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High altitude, long endurance (HALE) aircraft feature large wing spans and

have very low wing loadings resulting in sensitivity to turbulence. While turbulence

is usually quite low in the stratosphere where HALE aircraft typically operate, even

high altitude aircraft must transition through the lower atmosphere during takeoff

and landing operations. Sensitivity to turbulence may restrict the weather conditions

under which HALE aircraft can be launched or retrieved. A compounding considera-

tion for HALE aircraft is that because of their large wing spans, their wings may be

longer than the length scale of the turbulence they encounter. This means that differ-

ent portions of the aircraft’s wings will see different aerodynamic conditions and will

result in significant additional structural loads on the wing structure. Alleviating the

aircraft’s response to time-varying gust fields as well as spatially-varying gust fields

is thus important for HALE aircraft. One promising technology for gust alleviation

is the “free wing”. A free-wing design allows the wing to adjust itself in pitch about

a spanwise axis in response to aerodynamic loads rather than being rigidly attached
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to the aircraft fuselage. Free wings historically have shown the ability to reduce an

airplane’s response to turbulence. An extension of the concept proposed here is called

a “segmented free wing”. A segmented free wing differs from the conventional free

wing by sectioning the wings into multiple, independent segments. This design pro-

vides a greater reduction in turbulence response than both the standard free wing

and the fixed wing as demonstrated in initial wind tunnel tests. A conceptual design

of such a planform along with a study of its stability characteristics was examined.

Initial results from a wind tunnel model showed a reduced rolling moment coefficient

when compared to a traditional free-wing design. Experimental tests of the larger

model showed a divergent oscillatory mode that appears with increasing velocity. An

analytical model of the experimental test was developed and successfully predicts the

instability. Comparison of the analytical model versus the experimental results shows

an over-prediction of the stability of the system by the analytical model and causes

for the over-estimation were investigated. The effects of unsteady aerodynamics, ap-

parent mass terms, and wake effects on the analytical model were studied and all were

determined to significant in the aerodynamic model. The analytical model was used

to predict the crossover velocity of a wind tunnel model but the wind tunnel model

failed to become unstable due to the stabilizing friction force in the bearing surfaces.
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Chapter 1

Introduction

Turbulence in the troposphere has long been an issue for aircraft of all sizes.

However, aircraft with lower wing loadings are much more sensitive to turbulence than

aircraft with high wing loadings. The high sensitivity to turbulence as seen in general

aviation aircraft and unmanned aerial systems (UAS) causes passenger discomfort,

sensor malfunction, or potentially fatal loss of control. High altitude, long endurance

(HALE) aircraft are even more sensitive to turbulence than the standard UAS or small

aircraft because of their very low wing loading and light construction. An example of

this type of problem is demonstrated in NASA’s Helios project, a HALE aircraft with

a wing span of 247 feet. The Helios aircraft took off from Kauai, Hawaii on June 26,

2003 and flew approximately 30 minutes until a divergent pitch oscillation occurred

“in which the airspeed excursions from the nominal flight speed about doubled every

cycle of the oscillation.” The design speed of the aircraft was subsequently exceeded

causing dynamic pressures to increase beyond the designed limits of the structure.

Under the intense load, the vehicle began to break up and it eventually crashed into

the ocean. The final determination of the crash investigation was that the fatal pitch

oscillation was caused by atmosphere disturbances, i.e. turbulence, which resulted in

a structural failure of the system [1].

A possible solution to this sensitivity to turbulence is to increase the wing loading

to be comparable to that of airliners; however, this is unpractical in small aircraft [2]

and UAS’s, especially HALE aircraft. Reducing wing area of a HALE aircraft would
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reduce wingspan and thus increase induced drag thereby greatly reducing its max-

imum altitude and endurance capabilities. Reducing wing area would also increase

stall speed which would negatively affect safety of operation. Another solution is to

increase the structural strength of the HALE aircraft to handle the dynamic loading

under oscillatory conditions. However, this would increase the system weight which

would decrease performance taking away from the HALE mission.

Alternatively, an approach to decrease the sensitivity to turbulence is a free-wing

design as depicted in Fig. 1.1. A free wing differs from a fixed wing in that the wing is

Figure 1.1: Cross-sectional illustration of the free-wing design [3]

free to pivot about a spanwise axis. Another difference is that the aerodynamic forces

control the pitch of the wing, whereas, with a fixed wing the fuselage controls the pitch

of the wing. A control tab on the trailing-edge of the wing is the only control device
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used to increase or decrease lift. NASA conducted several studies on the free-wing

planform throughout the 1970’s and early 1980’s dealing with aircraft ranging from

3,000 to 50,000 pounds [3]. It was determined in Ref. [3] that the free wing drastically

reduced the load-factor response, as high as 4 to 1 in all configurations. The major

conclusion from the study was that the free wing was extremely effective at reducing

the longitudinal response to disturbances for aircraft of common wingspans.

A limitation of the free-wing planform is that it can only adjust to time-varying

turbulence. A feature of HALE aircraft is their large wingspans which makes them

susceptible to both time-varying and span-varying turbulence. The extension to the

free-wing concept proposed here is called a segmented free wing and breaks the wing

into multiple independent free-wing segments. Each segment is allowed to move and

to be controlled independently from all of the other segments. The segmented free-

wing design shows promise for application to HALE aircraft due to its ability to adjust

to both time-varying and span-varying turbulence. Being a passive system, just like

the free wing, no complex control systems need to be designed and implemented into

the system; thus saving system complexity and weight. Each segment is free to pivot

about its span-wise axis allowing the entire wing to maintain a constant angle of

attack even as the velocity field is changing. Additionally, the wing can alter its local

pitch as disturbances vary across the span of the wing. Regardless of the turbulence

profile across the planform, the segmented free wing can adjust to maintain constant

lift across the span and alleviate much of the lateral response of the aircraft. With this

ability to deal with both time-varying and span-varying turbulence, the segmented

free wing is ideal for use in HALE aircraft design.

The initial thrust of this research was to design and fabricate a conceptual model

and perform preliminary testing on the model. With the preliminary testing, the

study of the dynamic stability of the segmented free wing became the focus of this
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research. An experimental model was constructed and tested to determine the sta-

bility of the system. An analytical model was also developed to model the behavior

of the segmented free wing and to predict the stability of the system. A wind tunnel

model was constructed to give preliminary results of the spanwise varying turbulence

response, along with testing the validity of the analytical model.
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Chapter 2

Review of Literature

Aircraft gust response is a topic that has been studied extensively since the early

1900’s when the Wright Brothers were ushering in the new age of flight. It is an area

of intense interest due to its affect on passengers and the increased requirements it

places on the strength of the aircraft structure. Additionally, the aeroelastic effects of

the aircraft’s gust response can potentially lead to negative damping of a structural or

flight mechanics mode causing extremely large, potentially fatal vibrations or oscilla-

tions. Not only can the gust response of an aircraft cause structural problems, it also

creates issues with passenger comfort and scientific equipment. Air travelers often

avoid smaller aircraft due to their magnified gust response when compared to heavier

aircraft. Additionally, aircraft flying scientific missions in extremely adverse environ-

ments, such as hurricanes, may require sensitive instruments that could be damaged or

their effectiveness degraded by the gust response of the aircraft. Aircraft flying High

Altitude, Long Endurance (HALE) missions typically have extremely high aspect ra-

tios with low wing loadings and thus are more sensitive to adverse gust loadings. The

low fuel fractions and light structure of HALE aircraft result in an aircraft that is

both flexible and sensitive to adverse gust conditions. Flight dynamics of very flexi-

ble aircraft were studied by Shearer and Cesnik [4] where they implemented 6-DOF

vehicle dynamics with a modified version of the non-linear strain-based structural for-

mulation originally developed by Cesnik and Brown [5]. In their heavy weight cases,

rigid-body solutions were not sufficient to accurately capture the flight dynamics of
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flexible aircraft. Shearer and Cesnik also determined that linear analysis was suffi-

cient for modeling simple symmetric maneuvers but nonlinear analysis was required

to accurately model the vehicle response due to asymmetric maneuvering. An under-

standing of the nonlinear flight dynamics of flexible aircraft is necessary as shown by

Cesnik and Brown, but solutions for dealing with the adverse gust conditions causing

the nonlinear flight dynamics are needed.

Two broad categories of methods for alleviating the gust response have been

researched. One is active control systems where the aircraft actively responds based

on measurements of its flight conditions. This has been a topic of more recent research

with the advancement of new materials and computing capabilities for active control

laws. The second is passive systems whereby the aircraft automatically responds

to the flight conditions without any active control inputs or measurements. This is

extremely beneficial in that it maintains simplicity of the design. The second method

is the focus of this research.

2.1 Active Control Systems

Active control systems and aeroservoelasticity have been a popular area of re-

search in addressing gust alleviation. A difficult problem with using active control

systems has been accurately modeling the aerodynamic behavior of the system so

control laws could be derived. The Laplace domain has been used to calculate the un-

steady aerodynamic loads and aerodynamic coefficients which tend to be nonrational

and mathematically intensive [6], [7]. A finite-order, state-form, matrix equation for

stability analysis is desired which requires the aerodynamic influence coefficients to

be approximated [6]. Because of the complexity of these calculations and the non-

rationality of the coefficients, a rational approximation of the unsteady loads on a
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typical section in incompressible flow was formulated by R. T. Jones [8]. Approxi-

mating the nonrational coefficients caused a degradation in the accuracy of the model

but is necessary to be implemented into the control systems [9]. Karpel [6] developed

a new minimum-state method for efficiently approximating rational unsteady aerody-

namic loads. With an acceptable approximation of the unsteady aerodynamic loads, a

state-space set of matrix equations could be formulated and control laws implemented

for the active control system [6].

Within active control systems, two methods that were studied provide increased

system performance by reducing the gust response and delaying/eliminating the on-

set of flutter. The first method used aerodynamic control surfaces such as ailerons

and the second used aeroservoelasticity to alleviate the gust response. Block and

Gilliat [10] successfully doubled the stability of a simple wing with the use of a single

control surface that was 20% of the wing and spanned the entire trailing edge. Cruise

flaps, similar to the previous study, were shown to successfully reduce disturbances

in aircraft lift and vertical acceleration at the aircraft center of gravity by 65%. Mea-

surements of the pressure differentials allowed the cruise flap to adjust and maintain

the ideal stagnation point in adverse gust conditions [11]. Additionally, Rennie and

Jumper [7] used a trailing-edge flap on a NACA 0009 airfoil that was 27% of the

chord. Measurements of the lift perturbations and the pressure distributions were

used to control the flap and successfully reduce the gust response. Several problems

exist with these methods of gust alleviation. First, the control surface must be signifi-

cant in size as characterized by all three studies where the control surface was at least

20% of the chord. Additionally, as determined by the trailing-edge flap study [7],

the control rates for the flap were high and the lift and pressure measurements to

determine the aeroelastic properties were extensive adding system complexity. Also,
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Ref. [11] was limited in its results because it did not include the aeroelastic effects of

the unsteady aerodynamics resulting from the rapid flap motion.

