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Abstract

This work uses a finite element analysis and analytical emsto model elastic-
plastic and fully plastic large deformations of spheres in comtdlb rigid flat surfaces.
The case considered here is of a deformable sphere compresseditiyflat as opposed
to the reverse case of a rigid spherical indenter penetiatii@jormable surface. Most
previous work only deals with elastic or elasto-plastic defaomaat much smaller
deformations. Based on an extensive literature survey, the workretastd to plastic
deformations of spherical surfaces are the papers by NoyamdiThaudhri [2]. Even
existing finite element based models do not explain plastic dafmns well. The
current work theoretically explains the initiation and progressigplastic deformations
throughout the sphere.

A model for predicting contact area, pressure and force fatipldeformations
has been proposed based on the FEM simulations and analytical equativets fiem
volume conservation. The analytical volume conservation approach lardionihat used
to model the barreling of compressed cylinders. The most imporfaettasf the model
is the resulting equation relating the average pressure duriggpfafitic deformation to
the yield strength. The model improves the current state-adrth®y providing equations
relating contact force, area, pressure and interference mublerfunto the fully plastic
regime and for much larger deformations than the previous workse$hks have been

compared with existing models and with experimental data. Allrékalts have been



simulated for three different sets of material properties twige a model that is

applicable to a wide range of materials.



Acknowledgments

| wish to acknowledge my sincere gratitude to my advisor, Dr. Rabésckson,
for his great motivation, support and encouragement during the course atutly. |
would like to thank my committee members, Dr. Lewis Payton, DrejeSuhling and
Dr. Pradeep Lall, for their continuous support in this study.

| would like to express deep gratitude and gratefulness to mgptpaaed brother
for their enduring love, immense moral support and encouragement lifemywish to

thank all my colleagues and friends at Auburn for their friendship and help.



Table of Contents

Y 013 1= o PP [

ot 10111 =T o o =T 0 0= o £ N 1

LiSt Of FIQUIES.... et e e e e e e e e e e ee e e N

LISt Of TabDIES. ... e e e e viii

A\ 010 L= g Tod = L = PP D¢

O | 1 70 To [T £ o PP PP PP PP PP 1

2. Motivation and ObjJECHIVES. ... ..cv ittt e e e 5

w

() L (R R AV (=L PR 7

B

Finite Element Modeling Methodology.........ccoov v e e e 21

o

RESUIS @Nd DISCUSSIONS ......cuteiiieeiiiiieie e e e ettt e e s st e e s e e e e e e e e eeees 31
Finite Element based Model...............ccooiiii e 33
Comparison with Experimental ReSults............oocoviii i, 57
Effects of Strain Hardening............coooiiiiiiiiii e e 63

Effects of Friction across the areaof contact.............cooovvvviiiiiiiininnn.....69

6. CONCIUSIONS... ...ttt e e e et e e e e e e e e e e n e e e e e s 71
8. Recommendations for FULUIe WOIK............ueviiiiiiiiiiiicc e 73
2] [ToTe =1 o] o /20U 74
Y 0] o 1= T [PPSR 76



List of Figures

Figure 1.1: Stress strain curve for a sphere under compression................covevveeeen.3
Figure 3.1: Figure showing the assumption by Jackson and Green................12

Figure 4.1: The two boundary conditions used to model the sphere.......................... 22
Figure 4.2: Schematic showing the B.C’s used n the FEM for the two cases............... 23

Figure 4.3a: A representation of the FEM mesh and the deformed geometry for the
deformable Dase CaSE.... ... 30

Figure 4.3b: A representation of the FEM mesh and the deformed geometry for the
110 [0 0 T2 LT o= L = 31

Figure 4.4: Distribution of displacements across the sphere..................coociviiiennnnn. 32
Figure 4.5: Mesh convergence for maximum displacement across the sphere..33.

Figure 5.1: Stress strain curve for a material exhibiting elasticqbkrfgastic
DENAVION. .. ... e e 33

Figure 5.2: Mean contact pressure predictions for the deformable base case....36.....

Figure 5.3: Comparison of radius of hemisphere by analytical equation

WItR FEM FTESUILS... ..o e e e e e e e e s 37
Figure 5.4: Pressure distribution across contact area..............ccocvvevevnvniennnnnn... 38
Figure 5.5: Nomenclature for the rigid base case...........coovie i iiiviiceeceeee e, 41

Figure 5.6: Mean contact pressure predictions for the rigid base case....................... 42
Figure 5.7: Effectiveness of constant................cceee i i 043
Figure 5.8: Pressure distribution across contact area.............cocevvveeeeereeeiieniennnnnn. 44

Vi



Figure 5.9: Comparison of predictions of JG, MM and current model
with FEM results for the deformable base case for small values of genetra........ 48

Figure 5.10: Comparison of predictions of JG, MM and current model with
FEM results for the deformable base case for large values of penetration..........9...... 4

Figure 5.11: Comparison of predictions of JG, MM and current model
with FEM results for the rigid base case for small values of penetration...........51.....

Figure 5.12: Comparison of predictions of JG, MM and current model
with FEM results for the rigid base case for large values of penetration...........52.....

Figure 5.13: Comparison of predictions of contact force according to MM and current
model with FEM results for the deformable base case with small loads..................... 55

Figure 5.14: Comparison of predictions of contact force according to JG, MM
and current model with FEM results for the deformable base case with heavy loads...... 56

Figure 5.15: Comparison of predictions of contact force according to MM and current
with FEM results for the rigid base case with small loads.............................57...

Figure 5.16: Comparison of predictions of contact force according to JG, MM and
current model with FEM results for the rigid base case with large loads............ 58

Figure 5.17: Comparison of experimental and simulation based model for phosphor
Dronze material. ... ..o 63

Figure 5.18: Comparison of experimental and simulation based model

for brass Material....... ..o 64
Figure 5.19: Variation of contact pressure with increasing contact radius................... 66
Figure 5.20: Von Mises stress distribution for 4% strain hardening in the sphere.......... 68
Figure 5.21: Von Mises stress distribution for 2% strain hardening in the sphere.......... 69
Figure 5.22: Von Mises stress distribution for 0% strain hardening in the sphere.......... 70

Figure 5.23: Variation of contact force with increasing contact forcexéoeasing

friction @CroSS CONtACE SUIMACE. .. ... .t e 71
Figure 5.24: Variation of contact force with increasing strain hardening................... 73
Figure 5.25: Variation of contact force with increasing friction.............................. 74

vii



Figure A.1: Underformed sphere with FEA mesh

viii



List of Tables

Table 4.1: Reaction force results from FEM for mesh convergence...

Table 5.1: Table showing the boundary conditions used for the study

Table 5.2: Material properties used in (a) Jackson and Green [3]

and (b) the current FEM analysis..........c.cooiiiiii i,

Table 5.3: Material properties and Microhardness measurements

as given bY Chaudhnri [2]... ..o e e e e e e e e e e



Nomenclature

A individual asperity contact area
A nominal contact area
a . . . . .
R ratio of contact radius to original radius predicted by Jackson and Green
JG
% ratio of contact radius to original radius predicted by current study

new
A1, A2 constantdased on material properties for deformable base case

As, A4 constantbased on material properties for rigid base case

Ac critical contact area at onset of plastic deformation

Ap area of contact during plastic deformation

A,  area of contact during elastic-plastic range given by CEB model

Ac contact area given by KE model

a radius of area of contact

B material dependent exponent

C critical yield stress coefficient

d separation of mean asperity heights

E modulus of elasticity

E’ equivalent modulus of elasticity for the bodies in contact
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contact force during fully plastic deformation
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contact pressure
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Gaussian distribution
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CHAPTER 1
INTRODUCTION

Flattening of spherical surfaces in contact with flat riginifaces is a problem
which has always received a great deal of attention, edpeitialegards to bearings,
tribological surfaces, impacting objects, and thermal and elagcitantact resistance.
Whenever a sphere is being compressed by a flat surfaes, lite classified by different
phases of deformation viz. elastic, elasto plastic and fully plastiormations. Bodies
undergoing elastic deformation can recover their original shapef lbiére is plastic
deformation the sphere will get permanently deformed.

