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Measuring how well software component can be reused and maintained helps 
programmers not only write reusable and maintainable software, but also identifies 
reusable or maintainable components. We develop an automated measurement tool, 
JamTool, for object-oriented software system and describe how this tool can guide a 
programmer through measuring internal characteristics of a program for software reuse 
and maintenance. 
In this research, primitive but comprehensive metrics for object-oriented language 
are extensively studied and statistically analyzed to show internal characteristics from 
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classes selected from various applications. Also, the automatically identified connected 
unit, reusable unit, and maintainable unit are discussed. 
We demonstrate JamTool?s ability through case studies. The first case study 
investigates whether JamTool can be used to assess the reusability on the evolution of an 
open software system. The second case study investigates whether JamTool can be used 
to capture the difference between two consecutive versions on the evolution of the open 
software system. The third case study investigates whether the metrics defined and 
implemented in JamTool are related to each other. 
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1 INTRODUCTION 
1.1 The general area of the research 
While application development has become a huge and complex task, software 
productivity has improved slowly over the past years. One of the many goals of software 
developers (e.g., project managers and programmers) is to have control of software 
production and its quality. According to Moser and Henderson-Sellers [42], the following 
three steps are important to achieving this goal. 
1. Knowing where one stands 
2. Aiming where we wish to go 
3. Going there (and reapplying the problem solving steps periodically while 
going)  
Steps 1 and 2 are related to measurement, i.e., we should measure what we want 
to control.  
Fenton and Pfleeger describe that a quality software product is characterized by 
many sound software attributes that may provide useful indications of the maintainability 
and reusability of a software product [17]. Without an accompanying assessment of 
product quality, progress of product is meaningless. Thus, it is important to recognize and 
measure certain desirable software quality attributes.  
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Fisher and Light define software quality as ?The composite of all attributes which 
describe the degree of excellence of the computer system.?[19] Fenton et al. focus on the 
purpose of software quality by defining, ?The totality of features and characteristics of a 
software product that bear on its ability to satisfy the stated or implied needs.?[16] 
Despite several attempts to quantify the elusive concept of software quality like 
McCall?s Factor Criteria Metric (FCM) model [40] and Basili?s Goal Question Metric 
(GQM) approach [2], measurement of software quality is still not empirically validated.  
Object-oriented technologies have claimed to improve software quality to support 
reuse and to reduce the effort of maintaining the software product. However, many 
object-oriented methods, tools, or notations are being used without evaluation.  
Kitchenham et al. have observed that code and design metrics can be used in a 
way that is analogous to statistical quality control [27]. According to them, object-
oriented code can be accepted or rejected based on a range of metric values. Rejected 
object-oriented code can then be revised until the metric values fall within a specified 
acceptable range.  
 It is argued that existing traditional software metrics are not suitable for object-
oriented systems. Therefore, many new metrics are being proposed for object-oriented 
systems, but only a few have been validated. We need a metric set for object-oriented 
software construction to measure how the reusability and maintainability of the software 
could be improved. But metric research of the object-oriented paradigm is still in its 
infancy.  
The primary motivation to reuse software components is efficiency.  It is achieved 
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by reducing the time, effort and/or cost required to build software systems. The quality 
and reliability of software systems are enhanced by reusing software components, which 
also means reducing the time, effort and cost required to maintain software systems. 
Researchers agree that although maintenance may turn out to be easier for object-oriented 
systems, it is unlikely that the maintenance burden will completely disappear. One 
approach to controlling software maintenance costs is the utilization of software metrics 
during the development phase to help identify potential problem areas. 
Measuring how well the software component can be reused and maintained helps 
programmers not only write reusable and maintainable software, but also identify 
reusable or fault-prone components. Since there are hundreds of software complexity 
measures that reveal internal characteristics of an object-oriented program, it is important 
to have the right criterion to select a good subset of these measures. 
This research will develop an automated metric tool that attempts to guide  
programmers to reuse and maintain object-oriented programs based on software 
measurement.  
The following research activities will be accomplished in this study.  
Quality Measurement Model Development 
We will first identify essential software properties that have been suggested as 
having an impact on software quality.  The properties that can be directly or indirectly 
derived from the source code will then be selected for this study.   
We will divide measurement factors (i.e., reusability and maintainability) into five 
subfactors (i.e., identification, separation, modification, validation, and adaptation) in a 
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top-down fashion. We believe that these subfactors are more tangible and useful to 
connect to software product metrics and cover most of the reuse and maintenance 
activities.  We will also apply bottom-up approach to develop quality measurement 
models for reusability and maintainability based on available measurement types that are 
related to reuse and/or maintenance properties. Using these top-down and bottom-up 
approaches, we will construct a concise quality measurement model for reusability and 
maintainability.   
Widespread adoption of object-oriented metrics can only take place if the metrics 
have been empirically validated, i.e., they accurately measure the attributes of software 
and can be applied easily.   
Automated Measurement Tool 
Users can get an instant measurement feedback while developing object-oriented 
software using an automated tool implemented in this research. The collection, 
derivation, and display of metrics would take place interactively to provide practical and 
non-intrusive feedback. Effort is also devoted to present the metric results along with the 
connected classes, to locate reusable or maintainable classes. 
The research in this dissertation describes how an automated measurement tool 
[29] can guide a programmer through measuring internal characteristics of a program for 
software reuse and maintenance purposes. 
1.2 Statement of the Problems 
It is worthwhile to note that Zuse claims that the results of measurement are 
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difficult to interpret if too many properties of a program are combined into one number 
[51], and Schneidewind argues that a standard set of quality measurement may be 
available in the future [47]. Information is lost if a single-valued measure is used. A 
vector of measures can provide complete information on individual properties of a 
program.  
GQM is useful to identify objectives for measurement, but the available set of 
metrics may not be applicable to the desired objectives. Thus, identifying a set of  
?potentially useful? metrics in some systematic manner could improve the object-oriented 
metrics research effort [22].  After the identification of a set of quality factors and a set of 
metrics, the relations between them should be identified by empirical test. While GQM++ 
attempts to resolve some weaknesses of GQM through additional stages, Dromey argues 
that single-level is better than multiple intermediate levels between quality factors and 
software metrics as a means of linking them [14]. Empirical tests are needed to back both 
of these approaches. These previous approaches do not address problems of measurement 
such as appropriate data scales, alarm threshold, and representation of measurement 
result.  
Consequently, previous efforts have been hampered by the following difficulties 
that have discouraged or delayed the application of object-oriented metrics. In particular: 
? There is no clear relationship between the external quality factors and the 
metrics of the software.  
? Most of existing metrics are not intuitive. It requires education on the users? 
side to have numerical thinking about the quality of software and how to 
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apply them. 
? In case of measurements that are intrusive and interruptive, measuring 
software quality intimidates programmers. Therefore, it is difficult to apply 
them in the industry. 
? Some metric sets have not been validated theoretically and empirically. 
Furthermore, there are other reasons that software metrics are not used widely in 
the industrial world:  
? Due to the lack of the availability of a standard metric set, it is difficult to 
choose an appropriate metric set for a user?s purpose. 
? It is difficult to interpret the measurement results. 
This research addresses these issues by focusing on a framework for a customized 
quality model and interactive automated metric tool. The key features of this research are: 
? To define simple and computable object-oriented metrics that quantify 
potential reuse and maintenance. The metrics should be easy to comprehend 
and use, and require only simple and well-formed formulas. 
? To implement an automated metric tool that collects, analyzes, interprets, and 
presents the metric data automatically. 
? To guide a programmer to software reuse and maintenance through measuring 
internal characteristics of a program. 
? To empirically verify the validity of the metrics. 
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2 LITERATURE REVIEW 
There have been several attempts to quantify the fuzzy concept of software 
quality by developing a set of metrics for various attributes related to the concept. These 
metrics all involve some degree of software measurement with the ultimate objective of 
improving software quality. As described later in this chapter, constructing a quality 
measuring model could be guided by several approaches. Unfortunately, measuring 
software quality is still an unsolved problem. 
 
2.1 The GQM Approach and its extension 
2.1.1  The GQM approach 
If we can measure the development progress towards a quality product, the 
management of production process is simplified. In manufacturing, individual 
components are compared to tolerance limits (or goals) in order to reject poor quality 
products. As a result, desirable manufacturing processes can be found. Likewise, in order 
to develop a software measurement approach, the goals that we want to attain should be 
clearly defined, e.g., to increase programmer productivity; to decrease the number of 
defects reported per unit of time or to improve the efficiency of the overall development 
process [42]. 
Basili and Weiss propose a Goal Question Metric (GQM) framework with the aim 
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of providing a systematic approach to translate measurement needs into metrics [2]. The 
measurement goals that can be refined into questions in measurable terms, should be 
answered in terms of enumerated metrics. The GQM approach has enabled managers to 
find objectives for measurement and metrics for their software products. But this also 
calls for thorough knowledge on their part of the organization as well as the developed 
software product. 
Gray and MacDonell say that GQM is usually applied with its: 
? Particular purpose (e.g. to evaluate, predict, classify) 
? Certain perspective (e.g. the manager, user, programmer) 
? Given object (e.g. specification, code) 
? Environment (e.g. the people, tools, methodologies). 
Thus, GQM is useful to ensure the proper metrics are allocated to assess the 
conceptual goal [20]. 
Gray and MacDonell also argue that organizations are faced with a wide range of 
software metrics that can lead to difficulties in the selection of appropriate metrics for a 
particular goal. Given the goals of a specific organization, the generic set of metrics 
needs to be tailored. As a result, the tailored metrics set has the greatest predicting power 
for the desired purpose and the least cost of data collection.  Grey and MacDonell also 
recommend a task within a framework that will assist in decomposing goals in order to 
develop a set of software metrics [20]. 
2.1.2  Metrics Multidimensional Framework 
The problem with the application of the GQM approach to object-oriented metrics 
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is that metrics may not exist. Thus, a complementary activity would be to identify the ?M? 
component of ?GQM? independently of the specific goals and questions. The first major 
step would be to identify a set of  ?potentially useful? metrics in some systematic manner. 
Moser and Henderson-Sellers have presented such a method in the form of a so-called 
Metrics Multidimensional Framework (MMDF) [42]. 
The MMDF approach is composed of three dimensions. The first dimension is the 
external characteristic. It is divided into Quality (e.g., Understandability, Maintainability, 
Reusability, etc.) and Size (e.g., External and Internal). The second dimension is the 
granularity (e.g., System, Part, Class, and Method) at which the metric is applicable. 
Finally, the third dimension is the lifecycle phase (e.g., Analysis, Design, and System 
use). While the reasons and motivation for any individual using metrics in an object-
oriented development environment may vary, Moser and Henderson-Sellers argue that the 
most popular metric usage purposes can be identified and described as combinations of 
these three dimensions. This approach can lead to a minimal set of metrics that is 
desirable for practical managerial purposes. Because MMDF permits the identification of 
useful metrics, it should improve the current, more ad hoc and uncoordinated object-
oriented metrics research effort [22]. 
After defining a set of quality goals and a set of metrics, the correlation between 
them should be identified by empirical test using regression. 
2.1.3 GQM++  
MacDonell extends GQM into a hierarchy of goals, subgoals, domains, 
subdomains, questions, subquestions, and characteristic measures. He also argues that by 
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breaking a goal into separate subgoals, the essential differences between metrics needed 
for each subgoal can be identified [36]. 
However, such extensions do not seem to go far enough. Fenton criticized that 
GQM is useful to identify objectives for measurement, but it does not address the actual 
problems of measurement such as appropriate data scales [17]. Gray and MacDonell  
interpret this criticism as the absence of any feasibility, economic, or correctness checks 
in GQM and that its simple and intuitive nature leads to these problems.  
Further, Gray and MacDonell argue that other precedent conditions should be 
studied in addition to GQM. These considerations include the costs and benefits of data 
collection, the detailed plan of modeling and analysis methods, and the agreement of how 
the measurement results could be applied for their software product. The proposed 
framework, Goal/Question/Metric/Collection/Analysis/Implementation (GQMCAI, 
simply GQM++), attempts to resolve some weaknesses of GQM through additional 
stages [36], including data collection, modeling, and implementation. Their extension 
also includes cost/benefit information and assesses the program in terms of economic 
justification and feasibility [20].  
While GQM++ is suggested to be a more comprehensive and pragmatic data 
collection and analysis process, empirical tests are needed to back up this claim. 
2.2  Software Quality Models 
The relationship between software characteristics and software quality has been 
investigated and proposed by many researchers [17, 40, 5, 24]. There have been attempts 
to quantify software quality resulting in omnibus models which have fixed 
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relationship between quality and metrics. Assessing quality by measuring internal 
properties is also attractive because it offers an objective and context independent view of 
quality [28].  
2.2.1 Omnibus Software Quality Metrics 
Both McCall et al. and Boehm et al. describe product quality using a hierarchical 
approach [40, 5]. In McCall?s Factors-Criteria-Metrics (FCM) model, high-level product 
quality like ?reusability? and maintainability? are called factors that can be decomposed 
into several lower-level attributes i.e., criteria (See Figure 2-1). The Manager, who has 
responsibility for the software development, or the potential user who will use the to-be-
developed software, should be interested in the final product quality, especially its 
performance, usability, reliability, etc. These views of software product are described in 
terms of software factors and criteria. But these factors and criteria are too elusive to be 
applied to software development. Thus, the criteria should be related directly to 
measurable attributes of the software process or product. FCM model has three views 
(uses) of software product quality, eleven factors, and twenty-five criteria. For example, 
factor ?maintainability? relates to several criteria such as consistency, simplicity, 
conciseness, self-descriptiveness, and modularity. Factor ?reusability? is decomposed 
into generality, self-descriptiveness, modularity, machine independence, and software 
system independence.  
Boehm?s model, which has a hierarchical structure similar to the FCM model, has 
two primary uses, ?maintainability? and ?utility?. Maintainability is further divided into 
intermediate constructs: understandability, modifiability, and testability. 
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Figure 2-1: McCall Software Quality Model 
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2.2.2 ISO 9126 
According to Fenton and Pfleeger, global software quality model is required for 
comparing quality among software systems. Because of this requirement, the ISO 9126 
model is proposed with six factors - functionality, reliability, efficiency, usability, 
maintainability, and portability [24]. Despite its incompleteness and conflict with other 
standards, ISO 9126 is used by many companies to support their quality evaluation as 
Fenton and Pfleeger described in [16]. 
2.2.3  Dromey?s Quality Model Framework 
Recently, Dromey also defines a model for software product quality [14]. In this 
model, seven high-level quality attributes (six factors of ISO-9126 and reusability) are 
linked in a structural form of software elements (variable and expression) that influence 
software quality [14]. The emphasis is on defining and describing the quality-carrying 
properties, which are classified further into correctness, structure, modularity, and 
descriptive properties. Because Dromy?s model is designed to be refined by empirical use 
to build a useful model, it is a framework to construct a quality models rather than a fixed 
model (e.g., McCall?s FCM model). He argues that placing a single level (a set of quality-
carrying properties) is better than placing several vaguely decomposed intermediate 
levels between the high-level quality and the components of product as a means of 
linking them. In linking the desirable quality-carrying properties and the high-level 
quality, quality mode can be constructed in bottom-up or top-down fashion. Each 
established link should be verified empirically.   
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In Dromey?s approach, identifying and associating a set of quality-carrying 
properties in a structural form is the first task in constructing a quality model. With 
successively defined, evaluated, and refined models, we can build a software quality 
model that ensures quality and detects quality defects in software. 
2.2.4 Fenton?s Approach to Software Quality 
Fenton defines external product attributes as those that can be measured in terms 
of how the product relates to its environment [17]. For example, if the product is a 
software code, then its reliability (defined in terms of the probability of a failure-free 
operation) is an external attribute. It is dependent on both the machine environment and 
the user. Whenever we think of software code as a product, we have to investigate the 
external attributes that the user depends on.  Inevitably, we are then dealing with 
attributes synonymous with software quality.   
Fenton uses several general software quality models [5, 40], each of which 
proposes a specific set of external and internal quality attributes and their 
interrelationships.  For example, maintainability is not restricted to code; it is an attribute 
of a number of different software products, including specification and design documents, 
and even test plan documents. There are two broad approaches to measuring 
maintainability; reflecting the external and internal views of the attribute. The external 
and more direct approach to measuring maintainability is to measure the maintenance 
process. If the process is effective, then we assume that the product is maintainable. The 
alternative internal approach is to identify internal product attributes (e.g., those relating 
to the structure of the product) and establish that they are predictions of the maintenance 
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process. 
All maintenance activities are concerned with making specific changes to a 
product. Once the need for a change is identified, the required efforts of implementing 
that change becomes the key characteristic of maintainability. Many measures of 
maintainability are expressed in terms of mean time to repair (MTTR). A number of the 
complexity measures have been correlated significantly with the level of maintenance 
effort. There is a clear intuitive connection among poor programming structure, poor 
documented products, and poor maintainability of a software product. We cannot say that 
a poorly structured module will inevitably be difficult to maintain. Rather, past 
experience tells us that such kinds of modules have had poor maintainability, so we 
should investigate the courses for a module's poor structure and perhaps restructure it. 
Fenton and Neil indicate that the most significant benefit of software metrics is to 
provide information to support managerial decision-making during software development 
and testing [18]. Simple metrics are accepted by industrialists because they are easy to 
understand and simple to collect. Thus, Fenton and Neil try to use these simple metrics to 
build management decision support tools to handle the uncertainty as well as combine 
different evidences. They use Bayesian Belief nets as a means of handling decision-
making under uncertain circumstances. 
2.2.5  Karlsson?s Approach to Software Quality 
Karlsson proposes a general reusability and maintainability models for C++ code 
[26].  In addition, he suggested that all measurements should be normalized so that they 
yield a value between zero and one, where a value close to zero indicates that the 
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measured characteristic may cause problems, and a value close to one indicates that the 
corresponding characteristic is kept inside its limit. He chose to use the Kiviat diagram 
for metric presentation. This type of diagram represents parameters as vectors plotted on 
a circle. It provides an easy-to-grasp representation of assessment results and can be used 
for factors, criteria and metrics. Kalsson?s models for reusability and maintainability are 
shown in Figure 2-2 [26]. 
 