Research has been conducted to see if an optimization algorithm can be used to

optimize the planform design in order to have the greatest aeroelastic control for a

given design using control surfaces [12], [13]. Nam and Chattopadhyay [13] varied

aspect ratio, sweep angle, control surface location, and control surface size whereas

Pettit and Grandhi [12] used aileron effectiveness and gust response as the driver of

the design. In both cases, the gust response of the designed aircraft was reduced

when compared to a base model.

An approach different to using standard control surfaces for gust alleviation is to

use several special control surfaces. Instead of a single trailing-edge control surface,

Moulin and Karpel [9] used three control surfaces: ailerons, special underwing forward

positioned control surfaces, and special wing-tip forward-positioned control surfaces.

At intermediate velocities, the movement of all control surfaces successfully reduced

the gust loads and the wing tip accelerations in the wind tunnel tests. However, as

the velocity was increased the effectiveness of the ailerons was reduced but the special

surfaces became more efficient with the wing-tip surfaces being the most efficient.

Another active control system involved manipulating the aeroelastic properties

of the system in order to produce beneficial results, otherwise known as aeroservoe-

lasticity. The use of piezoelectric materials was studied on a cantilevered composite

plate to determine if aeroservoelastic control was capable of reducing the gust re-

sponse. Using four actuator units, “tip displacement, twist, and acceleration [were]

reduced by 36%, 72%, and 54% respectively” [14]. Additionally, Lazarus, Crawley,

and Lin [15] used actuators to control both the shape and the strain forces of the lift-

ing surface. By controlling those two parameters, the dynamic stability of the lifting

plate was increased. Use of the strain-actuated lifting surface reduced the rms gust

8



response by 60% in addition to the flutter speed being increased by 11%. Several

problems with aerosevoelasticity consist of the power required by the actuators to

deform the surface appropriately. This especially becomes a problem as the thickness

ratio of the lifting surface is increased beyond that of a thin plate [15]. Along with the

power requirement, the actuator size increases as the thickness ratio becomes larger.

Finally, the density of the piezoceramics used in aeroservoelastic control is more than

double that of aluminum, which makes it an extremely unfriendly aircraft material.

Overall, active control systems show promise in being able to successfully allevi-

ate or reduce the gust response of an aircraft if properly designed. The drawbacks of

using active control systems for gust alleviation are the increase in system complexity,

computing power, weight, sizing, and maintenance. In order to properly model the

aeroelastic properties of the wing, additional sensors need added and implemented

into the controller which is nontrivial. The additional weight of the sensors, wires,

actuators, and control surfaces can also add up quickly. Finally, a significant financial

cost will be associated with the maintenance of these systems.

2.2 Passive Control Systems

A passive control system for gust alleviation in aircraft is the torsionally free wing,

otherwise known as the “free wing”. The free-wing design allows the wing to freely

rotate about a spanwise axis, usually the structural spar, where the aerodynamic

forces control the pitch of the wing. Extensive research was conducted on the free

wing by NASA throughout the late sixties through the early 1980’s. The first major

study of the free wing was conducted by Porter and Brown in 1970 where the stability

and gust alleviation properties were studied analytically [3]. Three separate aircraft

classes were considered to analyze the capabilities of the free wing. A general aviation

9



(Cessna style) aircraft, a utility aircraft, and a transport aircraft were all analyzed

using the free wing. In all flight regimes, the gust responses of all three aircraft classes

were significantly decreased. Along with the excellent reductions in gust response,

results showed a 25% reduction in roll disturbances as well [3].

Additional studies on the aerodynamics and the potential for dynamic stall and

flutter of the free wing were studied by Ormiston in 1972 [16]. Dynamic stall and

flutter characteristics were achievable with the free wing but could be easily eliminated

by the reduction in the size of the trailing-edge control tab. With a properly designed

control tab, the stability characteristics of a free-wing wing section were excellent and

maintained the extreme difficulty in stalling the wing.

As a followup to Porter and Brown [3], results of a study of the applications

of the free wing for light, general aviation aircraft were reported in Ref. [17]. It

was determined that the free wing could be applied to light, general aviation aircraft

because of the excellent gust alleviation characteristics of the free wing. A 54% reduc-

tion in the rms load factor was found when the aircraft was subjected to continuous

turbulence. A “free-wing/free-trimmer” design was studied by NASA in 1978 where

the free-trimmer was a free-wing design that controlled the pitch angle of the main

free wing [18]. The same beneficial gust alleviation was experienced but the free-

trimmer increased the maximum lift capability when compared to a pure free-wing

configuration.

The free-wing design was most effective in aircraft that have low wing loadings,

such as light, general aviation aircraft and many unmanned aerial vehicles. The

greater the wing loading, the less the turbulence response. However, having a low

wing loading free-wing aircraft was like having a fixed wing aircraft with a large wing

loading. This was shown in Ref. [2] where the free-wing design had a similar peak

vertical acceleration from the vertical gust profile as a high wing loading fixed wing.
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A fixed wing aircraft with a wing loading similar to that of the free-wing aircraft had

a vertical response five times greater.

Free wings have been considered for the use in unmanned aerial vehicles. Un-

manned aerial vehicles have become increasingly popular for use in long endurance

missions, experimentation, and surveillance. Kraeger [19] studied the use of a free-

wing UAV for a microgravity facility where the UAV could fly exact mission profiles

at a lower cost compared to larger microgravity facilities operated by manned air-

craft. A fixed wing UAV microgravity facility was more sensitive to gusts compared

to the much larger manned microgravity facility. The gust response could cause the

UAV to deviate from the ideal flight path and be detrimental to the microgravity

performance. The free-wing UAV microgravity facility was capable of handling these

disturbances and maintain the desired microgravity flight performance.

The free wing is a passive control system that is very capable of alleviating gust

and rolling disturbances on aircraft of all sizes. A great benefit of the free wing is

that it requires no wiring, no computer power, no power to work any actuators other

than the trailing edge control tab which is no different than an aileron, and maintains

simplicity so maintenance and maintenance costs would be considerably less than

an active control system. A drawback of the free wing is the loss of maximum lift

when compared to a fixed wing aircraft. Because the trailing edge of the free wing

is used to control the pitch of the wing, the maximum lift produced by the wing

was significantly reduced and leading edge flaps were highly suggested to make up

for the lost lift [17]. Additionally, a weight penalty is usually incurred using the free

wing due to the ballast required to balance the free wing on the spanwise hinge axis.

The loss can be as much as 1.5% to 7% of the aircraft gross weight depending on the

location of the hinge axis [17]. Finally, when the right and left wings are free to rotate
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with respect to each other, an unstable spiral mode exists that must be stabilized,

especially in the lower flight speeds [3].
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Chapter 3

Conceptual Design

3.1 Sizing and Configuration

A conceptual design was created in order to study the stability characteristics

of the segmented free-wing system and to test its gust response for use on a HALE

aircraft. The segmented free wing was designed to fit onto an existing, modular

testbed aircraft by replacing the existing fixed wings of the aircraft. The overall

wingspan of the system was approximately 13.3 feet and had a chord of 16 inches.

The planform had no taper or sweep. Each half of the wing wing was divided into

5 equal segments approximately 14 inches wide with a 1/16 inch gap between each

segment to prevent any interference between segments. A top view of the segmented

free wing is shown in Fig. 3.1. Each individual segment was balanced about its hinge

Figure 3.1: Segmented free wing viewed from the top

axis by adding counterweights extending in front of the segment. The total weight of

the wing was 8.5 pounds including the counterweights.
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Figure 3.2: Free-wing airfoil design with control tab

3.2 Airfoil Design

To maintain static pitch stability of each wing segment the pivot axis must be

ahead of the aerodynamic center of the segment, which is most often near the quarter-

chord [3]. The hinge margin is the distance the pivot axis is ahead of the quarter-chord

line and is represented in percentage of the chord. Hinge margins ranging from 0.05c

to 0.20c were examined in Ref. [3]. Additionally, the effect of the hinge margin on

the control tab sizing at the trailing edge of the wing was examined [3]. In this study,

a hinge margin of 0.05c was chosen in order to reduce the amount of ballast required

to balance the wing segments. With this hinge margin the pivot axis, which was the

main wing spar, was located at 20% of the chord. Vertically, the spar was centered

on the chord line.

A control tab was located at the trailing edge and was the only control device on

the segmented free wing. The control tab could deflect +/- 20 degrees, had a chord

length of 25% of the wing chord, and spanned the entire trailing edge of the segment.

Each segment’s control tab was actuated using an electric servo motor embedded in

the airfoil and covered using a plastic skinning material.
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The airfoil shape selected was an airfoil designed by John Roncz for Freewing

Aerial Robotics and used on their Scorpion UAV. This airfoil shape is shown in Fig-

ure 3.2. The wing was constructed out of extruded polystyrene foam. Several sections

of the inner wing were cut out to allow the passing of wires and to reduce weight. A

counterweight was attached to the bottom side of each segment and extended forward

of the leading edge with approximately a 1 oz weight attached. The counterweight

moved the center of gravity forward to balance the segment on the spanwise pivot

axis.

The airfoil was analyzed using Xfoil [20], [21] to determine its aerodynamic center

and lift curve slope. A Reynolds number was calculated to be around 200,000 based

upon a 22 ft/s velocity and a 16 inch chord length. This was used for the viscous

boundary layer analysis. As shown in Fig. 3.3, the lift curve slope, Clα , was calculated

to be 7.66 per radian (0.132 per degree). Figure 3.4 shows the pitching moment of

Figure 3.3: Lift coefficient versus angle of attack
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Figure 3.4: Pitching moment versus lift coefficient

the airfoil about its 1/4 chord point as a function of lift coefficient. A linear trend

line from regression analysis has been drawn on the graph along with the trend line

equation. The aerodynamic center of the airfoil was found by adding 1/4 to the

inverse slope of the trend line. At 29% of the chord, the aerodynamic center for this

airfoil is considerably further aft than the typical thin airfoil value of 25% of the

chord.

