

Embedded Soft-Core Processor-Based Built-In Self-Test of
Field Programmable Gate Arrays

by

Bradley Fletcher Dutton

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
May 14, 2010

Keywords: Built-In Self-Test, Field Programmable Gate Array,
Fault Tolerance, Single-Event Upset Detection and Correction

Copyright 2010 by Bradley Fletcher Dutton

Approved by

Charles E. Stroud, Chair, Professor of Electrical and Computer Engineering
Vishwani D. Agrawal, Professor of Electrical and Computer Engineering
Victor P. Nelson, Professor of Electrical and Computer Engineering

ii

Abstract

The exponential growth in the number of transistors on very large scale integration
(VLSI) integrated circuits (ICs), coupled with increasing device interface bandwidth and new
surface mount and low profile packaging technologies, have made testing of ICs increasingly
difficult and costly at all levels of the testing process. Field programmable gate arrays (FPGAs)
pose a particularly difficult problem for test engineers due to their programmable nature, overall
size and complexity, limited number of inputs/outputs (I/O), and large number and variety of
embedded cores. In addition to manufacturing defects, ?soft? errors due to single event upsets
(SEUs) have become a serious problem because of the increasing size of the configuration
memory in FPGAs and shrinking design rules, even in fault-tolerant systems operating at ground
level. Building on previous work, this thesis uses built-in self-test (BIST) as a solution to the
testing problem for Xilinx Virtex-5 FPGAs. BIST configurations are presented for the
configurable logic blocks (CLBs), I/O Tiles, and SEU detection/correction cores in Xilinx
Virtex-5 FPGAs. In addition, this thesis presents a novel approach to BIST that uses a soft-core
processor configured in the fabric of the device under test to perform reconfiguration of the
resources under test, control the BIST execution, and perform fault diagnosis. This approach is
particularly useful for in-system testing of FPGAs in fault-tolerant or high-reliability systems
because it greatly reduces the amount and complexity of external hardware required for test. To
combat the problem of ?soft? errors due to SEUs that can occur in the FPGA configuration
memory during normal operation, an approach for on-line detection and correction of SEUs in
iii
the configuration memory of Xilinx Virtex-4 and Virtex-5 FPGAs is also presented. While not
entirely immune to SEU effects, this approach greatly reduces the probability of an SEU induced
failure in the user logic, and no single error from an SEU can cause a complete system failure.
iv

Acknowledgments

First, I would like to thank Dr. Stroud for three great years of guidance, encouragement,
employment, and education. You have taught me most of what I know about being an engineer,
and what I appreciate most in hindsight is that you?ve always challenged me to be the best. I
might not have even gone to graduate school if not for you. I also would like to thank the many
students that I?ve had a chance to work with and learn from while in the BIST lab. Lee, Daniel,
and Bobby: I learned a lot from you guys and, honestly, the lab was never the same without you
(Bobby, you especially: I can?t help laughing even as I write this). To the students that came
later ? Jia, Mary, Brooks, and Joey ? thanks for being good friends through thick and thin and for
making time spent at work more fun. To Joseph and Jie: for being the best engineers my age that
I?ve ever met, and, therefore, inspiring me to always work a little harder. I would also like
especially to thank my mom and dad for always being supportive in everything that I?ve done.
Robbie: for being my best and oldest friend and future business partner (or future landlord, if
engineering doesn?t work out). And Bo and Samantha, thanks for dragging me out of my room
and keeping me up late, regardless of projects or exams, and for teaching me some things that
cannot be learned in a classroom.
v

Table of Contents

Abstract ... ii
Acknowledgments.. iv
List of Tables ... ix
List of Figures .. xi
List of Abbreviations .. xv
Chapter One. Introduction .. 1
1.1 Overview of Built-In Self-Test ... 2
1.2 Introduction to Field Programmable Gate Arrays (FPGAs) ... 4
1.3 Overview of Virtex-5 FPGAs ... 7
1.4 BIST for FPGAs ... 10
1.5 Single Event Upsets in FPGAs ... 11
1.6 Verification by Fault Injection .. 13
1.7 Thesis Statement ... 14
1.8 Thesis Format ... 15
1.9 References ... 15
Chapter Two. Built-In Self-Test of Configurable Logic Blocks in Virtex-5 FPGAs 18
2.1 Introduction And Background .. 18
2.2 Overview of Virtex-5 CLBs ... 20
2.3 BIST Approach And Architecture .. 22
2.4 Experimental Results .. 26
vi
2.5 Summary And Conclusions .. 32
2.6 Acknowledgements ... 33
2.7 References ... 34
Chapter Three. Built-In Self-Test of Programmable Input/Output Tiles in Virtex-5 FPGAs 35
3.1 Introduction ... 35
3.2 Prior Work .. 37
3.3 Overview of Virtex-5 I/O Tiles .. 38
3.4 Overview of BIST Architecture .. 39
3.5 Configurations for I/O Logic Modes .. 43
3.6 Configurations for I/O SerDes Modes .. 43
3.7 Experimental Results .. 45
3.8 BIST for Programmable I/O buffers ... 48
3.9 Conclusions ... 49
3.10 Acknowledgements ... 50
3.11 References ... 50
Chapter Four. Built-In Self-Test of SEU Detection Cores in Virtex-4 and Virtex-5 FPGAs 52
4.1 Introduction ... 52
4.2 Frame ECC and ICAP Logic .. 54
4.3 Test Algorithm .. 57
4.4 BIST Approach ... 59
4.4.1 Test Pattern Generator ... 60
4.4.2 Output Response Analyzer .. 62
4.4.3 Additional Logic .. 64
4.5 Implementation Results .. 64
4.6 Conclusions ... 70
vii
4.7 Acknowledgements ... 70
4.8 References ... 71
Chapter Five. Embedded Processor Based Fault Injection and SEU Emulation for FPGAs 73
5.1 Introduction and Background ... 73
5.2 Hard Core Processor Case Study .. 75
5.3 Soft Core Processor Case Study ... 79
5.3.1 Overview of Approach ... 80
5.3.2 Architecture and Operation .. 85
5.3.3 Implementation Results ... 88
5.4 Summary and Conclusions ... 92
5.5 Acknowledgements ... 92
5.6 References ... 93
Chapter Six. Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs 95
6.1 Introduction ... 95
6.2 Background ... 96
6.3 Embedded BIST Architecture ... 100
6.4 Software Development ... 104
6.5 Design Flow and Implementation Results .. 109
6.6 Conclusions ... 111
6.7 Acknowledgements ... 111
6.8 References ... 112
Chapter Seven. Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs Case Study
... 113
7.1 Introduction ... 113
7.2 Background ... 114
7.3 Results of Implementation in Virtex-5 ... 118
viii
7.4 Future Improvements .. 123
7.5 Other Applications .. 124
7.6 Conclusions ... 125
7.7 Acknowledgements ... 127
7.8 References ... 127
Chapter Eight. On-line Single Event Upset Detection and Correction in Field Programmable
Gate Array Configuration Memories .. 129
8.1 Introduction ... 129
8.2 Background ... 134
8.3 Operation of SEU Detect and Correct .. 137
8.4 SEU Detect and Correct Architecture ... 140
8.5 Implementation Results .. 145
8.6 Experimental Results .. 149
8.7 Conclusions ... 153
8.8 Acknowledgements ... 154
8.9 References ... 155
Chapter Nine. Summary and Conclusions .. 157
9.1 Summary of Work .. 157
9.2 Future Work .. 160
Bibliography ... 162
ix

List of Tables

Table 2.1: List of acronyms .. 20
Table 2.2: SliceL logic BIST configurations .. 25
Table 2.3: SliceM BIST configurations .. 26
Table 2.4: CLB BIST totals (17 configurations) .. 32
Table 3.1: I/O tile BIST totals (15 configurations) ... 48
Table 4.1: Frame ECC codes .. 55
Table 4.2: Hamming parity matrix example ... 57
Table 4.3: ICAP and Frame ECC BIST summary .. 70
Table 5.1: Embedded fault injection run time analysis for AT94K40 .. 78
Table 5.2: Parity bit encoding, where X = don?t care ... 87
Table 5.3: Embedded fault list format .. 87
Table 5.4: Embedded fault injection core resources ... 88
Table 5.5: Fault/SEU injection core I/O descriptions ... 91
Table 6.1: BIST control registers .. 103
Table 6.2: Compressed partial reconfiguration data size .. 107
Table 7.1: Test configurations developed for various FPGAs .. 115
Table 8.1: Memory resources in two Virtex-5 FPGAs ... 130
Table 8.2: Frame ECC error codes [25][26] ... 135
Table 8.3: Hamming bit error diagnosis [25][26] ... 143
x
Table 8.4: SEU controller resource utilization in Virtex-4 devices .. 148
Table 8.5: SEU controller resource utilization in Virtex-5 devices .. 148
Table 8.6: SEU emulation results ... 152
Table 8.7: Approximate number of configuration bits for common resources [5] 153
xi

List of Figures

Figure 1.1: Basic BIST architecture [3] .. 3
Figure 1.2: Typical custom ASIC, standard cell ASIC, and FPGA cost vs. volume 5
Figure 1.3: Typical FPGA architecture [12] ... 6
Figure 1.4: Simplified basic logic element ... 7
Figure 1.5: Virtex-5 configurable logic block [15] ... 8
Figure 1.6: Virtex-5 6-Input LUT [16] ... 9
Figure 1.7: Illustration of a single-event effect in a CMOS inverter .. 12
Figure 2.1: Simplified basic logic element ... 21
Figure 2.2: Virtex-5 configurable logic block [11] ... 21
Figure 2.3: Circular comparison architecture ... 23
Figure 2.4: Equivalent ORA architecture ... 24
Figure 2.5: SliceL fault coverage (simulation) ... 29
Figure 2.6: SliceL fault coverage (fault injection) .. 29
Figure 2.7: SliceM fault coverage (simulation) .. 30
Figure 2.8: SliceM fault coverage (fault injection) ... 30
Figure 2.9: Boundary Scan interface test time .. 31
Figure 2.10: 32-bit parallel interface test time .. 31
Figure 3.1: Simplified programmable I/O cell .. 37
Figure 3.2: Virtex-5 programmable I/O tile .. 38
xii
Figure 3.3: Column oriented circular comparison .. 40
Figure 3.4: Virtex-5 equivalent ORA architecture ... 41
Figure 3.5: Bitslip synchronizer circuit .. 45
Figure 3.6: 50 MHz Boundary Scan configuration interface test time ... 47
Figure 3.7: 100 MHz 32-bit parallel configuration interface test time ... 47
Figure 4.1: Frame ECC and ICAP primitives ... 56
Figure 4.2: Sequential Hamming bit calculation .. 60
Figure 4.3: Test pattern write sequence via ICAP interface ... 61
Figure 4.4: Test pattern read sequence via ICAP interface .. 61
Figure 4.5: ICAP and Frame ECC BIST architecture. .. 65
Figure 4.6: BIST VHDL component declaration. ... 66
Figure 4.7: Virtex-4 FX12 with ICAP/Frame ECC BIST .. 68
Figure 4.8: Virtex-5 LX20T with ICAP/Frame ECC BIST .. 69
Figure 5.1: AT94K series SoC architecture .. 76
Figure 5.2: AT94K routing architecture ... 77
Figure 5.3: SliceL simulation stuck-at fault coverage .. 83
Figure 5.4: SliceL fault injection stuck-at fault coverage ... 83
Figure 5.5: Total CLB test time via Boundary Scan ... 84
Figure 5.6: Frame read-modify-write flowchart ... 85
Figure 5.7: Block diagram of fault injection core ... 88
Figure 5.8: Routed embedded fault inject core (right) with half-array of routed CLB BIST (left)
in Virtex-5 LX20T .. 90
Figure 5.9: Fault inject core component declaration .. 91
xiii
Figure 6.1: Configurable logic block (CLB) BIST architecture ... 97
Figure 6.2: Embedded soft core processor based BIST architecture .. 103
Figure 6.3: Embedded processor BIST algorithms ... 105
Figure 6.4: Compressed BIST partial reconfiguration structure in C ... 107
Figure 6.5: Original reconfiguration file sizes and compressed data structure sizes for one CRC
BIST and a set of 5 I/O Logic BIST partial reconfigurations ... 108
Figure 6.6: Embedded processor BIST design implementation ... 110
Figure 7.1: Simplified soft-core processor-based BIST architecture .. 117
Figure 7.2: Unrouted embedded processor-based BIST configuration for top configurable logic
blocks (CLB) in Virtex-5 LX30T viewed in FPGA Editor .. 119
Figure 7.3: CLB BIST test time for external configuration (full compressed and partial
compressed bitstreams) and embedded processor test time .. 120
Figure 7.4: Contribution to embedded processor-based CLB BIST test time by initial external
configuration and by five internal partial reconfigurations .. 122
Figure 7.5: Comparison of CLB BIST ORA read back times with embedded processor-based
approach and external Boundary Scan interface ... 122
Figure 7.6: 32-bit, 100 MHz interface test time for full chip CLB west or east with one full
compressed configuration and five partial reconfigurations ... 124
Figure 8.1: FIT rate (corrected for sea-level New York, NY) versus Xilinx device family, initial
release year, and minimum feature size [6] where the center line represents the nominal value
and the span of the line represents the upper and lower 95% confidence levels 131
Figure 8.2: Frame ECC and ICAP primitives ... 137
Figure 8.3: SEU controller VHDL component declaration .. 137
xiv
Figure 8.4: SEU controller behavioral pseudocode .. 139
Figure 8.5: SEU controller block diagram .. 142
Figure 8.6: SEU controller LOG cycle time vs. Virtex-4 device .. 146
Figure 8.7: SEU controller cycle time vs. Virtex-5 device ... 147
Figure 8.8: Routed SEU controller implemented in Virtex-5 LX20T device............................. 150
xv

List of Abbreviations

ATE Automatic Test Equipment
BIST Built-In Self Test
BRAM Block RAM
BSCAN Boundary Scan
BUT Block under Test
CAD Computer-aided Design
CLB Configurable Logic Block
CMOS Complementary Metal-oxide-semiconductor
CUT Circuit under Test
DFT Design for Testability
DSP Digital Signal Processor
DUT Device Under Test
ECC Error Correction Code
FF Flip-flop
FIFO First-in First-out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GUI Graphical User Interface
HDL Hardware Description Language
xvi
I/O Input / Output
IC Integrated Circuit
ICAP Internal Configuration Access Port
IP Intellectual Property
LUT Look-up Table
LSB Least Significant Bit
MSB Most Significant Bit
ORA Output Response Analyzer
PIP Programmable Interconnect Point
PLB Programmable Logic Block
RAM Random Access Memory
SERDES Serializer / Deserializer
SEU Single Event Upset
SoC System-on-Chip
SRAM Static Random Access Memory
TCK Test Clock
TDI Test Data In
TDO Test Data Out
TMS Test Mode Select
TPG Test Pattern Generator
VLSI Very Large Scale Integration

1
Chapter One. Introduction
Moore?s law, which predicts a doubling of integrated circuit (IC) transistor density every
18 to 24 months, has been an accurate predictor of the exponential growth in the number of
transistors in ICs since it was first observed by Gordon Moore in 1965 [1]. According to the
most recent International Technology Roadmap for Semiconductors (ITRS) report, minimum
feature size is expected to continue to decrease by a factor of two (e.g. transistor density will
increase by a factor of two) every two years until 2022 [2]. With very large-scale integration
(VLSI) circuits already surpassing the one billion transistor mark in 2008, this report, in
accordance with Moore?s law, predicts that the number of transistors on a single IC of
comparable physical area will exceed 128 billion by 2022.
Increasing transistor count and density and increasing device interface bandwidth,
coupled with new surface mount and low profile packaging technologies, have made testing of
integrated circuits increasingly difficult and costly at all levels of the testing process [3] [4]. In
addition, larger device sizes and smaller feature sizes have increased both the number and type of
faults that can occur [4]. Testing embedded resources in VLSI devices is especially difficult
because their embedded nature makes them difficult to control and observe from the external
chip I/O; furthermore, the number of external I/O is continually decreasing in proportion to the
number of transistors on a single die [4]. While the number of I/O has increased by an order of
magnitude for most VLSI devices, the number of transistors on a single die increased by more
than 4 orders of magnitude over the same time period [4]. (This trend is commonly called Rent?s
Rule, for E. F. Rent of IBM, who was the first to investigate a relationship between the number
2
of I/O and the number of internal logic blocks in 1960 [5]). Due to the limited number of
external I/O in proportion to the number of transistors on a chip, and without the inclusion of any
additional test circuitry, the controllability and observability of most VLSI designs are severely
limited during testing.
Another factor affecting testing of VLSI ICs is the cost of automatic test equipment
(ATE). While the cost of manufacturing transistors in VLSI circuits has continued to decrease
with each new technology node, the cost of testing has increased both in absolute terms and in
proportion to overall manufacturing cost. In fact, the cost of testing a single transistor already
exceeds its cost of production [3], and due to the ever increasing density and bandwidth of
integrated circuits, testing costs will continue to rise. It is expected that by the year 2014, the
cost of a leading edge VLSI test machine will exceed twenty million dollars [4]. Consequently,
design for testability (DFT) methods, which incorporate additional test circuitry during the
design phase to increase circuit controllability and observability during testing, are included in
some form in virtually every VLSI design. Two of the most common DFT techniques are scan
design and built-in self-test (BIST). Another DFT method, known as Boundary Scan or JTAG
(Joint Test Action Group) [6], is usually included to facilitate board-level testing of systems with
high pin-count and surface mount components [3] [7]. A recent offshoot of Boundary Scan,
IEEE standard 1500-2005 [8], describes a scalable wrapper architecture and control mechanism
for testing embedded cores in System-on-Chip (SOC) devices and the interconnect between
cores [3]. The primary focus of this thesis will be on BIST as a solution for testing VLSI ICs.
1.1 Overview of Built-In Self-Test
BIST was introduced around 1980 as a way to test embedded cores in VLSI devices [4].
The basic idea of BIST is to incorporate extra circuitry and functionality in the device under test
3
such that the circuit can test itself [3] [4]. This implies that the circuit is capable of generating
test patterns and compacting output responses. Therefore, BIST, in contrast to other techniques
such as scan design which relies on externally applied test patterns, does not require costly ATE
hardware. In addition, many BIST techniques are applicable at every level of the testing process,
from wafer-level manufacturing test to board-level and in-system test. Another advantage of
some BIST approaches when compared to scan-based test techniques is that patterns can be
applied to the circuit under test and the output responses monitored at system speeds, which
facilitates the detection of delay and coupling faults [4] [9].
A simple BIST architecture, shown in Figure 1.1, consists of a test pattern generator
(TPG), output response analyzer (ORA), circuit under test (CUT), and some additional control
circuitry [3] [4]. For system-level use of BIST, input isolation circuitry and a dedicated BIST
controller must be included. The BIST controller can be used to initiate the BIST, initialize the
CUT, activate the input isolation circuitry, and provide an indication when the test is complete.
During off-line tests, the TPG generates a set of test patterns which are applied to the circuit
under test (CUT) to sensitize potential fault sites, and the ORA compacts the output response of
the CUT. At the conclusion of the test, the results are determined by examination of the ORA
contents (generally, by comparison to the fault-free circuit ?signature?) [4].

Figure 1.1: Basic BIST architecture [3]
Test Pattern
Generator (TPG)
Output Response
Analyzer (ORA)
Circuit
Under Test
(CUT)
Input
Isolation
Circuit System
Inputs
Pass/Fail
System
Outputs
4
There are some costs associated with BIST that must be taken into consideration. In
ASICs, BIST requires additional circuitry and functionality that results in area and performance
penalties. This additional circuitry is shown in gray in Figure 1.1. Typically, the performance
penalty is minimal, amounting to no more than a multiplexer delay in the primary input data path
and additional fan-out in the primary output data path of the circuit under test. The area penalty
varies depending on the exact BIST architecture used (which is, in turn, usually a function of
desired fault coverage and the type of circuit under test). This additional area is disadvantageous
because larger chip areas result in fewer chips per wafer, and, therefore, higher cost per chip due
to lower yield [4]. Also, some additional I/O pins may be required for activation of the BIST
circuitry and results retrieval [4]. The inclusion of BIST also increases the design effort and risk
to the project, because, on top of designing the system function, the BIST circuitry must also be
designed and verified. However, most case studies have found that the benefits of BIST usually
outweigh the costs (including addition design time and overhead) when included in a project [4],
and many computer-aided design (CAD) tools now support automatic insertion of pre-
engineered BIST circuitry during the design phase, which reduces the design effort and risk to
the project.
1.2 Introduction to Field Programmable Gate Arrays (FPGAs)
Field Programmable Gate Arrays (FPGAs) are pre-fabricated semiconductor devices that
can be programmed (i.e. configured) after manufacturing to perform complex sequential or
combinational logic functions. Compared to standard-cell or custom ASIC designs, FPGAs
provide lower non-recurring engineering costs and faster time-to-market [10]. The non-recurring
engineering costs associated with the design and manufacture of FPGAs are initially absorbed by
the manufacturer and are passed to the customer in the form of a higher price-per-part. This cost,
5
coupled with the cost of the additional logic required for programming of the device, makes the
recurring costs of designs with FPGAs higher than those with ASICs. For these reasons, FPGAs
are commonly used for rapid prototyping of designs prior to first silicon and in low-volume,
highly-specialized digital systems (where the FPGA is used in lieu of an ASIC). An illustration
of the total cost (i.e. recurring plus non-recurring costs) as a function of volume (number of
parts) for a design implemented as a standard-cell ASIC, as a custom ASIC, and in an FPGA is
shown in Figure 1.2 [10].

Figure 1.2: Typical custom ASIC, standard cell ASIC, and FPGA cost vs. volume
Due to the programmable nature of FPGAs, area, power and performance penalties are
incurred for designs implemented in FPGAs when compared to the same design implemented as
an ASIC. For several benchmark circuits implemented in both a 90 nm FPGA and 90 nm
standard-cell ASIC, the FPGA implementation required between 18 and 35 times greater silicon
area, and the critical path delay of the circuit increased by 3 to 4 times versus the ASIC
implementation [11].
A typical FPGA is composed of an array of programmable logic blocks (PLB) (also
called configurable logic blocks, or CLB) and input/output (I/O) cells connected by a
Custom
ASIC
Standard-Cell
ASIC
FPGA
Number of parts
Total cost
FPGA & Standard
Cell ASIC break-
even point
6
programmable interconnect network, as illustrated in Figure 1.3 [12]. Most modern FPGAs also
include ?hard? cores such as reduced instruction set computer (RISC) or complex instruction set
computer (CISC) processors, digital signal processors (DSPs), random access memories
(RAMs), and high-speed serializer/deserializer (SERDES) input/output (I/O) cells. These ?hard?
cores can perform certain common functions, such as multiply/accumulate or
serialization/deserialization, with greater efficiency than can be achieved by implementing the
same function in CLBs, which helps to reduce the performance/area penalties when compared
with ASICs [11].

Figure 1.3: Typical FPGA architecture [12]
The front-end of the FPGA design process is identical to that for a standard-cell ASIC.
However, the post synthesis design flow is much less complex for FPGA implementations. After
behavioral simulation and functional verification, computer aided design (CAD) tools (usually
supplied by the FPGA manufacturer, but also available through third parties) translate the digital
designs in Hardware Description Language (HDL) or schematic form to a device specific netlist
which maps the design into the FPGA?s configurable logic and programmable routing network.
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB
Input/Output
Cell (I/O Cell)
Programmable
Interconnect
Network
7
A configuration bit-file is generated from this netlist and downloaded to the configuration
memory of the FPGA to implement the desired user function.
1.3 Overview of Virtex-5 FPGAs
This body of work is primarily concerned with Xilinx Virtex-5 FPGAs. Virtex-5 FPGAs
are fabricated in a 1.0 V, 65 nm CMOS copper process with 12 metal layers [13]. The number of
flip-flops and LUTs in a single Virtex-5 device ranges from 12,480 up to 207,360. As many as
1,200 user I/O are available in the highest pin-count package [13]. The configuration memory in
all Virtex-5 devices is a large static random access memory (SRAM), ranging in size from 4.94
Mb (4,935,744 bits) to 82.7 Mb (82,687,488 bits) [14].
Each CLB in an FPGA consists of one or more basic logic elements. The Virtex-5 basic
logic element, illustrated in Figure 1.4, comprises a six-input look-up table (LUT), a
configurable flip-flop/latch (FF/LAT), a multiplexor to control the combinational output, and a
multiplexor to control the registered output (FF/LAT input) [15].

