

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR
SOFTWARE QUALITY

Except where reference is made to the work of others, the work described in this
dissertation in my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classified information.

Young Lee

Certificate of Approval:

James H. Cross Kai H. Chang, Chair
Professor Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

Dean Hendrix David Umphress
Associate Professor Associate Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

 George T. Flowers
 Interim Dean
 Graduate School

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR
SOFTWARE QUALITY

Young Lee

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 17, 2007

iii

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR
SOFTWARE QUALITY

Young Lee

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at their expense. The author
reserves all publication rights.

Signature of Author

Date of Graduation

iv

DISSERTATION ABSTRACT

AUTOMATED SOURCE CODE MEASUREMENT ENVIRONMENT FOR
SOFTWARE QUALITY

Young Lee
Doctor of Philosophy, December 17, 2007
(M.S., Hallym University, 1991)
(B.S., Hallym University, 1989)

155 Typed Pages

Directed by Kai H. Chang

Measuring how well software component can be reused and maintained helps
programmers not only write reusable and maintainable software, but also identifies
reusable or maintainable components. We develop an automated measurement tool,
JamTool, for object-oriented software system and describe how this tool can guide a
programmer through measuring internal characteristics of a program for software reuse
and maintenance.
In this research, primitive but comprehensive metrics for object-oriented language
are extensively studied and statistically analyzed to show internal characteristics from

v
classes selected from various applications. Also, the automatically identified connected
unit, reusable unit, and maintainable unit are discussed.
We demonstrate JamTool?s ability through case studies. The first case study
investigates whether JamTool can be used to assess the reusability on the evolution of an
open software system. The second case study investigates whether JamTool can be used
to capture the difference between two consecutive versions on the evolution of the open
software system. The third case study investigates whether the metrics defined and
implemented in JamTool are related to each other.

vi

Style manual or journal used: IEEE Standard
Computer software used: Microsoft Word 2003

vii

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xii
1 INTRODUCTION 1
 1.1 The general area of the research 1
 1.2 Statement of the Problems 4
2 LITERATURE REVIEW 7
 2.1 The GQM Approach and its extension 7
 2.1.1 The GQM approach 7
 2.2.2 Metrics Multidimensional Framework 8
 2.2.3 GQM++ 9
 2.2 Software Quality Models 10
 2.2.1 Omnibus Software Quality Metrics 11
 2.2.2 ISO 9126 13
 2.2.3 Dromey?s Quality Model Framework 13
 2.2.4 Fenton?s Approach to Software Quality 14
 2.2.5 Karlsson?s Approach to Software Quality 15
 2.3 Software Metrics 17
 2.3.1 Object-Oriented Metrics by Chidamber and Kemerer 17
 2.3.2 Class Cohesion and Coupling Measurement in object-
oriented Systems
19
 2.3.3 Profile Software Complexity 21
 2.4 Framework for Coupling and Cohesion Measurement 22
3 SELECTING THE SOFTWARE QUALITY METRICS 26
 3.1 Quality Factors to be Measured 26
 3.1.1 Maintainability 27
 3.1.2 Reusability 28
 3.2 Quality Measurement Model 29
 3.2.1 Definition of subfactors and measurement type 34
 3.2.2 Relationship between subfactors and measurement types 36
 3.3 Metrics for measurement types 38
 3.3.1 Size Metrics 39
 3.3.2 Complexity Metrics 40

viii
 3.3.3 Coupling Metrics 41
 3.3.4 Cohesion Metrics 46
4 AN AUTOMATED MEASUREMENT TOOL 48
 4.1 Automated Measurement Tool Architecture 48
 4.1.1 Java Code Analyzer 50
 4.1.2 The Internal Measurement Tree 51
 4.1.3 Measurement Data Generator 52
 4.1.4 Measurement Table Generator 54
 4.1.5 User Interface 55
 4.2 Measurement Result Tables 57
 4.2.1 Class to Class Table 57
 4.2.2 Fan-in Coupling Table 58
 4.2.3 Fan-out Coupling Table 59
 4.2.4 Connected Unit Table for Coupling 59
 4.2.5 Reusable Unit Table 62
 4.2.6 Maintainable Unit Table 63
 4.2.7 Size and Complexity Table 64
 4.2.8 Cohesion Table 65
 4.2.9 Connected Unit Table for Cohesion 66
 4.3 Connected Unit 66
 4.4 Measurement Result Export for Spreadsheet 72
5 UNDERSTANDING SOFTWARE EVOLUTION USING METRICS AND
VISUALIZATION
76
 5.1 Empirical Study: Measuring Quality on Software Evolution 77
 5.1.1 Objective 79
 5.1.2 Methodology 80
 5.1.3 Hypotheses 81
 5.1.4 Results 82
 5.1.5 Summary 91
6 ANALYZING SOFTWARE FOR REUSE AND MAINTENANCE 93
 6.1 Added and Removed Classes 93
 6.2 Modified Classes 96
 6.3 Reusable Unit and Maintainable Uni 101
 6.4 Connected Unit 104
 6.5 Comparing of Coupling Type 105
 6.6 Size and Complexity 108
 6.7 Cohesion 110
 6.8 Summary 111
7 IDENTIFYING CORRELATION AMONG METRICS 113
 7.1 Methodology 115

ix
 7.1.1 Experiment 1: Correlation Coefficients among the
metrics
115
 7.1.2 Experiment 2: Correlation Coefficients among the
coupling metrics in a group
115
 7.2 Results 116
 7.2.1 Result 1: Correlation among the metrics in a group 116
 7.2.2 Result 2: Correlation among the coupling metrics in a
group
120
8 CONCLUSIONS 123
BIBLIOGRAPHY 127
APPENDIX A. Visualization of Software Evolution 131
 A.1 Evolution Track Table 131
 A.2 Tracking Class Evolution 134
 A.3 Summary 142

x

LIST OF FIGURES

Figure 2-1 McCall Software Quality Model 12
Figure 2-2 Karlsson's Reusability and Maintainability models 16
Figure 3-1 Harrison?s Maintainability Model 27
Figure 3-2 Steps for constructing the quality model and metric set 30
Figure 3-3 Flow of how the subfactors are connected to the metrics 31
Figure 3-4 Fan-in/Fan-out coupling between classes 45
Figure 3-5 Cohesion in a class and metric values 47
Figure 4-1 Architecture of JaMTool 49
Figure 4-2 Internal Measurement Tree 50
Figure 4-3 Algorithm 1- Type of attribute coupling 51
Figure 4-4 Example of Type of attribute couplings 52
Figure 4-5 Algorithm 2 - Method invocation cohesion 53
Figure 4-6 Cohesion of three methods in a class 54
Figure 4-7 Screen shot of JamTool for coupling, cohesion, size, and complexity 56
Figure 4-8 Class to class coupling measurement table 57
Figure 4-9 Fan-in coupling measurement table 58
Figure 4-10 Fan-out coupling measurement table 59
Figure 4-11 Connected Unit Search Algorithm 60
Figure 4-12 Example of Connected Unit Search algorithm 61
Figure 4-13 Connected unit and its strength 61
Figure 4-14 Reusable unit table 62
Figure 4-15 Maintainable unit table 64
Figure 4-16 Size and complexity table 64
Figure 4-17 Cohesion table 65
Figure 4-18 Cohesion among methods and attributes 65
Figure 4-19 Connected unit and its strength for cohesion 66
Figure 4-20 Connected unit table 67
Figure 4-21 Attribute reference cohesion measurement table 68
Figure 4-22 Cohesion connected unit table for class ClassInfo 70
Figure 4-23 Maintainable/Reusable units exported to Excel 74

xi
Figure 4-24 Maintainable/Reusable units graphed in Excel 75
Figure 5-1 Number of class growth 85
Figure 5-2 Average fan-in/out coupling and cohesion 85
Figure 5-3 Number of classes removed and added 87
Figure 5-4 Average coupling/cohesion of the classes removed and added 88
Figure 5-5 Normalized fan-in coupling 89
Figure 5-6 Normalized fan-out coupling 90
Figure 5-7 Normalized cohesion 90
Figure 6-1 Average coupling comparison of changed classes 97
Figure 6-2 Coupling (CCC) distribution in two versions 98
Figure 6-3 Coupling (SCC) distribution in two versions 99
Figure 6-4 Reusable unit 102
Figure 6-5 Maintainable unit 103
Figure 6-6 Connected units in two versions 104
Figure 6-7 Fan-out/Fan-out coupling 107
Figure 6-8 Size & complexity 108
Figure 6-9 LOCC distribution 109
Figure 6-10 Cohesion 110
FigureA-1 Software evolution in an evolution track table 133
Figure A-2 Persistent classes 137
Figure A-3 Removed classes 138
Figure A-4 Added classes 139
Figure A-5 Added and persistent classes 140

xii

LIST OF TABLES

Table 2-1 Connection Types of Coupling 24
Table 2-2 Connection Types of Cohesion 24
Table 3-1 Essential properties of reusable and maintainable code 33
Table 3-2 Measurement type 34
Table 3-3 Relationships between subfactors and measurement types 36
Table 3-4 Size metrics 40
Table 3-5 Complexity metrics 41
Table 3-6 Connection type for coupling 42
Table 3-7 Cohesion metrics 45
Table 5-1 Latest formulation of Lehman?s laws of software evolution 79
Table 5-2 Version differences and Coupling/Cohesion metrics 84
Table 5-3 Correlation between the number of classes and coupling/cohesion 86
Table 6-1 Added classes into 0.9.4 94
Table 6-2 Removed classes from 0.9.3 95
Table 6-3 Changed classes with at least 3 differences 96
Table 6-4 Fan-in/out differences in two versions 97
Table 6-5 Independent classes in two versions 106
Table 6-6 Comparison of Fan-in and fan-out Coupling Types 106
Table 6-7 Size & complexity differences 109
Table 6-8 Cohesion differences 109
Table 7-1 Correlation Coefficients of metrics in SwingLib 117
Table 7-2 Correlation Coefficients of metrics in NetbeanAppl 118
Table 7-3 Correlation Coefficients of metrics in BingoAppl 118
Table 7-4 Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6 119
Table 7-5 Correlation of coupling metrics in SwingLib 122
Table 7-6 Correlation of coupling metrics in NetbeanAppl 122
Table 7-7 Correlation of coupling metrics in BingoAppl 122
Table A-1 Number of classes, removed and added 136
Table A-2 Number of added persistent classes 141

1
1 INTRODUCTION
1.1 The general area of the research
While application development has become a huge and complex task, software
productivity has improved slowly over the past years. One of the many goals of software
developers (e.g., project managers and programmers) is to have control of software
production and its quality. According to Moser and Henderson-Sellers [42], the following
three steps are important to achieving this goal.
1. Knowing where one stands
2. Aiming where we wish to go
3. Going there (and reapplying the problem solving steps periodically while
going)
Steps 1 and 2 are related to measurement, i.e., we should measure what we want
to control.
Fenton and Pfleeger describe that a quality software product is characterized by
many sound software attributes that may provide useful indications of the maintainability
and reusability of a software product [17]. Without an accompanying assessment of
product quality, progress of product is meaningless. Thus, it is important to recognize and
measure certain desirable software quality attributes.

2
Fisher and Light define software quality as ?The composite of all attributes which
describe the degree of excellence of the computer system.?[19] Fenton et al. focus on the
purpose of software quality by defining, ?The totality of features and characteristics of a
software product that bear on its ability to satisfy the stated or implied needs.?[16]
Despite several attempts to quantify the elusive concept of software quality like
McCall?s Factor Criteria Metric (FCM) model [40] and Basili?s Goal Question Metric
(GQM) approach [2], measurement of software quality is still not empirically validated.
Object-oriented technologies have claimed to improve software quality to support
reuse and to reduce the effort of maintaining the software product. However, many
object-oriented methods, tools, or notations are being used without evaluation.
Kitchenham et al. have observed that code and design metrics can be used in a
way that is analogous to statistical quality control [27]. According to them, object-
oriented code can be accepted or rejected based on a range of metric values. Rejected
object-oriented code can then be revised until the metric values fall within a specified
acceptable range.
 It is argued that existing traditional software metrics are not suitable for object-
oriented systems. Therefore, many new metrics are being proposed for object-oriented
systems, but only a few have been validated. We need a metric set for object-oriented
software construction to measure how the reusability and maintainability of the software
could be improved. But metric research of the object-oriented paradigm is still in its
infancy.
The primary motivation to reuse software components is efficiency. It is achieved

3
by reducing the time, effort and/or cost required to build software systems. The quality
and reliability of software systems are enhanced by reusing software components, which
also means reducing the time, effort and cost required to maintain software systems.
Researchers agree that although maintenance may turn out to be easier for object-oriented
systems, it is unlikely that the maintenance burden will completely disappear. One
approach to controlling software maintenance costs is the utilization of software metrics
during the development phase to help identify potential problem areas.
Measuring how well the software component can be reused and maintained helps
programmers not only write reusable and maintainable software, but also identify
reusable or fault-prone components. Since there are hundreds of software complexity
measures that reveal internal characteristics of an object-oriented program, it is important
to have the right criterion to select a good subset of these measures.
This research will develop an automated metric tool that attempts to guide
programmers to reuse and maintain object-oriented programs based on software
measurement.
The following research activities will be accomplished in this study.
Quality Measurement Model Development
We will first identify essential software properties that have been suggested as
having an impact on software quality. The properties that can be directly or indirectly
derived from the source code will then be selected for this study.
We will divide measurement factors (i.e., reusability and maintainability) into five
subfactors (i.e., identification, separation, modification, validation, and adaptation) in a

4
top-down fashion. We believe that these subfactors are more tangible and useful to
connect to software product metrics and cover most of the reuse and maintenance
activities. We will also apply bottom-up approach to develop quality measurement
models for reusability and maintainability based on available measurement types that are
related to reuse and/or maintenance properties. Using these top-down and bottom-up
approaches, we will construct a concise quality measurement model for reusability and
maintainability.
Widespread adoption of object-oriented metrics can only take place if the metrics
have been empirically validated, i.e., they accurately measure the attributes of software
and can be applied easily.
Automated Measurement Tool
Users can get an instant measurement feedback while developing object-oriented
software using an automated tool implemented in this research. The collection,
derivation, and display of metrics would take place interactively to provide practical and
non-intrusive feedback. Effort is also devoted to present the metric results along with the
connected classes, to locate reusable or maintainable classes.
The research in this dissertation describes how an automated measurement tool
[29] can guide a programmer through measuring internal characteristics of a program for
software reuse and maintenance purposes.
1.2 Statement of the Problems
It is worthwhile to note that Zuse claims that the results of measurement are

5
difficult to interpret if too many properties of a program are combined into one number
[51], and Schneidewind argues that a standard set of quality measurement may be
available in the future [47]. Information is lost if a single-valued measure is used. A
vector of measures can provide complete information on individual properties of a
program.
GQM is useful to identify objectives for measurement, but the available set of
metrics may not be applicable to the desired objectives. Thus, identifying a set of
?potentially useful? metrics in some systematic manner could improve the object-oriented
metrics research effort [22]. After the identification of a set of quality factors and a set of
metrics, the relations between them should be identified by empirical test. While GQM++
attempts to resolve some weaknesses of GQM through additional stages, Dromey argues
that single-level is better than multiple intermediate levels between quality factors and
software metrics as a means of linking them [14]. Empirical tests are needed to back both
of these approaches. These previous approaches do not address problems of measurement
such as appropriate data scales, alarm threshold, and representation of measurement
result.
Consequently, previous efforts have been hampered by the following difficulties
that have discouraged or delayed the application of object-oriented metrics. In particular:
? There is no clear relationship between the external quality factors and the
metrics of the software.
? Most of existing metrics are not intuitive. It requires education on the users?
side to have numerical thinking about the quality of software and how to

6
apply them.
? In case of measurements that are intrusive and interruptive, measuring
software quality intimidates programmers. Therefore, it is difficult to apply
them in the industry.
? Some metric sets have not been validated theoretically and empirically.
Furthermore, there are other reasons that software metrics are not used widely in
the industrial world:
? Due to the lack of the availability of a standard metric set, it is difficult to
choose an appropriate metric set for a user?s purpose.
? It is difficult to interpret the measurement results.
This research addresses these issues by focusing on a framework for a customized
quality model and interactive automated metric tool. The key features of this research are:
? To define simple and computable object-oriented metrics that quantify
potential reuse and maintenance. The metrics should be easy to comprehend
and use, and require only simple and well-formed formulas.
? To implement an automated metric tool that collects, analyzes, interprets, and
presents the metric data automatically.
? To guide a programmer to software reuse and maintenance through measuring
internal characteristics of a program.
? To empirically verify the validity of the metrics.

7
2 LITERATURE REVIEW
There have been several attempts to quantify the fuzzy concept of software
quality by developing a set of metrics for various attributes related to the concept. These
metrics all involve some degree of software measurement with the ultimate objective of
improving software quality. As described later in this chapter, constructing a quality
measuring model could be guided by several approaches. Unfortunately, measuring
software quality is still an unsolved problem.

2.1 The GQM Approach and its extension
2.1.1 The GQM approach
If we can measure the development progress towards a quality product, the
management of production process is simplified. In manufacturing, individual
components are compared to tolerance limits (or goals) in order to reject poor quality
products. As a result, desirable manufacturing processes can be found. Likewise, in order
to develop a software measurement approach, the goals that we want to attain should be
clearly defined, e.g., to increase programmer productivity; to decrease the number of
defects reported per unit of time or to improve the efficiency of the overall development
process [42].
Basili and Weiss propose a Goal Question Metric (GQM) framework with the aim

8
of providing a systematic approach to translate measurement needs into metrics [2]. The
measurement goals that can be refined into questions in measurable terms, should be
answered in terms of enumerated metrics. The GQM approach has enabled managers to
find objectives for measurement and metrics for their software products. But this also
calls for thorough knowledge on their part of the organization as well as the developed
software product.
Gray and MacDonell say that GQM is usually applied with its:
? Particular purpose (e.g. to evaluate, predict, classify)
? Certain perspective (e.g. the manager, user, programmer)
? Given object (e.g. specification, code)
? Environment (e.g. the people, tools, methodologies).
Thus, GQM is useful to ensure the proper metrics are allocated to assess the
conceptual goal [20].
Gray and MacDonell also argue that organizations are faced with a wide range of
software metrics that can lead to difficulties in the selection of appropriate metrics for a
particular goal. Given the goals of a specific organization, the generic set of metrics
needs to be tailored. As a result, the tailored metrics set has the greatest predicting power
for the desired purpose and the least cost of data collection. Grey and MacDonell also
recommend a task within a framework that will assist in decomposing goals in order to
develop a set of software metrics [20].
2.1.2 Metrics Multidimensional Framework
The problem with the application of the GQM approach to object-oriented metrics

9
is that metrics may not exist. Thus, a complementary activity would be to identify the ?M?
component of ?GQM? independently of the specific goals and questions. The first major
step would be to identify a set of ?potentially useful? metrics in some systematic manner.
Moser and Henderson-Sellers have presented such a method in the form of a so-called
Metrics Multidimensional Framework (MMDF) [42].
The MMDF approach is composed of three dimensions. The first dimension is the
external characteristic. It is divided into Quality (e.g., Understandability, Maintainability,
Reusability, etc.) and Size (e.g., External and Internal). The second dimension is the
granularity (e.g., System, Part, Class, and Method) at which the metric is applicable.
Finally, the third dimension is the lifecycle phase (e.g., Analysis, Design, and System
use). While the reasons and motivation for any individual using metrics in an object-
oriented development environment may vary, Moser and Henderson-Sellers argue that the
most popular metric usage purposes can be identified and described as combinations of
these three dimensions. This approach can lead to a minimal set of metrics that is
desirable for practical managerial purposes. Because MMDF permits the identification of
useful metrics, it should improve the current, more ad hoc and uncoordinated object-
oriented metrics research effort [22].
After defining a set of quality goals and a set of metrics, the correlation between
them should be identified by empirical test using regression.
2.1.3 GQM++
MacDonell extends GQM into a hierarchy of goals, subgoals, domains,
subdomains, questions, subquestions, and characteristic measures. He also argues that by

10
breaking a goal into separate subgoals, the essential differences between metrics needed
for each subgoal can be identified [36].
However, such extensions do not seem to go far enough. Fenton criticized that
GQM is useful to identify objectives for measurement, but it does not address the actual
problems of measurement such as appropriate data scales [17]. Gray and MacDonell
interpret this criticism as the absence of any feasibility, economic, or correctness checks
in GQM and that its simple and intuitive nature leads to these problems.
Further, Gray and MacDonell argue that other precedent conditions should be
studied in addition to GQM. These considerations include the costs and benefits of data
collection, the detailed plan of modeling and analysis methods, and the agreement of how
the measurement results could be applied for their software product. The proposed
framework, Goal/Question/Metric/Collection/Analysis/Implementation (GQMCAI,
simply GQM++), attempts to resolve some weaknesses of GQM through additional
stages [36], including data collection, modeling, and implementation. Their extension
also includes cost/benefit information and assesses the program in terms of economic
justification and feasibility [20].
While GQM++ is suggested to be a more comprehensive and pragmatic data
collection and analysis process, empirical tests are needed to back up this claim.
2.2 Software Quality Models
The relationship between software characteristics and software quality has been
investigated and proposed by many researchers [17, 40, 5, 24]. There have been attempts
to quantify software quality resulting in omnibus models which have fixed

11
relationship between quality and metrics. Assessing quality by measuring internal
properties is also attractive because it offers an objective and context independent view of
quality [28].
2.2.1 Omnibus Software Quality Metrics
Both McCall et al. and Boehm et al. describe product quality using a hierarchical
approach [40, 5]. In McCall?s Factors-Criteria-Metrics (FCM) model, high-level product
quality like ?reusability? and maintainability? are called factors that can be decomposed
into several lower-level attributes i.e., criteria (See Figure 2-1). The Manager, who has
responsibility for the software development, or the potential user who will use the to-be-
developed software, should be interested in the final product quality, especially its
performance, usability, reliability, etc. These views of software product are described in
terms of software factors and criteria. But these factors and criteria are too elusive to be
applied to software development. Thus, the criteria should be related directly to
measurable attributes of the software process or product. FCM model has three views
(uses) of software product quality, eleven factors, and twenty-five criteria. For example,
factor ?maintainability? relates to several criteria such as consistency, simplicity,
conciseness, self-descriptiveness, and modularity. Factor ?reusability? is decomposed
into generality, self-descriptiveness, modularity, machine independence, and software
system independence.
Boehm?s model, which has a hierarchical structure similar to the FCM model, has
two primary uses, ?maintainability? and ?utility?. Maintainability is further divided into
intermediate constructs: understandability, modifiability, and testability.

