Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test
and Introduction to Virtex-5 Block RAM Built-In Self-Test
Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This
thesis does not include proprietary or classi ed information.
Brooks Garrison
Certi cate of Approval:
Vishwani D. Agrawal
James J. Danaher Professor
Electrical and Computer Engineering
Charles E. Stroud, Chair
Professor
Electrical and Computer Engineering
Victor P. Nelson
Professor
Mathematics and Statistics
George Flowers
Dean
Graduate School
Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test
and Introduction to Virtex-5 Block RAM Built-In Self-Test
Brooks Garrison
A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Ful llment of the
Requirements for the
Degree of
Master of Science
Auburn, Alabama
May 9, 2009
Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test
and Introduction to Virtex-5 Block RAM Built-In Self-Test
Brooks Garrison
Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.
Signature of Author
Date of Graduation
iii
Vita
Brooks Garrison is the eldest son of Ricky and Rasa Garrison. He was born in
Huntsville, Alabama on March 26, 1985. Brooks attended Auburn University from
Fall 2003 to the Spring 2007. He was involved in the Engineering Honor Society,
Tau Beta Pi (TB), during his junior and senior years. He was also involved in the
Electrical Engineering Honor Society, Eta Kappa Nu (HKN), during that time, and
served as Vice President during his senior year. He graduated in the spring of 2007
with a Bachelor?s of Engineering with special emphasis on Computer Engineering,
earning the honor of Magna Cum Laude.
Brooks immediately began working on his Master?s of Science degree at Auburn
University. His contributions to the Block RAM BIST for Virtex-4 and Virtex-5
FPGAs were developed under the direction of Dr. Charles E. Stroud.
iv
Thesis Abstract
Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test
and Introduction to Virtex-5 Block RAM Built-In Self-Test
Brooks Garrison
Master of Science, May 9, 2009
(B.S., Auburn University, 2007)
127 Typed Pages
Directed by Charles E. Stroud
A reliable method for testing embedded memories within Virtex-4 and Virtex-5
Field-Programmable Gate Arrays (FPGAs) is needed by the current FPGA commu-
nity. A method for testing the Virtex-4 embedded Block Random Access Memories
(RAMs) using Built-In Self-Test (BIST) was initially proposed by Milton in [7].
However, this method was found to have de ciencies in practical application. Several
corrections and improvements are made to this proposed approach, which improve
overall BIST generation and execution time.
A method for testing the Virtex-5 FPGA Block RAMs is proposed and the
suggested con guration settings are described. Four Test Pattern Generators (TPGs)
are proposed to implement the BIST, which will consist of 16 BIST con guration bit
 les and subsequent execution of their associated BIST sequences.
v
Acknowledgments
I would like to thank Dr. Stroud for his constant support and advice throughout
my Master?s studies. His guidance helped me become a better engineer by teaching
me how to logically analyze a unknown behavior and turn it into a known behavior.
The knowledge he imparted to me will be invaluable in my future career and for this, I
am most grateful. I would also like to thank Dr. Agrawal and Dr. Nelson for serving
as members on my graduate committee. Without the contributions of all three of
these mentors, work like that presented in this thesis would not be possible. I would
also like to acknowledge my colleagues, Brad, Joey, Jia and Mary, whose assistance
was invaluable throughout my research.
I would also like to acknowledge my parents and family, whose support helped me
persevere through the hard times in my research when I believed that my potential
was lackluster at best. Most of all, I would like to thank my wife, Erin, whose constant
belief in my abilities inspired me to strive to meet her expectations when I had no
faith in myself.
vi
Style manual or journal used Journal of Approximation Theory (together with
the style known as \aums"). Bibliography follows van Leunen?s A Handbook for
Scholars.
Computer software used The document preparation package TEX (speci cally
LATEX) together with the departmental style- le aums.sty.
vii
Table of Contents
List of Figures x
1 Introduction 1
1.1 Field Programmable Gate Arrays . 1
1.1.1 Pros/Cons to Using an FPGA 2
1.1.2 FPGA Implementation . 4
1.2 Built-In Self-Test . 5
1.2.1 Why use BIST? . 6
1.2.2 BIST for FPGAs . 7
1.3 Thesis Statement . 8
2 Background Information 9
2.1 Random Access Memory . 9
2.1.1 Faults . 10
2.2 FPGA Block RAM BIST . 13
2.2.1 ORA Implementation . 15
2.2.2 Overview of Virtex-4 Block RAMs 17
2.2.3 BIST for Virtex-4 Block RAMs 19
2.3 Virtex-5 Introduction . 41
2.3.1 FPGA Architecture . 41
2.3.2 Programming Tools . 45
2.4 Thesis Statement . 46
3 Virtex-4 Improvements 47
3.1 BIST Generation Simpli cation . 47
3.2 ORA Modi cation and OR-Chain . 50
3.3 PINS Option . 52
3.4 FIFO Reset Problem . 57
3.5 Additional FIFO Con gurations . 62
3.6 Cascade ORA Clock Enables . 64
3.7 Timing Improvements and Analysis 66
3.8 Fault Coverage . 75
3.9 Summary . 80
viii
4 Virtex-5 Block RAM BIST 84
4.1 TPG Development . 84
4.1.1 RAMB36 TPG . 85
4.1.2 RAMB36SDP TPG . 88
4.1.3 FIFO36 TPG . 91
4.1.4 FIFO36 72 TPG . 91
4.2 ORA Placement . 91
4.3 BIST File Generation . 95
4.3.1 BIST Template Generation Program 97
4.3.2 Modi cation Program . 99
4.4 BIST Results . 99
4.4.1 File Size Comparison . 102
4.4.2 Timing Analysis . 102
4.4.3 Fault Coverage . 103
5 Summary and Conclusions 107
5.1 Virtex-4 Block RAM BIST Improvements 107
5.2 Virtex-5 Block RAM BIST . 109
5.3 Future Work . 110
Bibliography 112
A MarchLR with 72-bit BDS 114
ix
List of Figures
1.1 General FPGA Structure . 1
1.2 Basic BIST Structure [11] . 6
2.1 Functional Model of a Multi-Port SRAM [5] 10
2.2 Di erential Access Multi-Port Cell [5] 11
2.3 Comparison Based ORAs . 16
2.4 Dual-Port Data Flows [15] . 17
2.5 BRAM - TPG/ORA Connections [7] 20
2.6 Virtex-4 Block RAM ORA Bit Assignments [7] 31
2.7 FIFO ORA Bit Assignments [7] . 35
2.8 ECC/Cascade RAM ORA Comparisons [15] 36
2.9 ECC RAM Top-Level View [15] . 37
2.10 ECC ORA Bit Assignments [7] . 38
2.11 Cascadable Block RAM [15] . 40
2.12 Cascade ORA Bit Assignments [7] 40
2.13 Virtex-4 vs. Virtex-5 Slice Comparison 42
3.1 Virtex-4 New and Old ORAs . 50
3.2 Additional Dummy ORAs . 51
3.3 OR-Chain Functionality . 52
3.4 OR-Chain in an FX12 Device . 53
x
3.5 V4RamBist.exe Command Line Format 55
3.6 PINS - TPG RST and ILOGIC Placement 56
3.7 Cascade ORA Bit Assignments [7] 65
3.8 Cascadable Block RAM [15] . 65
3.9 Max. BIST Clock Frequency for Virtex-4 LX60 72
3.10 Timing Analysis for Worst-Case BIST Con gurations - Virtex-4 Devices 73
3.11 Max. BIST Clock Frequency for Virtex-4 LX60 with Clock Modi cations 77
3.12 Timing Analysis for New Worst-Case BIST Con gurations - Virtex-4
Devices . 78
3.13 Overall Fault Coverage for Virtex-4 Devices 80
3.14 BRAM Fault Coverage for Virtex-4 Devices 81
3.15 FIFO Fault Coverage for Virtex-4 Devices 81
3.16 ECC and Cascade Fault Coverage for Virtex-4 Devices 82
4.1 Shift Register Control String - RAMB36 88
4.2 RAMB36 TPG Area Constraint for an LX50T Device 89
4.3 Shift Register Control String - RAMB36SDP 91
4.4 Internal Slice Components [16] . 94
4.5 Virtex-5 ORA LUT Comparison . 96
4.6 V5BramBist.exe Command Line Format 98
4.7 TPG Placement for a Virtex-5 LX50T 100
4.8 V5BramMod.exe Command Line Format 101
4.9 Timing Analysis for Virtex-5 LX50T Device 104
4.10 Timing Analysis for Worst-Case BIST Con gurations - Virtex-5 Devices105
4.11 RAMB36 Fault Coverage for Virtex-5 Devices 106
xi
Chapter 1
Introduction
1.1 Field Programmable Gate Arrays
A Field Programmable Gate Array (FPGA) is a prefabricated Integrated Circuit
(IC) that contains an array of programmable logic blocks (PLBs) and programmable
input/output (I/O) cells with programmable interconnections as seen in Figure 1.1
[11]. The user has the freedom to program the functionality realized by each logic
block and the connections between each logic block [9]. An FPGA is more exible
with respect to design errors than a traditional gate array or Mask Programmable
Gate Array (MPGA). This is because MPGAs are only programmable in the factory
by the manufacturer, while FPGAs can be reprogrammed at the user?s discretion.
Figure 1.1: General FPGA Structure
1
FPGAs were developed as an alternative to Application-Speci c Integrated Cir-
cuits (ASICs). ASICs are ICs developed for a speci c use rather than for general
use [10]. While ASICs are generally four times faster and 40 times more e cient
in terms of area than FPGAs [6], they are by, nature, unforgiving if a design error
is encountered. Costs are incurred through redesign, fabrication and testing of the
new ASICs, which can be quite expensive in both money and time. FPGAs o er the
 exibility of xing errors in the design con guration and then simply re-downloading
the design onto the device [10]. Through the use of FPGAs, overall prototyping costs
and design iterations can be greatly reduced.
However, FPGAs are less dense than traditional gate arrays and MPGAs due to
the fact that a lot of the FPGAs resources are spent merely to achieve the programma-
bility. This means that FPGAs have lower performance than ASICs and MPGAs.
The vast amount of programmable interconnections slow down internal signals and
thus FPGAs are slower than MPGAs and ASICs [9].
1.1.1 Pros/Cons to Using an FPGA
There are both advantages and disadvantages to using FPGAs. Some of the
prominent advantages of using an FPGA include the following:
 Recon gurability
 E cient prototyping
 Lower design costs
FPGAs provide recon gurability to the user. If a bug is found in the design,
the user can x the design con guration and re-download it to the device. No new
hardware needs to be designed or produced. This leads to lower design costs and is
2
optimal for prototyping. This recon gurability can also be taken advantage of when
an FPGA is incorporated into a system. For example, when a system containing the
FPGA is rst powered on or during times of low activity, the FPGA can be con gured
to test itself and/or the system to determine if there are any faults [13]. If there are
none, the FPGA can then be recon gured for the function it was intended to perform
within the system.
However, the exibility of FPGAs does not come without a cost. Some of these
include the following:
 Slower device speeds
 Higher power consumption
 Volatile con guration memory
 Higher production cost
FPGAs have a multitude of programmable interconnect points within them.
These points have both capacitance and resistance which slow down signals within
the device causing the FPGA to run at slower speeds than ASICs or MPGAs [9].
ASICs are built for a speci c purpose, while FPGAs are of a more general nature.
Because FPGAs are less constrained, many of the resources (programmable intercon-
nects, PLBs, etc) they contain are not fully utilized and are in general less power
e cient than ASICs [6]. Another disadvantage to using most FPGAs is that the
con guration memory must be downloaded every time the device is powered on due
to the volatile nature of the con guration memory. FPGAs are very useful for pro-
totyping and low volume designs. However, for designs that will be mass-produced,
FPGAs become an expensive component to be incorporated into the design. ASICs
are better suited for high volume production situations [9].
3
1.1.2 FPGA Implementation
Recent FPGAs are comprised of some, if not all, of the following components
[13]:
 Programmable Logic Blocks (PLBs)
 Digital Signal Processors (DSPs)
 Microprocessors
 Input/Output Blocks (IOBs)
 Random Access Memories (RAMs)
 Programmable Interconnect
These components can comprise over one billion transistors [13]. Technology
has advanced such that these transistors are now on the nanometer scale and the
process of creating these transistors is not without error. Due the the small scale
of the parts that make up the FPGA, an inexpensive and e cient way to test that
the components are fault-free is needed. This thesis will be using the exible nature
of the FPGA itself in order to test that certain components, speci cally the Block
RAMs, were created without defects and/or have not sustained faults during system
operation.
FPGA Memory
Embedded memory was incorporated onto FPGAs so that they could act as
System-on-Chip (SoC) devices, which contain all the elements of a computer. This
frees up PLB elements from acting as storage devices providing for the memory needs
4
of the circuit. The size of each Block RAM can range from 128 bits to 36 kbit and in
most cases the data width versus address space can be adjusted [13]. RAMs can also
be classi ed as single-port (SP) where reading and writing can only be implemented
over a single circuit path or multi-port (MP) where memory cells can be accessed
simultaneously and independently of each other [5]. The number of RAMs can vary
in an FPGA. In the Virtex-4 family, the number of 18 kbit Block RAMs can range
from 36 in the FX12 device to 552 in the FX140 device [15].
The introduction of Block RAMs to FPGAs also increases the overall perfor-
mance of the device. Compared to an ASIC that does the same function, the FPGA
with Block RAMs is approximately three times slower (compared to the four times
slower without Block RAMs [6]). The power consumption of the device is reduced
from 12 to 9 times more than an ASIC. Component and area utilization is also im-
proved from 40 to approximately 20 times more than an ASIC [6].
1.2 Built-In Self-Test
Built-In Self-Test (BIST) is a way for a given circuit to test itself to determine
if it is fault-free or defective. BIST consists of three main components shown in
Figure 1.2 and described below. A test controller, input isolation circuitry, and some
additional I/O may also be needed to run the BIST [11].
 Circuit Under Test (CUT): is the current circuit or component which is under-
going testing.
 Test Pattern Generator (TPG): the test pattern generator produces a sequence
of patterns for testing the CUT.
 Output Response Analyzer (ORA): the output response analyzer compacts the
output responses of the CUT into a Pass/Fail indication.
5
Figure 1.2: Basic BIST Structure [11]
1.2.1 Why use BIST?
There are several methods of testing a device. The rst is to use an external test
machine that applies a set of test vectors to the device. The other option is to design
additional circuitry that makes the device easier to test or enables the device to test
itself [11].
Additionally, all the components of the BIST can be clocked using the system
clock. This is referred to as at-speed testing and is important because it can help
facilitate the detection of faults that lead to excessive delay in an otherwise working
CUT. This also allows testing to occur at the maximum clock frequency, which in
turn minimizes testing time and thus testing cost [11].
Another advantage of using BIST is that the need for expensive external auto-
matic test equipment (ATE) is greatly reduced. The cost of the ATE depends on the
number of test vectors, desired test speed, and the number of I/O pins required by
the CUT. Overall testing costs and time are reduced because the ATE requires only
6
a few signals to initiate and control the BIST sequence as well as retrieve the BIST
results [11].
However, BIST does have some negative aspects. Additional circuitry is typically
incorporated into the device to implement the BIST. This leads to a larger device area,
known as area overhead, and thus increased cost. This larger area overhead also leads
to longer signal routing paths within the device, which can a ect performance [11].
Another disadvantage is that in addition to designing and verifying proper operation
of the intended system, the BIST system must also be designed and veri ed. Two
systems rather than one need to be designed and both must be valid. Although, one
BIST system can be used with many application circuits.
1.2.2 BIST for FPGAs
In an ASIC, additional circuitry must be added to the original circuit design to
incorporate the BIST circuitry. However in an FPGA, this is not needed because all
of the components of the BIST can be constructed using the inherent components
of the FPGA. In this thesis, PLBs compose the TPGs and ORAs while the Block
RAMs will compose the CUTs. Since all of the components of the BIST reside within
the FPGA, they all use the same clock, and at-speed testing can be taken advantage
of. This eliminates any performance penalties that might have been introduced if
additional testing hardware had been developed.
