
Fast Solution of Large-Body Problems Using Domain Decomposition

and Null-Field Generation in the Method of Moments

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee.

This dissertation does not include proprietary or classified information.

Tyler N. Killian

Certificate of Approval:

Michael E. Baginski
Associate Professor
Electrical Engineering

Sadasiva M. Rao, Chair
Professor
Electrical Engineering

Lloyd S. Riggs
Professor
Electrical Engineering

Tin-Yau Tam
Professor
Mathematics

George T. Flowers
Dean
Graduate School

Fast Solution of Large-Body Problems Using Domain Decomposition

and Null-Field Generation in the Method of Moments

Tyler N. Killian

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 18, 2009

Fast Solution of Large-Body Problems Using Domain Decomposition

and Null-Field Generation in the Method of Moments

Tyler N. Killian

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Tyler N. Killian, son of John and Robin Killian, was born on March 9, 1983,

in Gadsden, Alabama. He attended high school at Sand Rock High School in Sand

Rock, Alabama and graduated in 2001. After high school he attended Auburn Uni-

versity where he graduated Summa Cum Laude with a Bachelor’s degree in electrical

engineering in 2005. In the fall semester 2005, he entered graduate school at Auburn

University and obtained the Master’s degree in electrical engineering in the summer of

2008. The following semester he entered the Ph.D. program in electrical engineering

at Auburn University.

iv

Dissertation Abstract

Fast Solution of Large-Body Problems Using Domain Decomposition

and Null-Field Generation in the Method of Moments

Tyler N. Killian

Doctor of Philosophy, December 18, 2009
(M.S., Auburn University, 2008)
(B.S., Auburn University, 2005)

104 Typed Pages

Directed by Sadasiva M. Rao

In this work, a new Method of Moments (MoM) solution procedure for calculat-

ing electromagnetic scattering and radiation by electrically large conducting bodies

is presented. By using domain-decomposition, conducting structures are divided into

several disjoint pieces. By replacing basis functions on each piece of the structure

with specially designed functions, null fields may be produced on surrounding areas

thereby decoupling sections of the geometry. Also, the geometrical divisions induce

a partitioning on the overall system matrix. By creating these null fields, the blocks

in the system matrix with the largest element values are eliminated. The result is

a block-diagonally-dominant moment matrix that can be used in an iterative proce-

dure for rapid convergence. Furthermore, due to the nature of the algorithm, the

solution procedure can be divided cleanly among multiple processors for extra sav-

ings in CPU resources. Finally, since an iterative procedure is employed, the large

memory requirements typical in MoM problems can be effectively sidestepped.

v

Acknowledgments

To the author’s parents, he expresses his appreciation for their love and encour-

agement throughout life.

To his advisor, Dr. Sadasiva M. Rao, he thanks for his patience and top-notch

guidance. His expertise has been invaluable for this work.

To Dr. Michael Baginski, he thanks for his encouragement and interesting tech-

nical discussions.

To the Naval Research Laboratory, he expresses his appreciation for the financial

support that made this work possible as well as for their helpful technical suggestions.

To the NASA Langley Research Center, he thanks for the GSRP fellowship and

travel funding that allowed him to present his research at technical conferences.

vi

Style manual or journal used Journal of Approximation Theory (together with

the style known as “aums”). Bibliography follows van Leunen’s A Handbook for

Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

vii

Table of Contents

List of Figures x

1 Introduction and Overview 1
1.1 Motivation . 1
1.2 Current Methods . 2
1.3 Concepts . 4
1.4 General Procedure . 5
1.5 Simple example . 13
1.6 Parallel Processing . 17
1.7 Efficiency . 19

2 Two-dimensional conducting cylinders 21
2.1 Electric-Field Integral Equation - EFIE 21
2.2 Magnetic-Field Integral Equation - MFIE 25
2.3 Combined-Field Integral Equation - CFIE 27
2.4 Element Grouping . 28
2.5 Numerical Results . 30
2.6 Conclusions . 42

3 Arbitrarily shaped three-dimensional conductors 43
3.1 Electric Field Integral Equation - EFIE 43
3.2 Magnetic Field Integral Equation - MFIE 47
3.3 Combined Field Integral Equation - CFIE 48
3.4 Element Grouping . 49
3.5 Numerical Results . 50
3.6 Conclusions . 57

4 Three-dimensional conductor periodic arrays 58
4.1 Integral Equation Formulation . 58
4.2 Element Grouping . 58
4.3 Numerical Results . 60
4.4 Conclusions . 62

viii

5 Conclusions 64
5.1 Scaling and Parallel Efficiency . 64
5.2 Element Grouping . 68
5.3 Further Research . 68

Bibliography 70

Appendices 72

A Block Gauss-Seidel Iterative Solver 73

B Radar Cross Section (RCS) 75

C Matrix Partitioning and Parallel Processing 78

D GPU Acceleration 90

ix

List of Figures

1.1 Pulse functions on two 2D strips. 13

2.1 Pulse function for two-dimensional TM polarization. 22

2.2 Pulse function for two-dimensional TE polarization. 24

2.3 Two-dimensional TE polarization testing locations. 25

2.4 Element grouping for two-dimensional case. 29

2.5 Elimination of groups within near-field. 29

2.6 Cross section of the 50λ square cylinder. 32

2.7 Real currents in the shadow region (Face#1) for square cylinder with
50λ sides with TM incident wave Ho = 1 at 350. 33

2.8 Imaginary currents in the shadow region (Face#1) for square cylinder
with 50λ sides with TM incident wave Ho = 1 at 350. 33

2.9 Real currents in the shadow region (Face#2) for square cylinder with
50λ sides with TM incident wave Ho = 1 at 350. 34

2.10 Imaginary currents in the shadow region (Face#2) for square cylinder
with 50λ sides with TM incident wave Ho = 1 at 350. 34

2.11 Real currents in the shadow region (Face#1) for square cylinder with
50λ sides with TE incident wave Ho = 1 at 350. 35

2.12 Imaginary currents in the shadow region (Face#1) for square cylinder
with 50λ sides with TE incident wave Ho = 1 at 350. 35

2.13 Real currents in the shadow region (Face#2) for square cylinder with
50λ sides with TE incident wave Ho = 1 at 350. 36

2.14 Imaginary currents in the shadow region (Face#2) for square cylinder
with 50λ sides with TE incident wave Ho = 1 at 350. 36

x

2.15 Object with complex shape and concavity. 37

2.16 Real currents for object with concavity with 100λ total circumference
and TM incident wave with Ho = 1 at 450. (a) Real part and (b)
Imaginary part. 38

2.17 Imaginary currents for object with concavity with 100λ total circum-
ference and TM incident wave with Ho = 1 at 450. (a) Real part and
(b) Imaginary part. 38

2.18 Real currents for object with concavity with 100λ total circumference
and TE incident wave with Ho = 1 at 450. (a) Real part and (b)
Imaginary part. 39

2.19 Imaginary currents for object with concavity with 100λ total circum-
ference and TE incident wave with Ho = 1 at 450. (a) Real part and
(b) Imaginary part. 39

2.20 Geometry for two-dimensional strip array. Each array element is 2λ in
length and they are separated by 0.1λ. 40

2.21 RCS for 2D strip array with 100 2λ elements. The incident wave is
normal to the array with Ho = 1 and has TM polarization. 41

2.22 RCS for 2D strip array with 100 2λ elements. The incident wave is
normal to the array with Ho = 1 and has TE polarization. 41

3.1 Quantities for RWG basis functions. 45

3.2 Grouping for arbitrary 3d case. X’s represent null groups. 50

3.3 Triangular mesh for one octant of 5λ radius sphere. 54

3.4 Bistatic RCS for 5λ radius sphere. First and second iterations and
MoM BOR code. 54

3.5 Triangular mesh for section of 12λ × 12λ square plate. 55

3.6 Bistatic RCS for 12λ×12λ square plate. The first and second iterations
are shown. 55

3.7 Triangular mesh for French Mirage aircraft geometry. 56

3.8 Bistatic RCS for aircraft, first and second iterations 56

xi

4.1 Finite periodic conducting array periodic in two dimensions. 59

4.2 Elimination of groups within near-field for finite periodic array. 59

4.3 Geometry for 50 x 50 0.5λ2 plate finite periodic array. 63

4.4 Bistatic RCS result after 1 and 2 iterations. 63

5.1 Ratio of single CPU time to 1, 2, 4, and 6 processors for machine one. 67

5.2 Ratio of single CPU time to 1, 2, 4, 6, and 8 processors for machine two. 67

D.1 Ratio of CPU to GPU execution times for matrix fill and conjugate
gradient solver. 92

xii

Chapter 1

Introduction and Overview

In this chapter, we will introduce a basic overview of the technique as well as

the motivation behind it. Furthermore, the strengths and weaknesses of current and

previous techniques will be highlighted. The general concepts used in the technique

will be given as well as the simple steps used to achieve accurate currents for large-

body problems. Furthermore, this chapter acts as an outline for applying the method

to the various formulations in the following chapters.

1.1 Motivation

The Method of Moments [1] is an accurate method used in electromagnetics to

solve for the electric currents induced on an object due to an incident field. The

object of interest is discretized for representation on a computer. Usually, this is

either done with a triangular mesh for three-dimensional objects or line segments

for two-dimensional objects. Since the Method of Moments is a Boundary Element

Method (BEM), then only the object under study needs to be discretized. Once this

is done, a set of N basis functions are defined on the object to represent the desired

currents. Finally, a system matrix representing the interaction between each pair of

basis functions is constructed. This matrix can be inverted to solve the linear system

relating the currents to the incident field. Filling the matrix typically requires O(N2)

operations while the inversion procedure requires O(N3) operations. For large-body

problems, these steps represent a problem both in terms of storage and solution

1

speed. In order to address these issues, we need a method that can solve the problem

piecemeal to reduce storage and also a solver requiring much fewer operations than

full matrix inversion or LU decomposition.

1.2 Current Methods

There are currently a variety of methods used to combat the aforementioned

issues with the Method of Moments. Brute force methods, such as using supercom-

puters, attempt to directly solve the linear system using multiple processors [10].

Furthermore, they can solve large systems by storing the system matrix on hard disk.

However, this method scales very poorly. Parallel LU decomposition cannot be fully

parallelized and therefore the efficient gains become smaller with each additional pro-

cessor. Furthermore, large problems can require hundreds of gigabytes of storage if

the full system matrix is generated. Another method is the use of entire domain basis

functions. Here, functions are defined over larger parts of the geometry. Using this

technique, fewer functions can be used on the overall geometry. The downside is that

these functions can only be defined for canonical shapes such as squares, circles, etc.

If the geometry cannot be represented in terms of these shapes, the functions cannot

be utilized. Another popular method is the Fast Multipole Method (FMM) [8]. Here,

the geometry is broken up and basis functions are grouped together. By using wave

translation, each set of functions is allowed to radiate “as a group” thereby allowing

us to avoid calculating all the individual elements in the system matrix when using

an iterative solver such as the conjugate gradient method. By accelerating the vector

products in the iterative solver, large problems have been solved [9]. Since the method

approximates parts of the system matrix, it may not be accurate when solving for

precise current values on a scatterer. Furthermore, the iterative procedure is typically

2

the conjugate gradient solver [12], which can display erratic or slow convergence and

numerical problems due to precision round-off. An additional method is to generate

characteristic basis functions, where entire domain functions are generated at run

time [11]. Here, the structure is broken up into pieces. For each piece, an incident

wave is applied at various angles and the resulting currents are found for each case.

Each current solution then becomes a basis function. A singular value decomposition

is then used to find the minimal set of basis functions from this collection that is

necessary to represent the currents on that part of the structure. Once this has been

done for each piece of the structure, all the functions are collected and a new system

matrix is generated and solved using these new functions. If there are very few basis

functions, the new linear system can be solved very efficiently. However, since each

piece is considered separately, there is no guarantee that the new basis functions can

properly account for the interaction with the rest of the structure. Furthermore, for

complex shapes, there is no guarantee that the number of unknowns will be much

less than when sub-domain functions are used. Also, research has been done in trying

to create a sparse system matrix [16],[17]. In [16], a special set of basis functions

is used where the functions produce a highly directional field pattern with small

sidelobes. Test functions in line with the sidelobes will then produce small matrix

elements. The elements are then simply dropped since they are small in magnitude.

Although this is an interesting idea, it appears that the system matrix becomes ill-

conditioned for the new basis functions. Furthermore, the solution is still sensitive to

these matrix elements, irregardless of how small they are and therefore they cannot

be dropped. In [17], a set of entire domain functions are developed with coefficients

that are solved for at runtime. Although the number of unknowns remains the same,

the new functions generate a highly sparse, banded matrix. This system may then be

solved without matrix inversion. Unfortunately, the functions are not easily extended

3

to three-dimensional problems. Finally, attempts have been made to diagonalize the

system matrix by a basis change to fully computed entire-domain basis functions [7].

In this work, we use the concepts introduced in [6] and [7] for decoupling various parts

of the structure. However, we do not attempt to form a full eigenfunction solution

over the entire structure as that is not computationally efficient. Instead, we decouple

grouped basis functions according to a nearest neighbor criteria. By applying these

concepts in a different way, we are able to form a much more efficient solution.

