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Multi-species reactive transport equations coupled through sorption and 

sequential first-order reactions are commonly used to model sites contaminated with 

radioactive wastes, chlorinated solvents and nitrogenous species.  Although researchers 

have been attempting to solve various forms of this reactive transport problem for over 

fifty years, a general closed-form analytical solution to this problem is not available in 

the published literature.  In the first part of this research work, a closed-form analytical 

solution to this problem is deduced involving a generic spatially-varying initial condition.  

Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each 

with Bateman-type source terms.  The proposed solution procedure employs a 

combination of Laplace and linear transform methods to uncouple and solve the system 

of partial differential equations.   The final solution is organized and presented in a 
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general format that represents the solutions to both the boundary conditions.   In addition, 

the mathematical concepts for deriving the solution within a generic framework that can 

be used for solving similar transport problems are also presented.   

In the second part of this research work, the computational techniques for 

implementing the new solutions are discussed.  These techniques are then adopted to 

develop a general computer code which is used to verify the solutions.  In addition, 

several special-case solutions for simpler transport problems involving zero initial 

condition, identical retardation factors, zero advection, zero dispersion and steady-state 

condition are also derived.  Where ever possible, these special-case solutions are 

compared against previously published analytical solutions to establish the validity of the 

new solution.  The performance of the new solution is tested against other published 

analytical and semi-analytical solutions using a set of example problems.  Finally, an 

investigation into extending the general solution to multiple dimensions using the 

approximate Domenico solution is also presented. 

This thesis has produced the following three journal publications: 

1) V. Srinivasan, T.P. Clement, and K.K. Lee. “Domenico Solution – Is it Valid?”, 

Ground Water, 25(2): 136-146, May 2007. 

2) V. Srinivasan, and T.P. Clement. “Analytical Solutions for Sequentially Coupled 

Reactive Transport Problems – Part I: Mathematical Derivations”, Submitted May 2007, 

Advances in Water Resources. 

3) V. Srinivasan, and T.P. Clement. “Analytical Solutions for Sequentially Coupled 

Reactive Transport Problems – Part II: Special Cases, Implementation and Testing”, 

Submitted May 2007, Advances in Water Resources. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Transport problems involving sequentially decaying contaminants are frequently 

analyzed by groundwater hydrologists to assess water quality issues associated with 

environmental and health hazards.  Examples of sequentially decaying contaminants 

include radioactive waste materials, chlorinated solvents, and nitrogenous species  [4, 11, 

45].  Several types of models, using both analytical and numerical procedures, have been 

formulated for solving these sequentially coupled reactive transport problems [12, 26].  

Although numerical models are capable of solving complex and heterogeneous problems, 

their performance often needs to be tested against experimental datasets or analytical 

models.  Experimental simulations of complex reactive transport problems are not only 

time consuming but can also be expensive.  Therefore, analytical models provide a 

convenient, cost-effective alternative to test and validate numerical formulations [18, 30, 

44].  Furthermore, analytical models also provide computationally efficient screening 

tools for simulating  the fate and transport of reactive contaminants in groundwater 

systems [3, 13]. 
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1.2 Literature Review 

The analytical solution given by McLaren [32] and McLaren [33], which describes 

the steady-state, one-dimensional transport of  a five species nitrogen chain, is one of the 

first multi-species solutions derived for solving sequentially coupled reactive transport 

problems.  This work assumed that the transport was only governed by advection, and the 

effects of dispersion and sorption were ignored. 

Cho [9] developed explicit analytical solutions to a three species transport problem 

that was subjected to advection, dispersion, linear equilibrium sorption, coupled through 

sequential first-order reactions.  Explicit analytical solutions were obtained using Laplace 

transform procedures for the Dirichlet boundary condition.  One of the limitations of this 

solution is that only the first species in the chain was subjected to sorption.   Later, Misra 

et al. [34] derived semi-analytical solutions to a problem similar to Cho [9] using a pulse 

source boundary. 

Burkholder and Rosinger [7]  and Lester et al. [29] developed solutions for the 

advective dispersive transport of radionuclide chains subjected to linear equilibrium 

sorption.  Explicit analytical solutions were presented for a three species problem 

involving distinct retardation factors for each species, for both impulse and decaying-

band release boundary conditions.  In addition, they also provided solutions for the case 

of no dispersion and for the case of identical retardation factors. 

Harada et al. [23] published a research report presenting general semi-analytical 

solutions to sequentially coupled one dimensional reactive transport problems of arbitrary 

chain lengths subjected to arbitrary release modes.  However, one of the major limitations 

of the solution strategy was that, the semi-analytical solution for a given species in the 
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chain required the computation of its entire predecessor species.  This would result in 

computationally inefficient algorithms especially when analyzing transport problems 

involving long reactive chains.  Harada et al. [23] and Higashi and Pigford [24] also 

provided explicit closed-form solutions for a set of purely advective (no dispersion) 

transport problems with various types of boundary conditions. 

Gurehian and Jansen [21] presented an analytical solution to a transport problem 

involving a three member, first-order decay chain in a multi-layered system, subjected to 

advection, dispersion and linear equilibrium sorption processes for both continuous and 

band source release conditions.  Convolution theorems and Laplace transform techniques 

were used to obtain semi-analytical solutions for the case involving both advective and 

dispersive transport, and explicit closed-form analytical solutions for the case involving 

non-dispersive transport. 

van Genuchten [45] developed explicit analytical solutions to model a sequentially 

coupled four species transport problem governed by advection, dispersion and linear 

equilibrium sorption processes involving, first-order reactions.  It was assumed that all 

the species had distinct retardation factors.  One of the key contributions of this work is 

that it considered both Dirichlet and Cauchy boundary conditions.  Furthermore, van 

Genuchten [45] developed a robust computer code (CHAIN) for implementing his 

analytical solution.   

Angelakis et al. [2] developed a semi-analytical solution to a sequentially coupled 

two-species transport problem governed by advection, dispersion and linear equilibrium 

sorption subjected to Dirichlet boundary condition.  The transport problem assumed that 

the reactions were first-order and each of the species had different dispersion coefficients 
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and distinct retardation factors.  The authors also demonstrated that when the dispersion 

coefficients of both the species were equal, their solution reduced to the closed-form 

solution similar to the solutions presented by Cho [9] and Misra et al. [34].  Furthermore, 

the authors also provided solutions for the no dispersion (pure advection) case.  

Angelakis et al. [1] developed an interesting semi-analytical solution for a problem 

involving the coupled transport of two solutes and a gaseous product in soils.  The solute 

migration was governed by advection, dispersion, linear equilibrium sorption and 

sequential first-order reaction, whereas the gas migration was governed by diffusive 

transport coupled with reversible linear equilibrium dissolution. 

Lunn et al. [30] solved a three-species transport problem, which was similar to the 

Cho [9] problem, using the Fourier transform method.  The authors demonstrated that the 

use of Fourier transforms enabled them to solve problems having non-zero initial 

conditions by solving two special case problems. 

Khandelwal and Rabideau [27] developed semi-analytical solutions for a three 

species, sequentially-coupled, first-order reactive transport problem.  The key 

contribution of this work was that they addressed cases involving linear, non-equilibrium 

sorption mechanisms. 

Eykholt and Li [18] developed a solution method based on kinetic response 

functions to solve a linearly coupled non-sequential reactive transport problem having 

different retardation factors.  Although, there was no restriction on the number of species 

in the system, this method required numerical procedures to evaluate the final solution.  

Furthermore, for the case of the non-ideal plug flow scenarios (advective dispersive 
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transport), the accuracy of this method appears to decrease with decrease in Peclet 

number. 

Sun et al. [42] developed a method that can solve multi-species advective 

dispersive transport equations coupled with sequential first-order reactions involving 

arbitrary number of species for different types of initial and boundary conditions.  Their 

method was based on the use of a transformation procedure to uncouple the system of 

equations, which could then be solved analytically in the transformed domain.  The final 

solutions are obtained by retransforming the solutions to the original domain.  Later, Sun 

et al. [43] extended the transformation format to solve problems involving a combination 

of serial and parallel reactions.  Clement [11] presented a more general and fundamental 

approach to derive the Sun et al. [43] solution by employing the similarity transformation 

method.  The approach presented by Clement [11] can also be used to solve problems 

involving serial, parallel, converging, diverging and/or reversible first-order reaction 

network.  However, all of these methods are only applicable for solving problems 

involving identical retardation factors. 

Bauer et al. [4] presented a method to solve one, two, and three-dimensional 

sequentially coupled reactive transport problems with distinct retardation factors.  This 

method was based on transforming the system of equations to a Laplace domain and then 

obtaining a set of fundamental solutions to each of the equations in the transformed 

domain.  The specific solutions in the Laplace domain can then be obtained through a 

linear combination of the fundamental solutions provided the fundamental solutions are 

linearly independent.  Finally, the Laplace domain solutions can be transformed back to 

the time domain using the inverse Laplace transform procedure, which could be 
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accomplished either analytically or numerically.  Although this method can be applied to 

solve different types of boundary conditions, the solution procedure is mathematically 

tedious; specifically obtaining analytical inverse transform expressions for long chain 

lengths can be a challenge. 

Montas [35] developed an analytical procedure to solve a three species, multi-

dimensional transport problem coupled by a first-order, non-sequential reaction network 

subject to a pulse type boundary condition.  This procedure involved obtaining a basis 

solution of a convoluted form for the transport equation and then evaluating the basis 

solution using Laplace transforms.  One of the key advantages of this procedure is that it 

can model transport problems with distinct retardation factors.  However, as mentioned 

earlier this solution was limited to a three species system.  

Quezada et al. [38] extended the approach given by Clement [11] and developed a  

method that can solve multi-species transport equations coupled with a network of first-

order reactions involving distinct retardation factors.  This method involves transforming 

the system of governing equations to a Laplace domain and then solving the transformed 

system of equations using the Clement [11] approach.  The solutions in the Laplace 

domain are then retransformed to the time domain using an inverse Laplace transform 

procedure.  One of the key limitations of this approach is that, except for a simple two 

species transport problem, the solutions are in general semi-analytical since they require a 

numerical inverse Laplace transform routine to evaluate them. 
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1.3 Scope and Objective 

The above literature review indicates that one-dimensional reactive transport 

equations coupled through sorption and sequential first-order reactions have explicit 

closed-form analytical solutions only for short chains up to four species. To model 

transport problems involving longer reaction chains, one has to either use semi-analytical 

solutions or purely numerical solutions.    

This objective of this work is to develop a general closed-form analytical solution 

to the sequential transport problem involving arbitrary number of species subjected to a 

generic exponentially decaying Bateman-type source boundary, for a spatially varying 

initial condition.  The solutions derived in this study are then implemented in a 

computational platform and tested and validated against other analytical and semi-

analytical solutions published in the literature. 

 

1.4 Organization 

This thesis is organized into five chapters. Chapter I presents a brief introduction 

with a detailed literature review of analytical solutions to coupled reactive transport 

problems. 

Chapter II details the solution derivation of the sequentially coupled one 

dimensional reactive transport problem.  Chapter III discusses some of the techniques in 

implementing the new solution on a computational platform and testing the new solution 

through a set of example problems.  Chapters II and III are draft versions of manuscripts 

that have been submitted to Advances in Water Resources journal. 
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Chapter IV investigates the validity of approximations involved in extending the 

one-dimensional solutions derived in this study into three-dimensions.  The contents of 

this chapter are extracted from the author’s publication titled “Domenico Solution – Is it 

Valid?” in the Groundwater journal. 

Chapter V summarizes the key findings of this study, and also discusses some 

recommendations for future work. 
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CHAPTER II 

GOVERNING EQUATIONS AND SOLUTION DERIVATION 

 

2.1 Governing Equations 

Consider, a one-dimensional transport problem involving ‘n’ sequentially decaying 

contaminants simultaneously subjected to advection, dispersion and linear adsorption 

processes.  The general governing equation for this transport problem can be expressed 

as: 

 

( ) ( ) ( ) ( ) ( )

( )

2

1 12

, , ,
, , ; 2, 3, ...

, 1

i i i

i x i i i i i

i i

c x t c x t c x t
R v D y k c x t k c x t i n

t x x

k c x t   ;  i

− −

∂ ∂ ∂
+ − = −     ∀ =    

∂ ∂ ∂
                                                              = − =

                                              0 0t and x              ;  ∀ >     < < ∞

 (1) 

         where; ‘ ic ’ is the concentration of species i [ML
-3

]; ‘ iR ’ is the retardation 

coefficient of species i [Dimensionless];‘ iy ’ is the effective yield factor that describes 

the mass of a species i produced from species i-1 [MM
-1
]; ‘ ik ’ is the first-order decay 

rate constant of species i [T
-1
]; ‘v ’is the transport velocity [LT

-1
]; ‘ xD ’ is the dispersion 

coefficient [L
2
T

-1
]; and ‘n’ is the total number of species in the reaction network.  

Equation(1) is solved for a generic exponentially distributed initial condition given by:  

 ( ),0 , 1, 2, ...ixo

i ic x c e x i n
−µ=   0 < < ∞  ;  ∀ =     (2) 
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where; ‘
o

ic ’ is the initial source concentration of species i [ML
-3

]; ‘ iµ ’ is the 

first-order decay parameter of the initial distribution of species i [L
-1

].  The boundary 

condition at ‘∞ ’ is given as: 

 
( ),

0, 0 1, 2, ...
ic t

t i n
x

∂ ∞
=   >   ;  ∀ =    

∂
 (3) 

Explicit solutions including detailed derivation steps are provided for the following 

two inlet (source) boundary conditions: Dirichlet (Section-3) and Cauchy (Section-4) 

boundaries. 

 

2.2 Derivation of the Solution for the Dirichlet Boundary condition 

For the case of the Dirichlet boundary, the boundary condition at the source is 

described as follows: 

 ( )
1 1

1 1

, 0
0, 1, 2, ...

0,

i

i
ti

i o

ii

o

B e t t
c t i n

t t

−λ

=


  < ≤

=   ;  ∀ =    
   >

∑
 (4) 

where; ‘ 1i

iB ’ is the source boundary concentration of specie i1 that contributes to 

species i [ML
-3

]; ‘
1i

λ ’ is the first-order decay of the corresponding ‘ 1i

iB ’ term [T
-1
].  

Equation(4) can be conveniently re-written as: 

 

( ) ( ) ( ){ }

( )

1 1

1 1

0, , 0 1, 2, ...

;

0,

1,

i

i
ti

i i o

i

c t B e u t u t t t i n

where u is the unit step function given by

if t a
u t a

if t a

and a is an arbitrary positive constant

−λ

=

= − −   >   ;  ∀ =    

           

    <
− = 

    ≥
      

∑

 (5) 
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The system of equations given by (1) can be written in a matrix format as [11, 

38]: 

 [ ] { } { } { } [ ]{ }
2

2x

c c c
R v D K c

t x x

∂ ∂ ∂
+ − =

∂ ∂ ∂
 (6) 

where; ‘[ ] ’ denotes a square matrix and ‘{ } ’ denotes a column vector.  The 

corresponding initial and boundary conditions can be written as: 

 ( ){ } { },0 ,o xc x c e x−µ=   0 < < ∞  (7) 

 
( ),

0, 0
c t

t
x

 ∂ ∞
=   > 

∂ 
 (8) 

 

( ){ } { }

( ) ( ){ }1 1

1 1

0, , 0

; , 0 1, 2, ...i

i
ti

i i o

i

c t t

where B e u t u t t t i n
−λ

=

= ω   >

    ω = − −   >   ;  ∀ =    ∑
 (9) 

The solution procedure used here is adopted from Quezada [38].  Applying 

Laplace transform to equation(6), we get: 

 [ ] { } [ ]{ } { } { } [ ]{ }
2

2
( ,0) x

d p d p
R s p R c x v D K p

dx dx
− + − =  (10) 

where; ‘ s ’ is the Laplace variable and ‘ p ’ is the Laplace transformed 

concentration. 

Substituting equation(7) in (10) and rearranging we get: 

 
{ } { } [ ] [ ]( ){ } [ ]{ }

2

2

1 1 o x

x x x

d p d pv
K R s p R c e

dx D dx D D

−µ  −
− + − = 
 

 (11) 

Now in order to uncouple the system of ordinary differential equations (ODEs) 

given by equation(11), we apply the linear transform procedure described by Clement 

[11], by performing the following matrix operation. 
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 { } [ ]{ }p A b=  (12) 

where; ‘{ }b ’ is the concentration in the doubly transformed domain and [ ]A  is 

an arbitrary square matrix of order n.  Applying this transformation equation(11) gets 

modified as: 

 
[ ]{ } [ ]{ } [ ] [ ]( )[ ]{ } [ ]{ }

2

2

1 1 o x

x x x

A b A bv
K R s A b R c e

x D x D D

−µ∂ ∂  −
− + − = 

∂ ∂ 
 (13) 

Pre-multiplying equation(13) with ‘[ ] 1
A

−
’ we get: 

 

{ } { } { } { }
[ ] [ ] [ ]( )[ ] { } [ ] [ ]{ }

2 ~ ~

2

~ ~
1 1

1 1

;

x x x

o x

b bv
K b C

x D x D D

where K A K R s A and C A R c e
− − −µ

∂ ∂  − − + =   ∂ ∂   

     = −     =  

 (14) 

By forcing the columns of the ‘[ ]A ’ matrix as the eigenvectors of the combined 

reaction coefficient matrix ‘ [ ] [ ]K R s− ’ we can make the ‘
~

K
 
  

’ matrix a diagonal 

matrix and thus uncouple the system of equations; the details of this similarity 

transformation procedure are illustrated in Clement [11].  The corresponding ‘[ ]A ’ 

matrix is: 



 

1
3
 

[ ]

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

2 1

1 1 2 2

3 31 1

1 1 2 2 1 1

1 1 1

,0,0,..., 1

, ,0,0,..., 2

.

.

, ,..., ,

n
i i

i i i

n n
i i i i

i ii i i i

n n n
i i i i n n i i

i n i n i ni i i i i i

k sR k sR
n times

y k

k sR k sR k sR k sR
n times

y k y k

A

k sR k sR k sR k sR k sR k sR

y k y k y k

= −

= =− −

− −

= = =− − −

− + − −
−

− + − − − + − −
−

=

− + − − − + − − − + − −

∏

∏ ∏

∏ ∏ ∏ 0

1,1,...,n times

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 (15) 

The ‘[ ] 1
A

−
’ matrix is: 



 

1
4
 

[ ]

( )
( )

( )

( )
( )

( )
( )

( )

( )
( )

1

2

1 1

1, 1

1 1

2 3

2 2 2 21
1, 2 2, 2

1 1

2 3

1,

,0,0,..., 1

, ,0,0,..., 2

.

.

,

n

i i

i

n

i i

i i

n n

i i i i

i i

n n

i i i i

i i i i

n n

i i i i

i i

n

n n i i n n i

i i n

y k

n times

k sR k sR

y k y k

n times

k sR k sR k sR k sR
A

y k y k

k sR k sR k sR k

−
=

= ≠

− −
= =

−
= ≠ = ≠

− −
= =

= ≠

−
− + − −

−
− + − − − + − −

=

− + − − − + − −

∏

∏

∏ ∏

∏ ∏

∏ ∏

∏ ( )
( )

( )
( )

1

2, 1,

,..., ,1

n

i i

i n

n n

i n n i i

i i n i n i n

y k

sR k sR k sR

−
=

= ≠ = − ≠

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − + − − 
 
  

∏

∏ ∏
 (16) 
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The corresponding ‘
~

K
 
  

’ matrix is: 

 

( )
( )

( ) ( )

( )

1 1

2 2

~

,0,0,... 1

0, ,0,0,... 2

.

0,0,... 1 , ,0,0,...

.

0,0,... 1 ,

i i

n n

k sR n times

k sR n times

K
i times k sR n i times

n times k sR

− − − 
 

− − − 
 

   =   − − − − 
 
 
 − − − 

 (17) 

The corresponding ‘{ }~

C ’ vector is: 

{ }

( )
( )

( )
( )

( )
( )

( )
( )

1

1 2

1 2

1 1 1

2

1 1

1, 1

1 1 1 2 2 1

2 3

~ 2 2 2 2

1, 2 2, 2

1 1 1 2 2 1

2

1,

.

