ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE
DEVELOPMENT PROJECT

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

Yuan Tian

Certificate of Approval:

Kai Chang
Professor
Computer Science and Software
 Engineering

Dean Hendrix
Associate Professor
Computer Science and Software
 Engineering

David Umphress, Chair
Associate Professor
Computer Science and Software
 Engineering

George T. Flowers
Dean
Graduate School

ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE
DEVELOPMENT PROJECT

Yuan Tian

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
May 9, 2009
iii

ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE
DEVELOPMENT PROJECT

Yuan Tian

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and
at their expense. The author reserves all publication rights.

Date of Graduation
Signature of Author
iv

VITA

Yuan Tian, daughter of Liaofa Tian and Xiaoheng Zhou, was born on April 20,
1980 in Sichuan, China. She earned her bachelor?s degree from Chengdu University of
Technology, Chengdu, China in 2002. She was hired by SCU-NESEC Infosec Co.,Ltd
from 2002 to 2003 then joined Beijing Beyondsoft Co.,Ltd in 2004, at where she worked
as Software Engineer until she was admitted in to master program of Department of
Computer Science and Software Engineering of Auburn University in 2006 Fall.

v

THESIS ABASTRACT
ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE
DEVELOPMENT PROJECT
Yuan Tian
Master of Science, May 9, 2009
(B.S., Chengdu University of Technology, China, 2002)

87 Typed Page
Directed by David Umphress
Growth of the global economy has led to remarkable changes in the way software
is developed. Global Software Development (GSD) is becoming the norm for many
technology companies. Even though organizations are enjoying the benefit brought by
GSD, communication has been an issue impeding its further growth. Miscommunication
and misunderstanding brought by the distance between development sites happen much
more frequently in GSD projects than co-located projects, which eventually influence the
software quality and customer satisfaction. Cultural distance also exacerbates these
problems. Many studies have been conducted to either find a software process or
develop a software application to facilitate the GSD. Because of its flexibility, Agile
Methods are considered suitable processes for GSD. In our study, we examine the
characteristics of Extreme Programming (XP), the most popular Agile process, and
vi

suggest changes to better support GSD. A prototype Eclipse-based plug-in is designed
to facilitate the implementation of this process.
vii

ACKNOWLEDGEMENTS

I sincerely appreciate my advisor Dr. David Umphress not only for the guidance he has
provided throughout my study at Auburn, but also his encouragement during my frustration. I
would also like to express my gratitude to the advisory committee members, Dr. Kai H. Chang
and Dr. Dean Hendrix.
Above all, I would love to express my deeply appreciation to my wonderful
families and friends. I feel so blessed to have my parents and brother who have been
loving me and supporting me through my life. And I am so grateful for you, Yi Zhang, I
would have never accomplished this without you.

viii

Style manual or journal used: Journal of Surface Mount Technology

Computer Software used: Microsoft Word, Microsoft Excel, Microsoft Picture Manager,
WinSMITH Weibull

ix

TABLE OF CONTENT

LIST OF FIGURES??????? .??????????????????.. ? .xi

CHAPTER 1 INTRODUCTION ...1
1.1 The General Research Area .. 1
1.2 Background .. 3
1.2.1 Global Software Development .. 3
1.2.2 Agile methods and Extreme Programming ... 4

CHAPTER 2 STATEMENT OF PROBLEM ...8

CHAPTER 3 LITERATURE SURVEY ...11
3.1 Global Software Development Challenge And Approaches 11
3.2 Agile Methods And Extreme Programming ... 14
3.3 Applying Agile Methods On Global Software Development 18
3.4 Supporting Tools .. 21

CHAPTER 4: EXTREME PROGRAMMING EXAMINATION25
4.1 Introduction .. 25
4.2 Xp?S Practices Benefit Communication ... 25
4.3 Xp Practices Examination .. 26
4.3.1 On-Site Customers .. 26
4.3.2 Planning Game .. 27
4.3.3 Small Release .. 29
4.3.4 Simple Design ... 29
4.3.5 Testing... 30
4.3.6 Collective Ownership.. 30

CHAPTER 5 GENERAL APPROACH ..32
5.1 Introduction .. 32
5.2 Project Information Overview .. 32
5.2.1 Description .. 32
5.2.2 Functional Requirement .. 33
5.3 Project Team Member Management .. 34
5.3.1 Description .. 34
5.3.2 Functional Requirements .. 35
5.4 Project Sites Management .. 35
x

5.4.1 Description .. 35
5.4.2 Functional Requirements .. 36
5.5 User Story Management ... 37
5.5.1 Description .. 37
5.5.2 Functional Requirement .. 40
5.6 Project Release Management ... 41
5.6.1 Description .. 41
5.6.2 Functional Requirements .. 42
5.7 Project Iteration Management .. 43
5.7.1 Description .. 43
5.7.2 Functional requirement ... 43
5.8 Project Event Notification .. 44
5.8.1 Description .. 44
5.8.2 Functional Requirements .. 44

CHAPTER 6 IMPLEMENTATION AND VALIDATION ..46
6.1 Prototype Scenario ... 46
6.2 Project Information Overview .. 47
6.3 Team Member Management .. 49
6.4 User Story Management ... 52
6.5 Project Release Management ... 59
6.6 Project Iteration Management .. 64
6.7 Project Event Notification .. 67
6.7.1 Message View ... 67
6.7.2 News View .. 68
6.7.3 Discussion View ... 68

CHAPTER 7 METHODOLOGY VALIDATION ..69

CHAPTER 8 SUMMARY AND FUTURE WORK ...71
8.1 Summary .. 71
8.2 Conclusion .. 71
8.3 Future Work ... 72

BIBLIOGRAPHY..73

xi

LIST OF FIGURES

Figure 1.1: The evolution of Software Development Method.....................................4
Figure 1.2: Comparing Agile Methods..5
Figure 1.3: XP practices and the Circle of life...7
Figure 3.1: Global Requirement Engineering main stakeholder categories..............14
Table 4.1: XP practices benefit communication ... 26
Table 5.1: Change of User Story Status .. 39
Figure 5.1: Project Release Plan and Site Release Plan example 41
Figure 6.1: Prototype scenario ... 46
Figure 6.2: Project Information Overview ... 47
Figure 6.3: Project outline.. 48
Figure6.4: Site outline .. 49
Figure 6.5: Full team member list .. 50
Figure 6.6: Team member detail information .. 51
Figure 6.7: Team member list group by ?City? ... 51
Figure 6.8: Team member list for site ?Beijing, China? .. 52
Figure 6.9: Project User Story Inventory ... 53
Figure 6.10: User Story Detail Information Window .. 54
Figure 6.11: User Story Detail Information Window .. 55
xii

Figure 6.12: UML tab shows the UML diagram file ... 56
Figure 6.13: Test Case tab shows the unit test case file... 57
Figure 6.14: ?Site User Story Inventory? for Beijing development site 58
Figure 6.15: Create a Task for US_3 ... 59
Figure 6.16: ?Site Release Plan? for Beijing development site 60
Figure 6.17: Create new Site Release Plan .. 61
Figure 6.18: View/Edit Site Release Plan .. 62
Figure 6.19: Project Release Plan of GSDXP .. 63
Figure 6.20: Project Release Plan Detail View .. 64
Figure 6.21: Iteration tree .. 65
Figure 6.22: Site Iteration List ... 66
Figure 6.23: Iteration detail view ... 66
Figure 6.24: Message view .. 67
Figure 6.25: Reply message ... 67
Figure 6.26: News view .. 68
Figure 7.1: User?s feedback on plug-in usability.. ...70
1

CHAPTER 1
INTRODUCTION
1.1 The General Research Area
With the growth of the global economy in the past several decades, the software
industry has witnessed a steady trend toward the globalization of business. According to
Gartner[1], globalization of software development has expanded rapidly in recent years
and has brought in its wake changes that impact application development projects. Global
Software Development (GSD) is becoming the norm for many technology companies. A
software project involving different teams located at multiple sites in different cities is no
longer a novelty. A software company could have branches in different cities or in
different countries. Companies also collaborate with each other across the globe through
software outsourcing. According to statistics collected in 2001, 203 of the US Fortune
companies are engaged in offshore outsourcing [2]. Many American organizations are
building their development centers outside the country, and many software shops are
growing outside traditional centers (such as US, Japan) in India, Ireland, Israel, China, etc.
The factors that accelerate this trend include cost savings, proximity to the market,
?around-the-clock? development, and survival from competition, etc.
Economic forces are relentlessly turning national markets into global markets and
spawning new forms of competition and cooperation that reach across national
boundaries. This change is also having a profound impact not only on marketing and
2
distribution but also on the way products are conceived, designed, constructed, tested,
and delivered. Software organizations are required to develop in a high-speed and agile
ways to adapt to the current dynamic business environment. Can we still use traditional
project management techniques? According to Lindstrom and Jeffries[3], the traditional
popular project management techniques focus on developing a plan and sticking to the
plan. This improves coordination but reduces the ability of the project to adapt to new
information regarding requirements or implementation details. However, traditional
project management techniques do not take into account that the customer will be in the
US and the development teams will be in India and China. The problems brought by
distance are not taken into consideration. Moreover, they cannot meet with the dynamic
requirement of the GSD.
The emergence of Agile Methods with their emphasis on flexibility, informal
collaboration, and working code brought fresh air to GSD. Software development
organizations have been striving to blend the GSD projects with Agile Methods to reap
the benefits of both. Among them, Extreme Programming (XP) [31] is the most widely
used one which shares the values exposed by the Agile Manifesto[4] for software
development but goes further. XP is a set of twelve independent software development
practices conceived initially for small development teams working on projects with high
degree of change, and later successfully applied to larger teams. However, XP and GSD
have significant differences in some of their key tenets. Is XP the best development
method for GSD projects? In this study, we examine the nature of XP and GSD projects
to find their common interests and the possible areas in which they can be blended. Based
3
on this study, we propose a new methodology which is XP-based and more adaptive to
GSP projects. An Eclipse-based light-weight IDE plug-in is developed to illustrate the
application of our new methodology in GSD projects.
1.2 Background
In this chapter we provide some background knowledge of our research. It also
explains why among all the Agile methods we chose Extreme Programming for our
research.
1.2.1 Global Software Development
First, Global Software Development does not necessarily involve multiple companies.
It can be a project involving multiple subsidiaries located in different countries. The most
significant difference between one company and multiple companies is that team
members of one company share the same organizational culture. This plays a significant
part in smooth communication and team management. Also, Global Software
Development and Distributed Development are different. Distributed Development is not
necessarily global. It can be multiple development sites within one country. This means
in most cases that software stakeholders are speaking same language. There is no cultural
gap between team members. Since the product is applied within the country, there is no
different requirement from the target market. The more stakeholders that are involved,
the more complicated project environment will be, which affects the project progress.
When the project teams are globally distributed, multiple stakeholders located in different
countries with people with different cultural backgrounds, this situation gets much more
complicated. In our study, we mainly focus on this kind of Global Software Development.
4
1.2.2 Agile methods and Extreme Programming
Over time, software development methods have changed with our society. The
evolution of development from classic Waterfall to Iterative to Agile Methods illustrates
the aim of accommodating the needs of the environment. This evolution is depicted in
Error! Reference source not found.Figure 1.4 with Extreme Programming (XP) as an
example of Agile Methods.