1.3 Concepts

In this section, the basic concepts used in the method will be covered. First, it

is imperative that sub-domain functions be used in the original MoM formulation.

The original MoM matrix will form the basis for the method. Here, coupling between

functions depends directly on their spatial separation. Typically, the coupling falls off

as 1
R

or 1
R2 where R is the distance between two functions. Thus, the largest elements

in the system matrix are for those functions which are closest together spatially. Our

strategy will be to eliminate those elements in the system matrix which are largest.

In order to accomplish this, first functions will be grouped spatially using a nearest

neighbor criteria. The system matrix can then be rearranged such that elements in

the same group are in the same partitions in the matrix. Next, we take each group

one at a time. Adjacent groups within a given radius (usually a few wavelengths)

are considered “near-field groups”, while those outside are called “far-field groups.”

We wish to decouple our chosen group from those groups which are in the near-field

region. We generate a new set of basis functions on the group to replace the sub-

domain functions. These functions consist of a linear combination of the original

sub-domain functions with the added criteria that they produce a null field on the

4

groups in the near-field. This corresponds to creating zeros in the system matrix

thereby eliminating the largest elements. Once this procedure has been carried out for

each group, we are left with a new system matrix with partitions corresponding to the

constructed groups. Furthermore, this final matrix will be block-diagonally-dominant

due to the elimination of near-field groups. This matrix will converge very quickly

in an iterative scheme making use of its structure, such as the Gauss-Seidel scheme.

Computing the new basis essentially results in solving for the near-field interaction

while the iterative procedure solves for the far-field interactions. Furthermore, the

iterative procedure will take very few iterations allowing us to speed up the solution

procedure. So, by making use of the physics of the problem, we can solve the near-

field and far-field problems separately enabling us to maintain accuracy where it is

most needed and gain speed where accuracy is not as essential. Finally, each process

along the way can be subdivided cleanly so that the method is amenable to parallel

processing.

1.4 General Procedure

The procedure begins with a standard MoM formulation using sub-domain basis

functions. Sub-domain basis functions are defined only over a small portion of the

geometry and are typically on the order of a tenth of a wavelength in size. This

requirement ensures that when two basis functions are separated by a large distance,

the corresponding matrix elements representing the coupling between the functions

will be small in magnitude. Next, the functions are placed into multiple disjoint

groups. These groups may be decided by the geometry of the problem. For example,

for an antenna array, the functions on each array element may be a group in the

system. Otherwise, we may simply group elements which are electrically close to one

5

another. The functions within each group are then renumbered if necessary so that

these groups effectively partition the system matrix so that each group will correspond

to one self-block along the diagonal. Once the groups have been properly formed, we

select a “source” group and then begin creating a new set of basis functions for that

group. We choose “test” points (points where the new basis functions will create

null fields) corresponding to those elements in the MoM matrix which are the largest.

Since our original basis functions are sub-domain functions, the largest elements in

the matrix will correspond to functions which are geometrically close to one another

on the structure. Consequently, we establish a nearest neighbor criteria where groups

that are within a predetermined radius (typically a few wavelengths) are included as

test groups. Since these groups are close to the source, the coupling between these

elements and the source elements will be significant and the corresponding matrix

elements will be large. Once the test points have been chosen, we form a new set

of basis functions to replace the source group functions. Each new basis function

is a linear combination of a sub-domain function from the source group, which is

given a coefficient of one, and all the functions from the test groups, each of which is

assigned a thus far undetermined coefficient. To solve for these unknown coefficients,

or weights, for a source group of size K, we form K linear systems:

























Zt1t1 Zt1t2 · · · Zt1tn

Zt2t1 Zt2t2

...
. . .

Ztnt1 Ztntn

















































α1,j

...

αn,j

























= −

























Zt1sj

...

Ztnsj

























(1.1)

where j = 1, . . . , K and there are n testing locations and the Zm,n elements come from

the MoM system matrix. Also, the column vectors [αi,j] with i = 1, . . . , n represent

6

the desired coefficients for forming the new basis functions. Notice that the matrix to

be inverted is just a principal submatrix of the original MoM matrix with the indices

of the chosen test functions. Also, since there are n unknowns and n equations,

this system can be solved exactly if the matrix is nonsingular. Since the matrix

effectively represents solving a smaller method of moments problem, the matrix will

be nonsingular. Furthermore, as we move from one new source basis to another (as

j changes) in the same source group, only the right hand side of Eq. 1.1 is modified.

Therefore, for each source group, it is only necessary to invert one matrix. Finally,

in most situations, the number of test points is larger than the number of functions

in the source group. In this case, solving Eq. 1.1 can be made more efficient by

using LU decomposition and then using forward/backward substitution for multiple

right-hand sides.

Next, we let fi for i = 1, . . . , K be the original sub-domain functions and gi for

i = 1, . . . , K the new set of functions. The new functions are given by:

























gs1

gs2

...

gsK

























=

























fs1

fs2

...

fsK

























+

























α1,1 α2,1 · · · αn,1

α1,2 α2,2

...
. . .

α1,K αn,K

















































ft1

ft2

...

ftn

























(1.2)

Note that the [α] column vectors in Eq. 1.1 become rows in the matrix seen in Eq.

1.2. Finally, this process is carried out for each group in the structure.

By changing our source functions, we create a new system matrix Z̃. This can

be represented formally as:

Z̃ = ZR (1.3)

7

where Z is the original MoM system matrix for the sub-domain functions and R is

a sparse matrix representing a basis change from the sub-domain functions to the

new, null-field producing functions. R is constructed as follows. Note, each column

represents a new basis function. Since each new function is a linear combination of

the original functions we have

gi =
N
∑

j=1

βjfj (1.4)

where N is the number of unknowns. Column i in R will then be [β1, β2, . . . , βN]T .

Using our procedure, the replaced source function is always assigned a weight of 1

when the new functions are created. This means R will have ones along the diagonal.

Furthermore, test points are only chosen at locations near the source, not over the

entire structure. For points not chosen, we simply place a zero in R. Consequently,

R will be a sparse matrix, becoming more sparse as the system size increases. As

an example, suppose we have a system size of N = 5 with sub-domain functions

f1, f2, f3, f4, f5. In this case, Z, Z̃, and R are all 5 × 5 matrices. Now suppose we

wish to replace f2 with a function g2 = f2+α1f1+α2f3+α3f5 while leaving f1, f3, f4, f5

untouched. In this case we have

R =

































1 α1 0 0 0

0 1 0 0 0

0 α2 1 0 0

0 0 0 1 0

0 α3 0 0 1

































(1.5)

where f1, f3, f4, f5 are transformed into themselves and f2 is transformed into g2.

Note that although the subdomain functions were created with the purpose of rep-

resenting the electric current, they still form a true basis in that they may represent

8

any function, including other basis functions. In this way, any basis function can be

constructed from the original sub-domain functions without having to re-derive a new

mathematical formulation from scratch for the new functions.

Using this procedure, we may transform all of the original basis functions (using

only one R matrix), and thereby create a new system matrix. If we have M groups

and our original MoM matrix is partitioned as

























ZG1,G1
ZG1,G2

· · · ZG1,GM

ZG2,G1
ZG2,G2

...
. . .

ZGM ,G1
ZGM ,GM

















































IG1

IG2

...

IGM

























=

























VG1

VG2

...

VGM

























(1.6)

where the groups Gi for i = 1, . . . , M may vary in size, then the new system matrix

will look similar to the following:

Z̃ =









































Z̃G1,G1
[0] Z̃G1,G3

Z̃G1,G4
· · · [0]

[0] Z̃G2,G2

Z̃G3,G1
[0] Z̃G3,G3

Z̃G4,G1
Z̃G4,G2

Z̃G4,G4

...
. . . [0]

[0] Z̃Gn,Gn

































































ĨG1

ĨG2

...

ĨGM

























=

























VG1

VG2

...

VGM

























(1.7)

An important observation here is that certain partitions have been replaced with

zeros due to our choice of basis functions. Furthermore, the change of basis for a

group has the effect of creating zeros in that group’s block-column. Also, these zeros

produce nulls at locations which are close geometrically, but need not be close in the

system matrix. In fact, we do not have a banded matrix in general. Finally, solving

9

this system gives us the coefficients for the new basis functions, not the original

sub-domain functions. Our original system is transformed as follows:

ZI = V ⇒ ZRR−1I = V

⇒ (ZR)(R−1I) = V

⇒ Z̃Ĩ = V (1.8)

Once the new system has been solved, we can obtain the coefficients for the

original functions with

I = RĨ (1.9)

Since all the largest terms in the system matrix have been eliminated, the newly

created matrix is block-diagonally-dominant. Roughly, this means that the elements

of the diagonal blocks are much larger than the off-diagonal elements. We begin

solving this system by inverting the diagonal blocks and solving for currents as if the

non-diagonal blocks were zero:

























Z̃G1
0 · · · 0

0 Z̃G2

...
. . .

0 Z̃GM

















































ĨG1

...

ĨGM

























=

























VG1

...

VGM

























(1.10)

In effect, what we are doing is solving the system by taking into account only the near-

field interaction between elements. Since this type of interaction is very complex and

involves multiple reflections, we must solve this part of the problem exactly. Generally,

this solution will be fairly accurate overall and will lead to a more quickly converging

solution when used as the initial guess in an iterative scheme. An additional iterative

10

scheme may be useful because the off-diagonal blocks are not necessarily zero and

therefore it may be necessary to go through an additional step to further enhance the

accuracy of our solution.

Next, we take the initial current guess and use it as the starting point for the

Block-Gauss-Seidel iterative scheme as described in Appendix A. Since our matrix

Z̃ is block-diagonally-dominant and our iterative solver favors this type of matrix,

it will quickly converge to a solution. Typically, this requires only a few iterations.

Furthermore, this scheme has an interesting physical interpretation. To solve for a

new current value Ĩk+1
Gj

, we use

Ĩk+1
Gj

= Z̃−1
Gj ,Gj





VGj
−

M
∑

i=1

i6=j

Z̃Gj ,Gi
Ĩk
Gi





 (1.11)

where there are M groups and Ĩk
Gi

is the previously found solution for ĨGi
. The

summation in Eq. 1.11 represents the total field on group j due to the currents on the

rest of the structure. This means that Eq. 1.11 represents a modification in current

values at location j due to reflections on the structure. Therefore, our initial current

guess represents currents due to the incident wave plus all reflections within each

group. Further iteration represents additional reflections between the groups. Also,

note that since each group usually radiates in all directions, subsequent reflections will

be progressively smaller in magnitude as energy is radiated into the surrounding space.

Consequently, groups that are spatially separated by large distances will require very

few reflections to obtain convergence.

To summarize, we have five basic steps:

1. Group Formation - The geometry of the problem is divided up into disjoint

groups. Each group consists of a set of sub-domain basis functions.

11

2. Create new basis functions - For each group, a new set of basis functions is

constructed - one for each member of the group. For a given basis function

in the group, the new function will consist of that sub-domain function plus a

linear combination of the source functions at all the locations along the structure

where null-fields shall be produced. The function inside the group is given a

coefficient of one, while those outside (where nulls are produced) are given

unknown coefficients or weights. These weights can be solved for exactly by a

matrix inversion. Furthermore, only one matrix inversion is necessary for each

group.

3. Create new system matrix Z̃ - Once the new functions are generated, a new

system matrix is generated. Since the newly generated functions are linear

combinations of the original sub-domain functions, the elements of the new

system matrix are combinations of those from the sub-domain system matrix.

Also, the matrices can be partitioned such that the blocks correspond to the

basis groups found in step 1. The new matrix will be block-diagonally-dominant

since all the largest elements (due to near-field coupling) have been eliminated.

These null blocks are generated by the specially constructed basis functions.

4. Construct initial guess - We construct an initial guess in order to accelerate the

convergence of the iterative procedure. Here, we invert the diagonal blocks of

the new matrix and solve for the currents on the structure. This amounts to

finding the currents due to the incident wave excitation and the most dominant

near-field interactions on the structure. Since each group interacts weakly with

the ignored groups, this solution will be fairly accurate but can be made as

accurate as desired by further iteration.

12

5. Iterate for accuracy - The initial guess represents an approximate solution, but

one can iterate further to obtain more accuracy if necessary. Our iteration

scheme is the block adaptation of the Gauss-Seidel solver. Since the matrix

is block-diagonally-dominant and the solver is based on this property, it will

converge very quickly. Therefore, very few iterations will be necessary to get a

sufficiently accurate solution.

Notice that the method makes no mention of any specific MoM formulation.

In fact, as long as the basis functions are sub-domain functions, the MoM system

matrix will have a diagonally strong structure. Furthermore, the functions can be

properly grouped and the above procedure may be applied. Throughout the remaining

chapters, the procedure will be applied to a variety of formulations, including both

two-dimensional and three-dimensional problems.

