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The research, which is discussed in this disertation, consists of the development and 
testing of a suite of ten Transmision Control Protocol (TCP) and reliable Real Time 
Protocol (RTP) MIDI over IP (MOIP) protocols, and the subsequent implementations of 
musical duet collaboration systems based on the MOIP protocols. These MOIP protocols 
were subjected to a quantitative and statisticaly significant set of experiments using two 
experimental metrics or performance measurements. The statistical protocol winner of 
these experiments was used in the duet systems. We implemented the musical duet systems 
on two diferent hardware platforms with diferent and competing operating systems. The 
general hardware and software architectures of the musical duet collaboration systems were 
esentialy platform independent. The procedural programing language C and the object-
oriented programing language Java were utilized. Before a path leading to a modicum of 
 vi 
succes was found a number of roads to unsuitable protocols were explored and these lanes 
to nowhere are also discussed extensively in this disertation. 
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CHAPTER 1 INTRODUCTION 
This research was aimed at providing another means for musicians to interact with 
one another using computers and the Internet. Musical collaboration via the Internet in 
itself is not a new or novel concept, and as we shal read in Chapter 2, eforts in this 
direction can be traced to the early 1990s. Within this research we did introduce some 
previously unknown networking protocols, some of which were unsuitable protocols 
while others were moderately succesful. Another somewhat radical departure form prior 
research was the idea of playing a duet over a network. 
The basic idea behind this research was to find a good, i.e. reliable, networking 
protocol for transmiting and receiving Musical Instrument Digital Interface (MIDI) data 
over a TCP/IP network, whether it was a local area network (LAN) or a wide area 
network (WAN) like the general Internet. Such protocols are known as MIDI over IP 
protocols, or for short MOIP protocols. In order to realize this dream, we had to explore 
the space of known MOIP protocols then create some new protocols, and compare the 
two protocol sets quantitatively. The desired fundamental goal of the research was to be 
able to conduct a MOIP musical duet on a real network. 
In the course of this research many pieces of software were writen primarily in 
two languages, namely, the procedural language C, and the object-oriented language, 
Java, both of which are declarative rather than functional languages like LISP and its 
dialect Scheme. An imperative language tends to have syntax closer to regular English 
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with infix mathematical expresions than a functional language that typicaly uses the 
more arcane prefix notation. Our experience was to prefer C over Java due to 
programing language latency isues, however, as computers become faster and faster 
and software engineering techniques mature then this negative side efect of Java may 
disappear. Where ever possible the networking protocols were implemented in both C 
and Java. Another good language choice for this type of research is C+, which probably 
has a performance profile much closer to C than to Java on many systems. We developed 
several new networking protocols in C and Java. Also, we designed and implemented a 
number of musical collaboration systems in both of the previously mentioned primary 
languages. 
A few operating systems were used for both the qualitative and quantitative 
aspects of this research. We utilized Windows 98, Windows XP and the UNIX based 
Apple?s OS X. OS X on a Power Mac G4 or G5 system semed to have the lowest MIDI 
latency of al the systems in the operating system and hardware suite. In many respects, 
the Apple MIDI subsystem of the OS X audio system appears more robust than the 
corresponding Windows multimedia system in the humble opinion of the primary 
researcher. 
This research went down several avenues some of which lead to unsuitable 
protocols. Applied computer science is more an empirical and exploratory science rather 
than a rigorous mathematical science, and hence, we as applied computer scientists are 
more apt than mathematicians to discuss research dead ends. Such discussions are 
necesary, and in theory, sufficient, to discourage other researchers from going down the 
same paths that lead to nowhere. 
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In Chapter 2 we wil discuss the foundations of this research which include: 
MIDI; a competing open architecture specification by the Gibson Instrument Company 
known as MAGIC; the aspects of TCP and RTP that are important to MOIP; C, Java, and 
JINI, MIDI systems devised by Apple and Microsoft; other notable MOIP protocols and 
systems; sources of latency in MOIP based systems; and computer supported 
collaborative work (CSCW). This chapter comprises a literature review. 
Chapter 3 is dedicated to al the research we performed in this project, which 
resulted in unsuitable protocols. As was stated a litle earlier, it is important in science to 
ilustrate research paths that did not pan out or led to dead ends, so that other researchers 
wil not duplicate work that was not completely succesful. The first notable failure was 
an atempt to devise a UDP based MOIP protocol that used the central concept of data 
redundancy to atempt to correct for the unreliability of the UDP. This minor catastrophe 
leads us in the direction of the development of reliable protocols later in the course of this 
research. Another failure, which was a good idea that was atempted on antiquated 
hardware, was the development of a Java musical collaboration system, which had a 
music studio metaphor. We used JINI within the framework of another Java musical 
collaborative system that could also be deemed a failure on some hardware and operating 
systems. An alternative musical duet system for the Windows platform also was a failure 
in many senses. 
In Chapter 4 we discuss the succesful quantitative experiments involving reliable 
versions of RTP and TCP protocols without or with the Nagle algorithm enabled. The 
experimental procedure and results are briefly outlined. A number of graphs and tables 
that represent the data are presented. The two metrics that were used in the experiments 
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and their subsequent analysis are introduced. The most succesful duet system for any 
platform that we developed is ilustrated in Chapter 5. Our conclusions are enumerated in 
Chapter 6.
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CHAPTER 2 LITERATURE REVIEW 
This chapter is divided into six sections that discuss: MIDI; an alternative open 
protocol stack to MIDI named MAGIC; TCP and RTP; C, Java, and JINI; MIDI systems 
under two operating systems; previous MOIP research; the latency isues involved in 
MOIP; and computer-supported cooperative work (CSCW). It is hoped that this short 
literature review il be al the information required to understand this research at a 
fundamental level. 
A.  MIDI 
?MIDI is an acronym for ?Musical Instrument Digital Interface [1]?. MIDI is 
analogous to sheet music in that it consists of a set of instructions, which tel an 
electronic musical instrument how to play a piece of music [2]. MIDI is an electronic 
musical device and instrument manufacturer standard and is a set of specifications that 
alows devices and instruments of diferent makers to communicate with one another 
using a common digital language [1]. 
The hardware component of the MIDI specification consists of the definition of 
MIDI ports, cables, and the electronic signals sent over the cables [1]. There are thre 
diferent types of MIDI ports in the specification, namely, in, out, and thru ports. Each 
MIDI port is a female jack to receive the five-pin DIN (Deutsche Industrie Norm) MIDI 
cable connector [2, 3]. Currently, the specification only uses thre of the five pins [2]. 
Pins 1 and 3 are not used, pin 2 is shielding, pin 4 is grounding, and pin 5 is for MIDI 
data [4]. 
MIDI cables are usualy no longer than fifty fet and are typicaly much shorter 
than the maximum length. The best quality cables have some sort of shielding to prevent 
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unwanted stray electrical signals from interfering with the MIDI transmision [2]. The 
MIDI specification cals for the serial digital transmision of mesages using a start bit, 
an octet of eight mesage bits, and a stop bit. The start bit is a logical 1 bit and the stop 
bit is a logical 0 bit [1] or vice versa [2]. The send and receive data rates are set at 31,250 
baud, which is 31,250 bits per second [1]. This means that 3,125 10-bit MIDI mesages 
can be sent or received each second [1]. This particular baud rate was chosen since it is a 
divisor of 1,000,000, and 1 MHz was a typical clock frequency for early PCs [3]. 
MIDI mesages can be broken into five diferent groups: ?channel voice mesages, 
channel mode mesages, system common mesages, system real-time mesages, and 
system exclusive mesages? [1]. The first four groups of the preceding listed groups can 
be categorized as MIDI short mesages. 
MIDI short mesages consist of a status byte and zero, one, or two data bytes [1]. An 
octet, which is more commonly known as a byte, can have 256 diferent values. A status 
byte is in the range 128 to 255 (80H to FH in hexadecimal) and a data byte is in the 
range 0 to 127 (00H to 7FH) [1]. This means that a status byte has a one high order bit 
and a data byte has a zero high order bit [1]. 
The channel voice group of MIDI short mesages consists of: note on, note off, 
polyphonic key presure, channel presure, program change, control change, and pitch 
bend change [1]. Program change mesages have one data byte so there can be 128 
instruments active at one time. Se Appendix G for a list of the standard instruments. The 
instruments are organized into sixten groups of eight instruments per group. Se 
Appendix H for the names of the groups. The channel mode group of MIDI short 
mesages is comprised of: local control, al notes of, omni mode off, omni mode on, 
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mono mode on, and poly mode on [1]. A good introduction to control change mesages 
can be found online [5]. The system common mesages are: song position pointer, song 
select, time request, and EOX (end of exclusive) [1]. The system real-time mesages are: 
timing clock, start, stop, continue, active sensing, and system reset [1]. The system 
exclusive mesages are sometimes used to transfer parameter setings from one MIDI 
enabled device to another that are both by the same manufacturer such as Yamaha or 
Roland. 
MIDI controllers include drum controllers, guitar controllers, keyboard 
controllers, and wind controllers [2]. A drum controller is vastly diferent from actual 
drums and consists of one or more pads. A guitar controller is usualy retrofited to a 
standard electric guitar via special pickups [2]. Wind controllers are usualy specialy 
designed wind instruments that resemble a futuristic clarinet [2]. 
There are thre MIDI file formats. Format zero files consist of a single track. Format one 
files consist of a number of tracks to be played simultaneously. Format two files consist 
of a number of tracks to be played independently [5]. 
MIDI files contain chunks. Each chunk has a type that is four octets in length, a 
length that is four octets, and data that has length octets. There are two types of chunks a 
header chunk and a track chunk. A header chunk has the type ?MThd? and a track chunk 
has the type ?MTrk?. A header chunk has length equal to six. The data in a header chunk 
consists of format, tracks, and division each of which are sixten bits in length and are in 
big endian (most significant octet first) format. The format can be zero, one, or two. If the 
high order bit of the division is zero then the division is the number of ticks per quarter 
note. If the high order bit of division is one then the bits fourten to eight are the negative 
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of the number of frames per second and bits seven to zero are the ticks per frame. The 
track chunk consists of length MIDI events. A MIDI event consists of delta-time in ticks 
and either a sysex-mesage, meta-mesage or a MIDI short mesage. The possible meta-
mesages are given in Appendix I [5]. A few good online sites for general MIDI 
discussions are [6-8]. There is an excelent source of information on MIDI programing 
using the Java language in [9] by Sun Microsystems. 
B.  MAGIC 
Gibson Guitar Corporation has proposed an alternative musical instrument digital 
interconnection technology known as Media-acelerated Global Information carier 
(MAGIC) to replace as wel as incorporate the aging Musical Instrument Digital Interface 
(MIDI, 1983) standard [10]. Acording to the specification the motivations behind the 
development of the MAGIC protocol stack were as follows: ?enhanced real-time sonic 
fidelity, interoperability, complete digital solution, simple instalation, and ease-of-use? 
[10]. A MAGIC link is bi-directional and caries fixed-length data and control 
information as wel as power in real-time [10]. 
MAGIC is able to transmit up to 32 channels of up to 32-bit audio at sampling 
rates of up to 192 kHz [10]. This is much beter than CD quality audio, which consists of 
two channels of 16-bit audio at a sampling rate of 44.1 kHz. Since MAGIC is based upon 
the IEE 802.3 Ethernet standard that has a baud rate of 100 Mbps, you are probably 
limited to sampling rates of 100 kHz if you are using al 32 channels and 32-bit data. 
However, this is a definite improvement over CD quality audio. 
Gibson hopes that amplifier, instrument, and guitar efects manufacturers wil readily 
embrace the MAGIC technology so that its adoption and usage wil become universal. 
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Currently, Gibson is mainly an instrument manufacturer with the Baldwin line of pianos, 
the Gibson line of acoustic and electric guitars, and the Goldtone line of tube guitar 
amplifiers. Perhaps Gibson has the political savvy and clout to push through a standard to 
a diverse and highly competitive set of manufacturers. Gibson sems fairly commited to 
MAGIC since Gibson?s current Chief Executive Oficer (CEO), Henry Juszkiewicz, was 
instrumental in the development of MAGIC. 
Many instruments that musicians use today are either analog or require a lot of 
analog to digital (A/D) conversion or digital to analog (D/A) conversion. A/D and D/A 
conversions introduce latencies into a performance. These conversions introduce 
latencies of 3,000 to 10,000 microseconds [10]. Most modern recording equipment is 
digital. Gibson wants to create a totaly digital environment. 
It is very easy to connect a computer with an IEE 802.3 Ethernet standard network 
adapter to a local area network (LAN). It is Gibson?s vision that connection of amplifiers, 
instruments, and efects to a musical network wil be as seamles as connecting a 
computer to a LAN. 
There exists a definite cable snarl problem in performance and recording 
environments. This problem can cause performers and stagehands to trip over the mas of 
cables, interference betwen power carying and signal carying cables, and it is hard to 
determine if everything has been correctly connected. Gibson wants to overcome these 
dificulties by having each musical instrument, amplifier, or efect with at most two 
cables, an external power cable for devices that require more than 9 volts direct curent 
and a MAGIC Ethernet cable. Most MAGIC compliant devices wil only require the 
Ethernet cable. There also exists a wire snarl problem in home entertainment centers and 
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this problem could be in theory eliminated by the adoption of MAGIC technology by that 
industry. 
MAGIC supports both the daisy chain and star network topologies that are 
popular in the MIDI world [10]. It also supports what is known as an uplink topology that 
consists of two switching hubs that are connected by a high-speed link [10]. This high 
speed link betwen star networks could be Gigabit Ethernet [10]. A switching hub 
multiplexes links from more than one device or daisy chain network [10]. 
The protocol stack consists of a physical layer, data link layer, and MAGIC application 
layer [10]. The physical layer and data link layers are compatible with IEE 802.3 
Ethernet protocol physical layer and data link layer [10]. The MAGIC application layer 
encapsulates its data and control information in IEE 802.3 Ethernet data link frames 
[10]. Other wel-known protocol stacks are the Open Systems Interconnection (OSI) 
reference model and the hybrid reference model introduced by Tanenbaum [11]. The OSI 
reference model consists of seven layers namely, a physical layer, a data link layer, a 
network layer, a transport layer, a sesion layer, a presentation layer, and an application 
layer [11]. The hybrid protocol stack has five layers: physical layer, data link layer, 
network layer, transport layer, and application layer [11]. 
MAGIC uses Category 5 cables and RJ-45 connectors [10]. Four of the 
conductors in a Category 5 cable are used for data transport and the other four are used to 
cary power [10]. The cable is capable of carying at least a 9-volt direct curent power 
supply over distances up to 328 fet [10]. 
The IEE 802.3 Ethernet frame format consists of a preamble of 7 bytes, 1 byte frame 
delimiter, 2 or 6 byte destination addres, 2 or 6 byte source addres, 2 byte length of data 
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field, 0 to 1500 byte data, 0 to 46 byte pad, and 4 byte checksum [11]. The check sum is a 
cyclic redundancy code (CRC) [10, 11]. 
Each MAGIC application layer packet consists of 32, 32-bit data slots of 16, 24, 
28, or 32 bits of Pulse Code Modulation (PCM) audio [10]. These slots can also cary 
arbitrary 32-bit data [10]. MIDI protocol data can be encapsulated in a packet [10]. 
MAGIC is similar to the Synchronous Optical Network (SONET) [11] in that it requires a 
system-timing master (STM). The STM is chosen using a device enumeration protocol 
and the proces is automatic [10]. ?The default MAGIC frame timing is 48 kHz with an 
aceptable tolerance of 80 picoseconds. This timing is localy generated by the STM, and 
recovered and regenerated by al other devices. The Ethernet signaling rate is 
asynchronous with the rate at which frames are transmited [10]?. 
The main competitors to MAGIC are the MIDI standard and IEE 1394 FireWire 
standard [12-14]. MIDI devices are only able to transmit and receive control information 
rather than raw audio data. MIDI control mesages are like sheet music teling a 
synthesizer what note to sound etc. FireWire is a high-speed serial bus for computer data 
and audio/visual data communications. FireWire does cary power for low powered 
devices just like MAGIC. FireWire has a higher baud rate than the current vision of 
MAGIC over the 100 Mbps Ethernet and the IEE 1394b has cable lengths that equal the 
maximum MAGIC cable length. There is a MIDI media adaptation layer for IEE 1394 
[15]. 
Acording to the video on the MAGIC web site [16], MAGIC would be useful as 
a transmiting and receiving medium for telemetry from state-of-the-art medical scanning 
devices such as Computer Aided Tomography (CAT), Magnetic Resonance Imaging 
 12 
(MRI), and Positron Emision Tomography (PET) scanners. Using a MAGIC network, 
medical students could view in real-time scanner data transported from a diagnostic room 
to a clasroom. So, Gibson views MAGIC in a larger context than just in the musical 
performance and recording world. 
It appears to this researcher that MAGIC might have some promise in the home 
entertainment sector; however, this area may wind up being dominated by IEE 1394 
devices since Apple, Intel, and Microsoft support this particular standard. Gibson does 
not have an industrial presence in the home entertainment market so this market may be 
lost to other standards. 
Some criticisms of the MAGIC proposal are that possibly Gibson does not have 
the corporate strength in the instrument market to push a standard onto the rest of the 
industry. Also, musicians tend to be extremely conservative with respect to their 
instruments, so widespread aceptance of the standard might be an opium pipe dream. 
MAGIC does have a lot of promise as a musical recording studio standard. MAGIC 
compliant digital guitars could be very useful in a recording environment. Many guitar 
efects are becoming digital so removing the A/D and D/A conversions currently required 
could be advantageous. Most modern audio recording equipment is digital. A good online 
summary of MAGIC can be found in [17].
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C. TCP and RTP 
There are esentialy two architectural reference models in the networking world, 
namely, the Open Systems Interconnection (OSI) reference model and the TCP/IP 
reference model. The OSI reference model has seven layers: the physical layer, the data 
link layer, the network layer, the transport layer, the sesion layer, the presentation layer, 
and the application layer. The TCP/IP reference model has four layers: the host-to-
network layer, the Internet layer, the transport layer, and the application layer [11]. 
The TCP/IP reference model has two transport layer protocols, the User Datagram 
Protocol (UDP) [18] and the Transmision Control Protocol (TCP) [19]. UDP is a 
connectionles, best efort, and unreliable transport protocol. TCP is a connection-
oriented and reliable transport protocol. TCP uses sequence numbers and 
acknowledgements to insure that each packet is delivered in the order sent. UDP typicaly 
involves a leser amount of overhead than TCP. The primary reason for lost data-grams 
or packets on the Internet is congestion which can be contrasted with the wireles 
universe where the primary culprit for dropped data-grams or packets is the high bit eror 
rate (BER) of the medium [11]. 
The prototypical programing-paradigm of TCP/IP is the client/server model. A 
client sends a request and the server answers the request. Servers offer services and these 
services could be as simple as an echo service or time of day service or as complicated as 
a database search service. Servers can be either UDP or TCP servers or both. Servers can 
be either concurrent or iterative. A concurrent server usualy uses independent threads of 
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execution for each request and hence can handle more than one simultaneous request. An 
iterative server handles one request at a time [11, 20]. 
Many consider the BSD UNIX sockets library as the quintesential programing 
package for TCP/IP. This package provides an interface known as a socket that connects 
the two ends of the client/server interaction. Sockets can be UDP sockets or TCP sockets. 
Sockets can also support broadcasting or multicasting [20-22]. 
The client side of the interaction consists of creating a socket, connecting the socket, 
writing a request to the server, reading the response from the server, and closing the 
socket. On the other hand, the server side of the interaction for a TCP server involves the 
following steps: creating a socket, binding the socket to a port number, listening for 
connections, acepting the connection, reading a client?s request, and writing the 
response to the request, and closing the acept socket [20]. 
The Real Time Protocol (RTP) is designed to transmit data such as audio or video 
in real-time. Some of the early applications of RTP were audio and video conferencing 
over the Internet. RTP does not guarante delivery or in order delivery of packets since 
the Internet version is based on UDP, which is an unreliable protocol. RTP does not give 
quality of service (QOS) asurances either [23]. 
RTP has a control protocol asociated with it named RTCP. Usualy on the 
Internet, RTP uses UDP for sending data-grams and for the control protocol. The RTP 
sesion has a destination IP addres and destination IP port number. Typicaly, Internet 
implementations use an even port number for UDP transport and an adjacent odd port 
number for the RTPC port, such as 50000 and 50001. This researcher questions the use of 
UDP for the RTCP rather than a reliable transport protocol such as TCP. However, the 
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usage of UDP for both functions does not make sending and receiving data-grams or 
control information seamles by using sentto or recvfrom for both types of data. The RTP 
header has the following format [23]: 
0          1          2          3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|V=2|P|X| C  |M|   PT   |    sequence number     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|              timestamp              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|      synchronization source (SRC) identifier      | 
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
|      contributing source (CSRC) identifiers       | 
|               ..               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
V is the two bit version field, P is the padding bit and if set the payload contains padding 
octets, X is the extension bit and if set the header is followed by one extension, C is the 
four bit number of CSRC identifiers in the header, M is the marker bit defined by the 
profile, PT is seven bit payload type, the sequence number is initialy random and has 
sixten bits, timestamp is sampling instant of the first octet in the RTP packet, the 
synchronization source is chosen randomly, and the contributing source identifiers are the 
contributors to the RTP payload. The MIDI payload used by Lazaro et al. in their NMP 
system, which is mentioned in the Section F has the following format: 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|R|R|  Len  |    MIDI comand Payload?          | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|            Recovery Journal            | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
R are reserved bits, the Len field is six bits and is the length of the MIDI payload in 
octets, and the Recovery Journal is checkpoint information that alows for retransmision 
of lost data. 
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D. C, Java, and JINI 
The computer programing language C was derived from the type-les language 
BCPL through the B language and is most often asociated with Dennis M. Ritchie and 
the development of the UNIX operating system and came into existence in the period 
from 1969 to 1973. The C language fals into the clas of imperative computer languages 
that includes FORTRAN and ALGOL [24], [25] 
The BCPL computer programing language was a popular systems programing 
in the United Kingdom in the late 1960s and is the grandparent of C. The smal footprint 
variation of BCPL, the B programing language was developed to run on Digital 
Equipment Corporation?s (DEC?s) PDP-7 minicomputer and only occupied 8K (8192) 
bytes of memory. B can be thought of C without data types and is considered C?s 
imediate parent. Ken Thompson of Bel Laboratories is the inventor of the B language 
and its name was probably derived from the name of another programing language 
developed by Thompson named Bon [24]. 
C has some features that are very close to asembly language such as register 
variables and easy bit and byte manipulation. The explicit pointer and its acompanying 
arithmetic, which were once such a boon in programing quickly became somewhat of a 
bane and later completely disappeared from a programing language with the invention 
of the language Java. Pointers are an integral part of the C language and the only means 
of pasing a reference to a subprogram which in C are caled functions. Perhaps a 
drawback of C is the fact that functions can?t be nested. C introduced a means for easy 
modularization or packaging of code and the module or package interface is known as a 
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header file. Decomposing a problem into modules and then functions laid the foundations 
for a later software engineering paradigm shift known as object-oriented programing 
(OP) [25]. C is known as a weakly typed programing language. 
At the Sun-World Conference on May 23, 1995, John Gage, director of the 
Science Ofice for Sun Microsystems, and Marc Andresen, cofounder and executive 
vice president of Netscape announced to the audience and thus the world that the Java 
language existed and was to be utilized by the Netscape Navigator, which was then the 
most popular web browser. Only a smal number of people, les than thirty, were 
responsible for the invention and introduction of Java technology [26]. 
Sound and MIDI support became available in Java rather late with Java 1.3. A 
glaring deficiency was the fact that only MIDI output devices were supported on many 
popular platforms such as the Windows platform. This problem has been rectified in 2004 
with the 1.5 version. 
Java is a platform independent and interpreted language [27]. Other interpreted 
languages include the Scheme functional language, which is the language of choice for 
some programing languages courses and many artificial inteligence applications [28], 
and Microsoft?s C# language [29-30]. Java has been scaled down for use on palm tops 
and celular telephones [31-32]. 
JINI is the name of a technology invented by Sun Microsystems in the 1990s and 
was publicly announced in 1998. It is a set of engineering specifications and Java code 
that alow computers to discover and utilize services on a network. It is similar to a 
distributed object naming and lookup service. The whole notion is in the standard Java 
tradition of potentialy computing on smal-embedded devices. Sun had a vision that 
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perhaps JINI would be a glue to hold together the embedded systems networks of 
automobiles and other transportation vehicles [33-34]. 
JINI has five key concepts that are: discovery, lookup, leasing, remote events, and 
transactions. Services need to be discovered by JINI-aware devices before they can be 
used. The discovery protocols consist of the multicast request protocol, the multicast 
announcement protocol, and the unicast discovery protocol. Lookup is a type of name 
server, but has a much richer set of semantics due to the underlying object oriented 
language of JINI, namely, Java. Lookup can be used to find certain types of supported 
objects using the inheritance hierarchy of Java. A central feature of JINI is the notion of 
downloadable proxies. A lookup service has an object named a service item that has a 
proxy object and atributes objects. A client downloads the proxy object from the lookup 
service and then communicates via the proxy with the service perhaps using the Remote 
Method Invocation (RMI) mechanism of Java. Leasing alows the detection of crashed 
client and services, since consumers and services are expected to renew their leases 
periodicaly. Remote events are remote asynchronous notifications which build on the 
idea of local events inherent in the Java language. Transactions come from the database 
universe. Transactions have four properties, which are sometimes represented by the 
mnemonic ACID, which stands for atomicity, consistency, isolation, and durability. The 
transaction protocol used by JINI is the two-phase commit [33-34]. 
E. MIDI Systems of Interest 
The MIDI subsystem of the Microsoft Windows multimedia system has a 
function for determining the capabilities of a MIDI device, which can be an input or 
output port, a sequencer, or a synthesizer. A MIDI device is either an input device or an 
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output device. There exist functions for opening either a MIDI input device or a MIDI 
output device, which return a handle to the MIDI device. A MIDI input device can be 
started or stopped. Both types of devices should be stopped and closed before the 
program that opens the devices is exited. When you open a MIDI input device a calback 
function or window must be specified. Under Windows MIDI short mesages are 
represented by double words, which are 32-bit entities. There is a lot more information on 
the features of the Microsoft?s MIDI system in the online help of Microsoft?s Visual 
C/C+ and Visual Studio .Net. 
The architecture of the MIDI system under OS X is quite elegant and consists of a 
MIDI server which is built upon the MIDI driver layer which, in turn is over the I/O 
subsystem of the OS X kernel. Each application that desires to receive or transmit MIDI 
data must create a MIDI client, a MIDI destination or source, and an input or output port. 
MIDI mesages are caled MIDI packets and are encapsulated in a structure that has the 
unsigned integer field length, MIDI timestamp, and length data bytes. MIDI running 
status is not supported in the current MIDI packet structure. Another structure caled a 
MIDI packet list alows more than one MIDI event (MIDI packet) to be transfered at one 
time in the system. There are functions for initializing a MIDI packet list, adding packets 
to the list, and iterating through the list elements. Complete descriptions of the functions 
and properties of the OS X MIDI system are given in [35]. 
F. Prior MOIP Research 
In this section we discuss four previous studies of remote collaboration betwen 
musicians, namely, the Remote Music Control Protocol (RMCP) [36], the Young and 
Fujinaga version of MIDI over IP [37], the Aura system [38], and the Network Musical 
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Performance (NMP) system [39]. The first two systems are based on UDP, the third TCP, 
and the fourth on UDP and RTP. 
As has been previously stated RMCP is connection-les and based on UDP/IP. Since it 
uses UDP, broadcasting is available without the overhead of multiple transmisions [36]. 
RCMP was originaly intended for a lossles network such as some Ethernets since it 
does not have a mechanism for loss or out-of-order data-grams. Betwen 1992 and 1997, 
five systems using RMCP have been developed which are described in this paragraph. (1) 
A virtual dancer that is choreographed by musicians in real-time. (2) A virtual jaz 
sesion betwen a pianist, a basist, and a drummer with acompanying computer 
graphics for gestures. (3) Multiple musicians interacting via the Ethernet. (4) 
Improvision, a system in which two untrained people can create improvisational music 
and interact with each other. (5) RemoteGIG, a remote sesion over the Internet betwen 
musicians [36]. 
RMCP is based on the client/server architectural model of the Internet. There are 
four servers, specificaly, the sound server which transmits ?MIDI mesages of received 
packets to a MIDI instrument?, the display server which ?visualize MIDI mesages of 
received packets in the form of a piano keyboard?, the animation server which ?generate 
music-driven real-time computer graphics corresponding to received packets?, and the 
recorder server which ?record al received packets with the received timestamps, in a 
RMCP Packet Record File?. There are four types of RMCP clients, in particular, the 
MIDI receiver which ?receive MIDI from MIDI instruments?, the MIDI station client 
which ?substitute a computer keyboard and mouse for a MIDI keyboard instrument?, the 
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Standard MIDI File (SMF) player client which plays ?a standard MIDI file?, and the 
player client which plays ?a RMCP packet record file? [36]. 
RMCP requires distributed clock synchronization. The system has one RMCP 
time synchronization server. RMCP packets either have a timestamp or no timestamp. If 
the timestamp is not present the mesage in the packet is executed as soon as the packet 
arives [36]. 
RMCP was originaly designed for use on a reliable LAN. The extension to a 
WAN involves using RMCP gateways that connect two LANs using TCP/IP, the reliable 
and connection-oriented Internet transport protocol [36]. Se Figure 4.1 on the next page 
for a visualization of the RCMP system and its networking connections and protocols. 
 