To be able to evaluate the behavior of spheres in the elaste @ast fully
plastic regimes one needs to understand the basic elastic-plefstimations. The stress
strain relationship for a body under compression is shown in Fig. (1.8hd\en in the
Fig. (1.1), stress increases linearly with strain during sdedtbrmations as defined by
Hooke’s law. However, as deformations get larger, the relationshipebetatress and
strain is no longer linear. Point ‘A’ is defined as the proportiondilinit and upto this
point the curve follows Hooke’s law. The slope of the line till the priqaelity limit is
called the Young's modulus of elasticity. As more and moreena starts deforming,
plastic deformations grow and the curve departs from linearity. pAgnanent
deformations increase, the material becomes saturated withatiisieec which prevent

nucleation of new dislocations. This is manifested in the forma&ased resistance to



deformation and is called work hardening of the material. Maseaed many times
purposefully work hardened to increase their strength and resist@agest plastic
deformations by techniques such as cold rolling and cold drawing.raf@eof work
hardening is defined by the tangent modulus of the stress stiare beyond the
proportionality limit.

Although the theory of elasticity has been studied in detail apdeamaterial is
available, work related to understanding and explanation of plasticnu®fon of
spherical surfaces is relatively scarce. Existing moddls[4], [5], [6] and [7] explain
elastic and elasto plastic deformations and predict the contasupeeand contact area to
much accuracy and rely on the truncation method for explaining foldstic
deformations. The truncation method proposed by Abbott and Firestoneat@ that
under fully plastic conditions the contact area of an asperity iracowith a flat rigid
can be calculated by truncating the asperity tips as thedid translates an interference,

. The details of this model will be discussed later in thealitee survey chapter. The
limitations in using this approach will be explained in the following sections.

Flattening of a sphere occurs when it is compressed byid sigface. As
mentioned above, several studies related to this problem have been pul8ishme of
them discussed in the literature review (see chapter 3)lmrgCet al. [5], Kogut et al.
[9], Jackson and Green [3] and Zhao et al. [10]. These studies didasss and elasto
plastic deformations in detail but lack explanation when the coataatbecomes larger.
The present work investigates this flattening problem forrspddesurfaces and proposes
a model to better explain the evolution and progression of deformatiam delastic,

elasto plastic and fully plastic regimes.



Jackson and Green [3] defined a elasto plastic model to addredattdeirfg
problem. They defined a limit for the average contact pressurehvidivalid uptoa/R
=0.41, whera is the contact radius alis the original radius. According to them above
this value, the deformations become large and the model is not interdeach large
deformations. The current study makes an attempt to extend tkeodaand Green
model and make it applicable to the plastic deformations and telidall a/R =1.
Initially, the sphere under compressive load has been simulatehalyded without any
strain hardening and friction. However, some results to understandfebts ef strain
hardening and friction have been discussed later. To validate tebR&ed model the
results have been compared with existing experimental data [2]follbe&ing section
explains the motivation and objective of the research work. Based upogs#srch and
comparisons with existing real world data, results will beegaeesl and conclusions will

be made.
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Figure 1.1: Stress strain curve for a sphere under compression




CHAPTER 2

MOTIVATION AND OBJECTIVES

Motivation:
Two primary motivating factors for the present investigationflattening of
spheres by rigid flat surfaces are

1) Better understand evolution and progress of plastic deformation diattening
of spherical surfaces. Existing models poorly predict contact pteesrsuch as
contact force and area for large deformations.

2) For heavily loaded spherical contact, the effects of strain hagléawve scarcely
been documented. It is important to understand this hardening effeetsptare
under compression.

3) Existing models (see literature survey) do not compare resithisreal world
experimental data for heavily loaded spherical surfacebe@rétical description
of compression of spherical surfaces under heavy loading in the pfalbfic

regime is not available.



Objectives:
Based on these above factors, the chief objectives of the cuvestigation are
defined as to
1) Provide a comprehensive technical literature review on theriaty problem of
spherical surfaces.
2) Propose a finite element based model which explains and predicts the deformati
behavior of heavily loaded spheres.

3) Present and discuss the effects of strain hardening andriricti the current

study.



CHAPTER 3

LITERATURE REVIEW

The problem of compression of spherical surfaces by flat surfhass
received great attention and a significant amount of work has beeshadlielated to
this problem. When a sphere is compressed between flat sutfaeephere undergoes
different phases of deformation before complete failure. For low |tlaglsleformation is
mostly elastic. But as loads get larger, permanent deformatiobsierved which results
in plastic deformation. Once the sphere load passes a critic&, \&la point below the
surface the Von Mises stress exceeds the yield strength asict pleformation begins.
The fully plastic regime is defined as when the entire condaed is deforming
plastically.

Most previous spherical contact models consider the elastic oicglksstic
case, but do not study the fully plastic regime in depth [5], [9] and [3]. Chaudhr[Zt al
and Noyan at al. [1] have conducted experimental analysis of sgheoigtact in the
fully plastic regime, but no theoretical studies appear to haga benducted for the
flattening case. There is a great deal of work which also derssindentation in the
elastic, elasto-plastic and fully plastic regime [3], [1Z],and [12]. Indentation means
that the sphere is rigid and the flat surface deforms. Howdawercurrent work is

concerned only with flattening rather than indentation. In flattenimg,flat surface is



rigid and the sphere is deformable. Whenever a metal spleymmessed between flat
rigid surfaces, it undergoes elastic, elasto plastic and fullstipldeformation. In this
work we refer to this case as flattening. Jackson and Kogua[dd compared these two
cases and showed how their behaviors are very different. Thigeatfon is relevant in
many other areas such as forging and anisotropic conductive fiBhs[14], [15] and
[16]. The following sections are aimed to give a summary ofliteeature that is

available related to flattening of spherical surfaces.

Experimental work — Plastic compression of spheres

Two of the most noteworthy previous works on spherical flatteningerfully
plastic regime are the experiments conducted by Chaudhri e2]ahnfl Noyan [1].
Chaudbhri et al. [2] conducted experiments to characterize the behavior of sphdeesf ma
different materials and with different prior treatments (Woakdened or annealed). The
different materials used for the experiments were phosphor brégge Cu, 8% Sn),
brass (60% Cu and 40% Zn) and aluminum. The experimental setup uSkauuhri et
al. [2] included two different flat surfaces for compression gi land low loads. For low
loads, the spheres were compressed between sapphire plates backeflaby plate
which rested on a strong metal suppArtalibrated graticule in the viewing microscope
measured the diameter of contact area. For high loads (pda@$tianation) the sphere
was compressed between polished plane tool-steel platens as deadsspeed of 5 mm
min in a J.J modeled T5000 testing machine. The diameter of the aceatatt was
measured by an optical microscope after unloading. A detailed sisousf the
evolution and progress of deformation is presented. The effects afdtidni on fully

8



plastic contact have also been studied. The current work usesxgg@amental data to
compare to and validate the FEM results.

In Chaudhri et al. [2] the spheres, both undeformed and compressedeatevaexl and
measured for microhardness across the diameter of the seasiogsa Leitz miniload
hardness tester. Care was taken so that the indentations do rieteénteth each other.
The hardness measurements for the as-received phosphor bronze i faiterdoading
revealed that there was hardly any hardening left in the m@mlat€éhus, these can be
treated as elastic perfectly plastic materials in thEeements. The current work models
the sphere as elastic perfectly plastic initially and wile the experimental results to
validate the simulation results.

The experimental work by Noyan [1] focused mostly on compressioolidf s
spheres of various materials between parallel platens. Ddin@gexperiments, the
variation in contact area and area of the central plane of syynmath plastic
deformation was monitored. They defined two normalized parametersh wdre
independent of size and material of the sphere. This indicated ttatdiag to them,
plastic deformation of spheres was controlled by geometry. They rmapped the
microhardness throughout the sphere and predicted the distribution ahdeéor. Some
of the conclusions of these experiments are:

An increase in contact area is a function of the depth of papatmit the flat
rigid surface
The hardness distribution in the deformed spheres is symmetris dlceosentral

plane



As the compressive strain increases, the plastic deformation gsegreeeper
into the sphere.
The current work will confirm these findings with analysisfiofte element modeling
results for spheres without any strain hardening. But an attemphderstand strain

hardening effects during compression will also be made later.

Fully plastic contact models
Tabor [17] studied the contact between a sphere and a flat surfetss
compression loads. He showed from slip-line theory that the hardnesgeifectly

plastic spherical indentation should be about

H = 28xS, 0

The hardnesdi, here is defined as the average pressure during fully plasitaat or
indentation. These formulations are empirical and have been debneal \fariety of
materials like aluminum, copper and mild steel. According to THGr the relationship

between mean pressure and the yield stress changesHromlxS, to H =28xS,

during the transition from elasto plastic to fully plastic defations. Notice, the pressure
is addressed by and H. For fully plastic deformations, the mean contact pressure
(hardness) is also denoted Ibiy These relationships are derived from frictionless

compression experiments.