12

 Product
 operation
 Product
 revision
 Product
 transition
 Usability
 Integrity
 Efficiency
 Correctness
 Reliability
 Maintainability
 Testability
 Flexibility
 Reusability
 Portability
 Interoperability
 Operability
 Traning
 Communicativeness
 I/O volumn
 I/O rate
 Access control
 Storage efficiency
 Execution efficiency
 Traceability
 Completeness
 Accuracy
 Error tolerance
 Consistency
 Simplicity
 Conciseness
 Instrumentation
 Expandability
 Generality
 Self-descriptiveness
 Modularity
 Machine independence
 S/W system independence
 Communications
 Data commonality
 Access audit
 Metrics
Figure 2-1: McCall Software Quality Model
 Criteria Factors Use

13

2.2.2 ISO 9126
According to Fenton and Pfleeger, global software quality model is required for
comparing quality among software systems. Because of this requirement, the ISO 9126
model is proposed with six factors - functionality, reliability, efficiency, usability,
maintainability, and portability [24]. Despite its incompleteness and conflict with other
standards, ISO 9126 is used by many companies to support their quality evaluation as
Fenton and Pfleeger described in [16].
2.2.3 Dromey?s Quality Model Framework
Recently, Dromey also defines a model for software product quality [14]. In this
model, seven high-level quality attributes (six factors of ISO-9126 and reusability) are
linked in a structural form of software elements (variable and expression) that influence
software quality [14]. The emphasis is on defining and describing the quality-carrying
properties, which are classified further into correctness, structure, modularity, and
descriptive properties. Because Dromy?s model is designed to be refined by empirical use
to build a useful model, it is a framework to construct a quality models rather than a fixed
model (e.g., McCall?s FCM model). He argues that placing a single level (a set of quality-
carrying properties) is better than placing several vaguely decomposed intermediate
levels between the high-level quality and the components of product as a means of
linking them. In linking the desirable quality-carrying properties and the high-level
quality, quality mode can be constructed in bottom-up or top-down fashion. Each
established link should be verified empirically.

14
In Dromey?s approach, identifying and associating a set of quality-carrying
properties in a structural form is the first task in constructing a quality model. With
successively defined, evaluated, and refined models, we can build a software quality
model that ensures quality and detects quality defects in software.
2.2.4 Fenton?s Approach to Software Quality
Fenton defines external product attributes as those that can be measured in terms
of how the product relates to its environment [17]. For example, if the product is a
software code, then its reliability (defined in terms of the probability of a failure-free
operation) is an external attribute. It is dependent on both the machine environment and
the user. Whenever we think of software code as a product, we have to investigate the
external attributes that the user depends on. Inevitably, we are then dealing with
attributes synonymous with software quality.
Fenton uses several general software quality models [5, 40], each of which
proposes a specific set of external and internal quality attributes and their
interrelationships. For example, maintainability is not restricted to code; it is an attribute
of a number of different software products, including specification and design documents,
and even test plan documents. There are two broad approaches to measuring
maintainability; reflecting the external and internal views of the attribute. The external
and more direct approach to measuring maintainability is to measure the maintenance
process. If the process is effective, then we assume that the product is maintainable. The
alternative internal approach is to identify internal product attributes (e.g., those relating
to the structure of the product) and establish that they are predictions of the maintenance

15
process.
All maintenance activities are concerned with making specific changes to a
product. Once the need for a change is identified, the required efforts of implementing
that change becomes the key characteristic of maintainability. Many measures of
maintainability are expressed in terms of mean time to repair (MTTR). A number of the
complexity measures have been correlated significantly with the level of maintenance
effort. There is a clear intuitive connection among poor programming structure, poor
documented products, and poor maintainability of a software product. We cannot say that
a poorly structured module will inevitably be difficult to maintain. Rather, past
experience tells us that such kinds of modules have had poor maintainability, so we
should investigate the courses for a module's poor structure and perhaps restructure it.
Fenton and Neil indicate that the most significant benefit of software metrics is to
provide information to support managerial decision-making during software development
and testing [18]. Simple metrics are accepted by industrialists because they are easy to
understand and simple to collect. Thus, Fenton and Neil try to use these simple metrics to
build management decision support tools to handle the uncertainty as well as combine
different evidences. They use Bayesian Belief nets as a means of handling decision-
making under uncertain circumstances.
2.2.5 Karlsson?s Approach to Software Quality
Karlsson proposes a general reusability and maintainability models for C++ code
[26]. In addition, he suggested that all measurements should be normalized so that they
yield a value between zero and one, where a value close to zero indicates that the

16
measured characteristic may cause problems, and a value close to one indicates that the
corresponding characteristic is kept inside its limit. He chose to use the Kiviat diagram
for metric presentation. This type of diagram represents parameters as vectors plotted on
a circle. It provides an easy-to-grasp representation of assessment results and can be used
for factors, criteria and metrics. Kalsson?s models for reusability and maintainability are
shown in Figure 2-2 [26].

Figure 2-2: Karlsson's Reusability and Maintainability models
 Maintainability
 Consistency
 Self-descriptiveness
 Simplicity
 Modularity
 Testability
 Reusability
 Potability
 Adaptability
 Understandability
 Confidence
 Environment
 independence
 Modularity
 Generality
 Self
 descriptiveness
 Documentation
 level
 Structural
 complexity
 Inheritance
 complexity
 Maturity
 Fault tolerance

17
2.3 Software Metrics
2.3.1 Object-Oriented Metrics by Chidamber and Kemerer
A set of object-oriented metrics for measurement was proposed by Chidamber and
Kemerer [12]. Since this metrics set is very popular, it has become the focus of discussion
among many researchers. The resulting six metrics directly relate to design and
implementation of object-oriented software.
Because previous metrics were criticized for their lack of theoretical basis, lack of
desirable measurement properties, and for being too labor-intensive to collect, Chidamber
and Kemerer developed six object-oriented metrics, and evaluated them analytically.
They also developed an automated data collection tool to collect an empirical sample of
these metrics. They then suggested ways in which the managers may use these metrics for
process improvement using empirical data collected from two field sites[12]. We can also
interpret these six metrics from the view point of quality.
Weighted Methods per Class (WMC): The WMC metric can be calculated from the
sum of the complexities of the methods in a class where method complexity can be
measured using cyclomatic complexity or assumed unity weights for all methods. WMC
can be used as a predictor of how much time and effort is required to develop and
maintain the class. A large value of WMC will have a great impact on the children of the
class. Classes with large WMC value limit the possibility of reuse. This metric can be
used as a measure of usability and reusability
Depth of Inheritance Tree (DIT): The DIT is the length of the longest path from a class

18
node to the root of the tree. The deeper a class is within the hierarchy, the greater the
number of methods it is likely to inherit. Thus its behavior could be predicted to be more
complex. This metric can be used not only to evaluate reuse, but also to relate
understandability and testability.
Number of Children (NOC): The number of children is the number of immediate
subclasses subordinate to a class in a hierarchy. The measure is an indication of the
potential influence a class can have on other classes in the design. The greater the number
of children, the greater the likelihood of improper abstraction of the parent, and the
potential misuse of subclassing. This also means greater reuse since inheritance is a form
of reuse. If a class has a large number of children, it may require more testing for the
methods of that class, thus increasing the testing time.
Coupling Between Object Classes (CBO): Coupling is a measure of the strength of
association from one entity to another. CBO is a count of the number of other classes to
which a class is coupled. It is measured by counting the number of distinct non-
inheritance related classes on which a class depends. Excessive coupling is detrimental to
modular design and prevents reuse. The more independent a class is, the easier it is to
reuse it in another application. The larger the number of couplings, the higher the
sensitivity of changes would have to other parts of the design, and therefore maintenance
is more difficult. The higher the inter-object class coupling, the more rigorous the testing
needs to be.
Lack of Cohesion of Methods (LCOM): Assume P is the number of null intersections

19
and Q is the number of nonempty intersections between two methods. If P is greater than
Q then LCOM is the differences between P and Q, else LCOM is zero. Two methods are
considered related if both methods use the same instance variable(s). LCOM is based on
method interconnection through instance variable reference. Effective object-oriented
designs maximize cohesion in order to promote encapsulation. A large number of LCOM
implies that the class is attempting to model more than a single concept and thus may
need to be decomposed into several classes.
Response for a Class (RFC): The RFC is the cardinality of the set of all methods that
could potentially be executed in response to a message to an object of the class. The
larger the number, the more complex the testing of the class would be.
2.3.2 Class Cohesion and Coupling Measurement in object-oriented Systems
In addition to the Chidamber and Kemerer?s metrics set, other metrics have been
proposed to measure the coupling and cohesion of classes. Cohesion and coupling are
two structural attributes whose importance is well-recognized in the software engineering
community. Cohesion refers to the relatedness of module components within a class
while coupling refers to how classes affect each other.
The higher the cohesion of a module, the easier the module is to develop,
maintain, and reuse. Further the module becomes less fault prone. Some empirical
evidence exists to support this theory for systems developed by object-based techniques
[8].
Eder and colleagues [15] propose a framework aiming at providing
comprehensive, qualitative criteria for cohesion and coupling in object-oriented systems.

20
They distinguish between three types of cohesion in an object-oriented software system:
method, class and inheritance cohesion. Briand et al. also suggest the framework for
coupling and cohesion measurement in object-oriented systems [9, 10] For each type,
various degrees of cohesion exist. Within this framework, an analysis of the semantics of
a given method or class is required to determine the degree of cohesion. Bieman and
Kang define class cohesion measure based on dependencies between methods through
their references to instance variables [4].
Briand, Morasco, and Basili design a measure to indicate cohesion for software
developed in Objected-Oriented programming languages such as Ada [7]. Their primary
cohesion measure, Ratio of Cohesion Interactions (RCI), is based on the number of
interactions between subroutines, variable declarations, and type declarations. A method
cannot affect another method through a type reference but it affects the effort required to
understand the method.
During the analysis and design phase, and in any code evaluation at the module
level, inter-module coupling is measured by the number of relationships between classes
or between subsystems [35]. Class coupling should be minimized, in the sense of
constructing autonomous modules [6]. Booch also notes that coupling occurs on a peer-
to-peer basis and within a generalization/specialization hierarchy. The former should
exhibit low coupling, i.e., closely coupled classes should be generalized in a hierarchy.
Berard differentiates between necessary and unnecessary coupling [3]. The
rationale is that without any coupling, a system is useless. Consequently, for any given
software solution there is a baseline or necessary coupling level. It is the elimination of

21
extraneous coupling that should be the developer's goal. Such unnecessary coupling
needlessly decreases the reusability of the classes [43].
Li and Henry offer the Message Passing Coupling (MPC) metric as "the number
of send statements defined in a class" [34]. A similar approach is taken by Rajaraman and
Lyu where they define coupling at the method level [45]. They define Method Coupling
(MC) as the number of nonlocal references, and then gross these values up to the class
totals and class averages. Chidamber and Kemerer define coupling between objects as
"the number of other classes to which it is coupled and two classes are coupled when
methods declared in one class use methods or instance variables defined by the other
class" [12]. Their Response For a Class (RFC) metric counts the number of internal and
external methods available to a class.
Fan-in and fan-out are the number of references made from outside a class to
entities defined within the class and the number of references made from within a class to
entities defined outside the class, respectively. A low fan-out is desirable since a high fan-
out is a characteristic of a large number of classes needed by the particular class in
question [3]. A high fan-out also represents a class coupling to other classes and thus an
"excessively complex dependence" on other classes [23]. A high fan-in normally
represents a good object design and a high level of reuse. Since summations of these two
numbers are the same for a system, it is not likely to maintain a high fan-in and a low fan-
out across the whole system.
2.3.3 Profile Software Complexity
Thomas McCabe proposes a measure of software called cyclomatic complexity

22
[39]. Making use of graph theory, McCabe postulates that software with a large number
of possible control paths would be more difficult to understand, more difficult to
maintain, and more difficult to test. One of the problems of using cyclomatic numbers as
a measure of software complexity is that it produces just a single value to describe a
module?s complexity.
An alternative approach proposed by McQuaid is a fine-grained approach to
computing and visualizing complexity [41]. Unlike cyclomatic complexity, the profile
metric is computed and shown on a statement-by-statement basis. It defines complexity
in terms of a program statement's content, much like Halstead's effort measurement, and
context, which is the environment in which the statement occurs. The context complexity
can be further refined into three measures: inherency, reachability, and breadth
complexity.
The content complexity tries to measure the information quantity and not quality
within a measurable unit. The context complexity tries to measure the location of a
measurable unit within the source code. The profile complexity is designed such that the
context complexity is the baseline complexity, with the content complexity riding on this
baseline. The rationale of this design is to provide easy identification of complex clusters.
When a cluster is identified, the content complexity can be used to isolate the heavy
segment in the cluster.
2.4 Framework for Coupling and Cohesion Measurement
Briand et al. propose a unified framework for coupling and cohesion measurement
for object-oriented programs [9, 10]. The objective of the framework is to support the

23
comparison and selection of existing coupling and cohesion measures with respect to a
particular measurement goal. In addition, the framework provides guidelines to support
the definition of new measures with respect to a particular measurement goal when no
measures exist. The framework, if used as intended, will:
? Ensure that measure definitions are based on explicit decisions and well
understood properties,
? Ensure that all relevant alternatives have been considered for each decision
made,
? Highlight dimensions of coupling for which there are few or no measures
defined.
The framework for coupling consists of six criteria, each criterion determining
one basic aspect of the resulting measure. The six criteria of the framework are:
1. Type of connection: Choosing the type of connection implies choosing the
mechanism that constitutes coupling between two classes. Table 2-1
summarizes the possible types of connections.
2. Direction of connection: Fan-in refers to connection to the module being
studied. Fan-out measures the connection to other modules from the module.
3. Granularity of the measure: Domain of the measure and how to count
coupling connections.
4. Stability of server: Stable classes are not subject to change in a new project but
unstable classes are subject to modification in a new project.
5. Direct or indirect coupling: Counting direct connections only or also indirect

24
connections.
6. Inheritance: Inheritance-based vs. noninheritance-based coupling, and how to
account for polymorphism, and how to assign attributes and methods to
classes.

Table 2-1: Connection Types of Coupling
Class 1 Class 2 Description
1 Attribute a of class c Class d, d ? c Type of attribute: Class d is the
type of a
2 Method m of class c Class d, d ? c Type of parameter: Class d is the
type of a parameter of m, or the
return type of m
3 Method m of class c Class d, d ? c Type of local variable: Class d is
the type of a local variable of m
4 Method m of class c Class d, d ? c Type of invoked method: Class d
is the type of a parameter of a
method invoked by m
5 Method m of class c Attribute a of class d,
 d ? c
Attribute reference: m references a
6 Method m of class c Method m? of class d,
 d ? c
Method invocation: m invokes m?
7 Class c Class d, d ? c Inheritance: Class d the child class
of class c

Table 2-2: Connection Types of Cohesion

Element 1 Element 2 Description
1 Method m of class c attribute a of class c Attribute reference: m
references a
2 Method m of class c Method m? of class c Method invocation: m invokes
m?
3 Method m of class c Method m? of class c,
 m ? m?
Attribute sharing: m and m?
reference an attribute a

25

When specifying a cohesion measure, the following criteria of the cohesion
framework must be considered.
1. Type of connection: What makes a class cohesive. Table 2-2 summarizes the
possible types of connections.
2. Domain of measure: Objects to be measured (methods, classes, and system)
3. Direct or indirect connections.
4. Inheritance: How to assign attributes and methods to classes, how to account
for polymorphism.
5. How to account for access methods and constructors.

26
3 SELECTING THE SOFTWARE QUALITY METRICS
This research focuses on the design, development, and evaluation of an automated
measurement tool for object-oriented programs. More specifically, the measurement tool
is targeted for software quality measurement in terms of reusability and maintainability.

3.1 Quality Factors to be Measured
For the development of practical and automated metric model, we suggest top-
down and bottom-up metrics framework for source code of object-oriented software. In
this framework, we develop quality measurement model of object-oriented software in
terms of quality factors during implementation or maintenance phase.
In most of the stated software metric models, each software quality aspect (e.g.,
maintainability and reusability) is expressed in terms of a hierarchy of factors and
criteria. The higher-level factors in the hierarchy typically represent the management's
point of view; while the lower level criteria represent the code-related measurement, i.e.,
each criterion is normally a function of the raw attributes of the software. The structure of
the hierarchy is largely dependent upon the nature of the software and the desire of the
project team.
In a quality hierarchy, code-related criteria are the foundation by which quality is
defined, judged, and measured. The measurement represented by a quality metric can be

27
obtained during all phases of the software development to provide an indication of
progress towards the desired product quality. In this research, reusability and
maintainability are the two focused factors that can be applied to the source code to
provide good quality indication.
3.1.1 Maintainability
Software maintenance includes all post implementation changes made to a
software entity. Maintainability refers to the easiness or toughness of the required efforts
to do the changes. Before any changes can be made to a software entity, the software
must be fully understood. After the changes have been completed, the revised entity must
be thoroughly tested as well. For this reason, maintainability can be thought of as three
attributes: understandability, modifiability, and testability. Harrison sees software
complexity as the primary factor affecting these three attributes [21], while modularity,
information hiding, coupling, and cohesion are closely related to the complexity (See
Figure 3-1).

Since maintenance accounts for a large portion of a software product's cost, if
properly improved, it has a great potential to reduce the total software cost. However,
 Maintainability
 Understandability
 Modifiability
 Testability
 Software
 Complexity
 Information
Hiding
 Modularity
 Coupling
 Cohesion
Figure 3-1: Harrison?s Maintainability Model

28
without meaningful measure of maintainability, there would be no substantial way of
verifying improvement, even though certain actions may seem beneficial [21].
Historically, maintainability can only be measured after actual maintenance has been
performed. In the same application, the time required per module to determine the
changes indicates understandability; the time to change indicates modifiability; the time
to test indicates testability.
Instead of collecting the measurement after the product is completed, our
approach is to forecast the maintainability based on the source code and display the
measurement at any time the programmer wishes. The source code can be at any stage of
the development, and the measurement will be computed automatically. This will
provide a real time grade of the software in the dimension of maintainability.
3.1.2 Reusability
When a reusable code is written, the intended users should be somewhat
identified. If a code is to include the functionality that every user would want, the
resulting code would be too expensive to produce and too difficult to use. Code reuse has
been common in practice. But, many difficulties are associated with code reuse:
1. Code identification: It is difficult to identify a piece of reusable code. Many
times, programmers reuse only a small fraction of their own or their colleagues? code.
2. Code validation and verification: There is usually little assurance that the
reused code is correct.
3. Code dependency: It is a nontrivial task to separate a desired piece of code
from an entangled chunk of software with complex dependency.

