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Functional data consist of observed functions or curves at a finite subset of an

interval. Each functional observation is a realization from a stochastic process. This

thesis aims to develop a suitable statistical methodologies for functional data analysis

in the presence of outliers.

Statistical methodologies assume that functional data are homogeneous but in

reality they contain functional outliers. Exploratory methods in functional data anal-

ysis are outlier sensitive. In this thesis we explore the effect of outliers in functional

principal component analysis and propose a tool for identifying functional outliers by

using robust functional principal components in a functional data. This is done by

means of robust multivariate principal component analysis. Diagnostic plots based on

functional principal component analysis are also found to be useful for identification

and classification of functional outliers. Extensive simulation study is conducted to

evaluate the performance of the proposed procedures and also real dataset is employed

to illustrate the goodness of the method.
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In addition, regression diagnostics for a functional regression model where regres-

sors are functional data such as curves and the response is a scalar are discussed. We

proposed a robust principal component based method for the estimation of the func-

tional parameter in this type of functional regression model. Further we introduce

robust diagnostic measures for identifying influential observations. A real dataset is

also used to illustrate the usefulness of the proposed robust measures for detecting

influential observations.
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Chapter 1

Introduction

Functional Data Analysis (FDA), comparatively new area in the statistical mod-

eling, has become more popular in recent years. FDA is an assemblage of different

methods in statistical analysis for analyzing curves or functional data. The com-

plexity of data generated and large size of databases mandate use of new tools for

analysis such as FDA [32, 26]. Functional data analysis helps to extract additional

information from densely sampled observations over a time or space. In standard

statistical methodology the focus is on the set of data vectors whereas, in FDA focus

is on the type of data structure such as curves, shapes, images, or set of functional

observations.

In FDA, each observed curve is thought of as a single observation rather than

a collection of individual observations. A curve can be regarded as an infinite-

dimensional vector, whose dimensions may not be countable (Figure 1.1(a),(b)).

In a traditional statistical methodology, the usual data types are univariate and

multivariate. A univariate dataset contains numbers as its observations; while a mul-

tivariate dataset contains vectors as its observations. A number is one-dimensional

while a vector is multi-dimensional. Multivariate Data Analysis (MDA) is an exten-

sion of Univariate Data Analysis and FDA is an extension of multivariate analysis,

where the random vectors are of infinite dimensions.

In number of situations functional data can be treated as multivariate data.

However, treating data directly as multivariate data may pose difficulty, such as when
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Figure 1.1: Example of (a)Functional Observation and (b)Functional dataset

design points are not equal in subjects. So, direct multivariate treatment may not be

possible in this case. This calls for the development of functional data analysis.

When each functional observation is sampled at a same set of design points,

the functional data we get may look like multivariate data. But functional data

is in general different from the multivariate data in the following aspects: 1. For

a functional observation, the observed data is sampled from an underlying smooth

function, whereas in a multivariate dataset for an observed vector there is no such

structure. 2. The dimension of a functional observation is so large that it is regarded

as a continuous function. This can be seen in Figure 1.1(a). This dimension is often

larger than the sample size. 3. The time points can be different from one data point

to another. All of these different aspects necessitate development of functional data

analysis [39].

There are three advantages in treating data in functional forms. First, by rep-

resenting data in functional form with small number of parameters reduces its size

considerably. Second, since FDA deals with continuous functions; information be-

tween observed points is not lost. For finite sets of observations, FDA first estimates
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functions from the observed data, and then discretizes the function at any suitable

choice of time points for further analysis. The free choice of analyzed points is attrac-

tive when observational points are different in each subject. Thirdly, it is very useful

to have particularly interesting features in some time interval to have more closely

spaced points.

In functional data framework, the random variables are defined on the functional

space. To model the population of these random functions we think of a functional

data observation as a realization of a stochastic process, X(t), t ∈ T , where T is a

bounded interval in <.

Some mathematical concepts used for FDA are explained here. In FDA, we work

with a functional Hilbert space L2 (e.g., inner product space) which is determined

by an inner product 〈x, y〉 [25]. In a finite dimension with x = (x1, . . . , xn) and

y = (y1, . . . , yn), the Euclidean inner product is defined in the following way:

〈x, y〉<n = Σxiyi.

In a functional space where x = x(t) and y = y(t) are functions, the L2 inner product

is defined as:

〈x, y〉L2 =
∫

x(t)y(t)dt,

where x, y ∈ L2. For the convenience we drop the subscripts 〈x, y〉L2 and just use

〈x, y〉.

The L2 norm is the most common type of norm, which is related to the inner

product. The norm on an inner product space is defined by:

‖ x ‖2= 〈x, x〉 =
∫

x2(t), dt
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and a distance between x and y is given by:

d(x, y) =‖ x− y ‖= (〈x− y, x− y〉)1/2.

Consider the functions as processes in continuous time defined over an interval,

say T ∈ [tmin, tmax]. The ith replication of functional observation is denoted as xi(t)

∈ L2[T ], i = 1, . . . , n. In practice, it is impossible to observe the functional values

in continuous time. We usually obtain the data only on a finite and discrete grid

t = {t1, t2, . . . , tp} ∈ T in the following manner:

yi = xi(t) + εi, 1 ≤ i ≤ n,

where εi is a random error or noise with zero mean and variance function σ2
i (t). For

simplicity, we assume that all processes are observed at the same time points, which

are equally spaced on T and is denoted by t = {t1, t2, . . . , tp}, but in reality tj ∈ T

can be different, i.e., tij depending on i where 1 ≤ j ≤ pi.

Functional Basis Expansion

For any data analysis in the FDA framework first step is functional data smoothing.

It is done to convert raw discrete data points into smooth functions i.e., to convert

data to functional form. Smoothing method is used to minimize noise in raw data

for calculations and analysis. There are different types of smoothers that can be

applied to functional data. In this thesis we use smoothing based on basis-function

method. By the use of basis function discrete data is represented as a smooth function

this is also known as functional data smoothing. In the basis expansion method; the

function xi can be represented as a linear combination of first k known basis functions

4



φK , K = 1, . . . , k, where k is large enough, k < p. In this approach, a functional

observation xi is expressed as:

xi(t) =
k∑

K=1

ciKφK(t),

where φ is vector-valued function having components φ1, . . . , φk. The C is n × k

coefficient matrix of the expansion, where C = [ciK ], 1 ≤ i ≤ n, 1 ≤ K ≤ k. The

simultaneous expansion of all n curves can be expressed in matrix notation as:

x = Cφ,

where x is a vector-valued function with xi, 1 ≤ i ≤ n, as its components. This

approach is preferred since it makes good approximation of the data with a relatively

small number of parameters. This may be considered to be a dimension reduction

operation.

There are many basis functions possible. Fourier and B-spline bases are most

frequently used bases functions which are summarized below:

Fourier basis system

This is the best known basis expression for the periodic data which is based on Fourier

series. The Fourier basis expansion is given by:

x̂(t) = c0 + c1sin(wt) + c2cos(wt) + c3sin(2wt) + c4cos(2wt) + . . . ,.

Here,

φj(t) = 1, j = 0

φj(t) = sin(rwt), j = 2r − 1

5



φj(t) = cos(rwt), j = 2r.

The period and the length of the interval |T | = 2π/w is determined by the fre-

quency w. The Fourier basis is said to be orthogonal if the values of tj are equally

spaced on T and the period is equal to the length of T . Due to orthogonal property

the cross-product matrix φ′φ is diagonal, and can be made equal to the identity by

dividing the basis function by suitable constants n1/2 for j = 0 and (n/2)1/2 for all

j. This basis is well known partially due to the Fast Fourier Transformation (FFT)

Algorithm, which makes it possible to compute the coefficients speedily and efficiently.

B-Spline basis system

B-Spline basis is a well-known functional basis for non-periodic data. The interval

T on which basis is defined is divided into L subintervals separated by values τl

l = 1, . . . , L− 1 called breakpoints or knots. A spline function is determined by two

quantities: the order of the B-spline and the number of knots. A spline is piecewise

polynomial function of order m over each interval, which is smoothly connected at

breakpoints. The notation BK(t, τ) of the B-spline function defined by the breakpoint

sequence τ indicate the value at t and K refers to the number of the largest knot at

or to the immediate left of value t.

The notation φK(t) is B-spline of order m and a knot sequence τ given by:

φK(t) = BK(t, τ), K = 1, . . . , m + L− 1.

The advantage of this basis function is that they are flexible and fast.

Since no basis is universally good, choosing one is a complex issue. However,

there are guidelines for specific situations as each candidate function for the basis has

the unique characteristics; for example if the data are periodic then a Fourier basis

is used and for non-periodic data or data that have a lot of local features B-spline

6



works better. The selection of the basis function φK(t) is done by observing the data.

Selecting proper order of expression k (the number of basis functions) is important

question in the basis expansion. There are many ways to decide the number of basis

functions like Cross-Validation (CV), Generalized Cross Validation (GCV) or other

similar criteria. In this thesis we use GCV developed by Craven and Wahba [9], which

is described in Chapter 2.

Since X(t) is a random function the mean, variance, covariance and correlation

of X(t) are defined as:

V arX(t) = E[X(t)− EX(t)]2, t ∈ T

CovX(s, t) = E[X(s)− EX(s)][X(t)− EX(t)], s, t ∈ T

CorrX(s, t) = CovX(s,t)√
[V arX(s)V arX(t)]

, s, t ∈ T

where V arX(s), V arX(t) > 0.

The functional sample descriptive statistics, where we have an n-dimensional subspace

for the sample space, xi(t), i = 1, . . . , n are also be defined as:

x(t) = 1
n
[

n∑

i=1

xi(t)], t ∈ T

V̂ arx(t) = 1
n−1

[
n∑

i=1

[xi(t)− x(t)]2], t ∈ T

Ĉovx(s, t) = 1
n−1

[
n∑

i=1

[xi(s)− x(s)][xi(t)− x(t)]], s, t ∈ T

Ĉorrx(s, t) = Ĉovx(s,t)√
[V̂ arx(s)V̂ arx(t)]

, s, t ∈ T .

Majority of statistical techniques used in traditional and functional data analysis

assume that the dataset is free of outliers. However, outliers occur very frequently

in real data. Outlier is defined as a data point appearing to be inconsistent with the

rest of the data. Possible sources of outliers are errors in recording and measurement,

incorrect distribution assumption, unknown data structure, or novel phenomenon

[23]. In any statistical data analysis, investigation of outliers is important. Since
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traditional statistical methods are sensitive to outliers, presence of outliers in a dataset

make estimators and statistical conclusions unreliable. In addition presence of outliers

severely affects modeling and prediction.