10



Although often attributed to the earlier work by Abbot and Firestoneb(]
probably actually derived by Greenwood and Tripp) [18], a model for doatea of a
fully plastic spherical contact was created by simplydating the sphere geometry with
the flat surface. Then the contact area can be approxintalelyated by truncating the
sphere tip as it translates an interferemgcgjithout deformationnto the flat surface. For

a hemisphere, this approximated fully plastic contact area is be given by

Ao = 2Rw @)

The contact force is then just Eq. (2) multiplied by the contasspire which in this case

is the hardness, since the contact is assumed to be fully plastic and is given by

F, = 20RuH 3)

Eq. (3) has been proven erroneous by many works [3], [7] and [11] for thet
indentation and flattening cases. This is because it is overplistic and neglects the
actual elastic-plastic contact mechanics that take placengdwontact. The major
criticism in addition to this is that it does not conserve the velwhthe material
deforming plastically.

Ishlinsky [31] also proved analytically by using the Harr-Karmaitergon of
plasticity that it is possible to determine the mean presiurespherical contact.

According to Islinsky [31] the value of the constant in the relabietween the mean

11



contact pressure and the yield strength is 2.84. This value of thiamowsas confirmed
by Johnson [32] who mention a value of 2.84 for the constant in their work. &ghere
Ashby [33] reported that the value of constant in their studyfoasd to be 3.3. This
discrepancy in the value of this constant was studied in deta@h aadge of 2.8 to 3.3

was observed to be reported in various texts referred to in the current study.

Elastic and Elasto plastic models
Chang et al. [5] developed a plastic contact model (CEB) that saepted with

the GW model explained later. The GW model is an elastic domadel. CEB model
used the volume conservation principle similar to the current stué@ppooximate a
elastic-plastic contact. Assumptions of the CEB model are,

A fixed relationship between yield strength and hardritéss2.84S,

The hemisphere behaves elastically below the criticalfereerce and fully

plastically above it.

Deformation is localized near the hemisphere’s tip.
According to the CEB model, the contact area and force fog >1, that is the elastic-

plastic range are given by

Aces = PR2w- w,) (a)

5(:EB = pR(ZW- Wc)KH ) )

12



where,

2

wo= PR
2E'

and K =0454+ 041
The limitations of the CEB model are that it assumes thal fredationship between
hardness and yield strength. This assumption was proved incorreatkisprdand Green
[3]. Also, the model has discontinuity ag.

Kogut and Etsion [9] performed an FEM analysis for the flattenasg of sphere
in contact with a flat rigid surface. Their work gives a very detail saledribution study

in the contact area. The contact force and area are defined for randeg, of

Forl [/ . 6,
P = P.103w/ w,"**° (6)
A, = A 093w/ w, " 7)

For6 [/ . 110,

Pe =P 140w/ w 1.263 (8)

A = A 094w/l w, 9)

The KE model similar to the CEB model assumes a fixed oalstip between hardness
and yield strengtid = 2.84S, Also, the model equations are discontinuous /at; =1
and 6. KE model only describes deformations till =110. Beyond this point the
truncation model [8] is assumed to define the fully plastic deformations.

13



Zhao et al. [10] worked on a elasto-plastic asperity microcontadel for rough
surfaces in contact. The model incorporates the transitional régimeelastic to fully
plastic deformations. The model like the CEB [5] and KE [9] mods$simes truncation
model for fully plastic deformations. Nuri [19] reported rough surfam#act parameters
by experimentally measuring them. Jackson and Green [4] compaiegredictions of
contact radius to show that the bulk material below the agsewtould undergo extreme
deformation. [20] gave analytical approximations for modeling rough surfacactent
Jackson and Green [3] find that Eq. (3) can overpredict the conteet fdhey propose a
FEM based elasto-plastic contact model for the contact betweefoamable sphere and
a flat rigid surface. Their work finds that the hardness orutlig plastic average contact
pressure actually varies with the deforming geometry of the spbleagwdri et al. [2] also
confirmed this experimentally. When the contact pressure is plagjaishst the contact
radius, a limit appears to emerge for the average pressuregdully plastic contact.
According to Jackson and Green [3], &R increases, the limiting average pressure to
yield strength ratio must change from Tabor’s [17] predicted vafla@proximately 2.84

to a theoretical value of 1 wha@sR. This has been depicted in the Fig. (3.1).

14
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P 284 28452 >1 —»1
S S S
E=0+ O<E <1 E:
R R R

Figure 3.1: Figure showing the assumption by Jackson and Green.
As the interference increases the contact geometry chandeshen the contact radius
a=R, the geometry is similar a cylinder in contact with a figidrsurface. For the case of
the cylinder in compression, the valueRd§, is theoretically equal to 1.
By fitting a function to their FEM results, Jackson and Green [@Yige the following

formula:

-07

P o841 exp- 0822 (10)
s, R
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Note that in Eq. (10 is used instead ¢ as the symbol for the average pressure during
elasto-plastic contact. This is used here to esipbahat theP predicted by Eq. (10)
varies with the deformation of the sphere, whetbastraditional value oH does not.

The FEM based model also provides predictions @ttintact force during elastic-plastic

contact as,
5 3 5
12 2 9
i: exp_lﬂ 1 +£ 1_exp_i1 1 (11)
F. 4 w, w, CS, 25 w, w,
where,

C =1.295exp(0.736v)

The ratio of pressure to the yield strength in EdL) is calculated using Eq. (10).
Quicksall et.al [21] also verified these results dowider range of material properties by
varyingE ( Young’s modulus) an8y (Yield Strength).

In another study, Jackson and Green [4] relateddhéact radius of the sphere to
the interference , of the flat rigid surface into the sphere. Theyrked on predictions of
the contact radius during elastic and elastic- tglasontact. Jackson and Green [4]

predicted the ratio of contact radius to the oagnmadius as
B/2
a_|(w w
R VR 19w, (12)

16



Sy
B = 014exp 23 =

Due to the limited range of FEM cases used to End(12), these models are only valid
for normalized contact radii of @R 0.412. The underlying assumption of the Jackson
and Green study is that the nominal radius of thieese under compression remains
constant. For large deformation like in the currstudy, the radius of the sphere can
either bulge outward or the area of the centrai@laf the sphere will increase.

Jackson, Marghitu and Green (JMG) [22] presenteiudy about numerically
predicting the coefficient of restitution for impgey spheres. The spheres were
considered to show elastic perfectly plastic betravihe work uses finite element
analysis results for static deformation of sphdrem Jackson and Green (JG) [3] and
equations of variation of kinetic energy to predie coefficient of restitution. The IMG
[22] model provided a more concise version of theation for the ratio of limiting
contact pressure to the yield strength than pravigdethe JG model. This equation was
also intended to increase the range of validityOt@/R 1 but is unconfirmed. It
accomplished this by finding an equation thatHé §G model whera/R 0.412 but also

whena/R =1, P/Sy =1

SE 284- 092 1- cosp%
Y (13)

17



Like the JG model, this elastic perfectly plastiodal assumes that the radius of the
sphere will remain constant during deformation \wh&not the case for heavy loading as
in the current study. The current study uses tlowalequation and modifies it to predict
the ratio of this limiting average pressure toyetd strength.

Most recently, Megalingam and Mayuram (MM) [23]ated a FEM based model
for predicting contact area and contact force danation of interference. The model
mainly compares its results with the Greenwood fiison model (statistical model)
[18] for contact load and area. The model is méansimulating asperity contact. The
results of a deterministic model are validated byaioping a statistical model, in which
the asperities are modeled as hemispherical ineshad without interaction with the
neighboring asperities (Greenwood Williamson stigaé model assumptions).

According to the model by MM, the area of contand @ontact load for various
phases of deformation can be calculated using aofseiquations given below. The
various phases of deformation viz. elastic, elatastic and fully plastic are addressed by

increasing values of the ratio of the interferetathe critical interference.

According to this model, for/ . 1.05, only elastic deformation needs to be comsile

because the volume of the plastically deformingemailt is very small. Above this value,

the contact area and load can be predicted usin¢lEfand (15),

18
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where Eq. (14) and (15) in [23] are claimed to bé&dvuntil infinity. The results of the

current work will be compared to the equations noer@d above (see Egs. (14 and 15)).
Shankar and Mayuram (SM) [24] worked on the samblpm. In the SM model,

a single asperity contact is considered based astielperfectly plastic contact to an

infinite non dimensional interference. The empirieationships proposed by this model

19



are of a similar nature to the Malingam Mayuram gidalt are valid only till a range

of£<450.
w.