 
Figure 2-2: Karlsson's Reusability and Maintainability models 
 Maintainability 
 Consistency 
 Self-descriptiveness 
 Simplicity 
 Modularity 
 Testability 
 Reusability 
 Potability 
 Adaptability 
 Understandability 
 Confidence 
 Environment   
  independence 
 Modularity 
 Generality 
 Self 
 descriptiveness 
 Documentation  
 level 
 Structural  
 complexity 
 Inheritance  
 complexity 
 Maturity 
 Fault tolerance 
 
 
 
 
17 
2.3 Software Metrics 
2.3.1 Object-Oriented Metrics by Chidamber and Kemerer  
A set of object-oriented metrics for measurement was proposed by Chidamber and 
Kemerer [12]. Since this metrics set is very popular, it has become the focus of discussion 
among many researchers. The resulting six metrics directly relate to design and 
implementation of object-oriented software. 
Because previous metrics were criticized for their lack of theoretical basis, lack of 
desirable measurement properties, and for being too labor-intensive to collect, Chidamber 
and Kemerer developed six object-oriented metrics, and evaluated them analytically. 
They also developed an automated data collection tool to collect an empirical sample of 
these metrics. They then suggested ways in which the managers may use these metrics for 
process improvement using empirical data collected from two field sites[12]. We can also 
interpret these six metrics from the view point of quality. 
Weighted Methods per Class (WMC): The WMC metric can be calculated from the 
sum of the complexities of the methods in a class where method complexity can be 
measured using cyclomatic complexity or assumed unity weights for all methods. WMC 
can be used as a predictor of how much time and effort is required to develop and 
maintain the class. A large value of WMC will have a great impact on the children of the 
class. Classes with large WMC value limit the possibility of reuse. This metric can be 
used as a measure of usability and reusability  
Depth of Inheritance Tree (DIT): The DIT is the length of the longest path from a class 
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node to the root of the tree. The deeper a class is within the hierarchy, the greater the 
number of methods it is likely to inherit. Thus its behavior could be predicted to be more 
complex. This metric can be used not only to evaluate reuse, but also to relate 
understandability and testability.   
Number of Children (NOC): The number of children is the number of immediate 
subclasses subordinate to a class in a hierarchy. The measure is an indication of the 
potential influence a class can have on other classes in the design. The greater the number 
of children, the greater the likelihood of improper abstraction of the parent, and the 
potential misuse of subclassing. This also means greater reuse since inheritance is a form 
of reuse. If a class has a large number of children, it may require more testing for the 
methods of that class, thus increasing the testing time.  
Coupling Between Object Classes (CBO): Coupling is a measure of the strength of 
association from one entity to another. CBO is a count of the number of other classes to 
which a class is coupled. It is measured by counting the number of distinct non-
inheritance related classes on which a class depends. Excessive coupling is detrimental to 
modular design and prevents reuse. The more independent a class is, the easier it is to 
reuse it in another application. The larger the number of couplings, the higher the 
sensitivity of changes would have to other parts of the design, and therefore maintenance 
is more difficult. The higher the inter-object class coupling, the more rigorous the testing 
needs to be. 
Lack of Cohesion of Methods (LCOM): Assume P is the number of null intersections 
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and Q is the number of nonempty intersections between two methods. If P is greater than 
Q then LCOM is the differences between P and Q, else LCOM is zero. Two methods are 
considered related if both methods use the same instance variable(s). LCOM is based on 
method interconnection through instance variable reference. Effective object-oriented 
designs maximize cohesion in order to promote encapsulation. A large number of LCOM 
implies that the class is attempting to model more than a single concept and thus may 
need to be decomposed into several classes. 
Response for a Class (RFC): The RFC is the cardinality of the set of all methods that 
could potentially be executed in response to a message to an object of the class. The 
larger the number, the more complex the testing of the class would be. 
2.3.2 Class Cohesion and Coupling Measurement in object-oriented Systems 
In addition to the Chidamber and Kemerer?s metrics set, other metrics have been 
proposed to measure the coupling and cohesion of classes. Cohesion and coupling are 
two structural attributes whose importance is well-recognized in the software engineering 
community. Cohesion refers to the relatedness of module components within a class 
while coupling refers to how classes affect each other.  
The higher the cohesion of a module, the easier the module is to develop, 
maintain, and reuse. Further the module becomes less fault prone. Some empirical 
evidence exists to support this theory for systems developed by object-based techniques 
[8].  
Eder and colleagues [15] propose a framework aiming at providing 
comprehensive, qualitative criteria for cohesion and coupling in object-oriented systems. 
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They distinguish between three types of cohesion in an object-oriented software system: 
method, class and inheritance cohesion. Briand et al. also suggest the framework for 
coupling and cohesion measurement in object-oriented systems [9, 10] For each type, 
various degrees of cohesion exist. Within this framework, an analysis of the semantics of 
a given method or class is required to determine the degree of cohesion. Bieman and 
Kang define class cohesion measure based on dependencies between methods through 
their references to instance variables [4].  
Briand, Morasco, and Basili design a measure to indicate cohesion for software 
developed in Objected-Oriented programming languages such as Ada [7]. Their primary 
cohesion measure, Ratio of Cohesion Interactions (RCI), is based on the number of 
interactions between subroutines, variable declarations, and type declarations. A method 
cannot affect another method through a type reference but it affects the effort required to 
understand the method. 
During the analysis and design phase, and in any code evaluation at the module 
level, inter-module coupling is measured by the number of relationships between classes 
or between subsystems [35].  Class coupling should be minimized, in the sense of 
constructing autonomous modules [6].  Booch also notes that coupling occurs on a peer-
to-peer basis and within a generalization/specialization hierarchy. The former should 
exhibit low coupling, i.e., closely coupled classes should be generalized in a hierarchy.  
Berard differentiates between necessary and unnecessary coupling [3].  The 
rationale is that without any coupling, a system is useless. Consequently, for any given 
software solution there is a baseline or necessary coupling level. It is the elimination of 
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extraneous coupling that should be the developer's goal. Such unnecessary coupling 
needlessly decreases the reusability of the classes [43].   
Li and Henry offer the Message Passing Coupling (MPC) metric as "the number 
of send statements defined in a class" [34]. A similar approach is taken by Rajaraman and 
Lyu where they define coupling at the method level [45]. They define Method Coupling 
(MC) as the number of nonlocal references, and then gross these values up to the class 
totals and class averages. Chidamber and Kemerer define coupling between objects as 
"the number of other classes to which it is coupled and two classes are coupled when 
methods declared in one class use methods or instance variables defined by the other 
class" [12].  Their Response For a Class (RFC) metric counts the number of internal and 
external methods available to a class.  
Fan-in and fan-out are the number of references made from outside a class to 
entities defined within the class and the number of references made from within a class to 
entities defined outside the class, respectively. A low fan-out is desirable since a high fan-
out is a characteristic of a large number of classes needed by the particular class in 
question [3]. A high fan-out also represents a class coupling to other classes and thus an 
"excessively complex dependence" on other classes [23].  A high fan-in normally 
represents a good object design and a high level of reuse.  Since summations of these two 
numbers are the same for a system, it is not likely to maintain a high fan-in and a low fan-
out across the whole system. 
2.3.3 Profile Software Complexity 
Thomas McCabe proposes a measure of software called cyclomatic complexity 
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[39]. Making use of graph theory, McCabe postulates that software with a large number 
of possible control paths would be more difficult to understand, more difficult to 
maintain, and more difficult to test. One of the problems of using cyclomatic numbers as 
a measure of software complexity is that it produces just a single value to describe a 
module?s complexity. 
An alternative approach proposed by McQuaid is a fine-grained approach to 
computing and visualizing complexity [41]. Unlike cyclomatic complexity, the profile 
metric is computed and shown on a statement-by-statement basis. It defines complexity 
in terms of a program statement's content, much like Halstead's effort measurement, and 
context, which is the environment in which the statement occurs.  The context complexity 
can be further refined into three measures: inherency, reachability, and breadth 
complexity.  
The content complexity tries to measure the information quantity and not quality 
within a measurable unit. The context complexity tries to measure the location of a 
measurable unit within the source code. The profile complexity is designed such that the 
context complexity is the baseline complexity, with the content complexity riding on this 
baseline. The rationale of this design is to provide easy identification of complex clusters. 
When a cluster is identified, the content complexity can be used to isolate the heavy 
segment in the cluster. 
2.4 Framework for Coupling and Cohesion Measurement 
Briand et al. propose a unified framework for coupling and cohesion measurement 
for object-oriented programs [9, 10]. The objective of the framework is to support the 
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comparison and selection of existing coupling and cohesion measures with respect to a 
particular measurement goal. In addition, the framework provides guidelines to support 
the definition of new measures with respect to a particular measurement goal when no 
measures exist. The framework, if used as intended, will: 
? Ensure that measure definitions are based on explicit decisions and well 
understood properties, 
? Ensure that all relevant alternatives have been considered for each decision 
made, 
? Highlight dimensions of coupling for which there are few or no measures 
defined. 
The framework for coupling consists of six criteria, each criterion determining 
one basic aspect of the resulting measure. The six criteria of the framework are: 
1. Type of connection: Choosing the type of connection implies choosing the 
mechanism that constitutes coupling between two classes. Table 2-1 
summarizes the possible types of connections. 
2. Direction of connection: Fan-in refers to connection to the module being 
studied. Fan-out measures the connection to other modules from the module.  
3. Granularity of the measure: Domain of the measure and how to count 
coupling connections. 
4. Stability of server: Stable classes are not subject to change in a new project but 
unstable classes are subject to modification in a new project. 
5. Direct or indirect coupling: Counting direct connections only or also indirect 
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connections. 
6. Inheritance: Inheritance-based vs. noninheritance-based coupling, and how to 
account for polymorphism, and how to assign attributes and methods to 
classes. 
 
Table 2-1: Connection Types of Coupling 
# Class 1 Class 2 Description 
1 Attribute a of class c Class d, d ? c Type of attribute: Class d is the 
type of a 
2 Method m of class c Class d, d ? c Type of parameter: Class d is the 
type of a parameter of m, or the 
return type of m 
3 Method m of class c Class d, d ? c Type of local variable: Class d is 
the type of a local variable of m 
4 Method m of class c Class d, d ? c Type of invoked method: Class d 
is the type of a parameter of a 
method invoked by m 
5 Method m of class c Attribute a of class d, 
 d ? c 
Attribute reference: m references a 
6 Method m of class c Method m? of class d,  
 d ? c 
Method invocation: m  invokes m? 
7 Class c Class d, d ? c Inheritance: Class d the child class 
of class c 
 
 
Table 2-2: Connection Types of Cohesion  
 
# Element 1 Element 2 Description 
1 Method m of class c attribute a of class c Attribute reference: m 
references a 
2 Method m of class c Method m? of class c Method invocation: m invokes 
m? 
3 Method m of class c Method m? of class c, 
 m ? m? 
Attribute sharing: m and m?  
reference an attribute a 
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When specifying a cohesion measure, the following criteria of the cohesion 
framework must be considered.  
1. Type of connection: What makes a class cohesive. Table 2-2 summarizes the 
possible types of connections. 
2. Domain of measure: Objects to be measured (methods, classes, and system) 
3. Direct or indirect connections. 
4. Inheritance: How to assign attributes and methods to classes, how to account 
for polymorphism. 
5. How to account for access methods and constructors. 
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3 SELECTING THE SOFTWARE QUALITY METRICS 
This research focuses on the design, development, and evaluation of an automated 
measurement tool for object-oriented programs. More specifically, the measurement tool 
is targeted for software quality measurement in terms of reusability and maintainability.   
 
3.1 Quality Factors to be Measured  
For the development of practical and automated metric model, we suggest top-
down and bottom-up metrics framework for source code of object-oriented software. In 
this framework, we develop quality measurement model of object-oriented software in 
terms of quality factors during implementation or maintenance phase.  
In most of the stated software metric models, each software quality aspect (e.g., 
maintainability and reusability) is expressed in terms of a hierarchy of factors and 
criteria. The higher-level factors in the hierarchy typically represent the management's 
point of view; while the lower level criteria represent the code-related measurement, i.e., 
each criterion is normally a function of the raw attributes of the software. The structure of 
the hierarchy is largely dependent upon the nature of the software and the desire of the 
project team.  
In a quality hierarchy, code-related criteria are the foundation by which quality is 
defined, judged, and measured.  The measurement represented by a quality metric can be 
 
 
 
 
27 
obtained during all phases of the software development to provide an indication of 
progress towards the desired product quality.  In this research, reusability and 
maintainability are the two focused factors that can be applied to the source code to 
provide good quality indication.  
3.1.1 Maintainability 
Software maintenance includes all post implementation changes made to a 
software entity. Maintainability refers to the easiness or toughness of the required efforts 
to do the changes.  Before any changes can be made to a software entity, the software 
must be fully understood.  After the changes have been completed, the revised entity must 
be thoroughly tested as well.  For this reason, maintainability can be thought of as three 
attributes: understandability, modifiability, and testability.  Harrison sees software 
complexity as the primary factor affecting these three attributes [21], while modularity, 
information hiding, coupling, and cohesion are closely related to the complexity (See 
Figure 3-1). 
 
 
 
 
 
 
Since maintenance accounts for a large portion of a software product's cost, if 
properly improved, it has a great potential to reduce the total software cost.  However, 
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Figure 3-1: Harrison?s Maintainability Model 
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without meaningful measure of maintainability, there would be no substantial way of 
verifying improvement, even though certain actions may seem beneficial [21]. 
Historically, maintainability can only be measured after actual maintenance has been 
performed.  In the same application, the time required per module to determine the 
changes indicates understandability; the time to change indicates modifiability; the time 
to test indicates testability.   
Instead of collecting the measurement after the product is completed, our 
approach is to forecast the maintainability based on the source code and display the 
measurement at any time the programmer wishes.  The source code can be at any stage of 
the development, and the measurement will be computed automatically.  This will 
provide a real time grade of the software in the dimension of maintainability. 
3.1.2 Reusability 
When a reusable code is written, the intended users should be somewhat 
identified.  If a code is to include the functionality that every user would want, the 
resulting code would be too expensive to produce and too difficult to use.  Code reuse has 
been common in practice.  But, many difficulties are associated with code reuse: 
1. Code identification:  It is difficult to identify a piece of reusable code.  Many 
times, programmers reuse only a small fraction of their own or their colleagues? code.    
2. Code validation and verification:  There is usually little assurance that the 
reused code is correct.   
3. Code dependency:  It is a nontrivial task to separate a desired piece of code 
from an entangled chunk of software with complex dependency. 
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4. Code modification:  In addition to the necessary changes, the reused code may 
implicitly conflict with the new context.  
5. Execution environment: The reused code might assume things that are not true 
in the new environment.  This may result in degraded performance.   
With careful planning and implementation, many of these difficulties can be 
avoided. This requires a reusable code to possess certain properties that our proposed 
measurement will quantify.  A static analysis of a source code in any stage of 
development can provide instant feedback to the programmer, the quality of the code in 
the sense of reusability.  This would encourage programmers to ensure that the completed 
code provides good reusability quality before it is discovered too late.  The measurement 
can also allow the manager of a software project to evaluate the quality and reward the 
programmers accordingly. 
 
3.2 Quality Measurement Model 
 
In this research, a quality measurement model is proposed and its metric set is 
developed. The overall steps to construct the model and metrics are in Figure 3-2. We 
obtain subfactors from the software quality factors and measurement types from the 
essential properties of reusable and maintainable code, then match the subfactors and the 
measurement types, and create a quality model for reusability and maintainability. 
Several metrics are defined for each measurement type. Based on the created quality 
model and the defined metrics, an automated metric tool is implemented, and the 
measured metrics from the tool are validated through empirical study. 
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Subfactors and measurement types are discussed in detail in the following sub-sections. 
We use a top-down and bottom-up approach to develop this quality model. Its 
methodology is shown in Figures 3-3. From the top down, we first divide the quality 
factors (i.e., reusability and maintainability) into subfactors in accordance with 
procedures of performing reuse and maintenance. The divided subfactors are 
identification, separation, modification, validation, and adaptation of a module. By 
dividing the factors into five subfactors, the vague concepts of the factors become clearer. 
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Figure 3-2: Steps for constructing the quality model and metric set 
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From the bottom up, we propose the desirable features for reusability and 
maintainability, and apply these features to understand software for reuse and 
maintenance purposes. These properties can be derived from the source code.  The 
selected measuring properties include External dependency, Cohesion, Information 
hiding, Size, Complexity, Easy understanding, Proven reliability, Reuse frequency, and 
Standardization as shown in Table 3-1. Each measuring property has its own 
measurement type. In this research, we mainly focus on four measurement types 
Reusability and Maintainability 
Identifying Separating Modifying Validating Adapting 
       Quality Factor 
Subfactors 
Coupling Cohesion Size Complexity 
Reuse and maintenance properties 
Measurement type 
Figure 3-3: Flow of how the subfactors are connected to the metrics 
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(Coupling from External dependency, Cohesion, Size, and Complexity) from the reuse 
and maintenance properties. Information hiding, Easy understanding, Proven reliability, 
Reuse frequency, and Standardization will not be considered due to the difficulties of 
collecting measurement data.  
The definitions of the selected measurement types are summarized in Table 3-2. 
The Coupling from the external dependency defines the interdependency of a class to 
other classes in a source code. The Cohesion assesses the relationship of methods and 
attributes in a class. The Size measures the number of methods and attributes, and lines of 
code in a class. The Complexity measures the degree of difficulty in understanding the 
structure of classes.  
The important issue in this model construction is to establish links between the 
subfactors and the measurement types. We want to map the subfactors into the 
measurement types since each measurement type can be defined as a metric and 
computed through a simple expression and each metric plays an important role as a key 
factor in measuring the quality of a software system. Therefore, measuring the 
measurement types as metrics becomes equal to measuring the factors of software 
quality. The links between subfactors and measurement types are established in Figure 3-
3, and their relationship is presented in Section 3.2.2. 
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Table 3-1: Essential properties of reusable and maintainable code 
 
 
   
? External dependency  
o Requires no separation from any containing code. 
o Requires no changes to be used in a new program 
o Components do not interface with its environment. 
o Low fan-in and fan-out 
o Has more calls to low-level system and utility functions. 
? Cohesion 
o Component exhibits high cohesion 
? Information hiding 
o Has few input-output parameters.  
o Interface is both syntactically and semantically clear.  
o Interface is written at appropriate (abstraction) level. 
? Size  
o Small 
? Complexity  
o The lower the values of complexity metrics, the higher the programmer?s 
productivity.  
o Low module complexity 
? Easy understanding 
o Component and interface are readable by person other than the author 
o Component is accompanied by documentation to make it traceable 
o Easy to find and understand 
o In-line comments 
? Proven reliability 
o Thorough testing and low error rates  
o Reasonable assurance that it is correct 
? Reuse frequency 
? Standardization 
o Component is standardized in the areas of invoking, controlling, terminating 
its function, error-handling, communication, and structure. 
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Table 3-2: Measurement type 
 
