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Abstract

Two optimization algorithms are presented, each of which seeks to effectively combine

the desirable characteristics of gradient descent and evolutionary computation into a single

robust algorithm. The first method, termed Quasi-Gradient Directed Migration (QGDM),

is based on a quasi-gradient approach which utilizes the directed migration of a bounded

set of randomly distributed points. The algorithm progresses by iteratively updating the

center location and radius of the given population. The second method, while similar in

spirit, takes this concept one step further by using a ”variable scale gradient approximation”

(VSGA), which allows it to recognize surface behavior on both the large and small scale.

By adjusting the population radius between iterations, the algorithm is able to escape local

minima by shifting its focus onto global trends rather than local behavior. Both algorithms

are compared experimentally with existing methods and are shown to be competitive, if not

superior, in each of the tested cases.
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Chapter 1

Introduction

The use of optimization algorithms for engineering applications has become quite com-

mon in recent years. In fact, the impact of such methods can be seen in nearly every branch

of the discipline, and it is not hard to understand why. In a field driven by progress and

innovation, optimization algorithms offer a powerful means to that end. While the ana-

lytical approach is generally preferred, the fact remains that for many classes of complex

problems, the mathematical tools needed to solve them analytically are yet to be devel-

oped. In the meantime, optimization has become an attractive alternative which effectively

spans the gap between theory and innovation, making it a staple in the modern practice of

engineering.

As of late, a rift has begun to develop within the field of optimization, giving rise to

two very distinct schools of thought. The net effect of this split is that the large majority

of optimization algorithms now come in one of two flavors, generally referred to as gradient

descent and evolutionary computation. To put it plainly, a method is either fast, or it is

powerful. Although this distinction is not necessarily valid for every case, it is a widely

accepted generalization nonetheless. Each method has its own niche, and comparison of

any two is highly subjective on the basis of application. Still, the use of optimization

algorithms continues to see rapid growth in a number of diverse fields ranging from robotics

[6] and computational intelligence [7][8][9][10] to wireless transmission [11][12] and digital

filter design [13][14]. With this continued increase in interest and application, the demand

for a newer and more versatile approach has become evident.

Still, despite the abundance of literature and attention garnered by the field in recent

years, the discipline appears to have reached an impasse. This is due in large part to the fact

that while a number of algorithms have been devised, the middle ground remains largely
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unexplored. That is to say that the polarization of the field with respect to gradient and

evolutionary methods has resulted in very little effort spent in combining the two. While

some attempts have been made at bringing the two sides together [15][16][17], most have

experienced rather limited success. It is the purpose of this work to help further this cause,

with the ultimate goal being a single robust algorithm which encompasses the strengths of

both methods, making itself useful over a wider range of problems.

1.1 Thesis Outline

An overview of numerical optimization is offered in Chapter 2. This includes a light

review of some relevant concepts and terminology, as well as a brief look at the workings of

some commonly used algorithms. Two novel algorithms are introduced in Chapters 3 and 4,

which comprise the body of the work. The first algorithm, presented in Chapter 3, seeks to

combine some of the strengths of the gradient and evolutionary approaches in a simple but

effective manner. The details of the algorithm are presented along with some experimental

data. A comparison of the algorithm’s performance with one of the most popular methods in

current use is also included. In Chapter 4, the details of the second algorithm are discussed.

Though similar in principle to the first, the second algorithm offers an even more powerful

and robust alternative. The algorithm is compared with a number of competing methods,

and is shown to have equal if not superior performance over a varied assortment of test

cases. Finally, the thesis concludes with some closing thoughts in Chapter 5.
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Chapter 2

Numerical Optimization

Engineering is the practice of analyzing, designing, and manipulating physical systems.

This is achieved by way of detailed mathematical models, which are used to approximate

the behavior of their physical counterparts to the most accurate degree possible. In most

cases these models can be obtained analytically, however, occasionally there arise situations

in which certain attributes of a physical system are hidden, and cannot be directly measured

or observed. Consequently, the resulting lack of necessary information prohibits the use of a

purely analytical solution. Instead, the modeling of such a system requires a more heuristic

approach, which is the realm of numerical optimization.

In the most general sense, numerical optimization is the process of manipulating the

variables of a given function in order to achieve an optimal desired output. The ultimate

goal is to obtain a unique set of values which produce the best possible output with respect

to the predetermined ideal. In the case of modeling, it is the errors, or residuals, between the

measured outputs of the physical system and its corresponding model that are of interest.

Here, the objective is to minimize the mean square value of the error, which is a function

of the model coefficients. Doing so yields a unique set of coefficients which offer the most

accurate representation of the model’s physical counterpart. Thus numerical optimization

offers a powerful heuristic alternative for acquiring the desired set of coefficients, even when

an analytical solution is unattainable.

It is important to note that similar heuristic methods are used to solve problems in

nearly every discipline imaginable. Therefore, while system identification and modeling

may represent the predominant applications of optimization within the field of engineering,

similar processes are utilized in nearly every facet of applied science. In fact, the average

person unknowingly employs heuristic problem solving methods on an almost day-to-day
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basis; a fact which emphasizes the power of such methods for overcoming situations in which

detailed knowledge of a specific system may be lacking.

A familiar example of this is the 3-band equalizer on a home stereo system. The system

has 3 inputs, corresponding to the sliders or knobs which control the individual bands, and 1

output in the form of the sound being produced by the speakers. What is interesting about

this example is that despite having no practical understanding of the internal workings

of the system, the average person is nonetheless capable of achieving near optimal sound

quality by ear alone. What may only appear to be a simple attempt at achieving the most

faithful reproduction of one’s favorite record, is in reality the heuristic process of solving a

3-dimensional optimization problem. And it is this same powerful ability to essentially do

more with less that makes the study of optimization so attractive.

Although optimization algorithms are, by definition, processes of trial and error, they

should not be confused with simple brute-force methods which employ primitive techniques

such as blind or random searches. On the contrary, the study and practice of numerical

optimization rests quite heavily on a thorough and rigorous mathematical foundation. Nat-

urally, to cover the subject in it’s entirety would far exceed the practical scope of this thesis.

Thus the following chapter is intended only as a supplement to the material presented later,

and is by no means a comprehensive introduction to the subject of optimization. In keep-

ing with this objective, only the most fundamental concepts and terminology are covered.

However, should a more comprehensive treatment be desired, the reader is directed to [24],

which represents an excellent technical reference on the subject of optimization.

2.1 Mathematical Formulation of Optimization Problems

Mathematically speaking, optimization is the process of searching for an extremum x∗

of some function f(x). Ideally, given some initial value x0, the algorithm will converge to

the function’s global minimizer or maximizer, depending on the desired case (for simplicity’s

sake, the term optimization will be considered synonymous with minimization1 from here
1Note that maximizing a function f is equivalent to minimizing −f
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on). The general mathematical formulation for an optimization problem can be expressed

as

min
x

f(x) (2.1)

where x ∈ Rn with n ≥ 1. The function f : Rn → R is commonly known as the objective

function, or simply the objective.

2.2 The Anatomy of an Algorithm

An optimization algorithm, as the name implies, is an iterative process which seeks to

minimize some objective f(x). At each iteration k, the goal is to generate an iterate, xk+1,

such that f(xk+1) < f(xk), with the expectation that as k increases, xk → x∗. While there

are numerous methods by which these iterates may be generated, most numerical methods

can be expressed in the form

xk+1 = xk + σk (2.2)

where σk ∈ Rn is known as the step. Looking at (2.2), it is clear that σk is responsible for

determining how the algorithm progresses from one iterate to the next, which ultimately

defines the algorithm itself. Thus it is the way in which this step is generated that separates

one algorithm from another.

The step σ is nothing more than a vector extending from one iterate to the next, which

can be uniquely expressed by its length and direction. Thus, in a sense, the generation of

the step can be seen as the two fold process of a) determining the best direction in which to

proceed and b) deciding how far to travel in the direction chosen. In general, so long as σ

faces ”downhill,” and the distance traveled is sufficiently short, there are an infinite number

of possible combinations which will result in convergence. However, the rate of convergence

depends quite heavily on the length and direction of the step. Thus convergence alone is not

sufficient. A well designed algorithm should not only guarantee2 local convergence, but it
2This guarantee does not necessarily apply to cases in which the objective function is non-smooth, and

therefore not continuously differentiable.
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should do so in as efficient and effective a manner possible. Therefore, the choice of search

direction and step length are of utmost importance to an algorithm’s success.

