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Due to increasing design complexities of digital circuits in recent years, a growing

problem in Very Large Scale Integrated (VLSI) digital circuit testing is the exponential rise

in the test generation complexity and an increasing need for high quality test vectors. For

Built-In Self-Test (BIST) of digital circuit, the in-built pattern generator shows increased

area overhead, as larger number and more specific patterns need to be generated. In this

thesis we address these issues of digital circuit testing.

We propose a novel test generation algorithm for sequential circuits using spectral

methods. We generate test vectors for faults defined at Register-Transfer Level (RTL) and

analyze them for spectral properties. New test vectors are generated using these properties

to detect all faults of the circuit. Our proposed algorithm shows equal or improved test

coverage and reduced test generation time as compared to a commercial sequential test

generation tool, FlexTest, for various benchmark circuits. For an experimental processor

PARWAN, FlexTest achieved a test coverage of 93.40% requiring 1403 test vectors in 26430

CPU seconds. The proposed spectral method achieved a coverage of 98.23% requiring 2327

vectors in 2442 CPU seconds. We also propose a Design-For-Testability (DFT) method at

RTL which enables improved test coverage and reduced test generation time.
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We define N -model tests that target faults belonging to N specified fault models of

choice. We propose a method for minimizing these tests using Integer Linear Program-

ming (ILP) without reducing the individual fault model coverage. Stuck-at, transition, and

pseudo stuck-at IDDQ faults are used as illustrations. The proposed method shows a no-

ticeable reduction in test set size as compared to conventional minimization. For ISCAS’89

benchmark circuit s1488, the initial test set consisted of 557 test vectors (with 57 IDDQ

vectors) (represented as 557(57)). Conventional single fault model minimization achieved

451(45) test vectors while our multiple fault model minimization achieved 175(39) test vec-

tors. We also propose an ILP model to offer a trade-off between the total number of test

vectors and the cost of test application (number of IDDQ vectors in our example). For s1488,

depending on the cost of application, our method offers a choice anywhere from 175(39) to

187(33) test vectors. Since solving ILP problems has an exponential time complexity, we

also propose a reduced complexity ILP approximation.

We propose a method for designing a Test Pattern Generator (TPG) for BIST using

spectral techniques, which replicates the efficacy of a given set of test patterns generated

for a digital circuit. Spectral properties extracted from the test patterns are regenerated in

hardware using a novel spectral TPG architecture. For combinational circuits, a test vector

reshuffling algorithm is proposed to enhance the extraction of spectral properties. In six out

of eight sequential benchmark circuits considered, our method achieved at least as much

fault coverage as the ATPG vectors. For the circuit s38417, our proposed method detected

17020 faults as compared to 15472 faults detected by ATPG vectors. Our proposed BIST

method detects equal or greater number of faults in six out of eight circuits than random,

weighted random and an earlier published work. In case of combinational circuits, for circuit

c7552, our method attained a test coverage of 99.82%, while random and weighted random

attained 97.41% and 97.86% respectively for the same test vector length. We also show

the benefits of reseeding of our proposed spectral TPG in terms of test compression on two

combinational benchmark circuits. In the considered circuits, our proposed architecture

provides a maximum test data compression exceeding 90%.
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Chapter 1

Introduction

Recent advances in microelectronic fabrication of Complimentary Metal Oxide Semi-

conductor (CMOS) technology have enabled a substantial increase in the level of integration

of transistors per unit area and facilitated the reduction in chip cost. However, with these

improvements, the design complexities of circuits have proportionally increased creating

challenges in several areas including manufacturing test [20, 78]. Manufacturing test en-

sures that a digital circuit fabricated in silicon functions as expected and according to the

original design [14]. One main goal of testing is to identify all chips that do not function as

expected due to defects.

Manufacturing test faces several challenges due to increased design complexity. The

problem of test generation for digital circuits is computationally intensive and has been the-

oretically and experimentally shown to be Non-Polynomially complete (NP-complete) [37,

43, 62]. Determining solutions to such problems in worst cases may require non-polynomial

or exponential time with respect to the size of the problem. The test generation problem

becomes more intricate for sequential circuits, as their internal memory states face the dif-

ficulty of not being easily controllable and observable. Hence, there is a need to reduce the

test generation complexity.

Furthermore, the generated tests should have high quality or should cover a large

proportion of modeled faults. A high fault coverage is required for the tests so that the

number of test escapes, or the number of bad chips that are incorrectly considered good,

is kept as small as possible, ideally zero, which is one of the main goals of manufacturing

test. The number of bad chips tested as good is normally expressed as the defect level [14].

It is measured in parts per million (ppm). While a zero defect level is hard to guarantee,

improved quality tests can provide 500 ppm, 100 ppm or even lower defect levels. Also,
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there is a need to reduce the test application time which affects the testing cost. Hence,

the number of test vectors required to be applied to the circuit under test (CUT) to test

it, also need to be kept to a minimum. For Built-In Self-Test (BIST) environments, where

additional inserted hardware tests the CUT, similar challenges are faced. Moreover a test

generator is required to be designed in hardware with minimum area overhead which can

provide reliable high quality tests.

1.1 Problem definition

The primary goals of this work have been:

• To develop an efficient test generation method for sequential circuits having reduced

test generation complexity, high fault coverage and low test application time.

• To develop a minimization technique for tests which detect multiple fault models.

• To develop a BIST synthesis scheme for digital circuits which provides high fault

coverage, has low area overhead and low test application time.

1.2 Contribution of this thesis

In this dissertation, we propose a novel test generation algorithm for sequential cir-

cuits using spectral methods and Register-Transfer-Level (RTL) information. We utilize

RTL-related information to retrieve important spectral properties which help in efficiently

testing the Circuit-Under-Test (CUT). Use of RTL information simplifies and reduces the

test generation complexity in terms of the problem size. The use of spectral information

for test generation has been shown to provide advantages in terms of improved fault cov-

erage of the generated test vectors [18, 19, 41, 72, 158]. Using the benefits of RTL and

spectral information, our proposed test generation scheme shows improved fault coverage

and reduced test generation time as compared to the commercial sequential test generation

tool FlexTest [91] as demonstrated in the results for various benchmark circuits. We also

2



propose a Design-for-Testability (DFT) method at the RTL to alleviate some of the bottle-

necks in the testability of the circuit which provides an enhancement in the fault coverage

with a benefit in a slight reduction of test generation time and number of test vectors.

We define N -model tests that target detection of faults belonging to N specified fault

models of choice. We propose a method for minimizing these tests using Integer Linear Pro-

gramming (ILP) without reducing the individual fault model coverage. Any test sequences,

deterministic, random, functional, N -detect, etc., can be minimized for the given set of fault

models. Stuck-at, transition, and pseudo stuck-at IDDQ faults are used as illustrations. The

proposed method shows a noticeable reduction in test set size as compared to conventional

single fault model minimization. We also propose a novel configurable minimization model

which can provide the trade-off between the number of test vectors and the cost of appli-

cation of various types of tests. Although solving ILP formulations provide optimal tests,

their worst-case complexity is exponential. Hence we also propose a reduced complexity

ILP formulation which provides approximate solutions with reduced computational times.

We also propose a method for constructing a pattern generator for digital circuits in a

Built-In Self-Test (BIST) environment using spectral properties. Given a set of test patterns

generated for a digital circuit, the objective here is to regenerate the efficacy of those vectors

in hardware for BIST using minimal area overhead and test vector length. We exhibit the

implementation of our methodology for combinational and sequential benchmark circuits.

For combinational circuits, a test vector reshuffling algorithm is proposed to enhance the

spectral properties and facilitate their extraction. We compare our hardware implemen-

tation with an earlier published work for sequential circuits and also with pseudo-random

and weighted random pattern generators for both combinational and sequential circuits.

The proposed BIST pattern generator, while attaining the test coverage of the original test

vectors, shows markedly improved test coverage for similar vector length and comparable

area overhead as compared to other pattern generators.

3



1.3 Organization of the thesis

The dissertation is organized as follows. In Chapter 2 we provide a brief overview of

the area of manufacturing testing and reinforce the motivation of our work. Chapter 3 gives

an introduction to spectral analysis which forms the foundation of our proposed methods.

In Chapter 4, we discuss the concepts of test vector minimization using Integer Linear

Programming (ILP), which is used later in our proposed spectral RTL test generation

scheme. Chapter 5 gives an introduction to the theory of Built-In Self Test (BIST) and

describes its main components. In Chapter 6, we propose our spectral RTL test generation

scheme for sequential circuits and describe its results. A new type of test called as “N -model

test” is introduced in Chapter 7 and we propose an ILP-based formulation to minimize the

number of tests. In Chapter 8, we propose our method for constructing the spectral test

pattern generator for BIST environments and discuss its results. We give the conclusions

of this work and scope for future advancements in Chapter 9.
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Chapter 2

Overview of Manufacturing Test

In this chapter, we give a brief overview of the area of manufacturing test and describe

its main concepts [14]. The fundamentals described in this chapter will be used in the

following chapters to explain the new methods.

2.1 Testing of integrated circuits

After a digital circuit has been designed, it is fabricated in the form of silicon chips. The

fabrication process is not perfect and due to various reasons, the manufactured circuit in

silicon may develop defects which may prevent its correct functioning [82]. A manufacturing

test performs the crucial task of identifying those silicon chips that do not function as

expected. It involves exercising the functionality of the Circuit Under Test (CUT) by

applying appropriate test signals to its inputs and observing the responses. If the responses

of the CUT match the expected responses, then the CUT is considered good else it is labeled

as bad. Thus, the goal of testing is to correctly identify a good chip as good and a bad

chip as bad. The testing process may not be perfect and it may label certain good chips

as bad and vice versa. The proportion of good chips that are incorrectly labeled as bad

by the testing process is termed as “yield loss”, while the portion of bad chips incorrectly

labeled as good is referred to as “test escapes”. Test escapes are quantified as the defect

level, measured as the average number of bad chips that are tested good (usually measured

for per million chips tested). The yield loss results in economic loss due to throwing away a

proportion of good chips. Test escapes, on the other hand, result in defective parts shipped

to customers and, depending on the application, have moderate to serious consequences in
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terms of system failures, economic damages, etc. The testing process thus needs to ensure

that both of these proportions are kept to a minimum [14].

2.2 Fault modeling

As mentioned earlier, when digital circuits are fabricated in the form of silicon chips,

due to various fabrication process aberrations, some of the chips develop defects which

may prevent their correct functioning. It is the goal of manufacturing testing to determine

whether a chip possesses any such fault-causing defects, in a given finite time allotted for

testing. Faults at the physical level in chips cannot be tested and detected directly, as there

could be numerous types that can occur and many of them are often complex in nature

to analyze. Hence faults need to be modeled at a higher abstraction level in order that

they can be analyzed and test signals generated to detect them [14, 82]. These models are

generally referred to as fault models.

Faults can be modeled at various abstraction levels starting with the lowest level like

the transistor and gate level; and moving to higher levels like Register-Transfer-Level (RTL)

and behavioral level. Based on these abstraction levels, the fault models can be roughly

classified as Lower-level fault models and Higher-level fault models. We describe these types

in further detail in the following sections.

2.2.1 Lower-level fault models

The lower-level fault models include those defined at the transistor and the gate levels.

At this abstraction level, the digital design is described as an interconnection of transistors

and gates, and faults can be modeled as imperfections in their respective components. Some

of the commonly used and popular fault models at the transistor and gate-level are stuck-at

fault model, transition delay fault model and IDDQ fault model [15]. We shall be using

these three fault models later in this thesis to evaluate our proposed methods and hence

we shall describe them in a little more detail in the following subsections. Other types of
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Figure 2.1: Behavior of stuck-at logic ’0’ fault at the output of a AND gate.

faults that have been defined at lower-levels of abstraction are bridging faults [116], wire

stuck-open faults, parametric faults, etc [14].

Stuck-at fault model

One of the most widely used fault models for gate-level digital circuits since the earlier

developments of CMOS technology has been the stuck-at fault model. The faults are mod-

eled on signal lines or interconnects between the gates. Using the stuck-at fault model, two

types of faults can be modeled for any signal line in the gate-level digital circuit. The logic

value of a considered faulty signal line could be permanently stuck-at logic ’0’ or stuck-at

logic ’1’. Figure 2.1 shows the behavior of a stuck-at logic ’0’ on the output of the AND

gate. The two inputs ’A’ and ’B’ of the AND gate are been driven with logic ’1’. The

expected good circuit behavior of the output ’Y’ of the gate is logic ’1’. However, due to

the presence of the stuck-at logic ’0’ fault, in the faulty circuit the output ’Y’ will have a

logic ’0’. Since two types of stuck-at faults are defined for every signal line, for a gate-level

circuit with n signal lines, there exist 2n stuck-at faults assuming only one fault can exist at

a time. For the case, where multiple faults can exist, the number of faults is equal to 3n−1.

Stuck-at faults model some of the physical defects that could arise in silicon manufacturing

like transistors permanently in ON or OFF state, shorting of signal lines to power supply

lines (VDD: logic ’1’ or GND: logic ’0’), etc.
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Figure 2.2: Behavior of a slow-to-fall transition delay fault at the output of a AND gate.

Transition delay fault model

With the advances in manufacturing technology and fabrication of designs which can

run at increasingly faster clock frequencies, estimation and testing of timing of a circuit has

gained importance. In order to model the delay defects in a digital circuit, the transition

delay fault model was introduced [76]. Like the stuck-at fault model, the transition delay

fault model models faults on signal lines or interconnects between the gates. As per the

transition delay fault model, a faulty signal line can behave as a slow-to-rise signal or a

slow-to-fall signal. For a slow-to-rise transition delay fault on a faulty signal line, the signal

line behaves as a temporary stuck-at logic ’0’ for a time period which exceeds the maximum

delay of the circuit or is generally taken to be one test cycle or clock period. A similar

behavior is exhibited by a slow-to-fall transition delay fault. To detect a transition delay

fault on a signal line, a two-vector pair is required to be applied to the inputs of the CUT.

The first vector initializes the signal line under consideration to the required logic value. the

second vector forces a transition on the signal line and propagates its effect to the primary

outputs of the CUT. Figure 2.2 shows the behavior of a slow-to-fall transition delay fault

on the output of a AND gate. The input ’A’ of the gate is driven with a logic ’1’ and the

input ’B’ of the gate undergoes a high-to-low falling transition. Due to the falling transition

on input ’B’, the expected good circuit behavior of the output ’Y’ is a high-to-low falling
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transition. However, due to the slow-to-fall transition delay fault on the faulty output ’Y’

of the AND gate, the output ’Y’ behaves as a temporary stuck-at logic ’1’ or the falling

transition of the signal line ’Y’ is delayed. Like the stuck-at fault model, for a gate-level

circuit with n signal lines, there exist 2n transition delay faults assuming only one fault can

exist at a time. For the case, where multiple faults can exist, the number of faults is equal

to 3n − 1. Transition delay faults model some of the physical defects that could arise in

silicon manufacturing like gross delay defects in slow transistors, resistive shorting of signals

to power lines, some cases of transistors permanently in OFF state, etc.

IDDQ faults

In a CMOS gate, when the inputs of the gate are stable and not switching, then the

current flowing between VDD and GND is negligible, ideally equal to zero. This steady

state or quiescent current is termed as IDDQ current. However, in the presence of certain

defects, it is observed that this current can increase by an order of magnitude as compared

to the defect-free case. This observation enables detection of certain defects by measuring

this current. Figure 2.3 shows an example of a short defect in a transistor in a NAND gate

which causes abnormal IDDQ current to flow between VDD and GND. The inputs ’A’ and

’B’ of the gate are driven with logic ’1’. In a good circuit without defects, the top two PMOS

transistors will be in the OFF state and the bottom two NMOS transistors will be in the

ON state. In the presence of a short defect in a PMOS transistor, it will behave as an ON

transistor and cause aberrant IDDQ current. By measuring the magnitude of this current

the short defect of the PMOS transistor can be detected. The IDDQ faults [15] model

certain physical defects occurring in fabrication like shorts between signal lines, transistors

permanently in ON state, etc.

2.2.2 Higher-level fault models

At higher levels of abstraction, faults can be modeled at the Register-Transfer Level

(RTL) [39, 114, 132] or the behavioral level [22, 40, 102, 136]. At the RTL, the digital
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Figure 2.3: A short defect in a NAND gate causing abnormal IDDQ current between VDD

and GND.

design is modeled as data transfers between registers and faults can be modeled in the

registers and/or in the data transfers between the registers. At the behavioral level, the

digital design is described in the form of an algorithm or functional description and faults

can be modeled in the various operations that are defined and used in the description. One

of the fault models that is defined at higher abstraction levels like the RTL and behavioral

level is the RTL fault model [132].

Fault models at lower abstraction levels have higher correlation with the physical defects

and hence are able to be characterized better as compared to fault models at higher levels of

abstraction. However, fault models at higher abstraction levels are less complex and easier

to analyze and utilize for test generation and test evaluation than those at lower abstraction

levels. Hence, depending on the scenario, an appropriate fault model can be used.
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2.3 Test generation and Design For Test (DFT)

Test generation is the most important step in manufacturing testing in which, given

a set of faults defined using a fault model, appropriate test signals, called test vectors,

are generated, which when applied to the CUT are able to detect the presence of those

faults. The program which generates these test vectors is called an Automatic Test Pattern

Generator (ATPG). The problem of test generation for digital circuits is computationally

intensive and has been shown theoretically to be Non-Polynomial(NP)-complete [43]. De-

termining solutions to NP-complete problems require non-polynomial or exponential time

with respect to the size of the problem. However, verifying a given prospective solution to

an NP-complete problem requires only polynomial time.

Based on these characteristics, the test generation methods can be roughly classified as

algorithmic methods and simulation-based methods. Algorithmic methods involve a series

of well defined steps to be followed to obtain test vectors which detect a given set of faults.

Since algorithmic methods take the approach of solving the test generation problem, they

require non-polynomial or exponential time with respect to the number of signals in the

circuit and the number of faults. Several algorithmic methods for test generation have been

proposed in literature [21, 38, 49, 84] but require large computational times providing only

limited fault coverage. On the other hand, simulation based methods rely on searching

and simulating various test vectors based on some heuristics, which could be prospective

tests to detect the given set of faults. Since simulation-based methods take the approach of

verifying a prospective solution to the test generation problem, their time complexity can

be much lower compared to algorithmic methods depending on the heuristics being used.

Based on this concept several simulation-based methods have been proposed and developed

over the years [2, 12, 80, 119, 120, 126].

The test generation problem can be differentiated into two types based on whether the

Circuit Under Test (CUT) is memory-less (combinational) or possesses memory (sequential).

In a memory-less or combinational circuit, all the inputs are controllable. Hence with respect
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to test generation, the circuit can be easily subjected to any possible required input values.

Sequential circuits on the other hand have memory states and testing of such a circuit not

only depends on the values at the inputs, but also the values of the memory states. Most

of the time, the memory states cannot be controlled and observed with ease, which makes

the problem of test generation for sequential circuits more complex.

As a means to increase the testability of the circuits and also to reduce the Auto-

matic Test Pattern Generation (ATPG) complexity, Design-For-Test (DFT) methods are

employed. Two main parameters that determine the testability of a circuit are the control-

lability and observability of its signals. Controllability of a signal refers to its ability or ease

to be set to a particular logic value from the primary inputs of the circuit. Observability of a

signal refers to its ability or ease to be observed at one of the primary outputs of the circuit.

Design-for-test (DFT) method refers to the design method of improving the controllability

and observability of the signals of the given digital circuit so that the overall testability of

the circuit is enhanced and tests with high fault coverage can be derived in reduced time

complexity.