Measurement 
Type 
Definition based on class Measuring  Measuring 
Properties 
Coupling The interdependency of a 
class to other classes in a 
system. Measure of the 
number of other classes that 
would have to be accessed 
by a class in order for that 
class to function correctly 
and the number of other 
classes that use the methods 
or attributes in this class 
Reference methods 
and attributes among 
classes 
External 
dependency 
Cohesion The relatedness of methods 
and attributes in a class. 
Reference methods 
and attributes in a 
class 
Cohesion 
Size The numbers of methods, 
attributes, and lines in a class 
The numbers of 
methods, attributes, 
and lines in a class 
Size 
Complexity The degree of difficulty in 
understanding and 
comprehending the internal 
and external structure of 
classes and their 
relationships 
Cyclometic 
complexity of 
methods in a class 
Complexity 
 
3.2.1 Definition of subfactors and measurement type 
We choose reusability and maintainability as our measurement factors. Dividing 
these factors into subfactors helps to find appropriate measurement types. In case of 
reusing and/or maintaining an existing code, several procedures should be accomplished: 
? Identification: When a programmer tries to reuse or maintain an existing 
source code, he/she needs to locate and understand the code to match the 
desired purposes.  
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? Separation: After a programmer locates and understands the identified code, 
he needs to take apart the code from its containing program. 
? Modification: Before a programmer reuses the separated code unit he may 
need to change the unit to meet the required function or to make the unit fit to 
the new environment.  
? Validation: Error checking will be an important step to make the unit reliable, 
so a programmer needs to check for errors. 
? Adaptation: He/She has to carefully adapt the modified code into the new 
application to prevent any conflicts. 
To derive measurement types for reusability and maintainability, we collect 
properties of reusable and maintainable software from previous research [44] [46]. These 
essential properties are listed and explained in Table 3-1. Based on these properties, the 
following measurement types are derived. Each measurement type came from each 
measuring property in Table 3-2. 
? Coupling: The interdependency of a class to other classes in a system. It is a 
measure of the number of other classes that would have to be accessed by a 
class in order for that class to function correctly and the number of other 
classes that use the methods or attributes in this class. 
? Cohesion: The relatedness of methods and attributes in a class. Components of 
a class should be designed for a single purpose. Thus, the class that has low 
cohesion needs to be decomposed.  
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? Size: This includes counting lines of code with several options (e.g., ignore 
blank and comments lines), number of methods and attributes in a class.  
? Complexity: The degree of difficulty in understanding and comprehending the 
internal and external structure of classes and their relationships. The structure 
of a method that has high complexity metric value should be inspected and 
simplified. Statement level complexity is also considered to locate complex 
area of source code. 
3.2.2 Relationship between subfactors and measurement types 
Table 3-3 summarizes the relationship between measurement types and 
subfactors. A plus symbol (+) in the table indicates that the measurement type has a 
positive influence on a subfactor, and a minus symbol (-) indicates negative influence. 
Table 3-3: Relationships between subfactors and measurement types 
Measurement Type 
Subfactor Coupling Cohesion Size Complexity 
Identification - + - - 
Separation -    
Modification - + - - 
Validation - + - - 
Adaptation -  -  
 
Relationship from coupling to subfactors 
High import coupling of a class indicates strong dependency on other classes, 
their methods, and attributes. Import coupling may be relevant to the following 
subfactors: 
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? Identification: To understand a method or class, we must know about the services 
the method or class uses. 
? Separation: High import coupling obstructs separating the code from its 
containing program. 
? Adaptation: If a class depends on a large amount of external services, it will be 
more difficult to reuse it in other systems. 
High export coupling of a class means that the class is used by many other 
classes, their methods, and attributes. Export coupling may be relevant to the following 
subfactors: 
? Modification: If a method may be invoked by many other methods, any change to 
the method affects the invoking methods. Any defect in a class with high export 
coupling is more likely to propagate to other parts of the system. Such defects are 
more difficult to isolate. In that respect, classes with high export coupling are 
particularly critical. An export coupling measure could therefore be used to select 
classes that should undergo special (effective and may be costly) verification or 
validation processes. 
? Validation: A class with high export coupling can be difficult to test. If defects 
propagate to other parts of the system to cause failure there, they may not be 
detected when testing the class in isolation. 
 
Relationship from cohesion to subfactors  
Stevens et al. define cohesion as a measure of the degree to which the elements of 
a module are together [48]. Some empirical evidence supports that the higher the 
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cohesion of a module, the easier the module is to develop, maintain, and reuse [11, 8]. 
If elements of a module are not related to each other, the design of the module 
most likely is not appropriate. Thus, we define cohesion to have positive impact on 
identifying, modifying, and validating. 
Relationship from size to subfactors  
Usually a large size module has more attributes and methods, thus it will take 
more time to understand, modify, validate, and adapt it. Size measurement type probably 
can be included in other measurement types like complexity. 
Relationship from complexity to subfactors  
High complexity is an obstacle to understand and modify a module. Validating a 
module is also difficult as its complexity increases. 
3.3 Metrics for measurement types  
In forming the quality model, a framework is designed to find the most influential 
metrics for individual reuse and maintain properties. In the framework, we identified a 
few sets of metrics to characterize software written in Java. They are listed in Tables 3-4 
through 3-6. Each of the metrics was carefully evaluated and experimented for its 
capability to accurately measure a reusability and/or maintainability property in this 
dissertation. The rationale used in this experimental test as follows.  
These metrics were chosen because they are representatives of metrics based on 
the measurement types described in Section 3.2. They are also computable using the 
automated measurement tool implemented for this research and are potential indicators 
whether or not a class is reusable and maintainable. In each of the metric definitions, C 
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represents a class, M represents a method, S represents a system composed of classes, D 
represents a domain (i.e., method, class, or system). 
We used very primitive forms of coupling and cohesion metrics because these 
metrics are used to measure subfactors rather than quality factors of a system. All 
coupling and cohesion metrics assume direct and non-inherited based relationship. Each 
coupling and cohesion metric is classified by the type of connection and then divided, in 
detail, by direction of connection and domain level (i.e., class or system).  
In the following sub-sections, we describe those metrics in detail, including size, 
complexity, coupling, and cohesion metrics. They will be investigated throughout the 
remainder of this dissertation. 
3.3.1 Size Metrics 
 Size metrics measure the number of methods and attributes in a class and the 
lines of code of a class. Those are defined in Table 3-4. We have three domains for the 
metrics (method, class, and system domain) and each domain has its own metrics. For a 
method M, LOC(M) measures the lines of code for the method, and for a class C, 
LOC(C) measures the lines of code for the class. NOM(C) counts the number of methods 
in a class and NOA(C) counts the number of attributes in a class.  
The size metrics defined for a system domain are LOC(S), aLOCC(S), 
aLOCM(S), aNOM(S), aNOA(S), and NOC(S). LOC(S) is the lines of code for a system. 
aLOC(S) and aLOC(S) calculate averaged LOC for classes and methods respectively for 
a system. aNOM(S) and aNOA(S) compute average number of methods and attributes in 
a class, and NOC(S) is the number of classes in a system.   
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From the past experience, we believe that large classes may suffer from poor 
design. Large size metrics and more functions in a class normally make it more difficult 
to understand the class. In an iterative development process, more and more functionality 
is added to a class over time. The danger is that, eventually, many unrelated 
responsibilities are assigned to a class. As a result, it has low functional cohesion. This in 
turn negatively impacts the reusability, and maintainability of the class. Therefore, large 
classes should be reviewed for functional cohesion. If there is no justification for the 
large size, the class should be considered for refactoring, for instance, and extracting 
parts of the functionality to make separate and more cohesive classes. 
 Table 3-4: Size metrics  
   
 (a) Size metrics for a method  
Symbol Description domain 
LOC(M) LOC for a method method 
   
 (b) Size metrics for a class  
Symbol Description domain 
LOC(C) LOC for a class class 
NOM(C) number of methods in a class class 
NOA(C) number of attributes in a class class 
   
 (c) Size metrics for a system  
Symbol Description domain 
LOC(S) LOC for a system system 
aLOCC(S) average LOC for classes in a system system 
aLOCM(S) average LOC for methods in a system system 
aNOC(S) average NOM for classes in a system system 
aNOA(S) average NOA for a class in a system system 
 
3.3.2 Complexity Metrics 
Complexity metrics measure the degree of difficulty in understanding internal and 
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external structure of classes and their relationships. In this research, Cyclometic 
complexity of methods in a class is used, and based on this, we define three complexity 
metrics for method (Cx(M)), class (aCx(C)), and system (aCx(S)) domains in Table 3-5.  
High method complexity in a class can lead to decreased understandability and 
therefore decreased reusability and maintainability. Also, testing such a class is more 
difficult.  
 Table 3-5: Complexity metrics  
  
(a) Complexity metrics for a method 
 
Symbol Description domain 
 
Cx(M) McCabe complexity of a method method 
   
 (b) Complexity metrics for a class  
Symbol Description domain 
aCx(C) average Cx(M) in a class class 
   
 (c) Complexity metrics for a system  
Symbol Description domain 
aCx(S) average Cx(C) in a system system 
 
3.3.3 Coupling Metrics 
As we mentioned in section 2.4, the unified framework for coupling provides a 
guideline to select coupling metrics for a particular measurement goal (Reusability and 
Maintainability for this research). 
Based on the first criterion of the unified framework for coupling (i.e., type of 
connection), we study seven types of possible connection between two classes. Therefore 
we define seven coupling metrics for measuring different connection types as in Table 3-
6. The seven metric symbols defined in the table are used to define actual coupling 
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metrics based on the criteria of the framework for measuring coupling described in 2.4. 
The defined metrics for the seven connection types whose domain is class are cplTA(C), 
cplTP(C), cplTL(C), cplTPM(C), cplIAR(C), cplMI(C), and cplPC(C).  
Metrics cplTA(C), cplTP(C), and cplTL(C) measure the number of Type of 
attribute connection, the number of Type of parameter connection, and the number of 
Type of local variable connection of a class, respectively. 
Table 3-6: Connection type for coupling 
 
Metrics cplTPM(C), cplAR(C), cplMI(C), and  cplPC(C) measure the number 
of Invoked method type connection, the number of Attribute reference connection, the 
number of Method Invocation connection, and the number of Parent-Child connection 
of a class, respectively.  We have chosen the first criterion, Type of Connection, to 
create these basic metric symbols for all the connection types. For the second criterion 
of the unified framework for coupling (i.e., Direction of connection), each 
Symbol Connection 
Type Class C Class D Description 
cplTA(C) Type of 
Attribute 
Attribute a of 
class c 
Class d, d ? c Class d is a type of a 
cplTP(C) Type of 
Parameter 
Method m of 
class c 
Class d, d ? c Class d is the type of a 
parameter of m, or the return 
type of m 
cplTL(C) Type of 
local variable 
Method m of 
class c 
Class d, d ? c Class d is the type of a local 
variable of m 
cplTPM(C) Invoked 
method type 
Method m of  
class c 
Class d, d ? c Class d is the type of a 
parameter of a method invoked 
by m 
cplAR(C) Attribute 
reference 
Method m of  
class c 
Attribute a of class 
d, d ? c 
m references a 
cplMI(C) Method 
invocation 
Method m of  
class c 
Method m? of class 
d, d ? c 
m  invokes m? 
cplPC(C) Parent-Child Class c Class d, d ? c Class d is a child class of class 
c 
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coupling metric in Table 3-6 consists of fan-out coupling("using")  and fan-in 
coupling("used") components, which we discuss in the following. 
 For example, the metric cplTA(c) is decomposed into cplTAout(c) and cplTAin(c) 
according to the direction of the connection. cplTAin(c) measures the connections to the 
target class c from other classes and cplTAout(c) measures the connections to other 
classes from the target class c. We measure the cplTA(c) as the sum of cplTAin(c) and 
cplTAout(c).  
Fan-out coupling measures the degree to which a class has knowledge of, uses, or 
depends on other classes. To reuse a class with high fan-out coupling in a new context, all 
the required services must also be understood and reused together. Therefore, high fan-
out coupling can decrease the reusability of a class. 
Fan-in coupling measures the degree to which a class is used by, depended upon, 
by other elements. Changing a class with high fan-in coupling may affect other classes 
which depend on the class. Therefore high fan-in coupling can decrease the 
maintainability of the class. 
Coupling connections cause dependencies among classes, which, in turn, have an 
impact on maintainability (a modification of a class may require modifications to its 
connected classes) or reusability (to reuse a class may require reuse connected classes 
together). Thus, we could say that a principle to improve reusability and maintainability 
is to minimize coupling, and coupling metrics also greatly help identify problematic 
classes to be reused or maintained. 
We can apply these coupling metrics to a system domain. For example, aCplTA(s) 
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is defined as the averaged CplTA(c) of classes in system s and measures the averaged type 
of attribute coupling metrics of classes in system s.  
For the third criterion (i.e., Granularity of the measure) of the unified framework 
for coupling, we define a class as the domain for coupling metrics. 
For the fourth criterion (i.e., Stability of server) of the unified framework for 
coupling, we didn?t define anything because we don?t measure the stability of server.  
For the fifth criterion (i.e., Direct or indirect coupling) of the unified framework 
for coupling, we only choose and measure direct coupling.  
For the sixth criterion (i.e., inheritance) of the unified framework for coupling, we 
choose non-inheritance based coupling. We assign attributes and methods to the class 
which the attributes and methods are defined, not to their parent classes. 
We have a sample code (Figure 3-4) showing couplings between classes and 
coupling metric values obtained by the system implemented in this research. Each 
class is counted either a fan-out coupling or a fan-in coupling to other classes by 
extending or declaring a class.  
For instant, class A is counted a coupling with class F by extending it. In this case, 
classes A and F establish a parent-child relationship (one of the seven connection 
types), which A is a child and F is a parent. Therefore, we count cplPC fan-out meric 
value for class A (cplPCout(A) = 1) and cplPC fan-in metric value for class F 
(cplPCin(F) = 1). In a similar way, a coupling occurs between class A and class B by 
declaring B in class A. In this case, the type of attribute connection is established, 
which attribute b in class A is declared by class B as its type, and class A makes cplTA 
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fan-out metric value counted 1 and class B makes cplTA fan-in metric value counted 1. 
Symbols ---> and <--- indicate a fan-out coupling and a fan-in coupling occurred in a 
class, respectively. 
Fan-In/Fan-Out Coupling between Classes Metric Values 
 
 public class A extends F{         --->          cplPC 
    B b;            --->          cplTA 
    public void ma(D c){                   --->          cplTP 
       E e;                                            --->          cplTL 
       e.me(D d);                                 --->       cplMI, cplTIM 
       e.i++;                                         --->          cplAR 
    } 
 } 
 public class B{                               <---           cplTA 
 } 
 public class D{                               <---        cplTP, cplTIM 
 } 
 public class E{                               <---           cplTL 
    int i;                                             <---           cplAR 
    public void me(D d){                  <---           cplMI 
    } 
 } 
 public class F{                               <---            cplPC 
 } 
 
 
cplPCout(A) = 1 
cplTAout(A)  = 1 
cplTPout(A) = 1 
cplTLout(A) = 1 
cplMIout(A) = 1 
cplTIMout(A) = 1 
cplARout(A) = 1 
 
cplTAin(B) = 1 
 
cplTPin(D) = 1 
cplTIMin(D) = 1 
cplTLin(E) = 1 
cplARin(E) = 1 
cplMIin(E) = 1 
 
 
 cplPCin(F) = 1 
 
 
Figure 3.4: Fan-in/Fan-out coupling between classes  
                              
Table 3-7: Cohesion metrics 
Symbol Connection 
Type Element 1 Element 2 Description 
cohAR(C) Attribute 
reference  
Method m of  
class c 
Attribute a of 
class c 
Attribute reference:  
m references a 
cohMI(C) Method 
invocation  
Method m of  
class c 
Method m? of 
class c 
Method invocation:  
m invokes m? 
cohAS(C) Attribute 
sharing  
Method m of  
class c 
Method m? of 
class c, m ? m? 
Attribute sharing: m 
and m? reference an 
attribute a 
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3.3.4 Cohesion Metrics 
We also defined cohesion metrics based on the framework for cohesion 
measurement (See Section 2.4).  
For the first criterion (i.e., type of connection) of the unified framework for 
cohesion, we define three cohesion metrics with different connection types among the 
components (i.e., methods and attributes) in a class. cohAR(c) measures the number of 
attribute reference connections of a class c, cohMI(c) measures the number of method 
invocation connections of a class, and  cohAS(c) measures the number of attribute 
sharing connections of a class. Table 3-7 shows the three cohesion metrics based on the 
connection type.  
For the second criterion of the unified framework for cohesion (i.e., Domain of 
measure), we can apply these cohesion metrics to class and system domains. For 
example, aCohAR(s) is defined as the averaged CohAR(c) of classes in system s and 
measures the averaged attribute reference cohesion metrics of classes in the system.  
For the third criterion (i.e., Direct or indirect connections) of the unified 
framework for cohesion, we only choose direct connection and measure the direct 
connection.  
For the fourth criterion (i.e., inheritance) of the unified framework for cohesion, 
we choose non-inheritance based cohesion. We assign attributes and methods to the class 
which the attributes and methods are defined, not to its parent class. For the fifth criterion 
(i.e., access methods and constructors) of the unified framework for cohesion, we 
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measure the cohesion for the access methods and constructors.  
Cohesion is the degree to which the methods and attributes in a class are related. 
The higher connectivity between methods and attributes means the higher cohesion, and a 
low cohesive class has been assigned many unrelated responsibilities. Consequently, the 
low cohesive class is more difficult to understand and harder to maintain and reuse. 
Therefore classes with low cohesion should be considered for refactoring, for instance, by 
extracting parts of the functionality to separate classes with clearly defined 
responsibilities. 
We have a sample code (Figure 3-5) showing cohesion in a class and cohesion 
metric values obtained by the system. Class A has two methods ma and mb, and method 
ma makes a method invocation connection by invoking method mb, thus the system 
calculates a choMI metric value of one (cohMI(A) = 1).  For the cohAS metric, methods 
ma and mb establish an attribute sharing connection by sharing an attribute i, thus cohAS 
cohesion metric value of the class is calculated (cohAS(A) =1). 
Cohesion in a Class Metric Values 
  public class A {  
     int i;    int j; 
     public void ma(){            
        mb();                                  --->       cohMI     
        i++;                                    --->       cohAS 
        j++;                                    --->       cohAR 
     } 
     public void mb(){        
        i++;                                   --->        cohAS 
     } 
  } 
 
 
 
 
 
 
cohMI(A) = 1 
cohAS(A) = 1 
cohAR(A) = 1 
 
 
 
Figure 3-5: Cohesion in a class and metric values 
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4 AN AUTOMATED MEASUREMENT TOOL 
4.1  Automated Measurement Tool Architecture 
Java Measurement Tool (JamTool) is a software measurement environment to 
analyze program source code for software reuse and maintenance. It is especially 
designed for object-oriented software. This tool measures attributes from Java source 
code, collects the measured data, computes various object-oriented software metrics, and 
presents the measurement results in a tabular form. The tabular interface of the tool 
provides software developers the capabilities of inspecting software systems, and makes 
it easy for the developers to collect the metric data and to use them for improving 
software quality. By browsing reusable units and maintainable units, a developer can 
learn how to reuse certain software entity and how to locate problematic parts. The 
application of this easy-to-use tool significantly improves a developer?s ability to identify 
and analyze quality characteristics of an object-oriented software system. 
The intended application domain for JamTool is small-to-middle sized software 
developed in Java. The acceptance of Java as the programming language of choice for 
industrial and academic software development is clearly evident. The overall system 
architecture of the JamTool is shown in Figure 4-1, in which solid arrows indicate 
information flow. The key components of the architecture are: 1) User Interface, 2) Java 
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Code analyzer, 3) Internal Measurement Tree, 4) Measurement Data Generator, and 5) 
Measurement Table Generator. 
 