Cc

Statistical model

The contact models proposed in the previous secttam be used to model the
contact of single bumps or asperities on the rosgffiaces in contact. Greenwood and
Williamson (GW) [18] in their work modeled roughrfaces as a set of independent
asperities of constant radius and variable heigigedding on the height distribution
function. According to the model, the nominal acfacontact and contact load can be

calculated using,

Ad)=hA Az- d)f(2)dz (16)

P(d)=#A, P(z- d)f(2)dz 17)

d

where, A, is the nominal or apparent area of contact/apdand (z) are the area of
contact, contact load and Gaussian height distabuunction for individual asperities.
Also, dis the distance between the mean of the summihtgig

The GW model then assumes that all the hemisphedsperities deform
elastically and are defined by the Hertz soluti®®]] The GW model is relatively simple

and has a few shortcomings. The model's dependehcgpectral moments on the
20



resolution of the surface measuring apparatus ampke length renders the accuracy of
this model highly dependent on the measuring devidso, this model assumes a
constant radius of curvature for all the asperitidgse original GW paper is for perfectly

elastic contact. Later researchers tried to imptibwy including elastic plastic asperity

models [4], [5] and [9]. The current study is fdagtic deformations of spheres and the
radius of the sphere will constantly change at y\Jead step because of the heavy
loading.

As discussed previously, lightly loaded spheriaatacts in the elastic and
elastic-plastic regimes have been given more abiennh comparison to those heavily
loaded in the fully plastic regime and have beeplared analytically as well as
experimentally. In contrast, work related to highmads and the fully plastic regime is
scarce. By using finite element analysis tools asidme conservation theory, an attempt
to study fully plastic contact has been made. Thalyais has also resulted in a new
model for spherical contact that appears to bedvaher a much larger range than any
previous model. The model helps in predicting thetact area, pressure and force during
heavily deformed contacts to a much greater acguhan previous models. Even though
the model assumes frictionless contact and no hargeit compares fairly well with the

experimental data from Chaudhri [2] and Noyan [1].
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CHAPTER 4
FINITE ELEMENT MODELING METHODOLOGY

| ntroduction

This chapter describes in detail the methodologgduo build the finite element
model. Two different models are built based onltbendary conditions across the sphere
base (explained in detail later in this chaptehe Two cases are called

1) Deformable base case
2) Rigid base case

The cases have been classified depending on wh#ibebase is allowed to
deform in the X-direction or not. Fig. (4.2) degidche boundary conditions across the
spherical surface. The sphere has been initiallgeteal as elastic-perfectly plastic but

later strain hardening is introduced by varying tdregent modulus of the material.

Boundary conditions

For the simple case of fully plastic sphericaltdaing contact there are two
important cases that have been considered in timentstudy, namely the 1) deformable
base case where the base cross-section of theesghable to deform in the radial
direction but is held stationary in the directioormal to the base as seen in Fig. (4.1(a))

and the 2) rigid base case where the base is fixal directions as shown in Fig.
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(4.1(b)). These two cases have been consideredisethey both are applicable to real
situations or problems.

Due to symmetry case 1 is more representativesphare being compressed
between two parallel surfaces. Since it does ne¢ lamy resistance perpendicular to the
axis of loading, it will deform radially outward ithat direction. This case can be
compared to deformation of a full sphere. The avdzere this case can be considered are
anisotropic conductive fills, studies involving ttkiening of particles. Case 2 might be
more realistic for the case of a spherical aspaityoump located on a larger, stiffer
surface. Asperity contact, nanodots are some oéthenples of the rigid base case.

These cases do not differ significantly for sma&fatmations &/R << 1), but
for large deformations these boundary conditioreob® more significane(R 1). For
lightly loaded contacts the high stresses aretisdlmostly to the region near the contact
and so the boundary conditions at the base areémmportant. As the deformation
increases and the stresses distribute through pgheres the boundary conditions will
cause the two cases to diverge. This observédllmws St. Venant's Principle*.

As a sphere is heavily loaded into the fully plastegime, the width or
diameter at the central plane of the sphere mawprbeclarger than the radius of the
undeformed original diameter of the sphere (see£&R). This is especially true for the
case of a sphere with a deformable base (see B@)% The increase in the deformed

radius effectively decreases the valua/tused in Egs. (10 and 13).

* According to the St.Venants principle, “the straithat can be produced in a body by
the application, to a small part of its surface aofystem of forces statically equivalent to
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zero force and zero couple, are of negligible magleg at distances which are large

compared with the linear dimensions of the paj26].

For smaller loadsak<R) the radius will not increase by a great amountasuthe loads
get larger the change in the radius plays a cruoial in accurate prediction of contact
pressure and contact forces, as will be seen imethdts. Therefore, it is very important
to include this increasing instantaneous radiugsng model used to describe plastic
deformations. The second case considered is thatsphere held rigid at its base (Case
2). For the rigid base case, a hemisphere isigitin a rigidly held base and the base
cannot increase in radius as was considered idg¢fegmable base case. However, as the
contact radius approaches the size of the fixe@ lbagius, the middle portion of the
hemisphere may actually bulge out (see Fig. 4.3(Bhis mechanism is similar to the
occurrence of barreling in highly loaded cylindgt$], [28], [29] and [30]. The difficulty

is determining the amount of bulging or wideningtttvill occur.

An FEM analysis has been presented to predictrbgspre and contact radius
between the flat rigid surface and the hemispherdully plastic deformations for the
deformable and rigid base cases. This contact sagin be substituted in Eq. (13) along
with the instantaneous radius calculated usingmelgonservation principle (see chapter

6) for more accurate predictions of contact pressur
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Simulation Methodology

To analyze the large scale deformation of a splua@ed against a rigid flat
surface, an axisymmetric finite element model hasnbcreated using the commercial
package Ansys™. The mesh used for solving thelgmolior the deformable base and
rigid base cases are shown in Fig. (4.3a and 48d)have been evaluated by mesh
convergence. The original meshing of the undeforepdeere is shown in the appendix in
Fig. (A.1). Mesh convergence analysis was perforfoedhaximum displacement across
the sphere for the last load step. Five differeesimdensities have been used for the
mesh convergence analysis. The five meshes c@&ig21, 706, 1493 and 1926. It has
been shown in Figs. (4.4) and (4.5) that the mesisisting 1493 elements gives accurate
predictions of maximum displacement and reactiond® (see Table 4.1) and hence the
same is used through out the analysis. The sefectiterion for the mesh convergence
was less than 0.1% difference between the predgftior increasing number of elements.
As can be seen in table 4.1 the error between thdighions of reaction force for
increasing number of elements becomes less tha¥bh @dly when there are 1493
elements. Therefore the maximum displacement aactiom force predictions converge
at 1493 elements and hence the same is used an#hgsis. Contact between the sphere
and the rigid surface is simulated using contaemeints (2-D 3nodel contact elements).
The elements used in the study are PLANE82 (2-Dd&:relement) to model the sphere
and CONTA172 and TARGE169 to model the contact betwthe surfaces. The contact
is simulated using Lagrange method in the normaction and penalty method in the
tangential direction of the surface. This is ansgwimetric problem and only a 2-D
guarter section of the entire sphere has been mdd&he flat rigid surface has been
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modeled as a line and the sphere as a quartee.cirgtially, the problem has been
simulated to be a frictionless contact problem tedsphere material has been modeled
as elastic-perfectly plastic and without straindesming. The Von Mises yield criteria has
been used to predict the initiation of plastic defation.

Since for fully plastic deformation the stresses amited by the yield
criteria, the stresses are fairly evenly distriduf@oughout the sphere when it is heavily
loaded. Hence the required mesh density is ngtest as that required in a typical FEM
analysis of elastic-plastic spherical contact unisver loads. A mesh convergence
analysis was also conducted in order to verify dlseuracy of the mesh and to save
computational time. As the force and the area aftaxt are the most important
parameters to be observed, the same were chostnsfonesh convergence analysis.