3.3 Experimental Setup

The segmented free-wing model was tested experimentally by mounting the

model on a truck. The wing was mounted to a 3” x 3 1/2” wood beam (constructed

from a pair of 2x4’s) that extended 7 feet in front of the truck as shown in Fig. 3.5.
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Figure 3.5: Diagram of the experimental setup

Mounting the wing a considerable distance in front of the truck reduced the aerody-

namic influence of the truck on the wing. The wing was rigidly mounted to the beam

so that roll was mechanically restrained. The mount was later modified to allow the

wing to freely roll. The control tabs on each of the wing segments were controlled

via a radio transmitter so the angle of attack of the segments could be varied from

within the truck cab during testing.

3.4 Wind Tunnel Model

A wind tunnel model of the wing was designed and fabricated for use in the

Auburn University 3x4 foot subsonic wind tunnel. The model had a wing span of

three feet divided into six segments of equal size (approximately 6 inch span). Each

segment had an eight inch chord with the axis of rotation placed at fifteen percent of

the chord. Each segment had a negative five degree control surface deflection. Unlike

the larger model discussed in Section 3.1, the wind tunnel model had no internal

control wires. The wing segments were balanced about the pivot axis using lead

shot so the only net forces acting on the wing segments were the aerodynamic forces.

The spar was made of 1
2

inch diameter steel round stock to maintain the stiffness

in the model. A 1
16

inch spacer was placed between each segment to prevent the
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Figure 3.6: Segmented free wing mounted to beam on truck looking through the
windshield
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segments from interfering with each other. To create a spanwise flow variation in the

wind tunnel, an oscillating wing was placed vertically in the wind tunnel generating

a trailed vortex across the segmented free-wing wind tunnel model. A schematic of

the wind tunnel setup can be seen in Fig. 3.7.

Figure 3.7: Wind tunnel test schematic

The wind tunnel model was designed so that each individual segment could be

connected to its neighbors. Thus, it could simulate a single free wing, a left and right

free wing, or a segmented free wing.

The variation in angle of incidence across the six segments is easily seen in Fig. 3.8

as each individual segment adjusts to maintain constant aerodynamic angle of attack

across the span in the presence of the trailed vortex above the wing.

19



Figure 3.8: Segmented free-wing model in AU wind tunnel
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Chapter 4

Analytical Model

A mathematical model of the segmented free wing was developed in order to

accurately predict the behavior of the system. MATLAB 7.0 was used to run the

calculations and to plot the results of the stability analysis. A linear model of the

system dynamics was developed and eigen analysis was used to evaluate the behavior

of the segmented free-wing system.

The origin of the system was located at the intersection of the axis of symmetry

and the centerline of the spar. The x-direction points forward from the leading edge

of the wings and y-direction extends out the right wing as shown in Fig. 4.1. The

z-direction points downward to complete the triad. The system was modeled with

11 degrees of freedom: ten different pitch angles, one for each segment, and a roll

angle. The system was mechanically restrained to the support beam resulting in no

translational degrees of freedom. The translation of the truck was assumed to be a

constant velocity in the x-direction.

Figure 4.1: Axis configuration for analytical model
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4.1 Governing Equations

Free-body diagrams of the segmented free-wing system and a wing segment are

shown in Figs. 4.2 and 4.3. From the free-body diagrams, equations modeling the

segmented free-wing system could be formulated.

Figure 4.2: Free-body diagram of the segmented free-wing system in roll, looking
from rear

The equation modeling rolling motion of the system is

Mx = Ixxφ̈

Mx = −
∑
i

Liyi −Kφ− Cφ̇+
∑
i

myiδxi θ̈i
(4.1)

where φ̈ is the rolling acceleration in rad/s2, K is the spring force of the mounting

beam, and C is the damping term in the wood. The final term in Eqn. 4.1 takes into
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Figure 4.3: Free-body diagram of a wing segment

account the possible offset of the center of gravity of the wing segments causing a

slight imbalance in each segment.

The equation for the pitching motion of each segment is

Myi = Iyyθ̈i

Myi = MAEROi +myiδxiφ̈

(4.2)

where θ̈ is the pitching acceleration in rad/s2, MAERO is the aerodynamic moment,

and the final term is the center of gravity offset.

4.2 Aerodynamics

The aerodynamic lift and moment, Li and MAEROi , in Eqns. 4.1 and 4.2 are

the most complex terms in the analytical model. Unsteady aerodynamic calcula-

tions were used to accurately model the aerodynamic forces and moments on the

segmented free wing. To determine whether unsteady aerodynamics are significant

for this problem or whether a quasi-steady approximation could be justified, a brief

analysis using Theodorsen’s function was completed. Theodorsen’s function is one
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method for modeling unsteady aerodynamics in the frequency domain. Theodorsen’s

function predicts the lift response, both in-phase and out-of-phase, to a sinusoidal

oscillation of an airfoil as a function of the reduced frequency. Figure 4.4 presents

the real (in-phase) and imaginary (out-of-phase) parts of Theodorsen’s function for a

range of reduced frequency. The reduced frequency can be calculated by

k =
ωb

U
(4.3)

where ω is the oscillation frequency in rad/s, b is half the chord length, and U is the

velocity in feet per second [22]. During experimental testing of the model described

in Section 3.1, an oscillation at a frequency of 1.2 Hz was observed at an airspeed

of 22 fps. This corresponds to a reduced frequency of k = 0.23. Using Fig. 4.4, the

magnitude of the lift response was 0.72 and the phase shift is 0.2584 rad or 14.80

degrees. This indicates that a quasi-steady assumption would over predict the lift

response by over 20% and clearly unsteady effects are significant.

In unsteady aerodynamics the lift response to a step change in angle of attack,

known as the indicial response, can be modeled as [23]

CL(s)

∆α
= CLαφ(s) (4.4)

where s represents the distance traveled in half chords

s =
Ut

b
(4.5)
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Figure 4.4: The real and imaginary parts of Theodorsen’s function, F (k) and G(k)
respectively [22]
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and φ(s) is the Wagner lift deficiency function. One approximation to the Wagner

function is by Jones and is highly accurate for intermediate values of s [23]

φ(s) = 1− A1exp(−b1s)− A2exp(−b2s) (4.6)

where A1 = 0.165, A2 = 0.335, b1 = 0.0455, and b2 = 0.3. Given the indicial

response, with Jones’s approximation to the Wagner function, Duhamel’s convolution

integral [23] can be used to get the overall lift response to an arbitrary forcing function,

α (t).

CL(t) = CLα

[
α(0) +

∫ t

0

d

dτ
α(τ)φ

(
U

b
(t− τ)

)
dτ

]
(4.7)

For the analytical model, it is desirable to have the unsteady terms in a state-space

form as presented in Eqn. 4.8.

 Ẋ1

Ẋ2

 = A

 X1

X2

+

 1

1

α(t)

CL = C

 X1

X2

+ Dα(t)

(4.8)

To find this state-space representation, the Laplace transforms of Eqns. 4.7 and 4.8

were taken and are shown in Eqns. 4.9 and 4.10 where p is the Laplace variable.

CL (p)

CLα
= α (p)

[
1

2
+

A1b1
p+ b1

+
A2b2
p+ b2

]
(4.9)
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pX (p) = AX (p) +

 1

1

α (p)

CL (p) = CX (p) + Dα (p)

(4.10)

These equations can then be equated to solve for the elements of the matrices of A,

C, and D in the equations for the unsteady circulatory lift per unit span:

 Ẋ1

Ẋ2

 =

 −b1Ub 0

0 −b2Ub


 X1

X2

+

 1

1

α(t)

Lc
′
= ρU2bCLα

U
b

[
A1b1 A2b2

] X1

X2


+

 1

1

α(t)

(4.11)

The circulatory lift on the airfoil is affected by both the angle of attack and also

by the pitch rate (rate of change of angle of attack). From thin-airfoil theory, it is

known that these two can be combined by using the angle of attack at the 3/4 chord

point [23]. Combining the pitching motion and the rolling motion of the wing, the

angle of attack at the 3/4 chord point can found from

α 3
4
c = θ +

1

U

(
yφ̇+ θ̇b

(
1

2
− a
))

(4.12)

which replaces the angle of attack term of the circulatory lift in Eqn. 4.11.

In addition to the circulatory lift on the wing, there are also aerodynamic forces

on the wing due to the mass of air surrounding the wing that must be pushed out
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of the way when the wing pitches or plunges up or down. These forces are called

apparent mass or non-circulatory forces, and for lift can be written [24]

L
′

NC = ρπb2
(
ḧ+ Uθ̇ − baθ̈

)
(4.13)

where

ḣ = yφ̇ (4.14)

and

ḧ = yφ̈ (4.15)

Including both the circulatory and non-circulatory terms, the total lift per unit

span can be written as

L
′
= ρU2bCLα

U
b

[
A1b1 A2b2

] X1

X2

+
1

2
α 3

4
c(t)


+ πρb2

(
ḧ+ Uθ̇ − baθ̈

) (4.16)

The aerodynamic pitching moment includes both circulatory and non-circulatory

terms just as the lift force does. The circulatory moment is due to a constant term

plus the circulatory lift force acting at the aerodynamic center of the wing segments.

This can be written as

MC
′

=
1

2
ρU2b2CM0 + b

(
1

2
+ a

)
LC

′
(4.17)
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The non-circulatory terms for pitching moment are [24]

M
′

NC = πρb2
(
baḧ+ U

b

4

(
a− 1

2

)
θ̇ − b2

16

)
(4.18)

which yields a total pitching moment per unit span of

M
′
=

1

2
ρU2b2CM0 + b

(
1

2
+ a

)
L

′

C

+ πρb2
(
baḧ+ U

b

4

(
a− 1

2

)
θ̇ − b2

16

(
a2 +

1

8

)
θ̈

) (4.19)

4.2.1 Validation of Aerodynamic Model

The analytical aerodynamic model was validated by comparing the circulatory lift

response to Theodorsen’s function and the total lift response to experimental data by

Rainey [25] of a purely pitching wing. All roll terms in the lift and unsteady equations

were ignored to allow for a purely pitching system. To compare the circulatory lift to

Theodorsen’s function, the Laplace transform of Eqn. 4.11 was taken which gives

CLc (s) = CLα

(
1

2
α (s) +

U

b
A1b1X1 (s) +

U

b
A2b2X2 (s)

)
(4.20)

and

sX1 (s) = −b1
U

b
X1 (s) + α (s)

sX2 (s) = −b2
U

b
X2 (s) + α (s)

(4.21)

Substituting the unsteady terms, X1 and X2, into the lift equation and dividing by

α

CLc (s)

α (s)
= CLα

(
1

2
+ A1b1

U

bs+ b1U
+ A2b2

U

bs+ b2U

)
(4.22)
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The Laplace transform of the non-circulatory lift, Eqn. 4.13, divided by α is

shown by

CLNC (s)

α (s)
= πb

(
s

U
− ba

U2
s2

)
(4.23)

Substituting iω for s and gathering terms to put Eqns. 4.22 and 4.23 in terms of the

reduced frequency, k, the transfer function from angle of attack to lift response in

terms of the reduced frequency is written as

CL (iω)

α (iω)
= CLα

(
1

2
+ A1b1

1

ik + b1
+ A2b2

1

ik + b2

)
+ π

(
ik + ak2

)
(4.24)

As indicated by Fung [22], the circulatory lift portion of this function should

be equivalent to Theodorsen’s function when normalized by the lift curve slope.