29
4. Code modification: In addition to the necessary changes, the reused code may
implicitly conflict with the new context.
5. Execution environment: The reused code might assume things that are not true
in the new environment. This may result in degraded performance.
With careful planning and implementation, many of these difficulties can be
avoided. This requires a reusable code to possess certain properties that our proposed
measurement will quantify. A static analysis of a source code in any stage of
development can provide instant feedback to the programmer, the quality of the code in
the sense of reusability. This would encourage programmers to ensure that the completed
code provides good reusability quality before it is discovered too late. The measurement
can also allow the manager of a software project to evaluate the quality and reward the
programmers accordingly.

3.2 Quality Measurement Model

In this research, a quality measurement model is proposed and its metric set is
developed. The overall steps to construct the model and metrics are in Figure 3-2. We
obtain subfactors from the software quality factors and measurement types from the
essential properties of reusable and maintainable code, then match the subfactors and the
measurement types, and create a quality model for reusability and maintainability.
Several metrics are defined for each measurement type. Based on the created quality
model and the defined metrics, an automated metric tool is implemented, and the
measured metrics from the tool are validated through empirical study.

30
Subfactors and measurement types are discussed in detail in the following sub-sections.
We use a top-down and bottom-up approach to develop this quality model. Its
methodology is shown in Figures 3-3. From the top down, we first divide the quality
factors (i.e., reusability and maintainability) into subfactors in accordance with
procedures of performing reuse and maintenance. The divided subfactors are
identification, separation, modification, validation, and adaptation of a module. By
dividing the factors into five subfactors, the vague concepts of the factors become clearer.

Define Metrics for
Measurement Types
Match Measurement Types
and Subfactors

Implement Automated
Metric Tool
Quality Model for
Reusability and
Maintainability
Empirical Validation of
Metrics for Reusability and
Maintainability
Essential Properties of
Reusable and Maintainable
Code
Quality Factors:
Reusability and
Maintainability
Measurement Types

Subfactors

Figure 3-2: Steps for constructing the quality model and metric set

31

From the bottom up, we propose the desirable features for reusability and
maintainability, and apply these features to understand software for reuse and
maintenance purposes. These properties can be derived from the source code. The
selected measuring properties include External dependency, Cohesion, Information
hiding, Size, Complexity, Easy understanding, Proven reliability, Reuse frequency, and
Standardization as shown in Table 3-1. Each measuring property has its own
measurement type. In this research, we mainly focus on four measurement types
Reusability and Maintainability
Identifying Separating Modifying Validating Adapting
 Quality Factor
Subfactors
Coupling Cohesion Size Complexity
Reuse and maintenance properties
Measurement type
Figure 3-3: Flow of how the subfactors are connected to the metrics

32
(Coupling from External dependency, Cohesion, Size, and Complexity) from the reuse
and maintenance properties. Information hiding, Easy understanding, Proven reliability,
Reuse frequency, and Standardization will not be considered due to the difficulties of
collecting measurement data.
The definitions of the selected measurement types are summarized in Table 3-2.
The Coupling from the external dependency defines the interdependency of a class to
other classes in a source code. The Cohesion assesses the relationship of methods and
attributes in a class. The Size measures the number of methods and attributes, and lines of
code in a class. The Complexity measures the degree of difficulty in understanding the
structure of classes.
The important issue in this model construction is to establish links between the
subfactors and the measurement types. We want to map the subfactors into the
measurement types since each measurement type can be defined as a metric and
computed through a simple expression and each metric plays an important role as a key
factor in measuring the quality of a software system. Therefore, measuring the
measurement types as metrics becomes equal to measuring the factors of software
quality. The links between subfactors and measurement types are established in Figure 3-
3, and their relationship is presented in Section 3.2.2.

33

Table 3-1: Essential properties of reusable and maintainable code

? External dependency
o Requires no separation from any containing code.
o Requires no changes to be used in a new program
o Components do not interface with its environment.
o Low fan-in and fan-out
o Has more calls to low-level system and utility functions.
? Cohesion
o Component exhibits high cohesion
? Information hiding
o Has few input-output parameters.
o Interface is both syntactically and semantically clear.
o Interface is written at appropriate (abstraction) level.
? Size
o Small
? Complexity
o The lower the values of complexity metrics, the higher the programmer?s
productivity.
o Low module complexity
? Easy understanding
o Component and interface are readable by person other than the author
o Component is accompanied by documentation to make it traceable
o Easy to find and understand
o In-line comments
? Proven reliability
o Thorough testing and low error rates
o Reasonable assurance that it is correct
? Reuse frequency
? Standardization
o Component is standardized in the areas of invoking, controlling, terminating
its function, error-handling, communication, and structure.

34

Table 3-2: Measurement type

Measurement
Type
Definition based on class Measuring Measuring
Properties
Coupling The interdependency of a
class to other classes in a
system. Measure of the
number of other classes that
would have to be accessed
by a class in order for that
class to function correctly
and the number of other
classes that use the methods
or attributes in this class
Reference methods
and attributes among
classes
External
dependency
Cohesion The relatedness of methods
and attributes in a class.
Reference methods
and attributes in a
class
Cohesion
Size The numbers of methods,
attributes, and lines in a class
The numbers of
methods, attributes,
and lines in a class
Size
Complexity The degree of difficulty in
understanding and
comprehending the internal
and external structure of
classes and their
relationships
Cyclometic
complexity of
methods in a class
Complexity

3.2.1 Definition of subfactors and measurement type
We choose reusability and maintainability as our measurement factors. Dividing
these factors into subfactors helps to find appropriate measurement types. In case of
reusing and/or maintaining an existing code, several procedures should be accomplished:
? Identification: When a programmer tries to reuse or maintain an existing
source code, he/she needs to locate and understand the code to match the
desired purposes.

35
? Separation: After a programmer locates and understands the identified code,
he needs to take apart the code from its containing program.
? Modification: Before a programmer reuses the separated code unit he may
need to change the unit to meet the required function or to make the unit fit to
the new environment.
? Validation: Error checking will be an important step to make the unit reliable,
so a programmer needs to check for errors.
? Adaptation: He/She has to carefully adapt the modified code into the new
application to prevent any conflicts.
To derive measurement types for reusability and maintainability, we collect
properties of reusable and maintainable software from previous research [44] [46]. These
essential properties are listed and explained in Table 3-1. Based on these properties, the
following measurement types are derived. Each measurement type came from each
measuring property in Table 3-2.
? Coupling: The interdependency of a class to other classes in a system. It is a
measure of the number of other classes that would have to be accessed by a
class in order for that class to function correctly and the number of other
classes that use the methods or attributes in this class.
? Cohesion: The relatedness of methods and attributes in a class. Components of
a class should be designed for a single purpose. Thus, the class that has low
cohesion needs to be decomposed.

36
? Size: This includes counting lines of code with several options (e.g., ignore
blank and comments lines), number of methods and attributes in a class.
? Complexity: The degree of difficulty in understanding and comprehending the
internal and external structure of classes and their relationships. The structure
of a method that has high complexity metric value should be inspected and
simplified. Statement level complexity is also considered to locate complex
area of source code.
3.2.2 Relationship between subfactors and measurement types
Table 3-3 summarizes the relationship between measurement types and
subfactors. A plus symbol (+) in the table indicates that the measurement type has a
positive influence on a subfactor, and a minus symbol (-) indicates negative influence.
Table 3-3: Relationships between subfactors and measurement types
Measurement Type
Subfactor Coupling Cohesion Size Complexity
Identification - + - -
Separation -
Modification - + - -
Validation - + - -
Adaptation - -

Relationship from coupling to subfactors
High import coupling of a class indicates strong dependency on other classes,
their methods, and attributes. Import coupling may be relevant to the following
subfactors:

37
? Identification: To understand a method or class, we must know about the services
the method or class uses.
? Separation: High import coupling obstructs separating the code from its
containing program.
? Adaptation: If a class depends on a large amount of external services, it will be
more difficult to reuse it in other systems.
High export coupling of a class means that the class is used by many other
classes, their methods, and attributes. Export coupling may be relevant to the following
subfactors:
? Modification: If a method may be invoked by many other methods, any change to
the method affects the invoking methods. Any defect in a class with high export
coupling is more likely to propagate to other parts of the system. Such defects are
more difficult to isolate. In that respect, classes with high export coupling are
particularly critical. An export coupling measure could therefore be used to select
classes that should undergo special (effective and may be costly) verification or
validation processes.
? Validation: A class with high export coupling can be difficult to test. If defects
propagate to other parts of the system to cause failure there, they may not be
detected when testing the class in isolation.

Relationship from cohesion to subfactors
Stevens et al. define cohesion as a measure of the degree to which the elements of
a module are together [48]. Some empirical evidence supports that the higher the

38
cohesion of a module, the easier the module is to develop, maintain, and reuse [11, 8].
If elements of a module are not related to each other, the design of the module
most likely is not appropriate. Thus, we define cohesion to have positive impact on
identifying, modifying, and validating.
Relationship from size to subfactors
Usually a large size module has more attributes and methods, thus it will take
more time to understand, modify, validate, and adapt it. Size measurement type probably
can be included in other measurement types like complexity.
Relationship from complexity to subfactors
High complexity is an obstacle to understand and modify a module. Validating a
module is also difficult as its complexity increases.
3.3 Metrics for measurement types
In forming the quality model, a framework is designed to find the most influential
metrics for individual reuse and maintain properties. In the framework, we identified a
few sets of metrics to characterize software written in Java. They are listed in Tables 3-4
through 3-6. Each of the metrics was carefully evaluated and experimented for its
capability to accurately measure a reusability and/or maintainability property in this
dissertation. The rationale used in this experimental test as follows.
These metrics were chosen because they are representatives of metrics based on
the measurement types described in Section 3.2. They are also computable using the
automated measurement tool implemented for this research and are potential indicators
whether or not a class is reusable and maintainable. In each of the metric definitions, C

39
represents a class, M represents a method, S represents a system composed of classes, D
represents a domain (i.e., method, class, or system).
We used very primitive forms of coupling and cohesion metrics because these
metrics are used to measure subfactors rather than quality factors of a system. All
coupling and cohesion metrics assume direct and non-inherited based relationship. Each
coupling and cohesion metric is classified by the type of connection and then divided, in
detail, by direction of connection and domain level (i.e., class or system).
In the following sub-sections, we describe those metrics in detail, including size,
complexity, coupling, and cohesion metrics. They will be investigated throughout the
remainder of this dissertation.
3.3.1 Size Metrics
 Size metrics measure the number of methods and attributes in a class and the
lines of code of a class. Those are defined in Table 3-4. We have three domains for the
metrics (method, class, and system domain) and each domain has its own metrics. For a
method M, LOC(M) measures the lines of code for the method, and for a class C,
LOC(C) measures the lines of code for the class. NOM(C) counts the number of methods
in a class and NOA(C) counts the number of attributes in a class.
The size metrics defined for a system domain are LOC(S), aLOCC(S),
aLOCM(S), aNOM(S), aNOA(S), and NOC(S). LOC(S) is the lines of code for a system.
aLOC(S) and aLOC(S) calculate averaged LOC for classes and methods respectively for
a system. aNOM(S) and aNOA(S) compute average number of methods and attributes in
a class, and NOC(S) is the number of classes in a system.

40
From the past experience, we believe that large classes may suffer from poor
design. Large size metrics and more functions in a class normally make it more difficult
to understand the class. In an iterative development process, more and more functionality
is added to a class over time. The danger is that, eventually, many unrelated
responsibilities are assigned to a class. As a result, it has low functional cohesion. This in
turn negatively impacts the reusability, and maintainability of the class. Therefore, large
classes should be reviewed for functional cohesion. If there is no justification for the
large size, the class should be considered for refactoring, for instance, and extracting
parts of the functionality to make separate and more cohesive classes.
 Table 3-4: Size metrics

 (a) Size metrics for a method
Symbol Description domain
LOC(M) LOC for a method method

 (b) Size metrics for a class
Symbol Description domain
LOC(C) LOC for a class class
NOM(C) number of methods in a class class
NOA(C) number of attributes in a class class

 (c) Size metrics for a system
Symbol Description domain
LOC(S) LOC for a system system
aLOCC(S) average LOC for classes in a system system
aLOCM(S) average LOC for methods in a system system
aNOC(S) average NOM for classes in a system system
aNOA(S) average NOA for a class in a system system

3.3.2 Complexity Metrics
Complexity metrics measure the degree of difficulty in understanding internal and

41
external structure of classes and their relationships. In this research, Cyclometic
complexity of methods in a class is used, and based on this, we define three complexity
metrics for method (Cx(M)), class (aCx(C)), and system (aCx(S)) domains in Table 3-5.
High method complexity in a class can lead to decreased understandability and
therefore decreased reusability and maintainability. Also, testing such a class is more
difficult.
 Table 3-5: Complexity metrics

(a) Complexity metrics for a method

Symbol Description domain

Cx(M) McCabe complexity of a method method

 (b) Complexity metrics for a class
Symbol Description domain
aCx(C) average Cx(M) in a class class

 (c) Complexity metrics for a system
Symbol Description domain
aCx(S) average Cx(C) in a system system

3.3.3 Coupling Metrics
As we mentioned in section 2.4, the unified framework for coupling provides a
guideline to select coupling metrics for a particular measurement goal (Reusability and
Maintainability for this research).
Based on the first criterion of the unified framework for coupling (i.e., type of
connection), we study seven types of possible connection between two classes. Therefore
we define seven coupling metrics for measuring different connection types as in Table 3-
6. The seven metric symbols defined in the table are used to define actual coupling

42
metrics based on the criteria of the framework for measuring coupling described in 2.4.
The defined metrics for the seven connection types whose domain is class are cplTA(C),
cplTP(C), cplTL(C), cplTPM(C), cplIAR(C), cplMI(C), and cplPC(C).
Metrics cplTA(C), cplTP(C), and cplTL(C) measure the number of Type of
attribute connection, the number of Type of parameter connection, and the number of
Type of local variable connection of a class, respectively.
Table 3-6: Connection type for coupling

Metrics cplTPM(C), cplAR(C), cplMI(C), and cplPC(C) measure the number
of Invoked method type connection, the number of Attribute reference connection, the
number of Method Invocation connection, and the number of Parent-Child connection
of a class, respectively. We have chosen the first criterion, Type of Connection, to
create these basic metric symbols for all the connection types. For the second criterion
of the unified framework for coupling (i.e., Direction of connection), each
Symbol Connection
Type Class C Class D Description
cplTA(C) Type of
Attribute
Attribute a of
class c
Class d, d ? c Class d is a type of a
cplTP(C) Type of
Parameter
Method m of
class c
Class d, d ? c Class d is the type of a
parameter of m, or the return
type of m
cplTL(C) Type of
local variable
Method m of
class c
Class d, d ? c Class d is the type of a local
variable of m
cplTPM(C) Invoked
method type
Method m of
class c
Class d, d ? c Class d is the type of a
parameter of a method invoked
by m
cplAR(C) Attribute
reference
Method m of
class c
Attribute a of class
d, d ? c
m references a
cplMI(C) Method
invocation
Method m of
class c
Method m? of class
d, d ? c
m invokes m?
cplPC(C) Parent-Child Class c Class d, d ? c Class d is a child class of class
c

43
coupling metric in Table 3-6 consists of fan-out coupling("using") and fan-in
coupling("used") components, which we discuss in the following.
 For example, the metric cplTA(c) is decomposed into cplTAout(c) and cplTAin(c)
according to the direction of the connection. cplTAin(c) measures the connections to the
target class c from other classes and cplTAout(c) measures the connections to other
classes from the target class c. We measure the cplTA(c) as the sum of cplTAin(c) and
cplTAout(c).
Fan-out coupling measures the degree to which a class has knowledge of, uses, or
depends on other classes. To reuse a class with high fan-out coupling in a new context, all
the required services must also be understood and reused together. Therefore, high fan-
out coupling can decrease the reusability of a class.
Fan-in coupling measures the degree to which a class is used by, depended upon,
by other elements. Changing a class with high fan-in coupling may affect other classes
which depend on the class. Therefore high fan-in coupling can decrease the
maintainability of the class.
Coupling connections cause dependencies among classes, which, in turn, have an
impact on maintainability (a modification of a class may require modifications to its
connected classes) or reusability (to reuse a class may require reuse connected classes
together). Thus, we could say that a principle to improve reusability and maintainability
is to minimize coupling, and coupling metrics also greatly help identify problematic
classes to be reused or maintained.
We can apply these coupling metrics to a system domain. For example, aCplTA(s)

44
is defined as the averaged CplTA(c) of classes in system s and measures the averaged type
of attribute coupling metrics of classes in system s.
For the third criterion (i.e., Granularity of the measure) of the unified framework
for coupling, we define a class as the domain for coupling metrics.
For the fourth criterion (i.e., Stability of server) of the unified framework for
coupling, we didn?t define anything because we don?t measure the stability of server.
For the fifth criterion (i.e., Direct or indirect coupling) of the unified framework
for coupling, we only choose and measure direct coupling.
For the sixth criterion (i.e., inheritance) of the unified framework for coupling, we
choose non-inheritance based coupling. We assign attributes and methods to the class
which the attributes and methods are defined, not to their parent classes.
We have a sample code (Figure 3-4) showing couplings between classes and
coupling metric values obtained by the system implemented in this research. Each
class is counted either a fan-out coupling or a fan-in coupling to other classes by
extending or declaring a class.
For instant, class A is counted a coupling with class F by extending it. In this case,
classes A and F establish a parent-child relationship (one of the seven connection
types), which A is a child and F is a parent. Therefore, we count cplPC fan-out meric
value for class A (cplPCout(A) = 1) and cplPC fan-in metric value for class F
(cplPCin(F) = 1). In a similar way, a coupling occurs between class A and class B by
declaring B in class A. In this case, the type of attribute connection is established,
which attribute b in class A is declared by class B as its type, and class A makes cplTA

45
fan-out metric value counted 1 and class B makes cplTA fan-in metric value counted 1.
Symbols ---> and <--- indicate a fan-out coupling and a fan-in coupling occurred in a
class, respectively.
Fan-In/Fan-Out Coupling between Classes Metric Values

 public class A extends F{ ---> cplPC
 B b; ---> cplTA
 public void ma(D c){ ---> cplTP
 E e; ---> cplTL
 e.me(D d); ---> cplMI, cplTIM
 e.i++; ---> cplAR
 }
 }
 public class B{ <--- cplTA
 }
 public class D{ <--- cplTP, cplTIM
 }
 public class E{ <--- cplTL
 int i; <--- cplAR
 public void me(D d){ <--- cplMI
 }
 }
 public class F{ <--- cplPC
 }

cplPCout(A) = 1
cplTAout(A) = 1
cplTPout(A) = 1
cplTLout(A) = 1
cplMIout(A) = 1
cplTIMout(A) = 1
cplARout(A) = 1

cplTAin(B) = 1

cplTPin(D) = 1
cplTIMin(D) = 1
cplTLin(E) = 1
cplARin(E) = 1
cplMIin(E) = 1

 cplPCin(F) = 1

Figure 3.4: Fan-in/Fan-out coupling between classes

Table 3-7: Cohesion metrics
Symbol Connection
Type Element 1 Element 2 Description
cohAR(C) Attribute
reference
Method m of
class c
Attribute a of
class c
Attribute reference:
m references a
cohMI(C) Method
invocation
Method m of
class c
Method m? of
class c
Method invocation:
m invokes m?
cohAS(C) Attribute
sharing
Method m of
class c
Method m? of
class c, m ? m?
Attribute sharing: m
and m? reference an
attribute a

46

3.3.4 Cohesion Metrics
We also defined cohesion metrics based on the framework for cohesion
measurement (See Section 2.4).
For the first criterion (i.e., type of connection) of the unified framework for
cohesion, we define three cohesion metrics with different connection types among the
components (i.e., methods and attributes) in a class. cohAR(c) measures the number of
attribute reference connections of a class c, cohMI(c) measures the number of method
invocation connections of a class, and cohAS(c) measures the number of attribute
sharing connections of a class. Table 3-7 shows the three cohesion metrics based on the
connection type.
For the second criterion of the unified framework for cohesion (i.e., Domain of
measure), we can apply these cohesion metrics to class and system domains. For
example, aCohAR(s) is defined as the averaged CohAR(c) of classes in system s and
measures the averaged attribute reference cohesion metrics of classes in the system.
For the third criterion (i.e., Direct or indirect connections) of the unified
framework for cohesion, we only choose direct connection and measure the direct
connection.
For the fourth criterion (i.e., inheritance) of the unified framework for cohesion,
we choose non-inheritance based cohesion. We assign attributes and methods to the class
which the attributes and methods are defined, not to its parent class. For the fifth criterion
(i.e., access methods and constructors) of the unified framework for cohesion, we