High dimensional data occurrence is natural in some practical applications such

as studies involving image analysis and microarray datasets in genomic studies. In

such applications dimension p is greater than n, sample size. The FDA analysis

and high-dimensionality are closely related as the functional data generally come

in a discretized manner so that a function xi in the sample is in fact given by

(xi(t1), . . . , xi(tp)). High dimensionality problem has two distinct features: first the

dimension p depends on the descretization order. This is not given in advance and

can be arbitrarily increased. Second, the data from the discretized functions likely to

be highly correlated thus creating difficulty in estimation of the covariance matrices.

Functional Principal Component Analysis (FPCA) is a useful statistical tech-

nique for understanding the structure of data. They are effective dimension reduction

tools for functional data. FPCA aims to explain the covariance structure of data by

means of small number of functional components. These functional components are

linear combinations of the original variables. This gives better interpretation of the

different sources of variation. Thus effectiveness of FPCA in data reduction is useful

in analysis of high dimensional data. In the presence of outliers, dimension reduction

via FPCA would yield untrustworthy results since FPCA is known to be sensitive to

outliers.

The main contribution of this work is the construction of the method to detect

outliers in functional data through robust FPCA. We have used library developed

by Ramsay and Silverman [31] to construct our code for functional data analysis.

This thesis is organized as follows. Chapter 2 reviews functional principal component

analysis and explore sensitivity of FPCA to outliers. We also propose a functional

8



outlier detection procedure based on robust multivariate techniques. We have de-

scribed accompanying diagnostic plots that can be used to detect and classify possi-

ble outliers. Chapter 3 consists of numerical examples, real dataset and simulation

study for the proposed procedure. Chapter 4 reviews the functional linear model with

scalar response. In this chapter we propose a robust technique of parameter function

estimation based on the robust functional principal components method. We also

introduce robust diagnostic measures for identifying influential observations. Finally,

in Chapter 5, we give the conclusions of this work.

9



Chapter 2

Robust Functional Principal Component Analysis and Outlier

Detection

2.1 Introduction

In various areas such as chemometrics, biometrics, engineering, genetics, and e-

commerce the data come from the observation of continuous phenomenons of time

or space known as functional data. Due to advancement of new techniques it is

now possible to record large number of variables simultaneously. The nature of this

data in many applications is high dimensional where the number of variables (p) is

greater than the number of observations (n) (n ¿ p). The focus of researchers is

on analysis of such data due to the emergence of statistical problems while applying

various statistical tools for data analysis. Functional principal component analysis

(FPCA) is a useful tool to reduce the dimension of the functional data.

In functional data, the first step is to represent the data in a lower dimensional

space in order to have better interpretation. This is done by performing FPCA

to capture the main modes of variability of the data by means of small number of

components which are linear combinations of original variables that allow for better

interpretation of various sources of variation.

Sensitivity of the variance and the covariance matrix to irregular observations

make it vulnerable to outliers and may not capture the variation of the regular ob-

servations. Therefore data reduction based on FPCA becomes unreliable. This ne-

cessiates the need of the robust FPCA method.

10



Lacontore et al.[27], has proposed a robust functional principal component anal-

ysis based on spherical (SPHER) and elliptical (ELL) PCA [27]. However, these

methods have two drawbacks. First drawback is that SPHER and ELL only estimate

the principal components and not their eigenvalues. Second drawback is that SPHER

and ELL PCA are influenced by outliers [22]. Febrero et al. [13, 14] also proposed

two methods for outlier detection that are based on the idea of functional depths and

distance measures.

The main contribution of our work is to construct a robust PCA method to

achieve dimension reduction of data and to develop tools for detection of functional

outliers.

The outline of this chapter is as follows. In Section 2.2, a brief description of

classical principal component analysis (CPCA) method and robust PCA methods are

given. The main concepts of PCA which are used in FPCA are discussed in Section

2.3. In this section, the outlier detection procedure via robust FPCA is also described.

2.2 Classical and Robust Principal Component Analysis

Principal Component Analysis (PCA) is used for understanding the structure of

a multivariate dataset. PCA is a useful tool for data reduction, which is achieved by

identifying main modes of variability of a given dataset. Unfortunately, if the data

contains outliers then data reduction based on classical principal component analysis

becomes unreliable. The goal of the robust PCA methods is to obtain principal

components that are not affected by outliers.

11



2.2.1 Classical Principal Component Analysis

In multivariate data the central notion is to find weight vectors γj ∈ <p for which

a linear combination of centered variable values

Zi =
p∑

j=1

γjxij = γ′xi i = 1, . . . , n (2.1)

that have maximal variance subject to constraints γ′mγr = I(m = r) for m < r, where

γ = [γ1, . . . , γp]
′ and xi = [xi1, . . . , xip]

′. The solution is obtained by the means of

spectral decomposition of the variance-covariance matrix [24, 31].

2.2.2 Robust Principal Component Analysis

In this Section three robust methods for PCA for multivariate data are reviewed.

These are 1. Elliptical Principal Component Analysis, 2. Robust Principal Compo-

nent Analysis (ROBPCA), 3. Blocked Adaptive Computationally Efficient Outlier

Nominators Principal Component Analysis (BACONPCA).

Elliptical Principal Component Analysis

In order to find the robust principal directions, Spherical (SPHER) Principal Com-

ponent Analysis and Elliptical (ELL) Principal Component Analysis, developed by

Lacontore et al.[27], are used. In this method: the first step is to find the robust esti-

mate of the center of the population. This is done by considering the spatial median

which is given by:

θ̂ = arg max
θ

n∑

i=1

‖ xi − θ ‖2,

12



where ‖ · ‖2 denotes the Euclidean norm on <p and x1, . . . , xn ∈ <p. To overcome the

problem of high dimensionality SPHER PCA, which is a robust version of PCA, is

performed by projecting the data on the unit sphere in <p. For coordinates measured

in different scales, ELL PCA is adopted by first scaling the data through robust scale

estimates. Prescaling is done by the Median Absolute Deviations (MAD). By doing

this the vertical axis is compressed and the bulk of the data look like a sphere. Then

the data is projected on this scale. After the projected data is rescaled, which lie on

an ellipse, classical PCA is performed.

The SPHER and ELL PCA methods facilitate fast algorithm for performing

robust PCA. SPHER and ELL only estimate the principal components and do not

calculate estimates of the eigenvalues, so computing score distances is not possible.

Hubert et al. [22] showed that SPHER and ELL PCA are influenced by outliers when

the data are high-dimensional or when there is a large percentage of contamination in

the data. In such instances these methods convert the bad leverage points into good

leverage points and orthogonal outliers.

ROBPCA and BACONPCA

Let the original data be n × p matrix X = Xn,p, where n denotes the number of

observations and p denotes the number of variables. ROBPCA [20, 21, 22] is based

on the minimum covariance determinant (MCD) estimator [35, 36] of multivariate

location vector and scatter matrix. BACONPCA [3] is based on the estimator of the

location vector and scatter matrix obtained from the basic subset which is found al-

gorithmically by utilizing BACON approach [2]. We will describe these two methods

in details for low and high dimensional cases.
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ROBPCA for low dimensional data (n > p)

Minimum covariance determinant (MCD) estimator [35, 36] of multivariate location

and covariance matrix are popular for this case because of its high resistance to

outliers. It also provides fast algorithm (FAST-MCD) [37] for computation.

In this algorithm: the initial MCD estimators are defined, based on h observa-

tions (h < n), as the mean µ̂0 and the covariance matrix Σ̂0. The covariance matrix of

these h observations has the lowest determinant and h should be at least [(n+p+1)/2].

MCD estimator can resist n−h outliers and with this choice the MCD estimator has

a breakdown value of (n− h + 1)/n. The value of h is taken approximately between

0.5n and 0.75n. The value h ≈ 0.5n is taken when there is 50% contamination and

if there is 25% contamination then the value of h ≈ 0.75n. When there are smaller

number of outliers the value of h is increased for a more precise estimates.

Reweighting is then done to increase the finite sample efficiency. Each data

point receives a weight 1 if its robust distance RD(xi) =
√

(xi − µ̂0)′Σ̂−1
0 (xi − µ̂0)

is ≤
√

χ2
p,0.975 and weight 0 otherwise. For the observations with weight one the

reweighted MCD estimator is then defined as the classical mean µ̂M and covariance

matrix Σ̂M . The robust loadings are the first k1 eigenvectors of the MCD estimator

of Σ̂M sorted in descending order of the eigenvalues [20, 21, 22].

ROBPCA for high dimensional data (p > n)

For data with high-dimension (p > n), the MCD estimator can not be used because

the covariance matrix of h < p observations is always singular and can not be min-

imized. In this case ROBPCA method suggested by Hubert et al. [20, 21, 22] is

used on the Xn,p data. ROBPCA method is a combination of both projection pursuit

technique (PP)[19] and MCD covariance estimation in lower dimensions. PP is used
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first to reduce dimension. The MCD method is then applied to this low dimensional

subspace to estimate the center and the scatter of the data.

Initial data preprocessing is done by applying singular value decomposition of

Xn,p. This results in huge dimension reduction as the data are represented using at

most n− 1 = rank(X̃n,p) variables without loss of information.

By applying PP, the high dimensional data points are projected on many uni-

variate directions. Then the robust center µ̂r and scale σ̂r (based on univariate MCD

method) of these projected data points on every direction are computed. For each

projected data point, the Stahel-Donoho’s outlyingness measure:

Outl(zj) = maxv
| z′iv − µ̂r |

σ̂r

, i = 1, . . . , n.

is used to form h subset, that has smallest outlyingness. Optimal k0 ¿ p principal

components are then selected from the covariance matrix of the final h subset. The

data are then projected onto this k0 dimensional subspace. Next the reweighted MCD

estimator is used to compute the center and the scatter of the data points in this low-

dimensional subspace. The dominant k1 eigenvectors of this covariance matrix are

the k1 robust principal components, and the MCD location and covariance matrix

estimates serve as robust estimates for the location vector µ and covariance matrix

σ.

BACONPCA in low dimensions (n > p)

The Blocked Adaptive Computationally Efficient Outlier Nominators (BACON) al-

gorithm developed by Billor et al. [2] is used for this robust procedure. BACON

is a cost effective, fast computational method with high breakdown point based on

measuring robust distances from a basic subset, which is free of outliers. The initial
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basic subset is derived algorithmically in two ways by Mahalanobis distances or by

Euclidean distances.

For BACONPCA in low dimensions, initial dimension reduction of the mean

centered data matrix Xc is done by singular value decomposition (SVD).

Xc = (X − 1nµ̂′) = UDΓ′,

where µ̂ is the classical mean vector, D is a p× p diagonal matrix of the eigenvalues

of the X ′
cXc and U ′U = Ip = Γ′Γ, Γ is the matrix of the eigenvectors corresponding

to the eigenvalues of X ′
cXc. Ip is the p× p identity matrix. The next step is to obtain

the score matrix, Z = XcΓ. The robust mean, µ̂B and the robust variance-covariance

matrix, Σ̂B, are computed from clean observations obtained from BACON algorithm.