1.5 Simple example

Here a simple example will be used to illustrate and clarify the concepts discussed

in the previous sections. In the example, there are 2 two-dimensional strips, each

carrying three pulse functions as shown in Figure 1.1. We will place the functions on

each strip into 2 separate groups: G1 = {f1, f2, f3} and G2 = {f4, f5, f6}.

Figure 1.1: Pulse functions on two 2D strips.

13

Here, the geometry provides us with a convenient group selection. For an arbi-

trary case, we simply create groups with functions that are geometrically close to one

another on the given structure.

Our choice of groups induces a natural partitioning on the MoM matrix. The

original sub-domain system matrix is given by:

Z =

























































Z1,1 Z1,2 Z1,3

Z2,1 Z2,2 Z2,3

Z3,1 Z3,2 Z3,3

































Z1,4 Z1,5 Z1,6

Z2,4 Z2,5 Z2,6

Z3,4 Z3,5 Z3,6

































Z4,1 Z4,2 Z4,3

Z5,1 Z5,2 Z5,3

Z6,1 Z6,2 Z6,3

































Z4,4 Z4,5 Z4,6

Z5,4 Z5,5 Z5,6

Z6,4 Z6,5 Z6,6

























































=









[ZG1G1
] [ZG1G2

]

[ZG2G1
] [ZG2G2

]









(1.12)

where ZGiGj
is the partition consisting of all the sub-domain MoM matrix elements

with sources from group Gj and test points on group Gi. In order for Z to be

block-diagonally dominant, the elements in ZG1G1
and ZG2G2

should be much larger

in magnitude than the elements in ZG1G2
and ZG2G1

. To eliminate ZG2G1
, we create

three new entire-domain basis functions to replace the sub-domain functions on Group

1, which we refer to as the source group. These will be given by:

g1 = f1 + α1f4 + β1f5 + γ1f6

g2 = f2 + α2f4 + β2f5 + γ2f6 (1.13)

g3 = f3 + α3f4 + β3f5 + γ3f6

14

The weights αi, βi, and γi are chosen such that their net effect is to produce null fields

at every point on the second strip. We will refer to Group 2 as the test group. To give

an example of how we find the coefficients for the new basis functions, we will solve

for g1. Mathematically, we can represent the null-field generation using the following

criteria:

Z4,1 + α1Z4,4 + β1Z4,5 + γ1Z4,6 = 0

Z5,1 + α1Z5,4 + β1Z5,5 + γ1Z5,6 = 0 (1.14)

Z6,1 + α1Z6,4 + β1Z6,5 + γ1Z6,6 = 0

We can obtain the coefficients α1, β1, and γ1 with the following relationship:

















α1

β1

γ1

















= −

















Z4,4 Z4,5 Z4,6

Z5,4 Z5,5 Z5,6

Z6,4 Z6,5 Z6,6

















−1 















Z4,1

Z5,1

Z6,1

















(1.15)

From this relationship, we can make a couple of important observations. First,

the matrix to be inverted is identical to the system matrix for the standard MoM

problem involving only the segments 4, 5, and 6. Since this problem is well-defined,

the inverse must exist and we can therefore solve for the coefficients exactly. Further-

more, if we try to solve for g2 or g3, we will use the same matrix, but will multiply

it by a different column vector. Therefore, only one matrix must be inverted to solve

for the coefficients for each group.

Once we solve Eq. 1.15, we obtain α1, β1, and γ1 and thereby generate the new

basis function g1. In a similar fashion, we can form g2 and g3. These functions replace

f1, f2 and f3. Likewise, we can replace f4, f5, and f6 with new functions g4, g5, and g6

15

to produce nulls on the first strip thereby eliminating ZG1G2
. We form a new system

matrix Z̃ by a source basis change to the newly formed g′

is. The elements in Z̃ are

then simply linear combinations of the original elements of Z. For example, if we wish

to generate the element Z̃2,1, we compute

Z̃2,1 = Z2,1 + α1Z2,4 + β1Z2,5 + γ1Z2,6 (1.16)

In matrix notation we create Z̃ with the following basis transformation:









































Z̃1,1 Z̃1,2 Z̃1,3 Z̃1,4 Z̃1,5 Z̃1,6

Z̃2,1 Z̃2,2 Z̃2,3 Z̃2,4 Z̃2,5 Z̃2,6

Z̃3,1 Z̃3,2 Z̃3,3 Z̃3,4 Z̃3,5 Z̃3,6

Z̃4,1 Z̃4,2 Z̃4,3 Z̃4,4 Z̃4,5 Z̃4,6

Z̃5,1 Z̃5,2 Z̃5,3 Z̃5,4 Z̃5,5 Z̃5,6

Z̃6,1 Z̃6,2 Z̃6,3 Z̃6,4 Z̃6,5 Z̃6,6









































=









































Z1,1 Z1,2 Z1,3 Z1,4 Z1,5 Z1,6

Z2,1 Z2,2 Z2,3 Z2,4 Z2,5 Z2,6

Z3,1 Z3,2 Z3,3 Z3,4 Z3,5 Z3,6

Z4,1 Z4,2 Z4,3 Z4,4 Z4,5 Z4,6

Z5,1 Z5,2 Z5,3 Z5,4 Z5,5 Z5,6

Z6,1 Z6,2 Z6,3 Z6,4 Z6,5 Z6,6









































×









































1 0 0 α4 α5 α6

0 1 0 β4 β5 β6

0 0 1 γ4 γ5 γ6

α1 α2 α3 1 0 0

β1 β2 β3 0 1 0

γ1 γ2 γ3 0 0 1









































(1.17)

Note that we only need to store the lower left and upper right hand blocks since

the remaining partitions are simply identity matrices. Also, note that we only need

to store coefficients for locations where we want to produce null fields. In larger

problems, we only produce nulls on near-field elements, not the entire structure.

16

Thus, if we have Z̃ = ZR, then R will be very sparse and we will only need a minor

amount of storage.

Our final partitioned matrix is:

Z̃ =









Z̃G1G1
0

0 Z̃G2G2









(1.18)

where the off-diagonal blocks are exactly zero by design.

In this example, the system may be solved exactly by simply inverting the sub-

blocks Z̃G1G1
and Z̃G2G2

. In a problem where there are several groups, it is unnecessary

to produce nulls everywhere outside of a source group. Only the test points in the

near-field neighborhood must have nulls since their corresponding matrix elements

are the most significant. Additional test points from the remaining groups may be

picked up sparsely if one so chooses, although this appears to be unnecessary and adds

complexity to the algorithm. The only requirement is that the group blocks corre-

sponding to the self terms dominate the terms in their respective columns and rows.

Since Z̃ can be made highly block-diagonally dominant, the system will converge

quickly when used in an iterative scheme.

1.6 Parallel Processing

Finally, since each part of the solution procedure can be further divided into

computationally separate pieces, the method is highly amenable to parallel processing.

In this section, we will discuss how each part of the algorithm may be implemented

in a parallel scheme.

In order to construct the new system matrix Z̃, we must first generate the ele-

ments of the original matrix Z. Each one of the matrix elements may be computed

17

completely independently from the other elements. Furthermore, the elements may be

distributed evenly across each of the processors allowing for equal work load. There-

fore, this part of the algorithm tends to scale linearly with the number of processors

used. In the present work, only one block-row of Z was stored in memory at a time.

The row was broken up according to the group choice and then the column blocks

corresponding to the groups were divided amongst the processors.

When solving for the coefficients used to construct the new basis functions, each

source group can be considered separately. Each processor may be assigned a set of

groups, each of which requires a single matrix inversion. If the groups are similar in

size, they may simply be distributed evenly across the processors. If they are uneven,

the processors can each get a different number of groups in order to balance the load.

Here, dynamic scheduling may be used so that when a CPU becomes available, it

simply advances to the next group and begins solving for weights. In this type of

situation, if one CPU becomes occupied with a large set of coefficients, the remaining

CPUs can continue to work on smaller groups. Good load balancing can be achieved

in this way. For example, one CPU can solve for the coefficients on one group with

N null-field points, while another can solve eight groups, each of which has N/2 null-

field points. Here, each group solution carries a complexity of O(N3) where N is the

number of null-field points that must be produced for that source group.

Typically, one iteration of the solver takes roughly the same amount of time

as does one matrix-vector multiply with the same dimensions as the system size.

Therefore, the iteration procedure generally does not require parallel processing since

it is a very fast procedure and requires only a few iterations. In this work, this

procedure was not made parallel. However, it is possible to create a parallel version

if necessary. If the Gauss-Seidel version is used, then as we move from one group to

the next solving for currents, we may take each group and assign subsets of the basis

18

functions to each processor. Each processor can then form the summations given in

Eq. A.3. The inverse in Eq. A.3 may then be done by a single CPU. Alternatively,

one could use a block-Jacobi iterative solver, which is essentially the same as the

Gauss-Seidel solver with the exception that once a set of currents are found for a

group, they are not used until the next iteration. The Gauss-Seidel version uses

those new current values immediately, leading to faster convergence. In a parallel

scheme, the block-Jacobi solver would have the benefit that each group of currents

could be found independently and thus the algorithm is slightly more parallel than

the Gauss-Seidel version.

1.7 Efficiency

Here we compare the efficiency of the method to a full LU decomposition solution.

We assume that we have divided a structure with N basis functions into K groups,

each with M unknowns. Furthermore, we assume that each source group produces a

total of P null field points. There are three major sources that determine the amount

of required memory. First, we must store the coefficients for each group. There are

M sets of P coefficients for every source group. Therefore, we must store K ×M ×P

complex numbers for the coefficients. Next, we need enough scratch space to solve for

the coefficients. This requires enough room to store a P × P matrix, or P 2 complex

values. Also, we must store a block-row of the partitioned matrix for use in the

iterative scheme. This requires storing M ×N complex values. So we have a required

storage of approximately KMP + P 2 + MN complex values. For the full solution,

we must store the entire matrix for a total of N2 complex values. Note that we have

K ≪ N , M ≪ N , and P ≪ N so that we require much less storage than does

storing the entire matrix. For example, suppose that we have N = 100000, K = 400,

19

M = 250, and P = 2000. Then we have KMP+P 2+MN
N2 = 0.024. So, in this case, we

require less than 3 percent of the storage needed for storing the full matrix.

We can also compare the necessary CPU requirements for the two methods. For a

LU decomposition, the number of operations are on the order of N3. For our method,

there are a few essential steps that determine the characteristic CPU scaling of the

solution. First, since the number of groups scales linearly with N , then the required

operations for finding the coefficients does so as well. Next, creating the new system

matrix is equivalent to multiplying the sub-domain system matrix by a sparse matrix.

Normally, matrix multiplication is an O(N3) process, but since one of the matices is

highly sparse, this step will scale as N2. Finally, the algorithm requires generating

the original system matrix and this is an N2 procedure. Therefore, our method is an

order of magnitude faster than a full solution. The numerical examples given in this

work demonstrate this type of behavior in terms of actual wall clock time.

20

Chapter 2

Two-dimensional conducting cylinders

In this chapter, the procedure is applied to arbitrarily shaped two-dimensional

conducting cylinders, where the cylinders are infinite along the z-axis. First, we

develop the integral equations for the electric and magnetic field formulations for

both TE and TM polarizations. Next, we show how those are used to construct

the combined-field formulation to avoid problems with internal resonances for closed

bodies. Furthermore, we discuss how the geometry is decomposed into groups so

that the method may be properly applied. Also, we display the technique used to

generate null fields so that groups located near one another on the structure may be

mathematically decoupled from each other in order to generate a block-diagonally-

dominant matrix. Finally, some example problems and results are given to show the

effectiveness of the technique.

2.1 Electric-Field Integral Equation - EFIE

In this section, we present the Electric Field Integral Equation for both Trans-

verse Electric (TE) and Transverse Magnetic (TM) incident waves. Also, we represent

the induced current in terms of pulse expansion functions and develop the matrix com-

ponents when testing with pulse functions. Applying the boundary condition that

the total tangential electric field must be zero at the surface of the conductor, the

21

following integral equation for the TM case may be derived [9]:

kη

4

∫

C
Jz(ρ

′)H(2)
o (k|ρ − ρ′|)dl′ = Ei

z(ρ
′) (2.1)

where ρ is an observation point and ρ′ is a source point along the contour C. Note

there is only a z-component of current. We expand this current in terms of pulse

functions:

Jz(ρ) =
N
∑

n=1

αnPn(ρ) (2.2)

where the αn’s are the desired unknown coefficients. If we represent the contour C as

a collection of line segments (edges), then the pulses are defined as shown in Figure

2.1:

Pn(ρ) =















1 ρ ∈ edge n

0 otherwise
(2.3)

Figure 2.1: Pulse function for two-dimensional TM polarization.

