Genuine Sequential Estimation Procedures
for Gamma Populations using Exact Evaluation Criteria
Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classi ed information.
Kevin Tolliver
Certi cate of Approval:
Hyejin Shin
Assistant Professor
Mathematics and Statistics
Mark Carpenter, Chair
Associate Professor
Mathematics and Statistics
Peng Zeng
Assistant Professor
Mathematics and Statistics
George T. Flowers
Acting Dean
Graduate School
Genuine Sequential Estimation Procedures
for Gamma Populations using Exact Evaluation Criteria
Kevin Tolliver
A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Ful llment of the
Requirements for the
Degree of
Doctor of Philosophy
Auburn, Alabama
December 18, 2009
Genuine Sequential Estimation Procedures
for Gamma Populations using Exact Evaluation Criteria
Kevin Tolliver
Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.
Signature of Author
Date of Graduation
iii
Vita
Kevin Paul Tolliver, son of Kevin Leonadis Tolliver and Cheryl Gatewood Tolliver,
was born in Washington, D.C., USA on April 17, 1985. He graduated from Edgewater
High School in Orlando, FL in 2002. In 2005, he received his Bachelor of Science degree in
Mathematics from Morehouse College in Atlanta, GA. He received his Doctor of Philosophy
degree in Statistics from Auburn University in 2009.
iv
Dissertation Abstract
Genuine Sequential Estimation Procedures
for Gamma Populations using Exact Evaluation Criteria
Kevin Tolliver
Doctor of Philosophy, December 18, 2009
(B.S., Morehouse College, 2005)
80 Typed Pages
Directed by Mark Carpenter
In this dissertation, we develop genuine two-stage sequential procedures for bounded-
risk and  xed-width con dence interval estimation for Gamma distributed populations,
based on exact evaluation criteria. The term \genuine" refers to the fact that, in contrast
to previous methods, the procedures proposed herein are based on the combined samples
from both the  rst and second stages, rather than ignoring the data from the  rst-stage
sample. Accordingly, the terminal sample size and the estimate are no longer independent,
which complicates the theory development signi cantly. The term \exact" refers to the fact
the procedures are not evaluated on asymptotic or large sample theory, as is common in the
literature predating this dissertation, and the derivations are based only on the properties
of the underlying distribution, i.e., Gamma. The practical application of each procedure
was also considered and examples are given for both problems, i.e., bounded-risk and  xed-
width.
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Chapter 1
Introduction
1.1 Motivation
Statistical modeling is a technique used in many di erent scienti c  elds. By summa-
rizing current results into one expression, statistical modeling aids researchers in explaining
their current results. More importantly, observed outcomes could be utilized to make future
predictions. In scienti c experimentation there are many factors that can contribute to a
certain outcome in a research experiment. A model simply refers to the outcome that is
expressed as the mathematical function of these factors. In order to make these predictions,
the data in these models are assumed to be random and have some underlying distribution
where one or all parameters are unknown, and parameter estimation is used to  t these
models.
The Gamma distribution is often assumed to be the underlying distribution to model
right-skewed variables with positive support. Because of its  exibility this distribution has
a wealth of applications and is often used to model random times-to-events. Two scienti c
 elds of study where the Gamma distribution is most often used to model data are Survival
and Reliability Analysis. In Survival Analysis, variables such as lifespans of organisms as
well as time till a treatment takes e ect can be modeled with the Gamma distribution.
In Reliability Analysis Studies, lifespans of a system or systems components as well as
chemical corrosion, e.g. can be modeled with the Gamma distribution. The information
gained by statistical models in these two  elds is used in developing life insurance plans,
pertinent drug information, warranty information, quality control information, etc. A pa-
rameter often studied in these  elds is Mean-Time-To-Failure (MTTF) that is very useful
for systems used on a regular basis. A general queue also models times with a Gamma
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distribution. This is seen in various computer systems, call centers, and tra c  ow man-
agement systems. Articles that use the Gamma distribution in modeling times relating to
queues include: Choe and Shro (1997), Amero and Bayarri (2007), Chu and Ke (1997),
Clarke (1957). Though modeling times is the most frequent use, the Gamma distribution as
a family of distributions can be assumed in any area where values have a positive support.
For example, it is used frequently in climatology modeling both precipitation rates and
precipitation intensity. This is seen in Maureil et. al (2007) and Gutowski et. al (2008). In
addition, it is seen in censor imaging as shown in Chatelian (2007) and Chatelian (2008).
These statistical models are reliant on the parameter estimation, therefore it is imperative
for model  t that estimates under some criterion are accurate, low bias with low variation.
To have an accurate parameter estimate, Sequential Analysis is needed to determine
how many observations are required An accuracy measure, such as standard error, is depen-
dent upon the parameters of the unknown underlying distribution. In sequential analysis,
all the observations are not sampled at once. In fact, having estimates with predetermined
accuracy cannot be determined with a sample size known prior to sampling. It is well
known that an unbiased estimator will become more accurate as the sample size increases.
However, knowing the sample size needed to ensure the accuracy falls within the criterion is
impossible to determine without any knowledge of the underlying distribution. Sequential
problems such as assigned-accuracy problems deal more with the sample size than with the
estimator itself. The  nal model estimates are dependent upon information gained in prior
sampling.
Historically researchers have calculated measures of accuracy for sample design based
on incorrect assumptions about the underlying distribution. For many years, the underlying
distribution for the data is assumed to be Normal, even for time estimates where there is
a positive support and the data is right skewed. Sampling that assumes that the data is
Normal when it is not introduces the risk of not actually meeting the criteria. It could also
lead to sampling more observations than is needed to meet the speci ed criterion. This is a
very prevalent problem in statistics since many experiments and surveys are restricted by
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budgetary restraints.
1.2 Research Question
Our focus is on developing a sampling procedure that will ensure an accurate estimator,
which means that the estimator will have a low bias and low variation. The model assumes
that the estimator is unbiased so the concern is restricting the variation. This dissertation
looks at two di erent problems involving predetermined accuracy. The  rst problem is to
ensure that the risk falls within a bound and the second problem is to ensure the width of
the interval estimator is within a bound. In doing so, we will completely avoid using large
sampling theory. There will be no asymptotic approximation of the underlying distribution
and because this is done our procedure will hold for any number of initial observations.
We develop the mathematical theory that ensures that the risk is within a pre-speci ed
bound under a genuine two-stage sampling scheme that assumes that the data comes from a
Gamma population. The term \genuine" refers to the fact that the sequential procedure is
based on the combined sample from both stages. It may seem fairly obvious that a genuine
two-stage estimation procedure will yield better results than one that disregards one of the
two samples. This has not always been implemented. Arriving at a two-stage procedure
that ensures risk is within a bound may come with a cost and could result in sampling more
observations than previous sampling procedures. A more practical problem is considered
where the goal is to sample the fewest number of observations that achieve this goal to avoid
oversampling as described by Wald (1947). Using a relationship between risk and interval
estimation, a genuine two-stage  xed-width interval estimator sampling scheme is produced
that is unlike anything that has ever been done in this  eld before.
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1.3 Sequential Analysis and Multistage Designs
Sequential analysis is a statistical theory of data where the  nal sample size is not
known prior to the study. Sampling procedures where the  nal sample size is known prior
to sampling is known as a  xed-sample size procedure. Sequential sampling procedures are
used over  xed-sample size procedures for (1) ethical reasons, (2) conceivability reasons, and
(3) economical reasons. For example, in a drug trial for reducing hypertension, if there are
m initial observations where some of them develop side e ects or there is signi cant evidence
that the true mean is low, then medical ethics forbid further sampling. With other instances,
arriving at an alternative solution is inconceivable. An example of conceivability reasons
considers an industrial process. There is no known way of determining when a process
will become out of control with a  xed-sample size. There are occasions when sequential
analysis is economical. An example of this is any sampling where there is an attached cost
to each observation. Sequential analysis can reduce the number of observations, which will
consequently reduce the cost of the experiment. Finding assigned accuracy estimators for
parameters of a Gamma process or population can be all three. As noted before, the Gamma
is often assumed in modeling times in clinical trials. There is no conceivable solution for
determining the  nal sample size needed to achieve predetermined accuracy with a  xed
sample size. Since one objective is to sample the fewest number of observations that achieve
a certain goal, it has economical applications. For all of those reasons, a sequential design
needs to be implemented to achieve pre-assigned accuracy.
Sequential analysis consists of two components: (1) the stopping rule and the decision
rule. The stopping rule indicates whether or not sampling should be stopped after m
observations or whether additional observations should be sampled. A stopping rule is
characterized as a mechanism for deciding whether to continue or stop a process on the
basis of the present position and past events, which will almost always lead to a decision
to stop at some time. The  nal resultant sample size N is called the terminal sample size.
The decision rule tells what actions need to be taken after sampling has been stopped.
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De nition 1.1 If m is a known predetermined sample size, a sample is said to be sequential
if the terminal sample size N is not  xed, i.e.
P(N = m) < 1 for m;N2N:
The emphasis in this context is on having an estimator that will fall below some predeter-
mined accuracy, the terminal sample size N will be the  nal sample size that ensures this is
the case. The terminal sample size depends on earlier observed information, X1;X2;:::;Xm
making it a random variable.
The optimal sample size (n ) is the number of observations that best achieves a re-
searchers goal. This can mean a number of things for di erent problems. In our context,
the optimal sample size is the fewest number of observations that ensures that our estimator
is accurate under some predetermined criteria. The optimal sample size is  xed and is de-
pendent upon the unknown parameters of the underlying distribution. In an ideal situation
the terminal sample size will equal that of the optimal sample size. The terminal sample
size is assessed by looking at the ratio of the expectations,
E[N=n ]: (1:3:1)
The performance of the terminal sample size can be evaluated asymptotically
limm!1E[N=n ] = 1: (1:3:2)
and
limm!1Var[N=n ] = 0: (1:3:3)
In sequential analysis, there are two sub elds: (1) purely sequential designs and (2)
multistage designs. Earlier it was mentioned that the  nal sample size is not known prior
to the start of sampling. However, this does not mean that each observation is observed one
at a time. With purely sequential designs, each observation is observed one at a time and
an analysis is performed after each observation is drawn. Whereas in multistage designs,
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multiple observations are drawn at a time,called a stage, and there is a cap on the total
number of stages. The terminal sample size does not necessarily consist of the prior m
observations. In some instances the m observations are used to determine the terminal
sample size and then disregarded for the analysis.
De nition 1.2 Let X1=fX1;:::;Xm1g be an initial sample. For a decision rule  sub-
sequent samples are Xi=fXmi 1+1;:::;Xmig or Xi = ; for 1  i  k. The sample
X =[ki=1Xi: is a genuine k-stage sample.
The advantages of purely sequential problems are that they yield better statistical results
and the procedure will have a reduced chance of over sampling as described by Wald. How-
ever depending on the design, multistage sampling can be more cost e cient and more
manageable.
For example, consider the problem of determining when an industrial process becomes
out of control; data is read after each observation. In such cases, it will be practical to
use a purely sequential design. As the data is read, the process can immediately determine
when it has become out of control and there is no need to continue sampling. However in
a clinical trial, it is not practical to treat one subject at a time. A multistage design is
needed.
Multistage problems are currently used in a wide range of areas. Some multistage
sampling schemes use a set of observations from the population as their initial sample. The
subsequent samples consist of analyzing a subset of that initial set. This is seen in the U.S.
Census? Current Population Survey multistage method, given in Moore, McCabe, and Craig
(2007). This is also seen in crop management, Finney (1984), as well as multistage clus-
ter analysis Phillipi(2005). In the context of modeling times, multistage designs are often
used in adaptive designs. In a broad overview of adaptive designs, several examples were
given where statistical procedures were modi ed during the conduct of clinical trials. It is
not only e cient to identify clinical bene ts of the test treatment under investigation, but
also to increase the probability of success of clinical development, Chow and Chang (2008).
Most adaptive designs in clinical trials can be referred to as adaptive randomization and
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group sequential designs. With the  exibility for stopping a trial early due to safety, futility
and/or e cacy and sample size re-estimation at interim for achieving the desired statisti-
cal power. In an article on uni ed theory of two-stage adaptive designs the mathematical
theory is proposed to adaptations in literature. To summarize, the adaptations alter the
sampling distribution, which means the assumed results may not be true, Lui, Proschan,
and Pledger (2002). For example, for two-stage adaptive tests in particular, changes in the
sampling distribution can occur. Only recently it has been thought of to alter the p-value.
In their article, they arrive at a number of useful theories on two-stage adaptive designs.
Using a large number of stages makes organization more complicated and both admin-
istrative expenses and interest charges on the large investment increase. This is also the
case with a number of other sequential sampling procedures. Because of this, in literature
there are many two and three-stage designs; Mukhopadhyay and Pepe (2006), Mukhopad-
hyay and Zacks (2006), Yao and Venkatraman (1998), Satagopan et al. (2002), Whittemore
(1997), Jinn et al. (1987), Lorden (1983), Mukhopadyay (1995), etc., and not as many four,
 ve, and six-stage designs.
Squared error loss is a measure of an estimate?s distance from its true parameter.
De nition 1.3 If A> 0 is constant speci ed by the experimenter that penalizes deviations
more or less as need be, squared error loss of an estimator with n observations is the squared
distance between a parameter  and its estimator ^ :
Ln( ; ^ ) = A(  ^ )2:
In practice, this measure is assessed by its expected value, called risk. The risk gives an
indication of the reliability of an estimate. High risk indicates the estimator is unreliable
while a low risk indicates the estimator is reliable. Increasing the sample size is an action
taken to lower risk. One method of accuracy measure in sequential analysis is the bounded
risk estimator.
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De nition 1.4 For a predetermined risk bound w, a bounded risk estimator with the ter-
minal sample size N number of observations is the expectation of the squared error loss
RN( ; ^ ) = E(LN) w:
It is well documented that the risk will be a multiple of the variance plus the bias of the
estimator squared. Consider the Normal distribution with known variance; in this instance,
bounding the risk is an easy calculation. However, if the mean and variance are unknown,
then this problem cannot be solved with a  xed sample size. With  tting statistical models
with parameter estimation, the goal is to have accurate mean parameter estimates.
Another accuracy measure in sequential analysis is the  xed-width interval estimator.
De nition 1.5 For a predetermined width d, a 1 a  xed-width interval estimator of a
real-valued parameter  is any pair of functions L(X) and U(X), with L(X) < U(X) for
with the inference L(X) <  < U(X) is made. We say CX is the interval [L(X);U(X)],
The width of the con dence interval is simply U(X) L(X) d, and P( 2CX) 1 a:
Fixed-width con dence intervals are a large part of sequential estimation. It is known that
interval estimation is more informative than point estimation due to the P(^ =  ) = 0 for
any continuous distribution. Interval estimators consist of width of the interval and the
coverage probability. There are merits to both. A small coverage probability implies that
the researcher has a larger chance of making an error, whereas a large width is uninformative.
1.4 The Gamma Distribution
The model assumption for the proposed sampling scheme is that the underlying distri-
bution is Gamma. The focus is on estimating the mean parameter of the Gamma distribu-
tion. The Gamma distribution is a  exible right-skewed distribution that has a variety of
applications. It is often used in modeling times-to-event that is seen in biological science,
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engineering, ecological, and probability  elds. The density is
f(x) = 1 ( )  x  1e x= ; for x> 0; (1:4:1)
where  ( ) = R10 t  1e tdt and  ; > 0, with   12 =p and   ( ) =  ( + 1). Note,  
and  are referred to as the shape and scale parameters, respectively. A property with the
Gamma density is that it is closed under scalar product. That is if X Gamma( ; ), then
Y = cX Gamma( ;c ): (1:4:2)
The sum of k Gamma random variables with shape  and scale  is
kX
i=1
Xi Gamma(k ; ): (1:4:3)
The moment generating function of this distribution is
MX(t) =
 1
1  t
  