 
Figure 2-F-1 RMCP Gateway Model and Its Protocols 
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The duet system developed by this researcher is reminiscent of RMCP. The 
similarities include a piano keyboard for visualizing MIDI data that comes over the 
network and both systems can play sequences over the network. The diferences betwen 
the two systems are that RMCP has more MIDI musical visualization aids and the 
networking protocols are not the same. RMCP uses a combination of UDP and TCP for 
MIDI data transport whereas the duet system uses TCP and a homegrown protocol based 
on TCP. Both systems are capable of sending and receiving standard MIDI type 0 or type 
1 file and of recording a sesion. RMCP uses the predominant Internet client/server 
architecture whereas the duet system uses the new peer-to-peer (P2P) Internet paradigm. 
There are esentialy two methods of transmiting music over the Internet. The 
first method is to transfer audio data via the Internet. The second method is to transmit 
musical gesture information such as the data encapsulated in the MIDI specification. 
Apple, Microsoft, Sun, et al. commercial software vendors have been working on systems 
for streaming audio for music and for teleconferencing. Streaming audio requires 
relatively large bandwidth, in order to sound reasonably good uses an initial buffering 
mechanism, and there can be pauses in the audio stream. Typicaly streaming audio 
requires two diferent protocols: one for a low bandwidth connection and one for a high 
bandwidth connection. 
MIDI and standard writen notation are universal representations of musical 
gesture. MIDI can be good and faithful for a piano performance. Sending MIDI mesages 
to remotely perform on an instrument can create a unique remote performance 
environment. MIDI requires les bandwidth than streaming audio [37]. 
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Young and Fujinaga chose UDP as their basic transport protocol. To overcome 
the unreliability of UDP, they transmited multiple copies of each MIDI mesage. A 
unique index was used with each mesage to ensure that duplicates were discarded and 
mesages were played in the right sequence. They also used a buffer of a few seconds, 
which makes real-time musician-to-musician interaction virtualy impossible [37]. 
Young and Fujinaga cite thre reasons for not utilizing the reliable Internet transport 
layer protocol TCP. These reasons were retransmisions and their asociated latencies, in 
order delivery of packets and the required latency to enforce this policy, and the extra 
bandwidth for reliability. They were particularly concerned with the stopping and starting 
of the music due to retransmisions. This researcher encountered the starting and 
stopping TCP problem with most sequences, but the fault is not so prevalent in the duet 
system where there is a somewhat limited amount of data being transported on the 
network. Although Young and Fujinaga did not give the exact number of bits used in 
their datagram format, this researcher interpreted their description as follows in Figure 2-
F-2. A datagram consisted of one or more MIDI mesages. 
 0          1          2          3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                Index              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Delta Time (Miliseconds)         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             MIDI Short Mesage          | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 2-F-2 Young and Fujinaga MIDI Mesage Format 
 
Richard O. Chapman and this researcher developed a protocol that uses some 
redundancy and does not require buffering of data-grams before playback. We cal this 
protocol the CW protocol. The idea is to send multiple copies of MIDI mesages spread 
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over several data-grams to ensure delivery of most of the MIDI mesages. We describe 
this protocol in detail in Chapter 7. 
Local area networks (LANs) provide an economical and high-speed means of 
connecting personal computers (PCs). MIDI networks use one specialized transmision 
protocol whereas LANs may use many diferent digital protocols. Dannenberg and van 
de Legeweg built a system named Aura at Carnegie Melon that takes advantage of low 
cost LANs for implementing real-time music programs [38]. 
At first Dannenberg and van de Legeweg used UDP as their transport level 
protocol since it semed good for real-time applications and semed relatively reliable on 
LANs. Previous research by Goto et al. into RMCP was done using UDP. However, 
Dannenberg and van de Legeweg were geting dropped data-grams on their LANs so they 
switched to TCP. The key ideas for this researcher to come from the Aura work are the 
usage of TCP_NODELAY to disable the Nagle algorithm and the utilization of multiple 
threads of execution [38]. By disabling the Nagle algorithm TCP does not delay until it 
has certain minimum size packet to transmit, instead the protocol sends smaler packets at 
more frequent intervals [11]. 
Aura is a distributed system for communicating musical data in real-time. It uses 
the object oriented programing paradigm. The Aura system consists of spaces, zones, 
objects, and names. A machine is a space or addres space. A space consists of one or 
more threads of execution. A zone is a collection of objects that are shared by a single 
thread of execution within an addres space. There can be as many zones in an addres 
space as there are threads. Objects are entities that can transmit and receive musical data 
in the form of asynchronous mesages. Objects are diferentiated by their real-time 
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requirements with low latency objects going into a particular zone with other such 
objects. Names are unique 64-bit integers with the format given in Figure 5-3. And this 
figure represents the end of the paragraphs on the third previous research system. 
   0          1          2          3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|   Adres Space   |Z o n e| Creator?s Adres Space |Z o n e| 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             Object Identifier            | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 2-F-3 Aura Name Format 
 
Aura appears to be a much more general and versatile system for asynchronous 
communication of musical data than this researcher?s vision of MOIP. However, with this 
generality and versatility there are prices to be paid such as code and system complexity 
and clock synchronization isues. This researcher used the object-oriented programing 
paradigm utilizing Java for the code to compare the diferent MOIP transport level 
protocols introduced in this disertation, however, straight C was used the final duet 
system since it is closest to the Microsoft Windows native Application Programing 
Interface (API). 
A network musical performance (NMP) occurs betwen musicians that are 
playing musical instruments at diferent locations that are connected by a computer 
network. Idealy, we would like to use real-time audio to send the actual music that a 
given musician is playing, however, bandwidth considerations and latencies may make 
this impossible. The next best thing is to use musical gestures such as MIDI. Lazaro and 
Wawrzynek used RTP to send MIDI commands over the Internet [39]. 
There are two clases of delay in NMP, namely, network delay and local delays. 
Network delay on the Internet is usualy asociated with congestion. The local delays 
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include ?computational delay, audio and control I/O delay, and perhaps local acoustic 
delay.? Via minimization of each of the preceding type of latency perhaps a viable NMP 
system can be achieved [39]. 
The NMP system uses the standard client-server architecture that is so prevalent 
in many Internet applications. The NMP client used the IETF Real Time Protocol (RTP) 
under the Audio/Video Profile (AVP) [28] to transfer MIDI data betwen network end-
points. A miror server was also developed to reflect the gesture information back to the 
client [39]. 
The NMP researchers used a recovery journal mechanism that is similar to 
forward eror correction (FEC) and reliable multicast transport (RMT). The researchers 
noted thre qualitative artifacts asociated with their atempts to build eror resilience and 
reliable into the system: 
1. Ocasionaly a depresed key does not create a corresponding note 
2. Noticeable jiter in the sounding of notes 
3. A released key sometimes continues generating sound for a fairly short time.  
The NMP research team easured late and lost packets on a relatively high speed 
California instate network. Their late and lost packet data had a bi-modal distribution 
[39]. The time 12:30 PM was very good and the time 7:30 PM was very bad. It is 
common knowledge that Internet Service Providers (ISPs) peak times are 7:00 PM to 
10:00 PM local time. 
G. Sources of Latency in MOIP 
There are five sources of latency in distributed audio systems: the finite speed of 
sound in air, the network, the operating system, the sound card, and the implementation 
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language. In the following paragraphs we wil give a litle discussion of the preceding 
forms of latency. 
The speed of sound in air is given approximately by the following formula: 
v = 331.4 + 0.6T (m / s) 
The temperature, T, is in Celsius [40]. For T = 21.11 degres Celsius = 70 degres 
Fahrenheit v = 344.28 m / s = 1129.52 ft / s = 1.13 ft / ms. So a percussionist who is fifty 
fet from the violin section in an orchestra would experience a delay of about forty-four 
miliseconds in the sound of the violins using the previous data. Musicians are 
acustomed to latencies of the order of ten miliseconds or about the delay that occurs 
betwen presing a key on a MIDI keyboard and geting an audio response. Supposedly 
some very gifted individuals are able to detect delays of the order of one milisecond 
[41]. 
Network latency is hard to quantify. There have been some papers such as [42] 
that atempt to model TCP latency; however, it is hard to deduce balpark estimates of the 
TCP latency in a distributed audio system from these models. Due to retransmisions and 
the enforcement of the receive in-order policy TCP has a greater latency on the general 
Internet than UDP. In the absence of retransmisions and out-of-order data-grams in this 
researcher?s experience TCP and UDP have similar latencies. 
In a comparison of the latencies in off-the-shelf operating systems for audio 
systems comparing Windows 95, NT 4, Windows 98, and NT 5, it was found that 
Windows 98 had the lowest worst-case latency of about twelve miliseconds. Windows 
95, NT4, and NT5 had worst-case delays of around fifty miliseconds [43]. 
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Sound card latency is most pronounced when recording audio from one of the 
input-sources on the sound card into software being executed on the computer. Some 
recording software such as SONAR 3 by Cakewalk alows this latency to be reduced with 
degradation of the quality of the recorded sound [44]. Another way of reducing sound 
card latency is to purchase a high-end sound card. 
Al implementation languages have asociated latencies. An interpreted language 
such as Java is expected to have a greater inherent latency than a compiled language such 
as C since interpretation involves conversion from an intermediate language to native 
code, whereas the C compiler outputs native code. 
H. Computer-Supported Cooperative Work (CSCW) 
Human-computer interaction (HCI) involves psychology and the computer, 
whereas CSCW is more related to sociology and the computer. However, CSCW 
generaly comes under the auspices of HCI in the scientific literature [45]. Groupware is 
the common name given to software, which alows the interaction of two or more 
individuals via computers [45]. 
Groupware can be diferentiated acording to the standard time/space matrix 
whose axes consist of time that is divided into same time or diferent time and space that 
is divided into same place or diferent place [45]. An alternative formulation uses the 
time axis labels synchronous (same time) and asynchronous (diferent time) and space 
axis labels co-located (same place) and remote (diferent place) [45]. Examples of 
groupware include extreme two programer programing teams (synchronous and co-
located), chat also known as instant mesaging (synchronous and remote), electronic or 
clasical bulletin boards (asynchronous and co-located), and email (asynchronous and 
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remote). Figure 2-H-1 shows a clasical time/place matrix in which by conversation we 
mean face-to-face conservation [45]. 
 
Figure 2-H-1 Clasical Time/Space Matrix 
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CHAPTER 3 UNSUITABLE PROTOCOLS 
This chapter is divided into six sections that give synopses of the initial research 
that resulted in failures to achieve the desired goals. The sections are: a discussion of the 
preliminary set of protocols, an outline of the initial quantitative and statisticaly 
significant collection of experiments that is divided into two sections, a brief description 
of an initial collaborative system, and finaly an adumbration of another Java and JINI 
duet system which did not pan out due to latency problems and an alternative duet 
system. 
A. Preliminary Protocols and Their Implementations 
The protocols used in the preliminary set of experiments were a UDP based 
protocol with a modicum of redundancy developed by Profesor Richard O. Chapman 
and this researcher (CW), a RTP based protocol without eror recovery (RTP), a simple 
and naive TCP protocol (SN-TCP), and Young and Fujinaga?s UDP based protocol (YF). 
In this chapter we wil present brief outlines of the protocol, talk about their 
implementation, and finaly, discuss a set of experiments performed on a Wide Area 
Network (WAN). 
As far as MIDI data was concerned, only MIDI short mesages such as channel 
presure, control change, key presure, note off, note on, pitch-bend, and program change 
were transmited and received. MIDI meta-mesages were not included in the 
transmision stream. MIDI meta-mesages such as tempo changes can be incorporated 
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into the protocols. The MIDI short mesage data was placed in a structure consisting of a 
unique index, a delta time in MIDI ticks, and the MIDI short mesage. This structure was 
based on the structure that Young and Fujinaga utilized and is shown in Figures 3-A-1 
and 3-A-2. 
 0          1          2          3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                Index              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Delta Time (Miliseconds)         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             MIDI Short Mesage          | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 3-A-1 CW and YF MIDI Mesage Format 
 
 0          1          2          3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|  Comand  |           Pad           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             Sequence Number           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|               Echo Time             | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             Maximum Echo Time          | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|            Up to 16 MIDI Mesages         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                 ?               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
+             Last MIDI Mesage           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 3-A-2 CW and YF Datagram Format 
 
The command is either OPEN (0) or CLOSE (1), which either opens or closes the 
TCP connection betwen the client and server. The sequence number is unique to each 
UDP client/server connection and limited by the precision of a 32-bit integer. The echo 
time and maximum echo times are calculated by the client and communicated to the 
server in the datagram. 
With respect to the delta times there are two policies, which this researcher cals 
lying and honesty. In the lying policy a client reports a zero delta time to the server in 
hopes that the network latency is so low that the client and server wil be esentialy 
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synchronized, and no bufering is done by the server. In the honesty policy case the client 
reports the delta time that it used to play the MIDI short mesage. The lying policy case 
was used in most of the preliminary protocols. 
One parameter was common to al the protocols, namely, the number of MIDI 
short mesage structures per datagram or packet, m. Another parameter that was shared 
by the CW, SN-TCP, and YF protocols was the number of data-grams betwen datagram 
echoes, n. Datagram echoes were used to get a rough estimate of the data-grams or 
packets that were being lost during transmision. Of course, for SN-TCP no packets are 
lost, but we stil monitored the round-trip-times (RTs) found via packet echoes. As wil 
be sen the RTs were used by CW and one variant of YF to get an estimate of the 
dynamic buffer size. A third parameter was the number of datagram copies sent by the YF 
protocol, k. In the CW protocol and the dynamic buffer size YF protocol (dYF), the 
server?s dynamic buffer size if calculated via the formula: 
BufferSize = m * MaximumEchoTime / EchoTime 
The dynamic buffer holds structures of the type shown in Figure 8-1. The dynamic buffer 
size is computed after each received datagram. 
The CW protocol uses the following transmision scheme for m = 3. It first sends 
MIDI mesages 1, 2, and 3 then it sends 2, 3, and 4, and then 3, 4, and 5, et cetera. Thus, 
the number of data-grams transmited by the CW algorithm is the total number of MIDI 
mesages minus m plus one. 
The dynamic buffer variation of the dYF algorithm difers from the CW algorithm 
in the number of copies of the datagram transmited. CW only sends one copy. dYF sends 
k copies. The large buffer version of YF uses a static buffering scheme. Both the CW and 
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dYF used a variable named the currentIndex. If the incoming datagram has MIDI short 
mesages with indices les than the currentIndex then it must be a copy of the datagram 
and is ignored. If the incoming datagram?s MIDI short mesages have indices equal to the 
currentIndex then the datagram?s MIDI short mesages are played imediately. Lastly, if 
the incoming datagram?s indices are greater than the currentIndex then the datagram?s 
MIDI data is buffered. Each time a datagram is received, the bufer is checked to se if it 
is full, and if it is full then the buffer?s MIDI short mesage data is played. The buffer is 
maintained in sorted order on the index of each MIDI short mesage structure in 
ascending order. After the buffer is played the index variable is set to last buffered MIDI 
short mesage structure?s index value plus one. 
The static buffer YF (sYF) protocol abandons the idea of unique indices and uses a 
saner unique datagram sequenceNumber. The protocol uses a variable named the 
expectedSequenceNumber. If an incoming datagram?s sequenceNumber is les than the 
expectedSequenecNumber then it is ignored since it must be a datagram copy. If the 
incoming datagram?s sequenceNumber is equal to expectedSequenceNumber then its 
MIDI short mesage structures are played imediately and the expectedSequenceNumber 
is incremented by one and then the buffer is searched for more data to play if it is 
nonempty. In the last case of the incoming datagram?s sequenceNumber being greater 
than the expectedSequenceNumber then the whole datagram is buffered in ascending 
order in buffer with the sequenceNumber as a key. In the last case after addition of a 
datagram, the bufer is checked to se if it is full, and if it is full then the data-grams? 
MIDI short mesage data is played imediately. sYF uses the honesty policy case with 
respect to delta times. 
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There are two types of RTP protocols available either with or without eror 
recovery. By eror recovery we mean building reliability into RTP by retransmision of 
lost data-grams. An eror is the loss of a datagram. We used RTP without eror recovery 
in the preliminary experiments. The RTP protocol used the index idea of CW and dYF. 
The SN-TCP protocol used the same data structures as the dynamic buffer 
algorithms CW and dYF and RTP. However, in reality, the idea of an index or packet 
sequence number is not needed by SN-TCP since it is reliable and al packets are received 
in the order transmited. We used the same index arithmetic with the TCP server as with 
the other algorithms that used indices so as not to give SN-TCP an unfair advantage. 
The echoing proces used CW, SN-TCP, and YF was to echo each nth datagram or 
packet. The client generates a timestamp for the datagram or packet with its current real 
time clock value. Upon receipt of an echo the client checks to make sure the echoed 
datagram or packet?s data is the same as the datagram or packet transmited for echo and 
if it was the same then it computes the RT otherwise the client would cause an 
exceptional condition. The client would maintain the minimum, average, and maximum 
RTs, and in the dynamic buffer cases would send the average and maximum echo time 
to the server. 
The four protocols and one protocol variation were implemented in the C 
language using the Microsoft Visual C/C+ 6.0 compiler. As aluded to earlier in the 
description of the algorithms client/server architecture was used. The client is a MIDI file 
format 0 or 1 sequencer. The sequencer transmits data as soon as a datagram or packet 
becomes full with m MIDI short mesage structures. 
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The CW and YF server implementation has thre sockets: a TCP socket for 
receiving control information, a UDP socket for receiving data-grams, and a UDP socket 
for sending and receiving echoed data-grams. The TCP socket and UDP receiving socket 
are handled by the select system cal. The server blocks until one of the sockets receives 
data. There are two types of TCP mesages either an OPEN mesage or a CLOSE 
mesage. An OPEN mesage sends the client?s parameters such as m, k, and n. The 
CLOSE mesage tels the server to shutdown the TCP socket and go back to the acept 
socket system cal to wait on another connection by a client. The server has two threads 
of execution an echo thread and a main MIDI mesage procesing thread. Table 3-A-1 
summarizes the protocols. 
Name Buffer Data Transport Control Transport 
CW Dynamic UDP TCP 
dYF Dynamic UDP TCP 
sYF Static UDP TCP 
SN-TCP Not Applicable TCP Not Applicable 
RTP Not Applicable UDP UDP 
Table 3-A-1 Preliminary Protocols 
 
The server machine was a Windows 98 personal computer (PC) with a Pentium 2 
450 MHz central procesing unit (CPU), 128 MB SDRAM, a Turtle Beach Montego 
A3D 64 voice PCI sound card, and Altec Lansing ACS 295 speakers with subwoofer. 
The client machine was a Windows XP Home Edition PC with a Pentium 4 2.26 GHz 
CPU, 512 MB RDRAM, a Turtle Beach Santa Cruz DSP sound card, and 
Harman/Kardon HK-695 speakers with subwoofer. The server machine had a 31.2 Kbps 
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dial-up link to the Internet and the client machine had an Asymmetric Digital Subscriber 
Line (ADSL) link to the Internet. Although the computers were only a few rooms apart in 
a residence, the network formed was a Wide Area Network (WAN). The dialup-link went 
along the analog part of the telephone line to West Point, GA, a trip of about 18 miles 
then on the Earthlink network to Atlanta, GA, then back to the house in LaGrange, GA, 
via the Earthlink/Bel South ADSL network. As was mentioned earlier, the client sends 
MIDI short mesages to the server to be played. The primary metric was the runtime at 
the server as measured to the nearest second. Trace route information is given below. 
Tracing route to user-2inid4o.dialup.mindspring.com [165.121.52.152] 
over a maximum of 30 hops: 
 
 1  <1 ms  <1 ms  <1 ms 172.16.0.254 
 2  15 ms  18 ms  14 ms user-120k01.dsl.mindspring.com [6.32.80.1] 
 3  14 ms  14 ms  15 ms acr01-vl-3.ga-atlanta0.ne.earthlink.net [207.69.143.1] 
 4  16 ms  15 ms  15 ms cor02-vl-1.ga-atlanta0.ne.earthlink.net [207.69.23.190] 
 5  14 ms  14 ms  14 ms dir10-g12-0-0.ga-atlanta0.ne.earthlink.net [209.165.96.18] 
 6  23 ms  21 ms  21 ms cisco-h0.wp-lag.mindspring.net [207.69.230.26] 
 7  23 ms  2 ms  21 ms acn02a.ga-westpoin1.ne.earthlink.net [207.69.14.22] 
 8 236 ms  190 ms  195 ms user-2inid4o.dialup.mindspring.com [165.121.52.152] 
 
Trace complete. 
 
