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Thesis Abstract

Vision-Enhanced Localization for Cooperative Robotics
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(B.Tech.,Jawaharlal Nehru Technological University, 2006)

59 Typed Pages

Directed by Thaddeus A. Roppel

Simultaneous Localization And Mapping - SLAM, is an extremely challenging

open problem. SLAM involves a mobile robot building a spatial map of its envi-

ronment and finding the ego-position in the partially built map. The problem is

analogous to the chicken-egg situation; since, an accurate map cannot be built with-

out knowing the ego-position, while, the position of self cannot be determined until

it has a very accurate map.

As the real world is far from being ideal, a probabilistic approach is devised to

model the SLAM system. This thesis aims to handle the problem with a stereovision

system. There are 2 aspects of the solution; one deals with processing the images

gathered from the environment and the other deals with estimating the ego-position

of the robot from the images gathered. The first aspect is fulfilled by using a SIFT

(Scale Invariant Feature Transforms) algorithm and the second aspect is managed

by the Rao-Blackwellized particle filtering algorithm. The results provided by the
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Matlab simulation environment showed that the SLAM system could converge well

to the real world values.
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Chapter 1

INTRODUCTION

Vision based systems have gained significant importance in the field of mobile

robotics during the last decade due to the low cost and rich information that cameras

provide as compared to the traditional robotic sensors like sonar’s or laser scanners.

Applications of Vision-based systems widely range from object recognition [1]-[3],

obstacle avoidance [4]-[6], navigation [7][8], to global localization [9][10] and, more

recently, in SLAM [11]-[13].

The term SLAM is an acronym for Simultaneous Localization and Mapping. The

term was originally coined by Hugh Durrant-Whyte and John J.Leonard [14]. SLAM

has been one of the most challenging open problems in building truly autonomous

robots and in fact the solution to the SLAM problem is in many ways a “Holy Grail”

to the autonomous vehicle research community. The ability to place an autonomous

mobile robot at an unknown location in an unknown environment and then have it

build a map, using only relative observations of the environment, and then to use this

map simultaneously to navigate would indeed make such a robot truly autonomous.

In short the problem involves a mobile robot attempting to recover a spatial map of

its environment, while simultaneously estimating its own pose relative to the partially

built map. The problem is explained in detail in the coming chapters.

This thesis work addresses enhancing the localization of the mobile robots in

Cooperative Robotics Testbed [16][17] employing vision as observatory sensors. The
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mobile robots work in groups based on a cooperative distributed protocol called SARA

- Search And Rescue Algorithm. SARA incorporates the concepts of a relatively

new field of cooperative robotics [18][19]. Cooperative robotics deals with the study

of multiple autonomous agents “working together” to perform the task that is too

difficult or impossible for one agent to perform acting alone. SARA accomplishes

its task by tackling several sub-problems like mutual communication among robots,

path planning, object recognition and target tracking. All of these sub problems are

inadvertently dependent on the task of the robot localizing itself in the hardware

environment.

Incorporating vision-based localization into the SARA protocol would span a

new direction to the existing cooperative robotics test bed. The SARA is a protocol

that has passed through several phases of modifications from the base version by

incorporating certain new features, removing the defective pieces of the system and

also enhancing the performance of the existing parts. Currently, the primary focus

would be to perform simulations on the vision induced mobile robot. Based on the

results of simulation the robots will be attached with a vision sensor system to work

for the SARA algorithm and the system protocol can be upgraded to the next version.

Vision based localized systems revolve around two primarily algorithms; firstly,

for feature extraction from the images of the environment and secondly, for estimating

the position of the mobile robot involving the usage of filtering algorithms. For feature

extraction an algorithm called SIFT (Scale Invariant Feature Transforms) and for pose

estimation Rao Blackwellized particle filters have been employed. The presence of

inherent visual noise in real life scenarios as compared to ideal environments demands

the use of probabilistic approaches for modeling robotic movements along with the
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position of the landmark in the hardware test bed. The algorithms used in this work

are very efficient in performance in their respective domains.

In Chapter 2 an overview of the literature in the domain of machine learning,

pertaining to the foundations of the visual-SLAM’s key algorithms SIFT and Rao-

Blackwellized particle filtering is provided. Chapter 3 encompasses a complete de-

scription of the hardware that is used for performing the simulations follows. This

chapter gives a detailed explanation of the vision sensor along with the type of im-

ages being studied. It also explains about the robot’s hardware and the hardware test

bed environment on which the simulation models are drawn. Chapter 4 introduces

the problem in a mathematical perspective and provides a brief description of the

SIFT and RBPF algorithms. This chapter describes the reasons to choose the afore

mentioned feature extraction and position estimation algorithms for dealing with the

problem of visual-SLAM. The simulation methods and the results obtained will be

presented in Chapter 5. The directions for future work and a brief conclusion are

drafted in Chapter 7.
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Chapter 2

LITERATURE SURVEY

There are huge libraries of literature concerning Machine Learning. Machine

Learning is in its budding stages of research and researchers all over the globe are

contributing heavily due to the potential advantages involved in machine learning.

This chapter discusses the existing research work in the domain of simultaneous lo-

calization and mapping. It starts with a brief history of SLAM. The history is followed

by a discussion of other methods based on sensing systems that have been employed

to handle the problem of SLAM. This section also includes and covers literature

regarding the application of SIFT and Rao-Blackwell Particle Filter algorithms.