;t< 1= : (1:4:4)
Which makes the mean and variance
EX =   and Var(X) =   2: (1:4:5)
1.4.1 Special Cases of Gamma Distribution
Some special cases of the Gamma distribution will be noted as they are referenced
throughout this dissertation. Suppose X is distributed with Gamma with shape  and
scale  . If the shape parameter  is one, then X is exponentially distributed with scale
 . It is well documented that adding k exponentially distributed variables will yield a
Gamma distribution with shape k and scale  , as noted in equation (1.4.3). If the shape
parameter is an integer then the variable is Erlang with shape  and scale  . If the scale
is two, then X becomes a Chi-Square distribution with parameter 2 . It follows by (1.4.2)
9
Figure 1.1: Gamma CDF
that 2X=  Chi Square(2 ). Finally if there are two independent Gamma distributed
variables, X Gamma( ; ) and Y  Gamma( ; ), then XX+Y  Beta( ; ).
1.4.2 Estimation
As previously stated, the Gamma distribution is widely used in engineering, probabil-
ity, ecological and biological science  elds. The problem of  nding reliable estimators for the
mean dates back to the early 1950s. There are a number of di erent methods that can be
used in  nding estimators for this distribution: method of moments, maximum likelihood,
and least squares. In particular, for this dissertation, the maximum likelihood method is
used to obtain the estimator for  and the method of moments estimator is used to obtain
the estimator for  
The maximum likelihood method of estimation is the most popular technique for de-
riving estimators. This technique has many ideal properties including the fact that it yields
the best unbiased estimators. Using (1.4.1), the likelihood function for n identically and
10
Figure 1.2: Gamma PDF
independently distributed variables. The likelihood function becomes:
L( ; ) = 1[   ( )]n
nY
i=1
x  1i e 1= 
Pn
i=1xi xi > 0; fori = 1;:::;n
To ease computation, the natural logarithm of the likelihood is taken. This can be done
because the natural log function is a monotone function, so the likelihood will maintain its
optimum values. If shape is known, the maximum likelihood estimator for  can be easily
obtained and is shown to be
^ =  X= : (1:4:5)
If the shape is unknown, no close form maximum likelihood estimator or numerical solution
needs to be given to arrive at its maximum likelihood approximation. This is the reason
the maximum likelihood estimation approach is not used for the shape parameter.
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The method of moments estimator is another common method for estimating a param-
eter. It works by setting the kth moment to the sum of xi to the kth power,
^E(Xk) = 1
n
nX
i=1
Xki i = 1;:::;n k2N:
Shape parameter ( ), which is widely considered a nuisance parameter. Because of the
unattainability of a best unbiased estimator, method of moments estimator is used,
^ =  X2=S2: (1:4:6)
This is a slightly biased estimate that is asymptotically consistent.
1.5 Literature Review
Early elements of sequential analysis appear in the 17th and 18th century, when math-
ematicians Huyghens, Bernoulli, Montmort, DeMoiver, LaGrange and LaPlace worked on
the Gamblers Ruin problem, (Ghosh and Sen 1991). This famous probability problem tries
to determine at what point gamblers will completely deplete their funds. Dodge and Romig
in 1929 were the earliest to apply what is now known as sequential analysis to a statistical
problem. They developed a double sampling test, where two samples were taken and the
proportion of defective units was observed. Shewart in 1931 developed theory on what
instance does an industrial process become out of control. Wald in 1947 produced a well
known book on sequential analysis that sparked interest from several authors world wide.
1.5.1 Bounded Risk Estimation
A common sequential problem dealing with preassigned accuracy is bounded risk es-
timation. For populations with known variance, there is a  xed-sample size solution; no
sequential methods need to be implemented. The problem arises when nothing is known
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about the population. Stein (1945) proposed a two-stage bounded risk estimation procedure
for Normal populations. This procedure incorporated using the standard deviation from
the initial sample to yield the proper terminal sample size. Modeling times with a Normal
underlying distribution will not yield ideal results because times are often skewed to the
right. A better distribution to assume when modeling times is the Exponential distribution.
Birnbaun and Healy (1960) developed a two-stage bounded risk estimation procedure
for Exponential processes. This sampling scheme assumed that the underlying distribution
was Exponential and found ways to bound the scale parameter using Chi-Square transfor-
mations. Their result can be summarized as follows: if there are m 3 initial observations
and
BBH = Am
2
(m 1)(m 2)
then
NBH =dBBH
 X2m
w e (1:5:1)
is the sample size required so that the risk of the estimator is within the bound w. However,
this procedure is not a genuine two-stage sampling procedure. The solution is only based
on the second sample. The initial sample is used to determine the sample size required
in achieving bounded risk and then it is not included in the  nal estimate. This is done
because taking observations from two di erent samples alters the sampling distribution.
It is true that bounding the risk cannot be done with a  xed sample size. However, dis-
regarding readily available information is wasteful. This concept was improved by adding
observations from the initial sample to the second sample, thus making the procedure a gen-
uine two-stage sampling procedure. Although, this proved to be an asymptotically great
bounded risk-estimator (Kubokawa 1989), no actual proof was provided for this result and
it is uncertain if it holds for any number initial observations (> 3).
Various works in sequential estimation of scale parameter of the Exponential distribu-
tion is done by Mukhopadhyay (1995), (2006), (2006a), (2006b), (2007), etc. Mukhopadhyay
and Pepe (2006) record an exact genuine two-stage sampling procedure. Their result which
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holds for any initial sample size greater than three, can be summarized as follows: if there
are m 3 initial observations and
BMP = 2Am(m+ 1)(m 1)(m 2)
then
NMP =dBBH
 X2m
w e (1:5:2)
is the sample size required so that the risk of the estimator is within the bound w. The
consequence of this is the expected value of the terminal sample size is more than twice that
of the initial sample size; meaning on average the researcher will sample more than twice
the observations needed. This is referred to as a penalty for exact bounded risk estimation.
Exploring the distribution of this terminal sample size, a reduction of this terminal sample
size could be found making this exact procedure more practical, Zacks and Mukhopadhyay
(2006).
1.5.2 Fixed Width Interval Estimation
The next sequential problem is restricting the interval estimators width. Interval es-
timation is one of the fundamental aspects of statistics. Presenting interval estimators are
often preferred over measures of variation, such as risk. This is probably due to the fact that
con dence intervals can yield better interpretations. This is particularly important when
the estimate does not have a Normal sampling distribution, Ramsey and Shafer (2002).
Both measures give  exibility to the estimator, but interval estimators give results in terms
of what is probable, i.e. the probability that the true parameter lies within a 1 a con -
dence region is 1 a.
Fixed-width con dence consists of relatively high probabilities and relatively narrow
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interval widths. Traditionally, they are of the form
CX =f j XN d< <  XN +dg; (1:5:3)
with the terminal sample size N. There is no  xed sample size solution to this when the
variance of a distribution is unknown. The width of the interval estimator is dependent
upon the variance of the distribution. Stein (1949) solves the Normal  xed width problem
by proposing a two-stage procedure to bound the con dence interval for mean  when vari-
ance  2 is not known. The terminal sample size of this procedure is given below,
N = maxfm;d
b2m 1;1 a=2S2m
d2 eg; (1:5:4)
where bm 1;1 a=2 is the 1 a=2 point of a t with m 1 degrees of freedom. This uses the fact
that bm 1;1 a=2 will be larger than z1 a=2. This procedure was shown to be asymptotically
inconsistent. As the initial sample size gets large, the ratio between widths of this proce-
dure?s sample size and the optimal sample size will be (bm 1;1 a=2=z1 a=2). Ghurye (1958)
proposes a two-stage  xed-width con dence interval for a location parameter of a general
density, f(x), along the lines of Stein. This is not used for mean. Chow and Robbins (1965)
record a purely sequential interval estimator for the mean of a general density f(x). This
sequential result uses an initial sample of m observations, then chooses the  rst n for which
the following is achieved size is
N = minfn mjn d 2z2a=2(S2n +n 1)g; (1:5:5)
However, their procedure uses asymptotic theory. This is not a practical approach for model
estimates because it observes observations one at a time and we are avoiding Normal ap-
proximation. A general method for determining  xed width con dence intervals is given by
Khan (1969). This method like the previous methods use Normal theory; in it he discusses
almost sure convergence, asymptotic consistency, and asymptotic e ciency. Research is
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continuing to be developed in this area. For example, Mukhopadhyay, Silva, and Waikar
(2006) develop a two-stage sampling procedure to which they compare Steins  xed width
interval approach (1949) and Chapmans  xed width interval approach (1950).
As noted before when estimating mean time, it is better to model with the Exponen-
tial distribution. Govindarajulu (1995) developed a sequential estimator for the mean of an
Exponentially distributed population. This result is more applicable to modeling times, it
is summarized that as follows: if
zn = z[1 +n 1(1 +z2)=4 +o(n 1)]
NG = minfn mjn z2n  X2n=d2g (1:5:6)
will bound the risk. This procedure again uses Normal approximation.
However because of the shape of this distribution, no research has been found on re-
stricting the width of the interval without using asymptotic approximation.
1.5.3 Modeling Times with Gamma
It should be noted that both of the prior subsections ended with sequential research in
statistical modeling for Exponential populations. This is because there is not much research
in this area for Gamma populations. However, in the same instances where the Exponential
model can be used, so can the Gamma. Speci cally statistically modeling random times,
such as mean time-to-failures, are assumed to be Exponential. Where the longer one survives
the smaller the probability is for continual survival. This is not always the case. For
example, it is charted for life expectancy of an infant that there are many casualties during
the  rst few months of birth. So for a short period of time, the life expectancy increases
the longer the infant lives. It will be more appropriate to model infant life expectancy with
a Gamma or Weibull distribution. Both of these distributions are more general forms of
the Exponential distribution. There are several works that discuss modeling MTTF as a
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Gamma distributed variable: Coit and Jin (1999), Shapiro and Wardrop (1978), Barber
and Jennison (2002), etc. These articles provide examples of when the Gamma should be
used over the Exponential distribution. For example, when modeling failure times with a
known number of failures and missing values are present. The time between one failure and
the last record is Gamma with known shape. This happens often when data is recorded
periodically and not after each failure, Coit and Jin (1999).
1.6 Dissertation Layout
In the second chapter, two-stage bounded risk estimators are developed. The perfor-
mances of these sample sizes are evaluated through simulation. Use of numerical methods
is implemented to reduce the value for the sample size, making the estimator more asymp-
totically consistent. In the third chapter, a  xed-width interval estimator is created, and
another example is given to illustrate how it works and how it relates to queueing theory.
The  nal chapter summarizes the results of this dissertation and discusses future research
problems in this area.
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Chapter 2
Bounded Risk Estimation
The goal for the bounded risk problem is to sample the fewest number of observations so
that the risk is just within a predetermined bound. Birnbaum-Healy (1960) developed a two-
stage sampling procedure for the Exponential distribution; however their method does not
use the information obtained from their initial sample in their  nal estimate. Mukhopadhyay
and Pepe (2006) develop a two-stage sampling procedure for the Exponential distribution
that combines the initial sample with the second sample to derive the  nal estimate. In
this chapter, we generalize Mukhopadhyay and Pepe?s result to the Gamma distributed
populations. It should follow that when the shape is equal to one, our results will be
exactly that of Mukhopadhyay and Pepe.
Additionally, we introduce some notations and basic concepts of decision theory as it
applies to the Gamma distribution. First, the risk bounds are found when only the shape
parameter is known. Secondly, risk bounds are found when both parameters are unknown.
We also evaluate the performance of our bounds theoretically and through simulations and
make possible improvements.
2.1 Shape Known and Scale Unknown
There are a number of reasons the shape known case is studied: (1) There are partic-
ular instances where the shape parameter is either known or can be assumed as known, (2)
studying the alpha known case allows us to see how robust the Exponential assumption is,
(3) there are times when the shape parameter is not known but there is a mathematical
theory that allows us to assume the shape parameter is known, and (4) it lays the ground
work for when shape parameter is unknown.
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MTTF is often estimated as an Exponential random variable. This is merely a special
case of the Gamma distribution when the shape is known and equal to one. Mukhopadhyay
discusses this in a number of articles (1995), (2006), (2006a), (2006b), (2007), etc. However
in many cases, MTTF is modeled with a Gamma distribution when the shape is known
and not equal to one. Dopke (1992) and Coit and Jin (1999) discuss estimation of the
MTTF as a Gamma random variable. The example given by Coit and Jin is when the time
between each failure is not recorded. If there are k failures in a span t, then the MTTF is
Gamma distributed with known shape k and unknown scale. They elaborate on why each
failure time is not always recorded saying, \this is understandable because the elapsed time
meter records time for the entire assembled item and not the individual components." This
is similar to the idea of sum of Poisson process random variables. Other examples when
the shape is known occur with modeling times and Normal distribution; there are modeling
times when the shape parameter is assumed known just as there are instances in the Normal
distribution when variance is assumed known. This can happen for a number of reasons;
either there is so much historical evidence that the shape is consistent, there exists some
mathematical theory for the shapes value, or the actual shape is of little concern as long as
it is within reason. For example, in Maurellies (1999) precipitation models, he discusses the
actual unimportance of knowing the exact shape. They state that since the data is right
skewed, it is important to model the data with a low shape value. In this dissertation, they
simply model precipitation intensity with  = 2. In each of these examples it is important
to have reliable estimates.
This is not the only reason for exploring the shape known, scale unknown case. Study-
ing the shape known case also gives an idea of how robust the assumption of an Exponential
distribution is. Mukhopadhyay and Pepe?s (2006) result is only for the Exponential distri-
bution. If there is some uncertainty that the shape is one, then there is no validity to their
procedure. These forementioned reasons provide justi cation for studying the shape known
case.
Our goal is to develop a reliable estimation sampling scheme for when only the scale is
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unknown. If the shape  is known and it is only desired to estimate the scale  , our goal is
to  nd the fewest number of observations n that will make its associated risk function less
than or equal to a predetermined risk w > 0. Recall the mean of a Gamma distribution
with parameters  and  is   . Hence the risk is Rn(  ; ^  )  w. If the shape is known
the problem reduces down to:
Rn = A 
2
 n  w: (2:1:2)
This implies, n A 2 w . Let the optimal sample size:
n =dA 
2
 we: (2:1:3)
This guarantees an integer value, which will ensure that the risk is within our bound. Sam-
pling more observations than n is considered oversampling, sampling fewer observations
than n will yield a high risk and thus an unreliable estimate.
Notice n is dependent on the unknown parameter  , so a sequential sampling proce-
dure must be implemented to ensure that knowledge can be gained on this parameter. A
pilot sample of m observations X1;:::;Xm i.i.d variables will be taken following a Gamma
distribution ( ; ), with m > 3. From this sample the maximum likelihood estimator
of  can be found using the maximum likelihood estimator Xm= , see (1.4.5) to see how
this was derived. That estimate is used to determine the terminal sample size N. This
quantity will guarantee that we do not exceed the necessary number of observations for
the statistical procedure by too much, as it might be costly or impractical, yet not fall
short of an appropriate sample size either. After observing the  rst m observations, our
 rst stage, a decision is needed to determine if the procedure can continue with the m ob-
servations, or if more need to be added, our second stage. Yielding our two-stage procedure.
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Theorem 2.1 If X1;:::;Xm i.i.d. Gamma ( ; ) initial observations are drawn, (m  
3)and B is chosen to be
B = A 2
 m
  