Figure 3-A-3 Trace Route from WAN Client to WAN Server 
 
The experiments are scored using a system that awards four points for first place, 
thre points for second place, two points for third place, and one point for fourth place. 
When calculating the total points one point was awarded for each experiment instance in 
which the protocol was reliable. Two standard MIDI files were utilized, namely, one 
MIDI type 0 files: Trippygaia1.mid and one MIDI type 1 file: Flourish.mid. 
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File M CW RTP SN-TCP dYF 
Trippygaia1.mid 1 2 1 3 4 
 2 1 4 2 3 
 3 1 4 2 3 
 4 1 4 2 3 
Flourish.mid 1 2 1 3 4 
 2 2 1 4 3 
 3 2 1 4 3 
 4 1 4 2 3 
Points - 12 20 22 26 
Zero Loss Points - 0 4 8 5 
Total Points - 12 24 30 31 
Overall Rank - 4
th
 3
rd
 2
nd
 1
st
 
Table 3-A-2 Points Awarded to Algorithms and Overal Ranks 
 
As can be sen from Table 3-A-2 SN-TCP is clearly the only reliable protocol 
which is very important for MIDI over IP since as can?t be overemphasized MIDI is 
intolerant with respect to lost or out-of-order data. The CW protocol performed so poorly 
that it was dropped from further consideration. 
B. RTP and TCP Protocols 
In this section and the next section we make a transition away from protocols 
implemented in the programing language, C, and we utilize the interpreted platform 
independent language, Java. The reason we change languages is to take advantage of a 
unique design feature of Java Media Framework?s (JMF) implementation of RTP, which 
is further explained the next paragraph. Java has more inherent latency in most cases 
than C on the machines chosen for the subsequent experiments however Java is utilized 
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because of the elegance of the RTP implementation in this researcher?s opinion. The 
experimental work asociated with these protocols was done in a statisticaly significant 
number of trials. Al of the subsequent protocols used the honesty delta-time policy. 
The Real-Time Protocol (RTP) implementation in the JMF alows the user to 
abstract away the underlying transport protocol from the RTPManager object via the 
implementation of the interface RTPConnector. This means that the user can utilize either 
the Transmision Control Protocol (TCP) or the User Datagram Protocol (UDP) as the 
transport layer protocol. Since RTP has two channels, namely, a control channel and a 
data channel, and there are two Internet transport layer protocols, four possibilities exist 
for the channels and transport protocols of RTP as ilustrated by the following table. 
Control Data 
TCP TCP 
UDP TCP 
TCP UDP 
UDP UDP 
Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP 
 
Our usage of an alternative transport protocol to UDP with JMF?s implementation 
of RTP does not appear to be novel since previous researchers used the Stream Control 
Transport Protocol (SCTP) in a similar manner to our usage of TCP, but without the four 
cases of Table 3-B-1 [34]. 
These four RTP variations have been nicknamed T-TCP, UT-RTP, TU-RTP and 
U-RTP where the first leter is an abbreviation of the control channel transport protocol 
and the second leter is an abbreviation for the data channel transport protocol. 
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Practical MIDI streams such as those generated by real musicians or sequencers 
difer from real-time audio in that the MIDI streams consist of discrete or quantized 
events instead of continuous bit streams. The MIDI specification cals for a stream with a 
baud rate of 31250 bps, however, it is generaly fairly rare to generate MIDI short 
mesages at the maximum MIDI short mesage rate of les than or equal 3125 MIDI 
short mesages per second. Suppose Eve is playing a MIDI instrument at a metronome 
seting of 120 beats per minute (BPM) without using control mesages or pitch-bend 
mesages. Then at most Eve is generating two MIDI short mesages every half-second, a 
previous note off mesage and a next note on mesage. This is an ideal situation for 
reliable protocols that send a single packet at a time, since there is probably enough time 
betwen the send for the return acknowledgment before the next send. 
Application 
RTP 
UDP/TCP 
IP 
Table 3-B-2 Partial Protocol Stack for UT-RTP 
 
The various RTP protocols were implemented using JMF 2.0 and Java 1.4.0_01 
on Windows operating systems machines. We translated the simple and naive TCP 
protocol, SN-TCP, from the C version of the previous chapter without the echoing 
feature. Al the protocols were implemented using the same version of Java. The Nagle 
algorithm was disabled in some variations of T-RTP, UT-RTP-ND, TU-RTP-ND, and 
SN-TCP-ND by seting the TCP_NODELAY socket option to true. The Nagle algorithm 
was enabled in some variations of T-RTP, UT-RTP-NE, TU-RTP-NE, and SN-TCP-NE 
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by seting the TCP_NODELAY socket option to false. Table 3-5 ilustrates the various 
Nagle disabled/enabled relationships for T-RTP. 
T-RTP Protocol Control Data 
TNDTND-RTP ND ND 
TNETND-RTP NE ND 
TNDTNE-RTP ND NE 
TNETNE-RTP NE NE 
Table 3-B-3 T-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle 
Enabled 
 
Client/server architecture was used. The clients were both Musical Instrument 
Digital Interface (MIDI) sequencers that play and send a stream of MIDI short mesage 
to the server to be played. Since we are disabling the Nagle algorithm a relatively short 
byte stream was sent from client to server. Each RTP and TCP MIDI short mesage 
consisted of twelve bytes: a MIDI channel byte, MIDI command byte, two MIDI data 
bytes, and eight bytes of information that represented the delta time in miliseconds. A 
RTP or TCP packet consisted of 20 + 12 * m bytes where 20 is the number of bytes in the 
TCP header and m is the number of MIDI short mesages per packet. Next are a table of 
source code files and lines of code (LOC), and also a table of packet lengths. 
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Source Code File Lines of Code 
RTPMIDIClient.java (T-RTP) 599 
RTPMIDIServer.java (T-RTP) 344 
RTPMIDIClient.java (UT-RTP) 643 
RTPMIDIServer.java (UT-RTP) 372 
RTPMIDIClient.java (TU-RTP) 643 
RTPMIDIServer.java (TU-RTP) 372 
RTPMIDIClient.java (U-RTP) 336 
RTPMIDIServer.java (U-RTP) 401 
TCPMIDIClient.java 400 
TCPMIDIServer.java 247 
Total 4357 
Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U} 
and Y = {T, U} 
 
M 20 + 12 * M 
1 32 
2 44 
3 56 
4 68 
Table 3-B-5 RTP and TCP Number of MIDI Short Mesages and Packet Lengths in 
Bytes 
 
Some of the experiments were caried out over a period of days betwen March 
14, 2004 and March 28, 2004 and the other experiments were caried out over a period of 
days betwen October 10, 20003 and October 13, 2003. It is to be hoped that the Internet 
was relatively stable during the time frame of the experiments. The following tables show 
the value of m, the starting time and date, ending time and date of the sixty trials per 
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experiment, and the actual number of hours. One standard MIDI files was used: 
Trippygaia1.mid a MIDI type 0 file. 
M Starting Time/Date Ending Time/Date Actual Hours 
1 10/10/2003 05:09 PM EDT 10/10/2003 07:16 PM EDT 2.1157 
2 10/11/2003 08:05 AM EDT 10/11/2003 10:12 AM EDT 2.1160 
3 10/12/2003 10:14 PM EDT 10/12/2003 12:21 PM EDT 2.1205 
4 10/13/2003 07:12 AM EDT 10/13/2003 09:19 AM EDT 2.1216 
Totals   8.4738 
Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours 
 
M Starting Time/Date Ending Time/Date Actual Hours 
1 10/10/2003 02:42 PM EDT 10/10/2003 04:49 PM EDT 2.1245 
2 10/11/2003 01:04 PM EDT 10/11/2003 03:11 PM EDT 2.1259 
3 10/12/2003 02:51 PM EDT 10/12/2003 04:58 PM EDT 2.1214 
4 10/13/2003 11:42 AM EDT 10/13/2003 01:49 PM EDT 2.1204 
Totals   8.4922 
Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours 
 
M Starting Time/Date Ending Time/Date Actual Hours 
1 10/10/2003 08:52 PM EDT 10/10/2003 10:59 PM EDT 2.1197 
2 10/11/2003 10:16 AM EDT 10/11/2003 12:23 PM EDT 2.1158 
3 10/12/2003 12:39 PM EDT 10/12/2003 02:46 PM EDT 2.1170 
4 10/13/2003 09:22 AM EDT 10/13/2003 11:29 AM EDT 2.1178 
Totals   8.4703 
Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours 
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M Starting Time/Date Ending Time/Date Actual Hours 
1 10/10/2003 12:18 PM EDT 10/10/2003 02:25 PM EDT 2.1249 
2 10/11/2003 03:20 PM EDT 10/11/2003 05:27 PM EDT 2.1214 
3 10/12/2003 05:01 PM EDT 10/12/2003 07:08 PM EDT 2.1270 
4 10/13/2003 02:03 PM EDT 10/13/2003 04:10 PM EDT 2.1237 
Totals   8.4970 
 
Table 3-B-9 Trippygaia1.mid SN-TCP-NE Actual Runtime Hours 
 
M Starting Time/Date Ending Time/Date Actual Hours 
1 03/14/2004 04:49 PM EST 03/14/2004 06:30 PM EST 1.6789 
2 03/15/2004 01:01 AM EST 03/15/2004 02:45 AM EST 1.6797 
3 03/15/2004 12:21 PM EST 03/15/2004 02:02 PM EST 1.6761 
4 03/16/2004 10:14 AM EST 03/16/2004 11:55 AM EST 1.6747 
Totals   6.7094 
Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours 
 
M Starting Time/Date Ending Time/Date Actual Hours 
1 03/25/2004 01:49 PM EST 03/25/2004 01:49 PM EST 1.6738 
2 03/28/2004 02:28 PM EST 03/28/2004 02:28 PM EST 1.6790 
3 03/28/2004 04:14 PM EST 03/28/2004 04:14 PM EST 1.6748 
4 03/28/2004 06:37 PM EST 03/28/2004 06:37 PM EST 1.6788 
Totals   6.7064 
Table 3-B-11 Trippygaia1.mid TNETND-RTP Actual Runtime Hours 
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M Starting Time/Date Ending Time/Date Actual Hours 
1 03/24/2004 01:44 PM EST 03/24/2004 03:25 PM EST 1.6759 
2 03/24/2004 03:46 PM EST 03/24/2004 05:27 PM EST 1.6762 
3 03/24/2004 05:30 PM EST 03/24/2004 07:11 PM EST 1.6762 
4 03/25/2004 09:03 AM EST 03/25/2004 10:44 AM EST 1.6756 
Totals   6.7039 
Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours 
 
M Starting Time/Date Ending Time/Date Actual Hours 
1 03/21/2004 04:55 PM EST 03/21/2004 06:36 PM EST 1.6790 
2 03/22/2004 01:29 PM EST 03/22/2004 03:10 PM EST 1.6759 
3 03/22/2004 03:36 PM EST 03/22/2004 05:17 PM EST 1.6761 
4 03/22/2004 05:25 PM EST 03/22/2004 07:06 PM EST 1.6767 
Totals   6.7077 
Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours 
 
The same client and server setup mentioned previously was utilized in the 
experiments covered in this section. There are two hundred and twenty four tables 
appended to this disertation, namely, one hundred and twelve pairs of tables based on 
the hundred and twelve separate experiments can be found in Appendix J. The first table 
in a pair has the protocol, one of TNDTND-RTP, TNETND-RTP, TNDTNE-RTP, 
TNETNE-RTP, UT-RTP-ND, UT-RTP-NE, SN-TCP-ND or SN-TCP-NE, the number of 
trials, N, which is always sixty, the standard deviations, and the standard eror means. 
The second table in a pair has the means diference, the standard deviation of the means 
diference, the standard eror mean of the means diference, the Student?s t-statistic, 
(Protocol 1mean  ? Protocol 2 mean) / standard eror mean of the means diference, the 
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degres of fredom, DF, which are always N ? 1 that equals 59, and the two-tailed 
significance of the t-statistic. A two-tailed significance of ? 0.05 means that one of the 
protocols outperformed the other statisticaly speaking. The beter of the two protocols is 
determined by the sign of the t-statistic: - indicates that first protocol wins and + means 
that the second protocol wins. 
We do not report any experimental results with TU-RTP and U-RTP since these 
protocols were so unreliable that they failed in every atempted experiment. We also 
created a hybrid protocol betwen U-RTP and the Young and Fujinaga (YF) protocol of 
chapter 6 and this protocol (YF/U-RTP) also failed for choices of the number of copies 
of each datagram transmited equal one, two, and four. By failure, we mean at least one 
datagram was lost. 
The following tables distil the information from the two hundred twenty four 
tables mentioned above. The numbers in the row and column headings stand for a 
protocol such as 1=TNDTND-RTP. The other leters have the following meanings: 
N=Not applicable, D=Does not count, 0=row and column protocols are statisticaly 
equivalent, row protocol is statisticaly beter than column protocol if <= -0.05, and 
column protocol is statisticaly superior to row protocol <= +0.05. 
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P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N 0.08 0.42 -0.91 0.2 -0.49 D D D 0.84 -0.30 
TNETND-RTP 2  N -0.03 -0.01 -0.83 -0.04 D D D -0.03 -0.00 
TNDTNE-RTP 3   N -0.29 0.06 -0.10 D D D -0.19 -0.00 
TNETNE-RTP 4    N 0.12 -0.46 D D D 0.79 -0.22 
UT-RTP-ND 5     N -0.04 D D D -0.04 -0.00 
UT-RTP-NE 6      N D D D 0.29 -0.92 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 
U-RTP 9         N D D 
SN-TCP-ND 10          N -0.04 
SN-TCP-NE 11           N 
Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance 
 
P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N 0.32 0.68 0.46 0.32 -0.51 D D D 0.29 -0.98 
TNETND-RTP 2  N 0.53 0.49 0.32 -0.42 D D D 0.28 -0.86 
TNDTNE-RTP 3   N 0.04 0.11 -0.09 D D D 0.00 -0.00 
TNETNE-RTP 4    N 0.18 -0.08 D D D 0.00 -0.00 
UT-RTP-ND 5     N -0.04 D D D 0.90 -0.00 
UT-RTP-NE 6      N D D D 0.03 0.34 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 
U-RTP 9         N D D 
SN-TCP-ND 10          N -0.00 
SN-TCP-NE 11           N 
Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance 
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P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N 0.47 -0.96 0.99 -0.45 -0.06 D D D 0.69 -0.08 
TNETND-RTP 2  N -0.00 -0.00 -0.20 -0.00 D D D -0.00 -0.04 
TNDTNE-RTP 3   N 0.66 -0.40 -0.00 D D D 0.00 -0.07 
TNETNE-RTP 4    N -0.38 -0.00 D D D 0.01 -0.07 
UT-RTP-ND 5     N -0.79 D D D 0.27 -0.01 
UT-RTP-NE 6      N D D D 0.00 -0.27 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 
U-RTP 9         N D D 
SN-TCP-ND 10          N -0.04 
SN-TCP-NE 11           N 
Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance 
 
P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N -0.31 -0.70 -0.02 -0.14 -0.00 D D D -0.08 -0.02 
TNETND-RTP 2  N 0.05 0.53 -0.83 -0.99 D D D 0.52 -0.52 
TNDTNE-RTP 3   N -0.50 -0.33 -0.20 D D D 0.84 -0.11 
TNETNE-RTP 4    N -0.40 -0.03 D D D 0.62 -0.10 
UT-RTP-ND 5     N 0.76 D D D 0.32 -0.67 
UT-RTP-NE 6      N D D D 0.00 -0.30 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 
U-RTP 9         N D D 
SN-TCP-ND 10          N -0.07 
SN-TCP-NE 11           N 
Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance 
 
C. ATCP and ATCP-TCP Protocols 
The motivation for developing more protocols is to atempt to find reliable 
protocols, which with certain choices of the parameters can beat SN-TCP as far as the 
critical variable runtime at server, is concerned. This author developed a new protocol 
caled the Almost TCP (ATCP) protocol, which can be characterized as a stop and wait 
and selective repeat quasi-transport level protocol. It uses the User Datagram Protocol 
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(UDP) as its oficial transport level protocol. ATCP gets its name from being very close 
in performance to TCP for the MIDI over IP application. ATCP does share some other 
similarities with TCP such as they both use acknowledgments, sliding windows with 
advertisements, are both reliable and deliver data in the order transmited, and both use 
Jacobson?s algorithm for computing the acknowledgment timeout (se Computer 
Networks Third Edition by Andrew S. Tanenbaum page 541 for a good description of 
Jacobson?s algorithm and TCP in general). ATCP sends a stream of UDP data-grams that 
ultimately consists of a byte stream. TCP transmits a stream of IP-packets that in the final 
analysis is a byte stream. An ATCP sequence number refers to a given UDP datagram, 
whereas a TCP acknowledgment and sequence number refer to a single byte in the 
transmision byte stream. ATCP uses a datagram buffer size (window) advertisement that 
is equivalent to the number of data-grams betwen acknowledgments. The current 
version uses a fixed number of data-grams betwen acknowledgments which we wil 
designate by x and cal the protocol ATCP-x where currently 1 ? x ? 40. The MIDI short 
mesage and datagram format are given in Figure 3-C-1 and Figure 3-C-2. 
 0          1          2          3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|   Chanel  |   Comand  |   Data1   |  Data2   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Delta Time (MIDI Ticks)          ) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             MIDI Short Mesage          | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 3-C-1 ATCP-x MIDI Short Mesage Format 
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 0          1          2          3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|    DBS   |    DC   |   EOS   |   Status  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|              Sequence Number           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Sequence Number Mask High         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Sequence Number Mask Low         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|              Time Stamp High           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|              Time Stamp Low           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             MIDI Short Mesage 1         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|             MIDI Short Mesage 2         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                 ?               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|            Final MIDI Short Mesage        | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 3-C-2 ATCP-x Datagram Format 
 
Figure 10-2 requires further elaboration. DBS is the Data Buffer Size, which is an integer 
in the range 1 to 64. DC is the Datagram Count, which tels the server how many data-
grams the client is curently bufering, e. g. the total number of data-grams the server 
should receive. EOS is the End of Stream flag that is 0 if not end of file and 1 to indicate 
the end of the file. Status is an enumeration that represents a data datagram or 
acknowledgement datagram or a negative acknowledgement datagram. The MIDI short 
mesage is the same as Figure 3-C-1. 
In some preliminary experiments we used a variation of the protocol that utilized 
a variable number of data-grams betwen acknowledgments with a slow start algorithm 
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and exponential back-off mechanism, somewhat similar to TCP and TCP?s congestion 
window mechanism. However, this variant was later abandoned in favor of a simpler and 
eror fre version. The protocol sends x data-grams then waits for an acknowledgment or 
a timeout period to expire. If the timeout period expires up to n negative 
acknowledgments are sent before the protocol signals failure and terminates. For now the 
value of n is sixten. The timeout period is variable (dynamic) and is calculated by 
Jacobson?s algorithm that is based on the round-trip times. ATCP-x also uses a bit vector 
or bit mask that is named by us the sequence number mask which tels which data-grams 
have been received by the receiver. Suppose the curent datagram buffer size is 32 and 
the receiver did not receive data-grams 2 and 4 then the sequence number mask would be 
as follows in binary and then hex: 11010111111111111111111111111111 (base 2) = 
D7FFFF (base 16). The datagram count returned to the receiver along the sequence 
number mask would be equal to 30. A significant way that ATCP-x difers from TCP is 
that ATCP-x is asymmetric and has a strict sender and receiver relationship. TCP can 
piggyback data to the original sender on each acknowledgment, so that the receiver can 
also function as a sender. Another way that ATCP-x and TCP can be diferentiated is that 
ATCP-x is esentialy a connectionles protocol like the underlying UDP protocol. 
However, TCP is a connection-oriented protocol. 
ATCP-x was implemented in Java using Java version 1.4.0_01. The fundamental 
data objects in the program were MyATCPShortMesage and ATCPacket. The former 
data object encapsulated the data structure in Figure 3-C-1 and the later data object was 
an implementation of the data structure in Figure 3-C-2. MyATCPShortMesage has two 
constructors a default constructor and a constructor that alows initialization of al the 
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data fields, geters for al the data fields, a getBytes method, and a fromBytes method. The 
getBytes was used to convert a MyATCPShortMesage object into a byte stream and the 
fromBytes was utilized to convert a byte stream to a MyATCPShortMesage object. 
ATCPacket has two constructors one that has an integer parameter that is m, the number 
of MIDI short mesages per ATCPacket, and another for fully populating the packet 
with al its data members. ATCPacket has geters and seters for al its data fields. It also 
has the getBytes and fromBytes methods. 
We used two threads in both the client and the server. One thread was a producer 
of MIDI short mesages and the other was a consumer of MIDI short mesages. A MIDI 
short mesage vector was shared by both threads so synchronized code blocks had to be 
used to read or write to the vector, which was, in reality, a first-in first-out (FIFO) queue. 
In the server the networking thread was the producer of the MIDI short mesages and the 
player thread was the consumer. Contrary to the server case, the sequencer was the 
producer in the client and the networking thread was the client?s consumer. One or more 
active sensing MIDI short mesages were used as the end of file indicator or sentinel flag 
mesage. An active sensing mesage in the MIDI world is somewhat analogous to a no 
operation op-code in the universe of computer asembly languages. We used busy ? slep 
loops in the networking threads and the player thread. The more elegant Java object 
notification was later implemented. Each datagram or packet contained m MIDI short 
mesages where 1 ? m ? 16. Below is a table of the ATCP-x source code files and the 
lines of code. 
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Source Code File Lines of Code 
ATCPMIDIClient.java 519 
ATCPMIDIServer.java 543 
Total 1062 
Table 3-C-1 ATCP-x Source Code Files and Lines of Code 
 
Fiften experiments of sixty trials per experiment were caried over the period 
from November 2 to November 10, 2003. The next thre tables contain the value of m 
used in the experiment and the ending time of the experiment for each of the thre 
protocols ATCP-32, SN-TCP-ND, and SN-TCP-NE. One standard MIDI type 0 file named 
Trippygaia1.mid was used through out the experiments. Remember that a standard MIDI 
type 0 file consists of a single track. The same experimental setup of clients and servers 
were used in this report as those reported in the pervious chapters. We again give the 
starting and ending times of the experiments, and the actual runtimes in hours remind the 
reader that the Internet is typicaly thought of as being diurnal with peak times betwen 
9:00 AM and 12:00 PM and 7:00 PM and 10:00 PM. 
M Starting Date/Time Ending Date/Time Actual Runtime 
4 11/09/2003 10:35 AM 11/09/2003 12:42 PM 2.1167 
5 11/09/2003 12:52 PM 11/09/2003 02:59 PM 2.1167 
6 11/09/2003 05:25 PM 11/09/2003 07:31 PM 2.1000 
7 11/10/2003 10:34 AM 11/10/2003 12:40 PM 2.1000 
8 11/10/2003 12:49 PM 11/10/2003 02:55 PM 2.1000 
Totals   10.5334 
Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
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M Starting Date/Time Ending Date/Time Actual Runtime 
4 11/02/2003 05:59 PM 11/02/2003 08:06 PM 2.1167 
5 11/03/2003 11:28 AM 11/03/2003 01:35 PM 2.1167 
6 11/04/2003 10:46 AM 11/04/2003 12:53 PM 2.1167 
7 11/06/2003 10:59 AM 11/06/2003 01:06 PM 2.1167 
8 11/08/2003 02:39 PM 11/08/2003 04:46 PM 2.1167 
Totals   10.5835 
Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 
M Starting Date/Time Ending Date/Time Actual Runtime 
4 11/02/2003 08:18 PM 11/02/2003 10:25 PM 2.1167 
5 11/03/2003 01:44 PM 11/03/2003 03:51 PM 2.1167 
6 11/04/2003 01:08 PM 11/04/2003 03:15 PM 2.1167 
7 11/06/2003 02:56 PM 11/06/2003 05:03 PM 2.1167 
8 11/08/2003 05:05 PM 11/08/2003 07:12 PM 2.1167 
Totals   10.5835 
Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 
Appended to this disertation are thirty tables and fiften graphs in Appendix K 
that cover the ATCP-32 experiments. We compared ATCP-32 to SN-TCP-ND and SN-
TCP-NE, and SN-TCP-ND to SN-TCP-NE. We found that in the m = 6 and 8 cases that 
ATCP statisticaly outperformed SN-TCP-ND and that in the m = 6, 7, and 8 cases was 
the statistical winner versus SN-TCP-NE. In al the other cases the protocols were 
statisticaly equivalent. ATCP-x does not perform that wel against SN-TCP for values of 
m les the thre or equal 3. 
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M Starting Date/Time Ending Date/Time Actual Runtime 
4 11/15/2003 12:13 PM 11/15/2003 02:20 PM 2.1167 
5 11/15/2003 02:26 PM 11/15/2003 04:32 PM 2.1000 
6 11/16/2003 03:22 PM 11/16/2003 05:28 PM 2.1000 
7 11/19/2003 01:24 PM 11/19/2003 03:30 PM 2.1000 
8 11/19/2003 03:34 PM 11/19/2003 05:40 PM 2.1000 
Totals   10.5167 
Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 
Table 3-C-5 displays the facts that the ATCP-40 experiments were conducted 
from November 15, 2003 to November 19, 2003. There are thirty tables and fiften 
graphs for the ATCP-40 results in Appendix L. We compare ATCP-40 to SN-TCP-ND, 
SN-TCP-NE, and ATCP-32. ATCP-40 statisticaly beat SN-TCP-ND in the m = 5 and m = 
8 cases, and SN-TCP-NE in the m = 5, 6, 7, and 8 cases. ATCP-40 and ATCP-32 
statisticaly tied in al cases. 
Figure 3-C-4 shows a statistical significance versus m graph for ATCP-40 versus 
SN-TCP-ND and ATCP-40 versus SN-TCP-NE. The results for ATCP-40 versus ATCP-32 
are not shown due to the fact that they tied and there is a sign reversal in one of the means 
diferences and the graph would not be consistent. 
The ATCP-TCP protocol is a multiply threaded version of SN-TCP using the 
ATCP notion of MIDI producer and consumer threads. There are two variations of ATCP-
TCP, namely, ATCP-TCP-ND and ATCP-TCP-NE with the now usual ND standing for 
Nagle algorithm disabled and NE standing for the Nagle algorithm enabled. Again we 
used busy ? slep loops rather than the more elegant object notification or event-handling 
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scheme of Java for the same reasons as in the ATCP-x case. Table 3-C-6 shows the 
source code files for ATCP-TCP. 
Source Code File Lines of Code 
TCPMIDIClient.java 458 
TCPMIDIServer.java 457 
Total 915 
Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code 
 