2.1 SLAM History

The term SLAM is as stated an acronym for Simultaneous Localization And

Mapping. It was originally developed by Hugh Durrant-Whyte and John J. Leonard

[28] based on earlier work by Smith, Self and Cheeseman [29]. Durrant-Whyte and

Leonard originally termed it SMAL but it was later changed to SLAM to give a better

impact. They were the first people who have employed the probabilistic approach for

modeling the uncertainty in nature. Prior to them scientists employed to represent

spatial uncertainty in typical robotic applications [31][32] by numerically computing

min-max bounds on the errors. In [33] the authors have proposed a probabilistic
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model using a scalar representation of positional uncertainty instead of a multivariate

representation of position and orientation.

2.2 SLAM Sensing Systems

The design of a mobile robot relies mostly on the mode of its interaction with

the environment. One of the design parameters would be the kind of information and

amount of information to gather from the environment. Depending on the environ-

ment the design may also fuse multiple sensors for extracting the data. Pertaining

to the problem of SLAM, the sensors can be narrowed to infrared, sonar, laser and

vision. The literature of sensing systems along with the techniques that were applied

for data management is described.

2.2.1 Sonar and Laser

Sonar has been used in some early applications. Although sonar has been found

to be very useful in underwater scenarios [35], it fails badly in terrestrial and aerial

applications. SLAM experiments conducted in [33] employed as many as 16 sonar

sensors. It proved to be useful only in a structured and noiseless environment. Con-

sidering the noise in the environment the results were shown to be poor. Elfes [34]

developed a sonar sensor model, which simulates the inherent defects of sonar sensor

like that of poor range precision, wide beam angles, multiple reflects, and detection

sensitivity. Wouter [36] has performed simulations to analyze the kinematic model of

the robot based on the speed of the laser. A laser based tabletop localization system is

designed for the study. A battery powered 650 nm laser beam rotating in a horizontal

plane is employed. The laser beam triggers phototransistors placed in four corners of
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a flat table. A base station collects the voltage signals from these 4 phototransistors.

The values are transmitted back to the robot, which can then determine the robot

position using simple mathematics [36]. The robot uses these 4 beams reflected back

to the robot are being used to determine the robot’s position. This non-linear local-

ization system has a mean Euclidean error of 0.02 m at a rotational laser velocity of

35 m/s and a robot velocity of 1 m/s. The largest errors occurred at the corners of a

table and are about four times the amount of the smallest error. It was found that,

as the speed of the robot increases the accuracy keeps declining.

Vision Sensors

Vision systems have gained tremendous popularity in the recent past. Comput-

ing power has been growing steadily as per Moore’s Law. As a result, the limitations

that restricted sophisticated image processing are being removed. A lot of work in the

technical literature has addressed robot localization and SLAM using visual sensors, it

spans vision systems like omni directional, monocular, stereo, and trinocular cameras.

Omnidirectional Cameras

In [43] an omnidirectional camera is used to estimate the distance of closest

color transition in the environment, mimicking the performance of laser rangefinders.

These measurements are filtered by particle filter to determine the robot’s pose in a

previously constructed map. Tamini et al. [44] presented an omnidirectional camera-

based global localization approach for mobile robos using a modified version of SIFT.

Modified SIFT generates fewer number of features and hence needs less processing.
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Trinocular & Stereo Cameras

The trinocular camera used in [41] addresses the SLAM problem by tracking

SIFT visual features in static environments [52]. The motion of the self is computed

from the robot odometry as an initial estimation, and a least-squares method, which

finds the camera movement with the best alignment between the observed and the

predicted image coordinates of the 3D landmarks in the map. The spatial uncertainty

in the landmarks is modeled by a Kalman filter. In [49] a trinocular SLAM system,

which uses 3D line segments as the elements of the map (instead of point features) has

been proposed. The robot pose is approximated with a particle filter and uncertainty

in the 3D segments of the map is modeled with a Gaussian distribution that is updated

over time with an EKF. Since these approaches employ the information provided by

three images at each time step, the matching process is now more robust, which

tradeoffs with the computation needed to process 3 images.

In [38][51] SIFT features are extracted from stereo images and the corresponding

3D points in space are computed. These features are considered as the landmarks for

the RBPF filtering. They computed the RBPF particle weights from the landmarks

innovation; innovation being the distance between predicted (using pose of the par-

ticle mapped to corresponding landmark) and observed landmarks. The matching

process occurs between the reduced version of 36 dimensional SIFT descriptors of

3 dimensional landmark. An iterative Levenberg-Marquardt nonlinear optimization

algorithm addresses the motion model.

Similarly, another RBPF approach which also employs SIFT features is presented

in [50] as a vision-based solution to SLAM. This time, the motion model is based on
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the robot odometry and the observation model relies on the Mahalanobis distance

between the positions of the observed and mapped landmarks.

Monocular Cameras

Monocular vision systems employ one camera and hence are very much useful

in cost effective scenarios. Vision-based localization in [45] used just one camera to

obtain a visual map of the ceiling. It uses brightness as a metric and employs a

particle filter to estimate the pose of the robot. The work presented in [46], combines

an image retrieval system based on invariant features with the particle filter-based

localization. All of these approach address only global localization and do not deal

with SLAM.