Several DFT schemes are employed in practice. The most popular DFT technique,

widely used, is the scan chain, in which a serial shift register is formed by connecting

together all the flip-flops in the sequential circuit. Any flip-flop can then be initialized to

any required value by shifting in the appropriate bits. Also the value captured in any flip-

flop can be observed by shifting out the bits in the scan chain. Scan-based DFT simplifies

the test generation of sequential circuits to combinational test generation. However, there

are downsides to using a scan chain. There is an area overhead and performance penalty

associated with it, which may not be acceptable for all designs. Also, there are some

issues with the generation and application of at-speed scan tests, which detect delay faults.

Launch-On-Shift (LOS) and Launch-On-Capture (LOC) are two methods used for at-speed

scan testing. Each method has its pros and cons. LOS has good transition delay fault

coverage, but requires additional hardware for a fast scan enable signal. LOC requires
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no special scan hardware but it achieves lower coverage. Since scan test vectors are non-

functional tests, the problem of false paths and multi-cycle paths needs to be considered

in the generation of at-speed scan tests, as the tests can cause unacceptable yield loss by

failing functionally good circuits. This requires analysis of paths using static and dynamic

timing analysis tools. Since to apply a test vector, all of the flip-flops need to be scanned,

the number of clock cycles for testing and hence the testing time can grow very rapidly. For

example if 100 test vectors need to applied to a sequential circuit consisting of 100 flip-flops,

approximately 10,000 clock cycles will be required.

Although non-scan test generation has the disadvantage of high test generation com-

plexity, it possesses certain advantages which make it an attractive approach. The disad-

vantages exhibited by scan-chain based test generation, like area and delay overheads and

long testing times, are eliminated in this case. With sequential test generation, at-speed

functional tests can be generated as they do not modify the state machine of the circuit.

Hence the chances of yield loss are minimized. Different works [86, 90, 99] have attempted

to show the effectiveness of at-speed functional tests over structural scan tests in detecting

chip faults and hence having a better defect coverage. Better defect coverage translates to

lower test escapes. Thus in our work we shall concentrate on issues and propose methods

for non-scan digital circuit test generation.

2.4 Fault simulation

Fault simulation is an important part of manufacturing testing, which determines the

faults detected of a given fault model by a given set of test vectors on a CUT. In fault

simulation, the test vectors are simulated on the CUT in the presence of one fault at a time

and the response of the CUT to the test vectors is compared with the expected correct

responses. If the simulated responses differ from the expected correct responses, then the

fault being simulated is considered to be detected. The process is repeated for all the

faults. Along with evaluating the effectiveness of the test vectors, fault simulation also

forms an integral part of the ATPG program. For a digital circuit with n signal lines, the

13



complexity of fault simulation is O(n2). By comparing the time complexity for solving the

test generation problem with that of fault simulation, we can deduce that fault simulation

based test generation methods can provide lower time complexity, as was also suggested

in Section 2.3. Hence our proposed method described in this thesis will take advantage of

fault simulation in test generation.

2.5 Built-In Self Test (BIST)

Built-In Self Test (BIST) is a special case of Design-For-Test (DFT) methodology in

which the circuit tests itself and flags whether it is good or bad [3, 4, 89, 94, 127]. Additional

hardware is inserted to generate test vectors which drive the primary inputs of the circuit,

sample its primary output(s) and determine whether the circuit is good or bad by comparing

the sampled output(s) with expected one(s). The use of BIST has several advantages. The

need for expensive Automatic Test Equipment (ATE) is eliminated. BIST supports at-

speed testing. Testing can be performed during operation as well as maintenance. BIST

provides vertical testing from component level to system level.

For BIST environments there are mainly two methods used for testing; scan-based

testing and non-scan based testing. Scan-based BIST utilizes the DFT structure scan

chain, which was described earlier in Section 2.3, to apply the test vectors and observe

the responses. Non-scan based BIST makes use only of the inputs and outputs of the

CUT to test it. Scan-based BIST and non-scan based BIST have similar advantages and

disadvantages as scan-chain based test generation and non-scan circuit test generation,

respectively, as described earlier in Section 2.3. For non-scan based BIST, especially for

sequential circuits, there is an additional challenge to detect random pattern resistant faults

by generating specific sequences of test vectors in hardware, which can be intricate. As we

mentioned earlier, in our work we shall concentrate on issues of non-scan based digital

circuit testing. BIST methodology will be described in more details in Chapter 5 as an

introduction to our proposed work.
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Chapter 3

Spectral Analysis

For several years, research has being conducted on the nature and characteristics of

test vectors, which will serve as good quality tests. Initially, experiments were performed

using random vectors and were found to give good results [80, 143]. Later a class of random

pattern resistant circuits were discovered [29], which made it difficult to use random vectors.

Research then shifted towards weighted probability-based random [13, 50, 119, 143, 142]

and other types of property-based test generation methods [48]. Some of these methods did

work, but not satisfactorily for all circuits.

The idea of analyzing the periodicities in signals for test generation introduced the field

of spectral testing. The basic idea was to look at the periodicities of the test vectors which

provided high fault coverage by analyzing their information content in the frequency or the

spectral domain. Several published books and articles [9, 30, 61, 134] provide introduction,

general properties and applications of spectral transforms for digital signals. It is believed

that good quality test vectors, which give high fault coverage, exhibit certain discernible

frequency or spectrum related characteristics. By preserving these characteristics good

quality high defect coverage test vectors can be generated.

Spectral methods for test generation have a long history since the development of

complex VLSI circuits. In 1983, Susskind [128] showed that Walsh spectrum can be used for

testing a digital circuit. Logic networks were tested for stuck faults by verifying the Walsh

coefficients at the outputs. Hsiao and Seth [59] further expanded that work to compact

testing where the signature formed by compaction of the output responses is chosen to be

a coefficient from the Rademacher-Walsh (RW) spectrum of the function under test. More

recently, Giani et al. [41, 42] reported spectral techniques for sequential ATPG and built-in

self-test. In [41] a spectral test generation scheme for sequential circuits is proposed, where
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in, starting from pseudo-random vectors the generation of new test vectors is guided by the

spectral components of previously beneficial generated vectors. In [42], a spectral-based

BIST scheme was proposed, in which test vectors were generated from stored prominent

spectral components by executing a program on a processor. Hsiao’s group at Virginia Tech

have published further work on spectrum-based self test and core test [18, 19, 72]. Khan et

al. [73, 74] have designed hardware output response compactors which use digital spectral

analysis. Zhang et al. [158] further refined the method of extracting the spectra from a

binary signal using a selfish gene algorithm. Recent work suggests that wavelet transforms

can also be used for similar applications [25]. Due to the encouraging results published in

earlier works, we shall use spectral methods in our work for addressing the issues of test

generation.

3.1 Hadamard transform and Walsh functions

Spectral analysis of a digital signal is a decomposition process, in which the signal

is represented as a linear combination of a set of orthogonal functions. These orthogonal

functions are defined by their corresponding transforms. Several transforms [137] have been

developed over the years which can be used for digital signals. Hadamard transform and

Haar transform are two examples of those. We use Hadamard transform [133, 137, 139] in

our proposed works for spectral analysis because of their ease of use and also since they

have been used for testing with effective results.

The Hadamard transform decomposes a digital signal into a superposition of a set of

orthogonal functions called Walsh functions. Walsh functions consist of trains of square

pulses having +1s and −1s as the allowed states and can only change at fixed intervals of

a unit time step. For an order n, there are N = 2n Walsh functions, given by the rows of

the 2n × 2n Hadamard transform matrix H(n) [137], when the functions are arranged in

the so-called “natural” order [133, 139].
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Hadamard transform matrix can be defined in two ways [46], using a binary (base-2)

representation or recursively. Using a binary (base-2) representation, the element at the jth

row and kth column of the Hadamard matrix is given by:

h(j, k) =
1

N
(−1)f(j,k) where f(j, k) =

n−1
∑

i=0

bj [i]bk[i] (3.1)

bj [i] and bk[i] are the ith binary bits of the corresponding binary numbers bj and bk

respectively. bj and bk are the binary representions of the corresponding integer values j

and k given by the following relations:

j = bj [n − 1]2(n−1) + bj [n − 2]2(n−2) + ... + bj [1]21 + bj [0]20 (3.2)

k = bk[n − 1]2(n−1) + bk[n − 2]2(n−2) + ... + bk[1]21 + bk[0]20 (3.3)

Hadamard matrices can also be generated using the following recurrence relation:

H(n) =







H(n − 1) H(n − 1)

H(n − 1) −H(n − 1)






(3.4)

where H(0) = 1 and 2n is the dimension of the nth order Hadamard matrix, H(n). For

example, for n = 1 and n = 2, we have:

H(1) =







1 1

1 −1






and H(2) =



















1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



















(3.5)

The Hadamard matrix is a symmetric matrix with each row being a unique Walsh

orthogonal function, also called the basis function bit-stream. Since it consists of only +1s

and −1s, it is a good choice for the signals in VLSI testing (+1 = logic 1, −1 = logic 0).
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Figure 3.1: Walsh functions of order eight.

The Walsh functions include patterns with varying periodicities which are analogous to

the sine and cosine functions in the analog domain. Hence, Walsh functions can be thought

of as digital counterparts of analog frequencies. Figure 3.1 shows the schematic diagram

of Walsh functions of order eight. Any digital bit-stream can be uniquely represented as

a linear combination of the orthogonal Walsh functions. This is analogous to the analog

domain where any continuous signal can be uniquely represented as a linear combination

of the sine and the cosine functions. Thus, by analyzing the digital signals using Walsh

functions, we are actually looking into the frequency or sequency characteristics of the

digital waveforms. Frequencies refer to periodicities for analog signals, while sequencies

refer to bit-flippings for digital binary waveforms [137].

3.2 Spectral analysis using Hadamard transform

Spectral analysis using Hadamard transform decomposes a digital signal or binary bit-

stream into a superposition of orthogonal Walsh functions which correspond to different

periodicities or sequencies (as they are sometimes referred to in the digital domain). The
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goal of spectral analysis is to analyze the given binary bit-stream in the frequency or spec-

tral domain and help in revealing its significant periodicities or spectral components. We

explain below, how a binary bit-stream can be analyzed in the spectral domain and how its

significant spectral components be determined.

Using Hadamard transform, any bit-stream of R bits can be represented as a linear

combination of the orthogonal Walsh functions from the Hadamard matrix, H(r) where

R = 2r. To perform the spectral analysis of a given bit-stream of R bits, 0s and 1s in the

bit-stream are represented as −1s and +1s respectively (as the Hadamard matrix consists

of only −1s and +1s) and then the bit-stream is multiplied with the Hadamard matrix

H(r). The multiplication operation is basically a correlation of the bit-stream with each of

the Walsh functions and gives a weighting value for each of the functions which we refer

to as spectral coefficients. These coefficients give the degree of correlation of the original

bit-stream with the different Walsh functions. A high magnitude value of the coefficient

corresponds to a high correlation of the bit-stream to the corresponding Walsh function

and vice-versa. By analyzing these coefficients we will be able to determine the major

contributing Walsh functions in the original digital signal.
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Equations (3.6) and (3.7) show an example of generating spectral coefficients for an

8-bit binary bit-stream. As shown in equation (3.6), 0s and 1s in the original bit-stream are

represented as −1s and +1s respectively to generate a modified bit-stream. Equation (3.7)

shows the spectral analysis of the modified bit-stream by multiplying it with a third order

8 × 8 Hadamard matrix, H(3). The result of the matrix multiplication yields the spectral

coefficients. Figure 3.2 shows a graphical representation of the spectral coefficients obtained

in equation (3.7). From the spectral coefficients obtained in equation (3.7) and displayed

in Figure 3.2 it can be observed that, the Walsh function W1 has a prominent value of +6,

while other components have lower or trivial values ranging between −2 and +2. From

this we can deduce that, the binary bit-stream exhibits a higher correlation with and is

more similar to the Walsh function W1 than the other Walsh functions. Hence we say

that the Walsh function W1 is an essential or prominent spectral component of the given

bit-stream and other Walsh functions are considered to be non-essential or noise-like. It is

important to note here that, Hadamard transform conforms with Parseval’s theorem [103],

used frequently with analog signals, and that the total energy of the spectral coefficients,

given by the sum of its squares, is conserved from the time domain and is constant [9].
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Figure 3.2: Graphical representation of Walsh Coefficients obtained in equation (3.7).

3.3 Information content and randomness

By observing the relative magnitudes of the spectral coefficients derived for a given

binary bit-stream, the information content and the randomness in the bit-stream can be

determined. Several works [32, 67, 157] have been published which describe determining

the amount of randomness in a binary bit-stream. Kak [67] describes a method of determin-

ing a pattern and estimating the randomness in a binary bit-stream using Walsh-Fourier

transform. A measure of randomness is defined as the ratio of the number of independent

amplitudes in the Walsh-Fourier transform of the binary bit-stream to the length of the

bit-stream itself. Yuen [157] proposes a randomness test which considers the flatness of

Walsh power spectrum of the bit-stream. A truly random sequence will have an asymptot-

ically flat Walsh power spectrum. Feldman [32] improved on Yuen’s randomness test and

proposed a new test which was based on an evaluation of the Walsh spectrum.

Another method which can be used to determine the information content and hence

the randomness in a bit-stream is by using spectral entropy [92, 145, 146]. Shannon’s

entropy has been effectively used to measure the amount of information and randomness

in data. The concept of Shannon’s entropy can be extended for a frequency spectrum by

normalizing the magnitudes of the frequency components and using the magnitudes in the
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entropy formula. For a frequency spectrum with components xn, the spectral entropy is

given by:

Es = −
∑

pn log2(pn), where pn =
|xn|2

||x||2
(3.8)

The spectral entropy effectively measures the flatness of a frequency spectrum. A flat

spectrum is analogous to high entropy or large randomness. A peaked spectrum has low

entropy and represents a relatively more deterministic signal. Spectral entropy differenti-

ates itself from normal entropy analysis of bit streams by considering the bit-streams in

relation with the fundamental orthogonal Walsh functions and the periodicity they exhibit.

For example, consider a binary bit-stream which has a period of four time units and a 50%

duty-cycle. Shannon’s entropy analysis would calculate the probability of logic 1 and logic

0 to be equal to 0.5 and hence determine its entropy to be equal to 1. However if perform a

spectral analysis of this bit-stream, then we shall obtain only a single frequency component

corresponding to a period of four time units. Spectral analysis of this frequency spectrum

would correctly classify the bit-stream as having low entropy. Hence spectral entropy deter-

mines the information content and randomness in a signal by considering the periodicities

inherent in the signal.

3.4 Spectral analysis for test generation

The use of spectral analysis in test generation, is based on the premise that test vectors,

having high fault coverage, exhibit discernible spectral characteristics. By reproducing these

characteristics, effective high fault coverage test vectors can be generated. The essential

spectral characteristics are unique and representative of the Circuit-Under Test (CUT)

and can be obtained from various sources like Register-Transfer Level (RTL) information,

verification test vectors, behavioral description, etc. We shall propose methods in chapters 6

and 8, which will use the concepts of spectral analysis as an integral part, for retrieving and

analyzing essential spectral properties for performing test generation.
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Chapter 4

Test Vector Minimization

Due to the recent advances in CMOS fabrication, the design complexity of digital

systems is growing exponentially with time. This has not only led to a proportional increase

in test generation complexity but also an increase in the test data volume or the number

of test vectors that need to be applied. The number of test vectors that need to be applied

to test a digital circuit directly affects the testing time for the circuit and hence the testing

cost. Therefore, it has become increasingly important to reduce the number of vectors

required to satisfactorily test a circuit. Test vector minimization or compaction, as it is

sometimes referred to, is a process of minimizing the number of test vectors while retaining

their coverage of detection of a given set of faults.

Several techniques have been published over the years for performing test vector min-

imization or compaction [7, 44, 51, 66, 106]. The techniques can be roughly classified as

static compaction and dynamic compaction [44]. In static compaction, an already generated

test vector set is reduced by removing the redundant test vectors, while maintaining the

fault coverage of the original test set. Since static compaction selects test vectors from a

given test set, the amount of compaction that can be performed is limited by the nature of

the original test set. In dynamic compaction, additional test vectors can be generated to

perform compaction, which can lead to a better compacted test set than static compaction.

However, dynamic compaction requires a heuristic and/or algorithm to generate additional

test vectors. Static compaction on the other hand is simpler to implement as it only needs

to evaluate the quality of the given test set. Also the static compaction algorithm can be

easily incorporated in a given test generation framework. For these reasons, our work on

test generation uses a static compaction based approach for test vector minimization.
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Several techniques have been published for performing static compaction. One of the

simplest examples of static compaction is reverse order fault simulation in which after the

test vectors are generated to cover the targeted faults, the test vectors are fault simulated in

a reverse order, i.e. starting from the test vector which was generated last to the test vector

which was generated first. After the maximum fault coverage is achieved, the remaining test

vectors are discarded as redundant. The reasoning behind this technique is that, towards

the end of the test generation process test vectors are generated to cover the hard to detect

faults, which can also detect some easy to detect faults. A method was described in [44]

where test vectors which are compatible with respect to their logic values of 0s and 1s are

repeatedly merged to generate a reduced test vector set. Enhanced techniques were later

proposed in [16, 115] where values in certain test vectors were modified to detect faults,

which were already detected by some other test vectors. The redundant test vectors could

then be removed, preserving the fault coverage. The above mentioned methods are based

on heuristics and can be termed as non-exact methods where the solution is not guaranteed

to be minimum. A class of techniques [27, 34, 55, 70, 85] were proposed based on Integer-

Linear Programming (ILP) [122] for test vector minimization. Although these methods are

a little expensive in terms of computational complexity they provide an exact solution to

the test vector minimization problem. Techniques [27, 69, 71, 112, 124] have been proposed

to reduce the complexity of ILP computations and obtain a sub-optimal solution. The

problem of minimizing test vectors using ILP considering their diagnostic properties has

been addressed in [123, 125].

4.1 Linear programming for test vector minimization

Linear programming (LP) is a technique for optimizing (minimizing or maximizing)

a linear objective function subject to a given set of linear inequalities. A set of variables

defined as real numbers are subject to a set of linear inequalities. The problem is then

to optimize a linear objective function defined over the set of variables. Mathematically a

linear programming problem is modeled using the following three components:
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• Set of variables X ∈ R

• Set of linear constraint inequalities over X

• Linear objective function to optimize: f(X)

By solving the LP problem, values are obtained for the variables in X, such that the

objective function f(X) is optimum under the given set of constraints. An Integer Linear

Programming (ILP) model formulation is a special case of LP, wherein the variables in

X are defined as integers as opposed to real numbers. The worst-case time complexity of

solving an LP problem is found to be polynomial-time (P), while that for an ILP problem

is shown to be non-polynomial-time (NP-hard).

4.2 ILP formulation for test minimization

As mentioned earlier, the test vector minimization problem can be formulated as

an Integer Linear Programming (ILP) problem. Consider a set of n test vectors, T =

{t1, t2, ..., tn} which collectively detect a set of m faults, F = {f1, f2, ..., fm}. By fault simu-

lation the individual faults detected by each test vector are determined and say a constant

Cij (i = 1 .. n; j = 1 .. m) is defined for each fault-test vector pair such that Cij = 1 if the

ith test vector detects the jth fault, else Cij = 0. A [0,1] integer variable xi (i = 1..n) is

defined for each test vector ti, such that if xi = 1 test vector ti is included in the minimized

test set, else it is discarded. The ILP formulation can then be modeled as:

• Set of variables xi ∈ [0, 1] ∀i = 1 .. n

• Subject to a set of linear constraints (one for each fault j):

n
∑

i=1

Cijxi ≥ 1 ∀j = 1 .. m (4.1)
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• Minimize the objective function:

n
∑

i=1

xi (4.2)

On solving the above ILP problem, [0,1] values are assigned to the variable xi ∀i =

1 .. n, such that the objective function
∑n

i=1 xi is minimized. A test vector ti then forms a

part of the minimized test vector set if xi = 1.

