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Dissertation Abstract

Choice Numbers, Ohba Numbers and Hall Numbers of some complete

k-partite graphs

(Julian) Apelete D. Allagan

Doctor of Philosophy, August 10, 2009
(M.A., Auburn University–Auburn, 2007)

(B.S., Troy University–Troy, 2004)

51 Typed Pages

Directed by Peter Johnson Jr.

The choice numbers of some complete k−partite graphs are found, after we resolved

a dispute regarding the choice number of K(4, 2, . . . , 2) when k is odd. Estimates of the

choice numbers and the Ohba numbers of K(m,n, 1, . . . , 1) and K(m,n, 2, . . . , 2) are also

discussed for various values of 1 ≤ n ≤ m. Finally we close this research with the Hall

numbers of K(m, 2, . . . , 2) when m = 2, 4.
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Chapter 1

Introduction

Throughout this dissertation, the graph G = (V,E) will be a finite simple graph with

vertex set V = V (G) and edge set E = E(G).

1.1 Basic definitions

A complete k−partite graph G is a graph with k disjoint parts in which there is an edge

between each pair of vertices of different parts and no other edges. When each part of G has

size exactly one, G is said to be a complete graph. We use the notation K(m1,m2, . . . ,mk︸ ︷︷ ︸
k

)

to denote a complete k−partite graph (k ≥ 2) in which the parts have sizes m1,m2, . . . ,mk.

The complete graph on n vertices can be denoted by K(1, . . . , 1), but is usually denoted by

Kn.

A collection of pairwise adjacent vertices forms a clique. An independent set (also

known as a stable set) of a graph G is a set of vertices of G that are pairwise nonadjacent.

The maximum size of such a set, denoted by α(G), is called the independence number of G.

A subgraph of the graph G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). An

induced subgraph H of G is the maximal subgraph of G with vertex set V (H). When we

remove a vertex set, say V1 ⊂ V (G), we write G− V1. For a single vertex, we write G− v.

The line graph H of a graph G is the graph, often denoted by L(G), whose vertex set

is the edge set of G; and two vertices are adjacent in H if and only if their corresponding

edges share an endpoint in G.

Let G1 and G2 be two graphs. The join of G1 and G2, denoted by G1 ∨ G2, is the

graph H whose vertex set is V (H) = V (G1) ∪ V (G2), a disjoint union, and whose edge set

is E(G) = E(G1) ∪ E(G2) ∪ {v1v2 | v1 ∈ V (G1), v2 ∈ V (G2).
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A list assignment to the graph G is a function L which assigns a finite set (list) L(v)

to each vertex v ∈ V (G). A proper L−coloring of G is a function ψ : V (G) →
⋃

v∈V (G)

L(v)

satisfying, for every u, v ∈ V (G),

(i) ψ(v) ∈ L(v),

(ii) uv ∈ E(G) → ψ(v) 6= ψ(u).

The choice number or list−chromatic number of G, denoted by ch(G), is the smallest

integer k such that there is always a proper L−coloring of G if L satisfies |L(v)| ≥ k for

every v ∈ V (G). We define G to be k−choosable if it admits a proper L−coloring whenever

|L(v)| ≥ k for all v ∈ V (G); then ch(G) is the smallest integer k such that G is k−choosable.

Since the chromatic number χ(G) is similarly defined with the restriction that the list

assignment is to be constant, it is clear that for all G, χ(G) ≤ ch(G). There are many

graphs whose choice number exceeds (sometimes greatly) their chromatic number. Figure

1.1 depicts the smallest graph G whose choice number exceeds its chromatic number.

s
s

s
s

s
su1 v2 u3

v1 u2 v3

{a, c} {a, b} {b, c}

{b, c} {a, b} {a, c}

Figure 1.1: K(3,3) minus two independent edges with a list assignment L.

Notice that if we denote the parts of the bipartite graph K(3, 3) by U = {u1, u2, u3}

and V = {v1, v2, v3} for i = 1, 2, 3, then G ∼= K(3, 3)− ({u1v3} ∪ {v1u3}).

To see that G is not properly L−colorable, suppose that ψ is a proper L−coloring of

G. Now, if ψ(u2) = b then ψ(v2) = a and ψ(v3) = c. Hence, we cannot properly color u1.

On the other hand, if ψ(u2) = a then ψ(v2) = b and ψ(v3) = c, and we cannot properly

color u3. Hence, the graph G has no proper L−coloring and |L(v)| ≥ 2 for all v ∈ V (G).
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Therefore, G is not 2−choosable, meaning ch(G) > 2. Further, since G is connected, and

neither a complete graph nor an odd cycle, by Brooks’ theorem for the choice number [3],

ch(G) ≤ ∆(G) = 3. Thus, ch(G) = 3.

Any graph G for which the extremal case χ(G) = ch(G) holds is said to be chromatic−

choosable. It is not hard to see that cycles, cliques and trees are all chromatic−choosable.

(Well, the case of even cycles requires a little work. See [3].)

1.2 History

In graph theory, a vertex coloring problem is the coloring of the vertices of a graph

under various constraints, with the aim of optimizing something, so that adjacent vertices

receive different colors. The classical constraint is that colors are chosen from a fixed palette,

and the aim is to minimize the number of colors available.

List colorings, as generalizations of the usual vertex coloring, were first introduced in

the late 1970’s by Vizing [13], and then independently by Erdös et al. [3] Erdös et al were

inspired by Jeffrey Dinitz’ problem: if the cells of an n×n array are assigned sets of size n,

can representatives of these sets necessarily be found for the cells so that no representative

occurs more than once in any row or column of the array? Dinitz’ problem turned out

to be a very important list coloring problem which can be restated as follows: Is the line

graph of the complete bipartite graph K(n, n) chromatic−choosable? The problem remained

unsolved until 1995 when Frederick Galvin [4] proved that the line graph of any bipartite

multigraph is chromatic−choosable. It is clear that Galvin’s result is much stronger than

the original Dinitz’ problem. However, there remains one fundamental unanswered ques-

tion about the original list coloring problem of Vizing (in Russian): Is the line graph of

any graph chromatic−choosable? The affirmative answer to that open question is famously

known as the (edge) list coloring conjecture. Because it is very difficult to find the choice

number of any graph, some mathematicians have begun to doubt the validity of the conjec-

ture. Nevertheless, in 1995, Gravier and Maffray [5], after proving that every 3−chromatic

claw−free perfect graph is chromatic−choosable, conjectured rashly that every claw−free

3



graph is chromatic−choosable; a much stronger conjecture than the list coloring conjecture

since every line graph is claw−free. Their statement brings us back into considering the list

coloring conjecture once again. Surveys of choice numbers of graphs can be found in [14]

and [15].

In 2002, Ohba conjectured [11] that every graph G with 2χ(G) + 1 or fewer vertices

is chromatic−choosable. It is important to point out here that because every k−chromatic

graph is a spanning subgraph of a complete k−partite graph, Ohba’s conjecture is true if

and only if it’s true for every complete k−partite graph. Since then, several papers (see

[8]) have been written specifically in attempts to find the choice numbers of some complete

k−partite graphs which satisfy the hypothesis of Ohba’s conjecture. Meanwhile, in 2005,

Reed and Sudakov [12] proved that G is chromatic−choosable when |V (G)| ≤ 5
3χ(G)− 4

5 , a

much stronger hypothesis than Ohba’s.

1.3 Overview

We began this research with the list coloring conjecture in mind. We hoped to at least

verify the conjecture for the line graph of K(2, 2, 2). We were soon confronted by the grim

difficulty of finding the choice number of any simple graph. But thanks to my advisor’s

flexibility, we simply decided to try to learn from what others have done. Soon we came

across the papers written by Enomoto et al [2] and Xu, Yang[16]. There seems to be a

contradiction between the results of Enomoto et al and Xu, Yang. In section 2.1, we resolve

some of the issues related to both authors’ results. Later, one of the authors’ remarks in

[2] lead us to investigate the choice numbers of some particular multipartite graphs. Our

findings are presented in section 2.2. We close the chapter with some estimates of the choice

numbers that we could not determine exactly. In the final chapter, we present some results

on another list coloring graph parameter, the Hall number, closely related to the choice

number.
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Chapter 2

Choice numbers

In the first section of this chapter, we resolve a dispute over the choice number of the

complete k−partite graph K(4, 2, . . . , 2) when k is odd. Further, in the same section, we

revise the proof in [2] about the choice number of K(4, 2, . . . , 2) when k is odd. In the

next section, estimates, and in some cases exact values, are obtained of the choice numbers

of some complete multipartite graphs in which all parts except one are of sizes 1, 2 or 3.

These results also estimate, and sometimes determine, the Ohba number of these graphs.

The Ohba number of a (finite simple) graph is the smallest order of a clique such that the

choice number and the chromatic number of the join of the graph with a clique of that order

are equal.

Here is some background on the choice numbers of some complete multipartite graphs.

Theorem A.(Erdös, Rubin and Taylor [3]) The complete k−partite graph K(2, 2, . . . , 2)

is chromatic−choosable.

Notice that this result establishes that every simple graph with independence number

2 is k−choosable. This is due to the fact that every k−chromatic graph is a spanning

subgraph of some complete k−partite graph, in which the parts are the color classes from

some proper k−coloring of the original graph.

Theorem B. (Gravier and Maffray [5]) If k > 2, then the complete k−partite graph

K(3, 3, 2, . . . , 2) is chromatic−choosable.

This result does not hold for k = 2 since K(3, 3) contains the subgraph in Figure 1.1,

whose choice number is bigger than 2.

5



Corollary B. The complete k−partite graph K(3, 2 . . . , 2) is chromatic−choosable.

Since K(3, 2 . . . , 2) is a complete k−partite graph, k = χ(K(3, 2 . . . , 2)) ≤

ch(K(3, 2 . . . , 2)). Further, K(3, 2 . . . , 2) is a subgraph of the complete k−partite graph

K(3, 3, 2, . . . , 2). Therefore ch(K(3, 2 . . . , 2)) ≤ k if k > 2. Thus, ch(K(3, 2 . . . , 2)) = k if

k > 2. When k = 2, we have K(3, 2), of which it is well known that the choice number is

2. See [9], for instance.

Theorem C.(Kierstead [10]) Let G denote the complete k−partite graph K(3, 3, 3, . . . , 3).

Then ch(G) = d (4k−1)
3 e.

Observe that this result implies that ch(G) = k + 1 when 2 ≤ k ≤ 4 and

k + 1 < ch(G) < 3k
2 when k ≥ 5.

