A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE
(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

Except where reference is made to the work of others, the work described in this
disertation is my own or was done in collaboration with my advisory commite. This
disertation does not include proprietary or clasified information.

__
James Pate Wiliams, Jr.

 Certificate of Approval:

____________________________ ___________________________
Homer Carlisle Richard Chapman, Chair
Asociate Profesor Asociate Profesor
Computer Science and Software Computer Science and Software
Engineering Engineering

____________________________ ___________________________
Sad Biaz Chung-wei Le
Asistant Profesor Asistant Profesor
Computer Science and Software Computer Science and Software
Engineering Engineering

 Stephen L. McFarland
 Dean
 Graduate School
A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE
(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Wiliams, Jr.

A Disertation
Submited to
the Graduate Faculty of
Auburn University
in Partial Fulfilment of the
Requirements for the
Degre of
Doctor of Philosophy

Auburn, Alabama

December 16, 2005
 ii

A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE
(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Wiliams, Jr.

Permision is granted to Auburn University to make copies of this disertation at its
discretion, upon request of individuals or institutions and at their expense. The author
reserves al publication rights.

 Signature of Author

Date of Graduation
 iv
VITA
James Pate Wiliams, Jr., son of James Pate Wiliams, Sr. and Avon Jordan Wiliams
was born on December 8, 1953, in LaGrange, Georgia. He graduated from LaGrange
High School in 1971. He graduated from LaGrange College with a Bachelor of Arts
degre in chemistry in 1979. He atended graduate school at the Georgia Institute of
Technology from 1980 to 1983 without ataining a degre. He received a Bachelor of
Science degre in computer science from La Grange College in 1994. He was awarded a
Masters of Software Engineering from Auburn University in 2000. He has been
programing computers virtualy continuously since 1977.
 v
DISERTATION ABSTRACT
A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE
(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Wiliams, Jr.
Doctor of Philosophy, December 16, 2005
(M.SW.E., Auburn University, 2000)
(B.S., LaGrange College, 1994)
(B.A., LaGrange College, 1979)

410 Typed Pages
Directed by Richard O. Chapman
The research, which is discussed in this disertation, consists of the development and
testing of a suite of ten Transmision Control Protocol (TCP) and reliable Real Time
Protocol (RTP) MIDI over IP (MOIP) protocols, and the subsequent implementations of
musical duet collaboration systems based on the MOIP protocols. These MOIP protocols
were subjected to a quantitative and statisticaly significant set of experiments using two
experimental metrics or performance measurements. The statistical protocol winner of
these experiments was used in the duet systems. We implemented the musical duet systems
on two diferent hardware platforms with diferent and competing operating systems. The
general hardware and software architectures of the musical duet collaboration systems were
esentialy platform independent. The procedural programing language C and the object-
oriented programing language Java were utilized. Before a path leading to a modicum of
 vi
succes was found a number of roads to unsuitable protocols were explored and these lanes
to nowhere are also discussed extensively in this disertation.
 vii

Style manual or journal used: Transactions of the Institute of Electrical and Electronics
Engineers Inc (IEE)
Computer software used: Microsoft Word
 vii
 TABLE OF CONTENTS

LIST OF FIGURES..ix
LIST OF TABLES...xi
CHAPTER 1 INTRODUCTION...1
CHAPTER 2 LITERATURE REVIEW......................................5
CHAPTER 3 UNSUITABLE PROTOCOLS.................................30
CHAPTER 4 RTP AND TCP PROTOCOLS.................................70
CHAPTER 5 MUSICAL DUET SYSTEM..................................88
CHAPTER 6 CONCLUSIONS...93
REFERENCES...98
INDEX..100
APENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS..................101
APENDIX B LAN PAIRED MEANS COMPARISON GRAPHS...............122
APENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS..................213
APENDIX D AN PAIRED MEANS COMPARISON GRAPHS..............234
APENDIX E LAN PAIRED EANS COPARISON STATISTICS............325
APENDIX F WAN PAIRED MEANS COMPARISON STATISTICS...........330
APENDIX G MIDI INSTRUENTS....................................335
APENDIX H IDI INSTRUMENT GROUPINGS..........................336
APENDIX I MIDI META-ESAGES AND MIDI CONTROLERS..........337
APENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE..338
APENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE.............354
APENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32.....364
APENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X................374
APENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND...385

 ix
LIST OF FIGURES

Figure 2-F-1 RMCP Gateway Model and Its Protocols.........................21
Figure 2-F-2 Young and Fujinaga MIDI Mesage Format.......................23
Figure 2-F-3 Aura Name Format..25
Figure 2-H-1 Clasical Time/Space Matrix..................................29
Figure 3-A-1 CW and YF MIDI Mesage Format.............................31
Figure 3-A-2 CW and YF Datagram Format.................................31
Figure 3-A-3 Trace Route from WAN Client to WAN Server....................36
Figure 3-C-1 ATCP-x MIDI Short Mesage Format............................48
Figure 3-C-2 ATCP-x Datagram Format....................................49
Figure 3-D-1 Musician Registration Dialog..................................60
Figure 3-D-2 Music Studio (House) Metaphor Client..........................60
Figure 3-D-3 Music Studio after a Musician Has Entered a Room.................61
Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input................61
Figure 3-D-5 Standard Java Open File Dialog................................62
Figure 3-F-1 MIDI Hardware Configuration.................................68
Figure 3-F-2 MIDI Software Configurations.................................69
Figure 4-A-1 MIDI Short Mesage Format and Delta-Time......................72
Figure 4-B-1 Inter-Departure Time and Inter-Arival Time Temporal Relationships...74
Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1............................75
Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2............................76
Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4............................77
Figure 4-C-5 PC-TCP-ND m = 1..81
Figure 4-C-7 PC-TCP-ND m = 3..82
Figure 4-C-8 PC-TCP-ND m = 4..83
Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1.....................83
Figure 4-C-11 Duet System Main Window..................................85
Figure 4-C-12 Duet System Hardware Configurations..........................86
Figure 4-C-13 Duet System Software Configurations..........................87
Figure 5-1 Main Windows...90
 x
Figure 5-2 Virtual Keyboard...91
Figure 5-3 Channel Map Windows..91
Figure 5-4 Per-to-Per Duet Architecture...................................92

 xi
LIST OF TABLES

Table 3-A-1 Preliminary Protocols..35
Table 3-A-2 Points Awarded to Algorithms and Overal Ranks...................37
Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP......38
Table 3-B-2 Partial Protocol Stack for UT-RTP...............................39
Table 3-B-3 T-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle
Enabled..40
Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U}
and Y = {T, U}..41
Table 3-B-5 RTP and TCP Number of MIDI Short Mesages and Packet Lengths in
Bytes..41
Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours................42
Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours................42
Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours................42
Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours.............43
Table 3-B-1 Trippygaia1.mid TNETND-RTP Actual Runtime Hours.............43
Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours.............44
Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours.............44
Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance...................46
Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance...................46
Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance...................47
Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance...................47
Table 3-C-1 ATCP-x Source Code Files and Lines of Code......................52
Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File.52
Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File
..53
Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File
..53
Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File.54
Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code...................55
 xii
Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File...55
Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File...55
Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 4...................56
Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 5..................57
Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 6..................57
Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 7..................57
Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 8..................58
Table 3-F-1 MIDI Sequence Playing Time Localy............................68
Table 3-F-2 MIDI Sequence Playing Time on a LAN..........................68
Table 4-A-1 Channel and Transport Layer Protocols for RTP....................71
Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1....78
Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2....78
Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3....79
Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1....80
Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2....80
Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3....80
Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4....81
Table 5-1. Source Code Files and Lines of Code..............................89
 1

CHAPTER 1 INTRODUCTION
This research was aimed at providing another means for musicians to interact with
one another using computers and the Internet. Musical collaboration via the Internet in
itself is not a new or novel concept, and as we shal read in Chapter 2, eforts in this
direction can be traced to the early 1990s. Within this research we did introduce some
previously unknown networking protocols, some of which were unsuitable protocols
while others were moderately succesful. Another somewhat radical departure form prior
research was the idea of playing a duet over a network.
The basic idea behind this research was to find a good, i.e. reliable, networking
protocol for transmiting and receiving Musical Instrument Digital Interface (MIDI) data
over a TCP/IP network, whether it was a local area network (LAN) or a wide area
network (WAN) like the general Internet. Such protocols are known as MIDI over IP
protocols, or for short MOIP protocols. In order to realize this dream, we had to explore
the space of known MOIP protocols then create some new protocols, and compare the
two protocol sets quantitatively. The desired fundamental goal of the research was to be
able to conduct a MOIP musical duet on a real network.
In the course of this research many pieces of software were writen primarily in
two languages, namely, the procedural language C, and the object-oriented language,
Java, both of which are declarative rather than functional languages like LISP and its
dialect Scheme. An imperative language tends to have syntax closer to regular English
 2
with infix mathematical expresions than a functional language that typicaly uses the
more arcane prefix notation. Our experience was to prefer C over Java due to
programing language latency isues, however, as computers become faster and faster
and software engineering techniques mature then this negative side efect of Java may
disappear. Where ever possible the networking protocols were implemented in both C
and Java. Another good language choice for this type of research is C+, which probably
has a performance profile much closer to C than to Java on many systems. We developed
several new networking protocols in C and Java. Also, we designed and implemented a
number of musical collaboration systems in both of the previously mentioned primary
languages.
A few operating systems were used for both the qualitative and quantitative
aspects of this research. We utilized Windows 98, Windows XP and the UNIX based
Apple?s OS X. OS X on a Power Mac G4 or G5 system semed to have the lowest MIDI
latency of al the systems in the operating system and hardware suite. In many respects,
the Apple MIDI subsystem of the OS X audio system appears more robust than the
corresponding Windows multimedia system in the humble opinion of the primary
researcher.
This research went down several avenues some of which lead to unsuitable
protocols. Applied computer science is more an empirical and exploratory science rather
than a rigorous mathematical science, and hence, we as applied computer scientists are
more apt than mathematicians to discuss research dead ends. Such discussions are
necesary, and in theory, sufficient, to discourage other researchers from going down the
same paths that lead to nowhere.
 3
In Chapter 2 we wil discuss the foundations of this research which include:
MIDI; a competing open architecture specification by the Gibson Instrument Company
known as MAGIC; the aspects of TCP and RTP that are important to MOIP; C, Java, and
JINI, MIDI systems devised by Apple and Microsoft; other notable MOIP protocols and
systems; sources of latency in MOIP based systems; and computer supported
collaborative work (CSCW). This chapter comprises a literature review.
Chapter 3 is dedicated to al the research we performed in this project, which
resulted in unsuitable protocols. As was stated a litle earlier, it is important in science to
ilustrate research paths that did not pan out or led to dead ends, so that other researchers
wil not duplicate work that was not completely succesful. The first notable failure was
an atempt to devise a UDP based MOIP protocol that used the central concept of data
redundancy to atempt to correct for the unreliability of the UDP. This minor catastrophe
leads us in the direction of the development of reliable protocols later in the course of this
research. Another failure, which was a good idea that was atempted on antiquated
hardware, was the development of a Java musical collaboration system, which had a
music studio metaphor. We used JINI within the framework of another Java musical
collaborative system that could also be deemed a failure on some hardware and operating
systems. An alternative musical duet system for the Windows platform also was a failure
in many senses.
In Chapter 4 we discuss the succesful quantitative experiments involving reliable
versions of RTP and TCP protocols without or with the Nagle algorithm enabled. The
experimental procedure and results are briefly outlined. A number of graphs and tables
that represent the data are presented. The two metrics that were used in the experiments
 4
and their subsequent analysis are introduced. The most succesful duet system for any
platform that we developed is ilustrated in Chapter 5. Our conclusions are enumerated in
Chapter 6.
 5
CHAPTER 2 LITERATURE REVIEW
This chapter is divided into six sections that discuss: MIDI; an alternative open
protocol stack to MIDI named MAGIC; TCP and RTP; C, Java, and JINI; MIDI systems
under two operating systems; previous MOIP research; the latency isues involved in
MOIP; and computer-supported cooperative work (CSCW). It is hoped that this short
literature review il be al the information required to understand this research at a
fundamental level.
A. MIDI
?MIDI is an acronym for ?Musical Instrument Digital Interface [1]?. MIDI is
analogous to sheet music in that it consists of a set of instructions, which tel an
electronic musical instrument how to play a piece of music [2]. MIDI is an electronic
musical device and instrument manufacturer standard and is a set of specifications that
alows devices and instruments of diferent makers to communicate with one another
using a common digital language [1].
The hardware component of the MIDI specification consists of the definition of
MIDI ports, cables, and the electronic signals sent over the cables [1]. There are thre
diferent types of MIDI ports in the specification, namely, in, out, and thru ports. Each
MIDI port is a female jack to receive the five-pin DIN (Deutsche Industrie Norm) MIDI
cable connector [2, 3]. Currently, the specification only uses thre of the five pins [2].
Pins 1 and 3 are not used, pin 2 is shielding, pin 4 is grounding, and pin 5 is for MIDI
data [4].
MIDI cables are usualy no longer than fifty fet and are typicaly much shorter
than the maximum length. The best quality cables have some sort of shielding to prevent
 6
unwanted stray electrical signals from interfering with the MIDI transmision [2]. The
MIDI specification cals for the serial digital transmision of mesages using a start bit,
an octet of eight mesage bits, and a stop bit. The start bit is a logical 1 bit and the stop
bit is a logical 0 bit [1] or vice versa [2]. The send and receive data rates are set at 31,250
baud, which is 31,250 bits per second [1]. This means that 3,125 10-bit MIDI mesages
can be sent or received each second [1]. This particular baud rate was chosen since it is a
divisor of 1,000,000, and 1 MHz was a typical clock frequency for early PCs [3].
MIDI mesages can be broken into five diferent groups: ?channel voice mesages,
channel mode mesages, system common mesages, system real-time mesages, and
system exclusive mesages? [1]. The first four groups of the preceding listed groups can
be categorized as MIDI short mesages.
MIDI short mesages consist of a status byte and zero, one, or two data bytes [1]. An
octet, which is more commonly known as a byte, can have 256 diferent values. A status
byte is in the range 128 to 255 (80H to FH in hexadecimal) and a data byte is in the
range 0 to 127 (00H to 7FH) [1]. This means that a status byte has a one high order bit
and a data byte has a zero high order bit [1].
The channel voice group of MIDI short mesages consists of: note on, note off,
polyphonic key presure, channel presure, program change, control change, and pitch
bend change [1]. Program change mesages have one data byte so there can be 128
instruments active at one time. Se Appendix G for a list of the standard instruments. The
instruments are organized into sixten groups of eight instruments per group. Se
Appendix H for the names of the groups. The channel mode group of MIDI short
mesages is comprised of: local control, al notes of, omni mode off, omni mode on,
 7
mono mode on, and poly mode on [1]. A good introduction to control change mesages
can be found online [5]. The system common mesages are: song position pointer, song
select, time request, and EOX (end of exclusive) [1]. The system real-time mesages are:
timing clock, start, stop, continue, active sensing, and system reset [1]. The system
exclusive mesages are sometimes used to transfer parameter setings from one MIDI
enabled device to another that are both by the same manufacturer such as Yamaha or
Roland.
MIDI controllers include drum controllers, guitar controllers, keyboard
controllers, and wind controllers [2]. A drum controller is vastly diferent from actual
drums and consists of one or more pads. A guitar controller is usualy retrofited to a
standard electric guitar via special pickups [2]. Wind controllers are usualy specialy
designed wind instruments that resemble a futuristic clarinet [2].
There are thre MIDI file formats. Format zero files consist of a single track. Format one
files consist of a number of tracks to be played simultaneously. Format two files consist
of a number of tracks to be played independently [5].
MIDI files contain chunks. Each chunk has a type that is four octets in length, a
length that is four octets, and data that has length octets. There are two types of chunks a
header chunk and a track chunk. A header chunk has the type ?MThd? and a track chunk
has the type ?MTrk?. A header chunk has length equal to six. The data in a header chunk
consists of format, tracks, and division each of which are sixten bits in length and are in
big endian (most significant octet first) format. The format can be zero, one, or two. If the
high order bit of the division is zero then the division is the number of ticks per quarter
note. If the high order bit of division is one then the bits fourten to eight are the negative
 8
of the number of frames per second and bits seven to zero are the ticks per frame. The
track chunk consists of length MIDI events. A MIDI event consists of delta-time in ticks
and either a sysex-mesage, meta-mesage or a MIDI short mesage. The possible meta-
mesages are given in Appendix I [5]. A few good online sites for general MIDI
discussions are [6-8]. There is an excelent source of information on MIDI programing
using the Java language in [9] by Sun Microsystems.
B. MAGIC
Gibson Guitar Corporation has proposed an alternative musical instrument digital
interconnection technology known as Media-acelerated Global Information carier
(MAGIC) to replace as wel as incorporate the aging Musical Instrument Digital Interface
(MIDI, 1983) standard [10]. Acording to the specification the motivations behind the
development of the MAGIC protocol stack were as follows: ?enhanced real-time sonic
fidelity, interoperability, complete digital solution, simple instalation, and ease-of-use?
[10]. A MAGIC link is bi-directional and caries fixed-length data and control
information as wel as power in real-time [10].
MAGIC is able to transmit up to 32 channels of up to 32-bit audio at sampling
rates of up to 192 kHz [10]. This is much beter than CD quality audio, which consists of
two channels of 16-bit audio at a sampling rate of 44.1 kHz. Since MAGIC is based upon
the IEE 802.3 Ethernet standard that has a baud rate of 100 Mbps, you are probably
limited to sampling rates of 100 kHz if you are using al 32 channels and 32-bit data.
However, this is a definite improvement over CD quality audio.
Gibson hopes that amplifier, instrument, and guitar efects manufacturers wil readily
embrace the MAGIC technology so that its adoption and usage wil become universal.
 9
Currently, Gibson is mainly an instrument manufacturer with the Baldwin line of pianos,
the Gibson line of acoustic and electric guitars, and the Goldtone line of tube guitar
amplifiers. Perhaps Gibson has the political savvy and clout to push through a standard to
a diverse and highly competitive set of manufacturers. Gibson sems fairly commited to
MAGIC since Gibson?s current Chief Executive Oficer (CEO), Henry Juszkiewicz, was
instrumental in the development of MAGIC.
Many instruments that musicians use today are either analog or require a lot of
analog to digital (A/D) conversion or digital to analog (D/A) conversion. A/D and D/A
conversions introduce latencies into a performance. These conversions introduce
latencies of 3,000 to 10,000 microseconds [10]. Most modern recording equipment is
digital. Gibson wants to create a totaly digital environment.
It is very easy to connect a computer with an IEE 802.3 Ethernet standard network
adapter to a local area network (LAN). It is Gibson?s vision that connection of amplifiers,
instruments, and efects to a musical network wil be as seamles as connecting a
computer to a LAN.
There exists a definite cable snarl problem in performance and recording
environments. This problem can cause performers and stagehands to trip over the mas of
cables, interference betwen power carying and signal carying cables, and it is hard to
determine if everything has been correctly connected. Gibson wants to overcome these
dificulties by having each musical instrument, amplifier, or efect with at most two
cables, an external power cable for devices that require more than 9 volts direct curent
and a MAGIC Ethernet cable. Most MAGIC compliant devices wil only require the
Ethernet cable. There also exists a wire snarl problem in home entertainment centers and
 10
this problem could be in theory eliminated by the adoption of MAGIC technology by that
industry.
MAGIC supports both the daisy chain and star network topologies that are
popular in the MIDI world [10]. It also supports what is known as an uplink topology that
consists of two switching hubs that are connected by a high-speed link [10]. This high
speed link betwen star networks could be Gigabit Ethernet [10]. A switching hub
multiplexes links from more than one device or daisy chain network [10].
The protocol stack consists of a physical layer, data link layer, and MAGIC application
layer [10]. The physical layer and data link layers are compatible with IEE 802.3
Ethernet protocol physical layer and data link layer [10]. The MAGIC application layer
encapsulates its data and control information in IEE 802.3 Ethernet data link frames
[10]. Other wel-known protocol stacks are the Open Systems Interconnection (OSI)
reference model and the hybrid reference model introduced by Tanenbaum [11]. The OSI
reference model consists of seven layers namely, a physical layer, a data link layer, a
network layer, a transport layer, a sesion layer, a presentation layer, and an application
layer [11]. The hybrid protocol stack has five layers: physical layer, data link layer,
network layer, transport layer, and application layer [11].
MAGIC uses Category 5 cables and RJ-45 connectors [10]. Four of the
conductors in a Category 5 cable are used for data transport and the other four are used to
cary power [10]. The cable is capable of carying at least a 9-volt direct curent power
supply over distances up to 328 fet [10].
The IEE 802.3 Ethernet frame format consists of a preamble of 7 bytes, 1 byte frame
delimiter, 2 or 6 byte destination addres, 2 or 6 byte source addres, 2 byte length of data
 11
field, 0 to 1500 byte data, 0 to 46 byte pad, and 4 byte checksum [11]. The check sum is a
cyclic redundancy code (CRC) [10, 11].
Each MAGIC application layer packet consists of 32, 32-bit data slots of 16, 24,
28, or 32 bits of Pulse Code Modulation (PCM) audio [10]. These slots can also cary
arbitrary 32-bit data [10]. MIDI protocol data can be encapsulated in a packet [10].
MAGIC is similar to the Synchronous Optical Network (SONET) [11] in that it requires a
system-timing master (STM). The STM is chosen using a device enumeration protocol
and the proces is automatic [10]. ?The default MAGIC frame timing is 48 kHz with an
aceptable tolerance of 80 picoseconds. This timing is localy generated by the STM, and
recovered and regenerated by al other devices. The Ethernet signaling rate is
asynchronous with the rate at which frames are transmited [10]?.
The main competitors to MAGIC are the MIDI standard and IEE 1394 FireWire
standard [12-14]. MIDI devices are only able to transmit and receive control information
rather than raw audio data. MIDI control mesages are like sheet music teling a
synthesizer what note to sound etc. FireWire is a high-speed serial bus for computer data
and audio/visual data communications. FireWire does cary power for low powered
devices just like MAGIC. FireWire has a higher baud rate than the current vision of
MAGIC over the 100 Mbps Ethernet and the IEE 1394b has cable lengths that equal the
maximum MAGIC cable length. There is a MIDI media adaptation layer for IEE 1394
[15].
Acording to the video on the MAGIC web site [16], MAGIC would be useful as
a transmiting and receiving medium for telemetry from state-of-the-art medical scanning
devices such as Computer Aided Tomography (CAT), Magnetic Resonance Imaging
 12
(MRI), and Positron Emision Tomography (PET) scanners. Using a MAGIC network,
medical students could view in real-time scanner data transported from a diagnostic room
to a clasroom. So, Gibson views MAGIC in a larger context than just in the musical
performance and recording world.
It appears to this researcher that MAGIC might have some promise in the home
entertainment sector; however, this area may wind up being dominated by IEE 1394
devices since Apple, Intel, and Microsoft support this particular standard. Gibson does
not have an industrial presence in the home entertainment market so this market may be
lost to other standards.
Some criticisms of the MAGIC proposal are that possibly Gibson does not have
the corporate strength in the instrument market to push a standard onto the rest of the
industry. Also, musicians tend to be extremely conservative with respect to their
instruments, so widespread aceptance of the standard might be an opium pipe dream.
MAGIC does have a lot of promise as a musical recording studio standard. MAGIC
compliant digital guitars could be very useful in a recording environment. Many guitar
efects are becoming digital so removing the A/D and D/A conversions currently required
could be advantageous. Most modern audio recording equipment is digital. A good online
summary of MAGIC can be found in [17].
 13

C. TCP and RTP
There are esentialy two architectural reference models in the networking world,
namely, the Open Systems Interconnection (OSI) reference model and the TCP/IP
reference model. The OSI reference model has seven layers: the physical layer, the data
link layer, the network layer, the transport layer, the sesion layer, the presentation layer,
and the application layer. The TCP/IP reference model has four layers: the host-to-
network layer, the Internet layer, the transport layer, and the application layer [11].
The TCP/IP reference model has two transport layer protocols, the User Datagram
Protocol (UDP) [18] and the Transmision Control Protocol (TCP) [19]. UDP is a
connectionles, best efort, and unreliable transport protocol. TCP is a connection-
oriented and reliable transport protocol. TCP uses sequence numbers and
acknowledgements to insure that each packet is delivered in the order sent. UDP typicaly
involves a leser amount of overhead than TCP. The primary reason for lost data-grams
or packets on the Internet is congestion which can be contrasted with the wireles
universe where the primary culprit for dropped data-grams or packets is the high bit eror
rate (BER) of the medium [11].
The prototypical programing-paradigm of TCP/IP is the client/server model. A
client sends a request and the server answers the request. Servers offer services and these
services could be as simple as an echo service or time of day service or as complicated as
a database search service. Servers can be either UDP or TCP servers or both. Servers can
be either concurrent or iterative. A concurrent server usualy uses independent threads of
 14
execution for each request and hence can handle more than one simultaneous request. An
iterative server handles one request at a time [11, 20].
Many consider the BSD UNIX sockets library as the quintesential programing
package for TCP/IP. This package provides an interface known as a socket that connects
the two ends of the client/server interaction. Sockets can be UDP sockets or TCP sockets.
Sockets can also support broadcasting or multicasting [20-22].
The client side of the interaction consists of creating a socket, connecting the socket,
writing a request to the server, reading the response from the server, and closing the
socket. On the other hand, the server side of the interaction for a TCP server involves the
following steps: creating a socket, binding the socket to a port number, listening for
connections, acepting the connection, reading a client?s request, and writing the
response to the request, and closing the acept socket [20].
The Real Time Protocol (RTP) is designed to transmit data such as audio or video
in real-time. Some of the early applications of RTP were audio and video conferencing
over the Internet. RTP does not guarante delivery or in order delivery of packets since
the Internet version is based on UDP, which is an unreliable protocol. RTP does not give
quality of service (QOS) asurances either [23].
RTP has a control protocol asociated with it named RTCP. Usualy on the
Internet, RTP uses UDP for sending data-grams and for the control protocol. The RTP
sesion has a destination IP addres and destination IP port number. Typicaly, Internet
implementations use an even port number for UDP transport and an adjacent odd port
number for the RTPC port, such as 50000 and 50001. This researcher questions the use of
UDP for the RTCP rather than a reliable transport protocol such as TCP. However, the
 15
usage of UDP for both functions does not make sending and receiving data-grams or
control information seamles by using sentto or recvfrom for both types of data. The RTP
header has the following format [23]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|X| C |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| .. |
+-+