47
measure the cohesion for the access methods and constructors.
Cohesion is the degree to which the methods and attributes in a class are related.
The higher connectivity between methods and attributes means the higher cohesion, and a
low cohesive class has been assigned many unrelated responsibilities. Consequently, the
low cohesive class is more difficult to understand and harder to maintain and reuse.
Therefore classes with low cohesion should be considered for refactoring, for instance, by
extracting parts of the functionality to separate classes with clearly defined
responsibilities.
We have a sample code (Figure 3-5) showing cohesion in a class and cohesion
metric values obtained by the system. Class A has two methods ma and mb, and method
ma makes a method invocation connection by invoking method mb, thus the system
calculates a choMI metric value of one (cohMI(A) = 1). For the cohAS metric, methods
ma and mb establish an attribute sharing connection by sharing an attribute i, thus cohAS
cohesion metric value of the class is calculated (cohAS(A) =1).
Cohesion in a Class Metric Values
 public class A {
 int i; int j;
 public void ma(){
 mb(); ---> cohMI
 i++; ---> cohAS
 j++; ---> cohAR
 }
 public void mb(){
 i++; ---> cohAS
 }
 }

cohMI(A) = 1
cohAS(A) = 1
cohAR(A) = 1

Figure 3-5: Cohesion in a class and metric values

48
4 AN AUTOMATED MEASUREMENT TOOL
4.1 Automated Measurement Tool Architecture
Java Measurement Tool (JamTool) is a software measurement environment to
analyze program source code for software reuse and maintenance. It is especially
designed for object-oriented software. This tool measures attributes from Java source
code, collects the measured data, computes various object-oriented software metrics, and
presents the measurement results in a tabular form. The tabular interface of the tool
provides software developers the capabilities of inspecting software systems, and makes
it easy for the developers to collect the metric data and to use them for improving
software quality. By browsing reusable units and maintainable units, a developer can
learn how to reuse certain software entity and how to locate problematic parts. The
application of this easy-to-use tool significantly improves a developer?s ability to identify
and analyze quality characteristics of an object-oriented software system.
The intended application domain for JamTool is small-to-middle sized software
developed in Java. The acceptance of Java as the programming language of choice for
industrial and academic software development is clearly evident. The overall system
architecture of the JamTool is shown in Figure 4-1, in which solid arrows indicate
information flow. The key components of the architecture are: 1) User Interface, 2) Java

49
Code analyzer, 3) Internal Measurement Tree, 4) Measurement Data Generator, and 5)
Measurement Table Generator.

Each key component works as a subsystem of overall system. The Java Code
analyzer syntactically analyzes source code and builds an Internal Measurement Tree
(IMT) which is a low level representation of classes, attributes, methods, and
relationships of the source code. Then the Measurement Data Generator takes the IMT as
an input, collects the measurement data, and generates the size, complexity, coupling and
cohesion metrics of classes in the original source code. Those measurement results as
well as the other metrics are displayed in a tabular representation through the
Measurement Table Generator subsystem. With this interface of tabular form, software
User Interface

Internal Measurement Tree Measurement Data Generator
Measurement Table
Generator
User
Figure 4-1: Architecture of JaMTool
Measurement Results Java Sources
Options for Measurement
Java Code Analyzer

50
developers can easily analyze the characteristics of their own program.
4.1.1 Java Code Analyzer
 Java Code analyzer is built by using a Sun Microsystem?s popular JavaCC parser
generator. It syntactically analyzes Java source code to build an internal measurement
tree (IMT) that contains all the information needed to produce measurement results. It
performs complete analysis on the source code thus identifies all syntactic errors during
the building of the IMT.
Class Modifier
Package Name
Import Name Vector
Class Name
Parent Class
Interface Name
Attribute Vector
Method Vector

Import Name
Attribute Name
Attribute Type
Attribute Modifier
ClassInfo Vector
Method Type
Method Modifier
Method Ret Type
Method Name
Rnce Var Vector
Local Var Vector
Invoked Method Vector

Referenced
VariName

Local Var T
Local Var N

Invoked Method N
Invoked Method P
Figure 4-2: Internal Measurement Tree

51

4.1.2 The Internal Measurement Tree
The Internal Measurement Tree (IMT) is a low level representation of classes,
attributes, methods and relationships of the program source code that is being analyzed.
The IMT, after it has been completely resolved, contains all relevant information from the
source code. It is a representation of the source for measurement. A complete IMT
hierarchy is shown in Figure 4-2. The root of an IMT is classInfoVector and the
classInfoVector has a link to ClassInfo node. Each ClassInfo node contains information
about a class including Attribute Vector, Method Vector etc. The Attribute Vector and the
Method Vector also have their own links which have detail information about them and
so on.

Algorithm 1. Type of attribute Coupling.
 Traverse IMT and find Type of attribute couplings among the classes in a project .

 Input: Internal Measurement Tree;
 Output: Coupling measurement result for Type of attribute metrics;

Let classNames = all class names in a project;
foreach class in classNames do
 Let targetClass = a class in classNames that has not been measured;
 if targetClass is empty then
 return couplingResult;
 Traverse class node in IMT and
 let attributeTypes = all attribute types in the targetClass;
 foreach attribute type in attributeTypes do
 Compare to class names in classNames;
 Update couplingResult according to the comparison result;
 endfor
enfdor
Figure 4-3: Algorithm 1- Type of attribute coupling

52

4.1.3 Measurement Data Generator
The Measurement Data Generator subsystem takes an IMT as an input, collects
the measurement data from the IMT, and builds measurement results such as size,
complexity, coupling and cohesion metrics for a class.
Algorithm 1 in Figure 4-3 describes the coupling measurement algorithm for the
type of attribute metric. The algorithm processes each class node in the IMT and
computes coupling strength for the type of attribute metric to be displayed in the
measurement tables like fan-in, fan-out, and class-to-class tables. For instance, we have
three classes A, B, and C to show the type of attribute coupling metrics in Figure 4-4.
Reading columns, we see that Class A is used by class B three times and used by class C
once, which means that the fan-out of A for B and C are 3 and 1, respectively. Class B is
used by class A twice, which means that the fan-in of A for B is 2. In this way, the
coupling relationship between classes is measured as a coupling metric and the measured
metric values are presented in the coupling metrics table form as shown in Figure 4-4.

A

B a1;
B a2;
C

 A c1;
B

 A b1; A b2;
 A b3;

 3
 2
 A B C Total
A 0 3 1 4
B 2 0 0 2
C 0 0 0 0
Total 2 3 1 6
Coupling Metrics Table
Figure 4-4: Example of Type of attribute couplings

1

53

From the coupling metric table, we can easily find that the type of attribute
couplings of classes A, B, and C are 2, 3 and 1, respectively. The type of attribute
coupling was explained in sections 3.3 and 3.4. It is also clear to see that these three
classes are connected together with attribute coupling. Therefore we group the three
classes as a set of related classes and identify them a Connected Unit. The detailed
discussion of Connected Unit will be done in Section 4.3.
Cohesion measurement data is also generated in this subsystem. Algorithm 2 in
Figure 4-5 describes a measurement algorithm for Method Invocation Cohesion (see
section 3.2). The algorithm takes each method node from the IMT and computes cohesion
strength for the method invocation metric to be displayed in the measurement tables.

Algorithm 2 . Method Invocation Cohesion.
 Traverse IMT and find Method Invocation cohesion from the target class in a project .

 Input: Internal Measurement Tree;
 Output: Cohesion measurement result for Method Invocation cohesion metrics;

Let targetClass = the target class names in a project;
Let methodNames = all method names of targetClass;
foreach methods in targetClass do
 Let targetMethod = a method in targetClass that has not been measured;
 if targetMethod is empty then
 return cohesionResult;
 Traverse method node of targetClass in IMT and
 let invokedMethods = all invoked methods from the targetMethod;
 foreach invoked method in invokedMethods do
 Compare to method names in targetClass;
 Update cohesionResult according to the comparison result;
 endfor
enfdor

Figure 4-5: Algorithm 2 - Method invocation cohesion

54
public class A
{

 public void ma(){
 int r = mb() + mc();
 }

 public int mb(){
 return mc() + 1;
 }

 public int mc(){
 int c = 0;
 return c;
 }
}
Cohesion metrics table
 ma mb mc Fan-Out
Total
ma 0 1 1 2
mb 0 0 1 1
mc 0 0 0 0
Fan-In
Total
0 1 2
Figure 4-6: Cohesion of three methods in a class
Figure 4-6 shows an example of three methods to measure cohesion. We have
three methods, ma, mb, and mc, in class A. Method ma invokes two methods mb and mc,
and method mb invokes mc. With these invocations, the relationship of methods is
measured as cohesion metrics, and the measured metric values are presented in the
cohesion metrics table.
The Measurement Data Generator also measures all other coupling metrics and
cohesion metrics mentioned in Chapter 3. The measured information about coupling for
each class is then neatly presented in the coupling measurement tables constructed by the
Measurement Table Generator, which will be discussed in detail in the following section.
4.1.4 Measurement Table Generator
The Measurement Table Generator generates display tables showing various
metrics obtained. For instance, a class-to-class coupling measurement table showing the
coupling structure among classes is given in window W2 of Figure 4-7. Windows W3 and

55
W4 of Figures 4-7 show fan-in/fan-out coupling measures in a tabular form for the seven
coupling metrics defined in Table 3-4. Fan-in/fan-out and various coupling types can be
interpreted differently as we describe fan-in/fan-out coupling measurement tables and
how we can find the connected unit from these measurement tables in the next section.
Other important tables are reusable unit and maintainable unit tables shown in
windows W5 and W6 of Figure 4-7. In a reusable unit table, each class in the first column
depends on classes in other columns since the class uses the others, and in a maintainable
unit table, each class in the first column is used by classes in other columns. Thus the
classes in the same row make a special reusable unit and maintainable unit. In this way of
representation, we could easily recognize which classes need more/less effort when they
are needed for reuse, modify, update or fix. This could definitely help programmer in
developing and maintaining a program. Detailed discussion for each table and unit will be
provided in the following Section 4.2.
4.1.5 User Interface
JamTool provides a graphical user interface that is developed based on the Java
Swing library. The measurement results are displayed in a tabular representation and in
several windows with various levels of detail as shown in Figure 4-7.
Inputs to the JamTool are Java source files. Users need to provide the name of the
group of the Java files (i.e., project) and the location of each file when building a new
project or opening an existing project in JamTool. A hierarchical list box is created within
a project pane to display classes that form the project (See P1 in Figure 4-7).

56

Figure 4-7: Screen shot of JamTool for coupling, cohesion, size, and complexity

57
Pane P1 shows that the project is composed of multiple Java programs. Pane P2
shows the source code of the selected Java program. For the project named ?Bingo?, six
windows (W1-W6) display the coupling measurement results: connected unit (W1),
class-to-class coupling (W2), fan-in coupling (W3), fan-out coupling (W4), reusable unit
(W5), and maintainable unit (W6), and another five windows (W7-W11) display the
cohesion, size and complexity measurement results: cohesion in a class (W7), size &
complexity (W8), cohesion for each class (W9), and connected unit (W10) and its
strength (W11) for cohesion.
4.2 Measurement Result Tables
4.2.1 Class to Class Table
Class-to-class coupling measurement table in Figure 4-8 is to show coupling
relationship among classes. All class names in a project are displayed. Regarding a class,
ClassInfo, in the second row, we see that there is a coupling strength of ?3? to ClassAttr,
?63? to ClassMethod, and a ?66? for total. These mean ClassInfo uses ClassAttr 3 times
and ClassMethod 63 times, thus 66 times for the total. On the other hand, regarding
ClassInfo in the second column, we find that this class is used by ClassInfoVector(1),
CohesionMeasure(13), and CouplingMeasure(7), for a total of 21 times.

Figure 4-8: Class to class coupling measurement table

58
4.2.2 Fan-in Coupling Table
The 7 coupling metrics defined in Table 3-6 are displayed in a similar tabular
form of the Fan-in coupling in Figure 4-9. TA, TM, TL, IM, MP, RV, and PC stand for
Type of Attribute, Type of Method Invocation, Type of Local Variable, Invoked Method
Type, Referenced Variable, and Parent-Child, respectively. All classes in a project are
displayed in the first column. We interpret fan-in as used-by, invoked by, or referenced by,
thus we can find how other classes use this class through examining each fan-in coupling
instance. For instance, ClassInfo has fan-in coupling strength of ?1? for TM and ?20? for
TL, which means that other classes in the project (i.e., cm1) use ClassInfo once as
invoked method and twenty times as their local variables. In this figure it is clear that
ClassMethod is used extensively by other classes (sixty three fan-in coupling at total
column). Special attention must be given to such a class when it is examined or modified
because it influences many other coupled classes.
If we inspect column TL, it has ?3? to ClassAttr, ?20? to ClassInfo, ?22? to
ClassMethod and ?45?in total. This means forty five times of fan-in coupling as Type of
Local Variable have occurred in this project while there are thirty eight times for IM,
twice for TA, respectively and only once for TM and MP.

Figure 4-9: Fan-in coupling measurement table

59
4.2.3 Fan-out Coupling Table
Fan-out couplings for the same seven coupling metrics are in Figure 4-10. We
interpret fan-out as use, invoke or reference, thus we can find how a class uses other
classes through examining each fan-out coupling instance. For instance, fan-out coupling
of ClassInfo shows that this class invokes or uses other classes sixty six times in total (?2?
for TA, ?25? for TL, ?38? for IM, and ?1? for MP). It mainly uses local variables and
invokes methods, and is identified as a highly fan-out coupled class. We believe that such
a class is difficult to be reused alone because it needs other classes? services to perform
its function. Therefore, it is wise to inspect its fan-out coupled classes from this table for
a new application when we reuse a class.

Figure 4-10: Fan-out coupling measurement table
4.2.4 Connected Unit Table for Coupling
We define a connected unit as the classes that are coupled together. In a connected
unit table, all classes coupled together are displayed in the same column. A connected
unit is likely to be of interest to the user in finding software units that can be reused. We
build a connected unit by identifying coupled classes in the coupling metrics and the
connected attributes and methods in the cohesion metrics. A user should consider reusing

60
the connected classes together in a new application. In that sense, the connected classes
are a reusable unit. The connected unit search algorithm, shown in Figure 4-11, computes
a set of coupled classes (i.e., connected unit) and their position in a connected unit table
based on a class-to-class coupling table. Figure 4-12 shows the retrieved connected unit
and the result of applying Algorithm 3 to the class-to-class coupling table in Figure 4-8.
Each class is displayed in a connected unit table according to its position and its coupling
strength is displayed in the connected unit strength table in Figure 4-12 (b).

Algorithm 3. Connected Unit Search.
Compute connected units from a class-to-class table.

Input: Class-to-class coupling measurement table;
Output: Connected units and their positions in a connected unit
table;

Let classNames = all class names from a class-to-class table;
foreach class in classNames do
 Let targetClass = a class in classNames
 that has not been searched yet;
 if targetClass is empty then
 return connectUnitsWithPosition;
 Search class-to-class table and let
 connectUnit = coupled classes to targetClass;
 Update connectedUnitsWithPosition with the connectUnit;
end for

Figure 4-11: Connected Unit Search Algorithm

61

Figure 4-13: Connected unit and its strength
class position strength
 ClassAttr 1 3
 ClassInfo 1 87
 ClassInfoVector 1 1
 CohesionMeasure 1 13
 ClassMethod 1 63
 CouplingMeasure 1 7
 Editor 2 0

Figure 4-12: Example of Connected Unit Search algorithm
ClassInfo
ClassAttr ClassInfoVector
CohesionMeasure
ClassMethod CouplingMeasure
Editor
3
63
 1
13
7
(a) (b)

62

The connected unit and its strength of the ?bingo? project are shown in Figure 4-
13. In this tables, all classes in the same column are coupled together. For instance, only
two classes, BingoException and NoMoreBallaException, in column B are coupled to
each other. Utilities in column D could be a dead code because there is no relation to
other classes in the project. By observing connected units, we may also discover
connection patterns. For example, if a project is composed of an application program and
libraries, an investigation of the connected unit will tell how the application program uses
a library function. In that sense, this type of connection pattern is a use pattern.
4.2.5 Reusable Unit Table
Other important tables are reusable unit and maintainable unit tables. Reusable
unit table is to present how much a class depends on other classes. In Figure 4-14, the
first column, A, displays all classes in the selected project. A class in column A uses the
classes in columns to its right. The classes in the same row make a special reusable unit.
For instant, in the second and third rows, we see that class BallListener depends on class
Linstener, and class BallListenerThread depends on classes BallListene, BingoBall,
Constants, and ListenerThread. This dependency means that, for example, if programmer
wants to use a certain class (BallListenerThread), then he/she must use the other classes
in the reusable unit (BallListener, BingoBall, Constants, and ListenerThread) since they
are used by the certain class (BallListenerThread). Therefore, if a class depends on too
many other classes, it is obvious that such a class is difficult to be reused.

63

Figure 4-14: Reusable unit table

4.2.6 Maintainable Unit Table
Figure 4-15 shows a maintainable unit table. Maintainable unit is to present how
many classes depend on a specific class. All classes in the selected project are displayed
in the first column, A, and each class in that column is used by the classes in other
columns, thus the classes in the same row are identified as a maintainable unit. For
instant, three classes BallListenerThread, Card, and LightBoardPane in the third row use
BingoBall, thus if you want to modify or update BingoBall, you must test
BallListenerThread, Card, and LightBoardPane as well. Therefore if there are too many
classes in a maintainable unit, it is very hard to maintain that specific class.

64

Figure 4-15: Maintainable unit table
4.2.7 Size and Complexity Table

 Figure 4-16: Size and complexity table
Five size and complexity metrics
for each class in a project are given in
Figure 4-16. They are based on the
definitions given in Chapter 3 (LOCC:
Lines of Code in a Class, nMC: number of
Metohds in a Class, nAC: number of
Attributes in a Class , aLOCM: average
LOC for Methods, and aCx: average
McCabe complexity) .

65
4.2.8 Cohesion Table

Figure 4-17: Cohesion table
Cohesion metrics for each class in a
project are given in Figure 4-17. MI is
Method Invocation cohesion and AR is
Attribute Reference cohesion; both are
discussed in Chapter 3. From this table, we
can easily see that in this particular
program, most of the classes use/reference
attributes (148 times) within a class rather
than invoke methods (3 times).

Figure 4-18: Cohesion among methods and attributes

We look inside a class to examine how the methods and attributes in the class are
related to each other. In Figure 4-18, the first column and the header row represent all
attributes and methods, respectively, in the target class (LightBoardPane). If we see
LightBoardPane class in Figure 4-17, this class has ?17? for AR cohesion measure, and in

66
Figure 4-18, we can see each occurrence of AR relation for the class between attributes and
methods, making 17 relations in total. For example, methods lightBoardPane(),
displayNewBall(), and clear() reference attributes 11 times (allBalls(3), rowTitles(4),
newBallLable(3), and litColor(1)), 4 times, and 2 times, respectively, for a total of 17 times
(17 AR cohesion).
4.2.9 Connected Unit Table for Cohesion
We also define a connected unit for cohesion metrics and compute the cohesion
strength of a class as shown in Figure 4-19 (a) and (b). All attributes and methods in the
same column make a unique connected unit because they are related to each other. In this
case, it is clearly indicated that attribute allBallsPane and method getMaximunSize() have
no relation to other elements in the class, thus their cohesion strengths are both zero.

(a) Connected unit name table (b) Connected unit strength table
Figure 4-19: Connected unit and its strength for cohesion

4.3 Connected Unit
Display techniques and tabular representations have been studied as to how to
best depict various metric findings. To represent the coupling and cohesion

67
measurements, we develop a measurement result table and a connected unit table. They
can display not only the connection strength (count) among the software components, but
also the architectural nature of an object-oriented system.