Figure 1.4: Simplified basic logic element
Additional dedicated carry logic is included to perform special logic and arithmetic
functions. In some slices, the LUT can be configured as a small RAM, called a free RAM or
LUT RAM, with an independent read and shared write address input. Four such logic elements
LUT/
RAM
Carry
Logic
FF/
LAT
6
CIN
COUT
8
are grouped to form a slice, and two slices are grouped to form a complete configurable logic
block (CLB), as illustrated in Figure 1.5. The logic blocks are replicated and tiled in columns
and rows, as in Figure 1.4, and are connected via programmable switch-boxes to local and global
routing resources. Larger devices include more CLBs, but the structure of the CLB is identical
across all devices in the FPGA family [15].

Figure 1.5: Virtex-5 configurable logic block [15]
The LUTs in Virtex-5 devices are designed with two outputs each. The primary output
can utilize the full 64-bit LUT to implement any six variable Boolean function. The second
output can be used to control the carry chain, or both outputs can implement two five variable
Boolean functions for five shared inputs. Both outputs can be selected by the multiplexors for
the registered or combinatorial CLB output paths. A block diagram of the Virtex-5 6-input LUT
is shown in Figure 1.6 [16].
Select slices also support RAM and shift register modes of operation. Each LUT can be
configured as a simple 64 x 1-bit or 32 x 2-bit RAM. Dynamic multiplexors in each slice allow
for Shannon expansion of the four slice LUTs to form a 256 x 1-bit RAM. Additionally, the four
slice LUTs can share address inputs to form a 32 x 8-bit RAM. Each LUT can also form a single
32-bit or two 16-bit shift registers. The four LUTs in the slice can be cascaded to form a 128-bit
shift register or can operate in parallel form a 16 x 8-bit shift register in a slice [15] [16].
COUT COUT
Switch
Matrix Memory Slice(0)
SliceM
Logic
Slice(1)
SliceL
CLB
CIN CIN
9

Figure 1.6: Virtex-5 6-Input LUT [16]
In addition to CLBs, every device in the Virtex-5 family includes DSP and Block RAM
?hard? cores. Each DSP core can perform 25 x 18 2?s complement multiplication, and includes
an adder/subtractor/accumulator block. The DSP can also perform bit-wise logic operations
including NOR, OR, AND, NAND, XNOR, and XOR. Up to five pipeline registers may be
configured for use in the data path for increased throughput (up to 550 MHz) in high
performance applications [17]. Each Block RAM core is 36 Kbit in size, with true dual-port
read/write access to each memory element. Each of the read and write ports are configurable,
such that the address and data bus widths can vary from 32K x 1-bit to 1K x 72-bit. In addition,
the Block RAM can operate in a FIFO mode (with configurable data width and programmable
almost-full and almost-empty flags) and/or in an error correction code (ECC) mode [15]. Some
devices in the Virtex-5 family also include other ?hard? cores such as gigabit transceivers,
Ethernet MACs, PCI Express blocks, and/or Power PC processors [13].

A2
A3
A4
A5
A6

LUT5

A2
A3
A4
A5
A6
LUT5

O5
O6
LUT6
A6
A5
A4
A3
A2
A1

10
1.4 BIST for FPGAs
Testing FPGAs is difficult when compared to testing ASICs because of their
programmable nature and overall complexity [9]. Each of the programmable resources must be
tested in all modes of operation to achieve high fault coverage. This implies that multiple re-
configurations of the device are required during testing. Because the total test time is usually
dominated by the time spent configuring the device under test, the size of FPGA configuration
memories is also a factor in testing [9]. FPGAs are, in general, not well-suited for scan-based
testing methods. However, the programmable nature of FPGAs allows for the creation of test
circuitry in the programmable logic during testing. In addition, the regular structure of FPGAs
makes pseudo-exhaustive test methods highly efficient [4] [9] [17] [18] [19].
BIST for FPGAs exploits the re-programmability of FPGAs to create BIST circuitry in
the FPGA fabric during manufacturing and system-level off-line testing [4] [9] [17] [18] [19].
The only overhead is the external memory required to store the BIST configurations along with
the time required to download and execute the BIST. No area overhead or performance penalties
are incurred in the user function because the BIST logic is replaced by the intended system
function after testing is complete. The BIST configurations are applicable to all levels of testing
because they are independent of the intended system function and require no specialized external
test fixture or equipment. Most research and development in BIST for FPGAs has focused on
reducing the number of test configurations, reducing the size of test configuration files, and
decreasing BIST execution time [4] [7] [8] [23]. Other research has focused on developing BIST
techniques for the complex embedded cores included in many modern FPGAs, such as DSPs
[24] and RAMs [3] [5]. This thesis presents new BIST approaches for the CLBs, I/O Tiles, and
SEU detection cores in Virtex-5 FPGAs.
11
This thesis also presents a new approach to BIST for FPGAs that utilizes a soft-core
processor configured in the fabric of the FPGA under test to execute the BIST sequence,
including retrieval and analysis (fault diagnosis) of BIST results and reconfiguration of the
FPGA for subsequent BIST configurations. The approach reduces the required number of
configurations for BIST of any logic resource to a maximum of four, and by moving the complex
BIST controller logic into the FPGA fabric, the external hardware requirements for BIST of
FPGAs is greatly reduced. This approach is particularly useful in high-reliability and fault-
tolerant applications, especially when fault-diagnosis is required.
1.5 Single Event Upsets in FPGAs
BIST is typically targeted at detecting manufacturing defects or ?hard? faults that appear
during normal operation. However, ?soft? errors, known as Single Event Upsets (SEUs), are
known to affect the configuration memory and other memory elements of FPGAs during normal
operation. These errors are caused when charged particles, such as heavy ions or protons, travel
through the FPGA, as illustrated in Figure 1.7 [27]. These particles can alter the state of any
static memory element, resulting in an SEU [27] [28] [29]. While SEUs occur more frequently
in high radiation environments such as space, they have also been experimentally observed in
FPGAs at ground level [28] [29] [30]. Because the configuration memory of an FPGA
establishes the overall system function performed by the FPGA, an SEU in the configuration
memory can alter the FPGA functionality. This, coupled with the large size of the configuration
memory, makes SEUs a significantly greater concern in FPGAs than in typical ASICs [31].
12

Figure 1.7: Illustration of a single-event effect in a CMOS inverter
Several methods exist to mitigate the effects of SEUs in FPGAs. The most common
methods include power cycling, triple modular redundancy, redundant devices, and active
configuration memory scrubbing [27]. Power cycling is essentially the simplest form of
configuration memory scrubbing, because the entire configuration memory is refreshed (from a
radiation hardened memory) each time that power is cycled off and on. When a power cycling
mitigation scheme is employed, SEUs can persist in memory elements for a period of time equal
to the power-cycling period. This approach is usually sufficient for non-critical applications in
low radiation environments [27].
Triple modular redundancy creates three identical copies of the user function in the
FPGA fabric and adds majority voters on the inputs to all flip-flops and on all primary outputs of
the circuit [32]. This approach is very robust: any single SEU cannot cause the circuit to
malfunction, and multiple SEUs must alter the same flip-flop input or primary output in two
circuit copies on the same clock cycle in order for the error to propagate. However, the area
penalty for any TMR approach is greater than 200% of the original circuit size, which increases
system cost and power requirements. Also, circuit performance can be adversely impacted due
13
to the increased size of the circuit and inclusion of majority voters in critical paths [27].
Duplicating the user function in multiple FPGAs and performing voting on the outputs of the
FPGAs in a radiation hardened device is the most robust from of SEU mitigation. However,
designing systems with multiple FPGAs is both costly and difficult, and requires special design
considerations such that the FPGAs remain synchronized after an SEU is repaired in any one of
the devices [27].
Active configuration memory management (also called active configuration memory
scrubbing) utilizes error correction code (ECC) stored with configuration data in the
configuration memory to actively detect and repair SEUs [14]. The ECC, in conjunction with
some additional user-accessible dedicated logic, can be used to detect SEUs in the configuration
memory [15]. This approach incurs minimal area overhead, and SEUs persist for only a small
window of time. The configuration management hardware may be hosted on an external
radiation hardened FPGA, microprocessor, ASIC, or in the FPGA itself. However, in the latter
case, the circuitry responsible for the repair of SEUs is also susceptible to SEUs [31]. Therefore,
the area of the detection and repair circuitry should be minimized to decrease the probability of
an SEU in that logic. An active configuration memory management approach for Xilinx Virtex-
4 and Virtex-5 FPGAs that requires no additional external hardware is described in this thesis.
1.6 Verification by Fault Injection
During the development of BIST approaches for FPGAs, it is necessary to verify the fault
coverage of the BIST configurations. It is difficult to find actual faulty devices and their
usefulness is limited due to the fixed nature of the faults. Physical faults can be created by
etching the packaged device and creating opens or shorts in routing resources that lie at the top
level of interconnect metal for example, but once again the usefulness of these devices is limited.
14
A more efficient approach is to manipulate the configuration memory bits to emulate physical
faults in the device [33] [34] [35] [36]. For example, a stuck-at fault in a look-up table (LUT) bit
can be emulated by overwriting the particular configuration memory bit and setting it to the
desired stuck-at fault value. SEUs, on the other hand, can be emulated by flipping the value of
bits in the configuration memory. Shorts and opens in the interconnect network can be emulated
along with almost any fault in the logic resources that can be controlled by configuration
memory bits. An approach for the emulation of stuck-at faults and SEUs in the configuration
memory of Virtex-4 and Virtex-5 FPGAs is presented in this thesis.
1.7 Thesis Statement
Testing FPGAs is difficult due to their high complexity, the limited observability and
controllability of embedded cores, and their programmable nature. Also, the increasing density
and large size of the configuration memory has made transient and on-line faults due to SEUs
more common and of greater concern, even in fault-tolerant applications that operate at ground
level. This work considers both ?hard? faults due to manufacturing defects and device ageing as
well as transient or ?soft? faults induced by SEUs in Virtex-5 FPGAs. Furthermore, this work
considers ?hard? faults that may affect the detection and correction of SEUs by corrupting the
dedicated SEU detection hardware in Virtex-5 FPGAs, and presents BIST approaches for this
hardware. Other BIST methods are proposed as a solution to detect ?hard? faults and
manufacturing defects that can affect the configuration memory and programmable resources in
Virtex-5 FPGAs, including the CLBs and I/O Tiles. A novel BIST approach for FPGAs that
utilizes a soft-core processor configured in the fabric of the FPGA under test to perform complex
functions such as reconfiguration of resources under test and fault diagnosis is also presented.
Finally, a method for active detection and correction of temporary or ?soft? errors by active
15
configuration memory management and without the requirement of additional external hardware
is presented for Xilinx Virtex-4 and Virtex-5 FPGAs.
1.8 Thesis Format
This thesis is written in ?publication format? as suggested by the Auburn University
Graduate School Electronic Thesis and Dissertation Guide, and consists of conference and
journal papers that were published (or accepted for publication) during the course of research
conducted by the author while in the graduate program at Auburn University. A majority of the
actual research and the writing of all published papers included in this thesis represents the
efforts of the primary student author and not collaborators. Each paper is presented ?as
published?, with the exception of an acknowledgments section at the end of each chapter that
provides the name, location, and date of publication of the original paper along with any
information regarding relevant published papers that do not appear in this thesis. The papers are
reformatted to comply with the guidelines set forth by the Graduate School. References are
organized as follows: Each chapter in the body of the thesis contains its original list of
references (numbered consecutively beginning at 1), such that the chapter may stand-alone and
as it appears in the original published paper. In addition, a cumulative bibliography of all
references cited in the thesis is included at the end of the thesis.
1.9 References
[1] G. Moore, ?Cramming More Components onto Integrated Circuits,? Proc. of the IEEE,
vol. 86, no. 1, pp. 82-85, 1998.
[2] Semiconductor Industry Association, International Technology Roadmap for
Semiconductors: 2007 edition, http://public.itrs.net.
[3] Y. Min and C. Stroud, ?Introduction,? in VLSI Test Principles and Architectures, L-T
Wang, C-W Wu, and X. Wen, Eds., San Francisco: Morgan Kaufmann, 2006, pp. 1-33.
16
[4] C. Stroud, A Designer?s Guide to Built-In Self-Test, Boston: Springer, 2002.
[5] P. Christie, D. Stroobandt, ?The Interpretation and Application of Rent?s Rule,? IEEE
Trans. on VLSI Systems, vol. 8, no. 6, pp. 639-648, 2000.
[6] IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-
2001, New York, 2001.
[7] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, New York: Springer, 2000.
[8] IEEE Standard Testability Method for Embedded Core-Based Integrated Circuits, IEEE
Std. 1500-2005, New York, 2005.
[9] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, San Francisco:
Morgan Kaufmann, 2007.
[10] M. Smith, Application-Specific Integrated Circuits, Addison-Wesley, 1997.
[11] I. Kuon and J. Rose, ?Measuring the Gap Between FPGAs and ASICs,? IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol.26, no.2, pp.203-215,
2007
[12] S. Brown and J. Rose, ?FPGA and CPLD architectures: a tutorial,? IEEE Design & Test
of Computers, vol.13, no.2, pp.42-57, 1996
[13] Virtex-5 Family Overview, DS100 (v5.0), Xilinx Inc., 2009.
[14] Virtex-5 FPGA Configuration User Guide, UG191 (v3.2), Xilinx Inc., 2008.
[15] Virtex-5 FPGA User Guide, UG190 (v 4.2), Xilinx Inc., 2008.
[16] A. Cosoroaba and F. Rivoallon, ?Achieving Higher System Performance with the Virtex-
5 Family of FPGAs,? Xilinx Inc., San Jose, CA, 2006.
[17] Virtex-5 FPGA ExtremeDSP Design Considerations: User Guide, UG193 (v3.3), Xilinx
Inc., 2009.
[18] M. Abramovici and C. Stroud, ?BIST-based test and diagnosis of FPGA logic blocks,?
IEEE Trans. on VLSI Syst., vol. 9, no. 1, pp. 159-172, 2001.
[19] S. Toutounchi and A. Lai, ?FPGA test and coverage,? Proc. IEEE Int. Test Conf., pp.
599-607, 2002.
[20] J Sunwoo and C. Stroud, ?BIST of Configurable Cores in SoCs Using Embedded
Processor Dynamic Reconfiguration,? Proc. Int. SoC Design Conf., pp. 174-177, 2005.
[21] B. Dutton and C. Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
17
[22] B. Dutton and C. Stroud, ?Built-In Self-Test of Programmable Input/Output Tiles in
Virtex-5 FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 235-239, 2009.
[23] C. Stroud, S. Konala, P. Chen, and M. Abramovici, ?Built-in self-test of logic blocks in
FPGAs,? Proc. IEEE VLSI Test Symp., pp.387-392, 1996.
[24] M. Pulukuri and C. Stroud, ?Built-In Self-Test of Digital Signal Processors in Virtex-4
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 34-38, 2009.
[25] C. Stroud, S. Garimella and J. Sunwoo, ?On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devices,? Proc. ISCA Int. Conf. on
Computers and Their Applications, pp. 308-313, 2005.
[26] B. Garrison, D. Milton, and C. Stroud, ?Built-In Self-Test for Memory Resources in
Virtex-4 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 63-
68, 2009.
[27] B. Bridgford, C. Carmichael, and C. Tseng, ?Single-Event Upset Mitigation Selection
Guide,? XAPP987 (v1.0), Xilinx Inc., 2008.
[28] E. Normand, ?Single Event Upset at Ground Level,? IEEE Trans. on Nuclear Science,
vol. 43, pp. 2742-2750, 1996.
[29] A. Lesea and P. Alfke, ?Xilinx FPGAs Overcome the Side Effects of Sub-90 nm
Technology,? WP256 (v1.0.1), Xilinx Inc., 2007.
[30] A. Lesea, ?Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron
Integrated Circuits,? WP286 (v1.0), Xilinx Inc., 2008.
[31] K. Chapman and L. Jones, ?SEU Stratagies for Virtex-5 Devices,? XAPP864 (v1.0.1),
Xilinx Inc., 2009.
[32] Xilinx TRMTool User Guide: TMRTool Software Version 9.2i, UG156 (v2.2), Xilinx Inc.,
2009.
[33] P. Ellervee, J. Raik, K. Tammem?e and R. Ubar, ?Environment for FPGA-based Fault
Emulation,? Proc. Estonian Acad. Sci. Eng., vol. 12, pp. 323?335, 2006.
[34] T. Slaughter, C. Stroud, J. Emmert and B. Skaggs, ?Fault Injection Emulation for Field
Programmable Gate Arrays,? Proc. Int. Society for Optical Eng., vol. 4525, pp. 1-9,
2001.
[35] E. Johnson, M. Caffrey, P. Graham, N. Rollins and M. Wirthlin, ?Accelerator Validation
of an FPGA SEU Simulator,? IEEE Trans. on Nuclear Sci., vol. 50, no. 6, pp. 2147-2157,
2003.
[36] F. Kastensmidt, L. Carro and R. Reis, Fault-Tolerance Techniques for SRAM-based
FPGAs, The Netherlands: Springer, 2006.
18
Chapter Two. Built-In Self-Test of Configurable Logic Blocks in Virtex-5 FPGAs
A Built-In Self-Test (BIST) approach is presented for the configurable logic blocks
(CLBs) in Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs). A total of 17
configurations were developed to completely test the full functionality of the CLBs, including
distributed RAM modes of operation. These configurations cumulatively detect 100% of stuck-
at faults in every CLB. There is no area overhead or performance penalty and the approach is
applicable to all levels of FPGA testing (wafer, package, and in-system). A novel output
response analyzer (ORA) design, which is efficiently implemented in FPGAs, provides both an
overall single-bit pass/fail result and optimal diagnostic resolution when faults are detected. The
implementation of the BIST approach in all Virtex-5 FPGAs and experimental results are
discussed.
2.1 Introduction And Background
Built-In Self-Test (BIST) for Field Programmable Gate Arrays (FPGAs) is typically
targeted at manufacturing defects and operational faults that can appear at any point in the
product life-cycle. As a result, BIST for FPGAs employs a defect-oriented test strategy [1].
Ideally, a BIST approach would be applicable to all levels of testing, from manufacturing test to
in-system test, and would be entirely independent of the end user function. Additionally, the
BIST would achieve maximal stuck-at fault coverage and would be executed at-speed to provide
high fault coverage for a variety of fault models. When possible, high diagnostic resolution of
detected faults is desired for fault-tolerant applications. This chapter presents a BIST approach
19
for the configurable logic blocks (CLBs) in Virtex-5 FPGAs that represents the culmination of
over 15 years of work in FPGA BIST to address these concerns.
The first BIST for the configurable logic in FPGAs was proposed in [2]. The approach
exploits the re-programmability of FPGAs to create BIST circuitry in the FPGA fabric during
off-line testing. The only overhead is the external memory required to store the BIST and
system function configurations along with the time required to download and execute the BIST.
No area overhead or performance penalties are incurred since the BIST logic ?disappears? after
the test session. Furthermore, the tests are applicable at all levels of testing since they are
independent of the system function and require no external test fixture or equipment. The basic
idea for the BIST is to configure some of the CLBs as Test Pattern Generators (TPGs) and
Output Response Analyzers (ORAs) while configuring other CLBs as blocks under test (BUTs).
The BUTs are repeatedly configured until they have been tested in every mode of operation [1].
These tests achieve maximal fault coverage by applying pseudo-exhaustive test patterns such that
each sub-circuit of the BUT is exhaustively tested [2].
Several examples of BIST for the CLBs in FPGAs have been published, with each
offering some improvement over the previous approach. Reference [3] introduced Boundary
Scan as a means of controlling the BIST sequence. Xilinx engineers, in [4], introduced a set of
iterative array logic tests with similarities to the approach presented in [2] and [3]. The general
BIST approach, which is independent of the CLB array size, can also be adapted for on-line
BIST techniques, as discussed in [5]. Previous examples of the implementation of this BIST
approach on Xilinx 4000, Spartan, Virtex-I, Spartan-II and Atmel FPGAs are contained in [6],
[7], and [8]. Partial reconfiguration was used in [9] to reduce the overall download and test
times as well as system down time.
20
The BIST approach for Virtex-5 FPGAs builds primary on the previous work in [2], [3],
[8], and [10]. However, our approach offers an improved ORA architecture and fewer total test
configurations. We also improve the accuracy of the fault simulation models and add
verification of the configurations on the target device via configuration memory bit fault
injection. The remainder of this chapter is organized as follows. Section 2.2 gives an overview
of the CLB architecture in Virtex-5 FPGAs. Section 2.3 describes the BIST approach and
implementation specific to Virtex-5 FPGAs. Section 2.4 describes the experimental result and
verification of the BIST. Section 2.5 summarizes and concludes the chapter.
Table 2.1: List of acronyms
Acronym Definition Acronym Definition
CLB Configurable Logic Block BUT Block Under Test
BIST Built-in Self-test LUT Look-Up Table
ORA Output Response Analyzer SliceL Logic Slice
TPG Test Pattern Generator SliceM Memory Slice

2.2 Overview of Virtex-5 CLBs
The basic Virtex-5 logic element, illustrated in Figure 2.1, is composed of a 6-input look-
up table (LUT), a configurable flip-flop/latch, and multiplexers to control the combinational
logic output and the registered output (flip-flop/latch input). Additional dedicated fast carry
logic is included to perform special logic and arithmetic functions. In some slices, the LUT can
be configured as a small RAM, called a distributed RAM or LUT RAM, or as a shift register
[11]. Four such basic logic elements are grouped to form a slice, and two slices are grouped to
form a complete CLB, as shown in Figure 2.2 [11]. Each CLB is connected by a switch matrix
to local and global programmable routing resources. Identical CLBs are tiled in columns and
rows with larger devices including more columns and/or rows of CLBs. Additionally, the
structure of the CLB is identical across all devices in the Virtex-5 family. The 6-input LUTs are
21
designed with two outputs each. The primary output, O6, can utilize the full 64-bit LUT to
implement any 6-variable Boolean function. The secondary output, O5, can be used to initialize
the carry chain, or both the O5 and O6 output can implement an independent 5-variable Boolean
function for five shared inputs. Either LUT output can be selected by the configuration
multiplexers for the registered or combinatorial CLB output paths [11].

