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Abstract

In this dissertation, we propose several dynamic worker allocation policies based on
the sojourn time distribution in due-date order fulfillment systems. To establish a sojourn-
based policy, we must be able to compute the sojourn time distribution for an arriving
order and each order in the system. We require the distribution because we must make
a probabilistic statement about the completion time of an order. We need two types of
sojourn time distribution for the system. The first is a steady-state distribution to estimate
the probability of success for an arriving order. The second is the state-dependent sojourn
time distribution, which estimates the probability of success for an order in system.

First, we develop an approximation model for the sojourn time distribution of customers
or orders arriving to an acyclic multi-server queueing network. The model accepts general
interarrival times and general service times, and is based on the characteristics of phase-
type distributions. Distributions produced by the model agree well with those produced by
simulation for a variety of serial and general queueing networks.

Second, we develop an approximation model for the state-dependent sojourn time dis-
tribution of customers or orders in a multi-server queueing system, when interarrival and
service times can take on general distributions. The model is based on the characteristics of
phase-type distributions, and uses a Markov process to represent the all-busy period for a
waiting time distribution. We also discuss how the model might be used to execute dynamic
delivery promises in an order fulfillment system.

Third, we propose several dynamic worker allocation policies to maximize service perfor-
mance of an order fulfillment system. Our policies make use of the state-dependent sojourn
time distribution for an order, which we compute with a model based on phase-type dis-

tributions. Our approach differs from other work on dynamic worker allocation in that we
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focus on service performance as perceived by the customer, instead of traditional system
performance measures such as cycle time, throughput, and WIP. Our results suggest that
order fulfillment systems can significantly improve their service performance by moving the

right number of workers to the right place, at the right time.
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Chapter 1

Introduction

1.1 The order fulfillment system

An order fulfillment system receives orders from points of sale in a continuous stream,
processes them and delivers the finished goods to the customer at a specific time or times
during the day. Manufacturing and production systems and distribution centers are the most
typical order fulfillment systems.

Consider a distribution center in which orders move through three stages — picking,
packing and shipping. Order picking is the task of retrieving items from their storage lo-
cations, and typically involves a worker traveling through the warehouse or an automated
system retrieving the item and delivering it to the next stage via a conveyor or automated
guided vehicle. Packing is the task of preparing items for delivery, and typically involves
consolidating items in an order, packaging them for delivery and labeling the packages. Ship-
ping is the task of staging orders and loading them onto trucks, and typically involves sorting
orders (often on pallets) and building loads on outbound trucks. Orders arrive in this system
throughout the day and are prepared for shipping through the picking and packing processes
by workers. Figure 1.1 illustrates a nominal order fulfillment system, where circles represent

workers.

Completed
Orders Orders
— 00 0 oL N N J >0 © O —
00 00 o000
Picking Packing Shipping

Figure 1.1: A nominal order fulfillment system



In this system, we can view each activity (picking, packing and shipping) as a worksta-
tion and workers in each workstation as servers. Thus we can model the order fulfillment
system as an open queueing network to analyze system performance.

Customers expect a fair price, fast on-time delivery, and high quality in their purchase
of products. Among those customer expectations, we focus on the delivery lead time because
it is the most important function of the order fulfillment system. Customers usually want to
receive their orders as soon as possible. Thus, how companies respond to customer orders is
a matter of primary concern for this system.

In general, when we model a manufacturing or distribution center, we often use cycle
time, throughput and WIP as system performance measures. That is, the objective of
most research is to minimize cycle time, maximize throughput, or perhaps to minimize
WIP. However, these metrics do not directly reflect customer satisfaction and two of them
(throughput and WIP) are of no concern to the customer at all. Throughout our dissertation
we use a performance metric called Nexzt Scheduled Departure (NSD), which was introduced
by Doerr and Gue (2006) to measure customer service in a distribution center. NSD records
the percentage of orders arriving in the 24 hours between cutoff times on successive days
that make it onto the truck in the current day. The cutoff time is established by managers
in the distribution center, and any order arriving before this time is due in the current
day. Doerr and Gue (2006) claim that an increase in the NSD means a direct increase in
customer satisfaction. We might say that NSD is a system performance measure from the
customer’s perspective, and existing metrics such as WIP, cycle time and throughput are

from the manufacturer’s perspective.

1.2 Problem Statement

Our research considers ways in which workers can be allocated dynamically in the few
hours before the truck departure to “flush” the system of orders that are almost completed,

thereby increasing the service performance of the system. Our discussions with distribution



center managers suggest that they are increasingly considering cross trained workers to
achieve operational flexibility, as is often done in manufacturing. To implement worker
allocation correctly, we need to answer the following questions: how many workers should
we move and when?

Simulation experiments on simple policies have led us to consider more complex, but
intuitively appealing, policies based on sojourn time. The idea is to consider the likelihood
(probability) that an order in the system will make it on the next departing truck if the
allocation of workers does not change. When this probability drops below a threshhold
value, then some workers in picking should be moved so as to improve the probability of
success for other, more promising orders.

To establish a sojourn-based policy, we must be able to compute the sojourn time distri-
bution for an arriving order and for each order in the system. Note that this is different from,
and more difficult than, computing the expected sojourn time. We require the distribution
because we must make a probabilistic statement about the completion time of an order. For
example, if an order arrives 3 hours before the truck departs, what is the probability that
the order will make it on that truck? After a time lapse of 1 hour, what is the probability
that the order will make it on that truck? If the probability is below the threshhold, then
we “abandon” some orders and reconfigure the system to help those with a higher chance of
making it on time.

To implement the dynamic worker allocation policies we propose in the dissertation,
we need to know the probability that an order in the system will make it onto the next
departing truck. Because we must be able to compute this probability at any time, we
require the state-dependent distribution of sojourn time, where the state of the system is
defined by the number of busy servers and the number of orders in queue at any workstation.
We develop this model in Chapter 3.

As an intermediate step in the development, we develop an approximation model for the

steady-state distribution of sojourn time for acyclic queueing networks with multiple servers.



In Chapter 2, we show how an order fulfillment system might use this model to establish a
cutoff time that maximizes revenue for premium shipping. In a competitive setting, a firm
wishes to set the cutoff time as late as possible, in order to maximize the number of orders
that could have the option to choose premium shipping; but not so late that the promised
delivery cannot be made. We use our models to show how to make this tradeoff.

In the final major section of the dissertation (Chapter 4), we use the state-dependent
sojourn time distribution models from Chapter 3 to design dynamic worker allocation poli-
cies to improve service performance according to the NSD metric. We test these policies
extensively with simulation to show that, despite intuition to the contrary, it is possible to
improve NSD by moving workers shortly before truck departure. We use the insights gained

from this modeling to suggest a simple, easy-to-implement policy, which is also very effective.

1.3 Contributions

Contribution 1 We develop the first approximation model for steady state sojourn time

distributions in multi-server acyclic queueing networks.

Our steady state sojourn time distribution model extends the work of Asmussen and Mgller
(2001) and You et al. (2002). Given the general interarrival times and general service times
of the system, Asmussen and Mgller (2001) compute waiting time distributions of multi-
server single-stage queues, and You et al. (2002) approximate sojourn time distributions of
single-server serial lines based on the characteristics of phase-type distributions. Because our
system is a multi-server queueing network, we follow the method of Asmussen and Mgller
(2001) for the waiting time distribution of a single-stage with multiple servers, and convolve
all waiting times and service times in the system using the method of You et al. (2002).
Distributions produced by the model agree well with those produced by simulation for a
variety of serial and general queueing networks.

Research on steady state sojourn time distributions for queueing networks with general

interarrival and service times has been addressed by Shanthikumar and Sumita (1988), You

4



et al. (2002) and Yoon (1994), but their studies were limited to the single-server case. Man-
delbaum et al. (1998) develop diffusion approximations for multi-server queueing networks,
but their models assume exponential interarrival and service times. Of course, we can find
an approximation model for the G/G/c queueing network (Curry and Feldman, 2009), but

such models are limited to the expected value of sojourn time.

Contribution 2 We develop the first approximation model for state-dependent sojourn time

distributions in multi-server acyclic queueing networks.

We develop our model based on the characteristics of phase-type distributions and a Markov
process {N(t),t > 0} to model the all-busy period for a waiting time distribution, where the
state is defined as the number of servers in each phase. The state-dependent sojourn time
distribution is determined by the number of other orders ahead of an order, the number of
servers, and the processing rate of the servers. In contrast to the steady state sojourn time
distribution, we do not need to consider the arrival process for the state-dependent sojourn
time distribution because it does not affect the sojourn time distribution of an order already
in the system. If there are k orders ahead of a particular order in a multi-server queueing
system, it can enter service after k+1 different waiting times, so the state-dependent sojourn
time distribution is the sum of all £+ 1 waiting times and the service time. We approximate
each waiting time as a corresponding phase-type distribution based on the Markov process
{N(t),t > 0}, and finally all waiting times and the service time are convolved for the single-
stage queue.

We extend our work to acyclic G/G/c queueing networks based on the single-stage queue
model. First, the state-dependent sojourn time distribution of each workstation is generated
after revising the number of orders in front of it at each workstation based on the expected
sojourn time of each workstation. And then all state-dependent sojourn time distributions
are convolved for the queueing network. We compare distributions generated by the model

with simulation.



Little research has been conducted on state-dependent sojourn time distributions for
single-stage systems. Whitt (1999) and Nakibly (2002) proposed the method of estimating
the waiting time distribution of each customer in a single-stage G/G/c queue. However,
they focus on the waiting time distribution using a normal approximation, and their ap-
proximation models perform well only for a small queue and a large number of servers. Our
single-stage state-dependent sojourn time distribution model focuses on the sojourn time
distribution, not waiting time distribution, and can be applied well to any condition. Our
approximation model is also different from existing methods because we use the character-

istics of the phase-type distribution.

Contribution 3 We show how to allocate workers dynamically in an order fulfillment sys-

tem to improve its service performance.

All of the policies we develop are based on the observation that, without dynamic worker
allocation, some orders will just miss a departing truck, and that shifting workers (in a ware-
housing context) from picking to shipping shortly before the last scheduled truck departure,
could cause some of those orders to ship an entire day earlier than they otherwise would. An
early question in our research was, “By shifting workers away from picking late in the day,
would we hurt performance the nezt day by reducing capacity in picking?” Or, informally,
are we ‘robbing Peter to pay Paul?” In Chapter 4 we show that, indeed, we are robbing
Peter to pay Paul; But Peter still has enough cash: it is possible to improve performance—
significantly, in some conditions—by moving the right number of workers at the right time
everyday.

We test three different policies that use sojourn time distributions, each for a wide range
of parameters, and find that the simplest policy performs just as well as more complicated
ones. Generally speaking, it seems more important to do anything reasonable, rather than
worrying about details of the allocation. We use this observation to construct a very simple
policy based on a simple rule of thumb. This simple policy, performs nearly as well as the

best policy, and it is much easier to implement in practice.



There is a rich literature on workers moving among tasks in a dynamic fashion in
manufacturing and, to a lesser extent, warehousing. It is important to note that in all former
papers that we know of the objective is to minimize cycle time, maximize throughput, or
perhaps to minimize WIP, but these are not directly related to customer satisfaction. We use
NSD as a system performance measure to establish the effect of dynamic worker allocation,
and the test results show that worker allocation can improve customer service. We believe an
important feature of our research is the application of worker allocation models to systems

that are due-date or deadline driven.

1.4 Organization of the dissertation

The remainder of this dissertation is organized as follows. In the next chapter, we in-
troduce an approximation model of steady state sojourn time distributions for multi-server
acyclic queueing networks. In Chapter 3, we present an approximation model of state-
dependent sojourn time distributions for multi-server single-stage queues and acyclic queue-
ing networks. In Chapter 4, we describe dynamic worker allocation policies based on sojourn
time distribution models which were developed in Chapters 2 and 3. In Chapter 5, we offer

conclusions.



Chapter 2
An Approximation Model for Sojourn Time Distributions in Acyclic Multi-server Queueing

Networks

We develop an approrimation model for the sojourn time distribution of customers
or orders arriving to an acyclic multi-server queueing network. The model accepts general
interarrival times and general service times, and is based on the characteristics of phase-
type distributions. Distributions produced by the model agree well with those produced by

simulation for a variety of serial and general queueing networks.



2.1 Introduction

In many order fulfillment systems, the firm makes a delivery promise based on the
time of order receipt. Those ordering before a cutoff time are “guaranteed” delivery by a
particular mode. For example, Amazon’s web site famously asks if the customer wants his or
her order the next day, and gives the condition that if so, the order must be placed within the
next so many hours and minutes. This deadline counts down, in real time, as the customer
makes a decision on mode of shipment. Typically, the current time plus this remaining time
creates a cutoff time of about 17:30 (at least in the author’s time zone), suggesting that after
this time Amazon is no longer confident it can make good on its promise. Amazon’s service
is called “Guaranteed Accelerated Delivery” because if they miss the service promise, they
refund the shipping cost.

Promise-to-deliver service is beneficial to the customer because it reduces the uncertainty
of delivery time. Most people have experienced waiting for a much anticipated package
wondering, “Will it arrive today?” Promise-to-deliver service removes such anxiety. But
notice that in such a system the service provider, in fact, manages the expectation of the
customer by establishing the cutoff time. Those ordering before the cutoff time expect
a certain delivery time, for sure, but those who just miss it have no expectation of that
delivery. If the adage “service equals perception minus expectation” is true, this puts the
retailer or distributor in control of perceived service with respect to delivery time—a very
powerful position.

Table 2.1 shows cutoff times (if any) and shipping modes offered by the ten largest
internet retailers (Internetretailer, 2009). Six of the ten make an explicit promise on some
type of shipping mode. For highly competitive industries such as books or electronics, a
later cutoff time gives the firm an advantage over its rivals; however, if the cutoff time is too
late, then a significant number of orders might not be processed in time to make the last
package carrier pickup that evening (assuming next day service, for now). If the cutoff time

is too early, the firm loses both its competitive advantage and the profit on customers who



Table 2.1: Shipping policies of America’s top 10 retail business.

Firm Fastest Shipping Method  Cutoff time  Compensation
1. Amazon.com Inc. One-day shipping 6:30 p.m. Refund
2. Staples Inc. Standard delivery 5 p.m. local None
3. Dell Inc. Next business day None None
4. Office Depot Inc. Same day delivery 10 a.m. local None
5. Apple Inc. 2-Day Shipping 5 pm. ET None
6. OfficeMax Inc. Next business day 5 p.m. local None
7. Sears Holding Corp. Overnight air 6 p.m. CT None
8. CDW Corp. Next business morning None None
9. Newegg.com Next business day None None
10. Best Buy 2-Day Shipping None None

(http://www.internetretailer.com, 2009)

otherwise would have ordered premium shipping. How then to establish the cutoff time as
late as possible, but not “too late?”

The tradeoff we describe above is similar in spirit to the newsvendor problem, with
a potential profit (for premium shipping) and a penalty cost for non-performance. The
penalty cost could be in terms of goodwill, or, in Amazon’s case, in direct monetary terms.
We will assume the penalty cost can be explicitly determined by the firm. Still required for
newsvendor-like analysis are the probabilities of performance and non-performance, which
in our case require the expected sojourn time distribution for an arriving order. That is, if
we know the distribution of sojourn time, then we can determine for any arriving order its
probability of meeting or missing the service deadline.

The challenge, then—and the major contribution of our chapter—is to develop a steady
state sojourn time distribution for orders arriving to an order fulfillment system, given in-
formation about the order stream and processing times for workstations. After covering pre-
liminaries on phase-type distributions in Section 3.2, we describe an approximation model
for sojourn time distributions in Section 2.4 and 2.5. With the sojourn time distribution in
hand, we can easily calculate the time at which the expected profit for an order equals the
expected loss, which then establishes the cutoff time having the highest profit to the firm.

We validate our models with simulation in Section 2.5.
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To summarize, we make two contributions in this chapter: First, we develop what we
believe is the first approximation model of sojourn time distributions for queueing networks
with multiple servers per workstation and general interarrival and service times. The approx-
imation we develop in this chapter is quite general, and could be used for any reasonably-sized
system for which a queueing network is a reasonable model. Second, we show how an order
fulfillment firm might use such an approximation to establish a profit-maximizing cutoff time

for promised, premium shipping.

2.2 Related literature

Much of the literature on sojourn time modeling is focused on calculating the mean flow
time (or simply the waiting time) in single-stage queues or in queueing networks (Whitt,
1983). Workstations in these systems may have one or many servers. The subject of our
work is calculating the distribution of sojourn time, a more difficult task.

We divide the literature on sojourn time modeling into four categories, according to
whether the models address single-stage systems or networks, and whether they address
single or multiple servers per workstation. The simplest case is single-stage, single-server
systems. Neuts (1981) describes a matrix-geometric method to calculate the sojourn time
distribution for a GI/G/1 system using phase type distributions. Luh and Zheng (2005)
implemented Neuts’ method in MATHEMATICA. Sengupta (1989) used a bivariate Markov
process to model waiting time and queue length distributions in a GI/PH/1 queue. His
method is a “continuous analog” of the matrix-geometric method in Neuts (1981). Sengupta
also showed that if the interarrival and service time distributions in a single-stage, single-
server queue are phase-type, then the waiting time distribution is also phase-type.

