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Abstract 
 

 
This work uses a finite element analysis and analytical equations to model elastic-

plastic and fully plastic large deformations of spheres in contact with rigid flat surfaces. 

The case considered here is of a deformable sphere compressed by a rigid flat as opposed 

to the reverse case of a rigid spherical indenter penetrating a deformable surface.    Most 

previous work only deals with elastic or elasto-plastic deformation at much smaller 

deformations. Based on an extensive literature survey, the work most related to plastic 

deformations of spherical surfaces are the papers by Noyan [1] and Chaudhri [2]. Even 

existing finite element based models do not explain plastic deformations well. The 

current work theoretically explains the initiation and progression of plastic deformations 

throughout the sphere.  

A model for predicting contact area, pressure and force for plastic deformations 

has been proposed based on the FEM simulations and analytical equations derived from 

volume conservation. The analytical volume conservation approach is similar to that used 

to model the barreling of compressed cylinders. The most important aspect of the model 

is the resulting equation relating the average pressure during fully plastic deformation to 

the yield strength. The model improves the current state-of-the art by providing equations 

relating contact force, area, pressure and interference much further into the fully plastic 

regime and for much larger deformations than the previous works. The results have been 

compared with existing models and with experimental data. All the results have been 
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simulated for three different sets of material properties to provide a model that is 

applicable to a wide range of materials.  
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Nomenclature 

 

A     individual asperity contact area 

nA     nominal contact area 

JGR
a

�
�

�
�
�

�
   ratio of contact radius to original radius predicted by Jackson and Green  

newR
a

�
�

�
�
�

�    ratio of contact radius to original radius predicted by current study 

A1, A2     constants based on material properties for deformable base case 

A3, A4        constants based on material properties for rigid base case 
 

Ac     critical contact area at onset of plastic deformation 

AP     area of contact during plastic deformation 

CEBA     area of contact during elastic-plastic range given by CEB model 

KEA     contact area given by KE model  

a    radius of area of contact 

B    material dependent exponent 

C    critical yield stress coefficient 

d    separation of mean asperity heights 

E    modulus of elasticity 

E’    equivalent modulus of elasticity for the bodies in contact 



F    contact force 

Fc     critical contact force 

Fp     contact force during fully plastic deformation 

H    contact pressure during fully plastic deformation or hardness 

K     hardness factor 

P     contact pressure 

CEBP      contact force during elastic-plastic range given by CEB model 

KEP      contact force given by KE model  

R1       radius of curvature for deformed hemisphere 

R2       radius of curvature for bulged portion of hemisphere 

R     undeformed radius of the hemisphere 

Sy       yield strength 

V1       initial volume of hemisphere before deformation 

V2       volume of deformed geometry 

z     height of asperity measured from mean of asperity heights 

(z)     Gaussian distribution 

�      interference between hemisphere and flat rigid surface 

� c      critical interference between hemisphere and flat rigid surface 

�      barreling constant  

�      Poisson’s ratio  
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CHAPTER 1 

INTRODUCTION 

 

  Flattening of spherical surfaces in contact with flat rigid surfaces is a problem 

which has always received a great deal of attention, especially in regards to bearings, 

tribological surfaces, impacting objects, and thermal and electrical contact resistance.  

Whenever a sphere is being compressed by a flat surface, it can be classified by different 

phases of deformation viz. elastic, elasto plastic and fully plastic deformations. Bodies 

undergoing elastic deformation can recover their original shape but if there is plastic 

deformation the sphere will get permanently deformed.  

To be able to evaluate the behavior of spheres in the elasto plastic and fully 

plastic regimes one needs to understand the basic elastic-plastic deformations. The stress 

strain relationship for a body under compression is shown in Fig. (1.1). As shown in the 

Fig. (1.1), stress increases linearly with strain during small deformations as defined by 

Hooke’s law. However, as deformations get larger, the relationship between stress and 

strain is no longer linear. Point ‘A’ is defined as the proportionality limit and upto this 

point the curve follows Hooke’s law. The slope of the line till the proportionality limit is 

called the Young’s modulus of elasticity. As more and more material starts deforming, 

plastic deformations grow and the curve departs from linearity. As permanent 

deformations increase, the material becomes saturated with dislocations which prevent 

nucleation of new dislocations. This is manifested in the form of increased resistance to 
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deformation and is called work hardening of the material. Materials are many times 

purposefully work hardened to increase their strength and resistance against plastic 

deformations by techniques such as cold rolling and cold drawing. The rate of work 

hardening is defined by the tangent modulus of the stress strain curve beyond the 

proportionality limit. 

 Although the theory of elasticity has been studied in detail and ample material is 

available, work related to understanding and explanation of plastic deformation of 

spherical surfaces is relatively scarce. Existing models [3], [4], [5], [6] and [7] explain 

elastic and elasto plastic deformations and predict the contact pressure and contact area to 

much accuracy and rely on the truncation method for explaining fully plastic 

deformations. The truncation method proposed by Abbott and Firestone [8] states that 

under fully plastic conditions the contact area of an asperity in contact with a flat rigid 

can be calculated by truncating the asperity tips as the flat rigid translates an interference, 

� . The details of this model will be discussed later in the literature survey chapter. The 

limitations in using this approach will be explained in the following sections.   

Flattening of a sphere occurs when it is compressed by a rigid surface. As 

mentioned above, several studies related to this problem have been published. Some of 

them discussed in the literature review (see chapter 3) are Chang et al. [5], Kogut et al. 

[9], Jackson and Green [3] and Zhao et al. [10]. These studies discuss elastic and elasto 

plastic deformations in detail but lack explanation when the contact area becomes larger. 

The present work investigates this flattening problem for spherical surfaces and proposes 

a model to better explain the evolution and progression of deformation during elastic, 

elasto plastic and fully plastic regimes.  
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 Jackson and Green [3] defined a elasto plastic model to address the flattening 

problem. They defined a limit for the average contact pressure which is valid upto a/R 

=0.41, where a is the contact radius and R is the original radius. According to them above 

this value, the deformations become large and the model is not intended for such large 

deformations. The current study makes an attempt to extend the Jackson and Green 

model and make it applicable to the plastic deformations and validate it till a/R =1. 

Initially, the sphere under compressive load has been simulated and analyzed without any 

strain hardening and friction. However, some results to understand the effects of strain 

hardening and friction have been discussed later. To validate the FEM based model the 

results have been compared with existing experimental data [2]. The following section 

explains the motivation and objective of the research work. Based upon the research and 

comparisons with existing real world data, results will be presented and conclusions will 

be made.  

 

 

 

 

 

 

 

 

 

 



  4 

 

 

 

 

 

EtEy

Strain, �

S
tr

es
s,

 �

Et - Tangent modulus

Ey – Young’s modulus

 

Figure 1.1: Stress strain curve for a sphere under compression 
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CHAPTER 2 

MOTIVATION AND OBJECTIVES 

 
 

Motivation:  

Two primary motivating factors for the present investigation on flattening of 

spheres by rigid flat surfaces are  

1) Better understand evolution and progress of plastic deformation during flattening 

of spherical surfaces. Existing models poorly predict contact parameters such as 

contact force and area for large deformations.  

2) For heavily loaded spherical contact, the effects of strain hardening have scarcely 

been documented. It is important to understand this hardening effect in the sphere 

under compression.  

3) Existing models (see literature survey) do not compare results with real world 

experimental data for heavily loaded spherical surfaces. A theoretical description 

of compression of spherical surfaces under heavy loading in the fully plastic 

regime is not available.  
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Objectives: 

Based on these above factors, the chief objectives of the current investigation are 

defined as to  

1) Provide a comprehensive technical literature review on the flattening problem of 

spherical surfaces. 

2) Propose a finite element based model which explains and predicts the deformation 

behavior of heavily loaded spheres.   

3) Present and discuss the effects of strain hardening and friction in the current 

study. 
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CHAPTER 3 

LITERATURE REVIEW  

 

The problem of compression of spherical surfaces by flat surfaces has 

received great attention and a significant amount of work has been published related to 

this problem. When a sphere is compressed between flat surfaces, the sphere undergoes 

different phases of deformation before complete failure. For low loads, the deformation is 

mostly elastic. But as loads get larger, permanent deformation is observed which results 

in plastic deformation. Once the sphere load passes a critical value, at a point below the 

surface the Von Mises stress exceeds the yield strength and plastic deformation begins. 

The fully plastic regime is defined as when the entire contact area is deforming 

plastically.  