Theodorsen’s function can be written as

C (k) =
K1 (ik)

K0 (ik) +K1 (ik)
(4.25)

where K0 and K1 are the modified Bessel functions.

In Fig. 4.5, the circulatory lift portion of Eqn. 4.24 is compared to Theodorsen’s

function, Eqn. 4.25. The real portion matches within 2% and the imaginary within

10%. The relatively small discrepancy can be attributed to the approximation used

for the Wagner function.

Experimental data on a pitching wing by Rainey [25] was used for comparison

of the total lift response. The total lift response as a function of reduced frequency is

plotted in Fig. 4.6 with Rainey’s data being marked by an “o”. The analytical model

follows the experimental data trend quite well in both magnitude and phase. As the

reduced frequency increases to greater than 0.4, a slight deviation occurs between the

experimental data and the total lift response. However, for the experiments presented
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Figure 4.5: Comparison of the analytical model circulatory lift to Theodorsen’s func-
tion
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Figure 4.6: Comparison of the analytical model total lift response with pitching data
from Rainey [25]
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later in this thesis, the reduced frequency remained within the 0.2 to 0.3 range which

matches the Rainey data nicely.

4.3 Wake Effects

Because of the trailed vortex wake system behind any lifting body, the aero-

dynamic lift on one airfoil segment affects all of the other nine. Consequently, to

accurately predict the behavior of the segmented free wing, it was necessary to add

downwash effects to the system so the effective angle of attack on each segment, in-

cluding the influence of all the others, could be accurately modeled. To model the

downwash, the Vortex Lattice Method (VLM) [26] was used to calculate an effective

angle of attack on each segment which could then be used to determine the overall

lift.

Figure 4.7: Setup of the Vortex Lattice Method on segmented free wing
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Each wing segment was modeled using a set of horseshoe vortices that consisted

of a bound vortex along the quarter-chord of the wing segment and two semi-infinite

trailed vortices extending from the ends of the bound segment to infinity aft of the

wing. Each segment had a control point placed at the three-quarter-chord centered

between the two trailed vortices.

The velocity induced by a general horseshoe vortex of strength Γn with a length

of dl is determined by use of the law of Biot and Savart as shown in Eqn. 4.26

−→
dV =

Γn

(−→
dl ×−→r

)
4πr3

(4.26)

Referring to Fig. 4.8, the magnitude of the induced velocity induced by a vortex

filament is:

dV =
Γn sin θdl

4πr2
(4.27)

Equation 4.27 can be integrated to obtain the total induced velocity produced by a

straight vortex filament:

V =
Γn

4πrp

∫ θ2

θ1

sin θdθ

=
Γn

4πrp
(cos θ1 − cos θ2)

(4.28)

A boundary condition must be applied in order to compute the strength of the

vortices where the “surface of the wing is a streamline” [26]. Since the surface behaves

as a streamline, the flow does not pass through the surface of the wing but remains
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Figure 4.8: “Nomenclature for calculating the velocity induced by a finite length
vortex segment” [26]

tangent to the surface. For wings with a modest slope of the mean camber line, the

tangency condition can be approximated by [26]:

wm − vm tanφ+ U∞

[
α−

(
dz

dx

)
m

]
= 0 (4.29)

For airfoils of modest thickness, a 2-dimensional, planar approximation can be used

to simplify the tangency condition to

wm + U∞ sinα = 0 (4.30)

or for small angles of attack:

wm = −U∞α (4.31)
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The downwash at control point i from segment j can be calculated from Eqn. 4.28

and then summed to get downwash, wmi

wmi =
1

4π

∑
j

CijΓj (4.32)

as derived in Bertin [26]. Equating this to 4.31 gives a set of equations for the vortex

strengths:

1

4π

∑
j

CijΓj = −U∞α (4.33)

From the Kutta-Joukowski theorem [27] and the definition of the lift coefficient

L
′
= ρUΓ =

1

2
ρU22bCL (4.34)

Solving for CL and substituting for Γ

CL =
−4π

b
C−1α = Clααe (4.35)

Finally, solving for αe

αe =
−4π

bClα
C−1α (4.36)

This matrix equation provides a relationship between the angle of incidence, α, of

each segment, and the aerodynamic angle of attack of the segments including the

mutual influences of each segment on all the others. This effective angle of attack

could then be substituted into the aerodynamic equations 4.16 and 4.19 to arrive at

the total lift and moment per unit span on each segment.
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4.4 Equations of Motion

By combining all the derivations from the previous sections the equations of

motion for the full system were formulated. The system was set up in the following

format:

C~̇x = A~x (4.37)

The state vector ~x was defined as

~x =

[
θ̇i θi X1,i X2,i φ̇ φ

]T
, for i = 1..10 (4.38)

The superscript “T” in Eqn. 4.38 denotes the transpose of the matrix. Solving for ~̇x,

the stability of the system could be analyzed by determining the eigenvalues of the

matrix C−1A. This was performed using the MATLAB program and results will be

presented in the form of root-locus plots. The eigenvectors of the system matrix were

used to determine the different modes of oscillation of the system.
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The equations for pitch, roll, X1, and X2 are shown in order in Eqs. (26-28).

Pitch:

(
πρb4xa2 +

1

8
πρb4x+ Iyy

)
θ̈i +

(
−πρb3xayi − 2mbδxiyi

)
φ̈ =(

πρb3xU

(
−1

2
+ a

)
+

1

8
ρUb3xClαCij

(
1− 4a2

))
θ̇i

+

(
1

4
ρU2b2xClαCij (1 + 2a)

)
θi

+

(
1

2
ρU3bxClαA1b1 (1 + 2a)

)
X1,i

+

(
1

2
ρU3bxClαA2b2 (1 + 2a)

)
X2,i

+

(
1

4
ρUb2xClαyjCij (1 + 2a)

)
φ̇

(4.39)

Roll:

(
ρxyiπb

3a+ 2myiδxib
)
θ̈i +

(
−ρxy2

i πb
2 − Ixx

)
φ̈ =(

ρxyiπb
2U +

1

4
ρxyiUClαb

2Cij (1− 2a)

)
θ̇i

+

(
1

2
ρxyibU

2ClαCij

)
θi

+
(
ρxyiU

3ClαA1b1
)
X1,i

+
(
ρxyiU

3ClαA2b2
)
X2,i

+

(
C +

1

2
ρxyiyjUClαbCij

)
φ̇

+Kφ

(4.40)
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Unsteady Aerodynamic states:

 Ẋ1,i

Ẋ2,i

 =

 −U
b
b1 0

0 −U
b
b2


+

 1

1

[( b

2U
Cij (1− 2a)

)
θ̇i + Cijθi +

(yj
U
Cij

)
φ̇

] (4.41)

Combining all of these equations produces a set of 42 coupled first-order differ-

ential equations, 10 for θ̈, 10 for θ̇, 10 for Ẋ1, 10 for Ẋ2, one for φ̈, and one for φ̇.

The equations for θ̇ and φ̇ are trivial and of the form θ̇ = θ̇ and φ̇ = φ̇.

4.5 Wind Tunnel Model

The center of gravity position was located on the spanwise axis of rotation. The

analytical model used for the wind tunnel model was substantially the same as used

for the truck model. The input parameters were changed to match the geometry of

the smaller model. In addition, two new friction terms were added to the model to

account for friction in the pitch and roll bearings. These friction terms were added

to the equations of motion (Eqns. 4.1 and 4.2) as presented in Eqn. 4.42.

My = MAERO +myiδxiφ̈− µkpitch θ̇

Mx = −
∑
i

Liyi −Kφ− Cφ̇+
∑
i

myiδxi θ̈i − µkrollφ̇
(4.42)
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Chapter 5

Results

5.1 Initial Wind Tunnel Test

An initial wind tunnel model was tested as both a proof of concept and then as

a verification of the computer model. The first experimental test on the wind tunnel

model was to determine the rolling moment generated by the model as a result of

spanwise flow variations created by an upstream vortex-generating oscillating wing.

However, during the first tests, the wind tunnel model began to have a destructive

oscillation about the rolling axis. The test was immediately terminated. It was

assumed that play in the mount and imbalance of the wing segments were responsible

for the oscillation.

After a new mount was constructed for the model and the segments were bal-

anced about their hinge axis, the rolling moment generated by the spanwise flow

variation over the model was measured. For each of the three configurations, the

rolling moment was measured with the vortex-generating wing at full positive and

full negative deflection. The difference between the two rolling moments gives an in-

dication of the amount of aerodynamic load that would be transmitted to the aircraft

structure. This simulates the aircraft encountering a gust that varies across the span

of the wing. The results of the wind tunnel tests are shown in Table 5.1.

As seen in Table 5.1, the single free-wing transfers a load of 1.2 ft-lbs to the fuse-

lage of the model. However, when each wing half is allowed to move freely from the
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Table 5.1: Rolling moments of three configurations

other, nearly a 30% reduction in the transferred load occurs. This is even further en-

hanced by the segmented free wing which reduces the transmitted load from the wings

to the fuselage by 64%. These results, although preliminary, show strong evidence

that the segmented free-wing design would successfully reduce the gust response of

HALE aircraft as they pass through the troposphere.

5.2 Experimental Model

Following the success of the initial wind tunnel model, a larger wing was con-

structed as described in Section 3.1. The experimental testing of this model was

performed by attaching the rig to a full size pickup truck and slowly increasing the

speed of the system while observing the results. Digital videos of the tests were

acquired and used to estimate oscillation frequencies and onset velocities.

At a velocity of approximately 22 ft/s an unstable oscillatory rolling motion

occurred during experimental testing. As speed was increased the frequency stayed

the same but the amplitude increased dramatically. The system had an oscillation

frequency of approximately 1.2 Hz with a maximum rolling angle of about 10 degrees

before the speed was reduced. Reference [3] found a divergent spiral mode in their

computational analysis of a free-wing aircraft with independent left and right wing

panels. It is conjectured that this spiral mode is appearing as an unstable oscillatory
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roll mode in this experimental apparatus due to the mechanical restraints of the

rolling motion.