Asmussen and O’Cinneide (1998) verify the same result for a single-stage, multi-server
queue, in a paper extending Sengupta’s work to the GI/PH/c case. Their model admits
heterogeneous servers. Asmussen and Mgller (2001) show how to calculate the waiting time

distribution in a GI/PH/c and MAP/PH/c queue, for both homogeneous and heterogeneous
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servers. Whitt (1999) also addresses single-stage, multi-server systems, but examines state
dependent waiting time distributions. For example, he shows how to compute the waiting
time distribution for the k-th customer in line in a c-server, single-stage system. Rueda
(2003) develop an approximation for the waiting time distribution of single-stage queues
with non-stationary interarrival and processing time distributions.

Sojourn time distributions for queueing networks of single-servers have been addressed
by Shanthikumar and Sumita (1988), You et al. (2002), and Yoon (1994). Shanthikumar and
Sumita (1988) approximate the sojourn time distribution of an M/G/1 queueing system as
one of three phase-type distributions (generalized Erlang, exponential, and hyperexponen-
tial), based on a “service index,” which is defined as the squared coefficient of variation of the
total service time of an arbitrary order. Neuts (1981) showed that the convolution of phase
type distributions is also phase type. You et al. (2002) used this observation to show how to
calculate the sojourn time distribution for queueing networks, with general interarrival and
service times. In a paper published in Korean, Yoon (1994) developed a method very similar
to that of You et al.

Mandelbaum et al. (1998) develop diffusion approximations for multi-server queueing
networks, but their models assume exponential interarrival and service times. Missing from
the literature are models of sojourn time distributions for queueing networks with multiple
servers, when interarrival and service times can take general distributions. We fill that void
here. We believe ours is the first approximation model of sojourn time distributions for
queueing networks of multi-server workstations.

Our model is based on the work of Neuts (1981), Asmussen and Mgller (2001), and
You et al. (2002): We use the bivariate Markov process of Asmussen and Mgller to extract
the mean and variance of waiting times for each multi-server workstation. We then con-
struct phase type distributions for waiting time and service time based on those means and
variances. Then we use the method of You et al. to construct an infinitesimal generator

and initial probability vector for the network. With these we can calculate a sojourn time
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distribution for the network of multi-server queues. For reasons we discuss below, this model
produces good results only when the inverse of the squared coefficient of variation (1/C?)
is close to an integer. We correct this weakness with a simple but effective interpolation
scheme. We demonstrate the validity of our model by comparing it with results from a
simulation model.

In the next section, we provide some known results for phase type distributions. We
introduce an intuitive model in Section 2.4. In Section 2.5, we develop an interpolation

model and test it against a simulation model. We offer conclusions in Section 2.7.

2.3 Phase-type distributions

Consider a Markov process on states {1,...,m + 1}, having infinitesimal generator

0
SR

0 0
where Q is an m x m matrix satisfying Q);; < 0, for 1 <1i <m, and @Q;; > 0, for ¢ # j (For
consistency, we follow the notation of Neuts, 1981). QU is a column vector of size m such

that,

Qe +Q°=0,

where 0 is a row vector of zeros and e is a column vector of ones. The initial probability

vector of @ is B = (01, B2, - - ., Bm) such that Be = 1.

We are interested in the time until absorption into state m+-1, whose distribution Neuts

(1981) defines as phase-type.

Lemma 2.1 (Neuts, 1981) The probability distribution F(-) of the time until absorption

in the state m + 1, corresponding to the initial probability vector (B, Bm+1) s given by

F(z) =1— BeYe.
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Because F'(-) is completely specified by 3 and Q, the pair (3, Q) is called a representation
of F(-).

Neuts (1989) provides the density function on (0, c0),

f(z) = Be¥Q’ = Be?¥ (—Q)e.

For each distribution of service or waiting times in a network, we seek a phase-type
approximation for which we can generate a matrix-analytic model of the CDF. We use the
fact that finite convolutions of phase-type distributions are also phase-type (Neuts, 1981) to
generate solutions for a queueing network, as in You et al. (2002).

The phase-type distribution is used to fit a general distribution based on the inflow rate
A and the squared coefficient of variation C? of a given positive random variable X. Sauer
and Chandy (1975), You et al. (2002), and Tijms (1994) showed different fitting methods
that can convert a general distribution to a corresponding phase-type distribution based on
the C? of the distribution. A general distribution can be approximated with the Erlang
distribution, the exponential distribution, or the hyperexponential distribution, based on its
first and second moments. We follow the rule of You et al. (2002):

When C? < 1, we convert a general distribution to an Erlang distribution, Erlang(m, i),

of order m. The infinitesimal generator is

—u 0 0 0 0
0 —p u 0 0 0

Q = I QO - )
0 0 0 0 —up W

where m = (%-‘ and © = mA. The phase-type representation of a general distribution is

represented by 8 = (1,0, ...,0) and Q.
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When C? > 1, we use the hyperexponential distribution with balanced means, HE, of

order 2. We use the following normalization for this process,

The phase-type representation of a general distribution is given by 8 = (p, ¢) and

—m 0 th
Q= , QY = ,
0 —H2 25

where p = % <1+ 1/23—:), q=1—p, py =2pA and py = 2gA.
When C? = 1, we have an exponential distribution (Tijms, 1994) represented by 8 = 1
and @,

Q=-\ Q"=
2.4 Intuitive model

We now describe our model, which extends the work of Asmussen and Mgller (2001)
and You et al. (2002) to produce an approximation of the sojourn time distribution for a
network of multi-server queues. For the waiting time distribution of a single-stage, multi-
server system, we follow Asmussen and Mgller’s method, then we convolve waiting times
and service times in the system based on the method of You et al. The model requires only
the following input, which should be available in most real systems: mean and variance of
processing times for each workstation and mean and variance of interarrival times to the
system.

The procedure is:

1. Compute the arrival rate and SCV of an arrival process at each workstation using the

Queueing Network Analyzer (QNA) method of Whitt (1983).
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n the number of workstations in the general network

A the total inflow rate into workstation ¢

i the external inflow rate into workstation

Dji the probability that a product flows from workstation j to ¢

C3(i)  the SCV of the departure stream at workstation i
C2(i)  the SCV of the interarrival stream at workstation i
C2(0,i) the SCV of external arrivals at workstation i
C?(i)  the SCV of the service time at workstation i
Pi the utilization of workstation ¢
C; the number of servers at workstation i

2. Approximate an interarrival time and service time distribution of each workstation 7

as a corresponding phase-type distribution (e, T;) and (3;, S;) based on C? and C2.

3. Compute the mean and variance of waiting time of each workstation ¢ using the method
of Asmussen and Mgller. Approximate the waiting time distribution of each worksta-

tion 4 as a corresponding phase-type distribution (v;, W;) based on C2.

4. convolve all waiting times and service times sequentially to generate a phase-type
representation of the sojourn time distribution (¢, K) using the convolution property

of the phase-type distribution.

5. Solve F(t) = P(T < t) =1 — ¢eX, (t > 0) to obtain the cumulative distribution

function (CDF) of the sojourn time distribution.

2.4.1 The flow rate and SCV of the arrival process

We adopt the notation of Curry and Feldman (2009):

To compute the waiting time distribution for each workstation, we must approximate the
interarrival time and service time distribution as a corresponding phase-type distribution.
Thus, the flow rate \; and C2(i) of an interarrival stream at each workstation i must be
calculated first, because the fitting distribution is based on the rate and C? of a general

distribution.
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We compute the inflow rate and SCV of the interarrival stream at each workstation 4

using Whitt’s approximations. The total inflow rate into workstation i is
A=+ ijMj-
j=1

The SCV of the departure stream is approximately,

(€)= 1)

Ca(i) =14 (1= p})(C2(i) — 1) + NG

Finally, the SCV of an interarrival stream is approximately,

Apiiy
])\P] p;iC3(5) + 1 = pjil-

1

C2(0) = 1-C2(0,0) + Y
7 le

From these expressions, we can approximate the interarrival time distribution and ser-
vice time distribution of each workstation ¢ as a corresponding phase-type distribution

(e, T;) and (B;, S;) based on the flow rate and SCV.

2.4.2 Waiting time for a single stage queue with multiple servers

Asmussen and Mgller (2001) proposed a method to compute the steady-state waiting
time distribution in a multi-server queue, with each server having a phase-type service time
distribution. They used matrix-analytic methods based on the method of Sengupta (1989)
and Asmussen and O’Cinneide (1998). Asmussen and O’Cinneide (1998) showed that the
GI/PH/c waiting time is always phase-type, and that the number of phases for the homo-

geneous case should be
m+c—1

C

where m is the number of phases of the service time distribution.
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They solve the system using a bivariate Markov process {X*, N*;¢t > 0} to model the
all busy period, where X! is the time since arrival of the last customer to enter service in
the all-busy-period, and N is the current phase in which the server is working. They proved

that the steady state density 7 of the Markov process { X', N} is matrix exponential:
m(x) = m(0)exp(Tz), x >0,

where T is the rate matrix. Their procedure is as follows:

The rate matrix T satisfies the non-linear integral equation
T=S5+ / exp(Tu) AV [ (du),
0

where the matrix S contains transition rates without service completion, AU*™) contains
transition rates with service completion in {N;}, and H(du) is the distribution function of
the interarrival times.
The matrix T is solved by iterative procedure and the phase-type representation of the
waiting time of the single-stage is defined by (p, G),
i ool

Pi = , Uiy = )
ap (073

where a= —7(0)T! and ¢ = (T — S)e.
Finally, the mean and variance of the waiting time distribution are computed from the

first and second moment, where the n-th moment is

E(X") = (=1)"n!pG"e.

18



2.4.3 Approximation of sojourn time distribution of the queueing network

Now we are ready to apply the convolution property of phase-type distributions. Neuts
(1981) showed that if F'(-) and G(-) are both continuous phase-type distributions with repre-
sentations (e, T') and (3, S) of orders m and n, then the convolution F'«G(-) is a phase-type
distribution with representation (7, L), where the infinitesimal generator L and initial prob-
ability vector ~ are

T 1T°8
0o S

v = [av am+1/3]'

We construct the initial probability vector and the infinitesimal generator of a queueing
network by convolving all waiting times (v;, W;), and service times (3;,.5;) by order in the
network. For example, for a k station serial line, the infinitesimal generator K and initial

probability vector ¢ are

-Wl wWPs 0 0 0 ]
0 S S0 0 0
K= ;
0 0 0 Wi, W23
00 0 0 S |
¢=lm 0 0]

The cumulative distribution function (CDF') and the probability density function (PDF)
are

F(t)=P(T <t)=1- e, (t >0),

f(t) = ¢e"K? = (™' (= K)e, (t > 0).
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Table 2.2: A comparison of the mean sojourn times between the intuitive model and simu-
lation for a 3-workstation serial line, when all 1/C? are integers.
Mean sojourn time (hrs)
E[T) C? : . —
¢ Simulation  Intuitive

% difference

Interarrival 0.5 0.5
Workstation 1 1.8 0.5 0.6
Workstation 2 2.2 0.5 0.73
Workstation 3 1.5 0.5 0.5

5.79 5.77 -0.23

In a more general queueing network, flow between workstations depends on product
routings. We estimate the sojourn time distribution for a random order by approximating
the CDF of all possible “serial lines” (paths in the network) and mixing those CDF's according
to the probabilities of taking those paths. Because our model is based on serial line analysis,

we are able to model only acyclic queueing networks. We give an example in a later section.

2.4.4 Numerical results

To validate the intuitive model, we compare it with results of a simulation built in Arena
10.0. We assume processing and interarrival times in the simulation model are Gamma

distributed.

Example 2.1 Consider a serial line of 3 workstations, with 6 servers per workstation.
Information on the interarrival and processing times are given in Table 2.2.

We can approximate the interarrival time and three service time distributions as Erlang(m, p)
distributions according to the rule of You et al. (2002) because all C? are less than 1. Note
that in this case all (éw and 1/C? have the same value of 2. The mean sojourn times in
Table 2.2 show that the intuitive model is close to the simulation result. Figure 2.1 shows

the sojourn time distributions from the intuitive model and from the simulation, and we see

nice agreement between them.
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Figure 2.1: Sojourn time distributions for Example 1, when all 1/C? are integers.

Table 2.3: A comparison of the mean sojourn times between the intuitive model and simu-
lation when all 1/C? are not integers.

E[T) C* »p

Interarrival 0.5 0.8
Workstation1 1.8 0.6 0.6
Workstation 2 2.2 0.5 0.73
Workstation 3 1.5 0.9 0.5

Mean sojourn time (hour)
Simulation Intuitive

% difference

5.97 5.77 -3.35

Example 2.2 Consider the same 3-workstation serial line with C? = 0.8, C?(1) = 0.6,
C?(2) = 0.5 and C%(3) = 0.9.

The mean sojourn time and sojourn time distribution of this system are shown in Table
2.3 and Figure 2.2 respectively. The percent difference of mean sojourn time between the
two models is much higher, and the distributions appear not to be so similar. The intuitive
model produces the same result when 1/C? falls into the interval (L%J , (%D, but we
get a new simulation result with a new C?. For example, although C? changed from 0.5 to
0.8, the interarrival time distribution is still fitted with the same Erlang(m, p) distribution,
because [é-‘ is the same for both cases.

This example illustrates a characteristic of the model that we have confirmed with more
thorough testing: the intuitive model produces good results only when 1/C? is close to an

integer value (under the C? < 1 condition). When 1/C? is between integer values (say, for

example, when C? = (.75), the intuitive model produces less satisfactory results. In fact,
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Figure 2.2: A comparison of sojourn time distributions between the intuitive model and
simulation when all 1/C? are not integers.
the model produces the same sojourn time distribution for all values of C? having a common

value of (%W )

2.5 Interpolation model

A nalve attempt to correct for this deficiency by replacing the ceiling operator with a
round( ) function produced even worse results. We propose, then, the following interpola-

tion scheme:
1. Produce CDF F(t) using [ g5 | phases for each workstation.
2. Produce CDF G(t) using | gz | phases for each workstation.

3. Compute the mixed CDF, H(t) = aG(t) + (1 — a)F(t), where « is an interpolation

coefficient.

The interpolation coefficient « is based on two observations. First, if 1/C? for interarrival
and processing times is close to (%L then we should expect a to be close to zero, and
if 1/C? ~ \_éj, a should be close to one. Second, interarrival stream and workstation
processing times will have different levels of influence on the sojourn time distribution,
depending on whether they appear early or late in the (serial) process.

These observations lead us to a regression model of the squared coefficients of variation

for each distribution in the process. To address the first observation, we define a fitting
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coefficient for each interarrival and processing time distribution. The fitting coefficient is
an interpolation coefficient reflecting the nearness of the squared coefficient of variation to
successive values of C? when 1/C? takes on an integer value. For example, if the SCV of the
arrival process C? = (.8, we compute a fitting coefficient dy = 0.6, because 0.5+0.6(1—0.5) =
0.8, or said another way, 0.8 is 60% of the way between 0.5 and 1. We can compute fitting
coeflicients ;. for each workstation k in a similar fashion.

Next, we determine the different levels of influence of the fitting coefficients with a
regression model. We use the intuitive model to establish the dependent variable (mean
sojourn time) under possible combinations of SCVs, which function as the independent
variables. We test the intuitive model for all possible combinations of three SCVs (1, 1/2,
1/3), each corresponding to an integer value of 1/C?. For example, the regression for two
workstation serial lines must consider three distributions—the interarrival times and service
times for two workstations, and there are 3 = 27 combinations. We excluded SCVs less
than 1/3 because they have very little effect on mean sojourn time.

There is one last detail: we must consider the possible effects of utilization on the mean
sojourn times and therefore on the coefficients w; produced by the regression. We ran two
cases (p = 0.5, 0.85 for each workstation in the system), and found that the resulting coef-
ficients w; are different. Which values to use, given that we seek a single set of coefficients
for any serial line of a specified length? We answered this question by using for each distri-
bution the average of the two values, for two reasons: (1) For most systems in practice, the
utilization of workstations in a system are different anyway, and (2) the results of the model
are not very sensitive to the precise values of the w;’s.

Table 2.4 contains results of the regression analysis, which are the weight coefficients w;
for 2, 3, and 4 station serial lines. In general, the interarrival stream and the first workstation
account for the largest influence on the sojourn time distribution and the influence decreases

as it goes downstream.
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Table 2.4: The weight coefficient of serial lines with 2, 3 and 4 workstations.

Workstation — wy w1 Wa w3 Wy
2 0.493 0.313 0.194
3 0.412 0.292 0.174 0.123
4 0.353 0.262 0.180 0.123 0.081

Now that we have the fitting coefficients 9; and weight coefficients w;. We calculate the

interpolation coefficient

where index zero represents interarrival times. We should emphasize the conditions for
which the w;’s in Table 2.4 are relevant: These coefficients should be appropriate for any
serial lines of these lengths for which the Gamma distribution is a reasonable approximation
of processing times.

Before fully testing the interpolation model, we need to show that it is better than the
simpler, intuitive model. Figure 2.3 shows the differences in mean sojourn times among
the simulation and the two approximation models when each workstation has the same
utilization p=0.5 and SCVs. The interpolation and intuitive models are the same when all
1/C? are integers, but when they are not, the interpolation model is closer to the simulation.
The intuitive model also corrects the deficiency noted in Table 2.3: for this problem, the

difference in means is reduced to -1.26% (mean sojourn time = 5.90 hours).