One of the main advantages for performing BIST on FPGAs is that BIST can
easily be applied to all levels of testing, which is known as vertical testability. BIST
also provides high diagnostic resolution by being able to specify which CUT a fault
is associated with [11].
7
1.3 Thesis Statement
The goal of this thesis is to discuss improvements made to the Virtex-4 Block
RAM BIST to address several problems found within the approach developed by
Milton in [7]. A technique for implementing Block RAM BIST on Virtex-5 devices
based on the techniques developed for the Virtex-4 Block RAM BIST will also be
introduced and discussed.
Chapter 2 will present a more detailed overview of RAM architecture, namely
the architecture and operation of Block RAMs in the Virtex-4 and Virtex-5 FPGAs.
Previous Block RAM BIST methods will be described along with how they were
applied to Virtex-4 RAM BIST. Chapter 3 will present the work done to correct and
improve BIST for Virtex-4 Block RAMs, while Chapter 4 will present and discuss the
BIST technique proposed for Virtex-5 Block RAMs. Chapter 5 will summarize the
thesis and provide suggestions for future research and development.
8
Chapter 2
Background Information
This chapter will give an introduction to static random access memories (RAMs)
and the faults associated with them. This will include a discussion on how the
faults develop and implementation of known RAM test algorithms. The RAM test
algorithms used for BIST of Block RAMs in Virtex-4 [7] will be discussed, along with
how they test for faults. The architecture of Virtex-5 FPGA will be discussed, along
with the architecture and operation of Block RAMs.
2.1 Random Access Memory
Static RAMs (SRAMs) are constructed from memory cells that have two di erent
voltage levels, one for logic 0 and one for logic 1. This type of circuit is known as
a bi-stable circuit. A unique feature of SRAMs is that they are a volatile type of
memory, which means that they can only store data as long as they are supplied with
power [5]. When the power is turned o , all data in the SRAM is lost.
Figure 2.1 illustrates a functional model of a multi-port SRAM. The SRAM
consists of a memory cell array that is usually composed of the memory cells shown
in Figure 2.2. Each cell has a shared read/write capability and each port has two bit
lines that are used by the sense ampli er for the read/write operations. In addition
to the memory cell array, the SRAM has row and column address decoders that select
the memory cell from which to read and write. When data is being read, the read
circuitry loads the data from the selected memory cell into the Data Flow register
9
and it is then sent out on the Data-word Out line. If data is being written, it is loaded
into the Data Flow register from the Data-word In line and the write circuitry writes
the data to the selected memory cell [5].
Figure 2.1: Functional Model of a Multi-Port SRAM [5]
2.1.1 Faults
Since SRAMs have many components (Figure 2.1), the need to test these compo-
nents is crucial. RAMs are generally tested for faults by writing and reading various
test patterns known as march tests to each of the memory addresses [5]. The fault
detection results of these tests are described by functional fault models, which are ab-
stract fault models that can be described by fault primitives. Fault primitives make it
possible to precisely de ne a functional fault model. When testing SRAMs for faults,
10
Figure 2.2: Di erential Access Multi-Port Cell [5]
every possible fault need not be tested, but rather the possible realistic faults need
to be tested [5]. There are several ways to classify memory faults. These include:
Static vs. Dynamic Faults
Static faults are characterized by the e ect of a single operation to a cell. Ex-
amples of static faults include Stuck-at One/Zero. Dynamic faults are characterized
by the e ect of multiple operations [5].
Simple vs. Linked Faults
Simple faults are faults that have no in uence on other faults and thus the be-
havior of one fault does not in uence the behavior of another fault. This is important
to note because simple faults cannot mask one another, that is hide their behavior.
11
Linked faults are faults that can in uence other faults and therefore fault masking
can occur [5].
Single-Port vs. Multi-Port Faults
Faults that require at most one port operation to occur are said to be single-port
faults. These faults can occur in both single- and multi-port memories. Multi-port
faults can only occur due to operations performed on two or more ports. For example,
if two simultaneous read operations performed on a memory cell cause the contents
of the cell to change, a multi-port fault is said to have occurred [5].
Single-Cell vs. Multi-Cell Faults
When a sequence of operations is performed on a memory cell, if a fault is
sensitized in that cell, the fault is said to be a single-cell fault. However, if the
operations cause a fault to be sensitized in a di erent memory cell, the fault is said
to be a multi-cell fault, which is also known as a coupling fault [5]. Some common
single-cell faults include:
 Stuck-At Faults (SAF): these faults are characterized by the logic value of a
memory cell or line always being either logic 0 or logic 1 [1].
 Stuck-Open Faults (SOF): these faults are characterized by not being able to
access the memory cell, usually due to an open word line [1].
 Transition Faults (TF): these faults are characterized by a memory cell not
being able to transition from a logic 0 to a logic 1 or vice versa [1].
 Data Retention Faults (DRF): these faults are characterized by a memory cell
not being able to store its logical value after a certain amount of time [1].
12
Some common coupling faults which involve two cells, cell1 and cell2, include:
 Inversion Coupling Faults (CFin): these faults are characterized by a write
operation that causes the logic value of cell1 to ip, which causes the value of
cell2 to ip [1].
 Idempotent Coupling Faults (CFid): these faults are characterized by a write
operation that causes the logic value of cell1 to ip, which causes cell2 to always
become either logic 0 or logic 1 [1].
 State Coupling Faults (CFst): these faults are characterized by a memory cell
or line being forced to a certain value if another coupled cell or line is in a
certain state [1].
2.2 FPGA Block RAM BIST
BIST for FPGA Block RAMs has been previously implemented for the Virtex-
4 FPGAs. Milton [7] developed TPGs that would test each of the four modes
of operation for the Virtex-4 BRAMs (regular operation, First-In-First-Out or FIFO
operation, Error Correcting Code or ECC operation, and cascade operation). Milton?s
work was derived from the work rst presented by Garimella for Virtex I and Virtex
II FPGA Block RAMs [4].
Garimella tested the Block RAMs in Virtex II by testing the single-port mode
and then the multi-port mode as proposed in [5]. His BIST con gurations are shown
in Table 2.1. Garimella used the MarchLR RAM test algorithm to test the single-
port mode and March s2pf/d2pf to test the dual-port mode of the Virtex II Block
RAMs [4]. He used a single TPG to generate the test patterns and apply control
signals to the Block RAMs under test. Milton?s approach di ered from Garimella?s in
13
that he implemented two identical TPGs that drive alternating rows of Block RAMs
under test, which provided for greater fault detection capabilities. The use of two
TPGs allowed for the detection of possible errors within the TPGs as well as those
that could be present in the Block RAMs. Garimella was the rst to implement
circular comparison based ORAs (discussed in Section 2.2.1) when testing embedded
memories [4] and Milton adopted this when implementing his tests for Virtex-4 [7].
However, a major disadvantage of Garimella?s approach was that his BIST was
implemented completely in VHDL. While this did allow for a shorter development
time, there was an incurred cost of having to download each full BIST con guration to
the device under test. Milton also noted that constructing the BIST circuitry entirely
in VHDL reduces the control of the physical design of the BIST circuitry [7]. The
synthesis tools cannot guarantee any degree of similarity between the con gurations
and thus does not allow for the exploitation of partial con guration les, which greatly
reduce download and test time. Furthermore, they can implement the behavior of
signals in a way that, while correct in implementation, does not con gure the Block
RAM signals as expected and as a result, the Block RAM is not completely tested
[7].
Milton overcame these problems by implementing his BIST circuitry in both
VHDL, for the high-level TPG model, and Xilinx Design Language (XDL), to control
the placement of the BIST circuitry so as to take advantage of partial recon guration.
By modifying the XDL for the BIST con guration, Milton was able to ensure that the
placement and routing of his TPGs, ORAs and CUTs was constant and that the only
changes were to the Block RAMs? con guration between each BIST con guration [7].
This consistency allowed for a drastic decrease in BIST download time when using
partial recon guration.
14
Table 2.1: Virtex II BIST Con gurations [4]
BIST Test Address Data Clock
Con guration Algorithm Locations (A) Width (D) Cycles
1 MarchLR w/ BDS 512 36 58 A
2 1k 18 14 A
3 2k 9 14 A
4 March LR 4k 4 14 A
5 8k 2 14 A
6 16k 1 14 A
7 March s2pf 512 36 14 A
8 March d2pf 512 36 9 A
2.2.1 ORA Implementation
A basic comparison based ORA implementation can be seen in Figure 2.3(a)
[12]. This ORA implementation compares the outputs of a CUT with the outputs
of adjacent CUTs. If a fault is detected by the ORAs, the CUT it originated in can
be determined by observing which ORAs detected the fault [12]. For example, if
ORA2 detected a fault and ORA1 also detected a fault, then CUT2 is where the fault
occurred. However, this approach is limited by a fault detected in the edge ORA
(ORA0). If a fault is detected by ORA0 only, then the fault is in CUT0. However,
if both ORA0 and ORA1 detect a fault, then CUT1 is known to be faulty, but the
functionality of CUT0 is unknown.
A solution to this is a circular comparison based approach, which is shown in
Figure 2.3(b) [13]. This approach compares the top CUT with the bottom CUT
and e ectively every CUT is being compared with two other CUTs. This allows
for the exact determination of a fault location [12]. The circular comparison based
approach was implemented by Milton in the Virtex-4 Block RAM BIST in [7] and
will be adopted for the Virtex-5 Block RAM BIST.
15
(a) Comparison Based ORAs
(b) Circular Comparison Based ORAs
Figure 2.3: Comparison Based ORAs
16
2.2.2 Overview of Virtex-4 Block RAMs
Figure 2.4: Dual-Port Data Flows [15]
Virtex-4 Block RAMs can store up to 18 kbit of data. Each Block RAM has two
ports (Port A and Port B) with which it can independently synchronously read and/or
write data to the Block RAM. Each port can be programmed to have di erent read
and write widths as seen in Table 2.2. There are three writing modes of operation:
WRITE FIRST - where the input data is simultaneously written into the memory
and the data output; READ FIRST - where the data previously stored at the memory
location is observable on the output while the data is being written to memory; and
NO CHANGE - where the outputs remain unchanged during a write operation [15].
17
The Virtex-4 Block RAMs also have the capability of using a pipeline register for the
output data, which allows for higher clock rate at the expense of an additional clock
cycle of latency.
Another feature of the Virtex-4 Block RAMs is that two adjacent RAMs may
be cascaded together to create a 32Kx1-bit RAM. An adjacent RAM pair can also
be con gured in a single 512x64-bit error correcting code (ECC) mode. In both of
these modes of operation, care must be taken by the user to account for PowerPC
modules included within the FX devices. For instance, ECC con guration cannot be
implemented in the Block RAMs immediately above or below these PowerPC modules
[15]. This is because these Block RAMs do not have an associated adjacent Block
RAM to construct the ECC RAM.
Table 2.2: Virtex-4 BRAM Port Aspect Ratio [15]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bits Depth Width Bits Parity Bits
14 13:0 16K 1 0 n/a
13 13:1 8K 2 1:0 n/a
12 13:2 4K 4 3:0 n/a
11 13:3 2K 9 7:0 0
10 13:4 1K 18 15:0 1:0
9 13:5 512 36 31:0 3:0
Table 2.3: Virtex-4 FIFO Port Aspect Ratio [15]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bits Depth Width Bits Parity Bits
12 13:2 4K 4 3:0 n/a
11 13:3 2K 9 7:0 0
10 13:4 1K 18 15:0 1:0
9 13:5 512 36 31:0 3:0
18
Lastly, the Virtex-4 Block RAMs can be con gured as First-In-First-Out (FIFO)
RAMs. Virtex-4 devices contain dedicated pointer logic to implement this mode of
operation. When con gured as a FIFO, the BRAMs have a smaller set of con gurable
read/write widths shown in Table 2.3. They also have independent read and write
clocks where data is read/written on the programmable active edge of the respective
clock. Several ags have been incorporated to aid the user in determining the fullness
of the FIFO: FULL/EMPTY and ALMOSTFULL/EMPTY. There are two operating
modes: standard - where the rst word written to the FIFO will not appear on the
output until a read operation has been performed and First Word Fall Through
(FWFT) - where the rst word written appears immediately on the output [15].
There are several functions to test to ensure the Block RAMs are fault-free [7].
These include:
 Memory contents.
 Read/write data widths.
 Write mode operation.
 Pipeline register functionality.
 Control signals and active levels.
 Dedicated circuitry for a speci c mode of operation (i.e. FIFO pointers and
 ags, cascade routing).
2.2.3 BIST for Virtex-4 Block RAMs
This section will present a more detailed discussion of the BIST con gurations
that were implemented for the Virtex-4 Block RAMs [7]. Each FPGA consists of
19
columns of con gurable logic blocks (CLBs), Block RAMs (BRAMs) and digital signal
processors (DSPs). Milton was concerned with only the CLBs and Block RAMs. The
CLBs were used to construct both the TPGs and the ORAs, while the BRAMs were
the circuits under test (CUTs) [7].
Figure 2.5: BRAM - TPG/ORA Connections [7]
Milton determined that he would use two identical TPGs. Each TPG would drive
alternating rows of Block RAM, as shown in Figure 2.5. Circular comparison-based
ORAs were also used as this would increase fault detection and diagnostic resolution.
It can also be seen in the gure that nine ORAs (light blue squares) are used for each
Block RAM. The outputs of a Block RAM are compared with the same outputs of
the Block RAM directly above and below it [7].
20
BRAM
The rst set of BIST con gurations created by Milton were for the normal mode
of operation for the BRAM. Most of the tests performed on the Block RAMs were done
in this mode of operation as it provides the most exibility. Later BIST con gurations
sought to test the circuitry for other modes of operation.
Milton implemented several known RAM tests: MarchLR with Background Data
Sequence (BDS), March s2pf/d2pf, which were also used by Garimella to test the
Virtex-II Block RAMs, and MATS+. The MarchLR algorithm was chosen because
it can detect the classical stuck-at faults in addition to pattern sensitivity faults,
intra-word coupling faults, and bridging faults [5].
The following notation is used to describe RAM test algorithms [5].
 ";#: Indicates the direction traveled through the address space (lindicates that
the direction can be either up or down).
 r, w: Indicates a read or write operation, respectively, and is followed by the
value expected to be read or the value to be written.
 Each group of operations in parentheses, called a march element, indicates the
operations that are performed on a single address. For example, # (r0;w1) ;,
indicates that the address space will travel from the maximum address to the
minimum address. For each address location, a Read - 0 operation will be
performed, followed by a Write - 1 operation.
The MarchLR algorithm is given by Equation 2.1 and is order O(14N), where
N is the number of address locations.
21
MarchLR =
fl(w0) ;
#(r0;w1) ;
"(r1;w0;r0;w1) ;
"(r1;w0) ;
"(r0;w1;r1;w0) ;
"(r0)g
(2.1)
For word-oriented memories, such as those found in the Virtex-4, background
data sequences (BDS) are needed to detect the faults within each word of the memory.
The number of BDS is given by Equation 2.2, where K is the number of bits in a
data word [13].
NBDS =dlog2Ke+ 1 (2.2)
For a 4-bit BDS example using the MarchLR algorithm, rst expand the algo-
rithm (2.1) to incorporate the 4-bit words. That is replace all r0, r1, w0, w1 elements
with r0000, r1111, w0000, and w1111 respectively. Using Equations 2.3 and 2.4 and
Tables 2.4 and 2.5, the BDS march elements can be constructed by the following
steps [2].
22
BDS1 = rDi; wDi+1; rDi+1 (2.3)
BDS2 = rDi; wDi+1; wDi+2; rDi+2 (2.4)
Table 2.4: 4-Bit BDS Components
Normal Inverse
0000 1111
0101 1010
0011 1100
Table 2.5: 4-Bit BDS Sequence
i D
0 0000
1 1111
2 0000
3 0101
4 1010
5 0101
6 0011
7 1100
8 0011
1. Starting with i = 0 in Table 2.5, use Equation 2.3 to get (r0;w1;r1) and the
resulting march element f"(r0000;w1111;r1111)g.
2. Using i = 1, the equation results in (r1;w2;r2) and the next march element is
f#(r1111;w0000;r0000)g.