Most previous spherical contact models consider the elastic or elastic-plastic 

case, but do not study the fully plastic regime in depth [5], [9] and [3].  Chaudhri et al. [2]  

and Noyan at al. [1] have conducted experimental analysis of spherical contact in the 

fully plastic regime, but no theoretical studies appear to have been conducted for the 

flattening case. There is a great deal of work which also considers indentation in the 

elastic, elasto-plastic and fully plastic regime [3], [11], [7] and [12].  Indentation means 

that the sphere is rigid and the flat surface deforms.  However, the current work is 

concerned only with flattening rather than indentation. In flattening, the flat surface is 
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rigid and the sphere is deformable.  Whenever a metal sphere is compressed between flat 

rigid surfaces, it undergoes elastic, elasto plastic and fully plastic deformation. In this 

work we refer to this case as flattening.  Jackson and Kogut [11] also compared these two 

cases and showed how their behaviors are very different. This configuration is relevant in 

many other areas such as forging and anisotropic conductive films [13], [14], [15] and 

[16]. The following sections are aimed to give a summary of the literature that is 

available related to flattening of spherical surfaces. 

 

Experimental work – Plastic compression of spheres  

Two of the most noteworthy previous works on spherical flattening in the fully 

plastic regime are the experiments conducted by Chaudhri et al. [2] and Noyan [1].  

Chaudhri et al. [2] conducted experiments to characterize the behavior of spheres made of 

different materials and with different prior treatments (work hardened or annealed). The 

different materials used for the experiments were phosphor bronze (92% Cu, 8% Sn), 

brass (60% Cu and 40% Zn) and aluminum. The experimental setup used by Chaudhri et 

al. [2] included two different flat surfaces for compression at high and low loads. For low 

loads, the spheres were compressed between sapphire plates backed by a glass plate 

which rested on a strong metal support. A calibrated graticule in the viewing microscope 

measured the diameter of contact area.  For high loads (plastic deformation) the sphere 

was compressed between polished plane tool-steel platens at a cross head speed of 5 mm 

min-1 in a J.J modeled T5000 testing machine. The diameter of the area of contact was 

measured by an optical microscope after unloading. A detailed discussion of the 

evolution and progress of deformation is presented.  The effects of lubrication on fully 
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plastic contact have also been studied. The current work uses this experimental data to 

compare to and validate the FEM results.  

In Chaudhri et al. [2] the spheres, both undeformed and compressed were sectioned and 

measured for microhardness across the diameter of the sections using a Leitz miniload 

hardness tester. Care was taken so that the indentations do not interfere with each other.   

The hardness measurements for the as-received phosphor bronze before and after loading 

revealed that there was hardly any hardening left in the material. Thus, these can be 

treated as elastic perfectly plastic materials in the experiments. The current work models 

the sphere as elastic perfectly plastic initially and will use the experimental results to 

validate the simulation results. 

The experimental work by Noyan [1] focused mostly on compression of solid 

spheres of various materials between parallel platens. During the experiments, the 

variation in contact area and area of the central plane of symmetry with plastic 

deformation was monitored. They defined two normalized parameters which are 

independent of size and material of the sphere. This indicated that according to them, 

plastic deformation of spheres was controlled by geometry. They also mapped the 

microhardness throughout the sphere and predicted the distribution of deformation. Some 

of the conclusions of these experiments are: 

�  An increase in contact area is a function of the depth of penetration of the flat 

rigid surface 

�  The hardness distribution in the deformed spheres is symmetric across the central 

plane  
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�  As the compressive strain increases, the plastic deformation progresses deeper 

into the sphere. 

The current work will confirm these findings with analysis of finite element modeling 

results for spheres without any strain hardening. But an attempt to understand strain 

hardening effects during compression will also be made later.  

 

Fully plastic contact models  

Tabor [17] studied the contact between a sphere and a flat surface under 

compression loads. He showed from slip-line theory that the hardness of a perfectly 

plastic spherical indentation should be about 

 

ySH ×= 8.2
               (1)  

 

The hardness, H, here is defined as the average pressure during fully plastic contact or 

indentation. These formulations are empirical and have been defined for a variety of 

materials like aluminum, copper and mild steel. According to Tabor [17], the relationship 

between mean pressure and the yield stress changes from ySP ×= 1.1  to ySH ×= 8.2  

during the transition from elasto plastic to fully plastic deformations. Notice, the pressure 

is addressed by P and H. For fully plastic deformations, the mean contact pressure 

(hardness) is also denoted by H. These relationships are derived from frictionless 

compression experiments.  
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Although often attributed to the earlier work by Abbot and Firestone [8] but 

probably actually derived by Greenwood and Tripp) [18], a model for contact area of a 

fully plastic spherical contact was created by simply truncating the sphere geometry with 

the flat surface.  Then the contact area can be approximately calculated by truncating the 

sphere tip as it translates an interference,w, without deformation into the flat surface. For 

a hemisphere, this approximated fully plastic contact area is be given by 

 

wpRAP 2=                (2) 

 

The contact force is then just Eq. (2) multiplied by the contact pressure which in this case 

is the hardness, since the contact is assumed to be fully plastic and is given by, 

 

HRFp wp2=                 (3) 

 

Eq. (3) has been proven erroneous by many works [3], [7] and [11] for both the 

indentation and flattening cases.  This is because it is overly simplistic and neglects the 

actual elastic-plastic contact mechanics that take place during contact. The major 

criticism in addition to this is that it does not conserve the volume of the material 

deforming plastically. 

Ishlinsky [31] also proved analytically by using the Harr-Karman criterion of 

plasticity that it is possible to determine the mean pressure for spherical contact. 

According to Islinsky [31] the value of the constant in the relation between the mean 
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contact pressure and the yield strength is 2.84. This value of the constant was confirmed 

by Johnson [32] who mention a value of 2.84 for the constant in their work. Whereas, 

Ashby [33] reported that the value of constant in their study was found to be 3.3. This 

discrepancy in the value of this constant was studied in detail and a range of 2.8 to 3.3 

was observed to be reported in various texts referred to in the current study.
 

 

Elastic and Elasto plastic models 

Chang et al. [5] developed a plastic contact model (CEB) that supplemented with 

the GW model explained later. The GW model is an elastic contact model. CEB model 

used the volume conservation principle similar to the current study to approximate a 

elastic-plastic contact. Assumptions of the CEB model are, 

�  A fixed relationship between yield strength and hardness, H = 2.84Sy. 

�  The hemisphere behaves elastically below the critical interference � c and fully 

plastically above it. 

�  Deformation is localized near the hemisphere’s tip. 

According to the CEB model, the contact area and force for � /� c >1, that is the elastic-

plastic range are given by  

 

 ( )cCEB RA wwp -= 2               (4) 

        

 ( )KHRP cCEB )2 wwp -=               (5) 
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where,    

R
E

KH
c

2

'2
�
�

�
�
�

�=
p

w      and     u41.0454.0 +=K  

 

The limitations of the CEB model are that it assumes the fixed relationship between 

hardness and yield strength. This assumption was proved incorrect by Jackson and Green 

[3]. Also, the model has discontinuity at � c.  

Kogut and Etsion [9] performed an FEM analysis for the flattening case of sphere 

in contact with a flat rigid surface. Their work gives a very detail stress distribution study 

in the contact area. The contact force and area are defined for ranges of � /� c.  

 

 For 1�  � /� c � 6, 

   = 425.1/03.1 ccKE PP ww            (6) 

 = 136.1/93.0 ccKE AA ww            (7)   

For 6�  � /� c � 110, 

 = 263.1/40.1 ccKE PP ww            (8) 

 = 146.1/94.0 ccKE AA ww            (9) 

 

The KE model similar to the CEB model assumes a fixed relationship between hardness 

and yield strength H = 2.84Sy. Also, the model equations are discontinuous at � /� c =1 

and 6. KE model only describes deformations till � /� c=110. Beyond this point the 

truncation model [8] is assumed to define the fully plastic deformations.  
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 Zhao et al. [10] worked on a elasto-plastic asperity microcontact model for rough 

surfaces in contact. The model incorporates the transitional regime from elastic to fully 

plastic deformations. The model like the CEB [5] and KE [9] models assumes truncation 

model for fully plastic deformations. Nuri [19] reported rough surface contact parameters 

by experimentally measuring them. Jackson and Green [4] compared their predictions of 

contact radius to show that the bulk material below the asperities would undergo extreme 

deformation. [20] gave analytical approximations for modeling rough surface contacts. 

