;

end if;
when others =>

end case;

when Phase5 =>
case element is

when ele1 => −−11
element<=ele2; −−reading zeros from each port and then readi

ng again.
when ele2=> −−12

element<=ele3; −−done reading same address twice
when ele3=> −−13

WEAtemp <= (WEN_ACTIVE);
tempdata <= (others => ’0’);
tempdataB <= (others => ’1’);

 −−port B output should have zero’s on it still.
element<=ele4;

when ele4 =>
if (Address /=MINADDRESS) then

Address <=Address − ’1’;
WEAtemp <=not(WEN_ACTIVE);
element <=ele1;

else −− done with March M4
Address <= MAXADDRESS;
WEAtemp <= not(WEN_ACTIVE);

 −−OEN <= OEN_ACTIVE;
tempdata <= (others => ’0’);
element<=ele1;
Phase <=Phase6;

end if;
when others =>

end case;
when Phase6 => −−14

if (Address /= MINADDRESS) then

120

Address <= Address − ’1’;
WEAtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);

else
Element <= ele1;
Phase <=init;

−− testmode <= March_s2pf; −−ADDRESS already at LOWER BOUND for
 next test session

end if;
when others =>

end case;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−MARCH D2PF−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

when March_d2pf =>
case Phase is

when dummy =>
phase <= init;
EnAtemp <= EN_LEVEL;
EnBtemp <= EN_LEVEL;
Phase <= Init;
SSRtemp <= EN_LEVEL;

when init =>
SSRtemp <= not(EN_LEVEL);
phase <= Phase1;
Address <= MAXADDRESS;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others => ’0’);
tempdataB <= (others => ’0’);
element <= ele2;

when Phase1 =>
if (Address = MINADDRESS) then

Phase <= Phase2;
AddressB <= MINADDRESS + ’1’;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>’1’);
tempdataB <= (others=>’0’);
element <= ele1;

elsif (Address /= MINADDRESS and element /= ele2) then
Address <= Address − ’1’;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>’0’);
tempdataB <= (others=>’0’);

elsif (Address /= MINADDRESS and element = ele2) then
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>’0’);
tempdataB <= (others=>’0’);
element <= ele1;

end if;
when Phase2 =>

if (element = ele1) then
if (Address = MINADDRESS) then

AddressB <= MAXADDRESS; −− (r1_r:r0_MAX) for low address
WEBtemp <= not(WEN_ACTIVE);
tempdataB <= (others=>’0’);

elsif (Address /= MINADDRESS) then
AddressB <= Address − ’1’;
WEBtemp <= WEN_ACTIVE;
tempdataB <= (others=>’1’);

end if;−− r1_r : w1_r−1
WEAtemp <= not WEN_ACTIVE;
tempdata <= (others=>’1’);

121

 −−tempdataB <= (others=>’1’);
element <= ele2;

elsif (element = ele2) then −− w0_r: r1_r−1
if (Address = MINADDRESS) then

AddressB <= MAXADDRESS; −− (w0_r:r0_MAX) for low address

tempdataB <= (others=>’0’);
elsif (Address /= MINADDRESS) then

AddressB <= Address − ’1’;
tempdataB <= (others=>’1’);

end if;
WEBtemp <= not(WEN_ACTIVE);
WEAtemp <= WEN_ACTIVE;
tempdata <= (others=>’0’);
element <= ele3;

elsif (element = ele3) then −− r0_r:w0_r+1

AddressB <= Address + ’1’;
WEAtemp <= not(WEN_ACTIVE);
WEBtemp <= WEN_ACTIVE;
tempdata <= (others=>’0’);
tempdataB <= (others=>’0’);
element <= ele4;

elsif (element = ele4) then

if (Address = MAXADDRESS − ’1’) then
Phase <= init;
Address <= MAXADDRESS;
AddressB <= MAXADDRESS;
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>’0’);
tempdataB <= (others=>’0’);
element <= ele1;

elsif (Address /= MAXADDRESS − ’1’) then

Address <= Address + ’1’;
AddressB <= Address + "10";
WEAtemp <= WEN_ACTIVE;
WEBtemp <= not(WEN_ACTIVE);
tempdata <= (others=>’1’);
tempdataB <= (others=>’0’);
element <= ele1;

end if;
end if;

when others =>

end case;

when others =>
end case;

end if;
end process;

end;