The worst-case complexity for solving an ILP problem is NP-hard and hence for certain

scenarios, solving by the ILP method may not be feasible. An alternative approach to

solving an ILP problem is by using relaxed LP [27, 71, 112]. A relaxed LP problem is

formulated in the the same way as an ILP problem described above, except that the set

of variables are defined as real numbers as opposed to integers. A real-valued solution is

obtained for the set of variables in polynomial time using LP and then the integer values for

the variables are determined by some heuristics. In Chapter 7, we propose such a method

for solving the ILP problem of test minimization using relaxed LP.
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Chapter 5

Built-In Self Test

The Design-For-Test (DFT) method of Built-In Self Test (BIST) was briefly introduced

in Section 2.5. As described earlier, BIST is a technique in which additional hardware is

inserted to test the Circuit Under Test(CUT) and determine whether it is good or bad [3,

4, 89, 94, 127]. The general block diagram of a BIST architecture is as shown in Figure 5.1

The two main components of the BIST architecture are the test generator and the

response analyzer. The test generator generates optimum test vectors to test the CUT

such that a high fault coverage is achieved. One of the challenges in the design of the test

generator is to keep the area overhead minimum, and at the same time maintain the ability

to generate relevant test vectors with high fault coverage for testing the CUT. The response

analyzer samples the primary outputs of the CUT, compares it with the expected good

responses and flags whether the CUT is good or bad. The wrapper provides the facility

of configuring the CUT in a test mode. Along with these components, a BIST controller

may be required to control the running of the BIST sessions. An efficient BIST architecture

should be designed in such a way that it has low area overhead, high fault coverage and low

test application time.

We shall briefly review the prior work in the area of BIST and then discuss the two

main components of the BIST architecture, which are the test pattern generator and the

output response analyzer in the following sections.
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Figure 5.1: General BIST architecture.

5.1 Prior work

We shall be concentrating on non-scan based implementation of BIST where the CUT

is tested using only its inputs and outputs. Several articles have been published on non-

scan based BIST using random and weighted random patterns [6, 10, 95, 96, 141]. Some

methods [95, 141] are based on modifying the flip-flops to increase the number of reachable

states of the sequential circuit to enhance the fault coverage. In another approach [96],

selected input patterns from a set of pseudo-random patterns generated by an LFSR, are

held for several time units to give high fault coverages. Several methods [6, 10, 94, 140, 142]

are based on weighted random patterns. Some authors [5, 65] generate weighted random

patterns using counters, while others [17] use bit fixing. In [108, 110], a parameterized struc-

ture for test pattern generation using counters and comparators was proposed. Although

the reported fault coverages were close to the deterministic patterns, the area overhead was

high. Generally, the above mentioned methods suffer from disadvantages like high area
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or delay overheads, high engineering effort and inability to obtain consistently satisfactory

results for a range of circuits.

Spectral analysis of sequential test patterns show that test sequences exhibit certain

periodicities. Giani et al. [41] proposed a spectra based test generation scheme, where

new vectors were generated replicating the enhanced spectral components of earlier vectors,

which detected faults. For a BIST environment, they [42] proposed an extension of that

method [41] using an in-built microprocessor to generate the vectors. Chen and Hsiao [18]

modified that method [42] for only the hard to detect faults. Bushnell et al. [26] propose

a Haar wavelet based BIST method for sequential circuits which gives fault coverages close

to the deterministic patterns for several circuits.

5.2 Test pattern generator

A Test Pattern Generator (TPG) is one of the important components of a BIST archi-

tecture which generates and applies test vectors to the CUT to test it. There are several

methods by which test vectors can be obtained and applied to the CUT. Deterministic TPGs

read and apply test vectors stored in a Read Only Memory (ROM). These test vectors could

be either manually generated or obtained using a test pattern generation program. However

this approach becomes infeasible as the number of test vectors grows exponentially with the

design size. Other methods of test generation can be classified as concurrent test pattern

generation [89] in which test vectors are calculated as they are being applied.

Several techniques have been proposed for concurrent test generation. Algorithmic

TPGs generate test vectors based on some heuristics or properties that help in testing the

CUT. Finite State Machines (FSMs) can be implemented to generate such test vectors. If

the CUT includes or has access to a processor and a memory, then a test program can be

run by the processor to generate the required test vectors [47, 54, 60, 77]. The test program

can then be stored in a ROM. These test programs are generally written to exercise the

functionality of the design and may require certain initializations or reconfiguration of the

CUT. Another example of algorithmic generation of test vectors can be seen in BIST for
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Random Access Memories (RAMs) where a sequence of test vectors are generated to perform

a series of well-defined operations [135].

A class of TPGs have been proposed over the years which can be viewed as independent

of the functionality or implementation of the CUT. An example of such test generators is

the exhaustive TPG which generates all possible test patterns for the CUT. For an n input

combinational circuit, the exhaustive TPG generates all 2n possible test vectors, which

detect all detectable gate-level stuck-at faults and bridging faults. However it will not

guarantee complete coverage of delay faults and transistor-level faults. The exhaustive

TPG can be implemented conveniently using an n-bit counter. However this approach

becomes impractical in terms of area overhead and application time as the number of

inputs n of the circuit grow. A variation of exhaustive testing is pseudo-exhaustive testing,

in which the combinational circuit is partitioned into sub-circuits and each sub-circuit is

tested exhaustively [88]. This approach becomes more practical as opposed to exhaustive

testing as the number of inputs n of the circuit grows. This approach may not work well

for circuits where exclusive partitioning of the circuit is difficult.

Another type of TPGs which are independent of the CUT are the pseudo-random

test generators [8]. These TPGs are able to generate test vectors which have random-

like properties and at the same time generate almost all possible combinations of test

vectors. Due to these properties, the pseudo-random test generators are widely used in

BIST architectures. There are mainly two types of implementations used for generating

pseudo-random patterns, Linear Feed-back Shift Register (LFSR) and Cellular Automata

Register (CAR) which will be explained in detail in the next subsections.

A variation of the pseudo-random test generator is the weighted pseudo-random TPG [119,

13], in which the probability of a bit being logic 0 or logic 1 is altered depending on the

nature of the CUT inputs. It has been observed in several circuits that, certain inputs

require probability of being logic ’1’ (p1) other than 0.5 for testing the circuit. An ex-

ample of such an input is a global reset signal to a sequential circuit, which needs to

be deactivated with a higher probability in order to help test the circuit. Also circuits
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which have an AND/NAND network or an OR/NOR network of gates require test vec-

tors whose probabilities of logic ’1’ (p1) are different from 0.5 to test the random-pattern

resistant faults. Weighted pseudo-random TPGs can be implemented by combining the

pseudo-random TPGs with gates like NANDs and NORs to produce the required weight-

ing of the bits [118]. For a NAND gate, if both its inputs have the probability of be-

ing logic ’1’ as p1=0.5, then the probability for its output to be logic ’1’ is given by

p1(output) = 1−p1(input1)×p1(input2) = 0.75. Similarly for a NOR gate, if both its inputs

have p1=0.5, then for its output p1(output) = (1−p1(input1))× (1−p1(input2)) = 0.25. A

combination of NAND and NOR gates can then be used to generate the required weight-

ing of bits. A universal weight generator was proposed in [118] to generate an arbitrary

weighting of pseudo-random bits.

Since the pseudo-random TPGs are widely used in a BIST architecture including our

proposed work, we shall explain these in more detail. As mentioned earlier, the pseudo-

random TPG can be implemented in mainly two ways: Linear Feed-back Shift Register

(LFSR) and Cellular Automata Register (CAR). We explain these implementations in the

following sections.

5.2.1 Linear Feedback Shift Register (LFSR)

An LFSR [28, 127] is one of the most frequently used TPGs, as compared to other

TPGs, as it uses less combinational logic per flip-flop and hence is area efficient. As the

name suggests, an LFSR is a shift register with a linear feedback using XOR gates. There

are two types of LFSRs defined based on the type of feedback: an internal feedback LFSR

and external feedback LFSR. Figures 5.2 and 5.3 show the general implementation of the

internal and external feedback LFSRs, respectively. As observed in the figures, in an internal

feedback LFSR, XOR feedbacks are distributively placed in the shifting path of the register,

while in an external feedback LFSR, the XOR feedbacks are placed external to the shifting

path. The actual implementation of an LFSR is determined by its characteristic polynomial

as shown in the figures. A characteristic polynomial takes the form:
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FF1  FF2  FFn-1  FFn 

x0  x1  x2  x(n-1)  xn 

Characteristic polynomial P(x): xn
 + a(n-1)xn-1 + … + a1x1 + 1; where ai = [0,1]   

a1  a2  a(n-1) 

Figure 5.2: Generic N-bit internal feedback shift register.

 

FF1  FF2  FFn-1  FFn 

x0  x1  x2  x(n-1)  xn 

Characteristic polynomial P(x): xn
 + a(n-1)xn-1 + … + a1x1 + 1; where ai = [0,1]   

a1  a2  a(n-1) 

Figure 5.3: Generic N-bit external feedback shift register.
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P (x) = xn + a(n−1)x
(n−1) + ... + a1x

1 + 1;where ai = [0, 1] (5.1)

The variables xi represent the outputs of the flip-flops as indicated in the figures 5.2

and 5.3. Based on the values of the coefficients ai, the corresponding XOR feedbacks

are activated or deactivated as signified by the AND gates shown in the figures. The

characteristic polynomial, by specifying the feedback connections, determines the sequence

and the total number of unique vectors that can be generated by the corresponding LFSR.

A characteristic polynomial for an n-bit LFSR, which is able to generate a maximal length

test vector sequence of 2n−1, is called a primitive polynomial. Since in a BIST environment,

it is important to generate as many unique test vectors as possible, primitive polynomials

play an important role in the design of LFSRs. Tables of primitive polynomials for various

values of n have been published in literature [8, 105, 127] which can be used for designing

a maximal-length n-bit LFSR. One of the limitations of the LFSRs is that, due to the

inherent built-in shift register, the n-bit test vector sequences generated exhibit a shifting

pattern and thus a correlation among the bits, which might not be effective in testing some

circuits.

5.2.2 Cellular Automata Register (CAR)

A Cellular Automata Register (CAR) [57, 127] is similar to an LFSR, however it does

not exhibit the shifting pattern observed in the test vectors generated by an LFSR. The

construction of a CAR requires more XOR gates (anywhere between one and two) per flip-

flop than an LFSR. A CAR is constructed in such a way that each flip-flop is a function of

its neighboring flip-flops. More specifically, the next state value of a flip-flop FFi in an n-bit

register is a function of the current state values of the flip-flops FF(i−1), FFi and FF(i+1).

Flip-flop FF(i−1) is a flip-flop preceding the considered flip-flop FFi and flip-flop FF(i+1)

is a flip-flop succeeding the flip-flop FFi. Based on the current state values of the three
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function 

Figure 5.4: Generic rule function for a flip-flop.

flip-flops FF(i−1), FFi and FF(i+1), a truth table for the next state values of the considered

flip-flop FFi is constructed. Since there are 3 input values, 223

= 28 = 256 possible next

state value truth tables for FFi can be constructed. Each such possible truth table is called

a “Rule” and is named by the decimal equivalent of the truth table binary values. Hence

in all there are 256 rules; from rule 0 to rule 255.

Figure 5.4 shows the schematic diagram of a generic rule function implementation for

a considered flip-flop FFi. The current state values of the three flip-flops drive the inputs

of the next state calculation logic or Rule Function as referred to in the figure. The output

of the rule function provides the next state value for the flip-flop FFi.

Table 5.1 gives three examples of rule functions for a flip-flop in a CAR. The first

three columns give the different possible values of the current state of the three flip-flops.

The rule name is derived from the binary values of the truth table. The fourth column

gives the corresponding bit position weight for each bit in the truth table. Columns five

to seven give three example rule functions that can be used for a flip-flop. The example

in column five implements a shift register as can be observed from the truth table values

that (FFi = FF(i−1)) and is referred to as Rule 240. Columns six and seven give two other

examples of rule functions and they are named Rule 90 and Rule 150, respectively.

For a stage or flip-flop in an n-bit register, any of the rules from rule 0 to 255 can

be used. For the flip-flops at the boundaries of the CAR, since one of their neighboring

flip-flops is missing, two options could be used for implementation. The first is to assume a
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Table 5.1: Example rule functions for CAR.

Current state values Bit position Next state truth tables for FFi

FF(i−1) FF(i) FF(i+1) weight Rule 240 Rule 90 Rule 150

1 1 1 27 1 0 1

1 1 0 26 1 1 0

1 0 1 25 1 0 0

1 0 0 24 1 1 1

0 1 1 23 0 1 0

0 1 0 22 0 0 1

0 0 1 21 0 1 1

0 0 0 20 0 0 0

Decimal equivalent 240 90 150

null boundary condition, where the missing flip-flop is assumed to be of logic value 0. The

second option is to assume a cyclic boundary condition where the end flip-flops of the CAR

are assumed to be adjacent in a cyclic fashion and provide logic values to each other. Either

condition can be used, however only null boundary condition is able to provide a maximal

length sequence. Furthermore, null boundary condition uses fewer gates and avoids the

performance penalty due to long feedback paths between the end flip-flops as compared

with the cyclic boundary condition.

Among all the rules, rule 90 and rule 150 are the most widely used rules in the im-

plementation of a CAR, as a combination of these is able to provide a maximal-length

pseudo-random sequence. As can be observed from the truth tables in figure 5.4, in rule

90, the next state value of a flip-flop FFi is an XOR operation of the current state values

of its neighboring flip-flops FF(i−1) and FF(i+1). In rule 150, the next state value of a

flip-flop FFi is an XOR operation of the current state values of the flip-flops FF(i−1), FFi

and FF(i+1). Figures 5.5 and 5.6 show the implementation of the rules 90 and 150 for a

considered flip-flop FFi. Similar to a characteristic polynomial of an LFSR, for an n-bit

register, the combination of rules 90 and 150 to be used for each stage can be looked up

in a precomputed table. These tables have been published in the literature [56, 104, 127]

which can be used conveniently to design any given n-bit CAR.
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FF(i-1)  FFi  FF(i+1) 

Figure 5.5: Rule 90 implementation of a CAR.

 

FF(i-1)  FFi  FF(i+1) 

Figure 5.6: Rule 150 implementation of a CAR.

5.3 Output response analyzer

Another important responsibility of a BIST architecture, other than producing good

quality test vectors, is to sample the response of the CUT to all the applied test vectors

and determine whether any test failed. The Output Response Analyzer (ORA) performs an

important task to this effect, by compacting the output responses of the CUT to the test

vectors applied and facilitating the determination of a pass/fail indication for the CUT.

There are several methods and techniques [8, 138, 127] which can be used to implement

the ORA. Concentrators use an XOR tree to compact multiple outputs of the CUT into

a single output bit-stream. Although the concentrator compacts the output data spatially

(for multiple outputs), some other technique needs to be used along with that to perform

the compaction of output data over time. A comparator-based ORA performs a comparison

of the output responses of the CUT to the expected good responses on a vector-by-vector

basis. The expected good responses could be stored in a ROM. This approach is generally

discouraged due to high area overhead, except for some applications where it would be
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beneficial. A counter can also be used as an ORA, where a count could be maintained for

the number of 0s, 1s or transitions in the output response, which can then be compared

to the expected good circuit count after the testing session ends. Similarly, parity can

calculated for the output response data and checked with the expected good circuit parity.

A variation of the counter and the parity checker as an ORA, is the use of an accumulator

which sums the values of the output responses, which are treated as a binary number. The

accumulated binary value can then be compared with the good circuit value to determine

the pass/fail status of the CUT. One of the widely used implementations for an ORA is

the Signature Analyzer, which uses an LFSR to compact the output responses within the

register. The output responses of the CUT are XORed with the inputs of the flip-flops of

the LFSR. After the test sequence has been applied, the value in the LFSR is compared

with the expected value to determine whether the CUT is good or bad.
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Chapter 6

Spectral RTL Test Generation

In this chapter we shall propose a spectral-based test generation method for sequential

circuits which uses information from the Register Transfer Level (RTL). Conventionally, test

vectors are generated at the gate-level, i.e., after synthesis has been performed. Though

this methodology has the advantage of being able to generate reliable, high fault coverage

test vectors due to its direct use of the gate-level fault models, it suffers from certain

disadvantages. For large circuits, the number of faults and the algorithm complexity make

the gate-level test generation time consuming and expensive. Since gate-level test generation

is performed at a later stage in the design process it is difficult to deal with testability

issues, revealed during test generation, in an already verified design. Also, the gate-level

Automatic Test Pattern Generator (ATPG) cannot be used for cores or circuits for which

only the functional information is available. This scenario is frequently encountered in

commercial environments.

Test generation performed at the RTL, eliminates the disadvantages of gate-level test

generation discussed above. The amount of information to be processed at RTL is much

lower than at gate-level and bottlenecks in testability can be uncovered and remedied with

some ease. Also since RTL test generation has no prerequisite of a synthesized circuit, it

is synthesis independent, and hence enables test generation to begin earlier in the design

cycle.

Several RTL test generation methods have been proposed in the literature. Ravi and

Jha [114], Ghosh and Fujita [39], Kim and Hayes [75] and Goloubeva et al. [45] use pre-

computed test sets for RTL constructs like adders, multiplexers, etc., and derive test vectors

for the whole RTL circuit. Pre-computed test sets either make some assumptions about

the synthesis of the design or use a superset of the actually required test vectors. All of
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them use some kind of data structures or metrics to derive the RTL test sets, which have

implications of large memory and/or computation overheads. Ravi and Jha [114], and Kim

and Hayes [75] use controllability and observability metrics, while Ghosh and Fujita [39] and

Goloubeva et al. [45] use data structures called decision diagrams. Yi and Hayes [147], and

Pomeranz and Reddy [111] have proposed a fault model which considers fault activation

and propagation from the primary inputs to primary outputs. Test vectors can then be

generated to cover these faults. However, these fault models have been restricted to only

combinational circuits. Thaker et al. [129, 130, 131, 132] have shown that a set of stuck-at

faults on variables in high-level synthetic operators and at the boundaries of RTL modules

can be used as a statistical sample for the gate-level coverage analysis.

Several papers propose test generation schemes using spectral methods. In [41] a

spectral test generation scheme for sequential circuits is proposed, where in, starting from

pseudo-random vectors the generation of new test vectors is guided by the spectral com-

ponents of previously beneficial generated vectors. Hsiao’s group at Virginia Tech have

published further work on spectrum-based self test and core test [18, 19, 72]. Zhang et

al. [158] further refined the method of extracting the spectra from a binary signal using a

selfish gene algorithm. Recent work suggests that wavelet transforms can also be used for

similar applications [25].

In this chapter, we present a spectral method of generating test vectors for sequential

circuits using RTL faults. The RTL faults are defined as faults on the inputs and outputs

of the circuit and inputs and outputs of the flip-flops, since these faults remain invariant

through synthesis. Test vectors are generated to cover these RTL faults. Since the RTL

faults form only a small fraction of the total number of faults, the time complexity of this

step is low. The RTL test vectors thus generated are spectrally analyzed for prominent

Walsh function components and the noise level. New test vectors are then generated using

these properties to cover all the gate-level faults. These test vectors, which are generated

using spectral properties of RTL test vectors, are found to detect almost as many faults as

any gate-level ATPG. Besides, the sequences can be compacted to about the same size as
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that produced by the gate-level ATPG. In the RTL method, therefore, the use of gate-level

ATPG is eliminated and only a fault simulator is used. Our proposed RTL test generation

scheme is described in the following sections.