Jackson and Green [3] find that Eq. (3) can overpredict the contact force.  They propose a 

FEM based elasto-plastic contact model for the contact between a deformable sphere and 

a flat rigid surface. Their work finds that the hardness or the fully plastic average contact 

pressure actually varies with the deforming geometry of the sphere. Chaudri et al. [2] also 

confirmed this experimentally. When the contact pressure is plotted against the contact 

radius, a limit appears to emerge for the average pressure during fully plastic contact. 

According to Jackson and Green [3], as a/R increases, the limiting average pressure to 

yield strength ratio must change from Tabor’s [17] predicted value of approximately 2.84 

to a theoretical value of 1 when a=R.  This has been depicted in the Fig. (3.1).  
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Figure 3.1: Figure showing the assumption by Jackson and Green. 

As the interference increases the contact geometry changes and when the contact radius 

a=R, the geometry is similar a cylinder in contact with a flat rigid surface. For the case of 

the cylinder in compression, the value of P/Sy is theoretically equal to 1. 

By fitting a function to their FEM results, Jackson and Green [3] provide the following 

formula: 
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Note that in Eq. (10) P is used instead of H as the symbol for the average pressure during 

elasto-plastic contact.  This is used here to emphasize that the P predicted by Eq. (10) 

varies with the deformation of the sphere, whereas the traditional value of H does not. 

The FEM based model also provides predictions of the contact force during elastic-plastic 

contact as, 
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where,  

( )u736.0exp295.1=C  

 

The ratio of pressure to the yield strength in Eq. (11) is calculated using Eq. (10). 

Quicksall et.al [21] also verified these results for a wider range of material properties by 

varying E ( Young’s modulus) and Sy (Yield Strength). 

In another study, Jackson and Green [4] related the contact radius of the sphere to 

the interference � , of the flat rigid surface into the sphere. They worked on predictions of 

the contact radius during elastic and elastic- plastic contact. Jackson and Green [4] 

predicted the ratio of contact radius to the original radius as 

 

2/

9.1

B

cRR
a

��
�

�
��
�

�
=

w
ww

                                                                                   (12) 

where, 
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�
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23exp14.0

E
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Due to the limited range of FEM cases used to find Eq. (12), these models are only valid 

for normalized contact radii of 0<a/R� 0.412. The underlying assumption of the Jackson 

and Green study is that the nominal radius of the sphere under compression remains 

constant. For large deformation like in the current study, the radius of the sphere can 

either bulge outward or the area of the central plane of the sphere will increase.  

Jackson, Marghitu and Green (JMG) [22] presented a study about numerically 

predicting the coefficient of restitution for impacting spheres. The spheres were 

considered to show elastic perfectly plastic behavior. The work uses finite element 

analysis results for static deformation of spheres from Jackson and Green (JG) [3] and 

equations of variation of kinetic energy to predict the coefficient of restitution. The JMG 

[22] model provided a more concise version of the equation for the ratio of limiting 

contact pressure to the yield strength than provided by the JG model. This equation was 

also intended to increase the range of validity to 0<a/R� 1 but is unconfirmed. It 

accomplished this by finding an equation that fit the JG model where a/R�  0.412 but also 

when a/R =1, P/Sy =1 
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Like the JG model, this elastic perfectly plastic model assumes that the radius of the 

sphere will remain constant during deformation which is not the case for heavy loading as 

in the current study. The current study uses the above equation and modifies it to predict 

the ratio of this limiting average pressure to the yield strength.  

Most recently, Megalingam and Mayuram (MM) [23] created a FEM based model 

for predicting contact area and contact force as a function of interference. The model 

mainly compares its results with the Greenwood Williamson model (statistical model) 

[18] for contact load and area. The model is meant for simulating asperity contact. The 

results of a deterministic model are validated by developing a statistical model, in which 

the asperities are modeled as hemispherical in shape and without interaction with the 

neighboring asperities (Greenwood Williamson statistical model assumptions).  

According to the model by MM, the area of contact and contact load for various 

phases of deformation can be calculated using a set of equations given below. The 

various phases of deformation viz. elastic, elasto plastic and fully plastic are addressed by 

increasing values of the ratio of the interference to the critical interference. 

 

According to this model, for � /� c �  1.05, only elastic deformation needs to be considered 

because the volume of the plastically deforming material is very small. Above this value, 

the contact area and load can be predicted using Eq. (14) and (15), 
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where Eq. (14) and (15) in [23] are claimed to be valid until infinity. The results of the 

current work will be compared to the equations mentioned above (see Eqs. (14 and 15)). 

Shankar and Mayuram (SM) [24] worked on the same problem. In the SM model, 

a single asperity contact is considered based on elastic perfectly plastic contact to an 

infinite non dimensional interference. The empirical relationships proposed by this model 

(15) 

(14) 
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are of a similar nature to the Malingam Mayuram model but are valid only till a range 

of 450<
cw

w
.   

 

Statistical model  

The contact models proposed in the previous sections can be used to model the 

contact of single bumps or asperities on the rough surfaces in contact. Greenwood and 

Williamson (GW) [18] in their work modeled rough surfaces as a set of independent 

asperities of constant radius and variable height depending on the height distribution 

function. According to the model, the nominal area of contact and contact load can be 

calculated using, 

 

( ) ( ) dzzdzAAdA
d

n )(fh -= 

¥

                      (16) 

( ) ( ) dzzdzPAdP
d

n )(fh -= 

¥

                     (17) 

 

where, An is the nominal or apparent area of contact andA , P and � (z) are the area of 

contact, contact load and Gaussian height distribution function for individual asperities. 

Also, d is the distance between the mean of the summit heights. 

The GW model then assumes that all the hemispherical asperities deform 

elastically and are defined by the Hertz solution [25]. The GW model is relatively simple 

and has a few shortcomings. The model’s dependence of spectral moments on the 
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resolution of the surface measuring apparatus and sample length renders the accuracy of 

this model highly dependent on the measuring device. Also, this model assumes a 

constant radius of curvature for all the asperities. The original GW paper is for perfectly 

elastic contact. Later researchers tried to improve it by including elastic plastic asperity 

models [4], [5] and [9]. The current study is for plastic deformations of spheres and the 

radius of the sphere will constantly change at every load step because of the heavy 

loading. 

As discussed previously, lightly loaded spherical contacts in the elastic and 

elastic-plastic regimes have been given more attention in comparison to those heavily 

loaded in the fully plastic regime and have been explained analytically as well as 

experimentally. In contrast, work related to higher loads and the fully plastic regime is 

scarce. By using finite element analysis tools and volume conservation theory, an attempt 

to study fully plastic contact has been made. The analysis has also resulted in a new 

model for spherical contact that appears to be valid over a much larger range than any 

previous model. The model helps in predicting the contact area, pressure and force during 

heavily deformed contacts to a much greater accuracy than previous models. Even though 

the model assumes frictionless contact and no hardening, it compares fairly well with the 

experimental data from Chaudhri [2] and Noyan [1]. 
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CHAPTER 4 

FINITE ELEMENT MODELING METHODOLOGY 
 
 

Introduction  

 This chapter describes in detail the methodology used to build the finite element 

model. Two different models are built based on the boundary conditions across the sphere 

base (explained in detail later in this chapter). The two cases are called  

1) Deformable base case 

2) Rigid base case 

The cases have been classified depending on whether the base is allowed to 

deform in the X-direction or not. Fig. (4.2) depicts the boundary conditions across the 

spherical surface. The sphere has been initially modeled as elastic-perfectly plastic but 

later strain hardening is introduced by varying the tangent modulus of the material.  

 

Boundary conditions 

For the simple case of fully plastic spherical flattening contact there are two 

important cases that have been considered in the current study, namely the 1) deformable 

base case where the base cross-section of the sphere is able to deform in the radial 

direction but is held stationary in the direction normal to the base as seen in Fig. (4.1(a)) 

and the 2) rigid base case where the base is fixed in all directions as shown in Fig. 
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(4.1(b)). These two cases have been considered because they both are applicable to real 

situations or problems.  

Due to symmetry case 1 is more representative of a sphere being compressed 

between two parallel surfaces. Since it does not have any resistance perpendicular to the 

axis of loading, it will deform radially outward in that direction. This case can be 

compared to deformation of a full sphere. The areas where this case can be considered are 

anisotropic conductive fills, studies involving flattening of particles. Case 2 might be 

more realistic for the case of a spherical asperity or bump located on a larger, stiffer 

surface. Asperity contact, nanodots are some of the examples of the rigid base case.  