In [40] an RBPF-based method for monocular SLAM is experimented. The exper-

iment extracts SIFT features from the images and filters using an Unscented Kalman

Filter (UKF) for the robot localization and to update the observed landmarks. SLAM

is tackled in [39][42][37] using a single camera, which they named as MonoSLAM. The

proposed method that happens to be in real time, extracts reduced number of salient

image features through employing Shi and Tomasi’s operator. MonoSLAM is limited

by the scale factor, which is resolved by initializing the system viewing at a known size

pattern. The work in [48] adds an Inertial Measurement Unit (IMU) to an implemen-

tation of the inverse depth-based monocular SLAM, reporting an improved accuracy

in the estimation of the scale factor of the map. The SLAM approach proposed in

[47] introduces the inverse depth parameterization for the undelayed initialization of

features.
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Chapter 3

HARDWARE

The existing robotic agent’s hardware is equipped with IR sensors mounted on a

turret driven by a servomotor, for distance measurement. Although these IR sensors

are cost effective, the time to scan the environment is very long and a considerable

amount of battery power is required to drive the servomotors. The simulations pre-

sented in the thesis are performed by making use of existing robot hardware, by just

mounting a camera on the robot’s chassis. The camera has a battery of its own and

does not use the battery from the chassis.

The following sections will give a brief introduction to the hardware employed

in the cooperative robotics testbed, for better comprehension of the environment in

which the simulations are being performed. Basically, there are two key parts to the

hardware used in evaluating the effect of vision-based localization algorithms: the

experimental field and the robots themselves. This chapter will be divided up in

the same way. The experimental field will be described first, followed by the robotic

hardware.

3.1 Experimental Field

This section describes the environment employed by simulations of the thesis.

The simulation field is housed in an 8 ft. x 16 ft. field designed as a scale-model

of an indoor environment consisting of a hallway with three rooms on either side.
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The field is constructed by using four 4 x 8 foot x 3/4” medium density fiberboard

(MDF) panels for the floors. Each board is attached to the others using straight

metal brackets and 3/8” screws. The walls are 12” tall and are also constructed from

MDF. The walls are secured to each other and to the floorboards using A66 angle

brackets. In order to ensure a smooth floor, pieces of poster board are put across

every seam and attached using 1” masking tape. The field is shown in Figure 3.1.

Figure 3.1: Image of the Experimental Field.

3.2 Robotic Hardware

This section provides a brief overview of the existing robot hardware. This will

be divided into five subsections each describing one specific aspect: Chassis, Drive

System, Sensors, Control System, and Batteries.
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3.2.1 Chassis

The robot’s skeleton is provided by BudgetRobotic’s ScooterBot II chassis kit.

This kit consists of a 7” diameter round chassis assembly designed for differential

drive steering. It consists of the base platform with voids cut out for casing drive

wheels and an upper platform for housing the computer and interface board. A third

platform was used to serve as a base in mounting the rotating sensor turret or a vision

sensor system.

Drive System

As this is a laboratory grade experiment in an indoor environment, a wheeled

design is chosen for robot’s drive system, since, the wheeled vehicles perform better

on smooth level terrain and can usually carry more payload and travel at faster speeds

than a legged vehicle.

The differential drive system provided by the ScooterBot II chassis kit is used

as the wheeling system. The kit uses GW Servo S03NXF STD continuous rotation

servos, which allows speed control, based on servo timing parameters. These motors

weigh 59.6 grams and produce 35 oz-in of torque. They can rotate at a maximum

speed of 60◦ in 0.15 seconds at 4.8 Volts. The wheels used have a diameter of 2.5

inches, giving the robot a maximum speed of 22.16 cm/s. A linearized velocity equa-

tion can be determined with servo-timing signal as input and wheel linear velocity as

the output:
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v(t) =



































44.32 × (t − 1.5) 1 ≥ t ≤ 2

−22.16 t ≤ 1

22.16 t ≥ 2

Sensors

The SARA protocol employs primarily 2 kinds of sensors: distance and odomet-

ric. The distance sensors are employed for observing the world around the robot and

building a plot of the environment. The odometric sensors would aid in determining

the robot’s position in the world. The following subsections give a description about

the distance and odometric sensors.

Distance Sensors

The existing SARA algorithm uses IR sensors as the primary distance sensor.

The IR sensors are attached to the turret as shown in figure 3.2.

The idea was to rotate the two sensors, which are facing away from each other

at 180◦ angle so that they could provide 360◦ coverage. Though this design is very

economical, one of the major disadvantages of infrared sensors is the size required to

provide good resolution. As the resolution goes up the size of the IR sensor would also

increase. The better the resolution the better is the calibration process. More over

the infrared sources are vulnerable to the temperature differences in the environment

12



Figure 3.2: Current Distance measurement sensor.

(hot surfaces also generate invisible infra red radiations), which arises a possibility to

detect incorrect readings.

In order to circumvent these drawbacks, a vision sensor system that is not vul-

nerable to the external factors is introduced. The vision sensor is passive and is not

affected by the external noise factors. The experiment in the laboratory is conducted

using a Panasonic SDR-H40 camera that observes JPG images with a width of 640

pixels and length of 360 pixels. The size of each size would fall around 58 Kilobytes

enabling faster processing time. The camera has a focal length of 75.6 mm with the

focal point at 320 × 280 pixels (in the image coordinates).

Odometry Sensors

The current robotic hardware employs a floor encoder system using optical mice.

The optical mice have the advantage of converting movements of the surface to ∆x

and ∆y. The mice have a varying resolution from 1 count per mm to 8 count per mm.