2m2 (m  1)
 (m ) +
(m3 +m2)[ (m  2)]
 (m )
 
: (2:1:5)
and the terminal sample size is chosen to be
N = max
 
m;dBX
2
m
 3w e
!
: (2:1:4)
Then if N m observations are drawn in the second stage the risk over all N observations
will be less than a predetermined risk bound w : RN  w
Proof.
We can re-express the risk on all N observations as RN = AE(XN   )2 side of the inequality
as
AE
"
m2
N2
 X
m
   
 2
+  
2
 
 N m
N2
 #
:
Recall m N, so the ratio is mN  1, and N BX
2
m
 3w .
Now,
AE
"
m2
N2
 X
m
   
 2#
 AE
"
m
N
 X
m
   
 2#
 m 
3w
B AE
 
1
 2  
2 
 Xm +
 2
X2m
!
Also,
 2
 AE(
N m
N ) =
 2
 AE(
1
N(1 
m
N)) 
 2
 AE(
1
N) 
 2w
B AE 
 2
X2m
Thus, using the two inequalities above with the reexpression fact we have
AE
 X
m
   
 2
 m 
2w
B AE
 
m
  
2m 
Xm +
m  2
X2m
+  
2
X2m
!
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Using the fact that Pmi=1Xi  Gamma(m ; ), it is easily seen that 2  1Xm will be
distributed  2 with 2m degrees of freedom. It can be veri ed that expectation will be
 (m  k)
2k (m ) . We obtain the equation:
RN = AE
 X
N
   
 2
 A 
2w
B
 m
  
2m2 (m  1)
 (m ) +
(m3 +m2)[ (m  2)]
 (m )
 
:
So to ensure the expected loss is less than our risk bound w, we set the righthand of the
inequality to equal w then solve for B accordingly and obtain equation (2.1.5).
2.2 Improving the Terminal Sample Size
In the prior section, we found results that certainly achieved the goal of having the risk
within the risk bound. An alternative to the asymptotic sampling that ensured the risk is
within a bound was found. Remember that is only part of the goal; the goal is to sample
the fewest number of observations that achieves the bounded risk goal. It is important
to investigate the relationship between the terminal sample size and the optimal sample
size. Exploring the relationship of the N and n is the  rst step in seeing if N needs to be
reduced. If m<n , then
E[N=n ] =
 m
  
2m2 (m  1)
 (m ) +
(m3 +m2)[ (m  2)]
 (m )
  
1 + (m ) 1 :
This means on average, the terminal sample size will be larger than the optimal for any value
of m  3. This is what is meant by the procedure being exact. Clearly, the terminal sample
size N is a biased estimator of n . Thus the asymptotic performance will be examined in
similar fashion to equation 1.3.2 and 1.3.3. Notice also that in these equations the terminal
sample size is a function of m, but does not necessarily consist of the m observations.
Our procedure is a genuine two-stage sampling procedure so it will consist of m initial
observations along with additional observations. Since that is the case, we cannot evaluate
the asymptotic performance by simply looking at m !1, because N=n !1 as well.
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However, it can be evaluated in the following manner w!0 as m!1and E[N=n ] <1
lim E[N=n ] = limE[B
 X2m
 3w
 w
A 2 ]
= (A 2 2) 1 limE[B  X2m]
= (A 2 2) 1 lim
 