6.1 Spectral RTL ATPG

As described earlier, in our proposed RTL test generation scheme, spectral properties

of test vectors, which cover RTL faults, are used to generate new test vectors which cover

the gate-level faults. Our approach to RTL-based test generation consists of two principal

steps:

1. RTL spectral characterization

• Test generation for RTL faults

• Spectral analysis

2. Gate-level test generation

• Spectral vector generation

• Vector sequence compaction and coverage analysis

6.1.1 RTL spectral characterization

This is the first step in our proposed methodology, in which essential spectral properties

beneficial for detection of gate-level faults are determined. These spectral properties are

the characteristics of the digital circuit under consideration and can be obtained in various

ways, such as using functional information, gate-level information, etc. In our proposed

method we retrieve these spectral properties from test vectors which detect faults at RTL.

This step of RTL spectral characterization consists of two sub-steps, viz. test generation

for RTL faults and spectral analysis, which are described below.
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Figure 6.1: Spectral analysis of a test vector block.

Test generation for RTL faults

RTL faults are defined as faults on primary inputs and outputs of the circuit and on

inputs and outputs of all flip-flops. Since these faults are also present at RTL and remain

invariant through logic synthesis, we term them “RTL faults”. In this step test vectors are

generated to cover these faults. Any test generation scheme which works at RTL can be used

to generate the test vectors. Test vectors can be generated with the circuit uninitialized

or if a reset signal exists it is activated in the beginning of the test generation process to

initialize the circuit.

Spectral analysis

As described in the previous step, test vectors are generated to detect the RTL faults.

These vectors are analyzed using Hadamard matrix to find the major contributing Walsh

components as described in Section 3.2. To analyze the test vectors, the bit-streams entering

various inputs are analyzed separately. Figure 6.1 shows a schematic diagram of the process.
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A test vector block, generated for detecting the RTL faults, will consist of test vectors as

the rows in the block and the inputs of the circuit, to which the bits are being applied, as its

columns. We perform a spectral analysis on the bits which are being applied to each of the

inputs separately. As an example, shown in Figure 6.1, a spectral analysis is performed on

the bits which are being applied to the input 2 of the circuit. As described in Section 3.2,

a Hadamard matrix of order n is used to analyze the binary bits.

The number of bits that can be analyzed at a time, which is determined by the dimen-

sion of the Hadamard matrix (2n), is always a power of 2. The RTL test vector sequences,

however may not always be of lengths that are powers of 2. We have several options of

analyzing the bit-streams. One option is to use a limited dimension Hadamard matrix and

analyze pieces of the bit-stream individually. However this method has the disadvantage

that, it might not be able to capture the long periodicity inherent in the bit-stream. The

other option is to analyze the whole bit-stream together. To do that, we may either need

to truncate the bit-stream or use a higher order Hadamard matrix than the length of the

bit-stream. For practical reasons, we use a dimension which is closest to the length of the

bit-stream. For example, for a bit-stream of length 135 we choose a Hadamard matrix

of dimension 128 and analyze only the first 128 bits of the bit-stream. Analysis using a

dimension of 256 is found to give rise to a large number of noisy components due to the

uncertainty in the unspecified bits from 135 to 256 and hence presents difficulty in finding

out the essential components. In cases where we choose a dimension greater than the length

of the bit-stream, the bit-stream is extended with 0s up to the dimension of the matrix to

indicate non-inclusion of these bits in the correlation operation.

As explained in Section 3.2 and illustrated in Figure 6.1, to perform the spectral anal-

ysis on bits of each input, 0s and 1s are represented as −1s and +1s respectively and then

multiplied with the Hadamard matrix to obtain the spectral coefficients. The major con-

tributing spectral coefficients for each input are determined by using a threshold value.

The spectral coefficients whose magnitudes are above the threshold value are considered as

essential components while others are neglected as noise.
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To determine the threshold, which separates the essential components from the noise

components, the power of each spectral coefficient is compared with the mean power of

the total spectrum. For white noise we shall have all equal valued coefficients and their

magnitudes will be nearly equal to the mean of the spectrum. Figure 6.2 shows the spectral

coefficients obtained for an arbitrary random signal. The average of the spectrum is indi-

cated with a dash-dotted line. As observed, the spectral coefficient values are nearly equal

to the mean of the spectrum.

After squaring the coefficients, the magnitudes of the coefficients are compared with

the mean of the spectrum by taking a ratio of the two. This compares the percentage of

power in the coefficients to the mean noise power. If this ratio is greater than some constant

K, then the coefficient, and hence the corresponding basis bit-stream, is considered to be

an essential component or else is considered non-essential or noise. The constant K affects

which coefficients are being considered as essential ones. A very high value of K makes the

selection process very acute, selecting only few components as essential ones and vice versa

for a low value of K.

As an example Figure 6.3 shows the spectral coefficients obtained for the input signal

“DataIn[5]” for the experimental processor circuit PARWAN [97]. The high rising bars show

high correlation with the corresponding basis bit-streams and these are considered essential

components. The average power or the random noise level is indicated with a dash-dotted

line. Spectral coefficients below the average power are considered to be noise components.

6.1.2 Gate-level test generation

After performing the first step of RTL spectral characterization of the test vectors,

essential spectral coefficients for each input are obtained. In this second step of gate-level

test generation, test vectors are generated from the extracted spectral information and they

are compacted. The two sub-steps are described below.
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Figure 6.3: Walsh spectral coefficients for input DataIn[5] signal of PARWAN processor.
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(b) New bit − stream obtained from perturbed spectra :

Sign{[1 6 2 − 1 3 − 2 3 − 1] × H(3)}
= [1 1 1 − 1 1 − 1 1 − 1] → [1 1 1 0 1 0 1 0]

Figure 6.4: Bit-steam generation by perturbing the spectra.

Spectral vector generation

To generate new test vectors for gate-level faults, the essential spectral coefficients

decided by the threshold in the first step are retained and others, being considered noise,

can be filtered out or changed as per the selected methodology. Filtering out the noise

components [41] may have the disadvantage of losing some phase information inherent in

those components, which is a part of the characterization of the circuit. Hence in our

approach the noise components are perturbed in a confidence range in terms of magnitude

and/or in phase to generate new coefficients. The confidence levels correspond to the amount

of randomness to be added.

After perturbing the spectral coefficients, test vectors are generated from the coeffi-

cients by multiplying the coefficients with the Hadamard matrix. Figure 6.4 (a) shows an

example of perturbing the noise spectral coefficients. The major essential spectral coefficient

of magnitude ’6’ is retained, while the other noise spectral coefficients are perturbed both

in magnitude and/or sign randomly within a small confidence level. Figure 6.4 (b) shows

the construction of the test vector from the perturbed spectral coefficients by multiplying

with a 3rd order Hadamard matrix, H(3). In our method, we generate test vector sets with
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different values of K. Also since we are adding noise randomly, this variation gives different

characteristics to each vector set. We generate multiple sets of vectors for each value of K.

Vector sequence compaction and coverage analysis

After performing the spectral vector generation step, we obtain multiple sets or se-

quences of test vectors which all retain the essential spectral coefficients and use perturbed

noise. The initial RTL test vectors are either generated starting from an uninitialized circuit

or if a reset signal exists, the reset signal is activated at the beginning of the test sequence.

Hence all the spectrally generated sets of test vectors are independent of each other and

can be applied in any order.

The generated sets of test vectors will consist of several redundant sets and hence they

can be compacted. We use an ILP formulation as described in Chapter 4 to formulate the

problem of test vector compaction. Suppose the number of spectral components obtained for

a circuit is N . We generate perturbation vectors sequences, V1, V2, · · ·, VM , as described in

the previous subsection, each of length N , such that their coverage as determined by fault

simulation of the gate-level circuit either reaches some target value or simply saturates.

Next, we compact the test by selecting the smallest number of these sequences without

reducing the coverage.

During fault simulation, at the beginning of each vector sequence the complete fault

list is restored and the circuit is set to an unknown state. Thus, the coverage obtained for a

sequence remains valid irrespective to the order in which it is applied. In fault simulation,

the fault simulator provides a complete list of vector sequences that detect each fault. The

vector sequence Vi is assigned an integer variable, xiǫ[0, 1] (xi = 1 : select the ith sequence

or else discard it).

Suppose the kth fault is detected by sequences V3, V4, and V11. Then the following

ILP constraint is used to pick at least one sequence that detects this fault:

x3 + x4 + x11 ≥ 1 (6.1)
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The number of such constraints equals the number of faults. The ILP then determines the

values of variables xi’s that satisfy all constraints of the type 6.1 and provide an optimum

value for the following objective function:

Minimize
i=M
∑

i=1

xi (6.2)

where M is the total number of vector sequences generated. In the ILP solution, the smallest

possible number of x’s is assigned the value 1 and all others are assigned 0. The sequences

with their x’s set to 1 form the compacted test set.

6.2 Design-for-testability

Test generation for only the RTL faults has an additional advantage other than char-

acterizing the circuit. It reveals the bottlenecks in the testability of the circuit. Analysis

of hard to detect faults at the RTL gives an idea of the hard to test parts of the circuit.

Hence by increasing the testability of hard to test faults, we could expect to increase the

testability of the overall circuit. The testability of signals can be increased by increasing

their controllability and/or observability. Several earlier works [53, 63] deal with increas-

ing the testability by addition of control and observation points. Adding control points

requires adding extra gates in the normal signal paths of the circuit, which may affect its

performance. Hence we shall constrain ourselves to addition of observation points since they

are less intrusive. One option is to add latches for all the observation points and connect

them through a scan-out chain. This structure is often used for design debugging and can

help in improving the fault coverage of tests [64]. Another option is to use an XOR tree

to condense the logic values at the various observation points [24, 29, 36, 117]. Since the

XOR tree incurs less hardware, we used it as our DFT methodology. Figure 6.5 shows an

illustration of the RTL-based DFT scheme. Signals A, B and C are signals which exist at

the RTL and are found to be hard-to-observe or unobservable during the RTL test gener-

ation step of Section 6.1.1. These signals are connected to an XOR gate chain and made
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Figure 6.5: RTL-based DFT to improve observability of signals.

observable by making the output of the last XOR gate a primary output of the CUT. We

implemented and evaluated our RTL DFT scheme for a simple accumulator-based processor

named PARWAN [97] which will be discussed in more detail in the Section 6.3.

6.3 Implementation and results

We applied our spectral technique of RTL-ATPG to ITC’99 benchmark circuits, IS-

CAS’89 benchmark circuits and an experimental processor, PARWAN [97]. We describe

the results of the benchmark circuits (ITC’99 and ISCAS’89) and the processor circuit

PARWAN in separate sections below.

6.3.1 Results for ITC’99 and ISCAS’89 benchmark circuits

We implemented our spectral RTL-ATPG method on four ITC’99 benchmark circuits

b01, b09, b11 and b14 and four ISCAS’89 benchmark circuits s1488, s5378, s9234 and
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Table 6.1: Circuit description.

Circuit PIs POs FFs

b01 2 2 5

b09 1 1 28

b11 7 6 31

b14 32 54 245

s1488 8 19 6

s5378 36 49 179

s9234 37 39 211

s35932 36 320 1728

s35932. The ITC’99 benchmark circuits are RTL/behavioral descriptions of digital designs

and need to be synthesized into a gate-level netlist. Three of the ITC’99 RTL benchmark

circuits (b01, b09, b11) were synthesized into gate-level netlists in two ways, by optimizing

area and by optimizing delay. An area optimized netlist was used for the ITC’99 benchmark

circuit b14. The characteristics of these different circuits are shown in Table 6.1. Column

1 gives the circuit name. Columns 2, 3 and 4 give the number of primary inputs (PIs),

primary outputs (POs) and number of flip-flops (FFs) respectively for the circuits listed.

In the absence of an RTL/behavioral test generator, the test vectors for RTL faults

were obtained using the Mentor Graphics tool FlexTest [91] which is a gate-level sequential

ATPG system with a built-in fault simulator. Those RTL vectors were analyzed for their

spectrum, new vector sequences were generated using the technique discussed above and

finally they were compacted. The test sets were compacted using the ILP formulation as

described in Section 6.1.2 by using the ILP software contained in the AMPL mathematical

programming package [35]. Results were obtained on Sun Ultra 5 machines with 256MB

RAM. Table 6.2 shows the characteristics of the RTL test vectors generated for the circuits.

Column 1 lists the circuit name. Here b01-A and b01-D are the area and delay optimized

implementations of the b01 ITC’99 benchmark. ISCAS’89 benchmarks are already at the

gate-level. For s5378 and s9234, we created additional versions by adding a global reset

input in the original circuits. These are denoted with an asterisk (*) in Tables 6.2 and 6.3.
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Table 6.2: Spectral characterization of circuits by RTL vectors.
Circuit RTL Characterization

Name Gate-level No. of No. of CPU No. of RTL Gate-level
synthesis faults vectors s spectral Cov. (%) Cov. (%)

coeffs.

b01-A Area optimized 62 38 < 1 64 94.57 96.33
b01-D Delay optimized 62 31 < 1 32 94.57 85.45
b09-A Area optimized 248 109 519 128 75.22 78.18
b09-D Delay optimized 248 193 418 256 75.22 72.69
b11-A Area optimized 340 224 530 256 76.16 74.09
b11-D Delay optimized 340 174 767 256 76.32 84.14
b14-A Viper processor subset 2566 110 1684 128 63.53 47.14
s1488 ISCAS’89 104 38 1 64 83.12 64.34
s5378 ISCAS’89 1602 115 1185 128 55.36 68.82
s5378* ISCAS’89+Reset 1962 82 444 64 69.22 65.04
s9234 ISCAS’89 1840 16 706 16 18.48 16.45
s9234* ISCAS’89+Reset 2264 59 2495 64 49.85 43.58
s35932 ISCAS’89 14536 92 50 64 68.80 94.03

Column 3 of Table 6.2 lists the number of RTL faults, which are the faults at the

primary inputs, primary outputs, and the inputs and outputs of flip-flops. For example,

consider the circuit b11, which according to Table 6.1 has 7 primary inputs, 6 primary

outputs and 31 flip-flops. These do not include the clock and reset inputs. Including those

the primary input count is increased to 9. Each flip-flop has five terminals, three inputs

(data, clock and reset) and two outputs (Q and Q). Therefore, the RTL fault set consists of

2×(9+6+31×5) = 340 stuck-at faults as shown in column 3 of Table 6.2. Next in Table 6.2

appear the number of RTL test vectors, test generation time (CPU s) and the number of

spectral components. In the absence of a true RTL ATPG program, we used FlexTest [91]

to derive tests just for the selected stuck-at faults we designate as RTL faults. For the

ITC’99 benchmarks this was done for two gate-level versions, one synthesized with area

optimization and the other with delay optimization. The number of spectral components

in the sixth column is the number of RTL vectors rounded off to the nearest power of 2.

The last two columns of Table 6.2 show the fault coverages of the RTL vectors. RTL

Coverage is the coverage of just the RTL faults and gate-level coverage is the coverage of

all stuck-at faults in the implementation. As expected, the gate-level coverage is lower

than the normal requirement of being close to 100%. We will use our spectral technique
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Table 6.3: Comparison of RTL ATPG and Sequential gate-level ATPG results.
Circuit No. of RTL ATPG – spectral tests Gate-level ATPG Random inputs
name gate-level Cov. No. of CPU Cov. No. of CPU No. of Cov.

faults % vectors secs % vectors secs vectors %

b01-A 228 99.57 128 19 99.77 75 1 640 97.78
b01-D 290 98.77 128 19 99.77 91 1 640 95.80
b09-A 882 84.68 640 730 84.56 436 384 3840 11.71
b09-D 1048 84.21 768 815 78.82 555 575 7680 6.09
b11-A 2380 88.84 768 737 84.62 468 1866 3840 45.29
b11-D 3070 89.25 1024 987 86.16 365 3076 3840 41.42
b14-A 25894 85.09 6656 5436 68.78 500 6574 12800 74.61
s1488 4184 95.65 512 103 98.42 470 131 1600 67.47
s5378 15584 76.49 2432 2088 76.79 835 4439 3840 67.10
s5378* 15944 73.59 1399 718 73.31 332 22567 2880 62.77
s9234 28976 17.36 64 721 20.14 6967 18241 160 15.44
s9234* 29400 49.47 832 2734 48.74 12365 4119 2176 33.06
s35932 103204 95.70 256 1801 95.99 744 3192 320 50.70

to enhance this coverage. The low coverage of the RTL faults, however, may indicate a

testability problem, which could limit our ability to increase the coverage either by the

spectral technique or by gate-level ATPG.

Table 6.3 gives a comparison of the proposed RTL ATPG method with gate-level

sequential ATPG. The first two columns give the circuit name and the number of gate level

single stuck-at faults. The performances of RTL ATPG–spectral tests, gate-level ATPG,

and random vectors can be compared with respect to the test coverage (Cov %), number

of test vectors and test generation time.

For RTL ATPG, the number of vectors is the total number vectors in the compacted

test sequences. Consider the circuit b01-A. In Table 6.2, there are 38 RTL vectors that

provide 64, i.e., 38 rounded to next power of 2, spectral components. Ten sequences,

each of 64 vectors, were generated by the perturbation technique of Subsection 6.1.2. The

fault simulator of FlexTest [91] provided a gate-level test coverage of 99.57% for the 228

stuck-at faults shown in column 2 of Table 6.3. Note that the test coverage of FlexTest is

an upward adjusted coverage, accounting for faults that are found to be untestable. The

ILP compaction technique of Subsection 6.1.2 selected two sequences, reducing the test

length to 128 vectors. The test generation time in column 5 includes the times for RTL
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Figure 6.6: Test coverage of RTL ATPG (spectral vectors) for area optimized b11-A circuit.

characterization (from Table 6.2), perturbed spectral sequence generation, fault simulation,

and ILP compaction. Of these, RTL characterization and fault simulation are the dominant

components, the other two being negligible.

Next, for the circuit b01-A, we find that FlexTest generates 75 vectors for a 99.77% test

coverage and 640 random vectors (same number of vectors as in ten spectral sequences of

64 vectors each) have 97.78% test coverage. As we move down in Table 6.3, circuits become

larger and we observe that RTL ATPG provides about the same test coverage with slightly

larger vector lengths as the gate-level ATPG, but its time increases more slowly. Moreover,

the RTL faults used for circuit characterization and vector generation are implementation

independent. Notably, the test coverage of random vectors tends to drop as circuits become

larger.

As an example, Figure 6.6 compares the graphs of test coverage percentage against the

number of vectors for ISCAS’89 benchmark circuit b11-A, for RTL spectral ATPG vectors,

gate-level ATPG vectors and random vectors. The gate-level coverages of RTL vectors

(generated to cover RTL faults only) are also shown by a point in each graph. For these
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Figure 6.7: PARWAN CPU [97].

circuits, the coverages of RTL ATPG are about 2 to 4% higher, vector lengths about double

and CPU times about 30 to 50% when compared to the gate-level ATPG.