M Starting Date/Time Ending Date/Time Actual Runtime 
5 11/22/2003 01:45 PM EST 11/22/2003 03:51 PM EST 2.1000 
6 11/24/2003 07:17 AM EST 11/24/2003 09:23 AM EST 2.1000 
7 12/01/2003 10:53 AM EST 12/01/2003 12:59 PM EST 2.1000 
8 12/02/2003 11:57 AM EST 12/02/2003 02:03 PM EST 2.1000 
Totals   8.4000 
Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI 
Type 0 File 
 
M Starting Date/Time Ending Date/Time Actual Runtime 
5 12/07/2003 12:38 PM EST 12/07/2003 03:44 PM EST 2.1000 
6 12/08/2003 10:41 AM EST 12/08/2003 01:47 PM EST 2.1000 
7 12/13/2003 03:59 PM EST 12/13/2003 06:05 PM EST 2.1000 
8 12/21/2003 11:57 AM EST 12/21/2003 02:03 PM EST 2.1000 
Totals   8.4000 
Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI 
Type 0 File 
 
Table 3-C-7 and Table 3-C-8 show the ATCP-TCP experiments as being over 
time period beginning on November 22, 2003 and ending on December 21, 2003. In 
Appendix M are thirty-two tables and sixten graphs of the ATCP-TCP-ND experiments. 
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ATCP-TCP-ND statisticaly outperformed SN-TCP-ND and SN-TCP-NE in al of the 
experimental cases m = 5, 6, 7, and 8. ATCP-TCP-ND was the statistical winner over 
ATCP-32 and ATCP-40 in the m = 7 and 8 instances. From these results we can conclude 
that a multiply threaded TCP protocol is to be prefered to any of the previously 
discussed protocols. These results sem to vindicate the notion of MIDI short mesage 
consumer and producer threads. 
There are forty tables and twenty graphs related to the ATCP-TCP-NE 
experiments in Appendix N. ATCP-TCP-NE was victorious over SN-TCP-ND in the m = 
7 case and SN-TCP-NE in al four cases, namely, m = 5, 6, 7, and 8. ATCP-TCP-NE 
outperformed ATCP-40 in the m = 6 case. ATCP-TCP-ND was the statistical winner over 
ATCP-TCP-NE in the last case m = 8. The preceding results are displayed in Tables 3-C-
9 to 3-C-13. 
Protocol/Protocol 1 2 3 4 5 6 
1-ATCP-32 N 0.34 N N -0.95 -0.26 
2-ATCP-40  N N N -0.53 -0.08 
3-ATCP-TCP-ND   N N N N 
4-ATCP-TCP-NE    N N N 
5-SN-TCP-ND     N -0.07 
6-SN-TCP-NE      N 
Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 4 
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Protocol/Protocol 1 2 3 4 5 6 
1-ATCP-32 N 0.36 0.34 0.29 -0.91 -0.54 
2-ATCP-40  N 0.73 0.32 -0.00 -0.00 
3-ATCP-TCP-ND   N 0.33 -0.00 -0.00 
4-ATCP-TCP-NE    N -0.06 -0.02 
5-SN-TCP-ND     N -0.07 
6-SN-TCP-NE      N 
Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 5 
 
Protocol/Protocol 1 2 3 4 5 6 
1-ATCP-32 N -0.18 -0.36 -0.33 -0.00 -0.00 
2-ATCP-40  N 0.20 0.04 -0.74 -0.00 
3-ATCP-TCP-ND   N 0.55 -0.00 -0.00 
4-ATCP-TCP-NE    N -0.19 -0.00 
5-SN-TCP-ND     N -0.07 
6-SN-TCP-NE      N 
Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 6 
 
Protocol/Protocol 1 2 3 4 5 6 
1-ATCP-32 N -0.30 0.04 0.15 -0.06 -0.00 
2-ATCP-40  N 0.00 0.08 -0.01 -0.00 
3-ATCP-TCP-ND   N -0.55 -0.00 -0.00 
4-ATCP-TCP-NE    N -0.02 -0.00 
5-SN-TCP-ND     N -0.53 
6-SN-TCP-NE      N 
Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 7 
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Protocol/Protocol 1 2 3 4 5 6 
1-ATCP-32 N -0.33 0.00 -0.72 -0.01 -0.00 
2-ATCP-40  N 0.00 0.83 -0.00 -0.00 
3-ATCP-TCP-ND   N -0.00 -0.00 -0.00 
4-ATCP-TCP-NE    N -0.14 -0.03 
5-SN-TCP-ND     N -0.62 
6-SN-TCP-NE      N 
Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 8 
 
For this chapter 1,977 lines of Java code were writen and 59 hours and one minute 
of network time was utilized to perform the necesary ilustrated experiments. Again this 
does not count the network time used in debugging the implementations. 
D. A First Approximation at a Collaboration System 
A Java client/server for the CW system was built early in the research and 
subsequently discarded. This section describes the system. Figure 3-D-1 shows the 
opening dialog box of the client. The user must first register a username. The server 
checks to se if this username is currently unused and if it is unused a mesage box 
appears stating the username is valid then the user must specify a pasword, a UDP port 
number (0 ? 65535), and a musical instrument. 
After the registration proces is completed, four studio room frames, a chat frame, 
and a musician?s frame appear as in Figure 3-D-2. There are thre forms of chat: 
broadcast, multicast, and unicast. Broadcasted chat goes to al musicians regardles of 
their studio room location, multicasted chat goes to a single studio room, and unicasted 
chat goes to a single musician. The studio room frames have a ?911? button and an 
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?Enter? button. The ?911? button is to turn al MIDI notes off in case of a stuck note. The 
?Enter? button alows a musician to enter the given studio room. 
After a musician enters a studio room the client appears as shown in Figure 3-D-3. 
Only the particular studio room frame, the chat frame, and the musicians-frame are open 
in the figure. The studio room frame has thre buttons ?Exit?, ?Piano?, and ?Send?. The 
?Exit? button causes the musician to exit the current studio room and the state of the 
client is returned to the state shown in Figure 3-D-2. The ?Piano? button causes a host 
and port dialog to appear and after selecting a host and port a piano keyboard appears. 
This alows the user to send piano notes to another musician in the same studio room. 
Figure 3-D-4 shows a studio room frame after the ?Piano? button has been presed. 
Figure 3-D-5 shows a studio room after the ?Send? button has been presed and after the 
host and port dialog. The figure shows a standard Java file chooser dialog from which the 
user can open, play, and transmit a MIDI file using the built-in MIDI sequencer. 
The client/server system consists of the following Java source code files: 
Central.java 372 LOC, Client.java 1259 LOC, ClientFrameInterface.java 8 LOC, and 
RommFrameInterface.java 3 LOC for a grand total of 1642 LOC. 
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Figure 3-D-1 Musician Registration Dialog 
 
 
 
Figure 3-D-2 Music Studio (House) Metaphor Client 
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Figure 3-D-3 Music Studio after a Musician Has Entered a Room 
 
 
 
Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input 
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Figure 3-D-5 Standard Java Open File Dialog 
 
E. Java and JINI Client/Server Duet System 
JINI is the Java based service discovery specification that was developed in the late 
1990s by Sun Microsystems which was described briefly in Chapter 2. We used JINI to 
lookup the hostname and port of the duet system central server. This particular duet 
system consisted of two peers that communicate with one another and the central server. 
The central server relays peer IP addreses and server port numbers to interested peers. 
This system is very close to the Windows version of the final duet system, but has some 
latency saving change such as not using a virtual keyboard. 
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F. Another Musical Duet System Failure 
In this section we tried to develop another musical duet collaboration-system. The 
software engineering decisions required in creating a viable MIDI over IP musical duet 
system are as follows: 
1. Choosing a network MIDI over IP protocol 
2. Choosing an implementation programing language 
3. Choosing the operating system(s) to be used 
4. Choosing the MIDI interface hardware 
5. Choosing the computer platform(s). 
We used a series of quantitative experiments to automaticaly decide betwen several 
diferent MIDI over IP protocols. These protocols are described in another paper and 
consisted of TCP based RTP protocols, a simple and na?ve TCP protocol, and a 
multithreaded TCP protocol [9]. Our MIDI over IP protocol is a multithreaded variation 
of TCP that utilizes MIDI short mesage producer and consumer threads. This protocol 
was found to be superior to the single thread TCP protocol and TCP based RTP protocols 
using two metrics performance that we considered useful. 
We basicaly had two programing languages to choose from, namely, C and 
Java. Java became a logical choice with the advent of Java 1.5.0, which supports MIDI 
input on the PC platform. The programing language choice was more dificult and les 
straightforward than the quantitative protocol experiments. We could have used C+ also 
as a compromise betwen C and Java. In theory, C code should have the least amount of 
latency of the thre previously mentioned programing languages. In order to determine 
the implementation programing language with an aceptable latency, we first 
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approached the problem with stripped down versions of the software that did not involve 
networking. We figured that if the local latency was unaceptable then there was no need 
to add networking to the equation. We found that both C and Java versions satisfied the 
local latency criterion using several diferent operating systems and hardware platforms. 
The next step was to add networking. 
The operating systems that were available to us were Windows 98, Windows XP, 
and Mac OS X. We also had aces to Sun Solaris 9 operating system; however, due to 
the lack of MIDI input hardware for Sun Solaris 9, that operating system was ruled out of 
the game. The MIDI subsystem of the audio system of OS X uses high priority kernel 
threads to execute the MIDI calback functions, which are very desirable low latency 
characteristics of OS X. 
In the world of desktops and workstations there are esentialy two predominant 
MIDI architectures: the MIDI subsystem devised by Apple for OS X and the much older 
and perhaps more mature Windows 95 multimedia system which has been enhanced 
several times in its decade long existence. First we start our discussion with the OS X 
MIDI subsystem. This subsystem uses client/server architecture. The first layer is the I/O 
toolkit of the kernel then the MIDI drivers then the MIDI server and clients, and finaly 
the application. The subsystem has MIDI clients, MIDI sources, and MIDI destinations; 
MIDI input ports, and MIDI output ports. An application creates a MIDI client then it can 
add a MIDI input and/or output port. The MIDI input port cals back the application 
every time MIDI data is input into the port. MIDI data is encapsulated in a MIDI packet 
that has a length, timestamp, and the actual MIDI data bytes. MIDI packets are placed in 
a list structure that consists of one or more MIDI packets. Now onto the Microsoft MIDI 
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subsystem, which has MIDI input and output devices that have certain wel defined 
capabilities. You open a MIDI input and/or output device then start the device, transmit 
or receive data; and then stop and close the device. This very simple architecture alows 
for either window or function cal back entities. The fundamental unit of the MIDI 
transfer under Windows 9x+ is a double word, which can encapsulate al MIDI short 
mesages and even system exclusive mesages. 
On the Windows 98 and Windows XP machines we had a choice of either using a 
MIDI to game port sound card adapter or a MIDI-Audio MIDI-Sport 2x2 MIDI to USB 
interface. On the OS X machines we were forced to use the MIDI-Audio MIDI-Sport 2x2 
MIDI to USB interfaces only. Using qualitative tests, we found that either of the 
interfaces had satisfactory latency on a Windows OS machine. 
The computing platforms available to us were two Del computers at the primary 
researcher?s house, some laptops, some older Pentium 3 systems, and two G4 dual 
procesor PowerMacs. One Del computer was a 450 MHz Pentium 2 system with 128 
MB of RAM, 12 GB hard-drive, and a Turtle Beach Montego sound card that ran 
Windows 98. The other Del computer was a 2.26 GHz Pentium 4 with 512 MB of RAM, 
80 GB hard-drive, and Turtle Beach Santa Cruz DSP sound card that ran Windows XP 
Home Edition. 
We have isolated a number of sources of latency in MIDI over IP. Delays 
originate in the MIDI controller, the MIDI to computer interface, scheduling delays in the 
MIDI kernel of the operating system, programing language latency, sound card latency, 
network propagation, and sound propagation latency to the listener?s ear. By carefully 
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choosing hardware, software, and the network most of these sources of latency can be 
kept to aceptable minimums. 
The MIDI hardware configuration on al machines is shown in Figure 3-F-1. The 
MIDI data emanates from a MIDI controller such as a guitar synthesizer, MIDI keyboard, 
or MIDI wind controller. Then the data goes into a MIDI/USB converter via a MIDI 
input port into the computer through the MIDI kernel of the operating system, out a MIDI 
output port on the MIDI/USB converter into a tone generator, and finaly via an audio 
connection into a set of amplified speakers or an amplifier. 
The software proces or thread architecture for the duet system is shown in Figure 
3-F-2. Each of the six central boxes represents a heavyweight thread (UNIX proces) in 
the user addres space and the outermost boxes are the MIDI kernel threads of OS X. The 
figure shows two peers communicating by TCP/IP. The MIDI data flow is from the MIDI 
main proces which is responsible for creating a MIDI client and MIDI input and output 
ports, and connecting the MIDI input port to a MIDI source into the MIDI kernel and 
vice versa. Also a MIDI destination is selected is by the MIDI main proces. The MIDI 
data flows from the MIDI kernel into MIDI send TCP proces and over the wire to a 
peer?s MIDI receive TCP proces. We used lightweight user space threads under 
Windows and heavyweight threads (proceses) under Mac OS X. 
We developed a number of Java and C prototypes of the system on the Windows 
platform. On this platform we included a central server to take care of registration of the 
peers in the peer-to-peer network. This way a musician could utilize another musician?s 
system wide username to find a duet partner. Two of the prototypes, one in Java, and the 
other using a Java native method writen in C utilized the JINI 1.0 specification to handle 
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the job the central server discovery. This made it unnecesary for the end-user to type the 
central server?s hostname or IP addres and port number into the program. JINI is a 
service discovery protocol that is wel suited for use on a communication network for 
finding local services. The central server concept was also used for chating betwen the 
duet musician pairs. 
The Windows software had a graphical user interface that consisted of a virtual 
piano keyboard that showed the local and remote notes being played and also had a 
useful feature to show the instruments being played by a MIDI sequence. Each MIDI 
channel had its own color. The virtual keyboard could also be used as a ?virtual? MIDI 
controller by selecting a menu item. The current software on the PowerMac platform is 
purely command line driven, however, this situation wil be remedied in the near future. 
We performed quantitative experiments using a statisticaly smal sample space of 
ten experimental instances per two MIDI sequences to be transmited to determine the 
time required for the sequences to be played localy on the destination machine or over a 
LAN on the destination machine. Table 3-F-1 shows the time in seconds required to play 
the MIDI sequences on the destination machine with no networking involved. Table 3-F-
2 shows the playing time at the destination for two MIDI sequences over a LAN that 
involved the Windows 98 machine above as the destination (receiver) and the Windows 
XP from above as the source (sender). A MIDI standard format 0 file is a sequence, 
which consists of one track, whereas a MIDI standard format 1 file consists of one or 
more tracks to be played simultaneously. In each case the sequence required more time to 
play over the LAN than localy which is to be expected due to network latency. 
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Sequence MIN AVG MAX STD 
Format 0 66.7 66.8 67.3 0.2 
Format 1 89.0 89.2 90.0 0.4 
Table 3-F-1 MIDI Sequence Playing Time Localy 
 
Sequence MIN AVG MAX STD 
Format 0 67.2 67.4 67.4 0.1 
Format 1 89.3 89.4 89.5 0.1 
Table 3-F-2 MIDI Sequence Playing Time on a LAN 
 
 
Figure 3-F-1 MIDI Hardware Configuration 
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Figure 3-F-2 MIDI Software Configurations 
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CHAPTER 4 RTP AND TCP PROTOCOLS 
A. Introduction 
In this chapter we discus the succesful quantitative study of RTP and TCP 
protocols. Al of our MOIP protocols utilized TCP as the underlying transport layer 
protocol due to the intolerance of MIDI for lost or out-of-order data. This inability to 
handle unreliable data delivery is due to the fact that a lost or out-of-order MIDI short 
mesage can have a catastrophic efect on a remote performance. Suppose the MIDI short 
mesage that turns off a certain note is lost then that note wil sound indefinitely, and it is 
dificult for a musician to turn off a stuck note. The same situation can occur if the MIDI 
short mesage to turn a note off arives before the MIDI short-mesage to turn the note 
on. We chose to use TCP rather than the newer reliable transport protocol the Stream 
Control Transport Protocol (SCTP) since TCP is ubiquitous and SCTP is just gaining 
aceptance [11]. A unique design feature of the Java Media Framework, which is a set of 
Java interfaces and objects that alow a Java application or applet to read or write 
streaming media such as audio or video using RTP, afords a choice of the underlying 
transport protocol for the JMF RTP implementation. 
As was stated earlier RTP has two information channels available: one for control 
and one for data. Since there are two transport layer protocols that are readily available to 
the JMF version of RTP, namely, TCP and UDP, and there are two communication 
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channels in RTP, then there are four combinations of transport layer protocol and 
channels as shown in Table 4-1. 
# Control Channel Data Channel 
1 UDP UDP 
2 UDP TCP 
3 TCP UDP 
4 TCP TCP 
Table 4-A-1 Channel and Transport Layer Protocols for RTP 
 
From a preliminary set of experiments, we were able to eliminate 1 and 3 due to 
unreliability. Also, we have two states of the Nagle algorithm: either it was enabled or 
disabled. We nicknamed our 6 RTP based protocols UT-RTP-ND, UT-RTP-NE, T-
RTP-NDND, T-RTP-NDNE, T-RTP-NEND, and T-RTP-NENE, where the prefix 
UT meant UDP control channel and TCP data channel and ND stood for Nagle disabled 
whereas NE denoted that the Nagle algorithm was enabled. The baseline protocol was a 
vanila variation of TCP, which we chose to cal simple and na?ve TCP, e.g. SN-TCP-ND 
and SN-TCP-NE. In addition another branch of the TCP tre of protocols was used which 
we refer to as MIDI producer and consumer thread TCP, e.g. PC-TCP-ND and PC-TCP-
NE. PC-TCP is multithreaded and thus is able to play a MIDI command localy 
concurrently with possibly sending the command over the network. This means that our 
experimental protocol basis set consisted of 10 protocols. 
The data structure that was transmited and received by the protocols consisted of 
a MIDI short mesage and a delta-time in miliseconds. The MIDI short mesage was 
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composed of a channel byte, a command byte, and two data bytes. The delta-time was a 
Java long, which is 8 bytes or 64 bits in length. There was m of these data structures per 
packet where m was 1, 2, 3, or 4. The following figure ilustrates the preceding data 
structure. 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|   Chanel  |   Comand  |   Data1   |  Data2   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|         Delta-Time Hi (Miliseconds)         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|         Delta-Time Lo (Miliseconds)         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Figure 4-A-1 MIDI Short Mesage Format and Delta-Time 
 
There are two diferent strategies that can be used as far as the delta-times that a 
sender reports are concerned. Either the delta-times can be initialized to zero, in which 
case we cal this dishonesty or lying delta-time policy, or the true delta-time betwen 
MIDI short mesages is specified, and this sort of policy is caled the honesty delta-time 
policy. 
B. Experimental Procedure 
Using the 10 protocols of the previous section, we utilized two networks and 
conducted 60 experiments per network per protocol per value of m (which you wil recal 
was the number of MIDI short mesages per packet). We used m = 1, 2, 3, and 4. So this 
meant we performed 2 * 10 * 60 * 4 = 4800 experimental instances. After consulting 
with a statistician, we decided to use a statisticaly large number of experiments [47]. In 
this set of experiments we utilized the dishonesty delta-time policy of the previous 
section. 
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The networks we used were a LAN and a WAN with a dialup link and an 
asymmetric digital subscriber line (ADSL) leg. The computers that formed the LAN and 
WAN were only a few fet apart in a residence, the WAN formed approximately 150 
miles in wired distance. Both endpoints of the connections were Del computers. The 
dialup computer was a Windows 98 machine with a 450 MHz Pentium 2 procesor, 128 
MB of RAM, and Turtle Beach Montego sound card. The other computer was a Windows 
XP Home Edition box with a 2.26 GHz Pentium 4 procesor, 512 MB RAM, and Turtle 
Beach Santa Cruz DSP sound card. The dialup baud rate was a constant 31.2 kbps 
throughout the experiments. 
We were interested in acumulating two metrics to measure the performance of 
each protocol. The first and easiest to understand metric was the time required to play a 
MIDI format 0 file, which had been sequenced and transmited over the Internet, on the 
destination host. A MIDI (format 0) file consists of a single track, whereas the other 
common MIDI (format 1) file has one or more tracks, which are to be played 
simultaneously. We want these numbers to be close to the time required to play the 
sequence on the destination host without any networking. These measurements gave a 
rough approximation of the overal network latency. The second metric is more dificult 
to interpret and was rough measurement of the jiter on the networks. This metric 
involved gathering the inter-departure and inter-arival times then calculating a simple 
function based on the absolute diference in the inter-departure time minus the inter-
arival time divided by the inter-departure time. The temporal relationships betwen the 
inter-departure and inter-arival times are ilustrated in Figure 4-B-1. 
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Figure 4-B-1 Inter-Departure Time and Inter-Arival Time Temporal Relationships 
 
The function we used for the jiter measurement is as shown in Equation (1): 
(1) 
iiii
IDIAd/||100!"= 
Where the index, i, runs from 2 to the number of packets. The inter-departure times and 
inter-arival times are defined by Equations (2) and (3): 
1
)3(
2
!
=
iii
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In Equations (2) and (3), D
i
 is the departure time of the ith packet and A
i
 is the arival 
time of the ith packet and the indices are the same as in Equation (1). 
C. Experimental Results 
As was previously mentioned the number of experimental instances was 4800. 
We were able to distil this data into 2 * (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) * 4 = 2 * 45 * 
4 = 360 graphs of mean runtime at destination paired comparison, and 2 * 10 * 4 = 80 
graphs of the Equation (1). We also generated Student?s paired means t-test data using a 
significance level of 5% which have been reduced to 4 tables per network, one table for 
each value of m. Figures 4-C-1 to 4-C-4 display histograms of the mean run time at the 
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destination for PC-TCP-ND (black) and SN-TCP-ND (red) on the WAN. The x-axis has 
the experiment number which runs from 1 to 60 and y-axis is the runtime at the 
destination in miliseconds. PC-TCP-ND statisticaly outperformed SN-TCP-ND in each 
of the 4 cases. 
Graphs of al the experiments involving Equation (1) are to be found in Appendix 
A and Appendix C for the LAN and WAN, respectively. The corresponding paired 
comparison graphs are found in Appendix B and Appendix D for the LAN and WAN, 
respectively. The paired comparison statistical data is to found in Appendix E and 
Appendix F for the LAN and WAN, respectively. 
 
Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1  
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Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2 
 
 
Figure 4-C-3 PC-TCP-ND VS SN-TCP-ND m = 3 
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Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4 
 
Table 4-C-1 to 4-C-4 show the paired means Student?s t-test signs of the t-
statistics and significances for the 10 protocols on the LAN. These tables were generated 
from the statistical data in Appendix E. The sign is determined from the sign of the t-
statistic. If the absolute value of the combined sign of the t-statistic and the significance is 
les than or equal 0.05 then one of the protocols in a row and column outperformed the 
other. If the combined sign of the t-statistic and the significance is negative and has an 
absolute value les than or equal 0.05 then the row protocol statisticaly outperformed the 
column protocol. On the other hand, if the combined sign of the t-statistic and the 
significance is positive and les than or equal 0.05 then the column protocol statisticaly 
did beter than the row protocol. The protocol names have been shortened to create row 
and column labels as follows: NDND = T-RTP-NDND, NEND = T-RTP-NEND, 
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NDNE = T-RTP-NDNE, NENE = T-RTP-NENE, UTND = UT-RTP-ND, UTNE = 
UT-RTP-NE, PCND = PC-TCP-ND, PCNE = PC-TCP-NE, SND = SN-TCP-ND and 
SNE = SN-TCP-NE. 
Looking at UTND row and the PC-TCP-NE column, we find a combined sign of 
the t-statistic and the significance of 0.002, which means that PC-TCP-NE statisticaly 
won the batle over UT-TCP-ND. Now look at the NENE column in the same row and 
the combined sign of the t-statistic and the significance is -0.164, which means that the 
two protocols were statisticaly equivalent. From the tables it is apparent that PC-TCP-
ND and PC-TCP-NE were statisticaly the best protocols. What is surprising is that for m 
= 2 and m = 3 is that PC-TCP-NE beat PC-TCP-ND statisticaly. 
 
Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1 
 
 P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.22 0.169 0.075 0.46 0.05 0.00 0.00 0.269 0.274 
NEND 0.22 - 0.032 0.020 -0.493 0.00 0.00 0.00 0.30 0.303 
NDNE -0.169 -0.032 - 0.812 0.438 0.107 0.00 0.00 -0.239 -0.24 
NENE -0.075 -0.020 -0.812 - -0.43 0.25 0.00 0.00 -0.23 -0.239 
UTND -0.46 0.493 -0.438 0.43 - 0.407 0.00 0.00 0.950 -0.967 
UTNE -0.05 -0.00 -0.107 -0.25 -0.407 - 0.00 0.00 -0.208 -0.215 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - 0.26 -0.00 -0.00 
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.26 - -0.00 -0.00 
SND -0.269 -0.30 0.239 0.23 -0.950 0.208 0.00 0.00 - -0.456 
SNE -0.274 -0.303 0.24 0.239 0.967 0.215 0.00 0.00 0.456 - 
Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2 
 
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.673 -0.306 -0.28 0.049 -0.367 0.00 0.00 0.491 0.462 
NEND 0.673 - -0.315 -0.307 0.083 -0.376 0.00 0.01 0.514 0.476 
NDNE 0.306 0.315 - 0.325 0.23 -0.986 0.00 0.00 0.187 0.062 
NENE 0.28 0.307 -0.325 - 0.164 -0.432 0.00 0.00 0.00 -0.848 
UTND -0.075 -0.083 -0.23 -0.164 - -0.292 0.00 0.02 -0.303 -0.37 
UTNE -0.049 0.376 0.986 0.432 0.292 - 0.00 0.00 0.294 0.24 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.00 -0.00 -0.00 
PCNE -0.00 -0.01 -0.00 -0.00 -0.02 -0.00 0.00 - -0.00 -0.00 
SND -0.491 -0.514 -0.187 -0.00 0.303 0.294 0.00 0.00 - -0.421 
SNE -0.462 -0.476 -0.062 0.848 0.37 -0.24 0.00 0.00 0.421 - 
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P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.673 -0.497 0.395 0.49 0.257 0.04 0.00 0.501 0.472 
NEND 0.673 - -0.324 0.304 0.160 0.176 0.00 0.00 0.132 0.397 
NDNE 0.497 0.324 - 0.312 0.241 0.242 0.00 0.00 0.509 0.362 
NENE -0.395 -0.304 -0.312 - -0.942 0.081 0.03 0.00 -0.247 -0.475 
UTND -0.49 -0.160 -0.241 -0.942 - 0.267 0.00 0.00 -0.149 -0.864 
UTNE -0.257 -0.176 -0.242 -0.081 -0.267 - 0.02 0.00 -0.161 -0.192 
PCND - 0.04 -0.00 -0.00 - 0.03 -0.00 -0.02 - 0.385 -0.00 -0.00 
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.385 - -0.00 -0.00 
SND -0.501 -0.132 -0.509 0.247 0.149 0.161 0.00 0.00 - 0.313 
SNE -0.472 -0.397 -0.362 0.475 0.864 0.192 0.00 0.00 -0.313 - 
Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3 
 
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.096 -0.315 -0.454 -0.517 0.00 0.00 0.00 0.02 0.01 
NEND 0.096 - -0.329 0.240 -0.612 0.00 0.00 0.00 0.052 -0.038 
NDNE 0.315 0.329 - 0.321 0.403 0.247 0.00 0.05 0.346 0.362 
NENE 0.454 -0.240 -0.321 - -0.56 0.00 0.00 0.00 -0.06 -0.04 
UTND -0.517 0.612 -0.403 0.56 - 0.173 0.00 0.00 0.718 0.728 
UTNE -0.00 -0.00 -0.247 -0.00 -0.173 - 0.00 0.00 -0.00 -0.00 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.00 -0.00 -0.00 
PCNE -0.00 -0.00 -0.05 -0.00 -0.00 -0.00 0.00 - -0.00 -0.00 
SND -0.02 -0.052 -0.346 0.06 -0.718 0.00 0.00 0.00 - -0.813 
SNE -0.01 0.038 -0.362 0.04 -0.728 0.00 0.00 0.00 0.813 - 
 
Table 4-C-4 Combined Sign of t-Statistic and Statistical Significance m = 4 
 
 The tables Table 4-C-5 to Table 4-C-8 display WAN statistical significances, 
which are analogous as far as interpretation goes with the LAN values in Tables 2 to 5., 
and were compiled from the data in Appendix F. Please note that in the WAN case that 
PC-TCP-ND outperforms al of the other protocols except for PC-TCP-NE in every m 
case. 
 80 
 
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - 0.31 -0.016 -0.237 -0.172 0.28 0.00 0.00 -0.136 -0.209 
NEND -0.31 - -0.21 -0.273 -0.23 -0.69 0.00 0.00 -0.263 -0.280 
NDNE 0.016 0.21 - -0.369 -0.280 0.19 0.00 0.00 -0.980 -0.74 
NENE 0.237 0.273 0.369 - -0.736 0.261 0.00 0.00 0.296 0.262 
UTND 0.172 0.23 0.280 0.736 - 0.210 0.00 0.00 0.21 0.202 
UTNE -0.28 0.69 -0.19 -0.261 -0.210 - 0.00 0.00 -0.24 -0.262 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.08 -0.00 -0.00 
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.08 - -0.00 -0.00 
SND 0.136 0.263 0.980 -0.296 -0.21 0.24 0.00 0.00 - -0.575 
SNE 0.209 0.280 0.74 -0.264 -0.202 0.262 0.00 0.00 0.575 - 
Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1 
 
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.936 -0.930 -0.36 0.269 0.524 0.00 0.034 -0.74 -0.48 
NEND 0.936 - 0.975 -0.103 0.319 0.539 0.00 0.00 -0.658 -0.047 
NDNE 0.930 0.975 - -0.35 0.00 0.06 0.00 0.024 -0.753 -0.46 
NENE 0.36 0.103 0.35 - 0.175 0.235 0.00 0.00 0.268 0.179 
UTND -0.269 -0.319 -0.00 -0.175 - -0.00 0.00 0.060 -0.540 -0.175 
UTNE -0.524 -0.539 -0.06 -0.235 0.00 - 0.00 0.042 -0.620 -0.26 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.129 -0.00 -0.00 
PCNE -0.034 -0.00 -0.024 -0.00 -0.060 -0.042 0.129 - -0.00 -0.00 
SND 0.74 0.658 0.753 -0.268 -0.540 0.620 0.00 0.00 - -0.943 
SNE 0.48 0.047 0.46 -0.179 0.175 0.26 0.00 0.00 0.943 - 
Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2 
 
P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.651 -0.489 0.593 0.138 0.282 0.00 0.00 0.595 0.38 
NEND 0.651 - -0.04 0.503 0.29 0.376 0.00 0.00 0.490 0.424 
NDNE 0.489 0.04 - 0.354 0.18 0.249 0.00 0.00 0.349 0.28 
NENE -0.593 -0.503 -0.354 - 0.00 0.00 0.00 0.00 0.856 0.00 
UTND -0.138 -0.29 -0.18 -0.00 - -0.00 0.00 0.00 0.209 -0.00 
UTNE -0.282 -0.376 -0.249 -0.00 0.00 - 0.00 0.00 -0.521 -0.05 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.28 -0.00 -0.00 
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.28 - -0.00 -0.00 
SND -0.595 -0.490 -0.349 -0.856 -0.209 0.521 0.00 0.00 - 0.749 
SNE -0.38 -0.424 -0.28 -0.00 0.00 0.05 0.00 0.00 -0.749 - 
Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3 
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P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SND SNE 
NDND - -0.514 -0.02 -0.142 -0.141 -0.203 0.00 0.00 -0.712 -0.092 
NEND 0.514 - -0.012 -0.196 -0.204 -0.00 0.00 0.00 -0.858 -0.175 
NDNE 0.02 0.012 - -0.289 -0.37 0.053 0.00 0.00 0.490 -0.406 
NENE 0.142 0.196 0.289 - 0.365 0.29 0.00 0.00 0.05 0.23 
UTND 0.141 0.204 0.37 -0.365 - 0.247 0.00 0.00 0.01 0.34 
UTNE 0.203 0.00 -0.053 -0.29 -0.247 - 0.00 0.00 -0.983 -0.238 
PCND -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - -0.16 -0.00 -0.00 
PCNE -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.16 - -0.00 -0.00 
SND 0.712 0.858 -0.490 -0.05 -0.01 0.983 0.00 0.00 - -0.00 
SNE 0.092 0.175 0.406 -0.23 -0.34 0.238 0.00 0.00 0.00 - 
Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4 
 
 Figures 4-C-5 to 4-C-8 show graphs of Equation (1) on the LAN. We believe that 
the peak at 105% is the most significant feature of the histograms. The smaler this 
indicative bar then the beter the protocol is with respect to transmiting a MIDI sequence 
over the network. Figure 4-C-9 has a thre dimensional representation of the data that 
was used to create Figure 4-C-5. 
 
Figure 4-C-5 PC-TCP-ND m = 1 
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Figure 4-C-6 PC-TCP-ND m = 2 
 
Figure 4-C-7 PC-TCP-ND m = 3 
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Figure 4-C-8 PC-TCP-ND m = 4 
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Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1 
 
C. Musical Duet System 
 In the initial stages of the development of a musical duet collaboration system, we 
wanted to use Java as the implementation programing language; however, it was 
thought that the language had too much inherent latency. Java 1.5.0 does support both 
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MIDI input and output on al platforms, but the Apple version of Java 1.5.0 won?t be 
released until the OS X Tiger becomes available in spring 2005. Our target platforms for 
the duet system were both Windows and OS X with ANSI C being a common language 
of the operating systems. ANSI C is probably lowest latency higher-level language 
available on both platforms since Windows and OS X extensively use C APIs. 
 We built a duet system on Windows, which had some common elements as the 
RMCP system of Goto et al. mentioned earlier. Both systems had a virtual piano 
keyboard for displaying keys being played or for mouse input of notes. Our display also 
showed the general MIDI instruments being utilized by each MIDI channel. Similarly we 
designed a non-GUI duet system for the OS X system. The Windows system used 
lightweight threads, whereas the OS X system went with heavyweight threads 
(proceses). Both the Windows and OS X systems were peer-to-peer in nature instead of 
the clasical client/server architecture. 
The Windows system initial dialog is shown in Figure 4-C-10 and in Figure 4-C-11 is the 
main window. 
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Figure 4-C-10 Duet System Initial Dialog 
 
Figure 4-C-11 Duet System Main Window 
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 We isolated a number of sources of latency in our duet systems, namely, MIDI 
input, programing language, operating system, network, sound card, and speakers. By 
carefully choosing the hardware and software the delays could be made aceptable. 
The hardware configuration of the duet system consisted of five major 
components: computer, MIDI controller, MIDI-to-USB converter, tone generator, and 
speakers. We used thre diferent types of MIDI controllers: Yamaha CBX-K2 keyboard 
controller, Roland GR-33 guitar synthesizer and Roland-ready Fender Stratocaster guitar, 
and a Yamaha WX5 wind controller. Of the thre controllers utilized the keyboard 
controller semed to have the most aceptable latency. On the Windows platform we 
tried to types of MIDI input, the direct MIDI-to-soundcard cable and the MIDI-to-USB 
converted. Both of these input methods appeared to be the same to us in terms of delay. 
Only MIDI-to-USB input was available for OS X. The hardware configuration is 
ilustrated in Figure 4-C-12. 
 
      Speakers  Tone Generator USB-to-MIDI MIDI Controller 
   
Figure 4-C-12 Duet System Hardware Configurations 
 
 The software configuration is specified in Figure 4-C-13. As has been said the 
networking architecture is peer- to-peer rather than the clasical client/server paradigm. 
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Each peer consists of thre proceses or threads: MIDI receive, MIDI main, and MIDI 
send. The MIDI main entity is responsible for MIDI input and output via the MIDI-to-
USB converter. The MIDI receive proces or thread blocks until a packet is received then 
it dispatches the MIDI data in the packet to the MIDI main proces or thread to be played. 
The MIDI send proces or thread is responsible for transmiting MIDI data that from the 
MIDI main proces or thread to the Internet. 
                       Per 1      Per 2 
   MIDI Send  MIDI Receive 
 
                     MIDI Receive    MIDI Send 
                    Per 1       Per 2 
 
Figure 4-C-13 Duet System Software Configurations
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CHAPTER 5 MUSICAL DUET SYSTEM 
 
Many of you may have heard the old adage that in the real estate industry 
everything is ?location, location, location?, wel in our case we substitute latency for 
location. We wanted to reduce the sources of latency as much as possible. As we have 
stated previously paper the sources of latency in this particular application area are: MIDI 
input and output stream latency, the hardware and software computer delays, network 
delays, and the latency in going from the computer speakers to listener?s ears. Our 
primary concern was to minimize latency. 
 The application evolved through many diferent versions from a monolithic 
program to an application that consists of a fair number of implementation modules that 
are discussed in the next section. 
 The Apple Carbon based MIDI duet application consists of the source code files 
shown in Table 5-1. Internaly, the modules are prety sparingly documented, so the 
number of lines of code (LOC) per module is prety acurately portrayed in the second 
column of Table 5-1. The complete application has a modest total of about thre thousand 
LOC. 
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Source File Lines 
Apple.h 22 
Apple.c 318 
Duet.h 117 
Duet.c 628 
Globals.h 108 
Glabals.c 103 
Main.c 527 
IDI.h 21 
MIDI.c 732 
NavFunctions.h 14 
NavFunctions.c 107 
TCPNetwork.h 16 
TCPNetwork.c 324 
Total 3037 
Table 5-1. Source Code Files and Lines of Code 
 
 The graphical user interface (GUI) elements utilized by the application are: alerts, 
check boxes, combination (combo) boxes, edit boxes, menus, popup buttons, push 
buttons, radio buttons, and windows. The main window is displayed in Figure 7-1. The 
window has a total of seventen GUI elements with an estimated number of states equal 
to 2^4 * 2^3 * 2^2 * 2^2 * 2^1 * 2^1 * 2^3 * 2^3 * 2^3 * 2^1 * 2^1 = 2^24 = 16,777,216 
not counting the edit box states. Obviously, this far too many states to exhaustively test 
by hand so it would be realy nice to have some testing mechanism comparable to the 
Palm Operating System (OS) Gremlins for testing the interface. 
 The main window has check boxes for controlling the delta-time policy, which is 
either the honesty policy or lying policy, enabling the Nagle algorithm, local playing of a 
MIDI sequence, and muting of the audio system. The number of MIDI short mesages 
per TCP packet is controlled by a popup button and defaults to one MIDI short mesage 
per packet. The peer and my ports default to TCP port number 5000. The peer host name 
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or Internet Protocol (IP) addres is entered via an edit box. Popup butons also alow the 
user to choose the MIDI input and output devices. The channel map and virtual keyboard 
window opening functions are implemented using check boxes. Fly over hints and their 
voice naration are controlled utilizing a check box whose default state is no fly over 
hints. The channel map and virtual keyboard windows are shown is Figures 5-2 and 5-3. 
The channel map window alows each local MIDI channel to be mapped to the same or 
diferent remote channel, which alows a duet to be played without the collision of local 
and remote MIDI short mesages. 
 
 
Figure 5-1 Main Windows  
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Figure 5-2 Virtual Keyboard 
 
 
 
Figure 5-3 Channel Map Windows 
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 Returning to the software, the Apple module has code for seting the text of an 
edit box, geting the text of an edit box, beginning and ending an open or save dialog, etc. 
The duet module has the definitions of many of structures used by the application and the 
ancilary window creation and handling functions. The Globals module has definitions 
and external references to al the global variables used by the application. The main 
module creates the main window and handles the main window?s GUI elements events. 
The MIDI unit has the MIDI reading procedures for sequences and non-sequences. It also 
has the basic functions for seting up and initializing the MIDI handling procedures. The 
NavFunctions module has the navigation functions for the open and save navigation 
dialogs. The TCPNetwork program unit has the TCP server thread code and the client 
related TCP packet handing code. 
 The basic architecture of the MIDI duet application is a peer-to-peer design (P2P) 
that utilizes a client and server part in each of the two connected peers. This is ilustrated 
in Figure 5-4. 
 
Figure 5-4 Per-to-Per Duet Architecture 
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CHAPTER 6 CONCLUSIONS 
 
A. Chapter 2 Conclusions 
The prior MOIP research was mainly an exploration of the existing protocol design 
space to find an efective and suitable candidate protocol. Early atempts were focused on 
UDP then TCP and later RTP. This research esentialy followed the same line of 
protocol succesion as the prior research. The previous studies made no atempt to 
quantitatively compare existing MOIP protocols. This neglect of an experimentaly sound 
basis for choosing one MOIP protocol over another MOIP protocol semed to be a 
glaring defect, and an area to be covered by this research. 
Not al researchers before the current scientists came to the conclusion that a succesful 
MOIP protocol must be, by the very nature of MIDI, a reliable protocol. A number of 
atempts were aimed at utilizing fundamentaly unreliable protocols such as UDP and 
RTP. In these researchers? opinions such eforts using protocols that do not guarante in 
order delivery of packets are doomed to failure. 
B. Chapter 3 Conclusions 
The first atempt at creating a new and viable MOIP protocol by this research team was 
a miserable failure, however, we did learn a good leson from this endeavor, namely, that 
UDP is not a suitable base protocol for the MOIP application without making extreme 
modifications to UDP. We also tried to utilize Young and Fujinaga?s notion of adding 
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packet redundancy to UDP, but this fix was also unsuccesful by the experimental criteria 
that we were using. 
A later protocol which went by the nickname ATCP which designated an Almost TCP 
like protocol semed to fare somewhat beter than our first flawed and unreliable 
protocol, but this protocol was later discovered to be fundamentaly unusable for the 
musical duet application. In subsequent work this protocol disappeared from the mix of 
protocols being used experimentaly. 
The primordial eforts to create a musical duet system in Java were aborted due to the 
apparent language latency and the fact that at the time, the only way to perform MIDI 
input was to write native code. With the advent of Java 1.5 this glaring deficiency in the 
Java MIDI package was corrected. We then renewed our atempts to use Java as a basic 
MOIP language, but this time we were hampered by machines which were just too slow 
for the application. As we wil se in the Chapter 5 conclusions this problem of relatively 
slow procesors has been somewhat mitigated by currently available hardware. 
The last proposed and implemented duet system introduced in this chapter represents a 
proof concept and is not intended to be a production system. Before an utilizable 
commercial product can be created more research into the isues of hardware, software, 
and network requirements is indicated. Also, work needs to be done on creating beter 
user interfaces for the system with acompanying human user experimentation. Our 
research sems to indicate that Java involves a litle too much inherent language latency 
to be used presently in this application area. Native or near native languages such as C 
sem to perform beter as far as language latency is concerned. The system outlined 
above could be generalized to more performers than a musical duet. The extension to 
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trios, quartets, or ensembles is fairly straightforward. The musical duet performance 
system of this paper ofers another way for musicians to collaborate in real-time, and 
unlike streaming audio the bandwidth requirements are not that great 
C. Chapter 4 Conclusions 
The overwhelming conclusion to come from this chapter was the fact that using the 
Java Media Framework (JMF), one could design and implement reliable RTP protocols 
using TCP as the transport protocol. The idea of using a reliable protocol at the RTP 
transport layer was not in itself novel, but in the MOIP area of research this notion had 
not been previously used. These RTP based protocols in many ways performed as wel as 
the vanila TCP protocols. 
We devised two metrics for measuring the performance of the test suite of ten MOIP 
protocols which were: the runtime of a MIDI sequence on the destination host, and a 
metric which tended to correspond to amount of jiter in a protocol. We then used a 
statisticaly larger number of experiments to determine the best protocol in the test suite 
based on the previously mentioned empirical measurements. It was found that on a pair 
of heterogeneous Windows platforms that the producer and consumer multithreaded TCP 
protocol was the most eficient MOIP protocol. 
D. Chapter 5 Conclusions 
The primary result to be drawn from this chapter is that for consistently transmiting 
MIDI data over a network, a reliable transport layer protocol should be used. As was 
stated multiple times in this paper, MIDI is very sensitive to lost or out-of-order data, 
unlike audio or video transmisions which can aford to lose some data. We found that 
utilizing UDP for transport was, in general cases, a bad idea due to stuck notes. A simple 
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argument shows that the dishonesty delta-time policy is preferable to the honesty delta-
time policy for m = 1 in performing a musical duet. However, in the general m cases and 
for the transmision of MIDI sequences over a network, the honesty delta-time policy 
should probably be used. We wil investigate the eficacy of the honesty delta-time policy 
in future research. 
We implemented the musical duet performance system of this chapter on two diferent 
operating systems, namely, Windows and OS X using the C language. The system 
appeared to have a lower latency on the OS X system; however, this could be due to the 
fact that our Windows machines did not have the fastest x86 procesors currently 
available. 
E. Overall Conclusions 
The overal conclusions to be drawn from this research is that the creation of high 
performance MIDI over IP protocols is a very dificult problem, and the design and 
implementation of a viable musical duet system using a MIDI over IP protocol is an 
extremely chalenging software engineering task. As machines and the Internet 
infrastructure improve in terms of speed and bandwidth then the latencies mentioned 
earlier that are asociated with MIDI over IP may disappear altogether. In this section we 
wil addres the overal conclusions that were derived from both of the endeavors cited 
imediately above in this paragraph. 
New networking protocols are by the nature of the problem hard to develop and 
properly implement. Typicaly, finite state machines for both the sender and receiver are 
designed and implemented in some real computer language or in a simulator-type script. 
An alternative design strategy is the use of a Petri net. The networking protocol must be 
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fre of deadlocks, live-locks, and improper terminations [48]. A usable musical duet 
system poses several problems such as having a low overal latency and proper 
synchronization. The latency isues were addresed as best as possible with the available 
software and hardware by careful design choices. Duet synchronization was performed 
using a simple metronome count up subsystem. 
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APENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS 
There are forty graphs in this appendix for a local area network (LAN) that were 
generated from Equation (1) in Chapter 4. There are four graphs each for al ten protocols 
in the suite of MIDI over IP protocols. To reiterate the protocols are as follows: T-RTP-
NDND, T-RTP-NEND, T-RTP-NDNE, T-RTP-NENE, UT-RTP-ND, UT-RTP-NE, 
PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, where ND = Nagle algorithm 
disabled and NE = Nagle algorithm enabled (typicaly the default Internet seting). 
 102 
 
 
 103 
 
 
 104 
 
 
 105 
 
 
 106 
 
 
 107 
 
 
 108 
 
 
 109 
 
 
 110 
 
 
 111 
 
 
 112 
 
 
 113 
 
 
 114 
 
 
 115 
 
 
 116 
 
 
 117 
 
 
 118 
 
 
 119 
 
 
 120 
 
 
 121 
 
 
 122 
 
 
 