V is the two bit version field, P is the padding bit and if set the payload contains padding
octets, X is the extension bit and if set the header is followed by one extension, C is the
four bit number of CSRC identifiers in the header, M is the marker bit defined by the
profile, PT is seven bit payload type, the sequence number is initialy random and has
sixten bits, timestamp is sampling instant of the first octet in the RTP packet, the
synchronization source is chosen randomly, and the contributing source identifiers are the
contributors to the RTP payload. The MIDI payload used by Lazaro et al. in their NMP
system, which is mentioned in the Section F has the following format:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|R|R| Len | MIDI comand Payload? |
+-+
| Recovery Journal |
+-+

R are reserved bits, the Len field is six bits and is the length of the MIDI payload in
octets, and the Recovery Journal is checkpoint information that alows for retransmision
of lost data.
 16

D. C, Java, and JINI
The computer programing language C was derived from the type-les language
BCPL through the B language and is most often asociated with Dennis M. Ritchie and
the development of the UNIX operating system and came into existence in the period
from 1969 to 1973. The C language fals into the clas of imperative computer languages
that includes FORTRAN and ALGOL [24], [25]
The BCPL computer programing language was a popular systems programing
in the United Kingdom in the late 1960s and is the grandparent of C. The smal footprint
variation of BCPL, the B programing language was developed to run on Digital
Equipment Corporation?s (DEC?s) PDP-7 minicomputer and only occupied 8K (8192)
bytes of memory. B can be thought of C without data types and is considered C?s
imediate parent. Ken Thompson of Bel Laboratories is the inventor of the B language
and its name was probably derived from the name of another programing language
developed by Thompson named Bon [24].
C has some features that are very close to asembly language such as register
variables and easy bit and byte manipulation. The explicit pointer and its acompanying
arithmetic, which were once such a boon in programing quickly became somewhat of a
bane and later completely disappeared from a programing language with the invention
of the language Java. Pointers are an integral part of the C language and the only means
of pasing a reference to a subprogram which in C are caled functions. Perhaps a
drawback of C is the fact that functions can?t be nested. C introduced a means for easy
modularization or packaging of code and the module or package interface is known as a
 17
header file. Decomposing a problem into modules and then functions laid the foundations
for a later software engineering paradigm shift known as object-oriented programing
(OP) [25]. C is known as a weakly typed programing language.
At the Sun-World Conference on May 23, 1995, John Gage, director of the
Science Ofice for Sun Microsystems, and Marc Andresen, cofounder and executive
vice president of Netscape announced to the audience and thus the world that the Java
language existed and was to be utilized by the Netscape Navigator, which was then the
most popular web browser. Only a smal number of people, les than thirty, were
responsible for the invention and introduction of Java technology [26].
Sound and MIDI support became available in Java rather late with Java 1.3. A
glaring deficiency was the fact that only MIDI output devices were supported on many
popular platforms such as the Windows platform. This problem has been rectified in 2004
with the 1.5 version.
Java is a platform independent and interpreted language [27]. Other interpreted
languages include the Scheme functional language, which is the language of choice for
some programing languages courses and many artificial inteligence applications [28],
and Microsoft?s C# language [29-30]. Java has been scaled down for use on palm tops
and celular telephones [31-32].
JINI is the name of a technology invented by Sun Microsystems in the 1990s and
was publicly announced in 1998. It is a set of engineering specifications and Java code
that alow computers to discover and utilize services on a network. It is similar to a
distributed object naming and lookup service. The whole notion is in the standard Java
tradition of potentialy computing on smal-embedded devices. Sun had a vision that
 18
perhaps JINI would be a glue to hold together the embedded systems networks of
automobiles and other transportation vehicles [33-34].
JINI has five key concepts that are: discovery, lookup, leasing, remote events, and
transactions. Services need to be discovered by JINI-aware devices before they can be
used. The discovery protocols consist of the multicast request protocol, the multicast
announcement protocol, and the unicast discovery protocol. Lookup is a type of name
server, but has a much richer set of semantics due to the underlying object oriented
language of JINI, namely, Java. Lookup can be used to find certain types of supported
objects using the inheritance hierarchy of Java. A central feature of JINI is the notion of
downloadable proxies. A lookup service has an object named a service item that has a
proxy object and atributes objects. A client downloads the proxy object from the lookup
service and then communicates via the proxy with the service perhaps using the Remote
Method Invocation (RMI) mechanism of Java. Leasing alows the detection of crashed
client and services, since consumers and services are expected to renew their leases
periodicaly. Remote events are remote asynchronous notifications which build on the
idea of local events inherent in the Java language. Transactions come from the database
universe. Transactions have four properties, which are sometimes represented by the
mnemonic ACID, which stands for atomicity, consistency, isolation, and durability. The
transaction protocol used by JINI is the two-phase commit [33-34].
E. MIDI Systems of Interest
The MIDI subsystem of the Microsoft Windows multimedia system has a
function for determining the capabilities of a MIDI device, which can be an input or
output port, a sequencer, or a synthesizer. A MIDI device is either an input device or an
 19
output device. There exist functions for opening either a MIDI input device or a MIDI
output device, which return a handle to the MIDI device. A MIDI input device can be
started or stopped. Both types of devices should be stopped and closed before the
program that opens the devices is exited. When you open a MIDI input device a calback
function or window must be specified. Under Windows MIDI short mesages are
represented by double words, which are 32-bit entities. There is a lot more information on
the features of the Microsoft?s MIDI system in the online help of Microsoft?s Visual
C/C+ and Visual Studio .Net.
The architecture of the MIDI system under OS X is quite elegant and consists of a
MIDI server which is built upon the MIDI driver layer which, in turn is over the I/O
subsystem of the OS X kernel. Each application that desires to receive or transmit MIDI
data must create a MIDI client, a MIDI destination or source, and an input or output port.
MIDI mesages are caled MIDI packets and are encapsulated in a structure that has the
unsigned integer field length, MIDI timestamp, and length data bytes. MIDI running
status is not supported in the current MIDI packet structure. Another structure caled a
MIDI packet list alows more than one MIDI event (MIDI packet) to be transfered at one
time in the system. There are functions for initializing a MIDI packet list, adding packets
to the list, and iterating through the list elements. Complete descriptions of the functions
and properties of the OS X MIDI system are given in [35].
F. Prior MOIP Research
In this section we discuss four previous studies of remote collaboration betwen
musicians, namely, the Remote Music Control Protocol (RMCP) [36], the Young and
Fujinaga version of MIDI over IP [37], the Aura system [38], and the Network Musical
 20
Performance (NMP) system [39]. The first two systems are based on UDP, the third TCP,
and the fourth on UDP and RTP.
As has been previously stated RMCP is connection-les and based on UDP/IP. Since it
uses UDP, broadcasting is available without the overhead of multiple transmisions [36].
RCMP was originaly intended for a lossles network such as some Ethernets since it
does not have a mechanism for loss or out-of-order data-grams. Betwen 1992 and 1997,
five systems using RMCP have been developed which are described in this paragraph. (1)
A virtual dancer that is choreographed by musicians in real-time. (2) A virtual jaz
sesion betwen a pianist, a basist, and a drummer with acompanying computer
graphics for gestures. (3) Multiple musicians interacting via the Ethernet. (4)
Improvision, a system in which two untrained people can create improvisational music
and interact with each other. (5) RemoteGIG, a remote sesion over the Internet betwen
musicians [36].
RMCP is based on the client/server architectural model of the Internet. There are
four servers, specificaly, the sound server which transmits ?MIDI mesages of received
packets to a MIDI instrument?, the display server which ?visualize MIDI mesages of
received packets in the form of a piano keyboard?, the animation server which ?generate
music-driven real-time computer graphics corresponding to received packets?, and the
recorder server which ?record al received packets with the received timestamps, in a
RMCP Packet Record File?. There are four types of RMCP clients, in particular, the
MIDI receiver which ?receive MIDI from MIDI instruments?, the MIDI station client
which ?substitute a computer keyboard and mouse for a MIDI keyboard instrument?, the
 21
Standard MIDI File (SMF) player client which plays ?a standard MIDI file?, and the
player client which plays ?a RMCP packet record file? [36].
RMCP requires distributed clock synchronization. The system has one RMCP
time synchronization server. RMCP packets either have a timestamp or no timestamp. If
the timestamp is not present the mesage in the packet is executed as soon as the packet
arives [36].
RMCP was originaly designed for use on a reliable LAN. The extension to a
WAN involves using RMCP gateways that connect two LANs using TCP/IP, the reliable
and connection-oriented Internet transport protocol [36]. Se Figure 4.1 on the next page
for a visualization of the RCMP system and its networking connections and protocols.

Figure 2-F-1 RMCP Gateway Model and Its Protocols

 22
The duet system developed by this researcher is reminiscent of RMCP. The
similarities include a piano keyboard for visualizing MIDI data that comes over the
network and both systems can play sequences over the network. The diferences betwen
the two systems are that RMCP has more MIDI musical visualization aids and the
networking protocols are not the same. RMCP uses a combination of UDP and TCP for
MIDI data transport whereas the duet system uses TCP and a homegrown protocol based
on TCP. Both systems are capable of sending and receiving standard MIDI type 0 or type
1 file and of recording a sesion. RMCP uses the predominant Internet client/server
architecture whereas the duet system uses the new peer-to-peer (P2P) Internet paradigm.
There are esentialy two methods of transmiting music over the Internet. The
first method is to transfer audio data via the Internet. The second method is to transmit
musical gesture information such as the data encapsulated in the MIDI specification.
Apple, Microsoft, Sun, et al. commercial software vendors have been working on systems
for streaming audio for music and for teleconferencing. Streaming audio requires
relatively large bandwidth, in order to sound reasonably good uses an initial buffering
mechanism, and there can be pauses in the audio stream. Typicaly streaming audio
requires two diferent protocols: one for a low bandwidth connection and one for a high
bandwidth connection.
MIDI and standard writen notation are universal representations of musical
gesture. MIDI can be good and faithful for a piano performance. Sending MIDI mesages
to remotely perform on an instrument can create a unique remote performance
environment. MIDI requires les bandwidth than streaming audio [37].
 23
Young and Fujinaga chose UDP as their basic transport protocol. To overcome
the unreliability of UDP, they transmited multiple copies of each MIDI mesage. A
unique index was used with each mesage to ensure that duplicates were discarded and
mesages were played in the right sequence. They also used a buffer of a few seconds,
which makes real-time musician-to-musician interaction virtualy impossible [37].
Young and Fujinaga cite thre reasons for not utilizing the reliable Internet transport
layer protocol TCP. These reasons were retransmisions and their asociated latencies, in
order delivery of packets and the required latency to enforce this policy, and the extra
bandwidth for reliability. They were particularly concerned with the stopping and starting
of the music due to retransmisions. This researcher encountered the starting and
stopping TCP problem with most sequences, but the fault is not so prevalent in the duet
system where there is a somewhat limited amount of data being transported on the
network. Although Young and Fujinaga did not give the exact number of bits used in
their datagram format, this researcher interpreted their description as follows in Figure 2-
F-2. A datagram consisted of one or more MIDI mesages.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Index |
+-+
| Delta Time (Miliseconds) |
+-+
| MIDI Short Mesage |
+-+

Figure 2-F-2 Young and Fujinaga MIDI Mesage Format

Richard O. Chapman and this researcher developed a protocol that uses some
redundancy and does not require buffering of data-grams before playback. We cal this
protocol the CW protocol. The idea is to send multiple copies of MIDI mesages spread
 24
over several data-grams to ensure delivery of most of the MIDI mesages. We describe
this protocol in detail in Chapter 7.
Local area networks (LANs) provide an economical and high-speed means of
connecting personal computers (PCs). MIDI networks use one specialized transmision
protocol whereas LANs may use many diferent digital protocols. Dannenberg and van
de Legeweg built a system named Aura at Carnegie Melon that takes advantage of low
cost LANs for implementing real-time music programs [38].
At first Dannenberg and van de Legeweg used UDP as their transport level
protocol since it semed good for real-time applications and semed relatively reliable on
LANs. Previous research by Goto et al. into RMCP was done using UDP. However,
Dannenberg and van de Legeweg were geting dropped data-grams on their LANs so they
switched to TCP. The key ideas for this researcher to come from the Aura work are the
usage of TCP_NODELAY to disable the Nagle algorithm and the utilization of multiple
threads of execution [38]. By disabling the Nagle algorithm TCP does not delay until it
has certain minimum size packet to transmit, instead the protocol sends smaler packets at
more frequent intervals [11].
Aura is a distributed system for communicating musical data in real-time. It uses
the object oriented programing paradigm. The Aura system consists of spaces, zones,
objects, and names. A machine is a space or addres space. A space consists of one or
more threads of execution. A zone is a collection of objects that are shared by a single
thread of execution within an addres space. There can be as many zones in an addres
space as there are threads. Objects are entities that can transmit and receive musical data
in the form of asynchronous mesages. Objects are diferentiated by their real-time
 25
requirements with low latency objects going into a particular zone with other such
objects. Names are unique 64-bit integers with the format given in Figure 5-3. And this
figure represents the end of the paragraphs on the third previous research system.
 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+
| Adres Space |Z o n e| Creator?s Adres Space |Z o n e|
+-+
| Object Identifier |
+-+

Figure 2-F-3 Aura Name Format

Aura appears to be a much more general and versatile system for asynchronous
communication of musical data than this researcher?s vision of MOIP. However, with this
generality and versatility there are prices to be paid such as code and system complexity
and clock synchronization isues. This researcher used the object-oriented programing
paradigm utilizing Java for the code to compare the diferent MOIP transport level
protocols introduced in this disertation, however, straight C was used the final duet
system since it is closest to the Microsoft Windows native Application Programing
Interface (API).
A network musical performance (NMP) occurs betwen musicians that are
playing musical instruments at diferent locations that are connected by a computer
network. Idealy, we would like to use real-time audio to send the actual music that a
given musician is playing, however, bandwidth considerations and latencies may make
this impossible. The next best thing is to use musical gestures such as MIDI. Lazaro and
Wawrzynek used RTP to send MIDI commands over the Internet [39].
There are two clases of delay in NMP, namely, network delay and local delays.
Network delay on the Internet is usualy asociated with congestion. The local delays
 26
include ?computational delay, audio and control I/O delay, and perhaps local acoustic
delay.? Via minimization of each of the preceding type of latency perhaps a viable NMP
system can be achieved [39].
The NMP system uses the standard client-server architecture that is so prevalent
in many Internet applications. The NMP client used the IETF Real Time Protocol (RTP)
under the Audio/Video Profile (AVP) [28] to transfer MIDI data betwen network end-
points. A miror server was also developed to reflect the gesture information back to the
client [39].
The NMP researchers used a recovery journal mechanism that is similar to
forward eror correction (FEC) and reliable multicast transport (RMT). The researchers
noted thre qualitative artifacts asociated with their atempts to build eror resilience and
reliable into the system:
1. Ocasionaly a depresed key does not create a corresponding note
2. Noticeable jiter in the sounding of notes
3. A released key sometimes continues generating sound for a fairly short time.
The NMP research team easured late and lost packets on a relatively high speed
California instate network. Their late and lost packet data had a bi-modal distribution
[39]. The time 12:30 PM was very good and the time 7:30 PM was very bad. It is
common knowledge that Internet Service Providers (ISPs) peak times are 7:00 PM to
10:00 PM local time.
G. Sources of Latency in MOIP
There are five sources of latency in distributed audio systems: the finite speed of
sound in air, the network, the operating system, the sound card, and the implementation
 27
language. In the following paragraphs we wil give a litle discussion of the preceding
forms of latency.
The speed of sound in air is given approximately by the following formula:
v = 331.4 + 0.6T (m / s)
The temperature, T, is in Celsius [40]. For T = 21.11 degres Celsius = 70 degres
Fahrenheit v = 344.28 m / s = 1129.52 ft / s = 1.13 ft / ms. So a percussionist who is fifty
fet from the violin section in an orchestra would experience a delay of about forty-four
miliseconds in the sound of the violins using the previous data. Musicians are
acustomed to latencies of the order of ten miliseconds or about the delay that occurs
betwen presing a key on a MIDI keyboard and geting an audio response. Supposedly
some very gifted individuals are able to detect delays of the order of one milisecond
[41].
Network latency is hard to quantify. There have been some papers such as [42]
that atempt to model TCP latency; however, it is hard to deduce balpark estimates of the
TCP latency in a distributed audio system from these models. Due to retransmisions and
the enforcement of the receive in-order policy TCP has a greater latency on the general
Internet than UDP. In the absence of retransmisions and out-of-order data-grams in this
researcher?s experience TCP and UDP have similar latencies.
In a comparison of the latencies in off-the-shelf operating systems for audio
systems comparing Windows 95, NT 4, Windows 98, and NT 5, it was found that
Windows 98 had the lowest worst-case latency of about twelve miliseconds. Windows
95, NT4, and NT5 had worst-case delays of around fifty miliseconds [43].
 28
Sound card latency is most pronounced when recording audio from one of the
input-sources on the sound card into software being executed on the computer. Some
recording software such as SONAR 3 by Cakewalk alows this latency to be reduced with
degradation of the quality of the recorded sound [44]. Another way of reducing sound
card latency is to purchase a high-end sound card.
Al implementation languages have asociated latencies. An interpreted language
such as Java is expected to have a greater inherent latency than a compiled language such
as C since interpretation involves conversion from an intermediate language to native
code, whereas the C compiler outputs native code.
H. Computer-Supported Cooperative Work (CSCW)
Human-computer interaction (HCI) involves psychology and the computer,
whereas CSCW is more related to sociology and the computer. However, CSCW
generaly comes under the auspices of HCI in the scientific literature [45]. Groupware is
the common name given to software, which alows the interaction of two or more
individuals via computers [45].
Groupware can be diferentiated acording to the standard time/space matrix
whose axes consist of time that is divided into same time or diferent time and space that
is divided into same place or diferent place [45]. An alternative formulation uses the
time axis labels synchronous (same time) and asynchronous (diferent time) and space
axis labels co-located (same place) and remote (diferent place) [45]. Examples of
groupware include extreme two programer programing teams (synchronous and co-
located), chat also known as instant mesaging (synchronous and remote), electronic or
clasical bulletin boards (asynchronous and co-located), and email (asynchronous and
 29
remote). Figure 2-H-1 shows a clasical time/place matrix in which by conversation we
mean face-to-face conservation [45].

Figure 2-H-1 Clasical Time/Space Matrix
 30

CHAPTER 3 UNSUITABLE PROTOCOLS
This chapter is divided into six sections that give synopses of the initial research
that resulted in failures to achieve the desired goals. The sections are: a discussion of the
preliminary set of protocols, an outline of the initial quantitative and statisticaly
significant collection of experiments that is divided into two sections, a brief description
of an initial collaborative system, and finaly an adumbration of another Java and JINI
duet system which did not pan out due to latency problems and an alternative duet
system.
A. Preliminary Protocols and Their Implementations
The protocols used in the preliminary set of experiments were a UDP based
protocol with a modicum of redundancy developed by Profesor Richard O. Chapman
and this researcher (CW), a RTP based protocol without eror recovery (RTP), a simple
and naive TCP protocol (SN-TCP), and Young and Fujinaga?s UDP based protocol (YF).
In this chapter we wil present brief outlines of the protocol, talk about their
implementation, and finaly, discuss a set of experiments performed on a Wide Area
Network (WAN).
As far as MIDI data was concerned, only MIDI short mesages such as channel
presure, control change, key presure, note off, note on, pitch-bend, and program change
were transmited and received. MIDI meta-mesages were not included in the
transmision stream. MIDI meta-mesages such as tempo changes can be incorporated
 31
into the protocols. The MIDI short mesage data was placed in a structure consisting of a
unique index, a delta time in MIDI ticks, and the MIDI short mesage. This structure was
based on the structure that Young and Fujinaga utilized and is shown in Figures 3-A-1
and 3-A-2.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Index |
+-+
| Delta Time (Miliseconds) |
+-+
| MIDI Short Mesage |
+-+

Figure 3-A-1 CW and YF MIDI Mesage Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Comand | Pad |
+-+
| Sequence Number |
+-+
| Echo Time |
+-+
| Maximum Echo Time |
+-+
| Up to 16 MIDI Mesages |
+-+
| ? |
+-+
+ Last MIDI Mesage |
+-+

Figure 3-A-2 CW and YF Datagram Format

The command is either OPEN (0) or CLOSE (1), which either opens or closes the
TCP connection betwen the client and server. The sequence number is unique to each
UDP client/server connection and limited by the precision of a 32-bit integer. The echo
time and maximum echo times are calculated by the client and communicated to the
server in the datagram.
With respect to the delta times there are two policies, which this researcher cals
lying and honesty. In the lying policy a client reports a zero delta time to the server in
hopes that the network latency is so low that the client and server wil be esentialy
 32
synchronized, and no bufering is done by the server. In the honesty policy case the client
reports the delta time that it used to play the MIDI short mesage. The lying policy case
was used in most of the preliminary protocols.
One parameter was common to al the protocols, namely, the number of MIDI
short mesage structures per datagram or packet, m. Another parameter that was shared
by the CW, SN-TCP, and YF protocols was the number of data-grams betwen datagram
echoes, n. Datagram echoes were used to get a rough estimate of the data-grams or
packets that were being lost during transmision. Of course, for SN-TCP no packets are
lost, but we stil monitored the round-trip-times (RTs) found via packet echoes. As wil
be sen the RTs were used by CW and one variant of YF to get an estimate of the
dynamic buffer size. A third parameter was the number of datagram copies sent by the YF
protocol, k. In the CW protocol and the dynamic buffer size YF protocol (dYF), the
server?s dynamic buffer size if calculated via the formula:
BufferSize = m * MaximumEchoTime / EchoTime
The dynamic buffer holds structures of the type shown in Figure 8-1. The dynamic buffer
size is computed after each received datagram.
The CW protocol uses the following transmision scheme for m = 3. It first sends
MIDI mesages 1, 2, and 3 then it sends 2, 3, and 4, and then 3, 4, and 5, et cetera. Thus,
the number of data-grams transmited by the CW algorithm is the total number of MIDI
mesages minus m plus one.
The dynamic buffer variation of the dYF algorithm difers from the CW algorithm
in the number of copies of the datagram transmited. CW only sends one copy. dYF sends
k copies. The large buffer version of YF uses a static buffering scheme. Both the CW and
 33
dYF used a variable named the currentIndex. If the incoming datagram has MIDI short
mesages with indices les than the currentIndex then it must be a copy of the datagram
and is ignored. If the incoming datagram?s MIDI short mesages have indices equal to the
currentIndex then the datagram?s MIDI short mesages are played imediately. Lastly, if
the incoming datagram?s indices are greater than the currentIndex then the datagram?s
MIDI data is buffered. Each time a datagram is received, the bufer is checked to se if it
is full, and if it is full then the buffer?s MIDI short mesage data is played. The buffer is
maintained in sorted order on the index of each MIDI short mesage structure in
ascending order. After the buffer is played the index variable is set to last buffered MIDI
short mesage structure?s index value plus one.
The static buffer YF (sYF) protocol abandons the idea of unique indices and uses a
saner unique datagram sequenceNumber. The protocol uses a variable named the
expectedSequenceNumber. If an incoming datagram?s sequenceNumber is les than the
expectedSequenecNumber then it is ignored since it must be a datagram copy. If the
incoming datagram?s sequenceNumber is equal to expectedSequenceNumber then its
MIDI short mesage structures are played imediately and the expectedSequenceNumber
is incremented by one and then the buffer is searched for more data to play if it is
nonempty. In the last case of the incoming datagram?s sequenceNumber being greater
than the expectedSequenceNumber then the whole datagram is buffered in ascending
order in buffer with the sequenceNumber as a key. In the last case after addition of a
datagram, the bufer is checked to se if it is full, and if it is full then the data-grams?
MIDI short mesage data is played imediately. sYF uses the honesty policy case with
respect to delta times.
 34
There are two types of RTP protocols available either with or without eror
recovery. By eror recovery we mean building reliability into RTP by retransmision of
lost data-grams. An eror is the loss of a datagram. We used RTP without eror recovery
in the preliminary experiments. The RTP protocol used the index idea of CW and dYF.
The SN-TCP protocol used the same data structures as the dynamic buffer
algorithms CW and dYF and RTP. However, in reality, the idea of an index or packet
sequence number is not needed by SN-TCP since it is reliable and al packets are received
in the order transmited. We used the same index arithmetic with the TCP server as with
the other algorithms that used indices so as not to give SN-TCP an unfair advantage.
The echoing proces used CW, SN-TCP, and YF was to echo each nth datagram or
packet. The client generates a timestamp for the datagram or packet with its current real
time clock value. Upon receipt of an echo the client checks to make sure the echoed
datagram or packet?s data is the same as the datagram or packet transmited for echo and
if it was the same then it computes the RT otherwise the client would cause an
exceptional condition. The client would maintain the minimum, average, and maximum
RTs, and in the dynamic buffer cases would send the average and maximum echo time
to the server.
The four protocols and one protocol variation were implemented in the C
language using the Microsoft Visual C/C+ 6.0 compiler. As aluded to earlier in the
description of the algorithms client/server architecture was used. The client is a MIDI file
format 0 or 1 sequencer. The sequencer transmits data as soon as a datagram or packet
becomes full with m MIDI short mesage structures.
 35
The CW and YF server implementation has thre sockets: a TCP socket for
receiving control information, a UDP socket for receiving data-grams, and a UDP socket
for sending and receiving echoed data-grams. The TCP socket and UDP receiving socket
are handled by the select system cal. The server blocks until one of the sockets receives
data. There are two types of TCP mesages either an OPEN mesage or a CLOSE
mesage. An OPEN mesage sends the client?s parameters such as m, k, and n. The
CLOSE mesage tels the server to shutdown the TCP socket and go back to the acept
socket system cal to wait on another connection by a client. The server has two threads
of execution an echo thread and a main MIDI mesage procesing thread. Table 3-A-1
summarizes the protocols.
Name Buffer Data Transport Control Transport
CW Dynamic UDP TCP
dYF Dynamic UDP TCP
sYF Static UDP TCP
SN-TCP Not Applicable TCP Not Applicable
RTP Not Applicable UDP UDP
Table 3-A-1 Preliminary Protocols

The server machine was a Windows 98 personal computer (PC) with a Pentium 2
450 MHz central procesing unit (CPU), 128 MB SDRAM, a Turtle Beach Montego
A3D 64 voice PCI sound card, and Altec Lansing ACS 295 speakers with subwoofer.
The client machine was a Windows XP Home Edition PC with a Pentium 4 2.26 GHz
CPU, 512 MB RDRAM, a Turtle Beach Santa Cruz DSP sound card, and
Harman/Kardon HK-695 speakers with subwoofer. The server machine had a 31.2 Kbps
 36
dial-up link to the Internet and the client machine had an Asymmetric Digital Subscriber
Line (ADSL) link to the Internet. Although the computers were only a few rooms apart in
a residence, the network formed was a Wide Area Network (WAN). The dialup-link went
along the analog part of the telephone line to West Point, GA, a trip of about 18 miles
then on the Earthlink network to Atlanta, GA, then back to the house in LaGrange, GA,
via the Earthlink/Bel South ADSL network. As was mentioned earlier, the client sends
MIDI short mesages to the server to be played. The primary metric was the runtime at
the server as measured to the nearest second. Trace route information is given below.
Tracing route to user-2inid4o.dialup.mindspring.com [165.121.52.152]
over a maximum of 30 hops:

 1 <1 ms <1 ms <1 ms 172.16.0.254
 2 15 ms 18 ms 14 ms user-120k01.dsl.mindspring.com [6.32.80.1]
 3 14 ms 14 ms 15 ms acr01-vl-3.ga-atlanta0.ne.earthlink.net [207.69.143.1]
 4 16 ms 15 ms 15 ms cor02-vl-1.ga-atlanta0.ne.earthlink.net [207.69.23.190]
 5 14 ms 14 ms 14 ms dir10-g12-0-0.ga-atlanta0.ne.earthlink.net [209.165.96.18]
 6 23 ms 21 ms 21 ms cisco-h0.wp-lag.mindspring.net [207.69.230.26]
 7 23 ms 2 ms 21 ms acn02a.ga-westpoin1.ne.earthlink.net [207.69.14.22]
 8 236 ms 190 ms 195 ms user-2inid4o.dialup.mindspring.com [165.121.52.152]

Trace complete.