6.3.2 Results for PARWAN processor

We applied our RTL-spectral based test method to a simple accumulator-based pro-

cessor named PARWAN [97] to demonstrate our method’s effectiveness. As shown in the

schematic diagram of PARWAN processor in Figure 6.7, it includes the following compo-

nents: accumulator (AC), arithmetic logic unit (ALU), shifter unit (SHU), status register

(SR), instruction register (IR), program counter (PC), memory address register (MAR) and

a control unit (CTRL). It has an 8-bit data-bus with a 12-bit address bus (addressing 4K

memory). The circuit has around 800 gate modules and 53 flip-flops. Currently our method

cannot handle bidirectional pins. Hence we had to split the bidirectional buses into separate

input and output buses. Also we added a reset signal to initialize the circuit for testing.
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The gate-level netlist for PARWAN processor was downloaded from an internet web-

site [1]. As mentioned earlier, the bidirectional data-bus was separated into input and

output buses and a global reset input was added. We sampled a total of 737 RTL faults,

which were all the faults on the inputs-outputs of the different components (for example,

ALU, SHU, etc.), inputs-outputs of the registers (for example, IR, PC, etc.) and the faults

on the tri-state drivers. Vectors were generated to cover these 737 RTL faults using the

commercial sequential ATPG tool FlexTest [91] and new vectors were generated using the

technique described in Section 6.1. We applied our method on PARWAN processor us-

ing two types of fault models; stuck-at and transition delay. Their respective results are

described in separate sections below.

Results for stuck-at fault model

In the absence of a RTL/behavioral test generator, the test vectors for RTL faults

were obtained using the Mentor Graphics tool FlexTest [91] which is a gate-level sequential

ATPG system with a built in fault simulator. For the stuck-at fault model, 134 vectors

were generated to cover the RTL faults. These vectors were analyzed for their spectrum

and new vector sequences were generated and compacted using the technique discussed in

Section 6.1.2. These results were obtained on Sun Ultra 5 machines with 256MB RAM.

Table 6.4 shows the characteristics of RTL test vectors. Columns (left to right) give number

of RTL faults, number of vectors generated, test generation CPU seconds, number of spectral

coefficients derived, RTL fault coverage and gate-level fault coverage of RTL vectors. Faults

in the clock network were not included and a 50% credit was given to potentially testable

faults [113]. Coverages are defined as ratios of the number of detected faults to the total

number of detectable faults as reported by FlexTest. The last column gives the fault

coverage of the 134 RTL vectors for collapsed gate-level faults in the entire circuit, excluding

clock faults.

As discussed in Section 6.2, the RTL test generation reveals bottlenecks in the testa-

bility of the circuit. To detect the faults in tri-state bus drivers we modeled the buses with
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Table 6.4: Spectral characterization of processor circuit by RTL vectors for stuck-at faults.
No. of No. of CPU No. of spectral RTL fault Gate-level

RTL faults vectors s coefficients coverage Coverage

737 134 640 128 96.30% 81.22%

Table 6.5: Spectral RTL ATPG for stuck-at faults for processor circuits.
Collapsed RTL spectral ATPG Gate-level ATPG Random vectors

Circuit gate-level Cov. No. of CPU Cov. No. of CPU Cov. No. of
faults % vectors s % vectors s % vectors

Parwan 2270 98.23 2442 2327 93.40 1403 26430 80.95 2814
(original)
Parwan 2320 98.77 2442 1966 95.78 1619 20408 87.09 2948

(with DFT)

memory using the high-impedance signal state. An analysis of the undetected RTL faults

revealed 10 faults classified as unobservable by FlexTest. The remaining faults were either

untestable or potentially tested. We selected the 10 unobservable fault sites as observation

points and inserted a tree of nine XOR gates whose output was made into an added primary

output. Thus, a DFT version of the processor was created. All RTL faults were now either

detected or potentially detected by the same 134 vectors. However, the gate-level fault

coverage of the RTL test vectors showed only a moderate increase to 83.61% from 81.22%

(indicated in the last column of Table 6.4).

Table 6.5 gives the results of the RTL spectral ATPG method. Column 2 gives the

number of collapsed faults in the circuits. Results for our proposed RTL spectral ATPG,

Gate-level ATPG and Random vectors can be compared in terms of test coverage and

number of vectors. Additionally test generation times for our proposed method and the

gate-level ATPG method can be compared. As can be observed from the table, our proposed

method achieves better test coverage as compared to the gate-level sequential ATPG in lower

test generation time. The coverage is slightly lower than 100% because some faults were

potentially testable and were given 50% credit. Since the RTL ATPG covered almost all

faults in the original circuit, the benefit of DFT was small. However, the benefits of DFT

were more for gate-level ATPG and random vectors. The test coverage plots of the original

circuit and the circuit with DFT are shown in Figures 6.8 and 6.9.

55



Parwan processor

0

20

40

60

80

100

1 10 100 1000 10000

No. of vectors

T
es

t 
co

ve
ra

g
e 

(%
)

RTL spectral
ATPG

Gate-level
ATPG

Random
vectors

RTL fault
vectors

Figure 6.8: Test coverages for the original PARWAN circuit [97].
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Figure 6.9: Test coverages for the PARWAN circuit with DFT.
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To compare the effectiveness, we examined the gate-level faults that were left unde-

tected by each method. For the original PARWAN, the gate-level ATPG left 129 undetected

(127 unobserved and 2 uncontrolled) faults. Besides, six faults were potentially detected.

When these 135 faults were simulated with 2442 spectral ATPG vectors (Table 6.5), 106

unobserved, 1 uncontrolled and 1 potentially detected faults were detected. The other 5

potentially detected faults remained potentially detected. For the original PARWAN, spec-

tral ATPG had left 30 undetected (29 unobserved and 1 uncontrolled) faults. There were

5 potentially detected faults. These 35 faults were simulated with 1403 gate-level ATPG

vectors shown in Table 6.5. Only 8 unobserved faults were detected and all 5 potentially

detected faults remained potentially detected.

For the DFT version of PARWAN, gate-level ATPG left 82 undetected (78 unobserved

and 4 uncontrolled) faults and there were 6 potentially detected faults. Of these, spectral

ATPG vectors detected 62 unobserved and 3 uncontrolled faults. All 6 potentially detected

faults remained the same way. Finally, in the reverse examination, 2442 spectral ATPG

vectors had left 18 unobserved and 1 uncontrolled faults and had produced 6 potentially

detected faults. The set of 1619 gate-level ATPG vectors only detected 2 of the unobserved

faults. All 6 potentially detected faults remained the same way.

These comparisons between the fault detection of gate-level ATPG and our proposed

spectral ATPG indicate that our proposed spectral ATPG method is able to generate better

quality test vectors as compared to the gate-level ATPG method.

Results for transition delay fault model

Similar to the stuck-at RTL faults, 737 transition delay RTL faults were sampled

and 160 transition delay RTL test vectors were generated using the Mentor Graphics tool

FlexTest [91] . Table 6.6 shows the characteristics of transition delay RTL test vectors.

Transition delay faults in the clock and reset network were not included and a 50% credit

was given to potentially testable faults [113]. Columns from left to right specify the number

of RTL faults sampled, number of RTL test vectors generated, CPU test generation time in
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Table 6.6: Spectral characterization of processor circuit by RTL vectors for transition delay
faults.

No. of RTL No. of CPU No. of spectral RTL fault Gate-level
faults vectors s coefficients coverage Coverage

737 160 3652 128 77.07% 47.84%

seconds, number of spectral coefficients used, the RTL fault coverage and the fault coverage

of the RTL vectors for collapsed gate-level transition faults in the entire circuit excluding

clock and reset faults. Coverages are defined as ratios of the number of detected faults to

the total number of detectable faults as reported by FlexTest.

Analysis of the RTL undetected transition delay faults for PARWAN processor revealed

around 24 unobservable faults. The remaining undetected transition faults were untestable

or potentially testable. The circuit used tri-state drivers for driving buses and to detect

these faults we modeled the high-impedance state as the previous logic state to improve

its testability. It was observed that almost all of the undetected RTL faults were on the

terminals of tri-state drivers. This could be because of the functional constraints of the

processor and such faults could be functionally redundant delay faults. We selected the

24 unobservable fault sites as our observation points and condensed them using a 23 XOR

gates tree and fed its output to an extra added output pin. All RTL transition delay faults

were now either detected or potentially detected by the same 160 vectors. As a result of

DFT, the test coverage of the RTL vectors increased to 65.82%.

The final results are tabulated in Table 6.7, which gives a comparison of the proposed

RTL ATPG method with gate-level sequential ATPG and random vectors. Results are

compared for two circuits; the original PARWAN circuit and PARWAN circuit with added

DFT. The RTL ATPG and gate-level ATPG results can be compared based on test coverage

of transition delay faults, number of vectors generated and the test generation CPU time.

Table 6.8 gives the corresponding stuck-at fault coverages of the transition delay test vectors.

As observed in the tables, we achieve better test coverage as compared to the gate-level

sequential ATPG in lower test generation time for both stuck-at and transition delay faults.

Also the stuck-at fault coverages obtained are close to what we achieved by performing
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Table 6.7: Spectral RTL ATPG for transition delay faults for processor circuits.
Collapsed RTL spectral ATPG Gate-level ATPG Random vectors

Circuit gate-level Cov. No. of CPU Cov. No. of CPU Cov. No. of
faults % vectors s % vectors s % vectors

PARWAN 3434 81.15 9120 6428 73.90 1318 43574 56.90 51200
(original)
PARWAN 3448 84.31 9120 6428 81.45 1444 40119 63.42 51200

(with DFT)

Table 6.8: Stuck-at fault coverage of transition fault vectors.
Collapsed RTL spectral ATPG Gate-level ATPG Random vectors

Circuit gate-level Cov. No. of Cov. No. of Cov. No. of
faults % vectors % vectors % vectors

PARWAN 2270 96.45 9120 91.41 1318 81.32 51200
(original)
PARWAN 2320 97.02 9120 95.27 1444 84.92 51200

(with DFT)

spectral RTL-ATPG on stuck-at faults. Our proposed method however generates larger

number of vectors as compared to the gate-level ATPG. In our method we employed a

simple test set dropping heuristic to reduce the number of test sets. More intelligent and

potent algorithms, which perform efficient test vector compaction for sequential circuits, but

require higher computational times, have been proposed in literature [98, 107, 109, 58, 23].

These algorithms can be incorporated in our method to obtain much lower number of test

vectors at the expense of an increase in test generation time.

Note that the highest achievable test coverage cannot be 100% as there was a small

fraction of undetectable faults due to fault-induced uninitializability. These are possibly

(or potentially) testable faults and were given a detection credit of 50%. We also observe

an increase in test coverage when comparing the original circuit with the circuit with DFT.

With added DFT, the sequential ATPG results have improved satisfactorily. Also random

vectors perform better on circuit with DFT. The test coverage plots of the original circuit

and the circuit with DFT are shown in Figures 6.10 and 6.11.
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Figure 6.10: Test coverages for the original PARWAN circuit [97].
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Figure 6.11: Test coverages for the PARWAN circuit with DFT.
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6.4 Summary

We have presented a new method of RTL test generation using spectral techniques

and demonstrated its effectiveness on benchmark circuits of ISCAS’89, ITC’99 and the ex-

perimental processor PARWAN. Test vectors generated for RTL faults are analyzed using

Hadamard matrix to extract important features and new vectors are generated retaining

those features. We observe improved test coverage and lower test generation time as com-

pared to a sequential gate-level ATPG tool. Generation of different types of test sets and

performing compaction on them is found to be an efficient and reliable method for test

generation. Results show that as circuits become larger the RTL method may have advan-

tages over gate-level ATPG. This reveals a promise in generation of test vectors at RTL by

spectral analysis.

RTL test generation brings with it the advantages of lower memory, computation and

generation time complexity. It enables the testability appraisal at RTL, and hence efforts

can be made to improve testability when the design is conceptualized at higher levels of

abstraction. An XOR observability tree designed at RTL improved both the stuck-at and

transition delay fault coverages. Observation test points, selected after appraising the RTL

ATPG results, effectively revealed the testability bottlenecks of the circuit. Further, RTL

ATPG enables the testing of cores for whom only the functional information is known.
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Chapter 7

N-Model tests

Several years ago the results of a Sematech study [99] were published. Four types of

tests, namely, scan-based stuck-at, scan-based delay, IDDQ, and functional, were examined.

A general conclusion was that none of the tests could be dropped. That study has been a

subject for numerous discussions [100, 101]. In [101] a study was conducted on an industrial

circuit to compile pass/fail data for various test methods. The test methods used were scan-

based stuck-at tests, scan-based delay tests, functional vectors and scan-based IDDQ tests.

Figure 7.1 shows the data presented in [101]. It gives the number of passing/failing chips for

each type of test applied. As can be seen from the figure, no single test method is adequate

in detecting all defects and accurately failing all defective chips. If any of the tests would

have been a golden test, then a chip passing that test would be passing all other tests and

failing none (assuming other tests do not cause a yield loss which is true in this case). (Two

entries were left blank by the authors in [101] to hide yield data).

Another study similar to [101] is reported in [87] which summarized the pass/fail data

for chips tested using three different tests: scan-based stuck-at, functional and IDDQ tests.

Figure 7.2 gives the corresponding pass/fail chips for the different test types [87]. Figure 7.3

 

    IDDQ     
    PASS  FAIL     

blank  6  1463  7  PASS 
PASS 

14  0  34  1  FAIL 
6  1  13  8  PASS 

Scan-
based 

stuck-at  FAIL 
52  36  1251  blank  FAIL 

Scan-
based 
delay 

    PASS  FAIL  PASS  FAIL     
    Functional     

Figure 7.1: Number of passing/failing chips for four different test types applied [101].
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    IDDQ 
    PASS  FAIL 

PASS  22066  25  1358  36 Scan-based 
stuck-at  FAIL  19  134  122  2655 

    PASS  FAIL  PASS  FAIL 
    Functional 

Figure 7.2: Number of passing/failing chips for three different test types applied [87].

 

    IDDQ tests applied 
    YES  NO 

YES  0  1132  57975  60421 Scan-based 
stuck-at tests 

applied  NO  860  8002  63611  164641 

    YES  NO  YES  NO 
    Functional tests applied 

Figure 7.3: Defect level in parts per million deduced from data in [87].

gives the defect levels in terms of defective Parts-Per-Million(ppm) for various combinations

of the tests being applied with the assumption that the combined tests have 100% defect

coverage. As can be seen from Figure 7.2, dropping any test has an effect on the defective

ppm and hence no particular test can be dropped. However, we observe from the table that

dropping stuck-at tests has the least impact on the defect level and dropping of the IDDQ

tests the most. The data in [87] was published in 1992 and over the years with reducing

feature sizes and more complex defects arising in silicon wafers, the problem has exacerbated

and the inferences from [87, 101] hold even more importance.

With advances in technology, new fault modes are continuously emerging and the gap

between the age-old stuck-at fault model and “realistic defects” continues to widen. On the

other hand, the need to minimize test length and test time has never been greater because

of complex system-on-chip (SOC) devices. Our proposed work addresses the problem of

combining tests that target several fault models into a single compact test.
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Test minimization has been a widely researched area. However, most of the published

methods will be difficult to apply to multiple fault models. Integer linear programming

(ILP) is an effective method of test optimization. It gives global optimization and has been

used for both combinational and sequential circuits [27, 148, 151] as well as for globally

minimizing N -detect tests [70].

We develop ILP methods for multiple-fault models. Although applications of ILP have

been reported for separately optimizing vectors for detecting stuck-at faults [27, 148, 151],

N -detect stuck-at faults [69, 70], and transition faults [152], to our knowledge a simultaneous

ILP optimization for multiple fault models has not been attempted before.

7.1 Overview

Different fault models address different types of realistic defects that can occur at

the wafer level. For example, stuck-at faults model some types of transistor short defects

and transition delay faults model certain transistor open and timing defects. Neither of

the two is adequate in modeling each other’s characteristics completely as was observed

in one of our experiments. In our experiment, a comparison was performed between the

transition delay fault coverage of stuck-at fault vectors which detected 100% of detectable

stuck-at faults and stuck-at fault coverage of transition delay vectors which detected 100%

of detectable transition delay faults for an ISCAS’89 benchmark circuit. In neither of the

cases did we observe a coverage of 100%. A similar observation was been made in [152].

This characteristic holds true for other fault models too. This necessitates the inclusion of

test vectors over different fault models to improve the defect coverage. An easy method

of achieving this is to concatenate all the test sets together (as was being experimented

in [152]), however, this rapidly increases the number of test vectors. Hence we need a

method to find a minimized test set which caters to all the considered fault models.

In order to address this issue, we make use of the Linear Programming (LP) prob-

lem formulation. LP and its special case of Integer Linear Programming (ILP) are used
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to minimize the test vectors for multiple fault models using the concepts as described in

Chapter 4.

7.2 The N-model tests

Definition: For a set of N given fault models, N ≥ 1, the N -model tests target detection

of all faults in the superset of faults for all N fault models.

Typically, a set of fault models may include stuck-at, transition, path-delay, IDDQ,

bridging, coupling, etc. The tests may be a combination of functional, verification and

random vectors, as well as those generated by targeting one or more fault models. The

problem then is to reduce the test set size without affecting the coverage of the N specified

fault models. Although an experimental verification is yet to come, we believe such tests will

be more effective at uncovering real defects than those generated by the existing Automatic

Test Pattern Generator (ATPG) strategies. Besides, any new fault model can be included

with the basic prerequisite that we have a fault simulator for it.

The difficulty with multiple fault models is that a fault simulator can deal with only

one model at a time. We therefore concatenate all tests and separately simulate the entire

set for each fault model, one at a time without fault dropping. We thus obtain a fault

dictionary, i.e., information about the faults detected by each test vector. Here we consider

combinational and scan-inserted sequential circuits only. Hence the test sets are combina-

tional in nature and their order of application is immaterial. Having obtained this fault

dictionary, our aim is to select the least number of test vectors that cover all faults belonging

to the considered fault models.

We formulate this problem as an integer linear programming model. In the following

sections we introduce two ILP models for test set minimization. The first is called the

“two-step ILP” model and the second the “combined ILP” model.
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7.3 Two-step ILP model

Our goal is to minimize a test set for multiple fault models. Different fault models

have different characteristics and procedures for testing. For example, if test vectors are

generated for IDDQ faults, just the application of the vectors is not enough, but an extra

step of IDDQ measurement needs to be carried out. Since this IDDQ measurement is an

expensive and time consuming test, it is not performed for all vectors, unlike the fault

coverage measurement for stuck-at and transition delay test vectors. Hence the IDDQ

vectors and their corresponding measurements need to be given special attention. Based on

this constraint, we propose a two-step ILP model. In the first step a global minimization

for the total number of vectors is carried out for all the considered fault models and then

in the second step the minimum number of IDDQ measurements to be made is determined.

7.3.1 First ILP - minimize vectors

As described in the previous section we obtain the fault dictionary by concatenating

all tests and then separately simulating the entire set for each fault model, one at a time

without fault dropping. Using the fault dictionary information, for each fault (of any type),

one constraint inequality is generated. Suppose, fault fi is detected by test numbers j, m

and q, then the corresponding constraint is,

tj + tm + tq ≥ 1 (7.1)

where tx is an integer variable for test number x that can take the value 0 (test number

x is discarded) or 1 (test number x is selected). The above constraint means that at least

one test is required to ensure the coverage of fault fi. Because of this constraint, any test

set solution that ILP provides will never drop any fault and the fault coverage is ensured.

Notice that a test here can be a single vector (in our case for stuck-at faults and IDDQ

faults) or a vector pair (for transition delay faults).
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A single constraint-like inequality ( 7.1) is generated for each fault in the fault set, which

contains all faults corresponding to all fault models of interest. Our objective function for

this problem is defined as follows:

Minimize
∑

all vectors x

tx (7.2)

The ILP then finds a solution under the specified constraints (as shown in equation

( 7.1)) and meeting the objective function (shown in equation ( 7.2)). The solution consists

of values assigned to variable tx (x for all vectors) which can be either 0 (test number x

is discarded) or 1 (test number x is selected). The test sets with tx = 1 are minimal to

guarantee detection of each modeled fault by at least one vector.