2.2.1 Common Search Directions

The most obvious of all search direction is the gradient direction −∇fk, also known

as the direction of steepest descent. As the name implies, −∇fk represents the direction

in which the objective function f(x) decreases most rapidly, making it a natural choice.

Though sometimes referred to as the gradient direction, the steepest descent direction

actually points in the opposite direction of the true gradient, which corresponds to the

direction of greatest increase. The true gradient is, by definition, the vector of all partial

first derivatives of the objective function, or more formally,

∇f(x) ,




δf
δx1

...

δf
δxn




, where x = (x1, x2, . . . , xn) (2.3)

In optimization, where the goal is to find the point at which a given function yields the

lowest possible value, knowing the direction in which that function changes most rapidly is

of obvious value, making the gradient a particularly useful tool.

Another commonly used search direction is the Newton direction. Though it is more

difficult to compute than the gradient, it provides significantly more information about the

local behavior of the objective, which in turn yields a much higher rate of convergence.

This is achieved through the use of a second-order model mk(σk) of the objective function,

derived from its Taylor series approximation

f(xk + σk) ≈ fk + σT
k ∇fk +

1
2
σT

k ∇2fkσk , mk(σk) (2.4)

From this, the Newton direction is defined as the vector σk which minimizes the quadratic

model mk(σk). Assuming for now that ∇2fk is positive definite, it is possible to solve for σk
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by setting (2.4) equal to zero. Doing so yields the following explicit formula for the Newton

direction:

σk = −(∇2fk)−1∇fk. (2.5)

Whereas the steepest decent direction revolves around the computation of the gradient,

the Newton direction relies primarily on the calculation of the Hessian ∇2fk, which is a

matrix containing all second partial derivatives of the objective function. That is,

∇2f(x) ,




δ2f
δx2

1

δ2f
δx1δx2

· · · δ2f
δx1δxn

δ2f
δx2δx1

δ2f
δx2

2
· · · δ2f

δx2δxn

...
...

. . .
...

δ2f
δxnδx1

δ2f
δxnδx2

· · · δ2f
δx2

n




, where x = (x1, x2, . . . , xn) (2.6)

As alluded to earlier, the computation of the Hessian can be a rather expensive operation,

which is one of the Newton method’s major drawbacks. Still, the benefits of this approach

are typically considered to outweigh the costs.

In addition, a number of strategies have been devised which serve to reduce the compu-

tational requirement by replacing the true Hessian matrix with a close approximation that

does not need to be fully reevaluated at each iteration. Search directions which operate in

this way are commonly referred to as quasi-Newton methods. Some of the more common

implementations include the Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm,

and the closely related Davidon, Fletcher and Powell (DFP) algorithm.

Another attractive attribute of many quasi-Newton methods is that they can be refor-

mulated to operate on the inverse of the approximated Hessian instead of on the approxima-

tion itself, which alleviates the burden of performing costly matrix inversions when solving

(2.5). This ability can prove especially valuable on problems with high dimensionality.
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2.2.2 Choosing A Step Length

While the Newton and steepest decent directions can both be shown to guarantee a

reduction in the value of the objective[24], this is only true for sufficiently small step lengths.

This is due to the fact that the reliability of the corresponding linear and quadratic models

diminishes as a function of distance. While there are a number of ways of selecting proper

step lengths, in general, most methods follow one of two basic strategies.

Line Search Strategies

The first of the two strategies is known as the line search method. In this approach,

the search direction is chosen first, which yields a one-dimensional sub-problem in which

the objective is treated as a function of the step length, which is equivalent to solving

αk = min
α

f(xk + αdk), α > 0 (2.7)

where dk is the search direction and α is a scalar which controls the length of the step. In

practice, it is not practical to provide an exact solution to (2.7), and in fact, an approximate

solution is generally sufficient for convergence. The most common approach is to generate

a finite set of trial steps and choose the value αk which yields the greatest reduction in the

objective f(x). The generation of the trial steps can be a rather complex process in and of

itself, and is often subject to one or more sufficient decrease conditions which are used to

determine if a given step produces an adequate improvement in the objective.

Trust Region Strategies

The second major strategy for handling step length is know as the trust region approach.

For this approach, the step is chosen as the solution to a constrained sub-problem in which

the objective function f(x) is replaced by some approximate model mk(x). The resulting
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sub-problem is written

σk = min
σ

mk(xk + σ), where xk + σ lies within the trust region. (2.8)

Usually, the trust region is spherical in shape, which requires the chosen step to satisfy the

constraint ||σ|| ≤ rk, where rk is the radius of the constraining region. If the solution to

the constrained sub-problem does not produce sufficient improvement in the objective, the

trust region is adjusted accordingly and the process is repeated.

Typically, a quadratic model is chosen for mk(x), making most trust region strategies

Newton or quasi-Newton in nature. Therefore, in most cases, mk is of the form

mk(xk + σ) = fk + σT∇fk +
1
2
σT Bkσ (2.9)

where Bk is either the true Hessian or some approximation to it.

Combining (2.8) and (2.9), while also introducing the constraint imposed by the spher-

ical trust region, results in the following reformulation of the trust region sub-problem,

σk = min
σ

fk + σT∇fk +
1
2
σT Bkσ, s.t. ||σ|| ≤ rk (2.10)

It may be shown [24] that the solution σ∗k to the constrained sub-problem in (2.10) must

satisfy

(Bk + λI)σ∗k = −∇fk (2.11)

for some scalar λ ≥ 0. This characteristic is particularly useful since it implies

σ∗k(λ) = −(Bk + λI)−1∇fk (2.12)

which reduces σ to one-dimensional function of λ. As with α for line search methods, it is not

practical to seek an exact value for λ. Instead, an approximate value of lambda is obtained

in much the same way as the step length α is chosen in a line search. An interesting
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rk

Contours
of f(x)

Contours
of mk

x
∗

σ∗

Trust region

σk

Figure 2.1: Comparison of the trust-region and Newton steps

characteristic of the trust region approach is the fact that the choice of the trust region

radius effects not only the step length, but the direction of the search as well. An example

of this can be seen in Fig. 2.1. Here, the vector σ∗ represents the Newton step, whereas σk

represents the constrained trust-region step. Notice that as the radius of the trust region

decreases, the direction of the step converges toward the gradient direction. Therefore, the

trust-region step is essentially a linear combination of the gradient and Newton directions.
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Chapter 3

Quasi-gradient Optimization Using Directed Migration

Gradient based search methods are known to be very efficient, especially for cases in

which the surface of the solution space is relatively smooth, with few local minima. Unfor-

tunately, in cases where the search space lacks this relative uniformity, gradient methods

become easily trapped in the local minima commonly found on rough or complex surfaces.

Methods of evolutionary computation (including genetic algorithms), on the other hand, are

much more effective for traversing these more complex surfaces, and are inherently better

suited for avoiding local minima. However, like the gradient based approach, evolutionary

computation has its own significant weakness. This stems from the fact that despite its reli-

ability, solutions are often not optimal. Furthermore, both methods are known to converge

very slowly [2] [3][5].

The objective behind this chapter is to take advantage of both methods by combining

the desirable characteristics of each. Unlike standard evolutionary computation, populations

are generated using the gradient, which is not directly calculated but is instead extracted

from the properties of the existing population. Several similar approaches have been un-

dertaken along this path [1] [16][17][2][3][4], but the method which is proposed here has less

computational complexity and is more suitable for on-line hardware implementation. Sim-

ple computations are repeated with every iteration, and the gradient is updated simply by

subtracting the coordinates of the best solutions from the current and previous populations.

The steepest decent method, which is the most commonly used gradient method, tends to

approach the solution asymptotically, which results in a much slower rate of convergence.