Figure 3-A-3 Trace Route from WAN Client to WAN Server

The experiments are scored using a system that awards four points for first place,
thre points for second place, two points for third place, and one point for fourth place.
When calculating the total points one point was awarded for each experiment instance in
which the protocol was reliable. Two standard MIDI files were utilized, namely, one
MIDI type 0 files: Trippygaia1.mid and one MIDI type 1 file: Flourish.mid.
 37

File M CW RTP SN-TCP dYF
Trippygaia1.mid 1 2 1 3 4
 2 1 4 2 3
 3 1 4 2 3
 4 1 4 2 3
Flourish.mid 1 2 1 3 4
 2 2 1 4 3
 3 2 1 4 3
 4 1 4 2 3
Points - 12 20 22 26
Zero Loss Points - 0 4 8 5
Total Points - 12 24 30 31
Overall Rank - 4
th
 3
rd
 2
nd
 1
st

Table 3-A-2 Points Awarded to Algorithms and Overal Ranks

As can be sen from Table 3-A-2 SN-TCP is clearly the only reliable protocol
which is very important for MIDI over IP since as can?t be overemphasized MIDI is
intolerant with respect to lost or out-of-order data. The CW protocol performed so poorly
that it was dropped from further consideration.
B. RTP and TCP Protocols
In this section and the next section we make a transition away from protocols
implemented in the programing language, C, and we utilize the interpreted platform
independent language, Java. The reason we change languages is to take advantage of a
unique design feature of Java Media Framework?s (JMF) implementation of RTP, which
is further explained the next paragraph. Java has more inherent latency in most cases
than C on the machines chosen for the subsequent experiments however Java is utilized
 38
because of the elegance of the RTP implementation in this researcher?s opinion. The
experimental work asociated with these protocols was done in a statisticaly significant
number of trials. Al of the subsequent protocols used the honesty delta-time policy.
The Real-Time Protocol (RTP) implementation in the JMF alows the user to
abstract away the underlying transport protocol from the RTPManager object via the
implementation of the interface RTPConnector. This means that the user can utilize either
the Transmision Control Protocol (TCP) or the User Datagram Protocol (UDP) as the
transport layer protocol. Since RTP has two channels, namely, a control channel and a
data channel, and there are two Internet transport layer protocols, four possibilities exist
for the channels and transport protocols of RTP as ilustrated by the following table.
Control Data
TCP TCP
UDP TCP
TCP UDP
UDP UDP
Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP

Our usage of an alternative transport protocol to UDP with JMF?s implementation
of RTP does not appear to be novel since previous researchers used the Stream Control
Transport Protocol (SCTP) in a similar manner to our usage of TCP, but without the four
cases of Table 3-B-1 [34].
These four RTP variations have been nicknamed T-TCP, UT-RTP, TU-RTP and
U-RTP where the first leter is an abbreviation of the control channel transport protocol
and the second leter is an abbreviation for the data channel transport protocol.
 39
Practical MIDI streams such as those generated by real musicians or sequencers
difer from real-time audio in that the MIDI streams consist of discrete or quantized
events instead of continuous bit streams. The MIDI specification cals for a stream with a
baud rate of 31250 bps, however, it is generaly fairly rare to generate MIDI short
mesages at the maximum MIDI short mesage rate of les than or equal 3125 MIDI
short mesages per second. Suppose Eve is playing a MIDI instrument at a metronome
seting of 120 beats per minute (BPM) without using control mesages or pitch-bend
mesages. Then at most Eve is generating two MIDI short mesages every half-second, a
previous note off mesage and a next note on mesage. This is an ideal situation for
reliable protocols that send a single packet at a time, since there is probably enough time
betwen the send for the return acknowledgment before the next send.
Application
RTP
UDP/TCP
IP
Table 3-B-2 Partial Protocol Stack for UT-RTP

The various RTP protocols were implemented using JMF 2.0 and Java 1.4.0_01
on Windows operating systems machines. We translated the simple and naive TCP
protocol, SN-TCP, from the C version of the previous chapter without the echoing
feature. Al the protocols were implemented using the same version of Java. The Nagle
algorithm was disabled in some variations of T-RTP, UT-RTP-ND, TU-RTP-ND, and
SN-TCP-ND by seting the TCP_NODELAY socket option to true. The Nagle algorithm
was enabled in some variations of T-RTP, UT-RTP-NE, TU-RTP-NE, and SN-TCP-NE
 40
by seting the TCP_NODELAY socket option to false. Table 3-5 ilustrates the various
Nagle disabled/enabled relationships for T-RTP.
T-RTP Protocol Control Data
TNDTND-RTP ND ND
TNETND-RTP NE ND
TNDTNE-RTP ND NE
TNETNE-RTP NE NE
Table 3-B-3 T-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle
Enabled

Client/server architecture was used. The clients were both Musical Instrument
Digital Interface (MIDI) sequencers that play and send a stream of MIDI short mesage
to the server to be played. Since we are disabling the Nagle algorithm a relatively short
byte stream was sent from client to server. Each RTP and TCP MIDI short mesage
consisted of twelve bytes: a MIDI channel byte, MIDI command byte, two MIDI data
bytes, and eight bytes of information that represented the delta time in miliseconds. A
RTP or TCP packet consisted of 20 + 12 * m bytes where 20 is the number of bytes in the
TCP header and m is the number of MIDI short mesages per packet. Next are a table of
source code files and lines of code (LOC), and also a table of packet lengths.
 41

Source Code File Lines of Code
RTPMIDIClient.java (T-RTP) 599
RTPMIDIServer.java (T-RTP) 344
RTPMIDIClient.java (UT-RTP) 643
RTPMIDIServer.java (UT-RTP) 372
RTPMIDIClient.java (TU-RTP) 643
RTPMIDIServer.java (TU-RTP) 372
RTPMIDIClient.java (U-RTP) 336
RTPMIDIServer.java (U-RTP) 401
TCPMIDIClient.java 400
TCPMIDIServer.java 247
Total 4357
Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U}
and Y = {T, U}

M 20 + 12 * M
1 32
2 44
3 56
4 68
Table 3-B-5 RTP and TCP Number of MIDI Short Mesages and Packet Lengths in
Bytes

Some of the experiments were caried out over a period of days betwen March
14, 2004 and March 28, 2004 and the other experiments were caried out over a period of
days betwen October 10, 20003 and October 13, 2003. It is to be hoped that the Internet
was relatively stable during the time frame of the experiments. The following tables show
the value of m, the starting time and date, ending time and date of the sixty trials per
 42
experiment, and the actual number of hours. One standard MIDI files was used:
Trippygaia1.mid a MIDI type 0 file.
M Starting Time/Date Ending Time/Date Actual Hours
1 10/10/2003 05:09 PM EDT 10/10/2003 07:16 PM EDT 2.1157
2 10/11/2003 08:05 AM EDT 10/11/2003 10:12 AM EDT 2.1160
3 10/12/2003 10:14 PM EDT 10/12/2003 12:21 PM EDT 2.1205
4 10/13/2003 07:12 AM EDT 10/13/2003 09:19 AM EDT 2.1216
Totals 8.4738
Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours
1 10/10/2003 02:42 PM EDT 10/10/2003 04:49 PM EDT 2.1245
2 10/11/2003 01:04 PM EDT 10/11/2003 03:11 PM EDT 2.1259
3 10/12/2003 02:51 PM EDT 10/12/2003 04:58 PM EDT 2.1214
4 10/13/2003 11:42 AM EDT 10/13/2003 01:49 PM EDT 2.1204
Totals 8.4922
Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours
1 10/10/2003 08:52 PM EDT 10/10/2003 10:59 PM EDT 2.1197
2 10/11/2003 10:16 AM EDT 10/11/2003 12:23 PM EDT 2.1158
3 10/12/2003 12:39 PM EDT 10/12/2003 02:46 PM EDT 2.1170
4 10/13/2003 09:22 AM EDT 10/13/2003 11:29 AM EDT 2.1178
Totals 8.4703
Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours
 43

M Starting Time/Date Ending Time/Date Actual Hours
1 10/10/2003 12:18 PM EDT 10/10/2003 02:25 PM EDT 2.1249
2 10/11/2003 03:20 PM EDT 10/11/2003 05:27 PM EDT 2.1214
3 10/12/2003 05:01 PM EDT 10/12/2003 07:08 PM EDT 2.1270
4 10/13/2003 02:03 PM EDT 10/13/2003 04:10 PM EDT 2.1237
Totals 8.4970

Table 3-B-9 Trippygaia1.mid SN-TCP-NE Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours
1 03/14/2004 04:49 PM EST 03/14/2004 06:30 PM EST 1.6789
2 03/15/2004 01:01 AM EST 03/15/2004 02:45 AM EST 1.6797
3 03/15/2004 12:21 PM EST 03/15/2004 02:02 PM EST 1.6761
4 03/16/2004 10:14 AM EST 03/16/2004 11:55 AM EST 1.6747
Totals 6.7094
Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours
1 03/25/2004 01:49 PM EST 03/25/2004 01:49 PM EST 1.6738
2 03/28/2004 02:28 PM EST 03/28/2004 02:28 PM EST 1.6790
3 03/28/2004 04:14 PM EST 03/28/2004 04:14 PM EST 1.6748
4 03/28/2004 06:37 PM EST 03/28/2004 06:37 PM EST 1.6788
Totals 6.7064
Table 3-B-11 Trippygaia1.mid TNETND-RTP Actual Runtime Hours
 44

M Starting Time/Date Ending Time/Date Actual Hours
1 03/24/2004 01:44 PM EST 03/24/2004 03:25 PM EST 1.6759
2 03/24/2004 03:46 PM EST 03/24/2004 05:27 PM EST 1.6762
3 03/24/2004 05:30 PM EST 03/24/2004 07:11 PM EST 1.6762
4 03/25/2004 09:03 AM EST 03/25/2004 10:44 AM EST 1.6756
Totals 6.7039
Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours
1 03/21/2004 04:55 PM EST 03/21/2004 06:36 PM EST 1.6790
2 03/22/2004 01:29 PM EST 03/22/2004 03:10 PM EST 1.6759
3 03/22/2004 03:36 PM EST 03/22/2004 05:17 PM EST 1.6761
4 03/22/2004 05:25 PM EST 03/22/2004 07:06 PM EST 1.6767
Totals 6.7077
Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours

The same client and server setup mentioned previously was utilized in the
experiments covered in this section. There are two hundred and twenty four tables
appended to this disertation, namely, one hundred and twelve pairs of tables based on
the hundred and twelve separate experiments can be found in Appendix J. The first table
in a pair has the protocol, one of TNDTND-RTP, TNETND-RTP, TNDTNE-RTP,
TNETNE-RTP, UT-RTP-ND, UT-RTP-NE, SN-TCP-ND or SN-TCP-NE, the number of
trials, N, which is always sixty, the standard deviations, and the standard eror means.
The second table in a pair has the means diference, the standard deviation of the means
diference, the standard eror mean of the means diference, the Student?s t-statistic,
(Protocol 1mean ? Protocol 2 mean) / standard eror mean of the means diference, the
 45
degres of fredom, DF, which are always N ? 1 that equals 59, and the two-tailed
significance of the t-statistic. A two-tailed significance of ? 0.05 means that one of the
protocols outperformed the other statisticaly speaking. The beter of the two protocols is
determined by the sign of the t-statistic: - indicates that first protocol wins and + means
that the second protocol wins.
We do not report any experimental results with TU-RTP and U-RTP since these
protocols were so unreliable that they failed in every atempted experiment. We also
created a hybrid protocol betwen U-RTP and the Young and Fujinaga (YF) protocol of
chapter 6 and this protocol (YF/U-RTP) also failed for choices of the number of copies
of each datagram transmited equal one, two, and four. By failure, we mean at least one
datagram was lost.
The following tables distil the information from the two hundred twenty four
tables mentioned above. The numbers in the row and column headings stand for a
protocol such as 1=TNDTND-RTP. The other leters have the following meanings:
N=Not applicable, D=Does not count, 0=row and column protocols are statisticaly
equivalent, row protocol is statisticaly beter than column protocol if <= -0.05, and
column protocol is statisticaly superior to row protocol <= +0.05.
 46

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N 0.08 0.42 -0.91 0.2 -0.49 D D D 0.84 -0.30
TNETND-RTP 2 N -0.03 -0.01 -0.83 -0.04 D D D -0.03 -0.00
TNDTNE-RTP 3 N -0.29 0.06 -0.10 D D D -0.19 -0.00
TNETNE-RTP 4 N 0.12 -0.46 D D D 0.79 -0.22
UT-RTP-ND 5 N -0.04 D D D -0.04 -0.00
UT-RTP-NE 6 N D D D 0.29 -0.92
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D
U-RTP 9 N D D
SN-TCP-ND 10 N -0.04
SN-TCP-NE 11 N
Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N 0.32 0.68 0.46 0.32 -0.51 D D D 0.29 -0.98
TNETND-RTP 2 N 0.53 0.49 0.32 -0.42 D D D 0.28 -0.86
TNDTNE-RTP 3 N 0.04 0.11 -0.09 D D D 0.00 -0.00
TNETNE-RTP 4 N 0.18 -0.08 D D D 0.00 -0.00
UT-RTP-ND 5 N -0.04 D D D 0.90 -0.00
UT-RTP-NE 6 N D D D 0.03 0.34
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D
U-RTP 9 N D D
SN-TCP-ND 10 N -0.00
SN-TCP-NE 11 N
Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance
 47

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N 0.47 -0.96 0.99 -0.45 -0.06 D D D 0.69 -0.08
TNETND-RTP 2 N -0.00 -0.00 -0.20 -0.00 D D D -0.00 -0.04
TNDTNE-RTP 3 N 0.66 -0.40 -0.00 D D D 0.00 -0.07
TNETNE-RTP 4 N -0.38 -0.00 D D D 0.01 -0.07
UT-RTP-ND 5 N -0.79 D D D 0.27 -0.01
UT-RTP-NE 6 N D D D 0.00 -0.27
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D
U-RTP 9 N D D
SN-TCP-ND 10 N -0.04
SN-TCP-NE 11 N
Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N -0.31 -0.70 -0.02 -0.14 -0.00 D D D -0.08 -0.02
TNETND-RTP 2 N 0.05 0.53 -0.83 -0.99 D D D 0.52 -0.52
TNDTNE-RTP 3 N -0.50 -0.33 -0.20 D D D 0.84 -0.11
TNETNE-RTP 4 N -0.40 -0.03 D D D 0.62 -0.10
UT-RTP-ND 5 N 0.76 D D D 0.32 -0.67
UT-RTP-NE 6 N D D D 0.00 -0.30
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D
U-RTP 9 N D D
SN-TCP-ND 10 N -0.07
SN-TCP-NE 11 N
Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance

C. ATCP and ATCP-TCP Protocols
The motivation for developing more protocols is to atempt to find reliable
protocols, which with certain choices of the parameters can beat SN-TCP as far as the
critical variable runtime at server, is concerned. This author developed a new protocol
caled the Almost TCP (ATCP) protocol, which can be characterized as a stop and wait
and selective repeat quasi-transport level protocol. It uses the User Datagram Protocol
 48
(UDP) as its oficial transport level protocol. ATCP gets its name from being very close
in performance to TCP for the MIDI over IP application. ATCP does share some other
similarities with TCP such as they both use acknowledgments, sliding windows with
advertisements, are both reliable and deliver data in the order transmited, and both use
Jacobson?s algorithm for computing the acknowledgment timeout (se Computer
Networks Third Edition by Andrew S. Tanenbaum page 541 for a good description of
Jacobson?s algorithm and TCP in general). ATCP sends a stream of UDP data-grams that
ultimately consists of a byte stream. TCP transmits a stream of IP-packets that in the final
analysis is a byte stream. An ATCP sequence number refers to a given UDP datagram,
whereas a TCP acknowledgment and sequence number refer to a single byte in the
transmision byte stream. ATCP uses a datagram buffer size (window) advertisement that
is equivalent to the number of data-grams betwen acknowledgments. The current
version uses a fixed number of data-grams betwen acknowledgments which we wil
designate by x and cal the protocol ATCP-x where currently 1 ? x ? 40. The MIDI short
mesage and datagram format are given in Figure 3-C-1 and Figure 3-C-2.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Chanel | Comand | Data1 | Data2 |
+-+
| Delta Time (MIDI Ticks))
+-+
| MIDI Short Mesage |
+-+

Figure 3-C-1 ATCP-x MIDI Short Mesage Format
 49

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| DBS | DC | EOS | Status |
+-+
| Sequence Number |
+-+
| Sequence Number Mask High |
+-+
| Sequence Number Mask Low |
+-+
| Time Stamp High |
+-+
| Time Stamp Low |
+-+
| MIDI Short Mesage 1 |
+-+
| |
+-+
| |
+-+
| MIDI Short Mesage 2 |
+-+
| |
+-+
| |
+-+
| ? |
+-+
| Final MIDI Short Mesage |
+-+
| |
+-+
| |
+-+

Figure 3-C-2 ATCP-x Datagram Format

Figure 10-2 requires further elaboration. DBS is the Data Buffer Size, which is an integer
in the range 1 to 64. DC is the Datagram Count, which tels the server how many data-
grams the client is curently bufering, e. g. the total number of data-grams the server
should receive. EOS is the End of Stream flag that is 0 if not end of file and 1 to indicate
the end of the file. Status is an enumeration that represents a data datagram or
acknowledgement datagram or a negative acknowledgement datagram. The MIDI short
mesage is the same as Figure 3-C-1.
In some preliminary experiments we used a variation of the protocol that utilized
a variable number of data-grams betwen acknowledgments with a slow start algorithm
 50
and exponential back-off mechanism, somewhat similar to TCP and TCP?s congestion
window mechanism. However, this variant was later abandoned in favor of a simpler and
eror fre version. The protocol sends x data-grams then waits for an acknowledgment or
a timeout period to expire. If the timeout period expires up to n negative
acknowledgments are sent before the protocol signals failure and terminates. For now the
value of n is sixten. The timeout period is variable (dynamic) and is calculated by
Jacobson?s algorithm that is based on the round-trip times. ATCP-x also uses a bit vector
or bit mask that is named by us the sequence number mask which tels which data-grams
have been received by the receiver. Suppose the curent datagram buffer size is 32 and
the receiver did not receive data-grams 2 and 4 then the sequence number mask would be
as follows in binary and then hex: 11010111111111111111111111111111 (base 2) =
D7FFFF (base 16). The datagram count returned to the receiver along the sequence
number mask would be equal to 30. A significant way that ATCP-x difers from TCP is
that ATCP-x is asymmetric and has a strict sender and receiver relationship. TCP can
piggyback data to the original sender on each acknowledgment, so that the receiver can
also function as a sender. Another way that ATCP-x and TCP can be diferentiated is that
ATCP-x is esentialy a connectionles protocol like the underlying UDP protocol.
However, TCP is a connection-oriented protocol.
ATCP-x was implemented in Java using Java version 1.4.0_01. The fundamental
data objects in the program were MyATCPShortMesage and ATCPacket. The former
data object encapsulated the data structure in Figure 3-C-1 and the later data object was
an implementation of the data structure in Figure 3-C-2. MyATCPShortMesage has two
constructors a default constructor and a constructor that alows initialization of al the
 51
data fields, geters for al the data fields, a getBytes method, and a fromBytes method. The
getBytes was used to convert a MyATCPShortMesage object into a byte stream and the
fromBytes was utilized to convert a byte stream to a MyATCPShortMesage object.
ATCPacket has two constructors one that has an integer parameter that is m, the number
of MIDI short mesages per ATCPacket, and another for fully populating the packet
with al its data members. ATCPacket has geters and seters for al its data fields. It also
has the getBytes and fromBytes methods.
We used two threads in both the client and the server. One thread was a producer
of MIDI short mesages and the other was a consumer of MIDI short mesages. A MIDI
short mesage vector was shared by both threads so synchronized code blocks had to be
used to read or write to the vector, which was, in reality, a first-in first-out (FIFO) queue.
In the server the networking thread was the producer of the MIDI short mesages and the
player thread was the consumer. Contrary to the server case, the sequencer was the
producer in the client and the networking thread was the client?s consumer. One or more
active sensing MIDI short mesages were used as the end of file indicator or sentinel flag
mesage. An active sensing mesage in the MIDI world is somewhat analogous to a no
operation op-code in the universe of computer asembly languages. We used busy ? slep
loops in the networking threads and the player thread. The more elegant Java object
notification was later implemented. Each datagram or packet contained m MIDI short
mesages where 1 ? m ? 16. Below is a table of the ATCP-x source code files and the
lines of code.
 52

Source Code File Lines of Code
ATCPMIDIClient.java 519
ATCPMIDIServer.java 543
Total 1062
Table 3-C-1 ATCP-x Source Code Files and Lines of Code

Fiften experiments of sixty trials per experiment were caried over the period
from November 2 to November 10, 2003. The next thre tables contain the value of m
used in the experiment and the ending time of the experiment for each of the thre
protocols ATCP-32, SN-TCP-ND, and SN-TCP-NE. One standard MIDI type 0 file named
Trippygaia1.mid was used through out the experiments. Remember that a standard MIDI
type 0 file consists of a single track. The same experimental setup of clients and servers
were used in this report as those reported in the pervious chapters. We again give the
starting and ending times of the experiments, and the actual runtimes in hours remind the
reader that the Internet is typicaly thought of as being diurnal with peak times betwen
9:00 AM and 12:00 PM and 7:00 PM and 10:00 PM.
M Starting Date/Time Ending Date/Time Actual Runtime
4 11/09/2003 10:35 AM 11/09/2003 12:42 PM 2.1167
5 11/09/2003 12:52 PM 11/09/2003 02:59 PM 2.1167
6 11/09/2003 05:25 PM 11/09/2003 07:31 PM 2.1000
7 11/10/2003 10:34 AM 11/10/2003 12:40 PM 2.1000
8 11/10/2003 12:49 PM 11/10/2003 02:55 PM 2.1000
Totals 10.5334
Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File
 53

M Starting Date/Time Ending Date/Time Actual Runtime
4 11/02/2003 05:59 PM 11/02/2003 08:06 PM 2.1167
5 11/03/2003 11:28 AM 11/03/2003 01:35 PM 2.1167
6 11/04/2003 10:46 AM 11/04/2003 12:53 PM 2.1167
7 11/06/2003 10:59 AM 11/06/2003 01:06 PM 2.1167
8 11/08/2003 02:39 PM 11/08/2003 04:46 PM 2.1167
Totals 10.5835
Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

M Starting Date/Time Ending Date/Time Actual Runtime
4 11/02/2003 08:18 PM 11/02/2003 10:25 PM 2.1167
5 11/03/2003 01:44 PM 11/03/2003 03:51 PM 2.1167
6 11/04/2003 01:08 PM 11/04/2003 03:15 PM 2.1167
7 11/06/2003 02:56 PM 11/06/2003 05:03 PM 2.1167
8 11/08/2003 05:05 PM 11/08/2003 07:12 PM 2.1167
Totals 10.5835
Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