Figure 1.4: The evolution of Software Development Method [31]
Traditional project development processes emphasize the importance of project plans and
documentation. They try to identify all the requirements at the beginning of the project
and control unexpected changes throughout the project. However, in the current dynamic
business environment, major changes in requirements, scope, and technology are often
out of the control of the development team. In [21], the authors identify that the question
often is not how to minimize changes in a project but how to better handle inevitable
changes throughout its life cycle. Agile methods present a possible solution to this
dilemma through their strategies. The Agile Manifesto includes different agile methods
which have been discussed or practiced for a while such as Dynamic systems
5
development method (DSDM) [27, 28], Feature Driven development (FDD) [29],
Internet-speed development (ISD) [30] , Extreme Programming (XP) [31], SCRUM [32],
Crystal [33], Pragmatic programming (PP) [34]. Among these methods, Extreme
Programming is the most widely used agile methodology. Part of the reason can be
explained in Figure 1.5.

Figure 1.5: Comparing Agile Methods [35]
Figure 1.5 shows the comparison of these Agile Methods. In this figure, each method is
divided in three bars which separately indicate its support for project management, a
description of whether a process through which the software production proceeds is
described pertaining to software development life-cycle analysis, and whether it provides
concrete guidance separately from top to the bottom. A shaded bar indicates that the
6
method covers the perspective while an unshaded bar indicates lack of such support. The
length of the bar shows which phases of the life cycle are supported by the method. We
can see that each method has both similarities as well as differences. The reason XP is
widely adopted can be described in following aspects: First, XP covers most of software
development life cycle; second, XP supports situation appropriateness, meaning it can be
tailored to suit the needs of individual projects; third, also the most important reason,
while most of methods lack of real empirical support, XP is well supported by concrete
experiences. Matching these advantages against the characteristics of GSD makes XP a
viable approach in our research. We did notice that XP does not fully support project
management. This is also a problem we target in our research.
In our context, XP is a set of twelve independent software development practices
which include: Planning game, Small release, Metaphor, Simple design, Tests,
Refactoring, Pair programming, Continuous integration, Collective ownership, On-site
customer, 40-hours weeks, and Open workspace. It is initially designed for small teams
working on projects of high degree of change. It is a discipline of software development
based on values of simplicity, communication, feedback and courage. In [22] it is clearly
illustrated: ?The essence [of XP] truly is simple. Be together with your customer and
fellow programmers, and talk to each other. Use simple design and programming
practices, and simple methods of planning, tracking, and reporting. Test your program
and your practices, using feedback to steer the project. Working together this way gives
the team courage.? The twelve practices can be described as a cycle of activities as
showed in Figure 1.6. The inner circle describes the tight cycle of practices carried out by
programmers. The outer loop describes the planning cycle that occurs between customers
7
and programmers. The middle loop shows practices that help the team communicate and
coordinate the delivery of quality software.

Figure 1.6: XP practices and the Circle of life [3]
Are all twelve practices suitable for distributed development? In the chapter 2, we discuss
the possible problems when applying XP on GSD projects. Chapter 3 contains the
investigation of related work. In Chapter 4 we examine XP practices, identifying which
practices need to be tailored. Chapter 5 describes our methodology. In Chapter 6 we
present prototype software, GSDXP, which is used to help applying our methodology.
Chapter 7 contains our methodology validation. Conclusions and future work are
discussed in Chapter 8.
8

CHAPTER 2
STATEMENT OF PROBLEM
Compared to traditional co-located projects, what is different about GSD? Herbsled
writes, ?The fundamental problem of GSD is that many of the mechanisms that function
to coordinate the work in a co-located setting are absent or disrupted in a distributed
project.?[5] In traditional co-located projects, team members working together have
already built a common, recognized environment and a number of ways of coordinating
work. They share the same view of the project by using a common vocabulary and
process. The frequent informal and formal communication among team members ensures
everyone has a clear picture of project. Also, misunderstanding is minimized when
people share a common native language and cultural background. All these benefits of
co-located projects diminish in GSD. Physical separation among project teams and
members has diverse effects on many aspects. Among them, the most critical issue is the
communication and coordination between the development sites which includes:
? Decreased frequency of communication. Instead of immediate face-to-face
communication in a co-located project, people in a GSD project have to rely on
communication media that are not always dependable. People are more reluctant
to initiate the communication. According to a study by Tom Allen [6], people 30
meters away do not communicate more often than those are miles away.
? Difficult to initiate communication. When communication is infrequent, team
9
members often lose the vision of the project. The situation is worsened when
more than one development site or organization is involved. ?Who to contact
about what? is the common question among GSD projects.
? Miscommunication. Although miscommunication results from communication
media itself, the primary cause of miscommunication in a GSD project is cultural
differences. When team members do not share a common native language,
miscommunication happens much more frequently. Cultures differ on many
critical dimensions, namely the need for structure, attitudes toward hierarchy,
sense of time, and communication styles.
? Increased communication cost- time, money, and staff. Communication among
remote sites incurs a cost not only in financial terms, but also in human terms.
This needs to be considered in project budgets. Even though telecommunication is
cheap, time to initiate the communication should also be considered. Sometimes
each project site needs a special person in charge of coordinating with other sites.
? Time difference. When a project site is located in a different time zone,
especially one more than eight hours away, person-to-person communication
becomes logistically difficult. This problem also increases the possibility of
miscommunication and slows down the project progress.
GSD requires a prompt response to changes, which is hard to fulfill because of the
communication gap brought by the reasons listed above. XP is reported as one of the best
suitable development method for GSD projects because it is a discipline of software
development based on values of simplicity, communication, feedback, and courage. The
simple and agile nature of XP enables it meet the dynamic requirement of GSD projects.
10
But, XP also emphasizes frequent customer-centered communication that GSD can not
promise. Moreover, in a GSD project in which more than one organization is involved,
across-site coordination is another issue that needs to be considered because it is also
impacted by communication deficiency. How to blend the XP and GSD projects together,
while at the same time maintaining agility and alleviating the communication impedance
to improve the project success is a vital issue, and is the focus of our study.
As stated earlier, XP does not provide concrete guidelines for project management.
The practices provide the guidance for specific activities. There is no method to glue
them together as a whole. How are user stories well managed as they grow in number?
How are iterations and releases managed when the project is growing? How are project
resources and human resources managed so that programmers know where to find what?
Our research is focused on solving above problems.

11
CHAPTER 3
LITERATURE SURVEY
Many studies have been conducted about Global Software Development, focusing
primarily on distance, which is a major factor in communication and coordination
problems. Scientific research and empirical studies of Extreme Programming and its
applicability in different environments are also available. Both successful experience and
lessons are reported from the GSD projects practicing XP. The problems and challenges
presented by this research provide the theory basis for our study.
3.1 Global Software Development Challenge And Approaches
There is a wealth of literature that notes the challenges in Global Software
Development. According to Challenges of Global Software Development [7], difficulties
include interdependencies among distributed work items, difficulties in coordination,
difficulties in dividing the work into modules that could be assigned to different locations,
conflicting implicit assumptions that are not noticed as fast as in collocated work, and
communication challenges.
Erran Carmel and Ritu Agarwal propose three tactical approaches to alleviate the
distance influence in Tactical Approaches for Alleviating Distance in Global Software
Development [8] including reducing intensive collaboration, reducing the culture distance,
and reducing the temporal distance. This research suggests that collaboration intensity
decreases when a foreign entity (an organization that is in a different nation from its
parent) assumes the low complexity task or full responsibility for a product. There are
12
 four ways to reduce the culture distance. The first one is called the 75/25 rule which
means that 75 percent of project work occurs offshore while the remaining 25 percent
occurs onshore in order to maintain the closeness to the customer through face-to-face
communication. Secondly, open internal-to-the-firm foreign software centers can reduce
the organizational culture distance because these centers are trained in the corporate
methodologies and policies and have the access to all the organization resources. The
third method is that of a project manager or key executive acting as a culture liaison to
travel back and forth between the key stakeholder sites. In doing so, they facilitate the
cultural, linguistic and organizational flow of communication and bridge cultures,
mediate conflicts and resolve cultural miscommunications. The last one includes such
things as giving a language course to employees to reduce the impact of cultural distance
brought by language. Carmel and Agarwal also suggest using synchronous
communication to reduce the temporal distance. While this study makes sense generally,
there are some situations in which these four approaches are hard to implement. For
instance, letting a foreign entity do the full project development may be too risky because
of its distance from the target market. A frequently traveling project manager is not
efficient because all the communication relies on one person. Language training can be
time-consuming. Also synchronous communication eliminates the advantage of follow-
the-sun type work that requires large difference in time zones.
In Stakeholders in Global Requirements Engineering: Lessons learned from
Practice [9], Daniela Damian suggests a relationship of organizations in Global Software
Development as Figure 3.2.
13