122

Appendix B

FIFOTPG VHDL Source code

123

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FIFO_TPG is
Port (CLK,DRCK,UPDATE,SHIFT,TDI : in STD_LOGIC;
 Reset: in STD_LOGIC;
 DI: out STD_LOGIC_VECTOR(31 downto 0);
 DIP: out STD_LOGIC_VECTOR(3 downto 0);
 RST,WREN,RDEN: out STD_LOGIC);

end FIFO_TPG;

architecture Behavioral of FIFO_TPG is
type phases is (RESET_FIFO,Phase1,phase2,phase4);
type elements is(ele1,ele2,ele3,ele4,ele5,ele6);
signal element : elements :=ele1;
signal phase : phases := reset_fifo;
signal MAXCOUNT: STD_LOGIC_VECTOR(12 downto 0);
signal MINCOUNT: STD_LOGIC_VECTOR(12 downto 0);
signal COUNT: STD_LOGIC_VECTOR(12 downto 0);
signal tempdata: STD_LOGIC_VECTOR(35 downto 0);
signal SR, PDO : STD_LOGIC_VECTOR(4 downto 0);
signal MODE: std_logic_vector(1 downto 0);
signal RDENtemp,WRENtemp,RDEN_level,WREN_level, RST_level: std_logic;

begin
MINCOUNT <= (others =>’0’);

bsync:
process (DRCK, UPDATE,SHIFT,SR) begin

if (DRCK’event and DRCK = ’1’) then
if (SHIFT = ’1’) then

for I in 0 to 3 loop
SR(I) <= SR(I+1);

end loop;
SR(4) <= TDI;

end if;
end if;
if (UPDATE = ’1’) then PDO <= SR;
end if;

end process bsync;
RDEN_level <= PDO(2);
WREN_level <=PDO(3);
RST_level <= PDO(4);
MODE(0)<=PDO(0);
MODE(1)<= PDO(1);

Process(MODE,tempdata,WRENtemp,RDENtemp)

begin
if (MODE="00") then

MAXCOUNT <= "1000000000000"; −−4096
DI <= X"0000000"&tempdata(3 downto 0);
DIP <= "0000";
WREN <= WRENtemp;
RDEN <= RDENtemp;

elsif (MODE="01") then
MAXCOUNT <= "0100000000000"; −−2049
DI <= X"000000"&tempdata(7 downto 0);
DIP <= "000"&tempdata(35);
WREN <= WRENtemp;
RDEN <= RDENtemp;

elsif (MODE="10") then
MAXCOUNT <= "0010000000000"; −−1025
DI <=X"0000"&tempdata(15 downto 0);
DIP <= "00"&tempdata(35 downto 34);
WREN <= WRENtemp;
RDEN <= RDENtemp;

elsif (MODE="11") then
MAXCOUNT <= "0001000000000"; −−513
DI <= tempdata(31 downto 0);
DIP <= tempdata(35 downto 32);

124

WREN <= WRENtemp;
RDEN <= RDENtemp;

end if;
end process;
Process(Reset, Clk,RDEN_level,WREN_level,RST_level)

begin
if (Reset = ’1’) then

tempdata<=(others =>’0’);
COUNT <= MINCOUNT;
phase <= RESET_FIFO;
rst<=RST_level;
RDENtemp<=not(RDEN_level);
WRENtemp<=not(WREN_level);

elsif (Clk = ’1’ and Clk’Event) then
case Phase is

when RESET_FIFO =>
case element is

when ele1 =>
rst <=RST_level;
element <= ele2;

when ele2 =>
rst <= RST_level;
element <=ele3;

when ele3 =>
element <= ele4;

when ele4 =>
element <=ele5;

when ele5 =>
phase <= phase1;
element <=ele1;
count <= MINCOUNT;
RDENtemp <= not RDEN_level;
WRENtemp <= WREN_level;
rst <= not RST_level;