Appended to this disertation are thirty tables and fiften graphs in Appendix K
that cover the ATCP-32 experiments. We compared ATCP-32 to SN-TCP-ND and SN-
TCP-NE, and SN-TCP-ND to SN-TCP-NE. We found that in the m = 6 and 8 cases that
ATCP statisticaly outperformed SN-TCP-ND and that in the m = 6, 7, and 8 cases was
the statistical winner versus SN-TCP-NE. In al the other cases the protocols were
statisticaly equivalent. ATCP-x does not perform that wel against SN-TCP for values of
m les the thre or equal 3.
 54

M Starting Date/Time Ending Date/Time Actual Runtime
4 11/15/2003 12:13 PM 11/15/2003 02:20 PM 2.1167
5 11/15/2003 02:26 PM 11/15/2003 04:32 PM 2.1000
6 11/16/2003 03:22 PM 11/16/2003 05:28 PM 2.1000
7 11/19/2003 01:24 PM 11/19/2003 03:30 PM 2.1000
8 11/19/2003 03:34 PM 11/19/2003 05:40 PM 2.1000
Totals 10.5167
Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

Table 3-C-5 displays the facts that the ATCP-40 experiments were conducted
from November 15, 2003 to November 19, 2003. There are thirty tables and fiften
graphs for the ATCP-40 results in Appendix L. We compare ATCP-40 to SN-TCP-ND,
SN-TCP-NE, and ATCP-32. ATCP-40 statisticaly beat SN-TCP-ND in the m = 5 and m =
8 cases, and SN-TCP-NE in the m = 5, 6, 7, and 8 cases. ATCP-40 and ATCP-32
statisticaly tied in al cases.
Figure 3-C-4 shows a statistical significance versus m graph for ATCP-40 versus
SN-TCP-ND and ATCP-40 versus SN-TCP-NE. The results for ATCP-40 versus ATCP-32
are not shown due to the fact that they tied and there is a sign reversal in one of the means
diferences and the graph would not be consistent.
The ATCP-TCP protocol is a multiply threaded version of SN-TCP using the
ATCP notion of MIDI producer and consumer threads. There are two variations of ATCP-
TCP, namely, ATCP-TCP-ND and ATCP-TCP-NE with the now usual ND standing for
Nagle algorithm disabled and NE standing for the Nagle algorithm enabled. Again we
used busy ? slep loops rather than the more elegant object notification or event-handling
 55
scheme of Java for the same reasons as in the ATCP-x case. Table 3-C-6 shows the
source code files for ATCP-TCP.
Source Code File Lines of Code
TCPMIDIClient.java 458
TCPMIDIServer.java 457
Total 915
Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code

M Starting Date/Time Ending Date/Time Actual Runtime
5 11/22/2003 01:45 PM EST 11/22/2003 03:51 PM EST 2.1000
6 11/24/2003 07:17 AM EST 11/24/2003 09:23 AM EST 2.1000
7 12/01/2003 10:53 AM EST 12/01/2003 12:59 PM EST 2.1000
8 12/02/2003 11:57 AM EST 12/02/2003 02:03 PM EST 2.1000
Totals 8.4000
Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File

M Starting Date/Time Ending Date/Time Actual Runtime
5 12/07/2003 12:38 PM EST 12/07/2003 03:44 PM EST 2.1000
6 12/08/2003 10:41 AM EST 12/08/2003 01:47 PM EST 2.1000
7 12/13/2003 03:59 PM EST 12/13/2003 06:05 PM EST 2.1000
8 12/21/2003 11:57 AM EST 12/21/2003 02:03 PM EST 2.1000
Totals 8.4000
Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File

Table 3-C-7 and Table 3-C-8 show the ATCP-TCP experiments as being over
time period beginning on November 22, 2003 and ending on December 21, 2003. In
Appendix M are thirty-two tables and sixten graphs of the ATCP-TCP-ND experiments.
 56
ATCP-TCP-ND statisticaly outperformed SN-TCP-ND and SN-TCP-NE in al of the
experimental cases m = 5, 6, 7, and 8. ATCP-TCP-ND was the statistical winner over
ATCP-32 and ATCP-40 in the m = 7 and 8 instances. From these results we can conclude
that a multiply threaded TCP protocol is to be prefered to any of the previously
discussed protocols. These results sem to vindicate the notion of MIDI short mesage
consumer and producer threads.
There are forty tables and twenty graphs related to the ATCP-TCP-NE
experiments in Appendix N. ATCP-TCP-NE was victorious over SN-TCP-ND in the m =
7 case and SN-TCP-NE in al four cases, namely, m = 5, 6, 7, and 8. ATCP-TCP-NE
outperformed ATCP-40 in the m = 6 case. ATCP-TCP-ND was the statistical winner over
ATCP-TCP-NE in the last case m = 8. The preceding results are displayed in Tables 3-C-
9 to 3-C-13.
Protocol/Protocol 1 2 3 4 5 6
1-ATCP-32 N 0.34 N N -0.95 -0.26
2-ATCP-40 N N N -0.53 -0.08
3-ATCP-TCP-ND N N N N
4-ATCP-TCP-NE N N N
5-SN-TCP-ND N -0.07
6-SN-TCP-NE N
Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 4
 57

Protocol/Protocol 1 2 3 4 5 6
1-ATCP-32 N 0.36 0.34 0.29 -0.91 -0.54
2-ATCP-40 N 0.73 0.32 -0.00 -0.00
3-ATCP-TCP-ND N 0.33 -0.00 -0.00
4-ATCP-TCP-NE N -0.06 -0.02
5-SN-TCP-ND N -0.07
6-SN-TCP-NE N
Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 5

Protocol/Protocol 1 2 3 4 5 6
1-ATCP-32 N -0.18 -0.36 -0.33 -0.00 -0.00
2-ATCP-40 N 0.20 0.04 -0.74 -0.00
3-ATCP-TCP-ND N 0.55 -0.00 -0.00
4-ATCP-TCP-NE N -0.19 -0.00
5-SN-TCP-ND N -0.07
6-SN-TCP-NE N
Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 6

Protocol/Protocol 1 2 3 4 5 6
1-ATCP-32 N -0.30 0.04 0.15 -0.06 -0.00
2-ATCP-40 N 0.00 0.08 -0.01 -0.00
3-ATCP-TCP-ND N -0.55 -0.00 -0.00
4-ATCP-TCP-NE N -0.02 -0.00
5-SN-TCP-ND N -0.53
6-SN-TCP-NE N
Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 7
 58

Protocol/Protocol 1 2 3 4 5 6
1-ATCP-32 N -0.33 0.00 -0.72 -0.01 -0.00
2-ATCP-40 N 0.00 0.83 -0.00 -0.00
3-ATCP-TCP-ND N -0.00 -0.00 -0.00
4-ATCP-TCP-NE N -0.14 -0.03
5-SN-TCP-ND N -0.62
6-SN-TCP-NE N
Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 8

For this chapter 1,977 lines of Java code were writen and 59 hours and one minute
of network time was utilized to perform the necesary ilustrated experiments. Again this
does not count the network time used in debugging the implementations.
D. A First Approximation at a Collaboration System
A Java client/server for the CW system was built early in the research and
subsequently discarded. This section describes the system. Figure 3-D-1 shows the
opening dialog box of the client. The user must first register a username. The server
checks to se if this username is currently unused and if it is unused a mesage box
appears stating the username is valid then the user must specify a pasword, a UDP port
number (0 ? 65535), and a musical instrument.
After the registration proces is completed, four studio room frames, a chat frame,
and a musician?s frame appear as in Figure 3-D-2. There are thre forms of chat:
broadcast, multicast, and unicast. Broadcasted chat goes to al musicians regardles of
their studio room location, multicasted chat goes to a single studio room, and unicasted
chat goes to a single musician. The studio room frames have a ?911? button and an
 59
?Enter? button. The ?911? button is to turn al MIDI notes off in case of a stuck note. The
?Enter? button alows a musician to enter the given studio room.
After a musician enters a studio room the client appears as shown in Figure 3-D-3.
Only the particular studio room frame, the chat frame, and the musicians-frame are open
in the figure. The studio room frame has thre buttons ?Exit?, ?Piano?, and ?Send?. The
?Exit? button causes the musician to exit the current studio room and the state of the
client is returned to the state shown in Figure 3-D-2. The ?Piano? button causes a host
and port dialog to appear and after selecting a host and port a piano keyboard appears.
This alows the user to send piano notes to another musician in the same studio room.
Figure 3-D-4 shows a studio room frame after the ?Piano? button has been presed.
Figure 3-D-5 shows a studio room after the ?Send? button has been presed and after the
host and port dialog. The figure shows a standard Java file chooser dialog from which the
user can open, play, and transmit a MIDI file using the built-in MIDI sequencer.
The client/server system consists of the following Java source code files:
Central.java 372 LOC, Client.java 1259 LOC, ClientFrameInterface.java 8 LOC, and
RommFrameInterface.java 3 LOC for a grand total of 1642 LOC.
 60

Figure 3-D-1 Musician Registration Dialog

Figure 3-D-2 Music Studio (House) Metaphor Client

 61

Figure 3-D-3 Music Studio after a Musician Has Entered a Room

Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input

 62

Figure 3-D-5 Standard Java Open File Dialog

E. Java and JINI Client/Server Duet System
JINI is the Java based service discovery specification that was developed in the late
1990s by Sun Microsystems which was described briefly in Chapter 2. We used JINI to
lookup the hostname and port of the duet system central server. This particular duet
system consisted of two peers that communicate with one another and the central server.
The central server relays peer IP addreses and server port numbers to interested peers.
This system is very close to the Windows version of the final duet system, but has some
latency saving change such as not using a virtual keyboard.
 63
F. Another Musical Duet System Failure
In this section we tried to develop another musical duet collaboration-system. The
software engineering decisions required in creating a viable MIDI over IP musical duet
system are as follows:
1. Choosing a network MIDI over IP protocol
2. Choosing an implementation programing language
3. Choosing the operating system(s) to be used
4. Choosing the MIDI interface hardware
5. Choosing the computer platform(s).
We used a series of quantitative experiments to automaticaly decide betwen several
diferent MIDI over IP protocols. These protocols are described in another paper and
consisted of TCP based RTP protocols, a simple and na?ve TCP protocol, and a
multithreaded TCP protocol [9]. Our MIDI over IP protocol is a multithreaded variation
of TCP that utilizes MIDI short mesage producer and consumer threads. This protocol
was found to be superior to the single thread TCP protocol and TCP based RTP protocols
using two metrics performance that we considered useful.
We basicaly had two programing languages to choose from, namely, C and
Java. Java became a logical choice with the advent of Java 1.5.0, which supports MIDI
input on the PC platform. The programing language choice was more dificult and les
straightforward than the quantitative protocol experiments. We could have used C+ also
as a compromise betwen C and Java. In theory, C code should have the least amount of
latency of the thre previously mentioned programing languages. In order to determine
the implementation programing language with an aceptable latency, we first
 64
approached the problem with stripped down versions of the software that did not involve
networking. We figured that if the local latency was unaceptable then there was no need
to add networking to the equation. We found that both C and Java versions satisfied the
local latency criterion using several diferent operating systems and hardware platforms.
The next step was to add networking.
The operating systems that were available to us were Windows 98, Windows XP,
and Mac OS X. We also had aces to Sun Solaris 9 operating system; however, due to
the lack of MIDI input hardware for Sun Solaris 9, that operating system was ruled out of
the game. The MIDI subsystem of the audio system of OS X uses high priority kernel
threads to execute the MIDI calback functions, which are very desirable low latency
characteristics of OS X.
In the world of desktops and workstations there are esentialy two predominant
MIDI architectures: the MIDI subsystem devised by Apple for OS X and the much older
and perhaps more mature Windows 95 multimedia system which has been enhanced
several times in its decade long existence. First we start our discussion with the OS X
MIDI subsystem. This subsystem uses client/server architecture. The first layer is the I/O
toolkit of the kernel then the MIDI drivers then the MIDI server and clients, and finaly
the application. The subsystem has MIDI clients, MIDI sources, and MIDI destinations;
MIDI input ports, and MIDI output ports. An application creates a MIDI client then it can
add a MIDI input and/or output port. The MIDI input port cals back the application
every time MIDI data is input into the port. MIDI data is encapsulated in a MIDI packet
that has a length, timestamp, and the actual MIDI data bytes. MIDI packets are placed in
a list structure that consists of one or more MIDI packets. Now onto the Microsoft MIDI
 65
subsystem, which has MIDI input and output devices that have certain wel defined
capabilities. You open a MIDI input and/or output device then start the device, transmit
or receive data; and then stop and close the device. This very simple architecture alows
for either window or function cal back entities. The fundamental unit of the MIDI
transfer under Windows 9x+ is a double word, which can encapsulate al MIDI short
mesages and even system exclusive mesages.
On the Windows 98 and Windows XP machines we had a choice of either using a
MIDI to game port sound card adapter or a MIDI-Audio MIDI-Sport 2x2 MIDI to USB
interface. On the OS X machines we were forced to use the MIDI-Audio MIDI-Sport 2x2
MIDI to USB interfaces only. Using qualitative tests, we found that either of the
interfaces had satisfactory latency on a Windows OS machine.
The computing platforms available to us were two Del computers at the primary
researcher?s house, some laptops, some older Pentium 3 systems, and two G4 dual
procesor PowerMacs. One Del computer was a 450 MHz Pentium 2 system with 128
MB of RAM, 12 GB hard-drive, and a Turtle Beach Montego sound card that ran
Windows 98. The other Del computer was a 2.26 GHz Pentium 4 with 512 MB of RAM,
80 GB hard-drive, and Turtle Beach Santa Cruz DSP sound card that ran Windows XP
Home Edition.
We have isolated a number of sources of latency in MIDI over IP. Delays
originate in the MIDI controller, the MIDI to computer interface, scheduling delays in the
MIDI kernel of the operating system, programing language latency, sound card latency,
network propagation, and sound propagation latency to the listener?s ear. By carefully
 66
choosing hardware, software, and the network most of these sources of latency can be
kept to aceptable minimums.
The MIDI hardware configuration on al machines is shown in Figure 3-F-1. The
MIDI data emanates from a MIDI controller such as a guitar synthesizer, MIDI keyboard,
or MIDI wind controller. Then the data goes into a MIDI/USB converter via a MIDI
input port into the computer through the MIDI kernel of the operating system, out a MIDI
output port on the MIDI/USB converter into a tone generator, and finaly via an audio
connection into a set of amplified speakers or an amplifier.
The software proces or thread architecture for the duet system is shown in Figure
3-F-2. Each of the six central boxes represents a heavyweight thread (UNIX proces) in
the user addres space and the outermost boxes are the MIDI kernel threads of OS X. The
figure shows two peers communicating by TCP/IP. The MIDI data flow is from the MIDI
main proces which is responsible for creating a MIDI client and MIDI input and output
ports, and connecting the MIDI input port to a MIDI source into the MIDI kernel and
vice versa. Also a MIDI destination is selected is by the MIDI main proces. The MIDI
data flows from the MIDI kernel into MIDI send TCP proces and over the wire to a
peer?s MIDI receive TCP proces. We used lightweight user space threads under
Windows and heavyweight threads (proceses) under Mac OS X.
We developed a number of Java and C prototypes of the system on the Windows
platform. On this platform we included a central server to take care of registration of the
peers in the peer-to-peer network. This way a musician could utilize another musician?s
system wide username to find a duet partner. Two of the prototypes, one in Java, and the
other using a Java native method writen in C utilized the JINI 1.0 specification to handle
 67
the job the central server discovery. This made it unnecesary for the end-user to type the
central server?s hostname or IP addres and port number into the program. JINI is a
service discovery protocol that is wel suited for use on a communication network for
finding local services. The central server concept was also used for chating betwen the
duet musician pairs.
The Windows software had a graphical user interface that consisted of a virtual
piano keyboard that showed the local and remote notes being played and also had a
useful feature to show the instruments being played by a MIDI sequence. Each MIDI
channel had its own color. The virtual keyboard could also be used as a ?virtual? MIDI
controller by selecting a menu item. The current software on the PowerMac platform is
purely command line driven, however, this situation wil be remedied in the near future.
We performed quantitative experiments using a statisticaly smal sample space of
ten experimental instances per two MIDI sequences to be transmited to determine the
time required for the sequences to be played localy on the destination machine or over a
LAN on the destination machine. Table 3-F-1 shows the time in seconds required to play
the MIDI sequences on the destination machine with no networking involved. Table 3-F-
2 shows the playing time at the destination for two MIDI sequences over a LAN that
involved the Windows 98 machine above as the destination (receiver) and the Windows
XP from above as the source (sender). A MIDI standard format 0 file is a sequence,
which consists of one track, whereas a MIDI standard format 1 file consists of one or
more tracks to be played simultaneously. In each case the sequence required more time to
play over the LAN than localy which is to be expected due to network latency.
 68

Sequence MIN AVG MAX STD
Format 0 66.7 66.8 67.3 0.2
Format 1 89.0 89.2 90.0 0.4
Table 3-F-1 MIDI Sequence Playing Time Localy

Sequence MIN AVG MAX STD
Format 0 67.2 67.4 67.4 0.1
Format 1 89.3 89.4 89.5 0.1
Table 3-F-2 MIDI Sequence Playing Time on a LAN

Figure 3-F-1 MIDI Hardware Configuration
 69

Figure 3-F-2 MIDI Software Configurations
 70

CHAPTER 4 RTP AND TCP PROTOCOLS
A. Introduction
In this chapter we discus the succesful quantitative study of RTP and TCP
protocols. Al of our MOIP protocols utilized TCP as the underlying transport layer
protocol due to the intolerance of MIDI for lost or out-of-order data. This inability to
handle unreliable data delivery is due to the fact that a lost or out-of-order MIDI short
mesage can have a catastrophic efect on a remote performance. Suppose the MIDI short
mesage that turns off a certain note is lost then that note wil sound indefinitely, and it is
dificult for a musician to turn off a stuck note. The same situation can occur if the MIDI
short mesage to turn a note off arives before the MIDI short-mesage to turn the note
on. We chose to use TCP rather than the newer reliable transport protocol the Stream
Control Transport Protocol (SCTP) since TCP is ubiquitous and SCTP is just gaining
aceptance [11]. A unique design feature of the Java Media Framework, which is a set of
Java interfaces and objects that alow a Java application or applet to read or write
streaming media such as audio or video using RTP, afords a choice of the underlying
transport protocol for the JMF RTP implementation.
As was stated earlier RTP has two information channels available: one for control
and one for data. Since there are two transport layer protocols that are readily available to
the JMF version of RTP, namely, TCP and UDP, and there are two communication
 71
channels in RTP, then there are four combinations of transport layer protocol and
channels as shown in Table 4-1.
Control Channel Data Channel
1 UDP UDP
2 UDP TCP
3 TCP UDP
4 TCP TCP
Table 4-A-1 Channel and Transport Layer Protocols for RTP

From a preliminary set of experiments, we were able to eliminate 1 and 3 due to
unreliability. Also, we have two states of the Nagle algorithm: either it was enabled or
disabled. We nicknamed our 6 RTP based protocols UT-RTP-ND, UT-RTP-NE, T-
RTP-NDND, T-RTP-NDNE, T-RTP-NEND, and T-RTP-NENE, where the prefix
UT meant UDP control channel and TCP data channel and ND stood for Nagle disabled
whereas NE denoted that the Nagle algorithm was enabled. The baseline protocol was a
vanila variation of TCP, which we chose to cal simple and na?ve TCP, e.g. SN-TCP-ND
and SN-TCP-NE. In addition another branch of the TCP tre of protocols was used which
we refer to as MIDI producer and consumer thread TCP, e.g. PC-TCP-ND and PC-TCP-
NE. PC-TCP is multithreaded and thus is able to play a MIDI command localy
concurrently with possibly sending the command over the network. This means that our
experimental protocol basis set consisted of 10 protocols.
The data structure that was transmited and received by the protocols consisted of
a MIDI short mesage and a delta-time in miliseconds. The MIDI short mesage was
 72
composed of a channel byte, a command byte, and two data bytes. The delta-time was a
Java long, which is 8 bytes or 64 bits in length. There was m of these data structures per
packet where m was 1, 2, 3, or 4. The following figure ilustrates the preceding data
structure.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Chanel | Comand | Data1 | Data2 |
+-+
| Delta-Time Hi (Miliseconds) |
+-+
| Delta-Time Lo (Miliseconds) |
+-+

Figure 4-A-1 MIDI Short Mesage Format and Delta-Time

There are two diferent strategies that can be used as far as the delta-times that a
sender reports are concerned. Either the delta-times can be initialized to zero, in which
case we cal this dishonesty or lying delta-time policy, or the true delta-time betwen
MIDI short mesages is specified, and this sort of policy is caled the honesty delta-time
policy.
B. Experimental Procedure
Using the 10 protocols of the previous section, we utilized two networks and
conducted 60 experiments per network per protocol per value of m (which you wil recal
was the number of MIDI short mesages per packet). We used m = 1, 2, 3, and 4. So this
meant we performed 2 * 10 * 60 * 4 = 4800 experimental instances. After consulting
with a statistician, we decided to use a statisticaly large number of experiments [47]. In
this set of experiments we utilized the dishonesty delta-time policy of the previous
section.
 73
The networks we used were a LAN and a WAN with a dialup link and an
asymmetric digital subscriber line (ADSL) leg. The computers that formed the LAN and
WAN were only a few fet apart in a residence, the WAN formed approximately 150
miles in wired distance. Both endpoints of the connections were Del computers. The
dialup computer was a Windows 98 machine with a 450 MHz Pentium 2 procesor, 128
MB of RAM, and Turtle Beach Montego sound card. The other computer was a Windows
XP Home Edition box with a 2.26 GHz Pentium 4 procesor, 512 MB RAM, and Turtle
Beach Santa Cruz DSP sound card. The dialup baud rate was a constant 31.2 kbps
throughout the experiments.
We were interested in acumulating two metrics to measure the performance of
each protocol. The first and easiest to understand metric was the time required to play a
MIDI format 0 file, which had been sequenced and transmited over the Internet, on the
destination host. A MIDI (format 0) file consists of a single track, whereas the other
common MIDI (format 1) file has one or more tracks, which are to be played
simultaneously. We want these numbers to be close to the time required to play the
sequence on the destination host without any networking. These measurements gave a
rough approximation of the overal network latency. The second metric is more dificult
to interpret and was rough measurement of the jiter on the networks. This metric
involved gathering the inter-departure and inter-arival times then calculating a simple
function based on the absolute diference in the inter-departure time minus the inter-
arival time divided by the inter-departure time. The temporal relationships betwen the
inter-departure and inter-arival times are ilustrated in Figure 4-B-1.
 74
 Sender Receiver
 Packet
i-1
 Packet
i
 Packet
i-1
 Packet
i

 ID
i
 Time IA
i

Figure 4-B-1 Inter-Departure Time and Inter-Arival Time Temporal Relationships

The function we used for the jiter measurement is as shown in Equation (1):
(1)
iiii
IDIAd/||100!"=
Where the index, i, runs from 2 to the number of packets. The inter-departure times and
inter-arival times are defined by Equations (2) and (3):
1
)3(
2
!
=
iii
AI
DID

In Equations (2) and (3), D
i
 is the departure time of the ith packet and A
i
 is the arival
time of the ith packet and the indices are the same as in Equation (1).
C. Experimental Results
As was previously mentioned the number of experimental instances was 4800.
We were able to distil this data into 2 * (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) * 4 = 2 * 45 *
4 = 360 graphs of mean runtime at destination paired comparison, and 2 * 10 * 4 = 80
graphs of the Equation (1). We also generated Student?s paired means t-test data using a
significance level of 5% which have been reduced to 4 tables per network, one table for
each value of m. Figures 4-C-1 to 4-C-4 display histograms of the mean run time at the
 75
destination for PC-TCP-ND (black) and SN-TCP-ND (red) on the WAN. The x-axis has
the experiment number which runs from 1 to 60 and y-axis is the runtime at the
destination in miliseconds. PC-TCP-ND statisticaly outperformed SN-TCP-ND in each
of the 4 cases.
Graphs of al the experiments involving Equation (1) are to be found in Appendix
A and Appendix C for the LAN and WAN, respectively. The corresponding paired
comparison graphs are found in Appendix B and Appendix D for the LAN and WAN,
respectively. The paired comparison statistical data is to found in Appendix E and
Appendix F for the LAN and WAN, respectively.

Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1

 76

Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2

Figure 4-C-3 PC-TCP-ND VS SN-TCP-ND m = 3
 77

Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4

Table 4-C-1 to 4-C-4 show the paired means Student?s t-test signs of the t-
statistics and significances for the 10 protocols on the LAN. These tables were generated
from the statistical data in Appendix E. The sign is determined from the sign of the t-
statistic. If the absolute value of the combined sign of the t-statistic and the significance is
les than or equal 0.05 then one of the protocols in a row and column outperformed the
other. If the combined sign of the t-statistic and the significance is negative and has an
absolute value les than or equal 0.05 then the row protocol statisticaly outperformed the
column protocol. On the other hand, if the combined sign of the t-statistic and the
significance is positive and les than or equal 0.05 then the column protocol statisticaly
did beter than the row protocol. The protocol names have been shortened to create row
and column labels as follows: NDND = T-RTP-NDND, NEND = T-RTP-NEND,
 78
NDNE = T-RTP-NDNE, NENE = T-RTP-NENE, UTND = UT-RTP-ND, UTNE =
UT-RTP-NE, PCND = PC-TCP-ND, PCNE = PC-TCP-NE, SND = SN-TCP-ND and
SNE = SN-TCP-NE.
Looking at UTND row and the PC-TCP-NE column, we find a combined sign of
the t-statistic and the significance of 0.002, which means that PC-TCP-NE statisticaly
won the batle over UT-TCP-ND. Now look at the NENE column in the same row and
the combined sign of the t-statistic and the significance is -0.164, which means that the
two protocols were statisticaly equivalent. From the tables it is apparent that PC-TCP-
ND and PC-TCP-NE were statisticaly the best protocols. What is surprising is that for m
= 2 and m = 3 is that PC-TCP-NE beat PC-TCP-ND statisticaly.

Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1

 P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.22 0.169 0.075 0.46 0.05 0.00 0.00 0.269 0.274
NEND 0.22 - 0.032 0.020 -0.493 0.00 0.00 0.00 0.30 0.303
NDNE -0.169 -0.032 - 0.812 0.438 0.107 0.00 0.00 -0.239 -0.24
NENE -0.075 -0.020 -0.812 - -0.43 0.25 0.00 0.00 -0.23 -0.239
UTND -0.46 0.493 -0.438 0.43 - 0.407 0.00 0.00 0.950 -0.967
UTNE -0.05 -0.00 -0.107 -0.25 -0.407 - 0.00 0.00 -0.208 -0.215
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - 0.26 -0.00 -0.00
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.26 - -0.00 -0.00
SND -0.269 -0.30 0.239 0.23 -0.950 0.208 0.00 0.00 - -0.456
SNE -0.274 -0.303 0.24 0.239 0.967 0.215 0.00 0.00 0.456 -
Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.673 -0.306 -0.28 0.049 -0.367 0.00 0.00 0.491 0.462
NEND 0.673 - -0.315 -0.307 0.083 -0.376 0.00 0.01 0.514 0.476
NDNE 0.306 0.315 - 0.325 0.23 -0.986 0.00 0.00 0.187 0.062
NENE 0.28 0.307 -0.325 - 0.164 -0.432 0.00 0.00 0.00 -0.848
UTND -0.075 -0.083 -0.23 -0.164 - -0.292 0.00 0.02 -0.303 -0.37
UTNE -0.049 0.376 0.986 0.432 0.292 - 0.00 0.00 0.294 0.24
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.00 -0.00 -0.00
PCNE -0.00 -0.01 -0.00 -0.00 -0.02 -0.00 0.00 - -0.00 -0.00
SND -0.491 -0.514 -0.187 -0.00 0.303 0.294 0.00 0.00 - -0.421
SNE -0.462 -0.476 -0.062 0.848 0.37 -0.24 0.00 0.00 0.421 -
 79
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.673 -0.497 0.395 0.49 0.257 0.04 0.00 0.501 0.472
NEND 0.673 - -0.324 0.304 0.160 0.176 0.00 0.00 0.132 0.397
NDNE 0.497 0.324 - 0.312 0.241 0.242 0.00 0.00 0.509 0.362
NENE -0.395 -0.304 -0.312 - -0.942 0.081 0.03 0.00 -0.247 -0.475
UTND -0.49 -0.160 -0.241 -0.942 - 0.267 0.00 0.00 -0.149 -0.864
UTNE -0.257 -0.176 -0.242 -0.081 -0.267 - 0.02 0.00 -0.161 -0.192
PCND - 0.04 -0.00 -0.00 - 0.03 -0.00 -0.02 - 0.385 -0.00 -0.00
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.385 - -0.00 -0.00
SND -0.501 -0.132 -0.509 0.247 0.149 0.161 0.00 0.00 - 0.313
SNE -0.472 -0.397 -0.362 0.475 0.864 0.192 0.00 0.00 -0.313 -
Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.096 -0.315 -0.454 -0.517 0.00 0.00 0.00 0.02 0.01
NEND 0.096 - -0.329 0.240 -0.612 0.00 0.00 0.00 0.052 -0.038
NDNE 0.315 0.329 - 0.321 0.403 0.247 0.00 0.05 0.346 0.362
NENE 0.454 -0.240 -0.321 - -0.56 0.00 0.00 0.00 -0.06 -0.04
UTND -0.517 0.612 -0.403 0.56 - 0.173 0.00 0.00 0.718 0.728
UTNE -0.00 -0.00 -0.247 -0.00 -0.173 - 0.00 0.00 -0.00 -0.00
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.00 -0.00 -0.00
PCNE -0.00 -0.00 -0.05 -0.00 -0.00 -0.00 0.00 - -0.00 -0.00
SND -0.02 -0.052 -0.346 0.06 -0.718 0.00 0.00 0.00 - -0.813
SNE -0.01 0.038 -0.362 0.04 -0.728 0.00 0.00 0.00 0.813 -

Table 4-C-4 Combined Sign of t-Statistic and Statistical Significance m = 4

 The tables Table 4-C-5 to Table 4-C-8 display WAN statistical significances,
which are analogous as far as interpretation goes with the LAN values in Tables 2 to 5.,
and were compiled from the data in Appendix F. Please note that in the WAN case that
PC-TCP-ND outperforms al of the other protocols except for PC-TCP-NE in every m
case.
 80

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - 0.31 -0.016 -0.237 -0.172 0.28 0.00 0.00 -0.136 -0.209
NEND -0.31 - -0.21 -0.273 -0.23 -0.69 0.00 0.00 -0.263 -0.280
NDNE 0.016 0.21 - -0.369 -0.280 0.19 0.00 0.00 -0.980 -0.74
NENE 0.237 0.273 0.369 - -0.736 0.261 0.00 0.00 0.296 0.262
UTND 0.172 0.23 0.280 0.736 - 0.210 0.00 0.00 0.21 0.202
UTNE -0.28 0.69 -0.19 -0.261 -0.210 - 0.00 0.00 -0.24 -0.262
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.08 -0.00 -0.00
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.08 - -0.00 -0.00
SND 0.136 0.263 0.980 -0.296 -0.21 0.24 0.00 0.00 - -0.575
SNE 0.209 0.280 0.74 -0.264 -0.202 0.262 0.00 0.00 0.575 -
Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.936 -0.930 -0.36 0.269 0.524 0.00 0.034 -0.74 -0.48
NEND 0.936 - 0.975 -0.103 0.319 0.539 0.00 0.00 -0.658 -0.047
NDNE 0.930 0.975 - -0.35 0.00 0.06 0.00 0.024 -0.753 -0.46
NENE 0.36 0.103 0.35 - 0.175 0.235 0.00 0.00 0.268 0.179
UTND -0.269 -0.319 -0.00 -0.175 - -0.00 0.00 0.060 -0.540 -0.175
UTNE -0.524 -0.539 -0.06 -0.235 0.00 - 0.00 0.042 -0.620 -0.26
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.129 -0.00 -0.00
PCNE -0.034 -0.00 -0.024 -0.00 -0.060 -0.042 0.129 - -0.00 -0.00
SND 0.74 0.658 0.753 -0.268 -0.540 0.620 0.00 0.00 - -0.943
SNE 0.48 0.047 0.46 -0.179 0.175 0.26 0.00 0.00 0.943 -
Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.651 -0.489 0.593 0.138 0.282 0.00 0.00 0.595 0.38
NEND 0.651 - -0.04 0.503 0.29 0.376 0.00 0.00 0.490 0.424
NDNE 0.489 0.04 - 0.354 0.18 0.249 0.00 0.00 0.349 0.28
NENE -0.593 -0.503 -0.354 - 0.00 0.00 0.00 0.00 0.856 0.00
UTND -0.138 -0.29 -0.18 -0.00 - -0.00 0.00 0.00 0.209 -0.00
UTNE -0.282 -0.376 -0.249 -0.00 0.00 - 0.00 0.00 -0.521 -0.05
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.28 -0.00 -0.00
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.28 - -0.00 -0.00
SND -0.595 -0.490 -0.349 -0.856 -0.209 0.521 0.00 0.00 - 0.749
SNE -0.38 -0.424 -0.28 -0.00 0.00 0.05 0.00 0.00 -0.749 -
Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3
 81

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE
NDND - -0.514 -0.02 -0.142 -0.141 -0.203 0.00 0.00 -0.712 -0.092
NEND 0.514 - -0.012 -0.196 -0.204 -0.00 0.00 0.00 -0.858 -0.175
NDNE 0.02 0.012 - -0.289 -0.37 0.053 0.00 0.00 0.490 -0.406
NENE 0.142 0.196 0.289 - 0.365 0.29 0.00 0.00 0.05 0.23
UTND 0.141 0.204 0.37 -0.365 - 0.247 0.00 0.00 0.01 0.34
UTNE 0.203 0.00 -0.053 -0.29 -0.247 - 0.00 0.00 -0.983 -0.238
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.16 -0.00 -0.00
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.16 - -0.00 -0.00
SND 0.712 0.858 -0.490 -0.05 -0.01 0.983 0.00 0.00 - -0.00
SNE 0.092 0.175 0.406 -0.23 -0.34 0.238 0.00 0.00 0.00 -
Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4

 Figures 4-C-5 to 4-C-8 show graphs of Equation (1) on the LAN. We believe that
the peak at 105% is the most significant feature of the histograms. The smaler this
indicative bar then the beter the protocol is with respect to transmiting a MIDI sequence
over the network. Figure 4-C-9 has a thre dimensional representation of the data that
was used to create Figure 4-C-5.

Figure 4-C-5 PC-TCP-ND m = 1
 82

Figure 4-C-6 PC-TCP-ND m = 2

Figure 4-C-7 PC-TCP-ND m = 3
 83

Figure 4-C-8 PC-TCP-ND m = 4

1
1
2
2
3
3
4
4
5
5
6
S1
S31
0
10
20
30
40
50
60
Percent
Experiment
Bucket
LAN PC-TCP-ND m = 1
50-60
40-50
30-40
20-30
10-20
0-10

Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1

C. Musical Duet System
 In the initial stages of the development of a musical duet collaboration system, we
wanted to use Java as the implementation programing language; however, it was
thought that the language had too much inherent latency. Java 1.5.0 does support both
 84
MIDI input and output on al platforms, but the Apple version of Java 1.5.0 won?t be
released until the OS X Tiger becomes available in spring 2005. Our target platforms for
the duet system were both Windows and OS X with ANSI C being a common language
of the operating systems. ANSI C is probably lowest latency higher-level language
available on both platforms since Windows and OS X extensively use C APIs.
 We built a duet system on Windows, which had some common elements as the
RMCP system of Goto et al. mentioned earlier. Both systems had a virtual piano
keyboard for displaying keys being played or for mouse input of notes. Our display also
showed the general MIDI instruments being utilized by each MIDI channel. Similarly we
designed a non-GUI duet system for the OS X system. The Windows system used
lightweight threads, whereas the OS X system went with heavyweight threads
(proceses). Both the Windows and OS X systems were peer-to-peer in nature instead of
the clasical client/server architecture.
The Windows system initial dialog is shown in Figure 4-C-10 and in Figure 4-C-11 is the
main window.
 85

Figure 4-C-10 Duet System Initial Dialog

Figure 4-C-11 Duet System Main Window
 86
 We isolated a number of sources of latency in our duet systems, namely, MIDI
input, programing language, operating system, network, sound card, and speakers. By
carefully choosing the hardware and software the delays could be made aceptable.
The hardware configuration of the duet system consisted of five major
components: computer, MIDI controller, MIDI-to-USB converter, tone generator, and
speakers. We used thre diferent types of MIDI controllers: Yamaha CBX-K2 keyboard
controller, Roland GR-33 guitar synthesizer and Roland-ready Fender Stratocaster guitar,
and a Yamaha WX5 wind controller. Of the thre controllers utilized the keyboard
controller semed to have the most aceptable latency. On the Windows platform we
tried to types of MIDI input, the direct MIDI-to-soundcard cable and the MIDI-to-USB
converted. Both of these input methods appeared to be the same to us in terms of delay.
Only MIDI-to-USB input was available for OS X. The hardware configuration is
ilustrated in Figure 4-C-12.

 Speakers Tone Generator USB-to-MIDI MIDI Controller

Figure 4-C-12 Duet System Hardware Configurations

 The software configuration is specified in Figure 4-C-13. As has been said the
networking architecture is peer- to-peer rather than the clasical client/server paradigm.
 87
Each peer consists of thre proceses or threads: MIDI receive, MIDI main, and MIDI
send. The MIDI main entity is responsible for MIDI input and output via the MIDI-to-
USB converter. The MIDI receive proces or thread blocks until a packet is received then
it dispatches the MIDI data in the packet to the MIDI main proces or thread to be played.
The MIDI send proces or thread is responsible for transmiting MIDI data that from the
MIDI main proces or thread to the Internet.
 Per 1 Per 2
 MIDI Send MIDI Receive

 MIDI Receive MIDI Send
 Per 1 Per 2

Figure 4-C-13 Duet System Software Configurations
 88

CHAPTER 5 MUSICAL DUET SYSTEM

Many of you may have heard the old adage that in the real estate industry
everything is ?location, location, location?, wel in our case we substitute latency for
location. We wanted to reduce the sources of latency as much as possible. As we have
stated previously paper the sources of latency in this particular application area are: MIDI
input and output stream latency, the hardware and software computer delays, network
delays, and the latency in going from the computer speakers to listener?s ears. Our
primary concern was to minimize latency.
 The application evolved through many diferent versions from a monolithic
program to an application that consists of a fair number of implementation modules that
are discussed in the next section.
 The Apple Carbon based MIDI duet application consists of the source code files
shown in Table 5-1. Internaly, the modules are prety sparingly documented, so the
number of lines of code (LOC) per module is prety acurately portrayed in the second
column of Table 5-1. The complete application has a modest total of about thre thousand
LOC.
 89

Source File Lines
Apple.h 22
Apple.c 318
Duet.h 117
Duet.c 628
Globals.h 108
Glabals.c 103
Main.c 527
IDI.h 21
MIDI.c 732
NavFunctions.h 14
NavFunctions.c 107
TCPNetwork.h 16
TCPNetwork.c 324
Total 3037
Table 5-1. Source Code Files and Lines of Code

 The graphical user interface (GUI) elements utilized by the application are: alerts,
check boxes, combination (combo) boxes, edit boxes, menus, popup buttons, push
buttons, radio buttons, and windows. The main window is displayed in Figure 7-1. The
window has a total of seventen GUI elements with an estimated number of states equal
to 2^4 * 2^3 * 2^2 * 2^2 * 2^1 * 2^1 * 2^3 * 2^3 * 2^3 * 2^1 * 2^1 = 2^24 = 16,777,216
not counting the edit box states. Obviously, this far too many states to exhaustively test
by hand so it would be realy nice to have some testing mechanism comparable to the
Palm Operating System (OS) Gremlins for testing the interface.
 The main window has check boxes for controlling the delta-time policy, which is
either the honesty policy or lying policy, enabling the Nagle algorithm, local playing of a
MIDI sequence, and muting of the audio system. The number of MIDI short mesages
per TCP packet is controlled by a popup button and defaults to one MIDI short mesage
per packet. The peer and my ports default to TCP port number 5000. The peer host name
 90
or Internet Protocol (IP) addres is entered via an edit box. Popup butons also alow the
user to choose the MIDI input and output devices. The channel map and virtual keyboard
window opening functions are implemented using check boxes. Fly over hints and their
voice naration are controlled utilizing a check box whose default state is no fly over
hints. The channel map and virtual keyboard windows are shown is Figures 5-2 and 5-3.
The channel map window alows each local MIDI channel to be mapped to the same or
diferent remote channel, which alows a duet to be played without the collision of local
and remote MIDI short mesages.

Figure 5-1 Main Windows

 91

Figure 5-2 Virtual Keyboard

Figure 5-3 Channel Map Windows
 92

 Returning to the software, the Apple module has code for seting the text of an
edit box, geting the text of an edit box, beginning and ending an open or save dialog, etc.
The duet module has the definitions of many of structures used by the application and the
ancilary window creation and handling functions. The Globals module has definitions
and external references to al the global variables used by the application. The main
module creates the main window and handles the main window?s GUI elements events.
The MIDI unit has the MIDI reading procedures for sequences and non-sequences. It also
has the basic functions for seting up and initializing the MIDI handling procedures. The
NavFunctions module has the navigation functions for the open and save navigation
dialogs. The TCPNetwork program unit has the TCP server thread code and the client
related TCP packet handing code.
 The basic architecture of the MIDI duet application is a peer-to-peer design (P2P)
that utilizes a client and server part in each of the two connected peers. This is ilustrated
in Figure 5-4.

Figure 5-4 Per-to-Per Duet Architecture
 93

CHAPTER 6 CONCLUSIONS

A. Chapter 2 Conclusions
The prior MOIP research was mainly an exploration of the existing protocol design
space to find an efective and suitable candidate protocol. Early atempts were focused on
UDP then TCP and later RTP. This research esentialy followed the same line of
protocol succesion as the prior research. The previous studies made no atempt to
quantitatively compare existing MOIP protocols. This neglect of an experimentaly sound
basis for choosing one MOIP protocol over another MOIP protocol semed to be a
glaring defect, and an area to be covered by this research.
Not al researchers before the current scientists came to the conclusion that a succesful
MOIP protocol must be, by the very nature of MIDI, a reliable protocol. A number of
atempts were aimed at utilizing fundamentaly unreliable protocols such as UDP and
RTP. In these researchers? opinions such eforts using protocols that do not guarante in
order delivery of packets are doomed to failure.
B. Chapter 3 Conclusions
The first atempt at creating a new and viable MOIP protocol by this research team was
a miserable failure, however, we did learn a good leson from this endeavor, namely, that
UDP is not a suitable base protocol for the MOIP application without making extreme
modifications to UDP. We also tried to utilize Young and Fujinaga?s notion of adding
 94
packet redundancy to UDP, but this fix was also unsuccesful by the experimental criteria
that we were using.
A later protocol which went by the nickname ATCP which designated an Almost TCP
like protocol semed to fare somewhat beter than our first flawed and unreliable
protocol, but this protocol was later discovered to be fundamentaly unusable for the
musical duet application. In subsequent work this protocol disappeared from the mix of
protocols being used experimentaly.
The primordial eforts to create a musical duet system in Java were aborted due to the
apparent language latency and the fact that at the time, the only way to perform MIDI
input was to write native code. With the advent of Java 1.5 this glaring deficiency in the
Java MIDI package was corrected. We then renewed our atempts to use Java as a basic
MOIP language, but this time we were hampered by machines which were just too slow
for the application. As we wil se in the Chapter 5 conclusions this problem of relatively
slow procesors has been somewhat mitigated by currently available hardware.
The last proposed and implemented duet system introduced in this chapter represents a
proof concept and is not intended to be a production system. Before an utilizable
commercial product can be created more research into the isues of hardware, software,
and network requirements is indicated. Also, work needs to be done on creating beter
user interfaces for the system with acompanying human user experimentation. Our
research sems to indicate that Java involves a litle too much inherent language latency
to be used presently in this application area. Native or near native languages such as C
sem to perform beter as far as language latency is concerned. The system outlined
above could be generalized to more performers than a musical duet. The extension to
 95
trios, quartets, or ensembles is fairly straightforward. The musical duet performance
system of this paper ofers another way for musicians to collaborate in real-time, and
unlike streaming audio the bandwidth requirements are not that great
C. Chapter 4 Conclusions
The overwhelming conclusion to come from this chapter was the fact that using the
Java Media Framework (JMF), one could design and implement reliable RTP protocols
using TCP as the transport protocol. The idea of using a reliable protocol at the RTP
transport layer was not in itself novel, but in the MOIP area of research this notion had
not been previously used. These RTP based protocols in many ways performed as wel as
the vanila TCP protocols.
We devised two metrics for measuring the performance of the test suite of ten MOIP
protocols which were: the runtime of a MIDI sequence on the destination host, and a
metric which tended to correspond to amount of jiter in a protocol. We then used a
statisticaly larger number of experiments to determine the best protocol in the test suite
based on the previously mentioned empirical measurements. It was found that on a pair
of heterogeneous Windows platforms that the producer and consumer multithreaded TCP
protocol was the most eficient MOIP protocol.
D. Chapter 5 Conclusions
The primary result to be drawn from this chapter is that for consistently transmiting
MIDI data over a network, a reliable transport layer protocol should be used. As was
stated multiple times in this paper, MIDI is very sensitive to lost or out-of-order data,
unlike audio or video transmisions which can aford to lose some data. We found that
utilizing UDP for transport was, in general cases, a bad idea due to stuck notes. A simple
 96
argument shows that the dishonesty delta-time policy is preferable to the honesty delta-
time policy for m = 1 in performing a musical duet. However, in the general m cases and
for the transmision of MIDI sequences over a network, the honesty delta-time policy
should probably be used. We wil investigate the eficacy of the honesty delta-time policy
in future research.
We implemented the musical duet performance system of this chapter on two diferent
operating systems, namely, Windows and OS X using the C language. The system
appeared to have a lower latency on the OS X system; however, this could be due to the
fact that our Windows machines did not have the fastest x86 procesors currently
available.
E. Overall Conclusions
The overal conclusions to be drawn from this research is that the creation of high
performance MIDI over IP protocols is a very dificult problem, and the design and
implementation of a viable musical duet system using a MIDI over IP protocol is an
extremely chalenging software engineering task. As machines and the Internet
infrastructure improve in terms of speed and bandwidth then the latencies mentioned
earlier that are asociated with MIDI over IP may disappear altogether. In this section we
wil addres the overal conclusions that were derived from both of the endeavors cited
imediately above in this paragraph.
New networking protocols are by the nature of the problem hard to develop and
properly implement. Typicaly, finite state machines for both the sender and receiver are
designed and implemented in some real computer language or in a simulator-type script.
An alternative design strategy is the use of a Petri net. The networking protocol must be
 97
fre of deadlocks, live-locks, and improper terminations [48]. A usable musical duet
system poses several problems such as having a low overal latency and proper
synchronization. The latency isues were addresed as best as possible with the available
software and hardware by careful design choices. Duet synchronization was performed
using a simple metronome count up subsystem.
 98
REFERENCES
[1] M. Boom, Music Through MIDI, Microsoft Pres, Redmond, Washington, 1987.
[2] J. Rothstein, MIDI: A Comprehensive Introduction, second edition, A-R Editions, Madison, Wisconsin, 195.
[3] P. D. Lehrman and T. Tuly, Midi for the Profesional, Amsco Publications, New York, New York, 193.
[4] J. Rona, The MIDI Companion, Hal Leonard Corporation, Milwauke. Wisconsin, 194.
[5] G. Hansper, htp:/crystal.apana.org.au/~ghansper/midi_introduction/midi_control_change.html, 198.
[6] J. Glat, htp:/ww.borg.com/~jglat/, 203.
[7] B. McQuer, htp:/ww.harmony-central.com/MIDI/Doc/primer.txt, 195.
[8] MIDI Manufacturers Asociation. htp:/ww.midi.org/, 203.
[9] Sun, Java Sound Programing Guide. htp:/java.sun.com/j2se/1.4/docs/guide/sound/programer_guide/contents.html, 202.
[10] Gibson Musical Instruments, MaGIC v 2.8 Enginering Specification, htp:/ww.gibsonmagic.com/agic28.pdf, 202.
[11] A. S. Tanenbaum, Computer Networks, third edition, Prentice-Hal, Sadle River, New Jersey, 196.
[12] G. Hoffman and D. More, htp:/ww.skipstone.com/compcon.html.
[13] D. More and Skipstone, htp:/ww.skipstone.com/s21st.html.
[14] G. Hoffman, htp:/ww.skipstone.com/newspap.html.
[15] Asociation of Musical Electronics Industry and the MIDI Manufacturers Asociation. htp:/ww.midi.org/about-
midi/rp27v10spec(1394).pdf.
[16] Gibson Musical Instruments, htp:/ww.gibsonmagic.com/video.html, 202.
[17] R. Merrit, E Times. htp:/ww.etimes.com/sys/news/OEG2030124S035.
[18] J. B. Postel, RFC 768, htp:/ww.freesoft.org/CIE/RFC/768/, 1980.
[19] J. B. Postel, RFC 793, htp:/ww.freesoft.org/CIE/RFC/793/, 1981.
[20] D. E. Comer, Internetworking with TCP/IP Volume I Principles, Protocols, and Architecture, third edition, Prentice-Hal,
Englewod Cliffs, New Jersey, 195.
[21] B. Quin and D. Shute, Windows Sockets Network Programing, Adison-Wesley, Reading, Masachusets, 196.
[22] R. Stevens, Unix Network Programing Volume 1 Networking APIs: Sockets and XTI, second edition, Prentice-Hal, Uper
Sadle River, New Jersey, 198.
[23] H. Schulzrine, S. Casner., R. Frederick, and V. Jacobson, htp:/ww.ietf.org/rfc/rfc189.txt, 196.
[24] Denis M. Ritchie, htp:/cm.bel-labs.com/cm/cs/who/dmr/chist.html.
[25] Leslie B. Wilson, and Robert G. Clark, Comparative Programing Languages, Adison-Wesley, Wokingham, England, 198.
[26] John Byous, htp:/java.sun.com/features/198/05/birthday.html, 198.
 99
[27] Cay S. Horstman, and Gary Cornel, Core Java Volume I ? Fundamentals, Prentice-Hal, Uper Sadle River, New Jersey,
199.
[28] Harold, Abelson, Gerald Jay Susman, and Julie Susman, Structure and Interpretation of Computer Languages, Second
Edition, The MIT Pres, Cambridge, MA, 196.
[29] Petzold, Charle, Programing Windows with C#, Microsoft Pres, Redmond, Washington, 202.
[30] Richter, Jeffrey, Aplied Microsoft .Net Framework Programing, Microsoft Pres, Redmond, Washington, 202.
[31] John W. Muchow, Core J2ME Technology and MIDP, Prentice-Hal, Uper Sadle River, New Jersey, 202.
[32] Vartan Piroumian. Wireles J2ME Platform Programing, Prentice-Hal, Uper Sadle River, New Jersey, 202.
[33] W. Keith. Edwards, Core JINI, Prentice-Hal, Uper Sadle River, New Jersey, 199.
[34] Scot, Oaks and Henry Wong, JINI in a Nutshel, O?Reily, Beijing, P.R.O.C., 200.
[35] Aple Computer, Inc. Audio and MIDI on Mac OS X.
[36] M. Goto, R. Neyama, and Y. Muroka, RCMP: Remote Music Control Protocol, Procedings of the 197 International Computer
Music Conference, ICMA, p. 46 ? 49, ww.etl.go.jp/~goto/PAPER/ICMC97.30dpi.ps, 197.
[37] J. P. Young and I. Fujinaga, ?Piano Master Clases via the Internet?, Procedings of the 199 International Computer Music
Conference, ICMA, p. 135 ? 7, htp:/ww.peabody.jhu.edu/~ich/research/icmc9/icmc9.UDP.pdf, 199.
[38] R. B. Danenberg, and P. van de Lageweg, ?A System Suporting Flexible Distributed Real-Time Music Procesing?,
Procedings of the 201 International Computer Music Conference, ICMA, p. 267 ? 270, htp:/ww-
2.cs.cmu.edu/~rbd/papers/icmc01aura.pdf, 201.
[39] J. Lazaro and J. Wawrzynek, ?A Case for Musical Network Performance?, NOSDAV?01, ACM, 201.
[40] H. Schulzrine , htp:/ww.faqs.org/rfcs/rfc1890.html, 196.
[41] Souspe htp:/hyperphysics.phyastr.gsu.edu/hbase/sound/souspe.html.
[42] Sound, Sound on Sound Magazine htp:/ww.sospubs.co.uk/sos/apr99/articles/letency.htm, 199.
[43] N. Cardwel, S. Savage, and T. Anderson, ?Modeling TCP Latency?, Infocom, p. 1742 ? 1751,
htp:/citeser.nj.nec.com/cardwel0modeling.html, 200.
[44] E. Brandt, and R. Danenberg, Low-latency Music Software Using Off-the-shelf Operating Systems, Procedings of the 198
International Computer Music Conference, ICMA, htp:/citeser.nj.nec.com/309841.html, 198.
[45] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction, second edition, Prentice Hal Europe, London, 198.
[46] X. Yin, J. Xue, and P. Stuedi, htp:/ww2.inf.ethz.ch/~stuedip/doc/SA_sctp.pdf
[47] S. Maghsodlo, private comunication, 2/13/204 1:03 AM, maghsod@eng.auburn.edu.
[48] Holzman, G. J., Design and Validation of Computer Protocols, Prentice-Hal, Englewod Cliffs, New Jersey, 191.
 100