3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the
 rst row of Table 2.4 to the second row and as such, Equation 2.4 is used to
23
create the march element rather than Equation 2.3. The resulting equation
is (r2;w3;w4;r4) and the march is f" (r0000;w0101;w1010;r1010)g. When a
transition like this occurs, i is incremented by 2.
4. Using i = 4, Equation 2.3 is used since there is no transition of rows between
i = 4 and i = 5, which results in the equation (r4;w5;r5) and the march element
f#(r1010;w0101;r0101)g.
5. Equation 2.4 is used due to the transition between i = 5 and i = 6, which
results in the equation (r5;w6;w7;r7) and the march element
f"(r0101;w0011;w1100;r1100)g.
6. Since there is no transition between i = 6 and i = 7, Equation 2.3 is used to
get the equation (r7;w8;r8) and the next march element is
f#(r1100;w0011;r0011)g.
7. The last march element for the additional BDS marches consists of a read
operation of the last i value, f"(r0011)g.
The MarchLR algorithm with BDS is given in Equation 2.5. Notice that the
seventh and eighth lines of Equation 2.5 contain redundant march elements that
are contained within the initial MarchLR marches. These can be eliminated and the
optimized MarchLR algorithm with BDS is shown in Equation 2.6 [2]. The order
for MarchLR with 4-bit BDS is O(38N) and the order for the optimized MarchLR
with 4-bit BDS is O(34N).
24
MarchLR with BDS =
fl(w0000) ;
#(r0000;w1111) ;
"(r1111;w0000;r0000;r0000;w1111) ;
"(r1111;w0000) ;
"(r0000;w1111;r1111;r1111;w0000) ;
"(r0000) ;
"(r0000;w1111;r1111) ;
#(r1111;w0000;r0000) ;
"(r0000;w0101;w1010;r1010) ;
#(r1010;w0101;r0101) ;
"(r0101;w0011;w1100;r1100) ;
#(r1100;w0011;r0011) ;
"(r0011)g
(2.5)
25
MarchLR with BDS =
fl(w0000) ;
#(r0000;w1111) ;
"(r1111;w0000;r0000;r0000;w1111) ;
"(r1111;w0000) ;
"(r0000;w1111;r1111;r1111;w0000) ;
"(r0000;w0101;w1010;r1010) ;
#(r1010;w0101;r0101) ;
"(r0101;w0011;w1100;r1100) ;
#(r1100;w0011;r0011) ;
"(r0011)g
(2.6)
For the dual port RAM tests, some additional notation is needed [5].
 The colon operator (:) separates the operation to the two ports.
 n : Indicates that no operation should be applied to a particular port.
 - : Indicates that any operation is allowed, as long as it does not cause a
con icting pair (i.e. dual write operations to the same address locations with
di erent values).
 N 1n = 0 : Indicates that an operation is performed on either the row or column
range speci ed, where N,n is R,r for a row range and C,c for a column range,
respectively.
26
 nr;c : Indicates a particular operation, where n is r for read and w for write, on
a memory cell with the row, r, and the column, c.
March s2pf/d2pf: These RAM tests were chosen because they can detect all
realistic single and double addressing faults for a dual port RAM [5]. The order for
March s2pf is O(14N) and the order for March d2pf is O(9N). The algorithms for
these tests are shown in Equations 2.7 and 2.8 respectively.
March s2pf =
fl(w0 : n) ;
"(r0 : r0;r0 : ;w1 : r0) ;
"(r1 : r1;r1 : ;w0 : r1) ;
#(r0 : r0;r0 : ;w1 : r0) ;
#(r1 : r1;r1 : ;w0 : r1) ;
#(r0 :)g
(2.7)
27
March d2pf =
fl(w0 : n) ;
" C 1c = 0 (R 1r = 0 (w1r;c : r0r+1;c;
r1r;c : w1r+1;c; w0r;c : r1r+1;c r0r;c+1 : w0r+1;c));
" C 1c = 0 (R 1r = 0 (w1r;c : r0r;c+1;
r1r;c : w1r;c+1;w0r;c : r1r;c+1; r0r;c : w0r;c+1))g
(2.8)
MATS+: This RAM test was chosen because it is a simple and fast algorithm
that will be used for the various address and data widths to test the programmable
address decoding circuitry [13]. The order for MATS+ is O(5N) and the algorithm
can be seen in Equation 2.9.
MATS+ =
fl(w0) ;
"(r0;w1) ;
#(r1;w0)g
(2.9)
Milton wrote a VHDL model for his TPG which would implement the tests de-
scribed previously. Table 2.6 lists the BIST con gurations and settings devised by
Milton for the regular mode of operation. Two MarchLR con gurations are imple-
mented, but the second con guration is only executed for 512 clock cycles. The rst
28
BIST con guration is a MarchLR with BDS. It has a read width of 36 bits and a write
width of 36 bits. The choice of these widths allows for all data inputs and outputs,
32 data bits + 4 parity bits, to be tested. The second con guration performs the
 rst march element of the MarchLR algorithm, write 0. In this con guration, the
Block RAMs are con gured with the Write Mode of READ FIRST, which places the
previous contents of the memory cell being written on the output bus when a write
operation is performed. This allows for the Block RAM initialization values to be
tested [7].
Note that not all of the possible address con gurations are tested at this time,
as the ones not present for this set of BIST con gurations will appear in one of the
later sets of BIST con gurations. It can also be observed that the three write modes
of operation (READ FIRST, WRITE FIRST, and NO CHANGE) and the use of the
data out pipeline register are being tested as well. The last ve columns indicate the
activate levels for the RAM control signals whose descriptions can be seen in Table
2.7 [7].
After all of these BIST con gurations have been run, the entire memory array
will have been tested for faults. Also each of the ports has been tested to ensure
that simultaneous operations do not a ect the memory contents and several of the
con gurable address/data widths have had their programmable row/column decoders
tested [7].
The nine ORA CLBs can be seen in Figure 2.6. Each of the colored slices within
a CLB (blue shapes) contains two bits which correspond to the RAM outputs shown
on the leftmost side of the gure.
29
Table
2.6:
BIST
Con gurations
and
Settin
gs
[7]
(a)
Settings
Part
1
Con g.
BIST
Read
/
Address
Pip
eline
Data
Out
RAM
W
rite
#
W
rite
Width
Register
CLK
Extension
Mo
de
Width
Inv
ert
1
Marc
hLR
36
512
No
No
None
READ
FIRST
2
Marc
hLR
36
512
No
No
None
READ
FIRST
3a
Marc
h(s
2p
f)
36
512
Yes
No
None
READ
FIRST
3b
Marc
h(d
2pf
)
36
512
Yes
No
None
READ
FIRST
4
1
16k
Yes
No
None
READ
FIRST
5
MA
TS+
8
4k
Yes
Yes
None
NO
CHANGE
6
36
512k
Yes
No
None
WRITE
FIRST
(b)
Settings
Part
2
Con g.
BIST
W
rite
Output
Port
Set/
Clo
ck
Init
#
Enable
Register
Enable
Reset
Val
(WE)
(REGCE)
(EN)
(SSR)
(CLK)
1
Marc
hLR
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
A
2
Marc
hLR
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
5
3a
Marc
h(s2pf
)
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
A
3b
Marc
h(d2p
f)
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
A
4
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
Activ
eHigh
5
5
MA
TS+
Activ
eLo
w
Activ
eLo
w
Activ
eLo
w
Activ
eLo
w
Activ
eHigh
A
6
Activ
eLo
w
Activ
eLo
w
Activ
eLo
w
Activ
eLo
w
Activ
eLo
w
5
30
Table 2.7: Virtex-4 Block RAM Dual-Port Names and Descriptions [15]
Port Name Description
DI[A, B] Data Input Bus
DIP[A, B] Data Input Parity Bus
ADDR[A, B] Address Bus
WE[A, B] Write Enable
EN[A, B] When inactive, no data is written to the block RAM
and the output bus remains in its previous state.
SSR[A, B] Set/Reset
CLK[A, B] Clock Input
DO[A, B] Data Output Bus
DOP[A, B] Data Output Parity Bus
REGCE[A, B] Output Register Enable
CASCADEIN[A, B] Cascade input pin for 32K x 1-bit mode
CASCADEOUT[A, B] Cascade output pin for 32K x 1-bit mode
Figure 2.6: Virtex-4 Block RAM ORA Bit Assignments [7]
31
FIFO
Milton developed the second set of BIST con gurations for when the Block RAMs
were con gured as FIFOs. In the Virtex-4 devices, there is dedicated logic that has
been implemented so that Block RAMs can be utilized as FIFOs without the need of
external CLB logic [15]. It is this additional logic that needs to be tested.
Table 2.8: FIFO Flag Assertion/Deassertion Clock Cycle Latency [15]
FIFO Output Assertion Deassertion
Standard FWFT Standard FWFT
EMPTY 0 0 3 4
FULL 1 1 3 3
ALMOST EMPTY 1 1 3 3
ALMOST FULL 1 1 3 3
READ ERROR 0 0 0 0
WRITE ERROR 0 0 0 0
Milton implemented the following algorithm to test the logic associated with the
FIFO mode of operation of the Block RAMs [7]. This order of this algorithm is 8N,
where N is the number of address locations.
1. Reset the FIFO
2. For 0 - (N-1),
(a) Write a word of all zeros
(b) Observe the EMPTY ag deassertion according to Table 2.8
(c) Observe the FULL ag assertion according to Table 2.8
3. For 0 - (N-1),
(a) Read a word of all zeros
32
(b) Perform three NO-OP operations - this allows the FULL ag to deassert
before the write sequence
(c) Write a word of all ones
(d) Write a word of all ones - this second write asserts the WRERR ag for a
single clock cycle
4. For 0 - (N-1),
(a) Read a word expecting all ones
Milton developed the BIST con gurations seen in Table 2.9. Using each of these
con gurations allows for the test of each of the ags described previously and the
additional special logic implemented for the Virtex-4 FIFOs. The twelve 4k x 4-bit
con gurations fully test the ALMOSTFULL/EMPTY ags by utilizing the dynamic
partial recon guration ability of the Virtex-4 FPGA. Each con guration is clocked
only enough to ensure that the ags undergo a Logic 1 to Logic 0 transition and then
the next con guration is downloaded and the process is repeated. The bit assignments
for the FIFO ORAs can be seen in Figure 2.7.
ECC
Milton?s third set of BIST con gurations is for the ECC mode of operation for
the Block RAMs. When con gured in this mode, two adjacent RAMs are connected
to create a 512 x 72-bit RAM (Figure 2.8), which uses 8-bit Hamming code to detect
double-bit errors and correct single bit errors [15]. The top-level view of the ECC
mode can be seen in Figure 2.9. It should be noted, that in this mode, RAMs located
in the rows immediately above and below a PowerPC module cannot be utilized [15].
33
Table
2.9:
FIF
O
BIST
Con gurations
[7]
Con g.
FIF
O
RST
RDCLK
RDEN
WR
CLK
WREN
W
rite
ALMOST
ALMOST
#
Mo
de
INV
INV
INV
INV
INV
Mo
de
FULL
EMPTY
1
2k
x9-bit
INV
INV
INV
INV
INV
FWFT
15
2043
2
512
x36-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
15
496
3
1k
x18-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
5
507
4
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
5
5
5
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
6
7
6
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
8
8
7
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
16
16
8
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
32
32
9
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
64
64
10
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
128
128
11
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
256
256
12
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
512
512
13
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
1024
1024
14
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
2048
2048
15
4k
x4-bit
not
INV
not
INV
not
INV
not
INV
not
INV
Standard
4092
4092
34
Figure 2.7: FIFO ORA Bit Assignments [7]
Since this mode requires two RAMs, an upper and a lower, the ORA connections
are di erent from the previous two sets of BIST con gurations (Figure 2.8). In this
mode, the outputs of the lower ECC RAM are compared to the outputs of the ECC
RAM in the pair directly above it and the same with the upper RAM outputs [15].
The TPGs are connected such that the same TPG controls an ECC RAM pair, so
the two TPGs drive alternating pairs of ECC RAMs [7].
Milton designed his TPG to fully test the ECC encode logic. Milton surmises
that the ECC encode logic consists of an XOR parity tree, but states that the parity
tree structure used by Xilinx for the Virtex-4 is unknown [7]. However, a method
for testing an XOR parity tree whose structure is unknown, described in [13], was
implemented by Milton. 100% fault coverage can be achieved using test vectors of
the following structure for an N -bit parity tree [13].
35
Figure 2.8: ECC/Cascade RAM ORA Comparisons [15]
36
Figure 2.9: ECC RAM Top-Level View [15]
1. All zeros vector
2. All combinations of a one in a eld of zeros
3. All combinations of two ones in a eld of zeros
4. Initialize the RAM with all 2N values, where N is the number of Hamming bits.
(For Virtex-4, N = 8)
Vector sets 1-3 test the ECC encode and detect circuitry, while the fourth vector
set tests the ECC correct circuitry [13]. Since the parity connections are unknown,
Milton proposed to initialize the Hamming bits within the ECC RAMs themselves.
This will result in the ECC RAMs detecting double-bit memory errors and both
detecting and correcting single-bit errors when the RAM?s memory locations are read
[7]. Milton implemented his BIST in two phases. In the rst phase, the ECC RAMs
are initialized with all of the 28 possible Hamming values, while setting the data to
all zeros. This was thought to be the only way to introduce all possible single and
double-bit errors into the RAM. The RAM is then read and the single/double-bit
errors are observed. In the second phase, the ECC encode circuitry is tested by
37
writing the test vector sets 1-3 to the memory and then reading them back. This
tests the ECC encode and detect circuitry. The bit assignments for the ECC ORAs
can be seen in Figure 2.10.
The eight Hamming input bits were found to be bits DIB[17:16] and DIB[1:0]
on the upper Block RAM inputs and bits DIB[31:30] and DIB[15:14] on the lower
Block RAM inputs. The ECC RAMs have these bits initialized in the rst BIST
con guration. The Block RAM ECC also has two output status bits, STATUS[1:0],
which correspond to bits DOA[31] and DOA[0], respectively. These bits indicate
whether or not a bit error was detected and if so, whether or not the bit error was a
single- or double-bit error, as shown by Table 2.10.
Figure 2.10: ECC ORA Bit Assignments [7]
38
Table 2.10: Status Bits for Virtex-4 ECC Mode of Operation
Status Status Description
1 0
0 0 No Bit Error
0 1 Single-bit Error - Corrected by Circuitry
1 0 Double-bit Error - Detected by Circuitry
1 1 Unde ned
Cascade
Any two adjacent Block RAMs can also be con gured such that they are cascaded
together to form a 32k x 1-bit RAM [15]. Figure 2.11 shows the structure of the
cascaded RAMs. In this con guration, one RAM is dedicated as the upper RAM
and the other as the lower, similar to the ECC RAM con guration (Figure 2.8).
However, this mode does not require the lower RAM to always be an even row. For
this con guration, Milton places testing emphasis on the address decoder and that
opposite logic values can be read/written. A MATS+ test algorithm (described in
the BRAM section on page 28) is applied to only two addresses that span the two
RAMs since the memory core has already been thoroughly tested by previous BIST
con gurations [7].
In this mode of operation, several ?failures? are expected in speci c ORAs, see
Figure 2.12 (pink squares). The ORAs associated with the RAMs that lie along the
bottom of a device and those that lie directly above a PowerPC module will indicate
these false failures. This is due to unconnected cascade routing into these RAMs
[7]. Essentially, the CASCADEIN shown in Figure 2.11 is not connected for these
RAMS and thus the output of the corresponding ip- op will be di erent than the
 ip- op output of the RAM above it, as that RAM does have a CASCADEIN. The
bit assignments for the cascade ORAs can be seen in Figure 2.12.
39
Figure 2.11: Cascadable Block RAM [15]
Figure 2.12: Cascade ORA Bit Assignments [7]
40
2.3 Virtex-5 Introduction
This section provides a general overview of the Virtex-5 FPGA, including CLBs
and Block RAMs. More detail on certain aspects of the Virtex-5 Block RAMs will
be discussed in the chapter that deals with that speci c BIST implementation.