 
 
 
 
 
 
 
 
 
 
 
Each key component works as a subsystem of overall system. The Java Code 
analyzer syntactically analyzes source code and builds an Internal Measurement Tree 
(IMT) which is a low level representation of classes, attributes, methods, and 
relationships of the source code. Then the Measurement Data Generator takes the IMT as 
an input, collects the measurement data, and generates the size, complexity, coupling and 
cohesion metrics of classes in the original source code. Those measurement results as 
well as the other metrics are displayed in a tabular representation through the 
Measurement Table Generator subsystem. With this interface of tabular form, software 
User Interface  
  
Internal Measurement Tree Measurement Data Generator 
Measurement Table 
Generator 
User 
Figure 4-1:  Architecture of JaMTool 
Measurement Results Java Sources 
Options for Measurement 
Java Code Analyzer 
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developers can easily analyze the characteristics of their own program.  
4.1.1  Java Code Analyzer 
 Java Code analyzer is built by using a Sun Microsystem?s popular JavaCC parser 
generator. It syntactically analyzes Java source code to build an internal measurement 
tree (IMT) that contains all the information needed to produce measurement results. It 
performs complete analysis on the source code thus identifies all syntactic errors during 
the building of the IMT.  
Class Modifier 
Package Name 
Import Name Vector 
Class Name 
Parent Class 
Interface Name 
Attribute Vector 
Method Vector 
  
Import Name 
Attribute Name 
Attribute Type 
Attribute Modifier 
ClassInfo Vector 
Method Type 
Method Modifier 
Method Ret Type 
Method Name 
Rnce Var Vector 
Local Var Vector 
Invoked Method Vector 
  
Referenced 
VariName 
  
Local Var T 
Local Var N 
  
Invoked Method N 
Invoked Method P 
Figure 4-2: Internal Measurement Tree 
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4.1.2 The Internal Measurement Tree  
The Internal Measurement Tree (IMT) is a low level representation of classes, 
attributes, methods and relationships of the program source code that is being analyzed. 
The IMT, after it has been completely resolved, contains all relevant information from the 
source code. It is a representation of the source for measurement. A complete IMT 
hierarchy is shown in Figure 4-2. The root of an IMT is classInfoVector and the 
classInfoVector has a link to ClassInfo node. Each ClassInfo node contains information 
about a class including Attribute Vector, Method Vector etc. The Attribute Vector and the 
Method Vector also have their own links which have detail information about them and 
so on.  
 
 
 
 
 
 
 
 
 
 
 
  
Algorithm 1. Type of attribute Coupling.  
 Traverse IMT and find Type of attribute couplings among the classes in a project . 
 
    Input: Internal Measurement Tree; 
    Output: Coupling measurement result for Type of attribute metrics; 
 
Let classNames = all class names in a project; 
foreach class in classNames do 
  Let targetClass = a class in classNames that has not been measured; 
  if targetClass  is empty then 
    return couplingResult;  
  Traverse class node in IMT and  
  let attributeTypes = all attribute types in the targetClass; 
    foreach attribute type in attributeTypes do 
      Compare to class names in classNames; 
      Update couplingResult according to the comparison result; 
  endfor 
enfdor 
Figure 4-3: Algorithm 1- Type of attribute coupling 
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4.1.3 Measurement Data Generator 
The Measurement Data Generator subsystem takes an IMT as an input, collects 
the measurement data from the IMT, and builds measurement results such as size, 
complexity, coupling and cohesion metrics for a class.  
Algorithm 1 in Figure 4-3 describes the coupling measurement algorithm for the 
type of attribute metric.  The algorithm processes each class node in the IMT and 
computes coupling strength for the type of attribute metric to be displayed in the 
measurement tables like fan-in, fan-out, and class-to-class tables. For instance, we have 
three classes A, B, and C to show the type of attribute coupling metrics in Figure 4-4. 
Reading columns, we see that Class A is used by class B three times and used by class C 
once, which means that the fan-out of A for B and C are 3 and 1, respectively. Class B is 
used by class A twice, which means that the fan-in of A for B is 2. In this way, the 
coupling relationship between classes is measured as a coupling metric and the measured 
metric values are presented in the coupling metrics table form as shown in Figure 4-4. 
 
 
 
 
 
 
 
A 
 
B a1; 
B a2; 
C 
 
            A c1; 
B 
 
     A b1;   A b2;  
     A b3; 
       
       3 
      2 
 A B C Total 
A 0 3 1 4 
B 2 0 0 2 
C 0 0 0 0 
Total 2 3 1 6 
Coupling Metrics Table 
Figure 4-4:  Example of Type of attribute couplings  
 
1 
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From the coupling metric table, we can easily find that the type of attribute 
couplings of classes A, B, and C are 2, 3 and 1, respectively. The type of attribute 
coupling was explained in sections 3.3 and 3.4. It is also clear to see that these three 
classes are connected together with attribute coupling. Therefore we group the three 
classes as a set of related classes and identify them a Connected Unit. The detailed 
discussion of Connected Unit will be done in Section 4.3. 
Cohesion measurement data is also generated in this subsystem. Algorithm 2 in 
Figure 4-5 describes a measurement algorithm for Method Invocation Cohesion (see 
section 3.2). The algorithm takes each method node from the IMT and computes cohesion 
strength for the method invocation metric to be displayed in the measurement tables. 
 
 
 
 
 
 
 
 
 
 
 
  
Algorithm 2 . Method Invocation Cohesion.  
 Traverse IMT and find Method Invocation cohesion from the target class in a project . 
 
    Input: Internal Measurement Tree; 
    Output: Cohesion measurement result for Method Invocation cohesion metrics; 
 
Let targetClass = the target class names in a project; 
Let methodNames = all method names of targetClass; 
foreach methods in targetClass do 
  Let targetMethod = a method in targetClass that has not been measured;  
  if targetMethod  is empty then 
    return cohesionResult;  
  Traverse method node of targetClass in IMT and  
  let invokedMethods = all invoked methods from the targetMethod; 
    foreach invoked method in invokedMethods do 
      Compare to method names in targetClass; 
      Update cohesionResult according to the comparison result; 
  endfor 
enfdor 
 
Figure 4-5: Algorithm 2 - Method invocation cohesion 
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public class A 
{ 
 
     public void ma(){ 
 int r = mb() + mc(); 
     } 
 
     public int mb(){ 
           return mc() + 1; 
     } 
 
     public int mc(){ 
           int c = 0; 
           return c; 
     } 
} 
Cohesion metrics table 
 ma mb mc Fan-Out 
Total 
ma 0 1 1 2 
mb 0 0 1 1 
mc 0 0 0 0 
Fan-In 
Total 
0 1 2  
Figure 4-6: Cohesion of three methods in a class 
Figure 4-6 shows an example of three methods to measure cohesion.  We have 
three methods, ma, mb, and mc, in class A. Method ma invokes two methods mb and mc, 
and method mb invokes mc.  With these invocations, the relationship of methods is 
measured as cohesion metrics, and the measured metric values are presented in the 
cohesion metrics table. 
The Measurement Data Generator also measures all other coupling metrics and 
cohesion metrics mentioned in Chapter 3.  The measured information about coupling for 
each class is then neatly presented in the coupling measurement tables constructed by the 
Measurement Table Generator, which will be discussed in detail in the following section. 
4.1.4 Measurement Table Generator 
The Measurement Table Generator generates display tables showing various 
metrics obtained. For instance, a class-to-class coupling measurement table showing the 
coupling structure among classes is given in window W2 of Figure 4-7. Windows W3 and 
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W4 of Figures 4-7 show fan-in/fan-out coupling measures in a tabular form for the seven 
coupling metrics defined in Table 3-4. Fan-in/fan-out and various coupling types can be 
interpreted differently as we describe fan-in/fan-out coupling measurement tables and 
how we can find the connected unit from these measurement tables in the next section.  
Other important tables are reusable unit and maintainable unit tables shown in 
windows W5 and W6 of Figure 4-7. In a reusable unit table, each class in the first column 
depends on classes in other columns since the class uses the others, and in a maintainable 
unit table, each class in the first column is used by classes in other columns. Thus the 
classes in the same row make a special reusable unit and maintainable unit. In this way of 
representation, we could easily recognize which classes need more/less effort when they 
are needed for reuse, modify, update or fix. This could definitely help programmer in 
developing and maintaining a program. Detailed discussion for each table and unit will be 
provided in the following Section 4.2. 
4.1.5 User Interface 
JamTool provides a graphical user interface that is developed based on the Java 
Swing library. The measurement results are displayed in a tabular representation and in 
several windows with various levels of detail as shown in Figure 4-7.  
Inputs to the JamTool are Java source files. Users need to provide the name of the 
group of the Java files (i.e., project) and the location of each file when building a new 
project or opening an existing project in JamTool. A hierarchical list box is created within 
a project pane to display classes that form the project (See P1 in Figure 4-7). 
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Figure 4-7: Screen shot of JamTool for coupling, cohesion, size, and complexity  
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Pane P1 shows that the project is composed of multiple Java programs. Pane P2 
shows the source code of the selected Java program. For the project named ?Bingo?, six 
windows (W1-W6) display the coupling measurement results: connected unit (W1), 
class-to-class coupling (W2), fan-in coupling (W3), fan-out coupling (W4), reusable unit 
(W5), and maintainable unit (W6), and another five windows (W7-W11) display the 
cohesion, size and complexity measurement results: cohesion in a class (W7), size & 
complexity (W8), cohesion for each class (W9), and connected unit (W10) and its 
strength (W11) for cohesion.   
4.2  Measurement Result Tables 
4.2.1  Class to Class Table 
Class-to-class coupling measurement table in Figure 4-8 is to show coupling 
relationship among classes. All class names in a project are displayed. Regarding a class, 
ClassInfo, in the second row, we see that there is a coupling strength of ?3? to ClassAttr, 
?63? to ClassMethod, and a ?66? for total. These mean ClassInfo uses ClassAttr 3 times 
and ClassMethod 63 times, thus 66 times for the total. On the other hand, regarding 
ClassInfo in the second column, we find that this class is used by ClassInfoVector(1), 
CohesionMeasure(13),  and CouplingMeasure(7), for a total of 21 times. 
  
Figure 4-8: Class to class coupling measurement table 
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4.2.2 Fan-in Coupling Table 
The 7 coupling metrics defined in Table 3-6 are displayed in a similar tabular 
form of the Fan-in coupling in Figure 4-9. TA, TM, TL, IM, MP, RV, and PC stand for 
Type of  Attribute, Type of Method Invocation, Type of Local Variable, Invoked Method 
Type, Referenced  Variable, and Parent-Child, respectively. All classes in a project are 
displayed in the first column. We interpret fan-in as used-by, invoked by, or referenced by, 
thus we can find how other classes use this class through examining each fan-in coupling 
instance. For instance, ClassInfo has fan-in coupling strength of ?1? for TM and ?20? for 
TL, which means that other classes in the project (i.e., cm1) use ClassInfo once as 
invoked method and twenty times  as their local variables. In this figure it is clear that 
ClassMethod is used extensively by other classes (sixty three fan-in coupling at total 
column). Special attention must be given to such a class when it is examined or modified 
because it influences many other coupled classes. 
If we inspect column TL, it has ?3? to ClassAttr, ?20? to ClassInfo, ?22? to 
ClassMethod and ?45?in total. This means forty five times of fan-in coupling as Type of 
Local Variable have occurred in this project while there are thirty eight times for IM, 
twice for TA, respectively and only once for TM and MP.   
  
Figure 4-9: Fan-in coupling measurement table 
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4.2.3  Fan-out Coupling Table   
Fan-out couplings for the same seven coupling metrics are in Figure 4-10. We 
interpret fan-out as use, invoke or reference, thus we can find how a class uses other 
classes through examining each fan-out coupling instance. For instance, fan-out coupling 
of ClassInfo shows that this class invokes or uses other classes sixty six times in total (?2? 
for TA, ?25? for TL, ?38? for IM, and ?1? for MP). It mainly uses local variables and 
invokes methods, and is identified as a highly fan-out coupled class. We believe that such 
a class is difficult to be reused alone because it needs other classes? services to perform 
its function. Therefore, it is wise to inspect its fan-out coupled classes from this table for 
a new application when we reuse a class. 
  
Figure 4-10: Fan-out coupling measurement table 
4.2.4  Connected Unit Table for Coupling 
We define a connected unit as the classes that are coupled together. In a connected 
unit table, all classes coupled together are displayed in the same column. A connected 
unit is likely to be of interest to the user in finding software units that can be reused.  We 
build a connected unit by identifying coupled classes in the coupling metrics and the 
connected attributes and methods in the cohesion metrics. A user should consider reusing 
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the connected classes together in a new application. In that sense, the connected classes 
are a reusable unit. The connected unit search algorithm, shown in Figure 4-11, computes 
a set of coupled classes (i.e., connected unit) and their position in a connected unit table 
based on a class-to-class coupling table. Figure 4-12 shows the retrieved connected unit 
and the result of applying Algorithm 3 to the class-to-class coupling table in Figure 4-8.  
Each class is displayed in a connected unit table according to its position and its coupling 
strength is displayed in the connected unit strength table in Figure 4-12 (b).  
 
Algorithm 3. Connected Unit Search.  
Compute connected units from a class-to-class table. 
 
Input: Class-to-class coupling measurement table; 
Output: Connected units and their positions in a connected unit 
table; 
 
Let classNames = all class names from a class-to-class table; 
foreach class in classNames do 
   Let targetClass = a class in classNames  
   that has not been searched yet;  
   if targetClass is empty then  
      return connectUnitsWithPosition;  
   Search class-to-class table and let  
   connectUnit = coupled classes to targetClass; 
   Update connectedUnitsWithPosition with the connectUnit; 
end for 
 
Figure 4-11: Connected Unit Search Algorithm 
 
 
 
 
61 
 
  
 
Figure 4-13: Connected unit and its strength 
class position strength 
  ClassAttr 1 3 
  ClassInfo 1 87 
  ClassInfoVector 1 1 
  CohesionMeasure 1 13 
  ClassMethod 1 63 
  CouplingMeasure 1 7 
  Editor 2 0 
 
Figure 4-12:  Example of Connected Unit Search algorithm 
ClassInfo 
ClassAttr ClassInfoVector 
CohesionMeasure 
ClassMethod CouplingMeasure 
Editor 
3 
63 
  1 
13 
7 
(a) (b) 
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The connected unit and its strength of the ?bingo? project are shown in Figure 4-
13. In this tables, all classes in the same column are coupled together. For instance, only 
two classes, BingoException and NoMoreBallaException, in column B are coupled to 
each other. Utilities in column D could be a dead code because there is no relation to 
other classes in the project. By observing connected units, we may also discover 
connection patterns. For example, if a project is composed of an application program and 
libraries, an investigation of the connected unit will tell how the application program uses 
a library function. In that sense, this type of connection pattern is a use pattern. 
4.2.5 Reusable Unit Table 
Other important tables are reusable unit and maintainable unit tables. Reusable 
unit table is to present how much a class depends on other classes. In Figure 4-14, the 
first column, A, displays all classes in the selected project. A class in column A uses the 
classes in columns to its right.  The classes in the same row make a special reusable unit. 
For instant, in the second and third rows, we see that class BallListener depends on class 
Linstener, and class BallListenerThread depends on classes BallListene, BingoBall, 
Constants, and ListenerThread. This dependency means that, for example, if programmer 
wants to use a certain class (BallListenerThread), then he/she must use the other classes 
in the reusable unit (BallListener, BingoBall, Constants, and ListenerThread) since they 
are used by the certain class (BallListenerThread). Therefore, if a class depends on too 
many other classes, it is obvious that such a class is difficult to be reused. 
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Figure 4-14: Reusable unit table 
 
4.2.6 Maintainable Unit Table 
Figure 4-15 shows a maintainable unit table. Maintainable unit is to present how 
many classes depend on a specific class. All classes in the selected project are displayed 
in the first column, A, and each class in that column is used by the classes in other 
columns, thus the classes in the same row are identified as a maintainable unit. For 
instant, three classes BallListenerThread, Card, and LightBoardPane in the third row use 
BingoBall, thus if you want to modify or update BingoBall, you must test 
BallListenerThread, Card, and LightBoardPane as well. Therefore if there are too many 
classes in a maintainable unit, it is very hard to maintain that specific class. 
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Figure 4-15: Maintainable unit table 
4.2.7  Size and Complexity Table 
 
     Figure 4-16: Size and complexity table 
Five size and complexity metrics 
for each class in a project are given in 
Figure 4-16. They are based on the 
definitions given in Chapter 3 (LOCC: 
Lines of Code in a Class, nMC:  number of 
Metohds in a Class, nAC: number of 
Attributes in a Class , aLOCM: average 
LOC for Methods, and aCx: average 
McCabe complexity) . 
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4.2.8 Cohesion Table  
 
Figure 4-17: Cohesion table 
Cohesion metrics for each class in a 
project are given in Figure 4-17. MI is 
Method Invocation cohesion and AR is 
Attribute Reference cohesion; both are 
discussed in Chapter 3. From this table, we 
can easily see that in this particular 
program, most of the classes use/reference 
attributes (148 times) within a class rather 
than invoke methods (3 times).  
 