Due to the inexact nature of the mounting, a calibration procedure from Bonarini

et al in [21] is followed to mitigate any systemic errors. This kind of system’s main

13



advantage is that it does not suffer measurement errors from the slippage of the wheel

and can be very accurate. An image of the optical mice mounted to the bottom of

the robot is as shown in the figure 3.3.

Figure 3.3: Robot mounted with optical mouse and batteries.

Control System

The brain’s role of the robotic agent is taken up the Gumstix platform running

embedded Linux inside it. The gumstix platform has an 802.11b wireless card expan-

sion module called Wifistix to communicate with the other robot agents, and has a

microcontroller based expansion module called Robostix to monitor and control the

peripherals.

The Gumstix processor is a 400 MHz Intel X-Scale ARM based chip with 64MB

of RAM and 16MB of flash. Some of the limitations that eventually led to perform

the simulation are the lack of a floating-point unit and inability to handle a large

amount of image processing.

The Robostix module contains an AVR ATmega128 micro-controller designed

to drive Input Output subsystems and serve as interface between the Gumstix and

14



hardware peripherals. The commands from the gumstix are converted into electrical

impulses to perform the tasks like driving motors, polling the mice or reading the

distance sensors and sending the data back to the gumstix.

The Wifistix is a Marvell DRCM81 module from Wistron NeWeb Corporation

with the Marvell 88W8385 chipset [22]. The chipset supports 802.11b/g both infras-

tructure and ad-hoc connection modes. An image of the Gumstix along with the

attached Wifistix is as shown in the following figure 3.4.

Figure 3.4: Gumstix (bottom) and Wifistix (top).

The workstation running Ubuntu Linux operating system (version 8.04 LTS x86-

64) plays a major role in performing the heavy image processing and particle filtering.

The gumstix platform gathers the entire image and odometric data and exports this

data to the Matlab software running on the workstation.

Batteries

The robot hardware is powered by two 7.2V, 2800 mAh batteries. One battery

powers the electronics; the sensors and the microcontroller stack, while the other

powers six servos. The camera holds its own power supply for the simulations. An

image of the batteries mounted on the robot can be found in Figure 3.3.
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Chapter 4

SLAM and SIFT

This chapter covers the primary algorithms utilized to implement and analyze

the effects of introducing vision sensor system in to the existing robotic agent’s hard-

ware. Firstly, a mathematical model of SLAM problem is presented followed by that

for robot and the landmarks is proposed. Secondly, an explanation of basic Bayesian

technique that forms the foundation for the other robust data filtering algorithms is

presented. Thirdly, SIFT (Scale Invariant Feature Transforms) [23], is presented as

an algorithm for dealing with online feature extraction from stereovision system. Fi-

nally, an explanation of central concept of SLAM process - the RBPF (Rao-Blackwell

particle filtering) method for estimating the robot’s position is outlined.

4.1 SLAM process and model

4.1.1 SLAM in General

In general SLAM is the problem of building a spatial map of the unknown en-

vironment while simultaneously tracking its own position using the partially built

map. In an implementation view, the goal of the slam process is to use the observed

environment to update the position of the robot since the odometry of the robot is

definitely prone to errors.
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Figure 4.1 shows a general operating environment of a mobile robot performing

Simultaneous Localization And Mapping. A mobile robot (shown with a triangle) in

a 3 Dimensional plane with a fixed Global Reference Frame scans the environment

for scale invariant landmarks (depicted with coned shapes) and uses these landmarks

to update the robot’s pose.

Figure 4.1: Mobile Robot operating scenario.

As this process goes on forever the uncertainty of measurements goes up. Figure

4.2 shows the uncertainty accrued over robot path and estimate of absolute location

for one landmark.

Figure 4.3 illustrates the SLAM process with a good detail for a better compre-

hension:

1 ⇒ The robot initially measures using its sensors the location of landmarks.

2 ⇒ The robot moves, and thinks it is in the position indicated by dark triangle given

by odometry.

3 ⇒ The robot once again measures the location of the landmarks using its sensors
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Figure 4.2: Accrued Uncertainty in robot pose and landmark.

but finds out they don’t match with where the robot thinks they should be (given

the robots location). Thus the robot is not where it thinks it is.

4 ⇒ As the robot believes more its sensors than its odometry it now uses the infor-

mation gained about where the landmarks actually are to determine where it is (the

location the robot originally thought it was at is illustrated by the dashed triangle).

5 ⇒ Since, the sensors are not perfect, the robot will not its exact pose. However

this estimate is better than relying on odometry alone. The dotted triangle (triangle

beneath the dark triangle) represents where it thinks it is; the dashed triangle where

odometry told it was, and the last triangle where it actually is.

Figure 4.4 is block diagram showing the elements of SLAM employed for this

thesis. SLAM is a recursive process. Since a robot doesn’t know its location in an

unknown environment; it assumes itself to be in some random place given by samples

(a.k.a particles) of a probability distribution function. Referring to the Figure 4.4,

when the odometry changes because the robot moves the uncertainty pertaining to
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Figure 4.3: SLAM illustration graphically.

the robot’s new position is updated in the RBPF filter using Odometry update.

Landmarks are then extracted from the environment from the robots new position.

The robot then attempts to associate these landmarks to observations of land-

marks it previously has seen. Re observed landmarks are then used to update the

robots position in the RBPF. Landmarks that have not previously been seen are

added to the RBPF as new observations so they can be re-observed later.