2.1 Choice number – A dispute resolved

2.1.1 Introduction

In 2002, Enomoto, Ohba, Ota, and Sakamoto published in [2] a proof that the choice

number of the complete k−partite graph Gk = K(4, 2, . . . , 2) is k if k is odd and k + 1

if k is even. Recently Xu, Yang [16] claimed to detect errors in their proof, and that the

choice number is k + 1 in both cases. While Xu, Yang’s proof is wrong, a certain amount

of doubt has been cast on the proof of Enomoto, et al, which, while ingenious, is a proof

by induction on k with a complicated induction hypothesis, which should, and evidently

does, arouse suspicion. While we judge the original proof to be valid, we offer here a lemma

which we will use to simplify (but not shorten) the proof of Enomoto, et al, to establish

beyond the shadow of a doubt that their result was correct in the first place. But first, here

is an example of the choice number of a simple graph.

2.1.2 Example

Let G denote a spanning subgraph of K(2, 2, 2) depicted by Figure 2.1 with labeled

edges. Let H = L(G). Figure 2.2 is a drawing of H.
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Figure 2.1: A spanning subgraph of K(2,2,2).

s s
s
s

s
s

sz2

x1 y1

v

y2 x2

z1

Figure 2.2: An induced subgraph of the line graph of K(2,2,2).

By defining the independent sets V1 = {x1, x2}, V2 = {y1, y2}, V3 = {z1, z2} and

V4 = {v}, we can deduce that H is a subgraph of the complete 4−partite graph K(2, 2, 2, 2).

Thus, ch(H) ≤ 4 by Theorem A. Further, 4 = χ(H) ≤ ch(H). Hence ch(H) = 4.

2.1.3 The dispute resolution

Throughout this section we will assume the parts of K(m, 2, . . . , 2) to be V1, V2, . . . , Vk

with V1 = {x1, x2, . . . , xm} and Vi = {ui, vi}, i = 2, . . . , k. Also, in this section and beyond,

in the remainder of this dissertation, we will frequently use the following notation: If L is

a list assignment to a graph G, and S ⊆ V (G), then L(S) =
⋃
v∈S

L(v).

7



We first consider two important lemmas which will be used to simplify many of our

arguments in this section.

Lemma 2.1. (Enomoto, et al.[2]) Let H denote the complete r−partite graph K(m, 2, . . . , 2)

and L a list assignment to H such that

i. |L(w)| ≥ r − 1 for all w ∈ V (H)

ii. |L(x)| ≥ r for all x ∈ V1

iii. |L(w)| ≥ r for at least one w ∈ Vi, i = 2, . . . , r and

iv. L(x) ∩ L(y) = ∅ if x, y ∈ Vi, x 6= y, 1 ≤ i ≤ r.

Then H is L−colorable.

Proof.

Suppose there exists a nonempty set S ⊆ V (H) such that |L(S)| < |S|. Let t = |{i | xi ∈

S}|. By the assertions ii and iv, rt ≤ |L(S)|. Then rt ≤ |L(S)| < |S| ≤ 2(r − 1) + t. This

implies that (t − 2)(r − 1) < 0. Hence t ≤ 1. Therefore |S| ≤ 2(r − 1) + 1 = 2r − 1 and

|L(S)| ≤ 2r − 2. Thus, S cannot contain both ui and vi for any 2 ≤ i ≤ r. Hence |S| ≤ r.

On the other hand, by the assertion i, r − 1 ≤ |L(S)| hence r ≤ |S|. This implies

that t = 1, meaning S contains a vertex of V1. Hence r ≤ |L(S)| and therefore r < |S|, a

contradiction. Therefore H is properly L−colorable, by Hall’s theorem (see section 3.1); in

fact, the complete graph on V (H) is properly L−colorable.

Lemma 2.2. (Allagan, Johnson [1] (2008)) Suppose k ≥ 2. Suppose A, B are disjoint

k−sets of colors. Suppose L is a list assignment to Gk = K(4, 2, . . . , 2) which assigns A

to each ui, B to each vi , i = 2, . . . , k and |L(xi)| ≥ k, i = 1, 2, 3, 4 . Suppose there is

no proper L−coloring of Gk. Then k is even, |L(xi)| = k, i = 1, 2, 3, 4 and in fact L is

equivalent to L0 which is of the form described by Enomoto et al (up to switching the roles

8



of A and B), as follows:

1. L0(ui) = A and L0(vi) = B, for every 2 ≤ i ≤ k and

2. L0(x1) = A1 ∪A3 ∪B1, L0(x2) = A1 ∪A4 ∪B2, (∗∗)

L0(x3) = A2 ∪A4 ∪B1 and L0(x4) = A2 ∪A3 ∪B2.

where B1, B2 are k
2 sets partitioning B, and A1, A2, A3, A4 be disjoint sets of colors

partitioning A with |A1| = |A2| and |A3| = |A4|.

Proof.

Every proper L−coloring of Gk − V1 = K(2, . . . , 2) uses k− 1 elements of A and k− 1

elements of B. They form a set Q = C
⋃
D, C ⊆ A, D ⊆ B and |C| = |D| = k − 1. There

are k2 such sets. Further, for each such set, there is a proper L−coloring of Gk − V1 such

that Q is the set of colors appearing. Consider the pairs (L(xi), Q), 1 ≤ i ≤ 4, such that

L(xi) ⊆ Q and Q is one of those k2 sets. Since there is no proper L−coloring of Gk, each

Q appears at least once in such a pair. So there are at least k2 such pairs. Now count the

number of such Q that L(xi) could be a subset of. Say |L(xi)| = yi ≥ k and L(xi) has

t elements from A, yi − t elements from B, i = 1, 2, 3, 4. (If L(xi) has an element not in

A
⋃
B, then the number of Q ⊆ A

⋃
B such that L(xi) ⊆ Q is zero.) Then 1 ≤ t ≤ k − 1,

1 ≤ y− t ≤ k− 1, because, otherwise, A ⊆ L(xi) or B ⊆ L(xi) and L(xi) is contained in no

set Q = C
⋃
D. How many of the Q = C

⋃
D is L(xi) contained in? Since y = yi ≥ k, the

number is (k − t)(k − (y − t)) = (k − t)(k + t − y) ≤ (k − t)(k + t − k) = (k − t)t ≤ k2/4

with equality in the last inequality iff t = k/2. The number of pairs is therefore at most

4(k2/4) = k2. On the other hand, the number of pairs is at least k2. Therefore the number

of pairs is exactly k2. Therefore, from the inequalities above, k must be even, t = k/2 and

|L(xi)| = k, for each i = 1, 2, 3, 4. That is, each L(xi) is a k−set, with k/2 of its elements

from A and k/2 of its elements from B. Further–and this will play a big role in deducing

the form of the lists L(xi), i = 1, 2, 3, 4, each Q = C
⋃
D contains one and only one of the

9



L(xi). In other words, for each a ∈ A, b ∈ B, thinking of C = A \ {a}, D = B \ {b}, exactly

one of the L(xi) contains neither a nor b.

We shall show that the L(xi) are of the required form after proving a short succession

of claims.

Claim 1 The intersection of any three L(xi), i = 1, 2, 3, 4 is empty.

Proof. Suppose without loss of generality that a
⋂
L(x1)

⋂
L(x2)

⋂
L(x3)

⋂
A. Then

for any b ∈ B
⋂
L(x4), there is no L(xi),containing neither a nor b.

Claim 2 No element of A
⋃
B is in at most one of the L(xi), i = 1, 2, 3, 4.

Proof. Suppose a ∈ A and |{i | a ∈ L(xi)}| ≤ 1. Without loss of generality, suppose

a /∈ L(x1)
⋃
L(x2)

⋃
L(x3). If b ∈ B

⋂
L(x4), then b is not an element of at least two of

L(x1) , L(x2), L(x3), otherwise b would be in the intersection of three L(xi)’s. But then,

there are two L(xi)’s containing neither a nor b.

Claim 3 Every element of A
⋃
B is in exactly two of the L(xi), i = 1, 2, 3, 4.

Proof. This result follows from the previous claims.

For 1 ≤ i < j ≤ 4, let Aij = L(xi)
⋂
L(xj)

⋂
A and Bij = L(xi)

⋂
L(xj)

⋂
B. By

claim 1, the Aij are pairwise disjoint, and so are the Bij . If Aij 6= ∅ then Bij = ∅, because,

if a ∈ Aij , b ∈ Bij then a, b /∈ L(xt) for both t ∈ {1, 2, 3, 4}\{i, j}, whereas we know that

there is exactly one value of t such that a, b /∈ L(xt).

Consider L(x1) = A12
⋃
A13

⋃
A14

⋃
B12

⋃
B13

⋃
B14.

Suppose A12, A13 6= ∅. Then A14 = B12 = B13 = ∅. This follows for B12, B13 from the

remarks just above, and for A14 because B14 must be non-empty, since L(x1) contains k/2

elements of B. So, we can conclude that |B14| = k/2 and B24 = B34 = ∅.

Similarly, if two of the B1,j , j ∈ {2, 3, 4}, are non-empty, then two of the A1,j are

empty and the other has k/2 elements. Without loss of generality, assume that L(x1) =

A12
⋃
A13

⋃
B14 with |B14| = k/2 = A12 +A13; we are not assuming that both A12 and A13

are non-empty, but the fact that |B14| = k/2 alone implies that A14 = B12 = B13 = B24 =

10



B34 = ∅, by previous remarks and the fact that all k/2 of L(x1) and L(x4)’s elements from

B are in B14.

Case 1: One of A12, A13 is empty. Say A13 = ∅. Then |A12| = k/2 which implies

that A23 = A24 = ∅. We have L(x1) = A12
⋃
B14, L(x2) = A12

⋃
B23, L(x3) = A34

⋃
B23,

L(x4) = A34
⋃
B14. So L is of the type described at the end of section1, with A12, A34

playing the roles of A1,A2 respectively, A3 = A4 = ∅, and B14, B23 playing the roles of B1

and B2.

Case 2: Suppose A12 6= ∅ and A13 6= ∅. Then |A12| + |A13| = k/2. Since, L(x2) =

A12
⋃
A23

⋃
A24

⋃
B23, |B23| = k/2 and |A23| = ∅. Hence L(x2) = A12

⋃
A24

⋃
B23,

L(x3) = A13
⋃
A34

⋃
B23 and L(x4) = A24

⋃
A34

⋃
B14. Again we see that L is equiva-

lent to L0 in (∗∗).

Theorem 2.1. ( Enomoto et al. [2](2002)) Let Gk denote the complete k−partite graph

K(4, 2, . . . , 2). Then

ch(Gk) =

 k if k is odd

k + 1 if k is even.

Further, when k is even, the only list assignments L to Gk satisfying |L(v)| ≥ k for each

v ∈ V (Gk) from which no proper coloring is possible are equivalent to L0 previously described

in (∗∗).

Note that because K(4, 2, . . . , 2) is a subgraph of the complete (k + 1)−partite graph

K(2, 2, . . . , 2), it is clear that

k = χ(K(4, 2, . . . , 2)) ≤ ch(K(4, 2, . . . , 2)) ≤ ch(K(2, 2, . . . , 2︸ ︷︷ ︸
k+1

)) = k + 1, by Theorem

A.