 
Figure 4-18: Cohesion among methods and attributes 
 
We look inside a class to examine how the methods and attributes in the class are 
related to each other. In Figure 4-18, the first column and the header row represent all 
attributes and methods, respectively, in the target class (LightBoardPane). If we see 
LightBoardPane class in Figure 4-17, this class has ?17? for AR cohesion measure, and in 
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Figure 4-18, we can see each occurrence of AR relation for the class between attributes and 
methods, making 17 relations in total. For example, methods lightBoardPane(), 
displayNewBall(), and  clear()  reference attributes 11 times (allBalls(3), rowTitles(4), 
newBallLable(3), and litColor(1)), 4 times, and 2 times, respectively, for a total of 17 times 
(17 AR cohesion). 
4.2.9 Connected Unit Table for Cohesion  
We also define a connected unit for cohesion metrics and compute the cohesion 
strength of a class as shown in Figure 4-19 (a) and (b). All attributes and methods in the 
same column make a unique connected unit because they are related to each other. In this 
case, it is clearly indicated that attribute allBallsPane and method getMaximunSize() have 
no relation to other elements in the class, thus their cohesion strengths are both zero. 
 
(a) Connected unit name table  (b) Connected unit strength table 
Figure 4-19: Connected unit and its strength for cohesion 
 
 
4.3  Connected Unit 
Display techniques and tabular representations have been studied as to how to 
best depict various metric findings. To represent the coupling and cohesion 
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measurements, we develop a measurement result table and a connected unit table. They 
can display not only the connection strength (count) among the software components, but 
also the architectural nature of an object-oriented system.  
 
A connected unit table is composed of a pair of corresponding tables: connected 
unit name table and connected unit strength table. In the connected unit name table, only 
coupled classes can be located in a same column, thus a set of classes in the same column 
is a connected unit.  
In the connected unit strength table, each number represents the coupling strength 
of the corresponding classes in the connected unit name table. Figure 4-20 (a) shows that 
classes A, B, D, F, and I are in the same column because they are coupled to each other. 
Corresponding numbers in Figure 4-20 (b) represent the coupling strength of each 
of these classes. For example, number seven in the Figure 4-20 (b) indicates that class A 
has a total count of seven for fan-out and fan-in to other classes in this column (i.e., B, D, 
Class A    
Class B    
 Class C   
Class D    
  Class E  
Class F    
 Class G   
   Class H 
Class I    
 
7    
3    
 4   
2    
  0  
43    
 4   
   0 
11    
 
(a) Connected unit name table  
Figure 4-20:  Connected unit table  
 
(b) Connected unit strength table 
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F, and I). Classes E and H are not related to others in this project thus their coupling 
strengths are both zero. There are several possibilities for those classes that have strength 
zero: 
? They are no longer used in the project therefore they should be deleted from the 
project. 
? They have independent functions that are ready to be used in other applications. 
Therefore, we need to inspect their corresponding source codes to determine their 
usefulness.  
Classes C and G are related to each other but not to others as they appear in the 
same column. We may classify these two classes as a reusable or maintainable unit after 
inspecting the measurement results and the source code. We also need to inspect class F 
 
 
Figure 4-21:  Attribute reference cohesion measurement table 
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to find out why it has such a high coupling count. Using the connected unit table, a user 
can inspect a target class and its coupled classes. Connected unit table may be used in a 
priori or a posteriori manner. A developer may decide in priori to slice the class or 
remove the dead code in an application after browsing the connected unit table or in 
posteriori to inspect the software for reuse purpose.  
We can apply the same approach to the cohesion metrics. As an example of 
connected unit in a cohesion connected unit table, we may find a class designed for 
multiple functions. If indeed the class has different functions, the user may slice the class 
into several small classes and reuse a portion of them. This approach can reduce test and 
maintenance costs.  
Figure 4-21 shows attribute reference cohesion measurement for ClassInfo. All 
methods are listed in the first column and all attributes are listed in the first row. A 
number in this table indicates how many times the method in the row references the 
corresponding attribute in the column. For example, method getPackageName() 
references attribute packageName once.  
A cohesion connected unit table can be built based on this cohesion measurement 
table. Figures 4-22 (a) and (b) show the connected unit tables of Cohesion Measurement 
for ClassInfo. Like the coupling connected unit table, only related attributes or methods 
can be located in the same column. 
In this example, we can find the use pattern in columns B, D, E, F, and G (getters 
and setters for attributes).  
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(a) Cohesion connected unit name table 
(b) Cohesion connected unit strength table 
Figure 4-22:  Cohesion connected unit table for class ClassInfo 
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For example, there are two methods in column B, getPackageName() and 
setPackageName(), for an attribute PackageName, and two methods in column E, 
getParentClassName() and setParentClassName(), for an attribute ParentClassName.   
Since the attributes/methods in the same column are related to each other, if a user 
wants to reuse method getModifier() in column D, he/she would need to reuse attribute 
cModifier and method setModifier(). In that case, these three software components in 
column D can be identified as a reusable unit. Since attribute cIndex in column A has no 
relation to other classes and other parts in this class, this attribute can be classified as a 
dead code thus should be deleted. A user would first browses the connected unit table to 
identify the reusable units and then inspect their connection patterns to see how such 
software components are connected and/or used in the software package. By examining 
the measurement tables, a user can also decide whether he/she can reuse the whole or part 
of the reusable unit.  Locating related components and inspecting their use pattern can 
guide a user to reuse them.  
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4.4 Measurement Result Export for Spreadsheet 
When the Measurement Table Generator in JamTool creates tables, it generates 
the measurement results in the CSV (Comma Separated Values) file format. The CSV file 
format is a file type that stores tabula data which uses a comma to separate values and is 
supported by almost all spreadsheets. Therefore, JamTool exports measurement results 
directly into a spreadsheet application such as Microsoft Excel. 
Exporting to spreadsheet expands the power of JamTool by enabling further 
analysis and graphing. Spreadsheet application provides some of the statistical analysis or 
presentation capabilities required to investigate the measurement results. Therefore it 
does provide a great advantage to help the JamTool users to derive meanings from the 
measurement data. 
With Export to spreadsheet we can: 
? Display measurement results in spreadsheet instead of JamTool 
? Analyze measurement data with a spreadsheet application 
? Configure and format reports to represent the measurement data in an easy to 
understand style such as graph 
Spreadsheet application offers the ability to perform calculations and complex 
mathematical, statistical, and data analysis functions on numbers and text. JamTool?s 
tabular data is suitable to take these advantages. 
Figures 4-23 and 4-24 show an example of Measurement Result Export for 
Spreadsheet. Figures 4-23 (a) and (b) are maintainable/reusable units for coupled 
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classes in a project, and they are the same as Figures 4-14 and 4-15, but exported to Excel 
for analysis report.  
Figure 4-24 displays fan-in/out couplings and their visual graphs. Column A in 
Figure 4-24 (a) displays all classes in the selected project. For the corresponding class, 
Columns B and C in Figure 4-24 (a) show the number of classes fan-in coupled and the 
number of classes fan-out coupled, respectively, and they are obtained from the 
reusable/maintainable units in Figure 4-23. For instance, if we look at class 
BallListenerThread, this class is used/invoked by only one class (OverallStatusPane) as 
shown in the maintainable units of Figure 4-23 (a),  having -1 for fan-in of column B in 
Figure 4-24 (a), and uses/invokes four classes (BallListener, BingoBall, Constants, and 
ListenerThread) as shown in the reusable units Figure 4-23 (b), having 4 for fan-out of 
column C in Figure 4-24 (a). The negative sign (-) of column B is to graph fan-in 
couplings under the x-axis to visually compare them to fan-out couplings above the x-
axis. Their actual strengths of coupling (Number of times they are coupled in the coupled 
classes) are shown and graphed in Figure 4-24 (b). For example, BallListenerThread 
class has -1 for fan-in and 10 for fan-out, which means that this class is used/invoked by 
OverallStatusPane class only once, but uses/invokes four classes (BallListener, 
BingoBall, Constants, and ListenerThread) 10 times for total. The negative sign (-) is for 
the same purpose as Figure 4-24 (a). 
These tabular data and comparative graphic representation will clearly assist and 
aid JamTool users in a better understanding of software reuse and maintenance. For 
instance, class OverallStatusPane, which has the highest fan-out coupling, will decrease 
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the reusability of the class, and class BingoBall, which has the highest fan-in coupling, 
will decrease the maintainability of the class. 
 
(a) Maintainable units exported to Excel 
 
(b) Reusable units exported to Excel 
Figure 4-23: Maintainable/Reusable units exported to Excel 
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(a) Maintainable/Reusable units ? number of classes 
 
(b) Maintainable/Reusable units ? strength of coupling 
Figure 4-24: Maintainable/Reusable units graphed in Excel 
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5 UNDERSTANDING SOFTWARE EVOLUTION USING 
METRICS AND VISUALIZATION 
This chapter presents an empirical study to investigate if the metrics defined and 
implemented by JamTool can be used to assess the quality of software evolution. The 
empirical study is an analysis of reusability and maintainability during the evolution of an 
open source software system, JFreeChart, which is a charting library [25]. We observe 
the quality change along the evolution of the twenty-two released versions of JFreeChart 
and discuss its quality change based on the Lehman?s laws of evolution. We derive 
software metrics from the twenty-two releases of the target system and determine 
whether software quality has significantly changed over this period. More specifically, 
we compare the fan-in and fan-out couplings of the removed and the added classes from 
one version of the software to the next in order to find out if the quality of each release 
has improved or declined. 
 A separate, but related case study to analyze how a software system has evolved 
was conducted. The case study is to present the global visualization of the evolution of a 
software system and provide effective ways to analyze the evolution of the system. Since 
the study does not utilize the developed metrics, the results of study are included in 
Appendix A. 
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5.1 Empirical Study: Measuring Quality on Software Evolution 
Fan-in is the number of references made from outside a class to entities defined 
within the class, and fan-out is the number of references made from within a class to 
entities defined outside the class. While fan-in coupling is very useful when assessing the 
impact of a change, fan-out is very useful when partitioning programming elements and 
figuring out what other classes a given class needs in order to run. Therefore a low fan-
out is desirable since a high fan-out is a characteristic of the large number of classes 
needed by the particular class and makes the class difficult to reuse [3, 6, 23, 37, and 38]. 
A high fan-in normally represents a good object design and a high level of reuse.  
Although a system is useless without any coupling, for any given software 
solution there is a baseline or necessary coupling level and that developer's goal should 
be the elimination of extraneous coupling. Such unnecessary coupling needlessly 
decreases the reusability of the classes [43].   
For library software like JFreeChart, high fan-out coupling decreases its 
reusability. Because it is an open source library and it has been used by other applications 
for a long time, we expect to find the quality of JFreeChart to improve along with its 
evolution in terms of reusability. 
On the other hand, as summarized in [33], the laws of software evolution have 
been proposed and formalized in [30, 31, and 32] since 1974. The statement of Lehman?s 
laws refers to E-type software, which cannot be completely specified and once the system 
is operational, the development with new requirements of the software is essential. 
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Evolution is intrinsic and inevitable for this type of software. Eight Lehman?s laws are 
given in Table 5-1. 
In this empirical study, we explore the evolution of the JFreeChart in terms of 
size, coupling and cohesion, which are measurable from software source code, and 
discuss its quality change based on the Lehman?s laws of evolution. The study indicates 
that our experimental results follow three laws (I: Continuing change, II: Increasing 
complexity, VI: Continuing growth) out of eight. But this indicates more research is still 
needed for one law (VII: Declining quality). Each of the laws is explained here: 
Continuing change: An E-type system must be continually adapted otherwise it becomes 
progressively less satisfactory in use 
Increasing complexity: As an E-type system is evolved its complexity increases unless 
work is done to maintain or reduce the complexity 
Continuing growth: The functional capability of E-type systems must be continually 
enhanced to maintain user satisfaction over the system lifetime 
Declining quality: Unless rigorously adapted and evolved to take into account changes 
in the operational environment, the quality of an E-type system will decline 
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Table 5-1: Latest formulation of Lehman?s laws of software evolution 
 
No./year of first 
formulation Name 
No./year of first 
formulation Name 
   I 1974    Continuing change    V 1991    Conservation of     familiarity 
   II 1974    Increasing complexity    VI 1991    Continuing growth 
   III 1974    Self regulation    VII 1996    Declining quality 
   IV 1978 
   Conservation of   
   organizational 
   stability 
   VIII 1971/96    Feedback system 
5.1.1 Objective 
The objectives of this empirical study are two fold. First, we investigate if there is 
any relationship between the class growth of the target software and the metric values 
(coupling and cohesion) measured by JamTool. We normally assume that if the number of 
classes increases, then the coupling between classes will increase as well since the 
coupling measures the degree to which a program module (i.e., class) relies on other 
modules. However, the class growth should not affect the cohesion metric values, since 
the cohesion metric measures the strength of relationship among internal components 
within a single class. 
Secondly, we observe the quality change along the software evolution by 
comparing the fan-in/out couplings and the cohesion metrics of the removed and added 
classes of each version of the software. We expect quality software to have low coupling 
and high cohesion. When a software system requires updates, i.e., changes to the software 
to correct bugs or to install new functionalities, some classes in the software are removed 
and the classes with new functionalities are added to the software. At this point we 
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assume the removed classes have poorer quality and the added classes should have better 
quality. Therefore, in terms of coupling/cohesion metrics, the newly added classes should 
have lower coupling and higher cohesion than the removed classes.  
We investigate fan-in and fan-out couplings separately since a high fan-in 
coupling and a low fan-out coupling are desirable for a class.  A high fan-in coupling 
indicates the class that is called upon by many other classes. Thus, it is reused. A low fan-
out coupling means independence and encapsulation, and this kind of class/module is 
easier to reuse. 
5.1.2 Methodology 
The software used in the experiment was JFreeChart which is a powerful and 
flexible open source charting library. We choose JFreeChart as the target software system 
because it is a long-term open source library with many releases. To obtain information 
about the version differences, we used an evolution track table to compare two versions 
of a program and report all the differences. A very detailed explanation of an evolution 
track table is provided in section 5.2. 
First, we extract information of classes in terms of size, coupling and cohesion 
metrics from all twenty-two versions of JFreeChart and analyze the relationship between 
the classes and the metrics. According to [13], the size of a system is defined as the 
number of program units it contains, thus it should be based on the number of ?modules? 
rather than source code size. This is the main reason we use the number of classes as size 
metrics. 
Second, we focus on the removed and added classes of the target software. We 
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extract metrics of the removed classes in each version and the newly added classes, 
divide them into two groups, and compare them to investigate any differences between 
the groups. Then we perform an analysis by examining the coupling and cohesion metrics 
of the removed and the added classes over releases. 
Third, we present empirical studies of the relationships between the number of 
classes and the derived coupling/cohesion metrics, and the relationships between the 
removed and the added classes throughout a software evolution.  
Metric extraction can be a difficult task due to the size of the system and the 
number of versions. We use an evolution track table to extract the number of classes and 
the removed and added classes, and JamTool collects coupling and cohesion metrics from 
JFreeChart. 
5.1.3 Hypotheses 
Based on the assumption and expectation above, we set up five hypotheses: Two 
to observe if any relationship exists between class growth and metric values measured by 
JamTool, and three for the added classes (i.e., group A) and the removed classes (i.e., 
group R). 
? Hypothesis 1: Class growth throughout all versions will be positively reflected in the 
fan-in/fan-out coupling metric values. 
? Hypothesis 2: Class growth throughout all versions of the program will not be 
positively reflected in the cohesion metric values. 
 These two are actually to confirm the findings of the previous studies and our 
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expectation about class growth and metrics [32]. 
? Hypothesis 3: The average fan-in coupling of group A will be higher than the average 
fan-in of group R. 
? Hypothesis 4: The average fan-out coupling of group A will be lower than the average 
fan-out of group R. 
? Hypothesis 5: The average cohesion of group A will be higher than the average 
cohesion of group R. 
We believe that group A and group R can be categorized in a certain way based on 
the metric values of coupling and cohesion measured by JamTool. In other words, the 
added class group should have better software quality than the removed class group does. 
5.1.4 Results 
We applied an evolution track table and JarJarDiff (File comparison tool) to find 
the differences between two subsequent versions starting with JFreeChart-0.9.0 and 
ending with JFreeChart-0.9.21. According to the results obtained by evolution track table 
and JarJarDiff, we found that whenever a version is newly evolved, the software had a 
many changes. It modified interfaces and/or classes, removed interfaces and/or classes, 
and/or added new packages, interfaces, and/or classes. 
Normally, the number of classes gradually increases as a new version is released. 
Also, there are some huge changes in the middle of releases. With these reasons, in this 
experimental study, we investigate if the class growth shows any observable phenomenon 
on the coupling and cohesion metric values, and if the newly added classes show any 
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observable trend in comparison with the removed classes. 
Class Growth, Coupling, and Cohesion  
Table 5-2 gives an overview of the version differences of the software and 
coupling/cohesion metric values obtained by JamTool. It shows the number of classes 
(Removed, Added, total), average fan-in/-out coupling metrics, and average cohesion 
metrics in each version of the JFreeChart.  
Figure 5-1 shows the class growth across all versions of the program and Figure 
5-2 reveals an increasing trend for the average fan-in/fan-out coupling. We can easily 
recognize that the number of class increases gradually as new versions of the program 
evolve and the significant class growth occurred between versions 0.9.3 and 0.9.5, 
otherwise the number of classes increases consistently. 
There was a more than 300% class growth in the number of classes from the 
beginning of the program (i.e., 139) to the final version of the program (i.e., 460). This is 
a confirmation of the study by [6] and Lehman?s 6th law of software evolution [32] that 
the evolution of an object-oriented system reveals an increasing trend of the number of 
classes.  
For the Fan-in/fan-out coupling, a noticeable change appeared between versions 
0.9.3 and 0.9.4. We could say that this is because 113 classes were newly added to 
version 0.9.4 and it affects the average metric values. After that the growth trend is 
consistent while the average cohesion seems not to grow as the class does.  
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Table 5-2: Version differences and Coupling/Cohesion metrics 
Version of 
JFreeChart 
No. of 
Removed 
classes 
No. of 
Added 
classes 
Total no. 
of classes 
Avg. fan-
in 
coupling 
Avg. fan-
out 
coupling 
Average 
cohesion 
0.9.0   139 11.9 12.1 12.7 
0.9.1 1 0 138 12.0 12.2 12.9 
0.9.2 0 6 144 11.8 12 12.9 
0.9.3 0 113 257 11.0 11 11.6 
0.9.4 3 21 275 13.1 14.1 12.8 
0.9.5 22 74 327 12.8 13.8 12.6 
0.9.6 0 2 329 12.8 13.8 12.6 
0.9.7 1 25 353 12.7 13.5 12.4 
0.9.8 0 3 356 12.8 13.6 12.5 
0.9.9 43 48 361 13.0 14.2 12.7 
0.9.10 11 2 352 13.2 14.1 13.2 
0.9.11 0 13 365 13.4 14.4 13.4 
0.9.12 5 17 377 13.6 14.4 13.5 
0.9.13 0 6 383 14.0 14.8 13.8 
0.9.14 3 15 395 15.3 15.4 14.1 
0.9.15 0 9 404 15.2 15.3 14.0 
0.9.16 2 10 412 15.1 15.2 13.8 
0.9.17 19 30 423 15.0 15.2 9.8 
0.9.18 1 10 432 14.7 14.7 9.9 
0.9.19 9 24 447 14.2 14.3 9.8 
0.9.20 0 1 448 14.3 14.3 9.8 
0.9.21 3 15 460 14.5 14.6 9.8 
Total 123 444     
 