Expanding Eq. 2.1 we arrive at:

kη

4

N
∑

n=1

αn

∫

C
PnH

(2)
o (k|ρ − ρ′|)dl′ = Ei

z(ρ) (2.4)

Using the Galerkin Method and testing each side of Eq. 2.4 using the inner product

〈a,b〉 =
∫

C
a · bdl (2.5)

22

we obtain the entries for the system matrix:

Zm,n =
kη

4

∫

C
Pm

∫

C
PnH

(2)
o (k|ρ − ρ′|)dl′

=
kηlm

4

∫

C
H(2)

o (k|ρm
ct − ρ′|)dl′ (2.6)

where ρm
ct is the centroid and lm is the length of the mth edge. The final integral can

be evaluated by Gaussian Quadrature. The excitation vector is given by:

Vm =
∫

C
PmEi

z(ρ)dl

= lmEi
z(ρ

m
ct) (2.7)

The TE case begins with the following integral equation [9]:

E(ρ) · âl =
kη

4

∫

C
Jl(ρ

′)H(2)
o (k|ρ − ρ′|)(â′

l · âl)dl′

+
η

4k

d

dl

∫

C

dJl(ρ
′)

dl′
H(2)

o (k|ρ − ρ′|)dl′ (2.8)

where C is the contour of the object. Again, as in the TM case, we represent the

current in terms of pulse functions, except in this case each function is defined from

the midpoint of one segment to the midpoint of an adjacent segment. Also, rather

than represent the derivative on Jl in Eq. 2.8 in terms of delta functions, we define

the charge in terms of pulse doublets. If Pn, shown in Figure 2.2, is defined as:

Pn =















1 ρ ∈ (ctn, ctn+1)

0 otherwise
(2.9)

23

where ctn and ctn+1 are the centroids of the nth and n+1th edges, respectively, then

we can define the charge as:

dPn

dl
=































1
ln

ρ ∈ edge n

−1
ln+1

ρ ∈ edge n + 1

0 otherwise

(2.10)

where ln and ln+1 are the lengths of the nth and n + 1th edges.

Figure 2.2: Pulse function for two-dimensional TE polarization.

Applying an expansion/testing procedure similar to the TM case we obtain the MoM

matrix components:

Zm,n =
kη

4

∫

C
Pm

∫

C
PnH(2)

o (k|ρ − ρ′|)(â′

l · âl)dl′dl

+
η

4k

∫

C
Pm

d

dl

∫

C

dPn

dl′
H(2)

o (k|ρ − ρ′|)dl′dl (2.11)

To evaluate the integrals, we can do the following:

∫

C
Pm

∫

C
PnH

(2)
o (k|ρ − ρ′|)(â′

l · âl)dl′dl

=
lm

2

∫

C
H(2)

o (k|ρm−1/4 − ρ′|)(â′

l · âlm)dl′

+
lm+1

2

∫

C
H(2)

o (k|ρm+1/4 − ρ′|)(â′

l · âlm+1
)dl′ (2.12)

24

and

d

dl

∫

C

dJl(ρ
′)

dl′
H(2)

o (k|ρ − ρ′|)dl′

= −
∫

C

dPn

dl′
H(2)

o (k|ρm+1/2 − ρ′|)dl′

+
∫

C

dPn

dl′
H(2)

o (k|ρm−1/2 − ρ′|)dl′ (2.13)

where the testing quantities and locations can be seen in Figure 2.3.

Figure 2.3: Two-dimensional TE polarization testing locations.

The incident field vector is given by:

Vm =
∫

C
PmEi(ρ) · âldl

=
lm

2
Ei(ρm−1/4) · âlm +

lm+1

2
Ei(ρm+1/4) · âlm (2.14)

2.2 Magnetic-Field Integral Equation - MFIE

By applying the boundary condition on the magnetic field, we can arrive at

another formulation for both the 2D TE and TM polarizations. First, the boundary

condition on the magnetic field is:

J(ρ) = n̂ × Ht(ρ), ρ ∈ C (2.15)

25

where J is the total current, Ht is the total magnetic field, and C is the contour of

the conductor. The MFIE only applies to closed bodies and thus n̂ may be defined

as a vector pointing to the outside of the object of interest. The integral equation for

the TM polarization case is [9]:

Hi(ρ) · âl =
Jz(ρ)

2
+

jk

4

∫

C
− Jz(ρ

′)

(

n̂ · ρ − ρ′

|ρ − ρ′|

)

H
(2)
1 (k|ρ − ρ′|)dl′ (2.16)

where the deleted integral is evaluated everywhere except ρ = ρ′. Expanding and

testing with pulse functions we obtain the matrix components:

Zm,n =
∫

C

PmPn

2
dl =

lm

2
, for m = n (2.17)

Zm,n =
jk

4

∫

C
Pm

∫

C
Pn

(

n̂ · ρ − ρ′

|ρ − ρ′|

)

H
(2)
1 (k|ρ − ρ′|)dl′

=
jklm

4

∫

C

(

n̂ · ρm
ct − ρ′

|ρm
ct − ρ′|

)

H
(2)
1 (k|ρ − ρ′|)dl′, for m 6= n (2.18)

where ρm
ct is the centroid of edge m and the remaining integral may be evaluated using

Gaussian Quadrature. The excitation vector is given by:

∫

C
PmHi(ρ) · âl = lmHi(ρm

ct) · âlm (2.19)

We can also write an integral equation for TE polarization [9]:

−Hi
z(ρ) =

Jl(ρ)

2
+

jk

4

∫

C
− Jl(ρ

′)

(

n̂′ · ρ − ρ′

|ρ − ρ′|

)

H
(2)
1 (k|ρ − ρ′|)dl′ (2.20)

Again, the deleted integral is not evaluated at ρ = ρ′. Furthermore, as with the EFIE

TE case, we expand and test with pulse functions extending from the centroid of one

26

edge to the centroid of the adjacent edge. After applying the expansion and testing

procedure, we arrive at the following MoM matrix components:

Zm,n =
∫

C

PmPn

2
dl =

1

2

[

lm

2
+

lm+1

2

]

, for m = n (2.21)

Zm,n =
jk

4

∫

C
Pm

∫

C
Pn

(

n̂′ · ρ − ρ′

|ρ − ρ′|

)

H
(2)
1 (k|ρ − ρ′|)dl′

=
jk

4

[

lm

2

∫

C

(

n̂′ · ρm−1/4 − ρ′

|ρm−1/4 − ρ′|

)

H
(2)
1 (k|ρm−1/4 − ρ′|)dl′ (2.22)

+
lm+1

2

∫

C

(

n̂′ · ρm+1/4 − ρ′

|ρm+1/4 − ρ′|

)

H
(2)
1 (k|ρm+1/4 − ρ′|)dl′

]

, for m 6= n

For the excitation vector we have:

Vm = −
∫

C
PmH i

z(ρ)dl

= −
[

lm

2
Hz(ρm−1/4) +

lm+1

2
Hz(ρm+1/4)

]

(2.23)

The testing locations are the same as those given in Figure 2.3. In the next section,

we will combine these formulations to eliminate any matrix conditioning problems

that may occur due to internal resonances for closed bodies.

2.3 Combined-Field Integral Equation - CFIE

To avoid any problems due to internal resonances for closed bodies, we may use

the Combined Field Integral Equation [4] given by

−γ

η
n̂ × n̂ × E + (1 − γ)n̂ × H = 0 (2.24)

27

which can be implemented as

ZCFIE = γZEFIE + η(1 − γ)ZMFIE

VCFIE = γVEFIE + η(1 − γ)VMFIE (2.25)

where 0 ≤ γ ≤ 1 is a constant depending on the problem and η =
√

µ
ǫ

is the

impedance of the medium. For open body problems, we let γ = 1 and for closed

bodies γ is typically 0.5. Note the same equations may be used for both TM and TE

polarizations.

2.4 Element Grouping

For the two-dimensional case, groups are formed along the contour of the cylinder

as shown in Figure 2.4. Basis functions along the rim are placed into disjoint sets

of roughly equal size. Typically, the group size should be on the order of a few

wavelengths. For example, between 2 and 6 wavelengths. The larger the group, the

better, as long as the group sizes are not large with respect to the overall geometry.

Also, for two-dimensional geometries, a given near-field radius will not enclose many

unknowns and so larger group sizes are acceptable. The separation distance between

two groups is taken to be the distance from the center of one group to the center

of the other. For a given source group, nulls are created on groups within the near-

field region (typically a couple of wavelengths). Usually, this means that the two

groups adjacent to the source group are eliminated. However, if a cross-section of

the cylinder is sufficiently thin, it may be necessary to eliminate more than the two

adjacent groups. This can be seen in Figure 2.5.

28

Figure 2.4: Element grouping for two-dimensional case.

Figure 2.5: Elimination of groups within near-field.

29

2.5 Numerical Results

The following two-dimensional examples using both TM and TE polarization

show the effectiveness of the technique. All closed body solutions utilize the combined-

field formulation while open bodies use the electric field formulation for each polar-

ization. Also, both codes use pulse functions for both the source basis and test basis.

Finally, the block form of the Gauss-Seidel iterative solver has been used.

Consider the square cylinder with 50λ sides illuminated by a plane wave as shown

in the Figure 2.6. The total contour length for this case is 200λ. Figures 2.7 and

2.8 show the real and imaginary currents on Face #1 for an incident wave with TM

polarization. The currents for Face #2 are given in Figures 2.9 and 2.10. The TE case

is given in Figures 2.11 and 2.12 for Face #1 and Figures 2.13 and 2.14 for Face #2.

The amplitude of the incident magnetic field Ho is 1.0 Amps/m for each polarization.

The angle of incidence for both cases is 350 with respect to x-axis. The contour of the

cylinder is divided into 2000 divisions using a 10 divisions per wavelength criterion.

Further, the basis functions are collected into 40 groups with 50 basis functions per

group. For each source group, the testing is carried out on the two adjacent groups.

The initial guess, obtained by computing currents only from the individual groups,

is refined with one iteration following the Gauss-Seidel procedure. The currents are

shown to be in agreement with the standard MoM solution.

For the next example, consider a highly complex shaped contour with concavity

as shown in Figure 2.15. The total circumference is 100λ. The incident wave is at 450

with respect to the x-axis with Ho = 1.0. There are 25 groups with 40 sub-domain

basis functions in each group. Figures 2.16 and 2.17 show the real and imaginary

currents for the TM case. Figures 2.18 and 2.19 show the currents for the TE case.

30

The numerical results, after one iteration, are compared with the standard MoM

solution and show good agreement for each case.

Next, we consider the large two-dimensional strip array shown in Figure 2.20.

Each element is 2λ in length and there are 100 collinear elements in the array spaced

0.1λ apart. Each element is a group with 20 segments per group resulting in 100

groups. Testing for a given source group is done on the two adjacent elements. If the

element is at either end of the array, then testing is done only on the single adjacent

element. The incident wave is normal to the array and has magnitude Ho = 1.0.

Figure 2.21 shows the bistatic radar cross section with respect to the azimuthal angle

for the TM case. The TE case is given in Figure 2.22. The results are compared with

the conventional MoM solution and good agreement is evident in each case.

Next, we show the real-time results for a 700λ circumference two-dimensional

circular cylinder using the new procedure and compare with the conventional method.

The scattering case is solved for a 600 MHz incident wave at 1800 with respect to the

x-axis with Ho = 1.0 and TM polarization. The cross section of the cylinder is divided

into 7000 edges using a 10 divisions per wavelength criterion. For the conventional

MoM solution, the matrix fill and execution times are 12 minutes and 189 minutes,

respectively. For the new procedure, 7000 unknowns are divided into 70 groups of

100 unknowns each. In the following table, we provide the computational time for

each step involved. The processor for the test machine is a 2.4 GHz Pentium 4.

1 Matrix fill 12 minutes 20 seconds

2 Construction of new basis 16.1 seconds

3 Construction of new system matrix 15.7 seconds

4 Iterative solution (single iteration) 15.8 seconds

5 New method total solution time (Add 1,2,3, and 4) 13 minutes 8 seconds

31

Figure 2.6: Cross section of the 50λ square cylinder.

32

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 50 100 150 200 250 300 350 400 450 500

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.7: Real currents in the shadow region (Face#1) for square cylinder with 50λ
sides with TM incident wave Ho = 1 at 350.

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 50 100 150 200 250 300 350 400 450 500

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.8: Imaginary currents in the shadow region (Face#1) for square cylinder
with 50λ sides with TM incident wave Ho = 1 at 350.

33

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 550 600 650 700 750 800 850 900 950 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.9: Real currents in the shadow region (Face#2) for square cylinder with 50λ
sides with TM incident wave Ho = 1 at 350.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 550 600 650 700 750 800 850 900 950 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.10: Imaginary currents in the shadow region (Face#2) for square cylinder
with 50λ sides with TM incident wave Ho = 1 at 350.

34

-1.5

-1

-0.5

 0

 0.5

 1

 50 100 150 200 250 300 350 400 450 500

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.11: Real currents in the shadow region (Face#1) for square cylinder with
50λ sides with TE incident wave Ho = 1 at 350.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.12: Imaginary currents in the shadow region (Face#1) for square cylinder
with 50λ sides with TE incident wave Ho = 1 at 350.

35

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 550 600 650 700 750 800 850 900 950 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.13: Real currents in the shadow region (Face#2) for square cylinder with
50λ sides with TE incident wave Ho = 1 at 350.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 550 600 650 700 750 800 850 900 950 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.14: Imaginary currents in the shadow region (Face#2) for square cylinder
with 50λ sides with TE incident wave Ho = 1 at 350.