The final step is an optional RBPF Sampling Importance Re-sampling (SIR),

which needs to be performed to prevent the depletion of particles [25]. An SIR is

performed based on the number of samples present in the current RBPF filter. All

these steps will be explained in the succeeding sections. It should be noted that at

any point in these steps the RBPF would have an estimate of the robots current

position.
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Figure 4.4: SLAM process

4.1.2 SLAM Mathematical Model

Let st, ut, and zt be the momentary robot pose, the action, and the observation

at time step t, respectively, and let m be the map of the environment. The goal of

SLAM is to recover the map from sensor measurements

p(st,m|zt, ut) (4.1)
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where,

zt = {z1, z2, ..., zn} , ut = {u1, u2, ..., un} , st = {s1, s2, ..., sn}

and m = {m1,m2, ...,mn}

In this experiment, ut represents the robot pose change between time steps t− 1

and t, estimated by means of the optical mice odometry. The map ’m’ is a set of

’n’ landmarks, with each landmark being represented by mj (j = 1 to n). Also,

please note that the superscripted t indicates it is a set of values from 1 to t, where

as subscripted t indicates, it is a value acquired at the ’tth’ moment.

SLAM process entails 2 sources of information to solve the problem. The models

of these sources serve as inputs to the RBPF filter.

Measurement Model

At the heart of the RBPF is a generative model of sensor measurements, that

is, a probabilistic law that specifies the process according to which measurements

are generated. This model will be referred to as measurement model and is of the

following form:

p(zt|st, ut) = g(mj, st) + ξt (4.2)

The measurement model is conditioned on the robot pose st, the landmark’s map

identity mj(j = 1 to n), and the specific feature zt that is being observed. The model
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is governed by a deterministic function ’g’ distorted by a noise element. The noise

at time ’t’ is modeled by the random variable ξt, which is assumed to be a normal

distribution with zero mean and covariance Rt.

The measurement function is non-linear in nature and involves in calculating the

range and bearing of the observing landmark. They are easily evaluated employing

simple trigonometry. Figure 4.5 illustrates the same:

Figure 4.5: Robot observing the Range and Bearing of a Feature.

Kinematic Motion Model

A second important source of information for solving the SLAM problem is the

robotic controls. The parameter ut denotes all the motor commands carried out in

[t− 1, t). This probabilistic law governing the evolution of robot’s poses is called the

Kinematic motion model and is of the following mathematical form:

p(st|st−1, ut) = h(ut|st−1) + δt (4.3)
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4.2 Bayesian Filtering Technique

The concrete foundation for today’s most popular data filtering algorithms is

Bayesian estimation. Bayesian estimation is rooted on the Bayes’ Theorem. Thomas

Bayes first introduced the concept 250 years ago. According to the Bayesian rule,

if we know a prior belief about a random variable x, and generated an observation

y, with a known observation model then the prior belief of the random variable can

be updated to reduce the deviation from the actual value. Mathematically, it is

represented as:

p(x|y) ∝ p(x) × p(y|x) (4.4)

This technique can be employed for online operation by iteratively executing

prediction and update steps. In the prediction step, the system state (comprising the

robot pose) is propagated in time according to some given transition model (the mo-

tion model), leading to the prior distribution of the system state. In the update step,

this prior is refined according to a given observation model, obtaining the posterior

probability density, which already includes the information available up to some given

time step (this is a Markov Process). Figure 4.6 is an illustration of the Bayesian

estimation:
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Figure 4.6: Online operation of Bayesian Rule

4.3 Scale Invariant Feature Transforms - SIFT

Measurement model of the SLAM deals with a whole lot of image processing. The

RBPF data filter employs the features output from the images to update the predicted

robots pose. We employ SIFT as an image processing algorithm to generate features

from the image frames scanned from the environment. SIFT was developed by Lowe

[23] for generating image features. The features are invariant to image translation,

scaling, rotation, and partially invariant to illumination changes and 3D projections.

These properties make these features most appropriate for a robust SLAM. It is

because, as the mobile robots move around in an environment, landmarks are observed

over time, but from different angles, distances or under different illumination. At each

time frame, SIFT features are extracted from the left and right images to extract

the range and bearing of the landmark in scene. These extracted parameters are

compared to the existing map to correct the position of the corresponding landmarks

along with the robots position. Stereo matching employed in this work is discussed in

the Chapter 5. The following subsections provide a brief outline of SIFT algorithm.
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4.3.1 Scale-space extrema detection

The first stage of keypoint detection is to identify locations and scales that can

be repeatedly assigned under differing views of the same object. Detecting locations

that are invariant to scale change of the image can be accomplished by searching for

stable features across all possible scales, using a continuous function of scale known

as scale space. In an outline, finding the interest points that are extrema (maximum

or minimum) with respect to both scale and space involves:

1. Creating several versions of the original image with an increasing Gaussian

blurring applied (an image pyramid - a type of scale-space).

2. Subtract an image from its more-blurred neighbor image - Difference of Gaus-

sians (DoG).