2.3.1 FPGA Architecture
Programmable Logic Blocks
The Programmable Logic Blocks in the Virtex-5 consist of two types of slices,
SliceL and SliceM. Each slice contains the following:
1. Four logic function generators (LUTs)
2. Four storage elements
3. Wide-function multiplexers
4. Carry logic
Table 2.11: CLB Contrast Virtex-4 vs. Virtex-5 [15] [16]
Component Virtex-4 Virtex-5
Slices 4 2
LUTs 8 8
(4-input) (6-input)
FFs 8 8
Arithmetic and Carry Chains 2 2
Distributed Ram 64-bits 256-bits
Shift Registers 64-bits 256-bits
The CLBs in the Virtex-5 are improved from the Virtex-4. A brief contrast
between the Virtex-5 and Virtex-4 CLBs can be seen in Table 2.11 and in Figure
2.13. The Virtex-5 CLBs have two fewer slices than the Virtex-4. However, they have
41
(a) Virtex-4 CLB Arrangement [15]
(b) Virtex-5 CLB Arrangement [16]
Figure 2.13: Virtex-4 vs. Virtex-5 Slice Comparison
42
the same number of ip- ops. In e ect, the ip- ops that were in Slices 2 and 3 were
merged into Slices 0 and 1, respectively.
Block RAMs
The Virtex-5 Block RAMs are capable of storing up to 36 K-bit of data. This can
be accomplished as one 36 kbit RAM or two independent 18 kbit RAMs. Table 2.12
shows the various address/data widths that the Block RAMs can be con gured in the
independent 18 kbit RAM mode, while Table 2.13 shows the various address/data
widths that the Block RAMs can be con gured as in the 36 kbit RAM mode. The
Virtex-5 Block RAMs have the capability of being either single- or dual-port RAMs
in either the 36 kbit or independent 18 kbit RAM modes [16].
The Virtex-5 Block RAMs also support both ECC and cascaded RAM modes.
The ECC mode of operation is similar to the Virtex-4 in that the RAM uses an 8-bit
Hamming code with overall parity to determine if there is a single- or double-bit error
present in the output data. However, the Virtex-5 requires only one Block RAM to
implement the 512 x 64-bit ECC mode rather than two adjacent Block RAMs. Also,
in the Virtex-5 devices, the ECC encoder and decoder can be accessed directly, which
will allow for greater control when testing these aspects of the Block RAM. In a
cascaded mode, the Virtex-5 Block RAMs create a 64k x 1-bit RAM. This is twice
as much as in the Virtex-4 cascaded RAM mode, but the connections between the
Block RAMs are quite similar [16].
FIFO support is also available in the Virtex-5 and can be con gured as seen in
Table 2.14. The FIFOs have the same ags as the Virtex-4 FIFO RAMs. However,
the FULL ag no longer has a latency associated with it. The Virtex-5 FIFO RAMs
can also be con gured in an ECC mode as well. This option was not available for the
Virtex-4 FIFO [16].
43
Table 2.12: Virtex-5 BRAM Port Aspect Ratio (18 kbit RAM) [16]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bus Depth Width Bus Parity Bus
14 13:0 16k 1 0 n/a
13 13:1 8k 2 1:0 n/a
12 13:2 4k 4 3:0 n/a
11 13:3 2k 9 7:0 0
10 13:4 1k 18 15:0 1:0
9 13:5 512 36 31:0 3:0
Table 2.13: Virtex-5 BRAM Port Aspect Ratio (36 kbit RAM) [16]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bus Depth Width Bus Parity Bus
15 14:0 32k 1 0 n/a
14 14:1 16k 2 1:0 n/a
13 14:2 8k 4 3:0 n/a
12 14:3 4k 9 7:0 0
11 14:4 2k 18 15:0 1:0
10 14:5 1k 36 31:0 3:0
9 14:6 512 72 63:0 7:0
Table 2.14: Virtex-5 FIFO Port Aspect Ratio [16]
18 kbit Mode 36 kbit Mode
Memory Depth Data Width Memory Depth Data Width
4k 4 8k 4
2k 9 4k 9
1k 18 2k 18
512 36 1k 36
- - 512 72
44
Table 2.15: Virtex-5 FIFO Data Depth [16]
Data Width Block Ram FIFO Capacity
18 kbit 36 kbit Memory Standard FWFT
- 4 8192 8193 8194
4 9 4096 4097 4098
9 18 2048 2049 2050
18 36 1024 1025 1026
36 72 512 513 514
2.3.2 Programming Tools
Several programming tools are used to construct the Block RAM BIST con g-
urations for the Virtex-4 and Virtex-5 devices. These include several of the Xilinx
provided computer-aided design (CAD) tools, described below.
1. ISE - design suite that allows design of TPGs in VHDL, synthesis of these de-
signs, and implementation using an internal function, PACE, to restrict certain
areas for use, i.e. de ning a set region for the TPGs [14].
2. FPGA Editor - graphical user interface (GUI) allows visual examination and
editing of the layout of BIST con gurations [14].
3. Place and Route (PAR) - performs placement and routing of a speci c design
[14].
4. XDL - Xilinx conversion software that converts NCD les (les generated by
ISE) to XDL les (Xilinx netlist description of a design) and vice versa.
5. BitGen - conversion software that converts NCD les to BIT les, binary les
that contains header information as well as con guration data, or RBT les,
 les that are and ASCII version of the bit les, so that they may be downloaded
to a device [14].
45
6. TRCE - a timing analysis tool that determines the maximum clock frequency
at which the BIST con gurations can run [14].
7. ModelSim - simulator by Mentor Graphics, that allows veri cation of BIST
con gurations to ensure proper functionality.
2.4 Thesis Statement
This chapter has presented the work by Milton on the Virtex-4 Block RAMs.
This will be the foundation for the improvements implemented in the Virtex-4 Block
RAM BIST and the initial work with the Virtex-5 FPGA Block RAMs. This chapter
has also brie y introduced the Virtex-5 and its CLB and Block RAM capabilities.
All of the issues discussed concerning the Virtex-4 Block RAMs will need to be
addressed in addition to the new challenges that the Virtex-5 presents, such as:
 Memories are larger and have more address/data width options, so test time
will need to be minimized as much as possible.
 New con guration types have been introduced, such as the FIFO ECC mode,
that need BIST con gurations to be designed for them.
 Di erent CLB architecture will have to be considered when constructing the
ORAs.
One goal of this thesis is a more thorough analysis of the Virtex-4 Block RAM
BIST and improvements to the BIST con gurations originally developed by Milton
in [7], as proposed in the next chapter. Another goal is to introduce a technique
for implementing a BIST architecture and to develop BIST con gurations to test the
Block RAMs in Virtex-5 FPGAs.
46
Chapter 3
Virtex-4 Improvements
This chapter will describe and discuss improvements and corrections made to
the Virtex-4 Block RAM BIST. These include simplifying the BIST con guration
generation procedure, adding the ability to have a single Pass/Fail signal for the user,
an option for system-level testing using user-de ned input/output pins, improving
maximum BIST clock frequency, and xing several problems found within the original
Virtex-4 Block RAM BIST developed in [7]. These improvements were implemented
mainly to provide increased utility to the user, as well as to address the excessive
number of programs required to generate the BIST con guration bit les. Also,
several modi cations were made to Milton?s programs to correct errors that were
found within them. These include problems with the way the FIFO BIST was being
reset and overcoming the expected cascade BIST failures.
3.1 BIST Generation Simpli cation
The Virtex-4 Block RAM BIST generation originally consisted of three programs
for each of the four BIST types (BRAM, FIFO, ECC, and Cascade), which results in
a total of twelve programs [7]. These three programs include:
1. A TPG extraction program, which extracts the TPG description from the syn-
thesized TPG physical design in XDL format.
47
2. A BIST template generation program, which instantiates the user-speci ed
Block RAMs, ORAs, TPGs and the routing between these components in XDL
format.
3. A modi cation program, which recon gures all of the instantiated Block RAMs
for each desired BIST con guration.
To address the unnecessary number of TPG extraction programs, a generic TPG
extraction program, tpgxdlext.exe, was developed, which was based on the function-
ality of Milton?s four TPG programs. This program no longer relied on having a
hierarchical model where the TPG was connected to a dummy Block RAM to pre-
serve signal names. However, several key signals, such as the clock and reset signals,
are required to have speci c names, CLK and RESET, respectively. While this im-
provement to the Virtex-4 Block RAM BIST con guration generation had no impact
on con guration download and test time, it greatly lessened user confusion during the
Block RAM BIST generation process as well as on-going support and maintenance
of the BIST programs. An additional bene t of having a generalized extraction pro-
gram is that it has been applied to other Virtex-4 and Virtex-5 BIST con guration
programs, such as Digital Signal Processor (DSP) BIST [8].
Table 3.1: Virtex-4 TPG XDL Naming Convention
BIST Type TPG Name
BRAM bram tpg.xdl
FIFO fo tpg.xdl
ECC ecc tpg.xdl
Cascade cas tpg.xdl
V4RamBist.exe, a generic Virtex-4 Block RAM BIST template generation pro-
gram, was created to reduce the number of BIST template generation programs from
48
four to one. This program incorporated the functionality of Milton?s four di er-
ent BIST template generation programs, while also embedding the TPG extraction
program, tpgxdlext.exe, within. This e ectively hides the TPG extraction program
execution from the user, reducing the number of steps required on the user?s part to
generate a set of BIST con gurations. The only user constraint is that the TPG XDL
 les must be named according to the BIST type (see Table 3.1). V4RamBist.exe ex-
tracts, replicates, and places these TPGs, the Block RAMs and the ORAs for the
desired BIST type. The program also speci es the TPG to RAM and the RAM
to ORA connections and the OR-chain (discussed in Section 3.2). If the PINS in-
terface is desired (to be discussed in Section 3.3), it adds the necessary unplaced
components for the particular BIST type. Otherwise, the program incorporates the
Boundary Scan interface and its routing.
A generic Virtex-4 Block RAM BIST modi cation program, V4RamMod.exe,
was also developed based on the functionality of Milton?s four modi cation programs.
This new program also resulted in reducing four programs into one. Originally, the
user had to specify Active Recon g when generating the con guration bit les. This
was because the Block RAM contents were being initialized to the same value for
the majority of the BIST con gurations. When compressed or partial con guration
bit les were generated using BitGen for the desired Block RAM BIST con guration,
the Block RAM content frames would not be overwritten when the next con guration
was downloaded and executed. This resulted in residual memory values acting as the
initialized state of the Block RAM, which would sometimes result in false failure
indications by the ORAs. The solution to this was to ensure that the initialization
values were not the same between BIST con gurations. This allows the user to not
have to use the Active Recon g option when generating the con guration bit les but
increases the download time since the Block RAM content frames must be written.
49
3.2 ORA Modi cation and OR-Chain
An improvement was made to the ORAs to increase their functionality. Mil-
ton implemented the comparison shown in Figure 3.1(a). While this comparison
performed adequately, the comparison shown in Figure 3.1(b) keeps the same func-
tionality of the old ORA while taking advantage of the built-in carry chain that is
within each CLB. Instead of the ORA latching a Logic 1 to indicate a fault, a Logic
0 is latched, which selects the zero input of the carry multiplexer, which is connected
to a Logic 1 (Figure 3.1(b)) [3].
(a) Virtex-4 ORA (old) [7]
(b) Virtex-4 ORA (new) [3]
Figure 3.1: Virtex-4 New and Old ORAs
The BIST template generation program, V4RamBist, adds the connections be-
tween each CLB carry chain components to construct an iterative OR-chain. This
involves using more than the nine CLBs discussed previously to implement the ORAs.
In order to propagate the iterative OR-chain using the built-in carry logic, several
50
dummy ORAs were added to the BIST template le (Figure 3.2) and only their carry
chain routing is utilized. Normally when the con guration memory is read back, these
dummy ORAs would indicate a false fault detection by latching a Logic 1. However,
because the normal ORAs were changed to latch a Logic 0 on a fault detection, this
is no longer an issue when reading back the con guration memory to determine the
number of faults.
Figure 3.2: Additional Dummy ORAs
Figure 3.3 shows the functionality of these connections, where the orange boxes
indicate the ORAs and their outputs. If no mismatch is detected, the ORA output
is a Logic 1, which selects the carry chain output of the previous CLB. Otherwise a
Logic 1 is output to the iterative OR-chain.
In e ect, a single Pass/Fail signal has been constructed for the user to observe.
At the end of a BIST sequence, the user can toggle TDI and observe TDO. If TDO
matches the behavior of TDI, then no fault was detected by any of the ORAs and
51
the con guration memory need not be read back to obtain the contents of the ORAs.
However, if TDO is constantly a Logic 1, then at least one ORA detected a fault. If
the location of the fault(s) is desired, the user can then read back the con guration
memory to determine the exact location. However, if the fault location is not an
issue, merely that a fault exists, then again, the time to read back the con guration
memory is eliminated.
Figure 3.3: OR-Chain Functionality
Figure 3.4 shows the connections within an FX12 device. The iterative OR-
chain can be seen coming from TDI in the middle of the device, which also goes to
the TPGs as the TPG reset signal, traveling up and down each column of ORAs and
ending at the TDO output in the middle of the device.
3.3 PINS Option
Prior to this work, the only way to interact with the Block RAM BIST was
through the Boundary Scan (BSCAN) interface. An additional interface was devel-
oped that allows a user to interact with the BIST through user-placed control pins,
which will be referred to as the PINS interface. The BIST template le is generated
by designating the desired options in V4RamBist.exe shown in Figure 3.5. Normally,
the n or a option would be speci ed as the last input parameter. This would indicate
to the program to use the BSCAN interface. Two new options p and pn were added
to indicate to the program that the PINS interface is desired. In this case, the BIST
template generation program does not include the BSCAN XDL module, but rather,
52
Figure 3.4: OR-Chain in an FX12 Device
53
produces several unplaced I/O components, which can be seen in Table 3.2, includ-
ing an external clock pin for the user. The unplaced components can then be placed
using FPGA Editor to desired input/output pins within the device. Special care
should be taken to ensure that when the TPG RST pin is placed, the corresponding
TPG ILOGIC component is placed with it, as shown in Figure 3.6. TPG RESET
keeps the TPG in a known, unchanging state so that TDI can be toggled and the
OR-chain observed. By adding this component, a synchronization circuit is added to
the asynchronous reset signal.
Table 3.2: PINS Interface - User Pins
BIST Type BRAM FIFO ECC Cascade
Clock Clock Clock Clock
TDO TDO TDO TDO
TDI TDI TDI TDI
Provided TPG RST TPG RST TPG RST TPG RST
Pins Mode[3] Mode[2]
Mode[2] Mode[1]
Mode[1] Mode[0]
Mode[0]
The BRAM and FIFO BIST con gurations require the user to provide control
values to indicate to the TPG which BIST con guration test pattern sequence should
be run. The control signal values developed by Milton in [7] can be seen in Tables
3.3 and 3.4. To reduce the number of I/O pins required by the PINS interface, the
control signals RST LEVEL, WREN LEVEL, and RDEN LEVEL were combined into
a single pin (MODE[3]) because they are always the same value. The same procedure
was performed on the FIFO signals WE, REGCE, and EN/SSR. The PINS interface
control pins can be seen in Tables 3.5 (BRAM) and 3.6 (FIFO).