when others =>
end case;

when Phase1=>
if (COUNT <= MAXCOUNT) then

COUNT <= COUNT + ’1’;
WRENtemp <= WREN_level;
tempdata <= (others => ’0’);

else
COUNT <=MINCOUNT;
Phase <=Phase2;
WRENtemp <= not (WREN_level);
RDENtemp <= RDEN_level;
tempdata <=(others =>’0’);

end if;
when phase2 =>

case Element is
when ele1 =>

if (COUNT <=MAXCOUNT) then
RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>’1’);
Element <= ele2;

end if;
when ele2 =>

RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>’1’);
Element <= ele3;

when ele3 =>
RDENtemp <=not RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>’1’);
Element <= ele4;

when ele4 =>
RDENtemp <=not RDEN_level;

125

WRENtemp <=(WREN_level);
Element <= ele5;

when ele5 =>
RDENtemp <= not RDEN_level;
WRENtemp <=(WREN_level);
element <= ele6;

when ele6=>
RDENtemp <=(RDEN_level);
WRENtemp <=not WREN_level;
tempdata <=(others =>’0’);
COUNT <= COUNT + ’1’;
if (COUNT=MAXCOUNT) then

Phase <= phase4;
COUNT<=MINCOUNT;
RDENtemp <=(RDEN_level);
WRENtemp <=not WREN_level;
tempdata <= (others => ’1’);

end if;
Element <= ele1;

when others =>
end case;

when phase4 => −−read 001s from FIFO
if (COUNT <= MAXCOUNT) then

RDENtemp <=RDEN_level;
WRENtemp <=not(WREN_level);
tempdata <=(others =>’1’);
COUNT <= COUNT + ’1’;

else
COUNT<=MINCOUNT;
WRENtemp <= not WREN_level;
RDENtemp <= not RDEN_level;
tempdata <= (others => ’0’);
Phase <=reset_fifo;

end if;
end case;

end if;
end process;

end Behavioral;

126

Appendix C

ECCTPG VHDL Source code

127

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ECC_TPG is
Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 Data : out std_logic_vector(71 downto 0);
 ADDRB : out std_logic_vector(8 downto 0);
 WREN,RDEN: out std_logic);

end ECC_TPG;

architecture Behavioral of ECC_TPG is

signal CLK_EN: std_logic;
type phases is (Init_RAMS,Write_RAMS) ;
signal phase : phases := Init_RAMS ;
type elements is (ele1,ele2,ele3) ;
signal element : elements :=ele1 ;
signal Address : std_logic_vector (8 downto 0):= (others => ’0’) ;
signal MAXADDRESS : std_logic_vector (8 downto 0):= (others =>’1’) ;

component ECC_fsm is
port (
CLK: in std_logic;
CLK_EN: in std_logic;
RESET: in std_logic;
DATA_OUT: out std_logic_vector(71 downto 0));

end component;
begin

ECC_fsm_inst: ECC_fsm port map(clk,CLK_EN,reset,data) ;

Process(Reset, Clk)
begin

if (Reset = ’1’) then
Address <= "111111110";
CLK_EN <=’1’;
RDEN <= ’0’;
WREN <= ’1’;
Phase <= Init_RAMs;
element <= ele1;

elsif (Clk = ’1’ and Clk’Event) then

case Phase is
when Init_RAMS=>

if (Address < MAXADDRESS) then
case element is

when ele1 =>
Address <= "111111110";
element<=ele2;

when ele2 =>
element <= ele3;
CLK_EN <=’0’;
WREN <=’0’;
RDEN <=’1’;
Address <= (others =>’0’);

when ele3 =>
Address <=Address + ’1’;

end case;
else

RDEN <=’0’;
WREN <= ’1’;