From the BACON based covariance matrix, Σ̂B, number of robust PCs are determined

as k1. Γ1 is the matrix of the eigenvectors corresponding to the nonzero eigenvalues

of Σ̂B. Finally, robust score matrix, Z1 = (Z − 1nµ̂
′
B)Γ1, is obtained [3].

BACONPCA in high dimensions (p > n)

In this case BACONPCA method, suggested by Billor et al. [3], is used on the

centered Xc data. The mean centered data matrix Xc are preprocessed by singular

value decomposition (SVD) based on the eigenvalues and the eigenvectors of XcX
′
c

instead of X ′
cXc. Since decomposition of XcX

′
c is much faster than that of X ′

cXc.

Then the score matrix Z = XcΓ is obtained, where Γ is the matrix of the eigenvectors

corresponding to the eigenvalues of XcX
′
c.

Since BACON or MCD methods are useful only when n > p, these methods can-

not be used, where n < p, to determine clean observations of Z because of singularity
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of the covariance matrix. Stahel-Donoho’s outlyingness measure is useful to deter-

mine a clean set of h observations of Z (Hubert et al. [22]). The high dimensional

data points, zi, are projected onto many univariate directions v. For every direction

v, robust center µr and robust standard deviation, σ̂r (based on univariate BACON

method) are obtained for the projected observations, z′iv (i = 1, . . . , n). Outlyingness

measure based on these robust center and scale values can be defined as:

Outl(zj) = maxv
| z′iv − µ̂r |

σ̂r

, i = 1, . . . , n.

This measure will detect the points which are outlying on the projection vector.

Therefore, this will result into h clean set of observations (h=0.75n). For h observa-

tions the mean, µ̂1, and the scatter matrix, Σ̂1, of the Z matrix are obtained. The

spectral decomposition of Σ̂1, gives:

Σ̂1 = Γ1Λ1Γ
′
1,

where Γ1 is the matrix of the eigenvectors corresponding to the eigenvalues of Σ̂1, Λ =

diag(λ1, . . . , λp) is the diagonal matrix of the eigenvalues of Σ̂1. Then we determine

the retaining number of principal components k0 < p by using some techniques, like

a scree plot. The data are then projected onto the subspace spanned by the first k0

eigenvectors of the covariance matrix Σ̂1, that is

Z2 = (Zn×p − 1nµ̂
′
1)Γp×k0
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where Γp×k0 is a matrix of the first k0 eigenvectors Γ1. Next, BACON algorithm is

applied to find the mean vector, µ̂B, and scatter matrix, Σ̂B, of the matrix, Z2. Based

on the robust covariance matrix, Σ̂B, the robust PCs are obtained as:

Z3 = (Z2 − 1nµ̂′B)Γ∗p×k1
,

where Γ∗p×k1
is the matrix of eigenvectors corresponding to the first k1 eigenvalues,

that are determined by a selection criteria (e.g., a scree plot), of the robust BACON

based covariance matrix Σ̂B [3].

2.3 Classical and Robust Functional Principal Component Analysis and

Outlier Detection

When the dataset is in the form of a curve, the procedure for PCA can be

generalized for functional principal component analysis (FPCA) to obtain main modes

of variability for the curves.

2.3.1 Classical Functional Principal Component Analysis

When the dataset is in the form of a curve, the procedure for classical PCA

can be generalized for Functional Principal Component Analysis (FPCA) to obtain

main modes of variability for the curves. Instead of variable values xij, used in

PCA, functional values xi(t) are used in FPCA, so that the discrete index j in the

multivariate context is replaced by continuous index t. Unlike multivariate PCA,

components in functional PCs are functions rather than vectors. So summations over

j are replaced by integrations over t.
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Let {x(t), t ∈T} be a stochastic process where T is some index set which is a

bounded interval on <. The principal component scores corresponding to weight γ is

generalized to an integral form,

Zi =
∫

γj(t)xi(t)dt. (2.2)

The weight function γj(t) is obtained by solving

max
〈γj, γm〉=I(j=m), j≤m

N−1
∑

(
∫

γjxi)
2 (2.3)

or equivalent to solving the functional eigenequation

∫
ψ(s, t)γ(t)dt = λγ(s), γ ∈ L2, (2.4)

where ψ is the covariance function of the x(t). The sequence of eigenfunctions γi,

i = 1, 2, . . ., sorted with respect to the corresponding eigenvalues λ1 ≥ λ2 ≥ . . . solves

the FPCA problem (2.3). The eigenequation is the same general equation as in PCA,

except here γ is now an eigenfunction rather than an eigenvector. There is a major

difference between the multivariate and functional eigenanalysis. In multivariate case

the eigenvalue-eigenfunction pairs are p (number of variables) whereas, in functional

case they are infinite (number of functional values). In practice, the unknown covari-

ance function ψ needs to be estimated by the sample values xi(t), 1 ≤ i ≤ n, where

for each i, xi(t) is observed on a discrete set of points t = {t1, . . . , tp} for finite p.

FPCA problem can be represented in terms of basis function approach. In which,

first k bases functions in a basis {φ1, . . . , φk} are used, where k is large enough, so

that these functions will be able to describe most of the features of the data. The

bases are selected based on the nature of the data; for example if the data are smooth
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and periodic then a Fourier basis might be ideal and for data that have a lot of local

features then B-splines might work better. Approximate each xi by:

x̂i(t) =
k∑

K=1

ciKφK(t). (2.5)

We can express all n curves simultaneously by defining the vector-valued function x to

have components x1, x2, . . . , xn and the vector valued function φ to have components

φ1, . . . , φk as:

x = Cφ, (2.6)

where the coefficient matrix C is n × k. In matrix terms the variance-covariance

function is:

ψ(s, t) = n−1φ(s)′C ′Cφ(t). (2.7)

Define W as a symmetric matrix of order k

W =
∫

φφ′. (2.8)

Suppose that the weight function γ has the expansion

γ(s) =
∑

bKφK(s) (2.9)

and in matrix notation, γ(s) = φ(s)′b. Using equations (2.6-2.9) the left hand side of

eigen equation (2.4) becomes

∫
ψ(s, t)γ(t)dt =

∫
n−1φ(s)′C ′Cφ(t)φ(t)′bdt

= φ(s)′n−1C ′CW ′b.
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The eigenequation can be written as:

φ(s)′n−1C ′CWb = λφ(s)′b. (2.10)

As this equation holds true for all s, it can be written in matrix form in following

manner:

n−1C ′CWb = λb. (2.11)

As ‖ γ ‖= 1 implies b′Wb = 1 and similarly, two functions γ1 and γ2 will be orthogonal

if and only if the corresponding vectors of coefficients satisfy b′1Wb2 = 0. We define

u = W 1/2b to get the required principal components by solving equivalent symmetric

eigenvalue problem

n−1W 1/2C ′CW 1/2u = λu (2.12)

and compute b = W−1/2u for each eigenvector. If the basis is orthonormal then

W = I. The functional PCA problem reduces to the standard multivariate PCA of

the coefficient array C.

In this section, we examined FPCA as a dimension reduction tool. Although,

FPCA solves dimensionality problem, it fails to deal with data containing outliers. In

next section a new robust method, robust FPCA method, is given to overcome this

problem.

2.3.2 Robust Functional Principal Component Analysis and Outlier De-

tection

In this section, an outlier detection method for functional data via robust FPCA

is given. The robust FPCA method is to obtain functional principal components
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that are less influenced by outliers. Outlier detection method proposed by Febrero et

al.[13] is discussed and then the construction of the robust FPCA method is described.

Outlier Detection using Likelihood Ratio Test

Outlier detection procedure in functional data using Likelihood Ratio Test (LRT)

is developed by Febrero et al.[13], which is based on distance measure. Let the

functional sample be x1, . . . , xn and the statistic is given as:

Oα(xi) = ‖xi − µ̂TM,α

σ̂TSD,α

‖,

Λ = max
1≤i≤n

Oα(xi),

where ‖ · ‖ is a norm in the functional space (‖ · ‖1, ‖ · ‖2 or ‖ · ‖∞), µ̂TM,α is the

α-trimmed mean and σ̂TSD,α is the α-trimmed standard deviation. Hence, Oα(xi)

is the distance between xi and µ̂TM,α relative to σ̂TSD,α. The presence of outliers is

determined by comparing the test statistic (Λ) with some threshold and an iterative

procedure.

Description of the Proposed Method

Consider the functions as processes in continuous time defined over an interval,

say T ∈ [tmin, tmax]. The ith replication of functional observation is denoted as

xi(t) ∈ L2[T ], i = 1, . . . , n. In practice, it is impossible to observe the functional

values in continuous time. We usually obtain data only on a finite and discrete grid
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t = {t1, t2, . . . , tp} ∈ T in the following manner:

yi = xi(t) + εi, 1 ≤ i ≤ n,

where εi is a random error or noise with zero mean and constant variance function

σ2
i (t). For simplicity, we assume that all processes are observed at the same time

points, which are equally spaced on T and is denoted by t = {t1, t2, . . . , tp}.
The function xi can be represented as a linear combination of the first k basis

functions φK , K = 1, . . . , k, where k is large enough, k < p using basis expansion

method given in Chapter 1 as:

xi(t) =
k∑

K=1

ciKφK(t),

where φ is vector-valued function having components φ1, . . . , φk. The C is n x k

coefficient matrix of the expansion, where C = [ciK ], 1 ≤ i ≤ n, 1 ≤ K ≤ k. The

simultaneous expansion of all n curves can be expressed in matrix notation as:

x = Cφ,

where x is a vector-valued function with xi, 1 ≤ i ≤ n, as its components.

We assume that basis function is orthonormal. To select optimal number of basis

functions, k, GCV developed by Craven and Wahba [9], is used which is described in

the following section.

Coefficient Estimation: On partially observed functions the coefficients ciK are com-

puted by using the least squares approach, for i = 1, . . . , n and K = 1, . . . , k,

n∑

i=1

[yi(t)−
k∑

K=1

ciKφK(t)]2
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= (y − Cφ)′(y − Cφ)

=‖ y − Cφ ‖2 .

Since we deal with basis function that is orthonormal the functional PCA problem

reduces to the standard multivariate PCA of the coefficient array C (see Section

2.3.1). Instead of dealing with FPCA we apply classical PCA on C. Applying PCA

on C would provide the equivalent information about the structure of the covariance

function of functional data x(t). Outliers in C will be equivalent to the outliers in

functional data x(t). Therefore, the diagnostic plots developed to detect outliers

by using multivariate PCA method can also be used to detect functional outliers.

Diagnostic plot, Orthogonal-score plot [22], which is a by-product the robust PCA

method is used for identification and classification of outliers. By using PCA method

we obtain robust scores Z in the following manner:

Z = C × V,

where Z is n × k1 matrix, C is n × k matrix of the coefficients, V is k × k1 robust

eigenvectors and k1 ≤ k. The selection criteria to choose the components k1 is based

on the eigenvalues. The predetermined threshold value is 90%. The optimal number

of components k1 is the minimal value for which the cumulative percentage of total

variance is greater than or equal to 90%.