These cases do not differ significantly for small deformations (a/R << 1), but 

for large deformations these boundary conditions become more significant (a/R �  1).  For 

lightly loaded contacts the high stresses are isolated mostly to the region near the contact 

and so the boundary conditions at the base are not important.  As the deformation 

increases and the stresses distribute through the sphere, the boundary conditions will 

cause the two cases to diverge.    This observation follows St. Venant’s Principle*.   

As a sphere is heavily loaded into the fully plastic regime, the width or 

diameter at the central plane of the sphere may become larger than the radius of the 

undeformed original diameter of the sphere (see Fig. 4.3).  This is especially true for the 

case of a sphere with a deformable base (see Fig. 4.3(a)).  The increase in the deformed 

radius effectively decreases the value of a/R used in Eqs. (10 and 13).   

 

* According to the St.Venants principle, “the strains that can be produced in a body by 

the application, to a small part of its surface, of a system of forces statically equivalent to 
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zero force and zero couple, are of negligible magnitude at distances which are large 

compared with the linear dimensions of the part.” [26]. 

 

For smaller loads (a<<R) the radius will not increase by a great amount but as the loads 

get larger the change in the radius plays a crucial role in accurate prediction of contact 

pressure and contact forces, as will be seen in the results. Therefore, it is very important 

to include this increasing instantaneous radius in any model used to describe plastic 

deformations. The second case considered is that of a sphere held rigid at its base (Case 

2).  For the rigid base case, a hemisphere is sitting on a rigidly held base and the base 

cannot increase in radius as was considered in the deformable base case. However, as the 

contact radius approaches the size of the fixed base radius, the middle portion of the 

hemisphere may actually bulge out (see Fig. 4.3(b)).  This mechanism is similar to the 

occurrence of barreling in highly loaded cylinders [27], [28], [29] and [30]. The difficulty 

is determining the amount of bulging or widening that will occur. 

An FEM analysis has been presented to predict the pressure and contact radius 

between the flat rigid surface and the hemisphere for fully plastic deformations for the 

deformable and rigid base cases. This contact radius can be substituted in Eq. (13) along 

with the instantaneous radius calculated using volume conservation principle (see chapter 

6) for more accurate predictions of contact pressure. 
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Figure 4.1: The two boundary conditions used to model the sphere 
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(a) Deformable Base 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Rigid Base 

 
Figure 4.2: Schematic showing the boundary conditions used n the FEM for the two 

different cases: deformable base (case 1) and rigid base contact (case 2). 
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Simulation Methodology 

To analyze the large scale deformation of a sphere loaded against a rigid flat 

surface, an axisymmetric finite element model has been created using the commercial 

package Ansys™.  The mesh used for solving the problem for the deformable base and 

rigid base cases are shown in Fig. (4.3a and 4.3b) and have been evaluated by mesh 

convergence. The original meshing of the undeformed sphere is shown in the appendix in 

Fig. (A.1). Mesh convergence analysis was performed for maximum displacement across 

the sphere for the last load step. Five different mesh densities have been used for the 

mesh convergence analysis. The five meshes consist 86, 321, 706, 1493 and 1926. It has 

been shown in Figs. (4.4) and (4.5) that the mesh consisting 1493 elements gives accurate 

predictions of maximum displacement and reaction forces (see Table 4.1) and hence the 

same is used through out the analysis. The selection criterion for the mesh convergence 

was less than 0.1% difference between the predictions for increasing number of elements. 

As can be seen in table 4.1 the error between the predictions of reaction force for 

increasing number of elements becomes less than 0.1% only when there are 1493 

elements. Therefore the maximum displacement and reaction force predictions converge 

at 1493 elements and hence the same is used in the analysis. Contact between the sphere 

and the rigid surface is simulated using contact elements (2-D 3nodel contact elements). 

The elements used in the study are PLANE82 (2-D 8 node element) to model the sphere 

and CONTA172 and TARGE169 to model the contact between the surfaces. The contact 

is simulated using Lagrange method in the normal direction and penalty method in the 

tangential direction of the surface. This is an axisymmetric problem and only a 2-D 

quarter section of the entire sphere has been modeled. The flat rigid surface has been 
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modeled as a line and the sphere as a quarter circle. Initially, the problem has been 

simulated to be a frictionless contact problem and the sphere material has been modeled 

as elastic-perfectly plastic and without strain hardening.  The Von Mises yield criteria has 

been used to predict the initiation of plastic deformation.  

 Since for fully plastic deformation the stresses are limited by the yield 

criteria, the stresses are fairly evenly distributed throughout the sphere when it is heavily 

loaded.  Hence the required mesh density is not as great as that required in a typical FEM 

analysis of elastic-plastic spherical contact under lower loads. A mesh convergence 

analysis was also conducted in order to verify the accuracy of the mesh and to save 

computational time. As the force and the area of contact are the most important 

parameters to be observed, the same were chosen for this mesh convergence analysis. 

To solve the problem, displacements have been applied and contact forces are 

calculated after the simulation. Another way of solving this problem is by applying force 

and then calculating the displacements. According to Jackson and Green [3], the first 

mentioned method is better for rapid convergence. The same method is used in the 

current study. The penetration or interference between the flat rigid and the sphere, � , 

was increased in a stepwise fashion for every time step. Another goal of this study was to 

show that the results are independent of the material properties and are dependent on the 

deforming geometry of the sphere. To vary material properties the yield strength values 

were changed for each simulation. The values used were 1 GPa, 0.5 GPa and 0.2 GPa. 

The Young’s modulus of elasticity was kept constant at 200 GPa.  

Strain hardening is an important effect to be considered when studying 

compression of spheres. The current FEM model uses the Bilinear Isotropic Hardening 
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(BISO) option to model the nonlinear behavior of the spheres beyond the proportionality 

limit. This option uses the Von Mises yield criteria with isotropic work hardening 

assumption. The BISO approach is preferred to model the nonlinearity since this is the 

option mentioned to be used for large strain analyses according to ANSYS 

Documentation. Friction will also play a crucial role in the predictions of contact 

pressure. Results of FEM simulations for effects of increasing values of coefficient of 

friction across the contact area on the predictions of contact pressure have also been 

presented. The strain hardening and friction results are preliminary and need more detail 

study.  
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(a) Deformable Base 
 

 

 

 

Figure 4.3(a): A representation of the FEM mesh and the deformed geometry of loaded 

spheres for the deformable base case 
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(b) Rigid Base 
 

 
 

 

 
Figure 4.3(b): A representation of the FEM mesh and the deformed geometry of loaded 

spheres for rigid base case 
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             (a) No.of elements = 86    (b) No.of elements = 321 

 

          (c) No.of elements = 706   (d) No.of elements = 1493 

 

         (e) No.of elements = 1926 

 

Fig 4.4: Distribution of displacements across the sphere 
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Fig. 4.5: Mesh convergence for maximum displacement across the sphere 

 

 

 

Table 4.1: Reaction force results from FEM for mesh convergence 

 

No. of elements Reaction forces % Error  

86 3.821E+09   

321 3.790E+09 0.817942 

706 3.780E+09 0.26455 

1493 3.758E+09 0.585418 

1926 3.756E+09 0.053248 

0.233

0.2335

0.234
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0.235
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0.236
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en
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Max. Displacement 0.234 0.235 0.236 0.236 0.236

86 321 706 1493 1926
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

Introduction  

The problem of flattening of a sphere in contact with a flat rigid surface has 

been modeled in the fashion as explained in the previous chapter and the results are 

presented in this chapter. The study also aims to study the effects of strain hardening and 

friction at the area of contact between the sphere and the flat surface. Three different 

models have been built in order to simulate a sphere 1) with strain hardening 2) without 

strain hardening and 3) without strain hardening but with friction during compression. A 

summary of the boundary conditions, strain hardening and friction considerations in the 

FEM analysis has been presented in table. (5.1). For case 5.1, the model has been 

simulated to have no strain hardening and no friction during loading. This is elastic 

perfectly plastic behavior. The model has been built for the two boundary conditions of 

deformable and rigid base boundary conditions which have been explained in detail in the 

previous chapter. Case. 5.2 considers strain hardening effect in the spheres under heavy 

loading for the deformable base boundary condition. And case 5.3 considers friction in 

the contact area for the rigid base boundary condition. The chapter has been divided into 

these three sections and initially the results for case 5.1 for predictions of contact force 

and area have been discussed in detail. Later sections of the chapter discuss the results for 

case (5.2) and (5.3).  
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Table 5.1: Table showing the boundary conditions used for the study 

 

 

5.1 Elastic perfectly plastic (No Strain hardening) results  

 The results of the described finite element model for the frictionless 

elastic-perfectly plastic behavior (shown in Fig. (5.1)) are now presented and also used to 

formulate closed-form models of heavily deformed spherical contact.  Again, two cases 

based on the boundary conditions have been considered for different constraints at the 

base of the sphere namely,  

�  Deformable base  

�  Rigid base   

The closed form models use the principle that during plastic deformation, 

volume is generally conserved (also used by Chang et. al. [5]) for formulation of 

equations for the deformed radius of the sphere. In the current study, finite element 

models to determine the effective instantaneous radius have been built for both the 

deformable and rigid base case at each penetration step.  These  effective instantaneous 

radius formulations can then be substituted for the value of R in the Jackson, Green and 

Marghitu model [22] in Eq. (13). This results in a closed form model providing more 

Case Boundary condition Strain Hardening Friction 

5.1 
Deformable base                

& 
Rigid base case 

NO NO 

5.2 Deformable base YES NO 

5.3 Rigid base NO YES 
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accurate predictions of the contact pressure for the fully plastic contact. The current study 

also aims to extend the Jackson and Green model [4] to predict the contact radius and 

contact force for fully plastic contact.    