.

n
xo

i i

i

n

i i

i i

n n
x xo o

i i i i

i i

n n

i i i i

i i i i

n
x xo o

i i i i

i i

n

n n i i

i i n

R c e y k

k sR k sR

R c e y k R c e y k

k sR k sR k sR k sR
C

R c e y k R c e y k

k sR k sR

µ

µ µ

µ µ

−
−

=

= ≠

− −
− −

= =

= ≠ = ≠

− −
− −

=

= ≠

− + − −

+
− + − − − + − −

=

+
− + − −

∏

∏

∏ ∏

∏ ∏

∏

∏ ( )
( )

3

2,

... n

n

xo

n nn

n n i i

i i n

R c e

k sR k sR

µ−=

= ≠

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + + 

− + − − 
 
 
 

∏

∏
 

 (18) 

The explicit expression for ‘
~

iC ’ in equation(18) is: 
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( )
( )

1

1 1 2 2

2 1

1

2 2

2 1 2

1
~

1

1

,

1, 2, ...

i

n
xo

i i i ii
i i

i n
i

i i i i

i i i i

R c e y k

C i n

k sR k sR

µ−
−

= +

=

= ≠

 
 
 =   ;  ∀ =    
 

− + − − 
 

∏
∑

∏
 (19) 

Equation(14) describes a set of ‘n ’ independent second-order non-homogeneous 

ODEs the boundary conditions of which are obtained by performing Laplace and linear 

transforms of the boundary conditions given by equations(8) and (9).  Laplace transform 

of equations(8) and (9) yields: 

 
( ),

0
p s

x

 ∂ ∞
= 

∂ 
 (20) 

 

( ){ } { }
( ){ }

( )

11

1 1
1

0,

1

; 1, 2, ...

o it si
i i

i

i i

p s

B e

where i n
s

− +λ

=

= ξ

−
    ξ =   ;  ∀ =    

+ λ
∑

 (21) 

To transform the boundary conditions from ‘ p ’ domain to the ‘b ’ domain, we 

apply the linear transform given by equation(12).  This yields: 

 
( ),

0
b s

x

 ∂ ∞
= 

∂ 
 (22) 

 ( ){ } [ ] { }1
0,b s A

−
= ξ  (23) 

The explicit expression for ‘ ( )0,ib s ’ in equation(23) is given as: 

 
( )

( )
( )

( ){ }
( )

2 2

2 1

2 2

2 1 2

22
1

1 1
1

1 2 2

,

1 1

1

0,

1, 2, ...

n

o i
i i

i i

n

i i i i

i i i i

t si
ii i

i

i i i

y k

k sR k sR

B e

b s
s

i n

−

= +

= ≠

− +λ

= =+ − −

 
− 

 =
+ λ −

  
                                                            ;  ∀ =    

∏

∏
∑ ∑

 (24) 
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Since equation(14) is uncoupled, it can now be written as a set of ‘n ’ 

independent equations as: 

( ) ( ) ( ) ( )
( )

( )

1

1 1 2 2

2 1

1

2 2

2 1 2

12
1

2
1

,

, , 1 1
,

1, 2, ..

i

n
xo

i i i ii
i ii i

i i i n
ix x x

i i i i

i i i i

R c e y k
b x s b x sv

k sR b x s
x D x D D

k sR k sR

i

−µ
−

= +

=

= ≠

 
 ∂ ∂  −  − + − − =   ∂ ∂  − + − − 
 

                                                            ;  ∀ =   

∏
∑

∏

.n 
 (25) 

         The general solution to equation(25) is given as: 

 ( ) ( ) ( ), , , 1, 2, ...h p

i i ib x s b x s b x s i n= +    ;  ∀ =     (26) 

where; ‘ ( ),h

ib x s ’ is the general solution of the homogeneous part of 

equation(25) and ‘ ( ),p

ib x s ’ is a particular solution of equation(25).  The general 

solution ‘ ( ),h

ib x s ’ can be readily obtained as: 

 ( )
( ) ( )2 2

2 2

4 4

2 2
1 2,

1, 2, ...

i i i i

x x x xx x

k sR k sRx v v x v v

D D D DD Dh

i i ib x s e e

i n

      + +      + + − +   
            = Ψ + Ψ

                                                            ;  ∀ =    

 (27) 

where; 
1

iΨ  and 
2

iΨ  are constants.  The particular solution ‘ ( ),p

ib x s ’ is obtained 

by using the method of undetermined coefficients.  The general form of the particular 

solution is given as: 

 ( )
( )

( )

1

1 1 1 2 2

2 1

1

2 2

2 1 2

1

1

1

,

1
,

i

n
xo

i i i i ii
i ip

i n
ix

i i i i

i i i i

M R c e y k

b x s
D

k sR k sR

−µ
−

= +

=

= ≠

 
 

−  =
 

− + − − 
 

∏
∑

∏
 (28) 
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where; ‘
1i

M ’ is a constant.  Substituting equation(28) in the governing 

equation(25) and simplifying, we evaluate the constants ‘
1i

M ’ as: 

 ( )1

1 1

2

1, 2, ...

x
i

i x i i i

D
M

D v k sR

i n

=
µ +µ − −

                                                            ;  ∀ =    

 (29) 

Substituting the values of ‘
1i

M ’ into equation(28) we get the particular solution 

‘ ( ),p

ib x s ’ to equation(25) as: 

 
( )

( ) ( )
( )

1

1 1 2 2

2 1

1

1 1 2 2

2 1 2

1

1

21

,

,

1, 2, ...

i

n
xo

i i i ii
i ip

i n
i

i x i i i i i i i

i i i i

R c e y k

b x s

D v k sR k sR k sR

i n

µ

µ µ

−
−

= +

=

= ≠

 
 
 = −
 

+ − − − + − − 
 

                                                            ;  ∀ =    

∏
∑

∏  (30) 

Substituting equations(27) and (30) in equation(26), we get the general solution to 

equation(25) as: 

 

( )
( ) ( )

( ) ( )
( )

2 2

2 2

1

1 1 2 2

2 1

1

1 1 2 2

2 1 2

4 4

2 2
1 2

1

1

21

,

,

i i i i

x x x xx x

i

k sR k sRx v v x v v

D D D DD D

i i i

n
xo

i i i ii
i i

n
i

i x i i i i i i i

i i i i

b x s e e

R c e y k

D v k sR k sR k sR

µ

µ µ

      + +      + + − +   
            

−
−

= +

=

= ≠

= Ψ + Ψ

 
 
             −
 

+ − − − + − − 
 

∏
∑

∏

1, 2, ...i n                                                            ;  ∀ =    

 (31) 

In order to apply the boundary condition given by equation(22) we differentiate 

the general solution with respect to x.  Differentiation of equation(31) with respect to x 

yields: 
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( ) ( )
( )

( )
( )

2

2

2

2

4
2

2
1

2

4
2

2
2

2

4, 1

2

41

2

i i

x xx

i i

x xx

k sRx v v

D DDi ii

i

x x x

k sRx v v

D DDi i

i

x x x

k sRb x s v v
e

x D D D

k sRv v
e

D D D

  +  + + 
    

  +  − + 
    

  +∂   = Ψ + + 
∂     

  +               + Ψ − + 
    

             
( )

( ) ( )
( )

1

1 1 1 2 2

2 1

1

1 1 2 2

2 1 2

1

1

21

,

1, 2, ...

i

n
xo

i i i i ii
i i

n
i

i x i i i i i i i

i i i i

R c e y k

D v k sR k sR k sR

i n

µµ

µ µ

−
−

= +

=

= ≠

 
− 

 −
 

+ − − − + − − 
 

                                                            ;  ∀ =    

∏
∑

∏

 (32) 

To satisfy the boundary condition given by equation(22), i.e. when ‘ x ’ tends to 

‘∞ ’; the exponential function in the first term tends to ‘∞ ’, hence 
1

iΨ  must vanish. 

Equation(32) now reduces to: 

 

( )
( )

( ) ( )
( )

2

2

1

1 1 2 2

2 1

1

1 1 2 2

2 1 2

4

2
2

1

1

21

,

,

i i

x xx

i

k sRx v v

D DD

i i

n
xo

i i i ii
i i

n
i

i x i i i i i i i

i i i i

b x s e

R c e y k

D v k sR k sR k sR

µ

µ µ

  +  − + 
    

−
−

= +

=

= ≠

= Ψ

 
 
             −
 

+ − − − + − − 
 

                                            

∏
∑

∏

1, 2, ...i n                ;  ∀ =    

 (33) 

Applying the second boundary condition given by equation(24), we get: 



 20 

 

( )
( )

( ){ }
( )

( ) ( )
( )

2 2

2 1

2 2

2 1 2

22
1

1 1
1

1 2 2

,

1 1 2 2

2 1

1

1 1 2 2

2 1 2

2

1 1

1

1

21

,

1

1

n

o i
i i

i i

n

i i i i

i i i i

t si
ii i

i

i i i

n
o

i i i ii
i i

n
i

i x i i i i i i i

i i i i

y k

k sR k sR

B e

s

R c y k

i

D v k sR k sR k sR

−

= +

= ≠

− +λ

= =

−
= +

=

= ≠

+ − −

 
− 

 Ψ =
+ λ −  

 
 
       +   ;  ∀ =
 

µ +µ − − − + − − 
 

∏

∏
∑ ∑

∏
∑

∏
, 2, ...n   

 (34) 

Therefore, the solution in the ‘b ’domain is: 

( )
( )

( )

( ){ }
( )

( ){ }

( ){ }

2 2

2 1

2 2

2 1 2

22
2

1
1

1 2 2

2

1

1 1 2 2

2 1

1

1

,

4
2

1 1

4
2

1

1

1

,

o i

x i i
x

x i i
ix

n

i i

i i

n

i i i i

i i i i

t si
xii v v D k sRi
D

i

i i i

x
n v v D k sR

xDo

i i i i

i i

y k

k sR k sR

B e

b x s e
s

R c y k e e

λ

µ

λ

−

= +

= ≠

− +
 

− + + 
 

= =

 
− + +  − 

−
= +

+ − −

 
− 

 =  
+ −

  

  
− 

            +

∏

∏
∑ ∑

∏

( ) ( )
( )

1

1 1 2 2

2 1 2

21

,

1, 2, ...

i

n
i

i x i i i i i i i

i i i i

D v k sR k sR k sR

i n

µ µ=

= ≠

 
 
  
 + − − − + − − 
  

                                                            ;  ∀ =    

∑
∏

  

 (35) 

         Inverse linear transform of equation(35) is done to obtain the solution in the 

Laplace domain (‘ p ’ domain) by using equation(12).  The solution given by 

equation(35) can be split into two parts and represented as: 
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( ) ( ) ( )

( )
( )

( )

( ){ }
( )

( ){ }

( )

2 2

2 1

2 2

2 1 2

22
2

1
1

1 2 2

2

1 1 2 2

2 1

1

1

,

1 2

4
21

1 1

4
2

1

1
2

, , ,

;

1
,

,

o i

x i i
x

x i
x

n

i i

i i

n

i i i i

i i i i

i i i

t si
xii v v D k sRi
D

i

i i i

x
n v v D k sR

Do

i i i i

i i

i

y k

k sR k sR

b x s b x s b x s

where

B e
b x s e

s

R c y k e

b x s

λ

λ

−

= +

= ≠

− +
 

− + + 
 

= =

− + +

−
= +

+ − −

= +

  

 
− 

 =  
+ −

  

=

∏

∏
∑ ∑

∏
( ){ }

( ) ( )
( )

1

1

1 1 2 2

2 1 2

21

,

1, 2, ...

i
i x

i

n
i

i x i i i i i i i

i i i i

e

D v k sR k sR k sR

i n

µ

µ µ

 
  − 

=

= ≠

    − 
    
 + − − − + − − 
  

                                                            ;  ∀ =    

∑
∏

  

 (36) 

Using the distributive property of matrix addition, we can apply the inverse linear 

transform to each of the individual terms and then sum them to get the solution in the 

‘ p ’ domain.  This is expressed as: 

 { } [ ]{ } [ ]{ } [ ]{ }1 2p A b A b A b= = +  (37) 

The first term ‘[ ]{ }1A b ’ can be evaluated as: 

 { } [ ]{ }1 1p A b=  (38) 

The explicit expression for ‘ ( )1 ,ip x s ’ in equation(38) is given as: 
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( )

( ){ }
( )
( ){ }

( )
( )

22

1
1

2 2

22 1 2

2

2 2

1

2 1

2 2 3 3

3 1 3 2

1

11

1

4
21

,

1

,

o i

x i i
x

t si
ii i

i i

ii i i
i

x
i v v D k sR

Dii

i
i i

i i i i

i i i i

B e
y k

s

p x s

e

k sR k sR

λ

λ

− +

−
== +

 
− + + 

 =

=

= ≠

 −  
  +  

 =
 
 
 − + − − 
 

                                                   

∑∏

∑
∑

∏

1, 2, ...i n         ;  ∀ =    

 (39) 

         Using a similar approach the second term ‘[ ]{ }2A b ’ is evaluated and the explicit 

expression for ‘ ( )2 ,ip x s ’ is: 

 
( ) ( ){ }

( ) ( )
( )

1 1 2 2

2 1

2

2 2
1

1

2 1

1 1 2 2 2 2 3 3

3 1 3 2

1

1

42 2

1

2

,

,
x i i

ix

i
o

i i i i

i i

xi
v v D k sR

xD
i

i i

i
i i

i x i i i i i i i

i i i i

R c y k

p x s e e

D v k sR k sR k sR

µ

µ µ

−
= +

 
− + +  − 

=

=

= ≠

  
  
  
    = −  

   
 

+ − − − + − − 
  

                                 

∏

∑
∑

∏

1, 2, ...i n                           ;  ∀ =    

  

 (40) 

Substituting equations(39) and (40) into equation(37) we get the solution in the 

Laplace domain as: 



 23 

 

( ) ( ) ( )
( ){ }

( )
( ){ }

( )
( )

22

1
1

2 2

22 1 2

2

2 2

1

2 1

2 2 3 3

3 1 3 2

1 1

1 2

1

11

4
21

,

, , ,

1
o i

x i i
x

i i i

t si
ii i

i i

ii i i
i

x
v v D k sR

Dii

i
i i

i i i i

i i i i

o

i i

p x s p x s p x s

B e
y k

s

e

k sR k sR

R c y

λ

λ

− +

−
== +

 
− + + 

 =

=

= ≠

= + =

 −  
  +  

                 
 
 
 − + − − 
 

             +

∑∏

∑
∑

∏

( ){ }

( ) ( )
( )

2 2

2 1

2

2 2
1

1

2 1

1 1 2 2 2 2 3 3

3 1 3 2

1

1

4
2

1

2

,

x i i
ix

i

i i

i i

xi
v v D k sR

xD

i i

i
i i

i x i i i i i i i

i i i i

k

e e

D v k sR k sR k sR

µ

µ µ

−
= +

 
− + +  − 

=

=

= ≠

  
  
  
    

−  
   

 
+ − − − + − − 

  
                                                

∏

∑
∑

∏

1, 2, ...i n            ;  ∀ =    

  

 (41) 

The final solution is obtained by taking an inverse Laplace transform of the 

solution given by equation(41).  Inverse Laplace transform is performed as follows: 

 

( ) ( ) ( )
( ) ( )

( ) ( )

1 2

1 1 2

1 1 1 2

, , ,

, ,

, ,

1, 2, ...

i i i

i i

i i

c x t c x t c x t

p x s p x s

p x s p x s

i n

−

− −

= +

            = +

            = +

                                                            ;  ∀ =    

ℓ

ℓ ℓ

 (42) 

In Appendix A, the terms ‘ ( )1 1 ,ip x s−
ℓ ’ and ‘ ( )1 2 ,ip x s−

ℓ ’ are evaluated.  

Substituting equations (A.7) and (A.16) in equation(42) we obtain the final solution in the 

time domain as: 
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( ) ( ){ }

( ){ }

1

2 2

1 2 1 32 1

1 1 2 2

1 2 12 1

1 1 1

1 1 1 2

1 11

2 2 2

1 1 1 2

1 1

,
iii i

i i i

i i i ii i

ii i
o

i i i i

i i ii i

c x t y k G h G G

R c y k G h G G

−
= = == +

−
= == +

  
= +     

   

  
            + +  

   
                                                       

∑ ∑∑∏

∑ ∑∏

1, 2, ...i n     ;  ∀ =    

 (43) 

where; the ‘G ’ terms are defined as (See equations (A.7) and (A.16) in Appendix 

A).



 

2
5
 

[ ] ( ) ( ) ( )

[ ] ( ) ( ) ( )

( )
( )

( ) ( )
( )

3

2 3 2 3
3

1

3

2 2 4 2 2 4

4

2 4 3 2 5 2 4 2 5 2 5 2 4

5 1 5 2 5 1 5 2 5 45 2 5 2

, ,0 , ,0

, , , ,1

1

, , , , , ,

, , , , ,

, ,

, ,

oi

oi

i i i i

t

i i o i i oi

i
t

i i i o i i i o

i i
i i

i i i i i i i i i i i i i

i i i i R R i i i i i i R R

F x t u t t e F x t t
B

F x t u t t e F x t t
G

a k R R a a

λ

λ

λ

−

−

=

= ≠ = = ≠ ≠ ≠

 − − − 

 − + − − =
 
 − − − − −
 
 

∏ ∏
( )

[ ] ( ) ( ) ( )

( )

[ ] ( ) [ ] ( )

( )
( )

1 4 2 4 2

33

1 2 3 2 3

2 4

4 1 4 2 4 2

,, 1 2 31 1 2

2 1 2 2 2 3

2 3 1 2 2 2 4

4 1 4 2 4 2

, ,

, ,0 , ,0
1

2

,

, ,

, , , ,
2

1

, , ,

, ,

, ,

, ,

i i

oi

i i

i i ii i i

i i

i

i i R R

ti

i i i o i i o

i

i i

i i i i R R

x a tx a t

i i i i i i

i i i i i i i

i i i i R R

B F x t u t t e F x t t

G

k

F x t e F x t e

G

a a R k

λ

µµ −

≠ ≠

−

= ≠ =

− −− −

−

−
= ≠ =

 − − − 
=

−

− − +
=

− −

∑

∏

( )
( )

( )

[ ] ( )

( )

3 1 3 2 3 2

2 3 2 4 2 4 2 3

4 1 4 2 4 3 4 2

,1 1 2

2 1 2

2 2 3

3 1 3 2 3 2

, ,

, , , ,

, , ,

, ,
2

2

,

, ,

,

i i

i i

i i i

i i

i

i i
i i i i R R

i i i i i i i i

i i i i i i R R

x a t

i i i

i

i i i

i i i i R R

R R a a

F x t e

G

R k

µ −

= ≠ ≠

= ≠ ≠ ≠

− −

−

= ≠ =

 
  − −
 
 

− −
=

−

∑
∏ ∏

∏

 (44) 



 26 

where; the term ‘
1 2 3, ,i i i

F ’ is given by: (See equation(B.8) in Appendix B) 

 

[ ]

, ,1 2 3

1 1 2 3

,2 3
1

1 2 3
, ,1 2 3

1 1 2 3

1

1

1 2 3 1 2 3

1

, ,2

2

, ,

, ,2

2

, , ,

2
,

2

2

; 4

i i i

x

i i x

i i i

x

x

i i i iD
xv

a t D
i x

i i i
x

i i i iD

i x

i

i i i i x i i

i

R x t
e erfc

R D te e
F x t

R x t
e erfc

R D t

k
where v R D a

R

ω

ω

ω

ω

ω

−

−

  −     
    =
  +    +  
    

 
    = + −  

 

 (45) 

The above solution is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  For problems 

involving complex values for ‘
1 2 3, ,i i i

ω ’ the ‘
1 2 3, ,i i i

F ’ terms are given as:  (See 

equation(B.14) in Appendix B) 
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2.3 Derivation of the Analytical Solution for the Cauchy Boundary Condition 

For the case of the Cauchy boundary, the boundary condition at the source is 

described as follows: 
( ) ( )
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Equation(47) can be conveniently re-written as: 
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         Note that the governing equations, initial conditions and the boundary condition at 

‘∞ ’ for the Cauchy boundary are identical to the Dirichlet boundary.  Furthermore, the 

boundary conditions at the source for both these boundaries share a similar structure.  

Due to this structural similarity, the solution procedures for the Cauchy boundary will be 

analogous to that of the Dirichlet boundary.  The details of the solution derivation are 

presented in Appendix C.  The final solution for the Cauchy boundary can also be 

represented by equation(43).  However, the ‘G ’ terms associated with the Cauchy 

boundary are defined as (See equations (D.6) and (D.13) in Appendix D):  
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where; the term ‘
1 2 3, ,i i i

F ’ is given by: (See equation (E.20) in Appendix E) 
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The above solution is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  For problems 

involving complex values for ‘
1 2 3, ,i i i

ω ’ in the case when ‘ 1

2 3

1

,

i

i i

i

k
a

R
≠ ’ the ‘

1 2 3, ,i i i
F ’ terms 

are given as:  (See equation (E.26) in Appendix E)  Note: when ‘ 1

2 3

1

,

i

i i

i

k
a

R
= ’ the ‘

1 2 3, ,i i i
F ’ 

terms are unchanged. 
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Equation(43) along with equations (44), (45) and (46) and (49) ,(50)and (51) give 

the complete explicit general solutions to the transport problem described by equation(1) 

subject to the initial condition given by equation(2) and the boundary condition at ∞  

given by equation(3) for the Dirichlet and the Cauchy source boundaries given by 

equations(4) and (47) respectively. 

 

2.4 Discussion 

In the original governing equation given by equation(1), it was assumed that the 

degradation occurs in the liquid phase only.  However, in several real life contaminant 

transport scenarios such as radioactive transport, decay occurs in both the liquid and solid 

phases.  Under this condition the governing equation should be modified as: 
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Note the additional parameters in the right side of equation(52).  The solution to 

the above equation can be readily obtained from the previous solution given by 

equation(43) by substituting the value of ‘ k ’ with ‘ Rk ’. 