Robust coefficients are obtained by transforming the data back to <k as:

Ĉ = Z × V
′
.
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Finally we obtain functional data which are robust in following way:

x̂ = Ĉ × φ.

Selecting Number of Basis

Selecting optimal number of bases, k, is important because if k is too large it

may introduce small variation with large bias and if k is too small then we may miss

some aspects of smooth function x that we want to estimate. This will also introduce

less bias with large variance. To choose the appropriate number of basis functions

a popular measure in the smoothing methods known as generalized cross validation

(GCV) developed by Craven and Wahba [9] is used. This criterion is defined as:

k = arg min
j

(GCV (j)),

where

GCV (j) =
n× SSE

(n− j)2
, j = 3, . . . , p− 1,

SSE =
n∑

i=1

(xi − x̂i)
2, x̂i =

k∑

K=1

ciKφK .

There is another technique cross-validation (CV) based on minimizing mean

squared error (MSE). Minimizing CV can lead to under-smoothing the data by in-

troducing large variation. However, GCV has advantage over CV technique as it has

less tendency to undersmooth the data.

The choice of number of bases relies on x̂i. The coefficients C = [ciK ] are com-

puted by using least squares method and then x̂i are estimated. Since, least squares
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method is sensitive to outliers, the choice of number of bases is also affected by out-

liers. Robust version of this criteria for selecting number of bases can be obtained by

estimating the coefficients robustly.

Diagnostic Plot for Detection of Outliers

The diagnostic plot developed to detect outliers by using PCA method for multi-

variate data can be used to detect functional outliers. Outliers in C will be equivalent

to the outliers in x(t) functional curves. Orthogonal score plot proposed by Hubert

et al. [22] is used to distinguish between regular observations and the three types of

outliers. This diagnostic plot is a scatter plot of the orthogonal distance Odi versus

the robust score distance Sdi. The score distance is defined as:

Sdi =

√√√√√
k1∑

j=1

z2
ij/λj, i = 1, . . . , n,

where zij are the scores and λj are the eigenvalues. The orthogonal distance which

measures the distance between an observation xi and its projection in the k1-dimensional

PCA-subspace, Odi, is given by:

Odi =‖ xi − µ̂− Γp,k1z
′
i ‖, i = 1, . . . , n,

where Γp,k1 is the p × k1 matrix of eigenvectors and z′i is the ith row of the score

matrix.

If Sdi is large and Odi is small, then the ith observation is far away from the

homogeneous observations and close to the PCA space (e.g., Observations 1 and 4 in

Figure 2.1(a),(b)). If Odi is large and Sdi is small, then the ith observation is far away

from the PCA space orthogonally (e.g., Observation 5 in Figure 2.1(a),(b)). If Sdi
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and Odi are both large, then the ith observation is far away from the homogeneous

observations and the PCA space (e.g., Observations 2 and 3 in Figure 2.1(a),(b)).

Therefore observations can be classified in 1) Homogeneous observations (close

to PCA and not far away from the remaining data), 2) Orthogonal outliers, 3)Good

Leverage points, and 4) Bad Leverage points (See Figure 2.1).

Two cutoff lines are used to classify the observations. The cutoff value horizontal

line is
√

χ2
k,0.975 when k > 1 and ±

√
χ2

k,0.975 when k = 1. For the cutoff value of

orthogonal distances the Wilson-Hilferty approximation for a χ2 distribution is used,

where the Od2/3 ∼ N(µ, σ2). Estimates of µ̂ and σ̂2 are obtained by using univariate

MCD. The cutoff value of the vertical line equals (µ̂ + σ̂z.975)
2 where z.975 is 97.5%

quantile of the normal distribution.
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(a) (b)

Figure 2.1: (a)Different types of outliers when a 3 dimensional dataset is projected
on robust 2 dimensional PCA-subspace. (b)Different types of outliers in Orthogonal-
Score distance plot (Hubert et al. [22]).
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Chapter 3

Numerical Examples

In this chapter a real data and simulation study are given to demonstrate opti-

mality of the proposed method for outlier detection in FDA.

3.1 Dataset: NOx Data

The aim of our analysis is to illustrate the performance of the robust FPCA on

the NOx data, which was used by Febrero et al. [13, 14]. The NOx emission levels

data collected by a control station near a power plant in Barcelona in year 2005 is

analyzed by using techniques for functional data. The dataset consists of NOx levels

(µg/m3) measured every hour for the period February 23, 2005 to June 26, 2005. Only

NOx levels for 115 days are available due to missing observations problem for several

consecutive hours of some days. The dataset of NOx emission levels are displayed in

Figure 3.1.

The whole NOx data is divided into working days (n1 = 76 curves) and non

working days (n2 =39 curves). Non working days are weekends and holidays during

the given data period. For using the functional data analysis it is essential to first

convert the discrete data to functional form (i.e., continuous function) by using basis

function. We will utilize these three datasets 1) to explore the effect of different basis

expansion (Fourier and B-spline) on outlier detection. 2) to compare the proposed

method for detection of outliers with the Febrero’s results.
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Figure 3.1: Sample curves of NOx data by using (a) B-spline Basis and (b) Fourier
Basis

From the Figure 3.1 we can say that NOx levels increase in the morning and

reach peak value around 8:00 am, then decrease until 2:00 pm, and again increase in

the evening.

The Figures 3.5 and 3.8 exhibit the sample curves for working days and non

working days, respectively. In Figures 3.1, 3.5 and 3.8, the group of curves shows

presence of a few trajectories that are in some way different from the rest.

NOx (Whole sample):

Initial dimension of the dataset is 115 × 24. GCV method is used to determine

optimal number of bases for B-spline and Fourier bases, and the resulting k based on

GCV are 12 for B-spline basis (Figure 3.2(a)) and 10 for Fourier basis (Figure 3.2(b)).

Whole sample data curves by using 12 B-spline bases and 11 Fourier bases are shown

in Figure 3.1(a) and (b), respectively. Since there is a high correlation among the

variables of coefficient matrix we apply CPCA, ROBPCA and BACONPCA on coef-

ficient matrix for dimension reduction and outlier detection. For B-spline and Fourier
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Figure 3.2: Generalized Cross-Validation by using (a) B-spline Basis and (b) Fourier
Basis for NOx data

bases, six and five principal components were retained, respectively each for CPCA,

ROBPCA and BACONPCA, yielding a classical and robust explanation percentage

more than 90%.

The resulting diagnostic plots for the three PCA methods by using B-spline and

Fourier bases are given in Figures 3.3 and 3.4, respectively. All bad leverage points,

detected by these diagnostic plots (orthogonal-score plots) formed by using the three

PCA methods based on both bases are listed in Table 3.1.

NOx (Working Days):

Initial dimension of the dataset is 76 × 24. Optimal number of bases based

on GCV is obtained as k=12 for B-spline, k=10 for Fourier basis. Data curves for

working days by using 12 B-spline bases and 11 Fourier bases are given in Figure 3.5(a)

and (b), respectively. Due to high correlation among the variables in C, we apply

CPCA, ROBPCA and BACONPCA on coefficient matrix. For B-spline and Fourier

bases, seven and five principal components were retained, respectively each for CPCA,
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Figure 3.3: Orthogonal-score plot for whole sample by using B-spline basis computed
with (a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.4: Orthogonal-score plot for whole sample by using Fourier basis computed
with (a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.5: Working Days of NOx data by using (a) B-spline Basis and (b) Fourier
Basis

ROBPCA and BACONPCA, yielding a classical and robust explanation percentage

more than 90%.

The resulting diagnostic plots for the three PCA methods by using these bases

are displayed in Figures 3.6 and 3.7, respectively. All bad leverage points detected

by these diagnostic plots (orthogonal-score plots) formed by using the three PCA

methods based on both bases are listed in Table 3.1.

NOx (Non-Working Days):

Initial dimension of the dataset is 39×24. By GCV method the optimal numbers

of bases for B-spline and Fourier bases are k=12 for B-spline bases and k=6 for

Fourier basis. Data curves for Non-working days by using 12 B-spline bases and 7

Fourier bases are given in Figure 3.8(a) and (b), respectively. We again apply CPCA,

ROBPCA and BACONPCA on coefficient matrix. For B-spline and Fourier basis, five

and three principal components were retained, respectively each for CPCA, ROBPCA
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Figure 3.6: Orthogonal-score plot for working days by using B-spline basis computed
with (a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.7: Orthogonal-score plot for working days by using Fourier computed with
(a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.8: Non-working Days of NOx data by using (a) B-spline Basis and (b) Fourier
Basis

and BACONPCA, yielding a classical and robust explanation percentage more than

90%.

The resulting diagnostic plots for the three PCA methods by using B-spline and

Fourier bases which are given in Figures 3.9 and 3.10, respectively, illustrate all types

of outliers in this dataset. All bad leverage points detected by these diagnostic plots

(orthogonal-score plots) formed by using the three PCA methods based on both bases

are listed in Table 3.1.

Figure 3.11 shows the outliers identified by the proposed method for the three

datasets. All bad leverage points detected by three PCA methods by using two

different bases are summarized in Table 3.1. Outliers detected by Febrero et al. [13]

for the same dataset are also given in Table 3.2 for comparison purposes.

From Table 3.1 we conclude that both ROBPCA and BACONPCA detected

similar outliers in whole sample by using Fourier basis. These results match with the

results obtained by Febrero et al. [13] (refer Table 3.2). However, we have detected

37



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

Score Plot

31

 5

22

36

18

 7

27

20

26

21

 2 14 811
 1

35
 5

19
 6

17

(a)

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

Score distance (5 LV)

O
rt

ho
go

na
l d

is
ta

nc
e

 319

 7

18 27

20

21

20 5

26

ROBPCA

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

Robust Score Plot

 5

22

 1

18
36

27

 7
26

20

21

14 8  711  1
35

 5
19

 6

17

(c)

Figure 3.9: Orthogonal-score plot for Non-working Days by using B-spline basis com-
puted with (a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.10: Orthogonal-score plot for Non-working Days by using Fourier basis com-
puted with (a)CPCA, (b)ROBPCA, (c)BACONPCA
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Figure 3.11: Outliers detected by proposed method for (a)Whole sample, (b)Working
days, (c)Non-working days
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one additional outlier (03/09) by using both ROBPCA and BACONPCA methods.

The orthogonal score plot based on CPCA detects only one bad leverage point.

For whole samples by using B-spline basis four similar outliers are detected by

both ROBPCA and BACONPCA methods. CPCA detected three outliers. But

outliers detected by these three PCA methods using B-spline basis do not conform

with outliers detected by Febrero et al. [13].