54
V4RAMbist (v2.1) - generates template file
for Block RAM BIST configs in any Virtex-4
command line format:
V4RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol>
<dev> <part> <type> [n,a,p,pn]
where type = bram (Block RAM mode BIST)
fifo (FIFO mode BIST)
ecc (ECC RAM mode BIST)
casc (Cascade RAM mode BIST)
dev part rows cols dev part rows cols dev part rows cols
lx 15 64 31 sx 25 64 55 fx 12 64 31
lx 25 96 35 sx 35 96 55 fx 20 64 47
lx 40 128 43 sx 55 128 69 fx 40 96 65
lx 60 128 61 fx 60 128 67
lx 80 160 65 fx 100 160 85
lx 100 192 73 fx 140 192 103
lx 160 192 98
lx 200 192 127
n: this option runs xdl2ncd with -nodrc option
a: runs ?n? option followed by reentrant routing with
PAR and converts back to XDL
p: this option uses system-level pins instead of
Boundary Scan interface
pn: system-level pins PLUS runs xdl2ncd
with -nodrc option
Figure 3.5: V4RamBist.exe Command Line Format
55
Figure 3.6: PINS - TPG RST and ILOGIC Placement
Table 3.3: BRAM BSCAN Interface [7]
March WE REGCE EN/SSR MODE MODE MODE
Test 2 1 0
MarchLR (Init A) 1 1 1 0 0 0
MarchLR (Init B) 1 1 1 0 0 0
March s2pf 1 1 1 0 1 1
March d2pf 1 1 1 1 0 0
MATS+ (16k) 1 1 1 0 1 0
MATS+ (8k) 0 0 0 0 0 1
MATS+ (512) 0 0 0 1 0 1
Table 3.4: FIFO BSCAN Interface [7]
FIFO RST WREN RDEN
MODE LEVEL LEVEL LEVEL MODE[1] MODE[0]
2k x 9-bit 0 0 0 0 1
512 x 36-bit 1 1 1 1 1
1k x 18-bit 1 1 1 1 0
4k x 4-bit 1 1 1 0 0
56
Table 3.5: BRAM PINS Interface
March Test MODE[3] MODE[2] MODE[1] MODE[0]
MarchLR (Init A) 1 0 0 0
MarchLR (Init B) 1 0 0 0
March s2pf 1 0 1 1
March d2pf 1 1 0 0
MATS+ (16k) 1 0 1 0
MATS+ (8k) 0 0 0 1
MATS+ (512) 0 1 0 1
Table 3.6: FIFO PINS Interface
FIFO Mode MODE[2] MODE[1] MODE[0]
2k x 9-bit 0 0 1
512 x 36-bit 1 1 1
1k x 18-bit 1 1 0
4k x 4-bit 1 0 0
3.4 FIFO Reset Problem
A problem was found within the FIFO TPG during the PINS interface develop-
ment that was not apparent initially. Milton gives the number of clock cycles that
each FIFO BIST con guration requires in [7] and when executed for the speci ed
values without being reset, the BIST performed as expected. However, during the
development of the PINS interface, one of the desired options was to have the BIST
run by an external free running clock. This would constantly run the BIST.
Experiments were performed to observe the behavior of the BIST when transi-
tions occurred on the TPG RST pin during BIST execution. The expected result
was that the BIST would start over at the beginning of the test algorithm. However,
it was observed that the BIST would become permanently stuck in a certain part of
the algorithm when this behavior was simulated. The BIST con guration would then
have to be re-downloaded in order for the BIST to perform its function.
57
The error was due to the "element" variable in Milton?s FIFO BIST Finite State
Machine (FSM) VHDL not being reset to its initial state when a TPG RST was
performed. Once corrected, the FIFO FSM performed correctly when reset.
Although the FIFO FSM was performing correctly, false fault detections were
observed in the ORAs when the FIFO BIST was executed and transitions were sim-
ulated on the TPG RST pin. The locations of the false fault detections were incon-
sistent, but the false fault detections always appeared in ORAs that monitor either
the ALMOSTFULL or FULL ags.
Initially, the source of the problem was believed to be incorrect ALMOST-
FULL/EMPTY o set values. Table 3.7 shows the acceptable range of values of
the o sets for these ags. Tables 3.8(a) and 3.8(b) show the values Milton used in
his FIFO BIST modi cation program. The o set values are shown both in decimal,
so that the value can be veri ed to be in the desired range easily, and in hexadecimal
to show the value speci ed by the original modi cation program.
From this table, it can clearly be seen that some of the o set values are incorrect.
During examination of Milton?s BIST modi cation program, it seems that he believed
the ALMOSTEMPTY ag was designated normally by a hex value in the XDL.
However, he seemed to believe that the ALMOSTFULL ag was designated by the
two?s complement of the o set value in the XDL. For example for the 2k x 9-bit FIFO
mode, a valid ALMOSTEMPTY o set value would be any number in the range [5 :
2044] ([0x005 : 0x7FC]), while a valid ALMOSTFULL o set value could be the two?s
complement of any number in the range [5 : 2043] ([0xFFB : 0x805] instead of [0x005
: 0x7FB]).
Most peculiar was that Milton speci ed 2043, 496, 507 and 4 as the ALMOST-
FULL o set for the rst three and very last con gurations of the FIFO BIST (See
Tables 3.8(a) and 3.8(b)). If the o set does follow the two?s complement of the input
58
o set value then the resulting o set values greatly exceed the acceptable values for
that mode. However, if they do not then the majority of the 4k x 4-bit con gurations
test only a small range of o set values.
Table 3.7: FIFO ALMOSTFULL/EMPTY Flag O set Range [15]
ALMOSTEMPTY ALMOSTFULL
FIFO Mode Standard FWFT
2k x 9-bit 5 to 2044 6 to 2045 4 to 2043
512 x 32-bit 5 to 508 6 to 509 4 to 507
1k x 18-bit 5 to 1020 6 to 1021 4 to 1019
4k x 4-bit 5 to 4092 6 to 4093 4 to 4091
Under the assumption that the o set values of the ALMOSTFULL ag are the
two?s complement of the designated value, V4RamMod.exe, the BIST modi cation
program, was modi ed to have o set values that would lie within the acceptable range
for the desired FIFO mode. Also the o set values for the rst three con gurations
were chosen to test the maximum range. These new values can be seen in Tables
3.9(a) and 3.9(b). However, this was not the solution to the randomly seen false
fault detections during an asynchronous reset using the TPG RST pin.
The next suspicion explored was that the false fault detections were caused by
an initialization problem. The Virtex-4 User Guide states,
"Reset is an asynchronous signal to reset all read and write address
counters, and must be asserted to initialize ags after power up. Reset
does not clear the memory, nor does it clear the output register. When
reset is asserted High, EMPTY and ALMOST EMPTY will be set to 1,
FULL and ALMOST FULL will be reset to 0. The reset signal must
be High for at least three read clock and write clock cycles to ensure all
59
Table 3.8: ALMOSTFULL/EMPTY Flag O set Range described in [7]
(a) ALMOSTEMPTY O set Values
Con g FIFO Normal 2?s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 15 00F 4081 FF1
2 512 x 32-bit 15 00F 4081 FF1
3 1k x18-bit 5 005 4091 FFB
4 4k x 4-bit 5 005 4091 FFB
5 4k x 4-bit 6 006 4089 FF9
6 4k x 4-bit 8 008 4088 FF8
7 4k x 4-bit 16 010 4080 FF0
8 4k x 4-bit 32 020 4064 FE0
9 4k x 4-bit 64 040 4032 FC0
10 4k x 4-bit 128 080 3968 F80
11 4k x 4-bit 256 100 3840 F00
12 4k x 4-bit 512 200 3584 E00
13 4k x 4-bit 1024 400 3072 C00
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4092 FFC 4 004
(b) ALMOSTFULL O set Values
Con g FIFO Normal 2?s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 2043 7FB 2053 805
2 512 x 32-bit 496 1F0 3599 E0F
3 1k x18-bit 507 1FB 3589 E05
4 4k x 4-bit 4091 FFB 5 005
5 4k x 4-bit 4089 FF9 6 006
6 4k x 4-bit 4088 FF8 8 008
7 4k x 4-bit 4080 FF0 16 010
8 4k x 4-bit 4064 FE0 32 020
9 4k x 4-bit 4032 FC0 64 040
10 4k x 4-bit 3968 F80 128 080
11 4k x 4-bit 3840 F00 256 100
12 4k x 4-bit 3584 E00 512 200
13 4k x 4-bit 3072 C00 1024 400
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4 004 4092 FFC
60
Table 3.9: V4RamMod.exe ALMOSTFULL/EMPTY Flag O set Range
(a) ALMOSTEMPTY O set Values
Con g FIFO Normal 2?s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 6 006 4089 FF9
2 512 x 32-bit 5 005 4091 FFB
3 1k x18-bit 5 005 4091 FFB
4 4k x 4-bit 5 005 4091 FFB
5 4k x 4-bit 6 006 4089 FF9
6 4k x 4-bit 8 008 4088 FF8
7 4k x 4-bit 16 010 4080 FF0
8 4k x 4-bit 32 020 4064 FE0
9 4k x 4-bit 64 040 4032 FC0
10 4k x 4-bit 128 080 3968 F80
11 4k x 4-bit 256 100 3840 F00
12 4k x 4-bit 512 200 3584 E00
13 4k x 4-bit 1024 400 3072 C00
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4092 FFC 4 004
4 - alt 4k x 4-bit 1365 555 2731 AAB
5 - alt 4k x 4-bit 2730 AAA 1366 556
(b) ALMOSTFULL O set Values
Con g FIFO Normal 2?s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 2053 805 2053 805
2 512 x 32-bit 3589 E05 507 1FB
3 1k x18-bit 3077 C05 1019 3FB
4 4k x 4-bit 4091 FFB 5 005
5 4k x 4-bit 4089 FF9 6 006
6 4k x 4-bit 4088 FF8 8 008
7 4k x 4-bit 4080 FF0 16 010
8 4k x 4-bit 4064 FE0 32 020
9 4k x 4-bit 4032 FC0 64 040
10 4k x 4-bit 3968 F80 128 080
11 4k x 4-bit 3840 F00 256 100
12 4k x 4-bit 3584 E00 512 200
13 4k x 4-bit 3072 C00 1024 400
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 5 005 4091 FFB
4 - alt 4k x 4-bit 2730 AAA 1366 556
5 - alt 4k x 4-bit 1365 555 2731 AAB
61
internal states are reset to the correct values. During RESET, RDEN and
WREN must be held Low" [15].
In the FIFO TPG, the reset signal was synchronous to set up signals for the
FIFO FSM. An additional statement in the VHDL description of the FIFO TPG was
added that sent the reset signal asynchronously to the FIFOs, while the rest of the
reset of the TPG operation was performed on the next rising clock edge. This solved
the initialization problem and the false fault detections no longer appeared.
3.5 Additional FIFO Con gurations
A major drawback of the FIFO BIST developed by Milton [7] is the sheer num-
ber of con gurations that it requires to thoroughly test the ALMOSTFULL/EMPTY
 ags. Two alternative BIST con gurations were developed to reduce the number of
FIFO BIST con gurations. Fault coverage is potentially reduced however, because
fewer possible ALMOSTFULL/EMPTY ag bit combinations are tested. Fault simu-
lation indicated the twelve 4k x 4 con gurations developed by Milton provided higher
fault coverage only if one knows the construction of the ALMOSTFULL/EMPTY
logic and Milton?s patterns were appropriately converted. Since this information is
unknown, the additional test time is not worthwhile. These two new BIST con gu-
rations are shown in Table 3.10.
Table 3.10: Additional FIFO BIST Con gurations
FIFO Active Level Write ALMOST ALMOST
Mode RST RDEN WREN Mode FULL EMPTY
4k x 4 1 1 1 Standard 1366 (AAA) 2731 (555)
4k x 4 1 1 1 Standard 2731 (555) 1366 (AAA)
62
The new set of BIST con gurations constructed for FIFO BIST are shown in
Table 3.11. Fault injection was performed for both the original and new sets of FIFO
BIST con gurations. A known list of FIFO RAM faults was used to modify the RAM
con guration bits downloaded to the FPGA and each of the BIST con gurations was
executed. The faults that were detected by the FIFO BIST con gurations were noted
for each of the two sets. Both sets were found to detect the same faults, despite the
potentially reduced fault coverage due to not testing as many combinations of the
ALMOSTFULL/EMPTY ag con guration bits.
The total number of BIST clock cycles was 65,561 for all fteen con gurations
in [7], while the total number of clock cycles is 64,672 for the con gurations in Table
3.11. Despite the fact that this is only a di erence of less than a thousand clock
cycles, con guration download and memory readback time need to be taken into
account since these are for more signi cant. Additionally, Milton assumes that the
user has complete control of the BIST clock. However, this may not be the case when
using the PINS option if, for example, the BIST is clocked using an external oscillator.
The two new con gurations were designed such that meticulous clock control is not
needed.
If more thorough testing of the ALMOSTFULL/EMPTY ags is desired, then
it is preferable to use the set of fteen con gurations. If merely the functionality of
the ags is desired, then it is preferable to use the new set of ve con gurations to
reduce overall test time.
63
Table 3.11: Shortened FIFO BIST Con gurations
FIFO Active Level Write ALMOST ALMOST
Mode RST RDEN WREN Mode FULL EMPTY
2k x 9 0 0 0 FWFT 15 2043
512 x 36 1 1 1 Standard 15 496
1k x 18 1 1 1 Standard 5 507
4k x 4 1 1 1 Standard 1366 (AAA) 2731 (555)
4k x 4 1 1 1 Standard 2731 (555) 1366 (AAA)
3.6 Cascade ORA Clock Enables
When in the Cascade mode, there are expected failures in the ORAs along the
bottom row of the device and in the row above a PowerPC in the FX devices (re-
illustrated in Figure 3.7). This is due to the lack of cascade routing, namely a
CascadeIn (re-illustrated in Figure 3.8) input on these RAMs. These expected
failures interfere with the iterative OR-chain mentioned earlier by latching up the
error in the ORAs resulting in a constant Fail signal from the OR-chain output. A
solution was developed to handle the ORA mismatches that would otherwise occur.
This required adding a clock enable to the ORAs that monitor these particular RAMs.
The TPG then controls the clock enable such that the ORAs do not latch the expected
failure, but will latch mismatches due to faults.
Milton?s approach required only 20 clock cycles using a FSM to execute the
BIST. When performing asynchronous resets using the PINS option for the cascade
BIST, the behavior of the BIST was erratic and the expected failures would become
latched into the ORAs, which was undesirable. The VHDL description of the cascade
mode TPG was modi ed to be a 5-bit counter that would output the desired address,
read/write operation, data, Port A/B enable, and additional ORA clock enables,
ORACE and ORBCE { the clock enables (CE) added to enable or disable the ORA
64
Figure 3.7: Cascade ORA Bit Assignments [7]
Figure 3.8: Cascadable Block RAM [15]
65
for a desired number of clock cycles. This was a feasible option because the cascade
BIST sequence is only 32 clock cycles.
The V4RamBist.exe program added routing from the Cascade TPG to the ORAs
with expected failures. The BIST was run normally, that is the ORACE and ORBCE
had no impact on the BIST, on a Virtex-4 FX12 device. The ORAs were enabled for
the entire execution. The clock cycles where ORA mismatches occurred were noted
and can be seen in Tables 3.12 - 3.20 as those rows colored in red. The speci c clock
cycle can be seen from the CNTR columns, while the inputs to the ORAs, which
expect failures, can be seen in the RAM and ORA columns respectively.
It can be clearly seen that for the counter values 7 (00111), 14 (01110), and 15
(01111) mismatches occur on Port A between the RAMs along the bottom of the
device when the rst cascade con guration (UPPER) is executed. When con gured
in the second cascade con guration (LOWER) the counter value 3 (00011) also has
mismatches on Port A in addition to the counter values described for the UPPER
con guration. Counter values 21 (10101), 22 (10110), 23 (10111), 30 (11110), and
31 (11111) have mismatches for Port B for both UPPER and LOWER con gurations.
The TPG VHDL description was modi ed to disable the speci c ORAs for either
Port A or B when there are mismatches. These changes were able to ensure that the
expected ORA mismatches did not get latched, even during the reset experiment
using the PINS option.