Figure 3.2: Global Requirement Engineering main stakeholder categories [9]
The stakeholders? ability to communicate globally is challenged by GSD in three ways.
First, designers have less opportunity to seek out relevant knowledge from the multiple
stakeholders, making knowledge sharing and integration across sites and functional
groups problematic. Second, process differences inherent in inter-organizational
partnerships lead to difficulties in aligning requirement engineering processes and
supporting tools, preventing management practices from being effectively implemented
across sites. Third, lack of informal communication in global teams negatively impacts
relationship building and inadequate channeling of changes to requirements across sites
leads to difficulties in coordination.
Damian also suggests two sets of strategies to alleviate these challenges. The first is
to support interorganizational structures by defining a clear organization structure with
communicating responsibilities for the distributed projects; establishing peer-to-peer links
at all levels across distributed sites; partially synchronizing interorganizational process by
performing frequent iterations and deliveries; and establishing culture liaisons. The
14
second is to support communication practices by maintaining open communication lines
between well-defined stakeholder roles and frequently informing and monitoring
progress on commonly defined artifacts. Although her study is mainly focused on
requirement engineering because it has the highest communication density, her findings
can be extended to global software development in general.
3.2 Agile Methods And Extreme Programming
Since the emergence of Agile Methods, both theoretical and empirical researches
have been conducted within this field. Kahkonen and Abrahamsson build the theoretical
base for Extreme Programming in their paper, Digging into the Fundamentals of Extreme
Programming [25]. They discuss the rational of practicing XP using an acknowledged
scientific framework designed to explain how knowledge is created when several
communities are present. Their 5-A model [26] defines three modes of knowledge
creation: articulation, appropriation, and anticipation; and two processes: accumulation
and acting. They observe that when XP is analyzed using the 5-A model, most XP
practices are enhancing knowledge creation through immediate (or frequent) and mutual
articulation and appropriation. The practices help to accumulate knowledge by utilizing
external cognitive tools, such as concepts, words, language, signs, tools, documents or
social practices. Anticipation is done for short intervals only and XP practices are action-
oriented. While not all the XP practices fit into the model, this analysis gives a good
initial understanding and a more solid scientific basis for further research.
In Extreme Programming: A Survey of Empirical Data from a Controlled Case
Study [37], Abrahamsson and Koskela report on a survey of the empirical data obtained
from a controlled case study on Extreme Programming in practical settings. According to
15
their data, the XP practice of ?user involvement? in the system development process has
a positive impact on subsequent system adoption and use. The majority of the customer?s
involvement is required on the planning game and acceptance testing during the project.
Even though the customer does not develop automated acceptance tests, the mere
presence of the customer is highly valued by the development team. They also found that
user involvement is one of the reasons for low defect density because customer
representatives collected suggestions and bugs report frequently, thus generating the
feedback for development team. Customer involvement also plays a positive role on
customer satisfaction even when delay happens because involvement minimizes surprise.
This argument is supported from another perspective as well. In Recognizing and
Responding to ?Bad Smell? in Extreme Programming [36], Elssamadisy and Schalliol
note that they ?failed to push the customer hard enough early in the process to be an
actual partner in the planning and acceptance of the development?. They argue that the
customer must provide honest and substantial feedback from the very beginning of the
development process. Abrahamsson and Koskela follow up on this by noting that a one-
week release cycle to end-user testing is seen as disturbing to users and is not appreciated.
Delivering a system that satisfies customer requirements and which is on time and
within budget with few defects is the ultimate goal of any software development activity.
When customers are not satisfied there is a gap between customer expectation and
experiences. The principles behind the Agile Methods include specific strategies for
satisfying the customer through involving the customer regularly, relying on face-to-face
communication, responding to evolving requirements and providing early and regular
feedback. In XP, there is an explicitly-defined role for the customer in development team
16
so customer can work with developer closely. Communication impacts the customer
satisfaction as well. In Customer Relationships and Extreme Programming [39], Grisham
and Perry examines XP from the perspective of customer satisfaction. They point out that
with its high degree of communication, rapid feedback, and constant adjustments, XP
should prevent expectations gaps from becoming unmanageable; but this depends on the
quality of the communication between the customer and the development team. They also
mention that there is a risk of high transparency that the customer could perceive daily
chaos of the development process. Risky situations such as schedule slippages and
technical difficulties are more difficult to hide from customer. More research on
overcoming communication obstacles when applying XP on GSD projects and the level
of customer involvement is needed.
Even though XP practices are designed for small development teams, does it fit
large-scale projects? Proponents of XP claim that using this method has advantages over
traditional approaches including higher team productivity, lower management overhead,
and better customer satisfaction. However, the applicability of agile approaches is
constrained by several factors such as project size and type, experience level of project
personnel, and access to committed customers. In Get Ready for Agile Methods, with
Care[39], Boehm argues that agile methods are difficult to scale up to large projects
because of the lack of sufficient architecture planning, over-focusing on early results, and
low levels of test coverage. He also recommends that agile methods not be used in
mission-critical software development. However, large projects also face constantly
changing business environments that can be addressed by agile methods. In How extreme
does extreme programming have to be? Adapting XP practices to large-scale projects
17
[40], Cao et al argue that Agile Methods such as XP can be adapted to large-scale
projects. They propose some general guidelines on tailoring agile development
methodologies to make them suitable for the development of large, complex software
system. The guidelines include seven practices: Designing upfront which combines
design upfront in traditional approaches with agile practices such as short release, pair
programming and refactoring; Short Release cycles with a layered approach; Surrogate
customer engagement; Flexible pair programming that applies pair programming only in
the analysis, design, and test phases; Identifying and managing developers; Reuse with
forward refactoring to yield reuseable systems; and Flatter hierarchies with controlled
empowerment to improve communication between stakeholders and increase productivity.
Cao et al also point out that organizations need to be very careful at tailoring lightweight
methodologies like XP to ensure their suitability.
XP approaches have been successfully applied on various software development
projects, but should we follow all the practices exactly as they are described? In
Recognizing and Responding to ?Bad Smell? in Extreme Programming [36],
Elssamadisy and Schalliol note ?The software development process (XP) that purportedly
?embraces change? must itself embrace changes to its own specific implementation as
needed it is to succeed.? In this article, the authors describe a large software development
project that used a modified XP approach after a more traditional approach proved
ineffective. They identify poor XP practices and discuss the solution implemented to
correct them. They conclude that XP is a valuable and effective approach to software
development so long as one recognizes that 1) it cannot succeed without conscientious
18
participants, and 2) it must be adapted as necessary for projects that do not fit the ?small
team? limits recommended by its founders.
3.3 Applying Agile Methods On Global Software Development
In traditional software development, many projects are divided into different modules,
integrating them in ?a big bang? at the end. This approach is challenging in GSD because
the integration may cause serious problems that may not be expected. In Leveraging
Resources in Global Software Development [10], Battinet al suggest an incremental
integration solution that is based on clusters and shared incremental milestones to avoid
?big bang? integration. This strategy was tested successfully in Motorola successfully. In
Surviving Global Software Development[11], Ebert and De Neve also report successfully
using incremental development in Alcatel. Each increment is developed within one
dedicated team and the project progress is based on tracking successfully integrated and
tested customer requirements. The study reports that increments toward a stable build are
proven to be one of the key success factors. Globally-applied continuous builds improve
the project cycle time as well. There is also evidence that even very frequent builds are
possible in distributed development. In Daily Build and Feature Development in Large
Distributed Projects[11], Karlson et al report their successful experience of using very
frequent builds and feature-based development in Distributed projects.
In Internationally Agile[13], Simon suggests that an iterative model may fit into
internationally distributed projects to help alleviate some of the problems brought by
distribution. Frequent integration and test phases enable problems to be solved early, thus
avoiding serious problems at the end of the project. Iterative development with frequent
deliveries also provides good vision to the project, giving team members and customers
19
an accurate sense of the project progress. In Using Agile Software Process with Offshore
Development[14], Fowler also points out that a continuous integration and test process
flushes out many integration problems quickly so they can be fixed before they become
hard to find. He discusses suitable iteration lengths for GSD projects and concludes that a
two-week interval is the minimum because of the communication overhead. Incremental
integration and frequent deliveries are the core practices in agile methods. Both Fowler
and Simons point out that the major benefit of using an agile method in their project has
been the fast response to changes and fast delivery of business value, benefits which have
outweighed the challenges of global distributed development. Thus, it seems that at least
agile method principles are suitable for GSD projects.
A few studies have presented the use of Extreme Programming in distributed software
development. In his article Fowler [14] gives a detailed discussion of his experience in
using XP in projects distributed in US and India. Both onshore and offshore teams using
Agile/XP practices and agile communication principles were applied in these highly
distributed projects. The successfully-used practices include continuous integration,
sending business-oriented ambassador to the offshore team, using test scripts to help
understand requirement, using regular builds to get feedback on functionality, using
regular short status meetings, using user short iterations, using an iteration planning
meeting that is tailored for remote sites and separate teams by functionality not activity.
In two articles Extreme Programming In Global Software Development[15] and Agile
Methods handling Offshore Software Development Issues[16], Yang et al and Nisar and
Hameed, respectively, discuss their experience in using XP in GSD projects in which
offshore teams collaborate with onshore customers. The projects mentioned in both
20
papers describe development teams located in China and Pakistan, with customers
located in the US, UK, etc. The reason why Yang?s project adopted XP was to reduce the
communication delay and improve communication quality, which he identified as the
major obstacles in GSD projects. Nisar and Hameed report eight XP principles they
followed and benefited from. These principles include: client satisfaction should be on
the top most priority; always welcome the change and incorporate the change usually in
next iteration; frequent development iterations (maximum 2 weeks); ?working software?
is the primary measure of progress; frequent communication with offshore clients
(minimum once in two days); continuous attention to the technical excellence; user of
pair programming for critical project modules and sections; iteration planning. Both Yang
et al and Nisar and Hameed conclude that the principles of XP have been proven
successful in their projects. Yang et al reported that their project was completed on time
and with a cost-saving of at least 60% compared with doing the project entirely onshore.
Nisar and Hameed?s projects gained a 100% rate of client satisfaction. The application of
XP on large distributed projects also has been reported in Karlsson et all?s paper, Daily
Build and Feature Development in Large Distributed Projects[17], and Farmer?s Agile
Development in a Large, Distributed Team[18], although they restricted their use of XP
to continuous builds and unit tests, small releases, continuous integrations, and automatic
testing. Both papers found that applying an agile process is useful but hard to implement
due to the problems of GSD introduced by distance discussed above.
In general, all these reported experiences about the use of XP in global distributed
projects are successful according to the respective authors. This leads us to conclude that
XP process can benefit the GSD projects either in communication or client satisfaction to
21
improve the software quality, even though we need to define carefully how we implement
these principles in practice when handling offshore projects.
3.4 Supporting Tools
Besides theoretical research, there have been some tools developed to help
application of Agile Methods. Some of them come from project management perspective.
Some are focused on one or some of practices of Agile Methods.
For the tools targeting a single agile technique, we found a prototype user story
software tool called DotStories purposed by Rees in his paper A Feasible User Story Tool
for Agile Software Development [24]. The author introduces DotStories, a web-based tool
that can be applied in distributed team. DotStories offers any number of web sites with
the intention that each web site corresponds to a single software development project.
Each web site contains a collection of user story groups or web pages. A web page
contains any number of user stories. Each user story page contains the basic information
required by XP practices. User stories are categorized as Complete User Stories, Future
Stories, and Archived Stories. They can be browsed in different mode for user-friendly
purposes. DotStories is mainly implemented as a website containing a large body of
Jscript functions embedded in a series of HTML pages with some.asp pages to manage
the XML files on the server. They are accessible from anywhere using Internet Explorer
5.5 or a later version. We found DotStories to be limited in its applicability on big
projects. For example, the categorization schema makes finding user stories difficult
when there is a large inventory of user stories. Also it does not support multi-site
development.
22
Another user story tool with much wider capabilities is called Storm User Story Tool.
It is under development as an Open-source project at Sourceforge.net [23], and provides
features such as access control within and between accounts; release management with
user stories sorted by various properties; linking remote files to a user story; and user
story version control. These features are very impressive but the tool itself suffers from a
complex interface. This could drive users away from the simple, lightweight nature of XP.
As with DotStories, it does not support multi-site development.
There are some tools designed to solve project management difficulty. In Enabling
Collaboration In Distributed Requirements Management[19], VibhaSinha,
BikramSengupta, and Satish Chandra introduce a tool by IBM called EGRET, which is
an Eclipse-based global requirements tool for distributed requirements management.
EGRET aims to support change management, knowledge management, awareness and
informal collaboration in teams that subscribe to the communication about a particular
requirement. The potential users include business analysts and architects who interface
with the customer and elicit high-level requirements, as well as system engineers; testers
and other members of distributed development teams who help refine these requirements
and define validation criteria for them. EGRET is based on an Eclipse client
communicating with back-end repositories. It uses MySQL as the repository for data,
CVS as the version-controlled repository, and an experimental collaboration server
developed by IBM for synchronous communication. EGRET interface consists of a set of
views: Artifact Explorer shows the hierarchical structure of project requirements;
Communication Record lets user initiate conversation or accesses all the conversations
they participated in; Project Stakeholders lists all stakeholders along with their roles and
23
status; and Traceability shows the requirement?s traceability. EGRET was tested on 12
practitioners from three projects and was proven to aid distributed teams in supporting
informal collaboration, managing changes, promoting awareness and managing
knowledge. The authors also suggest some guidelines when building such tools:
? The tools should be able to plug into existing collaboration mechanisms.
? User authentication and access to various collaboration services should be
uniform.
? The tool should be interoperable with other tools belonging to subsequent parts of
life-cycle
? A web interface is essential for the tool to be widely accessible.
 This research validates that a deep integration of appropriate collaboration support
with a requirement management tool can greatly aid distributed teams. The authors also
point out that while the preliminary evaluation of EGRET is encouraging, it involved
only a few practitioners. There is no proof that EGRET fits other projects outside of IBM.
Moreover, this tool is focused on requirement engineering instead of the whole life cycle.
Interoperability with other tools in different parts of life cycle needs to be considered
when choosing it for requirement engineering management. Tool that supports the whole
software development life cycle is more desirable.
Another project, which is still under development by IBM, is called Jazz. According
to the IBM website [20], ?Jazz is an IBM Rational project to build a scalable, extensible
team collaboration platform for integrating work across the phases of the development
lifecycle.? As a provider of collaborative capabilities to development teams, Jazz breaks
24
new ground by in incorporating collaborative tools into the IDE instead of using stand-
alone collaboration tools such as instant messenger. Jazz also can:
? Handle connections to the server infrastructure to support messaging and source
control
? Place hooks in Eclipse to track developers? interactions with source code and
source control
? Integrate the user interfaces that developer use to communicate with each other
The goal of Jazz is to find a way to address the needs of a broad spectrum of end
users using different processes, which makes it very powerful. But it is not customized
for any specific software process such as XP, even though some XP principles are
included such as iterations; consequently some of functionality is not necessary for XP
users. Our Eclipse plug-in is built specifically for XP. Part of it will be patterned after
Jazz, but will be lighter in weight.