Therefore for all k > 1, k ≤ ch(K(4, 2, . . . , 2)) ≤ k+1. (∗)
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Proof that ch(Gk) = k + 1 if k is even.

From the remark (∗), when k is even it suffices to prove that ch(K(4, 2, . . . , 2)) > k.

When k is even, Enomoto et al. give a list assignment to K(4, 2, . . . , 2) with all lists of

length (cardinality) k from which no proper coloring is possible. Actually when k ≥ 2 and

k is even, they give bk
4c+ 1 essentially different such list assignments, of the form of L0 in

(∗∗).

We will go through the proof that when k is even, this list assignment to K(4, 2, . . . , 2)

does not permit a proper coloring in order to contrast the situation with a challenge to the

claim of Theorem 2.1 when k is odd; See claim A, below.

Clearly |L0(v)| = k for all v ∈ V (Gk). Any attempt to color the vertices ofK(4, 2, . . . , 2)

from the list assignment L0 will require k−1 colors from A for the ui and k−1 colors from B

for the vi, i = 2, . . . , k. Hence for the vertices in V1 there remains only one color a ∈ A, and

one color b ∈ B. Let’s assume that a ∈ A1 and b ∈ B1; then x4 cannot be colored. Similarly

if a ∈ A1 and b ∈ B2, we cannot color x3; and, similarly, for each of the remaining 6 cases

a ∈ Ai, b ∈ Bj , some xt ∈ V1 cannot be colored. Thus, there is no proper L0−coloring of

Gk and all lists are of length k. So, ch(Gk) = k + 1 if k is even by the remark (∗).

Digression.

Claim A( Xu, Yang [16](2007)) ch(K(4, 2, . . . , 2)) = k + 1 for all k > 1.

This claim contradicts the assertion of Theorem 2.1 when k is odd.

In an attempt, albeit unsuccessful, to prove this claim when k is odd, Xu, Yang defined

the following:

Let A and B be disjoint sets of colors with |A| = k+1 and |B| = k−1. Let A1, A2, A3, A4

be disjoint sets of colors partitioning A such that |A1| = |A2| and |A3| = |A4|. Let B1, B2

be (k − 1)/2 sets partitioning B and let 0 be a color in A. It is claimed that Gk has no

proper L′−coloring where L′ is a list assignment to Gk defined as follows:
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1. L′(ui) = A− {0} and L′(vi) = B ∪ {0}, for every 2 ≤ i ≤ k and

2. L′(x1) = A1 ∪A3 ∪B1, L′(x2) = A1 ∪A4 ∪B2,

L′(x3) = A2 ∪A4 ∪B1 and L′(x4) = A2 ∪A3 ∪B2.

It is clear that |L′(ui)| = |L′(vi)| = k for every 2 ≤ i ≤ k and |L′(xi)| = (k+1)
2 + (k−1)

2 = k

for all 1 ≤ i ≤ 4. Without loss of generality we can assume that 0 ∈ A1.

We show that Gk has a proper L′−coloring ψ, given any such list assignment L′.

Any proper coloring of the subgraph K(2, . . . , 2) of Gk from the list assignment L′

will require k − 1 colors from A − {0} for the ui and k − 1 colors from B ∪ {0} for the vi,

i = 2, . . . , k. Color the ui′s with a k− 1 subset of the k−color set A−{0} and color the vi′s

with the k− 1 colors of the set B. There remain unused exactly one color of A−{0}, say c,

and 0 (since 0 did not appear as a color on any of the ui and vi, i = 2, . . . , k) to color the

vertices of V1. By letting c ∈ A2, we can have ψ(x3) = c = ψ(x4) and ψ(x1) = 0 = ψ(x2)

(since 0 ∈ A1), giving a proper coloring of Gk.

Thus, the assertion of Xu, Yang about ch(K(4, 2, . . . , 2)) , when k is odd, is not proven

by their list assignment, and the temptation is to dismiss it.

Theorem 3 of [2] reads: Suppose that L is a list assignment of G = K(4, 2, . . . , 2) such

that |L(v)| ≥ k for each v ∈ V (G). If G is not L−colorable, then L is essentially equivalent

to L0 (∗∗), namely, there exists a bijection τ of colors and automorphism ϕ of G satisfying

τ ◦ L ◦ ϕ = L0.

The proof in [2] is by induction on k, using the full conclusion of the theorem as the

induction hypothesis. To put it another way, the theorem and the induction hypothesis

could be: If k ≥ 1 is odd, then Gk is k−choosable, and if k ≥ 2 is even then the only

list assignments L to Gk such that |L(w)| ≥ k for all w ∈ V (Gk), and there is no proper

L−coloring of Gk, are equivalent to L0 in (∗∗).
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Resumption of the proof of Theorem 2.1

We go by induction on k, assuming as an induction hypothesis that ch(Gk) = k when

k is odd. The case when k = 1 is trivial. Assume k ≥ 2. Let L be a list assignment to

Gk = K(4, 2, . . . , 2) such that |L(v)| ≥ k for each v ∈ V (G). Suppose that Gk has no proper

L−coloring. We proceed by induction on k, but our only induction hypothesis is that for k

odd, ch(Gk) = k. We will prove this and that when k is even, L(u1) = . . . = L(uk) = A,

L(v1) = . . . = L(vk) = B (after renaming within each part, possibly), where A and B are

disjoint k−sets. Then the conclusion for even k follows from Lemma 2.2 .

Claim 2.1.1.
⋂

x∈V1

L(x) = ∅

Suppose that c ∈
⋂

x∈V1

L(x). Let L′ = L − {c}. Color the vertices in V1 with c.

Then, Gk − V1
∼= K(2, 2, . . . , 2) has a proper L′−coloring since |L′(v)| ≥ k − 1 for every

v ∈ V (Gk − V1). Thus, Gk has a proper L−coloring, a contradiction.

We note here that the proof of Claim 2 in [2] (p.58) assumes as part of the induction

hypothesis that when k is even, only for L of form L0 is Gk not properly L−colorable.

Our aim here is to give the proof without this as part of the induction hypothesis. Our

proof will be longer, but more credible. What follows is Claim 2 in [2], with a different

proof.

Claim 2.1.2. L(ui) ∩ L(vi) = ∅ for each i ≥ 2.

When k = 2 this follows easily from the non L−colorability of Gk. So, we assume

k ≥ 3. Suppose there is a color c ∈ L(uk) ∩ L(vk) . Color both uk and vk with c. Let

Gk−1 = Gk − Vk and L′ = L − {c}. Then the list assignment L′ satisfies the following

assertions:

(a) |L′(v)| ≥ k − 1 since |L(v)| ≥ k for each v ∈ V (G).

(b) Gk−1 has no proper L′−coloring since Gk has no proper L−coloring.

(c) L′(ui) ∩ L′(vi) = ∅ for each 2 ≤ i ≤ k − 1: If k − 1 were odd, then, by (a) and the

induction hypothesis, Gk−1 would be properly L′−colorable, contradicting (b). Therefore,
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k − 1 is even. If, say, c′ ∈ L′(uk−1) ∩ L′(vk−1), color uk−1, vk−1 with c′, set L′′ = L′ − {c′}

on Gk−2 = Gk−1 − Vk−1; but then |L′′(v)| ≥ k − 2 for each v ∈ V (Gk−2), and k − 2 is odd,

so Gk−2 is properly L′′−colorable by the inductive hypothesis. So (b) is contradicted again.

(d) |L′(xj)| ≥ k for some 1 ≤ j ≤ 4 since c cannot appear on all lists in V1 by

Claim 2.1.1.

(e) The intersection of any three lists on V1 is empty.

Suppose c̃ ∈ L′(x1)∩L′(x2)∩L′(x3). Then, we color x1, x2, x3 with c̃ and the subgraph

Gk−1−{x1, x2, x3} with the list assignment L′−{c̃} satisfies the hypothesis of Lemma 2.1,

by assertion (c) and Claim 2.1.1. Therefore Gk−1 is L′−colorable, a contradiction.

(f) L′(xi)∩L′(xj) 6= ∅ for some i 6= j; Otherwise L′(xi)∩L′(xj) = ∅ for each i 6= j. Then

Gk−1 with L′ satisfies the hypothesis of Lemma 2.1, and so Gk is properly L′−colorable, a

contradiction.

(g) If a ∈ L′(x1) ∩ L′(x2) then there exists b ∈ L′(x3) ∩ L′(x4).

Suppose L′(x3) ∩ L′(x4) = ∅. Let L′′ = L′ − a on V2 ∪ . . . ∪ Vk−1 and L′′(xi) = L′(xi),

i = 3, 4. Then, the subgraph Gk−1 − {x1, x2} satisfies the hypothesis of Lemma 2.1 and

so Gk−1 − {x1, x2} is properly L′′−colorable, and thus Gk−1 is properly L′−colorable, a

contradiction.

(h) L′(V1) ⊆ L′(V2 ∪ . . . ∪ Vk−1). Suppose there is a color c ∈ L′(xi) for some i and

c /∈ L′(V2∪. . .∪Vk−1). Color xi with c. Then |L′(xj)| ≥ k−1 for each j 6= i and |L′(v)| ≥ k−1

for each v ∈ V2 ∪ . . . ∪ Vk−1. By Corollary B, the subgraph G − xi
∼= K(3, 2 . . . , 2) has a

proper L′−coloring, and therefore Gk−1 does also, a contradiction.

We use the previous assertions to prove the following subclaims.

Subclaim 1: If σ ∈ L′(x1)∩L′(x2) and τ ∈ L′(x3)∩L′(x4) then {σ, τ} ⊂ B′ for some

(k − 1)−set of colors B′, which is one of the lists on Vi for each i = 2, . . . , k − 1.

Proof. Note that σ 6= τ , by Claim 2.1.1.

Color x1, x2 with σ and x3, x4 with τ . Let L′′ = L′−{σ, τ} and H = Gk−1 − V1. Then

|L′′(v)| ≥ k − 3 for each v ∈ V (H). Because L′(vi) ∩ L′(ui) = ∅, i = 2, . . . , k − 1, for each
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i ∈ {2, . . . , k − 1}, either |L′′(ui)|, |L′′(vi)| ≥ k − 2, or one of |L′′(ui)|, |L′′(vi)| is equal to

k − 3 and the other is greater than or equal to k − 1. If, say, |L′′(u2)|, |L′′(v2)| ≥ k − 2,

then we can apply Lemma 2.1 to the complete (k − 2)−partite graph H ∼= K(2, . . . , 2),

with V2 playing the role of the first part, to conclude that H is properly L′′−colorable, a

contradiction. Therefore, in each of V2, . . . , Vk−1, the L′ list on one of the vertices , say

L′(vj), contains σ and τ , and we have |L′′(vi)| ≥ k − 3, |L′′(ui)| ≥ k − 1.

Since H has no proper L′′−coloring, there exists a nonempty set S ⊆ V (H) such that

|L′′(S)| ≤ |S| − 1. (This is by Hall’s theorem; see section 3.1.) Suppose Vj ⊆ S for some

j ≥ 2.