7.3.2 Second ILP - minimize IDDQ measurements

Once vectors are minimized, a second ILP run is used to find the minimal set of these

vectors on which IDDQ should be measured. For this ILP run, the tests consist of only

those selected by the first ILP run. All tx’s whose values were 0 in the first ILP run are

eliminated. Constraints-like inequalities ( 7.1) are then specified only for the IDDQ faults.

The objective function is:

Minimize
∑

selected vectors y

ty (7.3)

The non-zero ty’s in this ILP solution identify the minimal set of vectors for which IDDQ

needs to be measured.

7.4 Combined ILP model

Since IDDQ measurement is expensive, it is necessary that their number be kept to a

minimum, sometimes even at the expense of slight increase in the total number of vectors
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to be applied. The “Two-step ILP” model does not give a globally minimized number of

IDDQ measurements as in it’s first step itself it optimizes for the total number of vectors.

To achieve the goal of reducing the IDDQ measurements even further, we modify the ILP

formulation of Section 7.3.

We represent each vector x in the initial vector set by two {0,1} integer variables, tx

and an IDDQ variable ix. The variable tx, as before, signifies whether test number x will be

selected in the final minimized test set (either as an IDDQ test or a non-IDDQ test). The

variable ix is used to signify whether an IDDQ measurement is performed on test number

x. Also this means that variable ix needs to be a subset of variable tx, i.e., if ix = 1 then

tx = 1 but not necessarily vice versa.

The ILP constraints are generated as follows. If fault fi is not an IDDQ fault, then its

constraint is exactly like inequality 7.1, i.e., no constraints are applied to the i variables of

its tests. For an IDDQ fault fk, that is detectable by vectors u, v and w, the constraint

inequalities are as follows:

tu + tv + tw ≥ 1 (7.4)

iu + iv + iw ≥ 1 (7.5)

tu ≥ iu (7.6)

tv ≥ iv (7.7)

tw ≥ iw (7.8)

The last three constraints mean that IDDQ measurements may be conducted for some subset

of all vectors with capability of detecting IDDQ faults. The objective function is,

Minimize
∑

all vectors x

( tx + W × ix) (7.9)

Here the weighting factor W specifies how strongly we wish to minimize the number of

IDDQ measurements. Setting W = 0 will lead to the result of Section 7.3.1, i.e., we will
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minimize the vector count without any regard for IDDQ measurements. A second ILP

run with objective function( 7.3) may give more than the smallest possible number of

IDDQ measurements. Choosing a larger value of W will minimize the number of IDDQ

measurements but may lead to slightly increased number of vectors. This trade off is

evident in the results explained in Section 7.6.

Though the ILP gives an optimum solution, it’s time complexity is exponential and

can become a bottleneck. Our results in Section 7.6 exhibit this characteristic. Hence we

need to adopt a technique which will simplify the computation. A linear programming (LP)

model is often used in place of integer linear programming (ILP) model to reduce the CPU

time and obtain a result that may still be quite close to the optimum. The worst-case

complexity of LP is polynomial-time while that of ILP is exponential. We have devised

an “hybrid LP-ILP” method, outlined in Section 7.5, which is a variation of the published

recursive-LP method for test minimization [71].

7.5 Hybrid LP-ILP method

Observing the large time-complexity for some ILP runs, we developed an hybrid LP-

ILP method. This method solves any ILP problem and can be effectively used for the models

introduced in Sections 7.3 and 7.4. In spite of some similarities with other methods [71],

the hybrid LP-ILP differs from previous work.

Once formulated as an ILP, an LP model is obtained by changing the variables to real

numbers in the same [0,1] range. The LP is solved and variables below 0.1 are then rounded

to 0 and variables above 0.9 are rounded to 1. The rounded variables are now treated as

constants, constraints are updated and the LP solution and rounding processes are repeated

until no more variables can be rounded either to a 0 or a 1. Then a much reduced ILP is

solved. The results in Section 7.6 reveal the reduced time complexity of this method.

Since we round variables on both sides, i.e., to 0 and to 1, the procedure can lead to

an intermediate solution that may not satisfy all remaining constraints. In such a case,

the problem can be solved by the previously proposed recursive-LP algorithm [71], which
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Table 7.1: Test vectors for stuck-at, IDDQ and transition faults generated and minimized
by FastScan.

Circuit Type of Number of vectors Fault
vectors Unminimized Minimized coverage (%)

(1) (2) (3) (4) (5)

c1908 stuck-at 66 46 93.93
IDDQ 37 26 98.19

transition 113 75 91.80
total 216 147 -

c3540 stuck-at 167 130 96.00
IDDQ 53 45 99.09

transition 299 229 96.55
total 519 404 -

s1238 stuck-at 178 149 95.17
IDDQ 70 58 93.04
LOS 293 234 96.75
LOC 296 242 95.97
total 837 683 -

s1488 stuck-at 136 114 100.00
IDDQ 55 45 98.20
LOS 166 126 67.92
LOC 200 166 91.57
total 557 451 -

s5378 stuck-at 150 145 99.30
IDDQ 71 70 85.75
LOS 319 293 98.31
LOC 256 242 90.05
total 796 750 -

LOS : Launch-on-Shift; LOC : Launch-on-Capture

guarantees a solution. We believe that, whenever a solution is possible, the hybrid LP-ILP

will be faster than the recursive-LP.

7.6 Results

We applied our optimization techniques to two combinational and three scan inserted

ISCAS’89 sequential benchmark circuits. We used three different fault models. They were

stuck-at, transition and IDDQ faults. We generated initial test vectors for each fault model
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using the commercial ATPG tool, Mentor Graphics FastScan [91]. For IDDQ faults, the

pseudo stuck-at model [87] was used because it is supported in FastScan.

Table 7.1 gives the details of the test vectors generated for the circuits. Column (1) gives

the circuit name. Column (2) specifies the fault model for which test vectors in column

(3) were generated. Stuck-at and IDDQ vectors were single pattern tests and transition

delay vectors were two-pattern tests. Each of those vector-pairs was considered a single

entity in the ILP model. For combinational circuits, the transition delay tests were simply

two-pattern tests applied one after another, however, for scan-inserted sequential circuits

we obtained Launch-On-Shift (LOS) and Launch-On-Capture (LOC) patterns [81, 144].

Column (3) gives the number of vectors that FastScan generated for each type of test

vector set and column (4) gives the number of vectors obtained after minimization without

reducing the fault coverage using tools provided in FastScan. Column (5) gives the fault

coverage of each test set for the corresponding fault model. The numbers in the “total” rows

are the sum of the three previous rows. Vectors can be further minimized by determining

the stuck-at faults detected by transition vectors and eliminating the corresponding stuck-at

vectors. However this was not performed to keep the discussion generic and applicable to

any set of possibly unrelated fault models.

We used the test vectors generated by FastScan (reported in column (3) of Table 7.1)

as our initial test set. We simulated the combined vector set of the three fault models

without fault dropping and obtained the fault dictionary information giving the complete

fault detection data for all vectors. This fault dictionary was then used in the formulations

of ILP as mentioned in previous sections.

For our experiments we used the Sun Sparc Ultra-10 machine with 4.0 GB of RAM

shared among four CPUs. We used AMPL-CPLEX package for ILP [35]. While executing

AMPL we specified a CPU time limit of 5000 seconds. The results for various circuits

and their vector sets are tabulated in Tables 7.2 and 7.3. Table 7.2 gives the results of

minimization using the two step ILP method described in Section 7.3 and Table 7.3 gives

the results using the combined ILP method proposed in Section 7.4. For comparison,
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Table 7.2: Multiple fault model test optimization by ILP methods using two-step model.

FastScan tests Two-step model
Circuit Type Original Optimized

of no. of no. of No. of CPU
vecs. vectors vectors vect. sec.

(1) (2) (3) (4) (5) (6)

c1908 All 216 147 79 8.97
IDDQ 37 26 24 1.50

c3540 All 519 404 225 41.35
IDDQ 53 45 39 694.41

s1238 All 837 683 203 20.59
IDDQ 70 58 51 1.78

s1488 All 557 451 175 17.11
IDDQ 55 45 40 2.37

s5378 All 796 750 320 147.75
IDDQ 71 70 84 14.21

Table 7.3: Multiple fault model test optimization by ILP methods using combined model.

FastScan tests Combined model
Circuit Type Original Optimized W = 0.1 W = 1 W = 10

of No. of CPU No. of CPU No. of CPU No. of CPU
vecs. vectors vectors vect. sec. vect. sec. vect. sec.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

c1908 All 216 147 79 9.3 81 9.4 84 9.9
IDDQ 37 26 24 22 20

c3540 All 519 404 225 5044.2* 226 5046.7* 247 5046.9*
IDDQ 53 45 40 41 37

s1238 All 837 683 203 97.1 205 63.5 212 243.1
IDDQ 70 58 45 43 40

s1488 All 557 451 175 76.0 176 254.0 187 694.9
IDDQ 55 45 39 38 33

s5378 All 796 750 320 2313.9 326 5154.2* 353 5160.9*
IDDQ 71 70 78 73 64

* Incomplete optimization; CPU time limit of 5000 seconds exceeded.
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Table 7.4: Multiple fault model test optimization by hybrid LP-ILP method using two-step
model.

FastScan tests Two-step model
Circuit Type Original Optimized

of no. of no. of No. of CPU
vecs. vectors vectors vect. sec.

(1) (2) (3) (4) (5) (6)

c1908 All 216 147 79 17.50
IDDQ 37 26 24 2.32

c3540 All 519 404 225 78.13
IDDQ 53 45 40 43.92

s1238 All 837 683 203 37.91
IDDQ 70 58 51 3.4

s1488 All 557 451 175 33.91
IDDQ 55 45 40 5.51

s5378 All 796 750 320 306.43
IDDQ 71 70 84 32.63

the results of single fault model minimization from columns (3) and (4) of Table 7.1 are

reproduced in columns (3) and (4) of both Tables 7.2 and 7.3. Vectors for each circuit

are shown in two rows. FastScan separately generated vectors for each fault model. IDDQ

vectors and “All” vectors (including IDDQ vectors) are shown in column (3) of both tables.

Column (4) shows the sum of numbers of vectors obtained by using the minimization tools

of FastScan separately for each vector set with its corresponding fault model.

In Table 7.2, columns (5) and (6) show the results of the two-step ILP model of Sec-

tion 7.3 in terms of the number of vectors and the CPU time. This shows a reduction in

IDDQ measurements but as pointed out before, further reduction is possible. In Table 7.3,

Columns (5) through (10) show the results of the combined ILP model of Section 7.4, with

increasing emphasis on IDDQ by setting W = 0.1, 1 and 10, respectively, in the objective

function 7.9. The trade off between the number of IDDQ measurements and test length is

clearly observed.

Reducing Run Times: The results of minimization by the hybrid LP-ILP method

are given in Tables 7.4 and 7.5. The columns of the table have the same meaning as
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Table 7.5: Multiple fault model test optimization by hybrid LP-ILP method using combined
model.

FastScan tests Combined model
Circuit Type Original Optimized W = 0.1 W = 1 W = 10

of No. of CPU No. of CPU No. of CPU No. of CPU
vecs. vectors vectors vect. sec. vect. sec. vect. sec.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

c1908 All 216 147 79 17.88 81 23.74 84 23.23
IDDQ 37 26 24 23 20

c3540 All 519 404 225 166.6 226 188.6 248 516.23
IDDQ 53 45 41 39 34

s1238 All 837 683 203 48.36 203 61.64 215 63.12
IDDQ 70 58 46 46 40

s1488 All 557 451 175 38.33 176 50.33 187 59.99
IDDQ 55 45 39 39 34

s5378 All 796 750 320 528.89 326 617.14 353 793.22
IDDQ 71 70 80 72 63

Table 7.6: Comparing solutions: hybrid LP-ILP lower bound, ILP optimum and hybrid
LP-ILP.

Circuit Weight minimized (vectors + W × IDDQ measurements)
W hybrid LP-ILP ILP solution hybrid LP-ILP

lower bound solution

0.1 81.4 81.4 81.4
c1908 1 102.25 103 104

10 276.5 284 284

0.1 227.94 229* 229.1
c3540 1 257.82 267* 265

10 499.97 617* 588

0.1 207.47 207.5 207.6
s1238 1 247.64 248 249

10 606.04 612 615

0.1 178 178.9 178.9
s1488 1 211.74 214 215

10 506.89 517 527

0.1 326.76 327.8 328
s5378 1 392.28 399* 398

10 910.68 993* 983

* Incomplete optimization; CPU time limit of 5000 seconds exceeded.
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those in Tables 7.2 and 7.3, respectively. The number of minimized vectors and the CPU

time complexity can easily be compared between these tables. For the two-step model,

the pure ILP method performed slightly better in terms of both the number of minimized

vectors and the CPU time, as compared to the hybrid LP-ILP method. However for the

combined model, the hybrid LP-ILP method achieves close to optimum solution in terms

of the number of minimized vectors, with an order of magnitude reduction in CPU time

as compared to the pure ILP method. In cases of circuits like c3540 and s5378 where ILP

quit early because of exceeding the CPU time limit, the hybrid LP-ILP method gave better

results. For some circuits like s1238 and s1488, the hybrid LP-ILP method gave a close to

optimum solution, if not the optimum.

When the hybrid LP-ILP method is used, the optimality of the solution achieved can be

judged by examining the value of the objective function of equation 7.9 obtained in the first

run of the LP. This value (usually rounded to the next higher integer) gives a lower bound on

the absolute optimum solution as would be given by the ILP. Table 7.6 gives a comparison

between this lower bound number, pure ILP method and hybrid LP-ILP method for the

combined model. Column (1) gives the circuit name and column (2) gives the different cases

of weights in the combined model. Columns (3) through (5) give the lower bound and the

results of the exact ILP and hybrid LP-ILP methods. In most of the cases we observe that

the value of the result obtained by the hybrid LP-ILP method either equals or is close to

the exact optimum obtained by pure LP and this fact is indicated by the closeness of the

hybrid LP-ILP solution to the lower bound. The pure ILP gives non-optimum solution in

some cases where it had to quit due to CPU time limit. In those cases the hybrid LP-ILP

method performs better.

7.7 Summary

The results show an effective reduction in both the total number of vectors and the

number of IDDQ measurements required as compared to the original test set. For test set

minimization with multiple fault models, the problem arises because fault simulators lack
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the capability of simultaneously simulating more than one type of fault. The ILP technique

allows us to combine the results of separate fault simulations. Besides, ILP gives a global

optimization of the test set. Our proposed ILP models provide useful trade offs by varying

the emphasis between total test length and the number of IDDQ measurements. Using a

hybrid LP-ILP method to solve an ILP problem significantly reduces the time complexity,

while achieving a close to optimum solution.
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Chapter 8

Spectral Test Pattern Generation Hardware for BIST

Built-In Self Test (BIST) was briefly introduced in Section 2.5 and later explained in a

little more detail in Chapter 5. We shall be concentrating on non-scan based implementation

of BIST where the CUT is tested using only its inputs and outputs. Although non-scan

based BIST has several advantages over scan-based BIST, we need to consider its two main

challenges. First, a sequential Automatic Test Pattern Generator (ATPG) is required for

generating vectors for non-scan circuits, whose test generation complexity is high [83]. The

fault coverage achieved can be low, as some faults are either not detectable in the sequential

mode or no tests are found due to backtrack and CPU time limits of the ATPG program.

The second problem is that generating vectors for circuits in a BIST environment can be

intricate because of existence of random pattern resistant faults. Especially in the case of

sequential circuits, specific test sequences may be required to detect these faults and BIST

circuits to produce these test sequences can be expensive in terms of area overhead.

Our proposed spectral BIST method addresses the second issue, which is test pattern

generation for BIST. The goal of this work is to replicate the characteristics of the already

obtained ATPG vectors so that the new generated vectors have at least the same efficacy as

the ATPG vectors. The problem can be generalized to include any pre-existing set of vectors

instead of ATPG vectors. In this work we consider ATPG vectors due to their high quality in

terms of fault detection. For the problem at hand, instead of reproducing the exact ATPG

sequence, we synthesize BIST to generate patterns with similar spectral characteristics.

These BIST patterns are not the same as the ATPG patterns but excite somewhat similar

behavior in the circuit. Sequences longer than the original ATPG sequences can even

produce higher coverages.
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Our BIST synthesis is based on the premise that the spectrum of vectors that detect

faults in a circuit reflect important characteristics of the circuit. These characteristics may

include spatial and temporal correlations among the bits of primary input vectors. Along

with the relevant spectra, some amount of noise or randomness is present, which corresponds

to uncorrelated bits in the tests generated for some target faults. The noise-like behavior

of these bits allows detection of untargeted faults that require similar, but not exactly the

same test sequences.

We propose a novel BIST synthesis method using Hadamard transform and spectral

techniques [154, 155]. One may use any commercial or home-grown sequential ATPG tool,

FlexTest [91] in our case, to generate test vectors for the CUT using the stuck-at fault

model. The aim of the proposed BIST methodology is then to design hardware with mini-

mum area overhead which recreates the essential spectral properties of ATPG vectors and

attains its original fault coverage. The ATPG vectors are analyzed for their prominent

spectral components using Hadamard transform. These prominent spectral components,

which are generated by a Hadamard wave generator, are mixed in appropriate proportions

and randomness if necessary is inserted appropriately. The major contribution of this work

is a novel approach of spectral BIST which gives high fault coverage with a reduced hard-

ware overhead as compared to existing published works. The proposed method, although it

uses Hadamard transform for spectral analysis, is adaptable for other transforms like Haar

transform. We also propose a novel hardware approach for combining spectral components.

8.1 Proposed spectral BIST method

Our proposed method of BIST synthesis consists of two steps. In the first step the

ATPG vectors, which are required to be imitated in hardware, are analyzed using Hadamard

transform for prominent spectral components and randomness (noise-like) content. Using

this information, the spectral BIST is implemented in step two. The two steps are described

in the following sections.
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Figure 8.1: Appending of extra vectors to balance the weighting of bit-streams to 0.5.

8.1.1 Determination of spectral components and noise

As mentioned earlier, a spectral analysis is performed on the ATPG vectors using

Hadamard transform [150] to determine their prominent spectral components and noise-

like content. Certain pre-processing can be performed on the ATPG vectors before or

during spectral analysis which would help in enhancing the prominent spectral components

and reduce the noise-like content. This is especially relevant for test vectors generated for

combinational circuits, as in this case the order of application of test vectors is irrelevant

and the test vectors can be reshuffled. This type of pre-processing can also be performed

for test vectors for sequential circuits but with limited efficacy as it is essential to maintain

the order of application of the test vectors. Hence here we shall address and discuss the

pre-processing of test vectors for combinational circuits only.
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Pre-processing of test vectors for combinational circuits

Since the order of the vectors for combinational circuits is immaterial, vectors can be

reshuffled and inherent spectral properties can be amplified and extracted, by reducing the

ambiguous noise-like content. Another technique that we found useful in extracting the

spectral components unambiguously is to append the original vector set with vectors such

that the weighting (proportion of logic ‘1’ values) of individual bit-streams entering the

different inputs is balanced to 0.5, i.e., equally probable logic ‘0’ and logic ‘1’. Don’t care

bits are used when the weighting is already 0.5. Figure 8.1 shows an example of appending

extra vectors to the original test vector set to make the weighting of individual bit-streams

for each input balanced to 0.5. Don’t care bits (Xs) are used when weighting is balanced

to 0.5.

Reshuffling of test vectors is performed such that certain spectral components are am-

plified and noise is reduced. Bit-streams entering various inputs of the CUT are examined,

separately. The 0s and 1s in a bit-stream are represented as −1s and +1s, respectively.