25
CHAPTER 4
EXTREME PROGRAMMING EXAMINATION
4.1 Introduction
In this chapter we examine the XP practices within Global Software Development
context and discuss which practices can fit into GSD and which cannot. We identify
aspects of XP that are necessary for adapting it to GSD projects. We propose a
methodology for tailoring XP to fit into GSD.
4.2 Xp?S Practices Benefit Communication
Communication is important throughout the entire software development lifecycle.
There are several kinds of communication we needed:
? Communication between project manager and customers;
? Communication between developers and customers;
? Communication between developers and project manager;
? Communication between developers;
? Communication between customers.
Communication is also one of the core values of XP discipline. XP?s practices focus
on improving these kinds of communication. Table 4.1 shows a collective generalization
of what XP practices benefit what kind of communication (without considering GSD). As
we can see most of XP practices can benefit from communication. When it comes to the
globally distributed software development, some of the benefits become hard to achieve
26
due to the kinds of reasons stated earlier.
Table 4.1: XP practices benefit communication
We exam the practices which may be problematic to practice under GSD environment.
We identify which aspect needs to be tailored to fit in GSD background as the theory
basis for the methodology we propose in the next chapter.
4.3 Xp Practices Examination
4.3.1 On-Site Customers
We first examine on-site customer practices because it provides the major premise for
our following discussion. XP recommends that a customer sit with the team full time
Practices Benefit
Planning game Benefit communication between project manager, developer
and customers.
Small release Benefits rapid feedback between developer and customers.
Metaphor Provides easy understandable communication platform for
developers, project manager and customers.
Simple design Facilitates communication within developers, and between
developers and project manager.
Tests Provide rapid feedback between customers and developers.
Refactoring Makes it easy to communicate between customers and
developers.
Pair programming Provides instant communication between paired developers.
Continuous integration Provides developers with rapid feedback on the quality of the
code.
Collective ownership Benefits communication between developers
On-site customer Benefits communication between project manager, developer
and customers.
40-hour weeks Not identified
Open workspace
Benefits communication between developers, and developers
and project manager.
27
during the entire life cycle. This practice requires that the customer have a thorough
understanding of the desired software. In [36], the authors identified this ?bad smell?
when practicing XP as well. They noted that the customer must be coached sufficiently to
provide honest and substantial feedback from the very beginning of development process.
In most cases, one customer cannot fully provide requirements to the development team;
there will be multiple customers involved. When the project is globally distributed, it is
costly to set up on-site customers. Plus, there are other issues involved, such as
international visa, travel time, etc. A timely customer presence, especially when an
emergency happens, can hardly be guaranteed. When the project is distributed across
multi-sites, customers have to travel between the sites, which decreases productivity and
increases costs. As a consequence, a tool that can provide the customer?s virtual on-site
presence is needed to apply this practice to GSD projects. E-mail, Instant Messenger, and
conference calls are good options to help facilitate communication among customers and
development teams that are globally distributed. For teams more than five time zones
away, telecommunication can be held at the beginning and the end of each release and
iteration, or as necessary. Even though e-mail is less efficient than face-to-face
communication, it can be responded to within 24 hours. Moreover, when there is a
language difference, people tend to feel more comfortable communicating in writing than
through oral means.
4.3.2 Planning Game
In the planning game, customers decide the scope and timing of the release based
on estimates provided by the developers. Developers implement in any one iteration only
the functionality demanded by the stories. In XP, there are two kinds of planning games:
28
Release Planning and Iteration Planning. After customers finish editing the user stories, a
meeting is set up to create the release plan which lays out the overall project. The idea of
this meeting is for developers to estimate how long in programming days it will take to
finish each user story, and for customers to then decide which user stories to complete.
The release plan is then used to create iteration plans for each individual iteration. In this
way, every team member has clear goal of project progress. GSD throws a wrinkle into
this process. First, as we stated before, when there is no on-site customer present it is
difficult to organize a release plan meeting. A conference call may be the best option, but
still has its limits. Especially at the beginning of project, a meeting is inevitably going to
last longer than it is in the latter part of project because of negotiation between
development team and customers, such as requirement clarification. Another problem is
the more stakeholders involved, the more unorganized the negotiation tends to be. A role
such as a project manager for each development team is necessary to ensure the meeting
goes smoothly. The project manager collects the estimate from developers. Discussions
or meetings can be conducted before release plan meeting if the project manager feels the
developers? estimates are problematic. After gathering all information, the project
manager attends the meeting as the representative of team to negotiate with customer.
When necessary, the project manager brings back the customer?s feedback to discuss
with specific developers. This systematic communication enables release plan meeting to
be more organized and efficient.
Another communication issue that needs to be considered is the format of the user
story. In traditional XP practice, the user story is written on a physical card. Together,
developers and customers move the cards around on a large table to create a set of stories
29
to be implemented as the first (or next) release. In the GSD environment where there is
no on-site customer, a virtual large table that gives the customer and the development
team synchronized access to virtual user story card is needed. A tool support this
functionality will benefit both communication and project management.
4.3.3 Small Release
The development team needs to release frequent iterative versions of the system to
the customer. This is critical in getting valuable feedback in time to have an impact on
the system's development. Declaring the introduction of important features shortens the
implementation time. How to control the releases in GSD needs to be further considered.
When a release plan includes user stories from multiple development sites, a
methodology that makes the plan easily understandable for all development teams and
customers helps relieve the misunderstanding problem we stated before.
4.3.4 Simple Design
XP emphasizes keeping things as simple as possible. It frees the developers? from
the requirement of heavy documentation in an effort to focus more attention on the design
itself. Simple design eases communication among developers, and between developers
and the project manager. We suggest using a standard design language such as UML
diagrams for better communication in GSD projects especially in cross-site
communication. As we stated before, developers tend to have miscommunication
problems when they come from different cultural backgrounds. The frequency of cross-
sites communication drops for the same reason as well. A standard design methodology
such as UML remains a design simplicity that all developers understand. ?Where to find
who? is also a common problem in GSD. A methodology that helps development team
30
members to easily locate the partner they want to communicate with should also be
applied in GSD project.
4.3.5 Testing
The acceptance test for each user story is conducted by the customers and a test
score is given after that. This practice provides fast feedback between the development
team and the customers. This convenience should not be jeopardized by the
communication gap in GSD projects. What is the convenient way to transmit the
feedback from customer to development team without introducing too much overhead?
How to make sure developer will be notified timely without interference from the time
and special distance? A methodology that provides timely notification of test feedback is
required here.
4.3.6 Collective Ownership
In XP, the practice of collective ownership means that every programmer improves
any code anywhere in the system at any time. It benefits communication between
developers because, in this way, everybody can learn from each other. For co-located
development teams, it is easier to trace back to the author who made the change when the
defect is introduced by such change. Co-owners can initiate the communication easily.
There is also no copyright issue involved. For globally distributed development teams, it
may cause legal issue if one site modified the source code of other side that belongs to
other company. Even there is a mutual agreement on source code ownership. It is hard for
developers to accept the fact that a stranger from other company can make changes to
software they authored. The traceability of changes across sites decreases significantly as
31
well. Therefore, we suggest collective ownership to be practiced within each
development site, but not practiced among development sites.