In order to validate the simulation results with experimental data, a 

comparison with an existing experimental study of the same problem by Chaudri [2] was 

also performed. The results were plotted against this experimental data and a coefficient 

of correlation was calculated to show how well the current model predictions reflect on 

this data.  

 

Figure 5.1: Stress strain curve for a material exhibiting elastic perfectly plastic behavior 

S
tr

es
s,

 �

Strain, �

E
E – Young’s modulus

Sy

Sy – Yield strength
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5.1.a  Theoretical calculation of the instantaneous radius 

First, Case 1 (deformable base) for a hemisphere able to deform at the base in 

the radial direction is considered (Fig. 4.1a). This also corresponds to the case of a fully 

compressed 3-D sphere. When the sphere is flattening severely, the geometry shown in 

Fig. (4.1a) will be used.  Assuming mostly plastic deformation occurs and that the 

volume is conserved, the initial volume and the deformed volume can be equated and 

solved to find the instantaneous radius of the sphere.   It is also assumed that the spherical 

shape of the surfaces out of contact is always maintained even when the radius increases 

from an initial value of R to a deformed value of R1, except that it will be truncated at the 

contact area.  The deformed sphere can then be modeled to have the geometry of a 

hemisphere truncated by a flat surface. Therefore, the volume of the initial hemisphere 

before deformation is 

 

 3
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p
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Likewise, the volume of a truncated hemisphere shape used to model the deformed 

sphere is  
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Using the volume conservation principle, setting V1 equal to V2 and solving for R1 

results in 
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Eq. (20) can be substituted into Eq. (13) for the radius, R. This will result in an 

improved prediction of the fully plastic contact pressure, as shown in Fig. (5.2). Using 

this modified radius in Eq. (13) results in a average difference between Eq. (13) and the 

FEM results of 4.78% with a maximum of 8.76%. Therefore the spherical contact 

equation provided by Jackson, Marghitu and Green [22] in Eq. (13) can be modified to 

consider deformation larger than a/R = 0.41 by substituting Eq. (20) into Eq. (13). It 

should be noted that the results for three different sets of material properties are shown. 

The three different material properties used in the analysis are Sy/E = 0.005, 0.0025, and 

0.0001. This shows that the current non-dimensionalization scheme causes the results to 

collapse into one curve and the model works for several different materials. Eq. (20) 

predictions have been compared to the FEM results in Fig. (5.3). The average difference 

between the FEM and Eq. (20) predictions in about 1.1% for each material property and a 

maximum of 2.3%. 

Figure (5.4) shows the pressure distribution across the contact area for increasing 

penetration. As can be seen in the figure, the contact pressure towards the end of the 

contact has a edge effect where the trend continuously seems to increase. 
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Figure 5.2: Comparison of predictions for case 1 (deformable base) 
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Figure 5.3: Comparison of FEM results with Eq. (20)
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Figure 5.4: Pressure distribution across the contact area 
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For Case 2, the rigid base case, the current work borrows the barreling theory 

from S.Malayapam et al. [27] who give an equation describing the bulging of cylinders 

under compression. Figure (5.5) shows the geometric nomenclature of the barreling rigid 

base case. Note that it is assumed that even though the sphere deforms outward to bulge, 

the circular shape of the bulge is always maintained.  

Just as with the deformable base case, the principle of volume conservation is 

applied and the volume of the sphere before deformation is set to the volume of the 

compressed hemisphere (modeled by the barreling shape shown in Fig. 5.5).  This results 

in the following equation: 
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Solving for the effective bulging radius, R2, 

 

               ��
�

�
��
�

�
-

-
=

2)(

23

2

a
R

R
R

w                        (22) 

 

For a better fit to the FEM data, Eq. (22) is modified with a constant �  so that 
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Note that it is acceptable to include the constant �  because in actuality the case of a 

flattened sphere is not the same as a barreling cylinder in compression (although the final 

shape is similar). Unlike the case of cylinders, the vertical surfaces of the sphere have 

some curvature. The constant has a value very close to unity (�  = 0.76), also showing that 

the overall inclusion of the constant only changes the quantitative predictions. The 

percentage error between the model (Eq. (13 and 23)) and the FEM results is an average 

of 2% and maximum of 4.6%. Fig. (5.6) shows the predictions of Eq. (13) using Eq. (23) 

in comparison to the unmodified Eq. (13) and Eq. (10).  Clearly, Eq. (13) modified using 

Eq. (23) agrees better with the FEM results than Eq. (13) and Eq. (10). Fig. (5.7) shows 

the effectiveness of the constant by comparing Eq. (22) (without constant, � ) and Eq. (23) 

(with constant, � ) with the FEM results.  The results are shown for three different sets of 

material properties (Sy/E = 0.005, 0.0025, and 0.0001).  The deformed spherical 

geometry approaches the deformed cylindrical geometry as more and more deformation 

occurs and so the agreement between the theoretical volume conservation model Eq. (23) 

and FEM improves with more deformation.  

Hence, the changing radius for the two cases of the sphere given by Eq. (20) 

and Eq. (23) have been used to modify Eq. (13) by substituting R1 and R2 in for R. It 

appears that this is the first time that these bulging and barreling effects have been 

observed and included in models of spherical contact.  Fig. (5.8) shows the pressure 

distribution across the contact area during the rigid base case. 
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Figure 5.5: Nomenclature for the rigid base case 
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Figure 5.6: Comparison of predictions using barreling concept for case 2 (rigid base). 
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Figure 5.7: Effectiveness of �  (delta) 
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Figure 5.8: Pressure distribution across contact area 
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5.1.b Contact radius 

Jackson and Green [4] gave Eq. (12) for the prediction of the contact radius 

during elasto plastic deformation. As mentioned previously these predictions are valid 

only until a/R �  0.41. The JG model did not consider the heavy loading of spherical 

surfaces. The current study aims to modify Eq. (12) and make it applicable not only to 

elasto-plastic but also to large fully plastic deformations where a/R > 0.41 

Jackson and Green [3] provided the FEM data used to build the model in their 

work. Modifying Eq. (12) involves using both the JG data and the FEM results from 

current study. This is accomplished by fitting an equation to the FEM results of Jackson 

and Green [3]  and the new FEM data acquired in this work that tracks surface 

deformation farther in the fully plastic regime. The equation provides a relationship 

between the contact radius and penetration. For the deformable base case, the resulting fit 

equations differ from all the FEM results by an average of 5% and are given as, 
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The normalized contact radius (a/R) predicted by Eq. (24) is compared Jackson 

and Green [4] and FEM results in Fig (5.9) and (5.10). The results have been divided into 

2 figures for small and large deformations. Small deformations are defined till a/R =0.41 

and large deformations extend till a/R=1.  Note that the material properties of both sets 

viz. JG model and current study, of data are slightly different (see Table 5.2).   

 
 

Table 5.2: Material properties used in (a) Jackson and Green [3]  and (b) the current FEM 
analysis. 

 

Material Yield strength, (Sy) 
 GPa 

Equivalent modulus of elasticity (E') 
Gpa 

1a 0.9115 228.2 

1b 1 228.2 

2a 0.5608 228.2 

2b 0.5 228.2 

3a 0.21 228.2 

3b 0.2 228.2 
 

 
 

Mayuram and Megalingam [23] also built a elasto plastic spherical contact model, 

essentially studying the same problem. They provide a set of equations to predict the 

contact area and contact force during elastic, elasto-plastic and fully plastic deformations. 