For working days dataset we obtained five similar outliers for both ROBPCA and

BACONPCA by using Fourier basis. Outliers thus detected by us match with outliers

detected by Febrero et al. [13] for working days dataset using Fourier basis, except

that we have detected two additional outliers (05/02 and 03/09) (refer Table 3.1).

CPCA method using Fourier basis detected only one outlier.

Under B-spline basis four outliers are detected by ROBPCA method and five

outliers are detected by BACONPCA method for working dataset. Results obtained

by both PCA methods do not match with results obtained by Febrero et al. [13]. Here

also CPCA detected only one outlier and converted bad leverage points detected by

ROBPCA and BACONPCA into good leverage points.

In non-working days dataset under Fourier basis ROBPCA detected two outliers

and BACONPCA detected three outliers. These results match with the findings of

Febrero et al. [13] except that BACONPCA detected one additional outlier (05/01).

Under Fourier basis CPCA failed to detect any outlier.

Similarly for non-working dataset using B-spline basis the CPCA method has

not detected any outlier. Outliers detected by ROBPCA and BACONPCA using

B-spline basis are different from those obtained by Febrero et al. [13].

After detecting outliers, we checked for sources for abnormal values of these

curves. We expected to provide information about the abnormally large NOx emis-

sions on these particular days. We found that Friday, March 11 is the beginning
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Table 3.1: Outliers detected by three PCA methods. (.) denotes case number for
three datasets

Fourier Basis B-spline Basis
Dataset CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

Whole sample

05/02(59) 03/18(22) 03/18(22) 04/29(56) 04/29(56) 04/29(56)
04/29(56) 04/29(56) 03/11(16) 03/11(16) 03/11(16)
03/11(16) 03/11(16) 05/02(59) 05/02(59) 05/02(59)
05/02(59) 05/02(59) 03/16(20) 03/16(20)
03/09(15) 03/09(15)

Working days

05/02(38) 03/18(16) 03/18(16) 05/03(39) 04/29(37) 04/29(37)
04/29(37) 04/29(37) 03/11(12) 03/11(12)
03/11(12) 03/11(12) 05/02(38) 05/02(38)
05/02(38) 05/02(38) 03/09(11) 03/09(11)
03/09(11) 03/09(11) 03/18(16)

Non working days
— 04/30(20) 04/30(20) — 04/30(20) 05/15(26)

03/19(07) 03/19(07) 03/19(07)
05/01(21)

Table 3.2: Outliers detected by Febrero et al. [13] for the NOx data
Dataset ‖ · ‖1 ‖ · ‖2 ‖ · ‖∞

Whole sample

03/18 03/18 03/18
04/29 04/29 04/29
03/11 03/11 03/11

05/02 05/02

Working days
03/18 03/18 03/18
04/29 04/29 04/29
03/11 03/11 03/11

Non working days
04/30 04/30 04/30
03/19 03/19 03/19

of a weekend. The Friday, March 18 and Saturday, March 19 are the beginning of

the Eastern vacation in Spain in the year 2005. Also Friday, April 29, Saturday,

April 30, Sunday, May 1, and Monday, May 2 correspond to long weekend. There

is sudden increase in traffic on these small vacation periods. So we conclude that

abnormal observations on specific days can be attributed to increase in traffic due to

small vacation periods. We have also detected outlier on Wednesday, March 9. It is

observed that high NOx emissions are recorded on March 9 after 8:00 pm. Since the

observation on March 10th is missing and thus not included in analysis, we could not

pinpoint the reason behind this abnormal observation on March 9th.
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3.2 Simulation

The simulation study is conducted to compare the performance of ROBPCA and

BACONPCA with the classical PCA (CPCA) on coefficient matrix. The simulation

setting given by Fraiman and Muniz [12, 28], with few changes, is used here. For

simulation we consider functional data x1, . . . , xn obtained as realizations from a

stochastic process X(·). This functional data has continuous paths on the observation

period [tmin, tmax] = [0, 1]. Curves are generated from different models. Model 1

was generated without contamination and several other models were generated with

different types of contaminations.

Model 1 (no contamination): Xi(t) = g(t) + ei(t), 1 ≤ i ≤ n, where model error

term ei(t) is a stochastic Gaussian process with zero mean and covariance function

ϑ(s, t) = (1/2)(1/2)(0.9)|t−s| and g(t)=4t, with t ∈ [0, 1].

Model 2 (asymmetric contamination): Yi(t) = Xi(t) + ciM, 1 ≤ i ≤ n, where

ci is 1 with probability q and 0 with probability 1 − q; M is the contamination size

constant.

Model 3 (symmetric contamination): Yi(t) = Xi(t) + ciσiM, 1 ≤ i ≤ n, where ci

and M are defined as in model 2 and σi is a sequence of random variables independent

of ci taking values 1 and -1 with probability 1/2.

Model 4 (partially contaminated): Yi(t) = Xi(t) + ciσiM, if t ≥ Ti, 1 ≤ i ≤ n,

and Yi(t) = Xi(t), if t < Ti, where Ti is a random number generated from a uniform

distribution on [0, 1].

Model 5 (Peak contamination): Yi(t) = Xi(t)+ ciσiM, if Ti ≤ t ≤ Ti + `, 1 ≤ i ≤
n, and Yi(t) = Xi(t), if t /∈ [Ti, Ti + `], where ` = 2/30 and Ti is a random number

from a uniform distribution in [0, 1 − `]. Figure 3.12 exhibits curves simulated from

these five models.
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For each model, we generated 100 replications, with two settings each for low and

high dimensional data. For low dimensional data we consider 1) n = 100, p = 12, k =

8 and 2) n = 50, p = 5, k = 4 settings. For high dimensional data we also consider

two settings with 1) n = 50, p = 100, k = 51 and 2) n = 50, p = 500, k = 151. For

the model 1 contamination percent is q = 0 and contamination constant is M = 0. For

each contaminated model (2, 3, 4 and 5) we considered several levels of contamination:

q = 5, 10, 15 percentage and contamination constants M = 10 and 25. Classical

PCA and robust methods ROBPCA and BACONPCA are used on the simulated

functional data based on the five models.

Two quantitative measures of the goodness of the methods are considered.

The first one is Mean proportion of variability (MPV) :

MPV = 1/N
N∑

m=1

λ̂m
1 + λ̂m

2 + . . . + λ̂m
k

λm
1 + λm

2 + . . . + λm
k + . . . + λm

p

where N = 100 denotes the number of iterations and λm
j is an jth eigenvalue at mth

replication obtained from the covariance matrix of coefficient matrix of uncontami-

nated model. λ̂m
j is the estimated value of λm

j at the mth replication. λ̂m
j is obtained

by using classical or robust multivariate techniques on coefficient matrix of contam-

inated or uncontaminated model. 90% of variability is explained by the first three

components for each setting. For the mean proportion of explained variability the

optimal values are 0.9 for low and high dimensional data.

The second quantitative measure is the Norm of the difference between λ̂m
1 and

λm
1 which is given as ||λ̂m

1 − λm
1 ||, where λm

1 is largest eigenvalue obtained from the

covariance matrix of coefficient matrix of uncontaminated model. λ̂m
1 is the esti-

mated value of λm
1 at mth replication. λ̂m

1 is largest eigenvalue obtained by using
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classical or robust multivariate techniques on coefficient matrix of contaminated or

uncontaminated model. The optimal value is zero or near zero.

Model 1 is compared with models 2, 3, 4 and 5. The simulation results of mean

proportion of variability for four comparisons are given in Tables 3.3 - 3.6. It is

clear that CPCA provides the best mean proportion of explained variability when

there is no contamination in the data, which is expected. For the uncontaminated

data robust methods also yield comparable results. However, when contamination is

introduced to the data (models 2-5) the eigenvalues obtained with CPCA are over-

estimated. Since estimated percentages of MPV are larger than 100%. In ROBPCA

and BACONPCA we obtain MPV of 90% for low dimensional data without and with

contamination. For high dimensional data the mean percentage of explained variabil-

ity is similarly 90% for without and with contamination. The main reason behind

this is the optimal direction obtained by ROBPCA and BACONPCA are robust to

outliers. CPCA clearly fails and provides the worst possible result because mean pro-

portion of variability is above 100%. It is clear from Tables 3.3 - 3.5 that the MPV

for ROBPCA at 15% contamination level is above 100% in most of the cases except

for model 5. BACONPCA gives better results than ROBPCA at 15% for both low

and high dimensional case. From these results we can deduce that BACONPCA and

ROBPCA outperform the CPCA.

Simulation results for the norm with N = 100 iterations and different contami-

nation levels for comparison of model 1 vs models 2 are summarized in Figures 3.13

- 3.14. For this comparison, we used two high and two low dimensional settings with

the two values of M (10 and 25). The ideal value of norm must be very small or

near zero. We conclude that the norm is near zero when there is no contamination

for all methods. This is an indication of ROBPCA and BACONPCA being also ef-

fective methods for uncontaminated data. The norm for CPCA tends to increase
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as contamination level increases. For contaminated data, norms corresponding to

ROBPCA and BACONPCA method yield minimum value which is near zero for high

and low dimensional settings. The comparisons of model 1 vs model 3-5 for low and

high dimensional settings yielded very similar results observed in Figures 3.13-3.14,

therefore they are not repeated here.

We conducted the simulation given above for M = 5, but the results were not up

to the mark. This is because in this case the outliers are not yet very well separated

from the regular data group. As soon as the contamination lies somewhat further,

robust methods are capable to distinguish the outliers. Therefore the results of the

simulation for this case is not reported in this thesis since we aimed at distinguishing

outliers from the regular points.
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Table 3.3: Simulation results of the Mean Proportion of Explained Variability when
there is no contamination (0%) and with symmetric contamination (5%, 10% and
15% ) for low and high dimensional cases.

High dimension:n=50, p=100, k=51

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.943 0.790 0.912 0.944 0.801 0.914
5% 13.213 0.833 0.918 71.297 0.838 0.915
10% 21.955 0.874 0.910 121.020 0.866 0.917
15% 32.354 2.472 0.918 195.299 12.720 0.927

High dimension:n=50, p=500, k=151

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.949 0.793 0.907 0.948 0.785 0.909
5% 11.749 0.821 0.917 73.250 0.804 0.912
10% 21.131 0.842 0.908 126.076 0.840 0.910
15% 31.715 1.512 0.919 201.703 14.303 0.928

Low dimension:n=100, p=12, k=8

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.914 0.833 0.892 0.917 0.830 0.898
5% 10.441 0.856 0.901 55.600 0.852 0.897
10% 18.859 0.860 0.889 114.111 0.870 0.903
15% 30.120 1.707 0.899 169.042 0.885 0.896

Low dimension:n=50, p=5, k=4

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.955 0.801 0.913 0.956 0.812 0.918
5% 9.736 0.837 0.923 56.574 0.830 0.913
10% 18.992 0.866 0.910 107.322 0.0.875 0.922
15% 25.839 1.360 0.921 161.370 3.781 0.920
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Table 3.4: Simulation results of the Mean Proportion of Explained Variability when
there is no contamination (0%) and with asymmetric contamination (5%, 10% and
15% ) for low and high dimensional cases.