3. Mark any points that are maximums or minimums in their 3 × 3 × 3 = 27

neighborhood (9 pixels in the less-blurred image, 9 pixels in its own image and

9 pixels in the more-blurred image)

4.3.2 Keypoint localization

Scale-space extrema detection produces too many keypoint candidates, some of

which are unstable. This step performs a detailed fit to the nearby data for accurate

location, scale, and ratio of principal curvatures. This information helps to reject

all the keypoints that have low contrast (and are therefore sensitive to noise) or are

poorly localized along an edge. The output keypoints that are invariant to a wide

scale space are then processed through the following 3 stages for accurate localization.
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1. Interpolation of nearby data for accurate position

2. Discarding low-contrast keypoints

3. Eliminating edge responses

4.3.3 Orientation assignment

In this step, each keypoint is assigned one or more orientations based on local

image gradient directions. This is the key step in achieving invariance to rotation as

the keypoint descriptor can be represented relative to this orientation and therefore

achieve invariance to image rotation.

4.3.4 Keypoint descriptor

Previous steps found keypoint locations at particular scales and assigned orien-

tations to them. This ensured invariance to image location, scale and rotation. This

step computes a descriptor vector for each keypoint such that the descriptor is highly

distinctive and partially invariant to the remaining variations such as illumination,

3D viewpoint, etc. These descriptors aid in performing the object recognition, as well

as for searching through a large database of descriptors.

A brief outline of SIFT algorithm has been described; a complete discussion is

found in [23]. The following section describes the operation of the Rao-Blackwell

particle filter.
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4.4 Rao-Blackwell Particle Filter - RBPF

The meat of the SLAM process lies in the filtering algorithm. The estimation of

the robot’s pose and also the process of approximating the landmark positions will

be carried out by the filtering algorithm. This thesis works with the RBPF filter

due to its inherent advantages of scalability and the ability to distinguish between

ambiguities when they arise. Following discussion provides a derivation of general

Bayes’ filter problem towards the Rao-Blackwell filter and then a pseudo-code for

RBPF filtering algorithm is also given.

4.4.1 Reintroducing SLAM

From equation (4.1) the SLAM problem is formally given by:

p(st,m|zt, ut)

The notation is same the one used in defining the problem. Employing the

preliminary Bayesian estimation technique the solution for obtaining the robot and

map estimates would take the following recursive form:

p(st,m|zt, ut) = Bel(st,m)

= ηp(zt|st, ut)
∫

p(st|ut, st−1)p(st−1,m|zt−1, ut−1)dst−1

= ηp(zt|st, ut)
∫

p(st|ut, st−1)Bel(st−1,m)dst−1 (4.5)
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Where η is normalizing constant and it is independent of any of the variables.

η is for ensuring that the values sum to 1. One might consider that the posterior

(equation 4.5) captures all relevant information, for robotic SLAM. However, there

are other, better distributions that can be estimated in SLAM. The RBPF algorithm,

estimates the posterior over robot paths, not just momentary poses, along with the

map. Here is the new version of SLAM with RBPF path estimation:

p(st,m|zt, ut)

At a first glance, estimating the entire path posterior might appear to be de-

manding greater number of CPU cycles. Since, with the increase in the path length,

the sampling space would also increase. Such a thing would be difficult to implement

in real time situations. But, some specific types of filters calculate posteriors over

robot paths as efficiently as for momentary poses. The true motivation behind this

approach comes from the observation that the posterior or Bel(xt) can be factorized

into a product of smaller terms. The final form of the filter after derivations [27] is

p(st,m|zt, ut) = p(st|zt, ut)
N
∏

n=1

p(mn|s
t, zt) (4.6)

4.4.2 Factoring the SLAM Posterior - Bel(xt)

Murphy [53] has observed a key insight in the posterior or Bel(xt), which states

that the posterior can be written in the factored form given by the following product

form:

28



p(st,m|zt, ut) = p(st|zt, ut)
N
∏

n−1

p(mn|s
t, zt) (4.7)

This factorization states that the calculation of the posterior over paths and maps

can be decomposed into N + 1 recursive estimates; one estimate over robot paths,

and N separate estimators over feature locations conditioned on path estimate. This

property is a trivial property of SLAM. Consider, the following explanation in figure

4.7:

Figure 4.7: SLAM Problem for realizing the factored solution.

The SLAM problem involves a robot moving from pose s1 influenced under a

sequence of controls, u1, u2, u3...ut. As the robot moves, it measures landmarks. At

time t = 1, it observes landmark θ1. The measurement is denoted z1 (range and

bearing). At time t = 2, it observes the other landmark, θ2, and at time t = 3, it

observes θ1 again. The SLAM problem is concerned with estimating the locations

of the landmarks and the robot’s path from the controls ut and the measurements

zt. The gray shading illustrates a conditional independence relation. As the picture
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illustrates, each measurement is a function of position of corresponding feature and

the robot pose at time of measurement. Knowledge of robot path is d-separates

the individual feature estimation. In other words it says that the knowledge of one

feature in no way helps in knowing the locations of the other features. A mathematical

derivation of equation 4.7 is given in [27]. The following section describes the process

of data association in the RBPF algorithm.

4.4.3 RBPF Data Association

RBPF exploits the factored representation by maintaining N +1 filters, one for

each factor in equation 4.7. The robot pose (first term in equation 4.7) is calculated

using a particle filter [54]. This particle filter’s computations time is independent of

length of the path. The remaining N (conditional) posteriors over feature locations

(second term in equation 4.7) are calculated by extended Kalman filters (EKFs). The

individual EKFs estimate a single landmark pose conditioned on the robot paths.

This mode of operation makes EKF low dimensional. Hence, each particle possesses

its own set of EKFs. In total there are NM EKFs, one for each feature in the map

and one for each landmark.