A 2
 m
  
2m2
m  1 +
m3 +m2
(m  1)(m  2)
  
E[  X2m]
=   2 lim
 m
  
2m2
m  1 +
m3 +m2
(m  1)(m  2)
 
E[  X2m]
=   2 limm
 (m  1)(m  2) 2m (m  2) +m2 2 +m 
 (m  1)(m  2)
 
E[  X2m]
=   2 limm
 m2 2 3m + 2 2m2 2 + 4m +m2 2 +m 
 (m  1)(m  2)
 
E[  X2m]
=   2 limm
 2m + 2
 (m  1)(m  2)
 
E[  X2m]
Now E[  X2m] =   2=m+ (  )2, which implies E[  X2m  2] =  =m+ 2.
limE[N=n ] =  lim
 2m + 2
 (m  1)(m  2)
 
+ 2 lim
 m(2m + 2)
 (m  1)(m  2)
 
:
Thus,
limE[N=n ] = 2: (2:3:1)
In addition to studying the mean between the ratios of the terminal sample size to
optimal sample size, the same should be done with the variance. It is important to consider
the amount of variation that will occur for the best possible scenario.
limVar[N=n ] = limVar[B
 X2m
 3w
 w
A 2 ]
= lim(A 2  4  4)Var[B2  X2m]
Now Var[  X2m] = E(  X4m) (E  X2m)2. Recall  X2m Gamma(m ; =m). Using the moment
generating function (1.4.4), one can easily  nd that
limVar(  X2m) =  2 4=m2 2 3 4=m:
which means,
 2 lim
 4m2 2 + 8m + 4
 2(m  1)2(m  2)2
 
 2 3 lim
 m(4m2 2 + 8m + 4)
 2(m  1)2(m  2)2
 
:
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Thus,
limVar[N=n ] = 0: (2:3:2)
The limiting mean of the ratio between terminal sample size and optimal sample size is
two. Also, the limiting variance of the ratio between the terminal sample size and optimal
sample size is zero. Therefore, it can be concluded that the terminal sample size becomes
twice that of the optimal sample size. Practically this means in the best possible scenario
the terminal sample size will still be nearly twice the optimal on average. This might be
the price of having a \genuine" two-stage sampling procedure that uses exact methodology.
However, it is desired to reduce N so that its corresponding risk is just within the bound. It
is important to recall the bound coe cient B is proportional to our terminal sample size N.
With this in mind, it would be an improvement if an alternative bound coe cient B could
be found. In order to truly see improved results, we must  nd a way to reduce the bound
coe cient signi cantly. Instead the next section considers a more practical application. It
will continue to use the B in result (2.1.5) and discuss reducing the sample size empirically
to  nd a better bound coe cient through simulations.
This section studies RN as a function of  in order to determine where the maximal
risk occurs. This is done because the risk function can be altered by some constant and
yielding a new bound coe cient Bnew that should reduce sample size and continue to bound
the risk of the mean. Table A.3 gives values of the bound coe cient when A = 1. We see
as both  and m increase B nears two. This gives some information about an appropriate
sample size, but a better value for bound coe cient can be found that will give smaller
values for the terminal sample size that will be closer to optimal sample size. Remember
this is a generalization of the Exponential case. Zacks and Muhkopadhyay (2006) were faced
with the exact same problem. In their article, the authors decide they can reduce B by
investigating the distribution of the risk under their sampling procedure. This is done by
identifying what value for  gives the maximal risk, and afterwards empirically increasing
B so that the maximal risk is just within the bound. Once that was done the new empirical
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B was formed as a ratio of their prior B. The following are their results of these simulations:
Bnew = 0:565B: (2:3:3)
Since as  increases B decreases, simply choosing 0:565B will be signi cant improvement
for the Gamma case for any  > 1. No further work needs to be done. However, the fact
that as  increases B decreases we choose to further our research and develop a new bound
coe cient as a function of the old B and  .
The risk function of our two-stage sampling procedure was investigated as a function
of the scale, in order to approximate the  where the maximal risk occur. Clearly, larger
 values result in larger risks if N were to remain constant. However, larger  values tend
to result in larger values for N, which reduce the risk. So the maximal risk under this two-
stage sampling procedure is not necessarily an in nite entity. In fact, through simulations
the maximal risks most commonly occurred between  ve and six. Once this was done, B
was identi ed for each  , then empirically reduced so that the risk is just within the bound
w. The new B is the ratio of the empirical B found to the B as a result of mathematical
theory given in (2.1.5). In Figure B.1, we can see a scatter plot of these ratios and  .
For each value of  there was a corresponding ratio. For example,  = 1 would corre-
spond to 0:560. Looking at the scatter plot, there appears to be a negatively exponential
relationship between  and what the appropriate ratio should be, leveling o around  = 20.
A regression is performed to exploit this relationship. This is done only to  nd coe -
cient of log ( ). For this problem, we are not trying to  t the curve, but have a curve that
gently sits above each of the points. In order to do this, the same regression is used but the
slope needs to be altered. As stated earlier, 0:565 su ces for all  > 1, this will be used to
 nd the intercept. With this we  nd that:
Bnew = [ 0:031 log( ) + 0:597]B ;  < 20
Bnew = 0:505B ;   20 (2:3:4)
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This will give smaller values for B see Table A.4.
2.2.1 Performance Properties of New Estimation Procedure
A genuine two-stage procedure for sampling data to an assigned accuracy only assuming
the Gamma distribution was found in Theorem 2.1. This section showed that ultimately this
procedure would continue to sample nearly twice as many observations than needed. A more
practical solution of how to select a smaller number of observations was also considered in
this section. Unlike section 2.1, a mathematically rigorous proof was not provided. However,
su cient analysis was performed to substantiate the belief that the risk will always be within
the risk bound w and that a resulting reduction in terminal sample size of nearly half the
observations will be selected. In fact if  = 1;w!0 as m!1 and E[N=n ] <1 then
limE[Nnew=n ] = 1:13;
and if   20, then
limE[Nnew=n ] = 1:01:
This means that instead of sampling nearly twice as many observations, the improved two-
stage sampling procedure will sample between approximately 1.01 and 1.13 depending on
the value of  and the initial sample size. This is seen in Table A.4. Not only does this
improved result give reliable estimators for  but the terminal sample size nears the optimal
sample size.
2.3 Computer Simulations
In the previous section, the mathematical theory was provided to ensure the risk stays
with the predetermined bound. To verify the results in the previous section a simulation
study was conducted using R software. In the simulation, di ering values for optimal sample
size n were chosen: 25, 50, 100, 500. We  x  = 5 since this result is not dependent upon
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 and vary  = f0:5;1;2;5;10g. A is a constant expression, we choose it to be 2; 10,000
replications were used for each case. The quantity N is an estimate for the expected value
of N and r is an estimate of the risk with the original terminal sample size. This simulation
was repeated with the improved terminal sample size Nnew. Our desired result is to see r
fall beneath w and to see rnew be just below w and Nnew to be above n . Also, since this
is a generalization of Mukhopadhyay?s research we would like to see the same results with
 = 1. As such, our results for  = 1 and  = 5 should resemble Mukhopadhyay and Pepe?s
(2006) results. Figure B.2, B.3, B.4, and B.5 give visual representation of the estimated
risks compared to their risk bounds as shape varies 0.5, 1.0, 2.0, 5.0, 10.0 and n is  xed
to 25. Figure B.4 and B.5 display the same for the improved results. Notice, the estimated
risks fall within the risk bound. With the improved results the estimated risks are closer to
the risk bound. Further detail is given in Table A.1 and Table A.2.
See Table A.1 and Table A.2, we note the following:
1) In Table A.1, for the case  = 1 and  = 5, our mean value for N and mean value for r
are nearly identical as those given by Mukhapadyay and Pepe. The B given in this article is
exactly that of their B. This is to be expected because this is a generalization of their result.
2) In Table A.1, the mean value for N nears twice that of n . Note N is a function of  and
m, so as both variables get larger N gets closer to 2n . We can see this if we look across
rows and down columns.
3) In Table A.1, the mean value for r is always nearly half of our predetermined risk w. This
follows since the expected risk is inversely proportional to the number of observations drawn.
4) Naturally as the initial sample size m increased, we obtained more information about
the sample with which to make our decision and consequently we obtained better values for
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r and N.
5) From Table A.1 and A.2, we observe that at no point in this simulation do the estimates
for the risk nor the improved risk ever exceed the risk bound w.
6) In Table A.2, we observe that the newer results risks are much closer to the bound, and
the newer sample sizes have been reduced on average by 43%.
7) In Table A.2, we observe that the average terminal sample size Nnew is still larger than
n . It is my conjecture, that it will be unable to improve Nnew any further. Our average
risks are just within the bounds, which is our goal. Reducing the sample size any further
might result in having the average risk eclipse the risk bound.
2.4 Shape Unknown and Scale Unknown
In this section, we provide a solution to the question of how many samples should be
selected if both parameters are unknown. If variables are both unknown,  nding bounds
become more di cult. The goal remains the same, to  nd an appropriate sample size N
that will make the associated risk function less than or equal to a predetermined risk w> 0.
Recall if X Gamma( ; ) then the mean is   and the estimator for the mean is X. The
goal is to  nd N such that:
AE(X   )2 <w;
This problem cannot be solved mathematically as it was done in section 2.1. The
proof in said section requires the chi-square transformation that enables us to  nd the
expectation without knowing the scale parameter. Without knowing the shape parameter
that transformation cannot be used. As stated earlier, studying the shape parameter known
case lays the ground work for times that the shape parameter is unknown.
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Like many other statistical procedures, in place of the parameter an estimate will be
used which will yield an estimate for bound coe cient and an estimate for the terminal
sample size. The  rst stage is to collect m initial observations and to  nd an estimate of
both  and the mean. The second stage collects ^N, where ^N is as follows
^N = max(m;dBX
2
m
^ 3w e): (2:4:1)
The law of large numbers guarantees that as the sample size approaches in nity the esti-
mate will approach its true parameter value. This means that with a relatively large initial
sample size, the result should work nearly as well as in section 2.1. In section 2.5, we address
how the initial sample size should be selected.
At this point, the next step is to evaluate the performance of terminal sample size. The
method of moments estimator is used for the shape (^ = (  Xm=Sm)2). As we mentioned
in section 1.4, there is no closed form maximum likelihood estimator for  . The sample
mean will be used as an estimate for the true mean. The simulations are set up the same
as before. In the simulation both parameters are known and di ering values for optimal
sample size n were chosen: 25, 50, 100, 500; 10,000 replications was ran for each simu-
lation. The quantity N is an estimate for the expected value of ^N and r is an estimate
of the risk. We would like see r be just below w and N to be above n . For the  rst
result, we  x  = 5 and vary  = f1;2;5;10g. Also, since A is a constant expression we
choose it to be 2. This way, our results for  = 1 and  = 5 should resemble Mukhopad-
hyay and Pepe?s (2006) results. The simulations are given in Table A.5 and Table A.6.
Figures B.2 and B.3 show a visual representation of how the estimated risks compared to
the risk bounds, as  varies 1, 2, 5, 10. Notice how it consistently falls below the risk bound.
1) As we might imagine when m is small the numbers di er greatly, because determining
N is heavily dependent on  . The m = 10 observations were inconsequential and not even
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worth recording. The larger the initial sample size, the better estimate of  we will obtain.
2) With a non-constant  present, there is more variance in the estimates for N. Note:
N is larger than the  known counterpart, yet the risk is higher. This is due to skewed
unknown distribution of N. Even though there is more variability among the statistic, one
should not expect to see the bound exceeded as long as cautionary measures are taken.
3) The estimates for the still risk fall below the risk bounds most of the time. There are
cautionary factors when the initial sample size is too small, as well as cautionary factors
when the risk bound w is very small.
2.4.1 Robustness Considerations
No additional simulations are necessary to conclude that this method is not robust to
the  known assumption. As initial sample size gets large the bound coe cient nears A.
However, since terminal sample size has a cubic  term in its denominator, being o by the
smallest margin adversely impacts its value greatly. This is shown in an example in section
2.6. This was seen in the m = 10 case where the di erences were so severe they were not
worth reporting. When both parameters are unknown, one should take a moderate size
initial sample.
2.5 Determining Initial Sample Size
One might note that bound coe cient Bnew is a function of the initial sample m as
well as the shape parameter  . Determining the initial sample size is very important in
achieving the goal of sampling the optimal amount. The procedure as proposed in Theorem
2.1 does not specify m. This section gives a method of selecting the initial sample as long
as the user has a vague idea of the parameters. The problem with blindly selecting m initial
observations is as follows: if m is chosen too small then the terminal sample size N will be
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large and if m is chosen too large then the terminal sample size N will then equal m and
consequently be too large. It is desired to select m initial observations that minimize the
terminal sample size N. Before details are laid out, it is important to note that this is a
practical application and is best if discretionary measures are used.
The sampling procedure given in section 2.1, is a genuine two-stage sampling procedure.
This means no additional statistical information is given prior to the  rst stage and no data
can be used to determine the initial sample m. This does not mean that there is no general
knowledge about the population being sampled. It is possible that there is mathematical
theory or historical evidence to determine what the parameters might be. Those values
should yield a decent value for m that will not in ate the terminal sample size. Notice that
the optimal sample size given in (2.1.3) is a function of the parameters  and  .
STAGE 1:
m =dA 
20
 we
STAGE 2:
N = max
 