Several possible solutions to the unstable motion were examined including in-

creasing the rolling moment of inertia, changing the center of gravity of the wing

segments, and changing the number of segments with results shown in Table 5.2. To

increase the rolling moment of inertia, aluminum pipes were attached to the wingtips

extending beyond the wingtips by two feet. This method provided very little damping

to the system and was deemed unsuccessful. The second test consisted of changing

the center of gravity of the segments by adding weight to the counterweight extending

out beyond the leading edge of each segment. This also proved unsuccessful. Reduc-

ing the number of segments increased the speed at which the unstable mode occurred,

but did not eliminate it.

As an additional test, the mounting system for the wing was modified to allow

the wing to roll freely as it would on a flying aircraft. Once the mechanical roll

restraint was removed the oscillation was gone, however as anticipated, a divergent

mode took its place. The system would consistently roll at very low speeds, which

would be expected to be the unstable spiral mode. The system was very hard to

control and could never be trimmed.

With the initial simple modifications to the experimental system proving unsuc-

cessful, the design was modified to allow for the attachment of fixed segments on each

wingtip. This design change allowed for various sizes of fixed segments to be attached

ranging from as six inches wide to two feet wide. It was hoped that the fixed segments

would provide adequate damping to stabilize the system.

The fixed segments were a different design than the free-wing segments. The

chord length of the fixed segments was the same as the free-wing segments, however,

the span of the segment varied. Fixed segments of four different sizes were made;
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Table 5.2: Results of the experimental testing on the segmented free wing
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24, 18, 12, and 6 inches in span. The airfoil for the fixed segments was a symmetric

NACA 0012 airfoil so the only lifting force would be from the free-wing segments.

Additionally, the spar was place at the quarter-chord to minimize the moment of the

fixed segments. The segments were placed at zero angle of attack.

The experimental platform with fixed-segments was tested first in the mechan-

ically restrained roll setup. The 24 inch segment was the first fixed segment tested

during the experiment. With the fixed segments attached to the platform, the system

demonstrated a drastic increase in stability. The system no longer had the catas-

trophic divergent rolling oscillation that was seen in previous experimental attempts.

The platform remained straight and level throughout a large range of velocities with

a maximum sustained velocity of 66 ft/s. A dihedral formed in the wings due to the

lift being produced by the free-wing segments. Very little movement occurred in the

segments once equilibrium of the system was reached.

Testing continued with each of the other fixed segment sizes. Mechanically re-

strained in roll, the experimental platform was able to demonstrate satisfactory sta-

bility using all sizes fixed segments, including the 6 inch segment. All segment sizes

tested appeared to be sufficient to provide dynamic stability to the experimental

platform.

In the next series of tests, the wing was allowed to roll freely with the fixed

segments attached to the tips. Using the 24 inch segments, the wing did not behave

as it had without the fixed segments. The free wing did not roll to one side or the

other as had been seen before. In order to keep the free wing level, some mechanical

control was required by the transmitter from the cab. The system did not damp

itself out, but the instability did not grow either. As the size of the fixed segments

decreased, the sensitivity of the segmented free wing to a disturbance grew and the

pilot controlling the wings had more trouble holding the wings straight and level.

44



Figure 5.1: Segmented free wing with fixed segments attached to the tip flying with
a visible dihedral
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Although difficult, it was possible to trim the wing with the 6 inch segments. It was

much easier to maintain trimmed flight of the segmented free wing with the 24 inch

segments as they were not as sensitive to disturbances.

When the system was flown without the fixed segments, the segmented free wing

was dynamically unstable in both the mechanically restrained and mechanically free

states. However, when the fixed segments were attached to the tips of the experimen-

tal platform the system demonstrated strong dynamic stability in the mechanically

restrained state. Any perturbations were quickly damped out and steady flight was

quickly achieved for all fixed segment sizes. In the mechanically free state, the seg-

mented free wing appeared to be neutrally stable. There appeared to be no damping

or divergence in the system resulting from any perturbations.

5.3 Analytical Modeling

An eigen analysis was performed to study the dynamic stability properties of

the segmented free-wing equations of motion. The goals of this analysis were to

understand the nature of the instability, to facilitate predicting its onset, and to find

methods for eliminating it. The analytical model was able to successfully predict the

oscillation in the mechanically restrained state and the instability in the mechanically

free state, both without the fixed segments. With the addition of the fixed segments in

the computer model the mechanically restrained system became dynamically stable

as was seen in the experimentation. The analytical model also predicts neutrally

stable dynamic system in the mechanically free state.
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5.3.1 System Properties

In order to analyze the system, the mass properties of the wing and elastic

properties of the mount were needed. The mass moments of inertia, Ixx and Iyy, were

initially estimated based on approximations of the geometry. After the mass moments

of inertia were estimated, they were tested experimentally using a bifilar pendulum

as pictured in Fig 5.2. To obtain the estimated rolling moment of inertia, the system

was modeled as a rectangular parallelepiped with dimensions of 13.3 feet in span,

16 inch chord, and approximately 3 inches thick. The entire system was weighed to

obtain its mass in slugs and the rolling moment of inertia, Ixx, was calculated using

Eqn. 5.1 [28].

Figure 5.2: Diagram of the bifilar pendulum setup
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Ixx =
1

12
m(span2 + thickness2) (5.1)

Using AutoCAD 2004, the airfoil shape was drawn and the polar area moment

of inertia was calculated. Knowing the density and the span of the wing segment,

the estimated pitching mass moment of inertia was calculated. In addition to the

wing segment, the counterweight extending beyond the leading edge of the wing was

treated as a point mass and its moments of inertia added accordingly.

Iyy = Jyxρseg + l2mcw (5.2)

The bifilar pendulum was then used to experimentally obtain the mass moments

of inertia. The experimental values were compared to the estimated values to deter-

mine validity of the experimental value. To maintain simplicity of the experimental

model, nonlinear aerodynamic damping was ignored and the moment of inertia was

calculated using Eqns. 5.3 and 5.4 [29].

k2 =
gT 2

4π2

(
b1b2
Y

)
=
gT 2

4π2

b1b2[
S2 − (b2 − b1)2]1/2 (5.3)

I = Mk2 =
MgT 2

4π2

b1b2[
S2 − (b2 − b1)2]1/2 (5.4)

The length of the two strings are denoted by S and are at equal angles from the

vertical. The distance between the two points of suspension and the distance between

the mounting points are denoted by 2b1 and 2b2 respectively. The perpendicular

distance between the suspension point and the mounting point is represented by Y .

T is the period of oscillation and M is the mass of the system. Finally, I is the

moment of inertia about the vertical axis and k is the radius of gyration. Figures 5.3
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and 5.4 show the experimental model and the single wing segment mounted on the

bifilar pendulum and Auburn University’s Adaptive Aerostructures Lab.

The spring force in the experimental mounting beam was calculated using the

angle of twist equation and solving for the torque [30].

T =
JG

L
φ (5.5)

where

K =
JG

L
(5.6)

The mounting beam was fabricated from standard dimensional lumber by lami-

nating two 20’ long nominally 2” x 4” (1 1/2” x 3 1/2” actual dimension) pieces of

wood stock. The spring force is highly dependent on the species of wood used to make

the mounting beam. The spring force varies 400 ft − lbs/rad within just a species

family. Unfortunately, the exact species of wood was unknown, but it was assumed

to be from the Pine family. Using the material properties of Lodgepole Pine shown

in Table 5.3 [31], a modulus of rigidity could be calculated for the radial tangential

plane of the lumber. A diagram of the axis configuration is shown in Fig. 5.5. The

modulus of rigidity, G, was calculated to be 964,800 psf. The estimated modulus of

rigidity was used in the spring constant equation and an estimated value of K was

calculated to be 123.6 ft − lbs/rad. No simple analysis for the damping coefficient,

C, was available, so for this initial study the value was assumed to be negligible

compared to the aerodynamic forces on the wing system.

To obtain a more accurate value of K, the spring force of the beam was exper-

imentally determined by applying a torsional loading to the mounting beam about
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Figure 5.3: Experimental model mounted on the bifilar pendulum in Auburn Univer-
sity’s Adaptive Aerostructures Lab

Table 5.3: Lodgepole Pine elastic properties
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Figure 5.4: Experimental segment mounted on the bifilar pendulum in Auburn Uni-
versity’s Adaptive Aerostructures Lab
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Figure 5.5: Axis orientation for modulus calculations [31]

the longitudinal axis. The spring force was measured by twisting the beam to a pre-

determined angle and taking a measurement of the applied torque required to achieve

the angle. The beam was twisted to 5, 10 and 15 degrees with several torque read-

ings at each angle to obtain an adequate average. From the torque measurements,

K was calculated by dividing the measurement by the respective angle of twist. The

experimental results yielded an average K value of 482.5 ft− lbs/rad and are shown

in Table 5.4.

Table 5.4: Data from spring constant test on mounting beam

5.3.2 Analytical Model Without Fixed Segments

The root locus plot in Fig. 5.6 shows the different modes of the restrained seg-

mented free wing. The first eigenvalue is denoted by a circle and then the subsequent

eigenvalues are denoted by a plus sign. Ten stable pitching modes can easily be seen

labeled in Fig. 5.6 forming a fan shape originating at zero. The scatter in the pitching
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mode is due to the wake effects of each wing segment upon the other. There are two

rolling modes associated with the mechanically restrained system. One of the modes

is stable and is labeled in Fig. 5.6. The second mode is the unstable rolling mode

that was seen in the experimental testing of the segmented free wing.

Figure 5.6: Root locus plot of the full aerodynamic model for the mechanically re-
strained model without fixed segments

The analytical model velocity was steadily increased from one foot per second

to 150 ft/s by 0.1 ft/s intervals. With a velocity of 150 ft/s the analytical model

predicts the segmented free wing will be unstable with an oscillation frequency of

1.31 Hz. This frequency is within 10% of the experimental frequency of 1.2 Hz. The
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analytical model shows that as the velocity is increased, the frequency remains the

same but the real part of the unstable root becomes increasingly positive. Figure 5.7

shows a zoomed view of the root locus plot for the full aerodynamic model that is

mechanically restrained in roll without the fixed segments attached. In Fig. 5.7 it is

easy to see the small changes in the unstable mode as the velocity is increased.

Figure 5.7: Root locus plot of the full aerodynamic model for the mechanically re-
strained model without fixed segments from a zoomed in perspective

Mechanically freeing the roll in the analytical model produces a result that is

both expected and agrees with previous studies conducted by Porter and Brown [3].