Figure 2.1: Simplified basic logic element

Figure 2.2: Virtex-5 configurable logic block [11]
Some slices (specifically the lower slice in every other column of CLBs and both
columns to the left of a digital signal processor column) also support RAM and shift register
modes of operation. The LUT RAMs in each slice have independent read address inputs and
share a set of write address inputs. The independent read inputs facilitate the construction of
dual-port RAMs within a slice. Each LUT can be configured as a simple 64?1-bit or 32?2-bit
RAM. Dynamically controlled multiplexers in each slice allow the four LUTs to form a 256?1-
LUT/
RAM
Carry
Logic
FF/
LAT
6
CIN
COUT
COUT COUT
Switch
Matrix Memory Slice(0)
SliceM
Logic
Slice(1)
SliceL
CLB
CIN CIN
22
bit RAM. Additionally, the four LUTs can share five read address inputs and utilize eight
independent data inputs to form a 32?8-bit RAM. Each LUT can also form a single 32-bit or
two 16-bit shift registers. The four LUTs can be cascaded to form a 128-bit shift register or can
operate in parallel form a 16?8-bit shift register bank [11].
2.3 BIST Approach And Architecture
The BIST approach takes advantage of the regular structure of FPGAs by using
comparison-based ORAs to compare the outputs of multiple identical BUTs. This detects all
faults affecting any combination of BUTs (since all fault-free BUTs must produce the same
pattern) so long as all of the BUTs compared by a set of ORAs do not fail identically and at the
same time [3]. Since a faulty TPG could cause a faulty BUT to escape detection, multiple
identical TPGs are used to drive alternating BUTs. This eliminates the assumption that the TPGs
are fault-free because, with multiple identical TPGs, a faulty TPG will cause the outputs of some
of the BUTs to disagree, resulting in ORAs reporting failures.
The CLB BIST architectures can be divided into two categories based on the slice mode
being tested. The first set of configurations tests every CLB in the FPGA in SliceL (logic) mode
of operation. The second set of configurations tests every SliceM. Only those slices which
support SliceM (memory) mode are tested during the second set of configurations.
In SliceL BIST architecture, alternating columns of CLBs are configured as ORAs and
BUTs, as illustrated in Figure 2.3. The set of BIST configurations is repeated twice with the
roles of the CLBs reversed such that every CLB serves both as ORA and as BUT. Two outputs
of each BUT are compared by an ORA with the outputs of two adjacent identically configured
BUTs in the same row, as shown in Figure 2.4. A mismatch of two identically configured BUT
outputs latches a logic 0 in the ORA flip-flop. Otherwise, a logic 1 is retained in the ORA and is
23
interpreted as a passing result at the end of the test sequence. Traditionally, the results of the
BIST are recovered via partial configuration memory readback where the contents of every ORA
are retrieved from the configuration memory. However, we use a new ORA design that utilizes
the dedicated carry logic in the CLB to form an iterative-OR of the ORA outputs. In each ORA,
a passing result of logic 1 selects the Carry-in input, which is the Pass/Fail result of the previous
ORA.

Figure 2.3: Circular comparison architecture
The Carry-in input of the first ORA in the iterative-OR chain is connected to Boundary
Scan Test Data In (TDI), with the output of the last ORA connected to Test Data Out (TDO). If
any ORA in the chain registers a failure, a logic 0 on the output of that ORA will select the logic
1 input of the carry chain multiplexer which translates to a logic 1 on TDO. Otherwise, TDO
passes the state of TDI such that by toggling TDI and observing TDO, the integrity of the
iterative-OR chain can be verified at the end of the BIST sequence. If the output of the OR chain
indicates a failure (TDO is a logic 1 regardless of the state of TDI), the contents of the ORAs can
be retrieved via partial configuration memory readback to determine the location(s) of the failing
BUT(s). This facilitates the single-bit pass/fail indication for faster test time without sacrificing
diagnostic resolution for fault-tolerant applications.
TPG TPG
BUT
ORA
TPG
24

Figure 2.4: Equivalent ORA architecture
In Virtex-5 FPGAs, the carry-in of the bottom CLB and the carry-out of the top CLB in
each column are not connected. To continue the carry chain, the carry-out of the top ORA in one
column is connected to the D output and is routed to the AX input of the bottom ORA in an
adjacent column. The AX input is selected as the carry-chain input in the bottom ORA in each
column. In the ORA, each LUT is programmed with the hexadecimal value
0x90090000FFFFFFFF. By tying the A6 LUT input to logic 1, the O6 LUT output reads only
the upper 32-bits of the LUT which implements the comparison ORA equation shown in
Equation 2.1, while the O5 output reads only the lower 32-bits of the LUT (which controls the
carry chain multiplexer for the iterative-OR chain).
 5)43()21(6 ?????????=O (2.1)
The architecture of the Virtex-5 CLBs requires a minimum of six configurations to test
each of the 6 inputs to the flip-flop input multiplexers, (A-C)FFMUX. The first five of these
configurations can also test the 5 inputs to the combinational logic output multiplexers (A-
D)OUTMUX. Alternating XOR and XNOR functions in the LUTs detects every LUT stuck-at
fault in two BIST configurations. Multiple identical TPGs are implemented in a column of
embedded digital signal processors (DSPs) and drive alternating columns of BUTs. This reduces
loading on the TPGs in large devices and eliminates the assumption that the TPG is fault-free.
The DSPs are configured to accumulate a large prime number placed on the DSP inputs. This
1 BUT
j outputy
BUTk outputy
0 1
ORAk
carry-out
BUTj outputx
BUTk outputx
ORAj
carry-out
25
number, 0xCA6691, was shown in [12] to produce an exhaustive sequence of 12-bit test patterns
in 212 clock cycles with a relatively high number of transitions in the most significant bits of the
accumulator output. Virtex-5 CLBs require at least 12 TPG lines for pseudo-exhaustive testing,
and, therefore, 4,096 clock cycles for the exhaustive set of test patterns to be produced by the
accumulator. Six of the TPG outputs fan out to the inputs of each of the four LUTs. Adjacent
LUTs are alternately programmed with XOR and XNOR functions such that adjacent LUTs will
produce opposite logic values. Another six TPG lines exercise the AX, BX, CX, DX, CE, and
SR slice inputs with pseudo-exhaustive test patterns. A total of 12 SliceL BIST configurations
are generated, such that every CLB is a BUT for six configurations and an ORA for another six
configurations. A summary of the SliceL BIST configurations is given in Table 2.2.
Table 2.2: SliceL logic BIST configurations
ConFigure# A-D LUTs FF/Latch CYINIT CLKIINV
#1 XOR/XNOR FF INIT1 #OFF CLK
#2 XNOR/XOR FF INIT0 AX CLK
#3 XOR/XNOR FF INIT0 0 CLK
#4 XNOR/XOR LAT INIT1 1 CLK
#5 XOR/XNOR FF INIT0 0 CLK
#6 XNOR/XOR FF INIT1 AX CLK_B
ConFigure# A-D FFMUX A-D MUX
#1 O6, O6, O6, O6 CY, CY, CY, CY
#2 O5, O5, O5, O5 XOR, XOR, XOR, XOR
#3 AX, BX, CX, DX O5, O5, O5, O5
#4 XOR, XOR, XOR, XOR O6, O6, O6, O6
#5 CY, CY, CY, CY F7, F8, F7, CY
#6 F7, F8, F7, DX F7, F8, F7, CY

Every other CLB column contains a SliceM. In addition, the CLB column to the left of a
DSP column contains a SliceM and, in SX devices, the second CLB column to the right of a DSP
column contains a SliceM. In columns containing SliceMs, only the bottom slice in each CLB is
a SliceM. Therefore, every SliceM can be tested simultaneously since there is at least one SliceL
26
for every SliceM (located in the same CLB) that can serve as an ORA. The ORAs for the
SliceM BIST architecture are the same as those used in the SliceL BIST architecture, including
the iterative-OR chain. However, the circular comparison chain is formed along each column
containing SliceMs by comparing the outputs of each BUT with the identically configured BUT
in an adjacent row. A 2048?18-bit block RAM, effectively configured as a ROM, is used to
store deterministic test patterns and, in conjunction with a DSP configured as an address counter,
forms a TPG. Multiple identical TPGs are configured to drive alternating rows of BUTs. The
SliceM BIST configurations are summarized in Table 2.3. To test the LUT RAMs in single-port
modes (configurations #1 and #2), the block RAMs are initialized with the test patterns for a
March Y test algorithm. A March Y RAM test requires 8N test patterns, where N is the number
of address locations [10] [13]. For the remaining configurations, the block RAMs are initialized
with test patterns for a dual-port RAM test algorithm [1] [6].
Table 2.3: SliceM BIST configurations
ConFigure# RAM mode DI1MUX WEMUX FFMUX
#1 SPRAM64 DX CE O6
#2 SPRAM32 A-DX CE O6
#3 DPRAM32 DX WE O5
#4 SRL32 MC31 WE MC31
#5 SRL16 A-DX WE O6
ConFigure# OUTMUX WA8used WA7used BIST CCs
#1 O6 0 0 2,048
#2 O6 #OFF #OFF 2,048
#3 O6 #OFF #OFF 2,048
#4 O6 #OFF #OFF 2,048
#5 MC31 #OFF #OFF 2,048

2.4 Experimental Results
The BIST configurations were developed using accurate gate-level models of the Virtex-
5 CLB. The SliceL and SliceM were modeled separately for fault simulation. For both SliceL
27
and SliceM, the BIST configurations and their associated fault coverage were first optimized
using these gate-level models. The single stuck-at gate-level fault coverage for SliceL and
SliceM BIST configurations obtained from fault simulations of these models are summarized in
Figure 2.5 and Figure 2.7, respectively.
The BIST configurations were then verified on Virtex-5 LX30T and SX35T devices via
configuration memory bit fault injection. Using the fault injection approach, configuration
memory bits can be manipulated to emulate physical faults in the FPGA core including shorts
and opens in programmable interconnect as well as almost any fault in logic resources controlled
by a configuration memory bit. Configuration bits controlling the SliceLs and SliceMs were
injected with faults and the BIST configurations were executed with the faulty configuration on
the device. The BIST results of the faulty configuration are retrieved via partial configuration
memory readback. The fault injection results show that the 17 BIST configurations cumulatively
detect every configuration memory bit fault in every CLB. The results of the fault injection for
SliceL BIST are shown in Figure 2.6. The similarity of the fault injection results and fault
simulation results serve as a good indicator of the accuracy of the gate-level fault models, which
include every stuck-at fault in the CLB (including configuration memory bits). Figure 2.7 and
Figure 2.8 summarize the fault simulation results and the results of configuration memory bit
fault injection, respectively, for the SliceM BIST configurations. It should be noted that three of
the SliceM faults are detected by SliceL configurations.
There are two methods by which the results of the BIST sequence can be obtained. First,
the single bit pass/fail result can be determined via the TDO output of the ORA iterative-OR
chain. However, the location of failing BUTs cannot be determined using this method. Another
option is to perform a partial configuration memory readback to determine the contents of each
28
ORA at the end of the BIST. By this method, the location of the failing BUT(s) can be easily
determined with diagnostic resolution of LUT or flip-flop. To minimize test time and achieve
maximum fault resolution, a combination of the two methods is used. First, the pass/fail status
of the BIST is determined by observing TDO. If TDO presents a logic 1 regardless of the state
of TDI, at least one ORA has observed a failure. Partial configuration memory readback can
then be used to obtain the locations of the failing ORA(s) and, thereby, determine the location(s)
of the faulty BUT(s).
We have developed two C programs that automatically generate the 17 BIST
configurations for all Virtex-5 LX, LXT, SXT, and FXT devices. Table 2.4 summarizes the total
download file size for the 17 BIST configurations, the maximum BIST clock frequency, and the
total number of BIST clock cycles for full chip tests on several Virtex-5 devices. The total full
chip test time for serial and parallel configuration interfaces is summarized in Figure 2.9 and
Figure 2.10. The calculated test time assumes a 40 MHz BIST clock for all configurations and
devices. However, on most devices, the BIST configurations can operate at higher clock
frequencies.

29
0
500
1000
1500
2000
2500
3000
1 2 3 4 5 6
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100
Individual FC
Cumulative FC

Figure 2.5: SliceL fault coverage (simulation)
0
100
200
300
400
500
600
1 2 3 4 5 6
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100

Figure 2.6: SliceL fault coverage (fault injection)
30
0
1000
2000
3000
4000
5000
6000
7000
8000
1 2 3 4 5
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100

Figure 2.7: SliceM fault coverage (simulation)
0
10
20
30
40
50
60
70
80
1 2 3 4 5
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100

Figure 2.8: SliceM fault coverage (fault injection)
31
0
200
400
600
800
1000
1200
1400
1600
1800
2000
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
SX3
5T
SX5
0T
SX9
5T
Ti
me
 (m
s)
Readback
Execution
Configuration

Figure 2.9: Boundary Scan interface test time
0
5
10
15
20
25
30
35
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
SX3
5T
SX5
0T
SX9
5T
Ti
me
 (m
s)
Readback
Execution
Configuration

Figure 2.10: 32-bit parallel interface test time
32
In early FPGAs, all LUTs were able to function as small RAMs such that the first BIST
configuration applied typically tested the LUTs in the RAM mode of operation. Using this
approach, the first BIST configuration was able to detect most faults that could affect the LUT
[2]. When combined with a simultaneous test of the flip-flop, the first BIST configuration was
able to achieve around 80% fault coverage. A similar characteristic can be observed in the first
SliceM BIST configuration in Figure 2.7, which achieves greater than 70% fault coverage.
However, current FPGAs, such as Virtex-4 and Virtex-5, limit the number of LUTs that can
function as small RAMs. Therefore, two BIST configurations are required (with alternate XOR
and XNOR programming) to detect most of the faults in all LUTs. This can be observed in
Figure 2.5, where the cumulative fault coverage after the first configuration reaches 51% and
after two configurations exceeds 92%.
Table 2.4: CLB BIST totals (17 configurations)
Device
Total ConFigure
Size (kB)
Max. BIST
Clock Freq. BIST CCs
LX20T 1,762 90.7 MHz 59,392
LX30T 2,630 74.0 MHz 59,392
LX50T 3,930 74.4 MHz 59,392
LX85T 6,265 58.2 MHz 59,392
LX110T 8,837 58.0 MHz 59,392
SX35T 3,378 59.2 MHz 59,392
SX50T 5,041 61.1 MHz 59,392
SX95T 8,818 44.7 MHz 59,392

2.5 Summary And Conclusions
A BIST approach for testing the CLBs in Virtex-5 FPGAs was presented. A total of 17
test configurations were developed to achieve 100% stuck-at fault coverage in every CLB.
Twelve of these configurations pseudo-exhaustively test every SliceL and every SliceM in the
SliceL mode. Another five configurations test every SliceM in their RAM and shift register
33
modes of operation. The BIST configurations were developed using accurate gate-level fault
models of the CLB and verified using configuration memory bit fault injection. A novel ORA
design provides a single bit pass/fail result for each BIST sequence and is independent of the
configuration interface. Optional partial configuration memory readback provides optimal
diagnostic resolution for fault-tolerant applications when the pass/fail output indicates failures.
As a result, the BIST approach is applicable to all levels of FPGA testing including
manufacturing testing and in-system testing for fault-tolerant applications. We modified SliceL
BIST to support FXT devices by creating two circular comparison chains across rows directly
above the PowerPC core because CLBs above the PowerPC have no carry-in routing. We have
also applied this approach to Virtex-4 devices resulting in 20 and 5 BIST configurations for
SliceL and SliceM tests, respectively, compared to 31 total configurations for Virtex-4 CLBs
reported in [8]. Our Virtex-4 CLB BIST also includes the new ORA design for single bit
pass/fail indication.
2.6 Acknowledgements
The contents of this chapter were published under the title ?Built-In Self-Test of
Configurable Logic Blocks in Virtex-5 FPGAs? in Proceedings of the 41st IEEE Southeast
Symposium on System Theory, 2009, pp. 230-234. Prof. Charles Stroud is a co-author on the
paper. The design of the ORA presented in this paper is protected by U.S. Provisional Patent
#61/196,964, 2008, ?Output Response Analyzer for System-Level Test of Field Programmable
Gate Arrays?. The student author and committee chair Prof. Charles Stroud are co-applicants on
the provisional patent. A majority of the actual research and the writing of the published paper
represents the efforts of the primary student author and not collaborators, and the research
represents work performed while in the graduate program at Auburn University.
34
2.7 References
[1] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, Morgan
Kaufmann, 2007.
[2] C. Stroud, S. Konala, P. Chen, and M. Abramovici, ?Built-in self-test of logic blocks in
FPGAs,? Proc. IEEE VLSI Test Symp., pp.387-392, 1996.
[3] M. Abramovici and C. Stroud, ?BIST-based test and diagnosis of FPGA logic blocks,?
IEEE Trans. on VLSI Syst., vol. 9, no. 1, pp. 159-172, 2001.
[4] S. Toutounchi and A. Lai, ?FPGA test and coverage,? Proc. IEEE Int. Test Conf., pp.
599-607, 2002.
[5] M. Abramovici, C. Stroud, and J. Emmert, ?Online BIST and BIST-based diagnosis of
FPGA logic blocks,? IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol.12,
no.12, pp. 1284-1294, 2004.
[6] C. Stroud, K. Leach, and T. Slaughter, ?BIST for Xilinx 4000 and Spartan series FPGAs:
a case study,? Proc. IEEE Int. Test Conf., pp. 1258-1267, 2003.
[7] C. Stroud, J. Harris, S. Garimella, and J. Sunwoo, ?Built-in self-test for system-on-chip: a
case study,? Proc. IEEE Int. Test Conf., pp. 837-846, 2004.
[8] S. Dhingra, D. Milton, and C. Stroud, ?BIST for logic and memory resources in Virtex-4
FPGAs,? Proc. IEEE North Atlantic Test Workshop, pp. 19-27, 2006.
[9] S. Dhingra, S. Garimella, A. Newalker, and C. Stroud, ?Built-in self-test of Virtex and
Spartan II FPGAs using partial reconfiguration,? Proc. IEEE North Atlantic Test
Workshop, pp. 7-14, 2005.
[10] C. Stroud and S. Garimella, ?BIST and diagnosis of multiple embedded cores in SoCs,?
Proc. Int. Conf. on Embedded Systems and Applications, pp. 130-136, 2005.
[11] Virtex-5 FPGA User Guide, UG190 (v 4.2), Xilinx Inc., San Jose, CA, May 2008.
[12] S. Gupta, J. Rajski, and J. Tyszer, ?Test pattern generation based on arithmetic
operations,? Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 117-124, 1994.
[13] A. van de Goor, Testing Semiconductor Memories Theory and Practice, John Wiley and
Sons, 1991.

35
Chapter Three. Built-In Self-Test of Programmable Input/Output Tiles in Virtex-5 FPGAs
A Built-In Self-Test (BIST) approach is presented for the logic resources in the
programmable input/output (I/O) tiles in Virtex-5 field programmable gate arrays (FPGAs). A
total of 15 BIST configurations were developed to test the I/O cell programmable logic resources
in all modes of operation. The approach utilizes dedicated I/O buffer bypass routing in the I/O
tile such that the BIST is package independent and applicable to all levels of testing from wafer-
level to system-level. The approach offers control of BIST execution and maximal diagnostic
resolution of faulty I/O tiles for device and package independent testing. Either the Boundary
Scan interface or a simple system-level interface may be used for BIST execution, control, and
diagnosis independent of the configuration interface. Experimental results are presented
including fault detection capabilities.
3.1 Introduction
The input/output (I/O) buffers of JTAG compliant devices are typically tested using the
Boundary Scan EXTEST feature [1]. However, field programmable gate arrays (FPGAs) have a
significant amount of configurable logic resources associated with the I/O buffers that cannot be
tested in this manner. These configurable logic resources typically include multiplexers and flip-
flops/latches, as illustrated in Figure 3.1, for improving system timing specifications such as set-
up and hold times as well as clock-to-output delay. Additional logic resources are included to
support single data rate (SDR) and double data rate (DDR) transmission and reception as well as
for serialization/de-serialization (SerDes) modes of operation. In Xilinx Virtex-5 FPGAs, for
36
example, there are at least 32 multiplexers and 47 flip-flops included in the configurable logic
associated with each I/O cell to support various modes of operation. The Boundary Scan
INTEST feature can be used to test the configurable logic resources in an I/O cell [1]. However,
the INTEST feature is supported by few FPGA manufacturers. While there has been some prior
work in testing I/O cells [2][3][4][5], previous work in Built-In Self-Test (BIST) for FPGAs has
largely overlooked I/O cells and their associated logic resources. However, it has been observed
that the programmable logic in unused or un-bonded I/O cells is sometimes used by FPGA
synthesis tools for implementing system logic functions [5].
The work presented in this chapter builds primarily on the prior work in [5], in which an
I/O cell BIST architecture was proposed and implemented for Atmel AT40K series FPGAs and
Atmel AT94K series programmable system-on-a-chip (SoC) [6]. However, this chapter offers
several improvements over that previous BIST approach. In addition, this chapter describes the
actual implementation, operation, and verification of BIST configurations developed for Virtex-5
FPGAs [7] whose I/O cells are much more complex than those found in the AT40K and AT94K
devices [6]. The BIST configurations presented here test the full functionality of logic resources
included in the Virtex-5 I/O cells including input logic (ILOGIC), output logic (OLOGIC), as
well as input and output Serializer/Deserializer (SerDes) operation. The chapter begins with an
overview of the prior work in I/O cell BIST in Section 3.2, followed in Section 3.3 by an
overview of Virtex-5 I/O tiles. The overall BIST approach is described in Section 3.4, and
details of the specific BIST configurations are discussed for Logic and SerDes modes in Sections
3.5 and 3.6, respectively. We present experimental results from actual implementation in Virtex-
5 FPGAs in Section 3.7. Section 3.8 discusses a BIST approach for the configurable I/O buffers
before the summary and conclusion in Section 3.9.
37

Figure 3.1: Simplified programmable I/O cell
3.2 Prior Work
There has been limited prior work in the area of testing I/O cells in, or applicable to,
FPGAs [2] [3] [4] [5]. In [5], a system-level BIST architecture is presented for the I/O cells of
Atmel FPGAs. The overall BIST approach was similar to that used for configurable logic
resources in the FPGA core [8]. The BIST architecture in [5] consists of a single TPG
implemented in configurable logic blocks (CLBs) sourcing test vectors to the I/O cells under test.
A single TPG was implemented under the assumption that internal FPGA resources had already
been tested and found to be fault-free. The I/O cells under test are identically configured with
bidirectional I/O buffers such that the output responses are sent back into the FPGA internal
resources. However, for in-system testing, this requires that all connecting devices be tri-stated
during testing. The output responses of the I/O cells are monitored by CLBs configured as
comparison-based output response analyzers (ORAs). While presenting a general architecture
applicable to any FPGA or configurable SoC with an FPGA core and bidirectional I/O buffers,
[5] implemented 27 BIST configurations applicable to the Atmel AT94K SoC and AT40K
FPGA only.
Boundary
Scan
Access
Tri-state Control
Output Data
Input Data
PAD
to/from internal
configurable
routing resources
38
3.3 Overview of Virtex-5 I/O Tiles
The I/O cells in Virtex-5 FPGAs include an output logic block (OLOGIC), input logic
block (ILOGIC), I/O delay block, and a bidirectional I/O buffer, as illustrated in Figure 3.2 [7]
The number of I/O cells in Virtex-5 ranges from 360 to 1,200 depending on the size of the
particular FPGA.