By comparison, the proposed method converges much more rapidly.
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3.1 Proposed Method

The proposed method is a hybrid algorithm which offers both the relative speed of gra-

dient descent and the methodical power of evolutionary computation. Like the latter, this

hybrid algorithm relies on a randomly generated population of initial points. It also shares

the advantage of being an exclusively feed-forward process. What separates this approach

from standard methods of evolutionary computation is the way in which the successive pop-

ulations are generated. This is where the proposed method borrows more from the gradient

based approach. The hybrid approach relies on the calculation of a “rough” gradient using

the individual errors associated with a given population. The minimum of these errors is

determined and an entirely new population is generated about the corresponding point.

This offers a more directional approach to the generation of successive populations. Thus

this approach can be viewed as a sort of migration rather than recombination, for which it

is termed Quasi-Gradient Directed Migration (QGDM). The result is an algorithm which

converges much more rapidly than the combinational approach commonly associated with

genetic algorithms, while at the same time reducing the risks presented by local minima.

3.1.1 Detailed Description

The QGDM method is best represented as a four step process. Although the algorithm

technically involves only three steps per iteration, an additional step is required to begin

the process.

Step 1: Choosing a Starting Point and Radius - Let f be a function defined in Rn.

Choose an initial center point c and radius r. An initial minimum m must also be

selected. For the first iteration, let m = c.

Step 2: Generating a Random Population - With n being the number of points per

population, define a set of vectors V = {v1,v2, ...,vn} such that

vik = rkXY + ck for i = 1...n (3.1)
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where X is a random number ranging from 0 to 1, Y is a normalized random vector,

and k is the current iteration. Using (3.1) creates a set of random vectors whose

members are centered about ck with magnitudes ranging from 0 to rk. Therefore vik

represent positional vectors of the points pik which lie within the defined region.

Step 3: Approximation of the Gradient - Evaluate f(pik) for i = 1...n. If ∀i(min(f(pik)) >

f(mk)), repeat step two. Otherwise, let mk+1 be p for which f(p) = min(f(pik)). An

approximate gradient vector gk can then be defined by taking the difference between

mk+1 and mk.

gk = mk+1 −mk

Step 4: Creating a New Center and Radius - The new center should be shifted slightly so

that the following population will lie in the in the general direction of the approximated

gradient. Using

ck+1 = αg + mk for α ≥ 1

allows the size of the shift to be controlled by α. If no shift is desired, α can be set

to 1, in which case ck+1 = mk+1. In order to ensure that mk+1 lies within the new

region, it is necessary that rk+1 ≥ ‖ck+1 −mk+1‖. This can be set using

rk+1 = β‖ck+1 −mk+1‖ for β ≥ 1

Once rk+1 and ck+1 are determined, steps two through four are repeated until f(m)

is within the desired tolerance.

The two dimensional example case in fig. 1 illustrates the process through four iterations.

For this particular example, α = 2 and β = 3/2. This can be clearly seen by the way rk,

represented by the large circles, perfectly bisects gk−1 for each iteration. Also, notice that

for the first iteration, the gradient vector g extends from c to m, whereas in all subsequent

iterations g is defined from mk to mk+1.

13
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Figure 3.1: Four iterations in two dimensions
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3.2 Possible Modifications

Spherically shaped regions may not be optimal when generating successive popula-

tions. Using conical regions which extend in the direction of the approximate gradient

might greatly increase the speed of convergence. The following is just one of many similar

modifications.

3.2.1 Conically Shaped Regions

It is desired that the vector v be used as the axis of symmetry. This is best done by

switching to polar coordinates which only require the zenith angle φ and radial component

ρ in order to define the region’s orientation. This is an especially useful way of describing a

hyperconical region since it is valid for any subspace of Rn. The drawback of this method

is that it requires that the axis of symmetry lie along the zenith axis. In order to extend

this method to cases using arbitrary axes of symmetry, it is necessary to change to a basis

U whose zenith axis is in the direction of v. The region can then be defined using the new

set of coordinate axes. With this, representing a point or vector within the defined region

in terms of the standard basis E can be done quite easily by changing bases from U back

to E using a simple transition matrix.

Defining a new basis

The process described below first requires the formation of a new basis using the n-

dimensional axial vector v. To do this, an additional n− 1 linearly independent vectors are

required. The first step is to devise a generalized method for generating this set of vectors.

1. Generating an ordinary basis

In order to generate an ordinary basis, it is first necessary to acquire the proper tools

for determining linear independence. The following three theorems are particularly

useful.
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Theorem 3.1 Let x1,x2, ...,xn be n vectors in Rn and let

xi = (x1i, x2i, ..., xni)T

for i = 1, ..., n. If X = (x1,x2, ...,xn), then the vectors x1,x2, ...,xn will be linearly

independent if and only if X is singular.

Theorem 3.2 An n × n matrix A is singular if and only if

det(A) = 0

Theorem 3.3 Let A be an n × n matrix.

(i) If A has a row or column consisting entirely of zeros, then det(A) = 0.

(ii) If A has two identical rows or two identical columns, then det(A) = 0.

Combining these three theorems yields a particularly useful result.

Corollary 3.4 Let A be an n × n matrix. The column space of A forms an ordinary

basis for Rn if and only if

(i) A contains no rows or columns consisting entirely of zeros.

(ii) No two rows or columns of A are identical.

The conditions from Corollary 3.4 can nearly always be satisfied by taking the standard

basis E and simply replacing e1 with v. The only case in which this will not result in

an ordinary basis of Rn is when v1 = 0, which can be easily remedied by replacing ei1

with (v1+1) for i = 2, ..., n. This method will work for any v except 0. To summarize,

(a) Let E = {e1, e2, ..., en}. Replace e1 with v.

(b) Replace ei1 with (v1 + 1) for i = 2, ..., n.
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The resulting set of vectors (S) is an ordinary basis for Rn with s1 = v.

Although this method does produce a basis for Rn relative to v, it still lacks one

essential characteristic. In order for the vector lengths and angles of separation to be

preserved when changing bases, S must be orthogonal. Clearly, S is not an orthogo-

nal basis, however this can be remedied using the Gram-Schmidt Orthogonalization

Process.

2. The Gram-Schmidt Process

The The Gram-Schmidt Process is a method for orthogonalizing a set of vectors in

an inner product space, most commonly the Euclidian space Rn. The GramSchmidt

process takes a finite, linearly independent set V = {v1, ..., vn} and generates an

orthogonal set V ′ = {u1, ..., un} that spans the same subspace as V .

Theorem 3.5 (The Gram-Schmidt Process) Let {x1,x2, ...,xn} be a basis for

the inner product space V. Let

u1 =
(

1
‖x1‖

)
x1

and define u2, ...,un recursively by

uk+1 =
1

‖xk+1 − pk‖(xk+1 − pk) for k = 1, ..., n− 1

where

pk = 〈xk+1,u1〉u1 + 〈xk+1,u2〉u2 + ... + 〈xk+1,uk〉uk

is the projection of xk+1 onto Span(u1,u2, ...,uk). The set

{u1,u2, ...,un}

is an orthonormal basis for V.
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By applying Theorem 3.5 to the ordinary basis S, orthogonal basis S′ is obtained,

which spans the same subspace as S, who’s first element u1 shares the same axis as

s1, and therefore lies in the direction of the initial vector v. Thus the net result is an

orthonormal basis S′ which allows for orthonormal transformations with the standard

basis E.

Defining a Hyperconically bounded region

With the basis S′, defining a hyperconically bounded region about v is a trivial mat-

ter. Using hyperspherical coordinates, the region can be described using only the radial

component ρ and the zenith angle φ. Any point obtained by manipulating the other an-

gular components will lie on the boundary of this region. For a region described by a

maximum radial component ρmax and a maximum zenith angle φmax, any point satisfying

0 ≤ ρ ≤ ρmax and 0 ≤ φ ≤ φmax is guaranteed to lie within the desired region. All that is

required now is to perform an orthonormal transformation from S′ back to E.

Changing bases from S′ to E

Changing bases is a relatively simple matter. A transition matrix from S′ to E can be

found with relatively little effort. However, before it can be used to for changing the basis

of a point within the predefined region, it’s coordinates must be converted from a spherical

to cartesian representation. Thus some generalized method for making this conversion is

needed.

Hyperspherical to cartesian coordinate conversion

A coordinate system has now been defined for n-dimensional Euclidean space, which

is analogous to the spherical coordinate system defined for 3-dimensional Euclidean space.