3.7 Timing Improvements and Analysis
Several timing improvements were also made to the Virtex-4 Block RAM BIST
con gurations. Figure 3.9 shows the maximum BIST clock frequencies at which
the original Virtex-4 BIST con gurations, described in Table 3.21, can be executed
66
Table 3.12: Cascade Mismatches - Port A - UPPER Con guration (1)
CNTR RAM RAM ORA RAM RAM ORA
R0C5 R56C5 R0C4 R0C10 R56C10 R0C9
1 0 0 1 0 0 1
2 0 0 1 0 0 1
3 0 0 1 0 0 1
4 0 0 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 0 1 0 0 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 0 0 1 0 0 1
15 0 0 1 0 0 1
16 0 0 1 0 0 1
Table 3.13: Cascade Mismatches - Port A - UPPER Con guration (2)
CNTR RAM RAM ORA RAM RAM ORA
R0C25 R56C25 R0C26 R4C5 R36C5 R36C4
1 0 0 1 0 0 1
2 0 0 1 0 0 1
3 0 0 1 0 0 1
4 0 0 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 1 1 1 0 0 1
9 1 1 1 0 0 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 0 0 1
14 0 0 1 1 0 1
15 0 0 1 1 0 1
16 0 0 1 0 0 1
67
Table 3.14: Cascade Mismatches - Port A - UPPER Con guration (3)
CNTR RAM RAM ORA
R4C10 R36C10 R36C9
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 1 0 1
8 0 0 1
9 0 0 1
10 1 1 1
11 1 1 1
12 1 1 1
13 0 0 1
14 1 0 1
15 1 0 1
16 0 0 1
Table 3.15: Cascade Mismatches - Port A - LOWER Con guration (1)
CNTR RAM RAM ORA RAM RAM ORA
R0C5 R56C5 R0C4 R0C10 R56C10 R0C9
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0 1 1 0 1 1
4 1 1 1 1 1 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 1 1 0 1 1
8 0 0 1 0 0 1
9 0 0 1 0 0 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 0 0 1 0 0 1
14 0 1 1 0 1 1
15 0 1 1 0 1 1
16 0 0 1 0 0 1
68
Table 3.16: Cascade Mismatches - Port A - LOWER Con guration (2)
CNTR RAM RAM ORA RAM RAM ORA
R0C25 R56C25 R0C26 R4C5 R36C5 R36C4
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0 1 1 1 0 1
4 1 1 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 1 1 0 0 1
8 0 0 1 1 1 1
9 0 0 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 0 0 1 1 1 1
14 0 1 1 0 0 1
15 0 1 1 0 0 1
16 0 0 1 0 0 1
Table 3.17: Cascade Mismatches - Port A - LOWER Con guration (3)
CNTR RAM RAM ORA
R4C10 R36C10 R36C9
1 1 1 1
2 1 1 1
3 1 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 0 0 1
8 1 1 1
9 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1
13 1 1 1
14 0 0 1
15 0 0 1
16 0 0 1
69
Table 3.18: Cascade Mismatches - Port B - UPPER/LOWER Con gurations (1)
CNTR RAM RAM ORA RAM RAM ORA
R0C5 R56C5 R0C3 R0C10 R56C10 R0C8
17 0 0 1 0 0 1
18 0 0 1 0 0 1
19 0 0 1 0 0 1
20 1 1 1 1 1 1
21 0 1 1 0 1 1
22 0 1 1 0 1 1
23 0 1 1 0 1 1
24 0 0 1 0 0 1
25 0 0 1 0 0 1
26 0 0 1 0 0 1
27 0 0 1 0 0 1
28 0 0 1 0 0 1
29 0 0 1 0 0 1
30 0 1 1 0 1 1
31 0 1 1 0 1 1
32 0 1 1 0 1 1
Table 3.19: Cascade Mismatches - Port B - UPPER/LOWER Con gurations (2)
CNTR RAM RAM ORA RAM RAM ORA
R0C25 R56C25 R0C27 R4C5 R36C5 R36C3
17 0 0 1 0 0 1
18 0 0 1 0 0 1
19 0 0 1 0 0 1
20 1 1 1 0 0 1
21 0 1 1 1 0 1
22 0 1 1 1 0 1
23 0 1 1 0 0 1
24 0 0 1 1 1 1
25 0 0 1 1 1 1
26 0 0 1 0 0 1
27 0 0 1 0 0 1
28 0 0 1 0 0 1
29 0 0 1 1 1 1
30 0 1 1 0 0 1
31 0 1 1 0 0 1
32 0 1 1 1 0 1
70
Table 3.20: Cascade Mismatches - Port B - UPPER/LOWER Con gurations (3)
CNTR RAM RAM ORA
R4C10 R36C10 R36C8
17 0 0 1
18 0 0 1
19 0 0 1
20 0 0 1
21 1 0 1
22 1 0 1
23 0 0 1
24 1 1 1
25 1 1 1
26 0 0 1
27 0 0 1
28 0 0 1
29 1 1 1
30 0 0 1
31 0 0 1
32 1 0 1
on a Virtex-4 LX60 device. It can be seen that the worst-case clock frequencies are
con gurations six, seven, nine, and eleven for the four BIST types, which correspond
to the frequencies 47.9 MHz, 101.4 MHz, 82.4 MHz, and 67.4 MHz, respectively, for
a Virtex-4 LX60 device. Con gurations six and eleven are special cases where the
Block RAMs use opposite edge clocking from that of the TPGs and ORAs. This was
previously shown in Table 2.6 for Block RAM BIST and while not explicitly stated
in Milton?s thesis, examination of his work shows this is the case for the FIFO BIST
(2K) con guration. As a result, the normal BIST clock frequency is halved. The
timing analysis for every Virtex-4 device worst-case BIST con guration can be seen
in Figure 3.10. The number above each set of bars indicates the total number of
Block RAMs within that device and all Block RAMs are under test in these BIST
con gurations.
71
Figure
3.9:
Max.
BI
ST
Clo
ck
Fre
quency
for
Virtex-4
LX60
72
Figure
3.10:
Timing
Analysis
for
W
orst-Case
BIST
Con gurations
-Virtex-4
Devices
73
Table 3.21: Max. BIST Clock Frequency for each Con guration in LX60 Device
Con g. # BIST Max. Freq.
1 BRAM - MLRA w/ BDS 95.997
2 BRAM - MLRB w/ BDS 95.997
3 BRAM - DUALP 95.997
4 BRAM - MATS+ 16k 82.556
5 BRAM - MATS+ 8k 91.017
6 BRAM - MATS+ 512 47.998
7 CASC - UPPER 101.43
8 CASC - LOWER 101.43
9 ECC - WREN 82.379
10 ECC - RDEN 82.379
11 FIFO - 2k x 9 67.367
12 FIFO - 512 x 36 134.735
13 FIFO - 1k x 18 134.735
14-25 FIFO - 4k x 4 (all) 134.735
This halved clock frequency greatly limits the speed at which the BIST can be
executed. However, a solution was implemented within the Virtex-4 modi cation pro-
gram that eliminates this halving e ect. In addition to the RAM Port A/B clocks for
con guration six and the Write/Read clocks for con guration eleven being inverted,
the clocks of all the other components of the BIST (ORAs and TPGs) are inverted,
e ectively making them all the same edge, while still testing the opposite edge clock-
ing of the Block RAM. The new worst-case clock frequencies for the Block RAM BIST
now become governed by con guration four and nine (Figure 3.11). The timing anal-
ysis for all Virtex-4 device new worst-case con guration can be seen in Figure 3.12.
This change resulted in a dramatic increase in the maximum BIST clock frequency
for all devices. For example, the LX200 device previous had a maximum BIST clock
frequency of approximately 25 MHz. However with this change implemented, the
maximum BIST clock frequency increased to approximately 42 MHz.
74
A penalty is incurred from this change. The size of the partial con guration bit
 le with the inverted clocks increases. This can be seen in Tables 3.23 and 3.24.
However, by making the con guration with the inverted clocks either the rst or last
con guration in a set of BIST con gurations, the impact of this increased le size is
reduced. All of the clocks in the device have to be recon gured only a single time,
rather than twice if the con guration is in the middle of the set of BIST con gurations.
The bolded rows show the les that have an increase in size due to this new clocking
scheme.
When using all twenty- ve con guration bit les, the le size increase is found
to be 0.000518% using the compressed con guration bit les and 1.029% when using
partial compressed con guration bit les. When using the set of fteen con guration
bit les, the le size increase was 0.00849% using the compressed con guation bit
 les and 1.940% when using partial compressed con guration bit les. This le size
increase has very little impact on the total download time of all BIST con guration
 les.
3.8 Fault Coverage
In [7], the only results discussed by Milton are the di erences in test time and le
size when downloading full, compressed, and partial con guration bit les to a device.
However, the actual fault coverage of the Virtex-4 Block RAM BIST was never really
discussed. After implementing the corrections and improvements discussed in this
chapter, a quantitative analysis of the achievable fault coverage was performed.
A total of 456 con guration memory bit faults were emulated within a device,
speci cally a Virtex-4 FX12 FPGA, by overwriting a single bit in the con guration
memory to a desired stuck-at value after each BIST con guration was downloaded
75
Table 3.22: Virtex-4 Block RAM BIST Con gurations with
Clock Modi cations for LX60 Device
Con g. # BIST Max. Freq.
1 BRAM - MLRA w/ BDS 95.997
2 BRAM - MLRB w/ BDS 95.997
3 BRAM - DUALP 95.997
4 BRAM - MATS+ 16k 82.556
5 BRAM - MATS+ 8k 91.017
6 BRAM - MATS+ 512 96.488
7 CASC - UPPER 101.43
8 CASC - LOWER 101.43
9 ECC - WREN 82.379
10 ECC - RDEN 82.379
11 FIFO - 2k x 9 133.851
12 FIFO - 512 x 36 134.735
13 FIFO - 1k x 18 134.735
14-25 FIFO - 4k x 4 (all) 134.735
Table 3.23: File Size without Clock Inversion Change for LX60 Device
Con g. BIST Compressed Partial
(# bits) (# bits)
1 MLRA 9,566,976 9,566,976
2 MLRB 9,566,976 446,688
3 DUALP 9,566,976 446,688
4 MATS+ 16K 9,566,976 446,688
5 MATS+ 8K 9,566,976 545,248
6 MATS+ 512 9,566,976 545,248
7 CAS UPPER 7,962,624 7,962,624
8 CAS LOWER 7,962,624 446,688
9 ECC WREN 9,461,856 9,461,856
10 ECC RDEN 9,448,800 545,248
11 FIFO 2K 8,684,832 8,684,832
12 FIFO 512 8,684,832 122,688
13 FIFO 1K 8,684,832 24,032
14 -25 FIFO 4K x 1 8,684,832 24,032
Total 222,510,240 39,533,888
14 - alt FIFO 4K x 1 8,684,832 24,032
15 - alt FIFO 4K x 1 8,684,832 24,032
Total 135,661,920 39,293,568
76
Figure
3.11:
Max.
BIST
Clo
ck
Freq
uency
for
Virtex-4
LX60
with
Clo
ck
Mo
di cations
77
Figure
3.12:
Timing
Analysis
for
New
W
orst-Case
BIST
Con gu
rations
-Virtex-4
Devices
78
Table 3.24: File Size with Clock Inversion Change for LX60 Device
Con g. BIST Compressed Partial
(# bits) (# bits)
1 MLRA 9,566,976 9,566,976
2 MLRB 9,566,976 446,688
3 DUALP 9,566,976 446,688
4 MATS+ 16K 9,566,976 446,688
5 MATS+ 8K 9,566,976 545,248
6 MATS+ 512 9,566,976 949,792
7 CAS UPPER 7,962,624 7,962,624
8 CAS LOWER 7,962,624 446,688
9 ECC WREN 9,461,856 9,461,856
10 ECC RDEN 9,448,800 545,248
11 FIFO 2K 8,683,680 8,683,680
12 FIFO 512 8,684,832 481,600
13 FIFO 1K 8,684,832 24,032
14-25 FIFO 4K x 1 8,684,832 24,032
Total 222,509,088 40,296,192
14 - alt FIFO 4K x 1 8,684,832 24,032
15 - alt FIFO 4K x 1 8,684,832 24,032
Total 135,660,768 40,055,872
79
to the device but before the BIST con gurations were executed. The complete set of
BIST con gurations was executed and the con gurations that detected the emulated
fault were noted. The fault coverage accrued by each BIST type can be seen in Figure
3.13, as well as the cumulative fault coverage for executing the complete set of BIST
con gurations, which results in a cumulative fault coverage of 98.67%. The fault
coverage attained by each individual con guration for each of the BIST types can be
seen in Figures 3.14, 3.15, and 3.16.
Figure 3.13: Overall Fault Coverage for Virtex-4 Devices
3.9 Summary
Overall, the process for generating the Virtex-4 Block RAM BIST con gurations
was improved. Twelve speci c BIST generation programs were condensed into two
visible and one hidden program that maintained the same functionality. The ORAs
80
Figure 3.14: BRAM Fault Coverage for Virtex-4 Devices
Figure 3.15: FIFO Fault Coverage for Virtex-4 Devices
81
Figure 3.16: ECC and Cascade Fault Coverage for Virtex-4 Devices
were modi ed to exploit the built-in carry chain functionality of the CLBs to provide
the user a single Pass/Fail signal using an iterative OR-chain. An additional interface
for interacting with the BIST, the PINS interface, was developed to give the user
another option if BSCAN is not available or desired.
Also, two new con gurations were developed for FIFO Block RAM BIST to
reduce overall test time by testing all of the ALMOSTFULL/EMPTY ag o set
con guration bits simultaneously. Resetting the FIFO BIST no longer results in the
BIST becoming stuck or false fault detections being latched up in the ORAs. The
TPG for the Cascade Block RAM mode was modi ed to incorporate clock enable
signals to enable/disable the Port A/B ORAs along the bottom of the device and
in the row above a PowerPC, so as not to have false fault detections that could
interfere with the Pass/Fail signal generated by the OR-chain. Changes were made
to the modi cation program to increase the maximum BIST clock frequency so that
82
it could be executed faster, reducing overall BIST test time. And nally the fault
coverage, both cumulative and individual, was found for the Virtex-4 Block RAM
BIST con gurations.
83
Chapter 4
Virtex-5 Block RAM BIST
This chapter will discuss the initial development of the Virtex-5 Block RAM
BIST programs and con gurations. The approaches applied to the Virtex-4 Block
RAM BIST were adapted and applied to develop the Virtex-5 Block RAM BIST.
Several TPGs were initially developed for the various Virtex-5 Block RAM types and
new comparison-based ORAs were implemented to monitor the outputs of the Block
RAMs. The new TPGs will be described rst, followed by discussion of the new
ORAs and ending with initial results for the Block RAM BIST con gurations.
4.1 TPG Development
Initially, only one Block RAM XDL primitive (RAMBFIFO36) was to be used
for generation of all the BIST con gurations. This Block RAM primitive was found
to be a superset of all of the other Virtex-5 Block RAM primitives. A single Block
RAM primitive and TPG design would reduce the complexity of BIST generation.
Since this primitive is a superset of all the Virtex-5 Block RAM primitives, all modes
of operation could be tested while reducing download and testing time. However,
this was found to be an overzealous starting point for this project as there was no
documentation to utilize. Instead, four documented Block RAM primitives were
chosen to implement the Virtex-5 BIST in order to establish a known behavior for
each of these four types, which could later be combined to design a single TPG for
84
the RAMBFIFO36 Block RAM primitive. The implemented Block RAM primitives
are as follows:
1. RAMB36 (32k + 4k parity) - true dual-port Block RAM that supports widths
of x1, x2, x4, x9, x18, and x36.
2. RAMB36SDP (512 x 72-bit) - simple dual-port Block RAM with 64-bit ECC.
3. FIFO36 (32k + 4k parity) - synchronous/asynchronous FIFO Block RAM that
supports widths of x1, x2, x4, x9, and x18.
4. FIFO36 72 (512 x 72-bit) - synchronous/asynchronous FIFO with 64-bit ECC.
Four TPG designs are proposed for the Virtex-5 Block RAM BIST that would
perform speci c test algorithms depending on the corresponding Block RAM con gu-
ration. The BIST con gurations and their corresponding address and data widths can
be seen in Table 4.1 and will be discussed in more depth in the following subsections.