32
CHAPTER 5
GENERAL APPROACH
We propose a methodology for adapting XP practices to a GSD project by using a
project management tool. We identify the aspects of developing this kind of software that
are necessary for global distributed development. We are mainly targeting solving the
communication problem and weak project management support of XP as stated in
Chapter 2. The methodology is illustrated in a project management perspective because
we believe a good management can facilitate systematic communication.
5.1 Introduction
In a GSD project, an important thing is to make sure globally-distributed teams are
on the same page during the project. A project management tool that supports
information sharing and promptly information update is required.
5.2 Project Information Overview
5.2.1 Description
Awareness is a problem we need to tackle in GSD. Customers normally do not
involve themselves in development but they always want to know the project status so
that they can adjust their plans. If they observe that the project is going faster than
scheduled, they can add more user stories in the next release. A delay also can be
detected at an early stage so customers will not be surprised. This helps to improve
customer satisfaction. The project manager wants to monitor the site?s progress as well
33
concrete project progress data helps in negotiating reliable goals with customers. Team
members normally focus on their own module and, as a consequence, lose the big picture
of the whole project. The system shall provide users with overall project information and
the access to detailed information. The system shall provide visibility to the project
progress of each project site. The detail project information shall be organized in the site
manner.
5.2.2 Functional Requirement
REQ1-1: The system shall display the project name the user is working on and current
available information.
REQ1-2: Project abstract information shall be displayed appropriately.
REQ1-3: The access point to detailed project information shall be displayed.
REQ1-4: The system shall provide appropriate information about Team Members, User
Stories, Release Plans and Iteration Plans for each site.
REQ1-5: Both graphic and text project release plan, if available, shall be displayed
REQ1-6: Users shall be able to view team member information grouped by team
properties.
REQ1-7: Users shall be able to view user story information grouped by its properties.
REQ1-8: Users shall be able to view release plan information grouped by its properties.
REQ1-9: Users shall be able to view iteration information grouped by its properties.
REQ1-10: Project information can only be modified by the user who has Edit privilege,
otherwise it is only viewable.
34
5.3 Project Team Member Management
5.3.1 Description
A team member management function can help all project members easily locate
who is where and who is working on what, which caused the ?hard to initiate
communication? problem of GSD. Besides distance, people normally find it difficult to
communicate with somebody they do not know. This barrier especially exists in cross-
site communication among different companies. A personal picture will help remove this
barrier. The system shall record every team member?s information including:
? First, Last Name
? Personal image
? Site
? Role
? Assigned User Stories
The system shall let project team member information be accessible to the entire project
team. Only those who have Add/Update/Remove privilege may update the list.
As we stated before, instant messenger tools can help solve the ?Decrease frequency
of communication? problem between distributed team members. An embedded instant
messenger in the system will be convenient for users so they do not need to rely on third-
party software. Therefore, the system shall allow users to initiate conversations whenever
they want. A copy of the conversation?s content shall be saved automatically as a record
for future use.
When distributed teams are more than five time zones away, team members from
different sites have small time overlaps. A messenger that can display messages received
35
received when the user is absent is very helpful to speed up project progress.
5.3.2 Functional Requirements
REQ2-1: The system shall display the Project Team member information for all team
members.
REQ2-2: The system shall let the team member who has update(add/remove/update)
privilege to update project team member information
REQ2-3: The system shall notify all project managers when team member information is
updated
REQ2-4: The system shall let a team member to initiate a conversation with one or more
other team members.
REQ2-5: The system shall let a conversation participant save a copy of the conversation
content.
REQ2-6: The system shall let the conversation participant choose the person they want
to inform about the conversation content.
5.4 Project Sites Management
5.4.1 Description
How project information is organized influences project management and
communication significantly. Imagine if there is only one database table with hundreds of
user stories how difficult it is to dig out who is working on which story and what is its
status. When a project spans multiple development sites, it is more complicated to
maintain a big picture of project progress for customers and project manager. In our
approach, besides project information overview, we suggest organizing project resources
in a site fashion. Each site contains its own people, user story, and release/iteration plan.
36
It is editable for each team member of the site, and viewable for other sites. Development
site information not only enables customer to observe each site?s progress without being
physically present, but also facilitates team members? communication and cross-site
communication by providing a big picture perspective of project. It contributes to solving
almost every communication issues in GSD. To implement this functionality, the system
shall record information include at a minimum:
? Site basic information (Location, Development team size, Development velocity)
? Team members
? User stories assigned to
? Project schedule (release plan)
? Iterations
? Releases
By browsing the above information, customers can monitor project progress remotely so
as to save communication cost, time, money and staff. Because information is available
on the server, accessibility is not limited by time zone differences. Project managers and
developers also can get an idea where they are and who is doing what during the project.
5.4.2 Functional Requirements
REQ5-1: The system shall organize project information by site
REQ5-2: The system shall let site information be visible to the entire project team
REQ5-3: The system shall be able to distinguish site member and site visitor
REQ5-4: The system shall be able to distinguish which site information is editable based
on the user?s role
37
REQ5-5: The system shall inform site members of any project updates and notification
of the site they belong to
REQ5-6: The system shall allow communication between team members and different
sites
5.5 User Story Management
5.5.1 Description
When practicing XP, the user story is a part that has high communication density.
From the planning game to implementation to test, user story information is needed in
most XP practices. In the planning games, developers need to estimate the programming
time for each user story. At the planning meeting, customers and project managers
discuss them to set up the release plan and the iteration plan. The clear images of which
user stories have been completed and which are incomplete at what priority is crucial. In
design, developers may need to know who is working on a user story that is similar to
theirs, who is the author of the user story when the requirement is not clear. In a small
release, project members need to be aware which user stories are included in each release.
In testing, the developer needs to get feedback from customers if the user story he is in
charge of is accepted or has failed a test. There is a lot of communication required in a
background full of communication obstacles. The crucial problem is when an on-site
customer is not available. We need a methodology that can bring customers, project
managers and developers into one virtual room, thus efficiently accomplishing the XP
practices with as little face-to-face communication as possible. Information can be
transmitted timely and accurately.
38
We propose two key approaches here: ?User Story Inventory? and ?User Story
Status?. There are two kinds of ?User Story Inventory?. A ?Project User Story Inventory?
consists of all the user stories created by customers. Since project information is
organized by sites in our approach, a ?Site User Story Inventory? lists all the user stories
assigned to this development site. Generally, every user story has following properties:
? Unique ID
? Name
? Description
? Author
? Estimate Programming Day
? Actual Programming Day
? Developer
? Priority
? Iteration ID (which is assigned to)
? Release Version (which is assigned to)
? Status
 ?User Story Status? indicates the status of a user story during project. It can be one of the
following:
? Not Started ? User story is created by customer
? Assigned ? User Story has been assigned to specific developer
? In Progress ? User story is in the implementation phase
? Complete ? User story implementation is complete
39
? Accepted ? User story is accepted by customer in acceptance test
? Test Failed - User story is not accepted by customer in acceptance test
? Released ? User Story has been released
Events User Story Status
Customer creates an user story Not started
Developer picks up user story Assigned
Developer starts implementation In progress
Developer finishes the unit test Complete
Passes customer acceptance test Accepted
Failed at acceptance test Test failed
Release Release
Table 5.1: Change of User Story Status
?User Story Inventory? and ?User Status? help customers and project managers easily
track every user story during projects. Table 5.1 shows the changing of properties for one
user story along the project progress. The customer first creates a user story, the Name,
Description, Author fields are filled out and the status is set to ?Not started?. The user
story is saved in the ?Project User Story Inventory?. The customer assigns user stories to
each development sites. This information is saved in the ?Site User Story Inventory?. The
project manager then checks the inventory and lets developers pick user stories. The
project manager fills out the ?Developer? field and changes the User Story Status to
?Assigned?. Each developer gives an estimate in programming days of how long the
story will take to implement. The user and project manager pick stories that will go into
the release plan and the iteration plan. The developer sets the Status to ?In progress? at
the beginning of implementation and sets to ?Complete? after unit test. Customers test the
user stories and mark them as ?Accepted? if each passes its respective acceptance test, or
40
?Test Failed? if not. The ?Release? status is used if a user story is included in a release
version. The ?actual programming day? gives the project manager a means of calculating
the project velocity so as to help set up the next release/iteration plan. In this way, heavy
communication becomes a series of systematic processes that are not impacted by
regional and cultural difference. Simple activities and standard description give less
opportunity for misunderstanding. Customers and development team members can track
every user story at any time, thereby decreasing the time zone distance and increasing
awareness.
5.5.2 Functional Requirement
REQ3-1: User Story shall contain all the properties listed above
REQ3-2: The system shall display the ?Project User Story Inventory? for the whole
project team
REQ3-3: The system shall display the ?Site User Story Inventory? for each site
REQ3-4: Only the customer is allowed to add/remove a user story
REQ3-5: Only the project manager are allowed to assign a user story
REQ3-6: The developer can only update the estimate and actual programming day and
status of task assigned to him
REQ3-7: User stories can only be viewed by users from other development sites
REQ3-8: The system shall display stats on user stories for the whole project
REQ3-9: The system shall display stats on user stories for the whole site
REQ3-10: The system shall save the discussion under specific user story
REQ3-11: The system shall allow user stories to be assigned to only one iteration
REQ3-12: The system shall allow users to update user story status.
41
REQ3-13: User Story Status options shall be customerized based on user role.
REQ3-14: The system shall allow users to break user stories into tasks when needed
REQ3-15: The system shall record UML design diagrams and test cases for each user
story.
5.6 Project Release Management
5.6.1 Description
Unlike traditional development approaches where software modules are combined
together at the end of development, XP requires iterative development and frequent
releases to deliver a runnable system to customer as early as possible. Customers pick
user stories for each release at release planning meeting. In a globally distributed
development environment, release management is more complicated than single sites,
because a project release may consist of user stories developed by different sites. Without
a systematic management approach, the release plan is influenced by conflicting site
development schedules. To control this chaos, we propose using two kinds of release
plans: Project Release Plan and Site Release Plan. The project release plan is for the
whole project. It consists of release plans for each site. The approach is described in
Figure 5.1.