Then k− 1 + k− 3 = 2(k− 2) ≤ |L′′(uj)|+ |L′′(vj)| ≤ |L′′(S)| ≤ |S| − 1 ≤ 2(k− 2)− 1,

a contradiction. So, S contains at most one vertex of Vj for each j ≥ 2. Thus, |S| ≤ k − 2.

Further, since |L′′(v)| ≥ k − 3 for each v ∈ V (H), |S| = k − 2 and |L′′(S)| = k − 3. Thus,

S = {v2, . . . , vk−1} and L′′(v2) = . . . = L′′(vk−1). Further, since L′′ = L′ − {σ, τ}, we can

conclude that L′(v2) = . . . = L′(vk−1) = B′ where B′ is a (k − 1)−set of colors. As noted

previously, σ, τ ∈ B′.

Corollary: By the assertions (f), (g), and (e), and Subclaim 1, there is such a set B′.

Subclaim 2: L′(u2) = . . . = L′(uk−1) = A′, for some (k − 1)−set of colors A′.

Proof.

Let σ ∈ L′(x1) ∩ L′(x2) and B′ = L′(vi), i = 2, . . . , k − 1 be as in Subclaim 1 and

its corollary, so σ ∈ B′ and |B′| = k − 1. Then, L′(x3) \ B′ 6= ∅ and L′(x4) \ B′ 6= ∅

since σ /∈ L′(x3) ∪ L′(x4) by the assertion (e). Hence there exist colors α, β /∈ B′ such that

α ∈ L′(x3) and β ∈ L′(x4). Consider x1 and x2 to be colored with σ, x3 with α, and x4

with β. Define G′ = Gk−1−V1 and L′′ = L′−{σ, α, β}. Since G′ is not L′′−colorable, there

exists a nonempty set S ⊆ V (G′) such that |L′′(S)| ≤ |S| − 1.

Suppose Vj ⊆ S for some j ≥ 2.

Then (k − 1) − 2 + (k − 1) − 1 = 2k − 5 ≤ |L′′(uj)| + |L′′(vj)| ≤ |L′′(S)| ≤ |S| − 1 ≤

2(k − 2) − 1. This implies that |S| = 2(k − 2) and |L′′(S)| = 2k − 5. It follows that
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|L′′{u2, . . . , uk−1}| = k − 3 and thus that L′(u2) = . . . = L′(uk−1) = L′′(ui) ∪ {α, β}.

From there and the fact that |L′(ui)| ≥ k − 1, i = 2, . . . , k − 1, it follows that L′(ui) =

L′′(ui) ∪ {α, β} = A′, i = 2, . . . , k − 1, a (k − 1)−set.

On the other hand, if S cannot contain both uj and vj for for any j ≥ 2, then (k−1)−2 ≤

|L′′(S)| ≤ |S| − 1 ≤ (k− 2)− 1. This implies that |S| = (k− 2) and |L′′(S)| = (k− 1)− 2 =

|L′′(uj)| for every j ≥ 2. We can once again conclude that L′(u2) = . . . = L′(uk−1) = A′,

for some (k − 1)−set of colors A′.

Because |L′(xi)| = k for some i ∈ {1, 2, 3, 4}, it now follows from Lemma 2.2, with k

there replaced by k− 1, that Gk−1 is properly L′−colorable after all, a contradiction. This

establishes Claim 2.1.3, meaning L(ui) ∩ L(vi) = ∅ for each i = 2, . . . , k.

We proceed to prove the following sequences of claims which are very similar to the

ones in [2]. They can also be easily derived as were the assertions (e), (f), (g), (h) in Claim

2.1.1 and the Subclaims 1 and 2 by letting L and k play the roles of L′ and k−1 respectively,

and letting Claim 2.1.2 play the role played by (c) in the proof of Claim 2.1.2.

Claim 2.1.3. The intersection of any three lists in V1 is empty.

Suppose c ∈ L(x1) ∩ L(x2) ∩ L(x3). Then, we color x1, x2, x3 with c and the subgraph

Gk − {x1, x2, x3} with L′ = L− {c} satisfies the hypothesis of Lemma 2.1, by Claim 2.1.2;

therefore Gk is properly L−colorable, a contradiction.

Claim 2.1.4. L(xi) ∩ L(xj) 6= ∅ for some i 6= j.

Otherwise L(xi) ∩ L(xj) = ∅ for each i 6= j. Thus, Gk with L satisfies the hypothesis

of Lemma 2.1, and so Gk is properly L−colorable, a contradiction.

Claim 2.1.5. If a ∈ L(x1) ∩ L(x2) then there exists b ∈ L(x3) ∩ L(x4).

Suppose L(x3) ∩ L(x4) = ∅. Let L′ = L − a on V2 ∪ . . . ∪ Vk and L′(xi) = L(xi),

i = 3, 4 with L′. Then, the subgraph Gk − {x1, x2} satisfies the hypothesis of Lemma 2.1

and so Gk − {x1, x2} is properly L′−colorable, and thus Gk is properly L−colorable, a

contradiction.
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Claim 2.1.6. L(V1) ⊆ L(V2 ∪ . . . ∪ Vk).

Suppose there is a color c ∈ L(xi) for some i and c /∈ L(V2 ∪ . . .∪ Vk). Color xi with c.

Then |L(xj)| ≥ k for each j 6= i and |L(v)| ≥ k for each v ∈ V2 ∪ . . . ∪ Vk. By corollary B,

the subgraph G− xi
∼= K(3, 2 . . . , 2) has a proper L−coloring, a contradiction.

Subclaim 3: If σ ∈ L(x1) ∩ L(x2) and τ ∈ L(x3) ∩ L(x4) then {σ, τ} ⊂ B for some

k−set of colors B, which is one of the lists on Vi for each i = 2, . . . , k.

Proof.

Suppose σ ∈ L(x1) ∩ L(x2) and τ ∈ L(x3) ∩ L(x4). Then color x1, x2 with σ and

x3, x4 with τ . Let L′ = L − {σ, τ} and H = Gk − V1. Then |L′(v)| ≥ k − 2 for each

v ∈ V (H). Because L(vi) ∩ L(ui) = ∅, i = 2, . . . , k, for each i ∈ {2, . . . , k}, either |L′(ui)|,

|L′(vi)| ≥ k − 1, or one of |L′(ui)|, |L′(vi)| is equal to k − 2 and the other is greater or

equal to k. If, say, |L′(u2)|, |L′(v2)| ≥ k− 1, then we can apply Lemma 2.1 to the complete

(k−1)−partite graph H ∼= K(2, . . . , 2), with V2 playing the role of the first part, to conclude

that H is properly L′−colorable, a contradiction. Therefore, in each of V2, . . . , Vk, the L

list on one of the vertices , say L(vj), contains σ and τ , and we have |L′(vi)| ≥ k − 2,

|L′(ui)| ≥ k, i = 2, . . . , k.

Since H has no proper L′−coloring, there exists a nonempty set S ⊆ V (H) such that

|L′(S)| ≤ |S| − 1. Suppose Vj ⊆ S for some j ≥ 2.

Then k + k − 2 = 2(k − 1) ≤ |L′(uj)| + |L′(vj)| ≤ |L′(S)| ≤ |S| − 1 ≤ 2(k − 1) − 1, a

contradiction. So, S contains at most one vertex of Vj for each j ≥ 2. Thus, |S| ≤ k − 1.

Further, since |L′(v)| ≥ k − 2 for each v ∈ V (H), |S| = k − 1 and |L′(S)| = k − 2. Thus,

S = {v2, . . . , vk} and L′(v2) = . . . = L′(vk). Further, since L′ = L−{σ, τ}, we can conclude

that L(v2) = . . . = L(vk) = B where B is a k−set of colors. As noted previously, σ, τ ∈ B.

Corollary: By Claims 2.1.2 , 2.1.4, 2.1.5, and Subclaim 3, there is such a set B.

Subclaim 4: L(u2) = . . . = L(uk) = A, for some k−set of colors A.

Proof.
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Let σ ∈ L(x1)∩L(x2) and B = L(vi), i = 2, . . . , k be as in Subclaim 3 and its corollary,

so σ ∈ B and |B| = k. Then, L(x3) \ B 6= ∅ and L(x4) \ B 6= ∅ since σ /∈ L(x3) ∪ L(x4)

by Claim 2.1.3 . Hence there colors α, β /∈ B such that α ∈ L(x3) and β ∈ L(x4). Color

x1 and x2 with σ, x3 with α, and x4 with β. Define G′ = Gk − V1 and L′ = L − {σ, α, β}

as we color the vertices in V1. Since G′ is not L′−colorable, there exists a nonempty set

S ⊆ V (G′) such that |L′(S)| ≤ |S| − 1.

Suppose Vj ⊆ S for some j ≥ 2.

Then k−2+k−1 = 2k−3 ≤ |L′(uj)|+ |L′(vj)| ≤ |L′(S)| ≤ |S|−1 ≤ 2(k−1)−1. This

implies that |S| = 2(k−1) and |L′(S)| = 2k−3. It follows that |L′{u2, . . . , uk}| = k−2. From

there and the fact that |L(ui)| ≥ k, i = 2, . . . , k, it follows that L(ui) = L′(ui)∪{α, β} = A,

i = 2, . . . , k, a k−set.

On the other hand, if S cannot contain both uj and vj for for any j ≥ 2, then (k)−2 ≤

|L′(S)| ≤ |S|−1 ≤ (k−1)−1. This implies that |S| = (k−1) and |L′(S)| = k−2 = |L′(uj)|

for every j ≥ 2. We can once again conclude that L(u2) = . . . = L(uk) = A, for some k−set

of colors A.

Thus, we have shown that L(ui) = A, L(vi) = B for each 2 ≤ i ≤ k, and by Claim

2.1.2, A∩B = ∅. Thus, we established the hypothesis of Lemma 2.2 with the list assignment

L to Gk satisfying that |L(v)| ≥ k for each v ∈ V (Gk) and there is no proper L−coloring.

By the conclusion of Lemma 2.2, k must be even and L must be equivalent to L0 in (∗∗).

This concludes the proof of Theorem 2.1.

Corollary 2.1.1. ( Enomoto et al. [2](2002)) Let G denote the complete k−partite graph

K(4, 2, . . . , 2, 1). Then ch(G) = k.

Proof.

When k is odd, it is clear by Theorem 2.1 that ch(G) = k since k = χ(K(4, 2, . . . , 2, 1) ≤

ch(K(4, 2, . . . , 2, 1)) ≤ ch(K(4, 2, . . . , 2, 2)) = k. When k is even, the subgraph G − v is

(k − 1)−choosable, where v is the vertex of the part of size 1 . Hence k = χ(G) ≤ ch(G) ≤

k = k − 1 + 1, again invoking Theorem 2.1. Therefore ch(G) = k for all k > 1.
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Later in [16]( p. 61), Xu, Yang concluded that ch(K(4, 3, 2 . . . , 2)) = k+1 for all k > 1.