High dimension:n=50, p=100, k=51

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.943 0.815 0.921 0.944 0.801 0.914
5% 10.254 0.837 0.920 70.863 0.839 0.914
10% 20.233 0.862 0.919 115.722 0.869 0.914
15% 26.345 0.895 0.919 165.056 9.011 0.921

High dimension:n=50, p=500, k=151

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.948 0.785 0.909 0.948 0.785 0.909
5% 12.728 0.804 0.909 74.551 0.806 0.905
10% 20.080 0.849 0.910 120.222 0.847 0.911
15% 28.722 2.110 0.916 173.636 9.202 0.917

Low dimension:n=100, p=12, k=8

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.914 0.833 0.892 0.915 0.834 0.896
5% 9.856 0.846 0.888 57.283 0.847 0.897
10% 17.285 0.870 0.896 106.619 0.868 0.897
15% 24.770 0.887 0.914 152.289 3.153 0.901

Low dimension:n=50, p=5, k=4

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.953 0.800 0.899 0.954 0.824 0.923
5% 10.930 0.826 0.908 51.805 0.844 0.922
10% 16.986 0.853 0.907 105.488 0.873 0.920
15% 24.150 1.923 0.920 135.844 0.903 0.921
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Table 3.5: Simulation results of the Mean Proportion of Explained Variability when
there is no contamination (0%) and with partial contamination (5%, 10% and 15% )
for low and high dimensional cases.

High dimension:n=50, p=100, k=51

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.944 0.793 0.913 0.942 0.781 0.911
5% 5.641 0.831 0.925 34.047 0.819 0.917
10% 10.920 0.865 0.910 60.144 0.843 0.905
15% 15.836 1.280 0.908 99.545 1.487 0.918

High dimension:n=50, p=500, k=151

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.948 0.785 0.909 0.949 0.822 0.911
5% 6.514 0.820 0.909 33.517 0.850 0.929
10% 11.222 0.861 0.920 69.062 0.872 0.922
15% 15.815 1.095 0.919 98.250 1.209 0.927

Low dimension:n=100, p=12, k=8

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.915 0.805 0.882 0.915 0.829 0.892
5% 5.792 0.830 0.885 30.162 0.842 0.895
10% 11.325 0.856 0.885 62.695 0.860 0.894
15% 14.734 0.855 0.873 90.655 1.119 0.897

Low dimension:n=50, p=5, k=4

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.955 0.819 0.910 0.956 0.816 0.917
5% 6.745 0.831 0.903 35.184 0.841 0.912
10% 11.983 0.856 0.918 65.041 0.870 0.929
15% 18.445 1.577 0.931 100.715 4.946 0.920
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Table 3.6: Simulation results of the Mean Proportion of Explained Variability when
there is no contamination (0%) and with peak contamination (5%, 10% and 15% )
for low and high dimensional cases.

High dimension:n=50, p=100, k=51

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.945 0.802 0.922 0.944 0.812 0.916
5% 1.505 0.832 0.913 5.285 0.851 0.923
10% 1.792 0.882 0.904 7.427 0.871 0.917
15% 2.070 0.921 0.873 8.989 0.912 0.898

High dimension:n=50, p=500, k=151

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.949 0.822 0.911 0.948 0.785 0.909
5% 1.462 0.855 0.925 5.123 0.824 0.910
10% 1.752 0.878 0.902 7.006 0.860 0.900
15% 1.998 0.933 0.901 8.347 0.896 0.896

Low dimension:n=100, p=12, k=8

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.916 0.841 0.893 0.916 0.823 0.895
5% 1.703 0.852 0.893 6.506 0.834 0.896
10% 2.419 0.850 0.887 10.273 0.851 0.893
15% 2.917 0.862 0.889 15.164 0.871 0.899

Low dimension:n=50, p=5, k=4

Contamination
M=10 M=25

CPCA ROBPCA BACONPCA CPCA ROBPCA BACONPCA

0% 0.954 0.799 0.901 0.954 0.814 0.898
5% 1.591 0.808 0.904 5.652 0.818 0.901
10% 2.456 0.811 0.903 9.499 0.828 0.897
15% 3.369 0.820 0.908 15.931 0.831 0.896
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Figure 3.12: Curves generated from model 1 (without contamination), model 2 (asym-
metric contamination), model 3 (symmetric contamination), model 4 (partial contam-
ination) and model 5 (peak contamination) with n=50, p=100, M=10 and q=0.1.
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Figure 3.13: Boxplots of norm when there is no contamination (0%) and symmet-
ric contamination (5%, 10% and 15% ) for high dimensional cases for CPCA(C)
ROBPCA(R) and BACONPCA(B).
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Figure 3.14: Boxplots of norm when there is no contamination (0%) and symmet-
ric contamination (5%, 10% and 15% ) for low dimensional cases for CPCA(C)
ROBPCA(R) and BACONPCA(B).
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Chapter 4

Robust Functional Principal Component Regression

4.1 Introduction

Recently researchers have put more attention to functional linear models in which

the regressors and/or the response are of a functional nature and proposed several

methods for estimating the functional parameter [10, 11, 15, 16, 30]. Functional

regressors are infinite in nature. Problem with infinite dimensionality of the regressor

is that, it results into infinitely many sets of solutions or suffers from multicollinearity.

Therefore the first step in this regression setup is to reduce dimension by using FPCA

and then is to regress the response onto these components obtained from FPCA.

The presence of outliers or influential observations has a serious effect on the

estimation and prediction of the functional linear model. In the presence of outliers,

the decomposition of the classical covariance matrix is unreliable. In such situation,

both the FPCA stage and the regression stage called Functional Principal Component

Regression (FPCR) yield unreliable results. Influential observations in a given dataset

can have a strong impact on analysis. If these outlying or influential observations are

removed from the data then this may substantially affect the statistical inference.

The functional versions of the diagnostic measures based on Cook’s distance [8] is

introduced by Chiou and Müller [7] and Shen and Xu [38] for the models where the

regressors are real or curves and the responses are functional.

Recently, Febrero et al. [16] reviewed estimation based on the classical functional

principal components method and then analyzed influence in the functional linear
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model with scalar response. They have proposed three measures of influence by

generalizing the measures proposed for the standard regression model by Cook [8]

and Pẽna [29]. In this chapter we propose a robust functional principal component

regression method which consists of two parts. First we apply a robust FPCA method

on the regressors, and then regress the response variables on the scores, which are

discussed in Section 4.2. In Section 4.3 we propose robustified influence regression

diagnostic measures to detect which observations have strong influence. In Section

4.4 the practical use of these measures is illustrated by means of a real dataset.

4.2 Estimation of Functional Parameter β

The functional linear model with a scalar response is a regression model with

the regressor which is a random curve and the response which is real random variable

defined on the same probability space. We assume that (X, y) is a pair of random

variables where X = (X(t)), X ∈ L2(T ), t ∈ T = [tmin, tmax] ⊂ < and y is a real

random variable. For easy computation we assume that both X and y are centered

i.e., E[X(t)] = 0, and E[y] = 0. Assuming E(‖ X ‖2) < ∞, the dependence between

the scalar response y and the functional random variable X is written as:

y = 〈X, β〉+ ε =
∫

T
X(t)β(t)dt + ε, (4.1)

where 〈., .〉, denotes the L2(T ) inner product, β is a square integrable function defined

on T and errors, ε, is a real random variable with E[ε] = 0, E[X(t)ε] = 0 and finite

variance equal to σ2.

Suppose that a random sample of pairs (Xi, yi), i = 1, . . . , n, is observed where

Xi and yi (i = 1, . . . , n) are realizations of the functional X and y, respectively.
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The estimate of β can be obtained by finding such β that minimizes residual sum of

squares

RSS(β) =
n∑

i=1

(yi − 〈Xi, β〉)2. (4.2)

Such β is a functional parameter, that has high dimensionality problem. Thus

minimization of RSS can be accomplished by using PC approach. The sample covari-

ance operator of X denoted by ψX allows a spectral decomposition into orthonormal

eigenfunctions γ1, γ2, . . . [33]. By Mercer’s Theorem, an orthogonal expansion for ψX

in L2 is given by:

ψX(s, t) =
∞∑

K=1

λKγK(s)γK(t), (4.3)

with ordered nonnegative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 = λn+1 ≥ . . . The

sequence of eigenvalue-eigenvector pairs satisfies the eigenequation given by ϕXγK =

λKγK , for K ≥ 1 and 〈γK , γl〉 = 1 if K = l and 〈γK , γl〉 = 0 otherwise.

By using Karhunen-Loève expansion [1] the functional variables Xi and the func-

tional parameter β can be written in terms of the eigenfunctions γK in following

manner:

Xi =
∞∑

K=1

ξiKγK , (4.4)

β =
∞∑

K=1

βKγK , (4.5)

where ξiK = 〈Xi, γK〉, such that ξiK = 0, for K > n and βK = 〈β, γK〉, respectively,

for i = 1, . . . , n and K = 1, 2, . . .. Eigenfunctions form an orthonormal basis of the

functional space L2(T ) [30].
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By using the new definitions of Xi and β the residual sum of squares in equation

(4.2) can be written as:

RSS(β) =
n∑

i=1

(yi −
n∑

K=1

ξiKβK)2. (4.6)

The dimension of β in equation (4.6) is reduced from ∞ to n. But minimizing

this equation will give us a perfect fit of the response variable. To avoid this problem

alternate method proposed by Cardot et al. [4] to estimate β is used. In this method

βK = 0, for K ≥ kn + 1, where 0 < kn < n and λkn > 0. The coefficients βK , for

K = 1, . . . , kn, are obtained by minimizing the residual sum of squares given by:

RSS(β1:kn) =
n∑

i=1

(yi −
kn∑

K=1

ξiKβK)2 =‖ Y − ξ(1:kn)β(1:kn) ‖2, (4.7)

where Y = (y1, . . . , yn)′ is the n× 1 vector, β(1:kn) = (β1, . . . , βkn)′ is the kn× 1 vector

and ξ(1:kn) is n×kn score matrix whose Kth column is the vector ξ.K = (ξ1K , . . . , ξnK)′,

the Kth principal component score, which satisfies V ar(ξ.K) = λK and ̂cov(ξ.K , ξ.m) =

0 for K 6= m. The least-squares estimate of β(1:kn) is then given by:

β̂(1:kn) = (ξ′1:kn
ξ1:kn)−1ξ′1:kn

Y,

where ξ′1:kn
ξ1:kn is a kn× kn diagonal matrix whose (K,K)th element is ξ′.Kξ.K = nλK

and ξ′.Kξ.m = 0, for K 6= m. And ξ′1:kn
Y is a kn × 1 vector whose Kth element is

n× ̂cov(ξ.K , Y ),

β̂(1:kn) = (
ξ′.1Y
nλ1

, . . . ,
ξ′.kn

Y

nλkn

). (4.8)
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This expression defines the least-squares estimate of the slope β, denoted by β̂(kn), as

follows:

β̂(kn) =
kn∑

K=1

β̂KγK =
kn∑

K=1

ξ′.KY

nλK

γK =
kn∑

K=1

̂cov(ξ.K , Y )

λK

γK . (4.9)

β̂(kn) is an estimator of functional regression parameter obtained by using classical

functional principal component regression (CFPCR). Cardot et al.[4] showed that,

under several conditions, 〈X, β̂(kn)〉 converges in probability and almost surely to

〈X, β〉. The principal components become more rough with increase in value of K.

kn acts as a smoothing parameter which has to be determined. There are many

ways to determine the value of kn. The selection criteria to choose kn is based on

the eigenvalues. The predetermined threshold value is 90%. The optimal number of

components kn is then the minimal value for which the cumulative percentage of total

variance is greater than or equal to 90%.