APENDIX B LAN PAIRED MEANS COMPARISON GRAPHS 
This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the 
destination host on a LAN. The number of graphs can be determined by calculating the 
total number of possible pairings of the protocols as (10 * 9) / 2 = 45 and multiplying 45 
by 4 to get 180, where 4 is the number of values of m, the number of MIDI short 
mesages per TCP packet. 
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APENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS 
There are forty graphs in this apendix for a local area network (WAN) that were generated from 
Equation (1) in Chapter 4. There are four graphs each for al ten protocols in the suite of MIDI over IP 
protocols. To reiterate the protocols are as folows: T-RTP-NDND, T-RTP-NEND, T-RTP-NDNE, 
T-RTP-NENE, UT-RTP-ND, UT-RTP-NE, PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, 
where ND = Nagle algorithm disabled and NE = Nagle algorithm enabled (typicaly the default Internet 
seting). 
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APENDIX D WAN PAIRED MEANS COMPARISON GRAPHS 
This apendix consists of 180 graphs of the mean runtime of a MIDI sequence on the destination host on a 
WAN. The number of graphs can be determined by calculating the total number of posible pairings of the 
protocols as (10 * 9) / 2 = 45 and multiplying 45 by 4 to get 180, where 4 is the number of values of m, the 
number of MIDI short mesages per TCP packet. 
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APENDIX E LAN PAIRED MEANS COMPARISON STATISTICS 
This appendix consists of tables of data that summarize the LAN paired means 
Student?s t-tests. The paired means were dependent since they were measuring the same 
experimental metric that is run-time of a MIDI sequence at the ultimate destination. The 
first data in the tables are the values of m, the number of MIDI short mesages per TCP 
packet. This value varied from 1 to 4. The next two data items are the protocol 
mnemonics involved in the paired comparison. Then the measured means are given 
along with their diferences. The final thre data items are the standard deviation, the 
Student?s t-value, and the Student?s t-value significance. A negative t-value meant that 
the first protocol (protocol #1) was potentialy the best protocol in the pair. A positive t-
value meant that the second protocol (protocol #2) was potentialy statisticaly superior to 
the first protocol. If the value of the Student?s t-value significance was les than or equal 
0.05 then one of the protocols statisticaly outperformed the other protocol in the pairing. 
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--------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NDND T-RTP-NDNE 6967.83 67174.67 -206.83 153.3 -1.0314 0.306 
2 T-RTP-NDND T-RTP-NDNE 697.50 6970.0  +7.50  41.7 +1.3909 0.1695 
3 T-RTP-NDND T-RTP-NDNE 67037.17 67198.0 -160.83 1825.76 -0.6824 0.497 
4 T-RTP-NDND T-RTP-NDNE 6965.0 6733.67 -368.67 2820.63 -1.0124 0.315 
1 T-RTP-NDND T-RTP-NEND 6967.83 6970.83  -3.0  54.81 -0.4240 0.6731 
2 T-RTP-NDND T-RTP-NEND 697.50 6984.3  -6.83  42.96 -1.2320 0.228 
3 T-RTP-NDND T-RTP-NEND 67037.17 67096.67  -59.50 1087.14 -0.4239 0.6731 
4 T-RTP-NDND T-RTP-NEND 6965.0 6976.3  -1.3  51.9 -1.684 0.096 
1 T-RTP-NDND T-RTP-NENE 6967.83 67069.17 -101.3  732.62 -1.0714 0.284 
2 T-RTP-NDND T-RTP-NENE 697.50 6968.67  +8.83  37.83 +1.8089 0.0756 
3 T-RTP-NDND T-RTP-NENE 67037.17 6981.67  +5.50  502.58 +0.854 0.3958 
4 T-RTP-NDND T-RTP-NENE 6965.0 6969.50  -4.50  46.34 -0.752 0.4549 
1 T-RTP-NDND UT-RTP-ND  6967.83 6930.17  +37.67  145.23 +2.089 0.0491 
2 T-RTP-NDND UT-RTP-ND  697.50 67093.50 -16.0 126.80 -0.7324 0.468 
3 T-RTP-NDND UT-RTP-ND  67037.17 6984.0  +53.17  605.9 +0.6796 0.494 
4 T-RTP-NDND UT-RTP-ND  6965.0 67018.83  -53.83  641.14 -0.6504 0.5180 
1 T-RTP-NDND UT-RTP-NE  6967.83 67175.17 -207.3 1768.18 -0.9083 0.3674 
2 T-RTP-NDND UT-RTP-NE  697.50 6960.83  +16.67  45.05 +2.8658 0.058 
3 T-RTP-NDND UT-RTP-NE  67037.17 6959.50  +7.67  525.71 +1.144 0.2571 
4 T-RTP-NDND UT-RTP-NE  6965.0 6903.83  +61.17  82.61 +5.735 0.00 
1 T-RTP-NDND PC-TCP-ND  6967.83 6345.3 +62.50 101.45 +4.8149 0.00 
2 T-RTP-NDND PC-TCP-ND  697.50 6395.3 +582.17  637.34 +7.0754 0.00 
3 T-RTP-NDND PC-TCP-ND  67037.17 6472.17 +565.0 1479.38 +2.9583 0.04 
4 T-RTP-NDND PC-TCP-ND  6965.0 6069.67 +895.3  387.3 +17.9054 0.00 
1 T-RTP-NDND PC-TCP-NE  6967.83 649.83 +518.0 158.05 +3.4648 0.010 
2 T-RTP-NDND PC-TCP-NE  697.50 6302.67 +674.83  70.70 +73.9370 0.00 
3 T-RTP-NDND PC-TCP-NE  67037.17 6418.17 +619.0 1042.9 +4.5971 0.00 
4 T-RTP-NDND PC-TCP-NE  6965.0 6293.83 +671.17  60.51 +85.9185 0.00 
1 T-RTP-NDND SN-TCP-ND  6967.83 67034.67  -6.83  747.96 -0.6921 0.4916 
2 T-RTP-NDND SN-TCP-ND  697.50 67089.83 -12.3  780.9 -1.141 0.2697 
3 T-RTP-NDND SN-TCP-ND  67037.17 6715.67 -18.50 1358.57 -0.6756 0.5019 
4 T-RTP-NDND SN-TCP-ND  6965.0 698.67  -23.67  57.9 -3.1614 0.025 
1 T-RTP-NDND SN-TCP-NE  6967.83 67080.3 -12.50 178.54 -0.7394 0.4626 
2 T-RTP-NDND SN-TCP-NE  697.50 67095.67 -18.17  829.07 -1.1040 0.2741 
3 T-RTP-NDND SN-TCP-NE  67037.17 691.67  +45.50  487.73 +0.726 0.4728 
4 T-RTP-NDND SN-TCP-NE  6965.0 6989.83  -24.83  56.49 -3.4050 0.012 
1 T-RTP-NEND T-RTP-NDNE 6970.83 67174.67 -203.83 1561.21 -1.013 0.3160 
2 T-RTP-NEND T-RTP-NDNE 6984.3 6970.0  +14.3  50.57 +2.195 0.0321 
3 T-RTP-NEND T-RTP-NDNE 67096.67 67198.0 -101.3  789.42 -0.943 0.3241 
4 T-RTP-NEND T-RTP-NDNE 6976.3 6733.67 -357.3 2815.87 -0.9830 0.3296 
1 T-RTP-NEND T-RTP-NENE 6970.83 67069.17  -98.3  739.4 -1.0301 0.3072 
2 T-RTP-NEND T-RTP-NENE 6984.3 6968.67  +15.67  50.90 +2.3840 0.0204 
3 T-RTP-NEND T-RTP-NENE 67096.67 6981.67 +15.0  859.34 +1.036 0.3042 
4 T-RTP-NEND T-RTP-NENE 6976.3 6969.50  +6.83  4.63 +1.1861 0.2403 
1 T-RTP-NEND UT-RTP-ND  6970.83 6930.17  +40.67  179.02 +1.7596 0.0837 
2 T-RTP-NEND UT-RTP-ND  6984.3 67093.50 -109.17 128.31 -0.684 0.4939 
3 T-RTP-NEND UT-RTP-ND  67096.67 6984.0 +12.67  614.60 +1.420 0.1609 
4 T-RTP-NEND UT-RTP-ND  6976.3 67018.83  -42.50  646.8 -0.5089 0.6127 
1 T-RTP-NEND UT-RTP-NE  6970.83 67175.17 -204.3 176.28 -0.891 0.3765 
2 T-RTP-NEND UT-RTP-NE  6984.3 6960.83  +23.50  50.58 +3.5986 0.007 
3 T-RTP-NEND UT-RTP-NE  67096.67 6959.50 +137.17  77.17 +1.3671 0.1768 
4 T-RTP-NEND UT-RTP-NE  6976.3 6903.83  +72.50  82.06 +6.843 0.00 
1 T-RTP-NEND PC-TCP-ND  6970.83 6345.3 +625.50 1010.40 +4.7952 0.00 
2 T-RTP-NEND PC-TCP-ND  6984.3 6395.3 +589.0  640.02 +7.1285 0.00 
3 T-RTP-NEND PC-TCP-ND  67096.67 6472.17 +624.50  434.69 +1.1283 0.00 
4 T-RTP-NEND PC-TCP-ND  6976.3 6069.67 +906.67  37.59 +18.597 0.00 
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M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NEND PC-TCP-NE  6970.83 649.83 +521.0 167.2 +3.4575 0.010 
2 T-RTP-NEND PC-TCP-NE  6984.3 6302.67 +681.67  83.65 +63.128 0.00 
3 T-RTP-NEND PC-TCP-NE  67096.67 6418.17 +678.50  19.40 +4.0160 0.00 
4 T-RTP-NEND PC-TCP-NE  6976.3 6293.83 +682.50  73.61 +71.8151 0.00 
1 T-RTP-NEND SN-TCP-ND  6970.83 67034.67  -63.83  754.24 -0.656 0.5147 
2 T-RTP-NEND SN-TCP-ND  6984.3 67089.83 -105.50  782.2 -1.047 0.304 
3 T-RTP-NEND SN-TCP-ND  67096.67 6715.67  -59.0  29.39 -1.5265 0.132 
4 T-RTP-NEND SN-TCP-ND  6976.3 698.67  -12.3  48.38 -1.9748 0.0530 
1 T-RTP-NEND SN-TCP-NE  6970.83 67080.3 -109.50 185.04 -0.7157 0.470 
2 T-RTP-NEND SN-TCP-NE  6984.3 67095.67 -11.3  830.20 -1.038 0.3032 
3 T-RTP-NEND SN-TCP-NE  67096.67 691.67 +105.0  953.98 +0.8526 0.3973 
4 T-RTP-NEND SN-TCP-NE  6976.3 6989.83  -13.50  49.40 -2.169 0.0385 
1 T-RTP-NDNE T-RTP-NENE 67174.67 67069.17 +105.50  823.50 +0.924 0.3251 
2 T-RTP-NDNE T-RTP-NENE 6970.0 6968.67  +1.3  43.43 +0.2378 0.8129 
3 T-RTP-NDNE T-RTP-NENE 67198.0 6981.67 +216.3 1646.41 +1.0178 0.3129 
4 T-RTP-NDNE T-RTP-NENE 6733.67 6969.50 +364.17 2821.54 +0.997 0.3215 
1 T-RTP-NDNE UT-RTP-ND  67174.67 6930.17 +24.50 1572.81 +1.2041 0.233 
2 T-RTP-NDNE UT-RTP-ND  6970.0 67093.50 -123.50 125.79 -0.7804 0.4383 
3 T-RTP-NDNE UT-RTP-ND  67198.0 6984.0 +214.0 1401.68 +1.1826 0.2417 
4 T-RTP-NDNE UT-RTP-ND  6733.67 67018.83 +314.83 2897.36 +0.8417 0.4034 
1 T-RTP-NDNE UT-RTP-NE  67174.67 67175.17  -0.50  21.61 -0.0175 0.9861 
2 T-RTP-NDNE UT-RTP-NE  6970.0 6960.83  +9.17  43.46 +1.636 0.107 
3 T-RTP-NDNE UT-RTP-NE  67198.0 6959.50 +238.50 1563.96 +1.1812 0.242 
4 T-RTP-NDNE UT-RTP-NE  6733.67 6903.83 +429.83 2850.34 +1.1681 0.2475 
1 T-RTP-NDNE PC-TCP-ND  67174.67 6345.3 +829.3  56.62 +1.374 0.00 
2 T-RTP-NDNE PC-TCP-ND  6970.0 6395.3 +574.67  636.09 +6.980 0.00 
3 T-RTP-NDNE PC-TCP-ND  67198.0 6472.17 +725.83  385.76 +14.5745 0.00 
4 T-RTP-NDNE PC-TCP-ND  6733.67 6069.67 +1264.0 2817.63 +3.4749 0.010 
1 T-RTP-NDNE PC-TCP-NE  67174.67 649.83 +724.83  404.72 +13.8728 0.00 
2 T-RTP-NDNE PC-TCP-NE  6970.0 6302.67 +67.3  71.6 +72.134 0.00 
3 T-RTP-NDNE PC-TCP-NE  67198.0 6418.17 +79.83  851.47 +7.0943 0.00 
4 T-RTP-NDNE PC-TCP-NE  6733.67 6293.83 +1039.83 2819.46 +2.8568 0.059 
1 T-RTP-NDNE SN-TCP-ND  67174.67 67034.67 +140.0  813.53 +1.330 0.187 
2 T-RTP-NDNE SN-TCP-ND  6970.0 67089.83 -19.83  780.61 -1.1891 0.2392 
3 T-RTP-NDNE SN-TCP-ND  67198.0 6715.67  +42.3  494.38 +0.63 0.5097 
4 T-RTP-NDNE SN-TCP-ND  6733.67 698.67 +345.0 2817.71 +0.9484 0.3468 
1 T-RTP-NDNE SN-TCP-NE  67174.67 67080.3  +94.3  385.2 +1.8968 0.0627 
2 T-RTP-NDNE SN-TCP-NE  6970.0 67095.67 -125.67  828.71 -1.1746 0.249 
3 T-RTP-NDNE SN-TCP-NE  67198.0 691.67 +206.3 1741.25 +0.9179 0.3624 
4 T-RTP-NDNE SN-TCP-NE  6733.67 6989.83 +343.83 2817.80 +0.9452 0.3484 
1 T-RTP-NENE UT-RTP-ND  67069.17 6930.17 +139.0  764.42 +1.4085 0.1642 
2 T-RTP-NENE UT-RTP-ND  6968.67 67093.50 -124.83 125.45 -0.7891 0.432 
3 T-RTP-NENE UT-RTP-ND  6981.67 6984.0  -2.3  250.48 -0.072 0.9427 
4 T-RTP-NENE UT-RTP-ND  6969.50 67018.83  -49.3  646.20 -0.5914 0.565 
1 T-RTP-NENE UT-RTP-NE  67069.17 67175.17 -106.0 1038.96 -0.7903 0.4325 
2 T-RTP-NENE UT-RTP-NE  6968.67 6960.83  +7.83  49.51 +1.256 0.252 
3 T-RTP-NENE UT-RTP-NE  6981.67 6959.50  +2.17  96.97 +1.706 0.0818 
4 T-RTP-NENE UT-RTP-NE  6969.50 6903.83  +65.67  79.56 +6.3932 0.00 
1 T-RTP-NENE PC-TCP-ND  67069.17 6345.3 +723.83  289.14 +19.391 0.00 
2 T-RTP-NENE PC-TCP-ND  6968.67 6395.3 +573.3  635.81 +6.9848 0.00 
3 T-RTP-NENE PC-TCP-ND  6981.67 6472.17 +509.50 1282.39 +3.075 0.032 
4 T-RTP-NENE PC-TCP-ND  6969.50 6069.67 +89.83  378.01 +18.438 0.00 
1 T-RTP-NENE PC-TCP-NE  67069.17 649.83 +619.3  434.97 +1.0290 0.00 
2 T-RTP-NENE PC-TCP-NE  6968.67 6302.67 +66.0  70.1 +73.578 0.00 
3 T-RTP-NENE PC-TCP-NE  6981.67 6418.17 +563.50  808.19 +5.408 0.00 
4 T-RTP-NENE PC-TCP-NE  6969.50 6293.83 +675.67  7.45 +67.578 0.00 
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M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NENE SN-TCP-ND  67069.17 67034.67  +34.50  7.01 +3.4702 0.010 
2 T-RTP-NENE SN-TCP-ND  6968.67 67089.83 -121.17  780.28 -1.2028 0.238 
3 T-RTP-NENE SN-TCP-ND  6981.67 6715.67 -174.0 154.34 -1.1676 0.247 
4 T-RTP-NENE SN-TCP-ND  6969.50 698.67  -19.17  52.57 -2.8241 0.065 
1 T-RTP-NENE SN-TCP-NE  67069.17 67080.3  -1.17  450.30 -0.1921 0.8483 
2 T-RTP-NENE SN-TCP-NE  6968.67 67095.67 -127.0  828.29 -1.187 0.2397 
3 T-RTP-NENE SN-TCP-NE  6981.67 691.67  -10.0  107.86 -0.7181 0.475 
4 T-RTP-NENE SN-TCP-NE  6969.50 6989.83  -20.3  52.8 -2.9784 0.042 
1 UT-RTP-ND  UT-RTP-NE  6930.17 67175.17 -245.0 1785.02 -1.0632 0.2920 
2 UT-RTP-ND  UT-RTP-NE  67093.50 6960.83 +132.67 1230.84 +0.8349 0.4071 
3 UT-RTP-ND  UT-RTP-NE  6984.0 6959.50  +24.50  169.59 +1.190 0.267 
4 UT-RTP-ND  UT-RTP-NE  67018.83 6903.83 +15.0  646.82 +1.372 0.1737 
1 UT-RTP-ND  PC-RTP-ND  6930.17 6345.3 +584.83 1019.30 +4.443 0.00 
2 UT-RTP-ND  PC-RTP-ND  67093.50 6395.3 +698.17  597.86 +9.0456 0.00 
3 UT-RTP-ND  PC-RTP-ND  6984.0 6472.17 +51.83 1037.4 +3.8216 0.003 
4 UT-RTP-ND  PC-RTP-ND  67018.83 6069.67 +949.17  720.09 +10.2101 0.00 
1 UT-RTP-ND  PC-RTP-NE  6930.17 649.83 +480.3 174.08 +3.1690 0.024 
2 UT-RTP-ND  PC-RTP-NE  67093.50 6302.67 +790.83 123.12 +4.967 0.00 
3 UT-RTP-ND  PC-RTP-NE  6984.0 6418.17 +565.83  564.7 +7.7606 0.00 
4 UT-RTP-ND  PC-RTP-NE  67018.83 6293.83 +725.0  631.80 +8.886 0.00 
1 UT-RTP-ND  SN-RTP-ND  6930.17 67034.67 -104.50  780.09 -1.0376 0.3037 
2 UT-RTP-ND  SN-RTP-ND  67093.50 67089.83  +3.67  452.15 +0.0628 0.9501 
3 UT-RTP-ND  SN-RTP-ND  6984.0 6715.67 -171.67  910.52 -1.4604 0.1495 
4 UT-RTP-ND  SN-RTP-ND  67018.83 698.67  +30.17  645.3 +0.3621 0.7186 
1 UT-RTP-ND  SN-RTP-NE  6930.17 67080.3 -150.17 1203.75 -0.963 0.378 
2 UT-RTP-ND  SN-RTP-NE  67093.50 67095.67  -2.17  405.25 -0.0414 0.9671 
3 UT-RTP-ND  SN-RTP-NE  6984.0 691.67  -7.67  346.18 -0.1715 0.864 
4 UT-RTP-ND  SN-RTP-NE  67018.83 6989.83  +29.0  642.98 +0.3494 0.7281 
1 UT-RTP-NE  PC-RTP-ND  67175.17 6345.3 +829.83  77.83 +8.2638 0.00 
2 UT-RTP-NE  PC-RTP-ND  6960.83 6395.3 +565.50  641.15 +6.8320 0.00 
3 UT-RTP-NE  PC-RTP-ND  6959.50 6472.17 +487.3 19.07 +3.1482 0.026 
4 UT-RTP-NE  PC-RTP-ND  6903.83 6069.67 +834.17  415.40 +15.547 0.00 
1 UT-RTP-NE  PC-RTP-NE  67175.17 649.83 +725.3  615.47 +9.1286 0.00 
2 UT-RTP-NE  PC-RTP-NE  6960.83 6302.67 +658.17  70.10 +72.7302 0.00 
3 UT-RTP-NE  PC-RTP-NE  6959.50 6418.17 +541.3  724.61 +5.7868 0.00 
4 UT-RTP-NE  PC-RTP-NE  6903.83 6293.83 +610.0  105.20 +4.913 0.00 
1 UT-RTP-NE  SN-RTP-ND  67175.17 67034.67 +140.50 1028.45 +1.0582 0.2943 
2 UT-RTP-NE  SN-RTP-ND  6960.83 67089.83 -129.0  786.19 -1.2710 0.2087 
3 UT-RTP-NE  SN-RTP-ND  6959.50 6715.67 -196.17 1072.41 -1.4169 0.1618 
4 UT-RTP-NE  SN-RTP-ND  6903.83 698.67  -84.83  80.24 -8.1891 0.00 
1 UT-RTP-NE  SN-RTP-NE  67175.17 67080.3  +94.83  598.51 +1.274 0.246 
2 UT-RTP-NE  SN-RTP-NE  6960.83 67095.67 -134.83  834.07 -1.252 0.2154 
3 UT-RTP-NE  SN-RTP-NE  6959.50 691.67  -32.17  18.94 -1.3187 0.1924 
4 UT-RTP-NE  SN-RTP-NE  6903.83 6989.83  -86.0  72.47 -9.1925 0.00 
1 PC-TCP-ND  PC-TCP-NE  6345.3 649.83 -104.50  185.76 -4.3575 0.00 
2 PC-TCP-ND  PC-TCP-NE  6395.3 6302.67  +92.67  639.2 +1.129 0.260 
3 PC-TCP-ND  PC-TCP-NE  6472.17 6418.17  +54.0  478.6 +0.8739 0.3857 
4 PC-TCP-ND  PC-TCP-NE  6069.67 6293.83 -24.17  393.01 -4.4182 0.00 
1 PC-TCP-ND  SN-RTP-ND  6345.3 67034.67 -689.3  289.01 -18.475 0.00 
2 PC-TCP-ND  SN-RTP-ND  6395.3 67089.83 -694.50  178.6 -30.104 0.00 
3 PC-TCP-ND  SN-RTP-ND  6472.17 6715.67 -683.50  169.09 -31.3103 0.00 
4 PC-TCP-ND  SN-RTP-ND  6069.67 698.67 -919.0  393.89 -18.0723 0.00 
1 PC-TCP-ND  SN-RTP-NE  6345.3 67034.67 -689.3  289.01 -18.475 0.00 
2 PC-TCP-ND  SN-RTP-NE  6395.3 67089.83 -694.50  178.6 -30.104 0.00 
3 PC-TCP-ND  SN-RTP-NE  6472.17 6715.67 -683.50  169.09 -31.3103 0.00 
4 PC-TCP-ND  SN-RTP-NE  6069.67 698.67 -919.0  393.89 -18.0723 0.00 
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M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 PC-TCP-NE  SN-RTP-ND  649.83 67034.67 -584.83  428.70 -10.5671 0.00 
2 PC-TCP-NE  SN-RTP-ND  6302.67 67089.83 -787.17  790.34 -7.7149 0.00 
3 PC-TCP-NE  SN-RTP-ND  6418.17 6715.67 -737.50  368.06 -15.5209 0.00 
4 PC-TCP-NE  SN-RTP-ND  6293.83 698.67 -694.83  85.9 -62.5879 0.00 
1 PC-TCP-NE  SN-RTP-NE  649.83 67034.67 -584.83  428.70 -10.5671 0.00 
2 PC-TCP-NE  SN-RTP-NE  6302.67 67089.83 -787.17  790.34 -7.7149 0.00 
3 PC-TCP-NE  SN-RTP-NE  6418.17 6715.67 -737.50  368.06 -15.5209 0.00 
4 PC-TCP-NE  SN-RTP-NE  6293.83 698.67 -694.83  85.9 -62.5879 0.00 
1 SN-TCP-ND  SN-RTP-NE  67034.67 67080.3  -45.67  437.14 -0.8092 0.4217 
2 SN-TCP-ND  SN-RTP-NE  67089.83 67095.67  -5.83  60.23 -0.7502 0.4561 
3 SN-TCP-ND  SN-RTP-NE  6715.67 691.67 +164.0 1249.07 +1.0170 0.313 
4 SN-TCP-ND  SN-RTP-NE  698.67 6989.83  -1.17  38.09 -0.2372 0.813 
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APENDIX F WAN PAIRED MEANS COMPARISON STATISTICS 
This appendix consists of tables of data that summarize the WAN paired means 
Student?s t-tests. The paired means were dependent since they were measuring the same 
experimental metric that is run-time of a MIDI sequence at the ultimate destination. The 
first data in the tables are the values of m, the number of MIDI short mesages per TCP 
packet. This value varied from 1 to 4. The next two data items are the protocol 
mnemonics involved in the paired comparison. Then the measured means are given 
along with their diferences. The final thre data items are the standard deviation, the 
Student?s t-value, and the Student?s t-value significance. A negative t-value meant that 
the first protocol (protocol #1) was potentialy the best protocol in the pair. A positive t-
value meant that the second protocol (protocol #2) was potentialy statisticaly superior to 
the first protocol. If the value of the Student?s t-value significance was les than or equal 
0.05 then one of the protocols statisticaly outperformed the other protocol in the pairing. 
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M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NDND T-RTP-NDNE 67184.3 67246.67  -62.3  195.07 -2.4752 0.0162 
2 T-RTP-NDND T-RTP-NDNE 67086.0 67094.67  -8.67  761.38 -0.082 0.930 
3 T-RTP-NDND T-RTP-NDNE 67123.0 67292.50 -169.50 1890.02 -0.6947 0.490 
4 T-RTP-NDND T-RTP-NDNE 6947.50 67107.50 -160.0  389.35 -3.1831 0.023 
1 T-RTP-NDND T-RTP-NEND 67184.3 67023.3 +161.0 121.1 +1.0213 0.313 
2 T-RTP-NDND T-RTP-NEND 67086.0 67098.50  -12.50 121.23 -0.079 0.936 
3 T-RTP-NDND T-RTP-NEND 67123.0 67240.17 -17.17 196.8 -0.4545 0.651 
4 T-RTP-NDND T-RTP-NEND 6947.50 697.50  -30.0  354.70 -0.651 0.5149 
1 T-RTP-NDND T-RTP-NENE 67184.3 67356.67 -172.3 118.98 -1.1929 0.237 
2 T-RTP-NDND T-RTP-NENE 67086.0 67352.0 -26.0 264.49 -0.909 0.366 
3 T-RTP-NDND T-RTP-NENE 67123.0 67069.0  +54.0  79.9 +0.5363 0.5938 
4 T-RTP-NDND T-RTP-NENE 6947.50 6739.3 -451.83 2356.68 -1.4851 0.1428 
1 T-RTP-NDND UT-RTP-ND  67184.3 67380.83 -196.50 103.35 -1.3795 0.1729 
2 T-RTP-NDND UT-RTP-ND  67086.0 697.67 +108.3  752.51 +1.151 0.2693 
3 T-RTP-NDND UT-RTP-ND  67123.0 6972.67 +150.3  76.23 +1.502 0.1389 
4 T-RTP-NDND UT-RTP-ND  6947.50 67317.3 -369.83 1923.86 -1.4890 0.1418 
1 T-RTP-NDND UT-RTP-NE  67184.3 67030.17 +154.17 113.97 +1.0720 0.281 
2 T-RTP-NDND UT-RTP-NE  67086.0 67023.83  +62.17  752.78 +0.6397 0.5249 
3 T-RTP-NDND UT-RTP-NE  67123.0 67013.0 +10.0  785.6 +1.0845 0.2825 
4 T-RTP-NDND UT-RTP-NE  6947.50 6707.17  -59.67  359.69 -1.2849 0.2038 
1 T-RTP-NDND PC-TCP-ND  67184.3 6079.83 +104.50 1264.12 +6.7679 0.00 
2 T-RTP-NDND PC-TCP-ND  67086.0 6290.83 +795.17 1561.68 +3.941 0.002 
3 T-RTP-NDND PC-TCP-ND  67123.0 6127.67 +95.3  790.0 +9.7592 0.00 
4 T-RTP-NDND PC-TCP-ND  6947.50 6147.67 +79.83  364.08 +17.0168 0.00 
1 T-RTP-NDND PC-TCP-NE  67184.3 6162.83 +1021.50 1206.69 +6.572 0.00 
2 T-RTP-NDND PC-TCP-NE  67086.0 648.67 +637.3 286.90 +2.1587 0.0350 
3 T-RTP-NDND PC-TCP-NE  67123.0 6343.17 +79.83 1473.51 +4.094 0.001 
4 T-RTP-NDND PC-TCP-NE  6947.50 6159.50 +78.0  354.08 +17.2386 0.00 
1 T-RTP-NDND SN-TCP-ND  67184.3 67247.17  -62.83  32.18 -1.5107 0.1362 
2 T-RTP-NDND SN-TCP-ND  67086.0 67219.17 -13.17 3146.71 -0.3278 0.742 
3 T-RTP-NDND SN-TCP-ND  67123.0 67056.83  +6.17  960.81 +0.534 0.5957 
4 T-RTP-NDND SN-TCP-ND  6947.50 6701.17  -63.67 134.28 -0.3696 0.7130 
1 T-RTP-NDND SN-TCP-NE  67184.3 67256.67  -72.3  41.27 -1.2697 0.2092 
2 T-RTP-NDND SN-TCP-NE  67086.0 6723.83 -147.83 164.50 -0.6963 0.4890 
3 T-RTP-NDND SN-TCP-NE  67123.0 67035.50  +87.50  780.24 +0.8687 0.385 
4 T-RTP-NDND SN-TCP-NE  6947.50 67205.17 -257.67 168.43 -1.7082 0.0929 
1 T-RTP-NEND T-RTP-NDNE 67023.3 67246.67 -23.3 139.82 -1.2358 0.214 
2 T-RTP-NEND T-RTP-NDNE 67098.50 67094.67  +3.83  962.69 +0.0308 0.975 
3 T-RTP-NEND T-RTP-NDNE 67240.17 67292.50  -52.3  135.80 -2.9850 0.041 
4 T-RTP-NEND T-RTP-NDNE 697.50 67107.50 -130.0  389.56 -2.5849 0.012 
1 T-RTP-NEND T-RTP-NENE 67023.3 67356.67 -33.3 237.95 -1.104 0.2739 
2 T-RTP-NEND T-RTP-NENE 67098.50 67352.0 -253.50 187.1 -1.6541 0.1034 
3 T-RTP-NEND T-RTP-NENE 67240.17 67069.0 +171.17 1968.95 +0.6734 0.503 
4 T-RTP-NEND T-RTP-NENE 697.50 6739.3 -421.83 2498.75 -1.307 0.1961 
1 T-RTP-NEND UT-RTP-ND  67023.3 67380.83 -357.50 251.36 -1.230 0.236 
2 T-RTP-NEND UT-RTP-ND  67098.50 697.67 +120.83  931.32 +1.050 0.3190 
3 T-RTP-NEND UT-RTP-ND  67240.17 6972.67 +267.50 1978.65 +1.0472 0.293 
4 T-RTP-NEND UT-RTP-ND  697.50 67317.3 -39.83 2053.35 -1.2820 0.2049 
1 T-RTP-NEND UT-RTP-NE  67023.3 67030.17  -6.83  123.47 -0.4287 0.697 
2 T-RTP-NEND UT-RTP-NE  67098.50 67023.83  +74.67  936.41 +0.6176 0.5392 
3 T-RTP-NEND UT-RTP-NE  67240.17 67013.0 +27.17 1975.95 +0.8905 0.3768 
4 T-RTP-NEND UT-RTP-NE  697.50 6707.17  -29.67  63.65 -3.6106 0.006 
1 T-RTP-NEND PC-TCP-ND  67023.3 6079.83 +943.50  386.56 +18.9062 0.00 
2 T-RTP-NEND PC-TCP-ND  67098.50 6290.83 +807.67  437.97 +14.2846 0.00 
3 T-RTP-NEND PC-TCP-ND  67240.17 6127.67 +112.50 1969.10 +4.3763 0.00 
4 T-RTP-NEND PC-TCP-ND  697.50 6147.67 +829.83  85.34 +75.3201 0.00 
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--------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NEND PC-TCP-NE  67023.3 6162.83 +860.50  10.94 +6.036 0.00 
2 T-RTP-NEND PC-TCP-NE  67098.50 648.67 +649.83 1217.80 +4.133 0.001 
3 T-RTP-NEND PC-TCP-NE  67240.17 6343.17 +897.0  607.96 +1.4286 0.00 
4 T-RTP-NEND PC-TCP-NE  697.50 6159.50 +818.0  80.69 +78.5234 0.00 
1 T-RTP-NEND SN-TCP-ND  67023.3 67247.17 -23.83 1537.24 -1.1279 0.2639 
2 T-RTP-NEND SN-TCP-ND  67098.50 67219.17 -120.67 2105.41 -0.439 0.6587 
3 T-RTP-NEND SN-TCP-ND  67240.17 67056.83 +183.3 2046.9 +0.6937 0.4906 
4 T-RTP-NEND SN-TCP-ND  697.50 6701.17  -3.67 1461.32 -0.1785 0.8590 
1 T-RTP-NEND SN-TCP-NE  67023.3 67256.67 -23.3 1658.1 -1.090 0.2801 
2 T-RTP-NEND SN-TCP-NE  67098.50 6723.83 -135.3  517.69 -2.0249 0.0474 
3 T-RTP-NEND SN-TCP-NE  67240.17 67035.50 +204.67 1972.43 +0.8037 0.4248 
4 T-RTP-NEND SN-TCP-NE  697.50 67205.17 -27.67 1284.78 -1.3726 0.1751 
1 T-RTP-NDNE T-RTP-NENE 67246.67 67356.67 -10.0  942.3 -0.9042 0.3696 
2 T-RTP-NDNE T-RTP-NENE 67094.67 67352.0 -257.3 2138.79 -0.9320 0.351 
3 T-RTP-NDNE T-RTP-NENE 67292.50 67069.0 +23.50 1853.32 +0.9341 0.3540 
4 T-RTP-NDNE T-RTP-NENE 67107.50 6739.3 -291.83 213.04 -1.0698 0.2891 
1 T-RTP-NDNE UT-RTP-ND  67246.67 67380.83 -134.17  954.5 -1.087 0.2807 
2 T-RTP-NDNE UT-RTP-ND  67094.67 697.67 +17.0  183.74 +4.9324 0.00 
3 T-RTP-NDNE UT-RTP-ND  67292.50 6972.67 +319.83 1862.79 +1.329 0.187 
4 T-RTP-NDNE UT-RTP-ND  67107.50 67317.3 -209.83 1681.19 -0.968 0.376 
1 T-RTP-NDNE UT-RTP-NE  67246.67 67030.17 +216.50 1292.7 +1.2972 0.196 
2 T-RTP-NDNE UT-RTP-NE  67094.67 67023.83  +70.83  195.71 +2.8035 0.068 
3 T-RTP-NDNE UT-RTP-NE  67292.50 67013.0 +279.50 1860.21 +1.1638 0.2492 
4 T-RTP-NDNE UT-RTP-NE  67107.50 6707.17 +10.3  393.76 +1.9737 0.0531 
1 T-RTP-NDNE PC-TCP-ND  67246.67 6079.83 +16.83 1436.37 +6.2924 0.00 
2 T-RTP-NDNE PC-TCP-ND  67094.67 6290.83 +803.83 1383.05 +4.5020 0.00 
3 T-RTP-NDNE PC-TCP-ND  67292.50 6127.67 +164.83 1854.42 +4.865 0.00 
4 T-RTP-NDNE PC-TCP-ND  67107.50 6147.67 +959.83  386.9 +19.212 0.00 
1 T-RTP-NDNE PC-TCP-NE  67246.67 6162.83 +1083.83 1382.92 +6.0707 0.00 
2 T-RTP-NDNE PC-TCP-NE  67094.67 648.67 +646.0 216.31 +2.309 0.024 
3 T-RTP-NDNE PC-TCP-NE  67292.50 6343.17 +949.3  49.03 +14.735 0.00 
4 T-RTP-NDNE PC-TCP-NE  67107.50 6159.50 +948.0  396.7 +18.5074 0.00 
1 T-RTP-NDNE SN-TCP-ND  67246.67 67247.17  -0.50  159.10 -0.0243 0.9807 
2 T-RTP-NDNE SN-TCP-ND  67094.67 67219.17 -124.50 3054.5 -0.3157 0.753 
3 T-RTP-NDNE SN-TCP-ND  67292.50 67056.83 +235.67 1935.58 +0.9431 0.3495 
4 T-RTP-NDNE SN-TCP-ND  67107.50 6701.17  +96.3 1074.85 +0.6942 0.4903 
1 T-RTP-NDNE SN-TCP-NE  67246.67 67256.67  -10.0  268.64 -0.283 0.741 
2 T-RTP-NDNE SN-TCP-NE  67094.67 6723.83 -139.17 1472.01 -0.7323 0.469 
3 T-RTP-NDNE SN-TCP-NE  67292.50 67035.50 +257.0 1857.13 +1.0719 0.281 
4 T-RTP-NDNE SN-TCP-NE  67107.50 67205.17  -97.67  904.07 -0.8368 0.4061 
1 T-RTP-NENE UT-RTP-ND  67356.67 67380.83  -24.17  53.65 -0.381 0.7365 
2 T-RTP-NENE UT-RTP-ND  67352.0 697.67 +374.3 216.8 +1.3697 0.1760 
3 T-RTP-NENE UT-RTP-ND  67069.0 6972.67  +96.3  69.3 +10.7629 0.00 
4 T-RTP-NENE UT-RTP-ND  6739.3 67317.3  +82.0  696.23 +0.9123 0.3653 
1 T-RTP-NENE UT-RTP-NE  67356.67 67030.17 +326.50 230.97 +1.136 0.2615 
2 T-RTP-NENE UT-RTP-NE  67352.0 67023.83 +328.17 2121.86 +1.1980 0.2357 
3 T-RTP-NENE UT-RTP-NE  67069.0 67013.0  +56.0  59.69 +7.266 0.00 
4 T-RTP-NENE UT-RTP-NE  6739.3 6707.17 +392.17 2502.74 +1.2138 0.297 
1 T-RTP-NENE PC-TCP-ND  67356.67 6079.83 +1276.83 2352.95 +4.2034 0.00 
2 T-RTP-NENE PC-TCP-ND  67352.0 6290.83 +1061.17  72.6 +10.6383 0.00 
3 T-RTP-NENE PC-TCP-ND  67069.0 6127.67 +941.3  16.87 +62.388 0.00 
4 T-RTP-NENE PC-TCP-ND  6739.3 6147.67 +1251.67 2491.94 +3.8907 0.003 
1 T-RTP-NENE PC-TCP-NE  67356.67 6162.83 +193.83 2320.97 +3.9843 0.002 
2 T-RTP-NENE PC-TCP-NE  67352.0 648.67 +903.3  138.91 +50.3706 0.00 
3 T-RTP-NENE PC-TCP-NE  67069.0 6343.17 +725.83 137.48 +4.0816 0.001 
4 T-RTP-NENE PC-TCP-NE  6739.3 6159.50 +1239.83 2501.61 +3.8390 0.003 
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--------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 T-RTP-NENE SN-TCP-ND  67356.67 67247.17 +109.50  804.64 +1.0541 0.2961 
2 T-RTP-NENE SN-TCP-ND  67352.0 67219.17 +132.83  920.86 +1.173 0.2684 
3 T-RTP-NENE SN-TCP-ND  67069.0 67056.83  +12.17  518.98 +0.1816 0.8565 
4 T-RTP-NENE SN-TCP-ND  6739.3 6701.17 +38.17 1040.70 +2.891 0.054 
1 T-RTP-NENE SN-TCP-NE  67356.67 67256.67 +10.0  685.05 +1.1307 0.2628 
2 T-RTP-NENE SN-TCP-NE  67352.0 6723.83 +18.17  673.86 +1.3583 0.1795 
3 T-RTP-NENE SN-TCP-NE  67069.0 67035.50  +3.50  68.27 +3.801 0.003 
4 T-RTP-NENE SN-TCP-NE  6739.3 67205.17 +194.17 1248.48 +1.2047 0.231 
1 UT-RTP-ND  UT-RTP-NE  67380.83 67030.17 +350.67 2147.89 +1.2646 0.210 
2 UT-RTP-ND  UT-RTP-NE  697.67 67023.83  -46.17  69.41 -5.1523 0.00 
3 UT-RTP-ND  UT-RTP-NE  6972.67 67013.0  -40.3  57.49 -5.4345 0.00 
4 UT-RTP-ND  UT-RTP-NE  67317.3 6707.17 +310.17 2057.85 +1.1675 0.247 
1 UT-RTP-ND  PC-TCP-ND  67380.83 6079.83 +1301.0 268.32 +4.427 0.00 
2 UT-RTP-ND  PC-TCP-ND  697.67 6290.83 +686.83 1356.09 +3.9232 0.002 
3 UT-RTP-ND  PC-TCP-ND  6972.67 6127.67 +845.0  11.03 +58.9524 0.00 
4 UT-RTP-ND  PC-TCP-ND  67317.3 6147.67 +169.67 204.74 +4.4310 0.00 
1 UT-RTP-ND  PC-TCP-NE  67380.83 6162.83 +1218.0 235.36 +4.206 0.00 
2 UT-RTP-ND  PC-TCP-NE  697.67 648.67 +529.0 2143.08 +1.9120 0.0607 
3 UT-RTP-ND  PC-TCP-NE  6972.67 6343.17 +629.50 1386.30 +3.5173 0.008 
4 UT-RTP-ND  PC-TCP-NE  67317.3 6159.50 +157.83 2053.38 +4.367 0.00 
1 UT-RTP-ND  SN-TCP-ND  67380.83 67247.17 +13.67  838.12 +1.2354 0.216 
2 UT-RTP-ND  SN-TCP-ND  697.67 67219.17 -241.50 3034.98 -0.6164 0.540 
3 UT-RTP-ND  SN-TCP-ND  6972.67 67056.83  -84.17  514.2 -1.2679 0.2098 
4 UT-RTP-ND  SN-TCP-ND  67317.3 6701.17 +306.17  724.8 +3.2716 0.018 
1 UT-RTP-ND  SN-TCP-NE  67380.83 67256.67 +124.17  747.10 +1.2874 0.2030 
2 UT-RTP-ND  SN-TCP-NE  697.67 6723.83 -256.17 146.18 -1.3721 0.1752 
3 UT-RTP-ND  SN-TCP-NE  6972.67 67035.50  -62.83  64.9 -7.486 0.00 
4 UT-RTP-ND  SN-TCP-NE  67317.3 67205.17 +12.17  892.17 +0.9739 0.341 
1 UT-RTP-NE  PC-TCP-ND  67030.17 6079.83 +950.3  406.87 +18.0924 0.00 
2 UT-RTP-NE  PC-TCP-ND  67023.83 6290.83 +73.0 1362.14 +4.1683 0.001 
3 UT-RTP-NE  PC-TCP-ND  67013.0 6127.67 +85.3  124.10 +5.2586 0.00 
4 UT-RTP-NE  PC-TCP-ND  6707.17 6147.67 +859.50  93.47 +71.262 0.00 
1 UT-RTP-NE  PC-TCP-NE  67030.17 6162.83 +867.3  138.86 +48.3836 0.00 
2 UT-RTP-NE  PC-TCP-NE  67023.83 648.67 +575.17 2149.14 +2.0730 0.0425 
3 UT-RTP-NE  PC-TCP-NE  67013.0 6343.17 +69.83 1384.47 +3.7476 0.004 
4 UT-RTP-NE  PC-TCP-NE  6707.17 6159.50 +847.67  94.96 +69.1418 0.00 
1 UT-RTP-NE  SN-TCP-ND  67030.17 67247.17 -217.0 1430.35 -1.1751 0.247 
2 UT-RTP-NE  SN-TCP-ND  67023.83 67219.17 -195.3 3039.68 -0.4978 0.6205 
3 UT-RTP-NE  SN-TCP-ND  67013.0 67056.83  -43.83  526.52 -0.649 0.5215 
4 UT-RTP-NE  SN-TCP-ND  6707.17 6701.17  -4.0 1464.42 -0.0212 0.9832 
1 UT-RTP-NE  SN-TCP-NE  67030.17 67256.67 -26.50 150.92 -1.1312 0.2625 
2 UT-RTP-NE  SN-TCP-NE  67023.83 6723.83 -210.0 1450.9 -1.121 0.268 
3 UT-RTP-NE  SN-TCP-NE  67013.0 67035.50  -2.50  60.47 -2.823 0.05 
4 UT-RTP-NE  SN-TCP-NE  6707.17 67205.17 -198.0 128.23 -1.1906 0.2386 
1 PC-TCP-ND  PC-TCP-NE  6079.83 6162.83  -83.0  371.06 -1.7326 0.084 
2 PC-TCP-ND  PC-TCP-NE  6290.83 648.67 -157.83  795.53 -1.5368 0.1297 
3 PC-TCP-ND  PC-TCP-NE  6127.67 6343.17 -215.50 1371.18 -1.2174 0.283 
4 PC-TCP-ND  PC-TCP-NE  6147.67 6159.50  -1.83  65.37 -1.402 0.161 
1 PC-TCP-ND  SN-TCP-ND  6079.83 67247.17 -167.3 1567.51 -5.7685 0.00 
2 PC-TCP-ND  SN-TCP-ND  6290.83 67219.17 -928.3 1686.06 -4.2649 0.00 
3 PC-TCP-ND  SN-TCP-ND  6127.67 67056.83 -929.17  507.58 -14.1796 0.00 
4 PC-TCP-ND  SN-TCP-ND  6147.67 6701.17 -863.50 1454.49 -4.5986 0.00 
1 PC-TCP-ND  SN-TCP-NE  6079.83 67247.17 -167.3 1567.51 -5.7685 0.00 
2 PC-TCP-ND  SN-TCP-NE  6290.83 67219.17 -928.3 1686.06 -4.2649 0.00 
3 PC-TCP-ND  SN-TCP-NE  6127.67 67056.83 -929.17  507.58 -14.1796 0.00 
4 PC-TCP-ND  SN-TCP-NE  6147.67 6701.17 -863.50 1454.49 -4.5986 0.00 
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-------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2  #1 - #2 STD DEV T VALUE T SIGN 
--------------------------------------- 
1 PC-TCP-NE  SN-TCP-ND  6162.83 67247.17 -1084.3 1521.3 -5.5210 0.00 
2 PC-TCP-NE  SN-TCP-ND  648.67 67219.17 -70.50  906.93 -6.5808 0.00 
3 PC-TCP-NE  SN-TCP-ND  6343.17 67056.83 -713.67 1478.98 -3.737 0.004 
4 PC-TCP-NE  SN-TCP-ND  6159.50 6701.17 -851.67 1464.36 -4.5050 0.00 
1 PC-TCP-NE  SN-TCP-NE  6162.83 67247.17 -1084.3 1521.3 -5.5210 0.00 
2 PC-TCP-NE  SN-TCP-NE  648.67 67219.17 -70.50  906.93 -6.5808 0.00 
3 PC-TCP-NE  SN-TCP-NE  6343.17 67056.83 -713.67 1478.98 -3.737 0.004 
4 PC-TCP-NE  SN-TCP-NE  6159.50 6701.17 -851.67 1464.36 -4.5050 0.00 
1 SN-TCP-ND  SN-TCP-NE  67247.17 67256.67  -9.50  130.70 -0.5630 0.5756 
2 SN-TCP-ND  SN-TCP-NE  67219.17 6723.83  -14.67 1590.49 -0.0714 0.943 
3 SN-TCP-ND  SN-TCP-NE  67056.83 67035.50  +21.3  515.17 +0.3208 0.7495 
4 SN-TCP-ND  SN-TCP-NE  6701.17 67205.17 -194.0  278.26 -5.404 0.00 
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APENDIX G MIDI INSTRUMENTS 
1 Acoustic Grand Piano 3 Acoustic Bas 65 Soprano Sax 97 FX 1 (Rain) 
2 Bright Acoustic Piano 34 Electric Bas (Finger) 6 Alto Sax 98 FX 2 (Sound Track) 
3 Electric Grand Piano 35 Electric Bas (Pick) 67 Tenor Sax 9 FX 3 (Crystal) 
4 Honky-tonk Piano 36 Fretles Bas 68 Baritone Sax 10 FX 4 (Atmosphere) 
5 Electric Piano 1 37 Slap Bas 1 69 Oboe 101 FX 5 (Brightnes) 
6 Electric Piano 2 38 Slap Bas 2 70 English Horn 102 FX 6 (Goblins) 
7 Harpsichord 39 Synth Bas 1 71 Bason 103 FX 7 (Echoes) 
8 Clavichord 40 Synth Bas 2 72 Clarinet 104 FX 8 (Sci-Fi) 
9 Celesta 41 Violin 73 Picolo 105 Sitar 
10 Glockenspiel 42 Viola 74 Flute 106 Banjo 
1 Music Box 43 Celo 75 Recorder 107 Shamisen 
12 Vibraphone 4 Contrabas 76 Pan Flute 108 Koto 
13 Marimba 45 Tremolo Strings 7 Blown Botle 109 Kalimba 
14 Xylophone 46 Pizicato Strings 78 Shakuhachi 10 Bag Pipe 
15 Tubular Bels 47 Orchestral Harp 79 Whistle 11 Fidle 
16 Dulcimer 48 Timpani 80 Ocarina 12 Shanai 
17 Drawbar Organ 49 String Ensemble 1 81 Lead 1 (Square) 13 Tinkle Bel 
18 Percusive Organ 50 String Ensemble 2 82 Lead 2 (Sawtoth) 14 Agogo 
19 Rock Organ 51 Synth Strings 1 83 Lead 3 (Caliope) 15 Stel Drums 
20 Church Organ 52 Synth Strings 2 84 Lead 4 (Chiff) 16 Wodblock 
21 Reed Organ 53 Choir Aahs 85 Lead 5 (Charang) 17 Talo Drum 
2 Acordion 54 Choir Oohs 86 Lead 6 (Voice) 18 Melodic Tom 
23 Harmonica 5 Synth Voice 87 Lead 7 (Fifths) 19 Synth Drum 
24 Tango Acordion 56 Orchestral Hit 8 Lead 8 (Bas + Lead) 120 Reverse Cymbal 
25 Acoustic Guitar (Nylon) 57 Trumpet 89 Pad 1 (New Age) 121 Guitar Fret Noise 
26 Acoustic Guitar (Stel) 58 Trombone 90 Pad 2 (Warm) 12 Breathe Noise 
27 Electric Guitar (Jaz) 59 Tuba 91 Pad 3 (Polysynth) 123 Seashore 
28 Electric Guitar (Clean) 60 Muted Trumpet 92 Pad 4 (Choir) 124 Bird Twet 
29 Electric Guitar (Muted) 61 French Horn 93 Pad 5 (Bowed) 125 Telephone Ring 
30 Overdriven Guitar 62 Bras Section 94 Pad 6 (Metalic) 126 Helicopter 
31 Distortion Guitar 63 Synth Bras 1 95 Pad 7 (Halo) 127 Aplause 
32 Guitar Harmonics 64 Synth Bras 2 96 Pad 8 (Swep) 128 Gunshot 
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APENDIX H MIDI INSTRUMENT GROUPINGS 
1 ? 8 Piano 
9 ? 16 Chromatic Percusion 
17 ? 24 Organ 
25 ? 32 Guitar 
3 ? 40  Bas 
41 ? 48   Strings 
49 ? 56  Ensemble 
57 ? 64 Bras 
65 ? 72 Red 
73 ? 80 Pipe 
81 ? 8 Synth Lead 
89 ? 96 Synth Pad 
97 ? 104 Synth Efects 
105 ? 12 Ethnic 
13 ? 120 Percusive 
121 ? 128 Sound Efects 
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APENDIX I MIDI META-MESAGES AND MIDI CONTROLERS 
The general format of a MIDI meta-mesage is the octet 0xF folowed by a type 0x0 to 0x7F then a 
length, which is a variable length quantity one to four octets then length data octets. Not al the one hundred 
and twenty eight types are defined but a MIDI file reader should be able to ignore an undefined type [5]. 
0x0 0x02 #-hi #-lo    Sequence Number 
0x01 Length Text     Text Event 
0x02 Length Text     Copyright Notice 
0x03 Length Text     Sequence/Track Name 
0x04 Length Text     Instrument Name 
0x05 Length Text     Lyric 
0x06 Length Text     Marker 
0x07 Length Text     Cue Point 
0x20 0x01 Ch     MIDI Chanel Prefix 
0x2F 0x0      End of Track (Mandatory) 
0x51 0x03 T1 T2 T3   Tempo T1 Highest Order Octet 
0x54 0x05 Hrs Min Sec Fr F SMTPE Ofset 
0x58 0x04 Num Den MC TS  Time Signature 
0x59 0x02 #-s M    Key Signature 
0x7F Length Id Data    Sequencer-Specific Meta-Event 
 