A connected unit table is composed of a pair of corresponding tables: connected
unit name table and connected unit strength table. In the connected unit name table, only
coupled classes can be located in a same column, thus a set of classes in the same column
is a connected unit.
In the connected unit strength table, each number represents the coupling strength
of the corresponding classes in the connected unit name table. Figure 4-20 (a) shows that
classes A, B, D, F, and I are in the same column because they are coupled to each other.
Corresponding numbers in Figure 4-20 (b) represent the coupling strength of each
of these classes. For example, number seven in the Figure 4-20 (b) indicates that class A
has a total count of seven for fan-out and fan-in to other classes in this column (i.e., B, D,
Class A
Class B
 Class C
Class D
 Class E
Class F
 Class G
 Class H
Class I

7
3
 4
2
 0
43
 4
 0
11

(a) Connected unit name table
Figure 4-20: Connected unit table

(b) Connected unit strength table

68
F, and I). Classes E and H are not related to others in this project thus their coupling
strengths are both zero. There are several possibilities for those classes that have strength
zero:
? They are no longer used in the project therefore they should be deleted from the
project.
? They have independent functions that are ready to be used in other applications.
Therefore, we need to inspect their corresponding source codes to determine their
usefulness.
Classes C and G are related to each other but not to others as they appear in the
same column. We may classify these two classes as a reusable or maintainable unit after
inspecting the measurement results and the source code. We also need to inspect class F

Figure 4-21: Attribute reference cohesion measurement table

69
to find out why it has such a high coupling count. Using the connected unit table, a user
can inspect a target class and its coupled classes. Connected unit table may be used in a
priori or a posteriori manner. A developer may decide in priori to slice the class or
remove the dead code in an application after browsing the connected unit table or in
posteriori to inspect the software for reuse purpose.
We can apply the same approach to the cohesion metrics. As an example of
connected unit in a cohesion connected unit table, we may find a class designed for
multiple functions. If indeed the class has different functions, the user may slice the class
into several small classes and reuse a portion of them. This approach can reduce test and
maintenance costs.
Figure 4-21 shows attribute reference cohesion measurement for ClassInfo. All
methods are listed in the first column and all attributes are listed in the first row. A
number in this table indicates how many times the method in the row references the
corresponding attribute in the column. For example, method getPackageName()
references attribute packageName once.
A cohesion connected unit table can be built based on this cohesion measurement
table. Figures 4-22 (a) and (b) show the connected unit tables of Cohesion Measurement
for ClassInfo. Like the coupling connected unit table, only related attributes or methods
can be located in the same column.
In this example, we can find the use pattern in columns B, D, E, F, and G (getters
and setters for attributes).

70
(a) Cohesion connected unit name table
(b) Cohesion connected unit strength table
Figure 4-22: Cohesion connected unit table for class ClassInfo

71

For example, there are two methods in column B, getPackageName() and
setPackageName(), for an attribute PackageName, and two methods in column E,
getParentClassName() and setParentClassName(), for an attribute ParentClassName.
Since the attributes/methods in the same column are related to each other, if a user
wants to reuse method getModifier() in column D, he/she would need to reuse attribute
cModifier and method setModifier(). In that case, these three software components in
column D can be identified as a reusable unit. Since attribute cIndex in column A has no
relation to other classes and other parts in this class, this attribute can be classified as a
dead code thus should be deleted. A user would first browses the connected unit table to
identify the reusable units and then inspect their connection patterns to see how such
software components are connected and/or used in the software package. By examining
the measurement tables, a user can also decide whether he/she can reuse the whole or part
of the reusable unit. Locating related components and inspecting their use pattern can
guide a user to reuse them.

72

4.4 Measurement Result Export for Spreadsheet
When the Measurement Table Generator in JamTool creates tables, it generates
the measurement results in the CSV (Comma Separated Values) file format. The CSV file
format is a file type that stores tabula data which uses a comma to separate values and is
supported by almost all spreadsheets. Therefore, JamTool exports measurement results
directly into a spreadsheet application such as Microsoft Excel.
Exporting to spreadsheet expands the power of JamTool by enabling further
analysis and graphing. Spreadsheet application provides some of the statistical analysis or
presentation capabilities required to investigate the measurement results. Therefore it
does provide a great advantage to help the JamTool users to derive meanings from the
measurement data.
With Export to spreadsheet we can:
? Display measurement results in spreadsheet instead of JamTool
? Analyze measurement data with a spreadsheet application
? Configure and format reports to represent the measurement data in an easy to
understand style such as graph
Spreadsheet application offers the ability to perform calculations and complex
mathematical, statistical, and data analysis functions on numbers and text. JamTool?s
tabular data is suitable to take these advantages.
Figures 4-23 and 4-24 show an example of Measurement Result Export for
Spreadsheet. Figures 4-23 (a) and (b) are maintainable/reusable units for coupled

73
classes in a project, and they are the same as Figures 4-14 and 4-15, but exported to Excel
for analysis report.
Figure 4-24 displays fan-in/out couplings and their visual graphs. Column A in
Figure 4-24 (a) displays all classes in the selected project. For the corresponding class,
Columns B and C in Figure 4-24 (a) show the number of classes fan-in coupled and the
number of classes fan-out coupled, respectively, and they are obtained from the
reusable/maintainable units in Figure 4-23. For instance, if we look at class
BallListenerThread, this class is used/invoked by only one class (OverallStatusPane) as
shown in the maintainable units of Figure 4-23 (a), having -1 for fan-in of column B in
Figure 4-24 (a), and uses/invokes four classes (BallListener, BingoBall, Constants, and
ListenerThread) as shown in the reusable units Figure 4-23 (b), having 4 for fan-out of
column C in Figure 4-24 (a). The negative sign (-) of column B is to graph fan-in
couplings under the x-axis to visually compare them to fan-out couplings above the x-
axis. Their actual strengths of coupling (Number of times they are coupled in the coupled
classes) are shown and graphed in Figure 4-24 (b). For example, BallListenerThread
class has -1 for fan-in and 10 for fan-out, which means that this class is used/invoked by
OverallStatusPane class only once, but uses/invokes four classes (BallListener,
BingoBall, Constants, and ListenerThread) 10 times for total. The negative sign (-) is for
the same purpose as Figure 4-24 (a).
These tabular data and comparative graphic representation will clearly assist and
aid JamTool users in a better understanding of software reuse and maintenance. For
instance, class OverallStatusPane, which has the highest fan-out coupling, will decrease

74
the reusability of the class, and class BingoBall, which has the highest fan-in coupling,
will decrease the maintainability of the class.

(a) Maintainable units exported to Excel

(b) Reusable units exported to Excel
Figure 4-23: Maintainable/Reusable units exported to Excel

75

(a) Maintainable/Reusable units ? number of classes

(b) Maintainable/Reusable units ? strength of coupling
Figure 4-24: Maintainable/Reusable units graphed in Excel

76

5 UNDERSTANDING SOFTWARE EVOLUTION USING
METRICS AND VISUALIZATION
This chapter presents an empirical study to investigate if the metrics defined and
implemented by JamTool can be used to assess the quality of software evolution. The
empirical study is an analysis of reusability and maintainability during the evolution of an
open source software system, JFreeChart, which is a charting library [25]. We observe
the quality change along the evolution of the twenty-two released versions of JFreeChart
and discuss its quality change based on the Lehman?s laws of evolution. We derive
software metrics from the twenty-two releases of the target system and determine
whether software quality has significantly changed over this period. More specifically,
we compare the fan-in and fan-out couplings of the removed and the added classes from
one version of the software to the next in order to find out if the quality of each release
has improved or declined.
 A separate, but related case study to analyze how a software system has evolved
was conducted. The case study is to present the global visualization of the evolution of a
software system and provide effective ways to analyze the evolution of the system. Since
the study does not utilize the developed metrics, the results of study are included in
Appendix A.

77
5.1 Empirical Study: Measuring Quality on Software Evolution
Fan-in is the number of references made from outside a class to entities defined
within the class, and fan-out is the number of references made from within a class to
entities defined outside the class. While fan-in coupling is very useful when assessing the
impact of a change, fan-out is very useful when partitioning programming elements and
figuring out what other classes a given class needs in order to run. Therefore a low fan-
out is desirable since a high fan-out is a characteristic of the large number of classes
needed by the particular class and makes the class difficult to reuse [3, 6, 23, 37, and 38].
A high fan-in normally represents a good object design and a high level of reuse.
Although a system is useless without any coupling, for any given software
solution there is a baseline or necessary coupling level and that developer's goal should
be the elimination of extraneous coupling. Such unnecessary coupling needlessly
decreases the reusability of the classes [43].
For library software like JFreeChart, high fan-out coupling decreases its
reusability. Because it is an open source library and it has been used by other applications
for a long time, we expect to find the quality of JFreeChart to improve along with its
evolution in terms of reusability.
On the other hand, as summarized in [33], the laws of software evolution have
been proposed and formalized in [30, 31, and 32] since 1974. The statement of Lehman?s
laws refers to E-type software, which cannot be completely specified and once the system
is operational, the development with new requirements of the software is essential.

78
Evolution is intrinsic and inevitable for this type of software. Eight Lehman?s laws are
given in Table 5-1.
In this empirical study, we explore the evolution of the JFreeChart in terms of
size, coupling and cohesion, which are measurable from software source code, and
discuss its quality change based on the Lehman?s laws of evolution. The study indicates
that our experimental results follow three laws (I: Continuing change, II: Increasing
complexity, VI: Continuing growth) out of eight. But this indicates more research is still
needed for one law (VII: Declining quality). Each of the laws is explained here:
Continuing change: An E-type system must be continually adapted otherwise it becomes
progressively less satisfactory in use
Increasing complexity: As an E-type system is evolved its complexity increases unless
work is done to maintain or reduce the complexity
Continuing growth: The functional capability of E-type systems must be continually
enhanced to maintain user satisfaction over the system lifetime
Declining quality: Unless rigorously adapted and evolved to take into account changes
in the operational environment, the quality of an E-type system will decline

79

Table 5-1: Latest formulation of Lehman?s laws of software evolution

No./year of first
formulation Name
No./year of first
formulation Name
 I 1974 Continuing change V 1991 Conservation of familiarity
 II 1974 Increasing complexity VI 1991 Continuing growth
 III 1974 Self regulation VII 1996 Declining quality
 IV 1978
 Conservation of
 organizational
 stability
 VIII 1971/96 Feedback system
5.1.1 Objective
The objectives of this empirical study are two fold. First, we investigate if there is
any relationship between the class growth of the target software and the metric values
(coupling and cohesion) measured by JamTool. We normally assume that if the number of
classes increases, then the coupling between classes will increase as well since the
coupling measures the degree to which a program module (i.e., class) relies on other
modules. However, the class growth should not affect the cohesion metric values, since
the cohesion metric measures the strength of relationship among internal components
within a single class.
Secondly, we observe the quality change along the software evolution by
comparing the fan-in/out couplings and the cohesion metrics of the removed and added
classes of each version of the software. We expect quality software to have low coupling
and high cohesion. When a software system requires updates, i.e., changes to the software
to correct bugs or to install new functionalities, some classes in the software are removed
and the classes with new functionalities are added to the software. At this point we

80
assume the removed classes have poorer quality and the added classes should have better
quality. Therefore, in terms of coupling/cohesion metrics, the newly added classes should
have lower coupling and higher cohesion than the removed classes.
We investigate fan-in and fan-out couplings separately since a high fan-in
coupling and a low fan-out coupling are desirable for a class. A high fan-in coupling
indicates the class that is called upon by many other classes. Thus, it is reused. A low fan-
out coupling means independence and encapsulation, and this kind of class/module is
easier to reuse.
5.1.2 Methodology
The software used in the experiment was JFreeChart which is a powerful and
flexible open source charting library. We choose JFreeChart as the target software system
because it is a long-term open source library with many releases. To obtain information
about the version differences, we used an evolution track table to compare two versions
of a program and report all the differences. A very detailed explanation of an evolution
track table is provided in section 5.2.
First, we extract information of classes in terms of size, coupling and cohesion
metrics from all twenty-two versions of JFreeChart and analyze the relationship between
the classes and the metrics. According to [13], the size of a system is defined as the
number of program units it contains, thus it should be based on the number of ?modules?
rather than source code size. This is the main reason we use the number of classes as size
metrics.
Second, we focus on the removed and added classes of the target software. We

81
extract metrics of the removed classes in each version and the newly added classes,
divide them into two groups, and compare them to investigate any differences between
the groups. Then we perform an analysis by examining the coupling and cohesion metrics
of the removed and the added classes over releases.
Third, we present empirical studies of the relationships between the number of
classes and the derived coupling/cohesion metrics, and the relationships between the
removed and the added classes throughout a software evolution.
Metric extraction can be a difficult task due to the size of the system and the
number of versions. We use an evolution track table to extract the number of classes and
the removed and added classes, and JamTool collects coupling and cohesion metrics from
JFreeChart.
5.1.3 Hypotheses
Based on the assumption and expectation above, we set up five hypotheses: Two
to observe if any relationship exists between class growth and metric values measured by
JamTool, and three for the added classes (i.e., group A) and the removed classes (i.e.,
group R).
? Hypothesis 1: Class growth throughout all versions will be positively reflected in the
fan-in/fan-out coupling metric values.
? Hypothesis 2: Class growth throughout all versions of the program will not be
positively reflected in the cohesion metric values.
 These two are actually to confirm the findings of the previous studies and our

82
expectation about class growth and metrics [32].
? Hypothesis 3: The average fan-in coupling of group A will be higher than the average
fan-in of group R.
? Hypothesis 4: The average fan-out coupling of group A will be lower than the average
fan-out of group R.
? Hypothesis 5: The average cohesion of group A will be higher than the average
cohesion of group R.
We believe that group A and group R can be categorized in a certain way based on
the metric values of coupling and cohesion measured by JamTool. In other words, the
added class group should have better software quality than the removed class group does.
5.1.4 Results
We applied an evolution track table and JarJarDiff (File comparison tool) to find
the differences between two subsequent versions starting with JFreeChart-0.9.0 and
ending with JFreeChart-0.9.21. According to the results obtained by evolution track table
and JarJarDiff, we found that whenever a version is newly evolved, the software had a
many changes. It modified interfaces and/or classes, removed interfaces and/or classes,
and/or added new packages, interfaces, and/or classes.
Normally, the number of classes gradually increases as a new version is released.
Also, there are some huge changes in the middle of releases. With these reasons, in this
experimental study, we investigate if the class growth shows any observable phenomenon
on the coupling and cohesion metric values, and if the newly added classes show any

83
observable trend in comparison with the removed classes.
Class Growth, Coupling, and Cohesion
Table 5-2 gives an overview of the version differences of the software and
coupling/cohesion metric values obtained by JamTool. It shows the number of classes
(Removed, Added, total), average fan-in/-out coupling metrics, and average cohesion
metrics in each version of the JFreeChart.
Figure 5-1 shows the class growth across all versions of the program and Figure
5-2 reveals an increasing trend for the average fan-in/fan-out coupling. We can easily
recognize that the number of class increases gradually as new versions of the program
evolve and the significant class growth occurred between versions 0.9.3 and 0.9.5,
otherwise the number of classes increases consistently.
There was a more than 300% class growth in the number of classes from the
beginning of the program (i.e., 139) to the final version of the program (i.e., 460). This is
a confirmation of the study by [6] and Lehman?s 6th law of software evolution [32] that
the evolution of an object-oriented system reveals an increasing trend of the number of
classes.
For the Fan-in/fan-out coupling, a noticeable change appeared between versions
0.9.3 and 0.9.4. We could say that this is because 113 classes were newly added to
version 0.9.4 and it affects the average metric values. After that the growth trend is
consistent while the average cohesion seems not to grow as the class does.

84
Table 5-2: Version differences and Coupling/Cohesion metrics
Version of
JFreeChart
No. of
Removed
classes
No. of
Added
classes
Total no.
of classes
Avg. fan-
in
coupling
Avg. fan-
out
coupling
Average
cohesion
0.9.0 139 11.9 12.1 12.7
0.9.1 1 0 138 12.0 12.2 12.9
0.9.2 0 6 144 11.8 12 12.9
0.9.3 0 113 257 11.0 11 11.6
0.9.4 3 21 275 13.1 14.1 12.8
0.9.5 22 74 327 12.8 13.8 12.6
0.9.6 0 2 329 12.8 13.8 12.6
0.9.7 1 25 353 12.7 13.5 12.4
0.9.8 0 3 356 12.8 13.6 12.5
0.9.9 43 48 361 13.0 14.2 12.7
0.9.10 11 2 352 13.2 14.1 13.2
0.9.11 0 13 365 13.4 14.4 13.4
0.9.12 5 17 377 13.6 14.4 13.5
0.9.13 0 6 383 14.0 14.8 13.8
0.9.14 3 15 395 15.3 15.4 14.1
0.9.15 0 9 404 15.2 15.3 14.0
0.9.16 2 10 412 15.1 15.2 13.8
0.9.17 19 30 423 15.0 15.2 9.8
0.9.18 1 10 432 14.7 14.7 9.9
0.9.19 9 24 447 14.2 14.3 9.8
0.9.20 0 1 448 14.3 14.3 9.8
0.9.21 3 15 460 14.5 14.6 9.8
Total 123 444

The cohesion metric between versions 0.9.16 and 0.9.17 suddenly drops and this
becomes a key reason to affect the average. This can be explained by the fact that 115
classes were modified not included in this research as well as 19 removed and 30 added
at version 0.9.17.
To test the hypotheses if the growth trend of classes is actually related to the
metric values, we calculated correlations between the number of classes and one of the
average fan-in coupling, fan-out coupling and cohesion.

85

 Classe growth
0
50
100
150
200
250
300
350
400
450
500
Version
Nu
mb
er
 o
f c
las
se
s
No. of Classes 139138144257275327329353356361352365377383395404412423432447448460
0.9
.0
0.9
.1
0.9
.2
0.9
.3
0.9
.4
0.9
.5
0.9
.6
0.9
.7
0.9
.8
0.9
.9
0.9
.10
0.9
.11
0.9
.12
0.9
.13
0.9
.14
0.9
.15
0.9
.16
0.9
.17
0.9
.18
0.9
.19
0.9
.20
0.9
.21

Figure 5-1: Number of class growth
Average fan-in/out coupling and cohesion
0
2
4
6
8
10
12
14
16
18
Version
Co
up
lin
g/c
oh
es
ion
 m
etr
ic
Avg. fan-in coupling Avg. fan-out coupling Avg. cohesion
Avg. fan-in coupling 11.9 12 11.8 11 13.1 12.8 12.8 12.7 12.8 13 13.2 13.4 13.6 14 15.3 15.2 15.1 15 14.7 14.2 14.3 14.5
Avg. fan-out coupling 12.1 12.2 12 11 14.1 13.8 13.8 13.5 13.6 14.2 14.1 14.4 14.4 14.8 15.4 15.3 15.2 15.2 14.7 14.3 14.3 14.6
Avg. cohesion 12.7 12.9 12.9 11.6 12.8 12.6 12.6 12.4 12.5 12.7 13.2 13.4 13.5 13.8 14.1 14 13.8 9.8 9.9 9.8 9.8 9.8
0.9.0 0.9.1 0.9.2 0.9.3 0.9.4 0.9.5 0.9.6 0.9.7 0.9.8 0.9.9 0.9.10 0.9.11 0.9.12 0.9.13 0.9.14 0.9.15 0.9.16 0.9.17 0.9.18 0.9.19 0.9.20 0.9.21

Figure 5-2: Average fan-in/out coupling and cohesion

The average fan-in/out coupling is the average of the fan-in/out coupling metric
values of all classes in each version of the program. The average cohesion is the average

86
of the cohesion metric values of all classes in each version. Underlying assumptions are
that the number of classes is positively related to the average fan-in/out coupling, but is
not positively related to the average cohesion.
As we expected, there are strong correlations between the number of classes and
the average fan-in/fan-out couplings with 0.813 and 0.826, respectively, in the pearson
correlation, and at the significant level of p-value= 0.000 (Table 5-3). This statistical
analysis strongly supports the first two hypotheses we made, and agrees with the previous
research statements about the relationships between the number of classes and the
coupling metrics, which stated that if the number of classes increases then coupling
metrics increase.
Moreover, Lehman?s 2nd law (Increasing complexity) of software evolution states
that as a system evolves the complexity of the system increases unless work is done to
maintain it. Since JFreeChart is an object oriented system written in Java, it is known
that the complexity of a Java program depends largely on the coupling metrics among the
classes.
Table 5-3: Correlation between the number of classes and coupling/cohesion
Number of classes
 At each version
Pearson correlation P-value
Average fan-in coupling 0.813 0.000
Average fan-Out coupling 0.826 0.000
Average cohesion -0.356 0.104

87
0
20
40
60
80
100
120
Nu
m
be
r o
f C
las
se
s
Added 0 0 5 113 21 74 2 25 3 48 2 13 17 6 15 9 10 30 10 24 1 15
Removed 0 1 0 0 3 22 0 1 0 43 11 0 5 0 3 0 2 19 1 9 0 3
0.9
.0
0.9
.1
0.9
.2
0.9
.3
0.9
.4
0.9
.5
0.9
.6
0.9
.7
0.9
.8
0.9
.9
0.9
.10
0.9
.11
0.9
.12
0.9
.13
0.9
.14
0.9
.15
0.9
.16
0.9
.17
0.9
.18
0.9
.19
0.9
.20
0.9
.21

Figure 5-3: Number of classes removed and added

Figure 5-2 shows that as JFreeChart evolved, the coupling of the system
increased, thus complexity increases as well, following Lehman?s 2nd law of evolution
with some minor exceptions.
Removed and Added Classes
Figure 5-3 shows the numbers of classes removed (group R) and added (group
A) across all versions. We noticed that the software is constantly changed between
versions and, in most cases, many more classes are added (total of 444) than removed
(total of 123). This changing nature of JFreeChart follows Lehman's 1st law (Continuing
change). Almost 50% of group A were added around the beginning of the evolution (213
out of 444), prior to version 0.9.5. According to [1], this is a common phenomenon.
About 65% of group A were added before version 0.9.9 (291 out of 444). In addition,
there seems to be important changes at version 0.9.9 by adding 48 classes and removing
43 (36% of the removed).