Figure 3.2: Virtex-5 programmable I/O tile
Each OLOGIC includes registers for improving system clock-to-output timing and
supporting SDR and DDR transmission of data. The OLOGIC can also perform parallel-to-serial
conversion of output data for widths between 2 and 6-bits when operating in SerDes mode. The
ILOGIC includes registers for improving system set-up and hold times and supporting SDR and
DDR reception of data. It can also perform serial-to-parallel conversion of input data for widths
between 2 and 6-bits when operating in SerDes mode. The ILOGIC also incorporates a Bitslip
To/From
Device
Resources
Master I/O Cell
Output
Logic
(OLOGIC)
Input
Logic
(ILOGIC)
Slave I/O Cell
Output
Logic
(OLOGIC)
Input
Logic
(ILOGIC)
From
Device
Resources
To/From
Device
Resources
From
Device
Resources
39
sub-module for synchronizing serial interfaces that include a training pattern. Invoking the
Bitslip input re-orders the data on the parallel outputs of the input logic block in a barrel-shifter
operation [7]. In Virtex-5 FPGAs, two I/O cells are grouped to form an I/O tile, as illustrated in
Figure 3.2. Each I/O tile includes dedicated shift routing to support expanded SerDes data
widths. In master/slave mode, two I/O cells in the same I/O tile are connected via the dedicated
shift routing to support data widths of 7, 8 and 10-bits [7]. Each I/O cell also includes dedicated
routing (also shown in Figure 3.2) directly from the OLOGIC to the ILOGIC that bypasses the
I/O buffer.
3.4 Overview of BIST Architecture
Our BIST approach for I/O tiles is similar to other BIST approaches that we have
developed for testing CLBs in Virtex-4 and Virtex-5 FPGAs [9]. A set of deterministic test
patterns is stored in 36-kbit block random access memories (RAMs) in the FPGA fabric. The
outputs of the block RAMs are connected directly to the inputs of alternating rows of I/O tiles
under test. One block RAM is configured for every 5 rows of I/O tiles under test. One digital
signal processor (DSP) per block RAM is configured as a counter to sequentially address the
block RAM. Collectively, one 36-kbit block RAM and one DSP form the TPG for every I/O tile
BIST configuration. However, the block RAM contents are modified for some configurations to
target specific resources/functions under test. The advantage of configuring multiple TPGs is
twofold: first, multiple TPGs reduce loading, thereby maximizing the BIST execution frequency
in large devices, and, secondly, configuring multiple identical TPGs eliminates the assumption
that the TPG logic resources are fault-free. Any fault affecting the behavior of a TPG will be
detected by the comparison-based ORAs monitoring the I/O cells at the boundaries of any faulty
and fault-free TPG.
40
BIST of I/O cells is well suited for circular comparison-based ORAs since many identical
I/O cells are tested simultaneously. The outputs of each I/O cell under test are monitored by two
ORAs and compared with the outputs of two other identically configured I/O cells in an adjacent
row, as shown in Figure 3.3. To complete the circular comparison, I/O cells in the top row of the
test area are compared with I/O cells under test in the bottom row of the test area.

Figure 3.3: Column oriented circular comparison
The circular comparison approach does not suffer from aliasing effects as long as all of
the BUTs being compared do not fail identically and at the same time. Furthermore, circular
comparison improves diagnostic resolution [4]. An output response mismatch between two
identically configured I/O cell outputs is latched as a logic 0 in the ORA flip-flop for the
duration of the test session. Otherwise, logic 1 is retained in the ORA and is interpreted as a
passing result at the conclusion of the BIST sequence. In previous implementations of the
comparison-based ORA, the dedicated carry logic and routing resources in the ORA CLBs were
un-used [4]. However, in all BIST configurations that we have developed for Virtex-5 FPGAs,
BUT
ORA
TPG
TPG
TPG
41
these resources are utilized to form an iterative-OR chain of every ORA in the test area. In each
ORA, a passing result of logic 1 selects the Carry-in input to the CLB, which is the Pass/Fail
result of an adjacent ORA. The carry-in input of the first MUX in the iterative-OR chain is
connected to a system input, with the carry-out of the last ORA connected to a system output. If
any ORA in the chain records a failure (e.g. mismatch), a logic 0 on the output of that ORA will
select a logic 1 as the input to the carry MUX, as illustrated in Figure 3.4.

Figure 3.4: Virtex-5 equivalent ORA architecture
If no failure is observed in the ORA, the carry-in input is propagated through the CLB. If
no ORAs in the iterative-OR chain observe failures, the carry-in input to the first ORA in the
chain will propagate through every ORA slice to the carry-out output of the final ORA such that
an overall pass/fail result is obtained without reading back the configuration memory to obtain
the contents of the ORA flip-flops. By toggling the OR-chain input and observing the OR-chain
output at the end of each BIST sequence, the integrity of the iterative OR-chain is verified. If the
output of the iterative OR-chain indicates failures were detected, the contents of the ORAs can
be retrieved via partial configuration memory readback for precise fault diagnosis.
Another important difference between our I/O tile BIST architecture and the prior work is
in the configuration of the I/O tiles under test. Previous approaches have relied on bidirectional
I/O buffers to provide the return path for test patterns exiting the output logic and returning to the
ORAs via input logic [5] [10]. However, the reliance on bi-directionally configured I/O buffers
1 BUT
j outputy
BUTk outputy
0 1
ORAk
carry-out
BUTj outputx
BUTk outputx
ORAj
carry-out
42
severely limits the applicability of this type of BIST for in-system testing. With every I/O buffer
configured in the path of the logic under test, we required that all connecting devices be tri-stated
during in-system testing. Connecting passive devices, such as termination resistors or light
emitting diodes (LEDs), introduce another problem since these devices cannot be disconnected
or tristated during in-system tests. In [9], the authors observed that, at certain frequencies, LEDs
connected to I/O buffers under test caused the comparison ORAs to erroneously report failures
for otherwise fault-free I/O tiles. These failures were observed at frequencies as low as 325 kHz
[9], which is unacceptable for an at-speed test of the logic resources. As a result, the generality
of the BIST is compromised. Fortunately, the I/O tiles in Virtex-4 and Virtex-5 FPGAs include
dedicated routing from the OLOGIC to the ILOGIC that bypasses the I/O buffer [7]. Using this
feedback routing instead of the I/O buffer means that no signals from the FPGA under test can
reach, and therefore be influenced by, external devices. Furthermore, bypassing the I/O buffer
does not sacrifice fault coverage in the I/O tile logic resources. With the I/O buffers removed
from all tests for logic resources, these tests may be applied without concern for the external test
environment, thus making our approach applicable to all levels of FPGA testing.
The obvious disadvantage of this approach is that it does not concurrently test the I/O
buffer. However, we have developed a stand-alone BIST architecture for the I/O buffers that is
applicable to device and wafer-level testing. This architecture tests the programmable analog
features of the I/O buffers in every bidirectional mode of operation. Additionally, the Boundary
Scan EXTEST feature may be used for in-system tests of the I/O buffers in their system mode of
operation.

43
3.5 Configurations for I/O Logic Modes
Six test configurations are required to fully test the I/O tile logic resource in all
ILOGIC/OLOGIC modes of operation. The I/O delay module is concurrently tested in these I/O
Logic mode tests in two of three modes of operation. Feedback routing from the OLOGIC to the
ILOGIC has two possible routes: one through the I/O delay module and one dedicated route
which bypasses the I/O delay module. The route through the I/O delay module allows for testing
of the output delay functionality in all supported delay modes (fixed delay, variable delay, and
default). However, testing delay of input and output signals simultaneously is not possible
without configuring the I/O buffers in bidirectional mode. Three of the six I/O logic BIST
configurations test the DDR transmit and receive modes of operation, including, in the OLOGIC,
opposite-edge, same-edge, and same-edge pipelined output modes. The fourth and fifth
configurations test the flip-flop and latch functionality of the primary registers. In the sixth and
final configuration, the combinatorial (un-registered) path through the I/O tile logic resources is
tested. Programmable initialization values, set/reset values, and synchronous/ asynchronous
reset/toggle inputs are concurrently tested. The number of clock cycles for BIST execution is
2048 for all I/O Logic BIST configurations.
3.6 Configurations for I/O SerDes Modes
A total of nine configurations are required to fully test the I/O tile logic resource in the
SerDes modes of operation. Six of these configurations test the I/O SerDes logic configured for
data widths of 2, 3, 4, 5, and 6-bits. Two configurations are included for the 4-bit data width to
test the programmable active level on the tri-state inputs of the OLOGIC. Another three
configurations test the master/slave SerDes modes for data widths of 7, 8, and 10-bits. Two of
the nine configurations test the SerDes in DDR mode, with the other seven configurations testing
44
SDR modes of operation. SerDes operations require two clocks: a high speed clock for serial
data and a divided clock for the FPGA fabric. The amount of clock division is an integer equal
to the data width when testing SDR modes, and is half of the data width when testing DDR
modes. We use regional clock buffers with integrated clock division, called BUFRs [7], to
provide the divided clock for the ORAs and TPGs in SerDes configurations. The BUFR has
programmable clock division, from 1 to 8, and BYPASS modes. There are also clear (CLR) and
clock enable (CE) inputs to the BUFR. We connect the CLR and CE inputs of every BUFR to
the TPGs to achieve a simultaneous test of the BUFRs and the I/O SerDes logic. Concurrent
testing of the BUFRs is beneficial since they would likely be used in conjunction with SerDes.
Since each BUFR clocks only one adjacent clock region, a faulty BUFR will cause failures in the
ORAs along at least one boundary of an adjacent clock region. As with the I/O tiles under test, a
faulty BUFR can only escape detection if every BUFR in the test area fails identically and on the
same clock cycle(s).
One addition to the BIST architecture for SerDes mode testing stems from the need for
synchronization of the serial bit streams before executing the BIST sequence. In SerDes mode,
the positioning of deserialized data on the parallel side of the OLOGIC is initially indeterminate.
Due to the nature of comparison-based ORAs, data on the parallel outputs of every I/O cell under
test must be synchronized. To ensure identical alignment of deserialized test patterns, the
SerDes BIST architecture adds a Bitslip synchronizer circuit, illustrated in Figure 3.5. Upon
download of any SerDes mode configuration, the ORAs are held disabled and the TPGs are held
in reset. A training pattern, stored in the programmable set/reset values of the block RAM output
registers, is presented to the inputs of the I/O cells under test. The training pattern positions a
single zero in a field of ones on the parallel side of the output logic block. The Bitslip
45
synchronizer circuit monitors the Q2 parallel I/O tile output and one-shots the Bitslip control line
until the zero is shifted into the Q2 position. As a result of the clock division and Bitslip latency,
synchronization will be obtained in no more than 4N2?4N clock cycles, where N is the SerDes
data width for the configuration. Each I/O cell has a dedicated Bitslip synchronizer circuit that
will continue to one-shot the Bitslip control line until the training pattern is positioned with the
single zero at the Q2 output, thereby identically aligning the test patterns for the comparison-
based ORAs. The synchronizer is then disabled by the TPG during the BIST execution.

Figure 3.5: Bitslip synchronizer circuit
For SerDes configurations, the number of BIST clock cycles is equal to 1024 times the
amount of clock division used during that configuration plus the worst case synchronization time
for the data width being tested. It should also be noted that the number of BIST clock cycles is
independent of the size of the array, and independent of the number of I/O cells under test.
3.7 Experimental Results
All of the BIST configurations are automatically generated for any size and family of
Virtex-5 FPGAs by a set of ANSI C programs that we have developed. Two programs are used
to generate the six configurations for the I/O logic modes of operation described in Section 3.5.
Another set of two programs generates all nine of the configurations to test the I/O SerDes
modes of operation described in Section 3.6. Our first program in each set generates a template
BIST configuration in Xilinx Description Language (XDL) and then converts the template to
to ISERDES
BITSLIP
from
ISERDES
Q2
CLKDIV
Synchronizer Enable
TPG Bitslip
test pattern
X Y Z
46
Native Circuit Description (NCD) format using Xilinx?s conversion tool, XDL.exe. The BIST
template is routed by Xilinx?s place and route software, PAR.exe, before conversion back to
XDL format. Our second program modifies the routed XDL file to produce the various BIST
configurations, and converts those files back to NCD format. The final download configuration
files are created using Xilinx?s bitstream generation software, BitGen.exe.
Table 3.1 summarizes the total size of the 15 I/O BIST configuration files, the maximum
BIST clock frequency, and the total number of BIST clock cycles for all Virtex-5 LXT and SXT
devices. Note that the total number of BIST clock cycles is device-independent due to
concurrent testing of I/O cells by the BIST architecture. The totals shown in Table 3.1 were used
to calculate the best- and worst-case total test times, which are dependent on the configuration
interface. The total test time for Boundary Scan and SelectMap 32-bit parallel configuration
interfaces are shown in Figure 3.6 and Figure 3.7, respectively. A 50 MHz BIST clock is
assumed for all configurations and all devices. Readback time is for partial configuration
memory readback of the ORA contents after every configuration for diagnosis of failing BIST
configurations. However, when diagnosis is not required, or there are no failures, the single bit
pass/fail result can be determined via the ORA iterative-OR chain. To minimize the test time
and achieve maximum fault resolution, a combination of the two methods is used. First, the
pass/fail status of the BIST is determined by observing the output of the ORA iterative-OR
chain. If the OR chain indicates failures, partial configuration memory readback can be used to
obtain the locations of the failing ORA(s) and, thereby, determine the location(s) of the failing
I/O Tile(s).
47
0
200
400
600
800
1000
1200
1400
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
LX
155
T
LX
220
T
LX
330
T
SX3
5T
SX5
0T
SX9
5T
Ti
me
 (m
s)
Readback
Execution
Configuration

Figure 3.6: 50 MHz Boundary Scan configuration interface test time
0
5
10
15
20
25
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
LX
155
T
LX
220
T
LX
330
T
SX3
5T
SX5
0T
SX9
5T
Ti
me
 (m
s)
Readback
Execution
Configuration

Figure 3.7: 100 MHz 32-bit parallel configuration interface test time
48

Table 3.1: I/O tile BIST totals (15 configurations)
Device
Total Config.
Size (kB)
Max. BIST
Clock Freq.
BIST
CCs
LX20T 862 102.8 MHz 47112
LX30T 1482 89.38 MHz 47112
LX50T 2186 102.4 MHz 47112
LX85T 2726 73.96 MHz 47112
LX110T 3641 74.40 MHz 47112
LX155T 4181 66.10 MHz 47112
LX220T 4706 58.75 MHz 47112
LX330T 6985 56.17 MHz 47112
SX35T 1740 91.19 MHz 47112
SX50T 2511 75.17 MHz 47112
SX85T 3923 69.59 MHz 47112

3.8 BIST for Programmable I/O buffers
In addition to the BIST approach presented for I/O Logic and SerDes modes of operation,
we have developed a stand-alone BIST approach for the I/O buffers in FPGAs. The approach
tests the I/O buffers in all bidirectional modes of operation and associated I/O standards,
requiring 77 configurations for Virtex-5 FPGAs. The approach is directly applicable to device
and wafer-level testing, and is applicable to in-system testing with some customization of
configurations. The bidirectional buffers configured during in-system tests can be expected to
have different load characteristics in the system, depending on the way they are terminated and
whether they are normally an input, output, or bidirectional port during system operation. For
example, we would expect the I/O buffers that are connected to large external loads to fail if they
are tested at a high frequency. For in-system testing, all of the I/O buffers can be tested at a
single low frequency that is guaranteed to be sufficiently slow to allow fault-free I/O buffers to
pass. However, this may result in faulty I/O buffers escaping detection in the case of delay
49
faults. Alternatively, the I/O buffers can be grouped together by loading characteristics to be
tested independently and at different frequencies.
3.9 Conclusions
A BIST approach for testing the programmable logic resources of I/O cells in FPGAs was
presented including the actual development for and implementation in Xilinx Virtex-5 FPGAs.
Six BIST configurations were developed to test the input and output logic resources in ILOGIC
and OLOGIC modes. Another nine configurations test the SerDes functionality of the I/O logic
resources for all supported data widths. By testing the I/O buffers separately, the logic resources
in the I/O tiles may be tested in-system in all modes of operation. The BIST configurations are
package independent because they can test I/O tiles with both bonded and unbonded I/O buffers.
This is important since FPGA synthesis tools sometimes use I/O logic and routing resources to
implement the system function. All of these BIST configurations have been generated,
downloaded, and verified on LX30T, LX50T, SX35T, and SX50T FPGAs. Due to similarities in
architectures, features, and operational modes of the I/O cells in Xilinx Virtex-4 and Virtex-5
FPGAs, we have also applied the BIST approach described in this chapter to Virtex-4 FPGAs
where a total of five I/O Logic, nine I/O SerDes, and 76 I/O buffer BIST configurations were
developed, downloaded, and verified on LX60, SX35, and FX12 FPGAs. The iterative-OR ORA
provides a simple interface for BIST results retrieval that is very fast relative to partial
configuration memory readback and is independent of the configuration interface. However, for
fault-tolerant applications, maximal diagnostic resolution of faulty I/O tiles can still be obtained
via partial configuration memory readback. The BIST configurations can detect faults in the
configuration memory bits associated with I/O tile logic and routing excluding the I/O buffer.
50
Clocking at system speeds during testing could potentially improve parametric fault coverage in
the I/O delay element.
3.10 Acknowledgements
The contents of this chapter were published under the title ?Built-In Self-Test of
Programmable Input/Output Tiles in Virtex-5 FPGAs? in Proceedings of the 41st IEEE Southeast
Symposium on System Theory, 2009, pp. 235-239. Prof. Charles Stroud is a co-author on the
paper. Prior to publication, a preliminary version of the paper was presented at the 2008 IEEE
North Atlantic Test Workshop. The proceedings of the IEEE North Atlantic Test Workshop are
not published. As of this writing, a paper detailing the I/O Buffer BIST approach (describe
briefly in Section 3.8) is pending publication under the title ?On System-Level Use of BIST for
Programmable Input/Output Buffers in FPGAs,? in Proc. of the 2010 IEEE Southeast Regional
Conference. A majority of the actual research and the writing of the published paper presented
in this chapter represents the efforts of the primary student author and not collaborators, and the
research represents work performed while in the graduate program at Auburn University.
3.11 References
[1] IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-
2001, 2001.
[2] C. Jia and L. Milor, ?A BIST Solution for the Test of I/O Speed,? Proc. IEEE Int. Test
Conf., pp. 1023-1030, 2003.
[3] L. Zhao, D. Walker and F. Lombardi, ?IDDQ Testing of Input/Output Resources of
SRAM-Based FPGAs,? Proc. Asian Test Symp., pp. 375-380, 1999.
[4] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, Morgan
Kaufmann, 2007.
[5] S. Vemula and C. Stroud, ?Built-In Self-Test for Programmable I/O Buffers in FPGAs
and SoCs?, Proc. IEEE Southeastern Symp. on System Theory, pp. 534-538, 2006.
51
[6] AT94K Series Field Programmable System Level Integrated Circuit, Data Sheet, Atmel
Corp., 2001.
[7] Virtex-5 FPGA User Guide, UG190 (v 4.2), Xilinx Inc., San Jose, CA, May 2008.
[8] D. Milton, S. Dhingra, and C. Stroud, ?Embedded Processor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGAs,? Proc. Int. Conf. on Embedded
Systems and Applications, pp. 87-93, 2006.
[9] L. Lerner, S. Vemula, and C. Stroud, ?System-Level BIST for Programmable I/O Buffers
in FPGAs and SoCs,? Proc. IEEE North Atlantic Test Workshop, pp. 1-9, 2006.
[10] L. Lerner, ?Built-In Self-Test for Input/Output Tiles in Field Programmable Gate
Arrays,? M.S. thesis, Dept. of Elect. and Comput. Eng., Auburn Univ., Auburn, AL, Dec.
2007.
52
Chapter Four. Built-In Self-Test of SEU Detection Cores in Virtex-4 and Virtex-5 FPGAs
A Built-In Self-Test (BIST) approach is presented for the Internal Configuration Access
Port (ICAP) and Frame Error Correcting Code (ECC) logic cores embedded in Xilinx Virtex-4
and Virtex-5 Field Programmable Gate Arrays (FPGAs). The Frame ECC logic facilitates the
detection of Single Event Upsets (SEUs) in the FPGA configuration memory. The ICAP
provides read and write access to the configuration memory from within the FPGA fabric,
enabling embedded dynamic reconfiguration and fault-tolerant applications with memory
scrubbing. Therefore, the fault-free operation of the ICAP and Frame ECC logic is critical for
space and fault-tolerant applications that require detection and repair of SEUs. The BIST
approach presented is applicable to all Virtex-4 and Virtex-5 FPGAs for both manufacturing and
system-level testing of the ICAP and Frame ECC logic. The actual implementation of the BIST
approach in Virtex-4 and Virtex-5 FPGAs and associated experimental results are discussed.
4.1 Introduction
The increased use of Field Programmable Gate Arrays (FPGAs) for implementing digital
logic applications over the past two decades has been accompanied by increased concern about
radiation effects; in particular, the effects of Single Event Upsets (SEUs). In addition to memory
elements, such as flip-flops and random access memories (RAMs), the contents of the static
random access memory (SRAM) used as the configuration memory to establish the overall
application performed by the FPGA is also susceptible to SEUs. An SEU induced bit-flip in the
SRAM configuration memory can alter the functionality of the FPGA. This makes SEUs of
significantly more concern in FPGAs than in traditional application specific integrated circuits
53
(ASICs). Radiation experiments indicate the SEU rate in FPGAs increased by a factor of 4.74
when design rules decreased from 600nm to 350nm with a corresponding reduction in Vcc
supply voltage from 5V to 3.3V [1]. Xilinx Virtex-4 FPGAs are reported to have SEU FIT
(failures in 109 hours) rates of 246 per million bits of configuration memory, and only 151 in
Virtex-5 FPGAs [2]. This reduction in SEU FIT rate from Virtex-4 to Virtex-5 indicates that
Xilinx is designing FPGA configuration memories to be more robust, as suggested in [3].
However, the largest FPGAs currently have configuration memories with up to 160 million bits
[4]. As a result, some recent FPGAs, like Virtex-4 and Virtex-5, have incorporated additional
logic that enables the detection of SEUs in the configuration memory. This logic can be used in
conjunction with user-defined circuitry in the FPGA core to correct erroneous configuration
memory bits that result from SEUs [5]. Approaches for on-line SEU detection and correction for
Virtex-4 FPGAs have been proposed in [5] and [6] and for Virtex-5 FPGAs in [6] and [7]. All of
these approaches assume that the embedded specialized cores for SEU detection, including the
Internal Configuration Access Port (ICAP) and Frame Error Correcting Code (ECC) modules,
are fault-free.
This chapter presents an off-line BIST approach which completely tests the internal
hardware mechanisms used for SEU detection and correction in the configuration memory of
Xilinx Virtex-4 and Virtex-5 FPGAs. Since the FPGA is reconfigured for BIST only when
testing is desired or required, there is no area or performance penalty incurred by the system
application(s) normally executed in the FPGA. The only overhead for the BIST approach is the
memory required to store one additional configuration used to configure the target device for
BIST. The BIST approach is VHDL-based and is applicable to all production Virtex-4 and
Virtex-5 devices. Furthermore, the BIST can be used for both manufacturing and system-level
54
testing of the ICAP and Frame ECC logic. The chapter begins with an overview of the ICAP
and Frame ECC circuitry included in Virtex-4 and Virtex-5 FPGAs in Section 4.2. The test
algorithm employed by the BIST approach to detect faults in parity-based ECC circuits is
described in Section 4.3. Section 4.4 describes the method for generating and applying the test
patterns to the ICAP and Frame ECC logic as well as the method used for output response
analysis. Section 4.5 describes the actual implementation of the BIST approach in the fabric of
Virtex-4 and Virtex-5 FPGAs along with experimental results. The chapter is summarized and
concludes in Section 4.6.
4.2 Frame ECC and ICAP Logic
Like any RAM, the configuration memory of an FPGA is partitioned into words, also
referred to as frames, which represent the smallest addressable unit of the configuration memory
for write and read operations. Virtex-4 and Virtex-5 frames consist of 1,312 bits [8]-[11]. Each
frame includes a 12-bit field of 11 Hamming bits and an overall parity bit for to provide the
potential for single error correction (SEC) as well as double error detection (DED) in the frame
data. The parity and Hamming bits are generated external to the FPGA by the configuration
bitstream generation software and are subsequently downloaded with the application specific
configuration data to the FPGA configuration memory. An overall cyclic redundancy check
(CRC) performed on the device during the download verifies the integrity of configuration data
during download. However, system memory data subject to change during the operation of the
FPGA, such as contents of block RAMs and look-up tables (LUTs) used as distributed RAMs,
are not covered by the overall parity and Hamming bits.
Virtex-4 and Virtex-5 FPGAs provide a specialized core, called Frame ECC, for
detection and identification of single-bit errors and detection of double-bit errors in the frame
55
data [9][11]. The Frame ECC primitive, illustrated in Figure 4.1, has 11 syndrome outputs, an
error output, and syndrome valid output. Each time that a frame is read from the configuration
memory the Frame ECC module calculates the Hamming bits as well as overall parity for the
frame data, and compares these bits with the Hamming bits and parity stored for that frame in the
configuration memory. Based on this comparison, the Frame ECC module produces indications
for no error, single-bit error, and double-bit error in addition to a syndrome indicating the
location of single-bit errors. System memory element contents (for example, block RAMs, LUT
RAMs, and flip-flops) are masked from the internal parity and Hamming calculation by the
Frame ECC. The error codes for the Frame ECC are summarized in Table 4.1.
Table 4.1: Frame ECC codes
Error Type Condition (when syndromevalid = 1)
No bit error Hamming match w/ no parity error
1-bit correctable error (SEC) Hamming mismatch w/ parity error
2-bit error detection (DED) Hamming mismatch w/ no parity error

A Hamming mismatch with an overall parity error indicates that a single-bit correctable
error has occurred. In this case, the bit-wise exclusive-OR of the stored Hamming code and the
regenerated Hamming code, which is called the syndrome, gives the location of the single-bit
error. A Hamming mismatch (non-zero syndrome) and no overall parity error indicate a non-
correctable double-bit error has occurred. In the case of a double-bit error, the frame data must
be repaired with data from a reliable external source. Single-bit errors in the configuration
memory can be repaired with additional user logic implemented in the FPGA fabric to flip the bit
in error as was done in [5], [6], and [7].
56

Figure 4.1: Frame ECC and ICAP primitives
The SYNDROMEVALID output is asserted for one clock cycle per frame during a frame
read operation to indicate that the SYNDROME and ERROR outputs are valid for the current
frame [9][11]. The most significant bit of the SYNDROME[11:0] bus is the overall parity error
indication. The ERROR output is asserted when a single-bit or double-bit error is detected. To
distinguish between single-bit correctable errors and double-bit non-correctable errors, the user
must add logic to determine the result based on the scenarios in the last two entries in Table 4.1.
The ICAP provides access to status and control registers as well as to the configuration
memory from the FPGA fabric [9][11]. The ICAP works like the external SelectMAP
configuration interface except that it has separate 32-bit read and write buses, as opposed to a
bidirectional 32-bit bus. The maximum operating frequency of the ICAP is 100 MHz, and it
supports 8-bit, 16-bit, and 32-bit word sizes. Every device includes two ICAPs. However, both
ports cannot be used simultaneously. A bit in a control register is used to select whether the
upper or lower ICAP is the active port.