2.5.1 Validation

To test the performance of the model, we consider four queueing networks: The first
is a small serial line with 3 workstations (Figure 2.4), the second a simple acyclic queueing
network with 4 workstations (Figure 2.5), the third is a large-scale system with almost 100
servers in 3 workstations, and the last is a long serial line with 8 workstations. We wish to
confirm the effectiveness of the interpolation model on a basic serial line and general queueing

network through the first two experiments, and wish to know computation time and accuracy
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Figure 2.3: A comparison of mean sojourn times among three models(p=0.5). Dots indicate
data; lines are inserted for visual clarity only.

o0 -
[ X )
(X

:
o0
[ X )
(X

:
o0
( X J
(X

Figure 2.4: A serial line with 3 workstations.

of the interpolation model as we increase the number of servers and workstations. In Figures
2.4 and 2.5, the black circle in each workstation represents a server, and in the case of the
general network, a customer or order departing from the first workstation selects its follow

on workstation with probability p.

Example 2.3 Consider a 3-workstation serial line with 6 servers per workstation (Figure
2.4). All servers have the same capacity (E[T] = 1.5), and interarrival times are adjusted to
produce the appropriate utilization (p = 0.5, 0.85).

We compare simulation and model results over different values of SCV for interarrival
and processing times. Table 2.5 shows the mean sojourn times for the interpolation model

and simulation.
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Figure 2.5: A general network with 4 workstations.

Table 2.5: Mean sojourn times for the interpolation and simulation models of the serial line.
p C? (C?(1) C%2) C?(3) Interpolation Simulation % difference

1 1 1 1 7.63 7.57 0.83

0.75 0.75 075  0.75 6.77 6.77 -0.04

0.85 0.57 0.7 0.6 0.9 6.44 6.43 0.05
045 0.75 0.4 0.9 6.13 6.19 -0.35

0.4 0.6 0.26 0.8 5.88 5.89 -0.13

033 033 033 033 5.57 5.48 1.71

1 1 1 1 4.65 4.62 0.51

0.75 075 075 0.75 4.53 4.58 -0.30

0.5 0.57 0.7 0.6 0.9 4.57 4.55 0.29
045 0.75 0.4 0.9 4.54 4.54 0.04

0.4 0.6 0.26 0.8 4.53 4.53 -0.03

033 033 033 033 4.52 4.53 -0.23
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Figure 2.6: CDF and PDF of the serial line (p=0.85, C* = 0.75, 0.75, 0.75, 0.75).

The percent difference of the mean sojourn time between the two models under high
utilization is a little bit higher than in the low utilization case. We conjecture that this is
due to the amount of waiting time at each workstation. In the low utilization case, there
is very little waiting in front of each workstation, so inaccuracies in the waiting time model
do not have much effect on the estimate of the mean sojourn time. In the high utilization
case, model inaccuracies have a greater effect. However, we see that the percent differences
between the interpolation model and the simulations are still less than 2 percent. Notice
that this statement only pertains to the mean, when what we seek is the distribution; that
is, agreement in the means is only an indication that the model is effective, not a proof.

Figures 2.6-2.11 show the distributions for representative cases. We use the Anderson-
Darling test (Law and Kelton, 2000) to check the graphical agreement of the distributions
between simulation and approximation results. We also include the percent difference of
the 90" and 95" percentiles. As shown in Table 3.8, we accept that there is no difference
between the distributions based on the A-D test, and the percent differences of the 90** and
95" percentiles are less than 3 percent.

Figures 2.6-2.11 indicate that the model consistently has a higher peak in the PDF
than does the simulation model. We believe this is due to our approximation of waiting time
distributions, which for all cases we tested had C? > 1, and therefore led us to the hyper-

exponential distribution as an approximation. Because the hyperexponential distribution is
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Figure 2.8: CDF and PDF of the serial line (p=0.85, C* = 0.4, 0.6, 0.26, 0.8).

Figure 2.9: CDF and PDF of the serial line (p=0.5, C* = 0.75, 0.75, 0.75, 0.75).
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Figure 2.10: CDF and PDF of the serial line (p=0.5, C? = 0.57, 0.7, 0.6, 0.9).
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Figure 2.11: CDF and PDF of the serial line (p=0.5, C* = 0.4, 0.6, 0.26, 0.8).

Table 2.6: Anderson-Darling tests for the serial line test case.

p C?  (C?(1) C*2) C%*3) A-D a=5% Decision % difference

90th 95th

0.7 0.75 075 0.75 1.691 accept  0.44 -0.32

0.85 0.57 0.7 0.6 0.9 1.726  2.492 accept  0.25 -0.30
0.4 0.6 026 0.8 1.529 accept  -1.15 -0.38

0.75 0.75 0.75 0.75 0.639 accept  1.92 -0.26

0.5 057 0.7 0.6 0.9 1.366  2.492 accept  -2.35 -1.99
0.4 0.6 026 08 1.542 accept -1.65 -1.88

skewed to the left, it may cause our distributions of sojourn time also to be overly skewed

to the left.

Example 2.4 Consider the general acyclic queueing network with 4-workstations in Figure
2.5. Workstations 1 and 4 have 6 servers, and workstations 2 and 3 have 4 and 2 servers
respectively. All servers have the same capacity (E[T] = 1.5), and interarrival times are
adjusted to produce the appropriate utilization (p = 0.5, 0.85).

Table 2.7 shows the mean sojourn time of the interpolation model and the simulation
model in a 4-workstation general queueing network. Similar to the serial line case, the
interpolation model gives better results under low utilization than under high utilization.
The percent differences are all less than 5 percent.

Figures 2.12-2.17 show distributions from the model and simulation. The Anderson-
Darling tests are all acceptable and values for the 90" and 95" percentiles show fairly nice

agreement.
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Table 2.7: Mean sojourn times for a 4-workstation general network.

p C? (C2%(1) C?*2) C?%@3) C?4) Interpolation Simulation % difference
1 1 1 1 1 8.99 8.91 0.89
075 075 075 075 0.75 7.78 7.98 -2.61
0.85 0.57 0.7 0.6 0.6 0.9 7.31 7.49 -2.42
' 045 0.75 0.4 0.4 0.9 6.73 7.05 -4.48
0.4 0.6 0.26  0.26 0.8 6.38 6.68 -4.46
033 033 033 033 0.33 6.11 6.27 -2.62
1 1 1 1 1 4.76 4.81 -1.11
0.75 075 075 075 0.75 4.73 4.74 -0.17
05 0.57 0.7 0.6 0.6 0.9 4.68 4.69 -0.36
' 0.45 0.75 0.4 0.4 0.9 4.60 4.66 -1.12
0.4 0.6 0.26  0.26 0.8 4.59 4.64 -0.94
033 033 033 033 0.33 4.58 4.62 -0.84
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Figure 2.12: CDF and PDF of the general network(p=0.85,C% = 0.75,0.75,0.75,0.75, 0.75).

Figure 2.13: CDF and PDF of the general network (p=0.85, C? = 0.57, 0.7, 0.6, 0.6, 0.9).
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Figure 2.14: CDF and PDF of the general network (p=0.85, C? = 0.4, 0.6, 0.26, 0.26, 0.8).
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Figure 2.15: CDF and PDF of the general network (p=0.5,C% = 0.75,0.75,0.75,0.75,0.75).
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Figure 2.16: CDF and PDF of the general network (p=0.5, C* = 0.57, 0.7, 0.6,

0.6, 0.9).
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Figure 2.17: CDF and PDF of the general network (p=0.5, C? = 0.4, 0.6, 0.26, 0.26, 0.8).
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Table 2.8: Anderson-Darling tests for the general queueing network.
% difference

p C?  C%*1) C?(2) C?3) C*4) A-D a=5% Decision 00" o5
0.75 0.75 0.75 0.75 0.75 2.343 accept  -4.02 -1.33
0.85 0.57 0.7 0.6 0.6 0.9 2401 2.492 accept  -2.94 0.22
0.4 0.6 026 026 0.8 2.046 accept  -H.70 -5.27
0.75 075 075 0.75 0.75 1475 accept  -3.57 -3.28
0.5 057 0.7 0.6 0.6 0.9 2.086  2.492 accept  -3.98 -4.33
0.4 06 026 026 0.8 1.454 accept -2.93 -3.05

Table 2.9: The system information of the Example 2.5
E[T) C? (C? p Number of workers

Interarrival 0.23 0.75
Workstation 1 7.80 0.70 0.85 40
Workstation 2 4.50 0.70 0.78 25
Workstation 3 5.80 0.80 0.84 30

Example 2.5 Consider a serial line with 3-workstations, and 95 workers in the system.
We assume that both the interarrival and service times follow general distributions. Table
2.9 shows the system information in detail.

We compare the mean sojourn time and distribution between the interpolation and
simulation model. We also record computation time using a 2.4 GHz Intel Core 2 Duo
processer, and it takes 1.55 hours. Table 2.10 and Figure 2.18 show mean sojourn time and
sojourn time distribution.

We see that the interpolation model also works well for the large scale system, but
the computation time has increased significantly. As mentioned before, the size of the in-
finitesimal generator K and the initial probability vector ¢, which decide the sojourn time

distribution, are determined by the size of the matrix of the waiting time distribution W

Table 2.10: Mean sojourn time for the Example 2.5.

% difference
90th 95th
Mean sojourn time 18.60 0.30 18.54 0.01 0.01

Interpolation % difference  Simulation
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Figure 2.18: PDF and CDF of the Example 2.5.

Table 2.11: The system information for Example 2.6.
E[T)] C? (C? p Number of workers

Interarrival 0.23 0.75
Workstation 1 2.90 0.70 0.84 15
Workstation 2 2.50 0.60 0.91 12
Workstation 3 1.40 0.80 0.87 7
Workstation 4 1.50 0.65 0.82 8
Workstation 5 2.75  0.50 0.91 13
Workstation 6 2.20 0.85 0.87 11
Workstation 7 3.10 0.70 0.79 17
Workstation 8 1.50 0.60 0.82 8
m+c—1
and service time distribution S. Here, W is determined by , where m is the
c

number of phases of the service time distribution and c¢ is the number of servers, and S is
determined by only m. So if we increase ¢, it affects mainly to the size of matrix W, and

this creates a significant computational burden.

Example 2.6 Consider a serial line with 8-workstations, and 91 workers in the system.
We assume that both the interarrival and service times follow general distributions. Table
2.11 shows the system information in detail.

We compare the mean sojourn time and distribution between the interpolation and
simulation model. Table 2.12 and Figure 2.19 show mean sojourn time and sojourn time

distribution, but the results are not good. The percent difference in the means is greater
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Table 2.12: Mean sojourn time for Example 2.6.

Interpolation % difference  Simulation % difference

90th 9 5th
Mean sojourn time 20.91 -7.71 22.65 7.51 -6.31
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Figure 2.19: PDF and CDF for the long serial line in Example 2.6.

than 5%, and the percentiles of 90" and 95" also are greater than 5%. However, it takes
just about 13 minutes because the number of servers in each workstation is not too large

(around 15), and matrix size of each waiting time distribution is of reasonable size.

2.6 Determining an optimal cutoff time

Consider an order fulfillment center with three major functional areas—picking, packing,
and shipping, all of which function as multi-server queues. Assume that each functional area
processes orders individually. For most warehouses, this is a reasonable assumption for the
packing and shipping areas, but for manual warehouses, picking is often done in batches.
We assume for purposes of illustration a suitable part-to-picker automated system for which
a multi-server queue is an appropriate model. Nearly every order moves from picking to
packing to shipping, sequentially, so we can model the process as a serial line, with multiple
workers in each stage.

Assume the firm realizes marginal shipping profit r for an order successfully delivered
for premium shipping. If the firm promises premium service but fails to deliver, it realizes

marginal cost ¢. For most applications, we would expect r < ¢ (in Amazon’s case, ¢ is
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Figure 2.20: Relationship between cutoff time and probability of success of an arriving order.

the entire cost of shipping). We seek a cutoff time t*, which gives the maximum expected
shipping profit.

Let probability of success ps be the probability that an arriving order will make it on
the next departing truck. We can compute ps of an arriving order from the steady state
sojourn time distribution. Let a continuous random variable 7" be the sojourn time of an
order. Then,

ps = P[T < t,],

where ¢, is remaining time, equal to deadline ¢; minus arrival time t,.

Figure 2.20 shows the relationship between arrival time and probability of success for an
arriving order. As the arrival time gets closer to the deadline (shift the distribution to the
right), the probability of success p, gets smaller. Consequently, the expected shipping profit
decreases, and the expected shipping loss increases. When the expected marginal profit of
an arriving order equals the expected marginal loss, we have the optimal cutoff time ¢;.

Formally,
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and the optimal cutoff time ¢7 is determined by

pi = P[T < t,],

where ¢, = t4 — t7.

For example, consider an order fulfillment system defined by the third example in Ta-
ble 2.5. Suppose that the delivery truck makes its final pickup at t;=17:00 each day. Marginal
shipping profit and shipping refund per item are $5 and $20, respectively. Management
wishes to establish the optimal cutoff time.

First, we compute p} corresponding to the break-even point between marginal shipping
profit and loss,

c 20

= = =0.8
Ps r+c¢ 2045

Second, we find ¢} = t4 — t, using the CDF of the steady state sojourn time distribution:

pi = 08 = P(T<t,) = 1 e
t, = &8.365 hours

£ = 09:38

To test the correctness of our approach, we ran a simulation experiment to check the
potential profit for a range of cutoff times. The results are in Figure 2.21. For the simulations,
we assumed customers ordering after midnight and before the cutoff time were guaranteed
premium shipping, and those ordering between the cutoff time and midnight (thereby missing
the deadline) were not offered the option. As expected, the profit is low when the cutoff time
is early, because too few customers have the option of ordering premium shipping. When the

cutoff time is too late, many orders arriving just before the cutoff do not make it onto the
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Figure 2.21: Profit curve for a range of cutoff times.

truck that night, and the firm must incur a loss and refund the shipping. The peak profit

corresponds to a cutoff time of 09:40, which agrees nicely with our predicted 09:38.

2.7 Chapter conclusions

The ability to approximate the sojourn time distribution for orders in a manufacturing
or order fulfillment system gives a company the ability to make statements about service
performance. Such statements could be used purely as internal metrics, or, as in the case of
published cutoff times, they could be used to make guarantees to customers.

We have developed an approximation model for the steady state sojourn time distri-
bution of entities arriving to an acyclic network of multi-server queues. In general, the
distributions produced by our model agree well with simulations of identical systems for
the cases we have tested. Means of the approximated distributions were generally within
3 percent of the simulated means, and the distributions produced met the requirements of
the Anderson-Darling test. Our test of a long serial line (8 workstations) produced less
satisfactory results, suggesting that the quality of the results would degrade as the size and
complexity of the network increases. Nevertheless, the model could be used by any orga-

nization interested in making probabilistic statements about the time an order or customer
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will spend in a network of multi-server queues, including the order fulfillment systems which
motivated our research.

The method we have developed requires only basic statistics about interarrival and
processing times, which can take on any general distribution. For processing times this seems
straightforward, but an acknowledged weakness of our model—at least for order fulfillment
systems—is the assumption of stationary interarrival times. We suspect that for many
systems, this assumption is appropriate and for some it is plainly inappropriate, but we have
no basis to make conclusive statements. Users facing a practical problem with highly non-
stationary interarrival times would have to verify the approximation model with simulation
or with empirical data, in order to proceed with confidence.

The mention of empirical data raises an interesting question, “Why use these models
at all? Why not use empirical sojourn time distributions to establish the cutoff time?” For
establishing a cutoff time under known and constant conditions, empirical data is likely
the best approach, but suppose the optimal cutoff time is deemed unacceptably early by
management. In this case, it would be helpful to recompute optimal cutoff times under
different conditions (numbers of workers, processing times, etc.), which would be impossible

from empirical data.

38



Chapter 3

Predicting Departure Times in Multi-Stage Queueing Systems

We develop an approzimation model for the state-dependent sojourn time distribution
of customers or orders in a multi-stage, multi-server queueing system, when interarrival and
service times can take on general distributions. The model can be used to make probabilistic
statements about the departure time of a customer or order, given the number and location
of customers currently in process or waiting, and these probabilities can be recomputed while
waiting at any point during the sojourn time. The model uses phase-type distributions and
a new method to estimate the remaining processing times of customers in service when the

sojourn time distribution is computed.
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3.1 Motivation

Service systems often make explicit statements—perceived by customers, effectively, as
promises—about how long a wait will be. For example, call centers may claim, “expected
wait time is 3 minutes,” or an internet bookseller may promise, “order in the next 2 hours

7

and receive it tomorrow.” To make such promises, a firm must estimate both processing
times and waiting times, whose sum is the sojourn time. In stochastic environments, the
result must be a distribution, from which service estimates or promises are made. When
offered or called upon in real time, these service promises must also consider the number of
customers already in the system, that is, the system state. In the examples above, the state
of the system is defined by other callers or orders already in queue.