If dataset contains outliers then spectral decomposition of covariance in (4.3)

is unreliable. Both the expressions in equations (4.4) and (4.5) are not reliable.

To obtain the robust estimate of the β̂(kn) we employ robust method of principal

components (e.g., BACONPCA Section 2.2.2) on X. Robust values of scores ξ
(r)
iK

i = 1, . . . , n and K = 1, . . . and robust eigenvector γ
(r)
K K = 1, . . . are obtained.

Using robust values both the expression in equation (4.4) and (4.5) can be written

as:

X
(r)
i =

∞∑

K=1

ξ
(r)
iK γ

(r)
K , (4.10)

β(r) =
∞∑

K=1

β
(r)
K γ

(r)
K . (4.11)
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Both expansions allow to write the residual sum of squares in equation (4.7) as:

RSS(β
(r)
1:kn

) =
n∑

i=1

(yi −
kn∑

K=1

ξ
(r)
iK β

(r)
K )2. (4.12)

By minimizing the residual sum of squares the robust estimate of the slope β(kn),

denoted by β̂
(r)
(kn) is obtained as:

β̂
(r)
(kn) =

kn∑

K=1

β̂K

(r)
γ

(r)
K =

kn∑

K=1

ξ
′(r)
.K Y

nλ
(r)
K

γ
(r)
K . (4.13)

β̂
(r)
(kn) is an estimator of functional regression parameter obtained by using robust

functional principal component regression (RFPCR).

4.3 Functional Regression Diagnostic measures

A pair of ith observation of the form (Xi, yi) is called influential whose deletion

would lead to a noticeable change in the regression parameter estimates. To detect

the presence of influential observations or outliers, diagnostic measures defined for

ordinary linear regression model can be extended to functional linear model with

scalar response [16]. We will start defining robustified versions of residuals, fitted

values, leverages and then some other diagnostic measures such as Cook’s D [8],

Hadi’s potential-residual measure [17] for functional data.

Similar to the standard regression model the fitted values and residuals are useful

in defining the influence measures of single observation for functional linear model

with scalar response.
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Fitted values and Leverages

Let the fitted values of the response variable be denoted by ŷi and can be obtained

from equations (4.1) and (4.9) in the following manner:

ŷi = 〈Xi, β̂(kn)〉 =
kn∑

K=1

ξiK β̂K =
kn∑

K=1

ξiK
ξ′.KY

nλK

, (4.14)

for i = 1, . . . , n, which allows to define the n×1 vector of fitted values Ŷ = (ŷ1, . . . , ŷn)′

The matrix form of above equation can be written as follows: Ŷ = H(kn)Y , where

H(kn) is the n× n hat matrix, given by:

H(kn) = ξ1:kn(ξ′1:kn
ξ1:kn)−1ξ′1:kn

,

which can be written as:

H(kn) = ζ1:knζ ′1:kn
,

where ζ1:kn is the n× kn matrix whose Kth column is the vector

ζ.K =
ξ.K√
nλK

,

H(kn) =
1

n
(
ξ.1ξ

′
.1

λ1

+ . . . +
ξ.knξ′.kn

λkn

). (4.15)

The diagonal elements of H(kn) are leverage values denoted by H(kn),ii, given by:

H(kn),ii =
1

n
(
ξ2
i1

λ1

+ . . . +
ξ2
ikn

λkn

), (4.16)
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where 0 ≤ H(kn),ii ≤ 1 and TraceH(kn) = kn. The leverage can be used as a quick way

to measure influential observation in prediction. Smaller the values of hat diagonal

for the pair (Xi, yi), the better is predicted yi. We can say that if the leverage value

H(kn),ii of any observation (Xi, yi) exceeds 2× kn/n, then that observation might be

an influential observation. But, an observation with high leverage value may not

necessarily be influential. Observations with high leverage values are the outliers in

X − space but the converse is not necessarily true.

Residuals (Ordinary and other)

The residuals are defined as e = Y − Ŷ = (In−H(kn))Y , where In is the n×n identity

matrix. Using equation (4.1) the relationship between ε and e can be established in

following manner:

e = (In −H(kn))Y = ξ(kn+1:n)β(kn+1:n) + (In −H(kn))ε, (4.17)

where matrix ξ(kn+1:n) is the n × (n − kn) whose columns are the vectors ξ.K , for

K = kn + 1, . . . , n and β(kn+1:n) = (βkn+1, . . . , βn).

As ε has zero mean and covariance σ2In, then the vector of residuals e conditional

on X1, . . . , Xn has mean ξ(kn+1:n)β(kn+1:n) and covariance σ2(In −H(kn)). If n is large

then the term ξ(kn+1:n)β(kn+1:n) can be omitted [5, 18]. Since Trace(In−H(kn)) = n−kn

E[e′e|X1, . . . , Xn] = n(
β2

kn+1

λkn+1

+ . . . +
β2

n

λn

) + (n− kn)σ2. (4.18)

Therefore, the error variance σ2 may be estimated by the functional residual variance

estimate, ŝ2, given by:

ŝ2 =
e′e

n− kn

. (4.19)
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Internally studentized residual

The internally studentized residual is given as:

r2
i =

e2
i

ŝ2(1−H(kn),ii)
. (4.20)

Cook’s D Measure

The Cook’s distance is the standardized difference in estimating β with and without

the observation (Xi, yi)

CPi =
(ŷ − ŷ(−i,kn))

′(ŷ − ŷ(−i,kn))

knŝ2
, (4.21)

where ŷ(−i,kn) denotes the prediction of the response vector y excluding the ith observa-

tion (Xi, yi) in the estimation. A high value of CPi indicates that the ith observation

has influence on estimated responses in the sense that deleting it from the dataset will

alter the prediction value. To compute CPi in equation (4.21) requires n standard

linear regressions with an observation deleted. Cook’s distance can be written as a

measure which is a function of quantities related to the full dataset

CPi =
e2

i

knŝ2(1−H(kn),ii)

H(kn),ii

(1−H(kn),ii)
= r2

i

H(kn),ii

kn(1−H(kn),ii)
, (4.22)

where r2
i is the ith internally studentized residual. Observations with large residual

values (r2
i ) are called outliers.

Hadi’s Potential-Residual Measure

This measure combines two measures H(kn),ii, which provides information about high-

leverage points and ri, which contains information about outliers. High leverage and

outlier observations may influence the regression results and conclusions based on
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them. High leverage points are likely to have small residuals, so detecting residu-

als alone is not sufficient to find influential observations. The Cook’s measure is a

multiplicative function of the residual and the leverage value. The drawback of mul-

tiplicative function is that when one of the two components is small or near zero,

it suppresses the other component. If one of the component is too small then the

multiplicative measure is also small. The observations with large leverage value are

likely to have small residuals and this will result in small values for multiplicative

measures. This may lead to incorrect conclusions that these observations are not

influential. But an additive measure which is a function of the residual and leverage

value, by contrast, is large if either or both components are large. Instead of multi-

plicative measure we use additive measure of influence suggested by Hadi [17, 6] and

is defined as:

HM2
i =

kn

(1−H(kn),ii)

d2
i

(1− d2
i )

+
H(kn),ii

(1−H(kn),ii)
, (4.23)

i = 1, . . . , n, where d2
i = e2

i /e
′e is the square of the ith normalized residual and

∑
d2

i = 1. The first component is a function of the ith normalized residual. The

second component is the ratio of the V ar(ŷi) and V ar(ei) and this quantity is known

as the “potential”. HM2
i is monotonically increasing in both the leverage value and

the squared residual. Therefore, a large value of H2
i may be due to a large value of

ei, a large value of H(kn),ii or both. The additive measures can identify outliers in the

X-space, in the y-space, or in both. The cut-off value for HM2
i suggested by Hadi

[17] is mean(HM2
i )+c

√
V ar(HM2

i ). Since mean and variance are nonrobust; median

and median absolute deviations are used to estimate the cut-off value, respectively.

The Potential-Residual (P-R) plot can be used to distinguish between regular

observations, outliers and leverage points (Figure 4.1). This diagnostic plot is a
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Figure 4.1: Potential-Residual (P-R) plot.

scatter plot of
H(kn),ii

(1−H(kn),ii)
versus kn

(1−H(kn),ii)

e2
i

(1−d2
i )

. Since the first component is known

as potential and the second component is a function of the residual, this plot is

referred as the Potential-Residaul (P-R) plot. In this plot the high leverage points

are located in the upper left area and observations with high prediction error are

located in the lower right area [17].

If dataset contains outliers then all diagnostic measures defined earlier will be

sensitive to outliers. To obtain the robust estimates of these diagnostic measures

we apply robust method of principal components (e.g., Section 2.2.2) on X. Robust
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eigenvector γ
(r)
K , K = 1, . . .; robust eigenvalue λ

(r)
K , K = 1, . . .; and robust values of

scores ξ
(r)
iK , i = 1, . . . , n and K = 1, . . . are obtained. Using robust values both the

expression in equations (4.14) and (4.16) can be redefined.

Robust fitted values are given as:

ŷi
(r) = 〈Xi, β̂

(r)
(kn)〉 =

kn∑

K=1

ξ
(r)
iK

ξ
(r)′
.K Y

nλ
(r)
K

. (4.24)

Robust Leverages are defined as:

H
(r)
(kn),ii =

1

n
(
ξ

(r)2

i1

λ
(r)
1

+ . . . +
ξ

(r)2

ikn

λ
(r)
kn

). (4.25)

The robust version of Cook’s measure can also be defined in the following manner:

CP
(r)
i =

e
(r)2

i

knŝ(r)2(1−H
(r)
(kn),ii)

H
(r)
(kn),ii

(1−H
(r)
(kn),ii)

, (4.26)

where e
(r)
i = yi − ŷi

(r), i = 1, . . . , n, is the ith residual.