36

Figure 2.15: Object with complex shape and concavity.

37

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.16: Real currents for object with concavity with 100λ total circumference
and TM incident wave with Ho = 1 at 450. (a) Real part and (b) Imaginary part.

-3

-2

-1

 0

 1

 2

 3

 0 100 200 300 400 500 600 700 800 900 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.17: Imaginary currents for object with concavity with 100λ total circumfer-
ence and TM incident wave with Ho = 1 at 450. (a) Real part and (b) Imaginary
part.

38

-8

-6

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700 800 900 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.18: Real currents for object with concavity with 100λ total circumference
and TE incident wave with Ho = 1 at 450. (a) Real part and (b) Imaginary part.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

C
ur

re
nt

 (
A

)

Element number

MoM
New Method

Figure 2.19: Imaginary currents for object with concavity with 100λ total circum-
ference and TE incident wave with Ho = 1 at 450. (a) Real part and (b) Imaginary
part.

39

Figure 2.20: Geometry for two-dimensional strip array. Each array element is 2λ in
length and they are separated by 0.1λ.

40

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

R
C

S
 (

dB
)

θ (deg)

MoM
New Method

Figure 2.21: RCS for 2D strip array with 100 2λ elements. The incident wave is
normal to the array with Ho = 1 and has TM polarization.

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0 50 100 150 200 250 300 350 400

R
C

S
 (

dB
)

θ (deg)

MoM
New Method

Figure 2.22: RCS for 2D strip array with 100 2λ elements. The incident wave is
normal to the array with Ho = 1 and has TE polarization.

41

2.6 Conclusions

In this chapter, the method was applied to 2D arbitrary conducting cylinders.

Here, open and closed bodies were considered with both transverse electric and trans-

verse magnetic incident waves. Also, we considered scattering cases from canonical

shapes as well as complex shapes. Accurate and efficient results were obtained in

each case. Furthermore, it was shown that for 2D cases, the method virtually elimi-

nates the solution time and therefore the overall solution is limited by the matrix fill

time. Also, the groups for two-dimensional cases may be formed arbitrarily or may

be decided by the geometry of the object. Furthermore, the groups should ideally be

a few wavelengths in length and should include only a few wavelengths in radius as a

near-field designation.

42

Chapter 3

Arbitrarily shaped three-dimensional conductors

In this chapter, we apply the method to arbitrarily shaped three-dimensional

conductors. First the integral equations are presented for both the electric field and

magnetic field boundary conditions. Furthermore, each equation is expanded with

set of sub-domain basis functions in preparation for applying the method. Also,

the combined-field formulation is presented to avoid any internal resonance problems

associated with closed bodies. Next, we discuss how the algorithm is applied in the

general case. We determine how groups should be formed and to what groups the

null-field procedure should be applied. The decoupling procedure is illustrated and

we discuss how to handle near-field and far-field interactions on an arbitrary three-

dimensional body. Finally, we apply the algorithm to some challenging scattering

problems to illustrate the accuracy and effectiveness of the method.

3.1 Electric Field Integral Equation - EFIE

The Electric Field Integral Equation (EFIE) for Perfect Electrical Conductors

(PECs) is developed as follows. First, by definition of a PEC, the total tangential

electric field at the surface of the conductor is identically zero:

Ei
tan(r) + Es

tan(r) = 0, r ∈ Sc (3.1)

or

Ei
tan(r) = −Es

tan(r), r ∈ Sc (3.2)

43

where Ei
tan and Es

tan are the incident and scattered fields, respectively and Sc is the

conductor surface.

The scattered field at a point r is related to the currents on the conductor by

the following equation:

Es(r) = −jωA(r) −∇Φ(r) (3.3)

where A and Φ are the vector and magnetic potentials given by:

A(r) = µ

∫

Sc

J(r′)G(r, r′)dS ′ (3.4)

Φ(r) =
−1

jωǫ

∫

Sc

∇ · J(r′)G(r, r′)dS ′ (3.5)

with the Green’s function given by

G(r, r′) =
e−jkR

4πR
, R = |r− r′| (3.6)

Substituting for the scattered field we get the desired integral equation:

Ei(r)tan = [jωA(r) + ∇Φ(r)]tan (3.7)

Next, we discretize the geometry of the object of interest using a triangular

surface mesh. Then we define a set of basis functions over the surface to approximate

the current on the PEC. Let fn for n = 1, ..., N be a basis defined on the surface of

the conductor. The total current on the conductor is then given by:

J(r) =
N
∑

n=1

αnfn(r) (3.8)

44

Here we use the RWG basis functions as given in [2]. Each function is defined

over a pair of triangles as:

fn(r) =































ln
2A+

n
ρ+

n , r ∈ T+
n

ln
2A−

n
ρ−

n , r ∈ T−

n

0, otherwise

(3.9)

where A+
n and A−

n are the areas of the positive and negative side triangles, T+
n and

T−

n , respectively.

The quantities in Eq. 3.9 are shown in Figure 3.1.

Figure 3.1: Quantities for RWG basis functions.

Substituting Eq. 3.9 into Eqs. 3.4 and 3.5 we get

A(r) =
N
∑

n=1

αnAn(r) (3.10)

and

Φ(r) =
N
∑

n=1

αnΦn(r) (3.11)

where

An(r) = µ

∫

Sc

fn(r′)G(r, r′)dS ′ (3.12)

45

Φn(r) =
−1

jωǫ

∫

Sc

∇ · fn(r′)G(r, r′)dS ′ (3.13)

Since we have N unknowns, we must generate N linearly independent equations.

We do this by performing a testing procedure on each side of Eq. 3.7,using the inner

product

〈f , g〉 ≡
∫

Sc

f · gdS (3.14)

and the Galerkin procedure, we test each side of Eq. 3.7 using the previously defined

RWG functions. We thereby generate a linear system

ZI = V (3.15)

which can be solved to find the coefficients αn. The testing procedure provides us

with the following quantities:

Zm,n = jω 〈An, fm〉 + 〈∇Φn, fm〉 (3.16)

as well as

Vm =
〈

Ei, fm
〉

(3.17)

The potential terms can be evaluated at the centroids of the testing triangles:

〈An, fm〉 =
lm

2

[

An(r
ct+
m) · ρct+

m + An(r
ct−
m) · ρct−

m

]

(3.18)

〈

∇Φc/p/q,n, fm
〉

= −lm
[

Φc/p/q,n(rc+
m) − Φc/p/q,n(r

c−
m)
]

(3.19)

46

and the excitation vector is given by:

〈

Ei, fm
〉

=
lm

2

[

Ei(rct+
m) · ρct+

m + Ei(rct−
m) · ρct−

m

]

(3.20)

Finally, we solve for the currents Im = αm .

3.2 Magnetic Field Integral Equation - MFIE

The Magnetic Field Integral Equation (MFIE) for PECs is developed as follows.

This method is only applicable to closed bodies since we must assume the fields inside

are zero. First, we apply the boundary conditions on the magnetic field at the surface

of the conductor. The magnetic field is related to the current on the structure with

J(r) = n̂ × (Hi(r) + Hs(r)), r ∈ Sc (3.21)

where n̂ is a unit vector normal to the surface of the conductor and pointing outward,

Hi is the incident wave, and Hs is the scattered field due to the currents on the

conductor. It is shown in [5] that for r not on an edge, we may write the scattered

portion as

n̂ ×Hs(r) = lim
r→Sc

n̂ ×∇× A(r)

=
J

2
(r) + n̂ ×

∫

Sc

− J(r′) ×∇′G(r, r′)dS ′, r ∈ Sc (3.22)

where G(r, r′) = e−jkR

4πR
, R = |r − r′|, and r approaches the surface from outside the

object. The deleted integral is evaluated everywhere except r = r′. Substituting

47

Eq. 3.22 into Eq. 3.21 we arrive at the integral equation

n̂ ×Hi(r) =
J

2
(r) − n̂ ×

∫

Sc

− J(r′) ×∇′G(r, r′)dS ′, r ∈ Sc (3.23)

As with the EFIE in Eq. 3.8, we may expand the current using RWG functions.

Also, applying the Galerkin procedure using the inner product in Eq. 3.14, we arrive

at a linear system ZI = V with the following elements:

Zm,n =
1

2
< fm,J > −lm

[

1

2A+
m

∫

Sc

ρ+ · n̂+
m ×

∫

Sc

− fn × (∇′G)+
mdS ′dS

+
1

2A−

m

∫

Sc

ρ− · n̂−

m ×
∫

Sc

− fn × (∇′G)−mdS ′dS

]

(3.24)

and

Vm = lm

[

1

2A+
m

∫

Sc

ρ+ · n̂+
m × Hi(r+

m)dS (3.25)

+
1

2A−

m

∫

Sc

ρ− · n̂−

m × Hi(r−m)dS

]

(3.26)

The integrals may be evaluated as in [3]. Again, the deleted integral is evaluated

everywhere except r = r′. Solving this system provides us with the coefficients for

the basis defined on the structure.

3.3 Combined Field Integral Equation - CFIE

To avoid any problems due to internal resonances for closed bodies, we may use

the Combined Field Integral Equation [4] given by

−γ

η
n̂ × n̂ × E + (1 − γ)n̂ × H = 0 (3.27)

48

which can be implemented as

ZCFIE = γZEFIE + η(1 − γ)ZMFIE (3.28)

VCFIE = γVEFIE + η(1 − γ)VMFIE (3.29)

where 0 ≤ γ ≤ 1 is a constant depending on the problem and η =
√

µ
ǫ

is the

impedance of the medium. For open body problems, we let γ = 1 and for closed

bodies γ is typically 0.5.

3.4 Element Grouping

In this section, we discuss the grouping procedure for the arbitrary three dimen-

sional conducting case. In order to account for the near-field interactions, we use

the null-producing procedure on those groups that are within a given perimeter. As

shown in Figure 3.2, we take each group as a source. All those groups within a given

near-field radius will be selected for the decoupling procedure. Each basis function in

a given group will be replaced with a linear combination of that basis function, with

a coefficient of 1, and all the basis functions in the null groups, which are assigned

unknown coefficients. By requiring that the new basis functions produce null fields

everywhere on the selected groups, we generate zeros within the new system matrix.

Once this has been carried out for all the groups, we may solve for the currents on

the structure by first inverting the self-block-matrices to account for near-field inter-

actions, and then solve for the remaining current contributions via the Gauss-Seidel

iterative procedure. Note also that the coefficients for all the groups can be solved for

independently from one another. In other words, parallel processing may be used to

solve for weights throughout the structure simultaneously. Furthermore, since each

set of group coefficients may be solved for separately, a parallel procedure shows a high

49

Figure 3.2: Grouping for arbitrary 3d case. X’s represent null groups.

degree of parallel efficiency irregardless of how many processors are used, provided

that the number of processors does not exceed the number of groups.

3.5 Numerical Results

In this section, we present some numerical results to verify the accuracy of the

algorithm. First, using the CFIE formulation, we show a bistatic RCS calculation for

a 5λ radius sphere, where λ is the wavelength for the given frequency, as seen in Figure

3.3. In this case, we have 92,550 unknowns. The structure is divided into 314 groups,

each roughly 1λ2 in area. For each source group, all groups within a 2λ distance were

included as near-field groups. Figure 3.4 shows the bistatic RCS for 1 and 2 iterations

as well as the RCS when computed with a MoM BOR (Body of Revolution) code.

The incident field E = ηâθ is incident at an angle of (θ, φ) = (45o, 0o) with a frequency

of 300 MHz. The RCS is calculated for the x-z plane, and is shown in Figure 3.4.

Since there is very little difference between the plots, a single iteration suffices in this

case. Also, note that, for this code, the initial guess given in Sec. 1.4 is implemented

as the first iteration of the solver. Thus, the first iteration only includes near-field

interactions. A good way to determine the quality of our solution is to calculate the

50

following:

r = V − ZI (3.30)

where V is the excitation vector, Z is the standard moment matrix (sub-domain

functions), and I is the current vector for the sub-domain functions. The total error

is then given by:

Total error =
N
∑

i

|ri| (3.31)

where N is the number of unknowns for the system. The average error per term is

then given by:

Avg. error per term =
Total error

N
(3.32)

For the case of the sphere, the average error per term is .096 for 1 iteration, while

it is only .0142 for two iterations. So, the spherical case compares very well with a

standard Method of Moments solution. The RCS was also compared to a MoM BOR

(Body of Revolution) code and shows excellent agreement. Also, when computed on

8 3.0 GHz AMD Opteron CPUs, the solution took approximately 25 wall clock hours

and less than 4.5 GB of storage. This includes the time taken for a serialized RCS

calculation on a single CPU (around 2 hours). Storing the full matrix in memory

would require approximately 64 GB of storage. Furthermore, an LU decomposition

would require approximately 19 days and 11 hours to solve on 8 CPUs assuming a

perfectly parallel solver. Also, the weight generation step shows proper scaling when

using multiple CPUs. For a single CPU, the weight generation procedure takes 49

hours. For 4 CPUs, this step took 9 hours and 14 mins. It required only 4 hours, 28

mins for 8 CPUs.