The don’t care bits (Xs) in the vector set are represented as 0s. The reshuffling algorithm

rearranges the test vectors such that the magnitude of the selected spectral components

for the bit-stream of each input is enhanced. Our proposed algorithm reshuffles the test

vectors considering one input bit-stream at a time. Initially the spectral components of

the first input bit-stream are determined and the prominent spectral component with the

maximum magnitude is selected. Test vectors are reshuffled such that maximum bits of the

considered input bit-stream match with the selected prominent spectral component. After

processing the first input bit-stream, the second input bit-stream is considered and so on.

The reshuffling algorithm is described as Algorithm 1.
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Input:

Test Vector Set (T ) with NV rows of vectors and NI columns of inputs;

Hadamard transform matrix(H) of dimension 2h × 2h ;

Output:

Sorted Test Vector Set (T );

Parameters:

NV : Number of test vectors in the test vector set T ;

NI : Number of inputs of the circuit being driven by the test vector set T ;

h : Order of Hadamard matrix;

hd = 2h : Dimension of Hadamard matrix;

Variables:

SelWalshFns : NV × NI matrix storing the Walsh function selected for each input

Algorithm:

Append don’t care vectors to test set T such that NV mod hd = 0

Construct a larger Hadamard matrix (HV ) of dimensions hd×NV from the original

Hadamard matrix (H) by copying it repetitively along the columns.

for i = 1 to NI do

S = HV × T (:, i);

(MaxIndex, MaxV alue) = max(|S|);

SelWalshFns(:, i) = transpose(sign(S(MaxIndex)) × HV (MaxIndex, :));

Swap test vectors such that the number of mis-matching bits between the

matrices SelWalshFns(:, 1 : i) and T (:, 1 : i) is minimized;

end

Algorithm 1: Reshuffling algorithm for enhancing spectral components in test vectors

for combinational vectors.
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Spectral analysis of test vectors

In this step, the crucial process of determining the spectral components and noise is

performed by spectral analysis of the test vectors. Similar to the spectral analysis proce-

dure used in our spectral RTL-ATPG technique described in Section 6.1.1, the bit-streams

entering various inputs of the CUT are analyzed separately. Figure 8.2 shows a schematic

diagram of the process. An ATPG test vector block, generated to cover the stuck-at faults,

will consist of test vectors as the rows in the block and the inputs of the circuit, to which

the bits are being applied, as its columns. We perform a spectral analysis on the bits which

are being applied to each of the inputs separately. As an example shown in Figure 8.2,

an spectral analysis is performed on the bits which are being applied to the input 2 of the

circuit. As described in Section 3.2, a Hadamard matrix of order n with a dimension equal

to 2n is used to analyze the binary bits. The number of bits that can be analyzed at a

time is equal to the dimension 2n of the Hadamard matrix used, 8 in case of the example

illustrated. During each analysis step, the 0s and 1s in a bit-stream are represented as −1s

and +1s, respectively. To find the spectral components for a bit-stream, it is multiplied

with the Hadamard matrix. The corresponding result gives the spectral components.

82



The number of bits that can be analyzed at a time is restricted by the dimension 2n

of the Hadamard matrix. The number of bits that need to be analyzed for each input

(equal to the number of test vectors) would generally be much higher than the dimension

of the Hadamard matrix due to computational limitations. Hence the ATPG vectors are

analyzed in sets, each of length N = 2n, where N is an appropriate dimension chosen for

the Hadamard matrix. Later we shall discuss the selection of the value for N . The analysis

of ATPG vectors can be performed either on discrete sets of vectors or the sets can be

overlapped. Overlapping of sets helps in sampling the vectors at closer spaced intervals.

The overlapping length (OV ) has to be chosen appropriately. Analyzing vectors with low

overlapping may lead to loss of information, while a high overlapping may lead to sampling

the noise in the spectrum. We choose a value of OV equal to 2n/4 for optimum results. The

spectral analysis of a set i of length N for a primary input j of the CUT provides an original

component spectrum denoted by Cij and a power spectrum (which is the square of Cij)

denoted by Pij . After the spectral analysis of all the sets, all Ci spectra and the Pi spectra

are averaged for each input j, separately, to obtain the averaged component spectrum Cj

and averaged power spectrum Pj respectively for all inputs j. We then perform a threshold

filtering on the spectra Pj and Cj using threshold values of TH and
√

TH respectively. The

threshold value TH , like the overlapping length OV needs to be chosen appropriately. A high

value of TH will lead to information loss; while a low value will be ineffective in removing

noise. We use a value of TH equal to 0.5 times the average power of the resultant spectrum.

The averaged power spectrum Pj gives the prominent spectral components in the test

vectors for the different inputs j of the CUT, while the averaged component spectrum

Cj gives the sign or phase of those components. From the Pj spectrum we choose the

top M prominent components for each input j based on their magnitude. Their sign is

determined by the Cj spectrum. For our experiment, we chose a value of M = 4. The

M prominent components along with their power magnitudes and signs are then used for

BIST implementation. Figure 8.3 illustrates the process of averaging and determination of

prominent spectral components.
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8.1.2 Spectral BIST implementation

The goal of the BIST implementation is to design hardware that will generate vectors

exhibiting similar component spectrum C and power spectrum P as the original ATPG

vectors. This is achieved by combining the chosen M prominent components in appropriate

proportions and phases. This is implemented using a spectral component synthesizer. Ran-

domness or noise, if required, is inserted in appropriate amounts to the generated vectors.

This is achieved using the randomizer circuit.

Figure 8.4 shows the proposed generic spectral BIST architecture, which consists of:

Hadamard wave generator, spectral component synthesizer, Randomizer, Weighted pseudo-

random bit-stream generator, Holder circuit and Clock divider circuit. The Holder circuit

and the Clock divider circuit are used only in the case of sequential Circuit-Under-Test

(CUT) as will be explained later. Figure 8.4 is a BIST circuit designed for a CUT with

three inputs. The Hadamard wave generator generates the spectral components which are

combined by the component synthesizer (generally, one per PI) using random bit-streams

provided by the weighted pseudo-random bit-stream generator. The spectral component

signals are shown in dark bold lines while the weighted random signals are in dotted lines.

Noise, if required, is inserted in the combined spectral components by the randomizer (also

one per PI) supplied with an appropriate weighted random bit-stream. In this example,

the first input of the CUT has three prominent components, which are combined by the

component synthesizer. The second input of the CUT has only one prominent component,

hence no component synthesizer is required. A randomizer adds the required amount of

noise. The third input of the CUT has no prominent components and hence a random

bit-stream is directly fed from the pseudo-random bit-stream generator. Next, we describe

the components of this BIST architecture.

Hadamard wave generator

The heart of the proposed BIST hardware is the Hadamard wave generator, which

generates the Walsh functions or Hadamard spectral components for the spectral component
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Figure 8.5: Walsh function generator of order 4 that generates 16 Walsh functions [156].

synthesizer. There is much literature on Walsh function generators [31, 11, 33, 52, 156].

Many implementations are based on an arithmetic or a Gray code counter and combinational

logic. The speed of operation of such designs is restricted by the speed of the counter.

Other fast implementations exist, but they require extra hardware. We selected a Walsh

function generator proposed in [52], which uses an arithmetic counter and has low hardware

overhead. The generator of order n, which generates 2n Walsh functions, requires n flip-

flops and 2n−N−1 XOR gates. Figure 8.5 shows an example of a Walsh function generator

of order 4, which is taken from [156].

The order of the Hadamard matrix n, used for spectral analysis, is also used to imple-

ment the Hadamard wave generator. Since higher order Hadamard matrices are constructed
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Figure 8.6: Spectral component synthesizer that combines three spectral components.

from lower order matrices [137, 139], lower order matrices form a subset of the higher order

matrices. Thus higher order matrices are able to characterize a given bit-stream better than

lower order matrices. However, the area overhead for implementing the Hadamard wave

generator increases exponentially with the order of the Hadamard matrix as mentioned

earlier. Hence we have a tradeoff between the resolution of spectral analysis and the area

overhead of the implemented hardware. For our implementation, for the value of n, we

chose a lower bound of 4 and an upper bound of 8. These bounds were chosen so that they

would provide the optimum tradeoff mentioned above. The specific value was chosen such

that the hardware overhead of the wave generator was approximately 5% of the total circuit

area.

Spectral component synthesizer

As described earlier, M prominent spectral components are combined in required pro-

portions and phases. The proportions are determined from the power magnitude of the

spectral components (from spectrum P ) and phases from their signs (from spectrum C),

both of which are obtained from spectral analysis of Section 8.1.1. We combine the spec-

tral components in a multiplexer called “spectral component synthesizer”, as shown in

Figure 8.6. The inputs to the multiplexer are the chosen spectral components, which are

generated by a Hadamard wave generator, and its select line is driven by a weighted random

bit-stream. The weighting of the bit-stream is determined by the proportion in which the
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Figure 8.7: Randomizer XOR gate that randomly flips 25% of bits.

components are to be combined. The generation of a weighted random bit-stream will be

discussed in the following sections. Figure 8.6 depicts an example of the proposed structure

which combines three spectral components SC1, SC2 and SC3 in proportions of 0.25, 0.25

and 0.5, respectively.

Randomizer

Along with the prominent spectral components, some randomness or noise is present

in the ATPG vectors which need to be inserted in the regenerated vectors. Due to the

filtering effect of the threshold TH , for some of the inputs, the number of selected prominent

components (MS) could be less than M. For inputs with MS > 1, it is observed that some

amount of noise is inherently inserted by the spectral component synthesizer due to its use

of a weighted pseudo-random bit-stream. However for inputs with MS = 1, noise needs to

be inserted explicitly. For such inputs the level of noise or perturbations to the prominent

spectral component is generally very low although important and spread out in the long

sequences of ATPG vectors which are not picked up by the short sequence spectral analysis.

To estimate the amount of noise in such sequences, we analyze their runs of 0s and 1s. We

pick the top 95% of the run lengths to eliminate the noisy effects of the short run-lengths.

The reciprocal of the average of the selected run-lengths then gives the average amount

of randomness or perturbation to be inserted in the prominent spectral component. The

perturbation is then inserted in the generated vectors using the randomizer which performs

an XOR operation with a weighted random bit-stream. Figure 8.7 shows an example of

flipping 25% of the bits randomly by using a randomizer XOR gate.
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Weighted pseudo-random bit-stream generator

This circuit generates weighted pseudo-random bit-streams required by the component

synthesizer and the randomizer. We use a 16-bit cellular automata register (CAR) to gen-

erate the pseudo-random bit-streams. The CAR is constructed using the rules as described

in Section 5.2.2. Weighted bit-streams are obtained using a combination of AND and OR

gates as required. The different weights to be generated are determined by the proportions

in which the spectral components are to be mixed and by the amount of randomness to be

added for all inputs. We quantize the required weights into W = 2w fixed weights that take

the form of i×2−w for i = 0 to 2w −1. For reported experiments, we used a value of w = 4.

We also generated two additional weights of 2−6 and 2−8 for the randomizer.

Holder circuit

The Holder circuit implements vector holding, which involves holding input vectors

constant for several clock cycles while applying the system clock to the circuit under test.

As this method is not relevant for combinational circuits which have no memory states, this

method is used only in the case of sequential circuit-under-test. We use vector holding to

enhance our fault coverage, based upon its reported benefits [48, 93, 96, 158]. It was believed

in [96] that holding proves effective due to several reasons. Holding a vector for several clock

cycles helps fault effects latched in flip-flops to be observed at the primary outputs. Also if

a hard-to-detect fault is activated by a random vector, then holding the vector for multiple

cycles will activate the fault multiple times, thus increasing the probability of its detection.

The number of clock cycles to hold the input vectors can be determined in different ways.

In [96], the number of clock cycles to hold the input vectors is determined by using a

deterministic sequential test pattern generator to detect the flip-flop output faults. In [48],

the number of hold cycles is determined by logic simulation of the fault-free circuit with

vectors having different hold cycles and determining their ability to set flip-flops to 0s and

1s and to traverse most states. It has been reported [93, 158] that “Holding a vector Vb for a

testable stuck-at fault fB in combinational circuit CB d+1 times, where d is the sequential
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Figure 8.8: Holder circuit implemented using a multiplexer and clock derived signals.

depth of the corresponding acyclic sequential circuit C created by adding flip-flops at any

wire of CB, gives a test sequence for all sequential faults in C corresponding to fB.”

In the proposed method, we determine the number of hold cycles from an upper bound

on the sequential depth of the circuit [121], which we shall denote as HL. The value of

HL is rounded to the nearest power of 2. The upper bound of the sequential depth [121]

is defined as the minimum number of cycles required to initialize a flip-flop (for both cases

of 0 and 1) and propagate its value to a primary output. In our BIST scheme, vectors

are generated with and without holding. First we generate D vectors without holding and

then we generate D/HL vectors, each of which is held for HL clock cycles. Although any

appropriate value can be chosen for D, an effective value for D was found to be proportional

to the length of the ATPG vectors. We choose the block length D equal to length (ATPG

Vector Length/50) rounded to the nearest power of 2. Figure 8.8 shows the implementation

of the holder circuit. It consists of a multiplexer whose inputs are clock signals with periods

CLK and CLK × HL. The control signal to the multiplexer is driven by a clock signal of

period CLK × (2×D). The output of the holder circuit is the BIST clock which drives the

Hadamard wave generator and the weighted pseudo-random bit-stream generator blocks.

All the input signals of the holder circuit are derived from the clock and are provided by

the clock divider circuit.
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Clock divider circuit

The clock divider circuit provides the necessary signals to the holder circuit and again

is used only in case of sequential circuit-under-test. The clock divider circuit generates two

clock derived signals by dividing the clock frequency by HL and (2×D), respectively, which

are then provided to the holder multiplexer to generate the BIST clock. The clock divider

circuit is constructed from an asynchronous binary counter consisting of ⌈log2(2 × D)⌉ flip-

flops. If the BIST environment uses a pattern counter (which is found in many cases)

then the clock derived signals can be conveniently obtained from appropriate outputs of the

pattern counter.

8.2 Reseeding of proposed test pattern generator

One of the main challenges for BIST has been the design of a potent Test Pattern

Generator (TPG) which can generate test vectors having satisfactory fault coverage. The

faults which are of concern are mainly the random pattern resistant faults which may

require specific test vectors for their detection [29]. Several approaches have been proposed

for covering these faults. One of the popular approaches employed is reseeding of the

TPG, in which relevant values are loaded in the flip-flops of the TPG which help the TPG

emulate the deterministic patterns and detect the hard-to-detect faults. This approach not

only covers the random pattern resistant faults but also can provide encouraging test data

compression capabilities.

In this section, we shall discuss the use of reseeding in our proposed BIST architecture.

Our proposed spectral BIST TPG hardware can be viewed as two sub-modules consisting

of a set of flip-flops and combinational logic. If the flip-flops are provided with a facility to

be set to any required values either through a serial or parallel interface, then a required

seed can be loaded in the flip-flops in order to enable the TPG to generate a required

deterministic test vector. Figure 8.9 illustrates the architecture with reseeding capability.

As will be shown later in the results section, the number of flip-flops in the BIST hardware is
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Figure 8.9: Reseeding of proposed spectral BIST TPG.

much lower than the number of inputs being driven of the CUT, which gives this architecture

interesting test data decompression capabilities.

With this added reseeding capability, the proposed BIST architecture can function in

two extra modes, in addition to the pure BIST mode discussed in previous sections. The

two additional modes of operation are external tester mode and hybrid BIST mode. The

salient parameters by which we can compare these modes of operation are fault coverage,

test data volume and test application time.

In pure BIST mode, there is no data being supplied from the external tester and the

TPG generates the test vectors for the CUT. This mode does not make use of the reseeding

capability. The flip-flops are reset in the beginning of the BIST operation and are not loaded

with any external values. This mode leads to lower fault coverage than the case when test

vectors are applied from the external tester mode and has ideally zero test data volume.

Its test application time is determined by the required fault coverage and the frequency of

operation of the on-chip system clock.
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In external tester mode, seed vectors are loaded from the external tester into the set

of flip-flops (either through a serial scan interface or through a parallel interface) which are

decompressed by the BIST logic and applied to the inputs of the CUT. The salient feature

of this mode is high fault coverage. Test data volume is determined by the number of

flip-flops to be loaded and the number of test vectors. Test application time is determined

by the number of test vectors and the frequency of operation of the external tester.

In hybrid BIST mode the TPG generates test vectors for the CUT and also is loaded

with relevant seeds in the flip-flops at frequent intervals to improve its performance. This

mode is marked with high fault coverage, lower test data volume and test application time

as compared to the external tester mode.

8.3 Results

We emulated our BIST method using a MATLAB program such that the generated vec-

tors would be the same as or very close to those generated by actual hardware. These vectors

include the quantization errors involved in the BIST test generation method which would

not be included in the software based methods like [42]. Thus software based methods would

give results which are more optimistic than hardware based methods. We implemented our

method on ISCAS’85 (combinational) [155] and ISCAS’89 (sequential) [154] benchmark cir-

cuits to show the efficacy. We analyze both cases of modes, without reseeding(pure BIST

mode) and with reseeding(external tester mode and hybrid BIST mode) and present their

results separately in the following sections.

8.3.1 Results for BIST mode without reseeding

We analyzed the case of pure BIST mode when no reseeding is used on both combina-

tional and sequential circuits. Their results are presented in the following sections.
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Table 8.1: Details of combinational circuits on which our proposed method was employed.

Circuit No. of No. of No. of No. of
inputs outputs gates faults

(collapsed)

c7552 207 108 3512 7550

s15850 600 670 9772 11697
(combinational)

Table 8.2: Details of implemented spectral BIST TPG.

Circuit Hadamard Cellular Total No. of
dimension Automata flip-flops gates

Size used

c7552 6 24 30 856

s15850 7 28 35 2532
(combinational)

Results for combinational circuits

We implemented our proposed BIST methodology on two combinational circuits; IS-

CAS’85 c7552 and the combinational part of ISCAS’89 s15850 benchmark circuits. Table 8.1

gives the details of the two circuits. ATPG vectors were generated for stuck-at faults with

don’t care bits using the program ATALANTA [79]. These ATPG vectors were processed

using spectral analysis and reshuffling algorithm as described in Section 8.1.1 to obtain the

spectral information, which is then used to construct the BIST TPG hardware. To calculate

the area overhead, we assumed a fixed number of transistors for each type of gate: AND -

6, OR - 6, NAND - 4, NOR - 4, XOR - 6 (pass-transistor logic design), 2 input MUX - 4

(pass-transistor logic design), D flip-flop - 22.

Table 8.2 gives the details of the implemented BIST circuit. Column 2 gives the order of

Hadamard matrix used. Column 3 gives the size of the Cellular Automata Register(CAR).

Columns 4 and 5 give the total number of flip-flops and gates used in the BIST hardware,

respectively. The BIST TPG along with the benchmark circuit was then fault simulated

using Mentor Graphics tool FlexTest [91] and test coverage was determined.
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Table 8.3: Test coverage comparison of random, weighted random and proposed spectral
BIST method for 64000 vectors.

Circuit Random Weighted Spectral
vectors Random BIST

vectors

c7552 97.41% 97.86% 99.81%

s15850 96.81% 97.41% 98.77%
(combinational)

Table 8.4: Area overhead comparison of proposed spectral BIST and Pseudo-Random Pat-
tern Generator (PRPG).