From Sections 2.2 and 2.3, it can be seen that the solutions for the Dirichlet and 

the Cauchy boundaries share a common structure.  However, careful observation 

indicates that the ‘
2

1G ’ and ‘
2

2G ’ terms for the Dirichlet boundary (see equation(44)) and 

the Cauchy Boundary (see equation(49)) are different.  Furthermore, from equations (45) 

and (46) and equations (50) and (51) it can be observed that the ‘
1 2 3, ,i i i

F ’ terms involved 

in the ‘G ’ terms are distinctly different for the two boundary conditions.  The solutions 

are presented in a format wherein they share a very similar structure.  One of the key 

advantages of this type of presentation is that the implementation of the solution for one 

type of boundary condition becomes relatively easy if we have the algorithm for the other 

boundary implemented.  Furthermore, the general solution is presented in a format which 

enables us to directly obtain explicit solutions for any of the species in the chain without 

involving the computations of its parent chain members.  This unique feature makes the 

general solution computationally efficient.  The solutions previously published in the 

literature have either been restricted to small chain lengths or have been semi analytical 

solutions for longer chain lengths.  The solutions derived in this study overcome both 

these difficulties and making them highly suitable for screening level models. 
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In the following chapter, the general solutions are first implemented in a 

computational platform and then tested against other analytical and semi-analytical 

solutions using a set of example problems. 
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CHAPTER III 

TESTING AND VALIDATION OF THE ANALYTICAL SOLUTIONS 

 

3.1 Introduction 

To test the general solution, one can either compare it analytically against other 

closed-form solutions or compare the results of its simulation against other analytical or 

numerical solutions.  While testing the general solution using example simulations 

requires its implementation in a computational platform, analytical comparison is a viable 

verification option only when we have suitable solutions that solve an identical transport 

problem.  Since explicit closed-form solutions are available only for simplified transport 

scenarios, the general solution is first simplified to these special cases and then compared 

against previously published closed-form solutions.  The objective of this chapter is to: 1) 

discuss the computational implementation of the new general analytical solution; 2) test 

and validate the solution against published analytical and numerical results; and 3) 

evaluate the salient features and limitations of the solution.  In the following sections the 

general solutions are first validated analytically against the solutions presented by van 

Genuchten [45] and Higashi and Pigford [24] for simplified transport scenarios.  To 

further test the general solutions for a more general case, example simulations are 

performed and the results of the general solution are compare against the results 

generated from the semi-analytical solution given by Quezada et al. [38]. 
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3.2 Implementation of the Solution 

To develop a computer code for the general solution, one has to formulate an 

algorithm based on the looping structure presented in equation(43).   In order to evaluate 

the summation loops, one has to compute all the ‘G ’ terms in equation(43), which are 

defined in equations (44) and (49).  From these, equations one can observe that the ‘G ’ 

terms require the evaluation of ‘
1 2 3, ,i i i

F ’ terms.  These ‘
1 2 3, ,i i i

F ’ terms, which are defined 

in equations (45), (46), (50) and (51), involve computations of the product of 

complementary error functions and exponential functions.  After evaluating the ‘
1 2 3, ,i i i

F ’ 

terms, one can then compute the ‘G ’ terms.  The general solution can then be 

implemented by substituting the values for the corresponding ‘G ’ terms in the 

summation loop described by equation(43).  Although the above procedure appears to be 

a straightforward task, round-off errors and underflow/overflow errors that occur during 

the computations of the ‘G ’ and ‘
1 2 3, ,i i i

F ’ terms, can cause severe stability problems even 

for short chain lengths involving four species [45].  These computational errors are 

further aggravated when solving problems involving the Cauchy boundary condition for 

long chain lengths and/or large simulation times. 

As pointed out by van Genuchten [45] the round-off errors arise due to the 

approximations in the computation of the complementary error functions (ERFC) 

involved in the ‘
1 2 3, ,i i i

F ’ terms, especially when employing the Cauchy boundary 

condition, for large retardation factors and long simulation distances or simulation times.  

Typically ERFC is evaluated by approximating it either as a closed-form analytical 
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expression [20] or as an infinite summation series [19].  Van Genuchten [45] suggested 

that this round-off error could be considerably limited by first substituting the 

approximate expressions for the ERFCs into the ‘
1 2 3, ,i i i

F ’ terms and then combining and 

simplifying the resulting terms.  The mathematical details of this strategy can be obtained 

from the computer code CHAIN [45].  Although this strategy significantly improves the 

round-off errors, it involves extensive book keeping procedures.  It must be noted that 

van Genuchten [45] used the Gautschi [20] and Gautschi [19] approximations for 

computing the ERFC terms.  Using a more accurate approximation for the ERFC 

function, such as the Cody [14] Chebyshev approximation, would provide additional 

improvement to the round-off errors. 

Another important computational challenge encountered in implementing this 

solution is the handling of very large and/or very small numbers involving the 

computations of the exponential and ‘Π ’ functions.  These numbers arise when solving 

problems involving long chain lengths and/or large simulation times.  For example, 

consider the computations involved in the ‘
2

1G ’ term in equation(44). 
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From equation(53) one can observe that the denominator term involves two independent product loops that have to be 

evaluated.   Under certain parameter combinations, each of the arguments within these product loops can assume very small 

values (e.g., less than 1E-5) and when this loop is run for long chain lengths (e.g., greater than 10) the product of these 

arguments results in an extremely small number (lesser than 1E-50).  Performing division by a small number of this order, 

results in very large arguments which cannot be represented accurately by using finite computer precision.  Furthermore, 

mathematical operations (additions and/or subtractions) of these large arguments can result in severe round-off errors.  Note 

that this problem is not only restricted to the ‘
2

1G ’ term, but can also apply to the other ‘G ’ terms.  Similarly, one can also 

observe that the numerator of the ‘
2

1G ’ terms in equation(53) involves the computation of exponential functions.  While 

performing simulations for large times and small distances, one may encounter very large arguments within these exponential 

functions that cannot be represented by finite computer precision.  Therefore, it is common to observe overflow errors when 

solving problems involving large simulation times. 
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A powerful solution to tackle these two problems involving long chain lengths 

and large simulation times is to use a log based formulation.  The log based formulation 

involves transforming the arguments whose products have to be evaluated in to the log 

space.  Within the log space the products are evaluated by performing a set of additions.  

Finally, the evaluated product is inverse transformed from the log scale to the linear 

scale.  By employing the proposed log based formulation, the underflow and/or overflow 

errors related to evaluating the ‘Π ’ terms can be virtually eliminated.  However, the 

proposed log based formulation can only be applied to compute product terms and cannot 

be used to compute summation terms.  To tackle the problem of overflow errors while 

evaluating summation terms, one can make use of the symmetrical property of the 

‘
1 2 3, ,i i i

F ’ terms.  This involves combining the ‘
1 2 3, ,i i i

F ’ terms that have identical ‘ 2i ’ and 

‘ 3i ’ values and then evaluating the sum of these combination terms separately and then 

substituting them in the main solution [45].  Although this method seems to have a direct 

approach, the algebraic manipulation involved in combining the various ‘
1 2 3, ,i i i

F ’ terms 

requires the reformulation of the final solution in a different format.  This reformulation 

would be mathematically tedious involving extensive book keeping, especially for 

problems having long chain lengths. 

One can use the log formulation and other computational techniques suggested 

above for developing a computer code for the general solution.  In addition to this, in the 

section below, another alternative is presented where solutions for several simpler and 

more practical cases that are computationally less challenging to implement are deduced.  

These special-case solutions are particularly useful for developing screening level 
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models.  Furthermore, some of these simple solutions can be directly compared against 

analytical solutions presented in the literature to provide powerful arguments for 

demonstrating the validity of the general solution. 

 

3.3 Special Cases 

In this section solutions to several simplified transport scenarios are presented and 

where ever possible, these solutions are validated against previously published analytical 

solutions.  It should be noted that for some of these special cases, a more rigorous 

mathematical analysis (rather than simple substitution) is required to derive these 

simplified solutions.  Furthermore, unlike the general solution these special case solutions 

impose fewer restrictions on the transport parameter values (Appendices A and D) 

 

3.3.1 Zero Initial Condition 

The general solution can be readily simplified to solve transport scenarios where 

the initial concentrations of all the contaminants are zero.  This is done by substituting the 

value of ‘
oc ’ as zero.  For this case, the general solution simplifies to: 
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where; ‘
1 2,i i

a ’ is given by: 
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Note that the ‘
1

1G ’ and ‘
1

2G ’ terms in equation(54) defined in Appendices A and D 

remain unchanged.  It can be shown that the expressions for the first four species of this 

special case solution match the solutions given by van Genuchten [45].  Furthermore, 

from equation(54) one can observe that, for the zero initial condition case, the second 

term of the general solution given by equation(43) is absent.  This not only relaxes some 

of the restrictions on the transport parameter values but also directly helps in improving 

the round off errors especially during large simulation times. 

 

3.3.2 Identical Retardation Factors 

Special cases arise when the retardation factors of all the species in the transport 

problem are identical (for example, the transport of non-sorbing set of sequentially 

decaying contaminants, where the retardation factors of all the species will be 1).  One 

can obtain the solution for this problem from the general solution by simple substitution.  

The modified solution for this special case problem for both types of boundary conditions 

is given as: 
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 (56) 

Note that the ‘
1

2G ’ and ‘
2

2G ’ terms defined in Appendices A and D remain 

unchanged.  The exclusion of the ‘
1

1G ’ and ‘
2

1G ’ terms helps in obtaining a 
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computationally more stable solution for longer chain lengths.  Additionally this solution 

imposes lesser restriction on the transport parameter values.  Sun et al. [42] solved a 

transport problem similar to the above problem assuming zero initial conditions.  

However, unlike the solution presented in equation(56), Sun et al. [42] did not provide an 

explicit closed-form expression, instead they only present a computational algorithm  to 

compute the concentration profiles. 

 

3.3.3 Zero Advection Velocity 

In some situations the transport of contaminants is governed mostly by dispersion.  

The solution for this condition is identical to the general solution given by equation(43), 

except that the ‘
1 2 3, ,i i i

F ’ terms will be modified.  For the Dirichlet boundary condition, the 

‘
1 2 3, ,i i i

F ’ term is given as: 
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The above expression is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  If ‘
1 2 3, ,i i i

ω ’ is 

complex the ‘
1 2 3, ,i i i

F ’ term is modified as: 
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For the case of the Cauchy boundary condition forcing the advection velocity to 

be zero would result in a zero boundary condition.  To avoid this, it is assumed that the 

boundary condition at the source does not involve the ‘v ’ term and modify Cauchy 

source boundary condition as: 
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Under this condition, the ‘
1 2 3, ,i i i

F ’ term is modified as: 
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The above expression is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  If ‘
1 2 3, ,i i i

ω ’ is 

complex the ‘
1 2 3, ,i i i

F ’ term is modified as: 
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The solutions obtained for the zero advection velocity case are specialized solutions 

that can be directly applied to model reactive transport scenarios involving chemical and 

nuclear repository leakage through diffusion. 

 

3.3.4 Steady State 

         The behavior of a contaminant plume under steady state conditions is of special 

interest especially in analyzing monitored natural attenuation (MNA) problems.  Steady 

state solutions avoid the problems related to overflow errors which occur when 

employing the general solution to solve for large simulation times.  Although this 

problem can be tackled by using the algebraic manipulation technique suggested in 

Section 3.2, it can be a tedious effort.  Furthermore, numerical codes (e.g., RT3D [12]) 

and semi-analytical solutions (e.g., Quezada et al. [38]), require large amounts of 

computational resources to accurately model steady state solutions.  For these reasons, it 

is very attractive to obtain explicit solutions for steady state conditions.  It must be noted 
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that unlike previous special cases, it is not possible to deduce the steady state solution by 

direct substitution.  Therefore, the steady state solution is derived by solving the steady 

state governing equations assuming a constant source for the Dirichlet and Cauchy 

boundaries conditions.  Since the time term is absent in the governing equations, Laplace 

transform techniques are not involved, and one can directly use the linear transform 

method given by Clement [11] to uncouple the system of equations.  The detailed 

solution procedure is given in Appendix F.  The steady state solution for the Dirichlet 

boundary is given as: 
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The corresponding steady state solution for the Cauchy boundary is given as: 
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From equations(62) and (63) it can be observed that the steady state solutions are 

less complex compared to the generic transient solutions since they do not involve the 

ERFC terms. 
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3.3.5 Zero Dispersion Coefficient 

If we ignore the effects of dispersion, the governing transport simplifies to: 
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         Note that in the absence of dispersion, the Cauchy boundary condition will be 

identical to the Dirichlet boundary condition.  In Appendix G the above problem is 

solved using the generic exponential initial condition given by equation(2).  The solution 

for the no dispersion condition can also be represented by equation(43).  However, the 

‘G ’ terms associated with this solution are defined as: (See equations (G.29) and (G.38) 

in Appendix G) 
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where; the term ‘
1 2 3, ,i i i

F ’ is given by: (See equation (H.5) in Appendix H) 
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         It can be shown that in the absence of initial contaminant distributions the solutions 

derived in this section are identical to those published in Harada et al. [23] and Higashi 

and Pigford [24].  Note that, although the solution for the no dispersion case appears to be 

identical in structure to the general solution, the ‘
1 2 3, ,i i i

F ’ terms involved in these ‘G ’ 

terms, defined in equation (H.5) in equation(66), are distinctly different from that of the 

general solution.  These new ‘
1 2 3, ,i i i

F ’ terms do not involve the ERFC terms and hence are 

easier to compute. 

 

3.4 Example Problems 

A general computer code (FORTRAN) that solves equation(43) was developed 

based on the computational algorithm provided in Section 3.2.  Appendix I gives the 

details of the code along with a sample input and output files.  Using this code, the 

general solution is first tested against two published examples problems: one involving 

the Dirichlet boundary and the other involving the Cauchy boundary.  The example 

problem for the Dirichlet boundary condition is taken from Cho [9].  The parameters used 

in this problem are summarized in Table 1.  Note: it is assumed that the decay occurs in 

the liquid phase only.  The results of the general solution are tested against the results of 

the analytical solution given by Cho [9].  Fig.1 compares the concentration profiles of the 

two solutions.  It can be observed that the two solutions give identical results. 
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Parameter Value 

Velocity; v (cm/h) 1 

Dispersion coefficient; Dx (cm
2
/h) 0.18  

Simulation Time; t (h) 200 

Pulse Time; to (h) 200 

Retardation factors; R, 1 to 3 2, 1, 1 

First-order decay coefficients k, 1 to 3 (1/h) 0.01, 0.1, 0 

Yield coefficients; y, 1 to 2 1,1 

First-order source decay coefficients; λ, 1 to 3 (1/h) 0,0,0 

Boundary constant value species 1; B, 1 to 1 1 

Boundary constant value species 2; B, 1 to 2 0, 0 

Boundary constant value species 3; B, 1 to 3 0, 0, 0 

Initial condition constant; c
o
, 1 to 3 0, 0, 0 

Initial condition Exponent; µ, 1 to 3 0, 0, 0 

 

Table 1: Parameters used in the Cho [9] example problem 
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Fig. 1: Comparison of the concentration profiles of the general solution with the Cho [9] 

solution (3 Species, Dirichlet boundary condition) 
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The Cauchy boundary example problem is taken from van Genuchten [45].  This 

problem is a modified version of the problem given by Higashi and Pigford [24].  Here 

the source is modeled as a step source and decay is assumed to occur in both phases.  The 

transport parameters used in this problem are summarized in Table 2.  The results of the 

general solution are compared against the van Genuchten [45] solution and are 

summarized in Fig. 2.  Observation of the concentration profiles given in Fig. 2 indicates 

that there is an excellent match between the two solutions. 

To further test the performance of the general solution for long chain lengths, a 

hypothetical 10 species problem was formulated that included an exponentially decaying 

boundary condition along with spatially varying initial contaminant distributions.  Decay 

is assumed to occur only in the liquid phase and furthermore, the retardation factors of 

some of the species were made equal.  Table 3 summarizes the model parameters used in 

this problem.  The above problem was solved using a Dirichlet boundary condition 

assuming a pulse time for the source release ‘ ot ’ as 10 years.  The results of the general 

solution were compared against the semi-analytical solution given by Quezada et al. [38].  

Fig. 3 shows the concentration distributions of all the species.  These results indicate that 

the two solutions match well.  An identical problem with a source pulse time ‘ ot ’ of 20 

yrs was formulated using a Cauchy boundary.  The concentration distributions of all the 

species were compared against the Quezada et al. [38] solution.  Fig. 4 gives the 

comparative profiles of both these solutions.  Again, it can be seen that the profiles 

predicted by the two solutions have a good match.  These simulations further validate the 

performance of the general solution for transport problems involving long chain lengths. 
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Parameter Value 

Velocity; v (m/yr) 100 

Dispersion coefficient; Dx (m
2
/yr) 10 

Simulation Time; t (yr) 1.0E+5 

Pulse Time; to (yr) 1.0E+4 

Retardation factors; R, 1 to 4 1.0E+4, 1.4E+4, 5.0E+4, 5.0E+2 

First-order decay coefficients k, 1 to 4 (1/yr) 7.9E-3, 2.8E-6, 8.71E-6, 4.3E-4  

Yield coefficients; y, 1 to 3 1,1,1 

First-order source decay coefficients; λ, 1 to 4 

(1/yr) 

8.9E-3, 1.0028E-3, 1.0087E-3, 1.43E-3 

Boundary constant value species 1; B, 1 to 1 1.25 

Boundary constant value species 2; B, 1 to 2 -1.2504, 1.2504 

Boundary constant value species 3; B, 1 to 3 4.43684E-4, 5.93431E-1, -5.93874E-1 

Boundary constant value species 4; B, 1 to 4 -5.1674E-6, 1.20853E-2, -1.22637E-2, 

1.78958E-4 

Initial condition constant; c
o
, 1 to 4 0, 0, 0, 0 

Initial condition Exponent; µ, 1 to 4 0, 0, 0, 0 

 

Table 2: Parameters used in the modified Higashi and Pigford [24] example problem as 

given by van Genuchten [45] 

 



 51 

 

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000 10000 100000

Distance (m)

R
e
la

ti
v
e
 C

o
n
c
e
n
tr

a
ti
o
n

Species2_VG

Species3_VG

Species4_VG

Species2

Species3

Species4

 

Fig. 2: Comparison of the concentration profiles of the general solution with the van 

Genuchten [45] solution (4 Species, Cauchy boundary condition) 

 



 52 

 

Parameter (Should be updated) Value 

Velocity; v (m/yr) 5 

Dispersion coefficient; Dx (m
2
/yr) 50 

Simulation Time; t (yr) 20 

Pulse Time; to (yr) 10 (For Dirichlet) and 20 (For 

Cauchy) 

Retardation factors; R, 1 to 10 1.9, 1, 1.4, 1, 5, 8, 1.4, 3.1, 1,1 

First-order decay coefficients k, 1 to 10 (1/yr) 3, 2, 1.5, 1.25, 2.75, 1, 0.75, 0.5, 0.25, 

0.1 

Yield coefficients; y, 1 to 9 1, 2, 1.5, 0.4, 1, 1, 0.7, 0.9, 1 

First-order source decay coefficients; λ, 1 to 10 

(1/yr) 

0.1, 0.75, 0.5, 0.25, 0, 0, 0.3, 1, 0, 

0.65 

Boundary constant value species 1; B, 1 to 1 10 

Boundary constant value species 2; B, 1 to 2 0, 5 

Boundary constant value species 3; B, 1 to 3 0, 0, 2.5 

Boundary constant value species 4; B, 1 to 4 0, 0, 0, 0 

Boundary constant value species 5; B, 1 to 5 0, 0, 0, 0, 10 

Boundary constant value species 6; B, 1 to 6 0, 0, 0, 0, 0, 5 

Boundary constant value species 7; B, 1 to 7 0, 0, 0, 0, 0, 0, 2.5 

Boundary constant value species 8; B, 1 to 8 0, 0, 0, 0, 0, 0, 0, 0 

Boundary constant value species 9; B, 1 to 9 0, 0, 0, 0, 0, 0, 0, 0, 0 

Boundary constant value species 10; B, 1 to 10 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

Initial condition constant; c
o
, 1 to 10 0, 0.1, 0.2, 0, 0.25, 0.3, 0.15, 0, 0, 0 

Initial condition Exponent; µ, 1 to 10 0, 0.01, 0, 0, 0.02, 0.01, 0.1, 0, 0, 0 

 

Table 3: Parameters used in the new 10 species example problem 
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Fig. 3: Comparison of the concentration profiles of the general solution with the Quezada 

et al. [38] semi-analytical solution (10 Species, Dirichlet boundary condition) 
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Fig. 4: Comparison of the concentration profiles of the general solution with the Quezada 

et al. [38] semi-analytical solution (10 Species, Cauchy boundary condition) 
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3.5 Salient Features of the General Solution 

One of the most important features of the general solution is that it is a generic 

solution that can solve an arbitrary number of species.  Furthermore, the final solution is 

given in an explicit closed-form format that avoids numerical methods.  In addition to 

this, the general solution is formulated and presented in format such that solutions for the 

Dirichlet and the Cauchy boundaries share a common structure.  This enables the 

convenient implementation of both these solutions by designing one code that shares 

several common routines having the capability to easily switch between the two boundary 

conditions. 

Another interesting advantage of this solution is that it can be used to directly 

obtain the solution for a particular species in the chain without involving the 

computations of other species.  This is extremely efficient when modeling scenarios 

where there the daughter product would be more toxic or more mobile than the parent 

compound.  In this case, one would be interested in obtaining the concentration profiles 

for the daughter product only.  Solving this problem numerically would involve the 

computation of all the predecessor species and this can be time consuming.  A similar 

situation also arises when employing the recursive type semi-analytical solutions 

presented by Harada et al. [23] (See section4, p6, eq4.20).  Their solution expression for 

any species ‘i>1' involves the concentration term of its predecessor ‘i-1’th species. 

The third feature of this solution is that it can be readily extended to a general 

diverging reaction network [43].  One can conceptualize a diverging network as a 

superposition of a series of parallel reaction networks each of which can be solved 

independently.  It must be noted that one diverging species will have no effect on the 
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other diverging species and hence they can be considered independent of each other.  