m;dBnew
 X2m
 3w e
 
In all the previous simulations the initial sample size was preset m =f10;20;30g. As such
we saw how the terminal sample size improved as the initial sample size increased. However,
this section points out there is a risk associated with a large initial sample size.
We will see if this leads to a reduction in the terminal sample size. In the simulations,
shape and scale is equal to two and  ve respectively, A is chosen as two like before, w is
chosen to be 0.500, 0.250, and 0.125. To compare this idea to the one prior, the values for
m are 5, 10, 50, 100, and 500, and then that is compared to m values if the hypothesized
value is within 25% of the true scale parameter, which is 3.75 and 6.25 respectively.
Table A.7 shows that if the hypothesized value is within 25% of the true scale, then
the resultant terminal size in each example is smaller than when m is chosen too small, i.e.
m = 5 and m = 10 and when it is chosen too large m = 500. We caution the user to use
discretionary measures. If the researcher is not con dent that their hypothesized value is
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even close to the unknown parameter then it will be better to sample a decent size initial
sample size as they see  t.
2.6 Example in Understanding Precipitation Rates in Regional Climate Mod-
els
Maureil et al (2007), Gutowski et al (2008), and Groisman et al (1999) all state that
precipitation rate intensities can be modeled under a Gamma distribution. In this example
we will model the precipitation rate intensity with the Gamma distribution. Furthermore,
we will estimate rainfall in the West Point, GA, United States using the sequential estima-
tion proposed earlier sections. Their are two purposes of this example, the  rst illustrate the
bounded risk sampling procedure according to their theory regarding the shape, the second
is to see how robust their shape assumption is by modeling the data with the with varying
shape parameters. This is purely an example of how to use this bounded risk estimation
procedure; there is no e ort to solve any of their climatology problems.
Gutowski et al. (2008) notes that total precipitation in a bin (referring to histograms)
may increase under the warming scenario, but its relative contribution to total precipitation
may decrease. A positive change in bins of normalized distribution, not only have greater
precipitation in the scenario climate, but they contribute relatively larger amounts to the
total. Groisman et al (1999) analysis reveals increases in extreme precipitation provide
evidence for statistically signi cant increases in precipitation in the United States. These
climate models have projected increase in global precipitation, which is believed to be due
to global warming stemming from increases in greenhouse gases.
Gutowski explains the theoretical model of intensity of daily precipitation.
p(x) = pox  1exp( x= ); (2:6:1)
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where, po and  are parameters of the distribution and a restriction   1. The total
precipitation during a period described by
P =
Z 1
0
pox  1exp( x= )dx: (2:6:2)
and the total number rain days is
N = lim !0
 Z 1
0
pox
  1
x exp( x= )dx
 
: (2:6:3)
Normalizing equation (2.6.1) by dividing the total precipitation yields the Gamma distri-
bution, see (1.4.1)
p(x) = x
  1exp( x= )
   ( ) : (2:6:4)
Gutowski further believes that the shape parameter should be two in the regions they study.
They state it is not a requirement for  = 2, however the case  = 1 poses problems for
computing the number of rain days (2.6.2) and is not physically realizable in the present
context. This is an example of when shape is known and scale is unknown.
The data used in this example was collected from the United States Historical Clima-
tology Network. Here, we will look at one city in the southeastern United States; West
Point, GA during the warm season, which is de ned by Gutowski as (April - September).
Forty initial observations were collected from the years 2001-2005. Based on our value for
N we will make the decision to collect more observations if necessary. Assume that each of
the  ve cities have equivalent distributions since we are modeling the region.
Let A = 2:5 and w = 0:0025.
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Below, we can see the table of the data that was collected.
Precipitation of West Point, GA. A=2.5 w=0.0025 and  =2
Pilot Data
m=40 B = 5:258 B = 2:655
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86
Xm=0.558 BX
2
m
 3w = 41:338 )N = 42New Data
N m = 2
0.12, 0.02
^ = 0:287
This process is repeated assuming the shape is 1.75 and again when the shape is 2.25.
This is done to see how varying the shape will a ect the total sample size and the mean of
the entire sample. Below, we can see the table of the data that was collected.
Precipitation of West Point, GA. A=2.5 w=0.0025 and  =1.75
Pilot Data
m=40 B = 5:296 B = 2:674
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86
Xm=0.558 BX
2
m
 3w = 62:154 )N = 63New Data
N m = 64
0.12, 0.02, 0.25, 0.08, 1.43, 0.12, 0.04, 0.03
0.04, 0.26, 0.23, 0.76, 0.04, 0.22, 0.70, 1.30
1.30, 0.62, 0.55, 0.02, 1.10, 0.60, 0.07
^ = 0:307
This is done again, when  = 2:25
34
Precipitation of West Point, GA. A=2.5 w=0.0025 and  =2.25
Pilot Data
m=40 B = 5:228 B = 2:640
0.09, 0.55, 0.73, 0.05, 0.05, 0.01, 0.97, 0.23
0.54, 1.75, 0.51, 0.20, 1.15, 0.60 1.39, 0.32
0.66, 0.01, 0.35, 0.19, 0.61, 0.29 0.20, 3.30
0.49, 0.10, 0.47, 0.57, 2.00, 0.23, 0.61, 0.18
0.19, 1.00, 0.30, 0.07, 0.35, 0.62, 1.20, 0.86
Xm=0.558 BX
2
m
 3w = 28:870 )N = 40^
 = 0:266
This procedure was done varying  =f1:75;2:00;2:25g. Notice, that the values for B
remained close at 2.674, 2.655, and 2.640 respectively. Even though that is the case, the
values fordBX2m  3w 1evaried much more with 29, 42, and 63 respectively. So varying  
only 25 tenths can lead to a large di erence in the  nal sample size. There was a total of
246 raindays recorded at this station. The mean over all 246 observations were 0.540 and
the means for the sample 0.599, 0.570, and 0.537. This is just an example to show that the
two-stage sampling procedure will lead to a reliable estimate and to see how adjusting the
shape parameter a ects the  nal sample size. We sampled a total of 64 observations and is
indeed within the risk bound speci ed earlier. It should be noted that we only looked at one
city from the years 2001-2005. In fact, the United States Historical Climatology Network
has 1,062 stations across the nation with some dating back before 1900. There is a wealth of
information to develop a wide variety of climate models. There is a plethora of information
and all of the data need not be used to develop a reliable estimate for precipitation intensity.
2.7 Discussion
It is well known that bounding the risk with a  xed-sample size is impossible. This is the
reason a two-stage sequential estimation procedure was implemented. There is prior research
involving genuine two-stage exact methods for a Normal and Exponential population, but
no research in this area for a Gamma population.
We mathematically determined a sample size that will always ensure the risk is within
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a predetermined risk bound when the shape parameter is known, and an estimate for that
sample size when the shape parameter is unknown. The consequence of a two-stage exact
method was the end result of sampling more than twice as many observations as need be.
The function of RN through simulations is to aid us in arriving at a more practical solution.
Finally, this procedure was illustrated on precipitation of West Point, GA in the summer
months of 2001-2005.
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Chapter 3
Fixed Width Confidence Interval Estimation
The focus of the dissertation is developing reliable estimators using exact evaluation
criteria. The criterion used in this chapter is having the interval estimator less than or equal
to some predetermined width. Whereas, bounding the risk certainly gives some indication
of the reliability of the estimator, an interval estimator will give more interpretable results.
Fixed-width con dence intervals are prevalent in sequential estimation. There are a
number of articles that restrict the width of the mean for di erent distributions. There is,
however, not a lot of research in this area on the Gamma distribution. Chow and Robbins
(1965) develop a two-stage sampling for a general distribution f(x), but their procedure
uses Normal approximation. Govindarajulu (1995) developed a sequential estimator for the
mean of an Exponentially distributed population. This result, though more speci c to the
exponential distribution still uses Normal approximation. This chapter uses pre-assigned
risk to answer the question of how to restrict the interval estimator. In many ways these
two topics are related, as discussed by Stein for the Normal distribution. Before our interval
estimator is proposed, we review con dence intervals for the Gamma distribution.
3.1 Con dence Intervals for Gamma Distribution
Con dence intervals are one of the fundamental aspects of statistical inference. In this
section, we will review former interval estimators for the Gamma distribution. We should
mention signi cant research in the Gamma distribution is performed with shape known.
We have already discussed why the shape known case is studied.
The following example comes from Casella and Berger (2002). The example these
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authors give pivot the statistic 2Pni=1Xi= . Denote g q as the qth quantile of a Gamma
distribution with shape n and scale  =n. This example involves inverting a statistic
P(g a=2 <  Xn < g 1 a=2) = 1 a, and a is its signi cance level. The estimator of  used is
Xn= . If X1;::;Xn are Gamma i.i.d. variables with shape  and scale  , then we know  Xn
will be Gamma Distributed with shape n and scale  =n. We can multiply  Xn by 2= , and
obtain a new variable Y   22n . Denote cq as the qth quantile of a Chi-Square distribution
with parameter 2n . So,
P(g a=2 <  Xn <g 1 a=2)
= P(g a=2= <  Xn= <g 1 a=2= )
= P(2g
 