4.1.1 RAMB36 TPG
The rst TPG developed was for the Virtex-5 Block RAM BIST in the RAMB36
mode of operation. Comprehensive testing of the memory core is performed by the
RAMB36SDP TPG, which will be described in the next subsection. The RAMB36
TPG is responsible for testing the dual-port functionality of the Block RAM using
the RAM test algorithms, S2PF and D2PF (See Equations 2.7 and 2.8, respec-
tively). Also, the MATS+ RAM test algorithm (See Equation 2.9) is used to test the
programmable address and data widths, write modes, the active levels of the clock,
port enable, output register clock, and set/reset signals. The settings for each BIST
con guration can be seen in Table 4.3. The desired test is selected by a user-supplied
control string which is shifted into the TPG through the BSCAN interface, as shown
85
Table 4.1: Virtex-5 BIST Con gurations
BIST Algorithm Address Data
TPG Type Con g. # Depth Width
1 s2pf 1k 36
2 d2pf 1k 36
3 MATS+ 2k 18
RAMB36 4 MATS+ 4k 9
5 MATS+ 8k 4
6 MATS+ 16k 2
7 MATS+ 32k 1
1 MarchLRw/BDS 512 72
RAMB36SDP 2 ECC (RDEN) 512 72
3 ECC (WREN) 512 72
FIFO36 72 1 FIFOX (RDEN) 512 72
2 FIFOX (WREN) 512 72
1 FIFOX 1k 36
FIFO36 2 FIFOX 2k 18
3 FIFOX 4k 9
4 FIFOX 8k 4
in Figure 4.1 and the control string values for each BIST con guration can be seen
in Table 4.2. The three Mode bits correspond to the Con guration Number in Table
4.3, while the Level Control bit corresponds to the ENA level.
The RAM test algorithms described in Chapter 2 are implemented by a Finite
State Machine (FSM) in a VHDL model for the RAMB36 TPG. The model was
constrained the to rst thirty-two rows and the rst six columns in the bottom of an
LX50T device, as shown in Figure 4.2, and is a total of 118 slices. All of the TPGs
developed are held to this constraint, which allows for easier processing later by the
Virtex-5 BIST template generation program, V5BramBIST.exe.
86
Table 4.2: Control String Values for RAMB36 TPG
Con g. BIST Level Mode Mode Mode Hex
Algorithm Control 2 1 0 String
1 s2pf 0 0 0 0 0x0
2 d2pf 0 0 0 1 0x1
3 MATS+ (2k) 1 0 1 0 0xA
4 MATS+ (4k) 1 0 1 1 0xB
5 MATS+ (8k) 1 1 0 0 0xC
6 MATS+ (16k) 1 1 0 1 0xD
7 MATS+ (32k) 1 1 1 0 0xE
Table 4.3: Con guration Settings for RAMB36 TPG
(a) Settings Part 1
Con g. BIST DO READ WRITE WRITE SAVE
Algorithm (A/B) Width Width Mode DATA
REG (A/B) (A/B) (A/B)
1 s2pf 1 36 36 READ FIRST FALSE
2 d2pf 1 36 36 READ FIRST FALSE
3 MATS+ 0 18 18 READ FIRST FALSE
4 MATS+ 0 9 9 WRITE FIRST FALSE
5 MATS+ 0 4 4 NO CHANGE FALSE
6 MATS+ 0 2 2 WRITE FIRST FALSE
7 MATS+ 0 1 1 NO CHANGE FALSE
(b) Settings Part 2
Con g. BIST CLK, RAM INIT SRVAL INIT
Algorithm EN, SSR EXT VAL (A/B)
REGCLK (A/B) VAL
(A/B)(U/L)
INV
1 s2pf INV NONE AAAA 5555 0
2 d2pf not INV NONE 5555 AAAA FFFF
3 MATS+ not INV NONE AAAA 5555 0
4 MATS+ not INV NONE 5555 AAAA FFFF
5 MATS+ not INV NONE AAAA 5555 0
6 MATS+ not INV NONE 5555 AAAA FFFF
7 MATS+ not INV NONE AAAA 5555 0
87
Figure 4.1: Shift Register Control String - RAMB36
4.1.2 RAMB36SDP TPG
The TPG proposed for the RAMB36SDP primitive is responsible for testing the
memory core, as well as the ECC read and write capabilities. By using the widest
data width for this Block RAM type, all memory elements can be reached by the
implemented BIST con gurations. A control string is shifted in through the BSCAN
interface to the TPG to select the desired BIST con guration. The control string
values for each BIST con guration can be seen in Table 4.4.
Table 4.4: Control String Values for RAMB36SDP TPG
Con g. Algorithm LEVEL MODE MODE Hex
CTRL 1 0 String
1 MarchLR with BDS 0 0 0 0x0
2 ECC 0 0 1 0x1
3 ECC 1 1 0 0x6
The RAM test algorithm, MarchLR with BDS, is incorporated into this TPG
and because the data width is set to its widest width of 72-bits, a Background Data
Sequence is developed to ensure that all intra-word Coupling Faults can be detected.
The implemented March test and corresponding BDS can be seen in Appendix A. The
procedure for testing ECC RAMs is also incorporated into the TPG VHDL model to
execute the BIST con gurations. The proposed settings for each BIST con guration
can be seen in Table 4.5.
88
Figure 4.2: RAMB36 TPG Area Constraint for an LX50T Device
89
Table 4.5: Con guration Settings for RAMB36SDP TPG
(a) Settings Part 1
Con g. # Algorithm DO EN ECC EN ECC EN ECC
REG READ WRITE SCRUB
1 MarchLR 0 FALSE FALSE FALSE
with BDS
2 ECC (RDEN) 1 TRUE FALSE FALSE
3 ECC (WREN) 1 FALSE TRUE FALSE
(b) Settings Part 2
Con g. # Algorithm INIT SR INIT SAVE
VAL VAL (A/B) DATA
VAL
1 MarchLR AAAA 5555 0 FALSE
with BDS
2 ECC AAAA 5555 0 FALSE
3 ECC 5555 AAAA FFFF FALSE
(c) Settings Part 3
Con g. # Algorithm RDCLK RDEN RDRCLK
(U/L) (U/L) (U/L)
INV INV INV
1 MarchLR not INV not INV not INV
with BDS
2 ECC not INV not INV not INV
3 ECC INV INV INV
(d) Settings Part 4
Con g. # Algorithm WRCLK WREN SSR
(U/L) (U/L) (U/L)
INV INV INV
1 MarchLR not INV not INV not INV
with BDS
2 ECC not INV not INV not INV
3 ECC INV INV INV
90
Figure 4.3: Shift Register Control String - RAMB36SDP
4.1.3 FIFO36 TPG
The TPG proposed for the FIFO36 primitive is responsible for testing the FIFO
functionality. The RAM test algorithm, FIFOX, described in Chapter 2, is incor-
porated into a VHDL model to execute the BIST con gurations for this TPG. The
proposed settings for each BIST con guration can be seen in Table 4.6.
4.1.4 FIFO36 72 TPG
The proposed FIFO36 72 TPG is responsible for testing the ECC capabilities of
the Block RAM when it is con gured as a FIFO. The RAM test algorithm, FIFOX,
described in Chapter 2, is incorporated into a VHDL model to execute the BIST
con gurations for this TPG. The proposed settings for each BIST con guration can
be seen in Table 4.7.
4.2 ORA Placement
The ORAs for the Virtex-5 Block RAM BIST di er from those of the Virtex-4
Block RAM BIST described previously in Section 2.2.3. In the Virtex-5 devices,
there are ve rows of CLBs adjacent to each Block RAM, rather than the four rows
of CLBs in the Virtex-4 devices. Instead of using nine CLBs spread across three
columns, as in the Virtex-4 Block RAM BIST, two columns of ve CLBs are used for
the ORAs.
91
Table 4.6: Con guration Settings for FIFO36 TPG
(a) Settings Part 1
Con g. # Algorithm DO DATA EN FWFT
REG WIDTH SYN
1 FIFOX 1 36 TRUE TRUE
2 FIFOX 1 18 FALSE FALSE
3 FIFOX 0 9 TRUE TRUE
4 FIFOX 0 4 FALSE FALSE
(b) Settings Part 2
Con g. # Algorithm RDCLK RDRCLK RDEN RST
(U/L) (U/L) INV INV
INV INV
1 FIFOX INV INV INV INV
2 FIFOX not INV not INV not INV not INV
3 FIFOX not INV not INV not INV not INV
4 FIFOX not INV not INV not INV not INV
(c) Settings Part 3
Con g. # Algorithm WRCLK WREN ALMOST ALMOST
(U/L) INV FULL EMPTY
INV OFFSET OFFSET
1 FIFOX INV INV 5555 AAAA
2 FIFOX not INV not INV AAAA 5555
3 FIFOX not INV not INV 5555 AAAA
4 FIFOX not INV not INV AAAA 5555
92
Table 4.7: Con guration Settings for FIFO36 72 TPG
(a) Settings Part 1
Con g. # Algorithm DO EN ECC EN ECC EN
REG READ WRITE SYN
1 FIFOX 1 TRUE FALSE FALSE
2 FIFOX 0 FALSE TRUE TRUE
(b) Settings Part 2
Con g. # Algorithm FWFT RST ALMOST ALMOST
INV EMPTY FULL
RSTINV OFFSET OFFSET
1 FIFOX TRUE INV 5555 AAAA
2 FIFOX FALSE not INV AAAA 5555
(c) Settings Part 3
Con g. # Algorithm RDCLK RDRCLK RDEN WRCLK WREN
(U/L) (U/L) INV (U/L) INV
INV INV RDENINV INV WRENINV
1 FIFOX INV INV INV INV INV
2 FIFOX not INV not INV not INV not INV not INV
Each ORA slice contains four 6-input Look-Up Tables (LUTs), which can be seen
in Figure 4.4. The A1-A4 inputs to the LUTs are used to compare the designated
outputs of the Block RAMs (See Figure 4.5(a)). This results in eight RAM output
comparisons in each slice of the CLB, for a total of 160 possible comparisons and
since the maximum number of possible outputs for any of the RAM primitives is 118
(RAMBFIFO36) this is more than enough logic to implement the comparisons.
The four LUTs are used di erently, depending on the type of the BIST. For the
RAMB36 and FIFO36 BIST types, all of the RAM outputs will be implemented as a
single ORA comparison. This is accomplished by connecting the same RAM outputs
to the A1 and A3 inputs and A2 and A4 inputs as shown in Figure 4.5(b). This
e ectively results in the comparison ORA acting as if it were the circuit in Figure
4.5(c).
93
Figure 4.4: Internal Slice Components [16]
94
Since the number of outputs for these Block RAM types is less than 80, which is
half the total number of possible comparisons if two comparisons were implemented
per LUT, this single comparison can be implemented. This comparison technique
improves the diagnostic resolution of the BIST by allowing any RAM output failure
to be precisely determined.
However, for the RAMB36SDP and FIFO36 72 BIST types, single RAM output
comparison is not possible. RAMB36SDP has 82 RAM outputs, while FIFO36 72 has
114 RAM outputs. Therefore, it is necessary to implement the dual comparison in
several of the LUTs. Care is taken to implement the outputs that are only associated
with that particular RAM primitive as single comparisons, and implement the outputs
that had been tested thoroughly in another BIST con guration as dual comparisons.
An iterative OR-chain, which was adopted from the Virtex-4 Block RAM BIST
(Section 3.2), was implemented for the Virtex-5 BIST [3]. The fast-carry logic within
each CLB was exploited to provide a single Pass/Fail signal.
4.3 BIST File Generation
Two programs were developed for the Virtex-5 Block RAM BIST and are sim-
ilar in operation to those developed for the Virtex-4 Block RAM BIST. The BIST
template generation program, V5BramBIST.exe, is responsible for algorithmically
placing and interconnecting the Block RAMs and ORAs within the user-speci ed
FPGA row/column ranges, as well as placing and interconnecting the two TPGs for
the designated BIST type. The modi cation program, V5BramMod.exe, is responsible
for correctly con guring the RAMs for the desired BIST con guration.
95
(a) LUT Double Comparison
(b) LUT Single Comparison
(c) E ective Single Operation
Figure 4.5: Virtex-5 ORA LUT Comparison
96
4.3.1 BIST Template Generation Program
A BIST template generation program, V5BramBist.exe, was developed for the
Virtex-5 Block RAM BIST. This program processes user-speci ed parameters for the
desired BIST template to generate. This template can be for any one of the four BIST
types described previously. Depending on the BIST type selected, the Block RAM
primitive that matches that type is selected and placed within the desired device for
all Block RAMs that lie within the speci ed FPGA row/column range. The command
line format provided to the user is given in Figure 4.6.
The ORAs are placed in the two columns of CLBs directly to the left of a Block
RAM column and the outputs of the placed Block RAMs are then routed to their
speci c comparison LUT within the ORA CLBs. Depending on the type, this may
either be the single or double comparison described in the previous section, and the
iterative OR-chain is routed through the fast-carry logic.
Once the Block RAMs and ORAs are placed and routed, a TPG is extracted from
an XDL description of the TPG and stored in several les, which are used to replicate
the TPG. The two TPGs, TPG0 and TPG1, are placed in the six CLB columns to the
right of the rightmost column of Block RAMs, excluding the columns of Block RAMs
that are located in a Tri-mode Ethernet Media Access Controller (TEMAC) column
in the LXT, SXT, FXT, and TXT Virtex-5 devices. These columns were selected
because they remain unused for the Virtex-5 Block RAM BIST in every Virtex-5
device. One TPG, TPG0, is placed in the lower half of the device, while the other
TPG, TPG1, is placed in the upper half of the device. An example of this can be seen
in Figure 4.7. The routing is placed between the TPG outputs and their respective
Block RAMs, which alternate rows so that faults that may occur within the TPG can
be detected.
97
V5RAMbist (v1.4) - Generates template file for Block RAM
BIST config in any Virtex-5
Command line format:
V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol>
<dev> <part> <type> [n,p,a]
dev part rows cols dev part rows cols dev part rows cols
lxt 20 60 33
lx/t 30 80 38 sxt 35 80 50 fxt 30 80 50
lx/t 50 120 38 sxt 50 120 50 fxt 70 160 50
lx/t 85 120 64 sxt 95 160 68 fxt 100 160 73
lx/t 110 160 64 sxt 240 240 104 fxt 130 200 70
lx/t 155 160 87 fxt 200 240 87
lx/t 220 160 121 txt 150 200 70
lx/t 330 240 121 txt 240 240 91
where the type is defined as:
RAMB36 = 1
RAMB36SDP = 2
FIFO36 = 3
FIFO36_72 = 4
npa options:
n = runs XDL2NCD with -nodrc
p = runs ?n? option followed by reentrant routing with PAR
a = runs ?n? & ?p? options and coverts back to XLD
Note:
All parameters can be upper or lower case (but not mixed).
Also, the extension on <xdlfile> need not be specified.
The .xdl extension will be appended by the program.
Figure 4.6: V5BramBist.exe Command Line Format
98
Finally the BSCAN interface is added to the template XDL le, which allows the
user to shift in a BIST control string (if applicable) and control the BIST clock and
reset signals. It also enables the user to toggle TDI to observe the Pass/Fail signal
propagated by the iterative OR-chain.
4.3.2 Modi cation Program
A modi cation program, V5BramMod.exe, was developed for the Virtex-5 Block
RAM BIST. This program is responsible for establishing the correct Block RAM con-
 guration parameters for the speci ed BIST type and the desired BIST con guration.
The program also inverts the TPG and ORA clocks for the BIST con gurations where
opposite edge clocking is to be tested to reduce the impact of inverting the clocks,
as was discussed in the previous chapter. The command line format provided to the
user is shown in Figure 4.8.
The two additional options allow the user to convert the generated .XDL le
into an .NCD le. This .NCD le can be edited in FPGA Editor to insert probes,
if the user so desires, or can be manually processed by the user using Bitgen.exe, to
create the con guration bit les. If the bit option is speci ed, the processed .XDL
 le will be converted to an .NCD le and then processed using Bitgen.exe to create
a compressed con guration bit le without any additional e ort by the user.
4.4 BIST Results
The subsequent subsections will describe the current results of executing the
proposed BIST con gurations. These results may change as the Virtex-5 BIST con-
 gurations are re ned.