These equations are valid till � /� c = �  and are given previously in this work. In order to 

compare the contact area given by the MM model, the equations for contact area are 

converted to give contact radius by substituting critical area equation as shown here for 

one of the penetration ranges defined by Eq. (14) resulting in, 
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(25) 

 

As shown in Figs. (5.9) and (5.10),  the JG model (Eq. 12) and MM model (Eq. 

25) model compare well for very small values of a/R but as the contact radius increases, 

the predictions progressively depart from the FEM results.   

It appears that Eq. (25) is limited to smaller deformations (see Fig 5.9) and as the 

deformations get larger, the model does not seem to agree with the FEM results (see 

Fig.5.10). The current study (Eq. 24) does not compare as well as the JG model Eq. (12) 

to the FEM data at lower interferences (see Fig. (5.9), but for large interferences Eq. (24) 

compares much better with the current FEM results. The percentage difference between 

the current and JG model for small interferences is a maximum of 5.18% and a minimum 

of 1%.  The trend seems to be the same for all the three material properties used for the 

study.   
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Figure 5.9: Comparison of predictions of Eq. (12), (24) and (25) with FEM results for the 

deformable base case for small values of penetration. 
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Figure 5.10: Comparison of predictions of Eq. (12), (24) and (25) with FEM results for 

the deformable base case for large values of penetration. 
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For the rigid base case (case 2), equations describing the ratio between the contact 

radius and spherical radius are also fit to the FEM data of Jackson and Green [3] and the 

current work using the same form given in Eq. (24).  The resulting fit equations for the 

rigid base case differ from the FEM data by an average of 2.5% and are given as 
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Figs. (5.11) and (5.12) show the predictions of the current model for the rigid base 

case (Eq. 26) compared with the FEM, JG and MM models. Again, for clarity the results 

are presented for two different penetration levels in Figs. 5.11 (for small interferences) 

and Fig. 5.12 (for large interferences). The results show trends similar to the deformable 

base case, that, for small deformations, the Jackson and Green [4] model (Eq. (12)) 

compares the best with the FEM results. This is expected since the JG model is meant for 

only elasto plastic deformations. But the most interesting observation is that the model 

almost replicates the FEM data for small deformations. The MM model [24] results 

deviate significantly from the FEM at fairly small values of interference.  From Fig. 

(5.12), it is very evident that the current model (Eq. 26) predictions are the most accurate 

when compared to the FEM results when large deformations occur.  
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Figure 5.11: Comparison of predictions of Eq. (12), (25) and (26) with FEM results for 

the rigid base case for small values of penetration. 
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Figure 5.12: Comparison of predictions of Eq. (12), (25) and (26) with FEM results for 

the rigid base case for large values of penetration. 
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5.1.c Contact force 

Jackson and Green [3] provide an equation for the contact force during elasto 

plastic deformations of a sphere valid up to a/R=0.41 (see Eq. (11)). The current work 

aims to provide an extended model that is capable of producing accurate predictions of 

the contact force by modifying Eq. (11) and extending it into the fully plastic deformation 

range.  As deformations get larger, the first term in Eq. (11) approaches zero and the 

second term involving the contact pressure becomes dominant in predicting the contact 

force.  The current study proposes that the contact pressure should be multiplied by the 

contact area for accurate predictions of the contact force, resulting in the following 

modified equation: 
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      (27) 

 

Eq. (11) does not contain a term which can address the increasing contact area during 

plastic deformations. Also, the value of P in Eq. (11) is calculated using Eq. (10) which 

has already been proven to give inaccurate predictions for fully plastic contact pressure 

with large deformations.  

The new equation proposed in Eq. (27) uses the new contact area calculated from       

Eq. (24) and (26) .The contact pressure P, is calculated by modifying Eq. (13) for contact 

pressure predictions.   
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First the predictions of Eq. (27) for case 1 (the deformable base) have been shown 

in Figs. (5.13) and Fig. (5.14). Fig. (5.13) shows the comparison in the range of the FEM 

data provided by Jackson and Green (small deformations up to a/R =0.41) and Fig. (5.14) 

shows the comparison in the range of the new FEM data (large deformations up to         

a/R =1) from the current work. Comparisons of the current model with FEM results in 

Figs (5.13) and (5.14) reveal that the current model for contact force compares very well 

for both small and large interferences.  For small interferences the current model 

predictions and Eq. (11) are almost indiscernible and so the predictions of Eq. (11) are 

not shown. As the deformations get larger, as shown in Fig. (5.14), the differences 

between the FEM results, the current model, Eq. (11), and Eq. (15) become very 

profound.  In fact, the differences between the FEM results, the current model and the 

MM model (Eq. (15)) appears to sometimes be several orders of magnitude. Overall the 

current model performs well and better than the other models at predicting the contact 

force over the considered range of interferences. It is also interesting to note that the new 

equations capture some interesting trends in the force-interference curves shown in Fig. 

5.14 for the rigid base case.  There is a slight‘s’ shape to the FEM results that the new 

model equations also successfully capture.    

 

 

 

* The current model is a combination of Equations depending upon the case considered. 

  For the Deformable base case, the current model is a combination of Eq. (13), (24) and 

(27). And for the rigid base case it is a combination of Eq. (13), (26) and (27). 
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Figure 5.13: Comparison of predictions of contact force according to Eq. (15) and (27) 

with FEM results for the deformable base case with small loads 

 

 

 

 



  59 

 

 

 

 

 

 

100

1000

10000

100000

1000000

100 1000 10000 100000wwww/wwwwc

F
/F

c

FEM mtl. 1b
FEM mtl. 2b
FEM mtl. 3b
Eq. (1)
Eq. (11)
Eq. (15)
Eq. (27)

Mtl. 2b
Mtl. 3b

Mtl. 1b

 

Figure 5.14: Comparison of predictions of contact force according to Eq. (11), (15) and 

(27) with FEM results for the deformable base case with heavy loads 
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Next, the current model of contact force for the rigid base case using Eqns. (13, 

26 and 27) is compared to the FEM data and the previous models given by JG (Eq. (11)) 

and MM (Eq. (15)) as shown in Figs. (5.15) and (5.16). It is expected that the JG model 

(Eq. (11)) works better for the rigid base because they have studied asperity contact 

which is similar to the rigid base case. As seen from the comparison with the FEM results 

in Fig. (5.15) and (5.16), this is especially true when deformations get larger (a/R 

approaches 1). The observed trends for deformable and rigid base case in figs. (5.15) and 

(5.16) are significantly different.  

The plots also show that the model by Megalingam and Mayuram [23] (Eq. (15)), 

significantly underpredicts the FEM results for large deformations. As expected, the new 

equations based on barreling and volume conservation agree well with the FEM results.   
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Figure 5.15: Comparison of predictions of contact force according to Eq. (15) and (27) 

with FEM results for the rigid base case with small loads 



  62 

 

 

 

 

100

1000

10000

100000

1000000

100 1000 10000 100000wwww/wwwwc

F
/F

c

FEM mtl. 1b

FEM mtl. 2b

FEM mtl. 3b

Eq. (1)

Eq. (11)

Eq. (15)

Eq.(27)

Mtl. 2b
Mtl.3b

Mtl. 

 

Figure 5.16: Comparison of predictions of contact force according to Eq. (11), (15) and 

(27) with FEM results for the rigid base case with large loads 
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5.1.d Comparisons with Existing Experimental Measurements 

In order to validate the current model predictions for contact pressure and contact 

radius, the results were compared with experimental data measured by Chaudhri et al. [2]. 

They reported experimental results for the compression of metal spheres of different 

material properties (phosphor bronze, aluminum and brass) between two smooth parallel 

platens. The deforming geometry of the spheres in this experiment can be correlated to 

the deformable base case (case 1) in the current work.. The spheres used in the 

experiment were brass, aluminum and phosphor bronze all with diameters of 3.175mm. 

The current work compares the new model results with the results for the brass and 

phosphor bronze spheres given by Chaudhri [2] since the resulting a/R ratios for these 

tests are in the range of the current study compared to aluminum. The phosphor bronze 

spheres were work hardened in an attempt to cause there behavior to be like an elastic-

perfectly plastic material when compressed under heavy loads.  This was done to allow 

for comparison with existing models which mostly assume the material to behave elastic-

perfectly plastically. The current model has also been modeled intially as elastic-perfectly 

plastic in the FEM simulations. 

Measurements of Vickers hardness were provided by [2] before and after 

compression. A Leitz microhardness testing machine with an accuracy of ± 4% and a 

load of 50 gms-force (0.49 N) was used. This information has not been mentioned in their 

work, but a thorough literature survey of the equipment used in the experiments was done 

to find the accuracy of the results. 