a=2
  < 2  Xn=  <
2g 1 a=2
  ) = 1 a
= P(2ga=2 < 2  Xn= < 2g1 a=2 ) = 1 a
= P(ca=2 < 2  Xn= <c1 a=2) = 1 a
Rearranging the equations, the 1 a interval estimator can be obtained
CX =f j 2
 Xn
c1 a=2 < <
2  Xn
ca=2g: (3:1:1)
Neither of the aforementioned exact con dence intervals can be restricted. The interval
estimator presented in (3.1.1) is a multiple of  Xn, so it is dependent upon knowing all n
observations.
Fixing interval estimators widths is prevalent in sequential estimation. A brief synopsis
of  xed width con dence intervals, and formal de nitions of con dence intervals were given
in the  rst chapter. In this section, we explicitly de ne our goal in terms of the Gamma
distribution. There are two components of a con dence interval: (1) the interval width and
(2) the coverage probability. The interval width is the range from the lower bound L(X)
to the upper bound U(X). The coverage probability refers to the probability that the true
parameter is covered in that interval. For a  xed sample size, the two are inversely propor-
tional to one another. There are merits to both components. A low coverage probability
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corresponds to high chances of the experimenter making an error; however, a large interval
width makes the interval estimator uninformative. The goal is to  nd the sample size that
will ensure a high coverage probability and a narrow interval width.
Notice how results (1.5.4), (1.5.5), and (1.5.6) all developed terminal sample sizes for
 xed-width con dence intervals either by assuming the population is Normal or asymp-
totically will become Normal. This is due to the fact that these con dence intervals are
traditionally of the form given in (1.5.3). Since our procedure is only assuming Gamma pop-
ulations and it is known that it will be asymmetric; we emphasize our interval estimator
will not be of that same form.
3.2 Two-Stage Fixed-Width Con dence Interval for Scale
In this section, we propose a two-stage sampling procedure that assumes that the
observations come from a Gamma population. As mentioned earlier there is little research
in this area and there is no research that uses bounded risk to arrive at an interval estimator
for observations that are assumed to be Gamma. This procedure uses risk bounds developed
in chapter 2 to develop an upper bound for  .
For observations X1;X2::: i.i.d. Gamma distributed variables with shape  and scale
 . For a predetermined con dence interval width d, the goal is to estimate the mean with
1 a coverage probability, less than or equal to the width d. That is, P(  2CX) 1 a.
As in earlier sections, we have been assuming shape is known. If shape is known then our
goal becomes:
(1) P( 2CX) 1 a
(2) CX  d
Note that in the introduction it was listed as CX  2d. The reason for this is due to
the fact that in most of the prior work in this area the observations were assumed to come
from symmetric distributions. When that is the case, the mean is no longer a factor. For
a symmetric distribution CX =f j Xn d< <  Xn +dg, the width is 2d and completely
independent of the sample mean. As long as there is knowledge of the variance, knowledge
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of mean is not required. This is a luxury that asymmetric distributions such as the Gamma
do not have. Notice that the interval estimator (3.1.1) is a multiple of the sample mean.
The distance from the sample mean to the respective upper and lower bounds will not be
the same for the interval estimator given in this section.
The optimal sample size is the  rst n for which both criteria is achieved.
n = minfn2NjP( 2CX) 1 a;CX  dg: (3:1:5)
According to Ghosh (1991), ideally the terminal sample size for a  xed-width con dence
interval should have the following properties:
(1) N is non decreasing in d> 0.
(2) N is  nite with probability 1 for every d> 0.
(3) N=n !1 as d!0 in probability or a.s.
(4) E(N)=n !1 as d!0.
(5) limd!0P( 2CX) = 1 a
In the following section, we will show that under certain conditions these properties hold.
Theorem 3.1 For signi cance level a and predetermined width d, if X1;:::;Xm i.i.d. Gamma
( ; ) initial observations are drawn (m  3). If N is de ned in 2.1.4 and gq be the qth
quantile of the Gamma(n ;1=n) distribution
M = minfn N2Nj
r
Nw 
A [
g1 a=2 ga=2
 ]g (3:1:6)
Then if CX =f j XM=  
q
Nw 
A [g1 a=2=  1] < <  XM=  
q
Nw 
A [ga=2=  1] = dg
Then
(1) P( 2CX) 1 a
(2) CX  d
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Proof.
Theorem 2.1 ensures that A 
2
 N <w. This means,
 <
r
Nw 
A :
Denote g q be the qth quantile of the Gamma(n ; =n). The sampling distribution of
 Xn Gamma(n ; =n),
P(g a=2 <  X <g 1 a=2) = 1 a:
Let gq be the qth quantile of the Gamma(n ;1=n) distribution. Due to the scale property
(1.4.2),
P( ga=2 <  Xn < g1 a=2) = 1 a
P( ga=2= <  Xn= < g1 a=2= ) = 1 a
P( ga=2=   <  Xn=   < g1 a=2=   ) = 1 a
P(  Xn= + [ga=2=  1] <  <  Xn= + [g1 a=2=  1]) = 1 a
P(  Xn=   [g1 a=2=  1] < <  Xn=   [ga=2=  1]) = 1 a
P(  Xn=  
q
Nw 
A [g1 a=2=  1] < <  Xn=  
q
Nw 
A [ga=2=  1]) 1 a
The width of the con dence of this con dence interval is
q
Nw 
A [
g1 a=2 ga=2
 ]. This is
set to width d, and M is found accordingly.q
Nw 
A [
g1 a=2 ga=2
 ] = d
No close form solution exists, but the numeric solution yields the interval estimator
given in (3.1.6).
3.3 Computer Simulations
To verify this sampling procedure gives accurate results, a number of simulations were
performed. First to verify that the terminal sample size does increase as the predetermined
bound d decreases and secondly to see how w a ects the terminal sample size.
For the  rst simulation, the shape parameter was varied  =f1;2;5;10g, w =f5;4;3g,
and d = f10;5:0;2:5;1:0g. A was  xed at one. The value chosen for A should not be a
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large contributing factor to the  nal sample size M since the expectation of pNw =A is no
longer a factor of A. However, one should use discretion since M N and N is dependent
A, a large value for A might result in an in ated number for M. This simulation used
10,000 replications from a Gamma population with scale equal to  ve.
For the second simulation, the goal is to see if the percentage of times the scale pa-
rameter is within our interval and is greater than the 1 a coverage probability. The shape
parameter was varied  =f1;2;5;10g, w =f5;4;3;2;1g, and   xed to be  ve. With 1,000
replications, we observe the percentage of times the parameter lies within the con dence
interval. This was done for 80%, 85 %, 90%, and 95% coverage probabilities.
For the third simulation, it is desired to just see how the initial sample size m af-
fects the percentage of times the scale parameter is covered. The risk bound was var-
ied w = f5;2;1;0:5;0:2;0:1g and the initial sample size was varied m = f4;6;8;10;12g.
Notice the following:
1) Table A.8 shows that as the width bounds became smaller the sample size does increase.
2) Table A.9 shows that smaller risk bounds yield better initial estimates for the scale pa-
rameter. However, choosing w to be too small will in ate N which will consequently in ate
M. Similarly, if m is chosen too large it will in ate N.
3) Table A.9 shows that the percentage that the parameter is within the con dence interval
is always greater than the 1 a con dence level.
4) As always, initial sample size plays a factor in the estimate. Since theE(N) B  3w 1[ 2 2+
  2=m] = B 2( w) 1+B 2(m 2w) 1, it was suspected that large m values will yield closer
to the exact distribution. However, the risk bound w plays more of a factor than m does.
5) This is a numeric solution, so the researcher needs a maximum number of observations
they are willing to sample in order to yield a solution. For these simulations our threshold
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maximum was 50,000. This threshold maximum will a ect the average M value. Simulated
values for M might be biased above because of this reason.
6) Table A.10 shows that the initial sample size contributes to the estimated coverage
probability. However, the risk bounds seem to contribute more than the initial sample size.
3.4 Asymptotic Performance
Much like sequential risk estimators, it is pivotal that the terminal sample size of this
procedure be assessed. It will be shown that: (1) the ratio of expectations between the
terminal sample size and the optimal sample size is greater than one, (2) how well this
procedure will perform under certain conditions to see if the properties given in (3.1) will
hold. Unfortunately there is no close form solution of the terminal sample size nor the
optimal sample size. It is recorded that M will be the  rst sample size greater than N such
that the equality (3.1.6) holds. Likewise, the optimal sample size is the integer n such that
the probability is equal to 1 a and distance is equal to d. Recall that gq is the qth quantile
of a Gamma distribution with mean one and variance (n ) 1. By inverting the distribution
of mean estimator, it can be found that the optimal sample size for the interval estimator
is
n = minfn> 0j   1(g1 a=2(m) ga=2(m)) = dg:
The ratio of expectations E[M=n ] becomes
E
2
4minfn>Nj
q
Nw 
A  
 1(g1 a=2(M) ga=2(M)) = dg
minfn> 0j   1(g1 a=2(m) ga=2(m)) = dg
3
5:
Clearly if n >N, this reduces to
E
"
  1
r
Nw 
A
#
:
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Thus,
E[M=n ] 
p
1 + (m ) 1:
It is obvious that as d! 0, M !1. If the terminal sample size increases the random
variable (G=  1) should be examined asymptotically. It was mentioned earlier that G 
Gamma(M ;1=M). This means that the mean and variance ofG= will be one and (M ) 1
respectively. According to the Central Limit Theorem
pM (G=  1) = Z N(0;1):
Also, the random variable  XM=  Gamma(M ; =M ) with the standard deviation ( )
equaling  =pM . Let n 0 be the optimal sample size of the risk estimator. If m!1 and
w!0 such that E[N=n 0] <1 and d!0.
1:01 < limE
"r
Nw 
A
#
< 1:13 
Under those conditions, the upper bound of the proposed interval estimator
 Xm=  
r
Nw 
A (ga=2=  1):
approximately becomes
 Xm=   
M(za=2):
Because the Normal distribution is symmetric it is the same as
 Xm= +  
M(z1 a=2):
Similarly, the lower bound will be the same lower bound as the Normal lower bound. The
Normal distribution will have all the optimal properties. Thus, under those conditions
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asymptotically the proposed procedure will have all of the optimal properties. To summa-
rize, the procedure was developed using exact methodology and will hold for any number
of initial observations (m > 3). A small initial sample size may come with a price of