INDEX

Appendix, 6, 8, 44, 53, 54, 55, 56, 75,
77, 79
C, v, 1, 3, 5, 8, 13, 16, 17, 19, 25, 28, 34,
37, 39, 48, 49, 50, 52, 53, 54, 55, 56,
57, 58, 63, 66, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 94, 96,
99
C+, 2, 19, 34, 63
collaboration, v, 1, 2, 3, 19, 63, 83
duet, v, 1, 3, 4, 22, 23, 25, 30, 62, 63, 66,
83, 84, 86, 88, 90, 92, 94, 96, 97
INTERNET, 1, 2, ii, v, 1, 13, 14, 20, 21,
22, 23, 25, 26, 27, 36, 38, 41, 52, 73,
87, 90, 96, 99
Java, v, 1, 3, 5, 8, 16, 17, 18, 25, 28, 30,
37, 39, 50, 51, 55, 58, 59, 62, 63, 66,
70, 72, 83, 94, 95, 98, 99
LAN, 1, 9, 21, 67, 68, 73, 77, 79, 81, 83
MIDI, 1, 2, ii, v, 1, 2, 3, 5, 6, 7, 8, 10,
11, 15, 17, 18, 19, 20, 22, 23, 24, 25,
26, 27, 30, 31, 32, 33, 34, 35, 36, 37,
39, 40, 41, 42, 48, 49, 51, 52, 53, 54,
55, 56, 59, 61, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 81, 84, 86, 87, 88,
89, 92, 93, 94, 95, 96, 98, 99
Nagle algorithm, 3, 24, 39, 40, 54, 71,
89
OS X, 2, 19, 64, 65, 66, 84, 86, 96, 99
protocols, v, 1, 2, 3, 13, 18, 21, 22, 24,
25, 30, 31, 32, 34, 35, 37, 38, 39, 45,
47, 51, 52, 53, 56, 63, 70, 71, 72, 77,
78, 79, 93, 94, 95, 96
research, v, 1, 2, 3, 5, 24, 25, 26, 30, 58,
93, 94, 95, 96, 99
TCP/IP, 1, 13, 14, 21, 66, 98
UNIX, 2, 14, 16, 6
WAN, 1, 21, 30, 36, 73, 75, 79
Windows 98, 2, 27, 35, 64, 65, 67, 73
Windows XP, 2, 35, 64, 65, 67, 73

 101

APENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS
There are forty graphs in this appendix for a local area network (LAN) that were
generated from Equation (1) in Chapter 4. There are four graphs each for al ten protocols
in the suite of MIDI over IP protocols. To reiterate the protocols are as follows: T-RTP-
NDND, T-RTP-NEND, T-RTP-NDNE, T-RTP-NENE, UT-RTP-ND, UT-RTP-NE,
PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, where ND = Nagle algorithm
disabled and NE = Nagle algorithm enabled (typicaly the default Internet seting).
 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

APENDIX B LAN PAIRED MEANS COMPARISON GRAPHS
This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the
destination host on a LAN. The number of graphs can be determined by calculating the
total number of possible pairings of the protocols as (10 * 9) / 2 = 45 and multiplying 45
by 4 to get 180, where 4 is the number of values of m, the number of MIDI short
mesages per TCP packet.
 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

 166

 167

 168

 169

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

 206

 207

 208

 209

 210

 211

 212

 213

APENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS
There are forty graphs in this apendix for a local area network (WAN) that were generated from
Equation (1) in Chapter 4. There are four graphs each for al ten protocols in the suite of MIDI over IP
protocols. To reiterate the protocols are as folows: T-RTP-NDND, T-RTP-NEND, T-RTP-NDNE,
T-RTP-NENE, UT-RTP-ND, UT-RTP-NE, PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE,
where ND = Nagle algorithm disabled and NE = Nagle algorithm enabled (typicaly the default Internet
seting).
 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

 233

 234

APENDIX D WAN PAIRED MEANS COMPARISON GRAPHS
This apendix consists of 180 graphs of the mean runtime of a MIDI sequence on the destination host on a
WAN. The number of graphs can be determined by calculating the total number of posible pairings of the
protocols as (10 * 9) / 2 = 45 and multiplying 45 by 4 to get 180, where 4 is the number of values of m, the
number of MIDI short mesages per TCP packet.
 235

 236

 237

 238

 239

 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

 286

 287

 288

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

APENDIX E LAN PAIRED MEANS COMPARISON STATISTICS
This appendix consists of tables of data that summarize the LAN paired means
Student?s t-tests. The paired means were dependent since they were measuring the same
experimental metric that is run-time of a MIDI sequence at the ultimate destination. The
first data in the tables are the values of m, the number of MIDI short mesages per TCP
packet. This value varied from 1 to 4. The next two data items are the protocol
mnemonics involved in the paired comparison. Then the measured means are given
along with their diferences. The final thre data items are the standard deviation, the
Student?s t-value, and the Student?s t-value significance. A negative t-value meant that
the first protocol (protocol #1) was potentialy the best protocol in the pair. A positive t-
value meant that the second protocol (protocol #2) was potentialy statisticaly superior to
the first protocol. If the value of the Student?s t-value significance was les than or equal
0.05 then one of the protocols statisticaly outperformed the other protocol in the pairing.
 326

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NDND T-RTP-NDNE 6967.83 67174.67 -206.83 153.3 -1.0314 0.306
2 T-RTP-NDND T-RTP-NDNE 697.50 6970.0 +7.50 41.7 +1.3909 0.1695
3 T-RTP-NDND T-RTP-NDNE 67037.17 67198.0 -160.83 1825.76 -0.6824 0.497
4 T-RTP-NDND T-RTP-NDNE 6965.0 6733.67 -368.67 2820.63 -1.0124 0.315
1 T-RTP-NDND T-RTP-NEND 6967.83 6970.83 -3.0 54.81 -0.4240 0.6731
2 T-RTP-NDND T-RTP-NEND 697.50 6984.3 -6.83 42.96 -1.2320 0.228
3 T-RTP-NDND T-RTP-NEND 67037.17 67096.67 -59.50 1087.14 -0.4239 0.6731
4 T-RTP-NDND T-RTP-NEND 6965.0 6976.3 -1.3 51.9 -1.684 0.096
1 T-RTP-NDND T-RTP-NENE 6967.83 67069.17 -101.3 732.62 -1.0714 0.284
2 T-RTP-NDND T-RTP-NENE 697.50 6968.67 +8.83 37.83 +1.8089 0.0756
3 T-RTP-NDND T-RTP-NENE 67037.17 6981.67 +5.50 502.58 +0.854 0.3958
4 T-RTP-NDND T-RTP-NENE 6965.0 6969.50 -4.50 46.34 -0.752 0.4549
1 T-RTP-NDND UT-RTP-ND 6967.83 6930.17 +37.67 145.23 +2.089 0.0491
2 T-RTP-NDND UT-RTP-ND 697.50 67093.50 -16.0 126.80 -0.7324 0.468
3 T-RTP-NDND UT-RTP-ND 67037.17 6984.0 +53.17 605.9 +0.6796 0.494
4 T-RTP-NDND UT-RTP-ND 6965.0 67018.83 -53.83 641.14 -0.6504 0.5180
1 T-RTP-NDND UT-RTP-NE 6967.83 67175.17 -207.3 1768.18 -0.9083 0.3674
2 T-RTP-NDND UT-RTP-NE 697.50 6960.83 +16.67 45.05 +2.8658 0.058
3 T-RTP-NDND UT-RTP-NE 67037.17 6959.50 +7.67 525.71 +1.144 0.2571
4 T-RTP-NDND UT-RTP-NE 6965.0 6903.83 +61.17 82.61 +5.735 0.00
1 T-RTP-NDND PC-TCP-ND 6967.83 6345.3 +62.50 101.45 +4.8149 0.00
2 T-RTP-NDND PC-TCP-ND 697.50 6395.3 +582.17 637.34 +7.0754 0.00
3 T-RTP-NDND PC-TCP-ND 67037.17 6472.17 +565.0 1479.38 +2.9583 0.04
4 T-RTP-NDND PC-TCP-ND 6965.0 6069.67 +895.3 387.3 +17.9054 0.00
1 T-RTP-NDND PC-TCP-NE 6967.83 649.83 +518.0 158.05 +3.4648 0.010
2 T-RTP-NDND PC-TCP-NE 697.50 6302.67 +674.83 70.70 +73.9370 0.00
3 T-RTP-NDND PC-TCP-NE 67037.17 6418.17 +619.0 1042.9 +4.5971 0.00
4 T-RTP-NDND PC-TCP-NE 6965.0 6293.83 +671.17 60.51 +85.9185 0.00
1 T-RTP-NDND SN-TCP-ND 6967.83 67034.67 -6.83 747.96 -0.6921 0.4916
2 T-RTP-NDND SN-TCP-ND 697.50 67089.83 -12.3 780.9 -1.141 0.2697
3 T-RTP-NDND SN-TCP-ND 67037.17 6715.67 -18.50 1358.57 -0.6756 0.5019
4 T-RTP-NDND SN-TCP-ND 6965.0 698.67 -23.67 57.9 -3.1614 0.025
1 T-RTP-NDND SN-TCP-NE 6967.83 67080.3 -12.50 178.54 -0.7394 0.4626
2 T-RTP-NDND SN-TCP-NE 697.50 67095.67 -18.17 829.07 -1.1040 0.2741
3 T-RTP-NDND SN-TCP-NE 67037.17 691.67 +45.50 487.73 +0.726 0.4728
4 T-RTP-NDND SN-TCP-NE 6965.0 6989.83 -24.83 56.49 -3.4050 0.012
1 T-RTP-NEND T-RTP-NDNE 6970.83 67174.67 -203.83 1561.21 -1.013 0.3160
2 T-RTP-NEND T-RTP-NDNE 6984.3 6970.0 +14.3 50.57 +2.195 0.0321
3 T-RTP-NEND T-RTP-NDNE 67096.67 67198.0 -101.3 789.42 -0.943 0.3241
4 T-RTP-NEND T-RTP-NDNE 6976.3 6733.67 -357.3 2815.87 -0.9830 0.3296
1 T-RTP-NEND T-RTP-NENE 6970.83 67069.17 -98.3 739.4 -1.0301 0.3072
2 T-RTP-NEND T-RTP-NENE 6984.3 6968.67 +15.67 50.90 +2.3840 0.0204
3 T-RTP-NEND T-RTP-NENE 67096.67 6981.67 +15.0 859.34 +1.036 0.3042
4 T-RTP-NEND T-RTP-NENE 6976.3 6969.50 +6.83 4.63 +1.1861 0.2403
1 T-RTP-NEND UT-RTP-ND 6970.83 6930.17 +40.67 179.02 +1.7596 0.0837
2 T-RTP-NEND UT-RTP-ND 6984.3 67093.50 -109.17 128.31 -0.684 0.4939
3 T-RTP-NEND UT-RTP-ND 67096.67 6984.0 +12.67 614.60 +1.420 0.1609
4 T-RTP-NEND UT-RTP-ND 6976.3 67018.83 -42.50 646.8 -0.5089 0.6127
1 T-RTP-NEND UT-RTP-NE 6970.83 67175.17 -204.3 176.28 -0.891 0.3765
2 T-RTP-NEND UT-RTP-NE 6984.3 6960.83 +23.50 50.58 +3.5986 0.007
3 T-RTP-NEND UT-RTP-NE 67096.67 6959.50 +137.17 77.17 +1.3671 0.1768
4 T-RTP-NEND UT-RTP-NE 6976.3 6903.83 +72.50 82.06 +6.843 0.00
1 T-RTP-NEND PC-TCP-ND 6970.83 6345.3 +625.50 1010.40 +4.7952 0.00
2 T-RTP-NEND PC-TCP-ND 6984.3 6395.3 +589.0 640.02 +7.1285 0.00
3 T-RTP-NEND PC-TCP-ND 67096.67 6472.17 +624.50 434.69 +1.1283 0.00
4 T-RTP-NEND PC-TCP-ND 6976.3 6069.67 +906.67 37.59 +18.597 0.00

 327

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NEND PC-TCP-NE 6970.83 649.83 +521.0 167.2 +3.4575 0.010
2 T-RTP-NEND PC-TCP-NE 6984.3 6302.67 +681.67 83.65 +63.128 0.00
3 T-RTP-NEND PC-TCP-NE 67096.67 6418.17 +678.50 19.40 +4.0160 0.00
4 T-RTP-NEND PC-TCP-NE 6976.3 6293.83 +682.50 73.61 +71.8151 0.00
1 T-RTP-NEND SN-TCP-ND 6970.83 67034.67 -63.83 754.24 -0.656 0.5147
2 T-RTP-NEND SN-TCP-ND 6984.3 67089.83 -105.50 782.2 -1.047 0.304
3 T-RTP-NEND SN-TCP-ND 67096.67 6715.67 -59.0 29.39 -1.5265 0.132
4 T-RTP-NEND SN-TCP-ND 6976.3 698.67 -12.3 48.38 -1.9748 0.0530
1 T-RTP-NEND SN-TCP-NE 6970.83 67080.3 -109.50 185.04 -0.7157 0.470
2 T-RTP-NEND SN-TCP-NE 6984.3 67095.67 -11.3 830.20 -1.038 0.3032
3 T-RTP-NEND SN-TCP-NE 67096.67 691.67 +105.0 953.98 +0.8526 0.3973
4 T-RTP-NEND SN-TCP-NE 6976.3 6989.83 -13.50 49.40 -2.169 0.0385
1 T-RTP-NDNE T-RTP-NENE 67174.67 67069.17 +105.50 823.50 +0.924 0.3251
2 T-RTP-NDNE T-RTP-NENE 6970.0 6968.67 +1.3 43.43 +0.2378 0.8129
3 T-RTP-NDNE T-RTP-NENE 67198.0 6981.67 +216.3 1646.41 +1.0178 0.3129
4 T-RTP-NDNE T-RTP-NENE 6733.67 6969.50 +364.17 2821.54 +0.997 0.3215
1 T-RTP-NDNE UT-RTP-ND 67174.67 6930.17 +24.50 1572.81 +1.2041 0.233
2 T-RTP-NDNE UT-RTP-ND 6970.0 67093.50 -123.50 125.79 -0.7804 0.4383
3 T-RTP-NDNE UT-RTP-ND 67198.0 6984.0 +214.0 1401.68 +1.1826 0.2417
4 T-RTP-NDNE UT-RTP-ND 6733.67 67018.83 +314.83 2897.36 +0.8417 0.4034
1 T-RTP-NDNE UT-RTP-NE 67174.67 67175.17 -0.50 21.61 -0.0175 0.9861
2 T-RTP-NDNE UT-RTP-NE 6970.0 6960.83 +9.17 43.46 +1.636 0.107
3 T-RTP-NDNE UT-RTP-NE 67198.0 6959.50 +238.50 1563.96 +1.1812 0.242
4 T-RTP-NDNE UT-RTP-NE 6733.67 6903.83 +429.83 2850.34 +1.1681 0.2475
1 T-RTP-NDNE PC-TCP-ND 67174.67 6345.3 +829.3 56.62 +1.374 0.00
2 T-RTP-NDNE PC-TCP-ND 6970.0 6395.3 +574.67 636.09 +6.980 0.00
3 T-RTP-NDNE PC-TCP-ND 67198.0 6472.17 +725.83 385.76 +14.5745 0.00
4 T-RTP-NDNE PC-TCP-ND 6733.67 6069.67 +1264.0 2817.63 +3.4749 0.010
1 T-RTP-NDNE PC-TCP-NE 67174.67 649.83 +724.83 404.72 +13.8728 0.00
2 T-RTP-NDNE PC-TCP-NE 6970.0 6302.67 +67.3 71.6 +72.134 0.00
3 T-RTP-NDNE PC-TCP-NE 67198.0 6418.17 +79.83 851.47 +7.0943 0.00
4 T-RTP-NDNE PC-TCP-NE 6733.67 6293.83 +1039.83 2819.46 +2.8568 0.059
1 T-RTP-NDNE SN-TCP-ND 67174.67 67034.67 +140.0 813.53 +1.330 0.187
2 T-RTP-NDNE SN-TCP-ND 6970.0 67089.83 -19.83 780.61 -1.1891 0.2392
3 T-RTP-NDNE SN-TCP-ND 67198.0 6715.67 +42.3 494.38 +0.63 0.5097
4 T-RTP-NDNE SN-TCP-ND 6733.67 698.67 +345.0 2817.71 +0.9484 0.3468
1 T-RTP-NDNE SN-TCP-NE 67174.67 67080.3 +94.3 385.2 +1.8968 0.0627
2 T-RTP-NDNE SN-TCP-NE 6970.0 67095.67 -125.67 828.71 -1.1746 0.249
3 T-RTP-NDNE SN-TCP-NE 67198.0 691.67 +206.3 1741.25 +0.9179 0.3624
4 T-RTP-NDNE SN-TCP-NE 6733.67 6989.83 +343.83 2817.80 +0.9452 0.3484
1 T-RTP-NENE UT-RTP-ND 67069.17 6930.17 +139.0 764.42 +1.4085 0.1642
2 T-RTP-NENE UT-RTP-ND 6968.67 67093.50 -124.83 125.45 -0.7891 0.432
3 T-RTP-NENE UT-RTP-ND 6981.67 6984.0 -2.3 250.48 -0.072 0.9427
4 T-RTP-NENE UT-RTP-ND 6969.50 67018.83 -49.3 646.20 -0.5914 0.565
1 T-RTP-NENE UT-RTP-NE 67069.17 67175.17 -106.0 1038.96 -0.7903 0.4325
2 T-RTP-NENE UT-RTP-NE 6968.67 6960.83 +7.83 49.51 +1.256 0.252
3 T-RTP-NENE UT-RTP-NE 6981.67 6959.50 +2.17 96.97 +1.706 0.0818
4 T-RTP-NENE UT-RTP-NE 6969.50 6903.83 +65.67 79.56 +6.3932 0.00
1 T-RTP-NENE PC-TCP-ND 67069.17 6345.3 +723.83 289.14 +19.391 0.00
2 T-RTP-NENE PC-TCP-ND 6968.67 6395.3 +573.3 635.81 +6.9848 0.00
3 T-RTP-NENE PC-TCP-ND 6981.67 6472.17 +509.50 1282.39 +3.075 0.032
4 T-RTP-NENE PC-TCP-ND 6969.50 6069.67 +89.83 378.01 +18.438 0.00
1 T-RTP-NENE PC-TCP-NE 67069.17 649.83 +619.3 434.97 +1.0290 0.00
2 T-RTP-NENE PC-TCP-NE 6968.67 6302.67 +66.0 70.1 +73.578 0.00
3 T-RTP-NENE PC-TCP-NE 6981.67 6418.17 +563.50 808.19 +5.408 0.00
4 T-RTP-NENE PC-TCP-NE 6969.50 6293.83 +675.67 7.45 +67.578 0.00
 328

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NENE SN-TCP-ND 67069.17 67034.67 +34.50 7.01 +3.4702 0.010
2 T-RTP-NENE SN-TCP-ND 6968.67 67089.83 -121.17 780.28 -1.2028 0.238
3 T-RTP-NENE SN-TCP-ND 6981.67 6715.67 -174.0 154.34 -1.1676 0.247
4 T-RTP-NENE SN-TCP-ND 6969.50 698.67 -19.17 52.57 -2.8241 0.065
1 T-RTP-NENE SN-TCP-NE 67069.17 67080.3 -1.17 450.30 -0.1921 0.8483
2 T-RTP-NENE SN-TCP-NE 6968.67 67095.67 -127.0 828.29 -1.187 0.2397
3 T-RTP-NENE SN-TCP-NE 6981.67 691.67 -10.0 107.86 -0.7181 0.475
4 T-RTP-NENE SN-TCP-NE 6969.50 6989.83 -20.3 52.8 -2.9784 0.042
1 UT-RTP-ND UT-RTP-NE 6930.17 67175.17 -245.0 1785.02 -1.0632 0.2920
2 UT-RTP-ND UT-RTP-NE 67093.50 6960.83 +132.67 1230.84 +0.8349 0.4071
3 UT-RTP-ND UT-RTP-NE 6984.0 6959.50 +24.50 169.59 +1.190 0.267
4 UT-RTP-ND UT-RTP-NE 67018.83 6903.83 +15.0 646.82 +1.372 0.1737
1 UT-RTP-ND PC-RTP-ND 6930.17 6345.3 +584.83 1019.30 +4.443 0.00
2 UT-RTP-ND PC-RTP-ND 67093.50 6395.3 +698.17 597.86 +9.0456 0.00
3 UT-RTP-ND PC-RTP-ND 6984.0 6472.17 +51.83 1037.4 +3.8216 0.003
4 UT-RTP-ND PC-RTP-ND 67018.83 6069.67 +949.17 720.09 +10.2101 0.00
1 UT-RTP-ND PC-RTP-NE 6930.17 649.83 +480.3 174.08 +3.1690 0.024
2 UT-RTP-ND PC-RTP-NE 67093.50 6302.67 +790.83 123.12 +4.967 0.00
3 UT-RTP-ND PC-RTP-NE 6984.0 6418.17 +565.83 564.7 +7.7606 0.00
4 UT-RTP-ND PC-RTP-NE 67018.83 6293.83 +725.0 631.80 +8.886 0.00
1 UT-RTP-ND SN-RTP-ND 6930.17 67034.67 -104.50 780.09 -1.0376 0.3037
2 UT-RTP-ND SN-RTP-ND 67093.50 67089.83 +3.67 452.15 +0.0628 0.9501
3 UT-RTP-ND SN-RTP-ND 6984.0 6715.67 -171.67 910.52 -1.4604 0.1495
4 UT-RTP-ND SN-RTP-ND 67018.83 698.67 +30.17 645.3 +0.3621 0.7186
1 UT-RTP-ND SN-RTP-NE 6930.17 67080.3 -150.17 1203.75 -0.963 0.378
2 UT-RTP-ND SN-RTP-NE 67093.50 67095.67 -2.17 405.25 -0.0414 0.9671
3 UT-RTP-ND SN-RTP-NE 6984.0 691.67 -7.67 346.18 -0.1715 0.864
4 UT-RTP-ND SN-RTP-NE 67018.83 6989.83 +29.0 642.98 +0.3494 0.7281
1 UT-RTP-NE PC-RTP-ND 67175.17 6345.3 +829.83 77.83 +8.2638 0.00
2 UT-RTP-NE PC-RTP-ND 6960.83 6395.3 +565.50 641.15 +6.8320 0.00
3 UT-RTP-NE PC-RTP-ND 6959.50 6472.17 +487.3 19.07 +3.1482 0.026
4 UT-RTP-NE PC-RTP-ND 6903.83 6069.67 +834.17 415.40 +15.547 0.00
1 UT-RTP-NE PC-RTP-NE 67175.17 649.83 +725.3 615.47 +9.1286 0.00
2 UT-RTP-NE PC-RTP-NE 6960.83 6302.67 +658.17 70.10 +72.7302 0.00
3 UT-RTP-NE PC-RTP-NE 6959.50 6418.17 +541.3 724.61 +5.7868 0.00
4 UT-RTP-NE PC-RTP-NE 6903.83 6293.83 +610.0 105.20 +4.913 0.00
1 UT-RTP-NE SN-RTP-ND 67175.17 67034.67 +140.50 1028.45 +1.0582 0.2943
2 UT-RTP-NE SN-RTP-ND 6960.83 67089.83 -129.0 786.19 -1.2710 0.2087
3 UT-RTP-NE SN-RTP-ND 6959.50 6715.67 -196.17 1072.41 -1.4169 0.1618
4 UT-RTP-NE SN-RTP-ND 6903.83 698.67 -84.83 80.24 -8.1891 0.00
1 UT-RTP-NE SN-RTP-NE 67175.17 67080.3 +94.83 598.51 +1.274 0.246
2 UT-RTP-NE SN-RTP-NE 6960.83 67095.67 -134.83 834.07 -1.252 0.2154
3 UT-RTP-NE SN-RTP-NE 6959.50 691.67 -32.17 18.94 -1.3187 0.1924
4 UT-RTP-NE SN-RTP-NE 6903.83 6989.83 -86.0 72.47 -9.1925 0.00
1 PC-TCP-ND PC-TCP-NE 6345.3 649.83 -104.50 185.76 -4.3575 0.00
2 PC-TCP-ND PC-TCP-NE 6395.3 6302.67 +92.67 639.2 +1.129 0.260
3 PC-TCP-ND PC-TCP-NE 6472.17 6418.17 +54.0 478.6 +0.8739 0.3857
4 PC-TCP-ND PC-TCP-NE 6069.67 6293.83 -24.17 393.01 -4.4182 0.00
1 PC-TCP-ND SN-RTP-ND 6345.3 67034.67 -689.3 289.01 -18.475 0.00
2 PC-TCP-ND SN-RTP-ND 6395.3 67089.83 -694.50 178.6 -30.104 0.00
3 PC-TCP-ND SN-RTP-ND 6472.17 6715.67 -683.50 169.09 -31.3103 0.00
4 PC-TCP-ND SN-RTP-ND 6069.67 698.67 -919.0 393.89 -18.0723 0.00
1 PC-TCP-ND SN-RTP-NE 6345.3 67034.67 -689.3 289.01 -18.475 0.00
2 PC-TCP-ND SN-RTP-NE 6395.3 67089.83 -694.50 178.6 -30.104 0.00
3 PC-TCP-ND SN-RTP-NE 6472.17 6715.67 -683.50 169.09 -31.3103 0.00
4 PC-TCP-ND SN-RTP-NE 6069.67 698.67 -919.0 393.89 -18.0723 0.00