The analytical model predicts an unstable roll mode that grows in magnitude with
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the increase in velocity. The positive real root can be seen in Fig. 5.8. All the same

modes occur as in the mechanically restrained system except the unstable oscillating

rolling mode has now become an unstable rolling mode. This unstable rolling mode

is analogous to the unstable spiral mode reported in Ref. [3]. The unstable roll mode

is even more visible when looking at the locus plot zoomed in about the origin as in

Fig. 5.9

Figure 5.8: Root locus plot for the full aerodynamic model for the system mechanically
free in roll without fixed segments
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Figure 5.9: Root locus plot for the full aerodynamic model for the system mechanically
free in roll without fixed segments zoomed in about the origin

56



5.3.3 Analytical Model With Fixed Segments

Adding fixed segments to the analytical model produces a dynamic stability

that matches the experimental results. When adding fixed segments to the analytical

model placed at the wingtips of the segmented free wing, the analytical model predicts

a dynamically stable system. The root locus plot of the full aerodynamic model,

restrained in roll, and with fixed segments attached, is presented in Fig. 5.10 and

shows the newly stable rolling mode becoming increasing stable as velocity increases.

All the modes from the previous root locus plot of the same system setup are present

and exhibit the same behavior. The previously stable rolling mode has the same

shape, however, it is more heavily damped with the fixed segments attached to the

segmented free wing. Zooming into the origin, the behavior of the newly stable rolling

mode can easily be seen. Figure 5.11 clearly shows the stable rolling mode becoming

increasingly damped as the velocity is increased. Also, as the velocity is increased

the oscillation frequency of the stable rolling mode remains almost constant.

The free-to-roll system contains an unstable roll mode in the analytical model

when the fixed segments are not attached to the wingtips of the segmented free wing.

Adding the fixed segments to the analytical model for the free-to-roll system produces

a system that is no longer unstable. However, with the addition of the fixed segments,

several zero eigenvalues appear. Instead of being dynamically unstable, the analytical

model predicts a neutrally stable system. This would agree with experimental results

where the segmented free wing could be trimmed, but if a perturbation entered the

system there was no damping. Figure 5.12 shows the root locus plot for the roll-free

system with the fixed segments attached. Figure 5.13 is the same plot but zoomed in

about the origin.
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Figure 5.10: Root locus plot for the full aerodynamic model for the system mechani-
cally restrained in roll with fixed segments
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Figure 5.11: Root locus plot for the full aerodynamic model for the system mechani-
cally restrained in roll with fixed segments attached, zoomed about the origin
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Figure 5.12: Root locus plot for the full aerodynamic model for the system mechani-
cally free in roll with fixed segments attached
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Figure 5.13: Root locus plot for the full aerodynamic model for the system mechani-
cally free in roll with fixed segments attached, zoomed in about the origin

61



5.3.4 Analytical Model Compared to Experimental Results

The analytical model predicts a crossover velocity, the velocity at which the sys-

tem becomes dynamically unstable, of 49.5 ft/s (33.8 mph). In the experimental

results, the velocity at which the segmented free wing became unstable was between

22 and 30 ft/s. The analytical model predicts a significantly more stable system.

This discrepancy between the analytical model and experimental results possibly oc-

curs from characteristics not modeled in the analysis. An example of a characteristic

that was not modeled is the small oscillation of the forward mounted counterweights

along with their possible effects on the aerodynamic properties of the airfoil. During

experimental testing, small oscillations of the 1 ounce counterweight were visible in

both the horizontal and vertical directions. Also, the segmented free-wing mounting

beam was modeled having no movement. However, in the experimental tests, the

beam had a slight bending deflection that would allow the mount to have small, fi-

nite oscillations. This oscillation could have been caused by the movement of the

segmented free wing or any movement in the suspension of the truck. This was not

believed to affect the system as it would appear to the wings only as turbulence,

however, it was not modeled so the effects are unknown. Finally, the modeling pa-

rameters used in the analytical model may have a certain amount of error possibly

causing the analytical model to predict a more stable dynamic system. Examples of

the parameters that may have error are the spring constant, mass moments of iner-

tia, center of gravity position of the airfoil, and finally the aerodynamic center of the

airfoil.

The uncertainty in the spring constant of the mounting beam comes from a

limitation in the testing. A torque wrench was attached to the front of the supporting

beam. The beam was then torqued until a particular angle of twist was achieved,
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followed by recording the value from the torque wrench. A problem with this method

of measuring the spring constant arises from the downward bending of the beam

from the way the torque was applied. The effect of the bending of the beam on the

measured torque is unknown.

The pitching and rolling mass moments of inertia were measured via a bilfilar

pendulum. Potential error in the pitching moment of inertia comes for the varying

mass in each wing segment. The pitching mass moment of inertia for one segment

was measured and assumed to apply for all of the segments of the segmented free

wing. The quantity of internal wires and their position, the counterweight mass and

position, and variable segment mass all contribute to an uncertainty in the pitching

mass moment of inertia. For both the rolling and pitching mass moments of inertia,

the damping of the displaced volume of air during the bifilar pendulum test was not

modeled and ignored in all calculations of mass moments of inertia. These damping

effects were ignored because there is no simple means of estimating or measuring

them.

The location of the center of gravity of each individual segment varies in each

segment depending on the location of the control surface wires that run laterally

through the internal spaces of the airfoil aft of the spar. The segments were balanced

as accurately as possible, but during flight the wires have freedom to move and can

shift the center of gravity of the segment a finite amount, depending on the number

of control wires running through the individual wing segment.

Variations in the surface of each wing segment can affect the location of the

aerodynamic center. As determined by Xfoil, the aerodynamic center of the airfoil

is shifted aft due to a small separation bubble that occurs just aft of the maximum

thickness of the airfoil. However, small imperfections in the surface could cause a

change in the boundary layer. Each free-wing segment was covered with a plastic
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laminate. Small wrinkles and ridges were present on the surface from the laminate

and could affect the boundary layer conditions of each segment. Changes in the

boundary layer conditions on each segment could affect the separation bubble that

occurs and therefore affect the aerodynamic center position on each free-wing segment.

5.3.5 Full Aerodynamic Model Sensitivities

The potential error in the input parameters of the system could have a large

effect on the analytical model’s prediction of when the system will become unstable,

measured by the crossover velocity. To better understand the analytical model’s

sensitivities to these parameters a study was performed by slightly changing the input

values and observing the change in the crossover velocity. The parameters examined

were the rolling moment of inertia, pitching moment of inertia, aerodynamic center,

center of gravity position, and the spring constant. Each value was varied to show

the behavior in the general vicinity of the predicted value. The spring force and

mass moments of inertia were varied by plus and minus 25% and 50% whereas the

aerodynamic center was varied between 27% and 31% of the chord. The center of

gravity position was varied from 5% aft of the spar to 3% forward of the spar.

Increasing the pitching mass moment of inertia decreases both the crossover

velocity and the crossover frequency as shown in Fig. 5.14. The change in frequency

is quite small when compared to the change in velocity associated with the increase

in pitching mass moment of inertia. However, as you continually increase the inertia

the frequency fall off rate increases. The change in crossover velocity is more extreme

in the lower regions of the pitching mass moment of inertia and begins to level off as

it increases to 0.008 slugs− ft2.

Changes in the rolling mass moment of inertia are similar to that of the pitching

mass moment of inertia. Unlike the crossover frequency associated with the pitching
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Figure 5.14: Full aerodynamic model sensitivity to changes in pitching mass moment
of inertia
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mass moment of inertia, the rate of change of the crossover frequency decreases as

the rolling moment of inertia is increased. The crossover frequency for the changing

rolling mass moment of inertia follows the same behavior as the crossover velocity.

As the rolling mass moment of inertia is increased, the system becomes increasingly

unstable and the crossover velocity is decreased as shown in Fig. 5.15.

Figure 5.15: Full aerodynamic model sensitivity to changes in rolling mass moment
of inertia

Shifting the aerodynamic center of the airfoil produces a similar result for the

crossover velocity when compared to changes in the mass moments of inertia. The

crossover frequency, however, behaves in a much different manner. As the aerody-

namic center is moved aft, the crossover frequency increases almost linearly. As men-

tioned previously, the crossover velocity follows the same trend as the mass moments
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of inertia where the changes in velocity are greater when the aerodynamic center is

forward.

Figure 5.16: Full aerodynamic model sensitivity to changes in the aerodynamic center

Changes in the center of gravity position of each wing segment from the hinge

location causes a linear change in both the crossover velocity and frequency. The

crossover frequency decreases linearly as the hinge location is moved forward from

behind the hinge location to ahead of the hinge location. In contrast to the crossover

frequency, the crossover velocity decreases as the center of gravity position moves

aft. It is believed from experience in the experimental trials that the center of gravity

position is aft of the hinge location due to a shift in the position of the internal control

wires during flight. The wires were housed in a chamber that allowed the wires to

vary in position from 4.125 to 6.25 inches aft of the leading edge of the segment. If the
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wing segments were perfectly balanced with the wires in the most forward position,

the center of gravity would shift aft during flight as the wires shifted aft. This would

produce a segment imbalance and a center of gravity offset of approximately 2%. If

the center of gravity position was shifted 2% aft of the hinge location the predicted

crossover velocity changes to 44.1 ft/s.

Figure 5.17: Full aerodynamic model sensitivity to changes in the center of gravity
position

The spring constant was also varied to show the full aerodynamic model’s sen-

sitivity. Figure 5.18 shows how the crossover velocity and frequency changes as the

spring constant is both increased and decreased. Both the crossover velocity and

frequency follow the same trend and increase as K is increased.
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Figure 5.18: Full aerodynamic model sensitivity to changes in the spring constant K
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5.3.6 Variation of Input Parameters Based Upon Error Estimates

Model parameters strongly affect the predicted crossover velocity and frequency

produced by the analytical model. As discussed in Section 5.3.4, there is some uncer-

tainty in the values that were used in the analytical model. Based upon estimations of

the uncertainty, the model parameters can be modified to produce results that are in

closer agreement with the experimental results. The modifications to the parameters

are simply estimations of the approximate error.

The mass moments of inertia are assumed to be an overestimate due to the

ignored damping of the displaced air from the spinning of the bifilar pendulum. It

is estimated that the damping effect is greater in the rolling moment of inertia than

the pitching moment of inertia due to the larger surface area perpendicular to the

movement. The rolling mass moment of inertia has been reduced by 20% and the

pitching mass moment of inertia has been decreased by 10%.