 According to the hardness measurements following data has been given by 

Chaudhri [2]. 



  64 

Table 5.3: Material properties and Microhardness measurements as given by  

Chaudhri et al. [2]. 

Hardness (GPa) 

Material 
Poisson’s 

Ratio, �  

Elastic modulus, 

E (GPa) 
Before 

compression 

After 

compression 

Phosphor bronze 0.35 115 2.72 ± 0.06 2.68 ± 0.06 

Brass 0.37 120 1.8 ± 0.08 2.22 ± 0.08 

 

Using these values of hardness and standard values of elastic modulus for brass 

and phosphor bronze, a comparison is made between the predictions of the current model 

for the deformable base case and the experimental results [2]. In dimensional form the 

current model for the deformable base case is given as, 
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where, R1 is calculated using Eq. (10), (a/R)new is calculated from Eq. (24), and R is the 

original radius of the sphere.   

The value of the yield strength is not explicitly provided by Chaudhri et al. [2]. 

Instead it has to be calculated using the Vicker’s hardness measurements given in table 

5.3. Vicker’s hardness measurements conducted by [17], [31] and [33] revealed that the 

value of the constant c, is between 2.8 to 3.3.
 
These results have been found for 

frictionless compression experiments (similar to the current study). The current work 
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finds a value which H/Sy = 3.15 provides a trend closest to the experimental results given 

by Chaudhri [2] for phosphor bronze and brass.
 
The results have been presented in Figs. 

(5.17) and (5.18). The data compares the predictions of the current model for three 

different values of the constant ,c (2.8, 3.15 and 3.3). 

The experimental data given by Chaudhri et al. [2] was extracted using 

DataThief©. The predictions of the current model (Eq. 28) are compared with this 

extracted data and are shown in Figs. (5.17) and (5.18).  The trends of the experiments 

and model are qualitatively and quantitatively very similar.  The average error between 

the model and the measurements is about 9% for the brass results and 7% for the 

phosphor bronze.  Considering that in reality there is some hardening and friction 

occurring in the tests that is not considered by the model, this shows surprisingly good 

agreement between them.   

The R-squared value to determine the co-efficient of correlation between the 

experimental data and the current model has also been calculated. For the case where c is 

3.15, the R-squared value for the correlation was found to be 0.9851 and 0.9707 for 

phosphor bronze and brass respectively. The R-squared value shows how closely the 

trends of the results being compared are related to each other. The maximum R-squared 

value is unity. As mentioned previously, the phosphor bronze spheres were work 

hardened to achieve newly elastic perfectly plastic behavior. For Phosphor bronze, the 

percentage error between the experimental the current model is observed to be lower and 

the R-squared number is higher compared to brass. This is because the current model is 

simulated as elastic perfectly plastic sphere and phosphor bronze shows a behavior 

closest to this (see table. 5.3).
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This suggests that the new model presented in the work can be used effectively to 

predict the behavior of heavily deformed spheres, especially when a material has little 

strain hardening. Strain hardening and friction which add complexity to the problem have 

not been considered in this section but has been discussed later. The study by Chaudhri 

[2] also mentions the possibility of a barreling mechanism for predicting the deforming 

geometry of spheres during compression. The current study has studied this possibility in 

detail and confirms these possibilities in the previous sections.   

 

 

Figure 5.17: Comparison of experimental and simulation based model for phosphor 

bronze material
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Figure 5.18: Comparison of experimental and simulation based model for brass material 

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a/R

P
 (

G
P

a)

Experimental data

H/Sy =  2.84

H/Sy =  3.15

H/Sy = 3.3



  68 

5.2 Effects of strain hardening 

 

Strain hardening also known as work hardening occurs when metals undergo 

plastic deformation. The material essentially gains resistance to permanent deformations. 

This happens because the material gets saturated with dislocations which prevent 

formation of any more dislocations. The current study has to this point not considered 

strain hardening in the sphere under compression. However in reality there will be some 

strain hardening in almost all metallic materials.  

Therefore an attempt was made to model the sphere under compression while 

including strain hardening effects. The current work compares its simulation results with 

the maps of microhardness distribution provided by Noyan [1] at various levels of 

penetration and draws some interesting observations and conclusions. Noyan [1] 

conducted experiments by compressing spheres and measuring the hardness across the 

sphere and mapped these microhardness values throughout the depth of the sphere for 

4%, 11%, 20% and 58% compressive macroscopic strain. Compressive strains are the 

difference between the initial (undeformed) and final compressed height of the sphere. 

The sphere is divided into zones depending on the hardness measured. This gives an 

exact idea of the birth and progression of stress distribution in the sphere. He also 

concluded that the area of contact and the area at the centre of the sphere are independent 

of material if sphere and the size.  

 In the finite element analysis, strain hardening is introduced into the spheres by 

varying the tangent modulus of the material. The current work considers tangent modulus 

of 1%, 2% and 4% hardening of the material. Discussions with other scholars in this field 



  69 

who have conducted experiments to study strain hardening revealed that hardening 

reaches values upto 4% during compression tests. The compressive strain considered by 

Noyan [1] reach a maximum value of 58%. The current study considers compressive 

strains upto 50%. Hence, the Von Mises stress distribution for the various levels of strain 

hardening in the current study can be compared with almost all of the microhardness 

plots given by Noyan [1]. The FEM predictions of contact pressure at 0%, 1%, 2% and 

4% tangent moduli strain hardening are given in Fig.  (5.19). 

 

 

 

Figure 5.19: Variation of contact pressure with increasing contact radius 
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The inclusion of hardening appears to neglect the geometric effects on hardness during 

spherical flattening (see [7],[2]). Essentially, hardening counteracts the trend of Eq. (13) 

causing the H/Sy to increase instead of decreasing as a/R increases. This may be why this 

phenomenon had not been experimentally recognized until Chaudhri et al. [2]. 

In order to study the mapping of the stress distribution inside the sphere, the Von 

Mises stress distribution at each load step is mapped and shown in Figs. (5.20) and (5.21) 

and (5.22). The figures show Von Mises stresses for one material with three different 

levels of strain hardening (4%, 2% and 0%). The trends suggest that the maximum Von 

Mises stress zone for 4% and 2% strain hardening cases in Figs. (5.20) and (5.21) 

migrates from just below the contact surface to the center of the sphere. These results 

have been compared with the experimental work presented by Noyan [1]. The 

comparisons reveal similar trends in both the studies. The zone indicating maximum Von 

Mises stress levels represented by the red zone in Figs. (5.20) and (5.21) can be compared 

to the ‘C’ zone in the experimental work by Noyan [1]. In this experimental work by 

Noyan [1], the sphere is divide into zones based on microhardness measurements and ‘C’ 

zone is the hardest zone. As the compressive strain increases the ‘C’ zone increases in 

size and migrates to the center of the sphere similar to the current observations in Figs. 

(5.20) and (5.21).  
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Figure. 5.20: Von Mises stress distribution for 4% strain hardening in the sphere. 
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         Figure 5.21: Von Mises stress distribution for 2% strain hardening in the sphere. 
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Figure. 5.22: Von Mises stress distribution for 0% strain hardening in the sphere. 
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5.3 The Effect of Friction 

 When a sphere is in contact with a flat rigid surface, in reality there will be some 

friction across the contact area. The study has not considered the effects of friction on the 

contact pressure and area until now. In this section an attempt is made to understand the 

effects of friction on the contact pressure and area. Friction is introduced in the contact 

area in the finite element modeling code by varying the coefficient of friction across the 

contact area.  

 

 

Figure 5.23: Variation of contact force with increasing contact radius 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a/R

F
/F

c

Coeff friction 0

Coeff friction 0.1

Coeff friction 0.2

Coeff friction 0.3

Coeff friction 1



  75 

The results in Fig. (5.23) show that for increasing coefficients of friction across the 

contact area, the variation in contact force is not much for light loading however as the 

deformations get larger in Fig. (5.22), friction plays an important role in predicting the 

contact force. Comparisons with strain hardening results suggest that friction does not 

have a large effect relative to strain hardening. Also, increasing coefficients of friction 

affects the predictions in Fig. (5.23) only after a/R = 0.5. This suggests that friction does 

not play a major role until a/R becomes larger than 0.5. 