ERROR
Frame
ECC
SYNDROME[11:0]
SYNDROMEVALID
ICAP_OUT[31:0]
BUSY
ICAP
CLK_EN
ICAP_IN[31:0]
WRITE
CLK
57
4.3 Test Algorithm
Hamming bits are parity calculated over a certain subset of bits in the configuration frame
data. For example, the Hamming parity matrix in Table 4.2 can be extended to any number of
data bits (D#) where the Hamming bits (H#) occupy the power-of-2 number locations in the
counting sequence. Each Hamming bit is calculated by exclusive-ORing the data bits that have a
logic 1 in the same row as that Hamming bit, yielding the logic equations shown in the lower
half of the table for this example.
Table 4.2: Hamming parity matrix example
H1 H2 D1 H3 D2 D3 D4 H4 D5 D6 D7 D8 D9 D10 D11
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
H1 = D1 ? D2 ? D4 ? D5 ? D7 ? D9 ? D11
H2 = D1 ? D3 ? D4 ? D6 ? D7 ? D10 ? D11
H3 = D2 ? D3 ? D4 ? D8 ? D9 ? D10 ? D11
H4 = D5 ? D6 ? D7 ? D8 ? D9 ? D10 ? D11

As a result, the Frame ECC logic consists mainly of parity generators. A parity generator
is simply an exclusive-OR tree, and can be arranged in linear tree or balanced tree forms; both
arrangements are C-testable with four test patterns if and only if the exact parity tree construction
and interconnections are known for every gate in the tree [13][14]. However, for cases where the
parity tree structure is unknown, a pseudo-exhaustive test set to detect all gate level single and
multiple stuck-at faults is: 1) walk a single one through a field of zeros, and 2) all combinations
of two ones in a field of zeros [15]. This set of test patterns also detects all bridging faults in the
Hamming generation circuit and overall parity generation circuit [16]. Therefore, the number of
test vectors, NTV, required in terms of the number of inputs, N, to test any parity generator
(regardless of structure) is given by:
58
 NTV =
22
2 NN
NN +=+??
?
?
???
? (4.1)
For the Virtex-4 and Virtex-5 Frame ECC logic, which calculates Hamming and parity
over 1312-bits, the number of test patterns required by Equation 4.1 is NTV = 861,328.
It is interesting to note that the parity calculations could be performed sequentially (32-
bits at a time), as opposed to in parallel based on the entire 1312-bit frame. This leads to a
significant reduction in the amount of logic for the calculation of Hamming code bits and overall
parity. By masking appropriate bits from the parity trees (forcing bits to logic 0 using a mask
LUT in conjunction with AND gates) the entire set of calculations can be performed
sequentially, one 32-bit word at a time, as illustrated in Figure 4.2. The sequential Hamming
generator requires twelve 32-input parity trees (one for each Hamming bit and one for the overall
parity bit) with the cumulative parity calculations stored in 12 flip-flops. The Hamming and
overall parity bits stored in the middle word of the frame are latched for comparison with the
regenerated bits to produce the syndrome and overall parity error. This sequential parity
generation would require only about 372 XOR gates and 352 AND gates for the masks. Parallel
calculation over the entire 1312 frame bits, on the other hand, would require approximately
8,516 XOR gates.
It is possible that the number of test vectors for the sequential Hamming and parity bit
calculation circuit might be reduced from that given by Equation 4.1. However, the set of test
vectors described previously will also ensure complete testing of the word counter, masking
circuit, and flip-flops/latches used to perform the sequential Hamming calculation. This means
the test pattern sequence is independent of the actual architecture of the Frame ECC circuit. In
addition, the walking patterns in the set of test vectors will detect stuck-at and bridging faults in
the ICAP.
59
4.4 BIST Approach
Our approach to testing the Frame ECC logic is to implement a customized embedded
core in the FPGA fabric that will repetitively write and read a single frame of configuration
memory via the ICAP with the set of test patterns described in Section 4.3. The target frame for
the BIST is arbitrarily located in the programmable interconnect network to avoid any
configuration memory bits that are masked from the Frame ECC circuitry as a result of
potentially legitimate changes to LUT-RAMs and flip-flop contents [9][11]. The basic
procedure is as follows: (1) Write a configuration memory frame with a test pattern via the
ICAP. (2) Read the frame containing the test pattern, compacting the ICAP output response. (3)
Compact the output response of the Frame ECC when the syndrome is valid. (4) Generate the
next test pattern and repeat Steps 1 through 3 for all 861,328 test vectors.
Even using the 32-bit ICAP interface, this test sequence is time-intensive because each
frame write and read requires a significant amount of overhead in terms of clock cycles. In our
implementation of the BIST, there are 318 clock cycles of overhead for each of the 861,328 test
patterns. Therefore, the actual test time is 318 times the number of test patterns (as will be
discussed in Section 4.1), or 273,902,304 clock cycles. However, the amount of logic that is
tested is not insignificant, and the Frame ECC logic is critical for space and fault-tolerant
applications that rely on the detection and correction of SEUs during on-line operation.
60

Figure 4.2: Sequential Hamming bit calculation
4.4.1 Test Pattern Generator
The test pattern generator (TPG) used to generate the parity tree test patterns is the largest
component of the BIST architecture. It requires two 1,312-bit shift registers, 1,312 two-input
OR gates, and a 32-bit 64-to-1 multiplexor array (the TPG is identical for both Virtex-4 and
Virtex-5). In all, the TPG occupies about 1000 slices in Virtex-5 ? 90% percent of all of the
resources occupied by the BIST circuitry. Virtex-4 and Virtex-5 FPGAs incorporate several
configuration registers to provide write/read access to the configuration memory. The Frame
Address Register (FAR) stores the memory address to/from which frame data is written/read.
The Frame Data Register Input (FDRI) and Frame Data Register Output (FDRO) registers
facilitate input/output data to/from the configuration memory. There are other registers such as
the status (STAT) register, the cyclic redundancy check (CRC) register, and the command
(CMD) register which stores the next register operation to perform such as ?Write FAR? or
?Read FDR0?. To write/read to/from the configuration memory, a combination of these registers
must be used. In Virtex-4 and Virtex-5, the frame write and read instructions for the BIST are
stored in a single 512?32-bit block RAM. The complete set of write and read instructions utilize
about 10% of the Block RAM. The procedure for writing/reading to/from the configuration
1312
ConFigure
Memory
Word
Counter
Mask
LUT
FFs
LATs
FRAME ECC
32?12 12 12 12
12
32
32 Syndrome and parity
error
61
memory in the context of the BIST is illustrated in the pseudocode of Figure 4.3 and Figure 4.4,
respectively.
Write_Test_Pattern (Test_Pattern, FRAME_ADDR){
 Write to Command RESET_CRC
 Write to ID Register DEVICE_ID
 Write to Command WCFG WRITE_CONFIG_MEM
 Write to Frame Address FAR FRAME_ADDR
 Write to Frame Data Input FDRI 82 words
 for(i=0; i<41; i++){
 Write word(i) of Test_Pattern
 }
 for(i=0; i<41; i++){
 Write pad word 0x00000000
 }
 Write NO-OP
 Write NO-OP
 Write to CRC 0x0000DEFC
}
Figure 4.3: Test pattern write sequence via ICAP interface
Read_Test_Pattern (FRAME_ADDR){
 Write to Command READ_CONFIG_MEM WCFG
 Write to Frame Address FAR FRAME_ADDR
 Read Frame Data Output FDRO 82 words
 for(i=0; i<41; i++){
 // Discard pad frame
 }
 for(i=0; i<41; i++){
 // Enable MISR to compact output
 // of FrameECC and ICAP
 }
 Write NO-OP
 Write NO-OP
}
Figure 4.4: Test pattern read sequence via ICAP interface
In both Virtex-4 and Virtex-5, the frame address selected as the write/read destination for
the test patterns cannot contain LUT-RAM or flip-flop configuration bits because these bit
locations are masked in the Frame ECC logic during read back (due to the fact that these bits can
change after configuration if the capture command is decoded via the configuration interface or
62
if the capture input to the capture primitive is asserted) [9][11]. Additionally, no BIST logic or
routing resources can be located in the target reconfiguration memory region. Otherwise, the test
logic could overwrite and modify parts of its own architecture. To eliminate the risk of
overwriting the configuration of BIST logic or routing, the target configuration memory frame is
located in the routing resources in the leftmost column of I/O Tiles (however, any frame
containing only routing resources and not utilized for the BIST logic could be used). In Virtex-4,
the target configuration frame is arbitrarily located in the leftmost column of I/O Tiles in the 16
rows below the center line. In Virtex-5, the target configuration frame is arbitrarily located in
the lower 20 rows of the leftmost column of I/O Tiles. To avoid the target frame resources, the
BIST logic is physically constrained to the right half of the target device during placement and
routing. Additionally, before synthesizing the BIST, the Block RAM contents may require a
minor modification. The Block RAM contents are device dependent, since the correct device ID
must be written to the ID register before data can be written to the configuration memory via the
ICAP. This is to ensure that a configuration file formatted for one device is not written, by
mistake, to the wrong device.
4.4.2 Output Response Analyzer
Since only one Frame ECC component is included in every Virtex-4 and Virtex-5 device,
comparison-based output response analysis of identical blocks under test (BUT) is not possible.
Furthermore, comparison with stored good circuit output responses is not practical, since the
861,328 12-bit syndromes could not be stored on the device. Instead, a 32-bit multiple input
signature register (MISR) with internal feedback and primitive characteristic polynomial is
employed to compact the Frame ECC output responses into a final signature. The MISR
characteristic polynomial, P(x), is given by:
63
 1)(
272832 ++++= xxxxxP (4.2)
At the conclusion of the BIST, the signature in the MISR is compared with the known
good circuit signature stored in the BIST logic, producing a single-bit pass/fail output.
Additionally, the MISR is configured in a scan chain such that the signature can be retrieved via
Boundary Scan for comparison with the good circuit signature. Any mismatch of the good
circuit signature and the signature obtained by the BIST indicates a faulty circuit response. It
should be noted that all MISRs have some probability of signature aliasing and fault escape.
Signature aliasing occurs when a faulty circuit produces the same signature as the fault-free
circuit. However, signature aliasing is extremely unlikely for properly designed MISRs. The
classical approximation for the probability of fault aliasing is 2-n, where n is the degree of the
MISR?s primitive polynomial [17]. Therefore, the probability of signature aliasing is
approximately 1 in 4.3 billion for the 32-bit MISR described by Equation 4.2.
The ICAP is tested by adding another identical 32-bit MISR to observe the ICAP outputs
during the BIST sequence. This MISR, which is enabled when the ICAP read input is asserted,
will detect any stuck-at faults as well as any bridging faults in the ICAP inputs and outputs. The
MISR used to detect faults in the ICAP uses a similar on-chip comparison with the known good
ICAP signature to produce a pass/fail output that is logically ORed with the pass/fail output of
the Frame ECC MISR and comparison circuit, as illustrated in Figure 4.5. A simultaneous test
of the ICAP and Frame ECC is logical since the ICAP would almost certainly be used for any
space or fault-tolerant application that actively detects and corrects SEUs. However, because
each device includes two ICAPs, only one of the ICAPs may be tested per BIST configuration in
our current approach. Both ICAPs can be tested by simply generating, downloading, and
executing two BIST configurations that alternate between the two ICAPs. It may also be
possible to modify the BIST architecture such that both ICAPs are tested during the same
64
configuration by using the top ICAP for the first half of the BIST sequence and switching to the
bottom ICAP during the remainder of the BIST sequence, for example. This would require two
additional instructions to write a logic 1 to the ICAP_SELECT bit in the control register,
enabling access via the lower ICAP.
4.4.3 Additional Logic
In addition to the TPG and MISRs, the BIST architecture includes a custom soft-core
embedded processor to control the BIST sequence execution. The processor is modeled in
VHDL and is implemented entirely in configurable logic blocks. It controls the ICAP read/write
signal and clock enable, the TPG/Block RAM multiplexor select inputs, and the TPG clock
enable. The processor also includes three counters for addressing the instruction Block RAM,
the TPG multiplexor, and for frame read timing. A block diagram of the ICAP and Frame ECC
BIST architecture, including (from left to right) the TPG, circuits under test (CUT) and MISR
output response analyzers, is shown in Figure 4.5. The input/output behavior of the architecture
is discussed in Section 4.5.
4.5 Implementation Results
The entire BIST circuit is implemented in VHDL, and only one configuration download
is required for the BIST application. Some minor architectural differences between Virtex-4 and
Virtex-5 devices require changes to the VHDL model for the two families of devices. First,
before writing to the configuration memory, a device ID check must be performed by writing the
correct device ID to the IDCODE register. This prevents accidental configuration with a
bitstream formatted for another device. Any attempt to write the configuration memory without
a successful device ID check will cause the FPGA to attempt a fallback reconfiguration [9][11].
The device IDs are kept in a look-up table specific to Virtex-4 or Virtex-5 and are synthesized
65
with the design as a constant. Second, the frame address register is formatted differently for
Virtex-4 and Virtex-5, requiring a modification to the stored target frame address. Finally, the
input/output ordering for the ICAP in Virtex-5 is byte-swapped, compared to the Virtex-4 ICAP.
Therefore, we maintain two VHDL BIST models, one for Virtex-4 and one for Virtex-5 with
each model supporting all devices within that particular family.

Figure 4.5: ICAP and Frame ECC BIST architecture.
There are six primary inputs and three primary outputs for the BIST architecture. The
VHDL component declaration illustrating these primary inputs and outputs of the BIST
configuration is given in Figure 4.6. It should be noted that the four inputs associated with the
MISR scan chain, Scan_Clock, Scan_Mode, Scan_In, and Scan_Out, are included only for
design verification. Therefore, only three primary inputs and two primary outputs are required
for a typical application.
The Clock input can be a free-running system clock or can be supplied by the Boundary
Scan interface via TCK (DRCK internally). The maximum BIST clock frequency when the
clock is supplied externally is 100 MHz, which corresponds to the maximum ICAP clock
Frame
ECC
ICAP
32-bit
MIS
R

32-bit
MIS
12
32
32
32
Good
Signatur
e
Good
Signatur
e
TD
SYNDROMEVALID
Scan_In
32
CUT Done
TDO
Start
TPG
(Generates
861,328 test
patterns)
Counter
32
32
32
10
Counter
Block
RAM
6
Scan_Out
(Signatures)
66
frequency. When the clock is supplied by Boundary Scan, the maximum BIST clock frequency
is limited to 50 MHz which corresponds to the maximum TCK clock frequency. It should be
noted, however, that the BIST logic in the FPGA fabric can actually operate well above the
maximum configuration frequency of 100 MHz in all Virtex-4 and Virtex-5 devices based on
timing analysis of the synthesized and routed design.

Figure 4.6: BIST VHDL component declaration.
The Start signal is an active-high, asynchronous signal which enables the execution of the
BIST sequence. The Start signal should be asserted for a minimum of three cycles of Clock to
begin the BIST sequence, but then may be de-asserted or may be left asserted. The BIST will
start and run automatically to completion after download by tying the Start signal to logic 1 in
the top-level VHDL model. Toggling the Start signal low and then high after the completion of
the BIST will clear the MISRs and cause the entire BIST sequence to repeat. This feature can be
used to check for reproducible BIST results during design verification. The Scan_Mode input
places both MISRs in a scan mode. With Scan_Mode asserted, the Scan_In input is an optional
input to the MISR scan chain, which can be used in conjunction with Scan_Out (the output of the
MISR scan chain) for loading and retrieving signatures during design verification. The input
TDI and output TDO provide a single-bit pass/fail result for the BIST. As illustrated in Figure
component Frame_ECC_BIST is
port(Clock : in std_logic;
 TDI : in std_logic;
 Start : in std_logic;
 Scan_In : in std_logic;
 Scan_Mode : in std_logic;
 Scan_Clock : in std_logic;
 TDO : out std_logic;
 Done : out std_logic;
 Scan_Out : out std_logic);
end component Frame_ECC_BIST;
67
4.6, TDI is one input to a 3-input OR gate, with the other two inputs coming from the outputs of
the MISR signature comparators. When both MISRs contain the good circuit signatures, TDO
(the output of the OR gate) will equal TDI. However, if either MISR does not contain the good
circuit signature, the output of the functional OR will be logic 1, regardless of the state of TDI.
The Done output is asserted when the BIST sequence is complete. When the Done signal is
asserted, the pass/fail result is valid on the TDO output. The BIST sequence, after download
(and without tying Start to logic 1), is as follows: (1) Assert the Start input. (2) Wait for the
Done signal to be asserted. (3) Drive TDI low, poll TDO (should be logic 0). (4) Drive TDI
high, poll TDO (should be logic 1). The BIST is interpreted as passing if the TDO output
presents a logic 0 in Step 3 and a logic 1 in Step 4. This ensures that the TDO output is not stuck
in the fault-free state due to a fault in the FPGA. Optionally, the contents of the two 32-bit
MISRs may be scanned out and verified by external comparison to the known good circuit
signatures.
The total execution time for the BIST with an external 100 MHz clock is 2.739 seconds.
The BIST has been downloaded, executed and verified on Virtex-4 FX12, SX35, and LX60
devices and on Virtex-5 LX30T, LX50T, SX35T, and SX50T devices using both Boundary Scan
and external clock and control. Due to the differences in the configuration interfaces, Virtex-4
and Virtex-5 produce different good circuit signatures, as reflected in Table 4.3. Figures 4.7 and
4.8 show the ICAP and Frame ECC BIST implemented in the smallest Virtex-4 (FX12) and
Virtex-5 (LX20T) devices, respectively. As can be seen in both figures, the BIST circuitry easily
fits in programmable logic resources in the right hand half of the array. This shows that the
BIST can be implemented in all other Virtex-4 and Virtex-5 devices, all of which have larger
68
arrays than those illustrated in Figures 4.7 and 4.8. The target configuration frame areas that
should be avoided by constraining the design placement are also illustrated in the figures.

Figure 4.7: Virtex-4 FX12 with ICAP/Frame ECC BIST
Target
Reconfiguration
Area
69

Figure 4.8: Virtex-5 LX20T with ICAP/Frame ECC BIST
Table 4.3 summarizes the actual implementation of BIST circuitry in Virtex-4 and
Virtex-5 FPGAs. This includes the number of slices occupied by the BIST circuitry, the number
of lines of VHDL code for the complete BIST circuit, and the total test time (excluding initial
configuration time) at the maximum operating frequency of 100 MHz. The primary reason for
the difference in the number of logic slices is due to the fact that Virtex-5 incorporates four 6-
input LUTs and four flip-flops per slice while Virtex-4 slices incorporate only two 4-input LUTs
and two flip-flops. As a result, a Virtex-5 slice has twice the logic of a Virtex-4 slice ? hence,
Virtex-4 requires at least twice the number of slices. The smaller LUTs in Virtex-4 account for
the additional slices. The 32-bit good circuit signatures for the Frame ECC and ICAP modules
are also included in Table 4.3.