Balancing each individual wing segment was always extremely difficult due to

the variability in the internal wires position. Because of the difficulty in balancing

the segments, and the wires ability to move inside the segments, the center of gravity

of each individual segment was most likely not centered on the hinge. The tendency

of the wires to move aft in the wing segments during flight would cause the center

of gravity to shift aft. The shift of the CG position aft causes an increase in the

instability of the segment free-wing system. For the analytical model, the center of

gravity position was shifted aft to 4% of the chord behind the hinge location.

Xfoil was used to determine the aerodynamic center of the airfoil. The value

calculated by Xfoil was between 29% and 30% of the chord. However, due to surface

imperfections, the boundary layer may be forced to transition earlier than it would

if it were to freely transition. This causes the aerodynamic center to continue to
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shift aft to approximately 30%. However, the forced transition only occurs at one

location whereas imperfections that could cause a forced transitions are numerous

in the plastic surface coating. Based upon the forces transition and the numerous

imperfections on the surface of the airfoil, the aerodynamic center has been shifted to

31% of the chord in the analytical model to study the affect on the predicted stability.

Finally, a moderate beam deflection resulted from the applied torque during

the spring constant verification and may have introduced error into the estimated

spring constant, K. Because of the beam deflection, the measured torque was not

as a result of a true twisting of the mounting beam and therefore is considered high.

The initial analytical estimate of the spring constant, based upon published wood

properties [31], was approximately 125 ft− lbs/rad, but since the exact species of the

wood is unknown, this is just a ballpark figure. The measured value, including any

deflection force of the beam, was 482.5 ft− lbs/rad. The large discrepancy between

the two values may be an indication of the overestimation of the measured spring

constant. For the analytical model, the spring constant K was reduced by 30% as an

estimation of the possible error brought into the system by the beam deflection.

When the analytical model is run with these new estimates of the parameters,

the results are quite promising. The root locus plot for the full aerodynamic model

is similar to previous results for both the mechanically retrained and mechanically

free systems. The crossover velocity and frequency for the mechanically restrained

system has decreased to 29.9 ft/s and the crossover frequency is 1.23 Hz. These

results match the experimental results closely. In Fig. 5.20, the unstable modes are

quite visible and are increasing in instability as velocity is increased. The frequency,

however, is remaining almost constant as the velocity is increased.
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Figure 5.19: Root locus plot of the full aerodynamic model with modified input
parameters but without fixed segments
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Figure 5.20: Root locus plot of the full aerodynamic model with modified input
parameters but without fixed segments zoomed in to reveal unstable roots

73



The free-to-roll system with the modified input parameters produces the same

result as the previous model. When the system is not mechanically restrained, an

unstable roll mode exists immediately.

Adding the fixed segments to the modified system produces the same stabilizing

results as discussed in Section 5.3.3. The unstable rolling mode in the mechanically

restrained system has been stabilized by the fixed segments as it was in the analytical

model without the modified inputs. Additionally, the free-to-roll system is neutrally

stable just the same as the analytical model without the modified input parameters.

The modified input parameters do not change the qualitative behavior of the system,

they just change the velocity and frequency at which they occur. The modified input

parameters in the analytical model, based on rough error estimates, produces a result

very similar to the experimental results.

5.3.7 Modeling Options

The analytical model was designed so different modeling features could be turned

on and off. The basic model consisted of only circulatory lift and the following features

could be added: apparent mass, unsteady aerodynamics, and wake effects.

Figure 5.21 shows a root locus plot for the system using the basic aerodynamic

model. In the basic model, only steady state aerodynamic calculations were included

without the unsteady or apparent mass terms. Moreover, the coupling effects of the

vortex wake were also neglected. The plot clearly shows the instability of the system

with the cross-over from a stable to unstable system. The oscillation frequency at

the velocity where the root crosses over from stable to unstable is 0.90 Hz. This is

low compared to the 1.2 Hz estimated frequency from the experimental analysis. The

analytical model with only the basic aerodynamic model predicts the instability will

occur around 11.5 ft/s which is 48% lower than the experimental case.
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Figure 5.21: Root locus plot of the basic model
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Table 5.5: Results of the different modeling features

Figure 5.22 shows the root locus plot including the effects of the vortex wake

system. With this option enabled, the analysis calculated the mutual influence of

each of the wing segments on each other. The major difference between this figure

and the results from the basic model is in the pitching modes. The unstable rolling

mode has a different shape but the general behavior is the same. In the basic model,

the pitching modes for each of the wing segments have identical eigenvalues. When

wake effects are enabled however, the pitching modes of the various segments are

slightly modified. As can be seen in Fig. 5.22, the pitch modes spread out as velocity

is increased. The spreading of the pitching mode results from different segments

having different effects on each other. Hence, their coupled oscillations are slightly

different. These interactions also influence the pitch/roll instability. With the wake

analysis included, the crossover velocity increased from 11.5 ft/s to 14.0 ft/s, an

increase of 22%. The 14.0 ft/s value is closer to the experimental value of around 22

ft/s. The frequency of the oscillation remained almost the same at 0.91 Hz.
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Figure 5.22: Root locus plot of the basic model with wake effects
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Adding unsteady aerodynamic modeling has a larger effect as shown in Fig-

ure 5.23. In this figure, the circulatory unsteady aerodynamic terms have been in-

cluded but not the apparent mass or non-circulatory terms. The same modes are

present but the shape has changed. The pitching modes maintain the same frequency

but the damping has decreased. The frequency of the stable roll increased compared

to the basic model. The crossover velocity for the unsteady model has decreased

significantly to 4.8 ft/s, a 58% drop. In addition to the changing crossover velocity,

the frequency of oscillation at crossover has decreased to 0.32 Hz which is a drop of

73% from the experimental results. The addition of the unsteady model, by itself,

does not closely match the experimental results.

Figure 5.24 adds the apparent mass terms to the aerodynamic model and dramat-

ically alters the mode shapes. The apparent mass terms provide significant damping

to the system which causes the crossover velocity to increase to 26.2 ft/s (a 128%

increase). The frequency of the unstable rolling oscillation has also increased by 39%

to 1.25 Hz. The pitching mode is much more heavily damped with the apparent mass

model than the basic, wake, or unsteady models.

For the final case shown in Figure 5.25, all the modeling options were enabled.

The apparent mass terms and the wake effects dominate the overall shape of the root

locus plot. The effects of the wake on each segment can be seen in the pitching mode

with the varying frequencies of oscillation. The unstable rolling mode has a similar

appearance to the apparent mass model however the crossover velocity is much higher

at 49.6 ft/s. Also, the frequency is slightly more than the apparent mass model

at 1.29 Hz and is still higher than experimental results showed. Additionally, the

pitching mode is highly damped as it is in the apparent mass model. The addition of

the unsteady model provides additional instability to the system. With just the wake

and apparent mass models the crossover velocity decreases to 44.9 ft/s even though
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Figure 5.23: Root locus plot of the basic model with unsteady aerodynamics
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Figure 5.24: Root locus plot of the basic model with apparent mass terms
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Figure 5.25: Root locus plot of the full aerodynamic model
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the shape of the root locus plot is very similar to a combination of the wake models

and apparent mass models. The frequency of the crossover point changes very little

as you add the additional models to the wake and apparent mass models. It remains

in the vicinity of 1.29 Hz. The basic model with the apparent mass terms appears to

closely resemble the experimental results but due to the calculated reduced frequency

unsteady aerodynamics were determined to be necessary to accurately model the

aerodynamics of the system.

5.4 Wind Tunnel Model

To provide additional experimental data for validation of the analytical model,

the wind tunnel model was tested again with a modified mount to allow it to rotate

like the truck mount.

5.4.1 Wind Tunnel Test Results

Verification of the analytical model was performed by comparing the results from

the analytical model to the wind tunnel tests. The input parameters of the analytical

model had to be changed to those of the wind tunnel model. Several springs with

different spring constants were obtained to test with the wind tunnel model on the

modified mount. The stiffness of the spring was input into the analytical model for

a prediction of the crossover velocity of the wind tunnel model. Sufficient rigidity of

the spring was needed to maintain stability until at least the lower velocity bounds

of the wind tunnel could be reached. The 3x4 foot closed-circuit wind tunnel reaches

steady flow between 30 and 40 ft/s. A 0.25 inch diameter steel rod was found to

be sufficient for the spring force. The distance between the hard mount in the wind

tunnel and the wind tunnel model was 6 inches, connected together via the steel rod.
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With a modulus of rigidity of 11,000,000 psi obtained from Raymer [32], an estimate

of the spring constant K was calculated to be 58.2 ft − lbs/rad. With this spring

constant, the estimated crossover velocity was 57.6 ft/s. Additionally, two other rods

were made of different lengths to adjust the spring constant and crossover velocity.

Using the 4 inch rod, the crossover velocity was estimated at 70.6 ft/s whereas the

8 inch rod produced an estimated crossover velocity of 49.9 ft/s.

The velocity of the wind tunnel was increased to the estimated crossover velocity

of the wind tunnel model using the six inch steel rod. At the estimated crossover

velocity, the wind tunnel model remained steady and stable. As the velocity in-

creased, the model remained stable until the mount began to oscillate vertically at

approximately 70 ft/s. The source of the oscillation was aerodynamic flutter due to

the wing aerodynamic center being well in front of the elastic axis of the mounting

system. The six inch steel rod was replaced by the eight inch steel rod with the lower

spring constant. The velocity was again increased slowly up to 70 ft/s where the

model remained steady and stable the entire time. Again, at 70 ft/s the model began

to oscillate vertically.

Several other springs were tested to see if the system would become unstable.

Spring constants with values of 5.3 ft − lbs/rad and 26.5 ft − lbs/rad were tested.

Both springs, when placed on the model and tested, didn’t allow the system to become

unstable. The wind tunnel model remained stable at velocities exceeding 70 ft/s.

Because of the continued stability of the wind tunnel model, the spring constant was

drastically reduced to 0.0357 ft− lbs/rad. The wind tunnel velocity was continually

increased to 120 ft/s without any effect on the stability of the model. The wind

tunnel model continued to remain steady and stable at the high velocity.
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5.4.2 System Properties

The number of wing segments was reduced to six and the mass moments of

inertia was adjusted for the physical properties of the wind tunnel model. The bifilar

pendulum described in Section 5.3.1 was used to measure the mass moments of inertia.

The pitching mass moment was changed to 0.0002 slugs − ft2 and the rolling mass

moment of inertia was changed to 0.153 slugs− ft2.