Hence in order to solve a diverging reaction network, one has to split the network into a 

set of parallel sequential reaction networks and solve each sequential chain 

independently. 

The one dimensional solutions presented in this work can be readily extended to 

solve multi-dimensional transport problems involving transverse dispersion terms using 

the approximate Domenico solution [16].  The mathematical details of this extension 

strategy are provided in Quezada [37].  As pointed out by Quezada [37] , this strategy 

yields an approximate solution.  In the following chapter this approximation is 

investigated to identify transport situations where the Domenico solution can be 

advantageously applied with high accuracy [41]. 

 

3.6 Limitations of the General Solution 

Despite its advantages, the general solution and its simplified solutions have some 

key limitations.  As with the case of all analytical solutions, these solutions can model 

idealized transport problems only.  Situations involving heterogeneity, variation in the 

flow field, presence of source/sink terms, etc. cannot be modeled using these solutions.  

Furthermore, these solutions are restricted to modeling first-order kinetic reactions only.  

Although this is highly suitable for modeling radioactive waste transport and certain 

types of simplified chemical reactions, these solutions cannot capture the more generic 

reaction kinetics such as the Monod kinetics. 

 The general solution places several limitations on the values of the transport 

parameters which are summarized in Table 4 (Appendices A and D).  These limiting 
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conditions arise when factorizing the denominator of the ‘G ’ terms during the 

computation of the inverse Laplace transforms.  An easy approach to tackle this problem 

would be to marginally perturb the individual model parameters such that the limiting 

conditions are averted [45].  This would enable us to tackle the problem using the general 

code.  However, this technique can aggravate the existing computational problems related 

to overflow/under flow errors.  Another more rigorous approach to tackle this problem 

would be to perform a mathematical analysis incorporating these special cases and 

evaluating the corresponding alternate expressions, similar to the one performed on the 

case of identical retardation factors (i.e. when 

‘
1 2, 1 2 1 2

0 ; , 1,2, ...
i i

R i i n where i i=     ∀ =     ;    ;  ≠ ’).  This analysis would involve 

modifying the factorization of the ‘G ’ terms to include the limiting conditions and 

performing generalized inverse Laplace transform operations on the alternate 

expressions. 

Finally, it must be noted that unlike the semi-analytical solutions presented by 

Clement [11] or Quezada et al. [38] which can model arbitrary reaction networks, the 

general solution can only model sequential and diverging reaction networks.  However, it 

is possible to extend this solution to solve systems involving complex reaction networks 

using a similar approach.  The key step required to perform this extension would be to 

obtain generalized expressions for the linear transform matrices used to uncouple the 

coupled system of equations. 
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Table 4: Summary of parameter limitations  
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CHAPTER IV 

INVESTIGATION OF ERROR ASSOCIATED WITH THE DOMENICO 

APPROXIMATION 

4.1 Introduction 

This chapter investigates some of the approximations involved in extending the 

one-dimensional solutions derived earlier into multiple-dimensions.  One of the most 

popular multi-dimensional analytical solutions used for modeling multi-dimensional 

ground water contaminant plumes is the Domenico solution [16].  The Domenico 

solution is an approximate three-dimensional solution that describes the fate and transport 

of a decaying contaminant plume evolving from a finite patch source.  This solution was 

based on an approach previously published by Domenico and Robbins [17] for modeling 

a non-decaying contaminant plume.  Prior to this work, Cleary and Ungs [10] presented 

an analytical solution to a similar three dimensional transport problem for a domain finite 

in y and z directions.  Later, Sagar [39] published an exact analytical solution to the 

transport problem considered by Domenico and Robbins [17].  Wexler [48] extended the 

Sagar [39] solution to include the effects of reaction and presented an exact analytical 

solution to the transport problem considered by Domenico [16].  However, these 

solutions are not closed form expressions since they involve numerical evaluation of a 

definite integral.  This numerical integration step can be computationally demanding and 

can also introduce numerical errors.  The key advantage of the Domenico and Robbins 
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[17] approach is that it provides a closed form solution without involving numerical 

integration procedures.  Due to this computational advantage, the Domenico solution has 

been widely used in several public domain design tools including the USEPA tools 

BIOCHLOR and BIOSCREEN [3, 36].   

Although the Domenico solution is extensively employed in several ground water 

transport models, its approximate nature has received mixed reviews over the years.  For 

example, West and Kueper [47] compared the BIOCHLOR model against a more 

rigorous analytical solution and observed considerable discrepancies.  By comparing the 

near field concentration profiles they concluded that the Domenico solution can produce 

errors up to 50%.  Guyonnet and Neville [22]compared the Domenico solution against 

the Sagar [39] solution and presented the results in a non-dimensional form.  They 

concluded that for ground water flow regimes dominated by advection and mechanical 

dispersion the discrepancies between the two solutions can be considered negligible 

along the plume centerline. They further added that the errors may increase significantly 

outside the plume centerline. 

The above review indicates that there are conflicting opinions regarding the 

performance of the Domenico solution.  Furthermore, since the development of the 

Domenico solution was based on a heuristic approach, researchers have expressed 

skepticism regarding its validity [47].  Presently, there are several unanswered issues 

related to the performance of this solution that include: Is there a mathematical basis for 

deriving the Domenico solution?  If so, what are the approximations involved in deriving 

the solution? What are the errors associated with these approximations? And finally, 

under what conditions are these approximations valid?  To answer these questions, we 
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need a fundamental understanding of the nature of the approximations involved in the 

Domenico solution.   The focus of this chapter is to perform a rigorous mathematical 

analysis on the origin and development of the Domenico solution.  The outcomes of this 

analysis are used to develop some general guidelines for the appropriate use of the 

solution. 

 

4.2 Governing Equations  

The transport problem considered by Domenico [16] assumes a patch source of 

constant concentration ‘ oc ’ located at the origin in a clean, semi-infinite aquifer.  The 

contaminant is subjected to advection in the x direction and dispersive mixing in all three 

directions.  Furthermore, it is assumed that the contaminant decays through a first order 

process.  The governing transport equation considered by Domenico [16]  is: 
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2 2 2
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 (67)  

The initial and boundary conditions are: 
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where; ‘c ’ is the concentration of the contaminant [ML
-3

]; ‘ oc ’ is the 

concentration at the source [ML
-3

]; ‘Y ’ and ‘Z ’ are the source dimensions in y- and z-

directions, respectively [L]; ‘ xD ’, ‘
y

D ’, and ‘ zD ’ are the dispersion coefficients in x, y 

and z directions, respectively [L
2
T

-1
]; ‘v ’ is the advection velocity in the x direction [LT

-

1
]; and ‘k ’ is the first-order decay coefficient [T

-1
].    

 

4.3 Review of the Domenico Solution 

The Domenico [16] solution was based on an approximate approach given by 

Domenico and Robbins [17].  Therefore, we first present a detailed review of the 

development of the Domenico and Robbins solution.  Domenico and Robbins [17] began 

their analysis by presenting the following exact analytical solution that describes the 

transport of an instantaneous pulse source in a three-dimensional domain [25]: 
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They then present the following one-dimensional analytical solution [15]: 
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Note that the above expression is the solution to the standard one-dimensional 

advection dispersion equation for an instantaneous source extending from zero to 

negative infinity [5]. 

To account for the transverse dispersion due to a finite sized two-dimensional 

source they employed the following two analytical solutions [15]: 
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 (71) 

Note that ( , )c y t  and ( , )c z t  are solutions to two independent one-dimensional 

transient diffusion equations subjected to an instantaneous line source of widths Y and Z 

respectively.  Further, it can be observed that the terms ( , )yf y t  and ( , )zf z t  in 

equation(71) are identical to the terms ( , )yf y tɶ  and ( , )zf z tɶ  in the Hunt [25] solution.   

Domenico and Robbins [17] multiplied the one-dimensional solution ( , )xf x t  

with these “transverse spreading terms” ( , )yf y t  and ( , )zf z t  and presented the following 

expression.   
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   ( , , , ) ( , ) ( , ) ( , )
8

o
x y z

c
c x y z t f x t f y t f z t=          (72) 

However, the authors did not justify this superposition step.  Note that the Hunt 

solution [25] was never used in this analysis.  At this stage, Domenico and Robbins 

presented the following arguments: “The product of these three integral solutions [shown 

in equation(72)] describes a semi-infinite contaminated parcel which moves in the 

positive x direction with a one-dimensional velocity but which continuously expands in 

size in directions transverse to x throughout the whole domain of x, i.e., in the positive 

and negative regions.  This is because the time t in the transverse spreading terms is 

interpreted as running time. Reinterpreting this time as x/v for a moving coordinate 

system, as is common in all transverse spreading models (Bruch and Street, 1967; Ogata, 

1970; Domenico and Palciauskas, 1982) has the effect of maintaining the original source 

dimensions at x=0 so that the condition C=Co is maintained at x=0 for t>0.”  Using 

these arguments they reinterpret the time term t in the transverse spreading terms ( , )yf y t  

and ( , )zf z t  as x/v.  However, the authors did not provide a mathematical reasoning for 

this time reinterpretation step.  Further, all the references cited in the above text solve 

fundamentally different problems and we will address this issue in a later section.  Using 

this time reinterpretation step, equation(72) was modified as: 
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Equation(73) was presented as the final solution to the continuous finite patch 

source problem considered by Domenico and Robbins [17].   

Later, Domenico [16] incorporated the effects of first-order decay by replacing 

the ( , )xf x t  term with an analytical solution for the semi-infinite pulse source problem 

with a decay term, presented by Bear [5].  The final solution was given as [16]: 
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where; x
x

D

v
α = , 

y

y

D

v
α =  and z

z

D

v
α =  are the dispersivities in the x, y and z 

directions respectively [L]. 

Martyn-Hayden and Robbins [31] later modified the Domenico [16] solution, 

referred in this work as modified-Domenico solution, by incorporating the following one-

dimensional solution (which describes a constant source boundary) in the ( , )xf x t  term 

[5]: 
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 (75) 

As pointed out by Bear [5] if the value of 
x

x

α
 is sufficiently large, a condition 

usually satisfied in practice, the additional term in the above equation can be safely 

ignored.   

The above review shows that the development of various forms of the Domenico 

solution does not have a rigorous mathematical basis.  The empirical arguments provided 

by the authors are vague because the mathematical procedures implied by these 

arguments are inexplicit and nebulous.  In the following section a more rigorous approach 

to derive the Domenico solution that clearly stated the approximations involved is 

presented. 
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4.4 A Rigorous Approach to Derive the Domenico Solution 

The exact semi-analytical solution for the three dimensional transport problem 

described by equations (67) and (68), considered by Domenico [16], was provided by 

Wexler [48] as: 
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 (76) 

To obtain the Domenico solution from the above exact solution, we replace the value of τ 

in the transverse spreading terms ' , )yf y τ(  and ' , )zf z τ(  with x/v (the validity of this 

substitution will be discussed later).  This yields the following expression:  
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where; 
y

y

D

v
α =  and z

z

D

v
α = .  Note that by substituting τ = x/v we have made 

the transverse spreading terms ( , )yf y x  and ( , )zf z x  independent of time and hence they 

will not participate in the integration process.  Without the transverse terms, the definite 

integral can be evaluated analytically as shown in Appendix J.  Therefore, the above 

equation can be simplified as: 
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Equation(78) is identical to the modified-Domenico solution shown in 

equation(75).  If we set the first-order decay coefficient k to zero equation(78) reduces to: 
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Equation(79) is similar to the Domenico and Robbins (1985) solution given by 

equation(73).  The additional expression in the ( , )xf x t  term in equations (78) and (79) is 

due to the use of the expanded form of the one-dimensional solution that describes a 

constant concentration boundary condition instead of a semi-infinite pulse source 

boundary condition.   
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The above analysis shows that the only approximation required for rigorously 

deriving the Domenico solution is the time reinterpretation step, where τ is replaced by 

x/v in the transverse dispersion terms.  In the following section, a detailed mathematical 

analysis that investigates the validity of this approximation is presented 

 

4.5 Mathematical Analysis of the Validity of the Approximation Involved in the 

Domenico Solution 

Review of transport modeling literature indicates that it is common to replace τ 

with x/v in the transverse dispersion terms when solving convection dominated problems 

that have low longitudinal mixing.  For example, Bruch and Street [6] used a similar 

assumption to solve the advection-dispersion problem when the longitudinal mixing was 

smaller than the transverse mixing.  Another example of a convection-dominated problem 

that employs this approximation is the air pollution model used for predicting the fate and 

transport of smoke plumes evolving from chimneys [46].  Here, the transport is 

dominated by convection along the wind direction and dispersive mixing is restricted to 

the transverse directions only.  Neglecting the effects of longitudinal dispersion in such 

problems simplifies the governing transport equation as: 
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2 2y z
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v D D kc
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∂ ∂ ∂ ∂
 (80) 

Consider solution to the above transport problem subject to the following 

Domenico-type initial and boundary conditions: 
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In Appendix K, Laplace transform techniques are used to solve the above problem 

and the resulting exact analytical solution is: 
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 (82) 

where; ( , )yf x y  and ( , )zf x z  are identical to the expressions given in 

equation(77). 

Since the Domenico approach approximates τ as x/v in the transverse dispersion 

terms one can hypothesize that the Domenico approximation must be valid when xα  is 

zero.  To test this hypothesis, a limiting analysis is performed on the modified-Domenico 

solution by forcing xα  to zero; this is expressed as: 
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 The mathematical details of this limiting analysis are given in Srinivasan et al. 

[41].  The analysis shows that when xα  approaches zero the modified-Domenico solution 

relaxes to the exact analytical solution given by equation(82).  This proves that the 

Domenico approximation indeed yields an exact analytical solution when xα  is equal to 

zero. 

 

4.6 Analysis of the Error Associated With the Domenico Solution 

The mathematical analysis presented in the previous section demonstrates that the 

time reinterpretation step, where τ is replaced with x/v, is exactly valid when xα = 0.  

From these results one could also infer that this time reinterpretation process provides a 

reasonable approximation when longitudinal dispersion plays an insignificant role in the 

overall transport.  Hence, the Domenico solution can be expected to produce reasonable 

estimates for advection-dominated problems; however, it can introduce significant errors 

for longitudinal dispersion-dominated problems. 

Another important feature of the time reinterpretation step is that it forces a quasi 

steady-state condition along the transverse directions at all times.  In other words, the 

‘conceptual’ residence time (x/v value) associated with a point located at the centerline to 

disperse contaminant mass in the transverse directions is independent of the simulation 

time.  Further, this residence time is also assumed to increase linearly with respect to x.  

These unrealistic assumptions regarding residence times will lead to erroneous 

predictions, especially beyond the advective front.  For example, consider a problem 

where v = 50 m/year and we are interested in predicting the concentration distribution of 
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a two year plume (t = 2 years) at a location x = 200 meters.  The Domenico solution will 

estimate the residence time τ for our location of interest x = 200 meters as τ = x/v = 4 

years; this in fact is greater than the total simulation time it self!  This is an unrealistic 

assumption since a 2 year old plume simply cannot have the time to disperse for 4 years!  

For a particle located at the advective front the residence time assumed by the Domenico 

solution is 2 years (the simulation time), and for all the particles located behind the 

advective front the residence time assumed by the Domenico solution will be equal to x/v 

(which will be less than 2 years); these seem to be reasonable estimates.  However, for all 

points beyond the advective front i.e. x > 100 meters, the Domenico solution will assign 

unrealistic conceptual residence times which will be greater than the simulation time t = 2 

years.  It must be noted that this incorrect behavior will vanish when xα  is zero because, 

for this case, the plume will abruptly end at the advective front and the residence time for 

each particle located at or behind the advective front will in fact be equal to x/v. 

When solving steady state problems, the assumption related to residence time 

should be a reasonable approximation.  This is because, at steady state, the theoretical 

advective front will be at infinity.  Therefore, the time reinterpretation should be 

reasonable for any finite domain.  Hence, the performance of the Domenico solution 

under steady state conditions can be expected to be better.  However, it is important to 

note that even under steady state conditions the solution will not be exact because it will 

still ignore the transport due to longitudinal mixing.  In general, it can be concluded that 

the Domenico solution can be expected to perform better behind the advective front.  In 

the following section we use an example problem to illustrate the implication of these 

theoretical results. 
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4.7 Example Problem 

The example problem presented by Domenico and Robbins [17] is considered in 

this analysis.  The transport parameters used in the problem are summarized in Table 5.  

The performance of the modified-Domenico solution was tested by comparing its results 

against those generated using the exact solution given by Wexler [48].   

It has been established in the previous sections that the Domenico approximation 

makes unreasonable assumptions regarding the residence time beyond the advective 

front, and reasonable assumptions behind the front.   Therefore we analyze the results of 

this comparison in two parts-- one behind the advective front and the other beyond the 

advective front (note that for our base case, the front is at x = 1100 meters). 

 

4.7.1 Plume Comparison Analysis Behind the Advective Front 

Figures 5a and 5b compare the two-dimensional concentration contours of both 

solutions on the X-Y and X-Z planes (Note: an aspect ratio of ‘2.2 : 1’ was maintained 

for the X-Y plots and an aspect ratio of ‘55 : 1’ was maintained for the X-Z plots).  Since 

the problem is symmetric about the X axis, only half of the plume is presented.  It can be 

observed from Figure 5 that the modified-Domenico solution is reasonably close to the 

true solution, though there are some noticeable discrepancies.  To explore the limits of 

these discrepancies, we performed a series of sensitivity simulations. 
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Parameter Value 

Longitudinal dispersivity (αx) 42.58 m 

Transverse dispersivity (αy) 8.43 m 

Transverse dispersivity (αz) 0.00642 m 

Velocity (v) 0.2151 m/day 

Source width in Y direction (Yo) 240.0 m 

Source width in Z direction (Zo) 5.0 m 

Source concentration (Co) 850 mg/L 

Simulation Time (T) 5110 days 

 

Table5: Parameters used in the Domenico and Robbins [17] example problem 
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(a) 

 

 
(b) 

 

Fig. 5: Concentration contours predicted by the Domenico and Wexler solutions for the 

base case: solutions behind the advective front for (a) X-Y plane (b) X-Z plane 
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In the first set of sensitivity simulations, we varied the value of the longitudinal 

dispersivity (αx) by an order of magnitude above and below the assumed baseline value.  

Figures 6a and 6b compare the two-dimensional concentration contours of the solutions 

for both the cases.  Comparison of the data shown in Figures 5a and 6 indicate that the 

discrepancies between the two solutions were large when the value of longitudinal 

dispersivity was high.  Also, as expected, when the longitudinal dispersivity was low 

there was an excellent match between the solutions.  Similar trends were also observed in 

the concentration contours predicted on the X-Z plane.  Since the spreading terms in the y 

and z directions are identical in structure, the contours in the X-Y and X-Z planes will 

exhibit identical trends.  Therefore, from this point onwards the sensitivity analysis will 

be restricted to X-Y contours.   

In the second set of sensitivity simulations, we varied the value of the transverse 

dispersivity (αy) by an order of magnitude above and below the base line value.  These 

results (refer supplementary material for figures) indicated that the transverse dispersivity 

in the y-direction does not play a significant role in influencing the error associated with 

the modified-Domenico solution.  Similar sensitivity analysis performed on other 

transport parameters including the transverse dispersivity αz and the source dimensions Y 

and Z also showed minimal sensitivity. 

A third set of sensitivity simulations were completed for a decaying contaminant 

plume by assuming various first-order rate coefficients (k).  Comparison of the 

concentration contours for k values of 0.0001 day
-1

 and 0.001 day
-1

 indicated that the 

presence of a decay term does not introduce any significant additional error [41]. 
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(a) 

 

 
(b) 

 

Fig. 6: Sensitivity results for variations in the longitudinal dispersivity value; solutions 

behind the advective front for (a) αx*10  (b) αx/10 
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The fourth set of sensitivity simulations involved varying the advection velocity (v) 

by an order of magnitude above and below the baseline value.  Figures 7a and 7b 

compare the concentration contours of the solutions for the two cases.  From these figures 

it can be concluded that the advection velocity has very little effect in determining the 

accuracy of the solution.  Note that in the absence of first order decay, varying the 

advection velocity will have the same effect as varying the total simulation time (t).  

Since decay does not play any significant role in determining the accuracy of the 

modified-Domenico solution, it can be safely concluded that variations in the total 

simulation time will have little sensitivity on its accuracy. 

The above results indicate that within the advective front the longitudinal 

dispersivity plays a very important role in determining the accuracy of the modified-

Domenico solution.  All the other transport parameters have negligible effect on the 

accuracy of the solution. 

 

4.7.2 Plume Comparison Analysis Beyond the Advective Front 

Figure 8 compares the concentration contours of the two solutions in the X-Y plane 

for the base case parameters (Note: here an aspect ratio of ‘4:1’ is maintained for the X:Y 

plane to capture the plume beyond the advective front; also the location of the advective 

front is indicated by an arrow on the x axis).  It can be observed from Figure 8 that, as we 

move beyond the advective front, the accuracy of the modified-Domenico solution 

reduces rapidly.  As pointed out in the earlier sections, this is due to the unrealistic 

assumptions made by the Domenico solution when computing the conceptual residence 

times beyond the advective front.  
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(a) 

 

 
(b) 

 

Fig. 7: Sensitivity results for variations in the transport velocity; solutions behind the 

advective front for (a) v*10   (b) v/10 
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Fig. 8: Concentration contours predicted by the Domenico and Wexler solutions; 

solutions include concentration contours beyond the advective front 
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The results of a sensitivity analysis performed on the parameter αx are summarized 

in Figures 9a and 9b.  These figures indicate a trend similar to those present for regions 

within the advective front.  Higher the value of the longitudinal dispersivity, greater the 

error associated with the modified-Domenico solution.  Further, it can be observed that 

the error systematically increases when the contaminant is transported beyond the 

advective front. 