 It is important to understand whether strain hardening or friction has a greater 

effect on the contact force predictions. Figs. (5.24) and (5.25) show the effect of strain 

hardening and friction on the rigid base case predictions. It can be seen from the 

comparison that strain hardening starts affecting the predictions from small values 

contact radius (a/R=0.2) and friction plays a minor role compared to strain hardening and 

only affects the predictions for values of contact radius above 0.5. Hence friction plays a 

secondary role to strain hardening in predictions of contact force.  
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Figure 5.24: Effect of increasing strain hardening across the contact area on predictions 

of contact force
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Figure 5.25: Effect of increasing friction across the contact area on predictions of contact 

force
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CHAPTER 6 

CONCLUSIONS 

 

This work presents an FEM based model to predict the behavior of spherical 

surfaces being heavily compressed by flat rigid surfaces. In the initial part of the study, 

the material has been modeled as elastic-perfectly plastic to exclude strain hardening 

effects and friction across the contact area. Later the effects of strain hardening have also 

been studied. The model works well for both elasto-plastic deformations and for fully 

plastic deformations.  Therefore a new model has been provided which can model a 

significantly larger range of deformation for spherical contacts.  The model is based on 

the results of a FEM simulation of heavily loaded spherical contacts.  The equations have 

been formulated using volume conservation theory and barreling theory for the 

compression of cylinders. Probably, the most important finding is that the effect of 

bulging or barreling must be considered in calculating a/R. The results show that when 

deformations are small, that the Jackson Green model may actually provide slightly more 

accurate results, but as deformations get larger the current model produces more accurate 

results in comparison to the FEM results.  

The results of the finite element based model have also been verified with 

experimental data for different materials like brass and phosphor bronze provided by 

Chaudhri et al. [2].  The FEM based model compares surprisingly well with these 
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previous results, and without the use of any additional fitting parameters.  There is some 

difference in the results because there is some hardening and friction occurring in the 

experimental measurements. The current study confirms the suggestions by Chaudhri [2] 

that barreling of cylinders has similarities in behavior to large deformations in spherical 

contact. Also, through various literature sources referred during current research, the 

constant in the relationship between contact pressure and yield strength (see Eq. (29)) 

seems have values ranging from 2.84 to 3.3. The current study found out that for 

phosphor bronze and brass the value that best replicated the experimental results is 3.15.  

This work also studies the effect of strain hardening in spherical contact with 

severe deformation. Results of Von Mises stress distribution have been compared with 

Noyan [1] and similar patterns of hardening are found. Also, friction will play a 

secondary role in predictions of contact area and pressure. Some preliminary results have 

been shown to understand the variation of contact force with increasing contact area for 

various values of coefficient of friction. In the future the authors would like to further 

investigate these additional effects. 
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CHAPTER 7 

RECOMMENDATIONS FOR FUTURE WORK 
 

 
 The current study presents the results of a FEM model and proposes a closed form 

equation for predicting contact pressure and area for spheres compressed under heavy 

loading. The results have been verified with real world experimental data and are in good 

agreement. The comparisons reveal that the results are in better agreement with phosphor 

bronze material than brass since this material (phosphor bronze) was work hardened 

before compression to have elastic perfectly plastic materials. In contrast, the brass 

spheres were not work hardened. In the simulations too, the spheres were modeled as 

elastic perfectly plastic. Hence the current model is more applicable to this case than 

actual spherical deformation in real applications.  

An attempt was made to understand the effects of strain hardening and friction 

during compression of spheres. Preliminary results have been shown in the sections 

above. More work is needed to fully describe these effects. Fig. (5.19) reveals that 

friction will play a crucial role in predictions of contact force and pressure as the contact 

radius increases. 
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APPENDIX 
 

 
Finite element analysis Code  
 
1. No Strain hardening considered – 
 
/PREP7   
CYL4,0,0,1,0,0,90    
!*   
ET,1,PLANE82 
!*   
KEYOPT,1,3,1 
KEYOPT,1,5,0 
KEYOPT,1,6,0 
!*   
!*   
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,200E9   
MPDATA,PRXY,1,,0.3   
TBDE,BISO,1,,,   
TB,BISO,1,1,2,   
TBTEMP,0 
TBDATA,,,2E9,,,,   
APLOT    
 
-------------------------------------------MESHING--------------------------------------------------- 
  
SMRT,1   
MSHAPE,0,2D  
MSHKEY,0 
!*   
CM,_Y,AREA   
ASEL, , , ,       1  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
!*   
AMESH,_Y1    
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!*   
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
!*   
  
K,5,2,1,0,   
LSTR,       2,       5   
!*   
/REPLOT  
!*   
/COM,  
 
------------------------------CONTACT PAIR CREATION - START --------------------------- 
 
CM,_NODECM,NODE  
CM,_ELEMCM,ELEM  
CM,_KPCM,KP  
CM,_LINECM,LINE  
CM,_AREACM,AREA  
CM,_VOLUCM,VOLU  
/GSAV,CWZ,GSAV,,TEMP 
MP,MU,1,0    
MAT,1    
MP,EMIS,1,7.88860905221E-031 
R,3  
REAL,3   
ET,2,169 
ET,3,172 
R,3,,,1.0,0.1,0, 
RMORE,,,1.0E20,0.0,1.0,  
RMORE,0.0,0,1.0,,1.0,0.5 
RMORE,0,1.0,1.0,0.0,,1.0 
RMORE,10.0   
KEYOPT,3,3,0 
KEYOPT,3,4,2 
KEYOPT,3,5,0 
KEYOPT,3,7,0 
KEYOPT,3,8,0 
KEYOPT,3,9,0 
KEYOPT,3,10,1    
KEYOPT,3,11,0    
KEYOPT,3,12,2    
KEYOPT,3,2,3 
KEYOPT,2,2,0 
KEYOPT,2,3,0 



  85 

 
--------------------------------GENERATE THE TARGET SURFACE   ------------------------ 
 
LSEL,S,,,4   
CM,_TARGET,LINE  
TYPE,2   
LATT,-1,3,2,-1   
TYPE,2   
LMESH,ALL    
 
-----------------------------GENERATE THE CONTACT SURFACE  ------------------------- 
 
LSEL,S,,,1   
CM,_CONTACT,LINE 
TYPE,3   
NSLL,S,1 
ESLN,S,0 
ESURF    
*SET,_REALID,3   
ALLSEL   
ESEL,ALL 
ESEL,S,TYPE,,2   
ESEL,A,TYPE,,3   
ESEL,R,REAL,,3   
LSEL,S,REAL,,3   
/PSYMB,ESYS,1    
/PNUM,TYPE,1 
/NUM,1   
EPLOT    
ESEL,ALL 
ESEL,S,TYPE,,2   
ESEL,A,TYPE,,3   
ESEL,R,REAL,,3   
LSEL,S,REAL,,3   
CMSEL,A,_NODECM  
CMDEL,_NODECM    
CMSEL,A,_ELEMCM  
CMDEL,_ELEMCM    
CMSEL,S,_KPCM    
CMDEL,_KPCM  
CMSEL,S,_LINECM  
CMDEL,_LINECM    
CMSEL,S,_AREACM  
CMDEL,_AREACM    
CMSEL,S,_VOLUCM  
CMDEL,_VOLUCM    
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/GRES,CWZ,GSAV   
CMDEL,_TARGET    
CMDEL,_CONTACT   
/COM,  
---------------------------------CONTACT PAIR CREATION - END   -------------------------- 
 
/MREP,EPLOT  
/REPLOT  
FINISH   
/SOL 
FINISH   
/PREP7   
FINISH   
/SOL 
FINISH   
/PREP7   
FINISH   
/SOL 
FINISH   
/PREP7   
FINISH   
/SOL 
 
-------------------------------------BOUNDARY CONDITIONS ------------------------------- 
 
FLST,2,79,1,ORDE,4   
FITEM,2,1    
FITEM,2,3    
FITEM,2,204  
FITEM,2,-280 
!*   
/GO  
D,P51X, , , , , ,UY, , , , ,    
FLST,2,79,1,ORDE,4   
FITEM,2,2    
FITEM,2,-3   
FITEM,2,127  
FITEM,2,-203 
!*   
/GO  
D,P51X, ,0, , , ,UX, , , , , 
FLST,2,1,4,ORDE,1    
FITEM,2,4    
!*   
/GO  
DL,P51X, ,UY,-0.5   
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--------------------------------------ANALYSIS TYPE---------------------------------------------- 
 
ANTYPE,0 
NLGEOM,1 
DELTIM,0.1,0,0   
AUTOTS,0 
TIME,100 
OUTRES,ALL,-10   
/STATUS,SOLU 
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Figure A.1: Undeformed sphere with FEA mesh 
 