This conclusion was based on their erroneous Claim A.

There is no doubt that ch(K(4, 3, 2, . . . , 2)) ≤ k + 1 for all k > 1, since the k−partite

graph K(4, 3, 2, . . . , 2) is a subgraph of the complete (k+1)−partite graph K(4, 2, . . . , 2, 1)

the choice number of which is k + 1 by corollary 2.1.1.

Now, when k is even, k + 1 = ch(K(4, 2, . . . , 2)) ≤ ch(K(4, 3, 2, . . . , 2)) ≤ k + 1. Thus,

the assertion ch(K(4, 3, 2 . . . , 2)) = k + 1 is true when k is even.

However, when k is odd, it would have to be shown that ch(K(4, 3, 2 . . . , 2)) > k,

something that Xu, Yang did not show, because their correction of Theorem 2.1 was invalid.

We would have to provide a list assignment L with |L(v)| ≥ k, v ∈ V (K(4, 3, 2 . . . , 2)), for

which there is no proper L−coloring of K(4, 3, 2 . . . , 2). (I personally do not think there is

such list assignment.)

Theorem 2.2. (Enomoto et al.[2]) Let G denote the complete k−partite graph K(5, 2, . . . , 2).

Then ch(G) = k + 1.

Proof.

G is a subgraph of the complete (k + 1)−partite graph K(3, 2, 2, . . . , 2), the choice

number of which is k + 1 by corollary B. Hence ch(G) ≤ k + 1.

When k is even, k+ 1 = ch(K(4, 2, . . . , 2)) ≤ ch(K(5, 2, . . . , 2)). Hence ch(G) = k+ 1.

When k is odd, Enomoto et al. gave the following list assignment:

Let A and B be disjoint k − 1 sets of colors. Let A1, A2 and B1, B2 be disjoint k−1
2

sets of colors partitioning A and B respectively. Further, let C ⊂ A ∪ B with |C| = k and

the color 0 /∈ A ∪B. Define an assignment L of G as follows:

1. L(ui) = A ∪ {0} and L(vi) = B ∪ {0}, for every 2 ≤ i ≤ k and

2. L(x1) = A1 ∪B1 ∪ {0}, L(x2) = A1 ∪B2 ∪ {0}, L(x3) = A2 ∪B1 ∪ {0},

L(x4) = A2 ∪B2 ∪ {0} and L(x5) = C.

It is not hard to see that there is no proper L−coloring of G. Thus, ch(G) > k.
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Corollary 2.2.1. Let G denote the complete k−partite graph K(6, 2, . . . , 2). Then ch(G) =

k + 1.

Proof.

Since k + 1 = ch(K(5, 2, . . . , 2)) ≤ ch(K(6, 2, . . . , 2)), it is clear that ch(G) ≥ k + 1.

Further, G is a subgraph of the complete (k + 1)−partite graph K(3, 3, 2, . . . , 2) which has

choice number k + 1 by Theorem B. Thus, ch(G) ≤ k + 1. So, ch(G) = k + 1.

2.2 Choice numbers and Ohba numbers

2.2.1 Introduction

In 2002, Ohba [11] proved that for any given graph G, there exists an integer n0 such

that for any n ≥ n0, the join G ∨Kn satisfies ch(G ∨Kn) = χ(G ∨Kn).

The Ohba number of G is the number φ(G) defined to be the smallest integer n for

which ch(G ∨Kn) = χ(G ∨Kn). In particular when G is chromatic−choosable, φ(G) = 0.

Observe that |V (G∨Kn)| ≤ 2χ(G∨Kn)+1 if and only if n ≥ |V (G)|−2χ(G)−1. Now,

Ohba’s conjecture[11] states that if |V (G)| ≤ 2χ(G) + 1, then G is chromatic−choosable.

Thus, Ohba’s conjecture would imply that

φ(G) ≤ max(0, |V (G)| − 2χ(G)− 1) ≤ max(0, |V (G)| − 5) for every graph G with an edge.

Conversely, if φ(G) ≤ max(0, |V (G)| − 2χ(G)− 1) for all G then Ohba’s conjecture is

true. It is further clear that Ohba’s conjecture is true for every graph of order at most 5,

since Figure 1.1 is known to be the smallest graph that is not chromatic−choosable, and it

is of order 6.

We present here findings of Ohba numbers of some complete k−partite graphs.

Proposition 2.1. For any graph G, φ(G) ≥ ch(G)− χ(G).

Proof.

If G is chromatic−choosable, by the definition φ(G) = ch(G)− χ(G) = 0.
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Suppose G is not chromatic−choosable. Then ch(G) > χ(G). Let s be the smallest

positive integer such that ch(G ∨ Ks) = χ(G ∨ Ks). Since χ(G ∨ Ks) = χ(G) + s, this

implies that s = ch(G ∨ Ks) − χ(G). Further, ch(G) ≤ ch(G ∨ Ks) for all s ≥ 1. So,

s ≥ ch(G)− χ(G). Thus, φ(G) ≥ ch(G)− χ(G).

Proposition 2.2. Let G denote the complete k−partite graph K(4, 2, 2, . . . , 2). Then

φ(G) =

 0 if k is odd

1 otherwise.

Proof.

From Theorem 2.1, when k is odd, ch(G) = k = χ(G). Thus, φ(G) = 0 by definition.

When k is even, ch(G) > k. Further, ch(G ∨ K1) = ch(K(4, 2, 2, . . . , 2, 1)) = k + 1 =

χ(G ∨K1) by corollary 2.1.1. Thus, φ(G) = 1 when k is even.

2.2.2 Choice numbers and Ohba numbers of K(m, n, 1,. . . , 1)

We present the choice numbers of the complete k−partite graphs K(m,n, 1, . . . , 1) for

various values of 1 ≤ n ≤ m and their corresponding Ohba numbers. Pretty clearly, if k−2 ≤

φ(K(m,n)) then φ(K(m,n, 1, . . . , 1)) = φ(K(m,n)) − (k − 2). So, φ(K(m,n, 1, . . . , 1)) =

max{0, φ(K(m,n))− (k − 2)}. Consequently, we just need φ(K(m,n)).

Throughout this section, we denote the parts of the complete k− partite graph

K(m,n, 1, . . . , 1) by V1, V2, . . . , Vs where V1 = {x1, . . . , xm}, V2 = {y1, y2, . . . , yn} and

Vs = {vs} for s = 3, . . . , k.

Theorem 2.3. Let G denote the complete k−partite graph K(m,n, 1, . . . , 1). Then

ch(G) ≤ n+ k − 1 for all 1 ≤ n ≤ m.

Proof.
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When k = 2, it is shown in [9] that ch(G) ≤ n+1 for all m ≥ n. The proof for arbitrary

k ≥ 2 will be similar. We denote G′ = G − V1, where V1 is the part of G of size m, and

let L be a list assignment to G with |L(v)| ≥ n + k − 1 for each v ∈ V (G). Any proper

L−coloring of G′ uses at most n+ k− 2 distinct colors, say α1, . . . , αn+k−2. Thus, for each

v ∈ V1, |L(v)− {α1, . . . , αn+k−2}| ≥ 1, and so G is L−colorable. Hence ch(G) ≤ n+ k − 1.

Corollary 2.3.1. Let G denote the complete k−partite graph K(m, 1, 1, . . . , 1). Then

ch(G) = k for all m ≥ 1.

Proof.

From theorem 2.3 (when n = 1), ch(K(m, 1, 1, . . . , 1) ≤ k + 1 − 1 = k. Further, k =

χ(K(m, 1, . . . , 1)) ≤ ch(K(m, 1, 1, . . . , 1)), so we can conclude that ch(K(m, 1, 1, . . . , 1)) =

k. It is fair to point out that this result also follows from the fact that χ(Km) = ch(Km) = 1.

Lemma 2.3. Let H denote the complete (k − 1)−partite graph K(2, 1, . . . , 1) with parts

V1 = {y1, y2}, Vs = {vs}, for each s = 2, . . . , k − 1. Let L be a list assignment to H

satisfying that L(y1) = A and L(y2) = B for some disjoint k−sets of colors A and B, and

|L(w)| ≥ k for each w ∈ V (H). Then the number of different color sets arising from proper

L−colorings of H is at least
k2 + 3k

2
.

Proof.

Let Kk−2
∼= H −V1 and Ci,j = { color sets from proper L− colorings of Kk−2 with i

element(s) from A, j element(s) from B }, with 0 ≤ i, j ≤ k − 2 and i+ j ≤ k − 2.

Claim 1.
∑

0≤i,j≤k−2
i+j≤k−2

ci,j ≥
(
k

2

)
where ci,j = |Ci,j |.

The number of proper L−colorings of Kk−2 is at least k(k − 1) . . . (k − (k − 3)) =

k(k−1) . . . 3 =
k!
2

. Further, since each color set appears at most (k−2)! times, the number

of distinct color sets arising from the proper L−colorings is at least
k!

2(k − 2)!
, meaning∑

0≤i,j≤k−2
i+j≤k−2

ci,j ≥
k!

2(k − 2)!
=

(
k

2

)
.
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DefineDp,q = { color sets from proper L−colorings of H with p element(s) from A, q

element(s) from B }, with 1 ≤ p, q ≤ k, p + q ≤ k and let dp,q = |Dp,q|. Then the total

number of color sets from proper L−colorings of H is
∑

1≤p,q≤k
p+q≤k

dp,q. Since any coloring of H

uses exactly one color from A on y1 and one color from B on y2, every color set in Dp,q is

of the form D = C ∪ {a, b} for some a ∈ A \ C and b ∈ B \ C and C ∈ Cp−1,q−1. For each

1 ≤ p, q ≤ k, p + q ≤ k, consider the bipartite graph with bipartition Dp,q, Cp−1,q−1 with

D ∈ Dp,q, C ∈ Cp−1,q−1 adjacent if and only if C ⊆ D. Now each C ∈ Cp−1,q−1 has degree

(k − (p− 1))(k − (q − 1)) and each D ∈ Dp,q has degree at most pq in this bipartite graph.

Therefore pqdp,q ≥
∑

D∈Dp,q

deg(D) =
∑

C∈Cp−1,q−1

deg(C) = (k − p+ 1)(k − q + 1)cp−1,q−1. Thus,

the total number of proper L−coloring sets satisfies

∑
1≤p,q≤k
p+q≤k

dp,q ≥
∑

1≤p,q≤k
p+q≤k

(k − p+ 1)(k − q + 1)
pq

cp−1,q−1. (2.1)

Claim 2. f(p, q) ≥ (k + 2)2

k2
where f(p, q) =

(k − p+ 1)(k − q + 1)
pq

, 1 ≤ p, q ≤ k and

p+ q ≤ k.

Fix s ∈ {2, . . . , k} and consider values of p and q such that p+ q = s. Then p = s− q,

and 1 ≤ q ≤ s− 1.