Length is a variable length quantity. Text is a series of Length octets. Fr is the number 
of frames, F is the frame fraction, Num is the time signature numerator, Den is the time 
signature denominator exponent, MC is the MIDI clocks per metronome tick, TS is the 
number of 32
nd
 notes per quarter note, #-s is the number of sharps or flats ? 7 is 7 flats, + 
7 is 7 sharps, 0 is the key of C, M is 0 for a major key or 1 for a minor key, Id is 1 to 3 
octets in length representing a manufacturer?s id and is a variable length quantity, and 
Data is Length ? length of id in length data octets [5]. The folowing two routines alow 
one to read and write variable length quantities [6]. 
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APENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE 
 Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 694.6 60 423.862 54.7203 
SN-TCP-ND 67183.0 60 765.320 98.8039 
Table AE-1 Tripygaia1.mid m = 1 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-SN-TCP-ND -238.33 901.3420 16.3627 -2.0481 59 0.049 
Table J-2 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 694.6 60 423.862 54.7203 
SN-TCP-NE 67498.0 60 840.998 108.5726 
Table J-3 Tripygaia1.mid m = 1 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-SN-TCP-NE -53.33 938.7598 121.193 -4.5657 59 0.00 
Table J-4 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 694.6 60 423.862 54.7203 
UT-RTP-NE 67471.3 60 423.862 251.2846 
Table J-5 Tripygaia1.mid m = 1 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -526.66 197.1638 257.8327 -2.0426 59 0.045 
Table J-6 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 67471.3 60 1946.426 251.2846 
SN-TCP-ND 67183.0 60 765.320 98.8039 
Table J-7 Tripygaia1.mid m = 1 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 28.33 2107.913 272.1304 1.0595 59 0.2936 
Table J-8 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 67471.3 60 1946.426 251.2846 
SN-TCP-NE 67498.0 60 840.998 108.5726 
Table J-9 Tripygaia1.mid m = 1 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE -26.66 2140.4962 276.368 -0.0965 59 0.9234 
Table J-10 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 67183.0 60 765.320 98.8039 
SN-TCP-NE 67498.0 60 840.998 108.5726 
Table J-1 Tripygaia1.mid m = 1 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -315.00 158.5957 149.5740 -2.1059 59 0.0394 
Table J-12 Tripygaia1.mid m = 1 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6961.16 60 535.5658 69.1412 
SN-TCP-ND 6952.6 60 49.3986 6.373 
Table J-13 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 8.500 545.375 70.4079 0.1207 59 0.9043 
Table J-14 Tripygaia1.mid m = 2 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6961.16 60 535.5658 69.1412 
SN-TCP-NE 67285.50 60 253.821 32.7681 
Table J-15 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -324.33 586.374 75.7010 -4.2843 59 0.00 
Table J-16 Tripygaia1.mid m = 2 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6961.16 60 535.5658 69.1412 
UT-RTP-NE 6754.3 60 2134.259 275.5317 
Table J-17 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -593.166 201.6784 284.2354 -2.0868 59 0.0412 
Table J-18 Tripygaia1.mid m = 2 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6952.6 60 49.3986 6.373 
SN-TCP-NE 67285.50 60 253.821 32.7681 
Table J-19 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -32.833 260.2807 3.6021 -9.9051 59 0.00 
Table J-20 Tripygaia1.mid m = 2 
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Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 6754.3 60 2134.259 275.5317 
SN-TCP-ND 6952.6 60 49.3986 6.373 
Table J-21 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 601.6 2131.8498 275.206 2.1861 59 0.0327 
Table J-2 Tripygaia1.mid m = 2 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 6754.3 60 2134.259 275.5317 
SN-TCP-NE 67285.50 60 253.821 32.7681 
Table J-23 Tripygaia1.mid m = 2 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE 268.833 2160.260 278.891 0.9639 59 0.390 
Table J-24 Tripygaia1.mid m = 2 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6723.3 60 1467.76 189.4891 
SN-TCP-ND 6702.6 60 52.5894 6.7892 
Table J-25 Tripygaia1.mid m = 3 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 210.66 1457.494 18.159 1.196 59 0.2674 
Table J-26 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6723.3 60 1467.76 189.4891 
SN-TCP-NE 67624.6 60 231.7206 298.418 
Table J-27 Tripygaia1.mid m = 3 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -391.33 191.8742 153.8703 -2.5432 59 0.0136 
Table J-28 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6723.3 60 1467.76 189.4891 
UT-RTP-NE 67285.6 60 31.2910 42.7694 
Table J-29 Tripygaia1.mid m = 3 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -52.33 1521.6531 196.445 -0.264 59 0.7908 
Table J-30 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6702.6 60 52.5894 6.7892 
SN-TCP-NE 67624.6 60 231.7206 298.418 
Table J-31 Tripygaia1.mid m = 3 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -602.00 230.3034 296.9678 -2.0271 59 0.04717 
Table J-32 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 67285.6 60 31.2910 42.7694 
SN-TCP-ND 6702.6 60 52.5894 6.7892 
Table J-3 Tripygaia1.mid m = 3 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 263.00 37.5851 43.5820 6.0345 59 0.00 
Table J-34 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 67285.6 60 31.2910 42.7694 
SN-TCP-NE 67624.6 60 231.7206 298.418 
Table J-35 Tripygaia1.mid m = 3 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE -39.00 2354.3920 303.9507 -1.153 59 0.2692 
Table J-36 Tripygaia1.mid m = 3 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6729.83 60 1739.109 24.5181 
SN-TCP-ND 67068.0 60 35.118 45.847 
Table J-37 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 231.833 178.3128 230.8701 1.041 59 0.3193 
Table J-38 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6729.83 60 1739.109 24.5181 
SN-TCP-NE 67426.83 60 148.472 186.976 
Table J-39 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -127.00 286.5230 295.188 -0.4302 59 0.685 
Table J-40 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-ND 6729.83 60 1739.109 24.5181 
UT-RTP-NE 6728.83 60 75.565 9.7543 
Table J-41 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE 71.00 1760.2471 27.2469 0.3124 59 0.758 
Table J-42 Tripygaia1.mid m = 4 
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Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 67068.0 60 35.118 45.847 
SN-TCP-NE 67426.83 60 148.472 186.976 
Table J-43 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -358.833 1504.7203 194.2585 -1.8471 59 0.0697 
Table J-4 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 6728.83 60 75.565 9.7543 
SN-TCP-ND 67068.0 60 35.118 45.847 
Table J-45 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 160.833 35.6387 45.9127 3.5030 59 0.008 
Table J-46 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
UT-RTP-NE 6728.83 60 75.565 9.7543 
SN-TCP-NE 67426.83 60 148.472 186.976 
Table J-47 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE -198.00 1464.4057 189.0539 -1.0473 59 0.292 
Table J-48 Tripygaia1.mid m = 4 
 