For the next example, we compute the bistatic RCS of a 12m×12m square plate

with 42883 unknowns as seen in Figure 3.5. Here, we have an open structure and

51

therefore utilize only the EFIE. The plate is excited with an incident wave E = ηâθ

at an angle of (θ, φ) = (45o, 0o) with a frequency of 300 MHz. The RCS is computed

for the x-z plane. The groups were formed by dividing the plate into a square grid

of 144 groups, each roughly 1λ2 in size and having on average 298 unknowns. Using

a 2λ near-field criteria, the solver went through two iterations and the RCS for each

is shown in Figure 3.6. The average error for the first iteration is 0.612 while the

average error for the second is 0.232. Also, when computed on 8 3.0 GHz AMD

Opteron CPUs, the solution took approximately 2 hours 45 minutes wall clock time

and less than 2gb GB of storage. Storing the full matrix in memory would require

13.7 GB of memory. Furthermore, computing a LU decomposition on 8 CPUs would

take approximately 1 day and 22 hours assuming the solver is fully parallel.

As a final example, we also calculate the bistatic RCS of a French Mirage fighter

jet. The geometry may be seen in Figure 3.7. For this case, we have an open structure

and therefore use the EFIE only. From end to end, the jet is approximately 33λ long.

Across the wings, it is approximately 23λ in width. Also, from the bottom to the

highest point on the plane (vertical fin), it is about 10λ high. The total surface

area is 550λ2. There are 159293 unknowns and so a full LU decomposition in this

case would be computationally expensive both in terms of memory and CPU time. In

fact, the required storage for a full LU decomposition would be 189 GB. Furthermore,

the LU decomposition itself would take approximately 99 days 5 hours assuming the

solver was fully parallel. For this case, we formed the groups by placing the aircraft

inside a cubical grid with each cell having dimensions of 1λ × 1λ × 1λ. All functions

within a given cell were grouped together. There are 702 groups with an average

group size is 226 functions and all groups within 2λ of a given source group were

decoupled with null field points. Using an incident wave E = ηâθ at an incident angle

of (θ, φ) = (45o, 0o) with a frequency of 750 MHz, we calculate the bistatic RCS for

52

the x-z plane as shown in Figure 3.8. After running 2 iterations, the average error per

term for the first iteration is 0.224 while the error for the second iteration is 0.218.

The error demonstrates that our solution agrees very well with the standard MoM

solution and more iterations may be performed for further accuracy if necessary. Also,

note that the grouping scheme was generated automatically and thus it is possible to

automate the entire process for an arbitrary three-dimensional conductor.

53

Figure 3.3: Triangular mesh for one octant of 5λ radius sphere.

-10

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

R
C

S
 (

dB
)

Angle (degrees)

1 Iteration
2 Iterations
MoM BOR

Figure 3.4: Bistatic RCS for 5λ radius sphere. First and second iterations and MoM
BOR code.

54

Figure 3.5: Triangular mesh for section of 12λ × 12λ square plate.

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

R
C

S
 (

dB
)

Angle (degrees)

1 Iteration
2 Iterations

Figure 3.6: Bistatic RCS for 12λ × 12λ square plate. The first and second iterations
are shown.

55

Figure 3.7: Triangular mesh for French Mirage aircraft geometry.

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

R
C

S
 (

dB
)

Angle (degrees)

1 Iteration
2 Iterations

Figure 3.8: Bistatic RCS for aircraft, first and second iterations

56

3.6 Conclusions

In this chapter, the method was applied to arbitrary three-dimensional conduc-

tors. First, we developed the integral equations for the electric field, magnetic field,

and combined field formulations. The electric field formulation may be used for open

bodies while the combined field may be used for closed bodies in order to avoid

problems with internal resonances. Next, we discussed how basis functions should

be grouped together using a domain decomposition technique. Furthermore, a near-

field region was defined where all the functions within a certain radius of a source

group were eliminated by developing a new set of basis functions. These functions

were defined in such a way that the net effect of the parts of each function was to

produce null fields everywhere on the structure within the near-field radius. This pro-

cedure decouples all strongly interacting groups and allows us to produce a strongly

block-diagonally-dominant matrix that will converge very quickly within an iterative

scheme such as the block Gauss Seidel method. Furthermore, some challenging ex-

ample problems were simulated to show the effectiveness of the method. The results

agree very well with the standard Method of Moments solution using sub-domain ba-

sis functions. Furthermore, we can conclude that a good rule of thumb for the size of

each group is roughly 1λ2. Also, the near-field criteria should generally be set at ap-

proximately a 2λ radius. A larger radius leads to a more quickly converging iterative

solution, but could result in difficulty in solving for the group coefficients. Finally, the

numerical results demonstrated that the technique can be made highly parallel and

the solution time decreases in direct proportion to the number of processors used.

57

Chapter 4

Three-dimensional conductor periodic arrays

In this chapter, we use our method to solve a special case of arbitrary 3D conduc-

tors. Here, we solve for the case of finite conducting periodic arrays. The motivation

behind this special case is to demonstrate that the geometry behind certain problems

may be utilized to further enhance the solution efficiency. Although each of the array

elements may be any arbitrary three-dimensional surface, the arrays themselves are

periodic only in two dimensions as shown in Figure 4.1. However, the concepts applied

here may easily be extended to cases where there is periodicity in three dimensions.

4.1 Integral Equation Formulation

For the finite periodic array, we use the same integral formulation as was used

in the arbitrary 3D case. In the case where each array element is an open body,

we use the EFIE only. If each element is a closed body, we use the combined field

formulation as seen in Section 3.3 with α = 0.5. This allows us to avoid any issues

arising due to internal resonances within each element.

4.2 Element Grouping

Although nothing prevents each array element from being subdivided into groups,

we are assuming here that each element forms one and only one group. Null fields

are produced on those groups that are horizontally and vertically adjacent to a given

source group. This can be seen in Figure 4.2.

58

Figure 4.1: Finite periodic conducting array periodic in two dimensions.

Figure 4.2: Elimination of groups within near-field for finite periodic array.

59

For groups on the edges and corners of the array, there will only be three and two

adjacent groups, respectively. The finite periodic array is a special case in the general

method because the weights used to produce the null fields are largely redundant. In

fact, for two-dimensional arrays, one must solve for at most 9 sets of weights. These

are each of the four corners, one element along each of the four sides, and one element

internal to the structure. Once these weights have been computed, they can easily be

copied to the other groups in the system.

It greatly simplifies the programming and is computationally inexpensive to com-

pute all the corners separately. Note that while the physical structure may show sym-

metry for edge groups and corner groups, this symmetry may not exist numerically

due to the meshing of each element and the basis functions defined there. So, in

general, one cannot solve for the coefficients at one corner of the structure and then

directly copy those weights to the other three corners. The same reasoning applies to

elements along the edges of the array.

4.3 Numerical Results

Here we present a bistatic RCS calculation for a finite periodic array. Each

element is a 0.5λ x 0.5λ square plate, each expanded with 64 RWG basis functions.

There are 2500 plates arranged on a 50 x 50 grid for a total of 160000 unknowns.

Each plate is spaced 0.75λ from each of the adjacent plates. The array is excited

with a 300MHz incident wave with Eθ = 120π and Eφ = 0 at an angle of θ = 45o

and φ = 0o. Finally, the bistatic RCS is calculated for the x-z plane. Figure 4.3

displays the geometry for the problem. Figure 4.4 shows a comparison between the

first and second iterations of the Gauss-Seidel scheme. Note that there is a negligible

difference between the RCS values. When compared to the standard Method of

60

Moments solution, the average error per current term (either real or imaginary part)

for 1 iteration was 0.288 while it was 0.122 for 2 iterations. Here the error per term

is calculated by first obtaining the error vector:

r = V − ZI (4.1)

where V is the excitation vector, Z is the standard moment matrix (sub-domain

functions), and I is the current vector for the sub-domain functions. The total error

is then given by:

Total error =
N
∑

i

|ri| (4.2)

where N is the number of unknowns for the system. The average error per term is

then given by:

Avg. error per term =
Total error

N
(4.3)

When computed on 8 3.0 GHz AMD Opteron CPUs, the solution took approx-

imately 19.5 wall clock hours and less than 500 MB of storage. This includes the

time taken for a serialized RCS calculation on a single CPU (around 3 hours). A

full LU decomposition of this problem would require 190 GB of storage and would

have a solution time of approximately 100 days and 13 hours assuming the solver is

fully parallel. Also, note that, for this code, the initial guess given in Sec. 1.4 is

implemented as the first iteration of the solver. Thus, for this case, the simulation

shows that the currents are almost entirely determined by the near-field interactions

on the structure.

61

4.4 Conclusions

In this section, a special case of the 3D conductor formulation was considered.

Here, a finite array of elements periodic in 2 dimensions was constructed and the

bistatic RCS was calculated. There are two essential reasons for simulating this

special case. First, the problem lends itself very well to the iterative algorithm.

Since there is spacing between the elements, there is already significant decoupling

between different parts of the structure. So, this type of structure is well-suited for the

algorithm. Furthermore, due to the geometry, the decoupling weights of many groups

are redundant. This significantly reduces the amount of necessary computation. After

calculating at most 9 different sets of weights, the remaining groups may be decoupled

by simply copying the weights throughout the structure. Finally, a typical problem

of a square plate periodic array was simulated and the results were shown to compare

very well with the standard Method of Moments solution. Furthermore, only 1 or

2 iterations were necessary and therefore the solution time was shown to be much

more efficient than when using a standard LU decomposition or conjugate gradient

solution.

62

Figure 4.3: Geometry for 50 x 50 0.5λ2 plate finite periodic array.

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

R
C

S
 (

dB
)

Angle (degrees)

1 Iteration
2 Iterations

Figure 4.4: Bistatic RCS result after 1 and 2 iterations.

63

Chapter 5

Conclusions

In this work, we applied a domain decomposition technique where any arbitrary

conducting structure may be divided into an arbitrary number of groups. Next, a

basis transformation allowed us to decouple groups adjacent to one another on the

structure. This was accomplished using the criteria that each group should radiate

null fields at locations on the structure chosen by a nearest neighbor criteria. A

new block-diagonally-dominant system matrix was constructed from the matrix cor-

responding to a set of sub-domain basis functions. Using this new matrix, we were

able to apply a linear iterative solver capable of converging within a few iterations.

Since a full LU decomposition solver was not used and iterative solvers require very

little memory, we were able to avoid both CPU time and memory size constraints

usually found in the standard Method of Moments. Finally, this method has been

outlined in a very general format and may therefore be applied to any existing Method

of Moments code formulated with sub-domain basis functions. Various geometries in

two and three dimensions were simulated to illustrate the successful application of

the method to arbitrary conducting structures.

5.1 Scaling and Parallel Efficiency

In this section, we discuss the scaling as well as the parallel efficiency of each

part of the algorithm. Referring to Sec. 1.4, we see that there are five major steps to

the algorithm. The scaling and efficiency of each step is as follows:

64

1. Group Formation - This is part of the preprocessing stage. All groups are

formed prior to running the code and so this is not considered in the scaling

behavior of the algorithm.

2. Create new basis functions - Although scaling here is dependent upon the ge-

ometry and nearest neighbor criteria, we may still construct a rule of thumb.

If we assume that all the groups are roughly the same size for all geometries,

the scaling will be O(N). Furthermore, the coefficients/weights for each source

group may be solved for independently. Therefore, the groups may be evenly

distributed across multiple processors and the efficiency will be near 100%.

3. Create new system matrix Z̃ - This step is represented by the operation Z̃ =

ZR. For dense matrices, matrix multiplication is typically an O(N3) operation.

However, in this case, R is highly sparse, so forming the new system matrix is an

O(N2) process. For parallel operation, we can view the matrix multiplication as

forming columns of Z̃. Since the columns may be evenly distributed to each of

the processors, this is step also will have a parallel efficiency of approximately

100%.

4. Construct initial guess - This step consists of inverting the diagonal blocks of

Z̃. Assuming group sizes are roughly the same, the number of blocks requiring

inversion grows linearly with the number of unknowns. Therefore, the scaling

for this step is O(N). Furthermore, the blocks may be inverted in any order and

may be evenly distributed across multiple processors. Therefore, the parallel

efficiency will be near 100%. Note, however, that because the groups are gener-

ally small with respect to the overall structure, this step, in terms of absolute

time, will most likely be negligible in execution time.

65

5. Iterate for accuracy - Here, each iteration is roughly equivalent to a matrix-

vector product in terms of scaling. Furthermore, very few iterations are re-

quired. Therefore, this scales as O(N2). Furthermore, when viewing this as

equivalent to a matrix-vector product, we can consider it as a collection of dot

products - one for each row of the matrix dotted with the vector. These dot

products may be evenly distributed over multiple processors and therefore the

parallel efficiency will be near 100%.

The graphs in Figures 5.1 and 5.2 demonstrate the parallel efficiency of the

arbitrary three-dimensional code. The test problem was a linear array of cubes, each

one has dimensions of 0.2m × 0.2m × 0.2m and they are each spaced 0.8m apart.