The relevance of state-dependent waiting times for call centers is well-recognized (Whitt,
1999). These problems are typically modeled with a single, multi-server queue, but many
service systems require a multi-stage representation. For example, the motivation for our
research is a large distribution center, which operates as a series of multi-server queues
corresponding to the picking, packing, and shipping operations. To make real-time decisions
about workforce allocation, we sought the probability that a particular order would complete
its processing before the last truck departed for the day. This probability can only be
computed with a state-dependent sojourn time distribution.

Models such as the one we develop here seem all the more important when one considers
that simulation is an ineffective means of developing these distributions. For general service
times (which we assume), the state of the system must include not only queue lengths and
numbers of busy servers, but also the remaining processing time for each order being served.
To our knowledge, there is no accepted method of simulating the “remaining times” of
orders already in process. The brute force simulation method, which we describe and use
below, observes the state of the system upon each arrival and records results only for orders
encountering the system state of interest. Such simulations can take hours or even days to

generate a single distribution. We believe our models offer a better approach.
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Research on sojourn time distributions can be roughly classified into two categories:
steady state waiting time and state-dependent waiting time. A steady state sojourn time
distribution only has meaning when a customer or order arrives to the system, whereas a
state-dependent sojourn time distribution can be computed at any time while in the sys-
tem, not just upon arrival. Our interest in this paper is a state-dependent sojourn time
distribution, which includes the waiting time and service time distributions.

There is a rich literature on steady state sojourn time distributions. Neuts (1981), Sen-
gupta (1989) and Luh and Zheng (2005) showed how to generate the sojourn time distribution
of a single stage queue with a single server using a matrix geometric method and a “continu-
ous analog” of the matrix-geometric method, respectively. Asmussen and O’Cinneide (1998)
and Asmussen and Mgller (2001) extended Sengupta’s analysis of the GI/PH/1 queue to
the multi-server case. They showed the steady state waiting time distribution in a GI/PH/c
queue is also phase-type.

Shanthikumar and Sumita (1988) and You et al. (2002) suggested an approximation
model for queueing networks of single servers. Shanthikumar and Sumita (1988) approx-
imated the sojourn time distribution as a phase-type distribution based on the “service
index,” and You et al. (2002) introduced an approximation using the convolution prop-
erty of the phase-type distribution. Steady state sojourn time distributions for queueing
networks of multiple servers was studied by Mandelbaum et al. (1998) and Gue and Kim
(2009a). Mandelbaum et al. (1998) addressed diffusion approximations for M/M/c queueing
networks, and Gue and Kim (2009a) developed an approximation model for G/G/c queueing
networks based on the characteristics of the phase-type distribution.

A state-dependent sojourn time distribution provides managers or system controllers
with the ability to post real-time information to customers or to take real-time actions to
improve system performance. Call centers are one of the most active research areas on this
subject. Given the system state at the time of estimation, Whitt (1999) proposed a method

of estimating the waiting time distribution of each customer in a single stage G/G/c queue.
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He estimated the waiting time distribution using a Normal approximation for a large call
center with many servers. Nakibly (2002) suggested an approximation model of the waiting
time distribution in a multi-server queue by calculating iteratively the waiting time of each
customer in the queue. To increase customer satisfaction by announcing expected waiting
time to a customer, Jouini and Dallery (2006) investigated the waiting time distribution for
multiclass, multi-server call centers with exponential arrival and service times.

Our work differs from existing research in important ways. First, for single-stage sys-
tems, our method is effective for small and medium sized systems; whereas the method of
Whitt (1999) is effective only for large systems. Second, existing research addresses only
single stage systems, whereas we extend our methodology to address multi-stage systems,
and even simple, acyclic networks.

We focus on the sojourn time instead of waiting time to extend our interest to manu-
facturing and warehousing systems. Our approximation model is based on the phase-type
distribution. In contrast to the steady state sojourn time distribution, we do not need to
consider the arrival process for a state-dependent sojourn time distribution, because it does
not affect the sojourn time distribution of a order in the system. Throughout this paper, we
assume interarrival times and service times follow general distributions and that all servers
in a workstation are homogeneous; that is, they have same processing time distributions.

The rest of this paper is organized as follows: in Section 3.2, we introduce characteristics
of the phase-type distribution, which is the fundamental concept behind our models. Also,
we introduce the method of fitting a general distribution as a corresponding phase-type
distribution. In Section 3.3, we introduce an approximation model of the sojourn time
distribution for a multi-server queueing system with exponential service times. In Section 3.4,
we present an approximation model for general service times and apply it to some numerical
examples. In Section 3.5, we compare an approximation model for queueing networks with

simulation; in Section 3.6, we discuss the results and implications of our work.
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3.2 Preliminaries

3.2.1 Phase-type distributions

The phase-type distribution is composed of a finite sum or a finite mixture of exponen-
tially distributed components, or a combination of both. When the interarrival time and
service time follow the exponential distribution, we call it a Markovian queueing system and
solve the system using Markov processes. In addition, if we approximate the interarrival
time and service time as a corresponding phase-type distribution, we can analyze the system
using the Markov property.

The continuous phase-type distribution used in this paper was defined by Neuts (1981).
The following relationships are developed in that book and are repeated here for clarity of
exposition. A phase-type distribution is the distribution of time to reach absorbing state

m + 1 in a finite Markov process having infinitesimal generator

T T°
0 O 7
where the m x m matrix T satisfies Tj; < 0, for 1 <¢ < m, and T;; > 0, for i # j.

The equation Te + T°= 0 is satisfied, and the initial probability vector of @ is (cr, 1),
with ae + a,,,1 = 1. Here, 0 is a row vector of zeros and e is a column vector of ones. The
pair (e, T) specifies the phase-type representation.

Given initial probability vector a, the cumulative distribution function of the time to

reach state m + 1 is

F(z) =1— ac™e. (3.1)

The density function is

f(z) = ae™T° = ae™(—T)e,
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and the moments are defined by

E(X") = (=1)*klaT ¥ e. (3.2)

3.2.2 Fitting distribution

In order to analyze our system as a Markovian queueing system, we approximate a gen-
eral service time as a corresponding phase-type distribution. Mapping general distributions
to phase-type distributions has been studied by Sauer and Chandy (1975), Marie (1980),
Tijms (1994), You et al. (2002) and Osogami and Harchol-Balter (2003). We follow the
matching two moments method of Tijms (1994) and You et al. (2002):

A general distribution is fitted as one of three phase-type distributions: Erlang-k, bal-
anced hyper-exponential and the exponential distribution, based on the squared coefficient
of variation C? = o2/u?. If C? < 1, a general distribution is approximated as an Erlang

distribution, Erlang (k, \), of order k. The density function is given by

The shape parameter k is computed by [&5| and A = k/E[X], where E[X] is the mean of
the general distribution.

If C? > 1, a general distribution is converted to a balanced hyper-exponential distribu-

tion, HE,. The density function of HE, is described by
f(x) = praie™® 4+ ppdoe ™2 1 > 0,

where p; = % (1 4/ 82—;}) pa=1—pi, A = 2p1/E[X] and Ay = 2py/ E[X].

If C? = 1, we use the exponential distribution, with density function,
flz) =X, 2 >0,
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where A = 1/E[X].

3.3 Exponential service times

In this section, we assume all servers in a workstation are identical and have the same
exponential distribution of processing times. Whitt (1999) suggested that the waiting time
distribution in such a system follows an Erlang-(k 4 1) distribution with mean 1/cu when
the system has ¢ servers and there are k£ customers ahead. For now, we are interested in the
complete sojourn time distribution (waiting plus processing), so we develop an approximation

model for multi-server queueing systems with exponential service times.

3.3.1 Approximation model

The state dependent sojourn time distribution does not rely on the interarrival time
distribution because the waiting time distribution is determined only by the number of
servers, the number of orders ahead and the service rate. Also, we do not need to consider
the remaining service time for exponential service, due to the memoryless property. Every
order arriving to the system has Erlang waiting time in queue and is processed in exponential
service time.

We approximate the sojourn time distribution of an order in the system based on the
convolution property of the phase-type distribution, because the waiting times and service
time are phase-type. Neuts (1981) introduced the convolution property of the phase-type
distribution. If H(-) and I(-) are both continuous phase-type distributions with representa-
tions (3,7T) and (v, S) of orders m and n, then the convolution of two distributions, H  I(-)
is also a phase-type distribution with representation (c, @)) and the infinitesimal generator
and the initial probability vector are given by

T T%

Q= :
0 S
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o = [ﬁv Bm+1’7]'

We construct the initial probability vector and the infinitesimal generator of the system
based on this result. The infinitesimal generator is composed of the waiting time represen-
tation (o, W) and service time representation (3, S). The sizes of the matrix W and vector
a are determined by the number of orders ahead in the queue. For example, if there are k
orders ahead, the size of the infinitesimal generator and initial probability vector of waiting
time are given by Wi i1)x@k+1) and aixk+1). Thus, the phase-type representation of the

sojourn time distribution is determined by

We can generate the cumulative distribution function (CDF) of the system based on

the phase-type representation (v, K)

F(t)=P(T <t)=1—~el, (t >0).

The probability density function (PDF) is given by

ft) = e K? = 1e" (= K)e, (t > 0).

3.3.2 Numerical results

To test the approximation model, we consider two factors—the number of servers ¢ and

the number of orders ahead k. We use
e ¢ ={2, 3,5, 10, 20, 50, 100, 200}, and

e k ={5, 10, 20} for ¢ < 100, {40, 60, 80} for ¢ = 200.
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Table 3.1: A comparison of mean sojourn times for exponential service times.
Servers 2 3 5
Orders ahead 5 10 20 5 10 20 5 10 20
Approximation 20.00 32.50 57.28 15.00 23.33 40.00 11.00 16.00 26.00
% difference 0.08 0.20 -0.01 -0.63 -0.56 -0.44 0.52 0.59 0.58
Simulation 19.98 3244 57.28 15.09 23.46 40.18 10.94 15.91 25.85

Servers 10 20 30

Orders ahead 5 10 20 5 10 20 5 10 20
Approximation 8.00 10.50 15.50 6.50 7.75 10.25 5.99 6.81 8.47
% difference 0.17 031 036 -0.04 -0.01 -0.01 0.04 0.08 0.17
Simulation 7.99 10.47 15.44 6.50 7.75 10.25 598 6.80 8.46

Servers 50 100 200

Orders ahead 5 10 20 5 10 20 40 60 80
Approximation 5.61 6.09 7.10 529 556 6.04 6.01 6.54 7.01
% difference 0.34 -0.04 -0.06 -0.056 031 -0.18 -0.18 0.30 -0.14
Simulation 559  6.10 7.10 530 555 6.05 6.02 6.52 7.02

We test possible combinations of these two factors under the same capacity (E[Ty] = 5)
and compare with the results of a simulation built in Arena 10.0. We assume processing time
in the simulation model is exponentially distributed. Table 3.1 shows the mean sojourn time
results from the approximation model and the simulation model. Differences in the means
are all less than 1 percent.

Figures 3.1-3.3 show the PDF and CDF of the approximation and simulation results.
As with the mean sojourn time, we see nice agreement. To make a more scientific statement,
we chose three cases and checked the agreement using the Anderson-Darling (A-D) test. We
find that all statistics of the tests are less than the critical value with a@ = 5% (see Table
3.2). The percent differences of the 90" and 95" percentile between the two models are also

small.

3.4 General service times

In addition to the exponential service time case, Whitt (1999) developed an approxima-

tion model for general service times in single stage systems. For a large number of waiting
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Figure 3.1: Comparison of the PDF and CDF of the approximation model and the simulation
model (2 servers and 20 orders ahead).
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Figure 3.2: Comparison of the PDF and CDF of the approximation model and the simulation
model (50 servers and 10 orders ahead).

Density PDF Probability CDF
0.175 !
0.15 0.8
0.125 ——— Approximation
o6y /e Simulation
0.1
0.075 0.4
0.05 02
0.025 :
Time Time
5 10 15 20 25 30 5 10 15 20 25 3

Figure 3.3: Comparison of the PDF and CDF of the approximation model and the simulation
model (100 servers and 5 orders ahead).

Table 3.2: Anderson-Darling tests for the exponential service time of single-stage queue.
% difference

Servers Orders ahead A-D o = 5% Decision

goth 95th

2 20 1.405 accept  0.66 2.44
50 10 1.329 2492  accept 3.10 0.31
100 5) 0.631 accept 0.82 0.17
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customers k, a Normal approximation can be used. The mean waiting time is given by

k1 1
EW]~ 2T (1 + 2—) ,
e c

and the full distribution of waiting time is described by a Normal approximation. Whitt
states that his approximation is appropriate only when the number of servers is substantially
larger than the number of customers ahead, as is commonly the case in call centers.

In contrast to Whitt (1999), we approximate the sojourn time distribution using phase-
type distributions. The procedure is similar to the exponential service times case, except for
considering the remaining service times of the orders in service.

The procedure is:

1. Approximate the service time distribution as a corresponding phase-type distribution

(B, S) based on the C2.

2. Approximate the first waiting time distribution as a corresponding phase-type distri-

bution (e, W7) based on the Markov process.

3. Approximate the second waiting time distribution as a corresponding phase-type dis-
tribution (a2, Ws) based on the Markov process and the first initial probability vector

.

4. Approximate successive waiting time distributions as corresponding phase-type distri-

butions (a;, W;), i > 3, according to the same procedure.

5. Generate the initial probability vector and infinitesimal generator (v, K) for the system

using the convolution property of the phase-type distribution.

6. Solve F(t) = P(T <t) =1 — ~efle, (t > 0) to obtain the CDF of the sojourn time

distribution.
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To analyze a system using continuous time Markov chains, we need to approximate a
general service time distribution as a phase-type distribution. We generate the phase-type
representation of service time (3,S) using the method in Section 3.2.2. The number of
phases and the transition rate are determined by the SCV and the number of servers.

If a server is idle, an arriving order enters service immediately, and we do not need to
consider waiting time to calculate the sojourn time—the sojourn time is equal to the service
time. If there is no idle server and the arriving order finds k orders ahead in the queue,
its sojourn time consists of three times — the waiting time for the first order to depart,
the waiting time for the next k£ orders to depart, and the service time. In this condition, if
one of the servers finishes its order, the order can go one step forward and then all servers
are working immediately. So the order waits k + 1 “sub-waiting times” to enter service and
departs the system after receiving service. Hereafter, we refer to a “sub-waiting time” as an

epoch.

3.4.1 Approximating the first epoch

Each epoch is the time an arriving order spends in queue until one of the servers finishes
its order. That is, an epoch starts when all servers are busy (all-busy) and ends when one
of the servers finishes its order (partial-busy).

To estimate the distribution of waiting time, we introduce a continuous time Markov
process {N(t);t > 0} with some absorbing states to model the all-busy period, where the
system-state of the Markov chain is the number of servers in each phase. Asmussen and
O’Cinneide (1998) showed that the waiting time distribution in a GI/PH/c queue is phase-

type, and that the number of phases is

m+c—1

where ¢ is the number of servers and m is the number of phases of each server.
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Figure 3.4: System-state and server-state.

Suppose there are ¢ homogeneous servers, each with m phases, and an order finds &
orders ahead in the queue. There are m + 1 server-states, and each server can be in one of
those states. A order arrives to find k orders ahead and servers in one of m states (none are
idle). We describe the system-state as an m-vector of server-states. The i** element in the

vector records the number of servers in state i.

Example 3.1 An order arrives to a system with 2 homogeneous servers and finds 3 orders
ahead in the queue. We wish to estimate the sojourn time distribution of this order given
E[T,]) =2 and C? = 0.8.

First, we approximate the general service time distribution as a corresponding distribu-
tion using the fitting distribution method in Section 3.2.2. We approximate with an Erlang

=1

(2,1) because m = {%W =2, = 5

Figure 3.4 shows two examples of the relationship between server-state and system-
state: (a) shows two servers working in the first server-state, and this is system-state (2, 0);
(b) shows server 1 working in the first server-state and server 2 has finished its order, and
this is system-state (1, 0). There are 5 system-states: (2, 0), (1, 1), (0, 2), (1, 0), (0, 1).
We call (2, 0), (1, 1), (0, 2) all-busy states and (1, 0), (0, 1) partial-busy states. The time
between partial-busy states is an epoch, except for the first epoch which begins upon arrival
to the system and therefore to an all-busy state (otherwise a server was empty and the order

entered service immediately).
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We are interested in the distribution of the first epoch, which is the time until the
process enters the first partial-busy state, given the process started from an all-busy state.
The infinitesimal generator W; of the first epoch includes state changes from the all-busy

states to partial-busy states. In Example 3.1 |

-2 2 0
Wi=1| 0 -2 1
0 0 =2

We also need to compute the initial probability vector a; of the the first epoch, for
which we use the stationary distribution of the all-busy states, because an arriving order
finds the system in one of these all-busy states. In our approximation model, if the system
reaches a partial-busy state, the system-state is changed immediately to an all-busy state
because there is another order in the queue. Thus we should consider two kinds of state
changes for a;. One is state changes from the all-busy states to partial-busy states, and the
other is state changes from partial-busy states to all-busy states. If we sequence the states
such that the all-busy states precede the partial-busy states, the former state changes have
infinitesimal generator Wy, which has zero value for the lower triangle below the diagonal.
The latter state changes have transition rate matrix H, which has the same size as W; and
has zero value for the upper triangle and diagonal. The transition rate matrix Q = W, + H
includes all possible state changes when an order arrives at a certain position in queue. In

Example 3.1, H and () are

00 0 -2 2 0
H=|11001].Q@Q=] 1 -2 1
02 0 0 2 -2
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Now we can compute c; using the transition rate matrix ). The transition probability

matrix function P(t) of the continuous time Markov chain is given by
SRR S
“ n! ’

where [ is the identity matrix. The stationary distribution is given by

T = Z’/EPU@)

In Example 3.1, the initial probability vector a; of the all-busy states in the first epoch
is

Q] = {7'(']'} = (7T20,7T11,7T02) = (025,05,025)

3.4.2 Approximating the remaining epochs

The infinitesimal generators Wy, of the following epochs are the same as the infinitesimal
generator of the first epoch, because the state changes from the all-busy to partial-busy states
are the same. But the initial probability vectors ay of the following epochs are not the same.
Rather, they must be derived successively from the initial probability in the previous epoch,
because these affect which partial-busy state was reached. As we mentioned above, if the
system reaches a partial-busy state, the system state is changed immediately to an all-busy
state. This means the initial probability vectors oy, of the all-busy states in epoch k come
directly from the stationary distribution 3,_; of the partial-busy states in the former epoch
kE—1.