 329

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 PC-TCP-NE SN-RTP-ND 649.83 67034.67 -584.83 428.70 -10.5671 0.00
2 PC-TCP-NE SN-RTP-ND 6302.67 67089.83 -787.17 790.34 -7.7149 0.00
3 PC-TCP-NE SN-RTP-ND 6418.17 6715.67 -737.50 368.06 -15.5209 0.00
4 PC-TCP-NE SN-RTP-ND 6293.83 698.67 -694.83 85.9 -62.5879 0.00
1 PC-TCP-NE SN-RTP-NE 649.83 67034.67 -584.83 428.70 -10.5671 0.00
2 PC-TCP-NE SN-RTP-NE 6302.67 67089.83 -787.17 790.34 -7.7149 0.00
3 PC-TCP-NE SN-RTP-NE 6418.17 6715.67 -737.50 368.06 -15.5209 0.00
4 PC-TCP-NE SN-RTP-NE 6293.83 698.67 -694.83 85.9 -62.5879 0.00
1 SN-TCP-ND SN-RTP-NE 67034.67 67080.3 -45.67 437.14 -0.8092 0.4217
2 SN-TCP-ND SN-RTP-NE 67089.83 67095.67 -5.83 60.23 -0.7502 0.4561
3 SN-TCP-ND SN-RTP-NE 6715.67 691.67 +164.0 1249.07 +1.0170 0.313
4 SN-TCP-ND SN-RTP-NE 698.67 6989.83 -1.17 38.09 -0.2372 0.813
 330

APENDIX F WAN PAIRED MEANS COMPARISON STATISTICS
This appendix consists of tables of data that summarize the WAN paired means
Student?s t-tests. The paired means were dependent since they were measuring the same
experimental metric that is run-time of a MIDI sequence at the ultimate destination. The
first data in the tables are the values of m, the number of MIDI short mesages per TCP
packet. This value varied from 1 to 4. The next two data items are the protocol
mnemonics involved in the paired comparison. Then the measured means are given
along with their diferences. The final thre data items are the standard deviation, the
Student?s t-value, and the Student?s t-value significance. A negative t-value meant that
the first protocol (protocol #1) was potentialy the best protocol in the pair. A positive t-
value meant that the second protocol (protocol #2) was potentialy statisticaly superior to
the first protocol. If the value of the Student?s t-value significance was les than or equal
0.05 then one of the protocols statisticaly outperformed the other protocol in the pairing.
 331

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NDND T-RTP-NDNE 67184.3 67246.67 -62.3 195.07 -2.4752 0.0162
2 T-RTP-NDND T-RTP-NDNE 67086.0 67094.67 -8.67 761.38 -0.082 0.930
3 T-RTP-NDND T-RTP-NDNE 67123.0 67292.50 -169.50 1890.02 -0.6947 0.490
4 T-RTP-NDND T-RTP-NDNE 6947.50 67107.50 -160.0 389.35 -3.1831 0.023
1 T-RTP-NDND T-RTP-NEND 67184.3 67023.3 +161.0 121.1 +1.0213 0.313
2 T-RTP-NDND T-RTP-NEND 67086.0 67098.50 -12.50 121.23 -0.079 0.936
3 T-RTP-NDND T-RTP-NEND 67123.0 67240.17 -17.17 196.8 -0.4545 0.651
4 T-RTP-NDND T-RTP-NEND 6947.50 697.50 -30.0 354.70 -0.651 0.5149
1 T-RTP-NDND T-RTP-NENE 67184.3 67356.67 -172.3 118.98 -1.1929 0.237
2 T-RTP-NDND T-RTP-NENE 67086.0 67352.0 -26.0 264.49 -0.909 0.366
3 T-RTP-NDND T-RTP-NENE 67123.0 67069.0 +54.0 79.9 +0.5363 0.5938
4 T-RTP-NDND T-RTP-NENE 6947.50 6739.3 -451.83 2356.68 -1.4851 0.1428
1 T-RTP-NDND UT-RTP-ND 67184.3 67380.83 -196.50 103.35 -1.3795 0.1729
2 T-RTP-NDND UT-RTP-ND 67086.0 697.67 +108.3 752.51 +1.151 0.2693
3 T-RTP-NDND UT-RTP-ND 67123.0 6972.67 +150.3 76.23 +1.502 0.1389
4 T-RTP-NDND UT-RTP-ND 6947.50 67317.3 -369.83 1923.86 -1.4890 0.1418
1 T-RTP-NDND UT-RTP-NE 67184.3 67030.17 +154.17 113.97 +1.0720 0.281
2 T-RTP-NDND UT-RTP-NE 67086.0 67023.83 +62.17 752.78 +0.6397 0.5249
3 T-RTP-NDND UT-RTP-NE 67123.0 67013.0 +10.0 785.6 +1.0845 0.2825
4 T-RTP-NDND UT-RTP-NE 6947.50 6707.17 -59.67 359.69 -1.2849 0.2038
1 T-RTP-NDND PC-TCP-ND 67184.3 6079.83 +104.50 1264.12 +6.7679 0.00
2 T-RTP-NDND PC-TCP-ND 67086.0 6290.83 +795.17 1561.68 +3.941 0.002
3 T-RTP-NDND PC-TCP-ND 67123.0 6127.67 +95.3 790.0 +9.7592 0.00
4 T-RTP-NDND PC-TCP-ND 6947.50 6147.67 +79.83 364.08 +17.0168 0.00
1 T-RTP-NDND PC-TCP-NE 67184.3 6162.83 +1021.50 1206.69 +6.572 0.00
2 T-RTP-NDND PC-TCP-NE 67086.0 648.67 +637.3 286.90 +2.1587 0.0350
3 T-RTP-NDND PC-TCP-NE 67123.0 6343.17 +79.83 1473.51 +4.094 0.001
4 T-RTP-NDND PC-TCP-NE 6947.50 6159.50 +78.0 354.08 +17.2386 0.00
1 T-RTP-NDND SN-TCP-ND 67184.3 67247.17 -62.83 32.18 -1.5107 0.1362
2 T-RTP-NDND SN-TCP-ND 67086.0 67219.17 -13.17 3146.71 -0.3278 0.742
3 T-RTP-NDND SN-TCP-ND 67123.0 67056.83 +6.17 960.81 +0.534 0.5957
4 T-RTP-NDND SN-TCP-ND 6947.50 6701.17 -63.67 134.28 -0.3696 0.7130
1 T-RTP-NDND SN-TCP-NE 67184.3 67256.67 -72.3 41.27 -1.2697 0.2092
2 T-RTP-NDND SN-TCP-NE 67086.0 6723.83 -147.83 164.50 -0.6963 0.4890
3 T-RTP-NDND SN-TCP-NE 67123.0 67035.50 +87.50 780.24 +0.8687 0.385
4 T-RTP-NDND SN-TCP-NE 6947.50 67205.17 -257.67 168.43 -1.7082 0.0929
1 T-RTP-NEND T-RTP-NDNE 67023.3 67246.67 -23.3 139.82 -1.2358 0.214
2 T-RTP-NEND T-RTP-NDNE 67098.50 67094.67 +3.83 962.69 +0.0308 0.975
3 T-RTP-NEND T-RTP-NDNE 67240.17 67292.50 -52.3 135.80 -2.9850 0.041
4 T-RTP-NEND T-RTP-NDNE 697.50 67107.50 -130.0 389.56 -2.5849 0.012
1 T-RTP-NEND T-RTP-NENE 67023.3 67356.67 -33.3 237.95 -1.104 0.2739
2 T-RTP-NEND T-RTP-NENE 67098.50 67352.0 -253.50 187.1 -1.6541 0.1034
3 T-RTP-NEND T-RTP-NENE 67240.17 67069.0 +171.17 1968.95 +0.6734 0.503
4 T-RTP-NEND T-RTP-NENE 697.50 6739.3 -421.83 2498.75 -1.307 0.1961
1 T-RTP-NEND UT-RTP-ND 67023.3 67380.83 -357.50 251.36 -1.230 0.236
2 T-RTP-NEND UT-RTP-ND 67098.50 697.67 +120.83 931.32 +1.050 0.3190
3 T-RTP-NEND UT-RTP-ND 67240.17 6972.67 +267.50 1978.65 +1.0472 0.293
4 T-RTP-NEND UT-RTP-ND 697.50 67317.3 -39.83 2053.35 -1.2820 0.2049
1 T-RTP-NEND UT-RTP-NE 67023.3 67030.17 -6.83 123.47 -0.4287 0.697
2 T-RTP-NEND UT-RTP-NE 67098.50 67023.83 +74.67 936.41 +0.6176 0.5392
3 T-RTP-NEND UT-RTP-NE 67240.17 67013.0 +27.17 1975.95 +0.8905 0.3768
4 T-RTP-NEND UT-RTP-NE 697.50 6707.17 -29.67 63.65 -3.6106 0.006
1 T-RTP-NEND PC-TCP-ND 67023.3 6079.83 +943.50 386.56 +18.9062 0.00
2 T-RTP-NEND PC-TCP-ND 67098.50 6290.83 +807.67 437.97 +14.2846 0.00
3 T-RTP-NEND PC-TCP-ND 67240.17 6127.67 +112.50 1969.10 +4.3763 0.00
4 T-RTP-NEND PC-TCP-ND 697.50 6147.67 +829.83 85.34 +75.3201 0.00
 332

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NEND PC-TCP-NE 67023.3 6162.83 +860.50 10.94 +6.036 0.00
2 T-RTP-NEND PC-TCP-NE 67098.50 648.67 +649.83 1217.80 +4.133 0.001
3 T-RTP-NEND PC-TCP-NE 67240.17 6343.17 +897.0 607.96 +1.4286 0.00
4 T-RTP-NEND PC-TCP-NE 697.50 6159.50 +818.0 80.69 +78.5234 0.00
1 T-RTP-NEND SN-TCP-ND 67023.3 67247.17 -23.83 1537.24 -1.1279 0.2639
2 T-RTP-NEND SN-TCP-ND 67098.50 67219.17 -120.67 2105.41 -0.439 0.6587
3 T-RTP-NEND SN-TCP-ND 67240.17 67056.83 +183.3 2046.9 +0.6937 0.4906
4 T-RTP-NEND SN-TCP-ND 697.50 6701.17 -3.67 1461.32 -0.1785 0.8590
1 T-RTP-NEND SN-TCP-NE 67023.3 67256.67 -23.3 1658.1 -1.090 0.2801
2 T-RTP-NEND SN-TCP-NE 67098.50 6723.83 -135.3 517.69 -2.0249 0.0474
3 T-RTP-NEND SN-TCP-NE 67240.17 67035.50 +204.67 1972.43 +0.8037 0.4248
4 T-RTP-NEND SN-TCP-NE 697.50 67205.17 -27.67 1284.78 -1.3726 0.1751
1 T-RTP-NDNE T-RTP-NENE 67246.67 67356.67 -10.0 942.3 -0.9042 0.3696
2 T-RTP-NDNE T-RTP-NENE 67094.67 67352.0 -257.3 2138.79 -0.9320 0.351
3 T-RTP-NDNE T-RTP-NENE 67292.50 67069.0 +23.50 1853.32 +0.9341 0.3540
4 T-RTP-NDNE T-RTP-NENE 67107.50 6739.3 -291.83 213.04 -1.0698 0.2891
1 T-RTP-NDNE UT-RTP-ND 67246.67 67380.83 -134.17 954.5 -1.087 0.2807
2 T-RTP-NDNE UT-RTP-ND 67094.67 697.67 +17.0 183.74 +4.9324 0.00
3 T-RTP-NDNE UT-RTP-ND 67292.50 6972.67 +319.83 1862.79 +1.329 0.187
4 T-RTP-NDNE UT-RTP-ND 67107.50 67317.3 -209.83 1681.19 -0.968 0.376
1 T-RTP-NDNE UT-RTP-NE 67246.67 67030.17 +216.50 1292.7 +1.2972 0.196
2 T-RTP-NDNE UT-RTP-NE 67094.67 67023.83 +70.83 195.71 +2.8035 0.068
3 T-RTP-NDNE UT-RTP-NE 67292.50 67013.0 +279.50 1860.21 +1.1638 0.2492
4 T-RTP-NDNE UT-RTP-NE 67107.50 6707.17 +10.3 393.76 +1.9737 0.0531
1 T-RTP-NDNE PC-TCP-ND 67246.67 6079.83 +16.83 1436.37 +6.2924 0.00
2 T-RTP-NDNE PC-TCP-ND 67094.67 6290.83 +803.83 1383.05 +4.5020 0.00
3 T-RTP-NDNE PC-TCP-ND 67292.50 6127.67 +164.83 1854.42 +4.865 0.00
4 T-RTP-NDNE PC-TCP-ND 67107.50 6147.67 +959.83 386.9 +19.212 0.00
1 T-RTP-NDNE PC-TCP-NE 67246.67 6162.83 +1083.83 1382.92 +6.0707 0.00
2 T-RTP-NDNE PC-TCP-NE 67094.67 648.67 +646.0 216.31 +2.309 0.024
3 T-RTP-NDNE PC-TCP-NE 67292.50 6343.17 +949.3 49.03 +14.735 0.00
4 T-RTP-NDNE PC-TCP-NE 67107.50 6159.50 +948.0 396.7 +18.5074 0.00
1 T-RTP-NDNE SN-TCP-ND 67246.67 67247.17 -0.50 159.10 -0.0243 0.9807
2 T-RTP-NDNE SN-TCP-ND 67094.67 67219.17 -124.50 3054.5 -0.3157 0.753
3 T-RTP-NDNE SN-TCP-ND 67292.50 67056.83 +235.67 1935.58 +0.9431 0.3495
4 T-RTP-NDNE SN-TCP-ND 67107.50 6701.17 +96.3 1074.85 +0.6942 0.4903
1 T-RTP-NDNE SN-TCP-NE 67246.67 67256.67 -10.0 268.64 -0.283 0.741
2 T-RTP-NDNE SN-TCP-NE 67094.67 6723.83 -139.17 1472.01 -0.7323 0.469
3 T-RTP-NDNE SN-TCP-NE 67292.50 67035.50 +257.0 1857.13 +1.0719 0.281
4 T-RTP-NDNE SN-TCP-NE 67107.50 67205.17 -97.67 904.07 -0.8368 0.4061
1 T-RTP-NENE UT-RTP-ND 67356.67 67380.83 -24.17 53.65 -0.381 0.7365
2 T-RTP-NENE UT-RTP-ND 67352.0 697.67 +374.3 216.8 +1.3697 0.1760
3 T-RTP-NENE UT-RTP-ND 67069.0 6972.67 +96.3 69.3 +10.7629 0.00
4 T-RTP-NENE UT-RTP-ND 6739.3 67317.3 +82.0 696.23 +0.9123 0.3653
1 T-RTP-NENE UT-RTP-NE 67356.67 67030.17 +326.50 230.97 +1.136 0.2615
2 T-RTP-NENE UT-RTP-NE 67352.0 67023.83 +328.17 2121.86 +1.1980 0.2357
3 T-RTP-NENE UT-RTP-NE 67069.0 67013.0 +56.0 59.69 +7.266 0.00
4 T-RTP-NENE UT-RTP-NE 6739.3 6707.17 +392.17 2502.74 +1.2138 0.297
1 T-RTP-NENE PC-TCP-ND 67356.67 6079.83 +1276.83 2352.95 +4.2034 0.00
2 T-RTP-NENE PC-TCP-ND 67352.0 6290.83 +1061.17 72.6 +10.6383 0.00
3 T-RTP-NENE PC-TCP-ND 67069.0 6127.67 +941.3 16.87 +62.388 0.00
4 T-RTP-NENE PC-TCP-ND 6739.3 6147.67 +1251.67 2491.94 +3.8907 0.003
1 T-RTP-NENE PC-TCP-NE 67356.67 6162.83 +193.83 2320.97 +3.9843 0.002
2 T-RTP-NENE PC-TCP-NE 67352.0 648.67 +903.3 138.91 +50.3706 0.00
3 T-RTP-NENE PC-TCP-NE 67069.0 6343.17 +725.83 137.48 +4.0816 0.001
4 T-RTP-NENE PC-TCP-NE 6739.3 6159.50 +1239.83 2501.61 +3.8390 0.003
 333

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 T-RTP-NENE SN-TCP-ND 67356.67 67247.17 +109.50 804.64 +1.0541 0.2961
2 T-RTP-NENE SN-TCP-ND 67352.0 67219.17 +132.83 920.86 +1.173 0.2684
3 T-RTP-NENE SN-TCP-ND 67069.0 67056.83 +12.17 518.98 +0.1816 0.8565
4 T-RTP-NENE SN-TCP-ND 6739.3 6701.17 +38.17 1040.70 +2.891 0.054
1 T-RTP-NENE SN-TCP-NE 67356.67 67256.67 +10.0 685.05 +1.1307 0.2628
2 T-RTP-NENE SN-TCP-NE 67352.0 6723.83 +18.17 673.86 +1.3583 0.1795
3 T-RTP-NENE SN-TCP-NE 67069.0 67035.50 +3.50 68.27 +3.801 0.003
4 T-RTP-NENE SN-TCP-NE 6739.3 67205.17 +194.17 1248.48 +1.2047 0.231
1 UT-RTP-ND UT-RTP-NE 67380.83 67030.17 +350.67 2147.89 +1.2646 0.210
2 UT-RTP-ND UT-RTP-NE 697.67 67023.83 -46.17 69.41 -5.1523 0.00
3 UT-RTP-ND UT-RTP-NE 6972.67 67013.0 -40.3 57.49 -5.4345 0.00
4 UT-RTP-ND UT-RTP-NE 67317.3 6707.17 +310.17 2057.85 +1.1675 0.247
1 UT-RTP-ND PC-TCP-ND 67380.83 6079.83 +1301.0 268.32 +4.427 0.00
2 UT-RTP-ND PC-TCP-ND 697.67 6290.83 +686.83 1356.09 +3.9232 0.002
3 UT-RTP-ND PC-TCP-ND 6972.67 6127.67 +845.0 11.03 +58.9524 0.00
4 UT-RTP-ND PC-TCP-ND 67317.3 6147.67 +169.67 204.74 +4.4310 0.00
1 UT-RTP-ND PC-TCP-NE 67380.83 6162.83 +1218.0 235.36 +4.206 0.00
2 UT-RTP-ND PC-TCP-NE 697.67 648.67 +529.0 2143.08 +1.9120 0.0607
3 UT-RTP-ND PC-TCP-NE 6972.67 6343.17 +629.50 1386.30 +3.5173 0.008
4 UT-RTP-ND PC-TCP-NE 67317.3 6159.50 +157.83 2053.38 +4.367 0.00
1 UT-RTP-ND SN-TCP-ND 67380.83 67247.17 +13.67 838.12 +1.2354 0.216
2 UT-RTP-ND SN-TCP-ND 697.67 67219.17 -241.50 3034.98 -0.6164 0.540
3 UT-RTP-ND SN-TCP-ND 6972.67 67056.83 -84.17 514.2 -1.2679 0.2098
4 UT-RTP-ND SN-TCP-ND 67317.3 6701.17 +306.17 724.8 +3.2716 0.018
1 UT-RTP-ND SN-TCP-NE 67380.83 67256.67 +124.17 747.10 +1.2874 0.2030
2 UT-RTP-ND SN-TCP-NE 697.67 6723.83 -256.17 146.18 -1.3721 0.1752
3 UT-RTP-ND SN-TCP-NE 6972.67 67035.50 -62.83 64.9 -7.486 0.00
4 UT-RTP-ND SN-TCP-NE 67317.3 67205.17 +12.17 892.17 +0.9739 0.341
1 UT-RTP-NE PC-TCP-ND 67030.17 6079.83 +950.3 406.87 +18.0924 0.00
2 UT-RTP-NE PC-TCP-ND 67023.83 6290.83 +73.0 1362.14 +4.1683 0.001
3 UT-RTP-NE PC-TCP-ND 67013.0 6127.67 +85.3 124.10 +5.2586 0.00
4 UT-RTP-NE PC-TCP-ND 6707.17 6147.67 +859.50 93.47 +71.262 0.00
1 UT-RTP-NE PC-TCP-NE 67030.17 6162.83 +867.3 138.86 +48.3836 0.00
2 UT-RTP-NE PC-TCP-NE 67023.83 648.67 +575.17 2149.14 +2.0730 0.0425
3 UT-RTP-NE PC-TCP-NE 67013.0 6343.17 +69.83 1384.47 +3.7476 0.004
4 UT-RTP-NE PC-TCP-NE 6707.17 6159.50 +847.67 94.96 +69.1418 0.00
1 UT-RTP-NE SN-TCP-ND 67030.17 67247.17 -217.0 1430.35 -1.1751 0.247
2 UT-RTP-NE SN-TCP-ND 67023.83 67219.17 -195.3 3039.68 -0.4978 0.6205
3 UT-RTP-NE SN-TCP-ND 67013.0 67056.83 -43.83 526.52 -0.649 0.5215
4 UT-RTP-NE SN-TCP-ND 6707.17 6701.17 -4.0 1464.42 -0.0212 0.9832
1 UT-RTP-NE SN-TCP-NE 67030.17 67256.67 -26.50 150.92 -1.1312 0.2625
2 UT-RTP-NE SN-TCP-NE 67023.83 6723.83 -210.0 1450.9 -1.121 0.268
3 UT-RTP-NE SN-TCP-NE 67013.0 67035.50 -2.50 60.47 -2.823 0.05
4 UT-RTP-NE SN-TCP-NE 6707.17 67205.17 -198.0 128.23 -1.1906 0.2386
1 PC-TCP-ND PC-TCP-NE 6079.83 6162.83 -83.0 371.06 -1.7326 0.084
2 PC-TCP-ND PC-TCP-NE 6290.83 648.67 -157.83 795.53 -1.5368 0.1297
3 PC-TCP-ND PC-TCP-NE 6127.67 6343.17 -215.50 1371.18 -1.2174 0.283
4 PC-TCP-ND PC-TCP-NE 6147.67 6159.50 -1.83 65.37 -1.402 0.161
1 PC-TCP-ND SN-TCP-ND 6079.83 67247.17 -167.3 1567.51 -5.7685 0.00
2 PC-TCP-ND SN-TCP-ND 6290.83 67219.17 -928.3 1686.06 -4.2649 0.00
3 PC-TCP-ND SN-TCP-ND 6127.67 67056.83 -929.17 507.58 -14.1796 0.00
4 PC-TCP-ND SN-TCP-ND 6147.67 6701.17 -863.50 1454.49 -4.5986 0.00
1 PC-TCP-ND SN-TCP-NE 6079.83 67247.17 -167.3 1567.51 -5.7685 0.00
2 PC-TCP-ND SN-TCP-NE 6290.83 67219.17 -928.3 1686.06 -4.2649 0.00
3 PC-TCP-ND SN-TCP-NE 6127.67 67056.83 -929.17 507.58 -14.1796 0.00
4 PC-TCP-ND SN-TCP-NE 6147.67 6701.17 -863.50 1454.49 -4.5986 0.00
 334

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 PC-TCP-NE SN-TCP-ND 6162.83 67247.17 -1084.3 1521.3 -5.5210 0.00
2 PC-TCP-NE SN-TCP-ND 648.67 67219.17 -70.50 906.93 -6.5808 0.00
3 PC-TCP-NE SN-TCP-ND 6343.17 67056.83 -713.67 1478.98 -3.737 0.004
4 PC-TCP-NE SN-TCP-ND 6159.50 6701.17 -851.67 1464.36 -4.5050 0.00
1 PC-TCP-NE SN-TCP-NE 6162.83 67247.17 -1084.3 1521.3 -5.5210 0.00
2 PC-TCP-NE SN-TCP-NE 648.67 67219.17 -70.50 906.93 -6.5808 0.00
3 PC-TCP-NE SN-TCP-NE 6343.17 67056.83 -713.67 1478.98 -3.737 0.004
4 PC-TCP-NE SN-TCP-NE 6159.50 6701.17 -851.67 1464.36 -4.5050 0.00
1 SN-TCP-ND SN-TCP-NE 67247.17 67256.67 -9.50 130.70 -0.5630 0.5756
2 SN-TCP-ND SN-TCP-NE 67219.17 6723.83 -14.67 1590.49 -0.0714 0.943
3 SN-TCP-ND SN-TCP-NE 67056.83 67035.50 +21.3 515.17 +0.3208 0.7495
4 SN-TCP-ND SN-TCP-NE 6701.17 67205.17 -194.0 278.26 -5.404 0.00
 335