A similar set of sensitivity simulations were performed on different transport 

parameters including αy, αz, Y, Z and K for regions beyond the advective front as well.  

As expected, the results indicated that these parameters had negligible contribution in 

determining the accuracy of the solution. 

A final set of sensitivity simulations were performed by varying the value of the 

advection velocity (v) by an order of magnitude above and below the base line value.  

The results of this sensitivity analysis are summarized in Figures 10a and 10b.  Initial 

observations of these figures may indicate that at higher velocities, the modified-

Domenico solution appears to perform better.  However, a closer analysis of these figures 

with respect to their respective advective front locations indicates that at higher velocities 

a greater portion of the plume is behind the advective front whereas, at lower velocities a 

relatively lesser portion of the plume is behind the advective front confirming that the 

advection velocity has little effect in determining the accuracy of the solution.  However, 

it must be noted that the advection velocity itself plays an important role in determining 

the location of the advective front, which is one of the key parameters that affects the 

performance of the solution.  Variations in the total simulation time (t) will have a similar 

effect as that of the advection velocity.  
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(a) 

 

 
(b) 

 

Fig. 9: Sensitivity results for variations in the longitudinal dispersivity value; solutions 

include concentration contours beyond the advective front for (a) αx*10  (b) αx/10 
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(b) 

 

Fig. 10: Sensitivity results for variations in the transport velocity; solutions include 

concentration contours beyond the advective front for (a) v*10  (b) v/10 
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From the results of these sensitivity simulations, it can be safely concluded that, the 

two most important factors that affect the accuracy of the modified-Domenico solution 

are the value of the longitudinal dispersivity (αx) and the position of the advective front 

(v*t).   The solution will have minimal errors when the value of αx is low and when the 

advective front is farther away from the source.  It must be noted that the conclusions 

obtained for the modified-Domenico solution apply to the Domenico solution as well, 

provided the value of 
x

x

α
 is sufficiently large [5]. 

 

4.8 Discussions and Recommendations 

Since the original Domenico solution lacked a theoretical basis, several 

misconceptions regarding its performance have evolved over the years.  One of the 

common misconceptions is that the error will be a minimum along the plume centerline.  

For example, Guyonnet and Neville [22] compared the Domenico solution against the 

Sagar [39] solution and concluded that “The results of the evaluation confirm that along 

the plume centerline, and for ground water flow regimes dominated by advection and 

mechanical dispersion rather than by molecular diffusion, discrepancies between the two 

solutions (namely the Domenico solution and the Sagar solution) can be considered 

negligible for all practical purposes.  However the errors in the Domenico (1987) 

solution may increase significantly outside the plume centerline.”  However, the above 

simulation results indicate that this conclusion might not be true for all cases.  To 

illustrate this, compare the y and z concentration transects predicted by the two solutions 

for our base case scenario.  Figure 11a compares the concentration profiles along y 
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direction at x = 1000 m and 1500 m, and similar results for the z direction are shown in 

Figure 11b.  It is evident from these figures that the error is not minimal along the 

centerline, but rather at a point which will always be away from the centerline.  This error 

pattern can also be observed in all the two dimensional contours.  Further, it can be 

observed from Figures 11a and 11b that the absolute error is, in fact, maximum along the 

plume centerline. 

Another important issue that should be addressed here is the nature in which the 

error associated with the Domenico approximation is propagated spatially.  The 

sensitivity results presented in this chapter show that the plumes predicted by the 

modified-Domenico solution are always wider than the actual plumes.  This phenomenon 

can easily be observed in all the figures presented in this study.  This can be attributed to 

the fact that the Domenico approximation over predicts the conceptual residence times of 

all particles along the centerline (hence allows more time to disperse in the transverse 

directions).  This over prediction would lead to a decrease in the centerline 

concentrations; therefore, solutions that employ the Domenico approximation will always 

under predict the overall extent of the plume in the longitudinal direction.    

An important transport parameter not addressed so far is the retardation factor (R).  

Retardation affects the advection velocity and possibly the decay constant (depending on 

the phase where the decay occurs).  Since the presence of a decay term does not introduce 

any significant additional error to the Domenico solution, its effect can be ignored.  

However, retardation changes the location of the advective front by changing the 

advection velocity and hence would influence the overall accuracy of the Domencio 

solution. 
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Fig. 11: Concentration profiles predicted by the Domenico solution compared with the 

Wexler solution at x = 1000m and 1500m (a) along Y axis (b) along Z axis 
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Based on the theoretical results presented in this study, it can be concluded that the 

key assumption used to derive the Domenico solution is the time reinterpretation step 

where the time τ in the transverse dispersion terms is replaced with x/v.  The derivations 

presented in section 4.5 prove that this substitution process is valid only when the 

longitudinal dispersivity is zero.  For all non-zero longitudinal dispersivity values the 

solution will have a finite error.  The spatial distribution of this error is highly sensitive to 

the value of αx and the position of the advective front (v*t), and is relatively less sensitive 

to other transport parameters.  Based on the results of this study, it can be concluded that 

the error in the Domenico solution will be low when solving transport problems that have 

low longitudinal dispersivity values, high advection velocities, and large simulation 

times. 

Despite its limitations, the Domenico approximation offers a simple alternative for 

extending one dimensional analytical solutions to three dimensions.  This approach is 

useful for developing approximate solutions for unsolved, three dimensional, multi-

species reactive transport problems that have explicit one dimensional solutions.  

However, such solutions should be used carefully after understanding the limitations 

identified in this study. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

In this research a set of analytical solutions to multi-species reactive transport 

equations coupled through sorption and sequential first-order reactions is presented.  In 

the first part of this work, the mathematical derivations of the general solution which 

incorporates a generic Bateman type exponentially decaying Dirichlet and Cauchy source 

boundary conditions and a spatially varying initial condition are presented.  The solution 

strategy involves uncoupling the system of governing equations through the use of 

transformations and then solving the uncoupled system of equations individually to 

obtain independent solutions for each species in the transformed domain.  A combination 

of Laplace and linear transforms were used to uncouple the system of equations.  Finally 

the independent solutions in the transformed domain are analytically re-transformed back 

to the original time domain to obtain the final solutions.  Some of the key challenges in 

performing these analytical operations include formulation of the generic linear transform 

matrices and evaluation of the inverse Laplace expressions. 

The solutions to both the Dirichlet and Cauchy boundaries are presented in a 

common format to enable simultaneous implementation of both these solutions.  

Furthermore, the solutions are presented in a closed form format that avoids numerical 

integrations processes.  Solutions for two cases of sorption; one involving decay in liquid 
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phase only and the other involving decay in both liquid and solid phases are also 

presented. 

In the second part of this research, the computational techniques for implementing 

the solution are discussed and the general solution is validated against other published 

solutions.  Some of the key challenges faced when implementing the solutions are round-

off errors and underflow/overflow errors. A combination of techniques involving 

algebraic manipulation and logarithmic transforms are suggested to tackle these errors.  A 

FORTRAN computer code “SEQUENTIAL” that solved the general solution was 

developed and is provided in Appendix I.  The new code was used to simulate four 

example problems and the results generated by the code matched the results of previously 

published analytical and semi-analytical solutions. 

In addition, several special-case solutions for simpler transport problems 

involving zero initial condition, identical retardation factors, zero advection, zero 

dispersion and steady-state condition are also presented.  Where ever possible these 

special case solutions were successfully verified against previously published analytical 

solutions.  Strategies for extending the one dimensional sequential solutions to a generic 

diverging reaction network and to multiple dimensions (using the approximate Domenico 

solution) are also presented.  A detailed investigation into the errors involved in this 

approximation is also discussed.  The solutions proposed in this research work can be 

used to develop efficient screening tools for assessing ground water quality issues at sites 

contaminated with radioactive materials or chlorinated solvents. 

One of the key limitations of the general solution is that it can model 

sequential/diverging reaction networks only.  More generic reaction networks involving 
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converging and/or reversible reaction networks cannot be modeled using the general 

solution. The main challenge in incorporating a more generic reaction network is 

obtaining the analytical linear transform matrices.  Simplifying the problem to steady 

state may perhaps help in reducing the complexity in obtaining the matrices. 

It must be noted that Laplace transform techniques were used in this study to 

uncouple the system of equations.  The use of Fourier transforms for this purpose may 

possibly help in easing some of the other limitations on the general solution including the 

restriction on the transport parameters (See Table 4) and the limitation to modeling first-

order kinetics.  Future research efforts in this area should focus on implementing more 

robust mathematical induction techniques and using Fourier transforms to obtain 

solutions to more general multi-species transport problems. 
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APPENDIX A 

Factorization of the Laplace Terms for the Dirichlet Boundary Condition 

 

The first term ‘ ( )1 1 ,ip x s−
ℓ ’ can be evaluated as follows.  From equations (41) 

and (42) we get: 
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Equation(A.1) can be rewritten as: 
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It must be noted that for equation(A.2) to be valid the condition ‘
2 4,

0
i i

R ≠ ’ must 

be satisfied.  This means that no two species in the transport problem can have identical 

retardation factors.  However, in practice, we do have situations where the retardation 

factors of some of the species are equal [9].  To overcome this limitation, we reformulate 

equation(A.2) to accommodate a generic case when the transport problem has any 

number of sets of species having any number of species with identical retardation factors.  

Incorporating this special case scenario, equation(A.2) is reformulated as: 
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Note that in equation(A.3) the condition ‘
2 4,

0
i i

k ≠ ’ must be satisfied for the solution to be determinate.  Factorization 

of equation(A.3) gives: 
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It must be noted that the solution formulation as given by equation(A.4) is valid only when the condition ‘
2 5 2 4, ,i i i i

a a≠ ’ 

is satisfied.  Equation(A.4) can be further factorized and simplified as: 
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Again it must be noted that equation(A.6) is valid only when the condition ‘
2 4 3, ,0i i i

a a≠ ’ where ‘
3 3,0i i

a λ= ’ is 

satisfied.  Using the results from Appendix B, inverse Laplace expressions for the terms ‘
1

1G ’ and ‘
1

2G ’ can be evaluated and 

the solution for ‘ ( )1 ,ic x t ’ is obtained as: 
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where; the term ‘
1 2 3, ,i i i

F ’ is given by equation (B.8) or (B.14) in Appendix B.  The second term ‘ ( )1 2 ,ip x s−
ℓ ’ is 

evaluated as follows.  From equations (41) and (42) we get: 
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Equation(A.8) can be written as: 
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Note: the term ‘
1 2,i i

a ’ is modified as: 
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Note that the condition ‘
2 3,

0
i i

k ≠ ’ must be satisfied in equation(A.9).  Factorization of equation(A.9) yields: 
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Note that the condition ‘
2 4 2 3, ,i i i i

a a≠ ’ must be satisfied in equation(A.11).  The term ‘
2

1G ’ in equation(A.11) can be 

further factorized and simplified as: 
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Note that the condition ‘
2 4 1 2, ,i i i i

a a −≠ ’ must be satisfied in equation(A.12).  ‘
2

1G ’ can be further simplified as: 
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‘
2

2G ’ in equation(A.11) can be further simplified as: 
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From inverse Laplace transform tables we get: [8] (p494, eq3). 
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Using equation(A.15) and Appendix B, inverse Laplace expressions for the terms ‘
2

1G ’ and ‘
2

2G ’ can be evaluated and 

the solution for ‘ ( )2 ,ic x t ’ is obtained as: 
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 where; the term ‘
1 2 3, ,i i i

F ’ is given by equation (B.8) or (B.14) in Appendix B. 
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APPENDIX B 

Evaluation of Inverse Laplace Expressions for the Dirichlet Boundary Condition 
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Equation(B.1) can be simplified as: 
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‘ 1β ’ can be evaluated as follows:  Invoking the ‘First Shifting Theorem’ (see 

[28], p253) we can simplify ‘ 1β ’ as: 
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The Laplace inverse of equation(B.3) can be readily obtained from the tables (see 

[8], p495, eq19).  Applying this inversion, ‘ 1β ’ can be evaluated as: 
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‘ 1β ’ can be further rearranged and simplified as: 
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 ‘ 2β ’ is evaluated as follows: ‘ 2β ’ can be simplified as; 
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Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate 

‘ 2β ’ as:  [Note: We have already evaluated ‘ 1β ’; equation(B.4)] 
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The final solution can be compactly expressed as: 
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The above solution is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  For problems 

involving complex values for ‘
1 2 3, ,i i i

ω ’ the ‘
1 2 3, ,i i i

F ’ terms are evaluated as follows: 
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Now the ‘
1 2 3, ,i i i

F ’ terms can be written as: 
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From the symmetric relations we get: 
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Also the exponent of a complex number can be expressed as: 
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Using equations(B.11) and (B.12) equation(B.10) can be simplified as: 
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Further simplification of equation(B.13) yields: 
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Hence in problems where ‘
1 2 3, ,i i i

ω ’ is complex the ‘
1 2 3, ,i i i

F ’ term is given as by 

equation(B.14). 
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APPENDIX C 

Derivation of the General Solution for the Cauchy Boundary Condition 

 

         Since the governing equations, the initial condition and the boundary condition at 

‘∞ ’ are identical for the Dirichlet and the Cauchy boundaries, the procedures involved in 

uncoupling the system of equations will be identical and hence we can use the analysis in 

‘Section 2.2’ to obtain the semi-determined general solution and the linear transform 
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         The linear transform matrices ‘[ ]A ’ and ‘[ ] 1
A

−
’ are given by equations(15) and 

(16) respectively.  The constant ‘
2

iΨ ’ in equation(C.1) is evaluated by using the 

boundary condition given by equation(47) after transforming them into the ‘b ’ domain; 

this is done as follows.  Laplace transform of equation(47) gives: 
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In order to transform the boundary condition from the ‘ p ’ domain to the ‘b ’ 

domain, we apply the linear transform given by equation(12). 
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The explicit expression for ‘ [ ] { }1

i

A
−
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         From equations(C.3) and (C.4) we obtain the boundary condition in the ‘b ’ domain 

as: 
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Substituting the expression for ‘ ( ),ib x s ’ from the semi-determined general 

solution given by equation(C.1) into the transformed boundary condition given by 

equation(C.5), we can evaluate the constant ‘
2

iΨ ’ as follows: 
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From equation(C.6) ‘
2

iΨ ’ is evaluated as: 
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Therefore, the solution in the ‘b ’domain is: 
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Inverse linear transform of equation(C.8) is done to obtain the solution in the Laplace domain (‘ p ’ domain) by using 

equation(12).  The solution given by equation(C.8) can be split into two parts and represented as: 
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Using the distributive property of matrix addition, we can apply the inverse linear 

transform to each of the individual terms and then sum them to get the solution in the 

‘ p ’ domain.  This is expressed as: 

 { } [ ]{ } [ ]{ } [ ]{ }1 2p A b A b A b= = +  (C.10) 

The first term ‘[ ]{ }1A b ’ can be evaluated as: 
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The explicit expression for ‘ ( )1 ,ip x s ’ in equation(C.11) is given as: 
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         Using a similar approach the second term ‘[ ]{ }2A b ’ is evaluated and the explicit 

expression for ‘ ( )2 ,ip x s ’ is: 
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Substituting equations(C.12) and (C.13) into equation(C.10) we get the solution in 

the Laplace domain as: 
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         The final solution is obtained by taking an inverse Laplace transform of the solution 

given by equation(C.14).  Inverse Laplace transform is performed as follows: 
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In Appendix D, the terms ‘ ( )1 1 ,ip x s−
ℓ ’ and ‘ ( )1 2 ,ip x s−

ℓ ’ are evaluated.  

Substituting equations (D.6) and (D.13) in equation(C.15) we obtain the final solution in 

the time domain as: 
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where; the ‘G ’ are defined in equations (D.6) and (D.13) in Appendix D. 
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APPENDIX D 

Factorization of the Laplace Terms for the Cauchy Boundary Condition 
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Equation(D.1) can be rewritten as: 
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Note that in equation(D.2) the condition ‘ *
2 ,

0
i i

k ≠ ’ must be satisfied for the solution to be determinate.  Factorization 

of equation(D.2) gives: 
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It must be noted that the solution formulation as given by equation(D.3) is valid only when the condition ‘
2 5 2 4, ,i i i i

a a≠ ’ 

is satisfied.  Equation(D.3) can be further factorized and simplified as: 
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Again it must be noted that equation(D.5) is valid only when the condition ‘
2 4 3, ,0i i i

a a≠ ’ where ‘
3 3,0i i

a λ= ’ is 

satisfied.  Using the results from Appendix E, inverse Laplace expressions for the terms ‘
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1G ’ and ‘
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2G ’ can be evaluated and 

the solution for ‘ ( )1 ,ic x t ’ is obtained as: 
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where; the term ‘
1 2 3, ,i i i

F ’ is given by equation (E.20) or (E.26) Appendix E.  The second term ‘ ( )1 2 ,ip x s−
ℓ ’ is 

evaluated as follows.  From equations (C.14) and (C.15) we get: 
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Equation(D.7) can be written as: 
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Note that the condition ‘
2 3,

0
i i

k ≠ ’ must be satisfied in equation(D.8).  Factorization of equation(D.8) yields: 
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Note that the condition ‘
2 5 2 4, ,i i i i

a a≠ ’ must be satisfied in equation(D.9).  The term ‘
2

1G ’ in equation(D.9) can be 

further factorized and simplified as: 
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Note that the condition ‘
2 4 1 2, ,i i i i

a a −≠ ’ must be satisfied in equation(D.10).  ‘
2

1G ’ can be further simplified as: 
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‘
2

2G ’ in equation(D.9) can be further simplified as: 
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Using equation(A.15) and Appendix E, inverse Laplace expressions for the terms ‘
2

1G ’ and ‘
2

2G ’ can be evaluated and 

the solution for ‘ ( )2 ,ic x t ’ is obtained as: 
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where; the term ‘
1 2 3, ,i i i

F ’ is given by equation (E.20) or (E.26) Appendix E. 
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APPENDIX E 

Evaluation of Inverse Laplace Expressions for the Cauchy Boundary Condition 
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Equation(E.1) can be simplified as: 
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‘ 1β ’ can be evaluated as follows:  Invoking the ‘First Shifting Theorem’ (see [28], p253) we can simplify ‘ 1β ’ as: 
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The Laplace inverse of equation(E.3) can be readily obtained from the tables (see [8], p496, eq31).  Applying this 

inversion, ‘ 1β ’ can be evaluated as: 
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Note: the solution given by equation(E.5) is valid only when ‘ 1
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≠ ’.  ‘ 1β ’ can be further rearranged and 

simplified as: 
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 ‘ 2β ’ is evaluated as follows: ‘ 2β ’ can be simplified as; 
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Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate ‘ 2β ’ as:  [Note: We have already 
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Now, for the case when ‘ 1
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         ‘ 1β ’ can be factorized as: 
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         ‘ 1β ’ can be further simplified as: 
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Equation(E.10) can be conveniently rewritten as: 
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Laplace inverse of ‘ 1γ ’ can be obtained directly by using the tables (see [8], p495, 

eq19).  Applying this inversion, ‘ 1γ ’ can be evaluated as: 
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‘ 1γ ’ can be further simplified as: 
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Laplace inverse of ‘ 2γ ’ can also be obtained directly by using the tables (see [8], 

p495, eq17).  Applying this inversion, ‘ 2γ ’ can be evaluated as: 
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‘ 2γ ’ can be further simplified as: 
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From equations(E.11), (E.13) and (E.15) we can evaluate ‘ 1β ’ as: 

 

1 1

1
1 1

1

2 2
1

1 1

1 1 1

2 2

1

2
4 4 2

1 1

2 22 2

1
2 2 2

x x

i

i

i

x i x
x

xv xv

i iD D

k t
x i x i

R

R x v t xv
D t R D iD

i x x i x x i

R x vt R x vt
e erfc e erfc

D R t D R t

e

R x vtt xv v t
v e e erfc

R D D R D D R t

β

π

−

−

 −
 −
  

    − −    +   
        =
    +  + − + +          

 (E.16) 

‘ 1β ’ can be further simplified as: 
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In order to evaluate ‘ 2β ’ for the case when ‘ 1

2 3

1

,

i

i i

i

k
a

R
= ’, we use the same 

method as before.  From equation(E.2) ‘ 2β ’ can be written as: 
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Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate 

‘ 2β ’ as:  [Note: We have already evaluated ‘ 1β ’; equation(E.16)] 
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The final solution can be compactly expressed as: 
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The above solution is valid only for real values of ‘
1 2 3, ,i i i

ω ’.  For problems 

involving complex values for ‘
1 2 3, ,i i i

ω ’ in the case when ‘ 1

2 3

1

,

i

i i

i

k
a

R
≠ ’ the ‘

1 2 3, ,i i i
F ’ terms 

are evaluated as follows:  (Note: when ‘ 1

2 3

1

,

i

i i

i

k
a

R
= ’ the ‘

1 2 3, ,i i i
F ’ terms are unchanged) 
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Now the ‘
1 2 3, ,i i i

F ’ terms can be written as: 
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Using the symmetric relations: 
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Also the exponent of a complex number can be expressed as: 
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Using equations(E.23) and (E.24) equation(E.22) can be simplified as: 
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Further simplification of equation(E.25) yields: 
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Hence in problems where ‘
1 2 3, ,i i i

ω ’ is complex; for the case when ‘ 1

2 3

1

,

i

i i

i

k
a

R
≠ ’ 

the ‘
1 2 3, ,i i i

F ’ term is given as by equation(E.26). 
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APPENDIX F 

Derivation of the Steady State Solutions 

 

Dirichlet Boundary 

The system of governing transport equations can be written in a matrix format as 

[11, 38]: 
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where; ‘[ ] ’ denotes a square matrix and ‘{ } ’ denotes a column vector.  The 

corresponding boundary conditions can be written as: 
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 (F.3) 

Now in order to uncouple the system of ordinary differential equations (ODEs) 

given by equation(F.1), we apply a linear transform procedure described by Clement 

[11].  i.e. we perform the following matrix operation. 