 Figure 5.1: Project Release Plan and Site Release Plan example
42
In this example, the customer first creates four user stories and assigns them to Site 1 and
Site 2 separately. The customer and project manager settle the Site Release Plan for each
site based on business needs and the user stories? priorities. The customer decides which
site releases they want to put into a Project Release. From the example above, the
customer wants user stories A, C, D as first project release. It includes Site Release S1R1,
S2R1 and S2R2. Using this approach avoids schedule conflicts between sites 1 and 2.
Development tasks are clear to customers and development is easy to manage.
The system supports above approach with two kinds of release plan ? the Project
Release Plan and the Site Release Plan. The system shall provide customers an easy-to-
user platform for creating release plans. The system shall also make the project schedule
accessible to the entire team, editable to those who have privilege.
5.6.2 Functional Requirements
REQ5-1: The system shall record both the Project Release plan and the Site Release plan
REQ5-2: Project Release Plan and Site Release plan shall be visible to all team members
REQ5-3: The system shall allow the customer to create the Project Release Plan based
on the Site Release Plan
REQ5-4: The system shall allow the customer to create the Site Release Plan based on
user stories assignment.
REQ5-5: The system shall prompt the user when a Release Plan conflict happens.
REQ5-6: The system shall let team members with update privilege to change the
schedule
REQ5-7: The system shall record the update history for the Project Schedule.
REQ5-8: The system shall notify all team members when a release plan is updated
43
5.7 Project Iteration Management
5.7.1 Description
After the Release Plan is set up, the customer and project manager will pick which
user stories from the Release Plan will go into the Iteration plan. An iteration plan should
not contain the user story from later release plan when the user stories of earlier release
plan are still available. When the iteration is complete, a project velocity should be
calculated. Only customers and the project manager have the update privileges to edit
(Add/Remove/Update) an Iteration Plan. Iteration information is viewable to all team
members so as to make sure each developer is aware of his tasks and schedule. We also
suggest displaying a stat of user stories under seven statuses separately during the project,
together with project velocity calculated at the end of iteration. This way customers and
project managers can easily measure project progress and make adjustments if necessary.
5.7.2 Functional requirement
REQ6-1: The system shall display iteration information for the entire development team
REQ6-2: Only customers and project managers are allowed to edit iteration properties
REQ6-3: The system shall not allow users to pick a user story from a later release
version when there are ones remaining in a earlier version
REQ6-4: The system shall display the stat of user stories under each status for each
iteration
REQ6-5: The system shall display project velocity at the end of each iteration
44
5.8 Project Event Notification
5.8.1 Description
Event notification functionality is crucial to fill the communication gap between
distributed teams. It helps team members be aware of what is happening in the project
without having to ask. This avoids the necessity of certain communication which is hard
to initiate in a GSD environment. Customers and project managers can monitor the
project in a real-time fashion. It is important for the system to notify appropriate project
stakeholders when significant events happen.
5.8.2 Functional Requirements
REQ7-1: The system shall notify customers of the following Planning and Release phase
events:
a. An user story is created/updated/removed
b. A Project Release Plan is created/updated/removed
c. A Site Release Plan is created/updated/removed
d. An iteration is created/updated/removed
e. An iteration is completed
f. A Release is ready/released
g. A developer is added/removed from site
REQ7-2: The system shall notify project managers of all Planning, Implementation, Test
and Release phase events
a. A user story is assigned to site
b. A user story assigned to site is updated/removed
c. A Project Release Plan is created/updated/removed
45
d. A Site Release Plan is created/updated/removed
e. An iteration is created/updated/Removed
f. An iteration is complete
g. A iteration is accepted by the customer
h. A Site Release is ready/released
i. A Project Release is ready/released
REQ7-3: The system shall notify developers about the following Planning,
Implementation, Release phase events:
a. A user story is assigned
b. A user story assigned is updated/removed
c. A user story acceptance is accepted/failed
d. An iteration is created/updated/removed
e. A Site (to which the developer belongs to) Release Plan is
created/updated/removed
f. A Project Release Plan is created/updated/removed
g. A Site Release is ready/released
h. A Project Release is ready/released
i. A developer is added/removed from site
REQ7-4: The system shall notify users when a conversation invitation arrives
REQ7-5: The system shall notify users when an instant message arrives

46
CHAPTER 6
IMPLEMENTATION AND VALIDATION
In this chapter we present prototype software, GSDXP, which implements the
methodology we introduced in previous chapter. This prototype is developed as an
Eclipse plug-in. This prototype does not fully implement all the requirements of our
approach, only the ones considered necessary to demonstrate proof of feasibility.
6.1 Prototype Scenario
Our prototype is developed based on the scenario shown in Figure 6.1.

Figure 6.1: Prototype scenario
In this scenario, there are three sites located in three different countries. The customer?s
company is in San Jose, CA, USA. Two development sites are located respectively, at
Beijing, China and Tokyo Japan. Each development site has a project manager who is in
charge of coordinating and managing the development site.

Customer
(San Jose,
USA)
Development Team A
(Beijing, China)
Development Team B
(Tokyo, Japan)
47
6.2 Project Information Overview

Figure 6.2: Project Information Overview
Figure 6.2 shows the project information overview of the plug-in. In the left view,
project information and structure are displayed in a tree fashion. The ?People? node
contains information on the entire team member (customer, project manager, developer).
The ?User Story? node and ?Release Plan? node contain all the user story information
and the project release plan. The three sites information are saved under the ?Site? node.
The customer site at San Jose is listed at the top. The following two development sites are
located at Beijing and Tokyo separately. Each site has its own team members, user stories,
release plans, and iteration lists. At the right bottom of window, there are three tabbed
views: Message, News and Discussion. The Message view lists messages received
48
whether user is online or not. The News view lists event notifications. The Discussion
view is an embedded instant messenger which supports real-time conversation. By double
clicking on the ?Project? root node, a window like Figure 6.3 presents project outlines.