Now we introduce a method to compute the stationary distribution 3,_; of partial-busy
states in epoch k — 1. Every epoch starts from one of the all-busy states and ends in one of
the partial-busy states, so if we know the stationary distribution of the all-busy states and

the absorbing probability from the all-busy states to partial-busy states, then the stationary
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probability of the partial-busy state j

Bj = Z iU,

all—busy 1

where 7; is stationary probability of all-busy state ¢ and u;; is the absorbing probability from

all-busy state ¢ to partial-busy state j. From the Chapman-Kolmogorov equations,

Ui = E Pihuhj~

all—busy h

Finally, we get the elements of oy, directly from the corresponding elements in 3,,_;. In

Example 3.1, the initial probability vector ap of the all-busy states in the second epoch is
oz = (B0, Bo1, 0) = (0.375,0.625,0).

Note that elements of the initial probability vector ay converge to the same value as

the epoch k increases.

3.4.3 Approximating the sojourn time distribution of the system

The sojourn time of an order with ¢ + k orders ahead in the system has k + 1 different
sub-waiting times and one service time. So, the state-dependent sojourn time distribution
is given by the convolution of these k + 2 distributions.

We construct the initial probability vector and the infinitesimal generator of the queue-
ing system based on the work of Neuts (1981). The infinitesimal generator is composed of
the waiting time representation (ay, W) of each order’s waiting time in the system and the

service time representation (3, S). If there are k orders ahead in the queue, the infinitesimal
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generator and initial probability vector are given by

‘W W%, 0 .- 0 0 |
0 W Wy - 0 0
K= :
0 0 0 W WO
0 0 0 o s |
~v=[1,0,---,0]

The CDF and PDF are given by

F(t)=P(T <t)=1— e, (t >0),

f(t) =7 K° = ve®(—K)e, (t > 0).

3.4.4 Normal Approximation Model

One drawback of our approximation model is computation time for very large systems.
For example, models with up to 30 servers and fewer than, say, 20 orders ahead, generally
solve within 1 minute; problems with 50 servers can take 3 minutes; problems with 100
servers can take 8.5 hours and problems with 200 servers, more than a day. To address these
larger problems, we introduce a second approximation called the Normal Approximation
Model (NAM).

The NAM uses the same phase-type representation of waiting and processing times
as the approximation we have already developed, except that the CDF and PDF are not
calculated with the matrix exponential expression in Equation 3.1. Instead, we assume the
final distribution is Normally distributed, and that we can compute the required first and

second moments with Equation 3.2, which requires only a matrix power computation.
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3.4.5 Numerical results

Consider the example in Section 3.3.2, but now with general service times and C? =
0.5. We compare our results with Whitt’s method and with simulation in Table 3.3. For
the comparison, we add the mean processing time to the waiting time of Whitt’s results
because he computes only mean waiting time. In the simulation model, we used the Gamma
distribution for the service time because it is often an appropriate model for task completion
time (Law and Kelton, 2000).

Table 3.3 shows the mean sojourn time results from the approximation model, Whitt’s
model and the simulation model. As expected, Whitt’s model shows good results when
the number of servers is high (in this case, greater than 30). With a few exceptions, the
approximation model appears to perform well over a wide range of problem instances. We
should note however, that the largest problems in this table are very difficult to compute
using our approximation model. For example, a problem with 100 servers and 20 orders
ahead takes 8.3 hours, and 200 server problems take about 1 day. We record computation
time using a 2.4 GHz Intel Core 2 Duo processer, and most of the problems except for those
mentioned above are computed in a few seconds. Therefore, one might view Whitt’s method
and ours as complements—ours performs well for small and medium sized systems, his for
large.

Figures 3.5-3.7 compare the PDF and CDF of the approximation model with the simu-
lation model under different numbers of servers and orders ahead in the queue. We use the
Anderson-Darling (A-D) test to check the agreement between two distributions. As shown

in Table 3.4, all test statistics are significant with o = 5%.

3.4.6 Testing the Normal Approximation Model

Table 3.5 shows the percent differences of percentiles between the NAM and the sim-
ulation when ¢ = 2,20 and 100. We see that differences at the 95" percentile are greater

than 5 percent for cases k < ¢, where k is the number of orders ahead and there are c
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Table 3.3: A comparison of mean sojourn times for general service times.

Servers 2 3 5
Orders ahead 5 10 20 5 10 20 5) 10 20
Whitt 18.75 34.38 65.63 11.67 21.39 40.83 11.60 17.10 28.10

% difference -4.95 6.51 15.65 -2099 -7.06 521 523 643 8.27
Approximation 19.38 31.88 56.87 14.71 23.20 40.17 10.97 16.24 26.82

% difference -1.79 -1.24 021 -0.39 0.79 351 -0.53 1.06 3.34
Simulation 19.73 32.27 56.75 14.77 23.01 3881 11.02 16.07 25.95
Servers 10 20 30

Orders ahead 5 10 20 5 10 20 5 10 20
Whitt 8.15 10.78 16.03 6.54 7.82 10.38 6.02 6.86 8.56

% difference 225 281 342 081 1.20 149 0.68 093 1.32
Approximation 8.02 10.79 16.45 6.48 781 10.67 599 6.84 8.63
% difference 0.62 299 6.19 -0.04 104 426 015 0.53 2.19

Simulation 7.96 10.48 1543 646 7.70 10.26 597 6.79 843
Servers 50 100 200

Orders ahead 5 10 20 5 10 20 40 60 80
Whitt 5.61 6.11 7.12 530 555 6.06 6.03 6.53 7.03

% difference 0.61 052 082 021 026 027 016 022 0.25
Approximation 5.59 6.09 7.12 530 555 6.04 6.02 6.51 7.02
% difference 039 021 073 019 019 0.09 -0.01 -0.01 0.05
Simulation 556 596 7.06 528 553 6.03 599 649 6.99
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Figure 3.5: Comparison of the PDF and CDF of the approximation model and the simulation
model (2 servers and 20 orders ahead).

Table 3.4: Anderson-Darling tests for general service time of the single-stage queue.

Servers Orders ahead A-D «a = 5% Decision % difference

90th 95th

2 20 1.755 accept  0.92 1.78
50 10 1.828 2492  accept 1.56 0.51
100 5 2.327 accept  0.22  0.27
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Figure 3.6: Comparison of the PDF and CDF of the approximation model and the simulation

model (50 servers and 10 orders ahead).
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Figure 3.7: Comparison of the PDF and CDF of the approximation model and the simulation

model (100 servers and 5 orders ahead).
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servers, which suggests that the model does not perform well under these conditions. The
explanation has two parts: First, the Normal approximation will perform well, in general,
when (1) successive waiting times have the same distribution, and (2) there are many of
them. Second, successive waiting times in our case are not identically distributed because
of the initial set of remaining times (Section 3.4.2). However, successive waiting time distri-
butions do converge as memory of the initial remaining times is “lost,” which is reflected by
successive initial probability vectors ay converging to the same set of values. Systems with
fewer servers converge faster, so, in general, the NAM performs better when k£ > c.

Table 3.5: The percent differences of percentiles between NAM and Simulation for the single
stage queue.

Servers 2 20 100

Orders ahead 5 10 20 5 10 20 5 10 20
90" -1.69 046 1.48 -147 -0.53 253 -9.23 -1.89 -1.76
95t -2.73 024 234 -733 -584 -2.00 -14.06 -8.16 -7.74

3.5 Multi-Stage Systems

3.5.1 Approximation model

We extend our work to serial lines and acyclic queueing networks based on the single
stage approximation model. Consider first a simple, 3-station serial line, and suppose an
order is in queue at the first workstation. The order will experience three sojourn times,
one at each queue, and the total sojourn time is their convolution. After each of the first
two sojourn times, the status of the remaining queues changes, so we must estimate how
many orders are in these queues when the order of interest arrives. After each sojourn time,
the remaining queues change in two ways: orders arrive from the upstream workstation, and
some orders are completed and depart. During each stage, then, we must estimate how many

orders arrive to and depart from each remaining workstation (Figure 3.8).
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Figure 3.8: State-dependent queueing network model. Black discs represent workers; squares
represent orders.

For the first workstation, we simply apply the single-stage model, giving us a sojourn
time distribution and its mean E[S;]. Now, let q;'- be the estimated queue length of work-
station j after the i*" sojourn time. Waiting time at the second workstation is based on
the starting queue length ¢9, plus arriving orders, minus departing orders. We assume that
during E[S;], all ¢! + ¢; orders in front of the order of interest arrive to workstation 2. If
all servers were busy during this time, then we would estimate the number processed at
workstation 2 by ¢y x E[S1]/E[T3]. However, it is possible that some servers could go idle
during this time, so we correct for this by using a floor function, |cy x E[S;]/E[Ts]]. The

expected number of orders ahead upon arrival to the second workstation becomes,
¢y = max(0, g5 + (¢ + c1) — [e2 x E[S1]/E[T]]).

During each stage of calculation, we must revise the number in queue at remaining

workstations. For the third and following workstation, this leads to

A . E[S;] E[S;] ‘ .
¢: = max 0,q?1+{c-_ X J—{c»x— , fore=1,...,7—2.
: ( N ' E[T;]
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Figure 3.9: A serial line with 3 stations.

The final revision (j — 1) for workstation j is
. . - E[S.
¢ ' — max (O,qj 2+q§_f+cj,1 - {cj X £l I]J) :

These approximations assume heavy traffic and are far from exact. However, they are
sufficient for our purposes, as we are about to show.

For large serial systems, an alternative approach is to modify the NAM by “collapsing”
the system into a single-stage queue. If we wish to know the state-dependent sojourn time
distribution of an order in front of the first station in a serial line with 3 stations, we
assume our system is a single stage queue with c3 servers, and the number of orders ahead is
q1+ 1+ g2+ o+ g3, assuming all servers are busy. Now we can generate the state-dependent

sojourn time distribution using the single stage model directly.

3.5.2 Numerical results

We apply the approximation model to a serial line with 3 stations (Figure 3.9) and
an acyclic queueing network with 4 stations (Figure 3.10). The black disc in each station
represents an occupied server, and in the case of the acyclic queueing network, an order
departing from the first station selects its follow on station with probability p. We test
state-dependent sojourn time distributions for both systems when the order is located in
front of the first station. We also test the acyclic queueing network when the order is located

in front of the second station. The system information is described in Table 3.6.
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Figure 3.10: An acyclic queueing network with 4 stations. Black discs represent workers.

Table 3.6: The system information of the serial line and acyclic queueing network.

Serial line E[T) C? Servers p
Interarrival 1.05 0.7
Station 1 5 08 5 0.95
Station 2 3 0.8 3 0.95
Station 3 2 0.8 2 0.95
Acyclic queueing network E[T| C? Servers p
Interarrival 1.05 0.7
Station 1 5 08 5 0.95
Station 2 447 0.8 3 0.95
Station 3 9.09 0.8 3 0.95
Station 4 2 0.8 2 0.95
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Table 3.7: The comparison of the mean sojourn time of the serial line.
Orders in queues Approximation % difference  NAM % difference Simulation

11-12-13 47.98 0.11 46.75 -2.46 47.93
6-12-13 42.70 -0.12 41.75 -2.34 42.75
16-12-13 53.27 0.50 51.75 -2.37 53.01
11-20-13 95.13 -1.62 54.75 -2.30 56.04
17-12-17 58.33 1.15 56.75 -1.60 o7.67
7-20-4 41.90 -2.28 41.75 -2.64 42.88
31-22-29 93.32 0.30 92.75 -0.31 93.04

We compare the mean sojourn time and the distribution among the approximation,
the NAM, and the simulation model under different numbers of orders in each station. We
assume service times and interarrival times in the simulation model are Gamma distributed.
To estimate a sojourn time distribution in simulation for problems given in Table 3.7, we
collect sojourn times only for orders seeing the required state conditions upon arrival. When
an order arrives to the system, we check the number in queue at each workstation. If this
vector of values corresponds to the state of interest problem condition, we record the sojourn
time; otherwise we do not. This “brute force” method alleviates the problem of estimating
upon arrival the remaining times of orders in process. However, because of occurrences of a
particular state are rare, these simulations can take a very long time to run. For example,
the first problem in Table 3.7 (11-12-13) takes 2 days for 50 runs, with 40 million (simulated)
hours in each run.

Table 3.7 shows the results. In the table, the column “ Orders in queues” represents the
number of orders in the respective queues. The approximation model is extremely close to
the simulation results for nearly every case. The NAM is acceptable, but not quite as good.
We believe the NAM underestimates the mean (notice the negative differences) because it
does not account for potential starving situations.

Figures 3.11 and 3.12 compare the PDF and CDF of the approximation model with the
simulation model under different numbers of servers and orders ahead in the queue. Again,

the Anderson-Darling (A-D) tests reveal that there is no significant difference between the
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Figure 3.11: Comparison of the PDF and CDF of the serial line (11-12-13).
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Figure 3.12: Comparison of the PDF and CDF of the serial line (6-12-13).

simulation and approximation results. However distributions generated by the NAM do not
exactly fit the simulation (Table 3.9). Most of the percent differences are greater than 5%,
except when the numbers of orders at each station are 31, 22 and 29. This suggests that the
NAM works well only when the total orders ahead is significantly greater than the number
of servers at the last station, because of reduced chances of starving.

Table 3.10 shows the mean sojourn time of the approximation model and simulation

for an acyclic queueing network. We test two cases: the order is in front of the first station

Table 3.8: Anderson-Darling tests for the serial line.
% difference

Orders in queues A-D o = 5% Decision

90th 95th
11-12-13 2.22 accept -3.08 -4.13
6-12-13 1.79 9 492 accept -1.61 -2.52
16-12-13 0.86 ' accept  -2.29 -2.95
17-12-17 1.85 accept -0.84 -2.14
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Table 3.9: The percent differences of percentiles between the NAM and simulation for the
serial line.

Orders in queues Total orders ahead 90 95"

11-12-13 44 -50.24 -7.83
6-12-13 39 -6.64 -9.24
16-12-13 49 -5.28 -7.16
17-12-17 o4 -4.59 -6.82
31-22-29 90 -2.43 -3.98

Table 3.10: The comparison of the mean sojourn time of the acyclic queueing network.

Order location Orders in queues Approximation % difference Simulation
11-12-8-13 60.87 1.86% 59.77
6-4-16-13 55.59 0.76% 55.18
The first station 16-12-15-13 72.26 0.84% 71.66
11-20-12-13 73.10 0.73% 72.57
17-12-7-17 70.54 2.78% 68.64
11-12-8-13 39.56 -1.28% 40.07
The second 6-8-12-13 33.48 -1.76% 34.08
station 16-12-15-13 39.56 -1.81% 40.29
11-20-12-13 51.72 -0.53% 51.99
17-12-7-17 43.56 2.25% 42.60

and in front of the second station. The approximation model appears to work well for both
cases.

Figures 3.13-3.16 compare the PDF and CDF of the approximation model with the
simulation model under different locations of the order of interest. Notice the unusual distri-
bution in Figure 3.14. This is caused by the mixture of the distributions of the two potential
serial line paths (path 1: 1-2-4 and path 2: 1-3-4) because an arriving can take either path
to depart the system. If the difference between the two mean sojourn times is large (E[S]
of the two paths are 44.44 and 75.06 hours), the sojourn time distribution has two peaks,
as in Figure 3.14. Notice that our model reflects this because we estimate the sojourn time
distribution for a random order by approximating the CDF of all possible “serial lines”

(paths in the network) and mixing those CDF's according to the probabilities of taking those
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Figure 3.13: Comparison of the PDF and CDF of the acyclic queueing network (The first
station, 11-12-8-13).

Density PDF Probability CDF
0.04 1
0.8
0.03 ——— Approximation
o6r £ e Simulation
0.02
0.4
0.01 0.2
Time Time
20 40 60 80 100 120 140 20 40 60 80 100 120 140

Figure 3.14: Comparison of the PDF and CDF of the acyclic queueing network (The first
station, 6-4-16-13).
paths. We use the Anderson-Darling (A-D) test to check the agreement between the two

distributions. As shown in Table 3.11, all test statistics are significant with o = 5%.