In the figures on the folowing pages the captions on the left are for the above figure and the captions on the 
left are for the below figure. 
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APENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 67104.0 60 2151.68 27.792 
SN-TCP-ND 6719.83 60 29.6902 29.6528 
Table K-1 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -15.833 2163.0614 279.250 -0.056 59 0.9549 
Table K-2 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 67104.0 60 2151.68 27.792 
SN-TCP-NE 67490.3 60 1521.7139 196.4524 
Table K-3 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -386.33 2650.2637 342.1475 -1.1291 59 0.2634 
Table K-4 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6719.83 60 29.6902 29.6528 
SN-TCP-NE 67490.3 60 1521.7139 196.4524 
Table K-5 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -370.500 1539.9190 198.8026 -1.8636 59 0.0673 
Table K-6 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 6706.0 60 2039.9494 263.3563 
SN-TCP-ND 6710.16 60 532.2019 68.7069 
Table K-7 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -34.166 211.751 272.6289 -0.1253 59 0.906 
Table K-8 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 6706.0 60 2039.9494 263.3563 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table K-9 Tripygaia1.mid m = 5 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -164.833 2048.174 264.4181 -0.623 59 0.5354 
Table K-10 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6710.16 60 532.2019 68.7069 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table K-1 Tripygaia1.mid m = 5 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -130.6 51.8746 71.2467 -1.8340 59 0.0716 
Table K-12 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 6782.83 60 53.5230 6.9097 
SN-TCP-ND 6704.83 60 54.3838 7.0209 
Table K-13 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -262.00 72.7382 9.3904 -27.906 59 0.00 
Table K-14 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 6782.83 60 53.5230 6.9097 
SN-TCP-NE 67432.83 60 1596.0301 206.046 
Table K-15 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -650.00 1601.9024 206.8047 -3.1430 59 0.026 
Table K-16 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6704.83 60 54.3838 7.0209 
SN-TCP-NE 67432.83 60 1596.0301 206.046 
Table K-17 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -38.00 1601.2736 206.7235 -1.8769 59 0.0654 
Table K-18 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 678.6 60 43.4708 5.6120 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table K-19 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -592.500 2426.6071 313.2736 -1.8913 59 0.06349 
Table K-20 Tripygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 678.6 60 43.4708 5.6120 
SN-TCP-NE 6742.50 60 1561.3256 201.562 
Table K-21 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -63.833 153.689 20.5803 -3.3095 59 0.015 
Table K-2 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
SN-TCP-NE 6742.50 60 1561.3256 201.562 
Table K-23 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -71.33 879.0932 13.4904 -0.6285 59 0.5320 
Table K-24 Tripygaia1.mid m = 7 
 
ATCP-32 6758.83 60 48.9583 6.3204 
SN-TCP-ND 6720.0 60 1214.189 156.7420 
Table K-25 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -461.166 125.396 158.1980 -2.9151 59 0.050 
Table K-26 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-32 6758.83 60 48.9583 6.3204 
SN-TCP-NE 67298.83 60 81.492 10.5206 
Table K-27 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -540.00 85.9838 1.104 -48.646 59 0.00 
Table K-28 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
SN-TCP-ND 6720.0 60 1214.189 156.7420 
SN-TCP-NE 67298.83 60 81.492 10.5206 
Table K-29 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -78.833 1217.7543 157.214 -0.5014 59 0.6179 
Table K-30 Tripygaia1.mid m = 8 
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APENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6707.83 60 1378.513 17.9702 
SN-TCP-ND 6719.83 60 29.6902 29.6528 
Table L-1 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -12.00 1397.6515 180.4360 -0.6207 59 0.5371 
Table L-2 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6707.83 60 1378.513 17.9702 
SN-TCP-NE 67490.3 60 1521.7139 196.4524 
Table L-3 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -482.500 2064.3919 26.518 -1.8104 59 0.07532 
Table L-4 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6707.83 60 1378.513 17.9702 
ATCP-32 67104.0 60 2151.68 27.792 
Table L-5 Tripygaia1.mid m = 4 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-ATCP-32 -96.166 76.0265 10.1846 -0.9598 59 0.3410 
Table L-6 Tripygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 682.83 60 150.250 19.3978 
SN-TCP-ND 6710.16 60 532.2019 68.7069 
Table L-7 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -27.33 58.4963 72.1015 -3.8464 59 0.002 
Table L-8 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 682.83 60 150.250 19.3978 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table L-9 Tripygaia1.mid m = 5 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -408.00 164.159 21.1929 -19.2516 59 0.00 
Table L-10 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 682.83 60 150.250 19.3978 
ATCP-32 6706.0 60 2039.9494 263.3563 
Table L-1 Tripygaia1.mid m = 5 
 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-ATCP-32 -243.166 2049.7535 264.620 -0.9189 59 0.3618 
Table L-12 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 692.6 60 1201.5143 15.148 
SN-TCP-ND 6704.83 60 54.3838 7.0209 
Table L-13 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -52.166 1206.6750 15.7810 -0.348 59 0.7389 
Table L-14 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 692.6 60 1201.5143 15.148 
SN-TCP-NE 67432.83 60 1596.0301 206.046 
Table L-15 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -40.166 502.6219 64.882 -6.7834 59 0.00 
Table L-16 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 692.6 60 1201.5143 15.148 
ATCP-32 6782.83 60 53.5230 6.9097 
Table L-17 Tripygaia1.mid m = 6 
 
 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-ATCP-32 209.833 1207.4647 15.830 1.3460 59 0.1834 
Table L-18 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6952.3 60 1286.804 16.1257 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table L-19 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -418.833 153.7104 148.943 -2.8120 59 0.06 
Table L-20 Tripygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6952.3 60 1286.804 16.1257 
SN-TCP-NE 6742.50 60 1561.3256 201.562 
Table L-21 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -490.166 297.047 38.3483 -12.7819 59 0.00 
Table L-2 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 6952.3 60 1286.804 16.1257 
ATCP-32 678.6 60 43.4708 5.6120 
Table L-23 Tripygaia1.mid m = 7 
 
 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-ATCP-32 173.66 1279.3191 165.1593 1.0515 59 0.2973 
Table L-24 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 686.16 60 91.5765 128.019 
SN-TCP-ND 6720.0 60 1214.189 156.7420 
Table L-25 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -33.833 232.722 30.043 -1.113 59 0.00 
Table L-26 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 686.16 60 91.5765 128.019 
SN-TCP-NE 67298.83 60 81.492 10.5206 
Table L-27 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -412.66 97.0173 128.7143 -3.2060 59 0.021 
Table L-28 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-40 686.16 60 91.5765 128.019 
ATCP-32 6758.83 60 48.9583 6.3204 
Table L-29 Tripygaia1.mid m = 8 
 
 Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP40-ATCP-32 127.33 102.7840 129.458 0.9835 59 0.3293 
Table L-30 Tripygaia1.mid m = 8 
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APENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6816.0 60 52.5679 6.7864 
SN-TCP-ND 6710.16 60 532.2019 68.7069 
Table M-1 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-ND -284.166 536.3918 69.2478 -4.1036 59 0.001 
Table M-2 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6791.50 60 60.4734 7.8070 
SN-TCP-ND 6704.83 60 54.3838 7.0209 
Table M-3 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-ND -253.33 81.1290 10.4737 -24.1875 59 0.00 
Table M-4 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6280.3 60 1849.48 238.7628 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table M-5 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-ND-SN-TCP-ND -1090.833 590.2980 76.2071 -14.3140 59 0.00 
Table M-6 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6062.50 60 5.4068 7.1529 
SN-TCP-ND 6720.0 60 1214.189 156.7420 
Table M-7 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -157.50 1213.3531 156.6432 -7.3894 59 0.00 
Table M-8 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6816.0 60 52.5679 6.7864 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table M-9 Tripygaia1.mid m = 5 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -414.833 102.6181 13.2479 -31.3130 59 0.00 
Table M-10 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6791.50 60 60.4734 7.8070 
SN-TCP-NE 67432.83 60 1596.0301 206.046 
Table M-1 Tripygaia1.mid m = 6 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -641.33 1597.1589 206.1923 -3.103 59 0.028 
Table M-12 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6280.3 60 1849.48 238.7628 
SN-TCP-NE 6742.50 60 1561.3256 201.562 
Table M-13 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-ND-SN-TCP-NE -162.166 306.8047 39.6083 -29.3414 59 0.00 
Table M-14 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6062.50 60 5.4068 7.1529 
SN-TCP-NE 67298.83 60 81.492 10.5206 
Table M-15 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -1236.33 92.5709 1.9508 -103.4514 59 0.00 
Table M-16 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6816.0 60 52.5679 6.7864 
ATCP-32 6706.0 60 2039.9494 263.3563 
Table M-17 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -250.00 2029.536 262.016 -0.9541 59 0.3438 
Table M-18 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6791.50 60 60.4734 7.8070 
ATCP-32 6782.83 60 53.5230 6.9097 
Table M-19 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 8.66 72.5671 9.3683 0.9250 59 0.3586 
Table M-20 Tripygaia1.mid m = 6 
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Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6280.3 60 1849.48 238.7628 
ATCP-32 678.6 60 43.4708 5.6120 
Table M-21 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -498.33 1841.915 237.800 -2.095 59 0.0404 
Table M-2 Tripygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6062.50 60 5.4068 7.1529 
ATCP-32 6758.83 60 48.9583 6.3204 
Table M-23 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -696.33 79.1472 10.2178 -68.1485 59 0.00 
Table M-24 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6816.0 60 52.5679 6.7864 
ATCP-40 682.83 60 150.250 19.3978 
Table M-25 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-ND-ATCP-40 -6.833 153.919 19.802 -0.3437 59 0.732 
Table M-26 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6791.50 60 60.4734 7.8070 
ATCP-40 692.6 60 1201.5143 15.148 
Table M-27 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-40 -201.166 1202.362 15.242 -1.2959 59 0.200 
Table M-28 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6280.3 60 1849.48 238.7628 
ATCP-40 6952.3 60 1286.804 16.1257 
Table M-29 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-40 -672.0 575.493 74.2958 -9.049 59 0.00 
Table M-30 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-ND 6062.50 60 5.4068 7.1529 
ATCP-40 686.16 60 128.019 -823.66 
Table M-31 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-ND-ATCP-40 -823.66 91.1865 127.9616 -6.4368 59 0.00 
Table M-32 Tripygaia1.mid m = 8 
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APENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6525.83 60 278.37 294.1370 
SN-TCP-ND 6710.16 60 532.20 68.7069 
Table N-1 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -574.33 2348.8759 303.2385 -1.8939 59 0.0631 
Table N-2 Tripygia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401 
SN-TCP-ND 6704.83 60 54.3838 7.0209 
Table N-3 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -463.33 2701.0567 348.7049 -1.3287 59 0.1890 
Table N-4 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table N-5 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -90.166 2950.909 380.9712 -2.3628 59 0.0214 
Table N-6 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567 
SN-TCP-ND 6720.0 60 1214.189 156.7420 
Table N-7 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -387.166 2014.6456 260.0896 -1.485 59 0.1419 
Table N-8 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6525.83 60 278.3760 294.1370 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table N-9 Tripygaia1.mid m = 5 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -705.00 280.448 294.4041 -2.3946 59 0.0198 
Table N-10 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401 
SN-TCP-NE 67432.83 60 1596.0301 206.046 
Table N-1 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -851.33 104.1930 142.507 -5.9721 59 0.00 
Table N-12 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389 
SN-TCP-NE 6742.50 60 1561.3256 201.562 
Table N-13 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -971.50 270.3026 293.0948 -3.3146 59 0.015 
Table N-14 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567 
SN-TCP-NE 67298.83 60 81.492 10.5206 
Table N-15 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -46.00 1594.7235 205.879 -2.2634 59 0.0272 
Table N-16 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6525.83 60 278.3760 294.1370 
ATCP-32 6937.6 60 1871.3897 241.5953 
Table N-17 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 -41.833 296.747 383.051 -1.0752 59 0.286 
Table N-18 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401 
ATCP-32 6487.0 60 1958.314 252.8195 
Table N-19 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 94.5 741.6093 95.7413 0.9870 59 0.3276 
Table N-20 Tripygaia1.mid m = 6 
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Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389 
ATCP-32 678.6 60 43.4708 5.6120 
Table N-21 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 -307.66 1638.6490 21.5486 -1.4543 59 0.151 
Table N-2 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567 
ATCP-32 6758.83 60 48.9583 6.3204 
Table N-23 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 74.00 1595.2495 205.9458 0.3593 59 0.7206 
Table N-24 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6525.83 60 278.3760 294.1370 
ATCP-40 682.83 60 150.250 19.3978 
Table N-25 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -297.00 295.730 296.3830 -1.020 59 0.3203 
Table N-26 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401 
ATCP-40 692.6 60 1201.5143 15.148 
Table N-27 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -41.166 1549.693 20.0645 -2.051 59 0.042 
Table N-28 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389 
ATCP-40 6952.3 60 1286.804 16.1257 
Table N-29 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -481.33 2098.8305 270.9578 -1.764 59 0.0808 
Table N-30 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567 
ATCP-40 686.16 60 91.5765 128.019 
Table N-31 Tripygaia1.mid m = 8 
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Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -53.33 1891.474 24.186 -0.2184 59 0.8278 
Table N-32 Tripygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6525.83 60 278.3760 294.1370 
ATCP-TCP-ND 6816.0 60 52.5679 6.7864 
Table N-3 Tripygaia1.mid m = 5 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND -290.166 282.729 294.691 -0.9846 59 0.328 
Table N-34 Tripygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6581.50 60 2695.9076 348.0401 
ATCP-TCP-ND 6791.50 60 60.4734 7.8070 
Table N-35 Tripygaia1.mid m = 6 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND -210.00 2697.214 348.2097 -0.6030 59 0.5487 
Table N-36 Tripygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6471.0 60 1645.5452 212.4389 
ATCP-TCP-ND 6952.3 60 1286.804 16.1257 
Table N-37 Tripygaia1.mid m = 7 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND 270.9578 2098.8305 270.9578 -1.764 59 0.0808 
Table N-38 Tripygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Eror Mean 
ATCP-TCP-NE 6832.83 60 1598.4325 206.3567 
ATCP-TCP-ND 6062.50 60 5.4068 7.1529 
Table N-39 Tripygaia1.mid m = 8 
 
Diference Mean Std. Dev. Std. Eror Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND 70.33 1592.3748 205.5747 3.7472 59 0.00 
Table N-40 Tripygaia1.mid m = 8 
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