88
0
2
4
6
8
10
12
Me
tri
c v
alu
e
Removed classes 5.715 10.39 8.415
Added classes 8.262 7.415 7.964
Average fan-in
coupling
Average fan-out
coupling Average cohesion

Figure 5- 4: Average coupling/cohesion of the classes removed and added
To test the last three hypotheses, we calculated average Fan-in/out coupling and
cohesion metrics for both group A and group R. It is the average of metric values of all
classes removed/added in each version. Figure 5-4 shows the metric values and compares
them in bar graphs. We were expecting to see higher Fan-in and cohesion and lower fan-
out in group A than in group R.
The results reveal higher fan-in coupling and lower fan-out coupling for the added
class group than those for the removed class group thus, support Hypotheses 3 and 4. It
implies directly that the added classes have better software quality than the removed
classes in terms of coupling. This result is very interesting because the 7th law (Declining
quality) of Lehman?s software evolution states that E-type programs will be perceived as
of declining quality unless adapted to a changing operation environment. We defined
reusability as a quality factor for JFreeChart since it is a library which is intended to be
reused by other applications. We measured fan-out and fan-in coupling metrics over time
to see the trend of the quality in terms of reusability. As we mentioned earlier, low

89
fan-out and high fan-in coupling are desirable for the classes to be reused. Therefore we
can say that with few exceptions, the evolution of the JFreeChart does not follow
Lehman's 7th law of evolution.
Based on the average cohesion metric values as shown in Figure 5-4, we found no
big difference between the two groups and therefore reject Hypothesis 5.
For the averages of the metrics, we looked into each version as shown in Figures
5-5, 5-6, and 5-7. Since we have different numbers of classes across all versions, we
normalized the average metric values by dividing the number of classes at each version.
For the fan-in coupling in Figure 5-5, we observe two spikes at versions 0.9.3 and
0.9.9. The first is for the added and the second is for the removed. Although the overall
average seems to be influenced by them, the metrics for the added are higher and stronger
than the removed, which is desirable and expected because it is reusable. More
importantly the average at version 0.9.3 is the one with 113 added classes.
Normalized fan-in coupling for the classes removed and added
0
0.5
1
1.5
2
2.5
0.9
.1
0.9
.2
0.9
.3
0.9
.4
0.9
.5
0.9
.6
0.9
.7
0.9
.8
0.9
.9
0.9
.10
0.9
.11
0.9
.12
0.9
.13
0.9
.14
0.9
.15
0.9
.16
0.9
.17
0.9
.18
0.9
.19
0.9
.20
0.9
.21
Version
Fa
n-
in
 co
up
lin
g
Removed
Added

Figure 5-5: Normalized fan-in coupling

90

Figure 5-6: Normalized fan-out coupling
Normalized cohesion for the classes removed and added
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0.9
.1
0.9
.2
0.9
.3
0.9
.4
0.9
.5
0.9
.6
0.9
.7
0.9
.8
0.9
.9
0.9
.10
0.9
.11
0.9
.12
0.9
.13
0.9
.14
0.9
.15
0.9
.16
0.9
.17
0.9
.18
0.9
.19
0.9
.20
0.9
.21
Version
Co
he
sio
n
Removed
Added

Figure 5-7: Normalized cohesion
For the fan-out coupling in Figure 5-6, we again notice a spike at version 0.9.9.
This one is especially important because it is the average of 43 removed classes out of
123. It is almost 40% of all the removed classes at a single version, and this plays an
important role toward the undesirable quality of software because it is hard to maintain,

91
thus removed.
For the cohesion value per version in Figure 5-7, the removed classes at version
0.9.9 have high cohesion, even though this could be explained that they were removed
because of the high fan-out coupling. However, the high cohesion for the added at
version 0.9.3 is meaningful because it is the average of 113 classes while we can?t say
that the added class group has better quality in terms of cohesion because of the data in
Figure 5-4.
Obvious common phenomena from these three Figures (5-5 ? 5-7) is that the 113
classes added at version 0.9.3 represent high fan-in coupling and cohesion, which is ideal,
and the 43 classes removed at version 0.9.9 represent high fan-in/out and cohesion. The
high fan-out coupling resulted in having these 43 classes removed from the software.
5.1.5 Summary
In this empirical study, we have mainly focused on tracking the reusability of an
open software system, JFreeChart, over its evolution with fan-in and fan-out couplings
for added and removed classes. We found that the number of classes increases gradually
over most releases, and they have strong correlations with coupling metrics but not
positively related to the cohesion. These confirm the expectations about the relationship
between them. We also found that the added classes have higher fan-in coupling and
lower fan-out coupling comparing to the removed classes. Low fan-out and high fan-in
are desirable in term of reusability since a high fan-out means difficulty to reuse a class
and a high fan-in represents a high level of reuse. It also has been found that evolution of
this software system is consistent with Lehman's 1st, 2nd, and 6th laws of software

92
evolution.
While more research would be required to make any firm conclusions, this
observation leads us to believe that the reusability of JFreeChart has improved along
with its evolution. In this way, applying metrics from JamTool over the evolution of the
software can aid a software engineer to understand how a system has evolved over time.

93

6 ANALYZING SOFTWARE FOR REUSE AND
MAINTENANCE

 We applied software metrics and visualization approach to understand the
software evolution in Chapter 5. According to the empirical study, there was a big change
of coupling metric values from 0.9.3 to 0.9.4 as reported in Table 5-2 and Figure 5-2.
This chapter presents a case study to investigate if the metrics defined and implemented
by JamTool can be used to capture the difference between two consecutive versions on
the evolution of JFreeChart.
6.1 Added and Removed Classes
When JFreeChart evolves from version 0.9.3 to version 0.9.4, twenty-one new
classes were added and three classes were removed. Tables 6-1 and 6-2 summarize fan-in
and fan-out couplings for the added and removed classes. The Class Counting Coupling
(CCC) fan-out of a class, C, is the number of other classes that are referenced in C. A
reference to another class, A, is a reference to a method or a data member of class A. In
the CCC fan-out of a class, multiple accesses to the same method or data element are
counted as one access. The CCC fan-in of a class, C, is the number of other classes that
reference class C. In the CCC fan-in of a class, multiple accesses are also counted as one

94
access.
High CCC fan-out of a class represents couplings to many other classes and thus
the class is hard to be reused because this class depends on many other classes. High
CCC fan-in of a class represents good object design and high level of reuse but it may be
risky to change this class because many classes depend on it.
Strength Counting Coupling (SCC) fan-in and fan-out coupling counts all
references between classes. As shown in Table 6-1, added classes have higher (CCC
average 2.5) fan-out coupling than fan-in coupling (CCC average 1.3).
Table 6-1: Added classes into 0.9.4
CCC SCC Class Name
Fan-out Fan-in Fan-out Fan-in
ArrowNeedle 1 2 1 3
CompassPlot 14 0 27 0
DatasetGroup 0 4 0 8
DrawableLegendItem 1 3 3 48
FastScatterPlot 7 0 21 0
Function2D 0 2 0 2
IntervalCategoryToolTipGenerator 2 1 4 1
JThermometer 5 0 35 0
LineFunction2D 1 0 1 0
LineNeedle 1 1 1 1
LongNeedle 1 1 1 1
MeterNeedle 0 8 0 11
PinNeedle 1 1 1 1
PlumNeedle 1 1 1 1
PointerNeedle 1 1 1 1
PowerFunction2D 1 0 1 0
Regression 0 0 0 0
ShipNeedle 1 1 1 1
XYDotRenderer 2 0 2 0
WindNeedle 1 1 1 1
ThermometerPlot 13 1 62 15
Average 2.5 1.3 7.8 4.5

95
Six classes (XYDotRenderer, FastScatterPlot, JThermometer, LineFunction2D,
PowerFunction2D, and CompassPlot) have only fan-out couplings and three classes
(DatasetGroup, Function2D, and MeterNeedle) have only fan-in couplings. Class Regression
is added without any relation to other classes. This class may be ready to provide
independent service to other software application.
Class ThermometerPlot depends on 13 classes with 62 fan-out couplings and 1
class depends on this class with 15 fan-in couplings. Nine added classes have both fan-
out and fan-in couplings. Class DrawableLegendItem has 1 fan-out class and 3 fan-in
classes with 3, and 48 couplings, respectively. Therefore, we need to pay more attention
to this class than other classes among the added classes.
In Table 6-2, Class WindAxis is removed, but it does not affect the rest of the
system because no other classes depended on this class. Classe ToolTipsCollection is
removed and one class depends on this class with one coupling. Class ToolTip is removed
and one class depends on this class with six couplings. Even if only one class depends on
the removed classes, we still need to test the effect of the removed classes because this
one class may trigger riffle effects to other classes in the system.

Table 6-2: Removed classes from 0.9.3
 CCC SCC
Class Fan-out Fan-in Fan-out Fan-in
WindAxis 2 0 6 0
ToolTipsCollection 0 1 0 1
ToolTip 0 1 0 6

96
6.2 Modified Classes
 We compare CCC fan-in and fan-out couplings between 0.9.3 and 0.9.4 to see if
there are changes in terms of the number of coupled classes. Table 6-3 shows the changed
classes that have big differences in terms of the number of coupled classes. As shown in
Table 6-3 (a), class ChartFactory depends on 15 new classes; there are only 2 classes
depend on more than 3 new classes, but 4 classes decrease the number of coupled classes
in version 0.9.4.
Table 6-3: Changed classes with at least 3 differences.
CCC(Fan-out) 0.9.3 0.9.4 Change
ChartFactory 38 53 15
StandardLegendItemLayout 2 6 4
AbstractXYItemRenderer 6 9 3
AreaCategoryItemRenderer 2 5 3
DateAxis 5 8 3
HorizontalDateAxis 9 12 3
StandardCategoryToolTipGenerator 1 4 3
ChartUtilities 6 3 -3
StandardLegend 5 2 -3
JThermometer 4 0 -4
StackedHorizontalBarRenderer 5 1 -4

(a) Changed classes with big difference of fan-out (CCC)
CCC(Fan-in) 0.9.3 0.9.4 Change
LegendItemCollection 1 13 12
CategoryURLGenerator 2 13 11
LegendItem 3 10 7
EntityCollection 20 24 4
StandardCategoryToolTipGenerator 0 4 4
TickUnits 3 7 4
CategoryPlot 7 10 3
DateTickUnit 0 3 3
Plot 17 20 3
StackedVerticalBarRenderer3D 10 1 -9
(b) Changed classes with big difference of fan-in (CCC)

97
In Figure 6-3 (b), classes LegendItemCollection, CategoryURLGenerator, and
LegendItem in version 0.9.4 depend on more than 7 new classes and 9 classes stop
depending on class StackedVerticalBarRenderer3D. Table 6-4 and Figure 6-1 summarize
fan-in/out differences in these two versions. CCC represents the number of coupled
classes and SCC represents the coupling strength.

Table 6-4: Fan-in/out differences in two versions
Average Min Median Max
0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4 0.9.3 0.9.4
Fan-in 2.9 3.1 0 0 1 1 36 38 CCC
Fan-out 2.9 3.1 0 0 2 2 38 53
Fan-in 12.8 16.2 0 0 3 3 255 398 SCC
Fan-out 12.8 16.2 0 0 3 2 331 447

Figure 6-1: Average coupling comparison of changed classes

Average Coupling
0
2
4
6
8
10
12
14
16
18
CCC SCC
0.9.3
0.9.4

98
Fan-in coupling distribution (CCC)
0
50
100
150
200
250
Number of fan-in coupling
Nu
m
be
r o
f c
las
s
0.9.3 198 25 8 3 1 0 0 1
0.9.4 210 25 13 3 1 1 0 1
0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40
Fan-out coupling distribution (CCC)
0
50
100
150
200
250
Number of fan-out coupling
Nu
m
be
r o
f c
las
s
0.9.3 195 34 5 1 0 0 0 1 0 0 0
0.9.4 209 33 10 1 0 0 0 0 0 0 1
0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

(a) Fan-in coupling distribution

(b) Fan-out coupling distribution

Figure 6-2: Coupling (CCC) distribution in two versions

99
Fan-in coupling distribution (SCC)
0
50
100
150
200
250
Number of fan-in coupling
Nu
m
be
r o
f c
ou
pl
in
g
0.9.3 207 14 6 4 1 3 0 0 1 1 0 0 0 0 0
0.9.4 220 16 6 4 2 1 1 1 0 0 1 0 0 1 1
0-25 26-50 55-75 76-100 101-125 126-150 151-175 176-200 201-225 226-250 251-275 276-300 301-325 326-350 351-375
 (a) Fan-in coupling distribution
Fan-out coupling distribution (SCC)
0
50
100
150
200
250
Number of fan-out coupling
Nu
m
be
r o
f c
ou
pl
in
g
0.9.3 202 22 7 1 1 0 2 0 1 0 0 0 0 0 0
0.9.4 212 24 10 2 1 0 2 0 0 0 0 0 0 1 2
0-25 26-50 55-75 76-100 101-125 126-150 151-175 176-200 201-225 226-250 251-275 276-300 301-325 326-350 351-375

(b) Fan-out coupling distribution
Figure 6-3: Coupling (SCC) distribution in two versions

100
When JFreeChart evolves from 0.9.3 to 0.9.4, the average number of coupled
classes is increased from 2.9 to 3.1 and the average coupling strength is increased from
12.8 to 16.2. This result means that, in version 0.9.3, each class depends on 2.9 classes on
average and references/uses other classes about 12.8 times. Each class, in version 0.9.4,
depends on 3.1 classes on average and references/uses other classes about 16.2 times.
Therefore, we can say that version 0.9.4 is more difficult to reuse and maintain than 0.9.3.
Figures 6-2 and 6-3 summarize fan-in/out coupling distributions for these two
versions. There are classes with high coupling metrics which we need to pay more
attention and monitor their changes. Figure 6-2 shows fan-in/out coupling distributions in
terms of the number of classes. Most classes have coupled to fewer than 5 classes.
Figure 6-3 shows fan-in/out coupling distribution in terms of the number of actual
couplings. It is a distribution of the SCC metrics. Most classes have fewer than 25
couplings and only very few classes have high couplings.

101
6.3 Reusable Unit and Maintainable Unit
Reusable unit is a collection of a target class and its related classes we should
reuse together. Identifying a reusable unit means that each class has its own reusable unit
with other classes which the class depends on. The identification of a reusable unit of
classes requires an understanding of the relation of classes in a software system. A
maintainable unit contains a target class and its related classes we should test together.
Reusable unit and maintainable unit are necessary to understand software
structure and, more importantly, to serve as a source of information for reuse and
maintenance.
Figure 6-4 shows the reusable units in versions 0.9.3 and 0.9.4. From these
reusable units, progression of the reusable units are captured. For example, class
AbstractCategoryItemRender depends on 5 classes (StandardCategoryToolTipGenerator,
CategoryRender, CategoryToolTipGenerator, AbstractRender, CategoryURLGenerator)
in version 0.9.3, which make a unique reusable unit, but 2 new classes (CategoryDataset,
LegendItem) are added into the reusable unit in version 0.9.4.

102

(a) Reusable unit in version 0.9.3
 (b) Reusable unit in version 0.9.4
Figure 6-4: Reusable unit

103

(a) Maintainable unit in version 0.9.3

(a) Maintainable unit in version 0.9.4
Figure 6-5: Maintainable unit

104
Figure 6-5 shows maintainable units in two versions. From these maintainable
units, we can capture the progression how classes depend on a particular class. For
example, class DateTickUnit has no classes that depend on it in version 0.9.3, but 2
classes (DateAxis. HorizonDateAxis) depend on it in version 0.9.4
6.4 Connected Unit
 In a connected unit table, directly and indirectly coupled classes are located in the
same column, thus a set of classes in the same column is a connected unit. Figure 6-6
shows part of connected units of JFreechart in two versions. From these connected units,

(a) Connected unit in 0.9.3 (b) Connected unit in 0.9.4
Figure 6-6 : Connected units in two versions

105
we find that version 0.9.3 establishes a main connected unit which has 224 classes out of
a total of 257 classes as shown in column A in Figure 6-6 (a), and a minor connected unit
with 3 classes in column D of Figure 6-6(a). The three classes
(StandardToolTipsCollection, ToolTip, and ToolTipsCollection) belong to the same
package named "com.jrefinery.chart.tooltips". There are also 11 independent classes, e.g.,
DatasetChangeListener in column E, which have no relation to other classes in Figure 6-
6(a). The independent classes are listed in Table 6-5.
 We also find that version 0.9.4 has a main connected unit with 254 classes out of a
total of 275 as shown column A in Figure 6-6 (b), and a minor connected unit with 3
classes in column K of Figure 6-6 (b). These three classes (Function2D, LineFunction2D,
PowerFunction2D) belong to the same package named "com.jrefinery.data ". There are
18 independent classes which have no relation to other classes in Figure-6(b). The
independent classes are listed in Table 6-5.
6.5 Comparing of Coupling Type
 We compare the types of fan-in and fan-out couplings to see which type of the
coupling is most affected by the evolution from version 0.9.3 to version 0.9.4. Seven
types of couplings for these two versions are partially shown in Figure 6-7 and their
actual metrics are shown in Table 6-6. Something very noticeable here is that 48% (1413
out of 3024 in version 0.9.3) and 53% (2192 out of 4111 in version 0.9.4) of the
couplings are IM (Invoked Method Type) while none of them is RV (Referenced
Variable).

106
Table 6-5: Independent classes in two versions
0.9.3 (11 classes) 0.9.4 (18 classes)
JFreeChartInfo, PlotException,
DatasetChangeListener, Values,
XisSymbolic,YisSymbolic,
DataPackageResources,
DataPackageResources_de,
DataPackageResources-es,
DataPackageResources_fr,
DataPackageResources_pl
DataUnit, JFreeChartInfo,
PlotException, ChartChangeListener,
LegendChangeListener,
lotChangeListener, TitleChangeListener,
JFreeChartResource,
DatasetChangeListener, Regression,
Values, XisSymbolic, YisSymbolic,
DataPackageResources,
DataPackageResources_de,
DataPackageResources-es,
DataPackageResources_fr,
DataPackageResources_pl

Every coupling metric type has increased from version 0.9.3 to version 0.9.4, and
the average increasing rate of the coupling is 35.95%. In particular, Method Invocation
type (IM) has increased 55.48%, which is 72.13% (784 out of 1087) of the total number
of the increased. This implies that the most significant difference is Method Invocation
coupling between these two versions.
Table 6-6: Comparison of Fan-in and fan-out Coupling Types
Version Fan-in/out coupling
0.9.3 0.9.4
Increased Increasing rate
TA 70 83 13 18.57%
TM 221 297 76 34.39%
TL 495 594 99 20%
IM 1,413 2,197 784 55.48%
MP 634 733 99 15.62%
RV 0 0 0 0%
PC 191 207 16 8.38%
Total 3024 4,111 1,087 35.95%

107

(a) Fan-in coupling in version 0.9.3 (a) Fan-in coupling in version 0.9.4

(c) Fan-out coupling in version 0.9.3 (d) Fan-out coupling in version 0.9.4
Figure 6-7: Fan-out/Fan-out coupling

108

6.6 Size and Complexity
 Four size and one complexity metrics for these two versions are partially shown
in Figure 6-8 and their differences are in Table 6-7. The metrics have all increased from
version 0.9.3 to version 0.9.4. Figure 6-9 graphs the LOCC distributions these two
versions, and it is clear that most classes have fewer than 50 lines.