These coordinates consist of a radial coordinate ρ, and n−1 angular coordinates φ1, φ2, ..., φn−1.

If xk are the Cartesian coordinates, then
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xk =





ρ · cos(φk) for k = 1

ρ ·
k−1∏

i=1

sin(φi) · cos(φk) for k = 2, ..., n− 1

ρ ·
k−1∏

i=1

sin(φi) for k = n

(3.2)

This offers a generalized method by which an n-dimensional vector or point in hy-

perspherical coordinates may be converted into it’s cartesian representation. Once the

conversion has been made, the given point or vector may be freely converted from one basis

to the other using nothing more than a simple transition matrix.

Creating a transition matrix from S′ to E

Theorem 3.6 (Transition matrices) Let {u1,u2, ...,un} be an ordered basis for Rn, and let

c be a coordinate vector with respect to {u1,u2, ...,un}. To find the corresponding coordinate

vector x with respect to {e1, e2, ..., en}, simply multiply the matrix U = [u1,u2, ...,un] by c.

x = Uc

Summary

A step-by-step summary of the combined process.

Step 1: Using [v, e2, ..., en], create a new basis for Rn by replacing ei1 with v1+1 for i = 2, ..., n.

Call the resulting matrix S and refer to it’s column space as {s1, s2, ..., sn}.

Step 2: Using S = {s1, s2, ..., sn}, let

u1 =
(

1
‖s1‖

)
s1

and define u2, ...,un recursively by

uk+1 =
1

‖sk+1 − pk‖(sk+1 − pk) for k = 1, ..., n− 1
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The resulting matrix [u1,u2, ...,un]will form an orthonormal basis for Rn which is

denoted as U .

Step 3: Define a hyperconical region about u1 by choosing a maximum radial component ρmax

and a maximum zenith angle φmax.

Step 4: Generate vectors within the defined region by choosing ρ and φ such that 0 ≤ ρ ≤ ρmax

and 0 ≤ φ ≤ φmax.

Step 5: Let x be one of the vectors chosen in step four. Convert x from hyperspherical to

cartesian coordinates using (3.2).

Step 6: Express x with respect to [e1, e2, ..., en] using the U as a transition matrix.

x′ = Ux

This newly generated vector x′ has two very important characteristics, which make it par-

ticularly useful. They are:

(i) The length of x′ is no greater than ρmax

(ii) The angle of separation between x′ and the original vector v is no greater than φmax

Controlling the Defined Region’s Shape

It might be desirable to have ρ diminish as φ increases. This can be done by expressing

ρ as a function of φ.

ρ(φ) = ρmax

[
1−

(
φ

φmax

)β
]

The variable β can be adjusted to control the shape of the given region. As β becomes

larger, the shape of the region becomes increasingly conical. Fig. 2 offers a graphical

representation of how β effects the region’s shape.
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Figure 3.2: Search region shapes with ρmax = 2, φmax = 30◦

3.2.2 A Modified Population Distribution

One of the dangers of using a uniform population distribution is its susceptibility to

local minima. If the algorithm gets into a low-lying area which is larger than the current

maximum population radius, the algorithm will be permanently stuck. In order to avoid

this scenario, occasional points must be plotted outside the desired maximum radius.

One effective and efficient way of doing this is to use a population density which de-

creases exponentially as a function of the radius. This can be achieved by replacing rkX in

(3.1) with
1

X + 1
rk

− rk

rk − 1
(3.3)
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Figure 3.3: A Plot of 1000 random points using (3.3)

which has a range of (
0,

rk

1 + 1
rk

)

Although the upper bound for ‖vik‖ is no longer rk, for larger values of rk,

rk

1 + 1
rk

≈ rk

Fig. 3.3 shows how (3.3) effects density.
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3.3 Experimental Results

Two variations of the algorithm were used for testing. The first set of tests were

performed using the standard algorithm as described in section ??. The second set used

the modified population distribution from section 3.2.2. The algorithms were then tested

using population sizes of 5, 10, and 20 points per iteration. Statistical Data was compiled

for both algorithms using 100 runs for each population size.

Due to the common practical application of optimization in the field of artificial neural

networks, initial tests were made using the algorithm for training a simple two-layer network.

The network was then retrained for comparison using error back-propagation, which is the

most popular training algorithm in current use. Statistical data and error plots are included

for each test. All figures and statistics were taken for successful runs only, with the exception

of success rate, which was defined as the ratio of successful runs to non-convergent ones.

From the results, it is clear that both algorithms perform comparably to EBP, with the

modified version being by far the most consistent.
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Figure 3.4: Error back propagation using α = 0.5

Error back propagation

Population 20

Gain 5

Learning constant 0.5

Min run 138 ite

Max run 259 ite

Ave. run 152 ite

Standard deviation 15 ite

Success rate 66 %
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Figure 3.5: QGDM algorithm using modified distribution with k=0.1, p=5

Modified FF algorithm

Population 5

Initial radius 5

Total runs 100

Min run 57 ite

Max run 376 ite

Ave. run 105 ite

Standard deviation 47 ite

Success rate 82 %
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Figure 3.6: QGDM algorithm using modified distribution with k=0.1, p=10

Modified QGDM algorithm

Population 10

Initial radius 5

Total runs 100

Min run 21 ite

Max run 302 ite

Ave. run 67 ite

Standard deviation 45 ite

Success rate 81 %
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Figure 3.7: QGDM algorithm using modified distribution with k=0.1, p=20

Modified QGDM algorithm

Population 20

Initial radius 5

Total runs 100

Min run 17 ite

Max run 84 ite

Ave. run 36 ite

Standard deviation 11 ite

Success rate 81 %
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Figure 3.8: QGDM algorithm using β = 1.5, α = 2

Standard QGDM algorithm

Population 5

Min run 17 ite

Max run 301 ite

Ave. run 82 ite

Success rate 55 %
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Figure 3.9: QGDM algorithm using β = 1.5, α = 2

Standard QGDM algorithm

Population 10

Min run 11 ite

Max run 159 ite

Ave. run 34 ite

Success rate 66 %
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Figure 3.10: QGDM algorithm using β = 1.5, α = 2

Standard QGDM algorithm

Population 20

Min run 9 ite

Max run 197 ite

Ave. run 29 ite

Success rate 70 %
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Chapter 4

Variable Scale Gradient Approximation

Gradient methods are often compared to a ball rolling along some surface. Neglect-

ing momentum and assuming the ball is infinitely small, it will follow the path of steepest

descent exactly. This is a powerful illustration which, consequently, also highlights the

method’s fundamental flaws. With little effort one can visualize any number of surfaces on

which the ball might become permanently trapped before ever reaching its desired destina-

tion. Take, for example, a flight of stairs as in Fig. 4.1. Even though the behavior of the

surface is relatively simple, it is clear that no matter where the ball on the left is placed,

it will never find its way to the foot of the stairs. Though the staircase clearly exhibits

a global trend which may be determined with only a limited amount of information, the

ball is still incapable of proceeding. The advantage of this illustration is that it makes the

solution quite obvious: use a bigger ball. Though changing the size of the ball won’t change

the gradient of the surface, it will make the ball more sensitive to larger scale behavior,

allowing it to successfully descend the stairs. After all, all of the relevant information for

descending a staircase can be found at the corners of the individual steps. While steps may

be an essential part of a staircase, from the perspective of minimization, they are nothing

more than noise. Furthermore, by actively allowing the ball to expand and contract as it

descends, it is possible to navigate on as large or small a scale as necessary. This is the

basic principle by which the proposed method operates, and from which it derives its name:

Variable Scale Gradient Approximation (VSGA).
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Figure 4.1: Ordinary gradient methods (left) are easily trapped on complex or piecewise
constant optimization surfaces. The proposed method (right) is able to overcome these
obstacles by expanding the radius of its population-based gradient approximation.
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4.1 Proposed Method

The key feature of the proposed method is the way in which the gradient is approx-

imated. During each iteration, the algorithm generates a ”population” of points within

a spherically bounded region. A portion of the generated set lies on the region’s perime-

ter, and it is these members of the population which are used in the approximation of the

gradient. Next, an additional point is generated in the direction of the approximated gra-

dient and added to the current population. Finally, the fittest member of the population is

compared to the current best solution, and the population’s center and radius are updated

accordingly. The basic flow of the algorithm is presented in Fig. 4.2.