To solve the problem, displacements have beenexpphd contact forces are
calculated after the simulation. Another way ofvsnd this problem is by applying force
and then calculating the displacements. Accordmg@dckson and Green [3], the first
mentioned method is better for rapid convergendee $ame method is used in the
current study. The penetration or interference betwthe flat rigid and the sphere,
was increased in a stepwise fashion for every stap. Another goal of this study was to
show that the results are independent of the nadi@roperties and are dependent on the
deforming geometry of the sphere. To vary matgmraperties the yield strength values
were changed for each simulation. The values ussm@ W GPa, 0.5 GPa and 0.2 GPa.
The Young’s modulus of elasticity was kept constr200 GPa.

Strain hardening is an important effect to be aer®d when studying
compression of spheres. The current FEM model theesBilinear Isotropic Hardening
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(BISO) option to model the nonlinear behavior a# #pheres beyond the proportionality
limit. This option uses the Von Mises yield criterwith isotropic work hardening
assumption. The BISO approach is preferred to mtiehonlinearity since this is the
option mentioned to be used for large strain amalysccording to ANSYS
Documentation. Friction will also play a crucialleoin the predictions of contact
pressure. Results of FEM simulations for effectsnafeasing values of coefficient of
friction across the contact area on the predictiohgontact pressure have also been
presented. The strain hardening and friction resai¢ preliminary and need more detail

study.
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(a) Deformable Base

!

Figure 4.3(a): A representation of the FEM meshthedleformed geometry of loaded

spheres for the deformable base case
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(b) Rigid Base

Figure 4.3(b): A representation of the FEM mesh thieddeformed geometry of loaded

spheres for rigid base case
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Fig. 4.5: Mesh convergence for maximum displaceraertss the sphere

Table 4.1: Reaction force results from FEM for meshvergence

No. of elements Reaction forces % Error
86 3.821E+09
321 3.790E+09 0.817942
706 3.780E+09 0.26455
1493 3.758E+09 0.585418
1926 3.756E+09 0.053248
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CHAPTER 5
RESULTS AND DISCUSSION

Introduction

The problem of flattening of a sphere in contadhva flat rigid surface has
been modeled in the fashion as explained in theique chapter and the results are
presented in this chapter. The study also aimsutdyshe effects of strain hardening and
friction at the area of contact between the splage the flat surface. Three different
models have been built in order to simulate a sph¢mwith strain hardening 2) without
strain hardening and 3) without strain hardeningviith friction during compression. A
summary of the boundary conditions, strain hardgm@nd friction considerations in the
FEM analysis has been presented in table. (5.1).cBse 5.1, the model has been
simulated to have no strain hardening and no émctiluring loading. This is elastic
perfectly plastic behavior. The model has beent boil the two boundary conditions of
deformable and rigid base boundary conditions whiesbe been explained in detail in the
previous chapter. Case. 5.2 considers strain henglesfifect in the spheres under heavy
loading for the deformable base boundary conditémd case 5.3 considers friction in
the contact area for the rigid base boundary cmmdiThe chapter has been divided into
these three sections and initially the resultscfmse 5.1 for predictions of contact force
and area have been discussed in detail. Lateossati the chapter discuss the results for

case (5.2) and (5.3).
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Table 5.1: Table showing the boundary conditiorelifsr the study

Case Boundary condition Strain Hardening Friction

Deformable base
5.1 & NO NO
Rigid base case

5.2 Deformable base YES NO

5.3 Rigid base NO YES

5.1 Elastic perfectly plastic (No Strain hardening) results
The results of the described finite element model the frictionless
elastic-perfectly plastic behavior (shown in Fig.1)) are now presented and also used to
formulate closed-form models of heavily deformetiespral contact. Again, two cases
based on the boundary conditions have been coesider different constraints at the
base of the sphere namely,
Deformable base
Rigid base
The closed form models use the principle that dumtastic deformation,
volume is generally conserved (also used by Changale [5]) for formulation of
equations for the deformed radius of the spherethéncurrent study, finite element
models to determine the effective instantaneoususatlave been built for both the
deformable and rigid base case at each penetrstiggn These effective instantaneous
radius formulations can then be substituted forvdlee ofR in the Jackson, Green and

Marghitu model [22] in Eg. (13). This results incepsed form model providing more
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accurate predictions of the contact pressure fifuhlly plastic contact. The current study

also aims to extend the Jackson and Green modéb [gtedict the contact radius and

contact force for fully plastic contact.

In order to validate the simulation results withpexmental data, a
comparison with an existing experimental studynef same problem by Chaudri [2] was
also performed. The results were plotted againstekperimental data and a coefficient

of correlation was calculated to show how well tuerent model predictions reflect on

this data.

 E E — Young’s modulus

Stress,

S, — Yield strength

Strain,

Figure 5.1: Stress strain curve for a material leiihg elastic perfectly plastic behavior

36



5.1.a Theoretical calculation of the instantaneous radius

First, Case 1 (deformable base) for a hemisphdectalileform at the base in
the radial direction is considered (Fig. 4.1a).sTaliso corresponds to the case of a fully
compressed 3-D sphere. When the sphere is flaggesguwerely, the geometry shown in
Fig. (4.1a) will be used. Assuming mostly plastieformation occurs and that the
volume is conserved, the initial volume and theodeed volume can be equated and
solved to find the instantaneous radius of the mphédt is also assumed that the spherical
shape of the surfaces out of contact is always t@aed even when the radius increases
from an initial value oR to a deformed value d%;, except that it will be truncated at the
contact area. The deformed sphere can then beledotle have the geometry of a
hemisphere truncated by a flat surface. Theretfitwe volume of the initial hemisphere

before deformation is

3 (18)

Likewise, the volume of a truncated hemisphere shaged to model the deformed

sphere is

(19)

V, =pR*(R- w)- Z(R- wf
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Using the volume conservation principle, settifg equal toV, and solving forR,

results in

2R (R-w)f
R _\/3(R- W)+ 3 (20)

Eq. (20) can be substituted into Eq. (13) for theius,R. This will result in an
improved prediction of the fully plastic contactepsure, as shown in Fig. (5.2). Using
this modified radius in Eq. (13) results in a agerdifference between Eq. (13) and the
FEM results of 4.78% with a maximum of 8.76%. Tlere the spherical contact
equation provided by Jackson, Marghitu and Gre&h if2 Eq. (13) can be modified to
consider deformation larger thaiR = 0.41 by substituting Eq. (20) into Eq. (13). It
should be noted that the results for three diffesmts of material properties are shown.
The three different material properties used inahalysis ar&y/E= 0.005, 0.0025, and
0.0001. This shows that the current non-dimensipaiddn scheme causes the results to
collapse into one curve and the model works foresdvdifferent materials. Eq. (20)
predictions have been compared to the FEM resulisg. (5.3). The average difference
between the FEM and Eq. (20) predictions in abolflfor each material property and a
maximum of 2.3%.

Figure (5.4) shows the pressure distribution actibescontact area for increasing
penetration. As can be seen in the figure, theambrpressure towards the end of the

contact has a edge effect where the trend contsluseems to increase.
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For Case 2, the rigid base case, the current workows the barreling theory
from S.Malayapam et al. [27] who give an equatiesalibing the bulging of cylinders
under compression. Figure (5.5) shows the geommedmneenclature of the barreling rigid
base case. Note that it is assumed that even thbegtphere deforms outward to bulge,
the circular shape of the bulge is always mainthine

Just as with the deformable base case, the prencplolume conservation is
applied and the volume of the sphere before defiiomas set to the volume of the
compressed hemisphere (modeled by the barreliqgesttaown in Fig. 5.5). This results

in the following equation:

2P 2 4 422|(R-
“PR 12[2(2R2) +422|R- w)

(21)
Solving for the effective bulging radiug;,
R® a’
2 = (R- w) "5 (22)
For a better fit to the FEM data, Eq. (22) is mmdifwith a constant so that
R, =\/ % - a—; (23)
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Note that it is acceptable to include the constabecause in actuality the case of a
flattened sphere is not the same as a barrelingdgy in compression (although the final
shape is similar). Unlike the case of cylinderg tertical surfaces of the sphere have
some curvature. The constant has a value very tbageity ( = 0.76), also showing that
the overall inclusion of the constant only changles quantitative predictions. The
percentage error between the model (Eq. (13 anda2®) the FEM results is an average
of 2% and maximum of 4.6%. Fig. (5.6) shows thedteons of Eq. (13) using Eq. (23)
in comparison to the unmodified Eq. (13) and E).(1Clearly, Eq. (13) modified using
Eq. (23) agrees better with the FEM results than(E8) and Eq. (10). Fig. (5.7) shows
the effectiveness of the constant by comparing(E2). (without constant,) and Eq. (23)
(with constant, ) with the FEM results. The results are showntlioee different sets of
material properties §y/E = 0.005, 0.0025, and 0.0001). The deformed sphleri
geometry approaches the deformed cylindrical gelgeet more and more deformation
occurs and so the agreement between the theoreticethe conservation model Eq. (23)
and FEM improves with more deformation.