Figure 4.8: Particles in RBPF.
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Here M being the number of particles employed for the SLAM process and N

number of features extracted from the SIFT algorithm. Figure 4.8 illustrates the

structure of M particles. In equation form a particle is given by:

S
[m]
t =

〈

st,[m], µ
[m]
1,t , Σ

[m]
1,t ...µ

[m]
N,t, Σ

[m]
N,t

〉

The [m] represents the particle index, µ
[m]
n,t and Σ

[m]
n,t are mean and covariance of

the landmark respectively. St,[m] is the path estimate and S
[m]
t is the mth particle.

Calculating the posterior or Bel(St,m) at time t from the one at time t − 1 involves

generating a new particle set St from St−1 (particle set one time step earlier). This

new particle set incorporates a new control ut and a measurement zt. The steps

needed to these updates are listed below:

Kinematic Motion Model realized by extending the path posterior

RBPF uses the robot control ut for sampling new robot pose St for each particle

in St−1. For example, consider the situation of the mth particle in St−1, denoted by

S
[m]
t . RBPF samples the pose St in accordance with the mth particle, by drawing

a sample according to the kinematic motion model (with respect to mth particle):

S
[m]
t ≈ p(St|S

[m]
t−1, ut) . Here S

[m]
t−1 is the estimate for the robot location at time t − 1,

inside the mth particle. The resulting sample S
[m]
t is then added to a temporary set

of particles, along with the path of previous poses, St−1,[m] . The operation requires

constant time per particle independent of map size N .
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Measurement Model to update the landmarks

Next, RBPF updates the posterior of the landmark estimates, represented by the

mean µ
[m]
n,t−1 and the covariance Σ

[m]
n,t−1 . The updated values are then added to the

temporary particle set, along with the new pose. The updating process depends on

landmark’s observable at time t. If the landmark is not observed then the posterior

of the landmark remains unchanged. If the landmark is re-observed then the status

of the landmark is updated with the following simple equation:

p(mj|s
t, zt) = ηp(zt|st,mj)p(mj|s

t−1, zt−1)

In effect the following is the transition:

〈

µ
[m]
n,t , Σ

[m]
n,t

〉

=
〈

µ
[m]
n,t−1, Σ

[m]
n,t−1

〉

Since, this update process is performed by an EKF, RBPF also employs the same

linearization process as EKF to extract the values from the measurement model. In

specific, it uses a Taylor expansion to denote the function g since the function g is

Gaussian. The new mean and covariance are obtained using standard EKF update

[55].

RBPF Re-sampling

As a final step RBPF draws M particles (with replacement), from the constructed

temporary particles set. These particles then form the new set of particles at time

t − St. The need to resample arises because the particles in the temporary set are

not distributed as per the desired posterior. RBPF while extending the posterior
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generates poses St by catering to the most recent control ut. It does not consider the

measurement Zt.

Re-sampling is a common technique in particle filtering to correct such mis-

matches. This scenario is depicted in the figure 4.9. From the figure, the dashed line

symbolizes the proposal distribution, which is the distribution at which particles are

generated, and the solid line is the target distribution [41]. In RBPF, the proposal

distribution is independent on Zt, but the target distribution is dependent on Zt. By

weighing particles as shown in the bottom of this figure, and re-sampling according

to those weights, the resulting particle set approximates the target distribution. The

weight of each sample used in the re-sampling step is called the importance factor.

Figure 4.9: Re-sampling to approximate target distribution.

The importance factor is given by the following equation [27] with Q
[m]
t being

the covariance:

w
[m]
t ≈ η

∣

∣

∣2πQ
[m]
t

∣

∣

∣

−
1
2
e−

1
2
(zt−ẑ

[m]
t

)T Q
[m]−1
t

(zt−ẑ
[m]
t

)

From the derivation we note that the execution time of the update does not

depend on the total path length t. Since, only the most recent pose is used in the
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process of generating a new particle at time t. As a result, the past poses can safely

be discarded. This has the pleasing consequence that neither the time requirements,

nor the memory requirements of RBPF depend on time.
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Chapter 5

EXPERIMENT AND RESULTS

The experiment setup consists of 3 major components: Matlab software on which

the simulations are performed, the modified hardware test bed in the cooperative

robotics laboratory and the robot mounted with Panasonic camera. SIFT and RBPF

filtering algorithms are written in Matlab. Odometry data and images for the ex-

periment are collected manually from the test bed. The first section details the

experimental setup and the rest of the chapter includes the results obtained from the

experiments.

5.1 The Setup

This section first details the set up of the hardware test bed, followed by the set

up process employed for mapping the stereo images to the real world coordinates of

the landmark.

5.1.1 Modified Hardware Testbed

The existing cooperative robotics test bed is as shown in the figure 3.1. This

experiment fixes the world coordinate system (0,0,0) at the position of the robot

shown in figure 5.1. The x-axis and y-axis are along the blue lines as shown in the

figure 5.1. The landmarks are depicted with the black tape marks on the testbed.
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Imaging this test bed with the camera and applying SIFT extracted very few

features from the environment, which are not sufficient for SLAM. For the RBPF

algorithm the more the number of features, the better will be the estimate of the

robot’s location. The number of observable features is increased by sticking a black

tape in known locations. The modified test bed is shown in 5.1:

Figure 5.1: Modified CRR testbed.