3.6 Chapter conclusions

We have developed an approximation model for state-dependent sojourn time distribu-
tions of queueing systems with multiple servers, using the characteristics of the phase-type
distribution. We develop an approximation model for single-stage queues with exponential
and general service time distributions and an approximation model for the serial lines and
acyclic queueing networks with general service time distributions.

The waiting time of the single-stage G/M/c follows the Erlang distribution and has only

one phase-type representation. So, it is easy to generate the CDF of the state-dependent
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Figure 3.15: Comparison of the PDF and CDF of the acyclic queueing network (The second
station, 11-12-8-13).
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Figure 3.16: Comparison of the PDF and CDF of the acyclic queueing network (The second
station, 6-8-12-13).

Table 3.11: Anderson-Darling tests for the acyclic queueing network.
% difference

Order location Orders in queues A-D o = 5% Decision o0t OFth
11-12-8-13 2.01 accept  -2.53 -4.40
6-4-16-13 1.65 accept  1.75  -0.39

The first station 16-12-15-13 1.21  2.492 accept  -0.91 -1.75

11-20-12-13 2.31 accept -3.72 -2.99
17-12-7-17 1.74 accept -1.98 -3.63
11-12-8-13 2.01 accept  -3.50 -4.15
The second 6-8-12-13 2.36 accept  -4.85 -6.61
station 16-12-15-13 2.46  2.492 accept  -3.89 -5.43
11-20-12-13 1.35 accept  -2.25 -2.65
17-12-7-17 1.02 accept -0.81 -0.98
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sojourn time distribution, whereas the G/G/c single-stage queue has many phase-type rep-
resentations of waiting time. For the waiting time distribution of the G/G/c queue, we
introduce a Markov process {N(t),t > 0} to describe the waiting time distribution consid-
ering remaining service time. The approximation model for a network was generated by
convoluting sojourn time distributions in the routing of the order.

In contrast with Whitt’s model, our approximation model performs well over a wide
range of problem instances, whereas Whitt’s model shows good results when the number
of servers is high. However our single-stage approximation model is limited to problems
with fewer than about 200 servers, because the computation time of our model increases as
the number of servers and orders ahead increases. This problem is caused by the matrix
exponential calculation.

The approximation allows us to estimate the probability that the state-dependent so-
journ time will be less than a desired time ¢, p, = P(T < t). This result can be used in
various ways based on the state of the system. For example, an order fulfillment system
can do dynamic order promising to customers, at the point of order. During times of heavy
loading, when the probability of an order making it onto a premium shipping mode is low,
the retailer might declare to offer this mode to the customer.

Service systems could inform customers of their wait time with an estimated probability.
For example, in an amusement park such as Disney world, we see the phrase “From this
point, expected time is 1 hour” in a waiting line. Disney could develop this time at a
higher probability of success and therefore “exceed expectations.” Also, it could be used as
a criterion for staff scheduling. If a service system has non-stationary arrival streams, we

can schedule staff based on the sojourn time distribution of a peak time and non-peak time.
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Chapter 4

Dynamic Worker Allocation Policies to Improve Service in an Order Fulfillment System

We propose several dynamic worker allocation policies to maximize service performance
of an order fulfillment system. QOur policies make use of the state-dependent sojourn time
distribution for an order, which we compute with a model based on phase-type distributions.
Our approach differs from other work on dynamic worker allocation in that we focus on
service performance as perceived by the customer, instead of traditional system performance
measures such as cycle time, throughput, and WIP. Our results suggest that order fulfillment
systems can significantly improve their service performance by moving the right number of

workers to the right place, at the right time.
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4.1 Introduction

The most important function for most distribution centers is order fulfillment, which
is the demand-side activity that satisfies customer requests. In many distribution centers,
there are three primary activities: picking, packing, and shipping. Orders often arrive to
such systems throughout the day and are prepared for shipping through picking and packing
processes by workers. Customers usually want to receive their orders as soon as possible.
Thus, how companies respond to customer orders is a matter of primary concern for this
system.

Several years ago, we noticed from data of a large distributor in San Diego that on
average, 5 percent of all orders arrived at the shipping dock in the 30 minutes following
the departure of the last truck each night. In this chapter we ask, could workers have been
redeployed somehow, perhaps in the few hours before the truck departure, to “flush” the
system of orders that were almost completed, thereby increasing the service performance of
the system? For example, workers could move from picking to shipping in order to flush the
system of nearly completed orders right before the truck departs. The problem, of course, is
that this causes an imbalance of the system and reduces the throughput of the picking area
temporarily, which has reverberating effects later. Whether or not the system can be gamed
in this way is what we explore in this chapter.

Our goal is to maximize a performance metric called Next Scheduled Departure (NSD),
which was introduced by Doerr and Gue (2006) to measure service performance in a distri-
bution center. NSD records the percentage of orders arriving in the 24 hours between cutoff
times on successive days that make it onto the truck in the current day. The cutoff time is
established by managers in the distribution center, and any order arriving before this time
is due in the current day. Doerr and Gue (2006) claim that an increase in the NSD means
a direct increase in customer satisfaction. We might say that NSD is a system performance
measure from the customer’s perspective, whereas existing metrics such as WIP, cycle time

and throughput are from the distributor’s perspective.
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To introduce the dynamics of a worker allocation policy, consider a naive policy, which
moves a fixed number of workers at a fixed time close to the deadline everyday. We model
the order fulfillment system as a serial line of 3 workstations (picking, packing, shipping)
with 10, 12, and 9 workers per workstation. We move 8 workers from picking to shipping one
hour before the deadline everyday, in an attempt to flush the system of almost completed
orders. On some days, the policy is effective, but on others it is not. Because the naive
policy ignores the state of the system when moving workers, it is possible that workers are
moved from a busy work center (picking) to a work center with little or no work to be done
(shipping). This is a double error: (1) busy workers are made idle after the shift and (2)
orders in picking back up during the shift, thereby increasing their chances of being late the
next day.

Simulation experiments on this simple policy led us to consider more complex, but
intuitively appealing policies based on sojourn time. The idea is to consider the likelihood
(probability) that an order in a system will make it on the next departing truck, if the
allocation of workers does not change. When this probability drops below a threshold value,
then some workers in picking should be moved so as to improve the probability of success
for other, more promising orders.

We introduce several dynamic worker allocation policies designed to maximize customer
satisfaction without disturbing system balance. In the next section, we describe previous
research on dynamic worker allocation policies. Section 4.3 presents the meaning of the Next
Scheduled Departure (NSD) metric in terms of the sojourn time distribution. We also define
the probability of success (ps), which is the crucial criterion for our worker allocation policies.
In Section 4.4 and 4.5, we introduce and evaluate several policies. We offer conclusions in

Section 4.6.
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4.2 Literature Review

There is a rich literature on workers moving among tasks in a dynamic fashion in man-
ufacturing and, to a lesser extent, warehousing. Research in dynamic worker allocation falls
under several names, such as worksharing systems, worker cross-training or cross-utilization,
collaborative and non-collaborative work systems, and agile workforces. The use of cross-
trained workers to improve the performance of manufacturing systems has been investigated
by several researchers. Askin and Chen (2006) categorize worksharing policies as two types:
Dynamic assembly-Line Balancing (DLB) and Moving Worker Modules (MWM). MWM
systems have fewer workers than machines, so workers share every machine and move ev-
erywhere within a zone, whereas DLB has the same number of machines and workers. DLB
has fixed tasks and shared tasks; the former are assigned to a designated worker, and the
latter can be carried out by either of an adjacent pair of workers. In this review, we classify
the floating worker system studies by MWM or DLB based on the number of workers per
machine, the extent of skill per worker, and the amount of WIP.

Toyota Sewn-products management System (TSS) and the Bucket Brigade System are
the representative MWM (Askin and Chen, 2006). These systems have fewer workers than
machines. In a TSS system, a worker moves downstream doing his or her job at every
machine within a restricted zone until either the job is finished or the downstream worker
takes over the job. Bischak (1996) studied a U-shaped manufacturing line under the TSS
system. She developed a simulation model and showed that the throughput of moving
worker modules is higher than the fixed worker system with and without the use of buffers.
Zavadlav et al. (1996) also examined a U-shaped serial line under the TSS system using a
Markov decision process and simulation. They compared three systems: fixed assignments,
overlapping (shared) worker assignments, and free-floating worker assignments based on the

same constraints. They showed that the free-floating system is the most efficient way to

lower WIP.
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Bartholdi and Eisenstein (1996) and Bartholdi et al. (2001) developed the bucket brigades
protocol based on TSS. They showed that sequencing workers from slowest to fastest can
make a balanced partition of work emerge without management intervention, and that it
produces the highest possible production rate. McClain et al. (2000) showed that bucket
brigades does not work well with random processing times and nearly-equal worker velocities,
because these conditions can lead to idle time for workers when the bucket brigade rule is
followed strictly. To increase system performance, they suggested relaxing bucket brigade’s
“wait” restriction and allowing small amounts of inventory.

In the DLB problem, Gel et al. (2007) developed a zone policy in CONWIP produc-
tion systems with hierarchical cross-training. They suggest the “fixed-before-shared” policy,
which states that a cross-trained worker should do his unique task before helping a fixed
worker with a shared task. They showed that partial cross-training in hierarchical patterns
may yield substantial benefit if cross-trained workers are significantly faster than static
workers under the “fixed-before-shared” policy. Gel et al. (2002) studied factors affecting
the opportunity for worksharing under the same conditions. They showed that the ability
to preempt the shared task, granularity of the shared task, and less variability of the task
times increases the system effectiveness.

The half full buffer (HFB) control policy, which provides enough work for the down-
stream worker not to starve and enough empty space for the upstream worker not to be
blocked, was studied by Ostalaza et al. (1990), McClain et al. (2000), Gel et al. (2002),
Chen and Askin (2006) and Askin and Chen (2006). Ostalaza et al. (1990) suggested an
SPT/RSPT rule, and showed that the system performance increases when the number of
shared tasks is controlled by the HFB control policy. McClain et al. (2000) considered zoned
worksharing and bucket brigades with a variety of situations. Using simulation, they tested
the HFB control policy to move flexible workers for shared tasks. Following this research, Gel
et al. (2002) proposed a more delicated HFB control policy considering general processing

times and different worker speeds. They also suggested the 50-50 work content heuristic rule
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that an upstream machine transfers the shared task to the downstream machine in the case
where the ratio of work content at the upstream machine to the total work content in the
system is greater than 50 percent. Askin and Chen (2006) and Chen and Askin (2006) con-
firmed again the effect of the HFB control policy and suggested another threshold heuristic
rule, smallest R no starvation (SRNS), to calculate the threshold value R under CONWIP
levels. They showed that cross-training can increase system effectiveness with a work content
heuristic rule such as SRNS and HFB.

In contrast to existing research, we offer a dynamic worker allocation policy with the
following distinctives: First, the purpose of most former research on worker allocation has
been to maximize system throughput, to minimize cycle time, or to decrease WIP in a
manufacturing system. Our objective is to improve customer service in an order fulfillment
system, which we measure with the Next Scheduled Departure (NSD) performance metric
(Doerr and Gue, 2006).

Second, most of the existing research is limited to small tandem lines, such as 2 or
3-station tandem lines with one or two servers in the system. Existing results show that
dynamic capacity allocation between adjacent workstations works well based on those simple
conditions. However, real systems may not be so simple: there may be many servers in each
workstation and perhaps many workers need to move among workstations to improve system
performance. For example, a typical distribution center can have dozens of workers in each
functional area (picking, packing, shipping). Our policies are effective in these larger systems.

Third, most of the methods which have been used by existing research are Markov
decision processes, heuristics, or simulation. We compute the probability that an order in
the system will make it on the next departing truck without worker allocation based on its
sojourn time distribution in a multi-server queueing network. When this probability drops
below a threshold value, we move some workers from one workstation to another to improve

the probability of success for more promising orders.
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Figure 4.1: The relationship between the cutoff time and NSD (Doerr and Gue, 2006).

4.3 Preliminaries

Before designing worker our allocation policies, we introduce three fundamental concepts
integral to their development: Next Scheduled Departure (NSD), state-dependent sojourn

time distributions, and the probability of success.

4.3.1 Next Scheduled Departure (NSD)

Doerr and Gue (2006) define NSD as the fraction of orders arriving in 24 hours between
cutoff times ¢. on successive days that make it onto the truck in the current day. An earlier
cutoff time means more orders arriving before the cutoff time will make it on the departing
truck and therefore NSD will be higher; thus, NSD depends directly on the cutoff time.
Figure 4.1 illustrates the relationship between the cutoff time and NSD, where ¢ is the
cutoff time and ¢} is the deadline of day n.

Expected NSD for a system can be computed based on the steady-state sojourn time
distribution. Every arriving order sees the same steady-state sojourn time distribution to
depart the system. If an order arrives to a system close to the deadline, the probability that
it will make it on the next departing truck will be low. Those arriving early in the 24 hour
window have the highest chance of making it on the truck. As shown in Figure 4.2, given
cutoff time ¢. and deadline t;, the time average of the probability of being completed on

time for orders arriving in this 24 hour period is the expected NSD. We can compute this
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Figure 4.2: The meaning of NSD based on the steady-state sojourn time distribution.

steady-state sojourn time distribution for multi-server queueing networks using methods we
develop in Gue and Kim (2009a).
Formally, if P(t) = P[ event occurs at time t |, then the time average probability is

given by p = 1 [T P(t)dt.
Proposition 4.1 For an order fulfillment system with deadline t; and cutoff time t.,

1 0+24

NSD = — P[T < ]dt, (4.1)
24 J;

where 0 <t <24 and 6 =ty — t,.

Proof. Let P(t) be the probability that a job arriving at time ¢ is completed before the

deadline, then P(t) = P[T < § 4+ 24 — t] and by the definition of time average probability,
1
NSD = —/ P[T < 6+ 24 — #]dt.
2 |,

where t is elapsed time since the most recent cutoff time ¢..
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Let u = 0 + 24 — ¢ and differentiate both sides with respect to t. We get du/dt = —1,

or du = —dt.
1 [
NSD = — PIT <6+ 24 —t]dt

24 J,
1 /9

= — P|T < u|(—du
51 )., P <=
1 6+24

= — P|T .
21 . [T < uldu

Given the desired baseline NSD (see Doerr and Gue (2006)) when there is no worker
allocation, we compute 6 by simple search using Equation 4.1 and decide the cutoff time

t.=ty— 9.

4.3.2 State-dependent sojourn time distribution

A state-dependent sojourn time distribution provides real-time information about a
system, where the state of the system is defined by the number of busy servers, the number
of orders in queue, and the processing rate of the servers.

Gue and Kim (2009b) develop an approximation model for the state-dependent sojourn
time distribution of orders in a multi-server queueing system, when interarrival and service
times can take on general distributions. The model is based on the characteristics of phase-
type distributions, and uses a Markov process to represent the all-busy period for a waiting
time distribution.

An order in queue (say, the k') waits k + 1 “sub-waiting times” to enter service and
departs the system after receiving service. They approximate each “sub-waiting time” and
service time as corresponding phase-type distributions (o, Wy), (8, S) respectively and gen-

erate the initial probability vector and infinitesimal generator of the sojourn time distribution
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of the system (-, K) using the convolution property of the phase-type distribution.

W W%, 0 - 0 0
0 W Wy --- 0 0
K= ,
0 0 0 W WO,
0 0 0 (N
~v=[1,0,---,0]

Based on (v, K), the CDF and PDF are given by

F(t)=P(T <t)=1—r~e"e, (t >0),

f(t) = 7" K = 7e" (= K)e, (t > 0),

where e is a column vector of ones. See Gue and Kim (2009b) for details. For our purpose,
it is sufficient to know that for any order in a system, we can compute its remaining sojourn

time distribution based on the actual state of the system.

4.3.3 The probability of success

In Section 4.1, we reported that a simple worker allocation policy (moving a fixed number
of workers at fixed time everyday) without considering the system state is not promising.
An alternative, which we show below to be more effective, is to decide the number of workers
to switch based on the current system state. To do so, we introduce probability of success
ps as a tool to help determine how many workers to switch.

Probability of success is decided by the system state, the number of orders ahead, the
number of servers, the service time distribution, and the remaining time before the deadline.

We can compute p,; of an order in the system based on the state-dependent sojourn time
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distribution model (Gue and Kim, 2009b), as follows. Let a continuous random variable T

be the sojourn time

Definition 4.1 Probability of success

P[T < t,] if an order is in queue
PIT < t,|T >t.] if an order is in service

where t, the remaining is the remaining time, t; is the duration of time between entry into

service and the deadline, and t. is the elapsed time since an order entered service.

We can compute p, for an order in service from the sojourn time CDF as follows.

PIT <t|T>t] = 1—P[T>t|T >t
o, ftjo fr(u)du
B j:o fr(u)du
B ftjo fr(u)du — ftjo fr(u)du
N ftoo fr(u)du
B f:f fr(u)du
B ftoo fr(u)du
_ F(t) - F(t)
1— F(t.)

To illustrate, we record p, for a particular order in a simulated system.