sampling more observations than needed. For large m such that m<n 0 and N <n , the
proposed con dence interval becomes approximately Normal and preserves many optimal
properties. Both n 0 and n are unknown quantities, so future research might entail  nding
a procedure that does not have to succumb to all of these exceptions
3.5 Example in Air Force Aeronautical Maintenance
In this section, we will show that these statistical estimation procedures can be used in
real life situations. For multiple purposes, the United States Air Force needs to assess the
readiness of the Air Force  eets. When a large number of planes are not operational the
 eet has a low readiness, which might consequently put the United States nation at high
risk, described by Rodrigues et al. (2000) and Morales et al. (2007).
Unspeci ed component time-to-failures are modeled with an Exponential distribution,
Morales et al. (2007). In order to do this, researchers must conduct an experiment to
collect data to see average lifespan of the component. There are three reasons a sequential
framework is suited here: (1) the experiment might involve destruction of the component,
(2) the time measured to failure as well as the time measured to repair is measured in days,
and (3) to  nd the average service time. The compensation of each worker is an expense
that must also be considered. This problem becomes two reliability estimation problems.
The multistage layout allows them to reduce the price of conducting the experiment.
Though they mention modeling times as an Exponential distribution, they explicitly
mention relaxing distributional assumptions from exponential to Gamma or Erlang.
It is desired to estimate operational availability of an air force plane that is de ned by
Kang (1998) as the ratio of estimated time operational over the estimated time operational
and time not operational,
Ao = E(To)E(T
o) +E(Tno)
:
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This problem consists of four aspects: arrivals, service,  nite population, and disci-
pline. The planes single components fail over time and each component is believed to be
Exponentially distributed. For simplicity, consider a single type of component for inventory.
This corresponds to the time operational To. Service time for this example refers to the time
that is required to repair a component. This corresponds to the time not operational Tno.
The servers are the c repair crews. If one of the repair crews is idle, a broken part is repaired
immediately; otherwise, it needs to wait in a queue until a crew gets idle. The repair times
are assumed to be Exponentially distributed. This also contains the additional assumption
that there is a  nite population, which we can imagine in the context of planes there will
not be an unlimited supply. In this example, the assumption is that the plane becomes
operational immediately meaning the removal and installation times of broken/spare parts
are negligible. The last assumption is that the queue is  rst in  rst out (FIFO) queue.
Dealing with government military real data is not readily available. Morales et al.
(2007) constructed a sample of convenience with 250 repair and 250 life times by simulating
from exponential distributions with rates 180 days/failure and 30 days/repair. No, r, and
 are subjects speci ed in their article. Unlike, Morales? article our emphasis is not on the
following goals:
Goal 1: Guarantee an average number of operative components at least equal to the
required ready-to- y r, E(No)  r, assuring that the mean number of operative planes,
averaging over time, will be adequate for the required working  eet.
Goal 2: Assure a high probability of having at least r operative components available,
P(No  r)   , for a su ciently large  2 [0;1]. This establishes guarantees about the
number of planes available at any time point.
Our goal is to use the information gained in this dissertation to estimate the repair and
life times. A real life scenario will be created based o of this information to determine if
fewer observations can be obtained to get a reliable estimate. Instead of simulating from
rates of 180 days/failure and 30 days/repair our simulations will be from 200 days/failure
and 25 days/repair. This information will be used to determine the initial sample size.
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Also, so that this is more applicable to the Gamma environment we will assume that there
is a spare present, making the shape parameter two.
The estimate for our operational availability is,
^Ao = ^To^
To + ^Tno:
Using 180 as hypothesized  and 30 as hypothesized  , we will determine if fewer samples
can be used to make our estimates within 50 and 10 respectively. We allow A = 1 and
w = 150. Remember these values are important for determining the sample size of the
second stage N but should not a ect the terminal sample size M.
m =dA 20 we=d 18022(150)e= 108:
This means our initial sample will consist of 80 observations and will be used to  nd the
second sample.
N = maxfm;dB  X2m 3weg= maxf80;d1:17(385:5)223150 eg= 146.
This means  <pNw = 209:28, this value is used in constructing the con dence interval.
Md = 134:4 which implies M = 146. The estimate of  over all 146 observations is
205.51. Finally the con dence interval is
CX =f j XM=  
q
Nw 
A [g1 a=2=  1] < <  XM=  
q
Nw 
A [ga=2=  1]g
=f j205:51 209:28[2:235=2 1] < < 205:51 219:28[1:777=2 1]g
=f j180:9 < < 228:8g:
Similarly, this is done with the service times. We allow A = 1 and w = 10. Remember
these values are important for determining the sample size of the second stage N but should
not a ect the terminal sample size M.
m =dA 20 we=d 3022(10)e= 45
This means our initial sample will consist of 45 observations and will be used to  nd the
second sample.
N = maxfm;dB  X2m 3weg= maxf45;d1:17(45:39)223(10) eg= 45:
The value for N = 45, the rate  has is bounded below  < p45(20) = 30, this value is
47
used in constructing the con dence interval.
Md = 69:05 which implies M = 70. Twenty- ve additional observations need to be
drawn.
CX =f j XM=  
q
Nw 
A [g1 a=2=  1] < <  XM=  
q
Nw 
A [ga=2=  1]g
=f j22:37 30:0[2:344=2 1] < < 22:37 30:0[1:682=2 1]g
=f j17:21 < < 27:14g:
The length of the  rst con dence interval is 47.9, which is lower than our predetermined
width of 50. The con dence interval length for the estimate is 9.93. For both component
failure times and service times, the intervals contain the actual parameter. Finally, our
estimate of the operational availability is:
^Ao = 410:20
410:20 + 44:74 = 0:902:
This actual statistic is distributed with a Beta distribution, and actual restrictions can be
left for future research. We can also  nd the long run fraction of time that the queue is
empty. In this particular example, an empty queue would mean that there are no repairmen
working on any planes,
1 22:69=399:17 = 0:891:
3.6 Discussion
A two-stage exact  xed-width con dence interval method was constructed. It was
shown that this procedure would have all of the optimal properties asymptotically as the
purely sequential asymptotic  xed-width con dence approach. Not only that, but an ex-
ample was used to show that it does work. The widths of the con dence intervals were just
within the bound constraints and both con dence intervals contained the speci ed parame-
ter. It is well documented that the ratio of two Gamma distributed variables are Beta. This
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answers the question of operational availability in terms of a 1-a con dence interval; simi-
lar research should be performed on a Beta distribution. Mukhopadyay and Zacks (2007),
developed a two-stage bounded risk procedure for the Exponential distribution where the
parameter of interest was a linear combination of location and scale. Also combining lo-
cation with scale for a three-parameter Gamma distribution is of interest. This is another
area where future research can be performed.
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Chapter 4
Conclusion
The goal in this problem was to develop a sampling method that obtained reliable
estimators without over-sampling in the Gamma environment. We have found two two-
stage sequential methods of  nding an appropriate sample size to achieve speci ed goals:
(1) bounding the risk and (2) bounding width of the con dence interval. These methods
are both genuine two-stage sampling procedures, meaning it uses information from all ob-
servations (initial and additional), and exact, meaning only the Gamma distribution was
assumed and at no point were there any approximations.
There is mathematical theory supporting the results for when shape is known; the
proposed procedures will always yield a reliable estimator. When shape is unknown, it is
shown through simulations that inserting an estimator for the shape works nearly as well.
It is also important to realize that the goal is to not simply sample so that the risk and
con dence interval widths are within our bounds, but it was desired to sample the fewest
number of observations that do so. Result bounded risk results yielded a terminal sample
size that was between two and three times the ideal sample size. After investigating the
distribution of the risk of the sampling procedure it was found that the bound could be
improved. These improved results were giving nearly ideal estimated risks. This gives a
more practical usage of the sampling procedure. The interval estimator given yielded nearly
ideal results. There was not much room for improvement. The width is always just below
d.
Once these methods were constructed they were implemented on two examples: One
with real data and the other with simulated data that could be used in a real scenario. The
 rst, observing precipitation intensity of West Point, GA. Forty initial observations were
drawn. The assumption was that  = 2. We showed how it would a ect the sample size
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and a ect the estimate that if  = 2 0:25.
Secondly, we used an aeronautical maintenance example. The operational availability
was de ned as the ratio of available time over maintenance time plus the available time.
The data was simulated according to Morales et al. (2007) and Rodrigues? (1999) paper,
which provided a better description of this problem. These procedures are best used when
data collection is di cult, expensive, or time-consuming.
Future problems of interest entail: making a more robust estimate with respect to the
shape parameter  . As noticed in section 2.4 and section 2.6, if the shape that is assumed
known is o by even the smallest margin the result will end in a drastic change in the total
number of observations. As mentioned earlier, the Gamma distribution is a  exible right