 { } [ ]{ }c A b=  (F.4) 
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where; ‘{ }b ’ is the concentration in the transformed domain.  Applying this 

transformation equation(F.4) gets modified as: 
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Pre-multiplying equation(F.5) with ‘[ ] 1
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’ we get: 
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By using the similarity transformation procedure described in Clement [11], we 

can make ‘
~

K
 
  

’ a diagonal matrix and thus uncouple the system of equations.  The 

corresponding ‘[ ]A ’ matrix is given as: 
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The ‘[ ] 1
A

−
’ matrix is: 
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The corresponding ‘
~

K
 
  

’ matrix is: 
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Equation(F.5) describes a set of ‘n ’ independent second-order homogeneous 

ODEs the boundary conditions of which are obtained by linear transforming 

equations(F.2) and(F.3).  This yields: 
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Since equation(F.5) is uncoupled, it can now be written as a set of ‘n ’ 

independent equations as: 
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         The general solution to equation(F.12) is given as: 
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where; 
1

iΨ  and 
2

iΨ  are constants.  In order to apply the boundary condition 

given by equation(F.10) we differentiate the general solution with respect to ‘ x ’.  

Differentiation of equation(F.13) with respect to x yields: 
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To satisfy the boundary condition given by equation(F.10), i.e. when ‘ x ’ tends to 

‘∞ ’; the exponential function in the first term tends to ‘∞ ’, hence 
1

iΨ  must vanish. 

Equation(F.13) now reduces to: 
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Applying the second boundary condition given by equation(F.11), we get: 

 

( )
( )

2 2

2 1

2

2 1 2

1
1

1
2

1

1 2

,

2

1 1

1, 2, ...

n

i i

i i

n

i i

i i i i

ii
i

i i

i i

y k

k k

B i n

−

= +

= ≠

= =−

 
 
 Ψ =   ;  ∀ =    
 −  

∏

∏
∑ ∑  (F.16) 

Note that the condition ‘
1 2,

0
i i

k ≠ ’ where 1 21 ,i i n≤ ≤  and 1 2i i≠  must be 

satisfied for equation(F.16) to be valid.  Therefore, the solution in the ‘b ’domain is: 
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         Inverse linear transform of equation(F.17) is done to obtain the solution in the ‘c ’ 

domain by using equation(F.4).  The final steady state solution for the Dirichlet boundary 

is: 
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Cauchy Boundary 

For the case of the Cauchy boundary, the boundary condition at the source is 

described as follows: 
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0 1, 2, ...

i
i i

x i i

i

dc
D vc B v i n
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Since the governing equations and the boundary condition at ‘∞ ’ are identical for 

the Dirichlet and the Cauchy boundaries, the procedures involved in uncoupling the 

system of equations will be identical and hence we can use the previous section to obtain 

the semi-determined general solution and the linear transform matrices ‘[ ]A ’ and 

‘[ ] 1
A

−
’.  The semi-determined general solution [identical to equation(F.15)] is given by: 
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The linear transform matrices ‘[ ]A ’ and ‘[ ] 1
A

−
’ are given by equations(F.7) and 

(F.8) respectively.  The constant ‘
2

iΨ ’ in equation(F.20) is evaluated by using the 

boundary condition given by equation(F.19) after transforming them into the ‘b ’ domain 

by applying the linear transform given by equation(F.4). 
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Note that the condition ‘
1 2,

0
i i

k ≠ ’ where 1 21 ,i i n≤ ≤  and 1 2i i≠  must be 

satisfied for equation(F.21) to be valid.  Substituting the expression for ‘ ( ),ib x s ’ from 

the semi-determined general solution given by equation(F.20) into the transformed 

boundary condition given by equation(F.21), we can evaluate the constant ‘
2

iΨ ’ as 

follows: 
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From equation(F.22) ‘
2

iΨ ’ is evaluated as: 
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Therefore, the solution in the ‘b ’domain is: 
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 (F.24) 

Inverse Linear transform of equation(F.24) is done to obtain the solution in the 

‘c ’ domain by using equation(F.4).  The final steady state solution for the Dirichlet 

boundary is: 
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APPENDIX G 

Derivation of the Solution for the zero Dispersion Case 

 

The system of governing transport equations can be written in a matrix format as 

[11, 38]:  

 [ ] { } { } [ ]{ }
c c

R v K c
t x

∂ ∂
+ =

∂ ∂
 (G.1) 

where; ‘[ ] ’ denotes a square matrix and ‘{ } ’ denotes a column vector.  The 

corresponding initial and boundary conditions are: 

 ( ){ } { },0 ,o xc x c e x−µ=   0 < < ∞  (G.2) 

 

( ){ } { }

( ) ( ){ }1 1

1 1

0, , 0

; , 0 1, 2, ...i

i
ti

i i o

i

c t t

where B e u t u t t t i n
−λ

=

= ω   >

    ω = − −   >   ;  ∀ =    ∑
 (G.3) 

The solution procedure used here is adopted from Quezada et al. [38].  Applying 

Laplace transform to equation(G.1), we get: 

 [ ] { } [ ]{ } { } [ ]{ }( ,0)
p

R s p R c x v K p
x

∂
− + =

∂
 (G.4) 

where; ‘ s ’ is the Laplace variable and ‘ p ’ is the Laplace transformed 

concentration. 

Substituting equation(G.2) in (G.4) and rearranging we get: 
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{ } [ ] [ ]( ){ } [ ]{ }o x
p

v K R s p R c e
x

−µ∂
− + − = −

∂
 (G.5) 

Now in order to uncouple the system of ordinary differential equations (ODEs) 

given by equation(G.5), we apply a linear transform procedure described by Clement 

[11].  i.e. we perform the following matrix operation. 

 { } [ ]{ }p A b=  (G.6) 

where; ‘{ }b ’ is the concentration in the doubly transformed domain.  Applying 

this transformation equation(G.5) gets modified as: 

 
[ ]{ } [ ] [ ]( )[ ]{ } [ ]{ }o x
A b

v K R s A b R c e
x

−µ∂
− + − = −

∂
 (G.7) 

Pre-multiplying equation(G.7) with ‘[ ] 1
A

−
’ we get: 

 

{ } { } { }
[ ] [ ] [ ]( )[ ] { } [ ] [ ]{ }

~ ~

~ ~
1 1 o x

b
v K b C

x

where K A K R s A and C A R c e
− − −µ

∂  − + = − ∂  

   ;  = −     =  

 (G.8) 

         By using the procedure described in Clement [11], we can make ‘
~

K
 
  

’ a diagonal 

matrix and thus uncouple the system of equations.  The corresponding ‘[ ]A ’ matrix, 

‘[ ] 1
A

−
’ matrix, ‘

~

K
 
  

’ matrix and ‘{ }~

C ’ vector is given in ‘Section 2.2’.  Equation(G.8) 

describes a set of ‘n ’ independent first-order non-homogeneous ODEs the boundary 

conditions of which are obtained by a combination of Laplace and Linear transforms of 

equation(G.3).  Laplace transform of equation(G.3) yields: 
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In order to transform the boundary conditions from ‘ p ’ domain to the ‘b ’ 

domain, we apply the Linear transform given by equation(G.6).  This yields: 

 ( ){ } [ ] { }1
0,b s A

−
= ξ  (G.10) 

The explicit expression for ‘ ( )0,ib s ’ in equation(G.10) is given as: 
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Since equation(G.8) is uncoupled, it can now be written as a set of ‘n ’ 

independent equations as: 

 

( ) ( ) ( )
( )

( )

1

1 1 2 2

2 1

1

2 2

2 1 2

1

1

1

,

,
,

1, 2, ...

i

n
xo

i i i ii
i ii

i i i n
i

i i i i

i i i i

R c e y k
b x s

v k sR b x s
x

k sR k sR

i n

−µ
−

= +

=

= ≠

 
 ∂  − + − − = −
 ∂ − + − − 
 

                                                            ;  ∀ =    

∏
∑

∏
 (G.12) 

         Equation(G.12) can be re-arranged and expressed as: 
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The general solution to equation(G.13) is given as: 
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where; iΨ  is a constant.  Applying the boundary condition given by 

equation(G.11) we get: 
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Therefore, the solution in the ‘b ’domain is: 
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         Inverse Linear transform of equation(G.16) is done to obtain the solution in the 

Laplace domain (‘ p ’ domain) by using equation(G.6).  The solution given by 

equation(G.16) can be split into two parts and represented as: 
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 (G.17) 

Using the distributive property, we can apply the inverse linear transform to each 

of the individual terms and then sum them to get the solution in the ‘ p ’ domain.  This is 

expressed as: 

 { } [ ]{ } [ ]{ } [ ]{ }1 2p A b A b A b= = +  (G.18) 

The first term ‘[ ]{ }1A b ’ can be evaluated as: 

 { } [ ]{ }1 1p A b=  (G.19) 

The explicit expression for ‘ ( )1 ,ip x s ’ in equation(G.19) is given as: 
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         Using a similar approach the second term ‘[ ]{ }2A b ’ is evaluated and the explicit 

expression for ‘ ( )2 ,ip x s ’ is: 
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(G.21) 

Substituting equations(G.20) and (G.21) into equation(G.18) we get the solution 

in the Laplace domain as: 
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The final solution is obtained by taking an inverse Laplace transform of the 

solution given by equation(G.22).  Inverse Laplace transform is performed as follows: 
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 (G.23) 

The first term ‘ ( )1 1 ,ip x s−
ℓ ’ can be evaluated as follows.  From equations 

(G.22) and (G.23) we get: 
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Equation(G.24) can be rewritten as: 
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Note that in equation(G.25) the condition ‘
2 4,

0
i i

k ≠ ’ must be satisfied for the solution to be determinate.  Factorization 

of equation(G.25) gives: 
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It must be noted that the solution formulation as given by equation(G.26) is valid only when the condition 

‘
2 5 2 4, ,i i i i

a a≠ ’ is satisfied.  Equation(G.26) can be further factorized and simplified as: 
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The term ‘
1

1G ’ in equation(G.27) can be further factorized and simplified as: 
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Again it must be noted that equation(G.28) is valid only when the condition ‘
2 4 3, ,0i i i

a a≠ ’ where; ‘
3 3,0i i

a λ= ’ is 

satisfied.  Using the Appendix H, inverse Laplace expressions for the terms ‘
1

1G ’ and ‘
1

2G ’ can be evaluated and the solution 

for ‘ ( )1 ,ic x t ’ is obtained as: 
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where; the term ‘
1 2 3, ,i i i

F ’ is given by equation(H.5) in Appendix H.  The second term ‘ ( )1 2 ,ip x s−
ℓ ’ is evaluated as 

follows.  From equations (G.22) and (G.23) we get: 
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Equation(G.30) can be written as: 
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Note: the term ‘
1 2,i i

a ’ is modified as: 
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Note that the condition ‘
2 3,

0
i i

k ≠ ’ must be satisfied in equation(G.31).  Factorization of equation(G.31) yields: 
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Note that the condition ‘
2 4 2 3, ,i i i i

a a≠ ’ must be satisfied in equation(G.33).  The term ‘
2

1G ’ in equation(G.33) can be 

further factorized and simplified as: 
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Note that the condition ‘
2 4 1 2, ,i i i i

a a −≠ ’ must be satisfied in equation(G.34).  ‘
2

1G ’ can be further simplified as: 
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‘
2

2G ’ in equation(G.33) can be further simplified as: 
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From inverse Laplace transform tables we get: (see [8], p494, eq3). 
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Using equation(G.37) and Appendix H, inverse Laplace expressions for the terms ‘
2

1G ’ and ‘
2

2G ’ can be evaluated and 

the solution for ‘ ( )2 ,ic x t ’ is obtained as: 
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         where; the term ‘
1 2 3, ,i i i

F ’ is given by equation(H.5) in Appendix H.  The final solution is obtained by substituting 

equations(G.29) and (G.38) into equation(G.23). 
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APPENDIX H 

Evaluation of Inverse Laplace Expressions for the Zero Dispersion Case 
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Equation(H.1) can be simplified as: 
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Invoking the ‘Second Shifting Theorem’ (see [28], p267) we can simplify 

‘
1 2 3 4, , ,i i i i

χ ’ as:



 

1
8
3
 

[ ]

( ) ( )

1

1 1 1 14

1 2 3 4

2 3

, , ,

1

,

,

1
;

i

o i

xk

ti i i iv
i i i i o o

i i

R x R x R x R x
x t e u t f t e u t t f t t

v v v v

where f t
s a

λχ
−

−

−

       
= − − − − − − −       

       

    =
+

ℓ

 (H.3) 

         ‘ ( )f t ’ can be evaluated using equation(G.37).  Using equation(G.37) in equation(H.3) we get: 
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Equation(H.4) can be compactly expressed as: 
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APPENDIX I 

FORTRAN Code SEQUENTIAL 

C ANALYTICAL SOLUTION FOR MULTI-SPECIES SOLUTE TRANSPORT 

C CODED BY: VENKATRAMAN SRINIVASAN 

C           AUBURN UNIVERSITY 

C           JULY 2006 

C 

      PROGRAM SEQUENTIAL 

 IMPLICIT NONE 

C 

C PROBLEM PARAMETERS 

C 

 INTEGER N,BC,ADS 

 DOUBLE PRECISION V,AX,AY,AZ,LX,LY,LZ,DELX,DELY,DELZ,T,TA,DELT, 

     $                 YS,ZS,X 

 DOUBLE PRECISION, ALLOCATABLE :: R(:),KM(:),Y(:),C(:), 

     $                                 LAM(:),B(:,:),CO(:),MU(:) 

C 

C PROGRAM PARAMETERS 

C 

 CHARACTER FILENAME*80,TITLE*80,COMMENT*80 

 INTEGER I,I1,I2,I3,I4,I5,PARA,NEGPARA 

 DOUBLE PRECISION,ALLOCATABLE :: KIJ(:,:),KAIIJKL(:,:,:,:),RIJ(:,:) 

     $                                 ,AIJ(:,:),FIJK(:,:,:) 

 DOUBLE PRECISION TIME,TEMP,TEMP1,TEMP2,TEMP3,TEMP4 

C 

C     READ THE INPUT FILE NAME 

C 

 WRITE(*,*) "ENTER THE NAME OF THE INPUT FILE" 

 READ(*,*) FILENAME 

C 

      OPEN(5,FILE=FILENAME,FORM='FORMATTED',STATUS='UNKNOWN') 

 OPEN(10,FILE="OUTPUT.DAT",FORM='FORMATTED',STATUS='UNKNOWN') 

C 

 READ(5,10) TITLE 

 WRITE(10,10) TITLE 

 READ(5,*) N,COMMENT !NUMBER OF SPECIES 

 ALLOCATE (R(N),KM(N),Y(N),LAM(N),B(N,N),CO(N),MU(N)) 

C 

C READING THE PROBLEM GEOMETRY 

C 

 READ (5,*) LX,DELX,LY,DELY,LZ,DELZ,COMMENT !PROBLEM GEOMETRY 

 READ (5,*) YS,ZS,COMMENT !SOURCE GEOMETRY 

 READ (5,*) T,TA,DELT,COMMENT !SIMULATION TIME, PULSE TIME, TIME STEP 

C 

C READING THE PROBLEM PARAMETERS 

C 

 READ(5,*) V,AX,AY,AZ,COMMENT !ADVECTION DISPERSION PARAMETERS 

 READ(5,*) (R(I),I = 1, N), COMMENT !RETARDATION FACTORS 

 READ(5,*) (KM(I),I = 1, N), COMMENT !REACTION CONSTANTS 

 READ(5,*) (Y(I),I = 2, N), COMMENT !YIELD COEFFICIENTS 

 READ(5,*) BC, COMMENT !BOUNDARY CONDITION 

C                        IF BC.EQ.0 THEN CONCENTRATION BOUNDARY 

C                        IF BC.NE.0 THEN FLUX BOUNDARY 

 READ(5,*) (LAM(I),I = 1, N), COMMENT !SOURCE DECAY 

 DO I = 1, N 

   READ(5,*) (B(I,I1),I1 = 1, I), COMMENT !BATEMAN BOUNDARY VALUES 
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 END DO 

 READ(5,*) ADS !REACTION CONDITION 

C                IF ADS.EQ.0, REACTION IN LIQUID PHASE 

C                IF ADS.NE.0, REACTION IN BOTH SOLID AND LIQUID PHASES 

 READ(5,*) (CO(I), I = 1, N), COMMENT !INITIAL CONDITION CONCENTRATION 

 READ(5,*) (MU(I), I = 1, N), COMMENT !INITIAL CONDITION EXPONENTIAL DECAY 

 CLOSE (5) 

C 

 IF (ADS .NE. 0) THEN 

   DO I = 1, N 

     KM(I) = R(I)*KM(I) 

   END DO 

 END IF 

C 

C ALLOCATING THE PROGRAM PARAMETERS 

C 

 ALLOCATE (KAIIJKL(N,N,0:N,N),FIJK(N,N,-N:N), 

     $          KIJ(N,N),RIJ(N,N),AIJ(N,-N:N)) 

C 

 CALL CKIJ(KIJ,KM,N) 

 CALL CRIJ(RIJ,R,N) 

 CALL CAIJ(AIJ,KIJ,RIJ,LAM,R,KM,MU,AX,V,N) 

C 

C ALLOCATING THE CONCENTRATION VECTOR MATRIX 

C 

 ALLOCATE (C(N)) 

C 

C CHECKING CONDITIONS OF PARAMETERS FOR DETERMINATE SOLUTION 

C 

 PARA = 0 

C IF ANY OF THE CONDITIONS ARE NOT SATISFIED THEN PARA = 1 

C IF PARA = 1, THEN PROGRAM STOPS 

C 

C CONDITION 1: KIJ(I2,I4) .NE. 0 

C 

 DO I2 = 1, N 

   DO I4 = 1, N 

     IF ((I2 .NE. I4) .AND. (R(I2) .EQ. R(I4)) .AND. 

     $       (KM(I2) .EQ. KM(I4))) THEN 

       PARA = 1 

       WRITE(10,*) "SOLUTION INDETERMINATE DUE TO PARAMETER  

     $VIOLATION" 

       WRITE(10,*) "CONDITION KIJ(",I2,",",I4,") = 0 ;  

     $WHEN RIJ(",I2,",",I4,") = 0) IS VIOLATED" 

     END IF 

   END DO 

 END DO 

C 

C CONDITION 2: AIJ(I2,I5) .NE. AIJ(I2,I4) 

C 

 DO I2 = 1, N 

   DO I4 = 1, N 

     IF ((I2 .NE. I4) .AND. (R(I2) .NE. R(I4))) THEN 

       DO I5 = 1, N 

         IF ((I5 .NE. I2) .AND. (I5 .NE. I4) .AND. 

     $           (R(I5) .NE. R(I2)) .AND. 

     $           (AIJ(I2,I5) .EQ. AIJ(I2,I4))) THEN 

           PARA = 1 

           WRITE(10,*) "SOLUTION INDETERMINATE DUE TO  

     $PARAMETER VIOLATION" 

           WRITE(10,*) "CONDITION AIJ(",I2,",",I5,") =  

     $AIJ(",I2,",",I4,") ;WHEN RIJ(",I2,",",I4,") AND RIJ(",I2,",",I5,") 

     $ NE 0 IS VIOLATED" 

         END IF 

       END DO 

     END IF 

   END DO 

 END DO 

C 
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C CONDITION 3&4: AIJ(I2,I4) .NE. LAM(I3) & AIJ(I2,I4) .NE. AIJ(I1,-I2) 

C 

 DO I1 = 1, N 

   DO I2 = I1, N 

     DO I3 = 1, I1 

       DO I4 = I1, N 

         IF ((I4 .NE. I2) .AND. (R(I4) .NE. R(I2))  

     $           .AND. (AIJ(I2,I4) .EQ. LAM(I3)))  THEN 

           PARA = 1 

           WRITE(10,*) "SOLUTION INDETERMINATE DUE TO  

     $PARAMETER VIOLATION" 

           WRITE(10,*) "CONDITION AIJ(",I2,",",I4,") =  

     $LAM(",I3,") ; RIJ(",I4,",",I2,") NE 0 IS VIOLATED" 

         ELSE IF ((I4 .NE. I2) .AND. (R(I4) .NE. R(I2)) 

     $                .AND.(AIJ(I2,I4) .EQ. AIJ(I1,-I2))) THEN 

           PARA = 1 

           WRITE(10,*) "SOLUTION INDETERMINATE DUE TO  

     $PARAMETER VIOLATION" 

           WRITE(10,*) "CONDITION AIJ(",I2,",",I4,") =  

     $AIJ(",I1,",",-I2,") ; RIJ(",I4,",",I2,") NE 0 IS VIOLATED" 

         END IF 

       END DO 

     END DO 

   END DO 

 END DO 

C  

C 

C STARTING THE TIME LOOP 

C 

 IF (PARA .EQ. 0) THEN !CHECKING THE PARAMETER CONDITIONS 

 TIME = 0.0 

 DO WHILE (TIME .LT. T) 

   TIME = TIME + DELT 

   WRITE(10,*) "TIME = ", TIME 

   WRITE (10,20) (I, I = 1, N) 

C 

C STARTING THE DISTANCE LOOP 

C 

   X = 0.0 

   DO WHILE  (X .LT. LX) 

     X = X + DELX 

C 

C STARTING THE LOOP FOR CALCULATING THE CONCENTRATION OF ALL SPECIES 

C 

     DO I = 1, N 

       TEMP = 0.0 

       DO I1 = 1, I 

         TEMP1 = 1.0 

         DO I2 = I1+1, I 

           TEMP1 = TEMP1*Y(I2)*KM(I2-1) 

         END DO !I2 LOOP (1) 

         TEMP2 = 0.0 

         DO I2 = I1, I 

C 

C EXPONENTIALLY DECAYING INITIAL CONDITION 

C 

           PARA = 0 

           IF (CO(I1) .NE. 0.0) THEN 

C             WRITE (*,*) "INITIAL LOOP" 

             DO I3 = I1, I 

               IF ((I3 .NE. I2) .AND.  