Figure 6.3: Project outline
Double clicking on a site name results in a window like Figure 6.4: Site outline. This
window presents an outline of the site.
49

Figure 6.4: Site outline
Using this feature, every team member can easily obtain a big picture of the project and
locate the project resources he needs no matter where he is. This is especially helpful if
new team members are introduced in the middle of project.
6.3 Team Member Management
In the previous chapter, we proposed that a team member management approach to
alleviate communication difficulties. In GSDXP, a team member can check out the full
member list from ?People? node under ?Project? tree, as illustrated in Figure 6.5.
50

Figure 6.5: Full team member list
From this list, users can easily locate any team member. This list also can be grouped by
team member property to facilitate easy reference to information. When each member is
double clicked, a pop-up window displays the member?s detail information (see Figure
6.6). Adding or Removing a team member can be done by clicking ?Add? and ?Remove?
button at the upper-right corner.
51

 Figure 6.6: Team member detail information
Besides basic information, the ?User Story List? lists the user stories assigned to this
developer. This list is very useful to answer ?who is working on what? question.

Figure 6.7: Team member list group by ?City?
52
The ?People? node under each development site displays a team member list of the site,
as illustrated in Figure 6.8.

Figure 6.8: Team member list for site ?Beijing, China?
6.4 User Story Management
Since most of communication is highly concentrated in XP through user stories,
more detail and systematic information is helpful in solving communication problems.
We propose in Chapter 5 using the ?Project User Story Inventory? and the ?Site User
Story Inventory? for better management and communication. This approach is
implemented through the ?User Story? node under the ?Project? tree root and the ?Site?
node separately. Each ?User Story? node under the tree root saves all the user stories
created for this project.
53

Figure 6.9: Project User Story Inventory
Figure 6.9 shows the ?Project User Story Inventory?. From this inventory, we can see
there are four user stories. Each user story?s progress can be observed from this list. For
example, user story ?US_1?, ?Login screen?, is set to have High priority with a status of
?Complete?. It was estimated as requiring 3 programming days and actually took 3. It is
included in the iteration ?BC_1?, which is belong to site release ?BC_1.0.0? and project
release ?1.0.0?.
 Double clicking on ?US_1? will pop a ?User Story Detail Information? window
shown in Figure 6.10.
54

Figure 6.10: User Story Detail Information Window
The ?Properties? tab displays the general information of user story.
The ?Tasks? tab shows the tasks list if the user story has been broken down to tasks.
Figure 6.11 shows that US_1 was divided into two tasks.
55

Figure 6.11: User Story Detail Information Window
The ?UML? tab displays the UML diagram path for this user story as illustrated in Figure
6.12. Add, Remove and View functionalities can be performed by clicking specific
buttons on the right.
56

Figure 6.12: UML tab shows the UML diagram file
The ?Test Case? tab displays the unit test case file for this user story. User can Add,
Remove or View the file by clicking specific buttons on the right.
57

Figure 6.13: Test Case tab shows the unit test case file
The ?Project User Story Inventory? provides a way to quickly acertain a user story status
and its related work for globally distributed team members. It facilitates the
communication from many aspects.
? Difficult to initiate communication ? a team member can find out ?who to
contact what? from here
? Miscommunication ? User story properties give users a direct way to
understand content and progress. Standard UML diagram and test case
decreases the possibility of misunderstanding.
58
? Increased communication cost- time, money, and staff ? The User Story
Inventory decreases the necessity of initiating communication because a team
member can obtain all the user story information from the inventory without
asking. Communication is only needed when user has a question about a
certain property.
? Time difference ? The Inventory is saved on the server, which is accessible
any time.
Above all, The ?User Story Inventory? can facilitate communication during
project. When customers create a lot user stories, it may be inconvenient to locate a
specific user story from the ?Project User Story Inventory?. A ?Site User Story Inventory?
contains the user stories which have been assigned to the site, thereby giving project
managers a big-picture perspective of their site. Figure 6.14 shows the ?Site User Story
Inventory? for Beijing development site.

Figure 6.14: ?Site User Story Inventory? for Beijing development site
59
The User Stories can be broken down into tasks. Figure 6.15 shows a task added to User
Story US_3.

Figure 6.16: Create a Task for US_3
6.5 Project Release Management
In Chapter 5.6 we describe our approach of dividing the release plan into the Project
Release Plan and the Site Release Plan. In our prototype plug-in, they are represented by
the ?Release Plan? under Project tree root and the ?Release Plan? under the site branch
separately. The Site Release Plan for Beijing is shown in Figure 6.17.
60

Figure 6.18: ?Site Release Plan? for Beijing development site
There are two site releases created, BC_1.0.0 and BC_1.0.1. Each release contains one
user story that is developed in one iteration. BC_1.0.0 is already released. BC_1.0.1 is
still in progress. To create a new Site Release Plan, we can click on ?Add? button. A pop-
up window is looked as Figure 6.19.
61

Figure 6.20: Create new Site Release Plan
In the ?User Story? area, the ?Available? box contains all the user stories assigned to the
Beijing site but which haven?t yet been assigned to any Site Release. User Stories
assigned to a release plan will not be shown here. In this way, we can avoid assigning a
user story to multiple sites. To view/edit a release plan, double click on the Site Release
Plan.
62

Figure 6.21: View/Edit Site Release Plan
Moving a user story from the ?Available? box to the ?Selected? box will add a user story
into this site release; moving stories from ?Selected? to ?Available? remove them from
the site release.
By double clicking on ?Release Plan? under the project tree, the Project Release
Plan of GSDXP is shown, as in Figure 6.22.
63

Figure 6.23: Project Release Plan of GSDXP
From the release plan list, we can see there are two Project Release Plans. Version 1.0.0
contains two Site Release Plans: BC_1.0.0 from site Beijing and TJ_1.0.0 from site
Tokyo. Each of the site release plans has one user story, the total user stories that will be
delivered is two. The scheduled release date is 10/01/2008, which is ?Not Released? yet.
By double clicking on each release plan, a Release Plan Detail Information window
appears, as in Figure 6.20.
64

Figure 6.24: Project Release Plan Detail View
The ?Site Release Plan? lists all the Site Release Plans included in this Project Release
Plan ?BC_1.0.0, TJ_1.0.0 and unassigned Site Release Plan TJ_1.0.1. From this window,
the customer can add or remove a Site Release Plan.
6.6 Project Iteration Management
On the project tree, the ?Iteration? node contains the iterations the site is working on.
65

Figure 6.25: Iteration tree
As showed in Figure 6.21, the site Beijing has two iterations so far. In BC_1_1, one user
story ?US_1? was developed, which was further divided into two tasks ?US_1_1? and
?US_1_2?. The second iteration ?BC_1_2? developed user story ?US_2? which was not
divided into tasks. By double clicking on the ?Iteration? node, a Site Iteration list is
shown as Figure 6.26.
66

Figure 6.26: Site Iteration List
The iteration detail view is shown in Figure 6.27.

Figure 6.27: Iteration detail view
67
The checked user story in User Story list is the story currently included in iteration.
Because iteration BC_1_1 is already complete, no other user stories are listed.
6.7 Project Event Notification
Event notification can help improve communication by making team members aware
of significant occurrences that have taken place.
6.7.1 Message View

Figure 6.28: Message view
The message view is used to display messages in the order in which they were
received. This functionality does not require the user to be online. Messages are saved in
database. When the user logs in, he can browse all the messages he received. Users can
reply to messages by double clicking on the message, the result being a dialog box
illustrated in Figure 6.29.

Figure 6.29: Reply message
68
6.7.2 News View

Figure 6.30: News view
The News view displays the news regarding events that have happened in project.
This functionality is designed to help improve the ?Awareness? problem. From this
window, team members can maintain a vision of the project. The ?News? tab blinks to
prompt user when an event message has arrived.
6.7.3 Discussion View
The Discussion view is used to display the real-time conversation between
communication peers. Due to time constraints, this functionality was not implemented.
The idea of Discussion is to allow user to initiate communication from the GSDXP plug-
in without relying on third-party software. Users can choose to save the content of
conversation as a record. Instant messenger functionality is very handy for team members
to communicate with other members at other sites without regard to time and spatial
limits.

69
CHAPTER 7
METHODOLOGY VALIDATION
To validate approach, GSDXP was sent to managers and software engineers involved
in Global Software Development for usability evaluation. We invited two department
managers and six software engineers to be test users. They came from five different
companies located at Beijing, China and Tokyo, Japan. All of them had been involved in
software outsourcing industry for more than four years. The longest was more than ten
years. Among eight trial users, three had practiced XP on real projects, and five knew the
basic idea of XP. The software development process they were using at the time of the
evaluation was a combination of waterfall and iterative.
Before the trial run, the virtual users were asked to name the most common
problem they have in software outsourcing. Six users answered communication problems
and the other two gave understanding user needs as the largest problem, which is partly
caused by communication. All of them mentioned that project progress is significantly
slowed down without a on-site customer. A project manager said ?Sometimes it takes
more than two days to confirm a question which should only take twenty minutes if there
were an on-site customer. We have to rely on back-and-forth emails, conference calls.
That slows down project progress.?
After the trial run, a survey was conducted regarding the usability of plug-in. The
survey result is showed in Figure 7.1.
70

Figure 7.1: User?s feedback on plug-in usability
All eight users agreed that our approach helps solve ?Awareness? and
?Miscommunication? problems. Seven out of eight agreed it decreases communication
cost, time, money and staff. Six think it facilitates communication initiation. Three
thought it helps to solve time difference problem, although not all the respondents were
able to reply definitive to this issue.
All of users thought this plug-in is a light-weight and handy tool for project
management. The user interface is straightforward to use, although general XP
knowledge is required. Five of them thought the approach is generally practical in GSD
projects and helps solve communication problems. Three of the eight virtual users had
concerns regarding project size, server reliability, and network quality etc. Two managers
were most interested in the User Story Management functionality, while four of engineers
were pleased to see the Event Notification functionality. In the end, three of users
suggested the further improvement of Release Plan Management.