4.1.1 Approximating the gradient

As previously noted, the gradient approximation is the defining feature of the proposed

method. The generalized process for computing it is presented in a step-by-step manner.

Let x0 ∈ Rn be the center of a population P with radius r, and let y = f(x0) be the

value of the objective function f : Rn → R at x0 .

1. First, generate a set of n random vectors {∆x1,∆x2, ...,∆xn} , each of length r, and

define an n× n matrix,

∆X =




∆x1

...

∆xn




2. Now, let xi = ∆xi + x0, and define a vector y = [y1...yn]T where

yi = f(xi) (4.1)

33



Apply LM

update rule.

Perform

selection.

Assemble

population.

End

Lack of

Progress?

Adjust

radius.

?
Tol
ff <

Start

Compute

gradient.

Yes

No

Yes

No

Figure 4.2: A simplified flow chart depicts the basic operation of the proposed algorithm.
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for i = 1, ..., n. It should be clear from 4.1 that each value yi corresponds to the value

of the objective function at a randomly generated point xi, which lies on the perimeter

of the population.

3. Finally, compute the gradient approximation using

∇f = ∆X−1 · (y − y0) (4.2)

It may appear, and understandably so, that a significant leap has been made between

steps 2 and 3. So for the sake of clarity, a short derivation of 4.2 is included. Let f

be an n-dimensional scalar function. A linear approximation of f with respect to a point

x0 = (x01, x02, ..., x0n) may be found using the first two terms of the Taylor series expansion.

f(x) ≈ f(x0) + δf
δx1

·∆x1 + δf
δx2

·∆x2 + · · ·+ δf
δxn

·∆xn

= f(x0) +∇f |x0 ·∆x
(4.3)

Solving this equation for the gradient yields

∇f |x0 ≈
∆f

∆x
=

f(x)− f(x0)
x− x0

(4.4)

By generating a point x in the vicinity of x0, it is possible to obtain a numerical approxi-

mation of ∇f |x0 using 4.4. However, for n > 1, 4.4 is an invalid expression since it implies

that ∆x is a vector, and therefore has no inverse. Thus, in order to generalize 4.4), f is

evaluated for a set of n linearly independent points, allowing ∆x and ∆f to be replaced by

the n×n matrix ∆X and the n× 1 vector of corresponding function values ∆f . This leads

to the generalized form

∇fn×1 ≈




∆x11 · · · x1n

...
. . .

...

∆xn1 · · · xnn




−1

n×n




f(x1)− f(x0)
...

f(xn)− f(x0)




n×1

≈ ∆X−1 ·∆f

(4.5)
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which is equivalent to 4.2.

4.1.2 A modified LM update rule

Once the gradient is computed, an additional point xn+1 is generated in the direction

of the approximation. The proposed method uses a modified version of the Levenberg-

Marquardt (LM) algorithm [19] update rule for this purpose. For a scalar valued function

f : Rn → R , the LM update rule may be written

x
(k+1)
n+1 = x

(k)
0 − (∇f · ∇fT + µI)−1∇f · y(k)

0 , (4.6)

where k is the current iteration, and µ acts as a damping factor which reduces oscillation

by actively controlling the step size. One who is familiar with the LM algorithm may notice

that the Jacobian has been replaced by the gradient in 4.6. This is because the Jacobian is

defined as the matrix of all first-order partial derivatives of a vector valued function. Thus,

for a scalar valued function, the Jacobian is, by definition, the transpose of the gradient.

Although the proposed method may be extended to handle vector valued functions, the

version presented here is intended for use with scalar valued problems. Thus the Jacobian

is replaced by the gradient.

This is not the only modification. For the proposed implementation, the rule is also

modified to account for the population radius r. This is done by adding a term which

ensures that the length of the update step will be no smaller than r. This modification is

needed to ensure that when the algorithm encounters local minima, the step size will exceed

the radius of the current population, thus providing greater diversity. The modified version

of the rule is written

x
(k+1)
n+1 = x

(k)
0 − (∇f · ∇fT + µI)−1∇f · y(k)

0 − ∇f

‖∇f‖ · r
(k) (4.7)

The added term in 4.7 is simply a vector of length r in the direction of ∇f .
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It is important to note that the algorithm presented here, using the modified version

of the LM update rule, is but one of many possible implementations. In other words, the

shaded box in Fig. 2 may be replaced with any number of existing gradient methods without

compromising the underlying principles. The only requirement is that the gradient be

calculated in the described fashion. In fact, the proposed method was specifically designed

with this sort flexibility in mind. Therefore, the update rule may be readily exchanged with

another second order method such as the BFGS method [20] or the closely related Davidon

Fletcher Powell algorithm, which has been shown to outperform LM in certain applications

[21].

4.1.3 Assembling the population

The population P is generated in two parts whose combined size is denoted by the

parameter λ. The primary population,

A = {x1, ..., xn+1}, (4.8)

is created in the two previous steps, and is of size n + 1, while the secondary population,

B = {xn+2, ..., xλ}, (4.9)

consists of a set of m points which are randomly distributed within the region defined x0

and r. Here, the value of m is a user defined parameter, and may be assigned any non

negative integer value including zero. This leads to the following definitions for λ and P ,

λ = n + 1 + m, (4.10)

P = A ∪B = {x1, ..., xλ}. (4.11)
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While the inclusion of B in P can provide a noticeable increase in the rate of convergence

when applied to relatively complex optimization surfaces, in general, it is sufficient to let

m = 0.

4.1.4 The selection process

Once P has been constructed according to 4.11, its members are ranked with respect

to fitness. Next, the fittest member xopt ∈ P is chosen, and the following conditional, also

shown in Fig. 2, is evaluated:

IF f(xopt) < fTol THEN

Terminate algorithm.

ELSE IF f(xopt) ≥ f(x0) THEN

Adjust population radius r.

ELSE

x0 = xopt .

END IF

where fTolis the maximum acceptable value for the objective. Updating in this way es-

sentially recycles the information used in the approximation of the gradient, which would

otherwise be thrown out. This process also helps to guarantee the algorithm’s stability

since it is equivalent to running two methods in parallel. That is, if the generated step

does not result in a lower value of the objective, the method will resort to selecting the

best of the points used in the gradient approximation. In this way, it is still possible for

the method to proceed. Furthermore, because the current best solution is included in the

selection process, it is guaranteed that the value of the objective will not increase from one

iteration to the next. Therefore, while the instability of the update rule may affect the

algorithm’s convergence, the algorithm itself will remain stable as a result of selection.
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4.1.5 Adjustment of the population radius

Any number of radius update rules may be devised, however the version presented here

is perhaps the simplest. The method uses a fixed step size ∆ to modify the radius over a

bounded user defined interval [rmin, rmax], and is subject to the following conditions:

IF r ≥ rmax THEN

r(k+1) = r(k) + ∆ .

ELSE

r(k+1) = rmin .

END IF

where k is the number of the current iteration. Although this method is simple, it proves

to be adequate. The two features which make the method so basic are the use of a resetting

value of r, and the constant step-size ∆. The constant step size serves the purpose of

increasing the population radius when the algorithm encounters local minima, while the

increase in r causes the gradient approximation to become less sensitive to local behavior,

thereby allowing it to escape the traps introduced by complex behaviors. Conversely, if

greater accuracy of approximation becomes necessary for local search, the algorithm is still

able to proceed once r is reset.

4.2 Test Functions

Four unique functions were used for testing. Each function exhibits features deemed

relevant for the purpose of comparison. All four functions are presented in generalized form,

with n being the dimension of the search space.

4.2.1 Test Function 1

T1(x) =
n∑

i=1

(xi

4

)4
, xi ∈ [−10,+10] (4.12)
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The first test function, T1, has a simple convex, continuous, parabolic surface with a min-

imum of T1(x) = 0 located at the origin. The function is used for two primary purposes.

First, it offers a fair comparison of the proposed method with some of the more common

gradient methods. Second, it highlights the strengths of such methods, which are superior

to evolutionary methods when applied to problems of this type. Also, because the function

is fourth order, it will highlight the difference between algorithms of higher and lower orders.