Example 4.1 Consider a single-stage queue with 30 identical servers, with processing times
having mean 5 hours and squared coefficient of variation 0.8. An order arrives at 10:00 and
sees 19 orders ahead. The last truck departs the system at 17:00. What is the probability

of success, and how does it change with time?
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To illustrate how p, changes over time, we run a simulation model and compute p,
and the mean sojourn time E[S] at 15 minute increments, based on a recalculated state-
dependent sojourn time distribution. For example, to compute the probability of success of
this order at 10:00 (remaining time ¢,=7 hours), we generate the phase-type representation
of the system (7, K) using the approximation model of Gue and Kim (2009b) based on the

system state. Then the probability of success is computed using Equation 4.2,

ps=P(T <t, =7)=041.

Figure 4.3 shows p; for the order over time. In this case, the order is still in the system
at t;=17:00, when its ps=0. We see that p, increases or decreases according to the condition
of the system. However, once an order enters service, its ps can only decrease (see Equation
4.2). Once an order is seized by a worker, there is no way to help its process time by worker
allocation because we do not consider worker collaboration on an order.

Our worker allocation policies are based on the insight that as time progresses, the
probability of success for orders far from completion goes down and so effort devoted to them
might be better spent on orders “on the bubble” of making the next truck. We formalize

this idea below.

4.4 Worker allocation policies

We introduce dynamic worker allocation policies that assign cross-trained workers to
tasks in an order fulfillment system such that performance against the Next Schedule De-
parture (NSD) metric is improved. We suggest two types of policies: a flushing policy and
a cascade policy. We further classify a flushing policy as either single or multi-flush in
accordance with the number of switching events.

A single flush policy moves workers based on the state of the shipping area at a defined

time in order to flush the system of nearly completed orders right before the truck departs
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Figure 4.3: A change of ps of an order while in the system. The probability of success
ps increases or decreases with time because the system state, the number of orders ahead,
the number of servers, and the service time distribution change; but ps of an order always
decreases in service because it is a conditional probability of elapsed time ¢..

(Figure 4.4). For this reason, this policy only focuses on the state of the shipping area and
the sojourn time distribution of orders in it. One limitation of the single flush policy is
that we have only one opportunity per day to correct an overloaded shipping area. In the
multi-flush policy, we move workers periodically during a day, considering the state of the
shipping area. Multi-flush is the same as single flush, except for the number of switching
events.

A cascade policy moves workers sequentially from picking to packing, then from packing
to shipping based on the state of the packing and shipping areas at a certain times. The
cascade policy is an attempt to flush across more than one workstation. Figure 4.5 shows
the concept. At a fixed time, say, 15:00 each day, move workers from picking to packing.
At a later time, after flushing orders in the queue of the packing area, move workers from
packing to shipping. The goal of the cascade policy is to increase the p, of an order in the

system regardless of its location in a relatively short time.
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Table 4.1: The characteristics of 12 systems.
High p High p Low p Low p
High SCV | Low SCV | High SCV | Low SCV

Small system
with short

Edfde system

with short

FiSill system
with long E[S]

System 1 System 2 System 3 System 4

System 5 System 6 System 7 System 8

System 9 System 10 | System 11 | System 12

4.5 Experiments

To make definitive statements about which policy is “best” would require that we test
it on an infinite number of potential systems. We settle for a more limited experiment
on 12 carefully constructed systems, which we believe stress the model along important
dimensions. All of the example systems are 3-stage serial lines, in keeping with the picking-
packing-shipping structure of many order fulfillment systems. The systems vary according to
size (number of workers), mean sojourn time, variability of processing times, and utilization.
Table 4.1 summarizes the systems.

We select three basic candidate systems according to size and mean sojourn time, then
divide each system into four different systems based on two levels of the squared coefficient
of variation (SCV: 0.5, 0.9) and utilization (p=0.85, 0.95). For the squared coefficient of
variation, we deal exclusively with the case SCV<1 because it is common in practice. We
consider three basic serial lines. The first is a small system (total 31 workers) with short
mean sojourn time (6.52 hours); the second is a large system (total 126 workers) with short
mean sojourn time (7.31 hours); and the third is a small system (total 44 workers) with long
mean sojourn time (19.76 hours). Table 4.2 shows system information of the representative
systems 1, 5 and 9.

To implement a worker allocation policy correctly, we need to answer the questions:

how many workers should we move and when? Switching workers too early and switching
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Table 4.2: System information for Systems 1, 5, and 9.

System 1 E[T] C? p  Workers
Interarrival 0.117 0.75

Picking 1.07 0.9 091 10
Packing 1.3 09 0.93 12
Shipping 1.0 0.9 0.95 9
System 5 FE[T] C? p  Workers
Interarrival 0.053 0.75

Picking 27 09 0.92 56
Packing 1.5 0.9 0.95 30
Shipping 20 09 095 40
System 9 E[T] C* p  Workers
Interarrival 0.23  0.75

Picking 33 09 096 15
Packing 43 09 093 20
Shipping 20 09 097 9

too many workers can cause imbalance in the system, whereas switching too late or too few

might not have an effect on NSD.

The exact number of switching workers is decided by the target ps (the probability of
success of an order of interest that we want to reach by worker allocation), and switching
time t,, so we test the 12 systems to find best t, and the target p, for each policy. For
example, in Figure 4.4, the probability of success p, for the last order in the shipping queue
is 5% based on the number of orders ahead 8, the number of workers 6, and the remaining
time t,=1 hour (t; — ts). To reach the target p,=60% for this order, we add 5 workers to
shipping, then the system state is changed: the number of orders ahead is 4, and the number

of workers 11. The number of workers required is computed by simple search, based on the

method of Gue and Kim (2009b)

Target p, = 60% = P(T <t,=1) =1 —velre.

where (7, K) depends on the system state.
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We use 6 different levels of the target p,; 10%, 30%, 50%, 60%, 70%, 90%, and use
switching time t; from early in the morning to close to the deadline. We do not include a
switching time that makes the remaining time ¢, less than the mean processing time of the
last workstation because this situation limits the effect of the policy (more on this below).

We run simulation models built in Arena 12.0. Each scenario runs 100 times and each
run has 50 days’ NSD results. For easy implementation of the simulation model, in advance,
we compute the exact number of workers to reach the given target p, based on current p,
for possible combinations between target p, and switching time ¢, for each system. Then,
we just move required workers based on the number in queue in the shipping area based
on this given information. For example, in the case with the target p,=60% and switching
time t,=16:00 for System 1, suppose there are 4 orders in the shipping queue at 16:00, then
we just move 4 workers from picking to shipping based on the given information. In our
simulation model, we assume two important points: We do not consider worker transition
time when we move workers from one workstation to other workstations. This is not true
in practice, of course, but transition times are highly application specific, so we ignore them
for this analysis. We also assume that the picking process is not a batch process. For many
order fulfillment systems, this will not be true, but for others (part-to-picker systems, in

particular) it is reasonable.

4.5.1 Single Flush

The truck departure time for all experiments is 17:00. To find the best t, and target p,

for the single flush policy, we use
e Target p,: {10%, 30%, 50%, 60%, 70%, 90%}, and

e Switching time ¢,: {16:00, 15:00, 14:00, 13:00, 07:00} for Systems 1-4, {15:00, 14:00,
13:00, 12:00, 07:00} for Systems 5-8, {15:00, 14:00, 13:00, 12:00, 07:00, 02:00} for

Systems 9-12.
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We choose candidate ts from early in the morning (02:00 or 07:00) to close to the
deadline (16:00 or 15:00). We do not consider ¢, later than 16:00 (Systems 1-4) or 15:00
(Systems 5-12) because mean service times of the shipping area E[T3] are 1 or 2 hours. If
the remaining time ¢, is shorter than E|[T3], then ps of the switching time is too low to have

an effect on NSD. The algorithm is:

Algorithm 1 Single Flush (SF)
Step 1: Decide the cutoff time ¢. using the steady-state sojourn time distribution, based
on the baseline NSD.
Step 2: Check the number of orders in front of the shipping area at a given switching
time .
Step 3: Compute ps of the last order in the shipping queue using the state-dependent
sojourn time distribution.
Step 4: If p, is below a given target, compute the number of switching workers required
to reach the target p, and move these workers from the picking to the shipping area.
Otherwise, do not move workers.
Step 5: Return workers to their original place when clock time reaches the deadline t,.

First, we decide cutoff time t. using the steady-state sojourn time distribution model

under baseline NSD 77% (fixed model without worker allocation of System 1):

2446
Baseline NSD =77% = ﬂ/ P[T < t]dt
5

6 ~ 1 hour

t.=16:00

Second, we test the single flush policy under possible combinations of ¢, and target p;.
There are total 384 different scenarios. Table 4.3 shows the results of System 1; other test
results are shown in the appendix. We compare single flush and the fixed worker model in
terms of the mean sojourn time E[S], expected number of switching workers E[SW], and

NSD. We see that NSD of the single flush policy with any combination of ¢ and target p; is
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Table 4.3: Results of the single flush policy for System 1.

Fived t.—16:00

p=10% 30 50 60 70 90

E[S] 653  5.76 570 569 571 571 5171

E[SW] 0 2.27 360 450 512 512 512

NSD 77.25 80.56 81.10 81.05 81.26 81.26 81.26
. t.—15:00

Fixed p.=10% 30 50 60 70 90

E[S] 653 5.4 588 583 585 584  6.10

E[SW] 0 0.81 122 166 199 217 524

NSD 77.25 80.10 80.41 80.89 80.72 81.03 80.77
) ts=14:00

Fixed — 15037 50 60 70 90

E[S] 653  6.08 6.03 6.0l  5.99 6 6.06

E[SW] 0 0.34 052 065 079 102  1.83

NSD 77.25 79.35 79.51 79.88 79.90 80.24 80.45
. t.—13:00

Fixed — 15035 50 60 70 90

E[S] 653  6.10 615  6.10 611  6.08  6.05

E[SW] 0 0.32 023 029 036 044  0.75

NSD 77.25 79.08 7891 79.42 79.32 79.42 79.87
. t.—07:00

Fixed — 5030 50 60 70 90

E[S] 653  6.37 6.46  6.46 646  6.46  6.43

E[SW] 0 0.14 0.00 000 000 001 001

NSD 77.25 7824 7740 7753 7755 77.48 77.54

better than the fixed model. NSD is improved by 0.25-4.01%. Moreover, E[S] decreases by
0.07-0.84 hours compared with fixed model.

In Table 4.3 notice that the target p,=60, 70, 90% for t,=16:00 have the same results.
We can explain this phenomenon with Figure 4.6. Given the remaining time ¢,=1 hour, the
maximum achievable ps of any order in the shipping queue using a worker allocation policy
is about 60%. In other words, if we switch workers when the remaining time equals the
mean processing time of the final workstation, we can never increase the p, of the last order
in the shipping queue beyond approximately 60 percent, no matter how workers we switch.

Why is this? Suppose there are m orders in the shipping queue at the switching time, and
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Figure 4.6: The maximum p, that an order can reach by worker allocation: If we add 6
workers to shipping, the p, of the last order in the shipping queue increases to 39%. If we
add 9 workers, then the p, of the last order reaches 60%. Adding more than 9 workers creates
idle workers.

that the time remaining equals the mean processing time of shipping. Moving more than
m workers from picking to shipping makes little sense because switching workers m + 1 and
beyond would have no order to work on. If we move m workers, then the last order in the
shipping queue goes into service with exactly E[T3] time remaining, and we would expect
its ps immediately to jump to P[T3 < E[T3]]. For a symmetric distribution this would be 50
percent, but our model of T3 is Erlang (ki) because we expect SCV<1 for shipping. For the
parameters we have used in our testing, P[T3 < E[T3]] ~ 0.6 for the Erlang distribution. We
can conclude, then, that target p, values greater than about 60% are not achievable when
switching workers with only E[T3] time remaining.

In Table 4.3, we see that NSD in the same target p, decreases as we set switching time t,
earlier. Table 4.4 includes results of all 12 systems and it shows this trend. Earlier switching
is ineffective because switched workers are often left in shipping after the conditions which
caused their movement have dissipated. Moreover, very few workers tend to move at all
because at this early time the p, values of orders in the shipping queue are usually quite
high.

Unlike switching time ¢, it looks as if there is no difference on NSD among policies at
the same t, with different target ps (Table 4.3). To find the best target p,, we do a series of
t-tests among scenarios with different ps based on 100 runs of each scenario (Kelton, 2003).

For switching time 07:00, there is no statistical difference among ps values because very few
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Table 4.4: Change of NSD according to switching times ;.

ts Ex.1 Ex.2 ExJ3 Ex4 Ex5 Ex6 Ex7 Ex&8 Ex9 Ex10 Ex.11 Ex.12
15:00(16:00) 81.1 82.7 875 88.0 780 786 819 820 804 T77.6 70.0 70.7
14:00(15:00) 80.7 82.1 87.3 878 77.7 782 819 820 79.7 76.3 69.8 70.5
13:00(14:00) 79.9 81.7 87.1 877 773 779 818 819 793 76.1 69.5 70.3
12:00(13:00) 79.3 81.1 &87.0 877 769 77.8 81.8 819 781 749 69.3 70.1
07:00 776 80.2 869 876 76.7 T7.7 81.8 819 755 721 68.8 69.9
02:00 73.6 70.3 68.8 69.9

workers move at all (E[STW] < 0.14 workers), and it is difficult to increase NSD beyond that
achieved by the fixed worker model. For later switching times, however, higher p, values
are the best. We can see this trend in Figure 4.7, which shows the best scenarios for all 12
systems based on a series of t-test. We do not include any target p, which exceeds maximum
achievable ps (empty space in the figure).

For the collection of graphics in Figure 4.7, we detect a pattern (see Figure 4.8): when
switching time is close to the deadline, almost any p, value is effective because the situation
of the p, value of orders in the shipping queue less than the target p, at switching time occurs
frequently. When the switching time is very early, all p, values are “best” because none are
effective at all—the early switching time prevents any significant effect on NSD, irrespective
of ps.

In summary, then, we see that the single flush policy can significantly increase NSD and
decrease mean sojourn time E[S]. A later switching time ¢, and higher target ps are best
in almost every case. In general, we can say that the target p, = 60% at switching time
ts = tq— E[T3] is the best condition for the single flush. Especially, we should also note that
the single flush with the target p; = 60% at switching time ¢, = ¢4 — F[T3] means the number
moving of workers equals the number of orders in the shipping queue at the switching time.

This suggests a very simple but effective policy for success.
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Figure 4.7: Best scenarios for all 12 Systems: Open circles represent good scenario; gray
circles represent best scenario; empty space has the same NSD with the next lower p;.
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4.5.2 Multi-Flush

We set the switching period ¢, as the mean service time of the shipping area E[T3],
because we found in our analysis of single flush policies that a late switching time ¢, is more
effective than an early switching time. Thus the number of workers for each switching period
is decided based on the system state, especially under the remaining time t, = t, = E[T3].
To find the best target ps for the multi-flush, we use 6 target py values (10%, 30%, 50%,
60%, 70%, 90%) as used in the single flush experiment. The number of switching events

varies from two to five. The algorithm is as follows:

Algorithm 2 Multi-Flush (MF)
Step 1: Decide the cutoff time ¢, using the steady-state sojourn time distribution model,
based on the baseline NSD.
Step 2: Check the number of orders in front of the shipping area every period.
Step 3: Compute ps of the last order in the shipping queue using the state-dependent
sojourn time distribution under ¢, = t,.
Step 4: If p, is below the target ps, compute the number of switching workers to reach
the target p, and move these workers from the picking to the shipping area. Otherwise,
do not move workers.
Step 5: If clock time does not meet the deadline and reaches the periodic switching time,
return workers to their original place and go to Step 2. Otherwise, go to Step 6.
Step 6: Return workers to their original place when clock time reaches the deadline ¢,.

We compare system performance of the multi-flush with the fixed model in Table 4.5,
which shows test results of System 1. Test results of other Systems are shown in the ap-
pendix. The multi- flush policy shows good results on NSD (increase by 4.16-5.58%) and
E[S] (decrease by 0.88-0.98 hours) compared with the fixed model, regardless of the number
of switching events. More switching events means more switching workers, so in practice
we would probably favor fewer switching events. Notice that the target p,=60, 70, 90% for
every switching ¢, have the same results. This is the same phenomenon we observed for the
single flush policy.

To find the best target p, among 10, 30, 50, 60% for the same switching time t,, we do

a series of t-test among these target p, values and we find that the higher target p, = 60% is
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Table 4.5: Multi-flush results for System 1.