5.4.3 Analysis of Results

Additional tests of the wind tunnel model were performed as a verification of the

analytical model results. The analytical model was modified to predict the stability

of the wind tunnel model with different spring constants. The initially estimated

crossover velocity using the steel rod described in Section 5.4.1 was approximately

57.6 ft/s with a frequency of 3.0 Hz. The root locus plot for the wind tunnel model

is shown in Fig. 5.26.

Several different explanations were considered for the discrepancy between the

predicted behavior and observed behavior of the wind tunnel model. One hypothesis

was that friction in the roll and pitch bearings was affecting the results. To evaluate

this hypothesis, friction terms were added to the equations of motion as described in

Section 4.5. The friction terms provide increased damping to the system, but the exact

values were unknown. In order to find approximate values of the friction coefficients

that would reproduce the observed behavior, the values were varied in order to have

the computer model predict stability up to 120 ft/s. The rolling friction was the

larger driver and therefore was varied to determine the value of pitching friction

required to maintain the stability at 120 ft/s. A plot of the combination of friction

coefficients that provided stability at 120 ft/s is shown in Fig. 5.27. The combination
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Figure 5.26: Root locus plot for the wind tunnel model
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Figure 5.27: Friction coefficients for maintained stability with unsteady aerodynamics
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of the coefficient of friction for roll and pitch has to be greater than the linear trend

of 35.686µk,roll + µk,pitch = 2.7628. For all combinations of the friction coefficients

greater than or equal to 2.7628, the model is stable at or above 120 ft/s. Since the

wind tunnel model remained stable to 120 ft/s, it is inferred that the combination

of the coefficients of friction is at or above the trend line.

Figure 5.28: Friction coefficients for maintained stability without unsteady aerody-
namics

In contrast to the larger experimental model, for the wind tunnel model un-

steady aerodynamics were determined to be unnecessary because the reduced fre-

quency ranged from 2.63e-3 to 1.34e-3, depending on the value of the rolling friction

coefficient. When unsteady aerodynamics were removed from the system, the same

linear trend in the friction coefficients occur but the values were slightly changed as

shown in Fig. 5.28. The new linear trend line is 36.923µk,roll + µk,pitch = 5.6454. The
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required value of the rolling friction for stability at 120 ft/s has been increased slightly

but the relationship of the pitching friction compared to the rolling friction remains

approximately the same. Just as with the unsteady aerodynamics on, all combina-

tions of pitching and rolling friction coefficients that are greater than or equal to the

linear trend provide stability to the model at speeds greater than or equal to 120

ft/s.

5.4.4 Friction Discussion

The moment produced by the friction could be determined by estimating the

angular velocity of the rolling and pitching motions. The pitching and rolling frictions

were modeled as M = µkpitch θ̇ and M = µkrollφ̇ respectively with the values of µkpitch

and µkroll being input parameters in the analytical model as described above. If

the friction coefficient between the steel rod and aluminum block of the wind tunnel

model exceeds the largest rolling coefficient value in Figs. 5.27 and 5.28, then the

model would always be stable up to 120 ft/s.

The angular velocity was modeled by

φ̇ (t) = Aω cosωt (5.7)

The maximum angular velocity occurs when cosωt = 1 so the angular velocity sim-

plifies to

φ̇ (t) = Aω (5.8)

The frequency, ω, and the rolling friction coefficient, µkroll , come from the analytical

model and were 0.473 and 0.076 respectively. A maximum roll angle of 10 degrees was

estimated and the total moment induced by the rolling friction was calculated to be
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0.00629 ft− lbs. A dry bearing was used and the friction torque could be calculated

as

M = Pµ
d

2
(5.9)

where P is the net loading force, d is the shaft diameter, and µ is the dimensionless

friction coefficient between the two bearing materials.

The net loading force was the difference between the system weight and the lift

produced by the wind tunnel model. The total system weight for the wind tunnel

model was 5.164 lbs. An estimate of the total lift produced by the wind tunnel model

at 120 ft/s was used to determine the net load on the bearing to be used in Eqn. 5.9.

A CL of 0.2 was used for the lift estimate based upon the 5 degree control surface

deflection. The estimated lift produced by the wind tunnel model at 120 ft/s was

7.43 lbs which gives a net force on the bearing surface of 2.266 lbs. Setting Eqns. 5.8

and 5.9 equal to each other, a value for µ was calculated to be 0.27. From Table 5.6,

Table 5.6: Selected values of coefficients of friction [33]
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the coefficient of friction between steel and aluminum is 0.5 which is almost double

the required coefficient of friction to provide stability to the wind tunnel model up to

a velocity of 120 ft/s.

When unsteady aerodynamics were turned off, the rolling coefficient estimated

by the analytical model changed to 0.152 with a slight reduction of the frequency to

0.472 rad/s. Using the same process as described above, an estimated dimensionless

coefficient of friction was calculated as 0.5 which is the same as the coefficient of

friction between aluminum and steel [33]. From the estimates of the angular velocity

and the lift produced by the model, the coefficient of friction between aluminum and

steel is sufficient to provide stability to the wind tunnel model up to speeds of 120

ft/s.

The 6 inch steel rod provided a spring constant of 58.2 ft−lbs/rad from which the

analytical model predicted a crossover velocity of 57.6 ft/s. The wind tunnel model

remained stable up to 70 ft/s before the system began to oscillate up and down and

the test terminated. The system did not have a rolling bearing and therefore the only

friction present in the system was from the pitch bearing of each wing segment. The

two bearing surfaces consisted of a steel spar and a brass tube inside each segment

which rotated about the spar. For this system, the pitching angular velocity was

estimated using the same method as the rolling angular velocity. The amplitude was

5 degrees with a frequency of 19.046 rad/s. The estimated lift produced by a single

segment was 0.388 lbs. A µkpitch of 0.0011 provided a crossover velocity of greater than

70 ft/s in the analytical model. Solving for the dimensionless coefficient of friction,

the value of friction required to stabilize the system was 0.45 which is equal to the

coefficient of friction between brass and steel provided by Muvdi in Table 5.6 [33].
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Friction forces provide damping to the wind tunnel model and were significant

enough to provide stability to the system throughout all tested velocities. The coeffi-

cients required to maintain stability of the system for both the large spring constant

and the small spring constant were within experimental values provided by Muvdi.
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Chapter 6

Conclusions

A wind tunnel model of the segmented free wing was constructed and tested in

the Auburn University wind tunnel. Initial results from the wind tunnel tests showed

a 64% reduction in the rolling moment coefficient when compared to a conventional

free wing and a 29% reduction compared to a torsionally free left and right free wing.

These positive results showed that the segmented free wing does have the capability

to respond to both time-varying and span-varying turbulence.

After the initial testing of the wind tunnel model, a conceptual model of a seg-

mented free wing was designed and fabricated at Auburn University. Initial testing

was conducted by mounting the segmented free wing on a truck for aerodynamic test-

ing. A repeatable divergent rolling oscillation emerged at velocities between 22 and 29

ft/s when the segmented free wing was mechanically restrained in roll. When allowed

to roll freely, the segmented free wing would roll over to the left or right but would

not oscillate back. Once the wing rolled over, the wing remained resting against the

stop. From previous results published by Porter and Brown [3], the divergent mode

was presumed to be the divergent spiral mode associated with free wing when the left

and right wings are allowed to be torsionally independent for each other.

Several modifications to the segmented free-wing properties were made in an

attempt to stabilize the system and included changing the rolling mass moment of

inertia, the center of gravity position, and the number of segments. None of the

modifications to the properties increased the stability of the segmented free wing.

The crossover velocity at which the wings began to oscillate in the mechanically
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restrained system was virtually unchanged and a large change in the frequency of the

oscillation was not seen.

The segmented free-wing design was modified by adding fixed segments to the

wing tips varying in size from six inches to 24 inches in span. All the fixed segments

provided dynamic stability to the system for all experimental velocities. When the

system was allowed to freely roll, the fixed segments provided greater stability, but

overall, the system was only neutrally stable. With the 24 inch segments, the system

was capable of being trimmed, but no damping occurred if the system was perturbed.

However, the divergent mode that was seen previously did not occur. The segmented

free wing with the six-inch fixed segments was capable of being trimmed but was

extremely sensitive to any kind of perturbation.

An analytical model was developed as a result of the experimental testing of

the segmented free wing. The computer model, using eigen analysis, was successfully

able to predict the divergent oscillation in the mechanically restrained system and the

divergent mode in the mechanically free system. The velocity at which the analytical

model predicted the oscillation to occur was higher than what occurred in experimen-

tation. Errors in the model parameters used in the model may have contributed to

this discrepancy. When the parameters were modified based upon estimates of the

error, the same divergent modes were predicted but the crossover velocity at which

the oscillation occurred dropped to 29.9 ft/s, which is within the upper bound of

the experimental velocity. When the fixed segments were attached in the analytical

model, the results matched the experimental results; the oscillation was damped out

and the system was dynamically stable in the mechanically restrained system and

neutrally stable in the free-to-roll system.

Finally, a wind tunnel model was tested to verify the analytical model with mixed

results. The wind tunnel provided positive preliminary results of the responsiveness of
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the segmented free-wing design to adverse conditions by having the largest reduction

in the rolling moment when compared to the other configurations. However, the

wind tunnel model failed to oscillate at the predicted velocity, but due to the smaller

aerodynamic forces, friction was believed to be a larger driver in that system. A

lower bound for the combination of the rolling and pitching friction coefficients was

developed. Friction coefficients above those bounds provide a stable wind tunnel

model up through all tested velocities. Estimates of the friction coefficients required

to stabilize the wind tunnel model were calculated. The calculated friction coefficients

were within experimental values and thus friction in the system was sufficient to

stabilize the wind tunnel model at all tested velocities.

Overall, the segmented free-wing conceptual design is intended for use in adverse

environments where span varying conditions are a significant problem. This design is

most useful in the High Altitude, Long Endurance (HALE) aircraft design area where

the transition through the troposphere can be extremely hazardous and potentially

fatal to the vehicle. Initial results show promise in the capability in dealing with the

span varying turbulence, but this research focused mainly on the dynamic stability

of the segmented free-wing conceptual design.
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Chapter 7

Future Work

Additional studies need to be performed to truly understand the abilities of the

segmented free wing to adjust to spanwise varying turbulence. Initial results were

positive but additional tests must be conducted. Aerodynamic properties and control

characteristics such as roll rate need to be determined in order to experimentally fly

the segmented free wing. Additionally, the ratio of the area of the fixed segments

compared to the wing area of the free-wing segments for sufficient dynamic stability

needs to be determined. Finally, the ability to control the segmented free wing needs

to be determined due to the lack of damping from perturbations due to the neutrally

stable free-to-roll system.
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