The robust version of Hadi’s measure is given as follows:

HM
2(r)
i =

kn

(1−H
(r)
(kn),ii)

d
2(r)
i

(1− d
2(r)
i )

+
H

(r)
kn,ii

(1−H
(r)
(kn),ii)

, (4.27)

where e
(r)
i = yi − ŷi

(r), i = 1, . . . , n, is the ith robust residual and d
2(r)
i = e

2(r)
i /e(r)′e(r)

is the square of the ith normalized robust residual.

Section 4.4 compares the classical and robustified versions of diagnostic measures

by utilizing a real dataset.
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4.4 Numerical Example

In this section we demonstrate the practical use of proposed influence measures.

For this we have considered a dataset analyzed by Ramsay and Silverman [32]. The

data is from thirty-five Canadian weather stations which are listed in Table 4.1. In

this dataset the regressor set of curves is the mean daily temperatures (in degree

Celsius) and the response is the logarithm (base 10) of total annual precipitation (in

mm). The temperature is assumed to be periodic due to its cyclical behavior during

years. Therefore, we used the Fourier basis functions. The Figure 4.2(a) shows the

curves dataset using 65 Fourier functions, while a boxplot of the log-precipitation

data is shown in the Figure 4.2(b). The curves dataset is assumed to be observed

in the interval [tmin, tmax] = [0, 1]. The time unit is one year which is discretized

in 365 days. For this analysis both regressor and response variable are centered by

substracting their means.

To select the cutoff value kn we estimate the coefficients by using the least squares

method and then we compute the total variance. The optimal number of components

kn = 2 as the cumulative percentage of total variance for two components is 96%.

Orthogonal-score plots for two components are constructed using CPCA and BACON-

PCA which are given in Figure 4.3. The orthogonal-score plots for CPCA indicated

no bad leverage points while BACONPCA revealed three bad leverage points (21, 11,

and 10).

The estimated beta function by classical FPCA and robust FPCA and the two

eigenfunctions by CFPCR and RFPCR are depicted in Figure 4.4. The estimated beta

function and first eigenfunction for both methods show differences; on the other hand

second eigenfunction do not differ too much. The estimated beta function and first
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eigenfunction clearly indicates that the classical methods are not robust to outliers

and there is a need for robust method to estimate the parameter function [20].

Table 4.2 contains values for diagnostic measures. Residual plots by classical

(Figure 4.5(a)) and robust methods (Figure 4.5(b)) show that observation 12 (Kam-

loops) is an outlier as it has high residual value as compared to other stations. From

both figures we can deduce that residual values are much larger for robust method

than those of classical method.

The leverages which are the diagonal elements of the hat matrix indicate which

stations might be influential a priori. We can clearly see that leverage value for

observations 21 (Resolute), 11 (Iqaluit) and 10 (Inuvik) computed by robust method

are larger than those of the classical method (Figure 4.6(a)).

The influential observations detected by Cook’s measure are 21 (Resolute) and

11 (Iquluit) by using the robust method and only 21 (Resolute) by using the classical

method (Figure 4.6(b)). Comparing influential observations for both methods the

observations 21 and 11 have much higher CP
(r)
i value than CPi.

The cut-off value for HM2
i is 0.43 and for HM

2(r)
i is 0.46. The influential ob-

servations detected by Hadi’s influence measure are 21 (Resolute) and 11 (Iquluit)

by the robust method and 21 (Resolute) by the classical method (Figure 4.6(c)).

Comparing influential observations for both methods the observations 21 and 11 have

much higher HM
(r)
i value than HMi.

By comparing Hadi’s measure with Cook’s measure for classical method we can

conclude that Hadi’s measure is superior in terms of distinguishing influential obser-

vations from regular observations. Observation 11 (Figure 4.6(c)) identified by Hadi’s

measure is clearly distinguished from regular observations when compared with obser-

vation 11 (Figure 4.6(b)) by Cook’s measure. Therefore we can say that the additive
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Table 4.1: Names of the Candian weather stations
1)Arvida 2)Bagottvi 3)Calgary 4)Charlott 5)Churchil 6)Dawson
7)Edmonton 8)Frederic 9)Halifax 10)Inuvik 11)Iqaluit 12)Kamloops
13)London 14)Montreal 15)Ottawa 16)Princeal 17)Princege 18)Princeru
19)Quebec 20)Regina 21)Resolute 22)Scheffer 23)Sherbroo 24)Stjohns
25)Sydney 26)Thepas 27)Thunderb 28)Toronto 29)Uraniumc 30)Vancouvr
31)Victoria 32)Whitehor 33)Winnipeg 34)Yarmouth 35)Yellowkn

measure used by Hadi’s measure, is much more efficient than multiplicative measure

used by Cook’s measure.

The P-R plot shown in Figure 4.7(a) indicates that five observations with high

values of HM2
i can be classified as follows: observation 21 is a high leverage point, ob-

servation 12 is an outlier and observation 11, 18 and 31 are combinations of both. The

P-R plot by robust method indicates that three observations which have large HM
2(r)
i

values can be classified as follows: observation 21 is an high leverage point, obser-

vation 12 is an outlier and observation 11 is a combination of both (Figure 4.7(b)).

Here P-R plot helps to identify the outliers, leverages and regular observations. By

comparing the classical and robust P-R plots (Figure 4.7(c)) we find that observations

21, 12 and 11 yielded much larger values for robust method than the ones obtained

from the classical method. Observations identified as bad leverages in orthogonal

score plot (Figure 4.3) and observations identified as outliers and leverages in P-R

plot by using both methods (Figure 4.7) are highlighted in Figure 4.8.
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Table 4.2: Classical and Robust influence measures for the Candian weather stations
n ei e

(r)
i H(kn),ii H

(r)
(kn),ii CPi CP

(r)
i HM2

i HM
2(r)
i

1 0.16 0.11 0.01 0.01 0.01 0.00 0.02 0.01
2 0.19 0.16 0.01 0.01 0.01 0.01 0.01 0.01
3 -0.30 -0.33 0.01 0.00 0.01 0.01 0.02 0.01
4 0.13 0.09 0.01 0.01 0.00 0.00 0.01 0.01
5 0.06 0.23 0.07 0.15 0.00 0.24 0.07 0.19
6 0.03 0.08 0.10 0.12 0.00 0.02 0.12 0.13
7 -0.14 -0.16 0.00 0.00 0.00 0.00 0.00 0.00
8 0.15 0.08 0.01 0.01 0.00 0.00 0.01 0.01
9 0.18 0.13 0.02 0.02 0.01 0.01 0.02 0.02

10 -0.03 0.16 0.10 0.20 0.00 0.16 0.12 0.24
11 0.05 0.32 0.17 0.34 0.01 1.62 0.20 0.53
12 -0.57 -0.71 0.04 0.05 0.21 0.63 0.22 0.28
13 0.02 -0.08 0.02 0.03 0.00 0.00 0.02 0.03
14 0.09 -0.01 0.03 0.04 0.00 0.00 0.03 0.04
15 0.09 -0.01 0.03 0.04 0.00 0.00 0.03 0.04
16 -0.08 -0.10 0.04 0.04 0.00 0.01 0.04 0.04
17 -0.13 -0.16 0.01 0.01 0.00 0.00 0.01 0.01
18 0.26 0.25 0.15 0.14 0.18 0.25 0.18 0.17
19 0.24 0.18 0.01 0.01 0.01 0.01 0.02 0.01
20 -0.18 -0.25 0.04 0.04 0.02 0.05 0.04 0.04
21 -0.26 0.15 0.41 0.77 1.03 7.38 0.71 3.42
22 0.27 0.41 0.04 0.10 0.05 0.45 0.05 0.14
23 0.18 0.13 0.01 0.00 0.00 0.00 0.01 0.00
24 0.14 0.16 0.08 0.08 0.02 0.05 0.08 0.09
25 0.17 0.15 0.03 0.03 0.01 0.02 0.04 0.03
26 -0.01 -0.02 0.04 0.04 0.00 0.00 0.04 0.04
27 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00
28 -0.07 -0.17 0.02 0.03 0.00 0.02 0.02 0.03
29 0.01 0.06 0.07 0.08 0.00 0.01 0.07 0.09
30 -0.11 -0.21 0.10 0.09 0.02 0.10 0.11 0.10
31 -0.26 -0.33 0.12 0.11 0.15 0.31 0.14 0.13
32 -0.30 -0.26 0.00 0.02 0.01 0.02 0.02 0.02
33 -0.01 -0.08 0.06 0.06 0.00 0.01 0.06 0.07
34 0.05 0.00 0.05 0.05 0.00 0.00 0.05 0.05
35 -0.07 0.00 0.08 0.10 0.01 0.00 0.08 0.11
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Figure 4.2: (a)Sample curves (X-data) of the Canadian data; (b)Boxplot of the log-
precipitation (y-data) data.
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Figure 4.3: Diagnostic plot of the Candian dataset based on (a)Classical Sore plot;
(b)Robust Sore plot.
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Figure 4.4: (a)Estimated beta function by Robust and classical FPCA; (b)First eigen-
function and (c)Second eigenfunction by Robust and Classical FPCR.
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Figure 4.5: Fitted values against the residuals (a)Classical; (b)Robust.
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Figure 4.6: (a)Leverages; (b)Cook’s Influence Measures; (c)Hadi’s Influence Measures
(Classical(o) and Robust(+)).
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Figure 4.7: P-R plot (a)Classical(o); (b)Robust(+); (c)Classical(o) and Robust(+).

74



0 50 100 150 200 250 300 350

−30

−25

−20

−15

−10

−5

0

5

10

15

20

Day

M
ea

n 
T

em
pe

ra
tu

re
 (

D
eg

re
e 

C
el

ci
us

)

2111

10

18
31

12

Figure 4.8: Sample curves of the Canadian data.
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Chapter 5

Conclusion

Robust PCA based Functional Data Analysis has been developed for dimension

reduction purpose. This method can also be used to detect functional outliers and

classify these outliers in three classes.

An extensive simulation study was conducted and a real dataset was used to

asses the performance of the robust FPCA. From this simulation study based on

different contamination configurations (symmetric, asymmetric, partial and peak),

we concluded that robust PCA based Functional Data Analysis yields better results

than CPCA based Functional Data Analysis.

Besides, we have developed robust FPCR method and constructed robustified

influence regression diagnostic measures. The practical use of robust FPCR and

diagnostic measures are illustrated by means of a real data example. In view of

this example, we concluded that the proposed robust FPCR method performs much

better than classical FPCR and robustified influence measures appears to be more

useful diagnostic tools for detecting heterogeneity in functional regression model with

scalar response.

As future work, the different methods to estimate beta function can be explored.

Simulation study can be conducted to assess the performance of the robust FPCR in

presence of outliers, for a variety of scenarios. It is stated that the optimal number

of bases is an important issue in FDA. Since, least squares method is sensitive to

outliers, the choice of number of bases is affected by outliers. Robust version of this

criteria for selecting number of bases can be determined.
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