The cohesion metric between versions 0.9.16 and 0.9.17 suddenly drops and this 
becomes a key reason to affect the average. This can be explained by the fact that 115 
classes were modified not included in this research as well as 19 removed and 30 added 
at version 0.9.17.   
To test the hypotheses if the growth trend of classes is actually related to the 
metric values, we calculated correlations between the number of classes and one of the 
average fan-in coupling, fan-out coupling and cohesion. 
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Figure 5-1: Number of class growth 
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Figure 5-2: Average fan-in/out coupling and cohesion 
 
The average fan-in/out coupling is the average of the fan-in/out coupling metric 
values of all classes in each version of the program. The average cohesion is the average 
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of the cohesion metric values of all classes in each version. Underlying assumptions are 
that the number of classes is positively related to the average fan-in/out coupling, but is 
not positively related to the average cohesion.  
As we expected, there are strong correlations between the number of classes and 
the average fan-in/fan-out couplings with 0.813 and 0.826, respectively, in the pearson 
correlation, and at the significant level of p-value= 0.000 (Table 5-3). This statistical 
analysis strongly supports the first two hypotheses we made, and agrees with the previous 
research statements about the relationships between the number of classes and the 
coupling metrics, which stated that if the number of classes increases then coupling 
metrics increase.  
Moreover, Lehman?s 2nd law (Increasing complexity) of software evolution states 
that as a system evolves the complexity of the system increases unless work is done to 
maintain it. Since JFreeChart is an object oriented system written in Java, it is known 
that the complexity of a Java program depends largely on the coupling metrics among the 
classes.  
Table 5-3: Correlation between the number of classes and coupling/cohesion 
Number of classes 
 At each version 
Pearson correlation P-value 
Average fan-in coupling 0.813 0.000 
Average fan-Out coupling 0.826 0.000 
Average cohesion -0.356 0.104 
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Figure 5-3: Number of classes removed and added 
 
Figure 5-2 shows that as JFreeChart evolved, the coupling of the system 
increased, thus complexity increases as well, following Lehman?s 2nd law of evolution 
with some minor exceptions.  
Removed and Added Classes 
Figure 5-3 shows the numbers of classes removed (group R)   and added (group 
A) across all versions. We noticed that the software is constantly changed between 
versions and, in most cases, many more classes are added (total of 444) than removed 
(total of 123). This changing nature of JFreeChart follows Lehman's 1st law (Continuing 
change). Almost 50% of group A were added around the beginning of the evolution (213 
out of 444), prior to version 0.9.5. According to [1], this is a common phenomenon. 
About 65% of group A were added before version 0.9.9 (291 out of 444). In addition, 
there seems to be important changes at version 0.9.9 by adding 48 classes and removing 
43 (36% of the removed). 
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Figure 5- 4: Average coupling/cohesion of the classes removed and added 
To test the last three hypotheses, we calculated average Fan-in/out coupling and 
cohesion metrics for both group A and group R. It is the average of metric values of all 
classes removed/added in each version. Figure 5-4 shows the metric values and compares 
them in bar graphs. We were expecting to see higher Fan-in and cohesion and lower fan-
out in group A than in group R. 
The results reveal higher fan-in coupling and lower fan-out coupling for the added 
class group than those for the removed class group thus, support Hypotheses 3 and 4. It 
implies directly that the added classes have better software quality than the removed 
classes in terms of coupling. This result is very interesting because the 7th law (Declining 
quality) of Lehman?s software evolution states that E-type programs will be perceived as 
of declining quality unless adapted to a changing operation environment. We defined 
reusability as a quality factor for JFreeChart since it is a library which is intended to be 
reused by other applications. We measured fan-out and fan-in coupling metrics over time 
to see the trend of the quality in terms of reusability. As we mentioned earlier, low 
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fan-out and high fan-in coupling are desirable for the classes to be reused. Therefore we 
can say that with few exceptions, the evolution of the JFreeChart does not follow 
Lehman's 7th law of evolution. 
Based on the average cohesion metric values as shown in Figure 5-4, we found no 
big difference between the two groups and therefore reject Hypothesis 5. 
For the averages of the metrics, we looked into each version as shown in Figures 
5-5, 5-6, and 5-7. Since we have different numbers of classes across all versions, we 
normalized the average metric values by dividing the number of classes at each version. 
For the fan-in coupling in Figure 5-5, we observe two spikes at versions 0.9.3 and 
0.9.9. The first is for the added and the second is for the removed. Although the overall 
average seems to be influenced by them, the metrics for the added are higher and stronger 
than the removed, which is desirable and expected because it is reusable. More 
importantly the average at version 0.9.3 is the one with 113 added classes. 
Normalized fan-in coupling for the classes removed and added
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Figure 5-5: Normalized fan-in coupling 
 
 
 
 
90 
 
Figure 5-6: Normalized fan-out coupling 
Normalized cohesion for the classes removed and added
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Figure 5-7: Normalized cohesion 
For the fan-out coupling in Figure 5-6, we again notice a spike at version 0.9.9. 
This one is especially important because it is the average of 43 removed classes out of 
123. It is almost 40% of all the removed classes at a single version, and this plays an 
important role toward the undesirable quality of software because it is hard to maintain, 
 
 
 
 
91 
thus removed.  
For the cohesion value per version in Figure 5-7, the removed classes at version 
0.9.9 have high cohesion, even though this could be explained that they were removed 
because of the high fan-out coupling. However, the high cohesion for the added at 
version 0.9.3 is meaningful because it is the average of 113 classes while we can?t say 
that the added class group has better quality in terms of cohesion because of the data in 
Figure 5-4.  
Obvious common phenomena from these three Figures (5-5 ? 5-7) is that the 113 
classes added at version 0.9.3 represent high fan-in coupling and cohesion, which is ideal, 
and the 43 classes removed at version 0.9.9 represent high fan-in/out and cohesion.  The 
high fan-out coupling resulted in having these 43 classes removed from the software. 
5.1.5 Summary 
In this empirical study, we have mainly focused on tracking the reusability of an 
open software system, JFreeChart, over its evolution with fan-in and fan-out couplings 
for added and removed classes. We found that the number of classes increases gradually 
over most releases, and they have strong correlations with coupling metrics but not 
positively related to the cohesion. These confirm the expectations about the relationship 
between them.  We also found that the added classes have higher fan-in coupling and 
lower fan-out coupling comparing to the removed classes.  Low fan-out and high fan-in 
are desirable in term of reusability since a high fan-out means difficulty to reuse a class 
and a high fan-in represents a high level of reuse. It also has been found that evolution of 
this software system is consistent with Lehman's 1st, 2nd, and 6th laws of software 
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evolution.  
While more research would be required to make any firm conclusions, this 
observation leads us to believe that the reusability of JFreeChart has improved along 
with its evolution. In this way, applying metrics from JamTool over the evolution of the 
software can aid a software engineer to understand how a system has evolved over time. 
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6 ANALYZING SOFTWARE FOR REUSE AND 
MAINTENANCE 
 
 We applied software metrics and visualization approach to understand the 
software evolution in Chapter 5. According to the empirical study, there was a big change 
of coupling metric values from 0.9.3 to 0.9.4 as reported in Table 5-2 and Figure 5-2. 
This chapter presents a case study to investigate if the metrics defined and implemented 
by JamTool can be used to capture the difference between two consecutive versions on 
the evolution of JFreeChart.  
6.1 Added and Removed Classes 
When JFreeChart evolves from version 0.9.3 to version 0.9.4, twenty-one new 
classes were added and three classes were removed. Tables 6-1 and 6-2 summarize fan-in 
and fan-out couplings for the added and removed classes. The Class Counting Coupling 
(CCC) fan-out of a class, C, is the number of other classes that are referenced in C.  A 
reference to another class, A, is a reference to a method or a data member of class A. In 
the CCC fan-out of a class, multiple accesses to the same method or data element are 
counted as one access.  The CCC fan-in of a class, C, is the number of other classes that 
reference class C. In the CCC fan-in of a class, multiple accesses are also counted as one 
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access.  
High CCC fan-out of a class represents couplings to many other classes and thus 
the class is hard to be reused because this class depends on many other classes. High 
CCC fan-in of a class represents good object design and high level of reuse but it may be 
risky to change this class because many classes depend on it.  
Strength Counting Coupling (SCC) fan-in and fan-out coupling counts all 
references between classes. As shown in Table 6-1, added classes have higher (CCC 
average 2.5) fan-out coupling than fan-in coupling (CCC average 1.3).  
Table 6-1: Added classes into 0.9.4 
CCC SCC Class Name 
Fan-out Fan-in Fan-out Fan-in 
ArrowNeedle 1 2 1 3 
CompassPlot 14 0 27 0 
DatasetGroup 0 4 0 8 
DrawableLegendItem 1 3 3 48 
FastScatterPlot 7 0 21 0 
Function2D 0 2 0 2 
IntervalCategoryToolTipGenerator 2 1 4 1 
JThermometer 5 0 35 0 
LineFunction2D 1 0 1 0 
LineNeedle 1 1 1 1 
LongNeedle 1 1 1 1 
MeterNeedle 0 8 0 11 
PinNeedle 1 1 1 1 
PlumNeedle 1 1 1 1 
PointerNeedle 1 1 1 1 
PowerFunction2D 1 0 1 0 
Regression 0 0 0 0 
ShipNeedle 1 1 1 1 
XYDotRenderer 2 0 2 0 
WindNeedle 1 1 1 1 
ThermometerPlot 13 1 62 15 
Average 2.5 1.3 7.8 4.5 
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Six classes (XYDotRenderer, FastScatterPlot, JThermometer, LineFunction2D, 
PowerFunction2D, and CompassPlot) have only fan-out couplings and three classes 
(DatasetGroup, Function2D, and MeterNeedle) have only fan-in couplings. Class Regression 
is added without any relation to other classes. This class may be ready to provide 
independent service to other software application.  
Class ThermometerPlot depends on 13 classes with 62 fan-out couplings and 1 
class depends on this class with 15 fan-in couplings. Nine added classes have both fan-
out and fan-in couplings. Class DrawableLegendItem has 1 fan-out class and 3 fan-in 
classes with 3, and 48 couplings, respectively. Therefore, we need to pay more attention 
to this class than other classes among the added classes. 
In Table 6-2, Class WindAxis is removed, but it does not affect the rest of the 
system because no other classes depended on this class. Classe ToolTipsCollection is 
removed and one class depends on this class with one coupling. Class ToolTip is removed 
and one class depends on this class with six couplings. Even if only one class depends on 
the removed classes, we still need to test the effect of the removed classes because this 
one class may trigger riffle effects to other classes in the system. 
 
Table 6-2: Removed classes from 0.9.3 
 CCC SCC 
Class Fan-out Fan-in Fan-out Fan-in 
WindAxis 2 0 6 0 
ToolTipsCollection 0 1 0 1 
ToolTip 0 1 0 6 
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6.2 Modified Classes 
 We compare CCC fan-in and fan-out couplings between 0.9.3 and 0.9.4 to see if 
there are changes in terms of the number of coupled classes. Table 6-3 shows the changed 
classes that have big differences in terms of the number of coupled classes. As shown in 
Table 6-3 (a), class ChartFactory depends on 15 new classes; there are only 2 classes 
depend on more than 3 new classes, but 4 classes decrease the number of coupled classes 
in version 0.9.4. 
Table 6-3: Changed classes with at least 3 differences.  
CCC(Fan-out) 0.9.3 0.9.4 Change 
ChartFactory 38 53 15 
StandardLegendItemLayout 2 6 4 
AbstractXYItemRenderer 6 9 3 
AreaCategoryItemRenderer 2 5 3 
DateAxis 5 8 3 
HorizontalDateAxis 9 12 3 
StandardCategoryToolTipGenerator 1 4 3 
ChartUtilities 6 3 -3 
StandardLegend 5 2 -3 
JThermometer 4 0 -4 
StackedHorizontalBarRenderer 5 1 -4 
 
(a) Changed classes with big difference of fan-out (CCC) 
CCC(Fan-in) 0.9.3 0.9.4 Change 
LegendItemCollection 1 13 12 
CategoryURLGenerator 2 13 11 
LegendItem 3 10 7 
EntityCollection 20 24 4 
StandardCategoryToolTipGenerator 0 4 4 
TickUnits 3 7 4 
CategoryPlot 7 10 3 
DateTickUnit 0 3 3 
Plot 17 20 3 
StackedVerticalBarRenderer3D 10 1 -9 
(b) Changed classes with big difference of fan-in (CCC) 
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In Figure 6-3 (b), classes LegendItemCollection, CategoryURLGenerator, and 
LegendItem in version 0.9.4 depend on more than 7 new classes and 9 classes stop 
depending on class StackedVerticalBarRenderer3D. Table 6-4 and Figure 6-1 summarize 
fan-in/out differences in these two versions. CCC represents the number of coupled 
classes and SCC represents the coupling strength. 
 
Table 6-4: Fan-in/out differences in two versions 
Average Min Median Max  
0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 
Fan-in 2.9 3.1 0 0 1 1 36 38 CCC 
Fan-out 2.9 3.1 0 0 2 2 38 53 
Fan-in 12.8 16.2 0 0 3 3 255 398 SCC 
Fan-out 12.8 16.2 0 0 3 2 331 447 
 
 
 
Figure 6-1: Average coupling comparison of changed classes  
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(a) Fan-in coupling distribution 
 
(b) Fan-out coupling distribution 
 
Figure 6-2: Coupling (CCC) distribution in two versions 
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Figure 6-3: Coupling (SCC) distribution in two versions 
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When JFreeChart evolves from 0.9.3 to 0.9.4, the average number of coupled 
classes is increased from 2.9 to 3.1 and the average coupling strength is increased from 
12.8 to 16.2. This result means that, in version 0.9.3, each class depends on 2.9 classes on 
average and references/uses other classes about 12.8 times. Each class, in version 0.9.4, 
depends on 3.1 classes on average and references/uses other classes about 16.2 times. 
Therefore, we can say that version 0.9.4 is more difficult to reuse and maintain than 0.9.3. 
Figures 6-2 and 6-3 summarize fan-in/out coupling distributions for these two 
versions. There are classes with high coupling metrics which we need to pay more 
attention and monitor their changes. Figure 6-2 shows fan-in/out coupling distributions in 
terms of the number of classes. Most classes have coupled to fewer than 5 classes.  
Figure 6-3 shows fan-in/out coupling distribution in terms of the number of actual 
couplings. It is a distribution of the SCC metrics. Most classes have fewer than 25 
couplings and only very few classes have high couplings. 
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6.3 Reusable Unit and Maintainable Unit 
Reusable unit is a collection of a target class and its related classes we should 
reuse together.  Identifying a reusable unit means that each class has its own reusable unit 
with other classes which the class depends on. The identification of a reusable unit of 
classes requires an understanding of the relation of classes in a software system. A 
maintainable unit contains a target class and its related classes we should test together.   
Reusable unit and maintainable unit are necessary to understand software 
structure and, more importantly, to serve as a source of information for reuse and 
maintenance. 
Figure 6-4 shows the reusable units in versions 0.9.3 and 0.9.4. From these 
reusable units, progression of the reusable units are captured. For example, class 
AbstractCategoryItemRender depends on 5 classes (StandardCategoryToolTipGenerator, 
CategoryRender, CategoryToolTipGenerator, AbstractRender, CategoryURLGenerator) 
in version 0.9.3, which make a unique reusable unit, but 2 new classes (CategoryDataset, 
LegendItem) are added into the reusable unit in version 0.9.4. 
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(a) Reusable unit in version 0.9.3 
 (b) Reusable unit in version 0.9.4 
Figure 6-4: Reusable unit 
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(a) Maintainable unit in version 0.9.3 
 
(a) Maintainable unit in version 0.9.4 
Figure 6-5: Maintainable unit 
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Figure 6-5 shows maintainable units in two versions. From these maintainable 
units, we can capture the progression how classes depend on a particular class. For 
example, class DateTickUnit has no classes that depend on it in version 0.9.3, but 2 
classes (DateAxis. HorizonDateAxis) depend on it in version 0.9.4 
6.4 Connected Unit 
  In a connected unit table, directly and indirectly coupled classes are located in the 
same column, thus a set of classes in the same column is a connected unit. Figure 6-6 
shows part of connected units of JFreechart in two versions. From these connected units, 
  
(a) Connected unit in 0.9.3 (b) Connected unit in 0.9.4 
Figure 6-6 : Connected units in two versions 
 
 
 