Target
Reconfiguration
Area
70
Table 4.3: ICAP and Frame ECC BIST summary
 Virtex-4 Virtex-5
of logic slices 2546 1010
lines of VDHL 1125 1125
Total test time 2.739 sec. 2.739 sec.
Frame ECC signature 0x9BC92CDB 0x969C47DD
ICAP signature 0xB3FFB18B 0x31D989BD

4.6 Conclusions
This chapter has presented a BIST approach for the ICAP and Frame ECC modules in
Virtex-4 and Virtex-5 FPGAs. These modules are critical components used for SEU detection
and correction in the configuration memory of FPGAs for space and fault-tolerant applications.
The BIST approach was developed in VHDL and is applicable to all Virtex-4 and Virtex-5
devices, and the only overhead is the memory required to store the BIST configuration and
downtime for the test application. The total test time is independent of the size of the FPGA.
However, when using compressed configuration bitstream files, the download time can vary with
the size of the FPGA depending on the physical constraints applied during synthesis. The BIST
can be periodically downloaded and executed in systems which rely on the Frame ECC and
ICAP logic for on-line detection and correction of SEUs to guarantee the fault-free operation of
these resources. The approach has been implemented, downloaded, and verified on a variety of
Virtex-4 and Virtex-5 devices.
4.7 Acknowledgements
The contents of this chapter were published under the title ?BIST of Embedded SEU
Detection and Correction Cores in Virtex-4 & Virtex-5 FPGAs? in Proceedings of the
International Conference on Embedded Systems and Applications, 2009, pp. 149-155. Prof.
Charles Stroud is a co-author on the paper. A majority of the actual research and the writing of
71
the published paper represents the efforts of the primary student author and not collaborators,
and the research represents work performed while in the graduate program at Auburn University.
4.8 References
[1] M. Ohlsson, P. Dyreklev and K. Johansson, ?Neutron Single Event Upsets in SRAM-
Based FPGAs,? Proc. IEEE Nuclear and Space Radiation Effects Conf., pp. 177-180,
1998.
[2] A. Lesea, ?Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron
Integrated Circuits,? WP286 (v1.0), Xilinx Inc., 2008.
[3] A. Lesea, P. Alfke, ?Xilinx FPGAs Overcome the Side Effects of Sub-90 nm
Technology,? WP256 (v1.0.1), Xilinx Inc., March 2007.
[4] Virtex-6 Family Overview, DS150 (v1.0), Xilinx Inc., 2009.
[5] L. Jones, ?Single Event Upset (SEU) Detection and Correction Using Virtex-4 Devices,?
Application Note XAPP714 (v 1.5), Xilinx Inc., 2007.
[6] B. Dutton and C. Stroud, ?Single Event Upset Detection and Correction in Virtex-4 and
Virtex-5 FPGAs,? Proc. ISCA International Conf. on Computers and Their Applications,
pp. 57-62, 2009.
[7] K. Chapman and L. Jones, ?SEU Stratagies for Virtex-5 Devices,? XAPP864 (v1.0.1),
Xilinx Inc., March 2009.
[8] Virtex-4 FPGA User Guide, UG070 (v2.5), Xilinx Inc., 2008.
[9] Virtex-4 FPGA Configuration User Guide, UG071 (v1.1), Xilinx Inc., 2008.
[10] Virtex-5 FPGA User Guide UG190 (v4.2), Xilinx Inc., 2008.
[11] Virtex-5 FPGA Configuration User Guide, UG191 (v3.2), Xilinx Inc., 2008.
[12] J. Heiner, N. Collins, and M. Wirthlin, ?Fault-tolerant ICAP Controller for High-Reliable
Internal Scrubbing,? IEEE Aerospace Conf., pp. 1-10, 2008.
[13] D. Bossen, D. Ostapko, and A. Patel, ?Optimum test patterns for parity networks,? Proc.
AFIPS Fall 1970 Joint Comput. Conf., pp. 63-68, 1970.
[14] W-B Jone and C-J Wu, "Multiple fault detection in parity checkers," IEEE Trans. on
Computers, vol.43, no.9, pp.1096-1099, 1994.
[15] S. Mourad and E. McCluskey, ?Testability of parity checkers,? IEEE Trans. on Industrial
Electronics, vol. 36, no. 2, pp. 254-262, 1989.
72
[16] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, San Francisco,
CA: Morgan Kaufmann, 2007.
[17] C. Stroud, A Designer?s Guide to Built-In Self-Test, Boston, MA: Springer, 2002.
73
Chapter Five. Embedded Processor Based Fault Injection and SEU Emulation for FPGAs
Two embedded processor based fault injection case studies are presented which are
applicable to Field Programmable Gate Arrays (FPGAs) and FPGA cores in configurable
System-on-Chip (SoC) implementations. The case studies include embedded hard core and soft
core processors which manipulate configuration memory bits to emulate physical and transient
faults in the FPGA core including shorts and opens in programmable interconnect and many
different faults in logic resources. The emulated faults are used to evaluate fault detection
capabilities of Built-In Self-Test (BIST) approaches, including fault identification capabilities of
diagnostic procedures, and to evaluate the effect of Single Event Upsets (SEUs), including their
detection and correction. Embedded processor based approaches provide significant
improvement over previous fault injection techniques and, in turn, enable a more thorough
analysis of BIST, diagnosis, and SEU mitigation.
5.1 Introduction and Background
There are a number of Field Programmable Gate Array (FPGA) applications that can
make use of the presence of physical faults. These applications include Built-In Self-Test
(BIST) of the FPGA itself [1], some fault-tolerant design techniques [2], and Single Event Upset
(SEU) detection/correction techniques for FPGA configuration memories [3]. These
applications target FPGA devices as well as FPGA cores in configurable System-on-Chip (SoC)
implementations. Verification, analysis, and evaluation of these applications can be performed
with the ability to inject or emulate physical faults in the FPGA.
74
It is difficult to find actual faulty devices and their usefulness is limited due to the fixed
nature of the fault [1]. Physical faults can be created by etching the packaged device and
creating opens in routing resources that lie at the top level of interconnect metal for example, but
once again the usefulness of these devices is limited. A more efficient approach is to manipulate
the configuration memory bits to emulate physical faults in the device [4]. For example, a stuck-
at fault in a look-up table (LUT) bit can be emulated by overwriting the particular configuration
memory bit and setting it to the desired stuck-at fault value. SEUs on the other hand can be
emulated by flipping the value of bits in the configuration memory. Shorts and opens in the
interconnect network can be emulated along with almost any fault in the logic resources that can
be controlled by configuration memory bits. When downloading the intended system
configuration, the faults to be emulated can be injected in the configuration data just prior to the
actual download process [1]. Alternatively, the intended configuration can be downloaded with
subsequent partial reconfiguration used to inject and emulate the fault.
One of the first FPGA applications to use fault injection emulation was hardware
acceleration techniques for fault simulation [4]. However, the download time for fault injection
detracted from the hardware acceleration to the extent that the manipulation of configuration bits
was abandoned and replaced by fault emulation circuitry that was modeled and downloaded with
the circuit to be simulated [5][6]. The overhead of the additional fault emulation circuitry and its
associated routing was significant but acceptable in the case of fault simulation [7]. The
additional circuitry and routing was not acceptable in the case of BIST approaches since the goal
was to maximize the resources under test in any given configuration such that there are no
remaining resources available to emulate faults. As a result, fault injection via configuration
memory bit manipulation has been used extensively to debug, verify, and analyze development
75
of BIST configurations and diagnostic procedures for FPGAs [1][8]. Similarly, analysis of the
affects of SEUs [3] as well as SEU detection and correction in FPGA configuration memories [9]
can use manipulation of configuration memory bits and has been shown to be effective in
emulating 97% of the SEUs induced and observed in radiation chamber experiments [3].
In this chapter, we present two case studies of embedded processors used to manipulate
FPGA configuration memory bits for FPGA BIST and SEU detection/correction applications.
The first case study uses a hard core embedded processor that has dedicated program and data
memories with write access to the configuration memory of an FPGA core in a configurable
SoC. In this case study, described in Section 5.2, the device is the Atmel AT9K series Field
Programmable System Level Integrated Circuit (FPSLIC). The second case study uses a soft
core embedded processor in an FPGA for manipulation of configuration memory bits via an
internal configuration access port (ICAP). The soft core processor is downloaded with the
application to be injected with faults. In this case study, described in Section 5.3, the devices
include Xilinx Virtex-4 and Virtex-5 FPGAs. Each case study includes an overview of the
device architectures, description of the fault injection emulation technique, and experimental
results of the actual implementation. The chapter is summarized and concludes in Section 5.4.
5.2 Hard Core Processor Case Study
The Atmel AT94K series configurable SoC consists of an FPGA core, various RAM
cores, and an 8-bit Advanced Virtual RISC (AVR) microcontroller core as shown in Figure 5.1
[10]. Three types of memory resources include [10]: 1) many small 32?4-bit RAMs distributed
throughout the FPGA core, 2) a 4-Kbyte to 16-Kbyte dual-port data RAM shared by AVR
microcontroller and the FPGA core, and 3) a 20-Kbyte to 32-Kbyte program memory accessible
only by the AVR microcontroller and used for storing machine code.
76
The AVR core is an 8-bit RISC architecture with 32 general purpose registers including a
number of peripherals like watchdog timer, UART, etc [10]. There are two 8-bit bi-directional
general purpose I/O ports. An 8-bit bi-directional data bus between the FPGA and AVR
(controlled by the AVR) provides communications between the two cores. Whenever 8-bit data
is written to (or read from) the data bus by the AVR, a strobe signal to the FPGA core is
generated on FPGAIOWE (or FPGAIORE) along with one of 16 decoded select lines to the
FPGA. There are four external interrupts to the AVR along with 16 interrupts from the FPGA.

Figure 5.1: AT94K series SoC architecture
The FPGA core is constructed as a symmetrical N?N array of programmable logic blocks
(PLBs), where N=48 for the AT94K40 device (the largest AT94K series SoC) [10]. Each PLB
contains two 3-input LUTs, a D flip-flop, and additional multiplexers/gates. Every PLB has
dedicated diagonal (X) and orthogonal (Y) local routing resources to its neighboring PLBs, as
shown in Figure 5.2a [10]. As shown in Figure 5.2b, the vertical and horizontal global routing
resources associated with each PLB traverse a total of four PLBs (?4 lines) and eight PLBs (?8
lines). Vertical and horizontal bus repeaters are placed at the boundaries of every 4?4 array of
PLBs (shown in Figure 5.2c for the horizontal bus) to prevent signal degradation in lengthy
and/or heavily loaded signal nets. The repeaters also facilitate connections between ?4 and ?8
lines as seen in Figure 5.2d.
=RAM =PLB =repeater
AVR
Processor
FPGA core
Data
RAM
Program
Memory
Peripheral
Units
8 data
read, write,18 select lines
16 interrupts
16 address
2 control
8 data
8 data 3 cont 16 address
77

Figure 5.2: AT94K routing architecture
The AVR microcontroller core can write to (but not read from) the FPGA core
configuration memory such that the FPGA can be dynamically reconfigured (either fully or
partially) by the AVR core during normal system operation [10]. The FPGA configuration
memory access is via a 24-bit address bus and 8-bit data bus. The address bus is partitioned into
three 8-bit components referred to as FPGAX, FPGAY, and FPGAZ. FPGAX and FPGAY
correspond to horizontal and vertical location of the programmable resource in the array while
FPGAZ corresponds to specific logic/routing resources within the specified programmable
resource. A write to the 8-bit data bus, FPGAD, results in a write cycle to a byte of the FPGA
configuration memory.
Sets of BIST configurations were developed to test the various programmable resources
in the FPGA core including PLBs, RAMs, and the programmable interconnect network with
horizontal and vertical repeaters [11]. During the verification and analysis of the sets of BIST
 Y
Y
Y Y
X X
X X
PLB
= Programmable
Interconnect Point (PIP)
(a) local routing (b) global routing (1 PLB)
(c) horizontal repeaters in global routing
4 PLBs 8 PLBs d) repeater
connections
?4 line
?8 line
PLB
= ?4 line = ?8 line =repeater
78
configurations, every configuration bit associated with the specified resource under test was
injected in turn with a stuck-at-0 fault and a stuck-at-1 fault. For each fault injected, the BIST
configurations that target that resource were applied (with the injected fault present). The BIST
results indicate which BIST configurations, if any, detected the emulated fault. Because of the
large number of faults to be emulated (twice the number of configuration bits) for each BIST
configuration, injecting the faults in the configuration download file prior to each download
takes considerable time as indicated by the ?download run time? in Table 5.1. Note that bank
clock and set/reset lines are associated with the vertical repeaters, hence, the larger number of
configuration bits when compared to the horizontal repeaters and associated routing.
Table 5.1: Embedded fault injection run time analysis for AT94K40
Resource BIST Configs Config Bits Total Faults Download Run Time Processor Run Time
PLB with
flip-flops 8 81 162
4 hr
29 min
4 min
34 sec
Vertical
Repeaters 20 71 142
3 hr
55 min
4 min
1 sec
Horizontal
Repeaters 20 65 130
3 hr
36 min
3 min
40 sec
Free RAM 3 4 8 13 min 14 sec

BIST configurations can also be generated and executed by the embedded AVR
processor [11]. In this case, fault injection emulation is somewhat more difficult since the
processor core has write-only access to the FPGA configuration memory. If the processor core
could also read the configuration memory, it could perform a read-modify-write (RMW)
operation to inject a fault at any desired configuration memory bit. With write-only access, one
must also know the normal BIST configuration data for each configuration memory byte in order
to inject a single fault without disturbing the other seven bits of configuration data; otherwise, we
could be injecting eight faults at a time. When the embedded processor is generating the BIST
79
configuration, the information is contained within that resident program. As a result, the fault
injection emulation can more realistically be performed from the embedded processor, although
the development effort is greater without the RMW capability. Table 5.1 gives the run time
when using the embedded processor core to perform fault injection emulation along with the
BIST configuration generation and execution. A speed-up of almost a factor of 60 is obtained
when the embedded processor core performs the fault injection emulation analysis including
BIST configuration generation, BIST sequence execution, and BIST results retrieval.
5.3 Soft Core Processor Case Study
The configuration memories of Virtex-4 [12] and Virtex-5 [13] FPGAs are partitioned
into frames, where each frame has a fixed length of 1,312 bits, or forty-one 32-bit words. A
frame is the smallest addressable segment of the configuration memory; therefore all memory
write/read operations must be performed on whole frames. In Virtex-4 devices, a frame contains
the configuration data for 16 rows of configurable logic blocks (CLBs) and input/output (I/O)
tiles, or four rows of block random access memories (RAMs) and digital signal processors
(DSPs) tiles in the same column [12]. In Virtex-5 devices, a frame covers 20 rows of CLBs and
I/O tiles or five rows of block RAMs and DSPs tiles [13]. This means that individual FPGA
resources cannot be reconfigured without also providing explicit configuration data for other
FPGA resources that occupy the same frame.
Virtex-4 and Virtex-5 FPGAs incorporate several configuration registers to provide
write/read access to the configuration memory. The Frame Address Register (FAR) stores the
memory address to/from which frame data is written/read. The Frame Data Register Input
(FDRI) and Frame Data Register Output (FDRO) registers facilitate input/output data to/from the
configuration memory. There are other registers such as the status (STAT) register, the cyclic
80
redundancy check (CRC) register, and the command (CMD) register which stores the next
register operation to perform such as ?Write FAR? or ?Read FDR0?. To write/read to/from the
configuration memory, a combination of these registers must be used. These registers are
accessible from both Boundary Scan and SelectMAP configuration interfaces as well as the
internal configuration access port (ICAP) located in, and accessible from, the FPGA fabric.
Emulated SEUs, or faults injected for BIST, require the reconfiguration of a single
configuration memory bit after system configuration, or each BIST configuration, is
downloaded. Furthermore, the contents of the frame, which configure multiple rows of
resources, must be preserved during reconfiguration for emulated SEU/fault injection. Our
approach takes advantage of partial reconfiguration and read back capabilities of Virtex-4 and
Virtex-5 FPGAs to implement RMW for bit-level partial reconfiguration.
5.3.1 Overview of Approach
The basic approach begins with locating the frame containing the target bit for fault or
SEU emulation. The frame is read in its entirety and stored. Next, the target bit is located within
the frame, and overwritten with the desired stuck-at value in the case of a fault. This approach
also supports emulation of SEUs by simply inverting the target bit. Finally, the modified frame
is written back to the same location in the configuration memory from which it was read.
Optionally, a subsequent read back of the frame can be used to verify the frame RMW results.
The frame address and index of the bit targeted for fault/SEU emulation are stored in a list of
faults/SEUs to be emulated. For each fault in the list, the BIST configuration is downloaded,
executed with the fault on the device, and the results retrieved. If any of the output response
analyzers (ORAs) record a failure, indicating a faulty block under test (BUT), the fault has been
detected [9]. However, most tests of a specific FPGA resource require multiple BIST
81
configurations to test its programmability and achieve high fault coverage. Given N BIST
configurations and M faults in the fault list, the total number of downloads, executions, and
retrievals of BIST results is N?M. The main reason why this many downloads are required is
that there is no way to reset the ORAs once a fault is detected such that failures are latched until
a new configuration is downloaded. Partial reconfiguration can be used to reduce download
time, but it does not reset the ORAs between two consecutive BIST configurations. Therefore,
once a fault is detected, the ORAs return failure indications for the remaining BIST
configurations that may not detect the fault. Even though ORA failure indications imply a fault
was detected, it is not clear which configuration detected the fault for proper evaluation.
Since the BIST approach pseudo-exhaustively tests multiple identically configured
BUTs, the fault coverage in one BUT may be assumed to be the overall fault coverage for all
BUTs. This assumption greatly reduces the number of faults, M, that need to be emulated to
obtain accurate fault coverage. For example, consider Figure 5.3, which shows the simulated
individual and cumulative single stuck-at fault coverage for our BIST configurations for Virtex-5
CLBs in SliceL mode of operation. The simulation results are based on gate-level models of the
CLB. The simulation results show that six BIST configurations are required to cumulatively
detect 100% of single stuck-at faults in the CLB in SliceL mode of operation. However, as
discussed in [14], the SliceL configurations must be applied twice such that every CLB serves
both as a BUT and an ORA.
A total of 3,006 collapsed stuck-at faults were found for the SliceL and another 8,462
faults for SliceM, all of which were cumulatively detected in fault simulation. These
comprehensive fault lists include all faults affecting the CLB, including configuration memory
bit stuck-at faults. Therefore, by using fault injection to emulate a subset of the complete fault
82
list (specifically, those faults affecting the configuration memory bits), both the quality of the
BIST configurations and the accuracy of the gate-level fault simulation models can be gauged.
Less than 100% fault coverage from fault injection would suggest inaccuracies in the simulation
model and potentially lower fault coverage than the fault simulations suggest. Of the 3,006
faults in the SliceL, 614 represent configuration memory bit stuck-at faults. These faults were
emulated using the RMW approach previously described, with results shown in Figure 5.4.
Using fault injection, 100% of the configuration memory bit faults affecting the SliceL mode of
operation were detected, confirming the simulation results in Figure 5.3. Furthermore, the
similarity of the fault coverage trends in Figures 5.3 and 5.4 helps to verify the accuracy of
simulation models.
The biggest drawback of prior fault injection approaches is the large number (N?M) of
downloads required to emulate a sufficient sample of configuration memory bit faults. To obtain
the results shown in Figure 5.4, a total of 614?6 = 3,684 downloads, fault injections, BIST
executions, and results retrievals were required. Additionally, any revision to a BIST
configuration requires the complete fault list be run again to ensure that the modified
configuration does not jeopardize fault detection capabilities. The total time required for fault
injection can be calculated by multiplying the test time for the set of BIST configurations by the
number of faults in the fault list. Figure 5.5 shows the total test time for the set of all CLB BIST
configurations using compressed downloads via a 50MHz Boundary Scan interface. Consider
the set of CLB BIST configurations for the mid-sized LX50T, which requires 3,147 ms using the
50 MHz Boundary Scan interface from Figure 5.5. For the complete list of 698 configuration
memory bit faults (which includes SliceM mode configuration bits), the fault injection time is
698?3.147 = 2,197 seconds. The more realistic fault injection time that we experienced, using a
83
333 kHz PC parallel port interface to Boundary Scan, was approximately 150?2,197 = 81,666
seconds, or 91.53 hours. This lengthy application time prompted us to develop the embedded
soft core processor based fault injection approach which greatly improves the test time by both
increasing the achievable configuration interface frequency and by increasing the configuration
interface word size using the ICAP.
0
500
1000
1500
2000
2500
3000
1 2 3 4 5 6
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100
Individual FC
Cumulative FC

Figure 5.3: SliceL simulation stuck-at fault coverage
0
100
200
300
400
500
600
1 2 3 4 5 6
Configuration #
F
au
lts
 D
ete
cte
d
0
10
20
30
40
50
60
70
80
90
100

Figure 5.4: SliceL fault injection stuck-at fault coverage
84
0
1000
2000
3000
4000
5000
6000
7000
8000
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
SX3
5T
SX5
0T
SX9
5T
Ti
me
 (m
s)
Readback
Execution
Configuration

Figure 5.5: Total CLB test time via Boundary Scan
The ICAP provides access to configuration registers and the configuration memory
internally from the FPGA fabric. The ICAP works like the external SelectMAP interface except
that it has separate 32-bit write and read buses, as opposed to a bidirectional 32-bit bus. The
maximum operating frequency of the ICAP is 100 MHz, and it supports 8-bit, 16-bit, and 32-bit
word sizes [12][13]. Every device includes two ICAPs; however, both ports can not be used
simultaneously. A configuration bit in the configuration interface control register selects
between the upper and lower ICAPs. The basic idea of an embedded fault/SEU emulation
approach is to embed all of the logic required for frame RMW operations in the FPGA with the
BIST or SEU controller configuration, using the ICAP to access the configuration memory. The
benefit of embedded fault/SEU emulation approach is a minimum 32 times speed up over the
external Boundary Scan configuration interface operating at the same frequency. In addition,
configuration frequencies of 100 MHz are achievable within the FPGA fabric.

85
5.3.2 Architecture and Operation
In our embedded fault/SEU emulation approach, a configuration containing both the
BIST and SEU controller architecture and some additional logic is downloaded to the device. A
list of fault/SEU sites (configuration memory address and bit indexes) is loaded into the
embedded fault/SEU emulation logic in the FPGA either with the download or via an external
interface after download. The embedded system proceeds by reading the configuration frame
containing the first fault/SEU site. The frame is temporarily stored in the FPGA fabric while the
target bit is located and the fault/SEU injected. Next, the frame is written back into the
configuration memory and the BIST is allowed to execute as normal. When the BIST has run to
completion, a single-bit pass/fail result for the configuration is stored. Normally, using the
external interface, the BIST would proceed to the next configuration. However, the embedded
logic can correct the previously injected fault, reset the ORAs, and then inject the next fault in
the fault list, as can be seen in the flowchart in Figure 5.6. This approach has been implemented
in Virtex-4 and Virtex-5 FPGAs. The implementation is discussed in the remainder of this
section.

Figure 5.6: Frame read-modify-write flowchart
IDLE Read Frame Modify Bit Write Frame EOF ? Pause?
Reset Fault List
Pointer
Yes
No
No
Yes
Start
Fault
List
86
The embedded fault/SEU emulation core is entirely implemented in CLBs and two block
RAMs in the FPGA fabric. A central component of the architecture is the dual port 18-kbit
block RAM. Block RAMs have two independently configurable read and write ports (A port and
B port); only the stored data is shared [12][13]. One block RAM is used to temporarily store
frames during the RMW procedure. To accomplish the RMW, the B port is configured for 32-bit
reads/writes and the B port input data bus is connected directly to the ICAP 32-bit data output
bus. The B port data output bus is connected to the ICAP inputs via a 32-bit 2-to-1 multiplexor.
A frame read is initiated at the configuration memory frame address specified by the current fault
and as the frame is read it is stored in the first forty-one 32-bit words in the block RAM. Next,
the A port, configured for 1-bit read/write operations, is used to locate the target bit in the
location specified by the fault list entry. In the case of a stuck-at 1/stuck-at 0 fault, a 1/0 is
written at the specified bit. However, for SEU emulation, the contents of the specified bit
address are read, inverted, and then written back to the same address. Finally, the modified
frame is written back to the same address from which it was read via the 32-bit B port output
data bus.
The fault list is stored in a second dual-port 18-kbit block RAM. The block RAM is
configured with independent 512?36-bit read and write ports. The write port is connected to a
Boundary Scan user access register with some additional logic for controlling the address bus;
namely, a 32-bit shift register and address counter. The read port output bus of the block RAM
is connected to the embedded fault/SEU injection logic and state machine. This block RAM
structure allows a fault list to be written into the block RAM after the device is configured, and
the list is immediately accessible by the fault/SEU injection logic and state-machine. However,
the block RAM contents can also be initialized with a fault list in the VHDL model, eliminating
87
the need to shift in the fault list via the Boundary Scan user access register. The block RAM is
capable of storing up to 512 faults.
The core must be capable of facilitating any length fault list up to the maximum of 512
faults. Therefore, an end-of-file delimiter is required. Each 32-bit word in the block RAM has
four parity bits which we use to store the file delimiters as well as control bits for stuck-at faults
and bit-flips (SEU emulation). The ability to inject multiple faults simultaneously is also
desirable. This requires the inclusion of a ?pause? delimiter in addition to the ?end-of-file?
delimiter. Our solution is to use the two least significant bits of the parity word to encode the
fault type (stuck-at 1, stuck-at 0, or bit-flip) and to use the two most significant parity bits to
store delimiters. The encoding scheme for these bits is shown in Table 5.2, and the overall fault
list format for the 32-bit data word and 4-bit parity word is shown in Table 5.3.
Table 5.2: Parity bit encoding, where X = don?t care
Parity[3:2] Description Parity[1:0] Description
00 Continue to next fault 00 Stuck-at zero
01 Pause at fault 01 Stuck-at one
1X End-of-file (EOF) 1X Bit-flip (SEU)

Table 5.3: Embedded fault list format
35:34 33:32 32:21 20:0
Delimiters Fault Code Bit Index Frame Address

The other significant component of the architecture is a 40?256-bit ROM implemented in
LUTs in the FPGA fabric. This ROM is used to store all 32-bit ICAP instructions required for
the frame RMW process. Another eight control bits control the ICAP write and clock enable
inputs, and serve as inputs to the state machine logic. Instructions are stored in the ROM in the
order in which they are written to the block RAM such that the block RAM may be sequentially
88
addressed to initiate new frame reads and writes. The two block RAMs, instruction ROM, and
ICAP are connected by an assortment of glue logic, including the large 32-bit 2-to-1 multiplexor.
A block diagram of the overall embedded fault/SEU injection core appears in Figure 5.7.