     $                 (R(I2) .NE. R(I3))) THEN 

                 PARA = 1 

                 TEMP3 = 0.0 

                 NEGPARA = 1.0 

                 DO I4 = I1, I 

                   IF ((I4 .NE. I2) .AND. 

     $                     (I4 .NE. I3) .AND. 

     $                     (R(I2) .NE. R(I4))) THEN 
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                     IF ((-KIJ(I2,I4)+RIJ(I2,I4) 

     $                       *AIJ(I2,I3)) .LT. 0.0) THEN 

                       NEGPARA = NEGPARA*(-1) 

                     END IF 

                     TEMP3 = TEMP3+LOG(ABS( 

     $                            (-KIJ(I2,I4)+RIJ(I2,I4)*AIJ(I2,I3)))) 

                   END IF 

                 END DO !I4 LOOP (1) 

                 DO I4 = I1, I 

                   IF ((I4 .NE. I2) .AND.(R(I2) .EQ. R(I4))) THEN 

                     IF (-KIJ(I2,I4) .LT. 0.0) THEN 

                       NEGPARA = NEGPARA*(-1) 

                     END IF 

                     TEMP3 = TEMP3+LOG(ABS(-KIJ(I2,I4))) 

                   END IF 

                 END DO !I4 LOOP (2) 

                 IF (((KIJ(I2,I3)-RIJ(I2,I3)* 

     $                   AIJ(I1,-I2))*R(I2)) .LT. 0.0) THEN 

                   NEGPARA = NEGPARA*(-1) 

                 END IF 

                 TEMP3 = TEMP3+LOG(ABS((KIJ(I2,I3) 

     $                        -RIJ(I2,I3)*AIJ(I1,-I2))*R(I2))) 

                 CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V, 

     $                     AX,R,KM,N,I2,I1,-I2,BC) 

                 CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V, 

     $                     AX,R,KM,N,I2,I2,I3,BC) 

                 TEMP4 = DEXP(-MU(I1)*X)*(DEXP(-AIJ(I1,-I2)*TIME)- 

     $                        DEXP(-AIJ(I2,I3)*TIME)) 

                 IF (ABS(TEMP4) .GT. 1E+10) TEMP4 = 0.0 

C CONDITION FOR DIRICHLET BOUNDARY 

                 IF (BC .EQ. 0) THEN 

                   TEMP2 = TEMP2 + R(I1)*CO(I1)* 

     $                          (FIJK(I2,I1,-I2)-FIJK(I2,I2,I3) 

     $                           -TEMP4)/(DEXP(TEMP3)*NEGPARA) 

C CONDITION FOR NEWMAN BOUNDARY 

                 ELSE 

                   TEMP2 = TEMP2 + R(I1)*CO(I1)* 

     $                          ((1.0+MU(I1)*AX)* 

     $                          (FIJK(I2,I1,-I2)-FIJK(I2,I2,I3)) 

     $                          -TEMP4)/(DEXP(TEMP3)*NEGPARA) 

                 END IF 

               END IF 

             END DO !I3 LOOP 

             IF (PARA .EQ. 0) THEN 

               TEMP3 = 0.0 

               NEGPARA = 1 

               DO I3 = I1, I 

                 IF ((I3 .NE. I2) .AND. (R(I2) .EQ. R(I3))) THEN 

                   IF ((-KIJ(I2,I3)) .LT. 0.0) THEN 

                     NEGPARA = NEGPARA*(-1) 

                   END IF 

                   TEMP3 = TEMP3+LOG(ABS((-KIJ(I2,I3)))) 

                 END IF 

               END DO !I3 LOOP (2) 

               TEMP3 = TEMP3+LOG(R(I2)) 

                    CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V, 

     $                   AX,R,KM,N,I2,I1,-I2,BC) 

               TEMP4 = DEXP(-MU(I1)*X-AIJ(I1,-I2)*TIME) 

               IF (ABS(TEMP4) .GT. 1E+10) TEMP4 = 0.0 

C CONDITION FOR DIRICHLET BOUNDARY 

               IF (BC .EQ. 0) THEN 

                 TEMP2 = TEMP2+R(I1)*CO(I1)*(-FIJK(I2,I1,-I2)+ 

     $                        TEMP4)/(DEXP(TEMP3)*NEGPARA) 

C CONDITION FOR NEWMAN BOUNDARY 

               ELSE 

               TEMP2 = TEMP2+R(I1)*CO(I1)* 

     $                      (-(1.0+MU(I1)*AX)*FIJK(I2,I1,-I2) 

     $                      +TEMP4)/(DEXP(TEMP3)*NEGPARA) 

               END IF 
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             END IF 

           END IF 

C 

C BOUNDARY CONDITION 

C 

           DO I3 = 1, I1 

             IF (B(I1,I3) .NE. 0.0) THEN 

C               WRITE (*,*) "BOUNDARY LOOP" 

               PARA = 0 

               DO I4 = I1, I 

                 IF ((I4 .NE. I2) .AND. (R(I2) .NE. R(I4))) THEN 

                   PARA = 1 

                   TEMP3 = 0.0 

                   NEGPARA = 1 

                   DO I5 = I1, I 

                     IF ((I5 .NE. I2) .AND. (I5 .NE. I4) .AND. 

     $                       (R(I2) .NE. R(I5)))THEN 

                       IF ((-KIJ(I2,I5)+RIJ(I2,I5) 

     $                         *AIJ(I2,I4)) .LT.0.0) THEN 

                         NEGPARA = NEGPARA*(-1) 

                       END IF 

                       TEMP3 = TEMP3+LOG(ABS((-KIJ(I2,I5)+ 

     $                              RIJ(I2,I5)*AIJ(I2,I4)))) 

                     END IF 

                   END DO !I5 LOOP (1) 

                   DO I5 = I1, I 

                     IF ((I5 .NE. I2) .AND. (R(I2) .EQ. R(I5))) THEN 

                       IF ((-KIJ(I2,I5)) .LT. 0.0) THEN 

                          NEGPARA = NEGPARA*(-1) 

                       END IF 

                       TEMP3 = TEMP3+LOG(ABS((-KIJ(I2,I5)))) 

                     END IF 

                   END DO !I5 LOOP (2) 

                   IF ((-KIJ(I2,I4)+RIJ(I2,I4)*LAM(I3)) .LT.0.0)THEN 

                     NEGPARA = NEGPARA*(-1) 

                   END IF 

                   TEMP3 = TEMP3+LOG(ABS((-KIJ(I2,I4) 

     $                          +RIJ(I2,I4)*LAM(I3)))) 

                   CALL CKAIIJKL(KAIIJKL,AIJ,LAM,TIME 

     $                       ,X,V,AX,R,KM,TA,N,I2,I3,0,I3,BC) 

                   CALL CKAIIJKL(KAIIJKL,AIJ,LAM,TIME 

     $                       ,X,V,AX,R,KM,TA,N,I2,I2,I4,I3,BC) 

                   TEMP2 = TEMP2 + B(I1,I3)*(KAIIJKL(I2,I3,0,I3)- 

     $                          KAIIJKL(I2,I2,I4,I3))/ 

     $                          (DEXP(TEMP3)*NEGPARA) 

                 END IF 

               END DO !I4 LOOP (1) 

               IF (PARA .EQ. 0) THEN 

                 TEMP3 = 0.0 

                 NEGPARA = 1 

                 DO I4 = I1, I 

                   IF ((I4 .NE. I2) .AND. (R(I2) .EQ. R(I4))) THEN 

                     IF ((-KIJ(I2,I4)) .LT.0.0) THEN 

                       NEGPARA = NEGPARA*(-1) 

                     END IF 

                     TEMP3 = TEMP3+LOG(ABS((-KIJ(I2,I4)))) 

                   END IF 

                 END DO !I4 LOOP (2) 

                 CALL CKAIIJKL(KAIIJKL,AIJ,LAM,TIME 

     $                    ,X,V,AX,R,KM,TA,N,I2,I3,0,I3,BC) 

                 TEMP2 = TEMP2 + B(I1,I3)*KAIIJKL(I2,I3,0,I3)/ 

     $                        (DEXP(TEMP3)*NEGPARA) 

               END IF 

             END IF 

           END DO !I3 LOOP 

         END DO !I2 LOOP (2) 

         TEMP = TEMP + TEMP1*TEMP2 

       END DO !I1 LOOP 

       C(I) = TEMP 
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     END DO 

C 

C WRITING THE OUTPUT 

C 

     WRITE (10,30) X, (C(I), I = 1, N) 

C 

C END OF DISTANCE LOOP 

C 

   END DO 

C 

C END OF TIME LOOP 

C 

 END DO 

 END IF 

10 FORMAT (A80) 

20 FORMAT('       DISTANCE', <N>("     SPECIES",I3.3)) 

30 FORMAT (<(N+1)>E15.5) 

 CLOSE(10) 

 END PROGRAM 

C 

C SUBROUTINE FOR CALCULATING THE KIJ COEFFICIENTS 

C 

 SUBROUTINE CKIJ(KIJ,KM,N) 

 IMPLICIT NONE 

 INTEGER N,I1,I2 

 DOUBLE PRECISION KIJ(N,N),KM(N) 

 DO I1 = 1, N 

   DO I2 = 1, N 

     KIJ(I1,I2) = KM(I1) - KM(I2) 

   END DO 

 END DO 

 RETURN 

 END 

C 

C SUBROUTINE FOR CALCULATING THE RIJ COEFFICIENTS 

C 

 SUBROUTINE CRIJ(RIJ,R,N) 

 IMPLICIT NONE 

 INTEGER N,I1,I2 

 DOUBLE PRECISION RIJ(N,N),R(N) 

 DO I1 = 1, N 

   DO I2 = 1, N 

     RIJ(I1,I2) = R(I1) - R(I2) 

   END DO 

 END DO 

 RETURN 

 END 

C 

C SUBROUTINE FOR CALCULATING THE AIJ COEFFICIENTS 

C 

 SUBROUTINE CAIJ(AIJ,KIJ,RIJ,LAM,R,KM,MU,AX,V,N) 

 IMPLICIT NONE 

 INTEGER N,I1,I2 

 DOUBLE PRECISION AIJ(N,-N:N),KIJ(N,N),RIJ(N,N),LAM(N),R(N),KM(N), 

     $                 MU(N),AX,V 

C 

C INITIALISING THE VALUE OF AIJ 

C 

 DO I1 = 1, N 

   DO I2 = 0, N 

     AIJ(I1,I2) = 0.0 

   END DO 

 END DO 

 DO I1 = 1, N 

   DO I2 = -N, N 

     IF (I1 .NE. I2) THEN 

       IF (I2 .LT. 0) THEN 

         AIJ(I1,I2) = (-MU(I1)**2.0*AX*V-MU(I1)*V+KM(-I2))/R(-I2) 

       ELSE IF (I2 .EQ. 0) THEN 
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         AIJ(I1,I2) = LAM(I1) 

       ELSE IF (R(I1) .NE. R(I2)) THEN 

         AIJ(I1,I2) = KIJ(I1,I2) / RIJ(I1,I2) 

       END IF 

     END IF 

   END DO 

 END DO 

 RETURN 

 END 

C 

C SUBROUTINE FOR CALCULATING KAIIJKL COEFFICIENTS 

C 

 SUBROUTINE CKAIIJKL(KAIIJKL,AIJ,LAM,TIME,X,V,AX,R,KM,TA,N,I1,I2, 

     $                    I3,I4,BC) 

 IMPLICIT NONE 

 INTEGER N,I1,I2,I3,I4,BC 

 DOUBLE PRECISION KAIIJKL(N,N,0:N,N),AIJ(N,-N:N),LAM(N),TIME,X,V, 

     $                 AX,R(N),KM(N),TA,FIJK(N,N,-N:N),TEMP 

 CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V,AX,R,KM,N,I1,I2,I3,BC) 

 KAIIJKL(I1,I2,I3,I4) = FIJK(I1,I2,I3) 

 IF (TIME .GT. TA) THEN 

   TEMP = TIME-TA 

   CALL CFIJK(FIJK,AIJ,LAM,TEMP,X,V,AX,R,KM,N,I1,I2,I3,BC) 

   KAIIJKL(I1,I2,I3,I4) = KAIIJKL(I1,I2,I3,I4) -  

     $                         DEXP(-LAM(I4)*TA)*FIJK(I1,I2,I3) 

 END IF 

 RETURN 

 END 

C 

C SUBROUTINE FOR CALCULATING THE FIJK COEFFICIENTS 

C 

 SUBROUTINE CFIJK(FIJK,AIJ,LAM,TIME,X,V,AX,R,KM,N,I1,I2,I3,BC) 

 IMPLICIT NONE 

 INTEGER N,I1,I2,I3,BC,PARA 

 DOUBLE PRECISION FIJK(N,N,-N:N),AIJ(N,-N:N),LAM(N),TIME,X,V,AX 

     $                 ,R(N),KM(N),WIJK,PI,CALEXF,TEMP1,TEMP2, 

     $                 TEMP3,TEMP4,TEMP5,TEMP6,TEMP7 

 PI = 22.0/7.0 

C 

C CALCULATING THE WIJ TERMS 

C 

 CALL CWIJK(WIJK,V,R,AX,KM,AIJ,N,I1,I2,I3,PARA) 

C 

C CASE FOR CONCENTRATION BOUNDARY CONDITION 

C 

 IF (BC .EQ. 0) THEN 

C 

C CASE FOR NORMAL ERROR FUNCTION 

C 

   IF (PARA .EQ. 0) THEN 

     TEMP1 = -AIJ(I2,I3)*TIME + (V-WIJK)*X/(2.0*AX*V) 

     TEMP2 = (R(I1)*X-WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5 

     FIJK(I1,I2,I3) = 0.5*CALEXF(TEMP1,TEMP2) 

C 

C CASE WHEN X << AX 

C 

C     IF (X .LT. (100.0*AX)) THEN 

       TEMP3 = -AIJ(I2,I3)*TIME + (V+WIJK)*X/(2.0*AX*V) 

       TEMP4 = (R(I1)*X+WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5 

       FIJK(I1,I2,I3)=FIJK(I1,I2,I3)+0.5*CALEXF(TEMP3,TEMP4)    

C     END IF 

C 

C CASE FOR COMPLEX ERROR FUNCTION 

C 

   ELSE 

     TEMP1 = R(I1)*X/(4.0*R(I1)*AX*V*TIME)**0.5 

     TEMP2 = WIJK*TIME/(4.0*R(I1)*AX*V*TIME)**0.5 

     TEMP3 = -AIJ(I2,I3)*TIME+V*X/(2.0*AX*V) 

     CALL CEXF(TEMP1,TEMP2,TEMP3,TEMP4,TEMP5) 
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     FIJK(I1,I2,I3) = DCOS(WIJK*X/(2.0*V*AX))*TEMP4- 

     $                     DSIN(WIJK*X/(2.0*V*AX))*TEMP5 

   END IF 

C 

C CASE FOR FLUX BOUNDARY CONDITION 

C 

 ELSE IF (BC .EQ. 1) THEN 

C 

C CASE FOR (KM(I1)/R(I1)) .NE. AIJ(I2,I3) 

C 

   IF ((KM(I1)/R(I1)) .NE. AIJ(I2,I3)) THEN 

C 

C CASE FOR NORMAL ERROR FUNCTION 

C 

     IF (PARA .EQ. 0) THEN 

       TEMP1 = -AIJ(I2,I3)*TIME + (V-WIJK)*X/(2.0*AX*V) 

       TEMP2 = (R(I1)*X-WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5 

       TEMP3 = -AIJ(I2,I3)*TIME + (V+WIJK)*X/(2.0*AX*V) 

       TEMP4 = (R(I1)*X+WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5 

       TEMP5 = V*X/(V*AX)-KM(I1)*TIME/R(I1) 

       TEMP6 = (R(I1)*X+V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5 

       FIJK(I1,I2,I3) = V*(CALEXF(TEMP1,TEMP2)/(V+WIJK) 

     $                       +CALEXF(TEMP3,TEMP4)/(V-WIJK)) 

     $                       +2.0*V**2.0/(4.0*R(I1)*V*AX* 

     $                       (KM(I1)/R(I1)-AIJ(I2,I3)))* 

     $                       CALEXF(TEMP5,TEMP6) 

C 

C CASE FOR COMPLEX ERROR FUNCTION 

C 

     ELSE 

       TEMP1 = R(I1)*X/(4.0*AX*V*R(I1)*TIME)**0.5 

       TEMP2 = WIJK*TIME/(4.0*AX*V*R(I1)*TIME)**0.5 

       TEMP3 = -AIJ(I2,I3)*TIME+V*X/(2.0*AX*V) 

       TEMP4 = V*X/(V*AX)-KM(I1)*TIME/R(I1) 

       TEMP5 = (R(I1)*X+V*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5 

       CALL CEXF(TEMP1,TEMP2,TEMP3,TEMP6,TEMP7) 

       FIJK(I1,I2,I3) = 2.0*V/(V**2.0+WIJK**2.0)*((TEMP6*V-TEMP7* 

     $                       WIJK)*DCOS(X*WIJK/(2.0*V*AX))-(TEMP6*WIJK 

     $                       +TEMP7*V)*DSIN(X*WIJK/(2.0*V*AX)))+V**2.0 

     $                       /(2.0*R(I1)*V*AX*(KM(I1)/R(I1)-AIJ(I2,I3) 

     $                       ))*CALEXF(TEMP4,TEMP5) 

     END IF 

C 

C CASE FOR KM(I1) .EQ. AIJ(I2,I3) 

C 

   ELSE 

C 

C ORIGINAL FORMULATION 

C 

C     TEMP1 = -KM(I1)*TIME/R(I1) 

C     TEMP2 = (R(I1)*X-V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5 

C     TEMP3 = -KM(I1)*TIME/R(I1)-(R(I1)*X-V*TIME)**2.0/ 

C     $           (4.0*R(I1)*V*AX*TIME) 

C     TEMP4 = -KM(I1)*TIME/R(I1)+V*X/(V*AX) 

C     TEMP5 = (R(I1)*X+V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5 

C     FIJK(I1,I2,I3) = 0.5*CALEXF(TEMP1,TEMP2)+ 

C     $                    (V**2.0*TIME/(PI*R(I1)*AX*V))**0.5*DEXP(TEMP3) 

C     $                    -0.5*(1.0+X*V/(AX*V)+V**2.0*TIME/(R(I1)*AX*V)) 

C     $                    *CALEXF(TEMP4,TEMP5) 

C 

C NEW FORMULATION 

C REFORMULATING TO AVOID THE CONDITION WHEN THE ARGUMENT IN THE  

C SECOND TERM (EXPONENTIAL FUNCTION) BECOMES ZERO AND THE ARGUMENT 

C IN THE THIRD TERM (ERFC FUNCTION) BECOMES GREATER THAN 25 

C 

     WRITE (*,*) "EQUAL" 

     TEMP1 = -KM(I1)*TIME/R(I1) 

     TEMP2 = (R(I1)*X-V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5 

     TEMP3 = -(R(I1)*X-V*TIME)**2.0/(4.0*R(I1)*V*AX*TIME)-X/AX 
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     TEMP4 = -KM(I1)*TIME/R(I1)+V*X/(V*AX) 

     TEMP5 = (R(I1)*X+V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5 

     TEMP6 = 0.0 

     IF (TEMP5 .LT. 20.0) THEN 

       FIJK(I1,I2,I3) = 0.5*CALEXF(TEMP1,TEMP2)+DEXP(TEMP4)*( 

     $                       (V**2.0*TIME/(PI*R(I1)*AX*V))**0.5*DEXP 

     $                       (TEMP3)-0.5*(1.0+X*V/(AX*V)+V**2.0*TIME/ 

     $                       (R(I1)*AX*V))*CALEXF(TEMP6,TEMP5)) 

     ELSE 

       FIJK(I1,I2,I3) = 0.5*CALEXF(TEMP1,TEMP2) 

     END IF 

   END IF 

 END IF 

 IF (ABS(FIJK(I1,I2,I3)) .GE. 1E+8) THEN 

C   WRITE (*,*) "FLAG, FIJK" 

   FIJK(I1,I2,I3) = 0.0 

 END IF 

 RETURN 

 END 

C 

C SUBROUTINE FOR CALCULATING THE WIJK COEFFICIENTS 

C  

 SUBROUTINE CWIJK(WIJK,V,R,AX,KM,AIJ,N,I1,I2,I3,PARA) 