(a) Size & complexity in version 0.9.3 (a) Size & complexity in version 0.9.4

Figure 6-8: Size & complexity

109
Table 6-7: Size & complexity differences
Version Size & complexity
0.9.3 0.9.4
Increased Increasing rate
LOCC 9,820 11,287 1,467 14.94%
nMC 2,040 2,302 262 12.84%
nAC 822 910 88 10.71%
aLOCM 944 1,087 143 15.15%
aCX 106 118 12 11.32%

Table 6-8: Cohesion differences
Version Cohesion
0.9.3 0.9.4
Increased Increasing rate
MI 756 1,028 272 35.98%
AR 2,551 2,867 316 12.39%
Total 3,307 3,895 588 17.78%
LOCC
0
20
40
60
80
100
120
140
160
180
Lines of class
Nu
m
be
r o
f c
las
s
0.9.3 166 40 22 3 1 3 0 1 0
0.9.4 161 39 22 6 3 4 0 1 0
0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450
 Figure 6-9: LOCC distribution

110

(a) Cohesion in version 0.9.3 (a) Cohesion in version 0.9.4
Figure 6-10: Cohesion

6.7 Cohesion
 Cohesion metrics for the two studied versions are partially shown in Figure 6-10
and their differences are in Table 6-8. Something noticeable is that 77% (2,551 out of
3,307 in version 0.9.3) and 74% (2,867 out of 3,895 in version 0.9.4) of the cohesion are
AR (Attribute Reference) while MI (Method Invocation) has increased 35.98% in version
0.9.4.

111

6.8 Summary
The goal of this case study is to compare and analyze two versions of JFreeChart
at class level. Specifically, it aims to answer the following questions:
o How does the architecture of JFreeChart change between two consecutive
versions?
o How can the differences between them be compared and detected?
o How can the huge information of source code be filtered and compared?
In this case study, we analyzed the differences between the metrics of two
versions using JamTool and found overall trend of metrics of JFreeChart in versions
0.9.3 and 0.9.4.
From the comparison and analysis of two versions of JFreeChart, we summarize
the following findings:
o 21 classes were added to version 0.9.4
o 3 classes were removed from version 0.9.3
o 44 classes have new fan-out couplings and 60 classes have new fan-in
couplings in version 0.9.4.
o Most classes have low fan-in or fan-out couplings but few classes have high
coupling.
o By comparing reusable units and maintainable units in version 0.9.3 and
version 0.9.4, we found newly added classes to the reusable unit and
maintainable unit.

112
o By analyzing connected unit, we found that most classes are directly or
indirectly related to each other and they form one main connected unit. But we
also found minor connected units with 3 classes, and 11 and 18 independent
classes which have no relations to other classes in versions 0.9.3 and 0.9.4,
respectively.
o More than half of the newly added couplings were Method invocation.
o Size and complexity metrics are also increased in 0.9.4.
Based on the findings above, we conclude that the metrics tables produced by
JamTool can be used in the following tasks:
o To monitor new coupling through evolution of the software system.
o To identify outlier classes based on the metrics

113
7 IDENTIFYING CORRELATION AMONG METRICS
This chapter presents empirical studies that investigate if the metrics defined and
implemented in JamTool are related to each other. The data sets used for the study are
also presented. Finally, the statistical correlation coefficients are described.
Statistical analyses were performed to investigate the following questions:
? Are there correlations in the metrics?
The test programs used in this research are Java classes in the GUI library (i.e.,
Swing in JFC) and GUI applications (i.e., Bingo and Netbean). Metrics for these classes
were automatically collected using JamTool. These applications were written by
developers in the Sun Microsystems. The test programs used in this experiment are
grouped as follows:
SwingLib = {classes in Swing package in JFC},
BingoAppl = {classes in Bingo application},
NetbeanAppl = {classes in Netbean application},
SwingLib contains 502 classes; BingoAppl has 48 classes; NetbeanAppl has 52
classes.
JFC/Swing
The Java Foundation Classes (JFC) is a comprehensive set of GUI components
and services which simplify the development and deployment of desktop and

114
Internet/Intranet applications. JFC extends the original Abstract Window Toolkit (AWT)
by adding a comprehensive set of graphical user interface class libraries.
These components are written in Java, without window-system-specific code.
They facilitate a customizable look-and-feel without relying on the native windowing
system, and simplify the deployment of applications.
Swing is a GUI component kit and is part of JFC integrated into Java 2 platform-
Standard Edition (J2SE). Swing simplifies deployment of applications by providing a
complete set of user-interface elements written entirely in Java. Swing components also
permits a customizable look and feel without relying on any window specific
components. We shall demonstrate our approach by considering code using the
JFC/Swing library.
Bingo

Bingo is a client/server application that implements the game of BINGO and a
comprehensive example of JFC provided by the Sun Microsystems. This application
broadcasts information via a multicast socket, builds its GUI with Swing components,
uses multiple synchronous threads, and communicates with RMI.
NetBean

The NetBean IDE is a development environment - a tool for programmers to
write, compile, debug and deploy programs. It is a development tool written in Java for
writing programs in Java and other programming languages.

115
7.1 Methodology
7.1.1 Experiment 1: Correlation Coefficients among the metrics
The goal of this statistical analysis is to answer the question:
? Are any of the metrics in a group (i.e., SwingLib, BingoAppl, and
NetbeanAppl) correlated?
The Pearson product moment correlation coefficient, r, is a dimensionless index
that ranges from ?1.0 to 1.0 inclusive and reflects the extent of a linear relationship
between two data sets. For example, if the r value associated with Metric1 and Metric2 is
close to zero, then the metric values of Metric1 and Metric2 are not linearly related. On
the other hand, if r is close to 1, then large values of Metric1 are associated with large
values of Metric2. Finally, if r is close to ?1, then large values of Metric1 are linearly
associated with small values of Metric2. The sign of the correlation coefficient indicates
whether two variables are positively or inversely related. A negative value means that as
Metric1 becomes larger, Metric2 tends to become smaller. A positive correlation means
that both Metric1 and Metric2 go in the same direction.
7.1.2 Experiment 2: Correlation Coefficients among the coupling metrics in a
group
The goal of this statistical analysis is to answer the question:
? Are any of the coupling metrics in a group (i.e., SwingLib, BingoAppl, and
NetbeanAppl) correlated?
In this experiment, we analyze the correlation among the fan-in and fan-out
coupling metrics from SwingLib, BingoAppl, and NetbeanAppl to find internal features of

116
each system.
In this chapter, we apply metrics defined in Section 3.3. For example, LOC
measures number of lines in a class.
7.2 Results
Sections 7.2.1 and 7.2.2 provide the results for each of the statistical analyses
described in section 7.1. First, section 7.2.1 discusses the correlation among the metrics
in a group. Section 7.2.2 discusses the analysis results for the correlation among coupling
metrics in a group.
7.2.1 Result 1: Correlation among the metrics in a group
This section answers the following question:
? Are any of the metrics in SwingLib, NetBeanAppl, and BingoAppl correlated?
Tables 7-1, 7-2, and 7-3 show the correlation coefficients for the metrics and
Table 7-4 shows metrics pairs with r values greater than 0.6. In the traditional procedural
programming paradigm, studies show that defects correlate with LOC and Cyclomatic
complexity [49, 50].
From the correlation results of SwingLib and NetbeanAppl (See Table 7-1 and 7-
2), we found common correlation patterns.
Except for aLOCM, size metrics (i.e., LOC, NOM, NOA), complexity metrics
(i.e., aCx), and cohesion metrics (i.e., cohMI, cohAR) are positively correlated to each
other. Coupling metrics are positively correlated to each other except cplPC and cplMI.
 LOC, NOM, and NOA are representatives of the size of a class; however aLOCM

117
represents the averaged method size in a class.
Size, complexity and cohesion metrics are correlated to each other. But coupling
metrics are not correlated to other metrics like size, complexity and cohesion. Size,
complexity and cohesion metrics represent the volume within a class, but coupling
metrics represent the structure among classes in a system. These two aspects of software
system, obviously, are not correlated.
From the correlation results of BingoAppl (See Table 7-3), Size metrics and
complexity metrics are correlated to each other but cohesion metrics are independent
from other metrics. Some coupling metrics (cplTA, cplMI, and cplTPM) are correlated to
size and complexity metrics. aLOCM and cplPC are independent from other metrics.

Table 7-1: Correlation Coefficients of metrics in SwingLib
 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC
LOC 1.00
NOM 0.94 1.00
NOA 0.70 0.66 1.00
aLOCM 0.31 0.12 0.15 1.00
aCx 0.95 0.87 0.64 0.23 1.00
cohMI 0.85 0.81 0.72 0.15 0.83 1.00
 cohAR 0.82 0.77 0.73 0.17 0.79 0.76 1.00
cplTA 0.34 0.33 0.27 0.07 0.33 0.25 0.27 1.00
cplTP 0.35 0.39 0.20 0.04 0.28 0.29 0.20 0.50 1.00
cplTL 0.38 0.33 0.24 0.08 0.42 0.31 0.26 0.50 0.52 1.00
cplMI 0.52 0.47 0.34 0.16 0.51 0.42 0.47 0.52 0.50 0.89 1.00
cplTPM 0.40 0.33 0.33 0.07 0.45 0.38 0.34 0.43 0.44 0.85 0.77 1.00
cplPC 0.15 0.15 0.17 0.07 0.17 0.15 0.13 0.18 0.21 0.24 0.20 0.20 1.00

118
Table 7-2: Correlation Coefficients of metrics in NetbeanAppl
 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC
LOC 1.00
NOM 0.95 1.00
NOA 0.67 0.61 1.00
aLOCM 0.28 0.05 0.20 1.00
aCx 0.91 0.86 0.49 0.29 1.00
cohMI 0.84 0.89 0.49 0.09 0.86 1.00
cohAR 0.81 0.79 0.81 0.16 0.69 0.65 1.00
cplTA -0.11 -0.05 -0.14 -0.27 -0.08 -0.06 -0.11 1.00
cplTP -0.03 0.05 -0.19 -0.31 0.02 0.08 -0.12 0.90 1.00
cplTL 0.06 0.12 -0.15 -0.17 0.12 0.16 -0.02 0.87 0.88 1.00
cplMI 0.32 0.32 0.16 -0.02 0.36 0.35 0.20 0.19 0.25 0.28 1.00
cplTPM 0.06 0.14 0.07 -0.25 0.03 0.19 0.06 0.86 0.85 0.83 0.21 1.00
cplPC 0.35 0.40 0.06 -0.02 0.47 0.39 0.37 0.17 0.22 0.33 0.18 0.17 1.00

Table 7-3: Correlation Coefficients of metrics in BingoAppl
 LOC NOM NOA aLOCM aCx cohMI cohAR cplTA cplTP cplTL cplMI cplTPM cplPC
LOC 1.00
NOM 0.84 1.00
NOA 0.82 0.64 1.00
aLOCM 0.46 0.12 0.32 1.00
aCx 0.88 0.68 0.58 0.34 1.00
cohMI -0.06 -0.10 -0.16 0.13 -0.03 1.00
cohAR 0.03 -0.04 -0.08 0.20 0.04 0.92 1.00
cplTA 0.87 0.73 0.67 0.25 0.80 -0.11 -0.05 1.00
cplTP 0.52 0.53 0.36 0.09 0.51 -0.12 -0.11 0.71 1.00
cplTL 0.12 0.06 0.09 0.14 0.11 0.04 -0.04 0.14 0.37 1.00
cplMI 0.78 0.60 0.74 0.40 0.61 0.15 0.21 0.75 0.52 0.04 1.00
cplTPM 0.75 0.42 0.87 0.37 0.57 -0.08 -0.02 0.71 0.39 0.06 0.84 1.00
cplPC -0.22 -0.06 -0.16 -0.42 -0.19 -0.16 -0.14 -0.19 -0.22 -0.30 -0.21 -0.21 1.00

119
Table 7-4: Pairs in SwingLib, NetbeanAppl, and BingoAppl with r-value > 0.6
r value r value
Pair Swing
Lib
Netbean
Appl
Bingo
Appl
Pair Swing
Lib
Netbean
Appl
Bingo
Appl
LOC and
NOM 0.94 0.94 0.84
NOA and
cplTA 0.67
LOC and
NOA 0.70 0.70 0.82
NOA and
cplMI 0.74
LOC and
aCx 0.95 0.95 0.88
NOA and
cplTPM 0.87
LOC and
cohMI 0.85 0.85
aCx and
cohMI 0.83 0.83
LOC and
cplTA 0.87
aCx and
cplTA 0.80
LOC and
cohAR 0.82 0.82
aCx and
cplMI 0.61
LOC and
cplMI 0.78
aCx and
cohAR 0.79 0.79
LOC and
cplTPM 0.75
cohMI
and
cohAR
0.76 0.76
NOM and
NOA 0.66 0.66
cplTL and
cplMI 0.89
NOM and
aCx 0.87 0.87
cplTA and
cplTP 0.89 0.71
NOM and
NOA 0.64
cplTA and
cplMI 0.75
NOM and
aCx 0.68
cplTA and
cplTL 0.86
NOM and
cplTA 0.73
cplTA and
cplTPM 0.95 0.71
NOM and
cohMI 0.81 0.81
cplMI and
cplTPM 0.84
NOM and
cohAR 0.77 0.77
cplTP and
cplTL 0.88
NOA and
aCx 0.64
cplTP and
cplTPM 0.85
NOA and
cohMI 0.72
cplTL and
cplTPM 0.86 0.77
NOA and
cohAR 0.73 0.73
cplMI and
cplTPM 0.77

120
7.2.2 Result 2: Correlation among the coupling metrics in a group
We have found the followings from the previous experiments:
? Size, complexity and cohesion metrics are correlated to each other with some
exceptions.
? Coupling metrics are relatively independent from other metrics (i.e., size,
complexity, and cohesion)
? Some coupling metrics are correlated to each other.
In this experiment, we also measure fan-in and fan-out coupling metrics for each
software system and analyze the measurement results. We collect and analyze the
measurement results from SwingLib, NetbeanApp, and BingoAppl. In this section, we
add in and out to the end of the metrics name to indicate fan-in and fan-out coupling
instead prefix cpl. For example, TAin represents fan-in coupling with cplTA type.
In Tables 7-5, 7-6 and 7-7, some fan-in coupling metrics are positively correlated
to each other and some fan-out coupling metrics are positively correlated to each other as
well. However, fan-in coupling metrics are not correlated to fan-out coupling metrics.
The following are our interpretation of the measurement results in this
experiment.
? All fan-in coupling metrics are correlated with each other and all fan-out
coupling metrics are correlated with each other except PCin, PCout, and
TMout.
o There are two types of classes in SwingLib: fan-in coupled classes and
fan-out coupled classes. Fan-in coupled classes are used by (i.e.,

121
export) other classes, but do not use (i.e., import) other classes. Fan-
out coupled classes use other classes, but are not used by other classes.
o Fan-in coupled classes in SwingLib are used by other classes with
diverse connection types.
o Fan-out coupled classes in SwingLib use other classes with diverse
connection types.
o Classes in SwingLib are designed with a specific role ? import or
export.
? In BingoAppl and NetbeanAppl not all fan-in coupling metrics are correlated
to each other and not all fan-out coupling metrics are correlated to each other
either.
? There is no correlation between fan-in and fan-out coupling metrics in
SwingLib, NetbeanAppl, and BingoAppl.

122
Table 7-5: Correlation of coupling metrics in SwingLib
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout
TAin 1.00
TMin 0.72 1.00
TLin 0.84 0.72 1.00
IMin 0.76 0.59 0.89 1.00
IMPin 0.78 0.60 0.75 0.68 1.00
PCin 0.08 0.38 0.12 0.08 0.09 1.00
TAout 0.12 0.06 0.13 0.18 0.09 0.08 1.00
TMout 0.08 0.05 0.13 0.27 0.07 0.05 0.57 1.00
TLout 0.02 0.00 0.05 0.09 0.03 0.08 0.58 0.52 1.00
IMout 0.01 -0.02 0.03 0.09 0.02 0.08 0.60 0.50 0.89 1.00
IMPout 0.01 -0.02 0.03 0.05 0.08 0.02 0.49 0.44 0.85 0.77 1.00
PCout 0.21 0.16 0.25 0.22 0.26 -0.02 0.19 0.21 0.24 0.20 0.20 1.00
Table 7-6: Correlation of coupling metrics in NetbeanAppl
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout
TAin 1.00
TMin 0.97 1.00
TLin 0.96 0.96 1.00
IMin 0.28 0.28 0.28 1.00
IMPin 0.92 0.89 0.88 0.23 1.00
PCin 0.28 0.29 0.30 0.07 0.23 1.00
TAout -0.10 -0.12 -0.05 -0.09 -0.04 0.00 1.00
TMout -0.08 -0.09 -0.12 -0.05 -0.09 -0.01 0.36 1.00
TLout -0.07 -0.08 -0.10 -0.03 -0.11 0.33 0.24 0.51 1.00
IMout -0.11 -0.10 -0.15 0.01 -0.11 0.30 0.05 0.43 0.61 1.00
IMPout -0.10 -0.11 -0.15 -0.07 -0.12 0.04 0.24 0.59 0.72 0.48 1.00
PCout -0.07 -0.09 -0.10 -0.09 -0.08 -0.03 0.00 0.23 0.13 0.35 0.12 1.00
Table 7-7: Correlation of coupling metrics in BingoAppl
 TAin TMin TLin IMin IMPin PCin TAout TMout TLout IMout IMPout PCout
TAin 1.00
TMin 0.67 1.00
TLin -0.11 0.29 1.00
IMin 0.57 0.47 0.03 1.00
IMPin 0.33 0.53 0.39 0.19 1.00
PCin -0.23 -0.16 -0.14 -0.32 0.00 1.00
TAout 0.46 0.49 -0.14 0.34 0.49 -0.22 1.00
TMout 0.11 0.06 -0.16 0.11 -0.19 -0.18 0.33 1.00
TLout 0.24 0.13 -0.13 -0.09 -0.02 -0.17 0.34 0.51 1.00
IMout 0.36 0.36 -0.15 0.25 0.37 -0.18 0.90 0.43 0.57 1.00
IMPout 0.33 0.14 -0.16 0.29 0.20 -0.19 0.61 0.26 0.37 0.64 1.00
PCout 0.16 -0.01 -0.24 0.14 -0.23 -0.16 0.08 0.04 0.03 0.11 0.04 1.00

123

8 CONCLUSIONS
The primary objective of this research is to provide an automated measurement
tool (i.e., JamTool) to guide a programmer for software reuse and maintenance.
Measuring how well software components can be reused and maintained helps
programmers not only write reusable and maintainable software, but also identifies
reusable or fault-prone components.
The following research contributions have been achieved in this study.
Quality Measurement Model Development
We developed a quality model that leads to a metric set implemented in JamTool.
We first identified essential software properties that have been suggested as having an
impact on software reusability and maintainability. Then we divided these quality factors
into five subfactors (i.e., identification, separation, modification, validation, and
adaptation) in a top-down fashion. We also applied bottom-up approach to develop
quality measurement models for reusability and maintainability based on available
measurement types that are related to reuse and maintenance properties. Using these top-
down and bottom-up approaches, we constructed a concise quality measurement model
for reusability and maintainability.
Automated Measurement Tool
An automated measurement tool, JamTool, for object-oriented software

124
system was developed in this work. This research describes how this tool can guide a
programmer through measuring internal characteristics of a program for software reuse
and maintenance.
In this work, primitive but comprehensive metrics for object-oriented language
have been extensively studied and statistically analyzed to show internal characteristics
from the classes selected from various applications. The automatically identified
connected units, reusable units, and maintainable units have been discussed.
JamTool?s capabilities have been demonstrated through case studies.
1. Measuring Quality on Software Evolution: It shows that the metrics defined
and implemented by JamTool can be used to assess the quality on the
evolution of a software system.
2. Visualizing Software Evolution: The evolution track-table visualizes the
evolution of a software system.
3. Analyzing Software for Reuse and Maintenance: It shows how the
architecture of a software system changes between two consecutive versions.
It also shows the usage of connect unit, reusable unit, and maintainable unit.
4. Identifying Correlation among Metrics: It shows the correlation among the
metrics defined and implemented by JamTool.
The first case study investigated whether JamTool can be used to assess the
reusability of an open software system, JFreeChart, over its evolution with fan-in and
fan-out couplings for added and removed classes. We found that the number of classes
increases gradually over most releases, and they have positive improvement with respect

125
to the coupling metrics but not positively related to the cohesion. It has also been found
that evolution of this software system is consistent with Lehman's 1st, 2nd, and 6th laws
of software evolution. We found that the added classes have higher fan-in coupling and
lower fan-out coupling comparing to the removed classes, which is desirable in term of
reusability. This observation leads us to believe that the reusability of JFreeChart has
improved along with its evolution and reject Lehman's 7th laws of software evolution. In
this way, applying metrics from JamTool over the evolution of software can aid a
software engineer to understand how a system has evolved over time.
The second case study investigated whether JamTool can be used to capture the
difference between two consecutive versions on the evolution of JFreeChart. Based on
the findings in this case study, we conclude that the metrics tables produced by JamTool
can be used in the following tasks:
o To monitor the new coupling through evolution of the software system.
o To identify outlier classes based on the metrics
The third case study investigated whether the metrics defined and implemented in
JamTool are related to each other. We have found the followings from this case study:
o Size, complexity and cohesion metrics are correlated to each other with some
exceptions.
o Coupling metrics are relatively independent from other metrics (i.e., size,
complexity, and cohesion)
o All fan-in coupling metrics are correlated with each other and all fan-out
coupling metrics are correlated with each other except PCin, PCout, and

126
TMout.
o There is no correlation between fan-in and fan-out coupling metrics.
Consequently, having achieved our goal of providing an automated source code
measurement environment, we demonstrated that our tool, JamTool, is a valuable tool to
help software engineers understand and explore software reuse and maintenance.
There are several aspects to the work presented in this dissertation that offer potential
for future research. Some of these areas are listed below.
1. Object-oriented metrics and connected units can be used to automate the
recognition of design patterns in existing software components. A specific
area for future research is to characterize the structure of design patterns and
use design metrics and clusters to recognize pattern structures in existing
object-oriented software libraries and systems.
2. To analyze features of application domains: After the analysis of the
measurement results of various application domains, common features of each
domain may be derived.