99
(a) TPG Placement (b) TPG Placement in a Routed BIST
Figure 4.7: TPG Placement for a Virtex-5 LX50T
100
V5RAMmod (ver 1.3) - modifies routed XDLs for Block RAM to
subsequent BIST configs
Command line format:
V5RAMmod <xdl_in> <xdl_out> <type> <phase> [ncd,bit]
where the type is defined as:
RAMB36 = 1
RAMB36SDP = 2
FIFO36 = 3
FIFO36_72 = 4
Type: RAMB36 RAMB36SDP FIFO36 FIFO36_72
--
Phase 1: S2PF MarchLR FIFOx 1K FIFOx_ECC_RD
Phase 2: D2PF ECC_RD FIFOx 2K FIFOx_ECC_WR
Phase 3: MATS+ 2K ECC_WR FIFOx 4K
Phase 4: MATS+ 4K FIFOx 9K
Phase 5: MATS+ 8K
Phase 6: MATS+ 16K
Phase 7: MATS+ 32K
--
Generation Options:
- ncd option runs XDL -XDL2NCD
- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS
- If no option is selected, only the XDL file will be generated
Note:
On both <xdl_in> and <xdl_out> the .xdl file extension should
be specified.
Figure 4.8: V5BramMod.exe Command Line Format
101
4.4.1 File Size Comparison
The compressed con guration bit le and compressed partial con guration bit
 le sizes for the RAMB36 BIST con gurations can be seen in Table 4.8. Using
compressed partial recon guration les yields additional bene ts when implementing
the Virtex-5 Block RAM BIST, as it did in the Virtex-4 Block RAM BIST. In the
case of the RAMB36 con gurations the total number of downloaded bits is reduced
approximately 4.6 times, which reduces the total BIST execution time.
Inverting all of the TPG and ORA clocks also has an impact on the Virtex-
5 partial con guration bit le sizes, as it did in the Virtex-4 partial con guration
bit les. In the case of RAMB36, the TPG and ORA clocks are inverted in the
 rst con guration, while the remaining con gurations use non-inverted clock signals.
This results in the compressed partial con guration bit le for this con guration to
be noticeably larger than its counterparts.
Table 4.8: BIST Con guration File Sizes for LX50T Device - RAMB36
Con g. BIST Compressed Partials
(# bits) (# bits)
1 S2PF 7,348,384 7,348,384
2 D2PF 7,342,816 689,600
3 MATS 2k 7,342,816 625,536
4 MATS 4k 7,342,816 625,536
5 MATS 8k 7,342,816 625,536
6 MATS 16k 7,342,816 625,536
7 MATS 32k 7,342,816 625,536
Total 51,405,280 11,165,664
4.4.2 Timing Analysis
The maximum BIST clock frequency for an LX50T device is shown in Figure
4.9. All of the con gurations execute faster than the desired BIST clock frequency
102
of 50 MHz. The MATS+ (2K) con guration has the lowest maximum BIST clock
frequency of approximately 65 MHz. This con guration is generated for every Virtex-
5 device except LX20T, which is not supported because the number of RAMs in the
TEMAC column is insu cient to implement the circular comparison with the ORAs.
The worst-case timing analysis and the total number of Block RAMs for each device
can be seen in Figure 4.10 and the total number of Block RAMs can be seen above
each column. The three largest devices (LX330, LXT330, and SXT240) are the only
devices where the worst-case con guration fails to achieve the desired BIST clock
frequency. However, for these devices, the BIST can be performed separately on
each half of the device, which increases the BIST clock frequency at the cost of an
additional set of BIST con gurations.
4.4.3 Fault Coverage
Con guration memory bit faults were emulated using the same process as im-
plemented in the Virtex-4 fault simulation. These bits are modi ed before the BIST
is executed to emulate stuck-at fault behavior. The fault coverage accrued by each
con guration, as well as the cumulative fault coverage for executing the BIST for the
RAMB36 con gurations can be seen in Figure 4.11 and the total fault coverage of
the RAMB36 BIST con gurations is 82.17%, which is an acceptable value for the
fault coverage. The RAM test algorithms implemented in the RAMB36 BIST con-
 gurations should detect mismatches between the Block RAM initialization values.
However, not all of the expected initialization faults were detected, which resulted in
a lower fault coverage than could actually be achieved. This is an important area for
future investigation.
103
Figure
4.9:
Timing
Analysis
for
Virtex-5
LX50T
Device
104
Figure
4.10:
Timing
Analysis
for
W
orst-Case
BIST
Con gurations
-Virtex-5
Devices
105
Figure 4.11: RAMB36 Fault Coverage for Virtex-5 Devices
106
Chapter 5
Summary and Conclusions
This thesis discussed FPGAs, their advantages and their disadvantages, as well
as discussing BIST and why it is needed. An overview of RAMs was given and the
particular associated faults were presented. The Block RAM BIST developed for
the Virtex-4 devices developed by Milton [7] and each component of the BIST were
discussed. A preliminary Virtex-5 Block RAM BIST was presented, highlighting the
di erences between the Virtex-4 and Virtex-5 BIST approaches.
5.1 Virtex-4 Block RAM BIST Improvements
A number of improvements were implemented for the Virtex-4 Block RAM BIST.
A major improvement that was implemented but did not directly a ect the BIST exe-
cution time was the simpli cation of the twelve Virtex-4 Block RAM BIST generation
programs into two programs. This greatly simpli ed the con guration le generation
process from the user?s point of view.
Another major improvement was the implementation of the new ORA that used
the built-in carry chain to provide the user with a single Pass/Fail signal. This
signal allowed the user to choose whether or not to perform a con guration memory
readback. This results in a much faster BIST execution time if no con guration
memory readbacks are performed and the iterative OR-chain is used to determine if a
device was fault-free or not. In the case that the con guration memory is read back,
107
the BIST execution time can still be improved by only performing the readback when
the iterative OR-chain indicates a fault was detected.
The development of the two new FIFO BIST con gurations also helped to reduce
the overall Block RAM BIST execution time. If extensive testing of the ALMOST-
FULL/ALMOSTEMPTY ags is not desired, the total number of con gurations for
the FIFO BIST is reduced from fteen to ve con gurations. The x to the Reset
state also ensured that the BIST will execute properly whenever it is reset during
execution.
The addition of clock enables for the bottom-most ORAs and the ORAs directly
above the PowerPC (if applicable) allowed for the use of the iterative OR-chain in
conjunction with the Block RAM BIST when the RAMs are cascaded. Rather than
allow the ORAs to latch up false fault detections, the ORAs are disabled for the clock
cycles where known mismatches will occur.
Several improvements were made to the BIST con gurations, which tested the
opposite-edge clocking of the Block RAMs. In addition to inverting the RAM clocks,
setting the clock edges of the ORA and TPG clocks to the opposite-edge clock setting
allowed the BIST con guration to run at approximately twice the frequency of what it
was previously. This also changed which BIST con gurations governed the maximum
speed at which the BIST could be executed.
Fault simulation was performed on all of the Virtex-4 BIST con gurations to
determine the cumulative fault coverage of the Virtex-4 Block RAM BIST, which was
found to be 98.67%. This was done by manually overwriting a desired con guration
memory bit before executing each BIST con guration and then observing if the fault
was detected by the con guration or not.
108
5.2 Virtex-5 Block RAM BIST
This thesis also presents an initial approach to the Virtex-5 Block RAM BIST.
Four Block RAM primitives, RAMB36, RAMB36SDP, FIFO36 and FIFO36 72, are
used to implement all of the BIST con gurations. TPGs were proposed for each of the
four primitives. The TPG for the RAMB36 mode of operation is the most complete
and was discussed in greater detail than the other three TPGs.
A new ORA structure was introduced in the Virtex-5 Block RAM BIST to take
advantage of the new slice composition. When the number of RAM outputs is less
than 80, a single comparison can be implemented in each of the four LUTs contained
within a Virtex-5 slice. When the number of RAM outputs is greater than 80, single
comparisons are implemented on as many of the RAM outputs as possible, while
implementing a double comparison in several LUTs for the RAM outputs which are
tested in other BIST con gurations.
Two new programs, V5BramBist.exe and V5BramMod.exe, were developed and
are used in the generation of the Virtex-5 Block RAM BIST con guration bit les.
The rst generates an XDL template description for the desired BIST type, and the
second modi es the BIST template to create a speci c con guration within that BIST
type.
Timing analysis was performed on the con gurations generated for the RAMB36
BIST type to determine the maximum BIST clock frequency. The slowest con gu-
ration was found to be the MATS+ (2k) con guration with BIST clock frequency of
approximately 65 MHz. This con guration was generated for every Virtex-5 device,
except the LX20 device, and every device except the three largest devices (LX330,
LXT330, and SXT240) were found to operate at a frequency that exceeds the desired
BIST clock frequency of 50 MHz.
109
Fault emulation was also performed for the RAMB36 TPG type. A fault cov-
erage of 82.17% was achieved using just these con gurations. However, detection of
the Block RAM initialization faults was inconclusive. Under certain conditions no
initialization faults would be detected, while under a di erent set of conditions all
initialization faults would be detected.
5.3 Future Work
Currently, only the modi cations for the RAMB36 Block RAM type are believed
to be functional. It is recommended that for future research, the functionality of the
other three Block RAM types be veri ed, rather than assuming them to be correct.
This can include generating the BIST con gurations for the partially complete TPG
(RAMB36SDP), up to designing the complete VHDL models for the FIFO36 and
FIFO36 72 TPGs based on the proposed settings in Chapter 4. Also, the issue of only
part of the Block RAM initialization mismatches being detected should be explored.
Timing analysis should be performed on all of the newly created BIST con g-
urations to determine the worst-case timing con guration for each of the four TPG
types. The newly determined worst-case timing con gurations should be generated
for every device to determine which devices, such as the LXT300, should perform the
BIST on partial arrays rather than the whole of the device.
Fault emulation should also be performed on all of the newly developed BIST
con gurations to determine the overall fault coverage provided by executing the com-
plete set of BIST con gurations on a Virtex-5 device. This fault coverage is desired
to be as high as possible.
The ultimate goal, however, is to understand the functionality of the four de-
signed BIST types well enough to be able to incorporate them into a single TPG for
110
the undocumented RAMBFIFO36 Block RAM type introduced at the beginning of
Chapter 4. Drastically decreased BIST test time can result from the culmination of
this goal as only one full, compressed con guration bit le need be downloaded to the
device, while the subsequent con gurations can be compressed partial con guration
bit les.
111
Bibliography
[1] A. J. Van de Goor, Using March Tests to Test SRAMs, IEEE Design and Test
of Computers, 10 (1993), no. 1, 8{14.
[2] Ad J. Van de Goor and I.B.S Tlili, March Tests for Word-Oriented Memories,
Design, Automation and Test in Europe, Design, Automation and Test in Eu-
rope, 1998, pp. 501{508.
[3] Bradley F. Dutton and Charles E. Stroud, Built-In Self-Test of Con gurable
Logic Blocks in Virtex-5 FPGAs, IEEE Southeastern Symposium on System
Theory, IEEE Southeastern Symposium on System Theory, 2009, pp. 230{234.
[4] Srinivas Garimella, Built-In Self Test for Regular Structure Embedded Cores in
System-on-Chip, Master?s thesis, Auburn University, 2005.
[5] Said Hamdioui, Testing Static Random Access Memories, Kluwer Academic Pub-
lishers, 2004.
[6] Ian Kuon and Johnathon Rose, Measuring the Gap between FPGAs and ASICs,
Computer-Aided Design of Integrated Circuits and Systems, 26 (2007), no. 2,
203{215.
[7] Daniel Milton, Built-In Self-Test of Con gurable Memory Resources in Field-
Programmable Gate-Arrays, Master?s thesis, Auburn University, 2007.
[8] Mary Pulukuri and Charles E. Stroud, Built-In Self-Test of Digital Signal Pro-
cessors in Virtex-4 FPGAs, IEEE Southeastern Symposium on System Theory,
IEEE Southeastern Symposium on System Theory, 2009, pp. 34{38.
[9] Charles H. Roth and Lizy Kurian John, Digital Systems Design using VHDL,
Thomson Learning, 2008.
[10] Michael John Sebastian Smith, Application-Speci c Integrated Circuits, Addison
Wesley, 1997.
[11] Charles E. Stroud, A Designer?s Guide to Built-In Self-Test, Kluwer Academic
Publishers, 2002.
112
[12] Charles E. Stroud and Srinivas Garimella, Built-In Self-Test and Diagnosis of
Multiple Embedded Cores in SoCs, Proceedings, International Conference on Em-
bedded Systems and Applications, International Conference on Embedded Sys-
tems and Applications, 2005, pp. 130{136.
[13] Laung-Terg Wang, Charles E. Stroud, and Nur A. Touba, System-on-Chip Test
Architectures, Morgan Kaufmann Publishers, 2008.
[14] Xilinx, Development System Reference Guide, 2008.
[15] , Virtex-4 FPGA User Guide, 2008.
[16] , Virtex-5 FPGA User Guide, 2008.
113
Appendix A
MarchLR with 72-bit BDS
The following 72-bit MarchLR algorithm and accompanying BDS sequence were
developed directly from the method described in [2]. The BDS sequence can also
be optimized to eliminate the redundant march elements (Element 7 and 8) found
within the BDS and the MarchLR sequence. This reduces the test time from O(23
N) to O(21 N), where N is the number of address locations.
114
March Address RAM Data Hex
Element Direction Operation Value
MarchLR 1 up/down write 000000000000000000
2 down read 000000000000000000
write FFFFFFFFFFFFFFFFFF
3 up read FFFFFFFFFFFFFFFFFF
write 000000000000000000
read 000000000000000000
write FFFFFFFFFFFFFFFFFF
4 up read FFFFFFFFFFFFFFFFFF
write 000000000000000000
5 up read 000000000000000000
write FFFFFFFFFFFFFFFFFF
read FFFFFFFFFFFFFFFFFF
write 000000000000000000
6 up read 000000000000000000
BDS 7 up read 000000000000000000
write FFFFFFFFFFFFFFFFFF
read 000000000000000000
8 down read FFFFFFFFFFFFFFFFFF
write 000000000000000000
read 000000000000000000
9 up read 000000000000000000
write 555555555555555555
write AAAAAAAAAAAAAAAAAA
read AAAAAAAAAAAAAAAAAA
10 down read AAAAAAAAAAAAAAAAAA
write 555555555555555555
read 555555555555555555
11 up read 555555555555555555
write 333333333333333333
write CCCCCCCCCCCCCCCCCC
read CCCCCCCCCCCCCCCCCC
12 down read CCCCCCCCCCCCCCCCCC
write 333333333333333333
read 333333333333333333
13 up read 333333333333333333
write 0F0F0F0F0F0F0F0F0F
write F0F0F0F0F0F0F0F0F0
read F0F0F0F0F0F0F0F0F0
115
March Address RAM Data Hex
Element Direction Operation Value
BDS 14 down read F0F0F0F0F0F0F0F0F0
write 0F0F0F0F0F0F0F0F0F
read 0F0F0F0F0F0F0F0F0F
15 up read 0F0F0F0F0F0F0F0F0F
write FF00FF00FF00FF00FF
write 00FF00FF00FF00FF00
read 00FF00FF00FF00FF00
16 down read 00FF00FF00FF00FF00
write FF00FF00FF00FF00FF
read FF00FF00FF00FF00FF
17 up read FF00FF00FF00FF00FF
write FF0000FFFF0000FFFF
write 00FFFF0000FFFF0000
read 00FFFF0000FFFF0000
18 down read 00FFFF0000FFFF0000
write FF0000FFFF0000FFFF
read FF0000FFFF0000FFFF
19 up read FF0000FFFF0000FFFF
write FF00000000FFFFFFFF
write 00FFFFFFFF00000000
read 00FFFFFFFF00000000
20 down read 00FFFFFFFF00000000
write FF00000000FFFFFFFF
read FF00000000FFFFFFFF
21 up read FF00000000FFFFFFFF
write 00FFFFFFFFFFFFFFFF
write FF0000000000000000
read FF0000000000000000
22 down read FF0000000000000000
write 00FFFFFFFFFFFFFFFF
read 00FFFFFFFFFFFFFFFF
23 up read 00FFFFFFFFFFFFFFFF
116