4.2.2 Test Function 2

T2(x) =
n∑

i=1

(bxic
4

)4

, xi ∈ [−10, +10] (4.13)

The second test function, inspired by the illustration in Ch. 4, is of an identical form to that

of T1, except that the variables have been floored in order to make it piecewise constant.

T2 has a minimum value of 0 for all x = [x1...xn] which satisfy x1 ∈ [0, 1) for i = 1...n. The

features of this function are useful for testing the hypothesis made in Ch. 4. If the proposed

method operates as intended, there should be little difference in performance between the

T1 and T2.

4.2.3 Test Function 3

f(x) = 1
2

√√√√
n∑

i=1

bxic2, xi ∈ [−100,+100]

g(x) = x
4 + (1− cos(πx)) · (tanh

(
x
4

)− 1)2

T3(x) = g ◦ f

(4.14)

Like T2, T3 is also piecewise constant, but with the addition of local minima, which is the

most common challenge faced by gradient methods. Though evolutionary methods may

also become susceptible to these traps if population diversity becomes too low, they much

better suited for this type of problem. T3 has a minimum value of 0 for all x = [x1...xn]

which satisfy xi ∈ [0, 1) for i = 1...n.
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Algorithm Parameters T1 T2 T3 T4

MSD α 1 1 1 1
LM µ0 0.1 0.1 0.1 0.1
SA-ES µ, λ, σ0 3,12,1 3,12,1 8,16,10 8,16,50
CMA-ES µ, λ, σ0 3,12,1 3,12,1 8,16,10 8,16,50
PM m, rmin, rmax, ∆ 0, 10−16, 1, 1 0, 2, 6, 2 4, 2, 6, 2 0, 10−6, 12, 3

Table 4.1: A list of algorithm parameters used in testing

4.2.4 Test Function 4

T4(x) =
1
2

n∑

i=1

(
x2

i + tan(xi)2 − 10 · cos(2 · xi) + 10
)
, xi ∈ [−100, +100] (4.15)

T4 is the most extreme of the test functions. Though it is piecewise continuous, each of the

regions of continuity is a deep local minimum. Thus, gradient methods are only capable

of minimizing T4 on a local basis. Due to the large number of local minima, evolutionary

methods which rely on modified mutation strength for accelerated convergence may also be

susceptible to entrapment. The surface of T4 is shown in Fig. 4.5. In reality, the ”walls”

which separate the local minima in Fig. 4.5 are infinitely high. The minimum of T4 is 0,

and is located at the origin.

4.3 Experimental Results

The proposed method is compared with four well known algorithms. It should be

noted that the purpose of the comparison is not to show that the proposed method is

superior to all algorithms over all problems; clearly that is not the case. Instead, the goal

is to show that while the algorithm shows the high rate of convergence and efficient local

search characteristics of a second order gradient method, it is also capable of minimizing

complex classes of problems which are usually associated with evolutionary methods. Thus

the evolutionary methods used for comparison were selected on the basis of these same

qualities. The following is a list of the compared methods.
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Algorithm
Test Function

T1 T2 T3 T4

MSD
100% FAILURE FAILURE FAILURE

5477.98 FAILURE FAILURE FAILURE

LM
100% FAILURE FAILURE FAILURE
43.6 FAILURE FAILURE FAILURE

SA-ES
100% 100% 100% 48%

214.48 426.28 355.72 6475.7

CMA-ES
100% 100% 100% 67%

186.68 138.32 772.24 815.61

PM
100% 100% 100% 100%
46.3 28.72 148.21 382.36

Table 4.2: Comparison of success rate and mean function evaluations
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1. MSD: The Method of Steepest Descent is perhaps the most well known of all gradient

methods. MSD is a simple first order method which, as the name implies, employs a

user defined step size to proceed in the direction of ”steepest descent.” The method

was chosen for its high degree of stability as well as its reputation as the standard

gradient method.

2. LM: The Levenberg Marquardt algorithm, described briefly in Section III-C, is re-

garded as one of the fastest gradient methods available. The method was chosen as a

benchmark among second order algorithms. Furthermore, the gradient portion of the

proposed method uses an update rule directly inspired by the LM algorithm, making

the method especially relevant for comparison.

3. -SA-ES: Self-Adaptive Evolution Strategy [22], a member of the larger family of al-

gorithms known as Evolutionary Strategies [22], is a powerful evolutionary method

which uses self-adapted mutation strength for optimal convergence as well as an ac-

celerated local search. The method was chosen as a strong representative of the power

of evolutionary methods.

4. CMA-ES: Covariance Matrix Adaptation Evolutionary Strategy [23], also a member

of the family of Evolutionary Strategies, is an evolution path related technique which

uses search space information in a highly efficient manner, making it exceptionally

fast with respect to other evolutionary methods.

5. PM: The proposed method.

The performance of each algorithm on each of the test functions was evaluated over

a series of 100 simulation runs using the algorithm parameters listed in Table 4.1. Each

algorithm was then evaluated with respect to rate of success as well as the mean number of

function evaluations per solution. The tabulated results are presented in Table 4.2, which

represents the case n = 2 for all four functions. For each of the test functions, success was

defined by two conditions:
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1. f(x) < 10−6

2. No more than 105 total evaluations of the objective.

The fields in Table 4.2 highlighted in bold font denote the top performers for each of the test

cases. One may notice the similarity between the proposed method and the LM algorithm

with regard to the first test function. Notice that for this particular function, the behaviors

of the two algorithms are nearly identical. This validates the earlier hypothesis that, in the

absence of local minima, the two methods should behave in a similar manner. Note too the

striking difference in the rate of convergence between the two second order gradient methods

when compared to the first order method of steepest descent. Another point of interest is

the performance of the proposed method on the second test. It was suggested in Section

IV-B that, assuming proper performance, little difference should be observed between T1

and T2. This is confirmed by the results in Table 4.2. In fact, the algorithm actually

performs better! This behavior is a result of the increased population radius coupled with

the modified LM update rule, which, when used together, increase the rate at which the

proposed method traverses the optimization surface.

Finally, notice the similarity between the proposed method and that of CMA-ES with

respect to T3 and T4. In fact, for T4, the similarities are striking. When applied to these

more complex surfaces, the behavior of the algorithm changes drastically, and yet there

seems to be little, if any, effect on the level of performance. What is most striking about

the results in Fig. 4.6 is the change in behavior between T1 and T4. As the nature of

the test functions becomes more complex, the behavior of the proposed method changes

from a second order gradient method to one which bears a striking resemblance to that of

evolutionary computation!
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Chapter 5

Conclusion

In this thesis, two novel algorithms for numerical optimization were presented. In both

cases, the objective was to modify the general form of the traditional first and second order

approaches in order to include global solutions to complex problems, while also retaining

desirable local behavior commonly associated with such approaches. This was motivated

by the fact that traditional gradient based approaches are susceptible to entrapment in

local minima, and will only produce global convergence if the initial guess happens to lie

within the global minimizer’s region of attraction. Conversely, while newer methods such

as evolutionary computation are quite adept at obtaining global solutions, they are very

inefficient with respect to local convergence, making them prohibitively time consuming for

many applications.

The first approach, presented in Chapter 3, borrows some from evolutionary compu-

tation through the use of successive populations of pseudo-randomly generated test points.

However, instead of using the mechanisms of combination and random mutation to gener-

ate successive populations, the proposed method uses the cumulative information contained

within each generation to ”migrate” from one point to the next. This migratory behavior

allows the algorithm to progress in a way which is similar to gradient methods, while the use

of randomly distributed populations make it possible to overcome the challenges presented

by local minima. The latter is done by actively controlling the population’s radius, allowing

test points to venture beyond the region of local attraction. Not only does this method

require very little computational effort, but it was also shown to outperform a common first

order method for the purpose of training a neural network.