5.1.2 Stereo Imaging

A stereo image involves a scene being observed with 2 monocular cameras sepa-

rated by a baseline distance. Using these 2 images the coordinates of the feature can

be constructed. In the experiment a Panasonic monocular camera is first mounted
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on the left side of the chassis to acquire the reference images (left images) and then

it is mounted on the right side of the chassis to acquire the right image. The Matlab

SIFT software matches the features and extracts the coordinates of the feature in the

global frame. The cameras are mounted as shown in the figure 5.2.

Figure 5.2: Simulating stereo imaging. Right mounted and left mounted on chassis.

The baseline is the distance between the optical centers of the right and left cam-

eras. This set up of cameras are mounted with a baseline distance of 12 centimeters

to form a stereovision system. The following is a brief explanation for extracting the

landmark locations from the left and right images obtained through the cameras. The

discussion refers to figure 5.3.

The left and right cameras obtain images of the same scenario but with a different

angle of view. The angle between the left and right camera is called as the parallax
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Figure 5.3: Extracting [x, y, z] from left and right images.

angle. This angle of view called the parallax angle greatly helps in estimating the z co-

ordinate (perspective or depth) of the world coordinate in the robots algorithms. The

left and right images when processed with SIFT provide us with the scale invariant

features of the images. The features acquired from the left image are matched to that

of the features of the image obtained from the right camera using the corresponding

sift descriptors. Using these matched points and the camera configuration the most

likely 3D coordinates of the landmark are estimated by projecting them back to

the space. The uncertainty in 3D landmark due to image quantization and feature

detection process is also considered.

The 3D coordinates of a point can be calculated using the following three equa-

tions:
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X = (c − c0)
b

d
; Y = (r − r0)

b

d
; Z = f

b

d

where (r, c) are the coordinates of interest point in the left image (reference

image) and, (r0, c0) are the coordinates of principal point (focal point) in the reference

image; and b, d, f are stereovision parameters namely baseline, disparity and the

focal length respectively. The disparity is the distance between the points seen in the

left image to right image. The uncertainty covariance matrix for r, c and d is also

calculated [56]. The SIFT descriptors for the matched point is given by F which is

the average of corresponding descriptors of features from left and right images. The

data gathered from these images is stored in a table. RBPF algorithm is fed with the

data from this table.

5.2 Results

The experiment is conducted with the data acquired from the robot. Firstly,

the world coordinates are obtained by matching the right and left images at each

time step and mapping them back to the real world coordinates (process described in

section 5.1.2. These real world coordinates are stored in a database to be fed to the

RBPF online filtering algorithm. Figure 5.4 is an output from the SIFT matching

algorithm. The figure shows matching between left and right images taken at (20,0)

coordinate. The green lines connect the matched features. There are few incorrect

matches between the stereo images. This incorrect matches account to the manual

data collection process employed for the experiment. RBPF being a probabilistic

model the incorrect matches are also accounted.
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Figure 5.4: SIFT feature matches between left and right images at (20,0).

Figure 5.5 is the final output after the simulation has run. The green star is the

actual position of the landmark in the global map. The red dot is a robots estimate

of the landmark position in the map. The cyan lines connect the robot to the visible

landmarks in the map. The blue line starting from (0,0) is an estimate of path taken

by robot. The line with red dots is the real path of the robot.

When the robot reaches the end of the simulation, the robot would have con-

structed a map of the entire environment and also evaluated the complete path of the

environment. Figure 5.6 is a plot of the robot’s path estimate.

The spread of the robot’s path estimation is along the actual robot path taken

along line (xt, 0). xt is x coordinate of the robot at time ‘t’. The picture shows that

with the progress of time the effective estimate of the path does not exceed a limit of

-4 centimeters.
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Figure 5.5: Final Output of RBPF simulation.

Figure 5.7 is a plot of the estimates of feature 21’s location (feature 21 is at

(480,0) coordinates) in the real world. The plot shows the estimates approximated

by 100 RBPF particles.

The Extended Kalman Filter running inside the particles had estimated the

particle position to an accuracy of 99%. The estimate with lowest covariance is

chosen to be the actual estimate for that time step. The best estimate of the feature

captured in the map is the estimate acquired before the robot looses the view of the

feature.
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Figure 5.6: Plot of path estimated by the robot.

Figure 5.7: Feature 21 estimate by 100 particles.
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Chapter 6

CONCLUSION

In this thesis the problem of localization in the cooperative robotics testbed is

addressed. Stereovision is employed to solve the SLAM problem. It is concluded

from the partially simulated experiment, that the combination of RBPF and SIFT

can be applied successfully to the mobile robots. Application of stereovision with

the light weight SIFT algorithm has estimated the robot-pose to an accuracy of 99%.

The simulation tests have shown that the error in the estimated robot pose is low.

The simulation also shows that the error propagation is linearized with time, also,

the uncertainty in a landmark’s location goes down with subsequent observations of

the landmark. The existing issue of localization in the hardware test bed has been

addressed to a large extent.

Future Work

As part of the direction to the future work, this simulation environment can be

easily programmed on to the real world robot with C and C++ languages. Data used

in this thesis is for a straight-line propagation of the robot, which can be extended to

gather random data from the environment. With the installation of the new powerful

hardware that can also cater for the floating point operations, the SIFT and Rao-

Blackwell particle filters can be implemented to run effectively. Utilizing a lighter

version of the SIFT would definitely increase the performance of the system; a study

for using lighter versions of the algorithm can be made. The Rao-Blackwell Particle
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filter (part of the fast-SLAM 1.0) used in this version suffers from few ambiguous

situations; using the later versions would circumvent these situations.
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