 IMPLICIT NONE 

 INTEGER N,I1,I2,I3,PARA 

 DOUBLE PRECISION WIJK,V,R(N),AX,KM(N),AIJ(N,-N:N),TEMP 

 PARA = 0 

 TEMP = V**2.0+4.0*R(I1)*V*AX*(KM(I1)/R(I1)-AIJ(I2,I3)) 

 IF (TEMP .LT. 0.0) THEN 

   PARA = 1 

C   WRITE (*,*) "NEGATIVE" 

 END IF 

 WIJK=(ABS(TEMP))**0.5 

 RETURN 

 END 

C 

C FUNCTION TO CALCULATE EXP(TEMP1)*ERFC(TEMP2) 

C 

 FUNCTION CALEXF(TEMP1,TEMP2) 

 IMPLICIT NONE 

C 

C NEW ERFC ROUTINE 

C 

 DOUBLE PRECISION TEMP1,TEMP2,TEMP,CALEXF   

C 

 CALL CALERF(TEMP2,TEMP,1) 

 CALEXF = 0.0 

 IF ((TEMP .NE. 0.0) .AND. ((TEMP1+LOG(TEMP)) .LT.500.0))THEN 

   CALEXF = DEXP(TEMP1+LOG(TEMP)) 

 END IF 

C 

C VANGENUCHTEN ERFC ROUTINE 

C 

C DOUBLE PRECISION TEMP1,TEMP2,CALEXF,EXF 

C IF (TEMP2 .GT. 3.5) THEN 

C   CALEXF = 0.0 

C ELSE IF (TEMP2 .LT. -3.5) THEN 

C   CALEXF = 2.0*DEXP(TEMP1) 

C ELSE 

C   CALEXF = EXF(TEMP1,TEMP2) 

C END IF 

C 

 RETURN 

 END 

C 

C FUNCTION TO CALCULATE EXP(A) ERFC(B) 

C 

      FUNCTION EXF(A,B) 

C  
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C     PURPOSE: TO CALCULATE EXP(A) ERFC(B)  

C  

      IMPLICIT REAL*8 (A-H,O-Z) 

      EXF=0.0 

      IF((DABS(A).GT.170.).AND.(B.LE.0.)) RETURN 

      IF(B.NE.0.0) GO TO 1 

      EXF=DEXP(A) 

      RETURN 

    1 C=A-B*B 

      IF((DABS(C).GT.170.).AND.(B.GT.0.)) RETURN 

      IF(C.LT.-170.) GO TO 4 

      X=DABS(B) 

      IF(X.GT.3.0) GO TO 2 

      T=1./(1.+.3275911*X) 

      Y=T*(.2548296-T*(.2844967-T*(1.421414-T*(1.453152-1.061405*T)))) 

      GO TO 3 

    2 Y=.5641896/(X+.5/(X+1./(X+1.5/(X+2./(X+2.5/(X+1.)))))) 

    3 EXF=Y*DEXP(C) 

    4 IF(B.LT.0.0) EXF=2.*DEXP(A)-EXF 

      RETURN 

      END 

C 

C SUBROUTINE FOR CALCULATING COMPLEX ERROR FUNCTION 

C 

      SUBROUTINE CEXF(A,B,Z,U,V) 

C 

C     COMPLEX ERFC-FUNCTION: U+IV=EXP(Z)ERFC(A+IB) 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION W(10),H(10) 

      DATA W/.4622437,.2866755,.1090172,.02481052,.3243773D-2, 

     1.2283386D-3,.7802556D-5,.1086069D-6,.4399341D-9,.2229394D-12/, 

     2H/.2453407,.7374737,1.234076,1.738538,2.254974, 

     32.788806,3.347855,3.944764,4.603682,5.387481/ 

C 

C     ---------- 

      X=DABS(A) 

      Y=DABS(B) 

      U=0.0 

      V=0.0 

      E=0.0 

      XYZ=Y*Y+Z-X*X 

      IF(DABS(XYZ).GT.170.)RETURN 

      COS=DCOS(2.*X*Y) 

      SIN=DSIN(2.*X*Y) 

      IF((X+Y).LT.6.) GO TO 2 

      T=0.0 

      DO 1 K=1,10 

      T=T+W(K)*((X/((Y-H(K))**2+X*X))+(X/((Y+H(K))**2+X*X))) 

    1 V=V+W(K)*((Y-H(K))/((Y-H(K))**2+X*X)+(Y+H(K))/((Y+H(K))**2+X*X)) 

      U=.3183099*DEXP(XYZ)*(T*COS-V*SIN) 

      V=.3183099*DEXP(XYZ)*(-T*SIN-V*COS) 

      IF(X.LE.0.)U=DEXP(DMIN1(Z,1.7D2)) 

      GO TO 8 

    2 IF(X.GT.2.5) GO TO 3 

      T=1./(1.+.3275911*X) 

      U=T*(.2548296-T*(.2844967-T*(1.421414-T*(1.453152-1.061405*T)))) 

      GO TO 4 

    3 U=.5641896/(X+.5/(X+1./(X+1.5/(X+2./(X+2.5/(X+3./(X+1.))))))) 

    4 IF(Y.LE.0.) GO TO 7 

      IF(X.LE.0.) V=-.3183099*Y 

      IF(X.LE.0.) GO TO 5 

      U=U-.1591549*(1.D0-COS)/X 

      V=V-.1591549*SIN/X 

    5 NT=12.+2.*Y 

      DO 6 I=1,NT 

      P=I 

      ARG=P*Y 

      F1=X*(DEXP(ARG)+DEXP(-ARG)) 
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      F2=0.5*P*(DEXP(ARG)-DEXP(-ARG)) 

      EX=.6366198*DEXP(-0.25*P*P)/(4.*X*X+P*P) 

      U=U-EX*(2.*X-F1*COS+F2*SIN) 

    6 V=V-EX*(F1*SIN+F2*COS) 

      V=V*DEXP(Z-X*X) 

    7 U=U*DEXP(Z-X*X) 

    8 IF(B.LT.0.) V=-V 

      IF(A.LT.0.) U=2.*EXF(Z,E)-U 

      RETURN 

      END 

C 

C SUBROUTINE FOR CALCULATING ERFC 

C 

      SUBROUTINE CALERF(ARG,RESULT,JINT) 

C------------------------------------------------------------------ 

C 

C This packet evaluates  erf(x),  erfc(x),  and  exp(x*x)*erfc(x) 

C   for a real argument  x.  It contains three FUNCTION type 

C   subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), 

C   and one SUBROUTINE type subprogram, CALERF.  The calling 

C   statements for the primary entries are: 

C 

C      Function                     Parameters for CALERF 

C       call              ARG                  Result          JINT 

C 

C     ERF(ARG)      ANY REAL ARGUMENT         ERF(ARG)          0 

C     ERFC(ARG)     ABS(ARG) .LT. XBIG        ERFC(ARG)         1 

C     ERFCX(ARG)    XNEG .LT. ARG .LT. XMAX   ERFCX(ARG)        2 

C 

C 

C  Author: W. J. Cody 

C          Mathematics and Computer Science Division 

C          Argonne National Laboratory 

C          Argonne, IL 60439 

C 

C  Latest modification: March 19, 1990 

C 

C------------------------------------------------------------------ 

      INTEGER I,JINT 

CS    REAL 

      DOUBLE PRECISION 

     1     A,ARG,B,C,D,DEL,FOUR,HALF,P,ONE,Q,RESULT,SIXTEN,SQRPI, 

     2     TWO,THRESH,X,XBIG,XDEN,XHUGE,XINF,XMAX,XNEG,XNUM,XSMALL, 

     3     Y,YSQ,ZERO 

      DIMENSION A(5),B(4),C(9),D(8),P(6),Q(5) 

C------------------------------------------------------------------ 

C  Mathematical constants 

C------------------------------------------------------------------ 

CS    DATA FOUR,ONE,HALF,TWO,ZERO/4.0E0,1.0E0,0.5E0,2.0E0,0.0E0/, 

CS   1     SQRPI/5.6418958354775628695E-1/,THRESH/0.46875E0/, 

CS   2     SIXTEN/16.0E0/ 

      DATA FOUR,ONE,HALF,TWO,ZERO/4.0D0,1.0D0,0.5D0,2.0D0,0.0D0/, 

     1     SQRPI/5.6418958354775628695D-1/,THRESH/0.46875D0/, 

     2     SIXTEN/16.0D0/ 

C------------------------------------------------------------------ 

C  Machine-dependent constants 

C------------------------------------------------------------------ 

CS    DATA XINF,XNEG,XSMALL/3.40E+38,-9.382E0,5.96E-8/, 

CS   1     XBIG,XHUGE,XMAX/9.194E0,2.90E3,4.79E37/ 

     DATA XINF,XNEG,XSMALL/1.79D308,-26.628D0,1.11D-16/, 

     1     XBIG,XHUGE,XMAX/26.543D0,6.71D7,2.53D307/ 

C------------------------------------------------------------------ 

C  Coefficients for approximation to  erf  in first interval 

C------------------------------------------------------------------ 

CS    DATA A/3.16112374387056560E00,1.13864154151050156E02, 

CS   1       3.77485237685302021E02,3.20937758913846947E03, 

CS   2       1.85777706184603153E-1/ 

CS    DATA B/2.36012909523441209E01,2.44024637934444173E02, 

CS   1       1.28261652607737228E03,2.84423683343917062E03/ 
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      DATA A/3.16112374387056560D00,1.13864154151050156D02, 

     1       3.77485237685302021D02,3.20937758913846947D03, 

     2       1.85777706184603153D-1/ 

      DATA B/2.36012909523441209D01,2.44024637934444173D02, 

     1       1.28261652607737228D03,2.84423683343917062D03/ 

C------------------------------------------------------------------ 

C  Coefficients for approximation to  erfc  in second interval 

C------------------------------------------------------------------ 

CS    DATA C/5.64188496988670089E-1,8.88314979438837594E0, 

CS   1       6.61191906371416295E01,2.98635138197400131E02, 

CS   2       8.81952221241769090E02,1.71204761263407058E03, 

CS   3       2.05107837782607147E03,1.23033935479799725E03, 

CS   4       2.15311535474403846E-8/ 

CS    DATA D/1.57449261107098347E01,1.17693950891312499E02, 

CS   1       5.37181101862009858E02,1.62138957456669019E03, 

CS   2       3.29079923573345963E03,4.36261909014324716E03, 

CS   3       3.43936767414372164E03,1.23033935480374942E03/ 

      DATA C/5.64188496988670089D-1,8.88314979438837594D0, 

     1       6.61191906371416295D01,2.98635138197400131D02, 

     2       8.81952221241769090D02,1.71204761263407058D03, 

     3       2.05107837782607147D03,1.23033935479799725D03, 

     4       2.15311535474403846D-8/ 

      DATA D/1.57449261107098347D01,1.17693950891312499D02, 

     1       5.37181101862009858D02,1.62138957456669019D03, 

     2       3.29079923573345963D03,4.36261909014324716D03, 

     3       3.43936767414372164D03,1.23033935480374942D03/ 

C------------------------------------------------------------------ 

C  Coefficients for approximation to  erfc  in third interval 

C------------------------------------------------------------------ 

CS    DATA P/3.05326634961232344E-1,3.60344899949804439E-1, 

CS   1       1.25781726111229246E-1,1.60837851487422766E-2, 

CS   2       6.58749161529837803E-4,1.63153871373020978E-2/ 

CS    DATA Q/2.56852019228982242E00,1.87295284992346047E00, 

CS   1       5.27905102951428412E-1,6.05183413124413191E-2, 

CS   2       2.33520497626869185E-3/ 

      DATA P/3.05326634961232344D-1,3.60344899949804439D-1, 

     1       1.25781726111229246D-1,1.60837851487422766D-2, 

     2       6.58749161529837803D-4,1.63153871373020978D-2/ 

      DATA Q/2.56852019228982242D00,1.87295284992346047D00, 

     1       5.27905102951428412D-1,6.05183413124413191D-2, 

     2       2.33520497626869185D-3/ 

C------------------------------------------------------------------ 

      X = ARG 

      Y = ABS(X) 

      IF (Y .LE. THRESH) THEN 

C------------------------------------------------------------------ 

C  Evaluate  erf  for  |X| <= 0.46875 

C------------------------------------------------------------------ 

            YSQ = ZERO 

            IF (Y .GT. XSMALL) YSQ = Y * Y 

            XNUM = A(5)*YSQ 

            XDEN = YSQ 

            DO 20 I = 1, 3 

               XNUM = (XNUM + A(I)) * YSQ 

               XDEN = (XDEN + B(I)) * YSQ 

   20       CONTINUE 

            RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) 

            IF (JINT .NE. 0) RESULT = ONE - RESULT 

            IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT 

            GO TO 800 

C------------------------------------------------------------------ 

C  Evaluate  erfc  for 0.46875 <= |X| <= 4.0 

C------------------------------------------------------------------ 

         ELSE IF (Y .LE. FOUR) THEN 

            XNUM = C(9)*Y 

            XDEN = Y 

            DO 120 I = 1, 7 

               XNUM = (XNUM + C(I)) * Y 

               XDEN = (XDEN + D(I)) * Y 
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  120       CONTINUE 

            RESULT = (XNUM + C(8)) / (XDEN + D(8)) 

            IF (JINT .NE. 2) THEN 

               YSQ = AINT(Y*SIXTEN)/SIXTEN 

               DEL = (Y-YSQ)*(Y+YSQ) 

               RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT 

            END IF 

C------------------------------------------------------------------ 

C  Evaluate  erfc  for |X| > 4.0 

C------------------------------------------------------------------ 

         ELSE 

            RESULT = ZERO 

            IF (Y .GE. XBIG) THEN 

               IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 

               IF (Y .GE. XHUGE) THEN 

                  RESULT = SQRPI / Y 

                  GO TO 300 

               END IF 

            END IF 

            YSQ = ONE / (Y * Y) 

            XNUM = P(6)*YSQ 

            XDEN = YSQ 

            DO 240 I = 1, 4 

               XNUM = (XNUM + P(I)) * YSQ 

               XDEN = (XDEN + Q(I)) * YSQ 

  240       CONTINUE 

            RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) 

            RESULT = (SQRPI -  RESULT) / Y 

            IF (JINT .NE. 2) THEN 

               YSQ = AINT(Y*SIXTEN)/SIXTEN 

               DEL = (Y-YSQ)*(Y+YSQ) 

               RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT 

            END IF 

      END IF 

C------------------------------------------------------------------ 

C  Fix up for negative argument, erf, etc. 

C------------------------------------------------------------------ 

  300 IF (JINT .EQ. 0) THEN 

            RESULT = (HALF - RESULT) + HALF 

            IF (X .LT. ZERO) RESULT = -RESULT 

         ELSE IF (JINT .EQ. 1) THEN 

            IF (X .LT. ZERO) RESULT = TWO - RESULT 

         ELSE 

            IF (X .LT. ZERO) THEN 

               IF (X .LT. XNEG) THEN 

                     RESULT = XINF 

                  ELSE 

                     YSQ = AINT(X*SIXTEN)/SIXTEN 

                     DEL = (X-YSQ)*(X+YSQ) 

                     Y = EXP(YSQ*YSQ) * EXP(DEL) 

                     RESULT = (Y+Y) - RESULT 

               END IF 

            END IF 

      END IF 

  800 RETURN 

C---------- Last card of CALERF ---------- 

      END 
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Sample INPUT file 

3 SPECIES SEQUENTIAL CHO EXAMPLE PROBLEM 

3 !NUMBER OF SPECIES 

200.0 10.0 1.0 1.0 1.0 1.0 !PROBLEM GEOMETRY, DISTANCE:DISTANCE STEP 

(X,Y,Z) 

1.0 1.0 !SOURCE GEOMETRY 

200.0 200.0 200.0 !SIMULATION TIME, PULSE TIME, TIME STEP 

1.0 0.18 0.0 0.0 !VELOCITY, ALPHA (X,Y,Z) 

2.0 1.0 1.0 !RETARDATION FACTORS 

0.01 0.1 0.0 !DECAY CONSTANTS 

1.0 1.0 !YIELD COEFFICIENTS 

0 !BOUNDARY CONDITION TYPE 

0.0 0.0 0.0 !SOURCE DECAY LAMDA 

1.0 !SPECIE1 

0.0 0.0 !SPECIE2 

0.0 0.0 0.0 !SPECIE3 

0 !SORPTION CONDITION 

0.0 0.0 0.0 !INITIAL CONDITION CONCENTRATION 

0.0 0.0 0.0 !INITIAL CONDITION EXPONENTIAL DECAY 

 

Sample OUTPUT file 

3 SPECIES SEQUENTIAL CHO EXAMPLE PROBLEM                                         

 TIME =    200.000000000000      

       DISTANCE     SPECIES001     SPECIES002     SPECIES003 

    0.10000E+02    0.90500E+00    0.58963E-01    0.36037E-01 

    0.20000E+02    0.81902E+00    0.75434E-01    0.10554E+00 

    0.30000E+02    0.74122E+00    0.76529E-01    0.18225E+00 

    0.40000E+02    0.67080E+00    0.72352E-01    0.25685E+00 

    0.50000E+02    0.60707E+00    0.66636E-01    0.32629E+00 

    0.60000E+02    0.54940E+00    0.60739E-01    0.38986E+00 

    0.70000E+02    0.49721E+00    0.55131E-01    0.44766E+00 

    0.80000E+02    0.44984E+00    0.49951E-01    0.50007E+00 

    0.90000E+02    0.39123E+00    0.44654E-01    0.54725E+00 

    0.10000E+03    0.19746E+00    0.31598E-01    0.58224E+00 

    0.11000E+03    0.19071E-01    0.10525E-01    0.58123E+00 

    0.12000E+03    0.17579E-03    0.18928E-02    0.54780E+00 

    0.13000E+03    0.10664E-06    0.30148E-03    0.50195E+00 

    0.14000E+03    0.48551E-11    0.47855E-04    0.44975E+00 

    0.15000E+03    0.14559E-16    0.75816E-05    0.39182E+00 

    0.16000E+03    0.28198E-23    0.11956E-05    0.32774E+00 

    0.17000E+03    0.34881E-31    0.18650E-06    0.25691E+00 

    0.18000E+03    0.27368E-40    0.28315E-07    0.17887E+00 

    0.19000E+03    0.13558E-50    0.40066E-08    0.97222E-01 

    0.20000E+03    0.42276E-62    0.46934E-09    0.32185E-01 
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APPENDIX J 

Evaluation of Integral 

 

The integral in equation(77) can be evaluated as: 
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∫ ∫  (J1) 

Applying Laplace transform to equation(J1) we get: 
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Where, ℓ  is the Laplace transform operator and ‘s’ is the Laplace variable.  

Equation(J2) can be expressed as: 
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The second term within the Laplace operator can be evaluated by using Selby [40] 

(See equation(82), p: 497) as: 
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The entire expression within the Laplace operator can be evaluated by using Selby 

[40] (See equation(11), p: 491) and equation(J4) as: 
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Inverse Laplace transform of the above equation yields[5]: 
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APPENDIX K 

Derivation of the three-dimensional solution to zero longitudinal dispersion case 

 

The governing transport equation is: 
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The initial and boundary conditions are:  
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Applying Laplace transform to ( , , , )c x y z t  in equation(K1) gives: 

 

2 2

2 2

( )

;

y z

y z
y z

p p p s k
p

x y z v

D D
where and

v v

∂ ∂ ∂ +
−α −α = −

∂ ∂ ∂

    α =     α =

 (K3) 

where; ‘s’ is the Laplace variable and ‘p’ is the concentration in the Laplace 

domain.  The boundary conditions get modified as: 
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Equation(K3) can be interpreted as a transient two dimensional diffusive reactive 

transport problem. Its boundary conditions given by equation(K4) represent an 

instantaneous pulse of a plane source. The solution to this problem without the decay 

term can be readily deduced from Hunt [25] by ignoring the advection term and reducing 

the problem to two dimensions. Thus the solution to the above problem without the 

reaction term is given by: 
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Now we make use of a method similar to the Danckwert’s method described by 

Crank [15] to include the reaction term. If 'p  is the solution for the diffusion problem 

without reaction; the solution for the same problem with a first order reaction (with a rate 

constant 
s k

v

+ 
 
 

) for the same initial and boundary condition is given as: 
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This can be easily verified by checking if the solution p  satisfies the governing 

equation and the initial and boundary conditions.  Since 'p  is the solution to equation 

(K3) without the reaction term, it must satisfy: 
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Also, differentiating p  with respect to x, y and z to the respective orders yields: 
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From equations (K6), (K7) and (K8) we get equation(K3). This proves that 

solution p  satisfies the governing differential equation. To check for the initial 

condition, we substitute x = 0 in equation(K6).  When x = 0, the exponential term 

becomes unity and hence equation(K6) reduces to p  = 'p ;  thus the initial condition is 

satisfied.  In order to check for the boundary condition in the y direction, we need to take 

the derivative of the solution p  with respect to y. This is given as: 
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            In the limiting case, when y approaches ± ∞, the derivative of 'p  with respect to 

y becomes 0. From equation(K9) we can conclude that the derivative of p  with respect 
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to y also becomes 0. This proves that the boundary condition in the y direction is 

satisfied. On similar lines, we see that the boundary condition is also satisfied in the z 

direction. Hence it is proved that equation(K6) is the solution for the system of equations 

described by (K3) and (K4). 

Equation(K6) can be written as: 
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Inverse Laplace transform of equation(K10) gives the final solution as [40] (See 

equation(61), p: 495): 
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