In Chapter 4, a method was presented by which nearly any first or second order algo-

rithm can be modified to overcome the risk of entrapment. This was done through the use of
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a variable scale gradient approximation (VSGA), which effectively controls the sensitivity

of the search direction with respect to the small and large scale behaviors of the objec-

tive. Like its predecessor, the VSGA is extracted using the information contained within a

pseudo-randomly generated set of test points. The difference, however, is that the VSGA

direction yields a far more accurate model of the objective function’s behavior with respect

scale. Thus, as the radius of the population increases, the VSGA becomes less sensitive to

local behavior, allowing it to overcome the challenge of local minima. Conversely, when the

radius of the population is quite small, the VSGA becomes a very close approximation to

the true gradient, making it quite efficient in local searches as well. To confirm this, the

algorithm was tested using a series of test functions chosen to typify some of the most com-

monly faced difficulties. The performance of the proposed method was also compared with

a set of competing algorithms which included gradient as well as evolutionary methods. It

was than shown from the results that the proposed method was not only able to emulate

both classes of algorithms based on the behavior of each function, but it was also shown

to out-perform the compared methods in terms of rate of success and average number of

evaluations of the objective.
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A.1 QGDM.m

function [WW1,WW2,OP,ser,ite,k]=QGDM(fun,IP,DP,WW1,WW2,k1,k2,emax,nmax,nnp,r1);

% [WW1,WW2,OP,ser,ite,k]=QGDM(fun,IP,DP,WW1,WW2,k1,k2,emax,nmax,nnp,r1) - erorr backprop for 2 layers

% uses: versize2, augm, forw1l, oerror, fsbip, fsli, fsuni, newwt3

%

% Arguments:

% fun - activation function ’fsbip’

% IP - [np,ni] matrix of inputs (not augmented).

% DP - [np,no] matrix of desired outputs

% WW1 - [nh,ni] weight matrix for the first layer

% WW2 - [no,nh] weight matrix for the second layer

% ni - number of inputs

% nh - number of hidden neurons

% no - number of outputs

% np - number of patterns

% not working for unipolar

% k1- neuron gain at net=0 for first layer

% k2- neuron gain at net=0 for second layer

% emax - max normalized error

% nmax - max number of iterations

% nnp - number of points per population

% r1 - starting radius

% Returns:

% WW1 - [nh,ni] weight matrix for the first layer

% WW2 - [no,nh] weight matrix for the second layer

% OP - [np,no] matrix of outputs

% ser - vector of normalized errors as function of iterations

% ite - number of total iterations

if nargin ~= 11 error(’Wrong number of arguments’); end;

[ni,no,np,nh]=versize2(IP,DP,WW1,WW2);

IP1=augm(IP);

step=1;

je=0;

c1=WW1;

c2=WW2;

r=r1;

k=0;

%---------------Calculate network output (OP2)-----------------%

[NET1,OP1,GAIN1] = forw1l(fun,IP1,WW1,k1); %

IP2=augm(OP1); %

[NET2,OP2,GAIN2] = forw1l(fun,IP2,WW2,k2); %

%--------------------------------------------------------------%

%-----------------Calculate initial error (e)------------------%

e = oerror(DP,OP2); %

%--------------------------------------------------------------%

for ite=1:nmax

[WW1,WW2,r,e,OP,c1,c2]=newwt3(WW1,WW2,r,e,DP,IP1,fun,k1,k2,c1,c2,nnp);

if (ite/step == round(ite/step)) | (ite==1)

je=je+1;

ser(je)=e;

%disp(sprintf(’ite=%5d error=%12.10f’,ite,e));

end;

%WW1
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%WW2

if e<emax return; end;

end;

return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ww12,ww22,r,e1,OP,c1,c2]=newwt3(WW1,WW2,r,e,DP,IP1,fun,k1,k2,c1,c2,nnp);

%----------return initial state if e2 is never less than e1----------%

OP=0; %

e1=e; %

ww12=WW1; %

ww22=WW2; %

for i=1:nnp %

%-----------------Create random weights (wwa,wwb)--------------------%

wwa=2*rand(size(WW1))-1; %

wwb=2*rand(size(WW2))-1; %

magww=sqrt(sum(sum(wwa.^2)’)+sum(wwb.^2)); %

rr=r*rand; %

wwa=rr*wwa/magww+c1; %

wwb=rr*wwb/magww+c2; %

%------------------feed-forward calculation (OP2)--------------------%

[NET1,OP1,GAIN1] = forw1l(fun,IP1,wwa,k1); %

IP2=augm(OP1); %

[NET2,OP2,GAIN2] = forw1l(fun,IP2,wwb,k2); %

%------------------------Calculate error (e2)------------------------%

e2 = oerror(DP,OP2); %

%-----------------------Update current status------------------------%

if e2<e1 %

e1=e2; %

OP=OP2; %

ww12=wwa; %

ww22=wwb; %

end; %

end; %

%---------------------Update center and radius-----------------------%

if e1<e %

r=(3/2)*sqrt(sum(sum((ww12-WW1).^2)’)+sum(sum((ww22-WW2).^2)’)); %

c1=2*(ww12-WW1)+WW1; %

c2=2*(ww22-WW2)+WW2; %

end; %

%--------------------------------------------------------------------%

return;

%******************MY CODE ENDS HERE****************************

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [NET,OP,GAIN] = forw1l(fun,IP,WW,k);

% [NET,OP,GAIN] = forw1l(fun,IP,WW,k) - forward computation for one layer

% uses:

%

% Arguments:

% fun - string with the name of activation function

% IP - np*ni matrix of input vectors (in augumented space)

% WW - no*ni weight matrix.

% ni - number of inputs

% no - number of outputs

% np - number of patterns

55



% k - gain of neurons at net=0

% Returns:

% OP - np*no matrix of actual outputs.

% NET - np*no matrix of net values

% GAIN - np*no neuron gains

if nargin ~= 4 error(’Wrong number of arguments’); end

NET=IP*WW’;

[OP,GAIN]=feval(fun,NET,k);

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [e,EE] = oerror(DP,OP);

% [e,EE] = oerror(DP,OP); error computation for one layer

% uses:

%

% Arguments:

% OP - [np,no] matrix of outputs

% DP - [np,no] matrix of desired outputs

% Returns:

% e - total error

% EE - [np,no] error matrix (d-o)

if nargin ~= 2 error(’Wrong number of arguments.’); end;

sprintf(’test error ’);

[np,no]=size(DP);

EE=DP-OP;

e = sqrt(sum(sum(EE.*EE)))/(2*no*np);

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [IP] = augm(IP);

% [IP] = augm(IP) create augmented input matrix

% uses:

%

% Arguments:

% IP - [np,ni] matrix

% Returns:

% IP - [np,ni+1] matrix with +1 on last comumn

if nargin ~= 1 error(’Wrong number of arguments.’); end;

[np,ni]=size(IP);

IP(:,ni+1)=ones(np,1);

return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [o,gain] = fsbip(net,k)

% [o,gain] = fsbip(net,k) - bipolar sigmoidal function

% uses:

%

% Arguments:

% net - input variable

% k - gain at net=0

% Returns:

% o - output value

% gain - neuron gain

if nargin > 2 error(’Wrong number of arguments.’); end

o = 2*ones./(ones+exp(-2*k*net))-ones;

gain = k.*(1-o.*o);
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return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [o,gain] = fslin(net,k)

% [o,gain] = fsemlin(net,k) - semi linear function

% uses:

%

% Arguments:

% net - input variable

% k - gain at net=0

% Returns:

% o - output value

% gain - neuron gain

if nargin > 2 error(’Wrong number of arguments.’); end

o = k*net;

for i=1:length(o)

if o(i)<0

o(i)=0;

end;

end

gain = k;

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [o,gain] = fsuni(net,k)

% [o,gain] = fsuni(net,k) - unipolar sigmoidal function

% uses:

%

% Arguments:

% net - input variable

% k - gain at net=0

% Returns:

% o - output value

% gain - neuron gain

if nargin > 2 error(’Wrong number of arguments.’); end

if nargin == 1 k=1; end

%k=4*k;

[nr,nc] = size(net);

o = ones./(ones+exp(-k.*net));

gain = k.*(1-o).*o;

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ni,no,np,nh]=versize2(IP,DP,WW1,WW2);

% [ni,no,np,nh]=versize2(IP,DP,WW1,WW2)-verification of matrix sizes for two layer backpropagation input

% uses:

%

% Arguments:

% IP - np*ni matrix of input paterns (not in augmented space)

% DP - np*no matrix of desired patterns

% WW1 - weight matrix for first layer (for augmented space)

% WW2 - weight matrix for second layer (for augmented space)

% network structure is extracted form weights matrixes

% Returns:

% ni - number of inputs (in augmented space)

% no - number of outputs

% np - number of patterns

% nh - number of hidden neurons
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if nargin ~= 4 error(’Wrong number of arguments.’); end

[npi,ni]=size(IP);

[npo,no]=size(DP);

[nh,niw1]=size(WW1);

[now,niw2]=size(WW2);

if npi~=npo npi, npo, error(’Number of input and output patterns differs’); end

if ni~=niw1-1 ni, niw1, error(’WW1 does not match input paterns’); end

if no~=now no, now, error(’WW2 does not match output paterns’); end

if nh~=niw2-1 nh, niw2, error(’WW2 does not match hidden neurons’); end

np=npi;

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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B.1 VSGA.m

function [x0,y0] = vsga(obj,x0,y_max,k_max,r_lim,delta,m)

%VSGA Optimizes objective functions with complex surfaces.