Now, f(p, q) = f(s − q, q) = g(q) =
(k + 1− s+ q)(k + 1− q)

(s− q)q
. Also, we note that

g(1) = g(s−1) =
k(k + 2− s)

(s− 1)
, and g

′
(q) =

h(q)
[(s− q)q]2

where h(q) = −(k+1)(k+1−s)[s−

2q]. Therefore, g achieves a minimum on [1, s− 1] at q = s/2. We have for all q ∈ [1, s− 1],

f(s− q, q) ≥ g(s/2) = f(s/2, s/2) =
(k + 1− s/2)2

s2/4
.

Clearly this minimum decreases as s increases. Therefore, for all p, q ∈ {1, . . . , k − 1},

p+ q ≤ k, f(p, q) ≥ f(k/2, k/2) =
(k/2 + 1)2

k2/4
=

(k + 2)2

k2
.

From Claim 2 and the inequality 2.1,
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∑
1≤p,q≤k
p+q≤k

dp,q ≥ (k + 2)2

k2
·

∑
0≤i,j≤k−2
i+j≤k−2

ci,j ≥
(k + 2)2

k2
· k!
2(k − 2)!

=
k2 + 3k

2
− 2
k
.

Hence for all k ≥ 3, the number of different color sets arising from proper L−colorings

of H is at least
k2 + 3k

2
.

Theorem 2.4. Let G denote the complete k−partite graph K(m, 2, 1, . . . , 1), k ≥ 3. Then

ch(G) =

 k if m <
k2 + 3k

2
k + 1 if m ≥ k2.

Proof.

Let L be a list assignment to G with |L(v)| = k for each v ∈ V (G). Suppose G has no

proper L−coloring.

Observe that L(y1) ∩ L(y2) = ∅. Otherwise there is a color c ∈ L(y1) ∩ L(y2). Then

we can color y1 and y2 with c and the remaining subgraph G− V2 = K(m, 1, . . . , 1) can be

colored from L− {c} because ch(G− V2) = k − 1.

Let H = G− V1. Since L(y1) ∩ L(y2) = ∅, by Lemma 2.3, the number of distinct sets

arising from the proper L−colorings of the subgraph H is at least
k2 + 3k

2
.

Further, G is not L−colorable if and only if the set of colors, which will be of size k,

of each of the proper colorings of H occurs as a list in V1. Therefore for m <
k2 + 3k

2
, G is

L− colorable. Thus, if m <
k2 + 3k

2
, ch(G) ≤ k. Also k = χ(G) ≤ ch(G), so ch(G) = k if

m <
k2 + 3k

2
.

When m = k2, we provide the following list assignment L′ to V (G) for which there is

no proper L′−coloring.

Let A and B be disjoint sets of colors of size k, say A = {α1, . . . , αk} and B =

{β1, . . . , βk}. Let L′(y1) = L′(v3) = . . . = L′(vk) = A, L′(y2) = B.
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Any coloring of H = K(2, 1, . . . , 1) requires exactly k − 1 colors from A and one color

from B, and there are exactly k2 color sets from such colorings. Let m = k2 lists on V1 be

the k2 different sets (A \ {αi}) ∪ {βi}, 1 ≤ i, j ≤ k. Since each of the proper colorings of H

occurs as a list in V1, ch(K(m, 2, 1, . . . , 1)) > k for m = k2.

Further, by theorem 2.3, ch(K(m, 2, 1, . . . , 1)) ≤ k + 1 for all m. This concludes the

proof.

Corollary 2.4.1. Ohba’s conjecture holds for the complete k−partite graph K(m, 2, 1, . . . , 1)

with m ≤ k + 1.

Proof.

We denote G = K(m, 2, 1, . . . , 1). Observe that when m ≤ k + 1, |V (G)| ≤ (k + 1) +

2 + (k − 2) = 2k + 1 = 2χ(G) + 1. Thus, G satisfies the hypothesis of Ohba’s conjecture.

Further, it is clear that k + 1 ≤ k2 + 3k
2

− 1 for all k ≥ 2. Thus, by theorem 2.4, G is

chromatic−choosable when m ≤ k + 1.

Corollary 2.4.2. b
√
mc − 1 ≤ φ(K(m, 2)) ≤ d−7+

√
8m+17
2 e for m ≥ 5.

Proof.

If k ≤ b
√
mc, then k2 ≤ m, so by Theorem 2.4 k + 1 = ch(K(m, 2, 1 . . . , 1)) >

χ(K(m, 2, 1 . . . , 1)) = k. Thus, if k ≤ b
√
mc, φ(K(m, 2)) ≥ (k−2)+1 = k−1. Consequently,

φ(K(m, 2)) ≥ b
√
mc − 1, for all m ≥ 1. Further, by Theorem 2.4, if m ≤ k2 + 3k

2
− 1 and

k ≥ 3, then φ(K(m, 2)) ≤ k−2. The smallest positive value of k for which m ≤ k2 + 3k
2

−1

is the positive solution of k2 +3k−2(m+1) = 0, so the smallest integer value of k satisfying

that inequality is k0 = d−3+
√

8m+17
2 e; we have φ(K(m, 2)) ≤ k0 − 2 = d−7+

√
8m+17
2 e. The

requirement m ≥ 5 ensures that k0 ≥ 3.

Remark:

φ(K(m, 2)) = 1 for 4 ≤ m ≤ 8, by Theorem 2.4 and the previously noted fact that

ch(K(m, 2)) = 3 for all m ≥ 4.
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Lemma 2.4. Let G denote the complete k−partite graph K(m, 3, 1, . . . , 1), L a list assign-

ment to G satisfying that L(yi) ∩ L(yj) 6= ∅ for some yi 6= yj ∈ V2 and |L(v)| ≥ k + 1 for

each v ∈ V (G). Then G is L−colorable for all m ≥ 1.

Proof.

Suppose c1 ∈ L(y1) ∩ L(y2) and say c2 ∈ L(y3) with c1 6= c2. We color the vertices in

V2 with c1 and c2. Let G′ = G− V2 and L′ = L−{c1, c2}. Then |L′(v)| ≥ k+ 1− 2 = k− 1

for each v ∈ V (G′). By Corollary 2.3.1, G′ has a proper L′−coloring for all m ≥ 1. Thus,

G is properly L−colorable. In the case that
⋂

y∈V2

L(y) 6= ∅, it is clear from the previous

argument that G is L−colorable for all m ≥ 1.

Theorem 2.5. Let G denote the complete k−partite graph K(m,n, 1, . . . , 1), and

2 ≤ n ≤ m. Then ch(G) = n+ k − 1 if m ≥
(
n+ k − 2
k − 1

)
(n+ k − 2)n−1.

Proof.

Let C1, C2, . . . , Cn be disjoint (n+ k − 2)−sets of colors.

We provide the following list assignment L to G, with |L(v)| = n + k − 2 for each

v ∈ V (G) as follows: L(y1) = L(v3) = . . . = L(vk) = C1 and L(yj) = Cj for each 2 ≤ j ≤ n.

L on V1 will be described shortly.

Any proper L−coloring of G′ = G − V1
∼= K(n, 1, . . . , 1) requires exactly k − 1 colors

from C1 and exactly one color from each Cj for 2 ≤ j ≤ n , giving(
n+ k − 2
k − 1

)
(n+ k− 2)n−1 distinct sets of colors from proper L−colorings, each set of size

k. Let
(
n+ k − 2
k − 1

)
(n + k − 2)n−1 lists on V1 be the

(
n+ k − 2
k − 1

)
(n + k − 2)n−1 different

sets of colors from such proper L−colorings of G′, and if m >

(
n+ k − 2
k − 1

)
(n+ k − 2)n−1,

let the remaining vertices in V1 be supplied with any lists whatever of size n + k − 2.

Since each of the
(
n+ k − 2
k − 1

)
(n + k − 2)n−1 sets of proper colorings of G′ occurs as a

list in V1, G cannot be properly L−colored, so ch(K(m,n, 1, . . . , 1)) > n + k − 2 for m ≥
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(
n+ k − 2
k − 1

)
(n+ k − 2)n−1. Further, from Theorem 2.3, ch(G) ≤ n+ k − 1 for all m ≥ 2.

Thus, for m ≥
(
n+ k − 2
k − 1

)
(n+ k − 2)n−1, ch(G) = n+ k − 1.

Corollary 2.5.1. With G, m, n and k as in the hypothesis of Theorem 2.5, if 2 ≤ r ≤ n−1

and m ≥
(
r + k − 2
k − 1

)
(r + k − 2)r−1, then ch(G) ≥ r + k − 1.

Proof.

When m ≥
(
r + k − 2
k − 1

)
(r + k − 2)r−1, ch(K(m, r, 1, . . . , 1)) = r + k − 1 by Theorem

2.5. Further, with 2 ≤ r ≤ n − 1 < m, K(m, r, 1, . . . , 1) is a subgraph of the graph

G = K(m,n, 1, . . . , 1).

Corollary 2.5.2. With G, m, n and k as in the hypothesis of Theorem 2.5, if 2 ≤ r ≤ n

and m ≥
(
r + k − 2
k − 1

)
(r + k − 2)n−1, then φ(G) ≥ r − 1.

Proof.

By Proposition 2.1, φ(G) ≥ ch(G)− χ(G). Therefore φ(G) ≥ r + k − 1− (k) = r − 1.

2.3 An estimate of ch(K(m,2,. . . ,2))

2.3.1 Introduction

Throughout this section, [n] = {1, . . . , n} and
(

[n]
t

)
= {t− subsets of [n]}.

For n ≥ m ≥ t ≥ 0, the covering number C(n,m, t) is defined by C(n,m, t) =

min{|F|; F ⊆
(

[n]
m

)
and ∀ B ∈

(
[n]
t

)
,∃ A ∈ F such that B ⊆ A}.

Proposition 2.3. Let G denote the complete k−partite graph K(m, 2, 2, . . . , 2). Then

ch(G) ≤ 2k − 1.

Proof. Let L be a list assignment to G such that |L(v)| ≥ 2k − 1 for each v ∈ V (G).

Any proper L−coloring of G − V1
∼= K(2, . . . , 2) uses at most 2(k − 1) distinct colors say
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α1, . . . , α2k−2. Thus, for each v ∈ V1, |L(v)−{α1, . . . , α2k−2}| ≥ 1, and so G is L−colorable.

Hence ch(G) ≤ 2k − 1.

Lemma 2.5. C(n,m, t) is also the smallest size of a collection F ′ of n−m subsets of [n]

(or any other fixed n−set) such that for every (n − t)−set B′ ∈
(

[n]
n− t

)
, some A′ ∈ F ′ is

contained in B′.

Proof.

Given F , as in the original definition of C(n,m, t), form F ′ = {[n] \ A | A ∈ F},

the collection of complements of sets in F . Similarly, given F ′ ⊆
(

[n]
n−m

)
, form F =

{[n] \A′ | A′ ∈ F ′}, the collection of complements of sets in F ′. Because |F| = |F ′|, in each

case, and because complementation reverses inclusion, verification of the lemma’s claim is

straightforward.