Each cube has 72 unknowns and there are 40 cubes for a total of 2880 unknowns.

Nulls were placed on adjacent boxes so that the two cubes on the ends of the array

generated 72 null points and those within the array generated 144. Using different

numbers of CPUs, the entire program was timed to display the parallel efficiency of

the overall algorithm. This involves generating the new basis coefficients, creating

the new system matrix, a single matrix fill, and one iteration of the block Gauss-

Seidel solver. Two test machines were used. The first has 6 CPUs, each of which is

a 64-bit 1.4 GHz Intel Itanium 2 processor. Here, the times were taken for 1, 2, 4,

and 6 CPUs. For each case, we plot the ratio of the time for a single processor to

that of the time for the given case. The results are shown in Figure 5.1. The second

machine has 8 2.3 GHz AMD Opterons. For this machine, 1, 2, 4, 6, and 8 processors

were used. The results for this test are given in Figure 5.2. The ideal ratio for each

case is also given. This test demonstrates that the overall algorithm is almost ideally

parallel. This is difficult to achieve in standard methods due to typical solvers such

as LU decomposition.

66

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

T
im

e
fo

r
1

C
P

U
 /

T
im

e
fo

r
x

C
P

U
s

Number of Processors Used

Ideal
Actual

Figure 5.1: Ratio of single CPU time to 1, 2, 4, and 6 processors for machine one.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

T
im

e
fo

r
1

C
P

U
 /

T
im

e
fo

r
x

C
P

U
s

Number of Processors Used

Ideal
Actual

Figure 5.2: Ratio of single CPU time to 1, 2, 4, 6, and 8 processors for machine two.

67

5.2 Element Grouping

Element grouping should begin with considering the geometry of the object to

be simulated. If there are parts of the object which are likely to be highly coupled,

either due to their proximity or other reasons, then the newly created basis functions

for each part should produce null-fields on the other part. Furthermore, any type

of symmetry or periodicity may be utilized in order to make the solution procedure

more efficient. For example, the coefficients for each element in a periodic array are

largely redundant and thus several matrix inversions may be avoided as the weights

may simply be copied throughout the structure. For arbitrarily shaped objects, the

process can be fully automated. The groups may be formed by simply creating a

cubical grid enclosing the entire object and then merely grouping together all those

basis functions that happen to fall into a common cell. A cell size of approximately

1λ×1λ×1λ appears to work well. Also, a good rule of thumb for the near-field criteria

in this case is 2λ. Finally, using these criteria generally leads to a rapid convergence

of only a few iterations with the iterative solver.

5.3 Further Research

Further research includes applying the method to various moment formulations.

Typical moment codes include support for wire and dielectric structures. This method

should apply to these codes very easily. Furthermore, it is often desirable to compute

multiple right hand sides as well as various frequencies. Multiple right hand sides

can probably be solved simultaneously in the iterative solver while still maintaining a

reasonable efficiency. Multiple frequencies require resolving the entire system multiple

times. More research needs to be done in this area, such as possibly reusing the

weights across multiple frequencies, in order to solve high bandwidth problems. Also,

68

there is potential for optimizing the various parts of the algorithm. For example,

finding redundant structures within the geometry allows for faster weight generation.

Also, since the algorithm is generally limited by the matrix fill time, it would be

beneficial to find ways of speeding up this step. For example, using less rigorous

integrations when functions are separated by large distances. Furthermore, Graphics

Processing Units (GPUs) may be applied here since the matrix fill may easily be

made parallel [10] as well as the other parts of the algorithm. For shared memory,

multiple CPU architectures, a parallel LU decomposition would lower the memory

requirements. In the current implementation, each processor needs its own scratch

space for computing the new basis coefficients. A parallel LU decomposition would

require scratch space for only a single matrix. The group coefficients could then be

found one group at a time while maintaining the speed of a parallel code. Also, the

algorithm shows tremendous potential for distributed computing architectures. It

would be extremely effective in very large problems if hundreds of processors could

be utilized to solve a single problem. Finally, the concepts here may offer a more

efficient solution in the time domain as well.

69

Bibliography

[1] R.F. Harrington, Field Computation by Moment Methods Classic Reissue. New
York: IEEE Press, 1993.

[2] S.M. Rao, D.R. Wilton, and A.W. Glisson, “Electromagnetic scattering by sur-
faces or arbitrary shape,” IEEE Trans. Antennas Propag., Vol. 30, pg. 409-418,
May 1982.

[3] S.M. Rao, “Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Sur-
faces by Triangular Patch Modeling,” Ph.D. Dissertation University of Missis-
sippi, Aug. 1980.

[4] J.R. Mautz, R.F. Harrington, “H-field, E-field, and combined-field solutions for
conducting bodies of revolution,” Archiv fuer Elektronik und Uebertragungstech-
nik. Vol. 32, pg. 157-164. Apr. 1978.

[5] J. Van Bladel, Electromagnetic Fields. New York: McGraw-Hill, 1964.

[6] M. L. Waller, “Development and Application of Adaptive Basis Functions to
Generate a Diagonal Moment Method Matrix for Electromagnetic Field Prob-
lems,” Ph.D. Dissertation Auburn University, Aug. 2001.

[7] M. L. Waller, Rao S.M., “Application of adaptive basis functions for a diagonal
moment matrix solution of arbitrarily shaped three-dimensional conducting body
problems,” IEEE Trans. Antennas Propag., Vol. 50, Iss. 10, pg. 1445- 1452, Oct.
2002

[8] V. Rokhlin, “Rapid solution of integral equations of scattering theory in two
dimensions,” Journal of Computational Physics, Vol. 86, Iss. 2, pg. 414-439,
1990.

[9] W. Gibson, The Method of Moments in Electromagnetics. Chapman and Hal-
l/CRC: Taylor and Francis Group, 2008

[10] Y. Zhang, M. Taylor, T. Sarkar, A. De, M. Yuan, H. Moon, C. Liang, “Parallel
in-core and out-of-core solution of electrically large problems using the RWG
basis functions,” IEEE Ant. and Prop. Magazine, Vol. 50, No. 5, Oct. 2008.

70

[11] V. V. S. Prakash, R. Mittra “Characteristic basis function method: A new tech-
nique for efficient solution of method of moments matrix equations,” Microwave
and Optical Technology Letters, Vol. 36, Iss. 2, pg. 95-100.

[12] T. Sarkar, S. M. Rao, “The application of the conjugate gradient method for the
solution of electromagnetic scattering from arbitrarily oriented wire antennas,”
Antennas and Propagation, IEEE Transactions on , Vol. 32, No. 4, pg. 398-403,
Apr 1984

[13] J. R. Westlake, A Handbook of Numerical Inversion and Solution of Linear Equa-
tions. New York, Wiley, 1968.

[14] “CUDA Zone – The resource for CUDA developers,” NVIDIA, 23 July 2009
http://www.nvidia.com/cuda.

[15] “NVIDIA CUDA Programming Guide Version 2.1,” NVIDIA Dec. 2008, available
at http://www.nvidia.com/cuda.

[16] “The impedance matrix localization (IML) method for moment-method calcula-
tions,” IEEE Ant. and Prop. Magazine, Vol. 32, No. 5, pg. 18-30.

[17] “A New Technique to Generate a Sparse Matrix Using the Method of Moments
for Electromagnetic Scattering Problems,” Microwave and Optical Technology
Letters Vol. 19, No. 4, Nov. 1998.

71

Appendices

72

Appendix A

Block Gauss-Seidel Iterative Solver

The Gauss-Seidel iterative scheme [13] for solving linear systems may be used to

construct an analogous method for partitioned systems. The Gauss-Seidel solver is a

straightforward algorithm for solving a linear system:

Ax = b (A.1)

If there are M unknowns in the vector x, we obtain a set of solutions xk
m for m =

1,2,...,M for each iteration step k. For the first iteration (k=0) we may simply put in

a “guess” for the solution. A simple choice is to let x = 0. Subsequent solutions may

be obtained with the following summation:

xk+1
m =

1

Am,m





bm −
N
∑

i=1

i6=m

Am,i xk
i





 (A.2)

where m = 1,2,...,M but the xm values may be calculated in any order.

If we have a partitioned system rather than a typical linear system, we may

construct a similar algorithm:

[x]k+1
m = [A]−1

m,m





[b]m −
N
∑

i=1

i6=m

[A]m,i[x]ki





 (A.3)

where each [x]m and [b]m are subvectors of x and b, respectively, and each [A]m,n is

a submatrix of A. This we will call the Block Gauss Seidel method. Also, note that,

73

according to the summation formula in Eq. A.3, the calculated values [x]k+1
m are not

used until the subsequent iteration. In this case, the algorithm is generally referred

to as the Jacobi algorithm. However, in this work, the values of [x]k+1
m are reused as

soon as they are available. This leads to faster convergence and is generally referred

to as the Gauss-Seidel algorithm [13].

74

Appendix B

Radar Cross Section (RCS)

In this section, we present the mathematical steps involved in calculating the

radar cross section (RCS) for the numerical results given in the previous chapters.

Note that before any of the following steps may be applied, one must first obtain the

electric currents for the given structure.

For two-dimensional problems, the following definition was used for the RCS:

σ = 2πρ
|Es|2
|Ei|2 (B.1)

where Ei is the incident field and Es is the scattered field calculated in the far-field

in the direction of

ρ̂ = cos θx̂ + sin θŷ (B.2)

The scattered electric field in the far-field region is given by

Es = −jωA (B.3)

where A is the magnetic vector potential and ω = 2πf with f as the frequency for

the problem. For the two-dimensional examples, this quantity is

Es = −kη

4

∫

C
J(ρ′)H(2)

o (k|ρ − ρ′|)dC ′ (B.4)

75

Using the far-field approximation for the kernel we have as x → ∞,

H(2)
o (x) →

√

2j

πx
e−jx (B.5)

Also, since we are in the far-field, we can approximate |ρ − ρ′| as

|ρ − ρ′| =
(ρ − ρ′) · (ρ − ρ′)

|ρ − ρ′| ≈ ρ − ρ̂ · ρ′ (B.6)

Substituting B.5 and B.6 into B.4 we arrive at

Es = −kη

√

j

8kπ

e−jkρ

√
ρ

∫

C
J(ρ′)ejk(ρ̂·ρ′)dC ′ (B.7)

Note this equation is valid for both TM and TE incidence. The polarization of J will

change depending upon the incident wave polarization as will the way the integration

is performed since it depends upon the current expansion functions.

We may derive the three-dimensional case in a similar fashion. Here, the RCS

definition is given by

σ = lim
r→∞

4πr2 |Es|2
|Ei|2 (B.8)

where Ei is the incident field and Es is the scattered field calculated in the far-field

in the direction of

r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ (B.9)

The electric field in the far-field region is given by:

Es = −jωA = −jωµ

∫

J
e−jkR

4πR
dv′ (B.10)

76

If we let r′ be the integration coordinates, then as r → ∞ we can approximate R as

R =
(r − r′) · (r− r′)

|r− r′| ≈ r − r̂ · r′ (B.11)

giving us

Es ≈ −jωµ

4πr
e−jkr

∫

Jejkr̂·r′dv′ (B.12)

For RWG current expansion functions, we can evaluate the integral as

Es =
−jωµ

8πr
e−jkr

Nc
∑

n=1

αnln
[

ρct+
n ejkr̂·rct+

n + ρct−
n ejkr̂·rct−

n

]

(B.13)

where the αn’s are the coefficients for the expansion functions. From these equations,

we may obtain the radar cross section of any arbitrary conductor in either two or

three dimensions.

77

Appendix C

Matrix Partitioning and Parallel Processing

A topic closely related to this work is inverting a partitioned matrix. Typically,

matrix inversion is an O(N3) process for full matrices. Furthermore, it is difficult to

create a parallel matrix inversion scheme. However, using the basic concepts present

in this work, it may be possible to partition a matrix and, by trading submatrix

inverses for matrix multiplies, create a highly parallel solution scheme. Consider the

partitioned matrix:

Z =









[Z1,1] [Z1,2]

[Z2,1] [Z2,2]









(C.1)

Also suppose that we interpret this as representing a MoM system matrix for two

bodies where Zi,j is the submatrix for expansion functions on body j and testing

functions on body i. If we replace the basis functions on body 1 with functions

producing nulls on body 2 and vice versa, then we can completely decouple the bodies

and then solve each system independently. In terms of matrix operations, we wish

to produce a matrix R with the same partitioning scheme as Z with the following

property:

Z̃ =









[Z1,1] [Z1,2]

[Z2,1] [Z2,2]

















[R1,1] [R1,2]

[R2,1] [R2,2]









=









[

Z̃1,1

]

[0]

[0]
[

Z̃2,2

]









(C.2)

78

where Z̃ is a new system matrix resulting from a change of basis. Furthermore, we

will force the diagonal blocks of R to be identity matrices:

[R1,1] =

























1 0 · · · 0

0 1 0

...
. . .

...

0 0 · · · 1

























(C.3)

[R2,2] =

























1 0 · · · 0

0 1 0

...
. . .