% VSGA uses a "(V)ariable (S)cale (G)radient (A)pproximation" to solve

% problems of the form:

%

% min f(X)

% x

%

% where X and the values returned by f can be scalars or vectors.

%

% [X0,Y0] = VSGA(OBJ,X0,Y_MAX,K_MAX,R_LIM,DELTA,M) returns the minimizer X0

% and its corresponding objective value Y0.

%

% Input arguments:

% OBJ [handle] : Handle of the objective function

% X0 [1xn] : Initial starting point

% Y_MAX [scalar] : Maximum allowable tolereance for Y0

% K_MAX [scalar] : Maximum number of iterations

% R_LIM [1x2] : Radius limits [r_min,r_max]

% M [scalar] : Secondary population size

%

% For details of the algorithm’s operation, see

%

% Hewlett, J.D.; Wilamowski, B.M.; Dundar, G., "Optimization Using a

% Modified Second-Order Approach With Evolutionary Enhancement,"

% Industrial Electronics, IEEE Transactions on , vol.55, no.9,

% pp.3374-3380, Sept. 2008

%

% OBJ - The objective function is defined as a separate MATLAB function.

% For example,

%

% function [y]=testT1(x)

% y=((.25*x(1))^4+(.25*x(2))^4);

% return

%

% Example:

%

% [x0,y0] = vsga(@testT2,[100,100],1e-6,100,[1e-6,3],1,10);

%

% minimizes testT2.

% Joel Hewlett, Mar. 2009

% Auburn University Department of Electrical and Computer Engineering

% $Revision: 1.0 $ $Date: 2009/03/27 13:42:26 $

%---------------------------------------%---------------------------------------%

% Initialize constants/variables %

%---------------------------------------%

output = [’%1.8e <== Total Error ’,...

’%1.1e <== radius %d <== iteration’];

y0 = feval(obj,x0); % Initial value of the objective

y_best = [y0,zeros(1,k_max-1)]; % Holds value of y0 for each iteration
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r = r_lim(1); % Set initial radius equal to r_min

I = eye(length(x0)); % nxn identity matrix

mu = 0.1; % Learning rate for LM

mut = mu; % Stores mu when radius changes

chk = 0; % Set when radius is growing

k = 1; % Iteration counter

rcount = 0;

%---------------------------------------%---------------------------------------%

% Begin Main Loop %

%---------------------------------------%

while k <= k_max,

k = k + 1;

%---------------------------------------%

% Compute Gradient %

%---------------------------------------%

[grad,x_opt] = popgrad(x0,obj,r,m); % Caculate gradient approximation

y_opt=feval(obj,x_opt);

Hessian = grad’*grad;

if rcond(Hessian)<0.5 % If Hessian is not well conditioned,

Hessian=0*Hessian; % set it equal to 0.

end

count = 0; % Counter for LM mu update

temp = y0;

%---------------------------------------%

% Apply Update Rule %

%---------------------------------------%

while (1),

step=((Hessian+mu*I)\grad’*y0)’;% Levenberg Marquardt step

dir_step=step/sqrt(step*step’); % Diversity offset

x_np1=x0-(step+r*dir_step);

y_np1=feval(obj,x_np1);

if chk == 0;

if y_np1<=temp

temp = y_np1;

if mu>1e-50, mu=mu/10; end;

break;

end;

if mu<1e+50, mu=mu*10; end;

end

count = count+1;

if count>2, break; end;

end;

%---------------------------------------%

% Assemble Population %

%---------------------------------------%

P=[x_opt;x0;x_np1];

y=[y_opt,y0,y_np1];

%---------------------------------------%

% Perform Selection %

%---------------------------------------%

ndex=find(y==min(y)); % Find index of best y value

y0=y(ndex(1)); % Update y0

x0=P(ndex(1),:); % Update x0

y_best(k) = y0;

disp(sprintf(output,y0,r,k)); % Display progress to the command window

if y0 < y_max % Check if y0 is sufficiently small

break;

end

%---------------------------------------%

% Check Progress/Adjust Radius %

%---------------------------------------%

if (y_best(k) == y_best(k-1)) % Check progress

chk=1;

if r >= r_lim(2) % If r has reached its upper limit,
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r=r_lim(1); % reset r.

else

r = r + delta; % Update r

end

mu = 0.1;

else

if chk == 1;

mu = mut; % Restore mu

else

mut = mu; % Store current mu

end

chk=0;

end

end

%---------------------------------------%---------------------------------------%

% Plot y0 as function of k %

%---------------------------------------%

semilogy(y_best)

xlim([1 k]);

xlabel(’k’);

ylabel(’y0’);

title(’Run Summary’)

return

B.2 popgrad.m

function [grad,x_opt] = popgrad(x0,obj,r,m)

%POPGRAD Calculate a population based gradient approximation.

% GRAD = POPGRAD(X0,OBJ,RADIUS,M) returns the gradient approximation of

% OBJ evaluated at the point X0, using a population radius of RADIUS.

%

% [GRAD,X_OPT] = POPGRAD(X0,OBJ,RADIUS,M) also returns the vector X_OPT,

% which corresponds to the member of the generated population with the

% lowest value for the objective function OBJ. If M = 0, X_OPT is simply

% chosen from the N points used to calculate GRAD. If M > 0, M randomly

% generated points within the region defined by X0 and RADIUS are also

% considered.

%

% Input arguments:

% X0 : 1xn vector

% OBJ : function handle

% RADIUS : scalar (>0)

% M : scalar (>=0)

%

% OBJ - The objective function is defined as a separate MATLAB function.

% For example,

%

% function [y]=testT1(x)

% y=((.25*x(1))^4+(.25*x(2))^4);

% return

%

% Example:

%

% [g,x] = popgrad([10 10],@testT1,1e-6,10);

%

% finds the the values of g and x for the testT1 using a population

% radius of 1e-6 and a secondary population size of 10.

% Joel Hewlett, Mar. 2009

% Auburn University Department of Electrical and Computer Engineering

% $Revision: 1.0 $ $Date: 2009/03/27 10:07:26 $

%---------------------------------------%---------------------------------------%
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% Generate Population (P) %

%---------------------------------------%

n = length(x0); % Size of primary population

A = 2*rand(n)-1;

A = A./(ones(n,1)*sqrt(sum(A’.^2)))’*r;

A = A+ones(n,1)*x0; % Primary population (A)

if m > 0

B=(2*rand(m,n)-1);

B=B./(ones(n,1)*sqrt(sum(B’.^2)))’*r;

B=B + ones(m,1)*x0; % Secondary population (B)

P=[A;B]; % Combined population (P)

else

P=A; % Combined population (P)

end

%---------------------------------------%

% Evaluate Population Fitness (y) %

%---------------------------------------%

y0 = feval(obj,x0);

lambda = n+m; % Size of combined population

for i = 1:lambda,

y(i) = feval(obj,P(i,:));

end

%---------------------------------------%

% Approximate Gradient (grad) %

%---------------------------------------%

dy = y(1:n)-y0;

dx = P(1:n,:)-ones(n,1)*x0;

grad = (pinv(dx)*dy’)’;

%---------------------------------------%

% Perform preliminary selection %

%---------------------------------------%

y(end+1) = y0;

P(end+1,:)= x0;

index = find(y==min(y));

x_opt = P(index(1),:);

return
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