Figure 5.7: Block diagram of fault injection core
5.3.3 Implementation Results
The total number of slices used in Virtex-4 and Virtex-5 FPGAs is shown in Table 5.4.
The primary reason for the difference in the number of logic slices is due to the fact that Virtex-5
incorporates four 6-input LUTs and four flip-flops per slice while Virtex-4 slices incorporate
only two 4-input LUTs and two flip-flops. As a result, a Virtex-5 slice has twice the logic of a
Virtex-4 slice ? hence, Virtex-4 requires at least twice the number of slices. The smaller LUTs
in Virtex-4 account for the additional slices.
Table 5.4: Embedded fault injection core resources
Attribute Virtex-4 Virtex-5
lines of VHDL ~950 ~950
block RAMs 2 2
slices 228 67

BSCAN
I
C
A
P
GO
FaultList
Block
RAM
EOF
PAUSED
Frame
RMW
Block
RAM
ROM
&
FSM
VHDL Generic:
Device Name
89
The entire embedded fault/SEU emulation core is modeled in VHDL. For VHDL-based
designs to be faulted, the fault/SEU emulation core may be instantiated in the top level of the
design and synthesized with the intended system function to be faulted. Our BIST
configurations are not modeled in VHDL, and in this case the fault injection core is added later
in the design flow. Because our BIST configurations are modeled in Xilinx Design Language
(XDL), the fault/SEU emulation core is synthesized and converted to XDL. The XDL of the
embedded core and the BIST can then be combined and the design flow continued. In either
case, it will be necessary to constrain the placement of the design to an area of the FPGA not
targeted for fault injection. For example, if the fault injection core is embedded with a block
RAM BIST configuration [15], the two fault injection core block RAMs must be constrained to
an area of the device away from the BIST configuration. Furthermore, the fault list must not
contain the address of fault sites located in the embedded fault/SEU emulation core?s block
RAMs. If any configuration memory frame addresses in the fault list happen to correspond with
any of the embedded core?s resources, the core could overwrite a bit controlling the functionality
of its own resources, resulting in likely failure. An example of a properly constrained design is
shown in Figure 5.8. In the figure, a partial array of test pattern generators ORAs and CLBs
under test is placed in the left half of the device with the embedded fault injection core is
constrained to the right half of the device. The embedded fault injection core is loaded with fault
addresses residing only in the left half of the array.
The component declaration for the embedded fault/SEU injection core is shown in Figure
5.9. There are two primary inputs and two primary outputs for the model, as well as a generic
which specifies the device. It should be noted that the Boundary Scan access to the fault list
block RAM is embedded in the VHDL model, so these I/O do not appear in the top level
90
component declaration. While the top level component declaration is identical for Virtex-4 and
Virtex-5, we maintain separate VHDL models for Virtex-4 and Virtex-5 because of some minor
architectural differences between the device families. First, before writing to the configuration
memory, a device ID check must be performed by writing the correct device ID to the IDCODE
register. (This prevents accidental configuration with a bitstream formatted for another device.)
The device IDs are kept in a LUT specific to Virtex-4 or Virtex-5 and are synthesized with the
design as a constant; all Virtex-4 and Virtex-5 devices are supported. The generic device in the
top level model is used to locate the correct device ID in the VHDL LUT. Second, the frame
address register is formatted differently for Virtex-4 and Virtex-5, requiring small changes in the
ordering of the fault list block RAM data output bus. Finally, the input/output ordering for the
ICAP in Virtex-5 is byte-swapped, compared to Virtex-4 ICAP.

Figure 5.8: Routed embedded fault inject core (right) with half-array of routed CLB BIST (left)
in Virtex-5 LX20T
91
Table 5.5: Fault/SEU injection core I/O descriptions
Name Direction Description
CLK Input Clock input up to 100MHz (ICAP max)
GO Input Digital 1-shot input asserted to start injection of 1 or more faults separated by ?pause? delimiters.
PAUSED Output Asserted to indicate injection of 1 or more faults separated by ?pause? delimiters is complete.
EOF Output End-of-file asserted when end of fault list is reached.

Figure 5.9: Fault inject core component declaration
The details of the primary inputs and outputs of the embedded core are summarized in
Table 5.5. The normal embedded fault injection process with a free running system clock (up to
100 MHz) is as follows: (1) Download BIST configuration with embedded fault injection core.
(Optionally load fault list via Boundary Scan user access register). (2) Toggle the GO input.
Fault injection begins and runs to completion or until a ?pause at fault? is encountered. (3)
Monitor the PAUSED and EOF outputs. When PAUSED is asserted, execute the BIST
configuration and record results. Repeat steps 2 and 3 until both PAUSED and EOF are asserted,
then go to step 4. (4) Execute the BIST for a final time and record results. The end of fault file
is reached and fault injection is complete.
The embedded fault injection core has been verified on Virtex-4 and Virtex-5 devices.
The core was initially verified by synthesizing only the core, loading a fault list, and executing
the fault injection. To verify the injection of faults and bit-flips, the contents of the configuration
memory were read back via the Boundary Scan interface and compared line-by-line to the
component fltinject is
generic(DEVICE : string(1 to 6):="LX110T");
port(GO : in std_logic;
 CLK : in std_logic;
 EOF : out std_logic;
 PAUSED : out std_logic);
end component fltinject;
92
original configuration download file. The core is capable of injecting stuck-at faults and SEU
bit-flips anywhere in the configuration memory except block RAM contents. It is possible,
however, to modify the architecture to support injection of faults in block RAM contents.
Transient faults can be emulated by back-to-back SEU bit-flips such that the fault exists for a
minimum of 3 ?s - the minimum RMW time for a single frame. By incorporating two back-to-
back bit-flips with a ?pause? delimiter, the user can control a transient fault for longer periods.
5.4 Summary and Conclusions
We have presented case studies for two embedded processor approaches for SEU and
fault injection emulation in FPGA and FPGA cores in reconfigurable SoCs. In the first case, a
dedicated hard core processor was used to inject emulated faults in the FPGA core configuration
memory via a write-only interface. The lack of read access to the configuration memory
increased the development effort and difficulty for use in the evaluation and analysis of BIST
configurations for the FPGA. In the second case, a soft core processor was developed which was
capable of read-modify-write access to the FPGA configuration memory. This facilitates the
emulation of single and multiple stuck-at faults as well as bit-flipping for emulation of single and
multiple SEUs. Hence, the embedded SEU/fault emulation processor supports a wide variety of
fault types with no download penalty for more efficient and thorough evaluation of BIST and
SEU mitigation. It should be noted that the fault injection is used in a fault-free device to
analyze SEU detection/correction and BIST development and is not part of the manufacturing or
system-level operation or test.
5.5 Acknowledgements
The contents of this chapter were published under the title ?Embedded Processor Based
Fault Injection and SEU Emulation for FPGAs? in Proceedings of the International Conference
93
on Embedded Systems and Applications, 2009, pp. 183-189. Prof. Charles Stroud and former
Auburn University Department of Electrical and Computer Engineering students Mustafa Ali
and John Sunwoo are co-authors on the paper. A majority of the actual research and the writing
of the published paper represents the efforts of the primary student author and not collaborators,
and the research represents work performed while in the graduate program at Auburn University.
5.6 References
[1] C. Stroud, J. Nall, M. Lashinsky and M. Abramovici, ?BIST-Based Diagnosis of FPGA
Interconnect,? Proc. IEEE Int. Test Conf., pp. 618-627, 2002.
[2] F. Kastensmidt, L. Carro and R. Reis, Fault-Tolerance Techniques for SRAM-based
FPGAs, Springer, 2006.
[3] E. Johnson, M. Caffrey, P. Graham, N. Rollins and M. Wirthlin, ?Accelerator Validation
of an FPGA SEU Simulator,? IEEE Trans. on Nuclear Sci., vol. 50, no. 6, pp. 2147-2157,
2003.
[4] P. Ellervee, J. Raik, K. Tammem?e and R. Ubar, ?Environment for FPGA-based Fault
Emulation,? Proc. Estonian Acad. Sci. Eng., vol. 12, pp. 323?335, 2006.
[5] S. Hwang, J. Hong and C. Wu, ?Sequential Circuit Fault Simulation Using Logic
Emulation,? IEEE Trans. on CAD of ICs and Systems, vol. 17, no. 8, pp. 724-736, 1998.
[6] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Reorda and M. Violante, ?An FPGA-
Based Approach for Speeding-Up Fault Injection Campaigns on Safety-Critical Circuits,?
Journal of Electronic Testing: Theory and Applications, vol. 18, pp, 261?271, 2002.
[7] R. Sedaghat, ?Routability estimation of FPGA-based fault injection,? Electronics Letters,
vol. 41, no. 14, pp. 790-792, 2005.
[8] T. Slaughter, C. Stroud, J. Emmert and B. Skaggs, ?Fault Injection Emulation for Field
Programmable Gate Arrays,? Proc. Int. Society for Optical Eng., vol. 4525, pp. 1-9,
2001.
[9] B. Dutton and C. Stroud, ?Single Event Upset Detection and Correction in Virtex-4 and
Virtex-5 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 57-
62, 2009.
[10] AT94K Series Field Programmable System Level Integrated Circuit, Datasheet, Atmel
Corp., 2001.
94
[11] J. Sunwoo and C. Stroud, ?Built-In Self-Test of Configurable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguration,? Proc. Int. SoC Design Conf., pp. 174-
177, 2005.
[12] Virtex-4 FPGA Configuration Guide, UG071 (v1.5), Xilinx Inc., 2007.
[13] Virtex-5 FPGA Configuration User Guide, UG191 (v2.7), Xilinx Inc., 2008.
[14] B. Dutton and C. Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 235-249, 2009.
[15] B. Garrison, D. Milton, and C. Stroud, ?Built-In Self-Test for Memory Resources in
Virtex-4 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 63-
68, 2009.
95
Chapter Six. Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs
This chapter presents the first implementation of Built-In Self-Test (BIST) of Field
Programmable Gate Arrays (FPGAs) using a soft core embedded processor for reconfiguration
of the FPGA resources under test, control of BIST execution, retrieval of BIST results, and fault
diagnosis. The approach was implemented in Xilinx Virtex-5 FPGAs but is applicable to any
FPGA that contains an internal configuration memory access port
6.1 Introduction
Built-In Self-Test (BIST) for Field Programmable Gate Arrays (FPGAs) exploits the re-
programmability of FPGAs to create BIST circuitry in the FPGA fabric during manufacturing
and system-level off-line testing [1]. The only overhead is the external memory required to store
the BIST configurations along with the time required to download and execute the BIST. No area
overhead or performance penalties are incurred in the user function because the BIST logic is
replaced by the intended system function after testing is complete. The BIST configurations are
applicable to all levels of testing because they are independent of the intended system function
and require no specialized external test fixture or equipment. Most research and development in
BIST for FPGAs has focused on reducing the number of test configurations, reducing the size of
test configuration files, and decreasing BIST execution time [2]-[8]. But the ever increasing
complexity and level of integration in FPGAs has, with few exceptions, resulted in longer test
times, more downloads, and more memory required for storing BIST configurations for each
new generation of FPGA. However, the increasing size and complexity of FPGAs have also
created opportunities for innovation in FPGA testing.
96
This chapter presents the first implementation of BIST for FPGAs using a soft core
embedded processor synthesized into the fabric of the FPGA under test. The approach reduces
the number of configuration files required for BIST by exploiting the regularity of BIST
structures to significantly compress and store partial configuration data in the embedded
processor?s program memory. The embedded processor controls and executes the BIST
sequence, including retrieval and analysis (fault diagnosis) of BIST results, and reconfiguration
of the FPGA for subsequent BIST configurations. This embedded processor based BIST
approach is possible for two reasons: first, the growing size and complexity of FPGAs facilitates
the inclusion of complex circuitry that only occupies a small percentage of the total configurable
resources, leaving adequate area for BIST logic; and, secondly, the ability to access the
configuration memory from inside the FPGA fabric has made possible internal reconfiguration
and read back. The approach has been successfully implemented in Xilinx Virtex-5 but is
applicable to any FPGA with internal configuration memory access.
6.2 Background
A number of BIST approaches have been developed for the configurable logic and
memory resources in FPGAs [1]. Due to the programmable nature of resources to be tested, all
BIST approaches for FPGAs require multiple configurations in order to obtain high fault
coverage. Generally, a BIST approach is organized into test sessions and phases [2]. Each test
session consists of a set of test phases (test configurations) for a particular resource under test in
order to test that resource in all modes of operation. For example, BIST of configurable logic
blocks (CLBs) requires two test sessions. In the first test session, half of the CLBs are configured
as blocks under test (BUTs), with the remaining half serving as comparison-based output
response analyzers (ORAs) and test pattern generators (TPGs). In recent CLB BIST approaches,
97
the TPGs are implemented in non-CLB resources freeing CLBs to function as additional ORAs
such that circular comparison can be implemented, as illustrated in Figure 6.1, where the outputs
of each BUT in a row or column are monitored by two ORAs and compared to the outputs of
two other identically configured BUTs [1]. This circular comparison in conjunction with
multiple identically configured TPGs provides high diagnostic resolution with low probability of
fault escape [1]. In the second test session, the positions of the BUTs and ORAs are swapped,
such that every CLB is configured as a BUT in one test session and as ORA in the other test
session.

Figure 6.1: Configurable logic block (CLB) BIST architecture
BIST control, including downloading the initial BIST configuration, executing the BIST
sequence, retrieval of results, fault diagnosis based on failing results, and reconfiguration of
subsequent BIST phases, has traditionally been achieved via interface to an external BIST
controller. However, the increased complexity of FPGAs, large number of test configurations
associated with various programmable resources, and speed limitations of external download
interfaces result in long manufacturing test times and limit practicality of system-level testing.
Various approaches have been investigated to reduce the overall test time while achieving high
quality tests. Beyond minimizing the number of test phases, partial reconfiguration reduces test
time by reconfiguring only the resources under test for various modes of operation once the
TPG TPG
BUT
ORA
TPG
98
overall test structure has been downloaded into the device. BIST configurations that have been
recently developed for Virtex-4 and Virtex-5 FPGAs include a single-bit pass/fail output to
eliminate retrieval of ORA contents for passing test phases or when fault diagnosis is not desired
[5]-[8]. When failures are observed, partial configuration memory read back can be used to
obtain the ORA contents to diagnose the faulty resource(s) for fault tolerant applications. Beyond
these techniques, the only new development in FPGA BIST has been introduction of embedded
processor based approaches.
Prior work in embedded processor based BIST includes system-on-chip (SoC) testing
with hard core microprocessors [9] but did not address testing of FPGAs or FPGA cores in SoCs.
The first embedded processor based BIST approach for FPGAs was developed to minimize test
time, number of downloads, and complexity of the external BIST controller by relocating BIST
reconfiguration, control, and diagnosis to the dedicated hard core embedded processor in the
Atmel AT94K series configurable SoC [3][4]. The device consists of an FPGA core, various
RAMs, and an 8-bit Advanced Virtual RISC (AVR) microcontroller [10]. Sets of BIST
configurations were developed to test each of the various programmable resources in the FPGA
core including CLBs, RAMs, IOBs, and programmable routing network [3][4]. The embedded
processor was used to configure the FPGA for each test session, execute the BIST sequence,
retrieve BIST results from the ORAs, and perform diagnosis based on failing BIST results. This
embedded processor based BIST approach achieved a total test time speed-up of about 43.5 over
the tradition approach of downloading each BIST configuration [4]. External memory
requirements for storing BIST configurations were reduced by a factor of about 158 because only
a single program needed to be downloaded into the AVR program memory, from which all BIST
configurations were generated and executed.
99
While this embedded processor based BIST approach was practical for system-level
testing, the approach was developed specifically for AT94K devices such that application to
other FPGAs is limited due to reliance on the hard core processor with dedicated program
memory. Some hardcore processors (such as the PowerPC in Virtex-4 and Virtex-5 FX series
FPGAs) do not have a dedicated program memory and must use programmable resources in the
FPGA. Soft core processors, on the other hand, can be implemented in most FPGAs such that a
soft core processor based approach would be applicable to a wider range and variety of FPGAs
and applications. The primary requirement is that the FPGA include an internal configuration
access port (ICAP) to provide processor access to the configuration memory.
The configuration memories of Virtex-4 [11] and Virtex-5 [12] FPGAs are partitioned
into frames, where each frame has a fixed length of 1,312 bits, or forty-one 32-bit words. A
frame is the smallest addressable segment of the configuration memory; therefore all memory
read/write operations must be performed on whole frames. This means that individual FPGA
resources cannot be reconfigured without also providing explicit reconfiguration data for other
FPGA resources that occupy the same frame. In Virtex-5, a frame contains the configuration data
for 20 rows of CLBs and (I/O) tiles, or 5 rows of block RAMs and DSPs tiles in the same
column. In Virtex-4, a frame contains configuration data for 16 rows of CLBs and I/O tiles, or 4
rows of block RAMs and DSP tiles.
Both Virtex-4 and Virtex-5 FPGAs include several configuration registers to access the
configuration memory, including Frame Address Register (FAR), Frame Data Register Input
(FDRI), and Frame Data Register Output (FDRO) which facilitate writing/reading data to/from a
specific frame of configuration memory. There are other registers for functions such as status
(STAT), cyclic redundancy check (CRC), command (CMD), etc. To access the configuration
100
memory, a combination of these registers must be used. These registers are normally accessible
from both Boundary Scan and SelectMAP configuration interfaces but are also accessible via the
ICAP located inside fabric. The ICAP works like the external SelectMAP configuration interface
except that it has separate 32-bit write and read buses, as opposed to a bidirectional 32-bit bus.
The maximum ICAP clock frequency is 100 MHz.
6.3 Embedded BIST Architecture
The soft core embedded processor based BIST approach for FPGAs incorporates
additional logic in the FPGA fabric along with the BIST logic to perform tasks typically assigned
to an external BIST controller or computer. The embedded BIST approach offers several
advantages over the external BIST approach. First, the 32-bit ICAP configuration interface is
used for reconfiguration, eliminating the test time penalties associated with the lower speed serial
Boundary Scan interface. Secondly, the total number of external download configurations is
reduced to one per test session. In addition, all control of the BIST configurations and sequences
can be implemented in the embedded controller. Diagnostic procedures can also be performed by
the embedded BIST controller, further reducing the complexity of the external BIST controller in
fault tolerant applications and providing considerable speed-up when compared to Boundary
Scan based read back and diagnosis.
The implementation of the embedded processor BIST approach in Virtex-5 FPGAs
incorporates elements of both hardware and software design to achieve an architecture that is
general enough for any Virtex-5 device as well as for any BIST approach for the resources in
Virtex-5 FPGAs. The design is applicable to any Virtex-5 device with only minor modifications
to system software and no modifications to system hardware. Furthermore, the design can easily
be extended to Virtex-4 devices for similar improvements in test time. To minimize the number
101
of external downloads per test session, the embedded processor based BIST hardware must fit in
one half of the smallest supported device. The embedded processor core must also be capable of
storing configuration data for all of the subsequent test phases for each test session in memory in
the FPGA fabric using Block RAMs or distributed RAMs. Finally, the core must support
interfaces for connecting with the ICAP and BIST circuitry. There are a variety of designs which
can be used for the embedded processor ranging from fast, full-custom register transfer level
(RTL) designs, to highly configurable general purpose soft core microprocessors. While RTL
level designs are useful for simple repetitive tasks, this approach is not very efficient for
supporting multiple device architectures of a variety of BIST approaches. Such an approach
requires a different hardware configuration for each device and for each BIST session, which
requires a significant amount of hardware development time when compared with other, more
general purpose software based approaches. Another option is to use a general purpose processor
in the form of a ?soft? intellectual property (IP) core. One of the simplest and most efficient
general purpose architectures available for Xilinx FPGAs is the PicoBlaze 8-bit microcontroller
[13]. The PicoBlaze occupies one block RAM and approximately 50 slices in Virtex-5 FPGAs ?
much less than half of an array in the smallest Virtex-5 device. The PicoBlaze is supported by a
simple assembler and software simulator. However, the program memory in the PicoBlaze is
limited to 1024 stored instructions and scratch-pad memory is limited to 64 Bytes. The 8-bit
architecture also creates timing penalties when interfacing with the 32-bit ICAP port because
each ICAP write requires a minimum of four PicoBlaze instructions of two clock cycles each. To
improve timing for ICAP operations, a 32-bit architecture is best for embedded BIST
applications in Virtex-4 and Virtex-5 devices. One IP core that meets the requirement for a BIST
controller is the MicroBlaze soft core processor, which is a highly configurable 32-bit general
102
purpose RISC microprocessor for Xilinx FPGAs [14]. The MicroBlaze also includes an optional,
pre-engineered, interrupt driven ICAP hardware interface. The MicroBlaze can be configured
with up to 64 kB of combined program and initializable data memory in Virtex-5 FPGAs that is
implemented in the FPGA fabric in Block RAMs. The processor can be modified by the addition
of custom peripherals on the processor local bus (PLB). These features led to selection of
MicroBlaze as the embedded processor in our implementation.
The basic architecture for the embedded processor BIST approach is illustrated in Figure
6.2 for CLB BIST where half of the FPGA array is used for processor and additional hardware
resources and the other half of the array contains the CLB BIST configuration. Custom memory-
mapped registers are included in the MicroBlaze VHDL model for interfacing with the BIST
circuitry. The processor interfaces directly with the ICAP for reconfiguration of the BIST array
and read back of BIST results. To test all CLBs in the FPGA, a second configuration is generated
with locations of BIST logic and embedded processor swapped, as shown in Figure 6.2b. For
some resources, such as I/O tiles or CRC modules, it is possible to test all of the resources
simultaneously by placing the MicroBlaze around the BIST circuitry.
One memory mapped write-only (WO) register, shown in Table 6.1, is included for
control of the BIST circuitry and sequence. The outputs of the register are connected directly to
inputs to the BIST logic, but not all of the register bits are utilized in any one BIST session. One
read-only (RO) register, also shown in Table 6.1, is included at the same memory-mapped
address as the output register. The inputs to this register are connected directly to outputs of the
BIST logic. Each register is general enough to be applicable to all BIST configurations that have
been developed for Virtex-5.
103
Because many BIST configurations must be executed for a different minimum number of
clock cycles to achieve the intended fault coverage, there is the need for a hardware timer for
BIST execution. Therefore, a 16-bit down counter is included in addition to the RO and WO
BIST control registers. The counter is initialized by writing to the lower 16-bits of the BIST
control register. The counter automatically counts down to zero, setting the cnt_eq bit when zero.
The cnt_eq bit is used to enable the BIST logic and can be polled in software to determine when
the BIST is complete. The counter clock and BIST clock can share the MicroBlaze clock or can
be clocked independently at a higher clock frequency by connecting the BIST clock input and
16-bit counter clock to an independent BIST clock source.