Hence, the changing radius for the two cases obpiere given by Eq. (20)
and Eqg. (23) have been used to modify Eq. (13)ubstiutingR; andR; in for R. It
appears that this is the first time that these ibglgand barreling effects have been
observed and included in models of spherical caontdéig. (5.8) shows the pressure

distribution across the contact area during thiel tigse case.
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5.1.b Contact radius

Jackson and Green [4] gave Eq. (12) for the predicdf the contact radius
during elasto plastic deformation. As mentionedviangsly these predictions are valid
only until a/R 0.41 The JG model did not consider the heavy loadihgpherical
surfaces. The current study aims to modify Eq. @&) make it applicable not only to
elasto-plastic but also to large fully plastic defations whera/R > 0.41

Jackson and Green [3] provided the FEM data usdualiid the model in their
work. Modifying Eq. (12) involves using both the Hata and the FEM results from
current study. This is accomplished by fitting @juation to the FEM results of Jackson
and Green [3] and the new FEM data acquired is thork that tracks surface
deformation farther in the fully plastic regime. ellequation provides a relationship
between the contact radius and penetration. Fodef@mable base case, the resulting fit

equations differ from all the FEM results by anrage of 5% and are given as,

2

a a w w
R R.HW Ry (24)
new JG c c
a
where = isgiven by Eq. (5) and
R JG
3148 1545
A =0.0826x% Ey - A, =0.3805x Ey
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The normalized contact radiua/R) predicted by Eq. (24) is compared Jackson
and Green [4] and FEM results in Fig (5.9) and@.The results have been divided into
2 figures for small and large deformations. Smafbdmnations are defined té/R =0.41
and large deformations extend @llR=1. Note that the material properties of both sets

viz. JG model and current study, of data are diygtifferent (see Table 5.2).

Table 5.2: Material properties used in (a) JackswhGreen [3] and (b) the current FEM

analysis.
Material Yield st(rBeFr)lgth, 9 Equivalent modéJFIJL;s of elasticity (E'
la 0.9115 228.2
1b 1 228.2
2a 0.5608 228.2
2b 0.5 228.2
3a 0.21 228.2
3b 0.2 228.2

Mayuram and Megalingam [23] also built a elastsitaspherical contact model,
essentially studying the same problem. They pro@dset of equations to predict the
contact area and contact force during elastict@lalsistic and fully plastic deformations.
These equations are valid till .= and are given previously in this work. In order to
compare the contact area given by the MM model,efpgations for contact area are
converted to give contact radius by substitutingoal area equation as shown here for

one of the penetration ranges defined by Eq. @<lting in,
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As shown in Figs. (5.9) and (5.10), the JG mo#s. (12) and MM model (EQ.
25) model compare well for very small valuesadR but as the contact radius increases,
the predictions progressively depart from the FESLUIts.

It appears that Eq. (25) is limited to smaller defations (see Fig 5.9) and as the
deformations get larger, the model does not seergtee with the FEM results (see
Fig.5.10). The current study (Eqg. 24) does not carm@ms well as the JG model Eq. (12)
to the FEM data at lower interferences (see Fi@)(®ut for large interferences Eq. (24)
compares much better with the current FEM resiilt® percentage difference between
the current and JG model for small interferencesnsaximum of 5.18% and a minimum
of 1%. The trend seems to be the same for althtee= material properties used for the

study.
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For the rigid base case (case 2), equations desgtitee ratio between the contact
radius and spherical radius are also fit to the Fiath of Jackson and Green [3] and the
current work using the same form given in Eq. (ZB)e resulting fit equations for the

rigid base case differ from the FEM data by an agerof 2.5% and are given as

2
a a w w
R R 2w M @)
new JG Wc Wc
where,
5,605 0.8939
A = 158393Ey . A, =00034 Ey

Figs. (5.11) and (5.12) show the predictions ofdteent model for the rigid base
case (Eg. 26) compared with the FEM, JG and MM rsodegain, for clarity the results
are presented for two different penetration lewel&igs. 5.11 (for small interferences)
and Fig. 5.12 (for large interferences). The ressitow trends similar to the deformable
base case, that, for small deformations, the Jaclksal Green [4] model (Eqg. (12))
compares the best with the FEM results. This ieetqul since the JG model is meant for
only elasto plastic deformations. But the mostriggéng observation is that the model
almost replicates the FEM data for small deforrmetioThe MM model [24] results
deviate significantly from the FEM at fairly smalalues of interference. From Fig.
(5.12), it is very evident that the current modsd)(26) predictions are the most accurate

when compared to the FEM results when large defoomsoccur.
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Figure 5.11: Comparison of predictions of Eq. (12p) and (26) with FEM results for

the rigid base case for small values of penetration
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Figure 5.12: Comparison of predictions of Eq. (12p) and (26) with FEM results for

the rigid base case for large values of penetration
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5.1.c Contact force

Jackson and Green [3] provide an equation for th@act force during elasto
plastic deformations of a sphere valid upal&®=0.41 (see Eq. (11)). The current work
aims to provide an extended model that is capabf@arucing accurate predictions of
the contact force by modifying Eq. (11) and extegdt into the fully plastic deformation
range. As deformations get larger, the first teénnEq. (11) approaches zero and the
second term involving the contact pressure becatoesnant in predicting the contact
force. The current study proposes that the comsetsure should be multiplied by the
contact area for accurate predictions of the cénfiace, resulting in the following

modified equation:

5
1

N w
©olu

2

N

= exp - 1- exp - — (27)

w w P _, a 1 w
- - + —_ -
M/C M/C FC Id:e R new 25 M/C

F
FC

Eg. (11) does not contain a term which can addi@ssncreasing contact area during
plastic deformations. Also, the value Bfin Eq. (11) is calculated using Eq. (10) which
has already been proven to give inaccurate predgtior fully plastic contact pressure
with large deformations.

The new equation proposed in Eq. (27) uses theaoeact area calculated from
Eg. (24) and (26) .The contact pressiarés calculated by modifying Eq. (13) for contact

pressure predictions.
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First the predictions of Eq. (27) for case 1 (tkéodmnable base) have been shown
in Figs. (5.13) and Fig. (5.14). Fig. (5.13) shdivws comparison in the range of the FEM
data provided by Jackson and Green (small defoomatip tca/R =0.4) and Fig. (5.14)
shows the comparison in the range of the new FEKM darge deformations up to
a/R =1) from the current work. Comparisons of the curnerdel with FEM results in
Figs (5.13) and (5.14) reveal that the current rhémlecontact force compares very well
for both small and large interferences. For snialérferences the current model
predictions and Eq. (11) are almost indiscernilsld 8o the predictions of Eq. (11) are
not shown. As the deformations get larger, as showkig. (5.14), the differences
between the FEM results, the current model, Eq), (Abhd Eq. (15) become very
profound. In fact, the differences between the FE8uIlts, the current model and the
MM model (Eq. (15)) appears to sometimes be sewddrs of magnitude. Overall the
current model performs well and better than thesiothodels at predicting the contact
force over the considered range of interferendas.dlso interesting to note that the new
equations capture some interesting trends in theefimterference curves shown in Fig.
5.14 for the rigid base case. There is a sligitteipe to the FEM results that the new

model equations also successfully capture.

* The current model is a combination of Equationsetheling upon the case considered.
For the Deformable base case, the current maglal combination of Eq. (13), (24) and
(27). And for the rigid base case it is a combioatof Eq. (13), (26) and (27).
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Figure 5.14: Comparison of predictions of contacté according to Eq. (11), (15) and

(27) with FEM results for the deformable base caitle heavy loads
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Next, the current model of contact force for thgidibase case using Eqns. (13,
26 and 27) is compared to the FEM data and thequsymodels given by JG (Eq. (11))
and MM (Eq. (15)) as shown in Figs. (5.15) and §%.1t is expected that the JG model
(Eq. (11)) works better for the rigid base becatisy have studied asperity contact
which is similar to the rigid base case. As seemfthe comparison with the FEM results
in Fig. (5.15) and (5.16), this is especially trwben deformations get largea/R
approaches 1). The observed trends for deformalaleigid base case in figs. (5.15) and
(5.16) are significantly different.