 
105 
we find that version 0.9.3 establishes a main connected unit which has 224 classes out of 
a total of 257 classes as shown in column A in Figure 6-6 (a), and a minor connected unit 
with 3 classes in column D of Figure 6-6(a). The three classes 
(StandardToolTipsCollection, ToolTip, and ToolTipsCollection) belong to the same 
package named "com.jrefinery.chart.tooltips". There are also 11 independent classes, e.g., 
DatasetChangeListener in column E, which have no relation to other classes in Figure 6-
6(a). The independent classes are listed in Table 6-5. 
  We also find that version 0.9.4 has a main connected unit with 254 classes out of a 
total of 275 as shown column A in Figure 6-6 (b), and a minor connected unit with 3 
classes in column K of Figure 6-6 (b). These three classes (Function2D, LineFunction2D, 
PowerFunction2D) belong to the same package named "com.jrefinery.data ". There are 
18 independent classes which have no relation to other classes in Figure-6(b). The 
independent classes are listed in Table 6-5. 
6.5 Comparing of Coupling Type 
 We compare the types of fan-in and fan-out couplings to see which type of the 
coupling is most affected by the evolution from version 0.9.3 to version 0.9.4. Seven 
types of couplings for these two versions are partially shown in Figure 6-7 and their 
actual metrics are shown in Table 6-6. Something very noticeable here is that 48% (1413 
out of 3024 in version 0.9.3) and 53% (2192 out of 4111 in version 0.9.4) of the 
couplings are IM (Invoked Method Type) while none of them is RV (Referenced  
Variable).    
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Table 6-5: Independent classes in two versions 
0.9.3 (11 classes) 0.9.4 (18 classes) 
JFreeChartInfo, PlotException, 
DatasetChangeListener, Values, 
XisSymbolic,YisSymbolic, 
DataPackageResources, 
DataPackageResources_de, 
DataPackageResources-es, 
DataPackageResources_fr, 
DataPackageResources_pl 
DataUnit, JFreeChartInfo, 
PlotException, ChartChangeListener, 
LegendChangeListener,  
lotChangeListener, TitleChangeListener, 
JFreeChartResource, 
DatasetChangeListener, Regression, 
Values, XisSymbolic, YisSymbolic, 
DataPackageResources, 
DataPackageResources_de, 
DataPackageResources-es, 
DataPackageResources_fr, 
DataPackageResources_pl 
 
Every coupling metric type has increased from version 0.9.3 to version 0.9.4, and 
the average increasing rate of the coupling is 35.95%. In particular, Method Invocation 
type (IM) has increased 55.48%, which is 72.13% (784 out of 1087) of the total number 
of the increased. This implies that the most significant difference is Method Invocation 
coupling between these two versions.   
Table 6-6: Comparison of Fan-in and fan-out Coupling Types  
Version Fan-in/out coupling 
0.9.3 0.9.4 
Increased Increasing rate 
TA 70 83 13 18.57% 
TM 221 297 76 34.39% 
TL 495 594 99 20% 
IM 1,413 2,197 784 55.48% 
MP 634 733 99 15.62% 
RV 0 0 0 0% 
PC 191 207 16 8.38% 
Total 3024 4,111 1,087 35.95% 
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(a) Fan-in coupling in version 0.9.3 (a) Fan-in coupling in version 0.9.4 
 
  
(c) Fan-out coupling in version 0.9.3 (d) Fan-out coupling in version 0.9.4 
Figure 6-7: Fan-out/Fan-out coupling 
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6.6 Size and Complexity 
 Four size and one complexity metrics for these two versions are partially shown 
in Figure 6-8 and their differences are in Table 6-7. The metrics have all increased from 
version 0.9.3 to version 0.9.4. Figure 6-9 graphs the LOCC distributions these two 
versions, and it is clear that most classes have fewer than 50 lines. 
 
  
(a) Size & complexity in version 0.9.3 (a) Size & complexity in version 0.9.4 
 
Figure 6-8: Size & complexity 
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Table 6-7: Size & complexity differences 
Version Size & complexity 
0.9.3 0.9.4 
Increased Increasing rate 
LOCC 9,820 11,287 1,467 14.94% 
nMC 2,040 2,302 262 12.84% 
nAC 822 910 88 10.71% 
aLOCM 944 1,087 143 15.15% 
aCX 106 118 12 11.32% 
 
Table 6-8: Cohesion differences 
Version Cohesion 
0.9.3 0.9.4 
Increased Increasing rate 
MI 756 1,028 272 35.98% 
AR 2,551 2,867 316 12.39% 
Total 3,307 3,895 588 17.78% 
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(a) Cohesion in version 0.9.3 (a) Cohesion in version 0.9.4 
Figure 6-10: Cohesion 
 
6.7 Cohesion 
 Cohesion metrics for the two studied versions are partially shown in Figure 6-10 
and their differences are in Table 6-8. Something noticeable is that 77% (2,551 out of 
3,307 in version 0.9.3) and 74% (2,867 out of 3,895 in version 0.9.4) of the cohesion are 
AR (Attribute Reference) while MI (Method Invocation) has increased 35.98% in version 
0.9.4.     
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6.8 Summary 
The goal of this case study is to compare and analyze two versions of  JFreeChart 
at class level. Specifically, it aims to answer the following questions: 
o How does the architecture of JFreeChart change between two consecutive 
versions?  
o How can the differences between them be compared and detected?  
o How can the huge information of source code be filtered and compared?  
In this case study, we analyzed the differences between the metrics of two 
versions using JamTool and found overall trend of metrics of JFreeChart in versions 
0.9.3 and 0.9.4. 
From the comparison and analysis of two versions of JFreeChart, we summarize 
the following findings:  
o 21 classes were added to version 0.9.4  
o 3 classes were removed from version 0.9.3 
o 44 classes have new fan-out couplings and 60 classes have new fan-in 
couplings in version 0.9.4.  
o Most classes have low fan-in or fan-out couplings but few classes have high 
coupling.  
o By comparing reusable units and maintainable units in version 0.9.3 and 
version 0.9.4, we found newly added classes to the reusable unit and 
maintainable unit.  
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o By analyzing connected unit, we found that most classes are directly or 
indirectly related to each other and they form one main connected unit. But we 
also found minor connected units with 3 classes, and 11 and 18 independent 
classes which have no relations to other classes in versions 0.9.3 and 0.9.4, 
respectively.  
o More than half of the newly added couplings were Method invocation. 
o Size and complexity metrics are also increased in 0.9.4. 
Based on the findings above, we conclude that the metrics tables produced by 
JamTool can be used in the following tasks: 
o To monitor new coupling through evolution of the software system. 
o To identify outlier classes based on the metrics 
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7 IDENTIFYING CORRELATION AMONG METRICS 
This chapter presents empirical studies that investigate if the metrics defined and 
implemented in JamTool are related to each other. The data sets used for the study are 
also presented. Finally, the statistical correlation coefficients are described. 
Statistical analyses were performed to investigate the following questions: 
? Are there correlations in the metrics? 
The test programs used in this research are Java classes in the GUI library (i.e., 
Swing in JFC) and GUI applications (i.e., Bingo and Netbean). Metrics for these classes 
were automatically collected using JamTool. These applications were written by 
developers in the Sun Microsystems.  The test programs used in this experiment are 
grouped as follows: 
SwingLib = {classes in Swing package in JFC}, 
BingoAppl = {classes in Bingo application},  
NetbeanAppl = {classes in Netbean application}, 
SwingLib contains 502 classes; BingoAppl has 48 classes; NetbeanAppl has 52 
classes. 
JFC/Swing 
The Java Foundation Classes (JFC) is a comprehensive set of GUI components 
and services which simplify the development and deployment of desktop and 
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Internet/Intranet applications. JFC extends the original Abstract Window Toolkit (AWT) 
by adding a comprehensive set of graphical user interface class libraries.  
These components are written in Java, without window-system-specific code. 
They facilitate a customizable look-and-feel without relying on the native windowing 
system, and simplify the deployment of applications.  
Swing is a GUI component kit and is part of JFC integrated into Java 2 platform-
Standard Edition (J2SE). Swing simplifies deployment of applications by providing a 
complete set of user-interface elements written entirely in Java. Swing components also 
permits a customizable look and feel without relying on any window specific 
components. We shall demonstrate our approach by considering code using the 
JFC/Swing library. 
Bingo  
  
Bingo is a client/server application that implements the game of BINGO and a 
comprehensive example of JFC provided by the Sun Microsystems. This application 
broadcasts information via a multicast socket, builds its GUI with Swing components, 
uses multiple synchronous threads, and communicates with RMI. 
NetBean 
 
The NetBean IDE is a development environment - a tool for programmers to 
write, compile, debug and deploy programs. It is a development tool written in Java for 
writing programs in Java and other programming languages. 
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7.1   Methodology 
7.1.1 Experiment 1: Correlation Coefficients among the metrics 
The goal of this statistical analysis is to answer the question:  
? Are any of the metrics in a group (i.e., SwingLib, BingoAppl, and 
NetbeanAppl) correlated? 
The Pearson product moment correlation coefficient, r, is a dimensionless index 
that ranges from ?1.0 to 1.0 inclusive and reflects the extent of a linear relationship 
between two data sets. For example, if the r value associated with Metric1 and Metric2 is 
close to zero, then the metric values of Metric1 and Metric2 are not linearly related. On 
the other hand, if r is close to 1, then large values of Metric1 are associated with large 
values of Metric2. Finally, if r is close to ?1, then large values of Metric1 are linearly 
associated with small values of Metric2. The sign of the correlation coefficient indicates 
whether two variables are positively or inversely related. A negative value means that as 
Metric1 becomes larger, Metric2 tends to become smaller. A positive correlation means 
that both Metric1 and Metric2 go in the same direction. 
7.1.2 Experiment 2: Correlation Coefficients among the coupling metrics in a 
group 
The goal of this statistical analysis is to answer the question:  
? Are any of the coupling metrics in a group (i.e., SwingLib, BingoAppl, and 
NetbeanAppl) correlated? 
In this experiment, we analyze the correlation among the fan-in and fan-out 
coupling metrics from SwingLib, BingoAppl, and NetbeanAppl to find internal features of 
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each system. 
In this chapter, we apply metrics defined in Section 3.3. For example, LOC 
measures number of lines in a class. 
7.2 Results  
Sections 7.2.1 and 7.2.2 provide the results for each of the statistical analyses 
described in section 7.1. First, section 7.2.1 discusses the correlation among the metrics 
in a group. Section 7.2.2 discusses the analysis results for the correlation among coupling 
metrics in a group.  
7.2.1 Result 1: Correlation among the metrics in a group 
This section answers the following question: 
? Are any of the metrics in SwingLib, NetBeanAppl, and BingoAppl correlated? 
Tables 7-1, 7-2, and 7-3 show the correlation coefficients for the metrics and 
Table 7-4 shows metrics pairs with r values greater than 0.6. In the traditional procedural 
programming paradigm, studies show that defects correlate with LOC and Cyclomatic 
complexity [49, 50]. 
From the correlation results of SwingLib and NetbeanAppl (See Table 7-1 and 7-
2), we found common correlation patterns.  
Except for aLOCM, size metrics (i.e., LOC, NOM, NOA), complexity metrics 
(i.e., aCx), and cohesion metrics (i.e., cohMI, cohAR) are positively correlated to each 
other. Coupling metrics are positively correlated to each other except cplPC and cplMI. 
 LOC, NOM, and NOA are representatives of the size of a class; however aLOCM 
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represents the averaged method size in a class. 
Size, complexity and cohesion metrics are correlated to each other. But coupling 
metrics are not correlated to other metrics like size, complexity and cohesion. Size, 
complexity and cohesion metrics represent the volume within a class, but coupling 
metrics represent the structure among classes in a system. These two aspects of software 
system, obviously, are not correlated. 
From the correlation results of BingoAppl (See Table 7-3), Size metrics and 
complexity metrics are correlated to each other but cohesion metrics are independent 
from other metrics. Some coupling metrics (cplTA, cplMI, and cplTPM) are correlated to 
size and complexity metrics. aLOCM and cplPC are independent from other metrics. 
 
Table 7-1: Correlation Coefficients of metrics in SwingLib 
  LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 
LOC 1.00             
NOM 0.94 1.00            
NOA 0.70 0.66 1.00           
aLOCM 0.31 0.12 0.15 1.00          
aCx 0.95 0.87 0.64 0.23 1.00         
cohMI 0.85 0.81 0.72 0.15 0.83 1.00        
 cohAR 0.82 0.77 0.73 0.17 0.79 0.76 1.00       
cplTA 0.34 0.33 0.27 0.07 0.33 0.25 0.27 1.00      
cplTP 0.35 0.39 0.20 0.04 0.28 0.29 0.20 0.50 1.00     
cplTL 0.38 0.33 0.24 0.08 0.42 0.31 0.26 0.50 0.52 1.00    
cplMI 0.52 0.47 0.34 0.16 0.51 0.42 0.47 0.52 0.50 0.89 1.00   
cplTPM 0.40 0.33 0.33 0.07 0.45 0.38 0.34 0.43 0.44 0.85 0.77 1.00  
cplPC 0.15 0.15 0.17 0.07 0.17 0.15 0.13 0.18 0.21 0.24 0.20 0.20 1.00 
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Table 7-2: Correlation Coefficients of metrics in NetbeanAppl 
 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 
LOC 1.00             
NOM 0.95 1.00            
NOA 0.67 0.61 1.00           
aLOCM 0.28 0.05 0.20 1.00          
aCx 0.91 0.86 0.49 0.29 1.00         
cohMI 0.84 0.89 0.49 0.09 0.86 1.00        
cohAR 0.81 0.79 0.81 0.16 0.69 0.65 1.00       
cplTA -0.11 -0.05 -0.14 -0.27 -0.08 -0.06 -0.11 1.00      
cplTP -0.03 0.05 -0.19 -0.31 0.02 0.08 -0.12 0.90 1.00     
cplTL 0.06 0.12 -0.15 -0.17 0.12 0.16 -0.02 0.87 0.88 1.00    
cplMI 0.32 0.32 0.16 -0.02 0.36 0.35 0.20 0.19 0.25 0.28 1.00   
cplTPM 0.06 0.14 0.07 -0.25 0.03 0.19 0.06 0.86 0.85 0.83 0.21 1.00  
cplPC 0.35 0.40 0.06 -0.02 0.47 0.39 0.37 0.17 0.22 0.33 0.18 0.17 1.00 
 