...

0 0 · · · 1

























(C.4)

Using the fact that the off-diagonal blocks of Z̃ must be zero we arrive at the following

relationships:

Z2,1 + Z2,2R2,1 = 0 ⇒ R2,1 = −Z−1
2,2Z2,1 (C.5)

Z1,1R1,2 + Z1,2 = 0 ⇒ R1,2 = −Z−1
1,1Z1,2 (C.6)

We can then construct the diagonal blocks of Z̃ with the following equations:

Z̃1,1 = Z1,1 + Z1,2R2,1 (C.7)

Z̃2,2 = Z2,2 + Z2,1R1,2 (C.8)

Then, we can invert Z̃ by simply inverting the diagonal blocks:

Z̃−1 =









[

Z̃1,1

]

−1
[0]

[0]
[

Z̃2,2

]

−1









(C.9)

79

Also, note that

Z̃−1 = R−1Z−1 (C.10)

So we can get the inverse of Z by simply multiplying Z̃−1 by R:

Z−1 = RZ̃−1

=









[I] [R1,2]

[R2,1] [I]

















[

Z̃−1
1,1

]

[0]

[0]
[

Z̃−1
2,2

]









(C.11)

=









[

Z̃−1
1,1

] [

R1,2Z̃
−1
2,2

]

[

R2,1Z̃
−1
1,1

] [

Z̃−1
2,2

]









(C.12)

Substituting the values found in Eqs. C.5 to C.8 we can get the inverse in terms of

the partitions for the original system matrix Z:

Z−1 =









[

(

Z1,1 − Z1,2Z
−1
2,2Z2,1

)

−1
] [

−Z1,1Z1,2

(

Z2,2 − Z2,1Z
−1
1,1Z1,2

)

−1
]

[

−Z2,2Z2,1

(

Z1,1 − Z1,2Z
−1
2,2Z2,1

)

−1
] [

(

Z2,2 − Z2,1Z
−1
1,1Z1,2

)

−1
]









(C.13)

Viewing it this way, we can see that there are now 4 partition inverses, 4 partition

multiplies (if done in the proper order), and 2 matrix subtractions. Now suppose

Z is of dimensions N × N with N an even number and each of the partitions has

dimensions N
2
× N

2
. Then, taking all 4 partition inverses will result in about half the

number of operations as taking the full matrix inverse since 4
(

N
2

)3
= N3

2
. Although

this part of the algorithm cannot be made fully parallel, it is possible to substantially

accelerate it with multiple processors [10]. The remaining operations are only matrix

multiplies and subtractions. In these two cases, one can achieve up to 100% efficiency

when doing parallel processing.

80

Now consider a case where we have an N × N matrix with N = 2m for some

integer m. We can partition our matrix into 2 × 2 partitions:

Z =

























[2 × 2] [2 × 2] . . . [2 × 2]

[2 × 2] [2 × 2]

...
. . .

[2 × 2] [2 × 2]

























(C.14)

We apply the partitioned inverse scheme recursively:

Z =









[2 × 2] [2 × (N − 2)]

[(N − 2) × 2] [(N − 2) × (N − 2)]









(C.15)

We can use this step until we reach a point where we either a) already have the

needed partition inverses we need or b) must invert a 2× 2 partition. For case b, the

inverse may be performed analytically and each element may be calculated in parallel.

Furthermore, as mentioned previously, all remaining operations may be performed in

parallel. So, this strategy may offer a highly parallel alternative for computing a full

matrix inverse. A full inverse is important in a linear system when the number of

right hand sides is larger than the dimensions of the system. In this case, it is more

efficient to compute a full matrix inverse rather than performing an LU decomposition

and then solving for multiple right hand sides.

The following Fortran 90 code implements the above procedure and performs an

in-place matrix inversion for a matrix have dimensions N × N where N = 2m for

some integer m.

81

program fm so l

use fm l i b

implicit none

integer : : m, n , nb , dm

real : : myre1 , myre2 , mylg

complex : : j = (0 , 1)

complex , dimension (: , :) , allocatable : : Z s i

nb = 512 ! matrix dimension

! F i l l matrix Zs i wi th random r e a l and

! imaginary va l u e s between −5.0 and 5 .0

allocate (Z s i (nb , nb))

do m = 1 ,nb

do n = 1 ,nb

ca l l random number (myre1)

ca l l random number (myre2)

Zs i (m, n) = (10 .0∗myre1−5.0) + j ∗ (10 . 0∗myre2−5.0)

end do

end do

mylg = (log (real (nb))/ l og (2 . 0))

dm = nint (mylg) ! number o f (r e cu r s i v e) l e v e l s

ca l l pwtin (Zs i) ! Perform matrix i n v e r s e

end program fm so l

82

module fm l i b

contains

subroutine tby2 i (Zs)

implicit none

complex , dimension (2 , 2) , intent (inout) : : Zs

complex : : mydet , mytmp

mydet = Zs (1 , 1)∗Zs (2 , 2) − Zs (1 , 2)∗Zs (2 , 1)

mytmp = Zs (1 , 1)

Zs (1 , 1) = Zs (2 , 2)

Zs (2 , 2) = mytmp

Zs (1 , 2) = −Zs (1 , 2)

Zs (2 , 1) = −Zs (2 , 1)

Zs (1 , 1) = Zs (1 , 1)/mydet

Zs (1 , 2) = Zs (1 , 2)/mydet

Zs (2 , 1) = Zs (2 , 1)/mydet

Zs (2 , 2) = Zs (2 , 2)/mydet

end subroutine tby2 i

83

! In−p l ace matrix mu l t i p l y

! Rep laces Za

subroutine ipmml (Za , Zb)

implicit none

complex , dimension (: , :) , intent (inout) : : Za

complex , dimension (: , :) , intent (in) : : Zb

integer : : m, n , p ,mc , nc , pc

complex , dimension (s ize (Za , 2)) : : Rt

mc = s ize (Za , 1)

nc = s ize (Zb , 2)

pc = s ize (Za , 2)

do m = 1 ,mc

Rt = 0 .0

do n = 1 , nc

do p = 1 , pc

Rt (n) = Rt(n) + Za(m, p)∗Zb(p , n)

end do

end do

Za(m, 1 : nc) = Rt

end do

end subroutine ipmml

84

! In−p l ace matrix mu l t i p l y

! Rep laces Zb

subroutine ipmmr(Za , Zb)

implicit none

complex , dimension (: , :) , intent (in) : : Za

complex , dimension (: , :) , intent (inout) : : Zb

integer : : m, n , p ,mc , nc , pc

complex , dimension (s ize (Zb , 1)) : : Rt

mc = s ize (Za , 1)

nc = s ize (Zb , 2)

pc = s ize (Za , 2)

do n = 1 , nc

Rt = 0 .0

do m = 1 ,mc

do p = 1 , pc

Rt (m) = Rt(m) + Za(m, p)∗Zb(p , n)

end do

end do

Zb (1 :mc , n) = Rt

end do

end subroutine ipmmr

85

! Compute Za − Zb∗Zc r ep l a c i n g Za

subroutine ipsmm(Za , Zb , Zc)

implicit none

complex , dimension (: , :) , intent (inout) : : Za

complex , dimension (: , :) , intent (in) : : Zb , Zc

integer : : m, n , p ,mc , nc , pc

complex , dimension (s ize (Za , 2)) : : Rt

mc = s ize (Zb , 1)

nc = s ize (Zc , 2)

pc = s ize (Zb , 2)

do m = 1 ,mc

Rt = 0 .0

do n = 1 , nc

do p = 1 , pc

Rt (n) = Rt(n) + Zb(m, p)∗Zc (p , n)

end do

Za(m, n) = Za(m, n) − Rt(n)

end do

end do

end subroutine ipsmm

86

! Compute Za + Zb∗Zc r ep l a c i n g Za

subroutine ipamm(Za , Zb , Zc)

implicit none

complex , dimension (: , :) , intent (inout) : : Za

complex , dimension (: , :) , intent (in) : : Zb , Zc

integer : : m, n , p ,mc , nc , pc

complex , dimension (s ize (Za , 2)) : : Rt

mc = s ize (Zb , 1)

nc = s ize (Zc , 2)

pc = s ize (Zb , 2)

do m = 1 ,mc

Rt = 0 .0

do n = 1 , nc

do p = 1 , pc

Rt (n) = Rt(n) + Zb(m, p)∗Zc (p , n)

end do

Za(m, n) = Za(m, n) + Rt(n)

end do

end do

end subroutine ipamm

87

recursive subroutine pwtin (Za)

implicit none

complex , dimension (: , :) , target , intent (inout) : : Za

integer : : m, n , nb

complex , dimension (: , :) , pointer : : pa , pb , pc , pd

nb = s ize (Za , 1)

pa => Za (1 : nb /2 ,1 : nb/2)

pb => Za (1 : nb/2 ,nb/2+1:nb)

pc => Za(nb/2+1:nb , 1 : nb/2)

pd => Za(nb/2+1:nb , nb/2+1:nb)

i f (nb==2) then

ca l l tby2 i (Za)

return

end i f

ca l l pwtin (pd)

ca l l ipmml (pb , pd)

ca l l ipsmm(pa , pb , pc)

ca l l pwtin (pa)

ca l l ipmmr(pd , pc)

ca l l ipmmr(pa , pb)

ca l l ipamm(pd , pc , pb)

88

ca l l ipmml (pc , pa)

do m = 1 , s ize (pb , 1)

do n = 1 , s ize (pb , 2)

pb (m, n) = −pb(m, n)

end do

end do

do m = 1 , s ize (pc , 1)

do n = 1 , s ize (pc , 2)

pc (m, n) = −pc (m, n)

end do

end do

end subroutine pwtin

end module fm l i b

89

Appendix D

GPU Acceleration

GPUs (Graphics Processing Units) may contain hundreds of cores and are able

to execute up to thousands of threads simultaneously [14]. Although the codes used

in this work have not been accelerated with GPU hardware, this has the potential

to speed up the overall procedure significantly. In fact, the major limiting factor in

this work has been the matrix fill time for the MoM system matrix. Luckily, filling

this matrix can be done in a highly parallel manner. Each element may be calculated

independently from all the other elements in the matrix. Furthermore, they may

be calculated in any order. Thus, this procedure is embarrassingly parallel and is

suitable for implementation on a GPU.

To test this idea, we have implemented a standard two-dimensional EFIE formu-

lation with TM polarization as seen in Chapter 2. Here, each thread is assigned to a

single element of the system matrix. Threads working in parallel may then quickly

fill the matrix. In order to solve the linear system, we used a conjugate gradient

iterative solver. Iterative solvers are more amenable to parallel processing than are

direct solutions. In this algorithm, there are a number of matrix-vector multiplies and

these determine how quickly the solver executes. To implement this procedure on the

GPU, we assigned each thread to a row in the system matrix. In each matrix-vector

multiply, each thread performs one dot product between its assigned row and the

vector by which the matrix is multiplied.

Next, we have tested this code on both a 2.67 GHz Core i7 CPU and a NVIDIA

Tesla C1060 GPU and compared the results for unknowns numbering from 1000 up

90

to 22000 (the upper memory limit for the GPU). The ratio of the execution time for

the CPU to that of the GPU is shown in Figure D.1. Note that, for each case, there

is a roughly linear gain in speed as the number of unknowns increases. This implies

that the growth rate for the GPU execution time is an order of magnitude less than

that of the CPU.

There is also a fluctuation in the graph for the matrix fill time. This could be

due to a number of factors. First, when programming this routine, the threads must

be assigned in multiples of 32 for maximum performance (an artifact of the NVIDIA

cards) [15]. However, the matrix cannot always be perfectly divided into partitions of

this size. To remedy this situation, the implementation used here will fill the largest

submatrix of the system matrix that may be partitioned in this way. After that, the

remaining terms are calculated separately in smaller blocks. This introduces latency

that may behave in an unpredictable manner. Furthermore, there may be differences

in how the compilers translate each of the codes. A separate compiler must be used

for the CPU and GPU and they may optimize operations differently. Also, the speed

at which different operations (multiplication, addition, etc.) are handled on each

device may vary as the GPU has a complex cache/memory architecture. Finally, the

variables for the GPU are in single precision (a hardware limitation) while those on

the CPU are in double. This affects how the operations are performed as well as how

the code is compiled and optimized.

The speed of the gradient solver also improves as the number of unknowns in-

creases, although much more slowly than does the matrix fill. This is due to the fact

that the solver has only been parallelized along one dimension of the matrix, while

the matrix has been parallelized along two. Still, the solver is almost ten times faster

than the CPU for large problems.

91

Overall, it appears that this technique would greatly accelerate the matrix fill

and therefore the the algorithm presented in this work. Furthermore, inexpensive

programmable GPUs are currently available for desktop machines and can also be

found in many supercomputers making this a practical option.

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000

G
P

U
 v

s
C

P
U

 r
at

io

Unknowns

Matrix Fill
Conj Grad

Figure D.1: Ratio of CPU to GPU execution times for matrix fill and conjugate
gradient solver.

92