0% 20% 40% 60% 80% 100% 120%
Percentage of user
Time difference
Awareness
Increased communication cost
Miscommunication
Difficult to initiate communication
Decreased frequency of communication
71
CHAPTER 8
SUMMARY AND FUTURE WORK
8.1 Summary
XP cannot be fully implemented in a global distributed development setting. We have
proposed, partially implemented, and evaluated an XP-based methodology to solve the
communication problems in GSD projects from many perspectives. It also provides an
easy and systematic way to address the weak support of project management. Based on
our survey results, we find our approach is generally welcomed by GSD practitioners.
Two of tool evaluators who barely knew XP before showed interest in practicing it in
future projects. Our study shows that after carefully tailoring, together with its dynamic
characteristic and complimented by a project management methodology, XP is a suitable
practice for Global Software Development.
8.2 Conclusion
Based on our study, it shows that according to appropriate adaption, XP and GSD can
be combined together to reap the benefits of both even though former emphasizes on
communication, and latter is inherited with communication gap. We identified that the
XP practices of on-site customers, planning game, small release, simple design, testing
and collective ownership as the ones can be customized to alleviate communication
problems in GSD. Since XP does not provide support for project management,
management approaches are needed when practicing it. We found that management of
72
key elements in the project facilitates the deployment of XP. Those key elements include
project information, project site information, project team member information, user
story information, project release plan information, project iteration information, and
project events information. The goal of managing this information is to provide every
stakeholder a clear vision of the project, in such a way to decrease the communication
necessity and communication difficulty.
8.3 Future Work
As with any significant endeavor, work still needs to be done. One of the problems is
that our approach requires that users have a relatively high understanding of their
business in order to make the right decision -- such as user stories assignment and
priorities setting -- at critical points so site releases can finish at right time to be
combined to project release. Server stability is another problem we need to consider.
When this approach is applied to a big project, server performance under heavy loads is
crucial to ensure project progress. A mechanism of processing concurrent access is
definitely necessary because project information is shared with all stakeholders. For the
reason of time, we only developed an outline of prototype software. There are few other
key functionalities we have not implemented, such as user privilege management,
embedded instant messenger, etc. As suggested by our trial users, the release plan
management part may be the part needs further study because in our study, release
planning mainly relies on customer understands the business and big picture of project.
How to handle release conflicts and delay are left for the following study.

73
BIBLIOGRAPHY
[1] Iyengar,P.Application Development Is More Global than Ever, Publication
G00124025, Gartner, 2004;
www.gartnre.com/resources/124000/124025/application_dev.pdf
[2] ?Offshore?s New Horizons,? Global Technology Business, v.3, n.3 Mar 2000,
pp.12-15
[3] Lindstrom,L and Jeffries, R.Extreme Programming And Agile Software
Development Methodologies, Information Systems Management, 24:3 , pp. 41-60,
2004
[4] Manifesto for Agile Software Development, http://agilemanifesto.org/
[5] Herbsleb, J. Global Software Engineering: The Future of Socio-technical
Coordination. Future of Software Engineering 2007 Briand, L. and Wolf, A. eds.
IEEECS Press, 2007.
[6] Allen, T.J., Managing the Flow of Technology, 1977, Cambridge, MA: MIT Press
[7] Mockus, A, and Herbsleb, J, Challenges of Global Software Development,
Proceedings of the Seventh International Soft-ware Metrics Symposium,
METRICS 2001. IEEE. pp. 182-184.
[8] ErranCarmel ,RituAgarwal, Tactical Approaches for Alleviating Distance in
Global Software Development, IEEE Software, v.18 n.2, p.22-29, Mar 2001
[9] Damian, D., Stakeholders in Global Requirements Engineering: Lessons Learned
From Practice. IEEE Software, v.24 n.2, p.21-27, Mar./Apr. 2007
[10] R.D. Battin, R. Crocker, J. Kreidler, and K. Subramanian, Leveraging Resources
in Global Software Development, IEEE Software, vol. 18, no. 2, pp. 70-77,
Mar./Apr. 2001
[11] C. Ebert, and P. De Neve, ?Surviving Global Software De-velopment?, IEEE
Software, pp. 62-69, Mar./Apr. 2001
[12] E.A. Karlsson et al., "Daily Build and Feature Development in Large Distributed
Projects, Proc. Int"l Conf. Software Eng., IEEE CS Press, Los Alamitos, Calif.,
2000, pp. 649-658.
[13] Simons, M. Internationally Agile. InformIT, Mar 15th, 2002
[14] Fowler, M. Using Agile Software Process with Offshore Development.
http://www.it.uu.se/edu/course/homepage/acsd/ht03/Fowler.pdf, Sept. 2003
74
[15] Xiaohu, Y., Bin, X., Zhijun, H. Maddineni, S. Extreme Programming in Global
Software Development. Proceedings of the Canadian Conference on Electrical
and Computer Engineering, pp.1845-1848. Vol. 4, 2-5 May 2004
[16] Nisar, M. and Hameed, T. Agile Methods Handling Offshore Software
Development Issues. Proceedings of INMIC 2004, 8th International Multitopic
Conference, pp. 417-422, Dec.2004
[17] Karlsson, E., Andersson, L. and Leion, P. Daily Build and Feature Development
in Large Distributed Projects. Proceedings of the International Conference on
Software Engineering, pp.649-658, 2000
[18] Farmer, M. DecisionSpace Infrastructure: Agile Development in a Large,
Distributed Team. Proceedings of the Agile Development Conference, 2004
[19] Sinha, V.; Sengupta, B.; Chandra, S. Enabling Collaboration in Distributed
Requirements Management, IEEE Software, V. 23, No.5, pp.52-61, Sept./Oct.
2006
[20] Jazz Community, https://jazz.net/index.jsp
[21] Highsmith, J. ; Cockburn, A.; Agile software development: the business of
innovation, Computer, V.34, Issue 9, pp.120 ? 127, Sept. 2001
[22] Jeffries, R. et all., Extreme Programming Installed, Addison Wesley Longman,
2001, 172.
[23] Storm User Story Tool, http://xpstorm.sourceforge.net/.
[24] Rees, M.J.; A feasible user story tool for agile software development,
Software Engineering Conference, 2002. Ninth Asia-Pacific, pp.22 ? 30, 4-6 Dec.
2002
[25] Kahkonen, T.; Abrahamsson, P., Digging into the fundamentals of extreme
programming building the theoretical base for agile methods, Proceedings of 29th
Euromicro Conference, pp.273 ? 280, 1-6 Sept. 2003
[26] Tuomi, I., Corporate knowledge: Theory and Practice of Intelligent
organizations. 1999, Helsinki: Metaxis.
[27] DSDMConsortium, Dynamic Systems Development Method, version 3. Ashford,
Eng.: DSDM Consortium, 1997.
[28] J. Stapleton, Dynamic systems development method -The method in practice:
Addison Wesley, 1997
[29] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven
Development, 2002.
[30] Richard Baskerville , Jan Pries-Heje, Racing the E-Bomb: How the Internet Is
Redefining Information Systems Development Methodology, Proceedings of the
IFIP TC8/WG8.2 Working Conference on Realigning Research and Practice in
Information Systems Development: The Social and Organizational Perspective,
p.49-68, July 27-29, 2001
75
[31] K. Beck, Embracing Change With Extreme Programming, IEEE Computer, vol.
32, pp. 70-77, 1999.
[32] K. Schwaber, Scrum Development Process, In OOPSLA'95 Workshop on
Business Object Design and Implementation, 1995.
[33] A. Cockburn, Writing Effective Use Cases, The Crystal Collection for Software
Professionals: Addison-Wesley Professional, 2000.
[34] A. Hunt, Thomas, D., The Pragmatic Programmer: Addison Wesley, 2000.
[35] Abrahamsson, P.; Warsta, J.; Siponen, M.T.; Ronkainen, J., New directions on
agile methods: a comparative analysis, In Proceedings of 25th Internationa
Conference on Software Engineering, pp.244 - 254 , 3-10 May 2003
[36] Elssamadisy, A.; Schalliol, G.; Recognizing and Responding To "Bad Smells" In
Extreme Programming, Proceedings of the 24rd International Conference on
Software Engineering, 2002. ICSE 2002. pp.617 ? 622 2002
[37] Abrahamsson, P.; Koskela, J.; Extreme programming: a survey of empirical data
from a controlled case study, Proceedings of International Symposium on
Empirical Software Engineering, 2004. ISESE '04, pp73 ? 82, 19-20 Aug 2004
[38] Paul S Grisham,; Dewayne E. Perry,; Customer Relationships and Extreme
Programming, Proceedings of the 2005 workshop on Human and social factors of
software engineering, HSSE '05, May 2005
[39] Boehm, B,; Get ready for agile methods, with care, IEEE Computer, V. 35, Issue:
1, pp. 64-49, Jan 2002
[40] Lan Cao,; Kannan Mohan,; Peng Xu,; Balasubramaniam Ramesh,; How Extreme
does Extreme Programming Have to be? Adapting XP Practices to Large-scale
Projects, System Sciences, Proceedings of the 37th Annual Hawaii International
Conference on 2004, pp 10, 5-8 Jan. 2004.