Circuit No. of Spectral BIST PRPG
gates in No. of % Area No. of % Area
circuit gates overhead gates overhead

c7552 3513 976 27.78 830 23.63

s15850 9772 2672 27.34 2400 24.56
(combinational)

Table 8.3 gives the test coverage results for random vectors, weighted random vectors

and our proposed method for 64000 vectors. Weights for the weighted random vectors

were obtained from their corresponding ATPG vectors without quantization. Random and

weighted random vectors were generated using a software random number generator. As

shown in Table 8.3, our proposed spectral TPG obtains better test coverage for both con-

sidered circuits.

Table 8.4 gives the number of gates of the original circuit, the area overhead of our

proposed method and the area overhead of the Pseudo-Random Pattern Generator (PRPG).

For the PRPG, the area overhead comprises of the size of the LFSR (number of flip-flops)

which is proportional to the number of inputs of the CUT. As can be observed, the area

overhead of our proposed method is comparable to that of the pseudo-random pattern

generator. The magnitudes of the area-overheads for our proposed method, however, are

noticeably large. We believe that implementing our method on larger circuits would result

in much smaller values for area overheads. Furthermore the algorithm for implementing
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Table 8.5: FlexTest ATPG results.

FlexTest ATPG result
Circuit No. of Total no. # faults Fault

vectors of faults detected cov. (%)

s298 153 308 273 88.64

s820 1127 850 793 93.29

s1423 3882 1515 1443 95.25

s1488 736 1486 1446 97.31

s5378 739 4603 3547 77.06

s9234 15528 6927 1588 22.92

s15850 61687 13863 7323 52.82

s38417 55110 31180 15472 49.62

our proposed method on combinational circuits can be improved, in terms of better pre-

processing of test vectors and optimum selection of spectral components.

Results for sequential circuits

We implemented BIST on eight ISCAS’89 benchmark circuits. We inserted a reset

signal in the circuits to initialize the flip-flops. We activate it only once before beginning the

BIST session. The initial reset can be performed at a slow speed and hence the reset signal

can be implemented using minimum resources. ATPG vectors with an initial reset were

generated to detect stuck-at faults in the circuits using Mentor Graphics commercial tool

FlexTest [91]. Table 8.5 gives the results of this ATPG. These ATPG vectors were analyzed

for prominent spectral components and noise as described in Section 8.1.1. Using this

information in the MATLAB program, 64,000 BIST emulated test vectors were generated

and then fault simulated again using FlexTest.

Table 8.6 gives the results for the number of faults detected by our method (‘Spec.

BIST’) for each circuit and they can be compared with results from random and weighted

random vectors (both without and with holding), ATPG vectors and with the method

in [26]. For random, weighted random and the proposed method we generated 64,000

vectors. For the weighted random vectors, weights for each circuit were used from their

corresponding ATPG vectors without quantization. Random and weighted random vectors
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Table 8.6: Experimental results on fault detection by BIST patterns.

Total Number of faults detected
Circuit no. of Random Weighted Random Spec. Haar

Faults FlexTest Without With Without With BIST* BIST
Holding Holding Holding Holding [26]

s298 308 273 269 273 273 273 273 273

s820 850 793 414 449 744 764 777 710

s1423 1515 1443 891 1217 1449 1469 1468 1468

s1488 1486 1446 1161 1369 1443 1443 1443 1441

s5378 4603 3547 3222 3424 3288 3537 3603 3609

s9234 6927 1588 1268 1305 1293 1303 1729 1413

s15850 13863 7323 5249 6270 5847 6696 6844 5888

s38417 31180 15472 4087 4185 4803 4949 17020 4244

*Proposed spectral BIST method

were generated using a software random number generator. For implementing holding for

the random and weighted random vectors, we used the same holding scheme as used in our

proposed method.

As shown in Table 8.6, the proposed BIST method detects equal or greater number of

faults in six out of eight circuits than the existing methods of random, weighted random

and [26]. Also in five out of eight circuits, our proposed method was able to detect at least

as many faults as detected by ATPG vectors using 64,000 BIST vectors. Noticeable results

were obtained for s38417, where our proposed method detected 17020 faults as compared to

15472 faults detected by ATPG vectors. The effectiveness of the holding scheme is evident

from the results obtained for random and weighted random vectors where most circuits

benefited by the method.

Table 8.7 shows the effectiveness of our proposed BIST method over longer numbers

of vectors and by comparing its results with those obtained from ATPG vectors. The

last column gives the number of vectors required by our BIST method to achieve at least

as much fault coverage as ATPG vectors. As observed from columns 4 and 5, the fault

coverage gradually increases as more vectors are applied. Also we observe from column 6

that eventually six out of eight circuits were able to achieve at least as much fault coverage
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Table 8.7: Comparison of fault coverage and number of vectors with FlexTest ATPG.

FlexTest Hadamard BIST
Circuit Fault Fault cov. (%) Fault cov. (%) BIST vectors

cov. No. of at 64K at 128K for FlexTest
(%) vectors vectors vectors ATPG cov.

s298 88.64 153 88.64 88.64 757

s820 93.29 1127 91.41 91.88 (!)

s1423 95.25 3882 96.90 96.90 22345

s1488 97.31 736 97.11 97.11 (!)

s5378 77.06 739 78.27 78.67 8984

s9234 22.92 15528 24.96 25.25 8835

s15850 52.82 61687 49.37 52.15 198061

s38417 49.62 55110 54.59 63.07 43240

Table 8.8: BIST area overhead in transistors.

Hadamard BIST [this work] Haar BIST [26]
Circuit No. of with clock without clock

transistors divider circuit divider circuit
in circuit No. of % Area No. of % Area No. of % Area

transistors overhead transistors overhead transistors overhead

s298 890 908 102.02 820 92.13 834 93.71

s820 1896 1472 77.64 1340 70.68 1612 85.02

s1423 4624 1637 35.40 1483 32.07 1555 33.63

s1488 4006 1069 26.68 959 23.94 1078 26.91

s5378 12840 2342 18.24 2210 17.21 2487 19.37

s9234 23356 2700 11.56 2502 10.71 2552 10.93

s15850 43696 4908 11.23 4666 10.68 4595 10.52

s38417 108808 3606 3.31 3364 3.09 2135 1.96
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as the ATPG vectors. The cells marked with (!) represent cases where our BIST vectors

were not able to achieve the ATPG fault coverage although the fault coverages were close

to that of ATPG vectors.

Table 8.8 shows a comparison of the area overhead in terms of number of transistors

and % area overhead of our proposed method with [26]. To calculate the area overhead,

we assumed a fixed number of transistors for each type of gate: AND - 6, OR - 6, NAND -

4, NOR - 4, XOR - 6 (pass-transistor logic design), 2 input MUX - 4 (pass-transistor logic

design), D flip-flop - 22. In the table we report results for two cases, one where a clock

divider circuit is implemented and the other where an existing pattern counter is reused

eliminating the need of a clock divider. As compared to [26], the area overhead of our

method with a clock divider circuit is lower in three out of eight circuits, while the overhead

is lower in six out of eight circuits where the clock divider is not used.

8.3.2 Results for BIST mode using reseeding

As mentioned in Section 8.2, reseeding can be employed and the flip-flops in the TPG

can be loaded with external values. The two modes of operation as discussed earlier are the

external tester mode and hybrid BIST mode. We implemented reseeding on the spectral

BIST architecture of two combinational circuits; ISCAS85 c7552 and the combinational part

of ISCAS89 s15850 benchmark circuits. The details of the circuits and of the implemented

BIST architecture were presented earlier in Tables 8.1 and 8.2. The flip-flops used in the

Hadamard wave generator and the weighted pseudo-random bit-stream generator in our

proposed BIST architecture (Figure 8.4), indicated in column 4 of Table 8.2, are loaded

with a required seed from the external tester. Since only these two modes are able to

provide 100% test coverage (fault coverage of the pure BIST mode saturates below 100%

due to its deterministic nature of test generation), we compare these modes in terms of

test data volume and test application time for 100% test coverage. The seeds can either

be loaded through a serial scan interface or through a parallel interface as indicated in
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Table 8.9: Comparison of test data volume and test time for ATPG and different modes of
operation of spectral BIST for c7552.

Modes No. of No. of Test data No. of No. of Test
of test vecs./ inputs volume tester system time

application seeds (bits) cycles clock (us)†
cycles

ATPG (parallel) 247 207 51129 247 0 247

ATPG (serial) 247 1 51129 51129 0 51129

ETM 197 30 5910 197 0 197
(parallel)

Spectral ETM 197 1 5910 5910 0 5910
(serial)

BIST HBM 33 30 990 33 8034 113
(parallel)

HBM 33 1 990 990 8034 1070
(serial)

† assuming tester cycle period Ttester = 1000ns and on-chip system clock period Tclk = 10ns

Figure 8.9. Several approaches have been proposed for parallel reseeding including on-chip

dynamic techniques [68].

In the External Tester Mode (ETM), the TPG is used as a decompressor for one-

seed-per-vector operation. In this mode the TPG is not used to generate any new vectors,

but only to decompress the seeds that are being applied to its inputs. In Hybrid BIST

Mode(HBM), the TPG is operated in normal mode to generate new vectors and is reseeded

at specific intervals to improve the fault coverage. The specific intervals for reseeding are

determined by a coverage threshold and a step-size. Whenever the test coverage improve-

ment over a given step-size falls below the threshold, reseeding is performed. We use a test

coverage improvement threshold of 0.1% for a step-size of 1000 vectors. When the number

of faults detected by 1000 vectors drops to one, the TPG is run for only one clock cycle

after reseeding until all the faults are detected. The next test seed to load for reseeding is

obtained using an ATPG program on the remaining undetected faults in the CUT.

Table 8.9 gives the comparison of test data volume and test time for ATPG and the

different modes of operation of spectral BIST for the circuit c7552. For ATPG, the test
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Table 8.10: Comparison of test data volume and test time for ATPG and different modes
of operation of spectral BIST for s15850 (combinational).

Modes No. of No. of Test data No. of No. of Test
of test vecs./ inputs volume tester system time

application seeds (bits) cycles clock (us)†
cycles

ATPG (parallel) 530 600 318000 530 0 530

ATPG (serial) 530 1 318000 318000 0 318000

ETM 455 35 15925 455 0 455
(parallel)

Spectral ETM 455 1 15925 15925 0 15925
(serial)

BIST HBM 134 35 4690 134 20129 335
(parallel)

HBM 134 1 4690 4690 20129 4891
(serial)

† assuming tester cycle period Ttester = 1000ns and on-chip system clock period Tclk = 10ns

vectors are applied directly to the CUT (without any BIST logic) by the tester with a clock

period equal to Ttester. The test vectors can either be applied through a parallel interface

or scanned into a shift register of size equal to the number of inputs of the CUT. For BIST

mode of operation, the internal on-chip system clock is used, whose period is equal to Tclk.

In the mode ETM, the TPG functions as a decompressor for one-seed-per-vector operation

and controlled by the tester clock (Ttester). Mode ETM (parallel) uses a parallel interface

for loading the seeds in the flip-flops, while Mode ETM (serial) uses a serial scan interface.

In HBM, TPG runs on the system clock (Tclk) during normal mode of operation, and on

the tester clock (Ttester) during reseeding. Again, mode HBM (parallel) uses the parallel

interface, while Mode HBM (serial) uses the serial scan interface.

In Table 8.9, column 1 gives the number of vectors/seeds that need to be applied for

100% test coverage. Column 2 gives the no. of inputs that are being driven by the tester.

For ATPG, the tester drives the inputs of the CUT directly. For spectral BIST, the tester

drives its inputs. Column 3 gives the test data volume that needs to be applied. Columns 4

and 5 give the number of clock cycles of the tester and the CUT that are required to apply
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the test data. Column 6 gives test application time in micro seconds (us). In calculation

of the test time, it is assumed that the period of the tester clock is Ttester = 1000ns and

that of the system clock is Tclk = 10ns. We chose a much slower tester clock for several

reasons. The scan circuitry is generally not optimized for high speed timing. Also using a

fast scan clock increases the test power. Fast tester clocks also increase the probability of

failing functionally good chips by activating non-functional critical paths. In most cases,

the use of fast tester clock frequency is prohibited by the above mentioned issues, although

it can be used in certain specific scenarios as required.

In Table 8.9, the results for parallel interface (ATPG (parallel), ETM (parallel) and

HBM (parallel)) and serial scan interface (ATPG (scan), ETM (serial) and HBM (serial))

can be compared amongst each other. From the table, we observe that the test data

volume for spectral BIST is an order of magnitude lower than direct application of ATPG

vectors. Also the test application shows a marked reduction in both parallel and scan

interfaces. Table 8.10, similar to Table 8.9, gives the comparison of test data volume and

test application time for the circuit s15850 (combinational). A similar trend in test data

volume and test application time is also observed in Table 8.10.

8.4 Summary

We present a novel hardware test generation method for BIST environments. ATPG

vectors are analyzed for spectrum and random noise level. The ATPG vectors can be derived

from gate, register-transfer, or function level algorithms [149, 150] for fault models like stuck-

at, delay [152], or several combined fault models [153]. Our hardware patterns mimic the

characteristics of ATPG vectors by controlled mixing of spectral components and noise.

We propose a novel circuit for mixing spectral components called the “spectral component

synthesizer”. Noise is inserted using an XOR circuit. Results show fault coverages equal

to or greater than those of ATPG vectors in six out of eight sequential benchmark circuits

and encouraging results for combinational benchmark circuits. Our method achieved the

maximum fault coverage in six out of eight sequential benchmark circuits considered. In
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case of combinational circuits, our proposed method performed satisfactorily as compared

to the random and weighted random test pattern generators. Area overheads are moderate

compared to existing methods. We also exhibit test data compression capabilities of our

proposed BIST architecture. Our proposed architecture provides a maximum test data

compression exceeding 90% and a test time reduction of more than 30%.
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Chapter 9

Conclusion and Future Work

In this section we summarize the contributions of this work, deduce conclusions and

provide some suggestions for possible future work in this area

9.1 Conclusion

With the growing design complexities of VLSI digital circuits, it is evident that the

corresponding issues of digital circuit testing would need close consideration and efforts for

their abatement. The primary issues of concern are the need for reduction in time complexity

of test generation, better quality of test vectors and reduction of testing cost. This thesis

addresses these issues by making contributions in mainly two areas, which are automatic

test pattern generation (ATPG) and Built-In-Self-Test (BIST). We proposed test generation

schemes for digital circuits and a pattern generator for built-in self-test environments which

utilize the concept of spectral domain signal processing. A related contribution of this thesis

towards better quality test vectors is the proposal of the N -Model tests and a method for

their minimization using ILP methods.

We proposed a novel method of test generation for sequential circuits using spectral

techniques in Chapter 6. Spectral properties are extracted from a modest set of test vectors

generated for the sampled RTL faults and new vectors are generated using those properties

to cover all the faults in the circuit. Encouraging results were obtained for the various

ISCAS’89 benchmark circuits considered which exhibited equal or improved test coverage

and reduced test generation time as compared to the commercial sequential test generation

tool FlexTest [91].
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We proposed a new type of test called as “N -model test” in Chapter 7 which uses N

different fault models of choice and a method for their minimization using Linear Program-

ming (LP) methods. Our proposed method shows a noticeable reduction in test set size

as compared to conventional single fault model minimization methods. Additionally our

proposed ILP-based minimization model offers a trade off between the total number of test

vectors and the cost of test application.

In Chapter 8, we proposed a method for designing a pattern generator for digital circuits

in BIST environments using spectral techniques. Given a set of test patterns generated for

a digital circuit, the objective here is to regenerate the efficacy of those vectors in hardware

for BIST using minimal area overhead and test vector length. The original test vectors,

which are to be imitated in hardware, are analyzed for their spectral properties and those

properties are implemented in hardware to construct a TPG for BIST. We implemented

our methodology on non-scan ISCAS benchmark circuits and reported their results. The

proposed BIST pattern generator, while attaining the test coverage of the original test

vectors in most cases, shows markedly improved test coverage for similar vector length

and comparable area overhead as compared to other pattern generators. We investigated

reseeding of our proposed TPG and showed interesting test compression capabilities. In the

two circuits considered for reseeding, our proposed architecture provides a maximum test

data compression exceeding 90% and a test time reduction of more than 30%.

9.2 Future Work

In this section we give some suggestions on future work which may be carried out in

the area of spectral testing

9.2.1 Test data compression

The need for test data compression has been emphasized earlier in this thesis in Chap-

ter 4 to reduce the test application time and hence the test cost. Earlier we had discussed

exact methods to determine the minimal number of effective test vectors, mainly using
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Table 9.1: Comparison of fault coverage and number of vectors with FlexTest ATPG.

FlexTest Hadamard BIST
Circuit Fault Fault cov. (%) Fault cov. (%) BIST vectors

cov. No. of at 64K at 128K for FlexTest
(%) vectors vectors vectors ATPG cov.

s5378 77.06 739 78.27 78.67 8984

s9234 22.92 15528 24.96 25.25 8835

s38417 49.62 55110 54.59 63.07 43240

techniques like Integer Linear Programming (ILP). Here we suggest performing test data

compression by reducing the total test data size for digital circuits taking into account

the spectral properties extracted from the uncompressed test set. We investigated the test

data compression capabilities of our spectral BIST implementation for two combinational

circuits in Section 8.3.2 and found encouraging results. We believe that this concept can

be extended to all circuits including sequential (both non-scan and scan-inserted) circuits.

The origin of this idea finds its roots in the results presented for our spectral BIST im-

plementation of sequential circuits in Chapter 8. Here we duplicate some of the results in

Table 9.1, which we had earlier presented in Table 8.7, where the test coverage obtained by

our proposed spectral BIST implementation actually exceeded (sometimes in fewer vectors)

than the test coverage of the ATPG vectors which were intended to be imitated.

Notable results to consider are those for circuits s9234 and s38417, where the test

coverage of ATPG vectors was obtained in fewer vectors by our proposed spectral BIST

TPG. We believe that the analysis of spectral properties that we perform in our proposed

method retrieves salient characteristics of the test vector set and hints towards its test

compression capabilities. By capturing only the information content present in the required

salient characteristics, we believe that test data size can be reduced.

9.2.2 Spectral BIST for scan-inserted sequential circuits

In this thesis we proposed methods for implementing the spectral BIST TPG for non-

scan (combinational and pure sequential) circuits. This concept can be extended to include
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Figure 9.1: Scan-inserted sequential circuit.

scan-inserted sequential circuits, since they form the majority of the circuits that are being

manufactured these days. In scan-inserted sequential circuits, a scan chain is used to connect

the the flip-flops in the circuit in the form of a serial shift register. Figure 9.1 shows a generic

block diagram of a scan-inserted sequential circuit. The scan chain starts with a scan-in

pin and terminates with a scan-out pin. The flip-flops can be loaded with any required

values by driving the scan-in pin of the scan chain with appropriate values. Similarly any

values captured by the flip-flops can be scanned out from the scan-out pin. It is a popular

practice to partition the flip-flops into several scan chains for several reasons like multiple

clock domains, rising and falling edge flip-flops, test compression, etc.

The problem now is to design a spectral BIST test pattern generator which can drive

not only the primary inputs, but also the scan-in pin(s) of the scan-chain(s). In our pro-

posed spectral analysis method, we analyzed the bits which are being applied to each input

separately and by doing this we determined the temporal correlations present in the bits.

For the current problem at hand, unlike the former case, the bits which are being applied
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to the scan-in pin(s) actually exhibit spatial correlations among the values loaded in the

flip-flops. Hence we need to consider two types of correlations, temporal correlation for

the primary inputs and spatial correlation for the scan-in pin(s). Another alternative is to

insert flip-flops even for primary inputs and outputs, and connect them using a scan chain.

In this scenario we will be required to consider only spatial correlations among the bits

which are being applied to the scan chain(s).
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