skewed distribution with a positive support. In nature, the support may not necessarily be
greater than zero. There exists such a thing as a shift parameter or a truncation parameter
that modi es the distribution. So another problem worth looking at is a three-parameter
Gamma population. As the example in 3.5 indicated it might be appropriate to extend this
research to the Beta population.
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Appendix A
Tables
Table A.1: Shape Known, Scale Unknown
n* w N r N r N r
m=10 m=20 m=30
 =1
25 2.000 82.966 0.904 64.237 1.011 60.261 0.900
50 1.000 167.069 0.451 129.41 0.565 120.889 0.536
100 0.500 336.415 0.218 255.562 0.248 236.448 0.271
200 0.250 672.591 0.111 509.246 0.128 466.485 0.137
500 0.100 1636.623 0.051 1293.478 0.044 1203.041 0.050
 =2
25 1.000 65.287 0.070 57.665 0.614 54.894 0.517
50 0.500 125.489 0.299 114.078 0.252 109.864 0.255
100 0.250 260.783 0.136 224.726 0.126 219.322 0.120
200 0.125 517.502 0.067 430.193 0.062 434.756 0.059
500 0.050 1266.029 0.026 1125.721 0.028 1083.78 0.021
 =5
25 0.400 54.445 0.209 53.099 0.193 51.952 0.222
50 0.200 109.525 0.103 105.41 0.103 103.346 0.095
100 0.100 225.068 0.073 209.056 0.052 206.281 0.051
200 0.050 438.813 0.028 423.745 0.027 412.791 0.023
500 0.020 1112.342 0.010 1042.804 0.010 1030.23 0.009
 =10
25 0.200 53.273 0.098 51.986 0.106 51.495 0.102
50 0.100 105.208 0.047 103.298 0.046 101.625 0.052
100 0.050 212.180 0.053 206.826 0.024 203.465 0.026
200 0.025 423.050 0.019 408.146 0.012 408.378 0.012
500 0.010 1057.023 0.006 1022.838 0.005 1014.633 0.005
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Table A.2: Shape Known, Scale Unknown (Improved)
n* w N Nnew r rnew N Nnew r rnew
m=20 m=30
 = 0:5
25 4.000 83.889 52.759 2.161 2.831 71.844 46.502 1.931 2.126
50 2.000 169.721 103.2 1.136 1.772 142.947 88.233 1.145 1.649
100 1.000 336.094 208.133 0.516 0.944 284.756 174.186 0.549 0.932
200 0.500 667.025 415.743 0.261 0.415 561.352 351.080 0.255 0.408
500 0.200 1677.224 1033.184 0.092 0.153 1407.865 862.738 0.095 0.164
 = 1
25 2.000 64.237 39.387 1.011 1.557 60.261 30.323 0.900 1.638
50 1.000 129.41 77.521 0.565 0.954 120.889 70.861 0.536 0.938
100 0.500 255.562 154.337 0.248 0.443 236.448 140.914 0.271 0.444
200 0.250 509.246 308.944 0.128 0.207 466.485 283.931 0.137 0.221
500 0.100 1293.478 771.913 0.044 0.081 1203.041 704 0.05 0.084
 = 2
25 1.000 57.665 33.176 0.614 0.858 54.894 34.117 0.517 0.637
50 0.500 109.078 65.551 0.252 0.474 109.864 63.177 0.255 0.455
100 0.250 219.726 130.956 0.126 0.220 219.322 125.347 0.12 0.227
200 0.125 430.193 259.412 0.062 0.110 434.756 250.698 0.059 0.111
500 0.050 1125.721 653.746 0.028 0.042 1083.78 625.733 0.021 0.043
 = 5
25 0.400 53.099 29.181 0.193 0.359 51.952 31.283 0.222 0.302
50 0.200 105.41 57.886 0.103 0.187 103.346 56.869 0.095 0.189
100 0.100 211.056 115.405 0.052 0.095 206.281 113.396 0.051 0.093
200 0.050 404.745 229.763 0.027 0.046 412.791 226.197 0.023 0.045
500 0.020 1025.804 573.207 0.010 0.018 1030.23 565.884 0.009 0.018
 = 10
25 0.200 31.986 27.359 0.106 0.191 51.495 30.306 0.102 0.158
50 0.100 82.165 54.219 0.046 0.094 101.625 53.797 0.052 0.099
100 0.050 185.08 107.75 0.024 0.047 203.465 107.384 0.026 0.047
200 0.025 391.815 215.353 0.012 0.024 408.378 213.713 0.012 0.023
500 0.010 997.817 536.765 0.005 0.009 1014.633 533.394 0.005 0.095
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Table A.3: Old Bound B as function of Shape and Initial Sample Size
 m=5 10 15 20 25 30 35 40
1 5.0000 3.0556 2.6374 2.4561 2.3551 2.2906 2.2460 2.2132
2 3.0556 2.4561 2.2906 2.2132 2.1684 2.1391 2.1185 2.1032
3 2.6374 2.2906 2.1882 2.1391 2.1103 2.0914 2.0780 2.0681
4 2.4561 2.2132 2.1391 2.1032 2.0820 2.0681 2.0582 2.0508
5 2.3551 2.1684 2.1103 2.0820 2.0653 2.0542 2.0464 2.0405
6 2.2906 2.1391 2.0914 2.0681 2.0542 2.0451 2.0386 2.0337
7 2.2460 2.1185 2.0780 2.0582 2.0464 2.0386 2.0330 2.0288
8 2.2132 2.1032 2.0681 2.0508 2.0405 2.0337 2.0288 2.0252
9 2.1882 2.0914 2.0604 2.0451 2.0360 2.0299 2.0256 2.0224
10 2.1684 2.0820 2.0542 2.0405 2.0323 2.0269 2.0230 2.0201
20 2.0820 2.0405 2.0269 2.0201 2.0161 2.0134 2.0115 2.0100
30 2.0542 2.0269 2.0179 2.0134 2.0107 2.0089 2.0076 2.0067
40 2.0405 2.0201 2.0134 2.0100 2.0080 2.0067 2.0057 2.0050
50 2.0323 2.0161 2.0107 2.0080 2.0064 2.0053 2.0046 2.0040
Table A.4: New Bound B as function of Shape and Initial Sample Size
 m=5 10 15 20 25 30 35 40
1 2.8250 1.7264 1.4901 1.3877 1.3306 1.2942 1.2690 1.2505
2 1.7585 1.4233 1.3424 1.3011 1.2768 1.2608 1.2495 1.2411
3 1.4847 1.3394 1.2865 1.2603 1.2447 1.2344 1.2270 1.2215
4 1.3607 1.3001 1.2596 1.2406 1.2290 1.2214 1.2160 1.2119
5 1.2885 1.2775 1.2438 1.2289 1.2198 1.2137 1.2094 1.2062
6 1.2403 1.2628 1.2334 1.2212 1.2136 1.2086 1.2051 1.2024
7 1.2054 1.2525 1.2261 1.2157 1.2093 1.2050 1.2019 1.1996
8 1.1786 1.2449 1.2206 1.2117 1.2060 1.2023 1.1996 1.1976
9 1.1573 1.2391 1.2164 1.2085 1.2035 1.2002 1.1978 1.1961
10 1.1398 1.2345 1.2129 1.2060 1.2015 1.1985 1.1964 1.1948
20 1.0514 1.0305 1.0236 1.0202 1.0181 1.0168 1.0158 1.0151
30 1.0374 1.0236 1.0190 1.0168 1.0154 1.0145 1.0138 1.0134
40 1.0305 1.0202 1.0168 1.0151 1.0140 1.0134 1.0129 1.0125
50 1.0260 1.0181 1.0154 1.0140 1.0132 1.0127 1.0123 1.0120
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Table A.5: Shape Unknown, Scale Unknown
n* w N r N r
m=20 m=30
 =1
25 2.000 103.242 1.342 79.399 0.946
50 1.000 179.782 0.917 174.554 0.764
100 0.500 402.195 0.548 317.901 0.404
200 0.250 783.764 0.295 641.393 0.275
500 0.100 2107.969 0.118 1605.782 0.094
 =2
25 1.000 84.273 0.663 72.422 0.495
50 0.500 182.960 0.440 132.700 0.341
100 0.250 300.200 0.251 289.190 0.214
200 0.125 666.948 0.166 605.137 0.110
500 0.050 1656.452 0.077 1367.942 0.041
 =5
25 0.400 67.646 0.258 66.675 0.201
50 0.200 133.945 0.175 135.896 0.137
100 0.100 293.482 0.101 265.121 0.079
200 0.050 581.209 0.053 506.883 0.040
500 0.020 1401.071 0.022 1288.534 0.019
 =10
25 0.200 67.735 0.141 64.976 0.103
50 0.100 143.471 0.093 140.865 0.072
100 0.050 272.815 0.045 249.548 0.036
200 0.025 528.532 0.023 469.934 0.017
500 0.010 1375.398 0.009 1262.119 0.007
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Table A.6: Shape Unknown, Scale Unknown (Improved)
N Nnew r rnew N Nnew r rnew
m=20 m=30
 = 1
25 2.000 103.242 65.677 1.342 1.684 79.399 54.918 0.946 1.294
50 1.000 179.782 123.159 0.917 1.311 174.554 96.834 0.764 1.003
100 0.500 402.195 224.467 0.548 0.896 317.901 182.988 0.404 0.724
200 0.250 783.764 461.122 0.295 0.541 641.393 367.541 0.275 0.426
500 0.100 2107.969 1198.197 0.118 0.259 1605.782 915.492 0.094 0.192
 = 2
25 1.000 84.273 50.422 0.663 0.845 72.422 47.812 0.495 0.662
50 0.500 182.96 94.277 0.440 0.624 132.7 81.602 0.341 0.497
100 0.250 300.2 191.886 0.251 0.401 289.19 157.667 0.214 0.336
200 0.125 666.946 369.306 0.166 0.241 605.137 320.843 0.110 0.202
500 0.050 1656.452 920.473 0.077 0.107 1367.942 780.697 0.041 0.080
 = 5
25 0.400 67.646 44.417 0.258 0.349 66.675 44.293 0.270 0.284
50 0.200 133.945 82.793 0.175 0.242 135.896 76.545 0.204 0.189
100 0.100 293.482 162.109 0.101 0.156 265.121 146.963 0.133 0.093
200 0.050 581.209 325.339 0.055 0.090 596.883 290.237 0.073 0.045
500 0.020 1401.071 826.946 0.022 0.037 1288.534 727.976 0.028 0.018
 = 10
25 0.200 67.735 43.665 0.141 0.171 64.976 43.471 0.103 0.138
50 0.100 143.471 80.38 0.093 0.125 140.865 74.078 0.072 0.102
100 0.050 272.815 158.329 0.045 0.073 249.548 142.139 0.036 0.062
200 0.025 528.532 316.642 0.023 0.042 469.934 287.158 0.017 0.034
500 0.010 1375.634 792.345 0.009 0.019 1262.119 715.269 0.007 0.013
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Table A.7: Initial Sample Size Considerations Simulations
shape=2 scale=5
m r N n Pct of Additional Obs
w=0.500
5 0.430 98.170 50 96.3%
10 0.454 72.565 50 45.1%
50 0.398 61.815 50 23.6 %
100 0.248 100.000 50 100.0%
500 0.050 500.000 50 900.0%
15 0.453 68.800 50 37.6 %
40 0.457 61.989 50 24.0 %
w=0.250
5 0.218 195.386 100 95.4 %
10 0.217 149.118 100 49.1 %
50 0.225 122.467 100 22.5 %
100 0.211 118.243 100 18.2 %
500 0.050 500.000 100 400.0%
29 0.216 127.335 100 27.3 %
78 0.222 119.003 100 19.0 %
w=0.125
5 0.104 383.234 200 91.6 %
10 0.108 294.230 200 47.1 %
50 0.107 240.540 200 20.3 %
100 0.111 237.984 200 19.0 %
500 0.049 500.000 200 150.0 %
57 0.112 240.774 200 20.4 %
157 0.111 233.967 200 17.0 %
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Table A.8: Con dence Interval Simulations of Terminal Sample Size
w = 5 d M w = 4 d M w = 3 d M
 = 1 10.0 21.3  = 1 10.0 25.6  = 1 10.0 34.9
5.0 45.3 5.0 47.2 5.0 44.4
2.5 179 2.5 177.6 2.5 178.4
1.0 1115.5 1.0 1120.1 1.0 1083.3
 = 2 10.0 10.7  = 2 10.0 11.6  = 2 10.0 13.7
5.0 23.4 5.0 20.6 5.0 17.8
2.5 91.7 2.5 79.8 2.5 72.6
1.0 578.2 1.0 505.3 1.0 451.2
 = 5 10.0 10  = 5 10.0 10  = 5 10.0 10
5.0 22 5.0 18 5.0 13
2.5 87 2.5 70 2.5 52
1.0 542 1.0 433 1.0 325
 = 10 10.0 10  = 10 10.0 10  = 10 10.0 10
5.0 22 5.0 18 5.0 13
2.5 87 2.5 70 2.5 52
1.0 542 1.0 433 1.0 325
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Table A.9: Coverage Percents as Risk Bound Varies
 = 0:5  = 1  = 2  = 5
80%
w=5 0.922 0.956 0.983 1.000
w=4 0.894 0.921 0.977 1.000
w=3 0.920 0.894 0.954 0.999
w=2 0.886 0.882 0.943 0.992
w=1 0.888 0.866 0.850 0.927
85%
w=5 0.943 0.968 0.997 1.000
w=4 0.950 0.972 0.991 1.000
w=3 0.940 0.944 0.982 0.999
w=2 0.927 0.906 0.956 0.995
w=1 0.921 0.916 0.875 0.968
90%
w=5 0.966 0.987 1.000 1.000
w=4 0.966 0.982 0.998 1.000
w=3 0.958 0.973 0.991 1.000
w=2 0.946 0.955 0.974 0.999
w=1 0.941 0.922 0.921 0.987
95%
w=5 0.983 1.000 1.000 1.000
w=4 0.986 0.993 1.000 1.000
w=3 0.970 0.988 0.999 1.000
w=2 0.975 0.970 0.994 0.999
w=1 0.964 0.952 0.962 0.987
Table A.10: Coverage Percents as Initial Sample Size Varies
m=4 m=6 m=8 m=10 m=12
w=5 0.979 0.994 0.995 0.998 0.999
w=2 0.936 0.954 0.954 0.973 0.984
w=1 0.928 0.934 0.926 0.933 0.938
w=0.5 0.923 0.901 0.901 0.900 0.918
w=0.2 0.921 0.925 0.928 0.924 0.916
w=0.1 0.936 0.914 0.930 0.918 0.927
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Appendix B
Figures
64
Figure B.1: Scatterplot of Alpha vs. Empirical Ratios
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Figure B.2: Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 20
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Figure B.3: Average Risk of Two Methods Compared to Risk Bound with Initial Sample
of 30
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Figure B.4: Average Improved Risk of Two Methods Compared to Risk Bound with Initial
Sample of 20
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Figure B.5: Average Improved Risk of Two Methods Compared to Risk Bound with Initial
Sample of 30
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