APENDIX G MIDI INSTRUMENTS
1 Acoustic Grand Piano 3 Acoustic Bas 65 Soprano Sax 97 FX 1 (Rain)
2 Bright Acoustic Piano 34 Electric Bas (Finger) 6 Alto Sax 98 FX 2 (Sound Track)
3 Electric Grand Piano 35 Electric Bas (Pick) 67 Tenor Sax 9 FX 3 (Crystal)
4 Honky-tonk Piano 36 Fretles Bas 68 Baritone Sax 10 FX 4 (Atmosphere)
5 Electric Piano 1 37 Slap Bas 1 69 Oboe 101 FX 5 (Brightnes)
6 Electric Piano 2 38 Slap Bas 2 70 English Horn 102 FX 6 (Goblins)
7 Harpsichord 39 Synth Bas 1 71 Bason 103 FX 7 (Echoes)
8 Clavichord 40 Synth Bas 2 72 Clarinet 104 FX 8 (Sci-Fi)
9 Celesta 41 Violin 73 Picolo 105 Sitar
10 Glockenspiel 42 Viola 74 Flute 106 Banjo
1 Music Box 43 Celo 75 Recorder 107 Shamisen
12 Vibraphone 4 Contrabas 76 Pan Flute 108 Koto
13 Marimba 45 Tremolo Strings 7 Blown Botle 109 Kalimba
14 Xylophone 46 Pizicato Strings 78 Shakuhachi 10 Bag Pipe
15 Tubular Bels 47 Orchestral Harp 79 Whistle 11 Fidle
16 Dulcimer 48 Timpani 80 Ocarina 12 Shanai
17 Drawbar Organ 49 String Ensemble 1 81 Lead 1 (Square) 13 Tinkle Bel
18 Percusive Organ 50 String Ensemble 2 82 Lead 2 (Sawtoth) 14 Agogo
19 Rock Organ 51 Synth Strings 1 83 Lead 3 (Caliope) 15 Stel Drums
20 Church Organ 52 Synth Strings 2 84 Lead 4 (Chiff) 16 Wodblock
21 Reed Organ 53 Choir Aahs 85 Lead 5 (Charang) 17 Talo Drum
2 Acordion 54 Choir Oohs 86 Lead 6 (Voice) 18 Melodic Tom
23 Harmonica 5 Synth Voice 87 Lead 7 (Fifths) 19 Synth Drum
24 Tango Acordion 56 Orchestral Hit 8 Lead 8 (Bas + Lead) 120 Reverse Cymbal
25 Acoustic Guitar (Nylon) 57 Trumpet 89 Pad 1 (New Age) 121 Guitar Fret Noise
26 Acoustic Guitar (Stel) 58 Trombone 90 Pad 2 (Warm) 12 Breathe Noise
27 Electric Guitar (Jaz) 59 Tuba 91 Pad 3 (Polysynth) 123 Seashore
28 Electric Guitar (Clean) 60 Muted Trumpet 92 Pad 4 (Choir) 124 Bird Twet
29 Electric Guitar (Muted) 61 French Horn 93 Pad 5 (Bowed) 125 Telephone Ring
30 Overdriven Guitar 62 Bras Section 94 Pad 6 (Metalic) 126 Helicopter
31 Distortion Guitar 63 Synth Bras 1 95 Pad 7 (Halo) 127 Aplause
32 Guitar Harmonics 64 Synth Bras 2 96 Pad 8 (Swep) 128 Gunshot

 336

APENDIX H MIDI INSTRUMENT GROUPINGS
1 ? 8 Piano
9 ? 16 Chromatic Percusion
17 ? 24 Organ
25 ? 32 Guitar
3 ? 40 Bas
41 ? 48 Strings
49 ? 56 Ensemble
57 ? 64 Bras
65 ? 72 Red
73 ? 80 Pipe
81 ? 8 Synth Lead
89 ? 96 Synth Pad
97 ? 104 Synth Efects
105 ? 12 Ethnic
13 ? 120 Percusive
121 ? 128 Sound Efects

 337

APENDIX I MIDI META-MESAGES AND MIDI CONTROLERS
The general format of a MIDI meta-mesage is the octet 0xF folowed by a type 0x0 to 0x7F then a
length, which is a variable length quantity one to four octets then length data octets. Not al the one hundred
and twenty eight types are defined but a MIDI file reader should be able to ignore an undefined type [5].
0x0 0x02 #-hi #-lo Sequence Number
0x01 Length Text Text Event
0x02 Length Text Copyright Notice
0x03 Length Text Sequence/Track Name
0x04 Length Text Instrument Name
0x05 Length Text Lyric
0x06 Length Text Marker
0x07 Length Text Cue Point
0x20 0x01 Ch MIDI Chanel Prefix
0x2F 0x0 End of Track (Mandatory)
0x51 0x03 T1 T2 T3 Tempo T1 Highest Order Octet
0x54 0x05 Hrs Min Sec Fr F SMTPE Ofset
0x58 0x04 Num Den MC TS Time Signature
0x59 0x02 #-s M Key Signature
0x7F Length Id Data Sequencer-Specific Meta-Event

Length is a variable length quantity. Text is a series of Length octets. Fr is the number
of frames, F is the frame fraction, Num is the time signature numerator, Den is the time
signature denominator exponent, MC is the MIDI clocks per metronome tick, TS is the
number of 32
nd
 notes per quarter note, #-s is the number of sharps or flats ? 7 is 7 flats, +
7 is 7 sharps, 0 is the key of C, M is 0 for a major key or 1 for a minor key, Id is 1 to 3
octets in length representing a manufacturer?s id and is a variable length quantity, and
Data is Length ? length of id in length data octets [5]. The folowing two routines alow
one to read and write variable length quantities [6].
 338

APENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE
 Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 694.6 60 423.862 54.7203
SN-TCP-ND 67183.0 60 765.320 98.8039
Table AE-1 Tripygaia1.mid m = 1

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-SN-TCP-ND -238.33 901.3420 16.3627 -2.0481 59 0.049
Table J-2 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 694.6 60 423.862 54.7203
SN-TCP-NE 67498.0 60 840.998 108.5726
Table J-3 Tripygaia1.mid m = 1

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-SN-TCP-NE -53.33 938.7598 121.193 -4.5657 59 0.00
Table J-4 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 694.6 60 423.862 54.7203
UT-RTP-NE 67471.3 60 423.862 251.2846
Table J-5 Tripygaia1.mid m = 1

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -526.66 197.1638 257.8327 -2.0426 59 0.045
Table J-6 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 67471.3 60 1946.426 251.2846
SN-TCP-ND 67183.0 60 765.320 98.8039
Table J-7 Tripygaia1.mid m = 1

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 28.33 2107.913 272.1304 1.0595 59 0.2936
Table J-8 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 67471.3 60 1946.426 251.2846
SN-TCP-NE 67498.0 60 840.998 108.5726
Table J-9 Tripygaia1.mid m = 1
 339

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE -26.66 2140.4962 276.368 -0.0965 59 0.9234
Table J-10 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 67183.0 60 765.320 98.8039
SN-TCP-NE 67498.0 60 840.998 108.5726
Table J-1 Tripygaia1.mid m = 1

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -315.00 158.5957 149.5740 -2.1059 59 0.0394
Table J-12 Tripygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6961.16 60 535.5658 69.1412
SN-TCP-ND 6952.6 60 49.3986 6.373
Table J-13 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 8.500 545.375 70.4079 0.1207 59 0.9043
Table J-14 Tripygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6961.16 60 535.5658 69.1412
SN-TCP-NE 67285.50 60 253.821 32.7681
Table J-15 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -324.33 586.374 75.7010 -4.2843 59 0.00
Table J-16 Tripygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6961.16 60 535.5658 69.1412
UT-RTP-NE 6754.3 60 2134.259 275.5317
Table J-17 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -593.166 201.6784 284.2354 -2.0868 59 0.0412
Table J-18 Tripygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6952.6 60 49.3986 6.373
SN-TCP-NE 67285.50 60 253.821 32.7681
Table J-19 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -32.833 260.2807 3.6021 -9.9051 59 0.00
Table J-20 Tripygaia1.mid m = 2
 340

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 6754.3 60 2134.259 275.5317
SN-TCP-ND 6952.6 60 49.3986 6.373
Table J-21 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 601.6 2131.8498 275.206 2.1861 59 0.0327
Table J-2 Tripygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 6754.3 60 2134.259 275.5317
SN-TCP-NE 67285.50 60 253.821 32.7681
Table J-23 Tripygaia1.mid m = 2

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE 268.833 2160.260 278.891 0.9639 59 0.390
Table J-24 Tripygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6723.3 60 1467.76 189.4891
SN-TCP-ND 6702.6 60 52.5894 6.7892
Table J-25 Tripygaia1.mid m = 3

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 210.66 1457.494 18.159 1.196 59 0.2674
Table J-26 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6723.3 60 1467.76 189.4891
SN-TCP-NE 67624.6 60 231.7206 298.418
Table J-27 Tripygaia1.mid m = 3

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -391.33 191.8742 153.8703 -2.5432 59 0.0136
Table J-28 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6723.3 60 1467.76 189.4891
UT-RTP-NE 67285.6 60 31.2910 42.7694
Table J-29 Tripygaia1.mid m = 3

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -52.33 1521.6531 196.445 -0.264 59 0.7908
Table J-30 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6702.6 60 52.5894 6.7892
SN-TCP-NE 67624.6 60 231.7206 298.418
Table J-31 Tripygaia1.mid m = 3

 341
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -602.00 230.3034 296.9678 -2.0271 59 0.04717
Table J-32 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 67285.6 60 31.2910 42.7694
SN-TCP-ND 6702.6 60 52.5894 6.7892
Table J-3 Tripygaia1.mid m = 3

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 263.00 37.5851 43.5820 6.0345 59 0.00
Table J-34 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 67285.6 60 31.2910 42.7694
SN-TCP-NE 67624.6 60 231.7206 298.418
Table J-35 Tripygaia1.mid m = 3

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE -39.00 2354.3920 303.9507 -1.153 59 0.2692
Table J-36 Tripygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6729.83 60 1739.109 24.5181
SN-TCP-ND 67068.0 60 35.118 45.847
Table J-37 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 231.833 178.3128 230.8701 1.041 59 0.3193
Table J-38 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6729.83 60 1739.109 24.5181
SN-TCP-NE 67426.83 60 148.472 186.976
Table J-39 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -127.00 286.5230 295.188 -0.4302 59 0.685
Table J-40 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-ND 6729.83 60 1739.109 24.5181
UT-RTP-NE 6728.83 60 75.565 9.7543
Table J-41 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE 71.00 1760.2471 27.2469 0.3124 59 0.758
Table J-42 Tripygaia1.mid m = 4
 342

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 67068.0 60 35.118 45.847
SN-TCP-NE 67426.83 60 148.472 186.976
Table J-43 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -358.833 1504.7203 194.2585 -1.8471 59 0.0697
Table J-4 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 6728.83 60 75.565 9.7543
SN-TCP-ND 67068.0 60 35.118 45.847
Table J-45 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 160.833 35.6387 45.9127 3.5030 59 0.008
Table J-46 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
UT-RTP-NE 6728.83 60 75.565 9.7543
SN-TCP-NE 67426.83 60 148.472 186.976
Table J-47 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE -198.00 1464.4057 189.0539 -1.0473 59 0.292
Table J-48 Tripygaia1.mid m = 4

In the figures on the folowing pages the captions on the left are for the above figure and the captions on the
left are for the below figure.
 343

 344

 345

 346

 347

 348

 349

 350

 351

 352

 353

 354

APENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE
Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 67104.0 60 2151.68 27.792
SN-TCP-ND 6719.83 60 29.6902 29.6528
Table K-1 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -15.833 2163.0614 279.250 -0.056 59 0.9549
Table K-2 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 67104.0 60 2151.68 27.792
SN-TCP-NE 67490.3 60 1521.7139 196.4524
Table K-3 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -386.33 2650.2637 342.1475 -1.1291 59 0.2634
Table K-4 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6719.83 60 29.6902 29.6528
SN-TCP-NE 67490.3 60 1521.7139 196.4524
Table K-5 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -370.500 1539.9190 198.8026 -1.8636 59 0.0673
Table K-6 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 6706.0 60 2039.9494 263.3563
SN-TCP-ND 6710.16 60 532.2019 68.7069
Table K-7 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -34.166 211.751 272.6289 -0.1253 59 0.906
Table K-8 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 6706.0 60 2039.9494 263.3563
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table K-9 Tripygaia1.mid m = 5
 355

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -164.833 2048.174 264.4181 -0.623 59 0.5354
Table K-10 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6710.16 60 532.2019 68.7069
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table K-1 Tripygaia1.mid m = 5
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -130.6 51.8746 71.2467 -1.8340 59 0.0716
Table K-12 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 6782.83 60 53.5230 6.9097
SN-TCP-ND 6704.83 60 54.3838 7.0209
Table K-13 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -262.00 72.7382 9.3904 -27.906 59 0.00
Table K-14 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 6782.83 60 53.5230 6.9097
SN-TCP-NE 67432.83 60 1596.0301 206.046
Table K-15 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -650.00 1601.9024 206.8047 -3.1430 59 0.026
Table K-16 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6704.83 60 54.3838 7.0209
SN-TCP-NE 67432.83 60 1596.0301 206.046
Table K-17 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -38.00 1601.2736 206.7235 -1.8769 59 0.0654
Table K-18 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 678.6 60 43.4708 5.6120
SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table K-19 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -592.500 2426.6071 313.2736 -1.8913 59 0.06349
Table K-20 Tripygaia1.mid m = 7
 356

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 678.6 60 43.4708 5.6120
SN-TCP-NE 6742.50 60 1561.3256 201.562
Table K-21 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -63.833 153.689 20.5803 -3.3095 59 0.015
Table K-2 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 67371.16 60 2434.3969 314.2792
SN-TCP-NE 6742.50 60 1561.3256 201.562
Table K-23 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -71.33 879.0932 13.4904 -0.6285 59 0.5320
Table K-24 Tripygaia1.mid m = 7

ATCP-32 6758.83 60 48.9583 6.3204
SN-TCP-ND 6720.0 60 1214.189 156.7420
Table K-25 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -461.166 125.396 158.1980 -2.9151 59 0.050
Table K-26 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-32 6758.83 60 48.9583 6.3204
SN-TCP-NE 67298.83 60 81.492 10.5206
Table K-27 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -540.00 85.9838 1.104 -48.646 59 0.00
Table K-28 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
SN-TCP-ND 6720.0 60 1214.189 156.7420
SN-TCP-NE 67298.83 60 81.492 10.5206
Table K-29 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -78.833 1217.7543 157.214 -0.5014 59 0.6179
Table K-30 Tripygaia1.mid m = 8
 357

 358

 359

 360

 361

 362

 363

 364

APENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32
Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6707.83 60 1378.513 17.9702
SN-TCP-ND 6719.83 60 29.6902 29.6528
Table L-1 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-ND -12.00 1397.6515 180.4360 -0.6207 59 0.5371
Table L-2 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6707.83 60 1378.513 17.9702
SN-TCP-NE 67490.3 60 1521.7139 196.4524
Table L-3 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-NE -482.500 2064.3919 26.518 -1.8104 59 0.07532
Table L-4 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6707.83 60 1378.513 17.9702
ATCP-32 67104.0 60 2151.68 27.792
Table L-5 Tripygaia1.mid m = 4

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-ATCP-32 -96.166 76.0265 10.1846 -0.9598 59 0.3410
Table L-6 Tripygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 682.83 60 150.250 19.3978
SN-TCP-ND 6710.16 60 532.2019 68.7069
Table L-7 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-ND -27.33 58.4963 72.1015 -3.8464 59 0.002
Table L-8 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 682.83 60 150.250 19.3978
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table L-9 Tripygaia1.mid m = 5
 365

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-NE -408.00 164.159 21.1929 -19.2516 59 0.00
Table L-10 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 682.83 60 150.250 19.3978
ATCP-32 6706.0 60 2039.9494 263.3563
Table L-1 Tripygaia1.mid m = 5
 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-ATCP-32 -243.166 2049.7535 264.620 -0.9189 59 0.3618
Table L-12 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 692.6 60 1201.5143 15.148
SN-TCP-ND 6704.83 60 54.3838 7.0209
Table L-13 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-ND -52.166 1206.6750 15.7810 -0.348 59 0.7389
Table L-14 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 692.6 60 1201.5143 15.148
SN-TCP-NE 67432.83 60 1596.0301 206.046
Table L-15 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-NE -40.166 502.6219 64.882 -6.7834 59 0.00
Table L-16 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 692.6 60 1201.5143 15.148
ATCP-32 6782.83 60 53.5230 6.9097
Table L-17 Tripygaia1.mid m = 6

 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-ATCP-32 209.833 1207.4647 15.830 1.3460 59 0.1834
Table L-18 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6952.3 60 1286.804 16.1257
SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table L-19 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-ND -418.833 153.7104 148.943 -2.8120 59 0.06
Table L-20 Tripygaia1.mid m = 7
 366

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6952.3 60 1286.804 16.1257
SN-TCP-NE 6742.50 60 1561.3256 201.562
Table L-21 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-NE -490.166 297.047 38.3483 -12.7819 59 0.00
Table L-2 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 6952.3 60 1286.804 16.1257
ATCP-32 678.6 60 43.4708 5.6120
Table L-23 Tripygaia1.mid m = 7

 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-ATCP-32 173.66 1279.3191 165.1593 1.0515 59 0.2973
Table L-24 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 686.16 60 91.5765 128.019
SN-TCP-ND 6720.0 60 1214.189 156.7420
Table L-25 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-ND -33.833 232.722 30.043 -1.113 59 0.00
Table L-26 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 686.16 60 91.5765 128.019
SN-TCP-NE 67298.83 60 81.492 10.5206
Table L-27 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-SN-TCP-NE -412.66 97.0173 128.7143 -3.2060 59 0.021
Table L-28 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-40 686.16 60 91.5765 128.019
ATCP-32 6758.83 60 48.9583 6.3204
Table L-29 Tripygaia1.mid m = 8

 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP40-ATCP-32 127.33 102.7840 129.458 0.9835 59 0.3293
Table L-30 Tripygaia1.mid m = 8
 367

 368

 369

 370

 371

 372

 373

 374

APENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X
Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6816.0 60 52.5679 6.7864
SN-TCP-ND 6710.16 60 532.2019 68.7069
Table M-1 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-ND -284.166 536.3918 69.2478 -4.1036 59 0.001
Table M-2 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6791.50 60 60.4734 7.8070
SN-TCP-ND 6704.83 60 54.3838 7.0209
Table M-3 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-ND -253.33 81.1290 10.4737 -24.1875 59 0.00
Table M-4 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6280.3 60 1849.48 238.7628
SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table M-5 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-ND-SN-TCP-ND -1090.833 590.2980 76.2071 -14.3140 59 0.00
Table M-6 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6062.50 60 5.4068 7.1529
SN-TCP-ND 6720.0 60 1214.189 156.7420
Table M-7 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -157.50 1213.3531 156.6432 -7.3894 59 0.00
Table M-8 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6816.0 60 52.5679 6.7864
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table M-9 Tripygaia1.mid m = 5
 375

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -414.833 102.6181 13.2479 -31.3130 59 0.00
Table M-10 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6791.50 60 60.4734 7.8070
SN-TCP-NE 67432.83 60 1596.0301 206.046
Table M-1 Tripygaia1.mid m = 6
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -641.33 1597.1589 206.1923 -3.103 59 0.028
Table M-12 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6280.3 60 1849.48 238.7628
SN-TCP-NE 6742.50 60 1561.3256 201.562
Table M-13 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-ND-SN-TCP-NE -162.166 306.8047 39.6083 -29.3414 59 0.00
Table M-14 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6062.50 60 5.4068 7.1529
SN-TCP-NE 67298.83 60 81.492 10.5206
Table M-15 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -1236.33 92.5709 1.9508 -103.4514 59 0.00
Table M-16 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6816.0 60 52.5679 6.7864
ATCP-32 6706.0 60 2039.9494 263.3563
Table M-17 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -250.00 2029.536 262.016 -0.9541 59 0.3438
Table M-18 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6791.50 60 60.4734 7.8070
ATCP-32 6782.83 60 53.5230 6.9097
Table M-19 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 8.66 72.5671 9.3683 0.9250 59 0.3586
Table M-20 Tripygaia1.mid m = 6
 376

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6280.3 60 1849.48 238.7628
ATCP-32 678.6 60 43.4708 5.6120
Table M-21 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -498.33 1841.915 237.800 -2.095 59 0.0404
Table M-2 Tripygaia1.mid m = 7
 377

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6062.50 60 5.4068 7.1529
ATCP-32 6758.83 60 48.9583 6.3204
Table M-23 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -696.33 79.1472 10.2178 -68.1485 59 0.00
Table M-24 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6816.0 60 52.5679 6.7864
ATCP-40 682.83 60 150.250 19.3978
Table M-25 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-ND-ATCP-40 -6.833 153.919 19.802 -0.3437 59 0.732
Table M-26 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6791.50 60 60.4734 7.8070
ATCP-40 692.6 60 1201.5143 15.148
Table M-27 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-40 -201.166 1202.362 15.242 -1.2959 59 0.200
Table M-28 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6280.3 60 1849.48 238.7628
ATCP-40 6952.3 60 1286.804 16.1257
Table M-29 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-40 -672.0 575.493 74.2958 -9.049 59 0.00
Table M-30 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-ND 6062.50 60 5.4068 7.1529
ATCP-40 686.16 60 128.019 -823.66
Table M-31 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-ND-ATCP-40 -823.66 91.1865 127.9616 -6.4368 59 0.00
Table M-32 Tripygaia1.mid m = 8
 378

 379

 380

 381

 382

 383

 384

 385

APENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND
Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6525.83 60 278.37 294.1370
SN-TCP-ND 6710.16 60 532.20 68.7069
Table N-1 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -574.33 2348.8759 303.2385 -1.8939 59 0.0631
Table N-2 Tripygia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401
SN-TCP-ND 6704.83 60 54.3838 7.0209
Table N-3 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -463.33 2701.0567 348.7049 -1.3287 59 0.1890
Table N-4 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389
SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table N-5 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -90.166 2950.909 380.9712 -2.3628 59 0.0214
Table N-6 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567
SN-TCP-ND 6720.0 60 1214.189 156.7420
Table N-7 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -387.166 2014.6456 260.0896 -1.485 59 0.1419
Table N-8 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6525.83 60 278.3760 294.1370
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table N-9 Tripygaia1.mid m = 5
 386

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -705.00 280.448 294.4041 -2.3946 59 0.0198
Table N-10 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401
SN-TCP-NE 67432.83 60 1596.0301 206.046
Table N-1 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -851.33 104.1930 142.507 -5.9721 59 0.00
Table N-12 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389
SN-TCP-NE 6742.50 60 1561.3256 201.562
Table N-13 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -971.50 270.3026 293.0948 -3.3146 59 0.015
Table N-14 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567
SN-TCP-NE 67298.83 60 81.492 10.5206
Table N-15 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -46.00 1594.7235 205.879 -2.2634 59 0.0272
Table N-16 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6525.83 60 278.3760 294.1370
ATCP-32 6937.6 60 1871.3897 241.5953
Table N-17 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 -41.833 296.747 383.051 -1.0752 59 0.286
Table N-18 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401
ATCP-32 6487.0 60 1958.314 252.8195
Table N-19 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 94.5 741.6093 95.7413 0.9870 59 0.3276
Table N-20 Tripygaia1.mid m = 6
 387

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389
ATCP-32 678.6 60 43.4708 5.6120
Table N-21 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 -307.66 1638.6490 21.5486 -1.4543 59 0.151
Table N-2 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567
ATCP-32 6758.83 60 48.9583 6.3204
Table N-23 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 74.00 1595.2495 205.9458 0.3593 59 0.7206
Table N-24 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6525.83 60 278.3760 294.1370
ATCP-40 682.83 60 150.250 19.3978
Table N-25 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -297.00 295.730 296.3830 -1.020 59 0.3203
Table N-26 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401
ATCP-40 692.6 60 1201.5143 15.148
Table N-27 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -41.166 1549.693 20.0645 -2.051 59 0.042
Table N-28 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389
ATCP-40 6952.3 60 1286.804 16.1257
Table N-29 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -481.33 2098.8305 270.9578 -1.764 59 0.0808
Table N-30 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567
ATCP-40 686.16 60 91.5765 128.019
Table N-31 Tripygaia1.mid m = 8

 388
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -53.33 1891.474 24.186 -0.2184 59 0.8278
Table N-32 Tripygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6525.83 60 278.3760 294.1370
ATCP-TCP-ND 6816.0 60 52.5679 6.7864
Table N-3 Tripygaia1.mid m = 5

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND -290.166 282.729 294.691 -0.9846 59 0.328
Table N-34 Tripygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401
ATCP-TCP-ND 6791.50 60 60.4734 7.8070
Table N-35 Tripygaia1.mid m = 6

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND -210.00 2697.214 348.2097 -0.6030 59 0.5487
Table N-36 Tripygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389
ATCP-TCP-ND 6952.3 60 1286.804 16.1257
Table N-37 Tripygaia1.mid m = 7

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND 270.9578 2098.8305 270.9578 -1.764 59 0.0808
Table N-38 Tripygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Eror Mean
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567
ATCP-TCP-ND 6062.50 60 5.4068 7.1529
Table N-39 Tripygaia1.mid m = 8

Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND 70.33 1592.3748 205.5747 3.7472 59 0.00
Table N-40 Tripygaia1.mid m = 8

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