128

Phase <= Write_RAMs;
element <=ele1;

end if;

when Write_RAMS =>
Address <= (others => ’0’);
case Element is

when ele1 =>
CLK_EN <= ’1’;
RDEN <= ’0’;
WREN <= ’1’;
element <= ele2;

when ele2 =>
CLK_EN <= ’0’;
WREN <= ’0’;
RDEN <=’1’;
element <= ele1;

when others =>
end case;

end case;
end if;

end process;
ADDRB <= Address;

end Behavioral;

entity ECC_fsm is
port (
CLK: in std_logic;
CLK_EN: in std_logic;
RESET: in std_logic;
DATA_OUT: out std_logic_vector(71 downto 0));

end ECC_fsm;

architecture Behavioral of ECC_fsm is
component shifter is

Port (
CLK_EN: in std_logic;
CLK : in std_logic;
RESET: in std_logic;
ENABLE: in std_logic;
BIT_IN: in std_logic;
BIT_OUT: out std_logic;
DOUT: out std_logic_vector(71 downto 0));

end component;
signal DONE_check,BIT_IN1,BIT_IN2,BIT_OUT1: std_logic;
signal DOUT1, DOUT2 : std_logic_vector(71 downto 0);

begin

SR1: shifter port map(
CLK_EN => CLK_EN,
CLK => CLK,
RESET => RESET,
ENABLE => ’1’,
BIT_IN => BIT_IN1,
BIT_OUT => BIT_OUT1,
DOUT => DOUT1
);

SR2: shifter port map(
CLK_EN => CLK_EN,
CLK => CLK,
RESET => RESET,
ENABLE => BIT_OUT1,
BIT_IN => BIT_IN2,
DOUT => DOUT2

129

);

process(DOUT1, DOUT2,BIT_IN1,BIT_IN2)
variable temp2:std_logic;
variable temp1:std_logic;

begin
temp1:=’0’;
temp2:=’0’;
for i in 0 to 71 loop

temp1:=temp1 OR DOUT1(i);
end loop;

for i in 0 to 71 loop

temp2:=temp2 OR DOUT2(i);
end loop;

BIT_IN1<=not temp1;
BIT_IN2<=not temp2;

end process;
DATA_OUT <= DOUT1 OR DOUT2;

end Behavioral;

entity shifter is
Port (
CLK_EN: in std_logic;
CLK : in std_logic;
RESET: in std_logic;
ENABLE: in std_logic;
BIT_IN: in std_logic;
BIT_OUT: out std_logic;
DOUT: out std_logic_vector(71 downto 0));

end shifter;

architecture Behavioral of shifter is

signal DATA: std_logic_vector(71 downto 0);

begin
process(CLK,RESET)

variable temp:std_logic :=’0’;
begin

temp:=Data(63);
if (RESET=’1’) then

DATA <=X"000000000000000000";

elsif (CLK=’1’ and CLK’event) then
if (enable=’1’ and CLK_EN =’1’) then

for i in 0 to 70 loop
DATA(i+1)<=Data(i);
Data(0)<=BIT_IN;

end loop;

end if;
end if;
BIT_OUT<=temp;

end process;
DOUT <=DATA;

end Behavioral;

130

Appendix D

CASTPG VHDL Source code

131

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity fsm is

generic(
EN_Level: std_logic := ’1’;
WEN_ACTIVE: std_logic := ’1’);
port (
Reset : in std_logic;
Clk : in std_logic;
WEA : buffer std_logic;
DIA : out std_logic_vector(0 downto 0);
ADDRA : out std_logic;
EnA: out std_logic;
EnB : out std_logic);

end fsm;
architecture BEHAVIORAL of fsm is

type phases is (Init,dummy,Phase1,phase2,phase3,phase4,phase5,phase6);
type elements is (ele1,ele2);
signal phase : phases := dummy;
signal Element : elements := ele1;
signal Address : std_logic;
signal portBtested: std_logic:=’0’;
signal tempdata: std_logic;
signal ENATEMP,ENBTEMP,WEAtemp: std_logic;

begin

 p0:
Process(clk,Reset,tempdata,Address,WEA)

begin
if (Reset = ’1’) then

ADDRA <= ’0’;
DIA(0) <= ’0’;
EnA <= not EN_LEVEL;
EnB <= not EN_LEVEL;
WEA <= not WEN_ACTIVE;

elsif (Clk = ’1’ and Clk’Event) then

DIA(0)<=tempdata;
ADDRA<=Address;
WEA<=WEAtemp;
EnA<=EnAtemp;
EnB<=EnBtemp;

end if;

end process;

p1:

Process(Clk)
begin

if (Reset =’1’) then
tempdata <= ’0’;
Address <= ’0’;
Element <= ele1;
Phase <= dummy;
WEAtemp <= not(WEN_ACTIVE);
EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;

−−
elsif (Clk = ’1’ and Clk’Event) then

case Phase is
when dummy =>

132

EnAtemp <= not EN_LEVEL;
EnBtemp <= not EN_LEVEL;
Phase <= Init;
portbtested <=’0’;

when Init =>

Address <= ’0’;
WEAtemp <= WEN_ACTIVE;
tempdata <= ’0’;
Phase <= Phase1;
element <= ele1;
if (portbtested =’1’) then

EnAtemp <= not EN_LEVEL;
EnBtemp <= (EN_LEVEL);
portbtested<=’0’;

else
EnAtemp <= EN_LEVEL;
EnBtemp <= not(EN_LEVEL);

end if;

when phase1=>−−
case element is

when ele1 =>
Address <= ’1’;
WEAtemp <= WEN_ACTIVE;
element <= ele2;

when ele2 =>
Address <=’0’;
WEAtemp <=not WEN_ACTIVE;
tempdata <= ’1’;
Phase <= Phase2;
element <= ele1;

end case;

when phase2=>−−
case element is

when ele1 =>
Address <= ’0’;
WEAtemp <= WEN_ACTIVE;
element <= ele2;

when ele2 =>
Address <=’1’;
WEAtemp <=not WEN_ACTIVE;
Phase <= Phase3;
element <= ele1;

end case;

when phase3=>−−
case element is

when ele1 =>
Address <= ’1’;
WEAtemp <= WEN_ACTIVE;
element <= ele2;

when ele2 =>
Address <=’0’;
WEAtemp <=not WEN_ACTIVE;
tempdata <= ’0’;
Phase <= Phase4;
element <= ele1;

end case;

when phase4=>
case element is

when ele1 =>
Address <= ’0’;
WEAtemp <= WEN_ACTIVE;
element <= ele2;

when ele2 =>
Address <=’1’;

133

WEAtemp <=not WEN_ACTIVE;
tempdata <= ’0’;
Phase <= Phase5;
element <= ele1;

end case;

when phase5=>−−
case element is

when ele1 =>
Address <= ’1’;
WEAtemp <= WEN_ACTIVE;
element <= ele1;
Phase <= Phase6;

when others =>
end case;

when phase6 =>

if (portBtested=’1’) then
portBtested<=’0’;

else
portBtested<=’1’;
Phase <= init;

end if;
when others =>

end case;
end if;

end process;
end;

134

Appendix E

List of Acronyms

ATE - Automatic Test Equipment

BIST - Built-in Self Test

BRAM- Block RAM

BSCAN - Boundary Scan

BUT - Block under Test

CAD - Computer-aided Design

CUT - Circuit under Test

DFT - Design for Test

DSP - Digital Signal Processor

DUT - Device under Test

ECC - Error Correcting Code

FF - Flip-flop

FIFO - First-in First-out

FPGA - Field Programmable Gate Array

FWFT - First-Word-Fall-Through

GUI - Graphical User Interface

HDL - Hardware Description Language

I/O - Input / Output

IC - Integrated Circuit

IP - Intellectual Property

135

LUT - Look-up Table

LSB - Least Significant Bit

MMTPG - Multi-march Test Pattern Generator

MSB - Most Significant Bit

ORA - Output Response Analyzer

PIP - Programmable Interconnect Point

PLB - Programmable Logic Block

PowerPC - PPC

RAM - Random Access Memory

SERDES - Serial / Deserial

SoC - System-on-Chip

SRAM - Static Random Access Memory

TCK - Test Clock

TDI - Test Data In

TDO - Test Data Out

TMS - Test Mode Select

TPG - Test Pattern Generator

VLSI - Very Large Scale Integration

136