Theorem 2.6. Let G denote the complete k−partite graph K(m, 2, . . . , 2) and k ≤ r ≤

2k− 2. If m ≥ C(r, dr/2e, r− k+ 1).C(r, br/2c, r− k+ 1) then ch(K(m, 2, . . . , 2)) ≥ r+ 1.

Proof.

Let A, B be disjoint r−sets. Denote by V1, V2, . . . , Vk the parts of G, with V1 =

{x1, . . . , xm}, Vi = {ui, vi}, i = 2, . . . , k. Start defining a list assignment to G by assigning

A to each ui and B to each vi. By Lemma 2.4, we can find a family F1 of r − br/2c =

dr/2e−subsets of A and a family F2 of r − dr/2e = br/2c−subsets of B such that every

r− (r− k+ 1) = (k− 1)−subset of A contains some set in F1, and every (k− 1)−subset of

B contains some set in F2, and |F1| = C(r, dr/2e, r − k + 1), |F2| = C(r, br/2c, r − k + 1).

Make |F1|.|F2| lists of length r by forming the unions F1 ∪ F2, F1 ⊆ F1, F2 ⊆ F2. If

m ≥ |F1|.|F2| then we can endow V1 with these lists. Then for every proper coloring of

G \ V1, some list on V1 is in the set of colors used. Hence ch(K(m, 2, . . . , 2)) > r for

m ≥ C(r, dr/2e, r − k + 1).C(r, br/2c, r − k + 1).
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Corollary 2.6.1. If m ≥
(

2k − 2
k − 1

)2

then ch(K(m, 2, . . . , 2)) = 2k − 1.

Proof. For r = 2(k − 1), if m ≥ C(2k − 2, k − 1, k − 1)2 =
(

2k − 2
k − 1

)2

then

ch(K(m, 2, . . . , 2)) ≥ 2k − 1 by Theorem 2.6. Further, using Proposition 2.3, we estab-

lish that ch(K(m, 2, . . . , 2)) = 2k − 1.
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Chapter 3

Hall numbers

3.1 Some necessary conditions

Theorem 3.1. (P.Hall [6]). Suppose A1, A2, . . . , An are (not necessarily distinct) finite

sets. There exist distinct elements a1, a2, . . . , an such that ai ∈ Ai, i = 1, 2, . . . , n if and

only if for each J ⊆ {1, 2, . . . , n}, |
⋃
j∈J

Aj | ≥ |J |.

A proper L−coloring of a complete graph Kn is certainly a system of distinct repre-

sentatives of the finite list L(v), and any list A1, A2, . . . , An of sets can be regarded as lists

assigned to Kn. Therefore, as noted in [7], Hall’s theorem can be restated as:

Theorem 3.2. (Hall’s theorem restated). Suppose that L is a list assignment to Kn. There

is a proper L−coloring of Kn if and only if, for all U ⊆ V (Kn), |L(U)| = |
⋃
u∈U

L(u)| ≥ |U |.

Let L be a list assignment to a simple graph G, H a subgraph of G and P = {1, 2, . . .}

a set of colors. If ψ : V (G) → P is a proper L−coloring of G, then for any subgraph H ⊂ G,

ψ restricted to V (H) is a proper L−coloring of H.

For any σ ∈ P, let H(σ, L) = < {v ∈ V (H) | σ ∈ L(v)} > denote the subgraph of H

induced by the support set {v ∈ V (H) | σ ∈ L(v)}. For convenience, we sometimes simply

write Hσ.

For each σ ∈ P, ψ−1(σ) = {v ∈ V (H) | ψ(v) = σ} ⊆ V (Gσ) and ψ−1(σ) is an

independent set. Further, ψ−1(σ) ∩H ⊆ V (Hσ). So, |ψ−1(σ) ∩H| ≤ α(Hσ) where α is the

vertex independence number. This implies that∑
σ∈P

α(Hσ) ≥
∑
σ∈P

|ψ−1(σ) ∩H| = |V (H)| for all H ⊆ G.
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When G and L satisfy the inequality

∑
σ∈P

α(Hσ) ≥ |V (H)| (3.1)

for each subgraph H of G, they are said to satisfy Hall’s Condition, a necessary condi-

tion for a proper L−coloring of G. Because removing edges does not diminish the vertex

independence number, for G and L to satisfy Hall’s Condition it suffices that (3.1) holds

for all induced subgraphs H of G.

Hall’s Condition is sufficient for a proper coloring when G = Kn, because if H is an

induced subgraph of Kn then

α(Hσ) =


1 if σ ∈

⋃
v∈V (H)

L(v), for each σ ∈ P,

0, otherwise.

So ∑
σ∈P

α(Hσ) = |
⋃

v∈V (H)

L(v)|;

therefore Hall’s Condition, that

∑
σ∈P

α(Hσ) ≥ |V (H)|

for every such H, is just a restatement of the condition in Theorem 3.2. (It is necessary

to point out here that if σ /∈ L(v) for some v ∈ V (H) then Hσ is the null graph, and

α(Hσ) = 0.) Consequently, Hall’s Theorem may be restated: For complete graphs, Hall’s

Condition on the graph and a list assignment suffices for a proper coloring.

The temptation to think that there are many graphs for which Hall’s Condition is

sufficient can be easily dismissed. Figure 3.1 is the smallest graph with a list assignment

L0 for which Hall’s Condition holds, and yet G has no proper L0−coloring.

Remark.
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It is clear that if H is an induced subgraph of G and H 6= G, then H ⊆ G− v for some

v ∈ V (G). So, if G−v has a proper L−coloring, then H ⊆ G−v must satisfy (by necessity)

(3.1). Thus, in practice, in order to show that G and L satisfy Hall’s Condition, it suffices

to verify that G − v is properly L−colorable for each v ∈ V (G) and that G itself satisfies

the inequality (3.1) .

Denoted by h(G), the Hall number of a graph G is the smallest positive integer k such

that there is a proper L−coloring of G, whenever G and L satisfy Hall’s Condition and

|L(v)| ≥ k for each v ∈ V (G). In [7] the following facts are shown:

1. If |L(v)| ≥ χ(G) for every v ∈ V (G) then G and L satisfy Hall’s Condition.

2. h(G) ≤ ch(G) for every G.

3. If ch(G) > χ(G) then h(G) = ch(G).

4. If h(G) ≤ χ(G) then χ(G) = ch(G).

These facts underline our findings in the next section.

3.2 Hall numbers of some complete multipartite graphs

Throughout this section, G is a simple graph and L is a list assignment to V (G) such

that L(v) ⊂ {1, 2, . . . , } = P, an integer set of symbols. If σ /∈ L(v) for some v ∈ V (G),

then Gσ is the null graph. Further, we denote by ψ(v), any attempted proper coloring of

some v ∈ V (G).

3.2.1 Example

Consider the complete bipartite graph K(2, 2) in Figure 3.1 with parts Vi = {ui, vi},

i = 1, 2 and L0 the list assignment indicated.
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s
s

s
su1 v2

u2 v1

{a, b} {b, c}

{a, c} {c}

Figure 3.1: A list assignment to K(2,2).

If v1 is colored c, as it must be, then u2 must be colored a and v2 must be colored b in

a proper coloring, so u1 cannot be properly colored.

However, we will show that G and L0 satisfy Hall’s Condition using the argument

described in the previous remark. First, for each v ∈ V (G), it is easy to see that G − v

is properly L0−colorable, meaning every proper induced subgraph H ⊂ G satisfies the

inequality (3.1) in Hall’s Condition. We now proceed to verify the inequality (3.1) for G

itself.

Now, α(Gc) = 2 and α(Gb) = α(Ga) = 1. So, 4 =
∑
σ∈P

α(Gσ) ≥ |V (G)| = 4 where P =

{a, b, c, . . .}. Thus, G and L0 satisfy Hall’s Condition and yet G has no proper L0−coloring.

Thus, 1 < h(G) ≤ 2 by Fact 2 and Theorem A. Therefore, h(G) = 2.

3.2.2 Some Hall numbers

Theorem 3.3. h(K(2, . . . , 2)) = k when k ≥ 2.

Proof.

Let the partite sets of the complete k−partite graph G = K(2, . . . , 2) be V1, . . . , Vk

with Vi = {ui, vi}, for i = 1, 2, . . . , k.

In Example 3.2.1, we showed that h(G) = k when k = 2. So, to complete the proof,

we suppose k ≥ 3.

Let A be a nonempty set of colors with |A| = k − 2 and a, b, c be distinct colors not in

A. We define L a list assignment to G as follows:
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1. L(u1) = A ∪ {a, b}, L(u2) = L(u3) = . . . = L(uk−1) = A ∪ {a}, L(uk) = A ∪ {c} and

2. L(v1) = A ∪ {b, c}, L(v2) = L(v3) = . . . = L(vk) = A ∪ {b}.

Observe that |L(v)| ≥ k − 1 for every v ∈ V (G).

Claim 3.3.1. The graph G is not properly L−colorable.

Proof.

In the following cases, we consider all possible distinct ways to properly color the

vertices of some part of G, say V1 . We then conclude that the remaining subgraph H =

G − V1 is not proper L′-colorable where L′ = L − {α1, α2}, {α1, α2} ∈
⋃

v∈V1

L(v). (α1, α2

are not necessarily distinct colors; they are the colors on V1.) Let ψ denote the attempted

proper coloring.

Case 1: ψ(u1) = b or ψ(v1) = b.

Let S =< {v2, . . . , vk} >, an induced subgraph ofH. Then k−2 = |A| = |
⋃

v∈V (S)

L′(v)| <

|V (S)| = k − 1. Since the subgraph S is a clique, we cannot properly color S from L′.

Case 2: ψ(u1) = a and ψ(v1) = c.

Similarly as described in case 1, by letting S =< {u2, . . . , uk} >, it’s clear that we

cannot properly color S, from L′.

Case 3: ψ(u1) = γ or ψ(v1) = γ for some color γ ∈ A.

Similarly as in case 1, k − 2 = |
⋃

v∈V (S)

L′(v)| < |V (S)| = k − 1. Hence we cannot

properly color H from L′.

Claim 3.3.2.
∑
σ∈P

α(Gσ) ≥ |V (G)|.

Proof.

It is clear that α(Ga) = α(Gc) = 1, α(Gb) = 2; further, α(Gσ) = 2(k − 2) for every

σ ∈ A. Hence
∑
σ∈P

α(Gσ) = 2k = |V (G)|.
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Claim 3.3.3. Every proper induced subgraph H of G is properly L−colorable.

Proof.

In the following cases we provide a (not necessarily unique) proper coloring for each

induced subgraph H of G, of the form G− v, v ∈ V (G).

Case 1: H = G− u1.