Fixed 2 Times (ts=16:00, 15:00)

ps=10% 30%  50% 60% 70% 90%

E[S] 6.54 5.73 2.68 5.65 5.68 2.68 2.68
E[SW] 0.00 2.73 3.89 5.40 6.20 6.20 6.20
NSD 77.25 81.42 82.01 82.26 82.40 82.40 82.40

3 Times (ts=16:00, 15:00, 14:00)

Fixed p=10% 30% 50%  60%  70%  90%

E[S] 6.54 5.69 2.65 5.65 5.64 5.64 5.64
E[SW] 0.00 3.06 4.32 6.16 7.04 7.04 7.04
NSD 77.25 81.61 82.30 82.73 82.77 82.77 82.77

Fixed 4 Times (t,=16:00, 15:00, 14:00, 13:00)

ps=10% 30%  50% 60% 70% 90%

E[S] 6.54 5.66 5.62 5.62 5.64 5.64 5.64
E[SW] 0.00 3.30 4.70 6.79 7.89 7.89 7.89
NSD 77.25 81.99 82.83 82.75 82.65 82.65 82.65

5 Times (ts=16:00, 15:00, 14:00, 13:00, 12:00)

Fixed — 0030 50%  60%  70%  90%

E[S] 6.54 5.64 5.62 5.59 5.61 5.61 5.61
E[SW] 0 3.52 5.04 7.34 8.68 8.68 8.68
NSD 77.25 81.83 82.30 82.45 82.66 82.66 82.66

. 6 Times (ts=16:00, 15:00, 14:00, 13:00, 12:00, 11:00)
Fixed

ps=10%  30% 50% 60% 70% 90%

E[S] 654 562 556 557 563 563 563
E[SW] 0 370 533 794 946 946  9.46
NSD 77.25 82.28 82.35 82.46 82.49 82.49 82.49
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always selected as the best scenario. We can conclude that the target ps = 60%, t, = E[T3],
and 2 switching times is the best condition for the multi-flush in terms of the system stability

and simplicity.

4.5.3 Cascade policy

Based on the results of the flushing policy, we set the target p, as 60% and the first
and second switching time ¢!, ¢? considering the mean processing time of the packing and
shipping area E[T3|, E[T3]. For example, first we check the state of the packing area at
time t! = t; — (E[Ty] + E[T3]), and decide the number of switching workers (from picking to
packing) to reach the target ps based on the remaining time ¢, = E|[T3]. In the same manner,
we compute the number of switching workers (from packing to shipping) to reach the target

ps under t, = E[Ty] at time t? = t; — E[T3]. The algorithm is as follows:

Algorithm 3 Cascade (C)
Step 1: Decide the cutoff time ¢, using the steady-state sojourn time distribution model,
based on the baseline NSD.
Step 2: Check the number of orders in front of packing area at time t! = t; — (E[T3] +
B[T3).
Step 3: Compute ps of the last order in the packing queue using the state-dependent
sojourn time distribution under ¢, = E[T3].
Step 4: If p, is below the target ps, compute the number of switching workers to reach
the target p, and move these workers from the picking to the packing area. Otherwise, do
not move workers.
Step 5: Return workers to their original place when clock time reaches 2 = t; — E[T3],
and check the number of orders in front of the shipping area.
Step 6: Compute ps of the last order in the shipping queue using the state-dependent
sojourn time distribution under ¢, = E[T3].
Step 7: If p, is below the target ps, compute the number of switching workers to reach
the target ps and move these workers from the packing to the shipping area. Otherwise,
do not move workers.
Step 8: Return workers to their original place when clock time reaches the deadline ¢,.

In Table 4.6, we compare the system performance among three policies: cascade, a
single flush with the target p, = 60% and ts =ty — E[T3], and a multi-flush with the target

ps = 60%, 2 times switching with the switching period t, = E[T3] for all 12 systems. In
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general, there is very little difference in system performance among them. The cascade policy
performs poorly in Systems 9 and 10, because the switching duration of workers away from
picking is 6.3 hours (E[Ty]+ E[T}]), which is quite long compared with the switching duration
of the flushing policy (E[T3]=2 hours). The extended absence from the picking station leads
to the very high average queue level at picking (44.7, 50.5 orders). Moreover, Systems 9
and 10 have high utilization and high variation, which leads to large queues in front of each
workstation. Another observation from Table 4.7 is that dynamic worker allocation policies
seem to have more effect on systems with higher utilization p and variation (SCV), because
these systems have longer queues.

From comparison among the three policies, we see that the multi-flush and cascade
policies are not much better than the single flush policy, except for System 9 and 10. However,
the multi-flush and cascade policies use more switching workers than the single flush policy,
so they could be more difficult to implement. If switching workers is easy, or a small increase,

say 1%, is important for the system, then the multi-flush policy might be adopted.

4.6 Chapter conclusions

In this research, we propose several dynamic worker allocation policies for due-date
order fulfillment systems. We showed that we can increase service performance (NSD) and
decrease mean sojourn time through dynamic worker allocation. This means that we can, in
fact, improve service performance using appropriate worker reallocation without disturbing
the system balance.

We propose flushing policies (single flush, multi-flush) and a cascade policy as candidate
dynamic worker allocation policies. To find the best policy and switching time and the target
probability of success for each policy, we performed thorough testing on 12 systems. We find
that late switching times (short remaining time) have a greater effect on NSD than earlier
times. We also find that the higher target probability of success has more benefit on NSD,

because it has more chance for worker allocation using more workers. However, it does not
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Table 4.7: The system performance according to the system characteristic.
High p High p Low p Low p
High SCV  Low SCV  High SCV  Low SCV
System 1 System 2 System 3  System 4

Small system Averag.e Pick 5.8 5.0 1.7 1.4
with short orders in Paf:k 7.4 5.4 1.9 1.3
E[S] queue Ship 12.6 9.6 2.8 2.0
*Increase in NSD (%) 4.01 2.94 0.66 0.51

System 5 System 6  System 7  System 8
Large system Averagfe Pick 3.8 3.2 0.3 0.2
with short orders in Pafzk 12.3 10.3 1.3 1.1
E[S] queue Ship 11.9 8.7 1.0 0.8
Increase in NSD (%) 1.79 1.25 0.16 0.11

System 9 System 10 System 11 System 12
Small system Averagfe Pick 13.9 13.0 2.0 1.6
with long orders in Pa?k 8.7 6.1 1.2 0.9
E[S] queue Ship 20.9 16.8 2.9 2.1
Increase in NSD (%) 10.08 8.63 1.51 1.08

*Fixed model - Single flush.

disturb the system balance because the number of workers is decided based on the system
state at that switching time.

Based on these best conditions of the switching time and target probability of success, we
test and compare three policies and find that there is very little difference in system perfor-
mance among them. Although the multi-flush and cascade policy (except for long switching
duration-early switching time) are a bit better than the single flush, we believe the single
flush is most likely the best policy in terms of system stability and ease of implementation.

Another important fact is that the system with long waiting time has more room to
improve NSD. Utilization and variation are the important factors that cause system delay, so
the system with high utilization and variation can be improved significantly by our dynamic
worker allocation policies. This suggests that the methods we develop here would have their
highest return for systems in heavy traffic.

Although the policies we develop rely heavily on the ability to compute state-dependent

sojourn time distributions, the results of our experiments suggest a simple policy that requires

96



no mathematics at all: (1) Establish the switching time at the deadline minus the mean
processing time of shipping; (2) At the switching time each day, move a number of workers
from picking to shipping equal to the size of the shipping queue, not to exceed the total
number in picking. This simple policy is approximately equivalent to the single-flush policy
with target p,=60% and switching time t, = t; — E[T3], so we would expect very good

performance with it.
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Chapter 5

Conclusions and Outlook

Speed of response to customer orders is one of the most important factors of success for
order fulfillment systems. The purpose of this dissertation is to increase customer satisfaction
by improving the delivery speed with dynamic worker allocation. To implement dynamic
worker allocation correctly, we need to decide the number of switching workers and switching
time based on the probability of success of an order in the system. When this probability
drops below a threshold value, then we move some workers to improve the probability of
success for other, more promising orders, and improve service performance of the system. To
compute the probability of success of an order in the system at any time, we need to know
state-dependent sojourn time distribution.

In this dissertation, we develop two fundamental approximation models; for steady-state
and state-dependent sojourn time distributions. We use these models to design a policy that
assigns cross-trained workers to tasks in an order fulfillment system such that performance
against the Next Scheduled Departure (NSD) metric is maximized. We summarize the
following contributions of this research.

First, we develop the first approximation model for steady-state sojourn time distri-
butions in acyclic multi-server queueing networks. We show that the relationship between
NSD and cutoff time t¢. for dynamic worker allocation and the NSD is computed by the
steady-state sojourn time distribution. Thus, managers can decide the cutoff time ¢, of their
system based on this approximation model. We also present a method that can decide the
optimal cutoff time ¢ for the maximum shipping profit of a company based on the steady-

state sojourn time distribution. However, this method is limited only to the systems with a
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stationary arrival stream because of the assumption of our steady-state sojourn time distri-
bution model. In future research, we would like to estimate the sojourn time distribution of
an arriving order to systems with non-stationary arrival streams.

Second, we develop the first approximation model for state-dependent sojourn time
distributions in multi-server single-stage and acyclic queueing networks. We can compute
the probability of success py of an order in a system at any time, where the system is defined
by the number of busy servers and the number of orders in queue at any workstation, and
this makes dynamic worker allocation possible. Our approximation model performs well over
a wide range of problem instances. However, our single-stage approximation model is limited
to problems with fewer than about 200 servers, because the computation time of our model
increases as the number of servers and orders ahead in queue increases. Our model is also
limited to an acyclic queueing network because we use the expected number of orders ahead
at each workstation instead of the number of orders ahead. If the system has re-entrant and
external inflow for each workstation, these quantities can be difficult to compute.

The state-dependent sojourn time approximation model allows us to estimate the prob-
ability that the state-dependent sojourn time will be less than a desired time ¢. We can use
this result in various ways. For example, an order fulfillment system can do dynamic order
promising to customers at the point of order. Service systems such as amusement parks also
could inform customers of their wait time with an estimated probability.

Third, we present several dynamic worker allocation policies that assign cross-trained
workers to tasks in an order fulfillment system to increase customer satisfaction based on
the sojourn time distribution. We test three dynamic worker allocation policies: the single
flush, multi flush, and the cascade policy. To select the best policy and conditions, we do
thorough experiments based on 12 different systems. We find that the single and multi flush
policy work well irrespective of the system characteristics, but the cascade policy is limited
to systems with relatively short queues. Also the policies with late switching times and

higher target probability of success have a greater effect on NSD. However our policies do
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not disturb the system balance because the number of switching workers is decided based on
the system state. Our results suggest that it is possible to improve service performance—
significantly, in some conditions—by moving the right number of workers to the right place
at the right time.

Finally, investigation is needed on approximation models for multi-server queueing net-
works with batch processes. In our dynamic worker allocation, we assume that the picking
process is not a batch process, but this is not reasonable for many systems. We plan to take

this up in future research.
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Figure 1: Best scenarios based on box and whisker chart of System 1~4 using SF
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Figure 2: Best scenarios based on box and whisker chart of System 5~8 using SF

113



MNSD by Scenario
HED

NSD by Scenario
HED

NSD by Scenario
N5D

p— ! N N N N J000 — ! ! ! ! !
200 T — 7o
T T T ] ] T T ]
200 oo 10
ps (%) 10 30 50 60 70 90 ps (%) 10 30 50 60 70 90 ps (%) 110, 30 50 60 70 90
ts=15:00 ts=14:00 ts=13:00
M Best Scenario M Best Scenario W Bast Soenaric
MNSD by Scenario NSD by Scenario MNSD by Scenario
N5D HSD NSD
[ | | | | | [ ] T
230 L L L L L . 230
720 p— t : i + :
Ty e T T T T T
330 220 220
ps (%) 110 30 50 60 70 920 ps (%) 110 30 50 60 70 20 ps (%) 10 30 50 60 70 90
} ts=12:00 ts=07:00 ts=02:00
M Best Soenaric M Best Scenario W Best Seenario
Example 9
MNSD by B i NSD by 8 i i
[h) Y BCenario [ y Beenario NNS%D by Scenario
R I L I i | raod—t L L . L T . ! ! ! !
i 1 | | \ | [T | | \ | | T \ \ | | |
4.0 290 280
ps (%) 10 30 50 60 70 20 Pps (%) 110, 30 50 60 70 920 ps (%) 10 30 50 60 70 90
ts=15:00 ts = 14:00 ts=13:00
M Best Seenario M Best Soenarie W pest Scenaric
NSD by Scenario NSD by Scenario MNSD by Scenario
NSD HSD NED
PRy i i i i M| [ L L i L i ] se0l 1 | | | | I
ool [ I NN I A I N N
ps (%) 110 30 50 60 70 90 ps (%) 110 30 50 60 70 90 ps (%) 110 30 50 60 70 920
ts=12:00 ts=07:00 ts=02:00
W Best Soenaric W pest Seenaric M Best Seenarie
Example 10
NSD by Scenario MNSD by Scenario NSD by Scenario
5D N5D 5D
790 720 i 780
oo0] } - } } } —| sa.0 — } } + t a0 - + + + t
590 | | 82.0 | | 530 |
ps (%) 10 30 50 60 70 90 ps (%) 10 30 50 60 70 920 ps (%) 10 30 50 60 70 90
ts=15:00 ts = 14:00 ts=13:00
B Best Scenario M Best Scenario W Best Soenaria
NSD by Scenario NSD by Scenario NSD by Scenario
NSD HED NED
770 —] TEO | a0y
570 | 4 : + + ; | B20 I - } } } } - ‘ &80 | 4 . . 4 4 -
&7.0 580 530
ps (%) 10 30 50 60 70 90 ps (%) 110 30 50 60 70 920 ps (%) 110 30 50 60 70 90
ts=12:00 ts=07:00 ts=02:00
W best Scenario W best Scenario W eest Scenario
Example 11
NSD by Scenario MNSD by Scenario NSD by Scenario
NED N5D 5D
200 I | 79.0 | 1 200 I
700 | + | 820 t + 700 t t
&0.0 g9.0 | | &0.0 ‘
ps (%) 10 30 50 60 70 920 ps (%) 10 30 50 60 70 2 ps (%) 10 30 50 60 70 90
t5=15:00 ts = 14:00 ts=13:00
B Best Scenario M Best Scenario W Best Soenaria
NSD by Scenario NSD by Scenario NSD by Scenario
NSD HSD NED
o | t t t t f * i a0 | t t t t t t | 7o | t f f t t }
80.0 E00 | ‘ G600
ps (%) 10 30 50 60 70 90 ps (%) 110 30 50 60 70 920 ps (%) 110 30 50 60 70 20
ts=12:00 ts=07:00 ts=02:00
M Best Scenario Ml Best Seenario W Best Scenaria
Example 12

Figure 3: Best scenarios based on box and whisker chart of System 9~12 using SF
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Figure 4: Best scenarios based on box and whisker
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Figure 5: Best scenarios based on box and whisker
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MNSD by Scenario
HED

NSD by Scenario
NED

NSD by Scenario
NSO

|
7O 760 750
[ I I —— '
270 26.0 250
ps (%) 10 30 50 60 ps (%) 10 30 50 60 ps (%) 10 30 50 60
ts=16:00 ts=15:00 ts=14:00
M Bt Scenario M Best Scenaric M Best Scenario
NSD by Scenario NSD by Scenario
HED NED
[ , L 1 ) ] [ ' ' L L |
820 | | | ‘ 83.0 [ i I i I
220 120 | | |
ps (%) 10 30 50 60 ps (%) 10 30 50 60
ts=13:00 ts=07:00
Ml Best Scenario Ml Best Scenario
Example 9
NSD by Scenario NSD by Scenario NSD by Scenario
NED NED HED
_— | ! . ; 1 arod i . . i | and . ; i i
3zo | | 310 | 260 |
ps (%) 10 30 50 60 ps (%) 10 30 50 60 Ps (%) 10 30 50 60
ts=16:00 ts=15:00 ts=14:00
M Eest Scenario M Best Secenario W Best Scenario
NSD by § i i
NSD by Scenario NNSSDD by Scenario
z6.0 i t . ‘ ze0d . i . . |
380 26.0 | ‘ |
ps (%) 10 30 50 60 ps (%) 10 30 50 60
ts=13:00 ts=07:00
M Best Scenario M Best Scenario
Example 10
NSD by Scenario NSD by Scenario MNSD by Scenario
NSD NEO HiD
200 ‘ | 20.0 | | 210 |
700 ‘ t - ; | 700 | - : | 7o +
600 600 G1.0 |
Pps (%) 10 30 50 60 ps (%) 10 30 50 60 Ps (%) 10 30 50 60
ts=16:00 ts=15:00 ts=14:00
W Best Soenario M 5t Soenaric I Best Scanario
NSD by Scenario NSD by Scenario
MED HED
ol | o |
710 | + + | 710 |
81.0 1.0 |
ps (%) 10 30 50 60 Ps (%) 10 30 50 60
ts=13:00 ts=07:00
M Eest Scenario M Best Scenario
Example 11
NSD by Scenario NSD by Scenario MNSD by Scenario
M5O NSO N:D
800 | | a00 | | 210 |
700 | t } t | 700 | - : | 7o +
G0.0 600 G1.0 |
Ps (%) 10 30 50 60 ps (%) 10 30 50 60 ps (%) 10 30 50 60
t5=16:00 ts=15:00 ts=14:00
M Bast Scenarie M Best Seenario M Bt Seenario
NSD by Scenario NSD by Scenario
NED NED
81.0 | | 210 I |
710 | + + | 710 |
810 ool
ps (%) 10 30 50 60 ps (%) 10 30 50 60
ts=13:00 ts=07:00
M Best Scenario M Best Scenario
Example 12

Figure 6: Best scenarios based on box and whisker chart of System 9~12 using MF
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