 
Table 7-3: Correlation Coefficients of metrics in BingoAppl 
 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC 
LOC 1.00             
NOM 0.84 1.00            
NOA 0.82 0.64 1.00           
aLOCM 0.46 0.12 0.32 1.00          
aCx 0.88 0.68 0.58 0.34 1.00         
cohMI -0.06 -0.10 -0.16 0.13 -0.03 1.00        
cohAR 0.03 -0.04 -0.08 0.20 0.04 0.92 1.00       
cplTA 0.87 0.73 0.67 0.25 0.80 -0.11 -0.05 1.00      
cplTP 0.52 0.53 0.36 0.09 0.51 -0.12 -0.11 0.71 1.00     
cplTL 0.12 0.06 0.09 0.14 0.11 0.04 -0.04 0.14 0.37 1.00    
cplMI 0.78 0.60 0.74 0.40 0.61 0.15 0.21 0.75 0.52 0.04 1.00   
cplTPM 0.75 0.42 0.87 0.37 0.57 -0.08 -0.02 0.71 0.39 0.06 0.84 1.00  
cplPC -0.22 -0.06 -0.16 -0.42 -0.19 -0.16 -0.14 -0.19 -0.22 -0.30 -0.21 -0.21 1.00 
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Table 7-4: Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6 
r value r value 
Pair Swing 
Lib 
Netbean 
Appl 
Bingo 
Appl 
Pair Swing 
Lib 
Netbean 
Appl 
Bingo 
Appl 
LOC and 
NOM 0.94 0.94 0.84 
NOA and 
cplTA   0.67 
LOC and 
NOA 0.70 0.70 0.82 
NOA and 
cplMI   0.74 
LOC and 
aCx 0.95 0.95 0.88 
NOA and 
cplTPM   0.87 
LOC and 
cohMI 0.85 0.85  
aCx and 
cohMI 0.83 0.83  
LOC and 
cplTA   0.87 
aCx and 
cplTA   0.80 
LOC and 
cohAR 0.82 0.82  
aCx and 
cplMI   0.61 
LOC and 
cplMI   0.78 
aCx and 
cohAR 0.79 0.79  
LOC and 
cplTPM   0.75 
cohMI 
and 
cohAR 
0.76 0.76  
NOM and 
NOA 0.66 0.66  
cplTL and 
cplMI 0.89   
NOM and 
aCx 0.87 0.87  
cplTA and 
cplTP  0.89 0.71 
NOM and 
NOA   0.64 
cplTA and 
cplMI   0.75 
NOM and 
aCx   0.68 
cplTA and 
cplTL  0.86  
NOM and 
cplTA   0.73 
cplTA and 
cplTPM  0.95 0.71 
NOM and 
cohMI 0.81 0.81  
cplMI and 
cplTPM   0.84 
NOM and 
cohAR 0.77 0.77  
cplTP and 
cplTL  0.88  
NOA and 
aCx 0.64   
cplTP and 
cplTPM  0.85  
NOA and 
cohMI 0.72   
cplTL and 
cplTPM 0.86 0.77  
NOA and 
cohAR 0.73 0.73  
cplMI and 
cplTPM 0.77   
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7.2.2 Result 2: Correlation among the coupling metrics in a group 
We have found the followings from the previous experiments: 
? Size, complexity and cohesion metrics are correlated to each other with some 
exceptions. 
? Coupling metrics are relatively independent from other metrics (i.e., size, 
complexity, and cohesion) 
? Some coupling metrics are correlated to each other. 
In this experiment, we also measure fan-in and fan-out coupling metrics for each 
software system and analyze the measurement results. We collect and analyze the 
measurement results from SwingLib, NetbeanApp, and BingoAppl.  In this section, we 
add in and out to the end of the metrics name to indicate fan-in and fan-out coupling 
instead prefix cpl. For example, TAin represents fan-in coupling with cplTA type. 
In Tables 7-5, 7-6 and 7-7, some fan-in coupling metrics are positively correlated 
to each other and some fan-out coupling metrics are positively correlated to each other as 
well. However, fan-in coupling metrics are not correlated to fan-out coupling metrics.  
The following are our interpretation of the measurement results in this 
experiment. 
? All fan-in coupling metrics are correlated with each other and all fan-out 
coupling metrics are correlated with each other except PCin, PCout, and 
TMout.  
o There are two types of classes in SwingLib: fan-in coupled classes and 
fan-out coupled classes. Fan-in coupled classes are used by (i.e., 
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export) other classes, but do not use (i.e., import) other classes. Fan-
out coupled classes use other classes, but are not used by other classes.  
o Fan-in coupled classes in SwingLib are used by other classes with 
diverse connection types. 
o Fan-out coupled classes in SwingLib use other classes with diverse 
connection types.  
o Classes in SwingLib are designed with a specific role ? import or 
export.  
? In BingoAppl and NetbeanAppl not all fan-in coupling metrics are correlated 
to each other and not all fan-out coupling metrics are correlated to each other 
either. 
? There is no correlation between fan-in and fan-out coupling metrics in 
SwingLib, NetbeanAppl, and BingoAppl. 
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Table 7-5: Correlation of coupling metrics in SwingLib 
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 
TAin 1.00            
TMin 0.72 1.00           
TLin 0.84 0.72 1.00          
IMin 0.76 0.59 0.89 1.00         
IMPin 0.78 0.60 0.75 0.68 1.00        
PCin 0.08 0.38 0.12 0.08 0.09 1.00       
TAout 0.12 0.06 0.13 0.18 0.09 0.08 1.00      
TMout 0.08 0.05 0.13 0.27 0.07 0.05 0.57 1.00     
TLout 0.02 0.00 0.05 0.09 0.03 0.08 0.58 0.52 1.00    
IMout 0.01 -0.02 0.03 0.09 0.02 0.08 0.60 0.50 0.89 1.00   
IMPout 0.01 -0.02 0.03 0.05 0.08 0.02 0.49 0.44 0.85 0.77 1.00  
PCout 0.21 0.16 0.25 0.22 0.26 -0.02 0.19 0.21 0.24 0.20 0.20 1.00 
Table 7-6: Correlation of coupling metrics in NetbeanAppl 
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 
TAin 1.00            
TMin 0.97 1.00           
TLin 0.96 0.96 1.00          
IMin 0.28 0.28 0.28 1.00         
IMPin 0.92 0.89 0.88 0.23 1.00        
PCin 0.28 0.29 0.30 0.07 0.23 1.00       
TAout -0.10 -0.12 -0.05 -0.09 -0.04 0.00 1.00      
TMout -0.08 -0.09 -0.12 -0.05 -0.09 -0.01 0.36 1.00     
TLout -0.07 -0.08 -0.10 -0.03 -0.11 0.33 0.24 0.51 1.00    
IMout -0.11 -0.10 -0.15 0.01 -0.11 0.30 0.05 0.43 0.61 1.00   
IMPout -0.10 -0.11 -0.15 -0.07 -0.12 0.04 0.24 0.59 0.72 0.48 1.00  
PCout -0.07 -0.09 -0.10 -0.09 -0.08 -0.03 0.00 0.23 0.13 0.35 0.12 1.00 
Table 7-7: Correlation of coupling metrics in BingoAppl 
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout 
TAin 1.00            
TMin 0.67 1.00           
TLin -0.11 0.29 1.00          
IMin 0.57 0.47 0.03 1.00         
IMPin 0.33 0.53 0.39 0.19 1.00        
PCin -0.23 -0.16 -0.14 -0.32 0.00 1.00       
TAout 0.46 0.49 -0.14 0.34 0.49 -0.22 1.00      
TMout 0.11 0.06 -0.16 0.11 -0.19 -0.18 0.33 1.00     
TLout 0.24 0.13 -0.13 -0.09 -0.02 -0.17 0.34 0.51 1.00    
IMout 0.36 0.36 -0.15 0.25 0.37 -0.18 0.90 0.43 0.57 1.00   
IMPout 0.33 0.14 -0.16 0.29 0.20 -0.19 0.61 0.26 0.37 0.64 1.00  
PCout 0.16 -0.01 -0.24 0.14 -0.23 -0.16 0.08 0.04 0.03 0.11 0.04 1.00 
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8 CONCLUSIONS 
The primary objective of this research is to provide an automated measurement 
tool (i.e., JamTool) to guide a programmer for software reuse and maintenance. 
Measuring how well software components can be reused and maintained helps 
programmers not only write reusable and maintainable software, but also identifies 
reusable or fault-prone components. 
The following research contributions have been achieved in this study.  
Quality Measurement Model Development 
We developed a quality model that leads to a metric set implemented in JamTool. 
We first identified essential software properties that have been suggested as having an 
impact on software reusability and maintainability. Then we divided these quality factors 
into five subfactors (i.e., identification, separation, modification, validation, and 
adaptation) in a top-down fashion. We also applied bottom-up approach to develop 
quality measurement models for reusability and maintainability based on available 
measurement types that are related to reuse and maintenance properties. Using these top-
down and bottom-up approaches, we constructed a concise quality measurement model 
for reusability and maintainability.   
Automated Measurement Tool 
An automated measurement tool, JamTool, for object-oriented software 
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system was developed in this work. This research describes how this tool can guide a 
programmer through measuring internal characteristics of a program for software reuse 
and maintenance. 
In this work, primitive but comprehensive metrics for object-oriented language 
have been extensively studied and statistically analyzed to show internal characteristics 
from the classes selected from various applications. The automatically identified 
connected units, reusable units, and maintainable units have been discussed.  
JamTool?s capabilities have been demonstrated through case studies.  
1. Measuring Quality on Software Evolution: It shows that the metrics defined 
and implemented by JamTool can be used to assess the quality on the 
evolution of a software system. 
2. Visualizing Software Evolution: The evolution track-table visualizes the 
evolution of a software system. 
3. Analyzing Software for Reuse and Maintenance: It shows how the 
architecture of a software system changes between two consecutive versions.  
It also shows the usage of connect unit, reusable unit, and maintainable unit. 
4.  Identifying Correlation among Metrics: It shows the correlation among the 
metrics defined and implemented by JamTool. 
The first case study investigated whether JamTool can be used to assess the 
reusability of an open software system, JFreeChart, over its evolution with fan-in and 
fan-out couplings for added and removed classes. We found that the number of classes 
increases gradually over most releases, and they have positive improvement with respect 
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to the coupling metrics but not positively related to the cohesion. It has also been found 
that evolution of this software system is consistent with Lehman's 1st, 2nd, and 6th laws 
of software evolution. We found that the added classes have higher fan-in coupling and 
lower fan-out coupling comparing to the removed classes, which is desirable in term of 
reusability. This observation leads us to believe that the reusability of JFreeChart has 
improved along with its evolution and reject Lehman's 7th laws of software evolution. In 
this way, applying metrics from JamTool over the evolution of software can aid a 
software engineer to understand how a system has evolved over time. 
The second case study investigated whether JamTool can be used to capture the 
difference between two consecutive versions on the evolution of JFreeChart. Based on 
the findings in this case study, we conclude that the metrics tables produced by JamTool 
can be used in the following tasks: 
o To monitor the new coupling through evolution of the software system. 
o To identify outlier classes based on the metrics 
The third case study investigated whether the metrics defined and implemented in 
JamTool are related to each other. We have found the followings from this case study: 
o Size, complexity and cohesion metrics are correlated to each other with some 
exceptions. 
o Coupling metrics are relatively independent from other metrics (i.e., size, 
complexity, and cohesion) 
o All fan-in coupling metrics are correlated with each other and all fan-out 
coupling metrics are correlated with each other except PCin, PCout, and 
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TMout.  
o There is no correlation between fan-in and fan-out coupling metrics. 
Consequently, having achieved our goal of providing an automated source code 
measurement environment, we demonstrated that our tool, JamTool, is a valuable tool to 
help software engineers understand and explore software reuse and maintenance. 
There are several aspects to the work presented in this dissertation that offer potential 
for future research. Some of these areas are listed below.  
1. Object-oriented metrics and connected units can be used to automate the 
recognition of design patterns in existing software components. A specific 
area for future research is to characterize the structure of design patterns and 
use design metrics and clusters to recognize pattern structures in existing 
object-oriented software libraries and systems.  
2. To analyze features of application domains: After the analysis of the 
measurement results of various application domains, common features of each 
domain may be derived. 
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APPENDIX A.  Visualization of Software Evolution 
Research on how a software system evolves over time is difficult and time 
consuming. The enormous amount of work required by analyzing software evolution 
makes it difficult without the dedicated tools such as JamTool. Automated environments 
could be key factors in conducting a successful empirical study on software evolution.  
Moreover, there are two major challenges that must be overcome in software 
evolution research. These challenges limit our ability to understand the history of 
software systems, thus prevent us from generalizing our observations into software 
evolution theory. The first challenge is how to organize the enormous amount of 
historical data in a way that allows us to access them quickly and easily. The second 
challenge is how to analyze the structural changes of software systems.  
To overcome these challenges, we use visualization technique in a form of table to 
provide the overview of the evolution history. We observe the evolution history of real 
world software system, JFreeChart. This system is investigated to demonstrate the 
effectiveness of our approach as an example to demonstrate the use of various 
functionalities of JamTool. We also introduce several ways to track and analyze the 
software structural changes from past releases.  
A.1   Evolution Track Table 
In this section we present the global visualization of software evolution using an 
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evolution track table, which is created to visualize the evolution of a software system.  
The evolution of classes of a software system can be visualized in an evolution 
track table as shown in Figure A-1. This table visualizes each class?s lifecycle for a 
software system in Microsoft Excel to achieve various data analysis, and it provides 
effective ways to analyze the evolution of the system. Each column of the table represents 
a version of the software, while each row represents a class name in each version. To 
create the table, we collect and list all class names which are the member of the system at 
least once, and display ?1? or ?0? depending on whether or not a class is a member of a 
version of the system. In this way, the class name which lasts the longest in the evolution 
appears first. 
Characteristics of Evolution Track Table 
 From an evolution track table, we are able to obtain the following information 
regarding the evolution of a system. 
? Size of the system 
We can find out how many classes are involved in system evolution. The 
summation of ?1?s in each column is the number of classes existed in that particular 
version of the system. For instance, there are 14 classes in versions 1 and 2 and a total of 
25 classes are involved in the evolution in Figure A-1. 
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Figure A-1: Software evolution in an evolution track table 
 
? Removed and added classes 
The classes which have been removed or added in a certain version can be easily 
Class Names 
First Version Last Version 
Removed 
Classes 
Added Classes 
Persistent 
Classes 
 Versions 
Added and 
Persistent Classes 
Number of 
classes at each 
version 
Number of 
versions a  
class has 
survived 
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detected. The difference between two subsequent versions tells us that if a class is 
removed or added. If the number is changed from ?1? to ?0? between two consecutive 
versions, a class is removed, and if the number is changed from ?0? to ?1?, a new class is 
added. For example, in Figure A-1, classes c4, c5, c6, and c7 are removed in version 12 
and their absence will leave ?0? on the table from that version on. Classes, c15, c16, c17, 
c18, and c19 are newly added to version 6. Therefore, in this example, a total of 13 
classes are removed and a total of 11 new classes are added. By detecting the removed 
and added classes, we see very easily when/how much the system is changed.   
? Persistent classes 
Persistent classes have the same lifetime as the whole system. They have stayed 
from the beginning to the end. Those classes should be examined since they may be 
important in performing key functions of the system as being a part of the original system 
design. In Figure 5-8, three classes, c1, c2, and c3 are persistent classes. 
? Added persistent classes  
Some important added classes have stayed until the last version.  They might be 
created to upgrade or improve system as being a part of redesign of the system with some 
problematic classes removed. In Figure A-1, six classes, c17, c18, c19, c20, c21, and c22 
are added persistent classes. 
A.2   Tracking Class Evolution 
Understanding the evolution of an object-oriented system based on various 
versions of source code requires analyzing a vast amount of data since an object-oriented 
system has a complex structure consisting of classes, methods, attributes and different 
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kinds of relationships between them rather than simply a set of classes. Using an 
evolution track table designed for this study, we provide an approach to understand such 
an evolution by detecting and visualizing the evolution pattern that characterizes classes. 
Evolution track table helps us understand an overall evolution of a system, discover 
problematic parts with unusual measurement values, and visually get a quick 
understanding of the analyzed history. Thus, in this case study we present the 
visualization of the evolution track table, and explain how this table can be read, thus 
how an object-oriented system has evolved into its current state based on the source code.  
We use 22 versions of JFreeChart as a target system for this study since 
JFreeChart is a long-term open source charting library with many releases. 
Size of the System 
From the evolution track table along with 22 versions of JFreeChart, we collect 
the number of classes, the removed, and the added classes in each version as shown in 
Table A-1.  
Based on this information, we are able to find out how big the system is and how 
many classes are involved in the system evolution. This system started with 139 classes 
at version 0.9.0 and ended with 460 classes at version 0.9.21, which means a 333% class 
growth. 
   The number of classes increases gradually and consistently as new versions 
evolve. A total of 569 classes are involved in the evolution. During the evolution, 123 
classes are removed while 444 classes are added, which is 3.6 times more than the 
removed. In most versions more classes are added than removed. Special attention can be 
 
 
 
 
136 
given to versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 since 68% (84 out of 123) of the removed 
were removed and 60% (265 out of 444) of the added were added in those particular 
versions. 
                Table A-1: Number of classes, removed and added 
Version of 
JFreeChart 
No. of 
Removed 
classes 
No. of 
Added 
classes 
Total no. 
of 
classes 
0.9.0   139 
0.9.1 1 0 138 
0.9.2 0 6 144 
0.9.3 0 113 257 
0.9.4 3 21 275 
0.9.5 22 74 327 
0.9.6 0 2 329 
0.9.7 1 25 353 
0.9.8 0 3 356 
0.9.9 43 48 361 
0.9.10 11 2 352 
0.9.11 0 13 365 
0.9.12 5 17 377 
0.9.13 0 6 383 
0.9.14 3 15 395 
0.9.15 0 9 404 
0.9.16 2 10 412 
0.9.17 19 30 423 
0.9.18 1 10 432 
0.9.19 9 24 447 
0.9.20 0 1 448 
0.9.21 3 15 460 
Total 123 444  
 
Persistent Classes 
Persistent classes have survived through the entire life of a software system. They 
can be easily detected by looking at ?1? at all versions and the total number of versions in 
the last column. As shown in Figure A-2, they have ?1?s for all versions and ?22? in the 
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last column, which is the number of versions of the target system from 0.9.0 to 0.9.21. 
We found out that 84 out of the 138 classes in the first version have survived through the 
entire life of the target system, which is about 61 % of the original design classes. From 
this result, we see that 54 classes of the original were removed during the evolution. 
 
 
Figure A-2: Persistent classes 
 
Removed Classes 
 From an evolution track table, we can find what classes are removed from 
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which version of the system. The removed classes can be detected by finding the 
differences between two subsequent versions from ?1? to ?0? as shown in Figure A-3. In 
this way, we found that many classes are removed during the evolution (See Table A-1). 
In particular, 22, 43, and 19 classes were removed in versions 0.9.5, 0.9.9, and 0.9.17, 
respectively. These data might imply that in those versions the system was aggressively 
changed. 
 
 
Figure A-3: Removed classes 
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Some classes, which were removed in previous version, reappear later, like 
classes CategoryToolTipGenerator and StandardCategoryToolGenerator. They are 
removed from the system in version 0.9.8, but came back in versions 0.9.18 and 0.9.19, 
respectively. Classes StandardXYZToolTipGenerator and XYZToolTipGenerator were 
removed in 0.9.16, came back in 0.9.19, and stayed until the last version of the system. 
These kinds of interesting changes can be detected by the evolution track table 
Added Classes 
  
 
 
Figure A-4: Added classes 
 
 
 
 
140 
 
The added classes can be detected by finding the differences between two 
subsequent versions from ?0? to ?1? as shown in Figure A-4. In this way, we find how 
many classes were newly added into which version of the system during the evolution 
(See Table 5-4). In the case of the target system, many classes were added at almost every 
version. In particular, there were 113, 74, 48, and 30 classes added to 0.9.3, 0.9.5, 0.9.9, 
and 0.9.17, respectively. Some classes like Pie3DPlot and HorizontalMarkerAxisBand 
were removed after staying for several versions. From the results of the removed and 
added classes, we found that this system had made huge changes in versions 0.9.3, 0.9.5, 
0.9.9, and 0.9.17. These versions may need to be specifically investigated 
 
 
 
Figure A-5: Added and persistent classes 
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Added Persistent Classes 
 Many classes added in the middle of the evolution have stayed until the last 
version of the system. We call them ?added persistent classes?. Figure A-5 shows 
examples of added persistent classes, and they were added in different versions when the 
system was changed from one state to another. Table A-2 displays the number of added 
persistent classes and their survival rate in each version. If we compare these with the 
number of added classes, we find that a total of 444 classes were added to the system and 
349 classes (81.35%: 349 out of 429) have survived till the last.  
Table A-2: Number of added persistent classes  
Version of 
JFreeChart 
No. of added 
classes 
No. of added 
persistent classes 
Survival rate 
0.9.1 0 0  
0.9.2 6 3 50% 
0.9.3 113 89 78.76% 
0.9.4 21 19 90.48% 
0.9.5 74 61 82.43% 
0.9.6 2 0 0% 
0.9.7 25 23 92% 
0.9.8 3 3 100% 
0.9.9 48 35 72.92% 
0.9.10 2 2 100% 
0.9.11 13 10 76.92% 
0.9.12 17 17 100% 
0.9.13 6 6 100% 
0.9.14 15 15 100% 
0.9.15 9 9 100% 
0.9.16 10 9 90% 
0.9.17 30 24 80% 
0.9.18 10 5 50% 
0.9.19 24 19 79.17% 
0.9.20 1 1 100% 
0.9.21 15 -  
Total 429 = 444-15 349 81.35% 
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This is certainly comparable to the persistent classes (61% survival rate of the 
original design classes). 
 
A.3   Summary 
 From the evolution track table of JFreeChart, we summarize the following 
findings:  
o Started with 139 classes in version 0.9.0  
o Ended with 460 classes (333% growth) in version 0.9.21 
o 84 (60%) out of the 139 original classes have stayed until the last version  
o 569 classes were involved in whole system evolution 
o 123 classes were removed during the evolution 
o 444 classes were added during the evolution 
o 349 (81%) out of the 429 (444 added classes ? number of classes in the last 
version 0.9.21)  added classes have stayed until the last version  
o Big changes occurred in versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 in terms of 
removed and added classes. 
Based on the findings above, we conclude that the evolution track table can be 
used in the following tasks: 
o To categorize the evolution of classes 
We found the groups of persistent, removed, added, and added persistent 
classes from the evolution track table of JFreeChart. They characterize the 
evolution pattern of the system 
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o To identify unusual evolution pattern of classes 
We found that some classes had stayed unusually for only one, two, or 
several versions. These dynamic classes need to be analyzed to understand 
the architecture of the system. 