The plots also show that the model by MegalingachMayuram [23] (Eg. (15)),
significantly underpredicts the FEM results forgardeformations. As expected, the new

equations based on barreling and volume conservatcee well with the FEM results.
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5.1.d Comparisons with Existing Experimental Measurements

In order to validate the current model predictibmscontact pressure and contact
radius, the results were compared with experimeatatd measured by Chaudhri et al. [2].
They reported experimental results for the compoassf metal spheres of different
material properties (phosphor bronze, aluminumlanags) between two smooth parallel
platens. The deforming geometry of the spheresig dxperiment can be correlated to
the deformable base case (case 1) in the curremk.wdhe spheres used in the
experiment were brass, aluminum and phosphor bratzeith diameters of 3.175mm.
The current work compares the new model resultd wie results for the brass and
phosphor bronze spheres given by Chaudhri [2] siheeresultinga/R ratios for these
tests are in the range of the current study congpereluminum. The phosphor bronze
spheres were work hardened in an attempt to céese behavior to be like an elastic-
perfectly plastic material when compressed undexvyéoads. This was done to allow
for comparison with existing models which mostlg@ase the material to behave elastic-
perfectly plastically. The current model has aleerbmodeled intially as elastic-perfectly
plastic in the FEM simulations.

Measurements of Vickers hardness were provided 2jybefore and after
compression. A Leitz microhardness testing machkiite an accuracy of £ 4% and a
load of 50 gms-force (0.49 N) was used. This infation has not been mentioned in their
work, but a thorough literature survey of the equint used in the experiments was done
to find the accuracy of the results.

According to the hardness measurements followiata chas been given by
Chaudbhri [2].
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Table 5.3: Material properties and Microhardnesasueements as given by

Chaudbhri et al. [2].

Hardness (GPa)
Poisson’s | Elastic modulus,

Material Before After
Ratio, E (GPa)
compression| compression
Phosphor bronze 0.35 115 2.72 + 0.06 2.68 + 0.06
Brass 0.37 120 1.8 £ 0.08 2.22 +0.08

Using these values of hardness and standard vafuelastic modulus for brass
and phosphor bronze, a comparison is made betvegorédictions of the current model
for the deformable base case and the experimesdalts [2]. In dimensional form the

current model for the deformable base case is gagen

P= 284- 0921- cosp a R S (28)

R nele ’

where,R; is calculated using Eqg. (10/R)ew is calculated from Eq. (24), arRlis the
original radius of the sphere.

The value of the yield strength is not explicitlsopided by Chaudhri et al. [2].
Instead it has to be calculated using the Vickbeslness measurements given in table
5.3. Vicker's hardness measurements conducted By [31] and [33] revealed that the
value of the constant, is between 2.8 to 3.3These results have been found for

frictionless compression experiments (similar te tturrent study). The current work
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finds a value which H/Sy = 3.15 provides a trerabekt to the experimental results given
by Chaudhri [2] for phosphor bronze and brddse results have been presented in Figs.
(5.17) and (5.18). The data compares the predstminthe current model for three
different values of the constant(2.8, 3.15 and 3.3).

The experimental data given by Chaudhri et al. y{2ds extracted using
DataThief©. The predictions of the current modet.(28) are compared with this
extracted data and are shown in Figs. (5.17) ariB)5 The trends of the experiments
and model are qualitatively and quantitatively venyilar. The average error between
the model and the measurements is about 9% forbthss results and 7% for the
phosphor bronze. Considering that in reality thexesome hardening and friction
occurring in the tests that is not considered gy rttodel, this shows surprisingly good
agreement between them.

The R-squared value to determine the co-efficidntarelation between the
experimental data and the current model has alsp balculated. For the case whetie
3.15, the R-squared value for the correlation wasd to be 0.9851 and 0.9707 for
phosphor bronze and brass respectively. The R-sduaalue shows how closely the
trends of the results being compared are relatehtt other. The maximum R-squared
value is unity. As mentioned previously, the phasplbronze spheres were work
hardened to achieve newly elastic perfectly plasgbavior. For Phosphor bronze, the
percentage error between the experimental therdumedel is observed to be lower and
the R-squared number is higher compared to brdss.i§ because the current model is
simulated as elastic perfectly plastic sphere ahdsphor bronze shows a behavior
closest to this (see table. 5.3).
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This suggests that the new model presented in dnke @an be used effectively to
predict the behavior of heavily deformed spherspgeially when a material has little
strain hardening. Strain hardening and frictionakhadd complexity to the problem have
not been considered in this section but has bessused later. The study by Chaudhri
[2] also mentions the possibility of a barrelingahanism for predicting the deforming
geometry of spheres during compression. The custeny has studied this possibility in

detail and confirms these possibilities in the pyas sections.
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Figure 5.17: Comparison of experimental and sinnutabased model for phosphor

bronze material
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Figure 5.18: Comparison of experimental and sinnutabased model for brass material
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5.2 Effects of strain hardening

Strain hardening also known as work hardening aceunen metals undergo
plastic deformation. The material essentially gasgsstance to permanent deformations.
This happens because the material gets saturatdd diglocations which prevent
formation of any more dislocations. The currentdgthas to this point not considered
strain hardening in the sphere under compressiomeMer in reality there will be some
strain hardening in almost all metallic materials.

Therefore an attempt was made to model the sphadlerucompression while
including strain hardening effects. The currentkvoompares its simulation results with
the maps of microhardness distribution provided Noyyan [1] at various levels of
penetration and draws some interesting observateams$ conclusions. Noyan [1]
conducted experiments by compressing spheres aadumeg the hardness across the
sphere and mapped these microhardness values lioututhe depth of the sphere for
4%, 11%, 20% and 58% compressive macroscopic st@ompressive strains are the
difference between the initial (undeformed) andafioompressed height of the sphere.
The sphere is divided into zones depending on #reness measured. This gives an
exact idea of the birth and progression of strastriloution in the sphere. He also
concluded that the area of contact and the ardee atentre of the sphere are independent
of material if sphere and the size.

In the finite element analysis, strain hardenimgniroduced into the spheres by
varying the tangent modulus of the material. Theent work considers tangent modulus

of 1%, 2% and 4% hardening of the material. Discusswith other scholars in this field
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who have conducted experiments to study strain emand revealed that hardening
reaches values upto 4% during compression teses cdimpressive strain considered by
Noyan [1] reach a maximum value of 58%. The cursgody considers compressive
strains upto 50%. Hence, the Von Mises stressiloligion for the various levels of strain
hardening in the current study can be compared aiitiost all of the microhardness
plots given by Noyan [1]. The FEM predictions ohtact pressure at 0%, 1%, 2% and

4% tangent moduli strain hardening are given in Kig19).
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Figure 5.19: Variation of contact pressure withr@asing contact radius
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The inclusion of hardening appears to neglect #gangpetric effects on hardness during
spherical flattening (see [7],[2]). Essentiallyrdhening counteracts the trend of Eq. (13)
causing théH/S, to increase instead of decreasingédsincreases. This may be why this
phenomenon had not been experimentally recogniagidG@haudhri et al. [2].

In order to study the mapping of the stress digtrdn inside the sphere, the Von
Mises stress distribution at each load step is m&@md shown in Figs. (5.20) and (5.21)
and (5.22). The figures show Von Mises stressesofim material with three different
levels of strain hardening (4%, 2% and 0%). Thadsesuggest that the maximum Von
Mises stress zone for 4% and 2% strain hardenisgscan Figs. (5.20) and (5.21)
migrates from just below the contact surface todbeter of the sphere. These results
have been compared with the experimental work ptede by Noyan [1]. The
comparisons reveal similar trends in both the sidThe zone indicating maximum Von
Mises stress levels represented by the red zoRg® (5.20) and (5.21) can be compared
to the ‘C’ zone in the experimental work by Noydlj. [In this experimental work by
Noyan [1], the sphere is divide into zones basedthmmohardness measurements and ‘C’
zone is the hardest zone. As the compressive strareases the ‘C’ zone increases in
size and migrates to the center of the sphereairtol the current observations in Figs.

(5.20) and (5.21).
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Figure. 5.20: Von Mises stress distribution for 4&ain hardening in the sphere.
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Figure 5.21: Von Mises stress distribution for 29is hardening in the sphere.