127

BIBLIOGRAPHY

[1] Alshyeb, M., Li, W., ?An empirical study of system design instability metric and
design evolution in an agile software process?, The Journal of Systems and Software 74,
2005, pp 269-274
 [2] Basili, V.R., and Weiss, D.M. ?A Methodology for Collecting Valid Software
Engineering Data,? IEEE Trans. on Software Eng., 10(6), pp. 728-738, 1984.
[3] Berard, E.V., "Essays on object-oriented Software Engineering," Prentice Hall,
Englewood Cliffs, NJ, 1992, 392 pp
[4] Bieman, J.M., and Kang, B-K. ?Cohesion and Reuse in an object-oriented System,?
Proc. ACM Symposium on Software Reusability (SSR?95), pp 259-262, Apr. 1995.
[5] Boehm, B.W. et al., "Characteristic of Software Quality," TRW Series of Software
Technology, Amsterdam, North Holland, 1978.
[6] Booch, G. ?Object Oriented Design with Applications,? Benjamin/Cummings, Menlo
Park, CA, 1991, 580 pp
[7] Briand, L., Morasca, S., and Basili, V. ?Assessing Software Maintainability at the end
of high-level design,? Proc. IEEE Conf. on Software Maintenance (CSM?93), Sep. 1993.
[8] Briand, L., Morasca, S., and Basili, V. ?Defining and Validating High-Level Design
Metrics,? Technical Report, University of Maryland, CS-TR 3301, 1994.
[9] Briand, L., Daly, J., and Wust, J., ?A Unified Framework for Cohesion Measurement
in object-oriented Systems,? Empirical Software Eng.: An Int?l J., vol. 3, no. 1, pp. 65-
117, 1998.
[10] Briand, L., Daly, J., and Wust, J., ?A Unified Framework for Coupling Measurement
in object-oriented Systems,? IEEE Trans. on software eng., vol. 25, no. 1, 1999.

128

[11] Card, D.N., Church, V.E., and Agresti, W.W., ?An Empirical Study of Software
Design Practices,? IEEE Transactions on Software Engineering 12(2), 264-271, 1986.
[12] Chidamber, S.R, and Kemerer, C.F., "A Metrics Suite for object-oriented Design,"
IEEE Trans on Software Eng., vol. 20, no. 6, pp. 476-493, Jun. 1994.
[13] David, G., and Scott, L. ?The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications,? International Conference on Software Maintenance,
1996, pp 134-141
[14] Dromey, G.R. "A Model for Software Product Quality," IEEE Trans. on Software
Eng., vol.21, no.2, pp. 146-162, 1995.
[15] Eder, J., Kappel, G, and Schrefl, M. ?Coupling and Cohesion in object-oriented
Systems,? Technical Report, University of Klagenfurt, 1994.
[16] Fenton, N.E., Iizuka, Y., and Whitty, R.W. ?Software Quality Assurance and
Measurement: A Worldwide Perspective,? ITP, London, 1995.
[17] Fenton, N.E., and Pfleeger, S.L. "Software Metrics - A Rigorous & Practical
Approach," ITP, London, 1997
[18] Fenton, N.E., and Neil, M. ?Software metrics: successes, failures and new
directions,? The Journal of Systems and Software, vol. 47, pp.149-157, 1999.
[19] Fisher, M.J. and Light Jr, W.R. ?Sofwtare Quality Management,? Petrocelli Books,
New York, 1979.
[20] Gray, A., and MacDonell, S.G. ?GQM++ A Full Life Cycle Framework for the
Development and Implementation of Software Metric Programs,? In Proceedings of
ACOSM ?97 Fourth Austrailian Conference on Software Metrics, Canberra, Austrailia,
ASMA, pp. 22-35, 1997.
[21] Harrison, W., Magel, K., Kluczny, R., and DeDock, A. "Applying Software
Complexity Metrics to Program Maintenance," IEEE Computer, vol. 15, pp. 65-79, 1982.
[22] Henderson-Sellers, B., Moser, S., Seehusen, S., and Weinelt, B. ?A proposed
multidimensional framework for object-oriented metrics, measurement ? for improved IT
management,? Proc. First Australian Conf. Software Metrics, ACOSM ?93, J.M. Verner,
ed. 24-30, 1993.
[23] Henderson-Sellers, B "Object-Oriented Metrics, Measures of Complexity," Prentice
Hall, New Jersey, 1996.
[24] ISO 9126 Information Technology - Software Product Evaluation - Quality

129
Characteristics and Guidelines for Their Use, International Organization for
Standardization, Geneva, 1992.
[25] http://www.jfree.org/jfreechart/
[26] Karlsson, E. "Software Reuse - A Holistic Approach," JohnWiley & Sons, England,
1995.
[27] Kitchenham, B.A., Fenton, N.E., and Pfleeger, S.L. ?Towards a Framework for
Software Measurement Validation,? IEEE Trans. Software Eng., vol. 21, no. 12, pp. 929-
944, 1995.
[28] Kitchenham, B.A., and Pfleeger, S.L. "Software Quality: The Elusive Target," IEEE
Software, vol. 13, no.1, pp. 12-21, 1996.
[29] Lee, Young, Chang, Kai H., Umphress, D., Hendrix, Dean, and Cross, James H.,
?Automated Tool for Software Quality Measurement?, The 13th international conference
on software engineering and knowledge engineering (SEKE), Buenos Aires, Argentina,
June 2001,
[30] Lehman, M., ?Programs, Cities, Students, Limits to Growth?? Inaugural Lecture,
May 1974, Publ. in Imp. Col of Sc. Tech. Inaug. Lect. Ser., vol 9, 1970, 1974, pp 211-229
[31] Lehman, M., ?On Understanding Laws, Evolution and Conservation in the Large
Program Life Cycle?, Journal of Sys. and Software, v. 1, n. 3, 1980, pp 213-221
[32] Lehman, M, ?Laws of Software Evolution Revisited?, Position Paper, EWSPT96,
Oct. 1996, LNCS 1149, Springer Verlag, 1997, pp 108-124
[33] Lehman, M., Ramil, J., Wernick, P., Perry, D., ?Metrics and laws of software
evolution - the nineties view?, Proceedings of the Fourth International Software Metrics
Symposium (1997), Portland, Oregon., page 20
[34] Li, W., and Henry, S. "Object-Oriented Metrics that Predict Maintainability," J. Sys.
Software, 23, pp 111-122, 1993.
[35] Lorenz, M. "Object-Oriented Software Development: A Practical Guide,? Prentice
Hall, NJ, 227 pp, 1993.
[36] MacDonell, S.G. ?Deriving Relevant Functional Measures for Automated
Development Project?, Information and Software Technology 35(9), pp. 499-512, 1993.
[37] Martin, Robert C. Engineering Notebook, C++ Report, Nov-Dec, 1996
[38] Martin, Robert C., Agile Software Development Principles, Patterns, and Practices,
2002, 255 pp

130
[39] McCabe, T. J. "A Complexity Measure," IEEE Trans. on Software Eng., SE-2(4), pp
308-320, Dec. 1976.
[40] McCall, J.A., Richards, P.K., and Walters, G..F. "Factors in Software Quality," vol. 1,
2, and 3, AD/A-049-014/015/055, National Tech. Information Service, Springfield, Va.,
1977.
[41] McQuaid, P.A. "Profiling Software Complexity," Ph.D. Dissertation, Computer
Science and Engineering Dept., Auburn University, 1996.
[42] Moser, S., and Henderson-Sellers, B. ?Object-Oriented Metrics,? Handbook of
object technology, edited-in ?chief, Saba Zamir, Boca Raton, FL, CRC Press, 1999.
[43] Page-Jones, M. "Comparing Techniques by means of Encapsulation and
Connascence," Comm. ACM, 35(10), pp 147-151,1992, pp147-151
[44] Poulin, J. S. ?Measuring Software Reusability,? Third International Conference on
Software Reuse, Nov. 1994.
[45] Rajaraman, C., and Lyu, M.R. "Some Coupling Measure for C++ programs," In
Procs. TOOLS USA '92, Prentice Hall, Englewood Cliffs, NJ, pp. 225-234, 1992.
[46] Reyes, M.L. ?Assessing the reuse potential of objects,? Ph.D. Dissertation,
Computer Science Dept., Louisiana state university, 1998.
[47] Schneidewind, N.F. ?Report on IEEE Standard Software Quality Metrics
Methodology,? Software Engineering Notes. Vol.18,no.3,pp.A-95 ? A-98, July 1, 1993.
[48] Stevens, W.P., Myers, G..J., and Constantine, L.L. ?Structured Design,? IBM Syst. J.,
13(2), pp115-139, 1974.
[49] Walsh, T.J. ?A Software Reliability Study Using a Complexity Measure,? Procs. of
the 1979 Computer Conference, Montville, NJ: AFIPS Press, pp. 761-768, 1979.
[50] Withrow, C. ?Error Density and Size in Ada Software?, IEEE Software, pp26-30,
Jan. 1990.
[51] Zuse, H. ?Software Complexity: Measures and Methods,? Walter de Gruyter, Berlin,
1991.

131
APPENDIX A. Visualization of Software Evolution
Research on how a software system evolves over time is difficult and time
consuming. The enormous amount of work required by analyzing software evolution
makes it difficult without the dedicated tools such as JamTool. Automated environments
could be key factors in conducting a successful empirical study on software evolution.
Moreover, there are two major challenges that must be overcome in software
evolution research. These challenges limit our ability to understand the history of
software systems, thus prevent us from generalizing our observations into software
evolution theory. The first challenge is how to organize the enormous amount of
historical data in a way that allows us to access them quickly and easily. The second
challenge is how to analyze the structural changes of software systems.
To overcome these challenges, we use visualization technique in a form of table to
provide the overview of the evolution history. We observe the evolution history of real
world software system, JFreeChart. This system is investigated to demonstrate the
effectiveness of our approach as an example to demonstrate the use of various
functionalities of JamTool. We also introduce several ways to track and analyze the
software structural changes from past releases.
A.1 Evolution Track Table
In this section we present the global visualization of software evolution using an

132
evolution track table, which is created to visualize the evolution of a software system.
The evolution of classes of a software system can be visualized in an evolution
track table as shown in Figure A-1. This table visualizes each class?s lifecycle for a
software system in Microsoft Excel to achieve various data analysis, and it provides
effective ways to analyze the evolution of the system. Each column of the table represents
a version of the software, while each row represents a class name in each version. To
create the table, we collect and list all class names which are the member of the system at
least once, and display ?1? or ?0? depending on whether or not a class is a member of a
version of the system. In this way, the class name which lasts the longest in the evolution
appears first.
Characteristics of Evolution Track Table
 From an evolution track table, we are able to obtain the following information
regarding the evolution of a system.
? Size of the system
We can find out how many classes are involved in system evolution. The
summation of ?1?s in each column is the number of classes existed in that particular
version of the system. For instance, there are 14 classes in versions 1 and 2 and a total of
25 classes are involved in the evolution in Figure A-1.

133

Figure A-1: Software evolution in an evolution track table

? Removed and added classes
The classes which have been removed or added in a certain version can be easily
Class Names
First Version Last Version
Removed
Classes
Added Classes
Persistent
Classes
 Versions
Added and
Persistent Classes
Number of
classes at each
version
Number of
versions a
class has
survived

134
detected. The difference between two subsequent versions tells us that if a class is
removed or added. If the number is changed from ?1? to ?0? between two consecutive
versions, a class is removed, and if the number is changed from ?0? to ?1?, a new class is
added. For example, in Figure A-1, classes c4, c5, c6, and c7 are removed in version 12
and their absence will leave ?0? on the table from that version on. Classes, c15, c16, c17,
c18, and c19 are newly added to version 6. Therefore, in this example, a total of 13
classes are removed and a total of 11 new classes are added. By detecting the removed
and added classes, we see very easily when/how much the system is changed.
? Persistent classes
Persistent classes have the same lifetime as the whole system. They have stayed
from the beginning to the end. Those classes should be examined since they may be
important in performing key functions of the system as being a part of the original system
design. In Figure 5-8, three classes, c1, c2, and c3 are persistent classes.
? Added persistent classes
Some important added classes have stayed until the last version. They might be
created to upgrade or improve system as being a part of redesign of the system with some
problematic classes removed. In Figure A-1, six classes, c17, c18, c19, c20, c21, and c22
are added persistent classes.
A.2 Tracking Class Evolution
Understanding the evolution of an object-oriented system based on various
versions of source code requires analyzing a vast amount of data since an object-oriented
system has a complex structure consisting of classes, methods, attributes and different

135
kinds of relationships between them rather than simply a set of classes. Using an
evolution track table designed for this study, we provide an approach to understand such
an evolution by detecting and visualizing the evolution pattern that characterizes classes.
Evolution track table helps us understand an overall evolution of a system, discover
problematic parts with unusual measurement values, and visually get a quick
understanding of the analyzed history. Thus, in this case study we present the
visualization of the evolution track table, and explain how this table can be read, thus
how an object-oriented system has evolved into its current state based on the source code.
We use 22 versions of JFreeChart as a target system for this study since
JFreeChart is a long-term open source charting library with many releases.
Size of the System
From the evolution track table along with 22 versions of JFreeChart, we collect
the number of classes, the removed, and the added classes in each version as shown in
Table A-1.
Based on this information, we are able to find out how big the system is and how
many classes are involved in the system evolution. This system started with 139 classes
at version 0.9.0 and ended with 460 classes at version 0.9.21, which means a 333% class
growth.
 The number of classes increases gradually and consistently as new versions
evolve. A total of 569 classes are involved in the evolution. During the evolution, 123
classes are removed while 444 classes are added, which is 3.6 times more than the
removed. In most versions more classes are added than removed. Special attention can be

136
given to versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 since 68% (84 out of 123) of the removed
were removed and 60% (265 out of 444) of the added were added in those particular
versions.
 Table A-1: Number of classes, removed and added
Version of
JFreeChart
No. of
Removed
classes
No. of
Added
classes
Total no.
of
classes
0.9.0 139
0.9.1 1 0 138
0.9.2 0 6 144
0.9.3 0 113 257
0.9.4 3 21 275
0.9.5 22 74 327
0.9.6 0 2 329
0.9.7 1 25 353
0.9.8 0 3 356
0.9.9 43 48 361
0.9.10 11 2 352
0.9.11 0 13 365
0.9.12 5 17 377
0.9.13 0 6 383
0.9.14 3 15 395
0.9.15 0 9 404
0.9.16 2 10 412
0.9.17 19 30 423
0.9.18 1 10 432
0.9.19 9 24 447
0.9.20 0 1 448
0.9.21 3 15 460
Total 123 444

Persistent Classes
Persistent classes have survived through the entire life of a software system. They
can be easily detected by looking at ?1? at all versions and the total number of versions in
the last column. As shown in Figure A-2, they have ?1?s for all versions and ?22? in the

137
last column, which is the number of versions of the target system from 0.9.0 to 0.9.21.
We found out that 84 out of the 138 classes in the first version have survived through the
entire life of the target system, which is about 61 % of the original design classes. From
this result, we see that 54 classes of the original were removed during the evolution.

Figure A-2: Persistent classes

Removed Classes
 From an evolution track table, we can find what classes are removed from

138
which version of the system. The removed classes can be detected by finding the
differences between two subsequent versions from ?1? to ?0? as shown in Figure A-3. In
this way, we found that many classes are removed during the evolution (See Table A-1).
In particular, 22, 43, and 19 classes were removed in versions 0.9.5, 0.9.9, and 0.9.17,
respectively. These data might imply that in those versions the system was aggressively
changed.

Figure A-3: Removed classes

139
Some classes, which were removed in previous version, reappear later, like
classes CategoryToolTipGenerator and StandardCategoryToolGenerator. They are
removed from the system in version 0.9.8, but came back in versions 0.9.18 and 0.9.19,
respectively. Classes StandardXYZToolTipGenerator and XYZToolTipGenerator were
removed in 0.9.16, came back in 0.9.19, and stayed until the last version of the system.
These kinds of interesting changes can be detected by the evolution track table
Added Classes

Figure A-4: Added classes

140

The added classes can be detected by finding the differences between two
subsequent versions from ?0? to ?1? as shown in Figure A-4. In this way, we find how
many classes were newly added into which version of the system during the evolution
(See Table 5-4). In the case of the target system, many classes were added at almost every
version. In particular, there were 113, 74, 48, and 30 classes added to 0.9.3, 0.9.5, 0.9.9,
and 0.9.17, respectively. Some classes like Pie3DPlot and HorizontalMarkerAxisBand
were removed after staying for several versions. From the results of the removed and
added classes, we found that this system had made huge changes in versions 0.9.3, 0.9.5,
0.9.9, and 0.9.17. These versions may need to be specifically investigated

Figure A-5: Added and persistent classes

141

Added Persistent Classes
 Many classes added in the middle of the evolution have stayed until the last
version of the system. We call them ?added persistent classes?. Figure A-5 shows
examples of added persistent classes, and they were added in different versions when the
system was changed from one state to another. Table A-2 displays the number of added
persistent classes and their survival rate in each version. If we compare these with the
number of added classes, we find that a total of 444 classes were added to the system and
349 classes (81.35%: 349 out of 429) have survived till the last.
Table A-2: Number of added persistent classes
Version of
JFreeChart
No. of added
classes
No. of added
persistent classes
Survival rate
0.9.1 0 0
0.9.2 6 3 50%
0.9.3 113 89 78.76%
0.9.4 21 19 90.48%
0.9.5 74 61 82.43%
0.9.6 2 0 0%
0.9.7 25 23 92%
0.9.8 3 3 100%
0.9.9 48 35 72.92%
0.9.10 2 2 100%
0.9.11 13 10 76.92%
0.9.12 17 17 100%
0.9.13 6 6 100%
0.9.14 15 15 100%
0.9.15 9 9 100%
0.9.16 10 9 90%
0.9.17 30 24 80%
0.9.18 10 5 50%
0.9.19 24 19 79.17%
0.9.20 1 1 100%
0.9.21 15 -
Total 429 = 444-15 349 81.35%

142
This is certainly comparable to the persistent classes (61% survival rate of the
original design classes).

A.3 Summary
 From the evolution track table of JFreeChart, we summarize the following
findings:
o Started with 139 classes in version 0.9.0
o Ended with 460 classes (333% growth) in version 0.9.21
o 84 (60%) out of the 139 original classes have stayed until the last version
o 569 classes were involved in whole system evolution
o 123 classes were removed during the evolution
o 444 classes were added during the evolution
o 349 (81%) out of the 429 (444 added classes ? number of classes in the last
version 0.9.21) added classes have stayed until the last version
o Big changes occurred in versions 0.9.3, 0.9.5, 0.9.9, and 0.9.17 in terms of
removed and added classes.
Based on the findings above, we conclude that the evolution track table can be
used in the following tasks:
o To categorize the evolution of classes
We found the groups of persistent, removed, added, and added persistent
classes from the evolution track table of JFreeChart. They characterize the
evolution pattern of the system

143
o To identify unusual evolution pattern of classes
We found that some classes had stayed unusually for only one, two, or
several versions. These dynamic classes need to be analyzed to understand
the architecture of the system.