Let ψ(v1) = c and color the 2(k − 2) vertices of the subgraph G − (V1 ∪ V2) with

the colors from A (by coloring vertices of the same part with the same color). Then let

ψ(u2) = a and ψ(v2) = b.

Case 2: H = G− v1.

Let ψ(u1) = a and color the 2(k − 2) vertices of the subgraph G − (V1 ∪ Vk) with the

colors from A with the same color appearing on ui and vi, i = 2, . . . , k − 1. Then, let

ψ(uk) = c and ψ(vk) = b.

Case 3: H = G− ui, for some 2 ≤ i ≤ k.

Let ψ(vi) = b and color the remaining 2(k − 2) vertices of the subgraph G− (Vi ∪ V1)

with the colors from A. Then, let ψ(u1) = a and ψ(v1) = c.

Case 4: H = G− vi, for some 2 ≤ i ≤ k − 1.

Let ψ(ui) = a and color the remaining 2(k − 2) vertices of the subgraph G− (Vi ∪ V1)

with the colors from A. Then, let ψ(u1) = ψ(v1) = b.

Case 5: H = G− vk.

Let ψ(uk) = c and color the 2(k − 2) vertices of the subgraph G − (V1 ∪ Vk) with the

colors from A. Finally, let ψ(u1) = ψ(v1) = b.

From the previous claims, we can conclude that h(G) > k − 1. Thus, by Theorem A

and Fact 2, h(G) = k. This concludes the proof.
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Theorem 3.4. Let G denote the complete k−partite graph

K(4, 2, . . . , 2) with k ≥ 2. Then

h(G) =

 k if k is odd

k + 1 if k is even.

Proof.

When k is even, from Chapter 2 we have that k = χ(G) < ch(G) = k + 1. Thus, from

Fact 3, it is clear that h(G) = ch(G) = k + 1 for all even k ≥ 2.

Suppose k ≥ 3 is odd.

Let the partite sets, or parts, V1, V2, . . . , Vk of the complete k−partite graph G be

V1 = {x1, x2, x3, x4} and Vi = {ui, vi}, i = 2, . . . , k, k ≥ 2.

Let C1 and C2 be disjoint k − 2 sets of colors and 0 an object not in C1 ∪ C2. Let

A = C1
⋃
{0}, B = C2 ∪ {0}. Let A1, A2 and B1, B2 be disjoint (k − 1)/2 sets of colors

partitioning A and B respectively. Without loss of generality, let 0 ∈ A2 ∩ B2. Let a,b be

distinct objects not in A ∪B. Define a list assignment L to G as follows:

1. L(u2) = A, L(v2) = B, L(ui) = C1 ∪ {a} and L(vi) = C2 ∪ {b}, for every 3 ≤ i ≤ k

and

2. L(x1) = A1 ∪B1, L(x2) = A1
⋃
B2, L(x3) = A2 ∪B1 and L(x4) = A2 ∪B2 ∪ {a}

Notice that |L(v)| = k − 1 for every v ∈ V (G).

Claim 3.4.1. G is not properly L−colorable.

Every proper L−coloring of G − V1 = K(2, . . . , 2) uses k − 1 elements of C1 ∪ {0, a}

and k− 1 elements of C2 ∪ {0, b}. We proceed by exhausting the possible cases in attempts

to proper L−color G.

Case 1: suppose ψ(u2) 6= 0 6= ψ(v2). Then all of the colors of C1 ∪ C2 ∪ {a, b} will be

used to color G− V1. Hence we cannot color x1 (since A1 ∪B1 ⊂ C1 ∪ C2).

Case 2: suppose ψ(u2) = ψ(v2) = 0
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Case 2.1: ψ(ui) 6= a and ψ(vi) 6= b for every 3 ≤ i ≤ k.

Then all of the colors of C1 ∪ C2 will be used to color G − (V1 ∪ V2). Once again we

cannot color x1.

Case 2.2: ψ(ui) = a and ψ(vj) = b for some i, j 6= 2.

Then there remains exactly one color, say c1 ∈ C1 and exactly one color, say c2 ∈ C2.

If c1 ∈ A1 and c2 ∈ B1, then we cannot color x4. Likewise if c1 ∈ A1 and c2 ∈ B2, then we

cannot color x3. Also if c1 ∈ A2 and c2 ∈ B1, x2 cannot be colored and if c1 ∈ A2, c2 ∈ B2,

x1 cannot be colored as well.

Case 2.3: ψ(ui) 6= a for all i 6= 2 and ψ(vj) = b for some j ≥ 3. Then there remains

exactly one color, say c2 ∈ C2 and none of C1. As in the previous case, If c2 ∈ B1, then we

cannot color x2. Likewise if c2 ∈ B2, then we cannot color both x1 and x3.

Case 2.4: ψ(ui) = a for some i ≥ 3 and ψ(vj) 6= b for all j ≥ 3. Then there remains

exactly one color, say c1 ∈ C1 and none of C2. As before, if c1 ∈ A1, then we cannot color

either of x3 and x4. Likewise if c1 ∈ A2, then we cannot color either of x1 and x2.

Case 2.5: ψ(ui) 6= a and ψ(vj) 6= b for all 3 ≤ i, j ≤ k. Clearly the coloring cannot be

properly extended to any of x1, x2, x3.

Notice that we can skip the case where ψ(u2) = 0 and ψ(v2) 6= 0 (or vice versa), since

if there is a proper L−coloring with one of u2, v2 colored with 0, then there is a proper

L−coloring with both colored 0.

From the previous cases we can conclude that G is not properly L− colorable.

Claim 3.4.2.
∑
σ∈P

α(Gσ) ≥ |V (G)|.

Proof.

Notice that α(Gσ) = 2 for every σ ∈ C1∪C2. Also α(G0) = 3 and α(Ga) = α(Gb) = 1.

Hence
∑
σ∈P

α(Gσ) = 2(2(k − 2)) + 5 = 4k − 3 ≥ 2k + 2 = |V (G)| for every k ≥ 3.

Claim 3.4.3. If k ≥ 5, then every proper induced subgraph H of G is properly L−colorable.

Proof.
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We proceed by considering the possible subgraphs of G obtained by deleting a single

vertex.

Case 1: H = G− ui, for some i.

Let ψ(x2) = ψ(x3) = ψ(x4) = 0. Color G − V1 with the colors from C1 ∪ C2 ∪ {a, b}

(colors a, b included). Hence there remains exactly one unused color of C1, say c1, and

arrange that c1 ∈ A1. Let ψ(x1) = c1.

Case 2: H = G − vi, for some i. Following the coloring argument in the previous

case, there remains exactly one unused color of C2, say c2, and arrange that c2 ∈ B1. Let

ψ(x1) = c2.

Case 3: H = G − x1. Let ψ(x2) = ψ(x3) = ψ(x4) = 0. It is easy to see that we can

color the remaining subgraph G− V1 with the colors from C1 ∪ C2 ∪ {a, b} (a, b included).

Case 4: H = G − x2. Let ψ(u2) = ψ(v2) = 0, and ψ(x4) = a. Color the vertices of

G− (V1 ∪ V2) with the colors from C1 ∪ C2 ∪ {b} (b included). Then there remains exactly

one unused color of C2, say c2, and arrange that c2 ∈ B1. Let ψ(x1) = ψ(x3) = c2.

Case 5: H = G− x4. Let ψ(u2) = ψ(v2) = 0. Color the vertices of G− (V1 ∪ V2) with

the colors from C1 ∪ C2 ∪ {a, b} (a, b included). Then there remains exactly one unused

color of C1, say c1, and arrange that c1 ∈ A1, and exactly one unused color of C2, say c2,

and arrange that c2 ∈ B1. Let ψ(x1) = c1 = ψ(x2) and ψ(x3) = c2.

Case 6: H = G− x3. Let ψ(u2) = ψ(v2) = 0. Color the vertices of G− (V1 ∪ V2) with

the colors from C1 ∪ C2 ∪ {a, b} (a, b included). Then there remains exactly one unused

color of C1, say c1, and arrange that c1 ∈ A1, and exactly one unused color of C2, say c2,

and arrange that c2 ∈ B2. Let ψ(x1) = c1 = ψ(x2) and ψ(x4) = c2.

Notice here that when k = 3, A2 = B2 = {0}. Therefore, the attempted coloring of

H = G−x3 in case 6 fails, and, in fact H is not properly L− colorable. However, H = G−x3

with the given list assignment L satisfies the inequality (3.1). We can safely end the proof

here when k = 3.

Still, there follows a list assignment specifically for the case when k = 3, which we hope

will be of interest.
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We define a list assignment L to G = K(4, 2, 2) as follows:

1. L(u2) = {1, 0}, L(v2) = {2, 0, c}, L(u3) = {1, a}, L(v3) = {2, b} and

2. L(x1) = {1, 2}, L(x2) = {1, 0}, L(x3) = {0, a} and L(x4) = {b, c}

It is easy to verify that G satisfies claims 3.3.1 and 3.3.2. We proceed therefore to verify

only claim 3.3.3 for the subgraphs H of K(4, 2, 2) in the following cases.

Case1: H = G− u2.

Let ψ(v2) = 2, ψ(u3) = a, ψ(v3) = b. Also ψ(x2) = 0 = ψ(x3), ψ(x1) = 1 and ψ(x4) = c.

Case2: H = G− v2.

Let ψ(u2) = 1, ψ(u3) = a, ψ(v3) = b. Also ψ(x2) = 0 = ψ(x3), ψ(x1) = 2 and

ψ(x4) = c.

Case3: H = G− u3.

Let ψ(u2) = ψ(v2) = 0, ψ(v3) = b. Also ψ(x1) = 1 = ψ(x2), ψ(x3) = a and ψ(x4) = c

Case4: H = G− v3.

Let ψ(u2) = 1, ψ(v2) = c, ψ(u3) = a. Also ψ(x1) = 2, ψ(x2) = 0 = ψ(x3) and

ψ(x4) = b.

Case5: H = G− x1.

Let ψ(u2) = 1, ψ(v2) = 2, ψ(u3) = a andψ(v3) = b . Also let ψ(x1) = 0 = ψ(x2) and

ψ(x4) = c.

Case6: H = G− x2.

Let ψ(u2) = 0 = ψ(v2), ψ(u3) = 1 andψ(v3) = b . Also ψ(x1) = 2, ψ(x3) = a and

ψ(x4) = c.

Case7: H = G− x3.

Let ψ(u2) = 0 = ψ(v2), ψ(u3) = a andψ(v3) = b . Also ψ(x1) = 1 = ψ(x2) and

ψ(x4) = c.

Case8: H = G− x4.

Let ψ(u2) = 1, ψ(v2) = c, ψ(u3) = a and ψ(v3) = b . Also ψ(x1) = 2 and ψ(x2) = 0 =

ψ(x3).
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We conclude that G and L satisfy Hall’s Condition. So, k ≤ h(G) ≤ ch(G) by Fact 2.

Therefore, h(G) = k for all k ≥ 3 odd.
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