12



Figure. 5.22: Von Mises stress distribution for 8&ain hardening in the sphere.
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5.3  The Effect of Friction

When a sphere is in contact with a flat rigid scefan reality there will be some
friction across the contact area. The study hasosidered the effects of friction on the
contact pressure and area until now. In this sedro attempt is made to understand the
effects of friction on the contact pressure andaFeiction is introduced in the contact
area in the finite element modeling code by varytimg coefficient of friction across the

contact area.
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Figure 5.23: Variation of contact force with incséay contact radius
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The results in Fig. (5.23) show that for increasoagfficients of friction across the
contact area, the variation in contact force ismath for light loading however as the
deformations get larger in Fig. (5.22), frictioraps an important role in predicting the
contact force. Comparisons with strain hardenirgylte suggest that friction does not
have a large effect relative to strain hardeninigoAincreasing coefficients of friction
affects the predictions in Fig. (5.23) only afééR = 0.5. This suggests that friction does
not play a major role until a/R becomes larger thamn

It is important to understand whether strain hanug or friction has a greater
effect on the contact force predictions. Figs. 45.2nd (5.25) show the effect of strain
hardening and friction on the rigid base case ptaulis. It can be seen from the
comparison that strain hardening starts affecting predictions from small values
contact radiuga/R=0.2)and friction plays a minor role compared to sti@ndening and
only affects the predictions for values of contaatius above 0.5. Hence friction plays a

secondary role to strain hardening in predictionsootact force.
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CHAPTER 6

CONCLUSIONS

This work presents an FEM based model to predietibhavior of spherical
surfaces being heavily compressed by flat rigidag@s. In the initial part of the study,
the material has been modeled as elastic-perf@tdstic to exclude strain hardening
effects and friction across the contact area. Liereffects of strain hardening have also
been studied. The model works well for both elgdéstic deformations and for fully
plastic deformations. Therefore a new model hanbgrovided which can model a
significantly larger range of deformation for sphbal contacts. The model is based on
the results of a FEM simulation of heavily loadgtierical contacts. The equations have
been formulated using volume conservation theorg #&arreling theory for the
compression of cylinders. Probably, the most inmgurtfinding is that the effect of
bulging or barreling must be considered in caltatpt/R The results show that when
deformations are small, that the Jackson Green hmoalg actually provide slightly more
accurate results, but as deformations get largectinrent model produces more accurate
results in comparison to the FEM results.

The results of the finite element based model halg® been verified with
experimental data for different materials like Israsd phosphor bronze provided by

Chaudhri et al. [2]. The FEM based model compaagprisingly well with these

78



previous results, and without the use of any aoldfi fitting parameters. There is some
difference in the results because there is soméeharg and friction occurring in the
experimental measurements. The current study eosfihe suggestions by Chaudhri [2]
that barreling of cylinders has similarities in belor to large deformations in spherical
contact. Also, through various literature sourceferred during current research, the
constant in the relationship between contact presand yield strength (see Eq. (29))
seems have values ranging from 2.84 to 3.3. Theewurstudy found out that for
phosphor bronze and brass the value that bestaggdi the experimental results is 3.15.
This work also studies the effect of strain hardgnin spherical contact with
severe deformation. Results of Von Mises stresgillision have been compared with
Noyan [1] and similar patterns of hardening arenthuAlso, friction will play a
secondary role in predictions of contact area aedsure. Some preliminary results have
been shown to understand the variation of contarcefwith increasing contact area for
various values of coefficient of friction. In that@ire the authors would like to further

investigate these additional effects.
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CHAPTER 7

RECOMMENDATIONS FOR FUTURE WORK

The current study presents the results of a FEMelnaad proposes a closed form
equation for predicting contact pressure and aoeaspheres compressed under heavy
loading. The results have been verified with reatld/experimental data and are in good
agreement. The comparisons reveal that the remdts better agreement with phosphor
bronze material than brass since this material fphor bronze) was work hardened
before compression to have elastic perfectly plastaterials. In contrast, the brass
spheres were not work hardened. In the simulations the spheres were modeled as
elastic perfectly plastic. Hence the current mademore applicable to this case than
actual spherical deformation in real applications.

An attempt was made to understand the effectsrainshardening and friction
during compression of spheres. Preliminary reshiétge been shown in the sections
above. More work is needed to fully describe theffects. Fig. (5.19) reveals that
friction will play a crucial role in predictions @ontact force and pressure as the contact

radius increases.
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APPENDIX

Finite element analysis Code
1. No Strain hardening considered —

IPREP7
CYL4,0,0,1,0,0,90

|*

ET,1,PLANE82
!*

KEYOPT,1,3,1
KEYOPT,1,5,0
KEYOPT,1,6,0

|*

|*

MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,200E9
MPDATA,PRXY,1,,0.3
TBDE,BISO,1,,,
TB,BISO,1,1,2,
TBTEMP,0
TBDATA,,,2E9,,,,
APLOT

------------------------------------------- Y1 ] ———

SMRT,1
MSHAPE,0,2D
MSHKEY,0

|*

CM,_Y,AREA
ASEL, , ,, 1
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y

|*

AMESH,_Y1
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|*

CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2

|*

K,5,2,1,0,
LSTR, 2, 5

|*

/REPLOT

|*

/ICOM,

CM, NODECM,NODE
CM, ELEMCM,ELEM
CM,_KPCM,KP
CM,_LINECM,LINE

CM, AREACM,AREA
CM,_VOLUCM,VOLU
IGSAV,CWZ,GSAV, TEMP
MP,MU, 1,0

MAT, 1
MP,EMIS,1,7.88860905221E-031
R,3

REAL,3

ET,2,169

ET,3,172

R,3,,1.0,0.1,0,
RMORE,,,1.0E20,0.0,1.0,
RMORE,0.0,0,1.0,,1.0,0.5
RMORE,0,1.0,1.0,0.0,,1.0
RMORE,10.0
KEYOPT,3,3,0
KEYOPT,3,4,2
KEYOPT,3,5,0
KEYOPT,3,7,0
KEYOPT,3,8,0
KEYOPT,3,9,0
KEYOPT,3,10,1
KEYOPT,3,11,0
KEYOPT,3,12,2
KEYOPT,3,2,3
KEYOPT,2,2,0
KEYOPT,2,3,0
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LSEL,S,, 4
CM,_TARGET,LINE
TYPE,2
LATT,-1,3,2,-1
TYPE,2
LMESH,ALL

----------------------------- GENERATE THE CONTACT SRFACE --

LSEL,S,, 1
CM,_CONTACT,LINE
TYPE,3

NSLL,S,1

ESLN,S,0

ESURF

*SET, REALID,3
ALLSEL

ESEL,ALL
ESEL,S,TYPE,,2
ESEL,ATYPE,,3
ESEL,R,REAL,,3
LSEL,S,REAL,,3
IPSYMB,ESYS,1
/PNUM,TYPE, 1
/NUM, 1

EPLOT

ESEL,ALL
ESEL,S,TYPE,,2
ESEL,ATYPE,,3
ESEL,R,REAL,,3
LSEL,S,REAL,,3
CMSEL,A,_ NODECM
CMDEL, NODECM
CMSEL,A,_ ELEMCM
CMDEL, ELEMCM
CMSEL,S, KPCM
CMDEL, KPCM
CMSEL,S,_LINECM
CMDEL,_LINECM
CMSEL,S, AREACM
CMDEL, AREACM
CMSEL,S, VOLUCM
CMDEL,_VOLUCM

85



IGRES,CWZ,GSAV
CMDEL,_TARGET
CMDEL,_CONTACT
/ICOM,

IMREP,EPLOT
/IREPLOT
FINISH
/SOL
FINISH
IPREP7
FINISH
/ISOL
FINISH
IPREP7
FINISH
/ISOL
FINISH
IPREP7
FINISH
/ISOL

FLST,2,79,1,0RDE,4
FITEM,2,1
FITEM,2,3
FITEM,2,204
FITEM,2,-280

|*

/GO
D,p51X,,,,,.,UY,,,,,
FLST,2,79,1,0RDE,4
FITEM,2,2
FITEM,2,-3
FITEM,2,127
FITEM,2,-203

|*

/GO
D,P51X, ,0,,, ,UX,,,,,
FLST,2,1,4,0RDE,1
FITEM,2,4

!*

1GO

DL,P51X, ,UY,-0.5
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-------------------------------------- TN 7Y 1S 1 2 = —

ANTYPE,0
NLGEOM,1
DELTIM,0.1,0,0
AUTOTS,0
TIME,100
OUTRES,ALL,-10
ISTATUS,SOLU
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Figure A.1: Undeformed sphere with FEA mesh
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