Figure 6.2: Embedded soft core processor based BIST architecture
Table 6.1: BIST control registers
Write-only register Read-only register
31:24 23:21 20 19 18 17 16 15:0 31:3 2 1 0
control reserved done reset start tdi clk_en cnt_init reserved (read as 0) cnt_eq BIST_done tdo

(a) session #1 (b) session #2
BIST Area
MicroBlaze Soft core Processor
WO Register RO Register ICAP
RO Register WO Register ICAP
MicroBlaze Soft core Processor
BIST Area
104
6.4 Software Development
One important feature of this BIST approach stems directly from the generality of the
embedded processor. Namely, that only the software changes from one BIST session to the next;
the hardware remains unchanged for any and all BIST sessions. The software can be efficiently
constructed in a manner that exploits the regularity of BIST configurations, and only the code for
a particular BIST session need be compiled and programmed in the MicroBlaze program
memory since a new download is performed at the start of each test session. Each BIST for a
specific resource is composed of a set of phases, with each phase corresponding to a
reconfiguration of the resources under test. Each phase comprises writes of entire set of frames
of data to configuration columns that control the resources under test. Therefore, only certain
portions of the partial reconfiguration files must be stored because the array-half, row, and
column locations of the resources under test can be determined algorithmically based on the
particular device in which BIST is implemented. The algorithm for the embedded BIST
reconfiguration process is shown in Figure 6.3. The algorithm for frame address generation using
multi-frame write operations, given configuration row and destination minor address for frame
data previously written to FDRI, is also shown in Figure 6.3.
No modification to the MicroBlaze hardware is required for support of other BIST
approaches such as DSP and Block RAM BIST [5][6]. However, the control bits [31:24] of the
WO BIST register are used during these test sessions to control the TPG mode. The outputs of
these register bits are connected directly to the mode control inputs of the TPG when the
MicroBlaze hardware and BIST hardware are merged. Block RAM and DSP embedded BIST
architectures are otherwise arranged identically to the CLB BIST architecture shown in Figure
6.2 with the BIST circuitry occupying one-half of the device.
105
Reconfiguration files are generated in a manner that allows full or partial reconfiguration
from an external memory without the need for an ?intelligent? controller. While ideal for
systems containing only non-volatile memory and an FPGA, the partial reconfiguration files are
too large to be directly stored in the program or data memory of an embedded processor. For
example, the total size of the 5 partial reconfiguration files for CLB BIST in half of an array of a
small Virtex-5 device (LX30T) is 41,360 Bytes ? exceeding the maximum 32 kB of data
memory that can be allocated for MicroBlaze. Partial reconfiguration files are also device
dependent since the size of the reconfiguration file is proportional to the device size. Hence,
compression of partial reconfiguration files is required for the embedded processor.
Overall BIST algorithm Addressing algorithm w/ multi-frame write
for all test phases do for all configuration columns do
 for all configuration rows in BIST half do if column is block under test then
 for all frames in reconfiguration structure do for all minor addresses in compressed config do
 construct configuration frame multi-frame write to row, column, & minor
 muti-frame write to all RUTs in half & row end for
 end for end if
 end for end for
 execute BIST phase
 get BIST results
end for
set done bit in WO control register
Figure 6.3: Embedded processor BIST algorithms
Our compression scheme exploits four features of Virtex-5 partial reconfiguration files to
compress the data for storage in the embedded processor program memory and eliminate device
dependencies. First, each configuration file contains certain instructions, such as those for multi-
frame writes to the configuration memory, which are repeated many times during download.
Since, in the embedded processor BIST approach, the download is executed under the control of
the embedded processor, ICAP instructions can be stored once and regenerated when needed.
Second, multi-frame writes can only occur in one configuration row in Virtex-5 devices. For
BIST configurations, which create identical configurations in BUTs and ORAs in every
106
configuration row, the overhead of multi-frame write instructions can be eliminated by storing
frame data only once for one configuration row; the structure of the partial reconfiguration file
can be regenerated by repetitively writing the frame data and frame addresses to the ICAP inside
of a software loop for all configuration rows. Third, because one frame of configuration data
spans 20 rows of identical resources under test, 2 to 4 words of frame data are repeated 10 to 20
times (in a repeating sequence) in each 41-word frame for BIST. Therefore, only 2 to 4 words of
configuration data need to be stored for each frame in the partial reconfiguration file. The frame
can be reconstructed in its entirety from the smallest repeating set of 32-bit words. Finally, the
partial reconfiguration file includes the addresses of every frame to which frame data must be
written for each configuration row. Again, due to the regularity of the BIST structure, only the
minor addresses in the first BUT column for each configuration frame need to be stored. The
remaining addresses can be regenerated algorithmically (Figure 6.3) given the locations of
resources under test in the FPGA fabric. We constructed a program to automatically extract only
the essential data from every partial reconfiguration files for any BIST session using the
compression methods described above. The program generates a C header file with a data
structure containing only essential data from the compressed partial reconfiguration file. The
data structure declaration is shown in Figure 6.4, where the constant NRECONFIG is the number
of test phases for the BIST session.
When the compression program was used to compress the 5 partial reconfiguration files
for a CLB BIST session in a Virtex-5 LX30T, the total size of the files reduced from 41,360
Bytes to 820 Bytes. Table 6.2 shows the size of the original compressed partial reconfiguration
files and the size of the essential data in compressed form for different BIST sessions for Virtex-
5. The original file size given in the table is for an LX30T and the size of the file will increase in
107
proportion to the number of configuration rows in a given device. However, the size of the
essential data in compressed format is independent of the device size. Figure 6.5 illustrates these
device dependencies of reconfiguration file sizes for the smallest and largest devices in each
Virtex-5 family of devices (LXT, SXT, FXT, and TXT).

struct framedata {
 unsigned int numword; //# of words
 unsigned int word[MAXWORD]; //config data
 unsigned int numminor; //# of addresses
 unsigned int minor[MAXMINOR];//minor addr
};
struct partialconfig {
 unsigned int numframe; //# frames
 struct framedata frame[MAXFRAME];//frames
} config[NRECONFIG] = {
 //compressed frame data placed here by program
};
Figure 6.4: Compressed BIST partial reconfiguration structure in C
Table 6.2: Compressed partial reconfiguration data size
BIST
Session
Number of
BIST Sessions
Number of BIST
Reconfigurations
Original File
Size (Bytes)
Compressed
Size (Bytes)
CLB East 2 5 41,360 820
CLB West 2 5 41,360 820
LUT-RAM 2 4 10,944 1,232
I/O Logic 1 5 11,308 1,236
I/O SerDes 1 8 94,432 2,680
CRC 1 1 4,716 184
DSP 1 9 28,836 1152
Block RAM 2 5 285,040 4920
ECC RAM 2 2 19,384 1200
FIFO 2 3 29,076 1800
FIFO ECC 2 1 9,692 600
108
0
20
40
60
80
100
120
140
LX
30T
LX
330
T
SX
35T
SX
240
T
FX
30T
FX
200
T
TX
150
T
TX
240
T
To
tal
 Si
ze
 (k
B)
CRC CRC Compressed I/O Logic I/O Logic Compressed

Figure 6.5: Original reconfiguration file sizes and compressed data structure sizes for one CRC
BIST and a set of 5 I/O Logic BIST partial reconfigurations
Read back and diagnosis of BIST phases is performed by software in the embedded BIST
processor when fault diagnosis is desired for a given application. The basic idea is to read back
every frame of configuration memory containing an ORA flip-flop. The ORA flip-flop contents
are then stored in an array in the processor data memory. An ORA contains a logic 0 when a
failure is detected, otherwise a logic 1. Since the locations of ORAs are known for every BIST
session in any device, the frame addresses of ORA flip-flops can be generated algorithmically
during read back. The diagnostic algorithm [1] for circular comparison is easily implemented in
the embedded processor to identify faulty resources. When combined with the 32-bit parallel
access to the configuration memory, read back and diagnosis via the embedded processor
provides a substantial improvement in test time when compared to serial access via Boundary
Scan.
109
6.5 Design Flow and Implementation Results
The embedded BIST processor design flow, illustrated in Figure 6.6a, is more complex
than the traditional BIST design flow due to the inclusion of the MicroBlaze processor and BIST
session specific software. Generating the embedded processor based BIST configurations
requires inputs from three sets of source files. First, the C source file for the specific BIST
approach (e.g. CLB, DSP, block RAM, etc.) is compiled to an executable linkable file (ELF)
format. The MicroBlaze hardware is modeled in VHDL and synthesized using the Xilinx ISE
design flow. The placement of the MicroBlaze logic is constrained to one half of the device. The
placed, unrouted design is then converted to Xilinx Design Language (XDL) format. The BIST
logic is generated concurrently by the BIST generation program which produces an unrouted
XDL description of the BIST circuitry. The BIST array is constrained to the other half of the
FPGA. The BIST XDL description and the MicroBlaze XDL description are merged by
concatenating the two XDL files and connecting primary inputs and outputs of the BIST logic to
the WO and RO BIST control registers included in the MicroBlaze logic to form the complete
unrouted embedded processor based BIST configuration in XDL format. Finally, the complete
hardware portion of the design is converted to an NCD format and routed, from which the
bitstream configuration file is generated using the Xilinx BitGen program. At this point, the
compiled software in ELF format is translated into Block RAM initialization values in the
bitstream download file using the Xilinx Data2Mem program.
110

(a) design and verification process (b) implementation in LX30T device
Figure 6.6: Embedded processor BIST design implementation
The embedded processor based BIST approach has been successfully implemented for
BIST in Virtex-5 FPGAs. The unrouted embedded processor based BIST configuration for the
CLBs implemented in the top of a Virtex-5 LX30T is shown in Figure 6.6b. Two such
configurations are implemented to fully test the CLBs with the locations of the BUTs and ORAs
swapped, and another two configurations are required to test the bottom half CLBs. For the
purpose of embedded BIST, the MicroBlaze processor is configured with a hardware integer
multiplier, five stage pipeline, and 64 kB of on-chip program and data memory (configured in
Block RAMs). In Virtex-5 devices, the MicroBlaze with ICAP interface and BIST control
registers occupies three DSPs, 16 block RAMs, and 400 CLBs. The percentage of utilized
BIST Program
BitGen.exe
BIT file
XDL file
NCD file
XDL.exe
Verification
 on FPGA
XDL file
Merge XDL Files
XDL file
VHDL files
FPGA Editor
ELF file
C files
C Compiler
Data2MEM.exe
XST Synthesis
Hardware DRC
Fault Injection
SDK Development
Software Debug
download
111
resources is less than 50% in the smallest Virtex-5 device (LX20T). Timing analysis indicates
that the maximum operating frequency of the MicroBlaze processor when constrained to one-
half of a device is greater than 100 MHz in all Virtex-5 devices. Therefore, all ICAP operations
can be performed at the maximum frequency of 100 MHz.
6.6 Conclusions
We have presented the first embedded soft core processor based FPGA BIST approach.
The approach reduces the number of external configurations of the FPGA during any BIST
session to a maximum of two (one for each half of the array); however, many resources can be
tested in a single BIST session. The embedded processor performs reconfiguration of the
resources under test at the maximum allowable clock frequency and data width. Read back of
ORA contents can be performed when fault diagnosis is desired for fault-tolerant applications.
The soft core processor approach was implemented in Virtex-5 FPGAs using the MicroBlaze
processor. However, the overall approach is applicable to any FPGA with internal write and read
access to the configuration memory.
6.7 Acknowledgements
The contents of this chapter were published under the title ?Soft Core Embedded
Processor Based Built-In Self-Test of FPGAs? in Proceedings of the 24th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 2009, pp. 29-37. Prof. Charles
Stroud is a co-author on the paper. A majority of the actual research and the writing of the
published paper represents the efforts of the primary student author and not collaborators, and
the research represents work performed while in the graduate program at Auburn University.

112
6.8 References
[1] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, San Francisco,
CA: Morgan Kaufmann, 2007.
[2] M. Abramovici and C. Stroud, ?BIST-Based Test and Diagnosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 159-172, 2001.
[3] C. Stroud, S. Garimella and J. Sunwoo, ?On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devices,? Proc. ISCA Int. Conf. on
Computers and Their Applications, pp. 308-313, 2005.
[4] J Sunwoo and C. Stroud, ?BIST of Configurable Cores in SoCs Using Embedded
Processor Dynamic Reconfiguration,? Proc. Int. SoC Design Conf., pp. 174-177, 2005.
[5] B. Garrison, et. al., ?Built-In Self-Test for Memory Resources in Virtex-4 FPGAs,? Proc.
ISCA Int. Conf. on Computers and Their Applications, pp. 63-68, 2009.
[6] M. Pulukuri and C. Stroud, ?Built-In Self-Test of Digital Signal Processors in Virtex-4
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 34-38, 2009.
[7] B. Dutton and C. Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
[8] B. Dutton and C. Stroud, ?Built-In Self-Test of Programmable Input/Output Tiles in
Virtex-5 FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 235-239, 2009.
[9] R. Rajsuman, ?Testing a System-On-Chip with Embedded Microprocessor,? Proc. IEEE
Int. Test Conf., pp. 499-508, 1999.
[10] AT94K Series Field Programmable System Level Integrated Circuit, DS1138, 2005.
[11] Virtex-4 FPGA Configuration User Guide, UG071 (v1.1), Xilinx, 2008.
[12] Virtex-5 FPGA Configuration User Guide, UG191 (v2.7), Xilinx, 2008.
[13] PicoBlaze 8-bit Embedded Microcontroller User Guide, UG129 (v1.1.2), Xilinx, 2008.
[14] MicroBlaze Processor Reference Guide, UG081 (v.9.0), Xilinx, 2008.
113
Chapter Seven. Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs Case
Study
This chapter presents the results of a case study which investigates the use of an
embedded soft-core processor to perform Built-In Self-Test (BIST) of the logic resources in
Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs). We show that the approach reduces
the complexity of an external BIST controller and the number of external reconfigurations,
making it particularly appealing for in-system testing of high-reliability and fault-tolerant
systems with FPGAs. However, the overall test time is not improved due to an increase in the
size of the required configuration files as a consequence of the inclusion of the soft-core
embedded processor logic, whose relative irregularity results in less effective compression of
configuration data files.
7.1 Introduction
This chapter presents the results of the first implementation of Built-In Self-Test (BIST)
for Field Programmable Gate Arrays (FPGAs) using a soft-core embedded processor synthesized
into the configurable fabric of the FPGA under test. The approach, as originally proposed in [1],
reduces the number of configuration files required for BIST by exploiting the regularity of BIST
architectural structures to significantly compress and store partial configuration data in the
embedded processor?s program memory. The embedded processor controls and executes the
BIST sequence, including retrieval and analysis (fault diagnosis) of BIST results, and performs
partial reconfiguration of the FPGA for subsequent BIST test phases [1]. This embedded
processor-based BIST approach is possible for two reasons: first, the growing size and
114
complexity of FPGAs facilitates the inclusion of complex circuitry that only occupies a small
percentage of the total configurable resources, leaving adequate area for BIST logic and routing;
and, secondly, the ability to access the configuration memory from inside the FPGA fabric has
made possible internal reconfiguration and read back of FPGA logic and routing resources.
The approach was successfully implemented in Xilinx Virtex-5 [2] but is applicable to
any FPGA with internal configuration memory access. The remainder of the chapter is
organized as follows: Section 7.2 presents an overview of BIST for FPGAs and the previously
proposed soft-core processor-based BIST technique. Section 7.3 presents the results of our
implementation of soft-core embedded processor-based BIST in Virtex-5 FPGAs, including test
time analysis and comparisons with other BIST approaches for FPGAs. Section 7.4 discussed
ways in which the proposed approach might be improved, with Section 7.5 covering other
potential applications of the approach. The chapter is summarized in Section 7.6.
7.2 Background
BIST for FPGAs exploits the re-programmability of FPGAs to create test circuitry in the
FPGA fabric during off-line testing [3]. The only overhead is the external memory required to
store the BIST configurations along with the time required to download and execute the
numerous BIST configurations. No area overhead or performance penalties are incurred because
the BIST logic is reconfigured with the intended system function after testing is complete. The
BIST configurations are applicable to all levels of testing because they are independent of the
end-user system function and require no specialized external test fixture or equipment. Over the
past 15 years, a number of BIST approaches have been developed for the configurable logic and
routing resources in FPGAs. Due to the programmable nature of FPGAs, all BIST approaches
for FPGAs require multiple configurations of the resources under test in all of their modes of
115
operation in order to obtain high fault coverage. Some of these BIST approaches are
summarized in Table 7.1, where the number of BIST configurations is given for each type of
resource including configurable logic blocks (CLBs), input/output (I/O) tiles, random access
memories (RAMs), digital signal processors (DSPs), and programmable routing resources.
Table 7.1: Test configurations developed for various FPGAs
FPGA CLBs Routing I/O RAMs DSPs References
ORCA 2C 9 27 - 0 0 [5][6]
ORCA 2CA 14 41 - 0 0 [5][6]
Delta 39K 20 419 - 11 0 [7]
4000/Spartan 12 128 - 0 0 [8]
4000XL/XLA 12 206 - 0 0 [8]
AT40K/AT94K 4 56 27 3 0 [9] - [11]
Virtex/Spartan-2 12 283 7 5 0 [11][12]
Virtex-4 10+5 84 14 15 5 [13] - [17]
Virtex-5 6+5 ? 15 16 11 [17][18]

Most research and development in BIST for FPGAs has focused on reducing the number
of test configurations, reducing the size of test configuration files, and decreasing BIST
execution time [2]-[8]. But the ever increasing complexity and level of integration in FPGAs
has, with few exceptions, resulted in longer test times, more downloads, and more memory
required for storing BIST configurations for each new generation of FPGA. However, the
increasing size and complexity of FPGAs has also created opportunities for innovation in FPGA
testing. In [1], we proposed an embedded processor-based approach which exploits some of
these features of current FPGAs in an attempt to improve test time and reduce the complexity of
BIST. The soft-core embedded processor-based BIST approach for FPGAs incorporates
additional logic in the FPGA fabric along with the BIST logic to perform tasks typically assigned
to an external controller or computer. The new approach offers several advantages over the
traditional external BIST approach. First, the 32-bit internal configuration access port (ICAP) is
116
used for reconfiguration of the resources under test, eliminating the test time penalties associated
with the lower speed, serial Boundary Scan interface. Secondly, the total number of
configurations that are downloaded via the external configuration interface is reduced to one per
test session. In addition, all control of the BIST configurations and test procedures can be
implemented in the embedded processor. Finally, fault diagnosis procedures can also be
performed by the embedded processor, further reducing the complexity of the external BIST
controller in fault-tolerant applications and providing considerable speed-up when compared to
Boundary Scan based readback and diagnosis.
The basic architecture of the embedded BIST approach for CLBs is illustrated in Figure
7.1 [1]. In this particular BIST approach, one-half of the FPGA array is configured with the
BIST circuitry, including multiple Test Pattern Generators (TPGs), comparison-based Output
Response Analyzers (ORAs), and the Blocks Under Test (BUTs). The TPGs are constructed
from CLBs or other logic resources such as DSPs, RAMs, etc. The TPGs provide identical test
patterns to alternating rows or columns of identically configured BUTs whose outputs are
monitored by two ORAs and compared with the outputs of two other BUTs in a circular
comparison arrangement, as shown in Figure 7.1. The ORAs are constructed from CLBs such
that only half of the CLBs can be BUTs in a given test session, and the positions of the BUTs
and ORAs must be swapped during a subsequent test session in order to test all of the CLBs in
half of the array.
The second half of the FPGA array is reserved for a MicroBlaze soft-core processor and
any additional hardware resources associated with the processor [19]. Custom memory-mapped
registers are included in the MicroBlaze VHDL model for interfacing with the BIST circuitry.
One memory mapped write-only (WO) register is included for control of the BIST circuitry. The
117
outputs of the register are connected directly to all inputs to the BIST logic. One read-only (RO)
register is included at the same memory-mapped address as the output register. The inputs to
this register are connected directly to the outputs of the BIST logic. Each register is general
enough to be applicable to all BIST configurations that we have developed for Virtex-5. Finally,
the MicroBlaze interfaces directly with the FPGAs ICAP for partial reconfiguration of the BIST
array and for read back of output responses. To test all of the resources in the FPGA, a second
configuration is generated with the location of the BIST logic and embedded processor swapped.
For BIST of some resources, such as input/output (I/O) tiles and cyclic redundancy check (CRC)
circuits, it is possible to test all of the target resources simultaneously by placing the MicroBlaze
around the BIST circuitry.

Figure 7.1: Simplified soft-core processor-based BIST architecture

(b) BIST session #2
BIST Area
MicroBlaze Soft-Core Processor
WO Register RO Register ICAP
(a) BIST session #1
RO Register WO Register ICAP
MicroBlaze Soft-Core Processor
BIST Area
118
7.3 Results of Implementation in Virtex-5
The embedded processor-based BIST approach was implemented for BIST of Virtex-5
FPGAs using the MicroBlaze soft processor [19]. The unrouted embedded processor-based
BIST configuration for the top CLBs implemented in the Virtex-5 LX30T is shown in Figure
7.2. Note that two such configurations are implemented to fully test the top CLBs with the
locations of the BUTs and ORAs swapped, and another two configurations are required to test
the bottom half CLBs. For the purpose of embedded BIST, the MicroBlaze processor is
configured with a hardware integer multiplier, five stage pipeline, and 64 KB of on-chip program
and data memory (configured in Block RAMs). In Virtex-5 devices, the MicroBlaze with ICAP
interface and BIST control registers occupies three DSPs, 16 block RAMs, and 400 CLBs. The
percentage of utilized resources is less than 50% in the smallest Virtex-5 device such that the
approach works for all FPGAs in the Virtex-5 family. Timing analysis indicates that the
maximum operating frequency of the MicroBlaze processor when constrained to one-half of a
device is greater than 100 MHz in all Virtex-5 devices. Therefore, all ICAP operations can be
performed at the maximum ICAP configuration clock frequency of 100 MHz.
For accurate measurements of test time and to obtain experimental results with the
MicroBlaze processor, an additional 32-bit hardware timer/counter was included in the
MicroBlaze VHDL model. By starting the timer/counter at the beginning of a test phase, and
stopping it at the end of the test phase, the exact number of clock cycles for reconfiguration of
the resources under test, test execution, and ORA read back can be determined. To extract the
value in the timer/counter at the end of each test, the MicroBlaze performs a read of the
timer/counter value and reports this number via a UART interface to a connected PC, where it is
displayed and logged in a terminal program.
119

Figure 7.2: Unrouted embedded processor-based BIST configuration for top configurable logic
blocks (CLB) in Virtex-5 LX30T viewed in FPGA Editor
Figure 7.3 shows the total test time for one session of CLB testing in several Virtex-5
devices for external configuration with full compressed configuration and partial compressed
reconfiguration bitstreams downloaded and controlled via the 50 MHz Boundary Scan
configuration interface and for the MicroBlaze embedded processor approach. These test times
120
take into account all of the configurations required to achieve 100% fault coverage in the CLB in
SliceL mode, as reported in [7], which used traditional external reconfiguration techniques.
However, these times double to achieve 100% fault coverage in every CLB, because a second set
of identically sized configurations are required with the locations of the BUTs and ORAs
swapped. The optimized external reconfiguration provides the fastest overall test time when
compared with the other two approaches since the entire array is tested concurrently. This
approach is about three times as fast as the embedded processor approach on average, but is
device dependent, as can be seen in Figure 7.3. However, the embedded approach is
significantly faster than external configuration with full or compressed bitstream download files.

0
0.5
1
1.5
2
2.5
3
Te
st
Ti
me
 (s
ec
on
ds
)
Full Compressed
Partial Compressed
Embedded Top
Embedded Top & Bottom

Figure 7.3: CLB BIST test time for external configuration (full compressed and partial
compressed bitstreams) and embedded processor test time
By studying the configuration file sizes for the two BIST approaches, the cause for the
increase in test time for the embedded processor approach becomes clear. Consider Figure 7.4,
121
which shows the contributions to test time for one session of CLB BIST with the embedded
processor approach. The contribution from the initial compressed full configuration download
(using the 50 MHz external Boundary Scan configuration interface) is shown on bottom and the
contribution from the five subsequent partial reconfigurations by the embedded processor (using
the 100 MHz 32-bit ICAP) is shown on top. The overall test time is dominated by the initial
download time. This is due, in part, to the slower serial Boundary Scan configuration interface;
however, the main contributor to the overall test time is an increase in the size of the initial
configuration file (relative to the traditional BIST approach). The cause of the size increase is
due to the inclusion of the MicroBlaze configuration data in the configuration file, the
irregularity of which reduces the effectiveness of the configuration file compression (see Figure
7.2). We observed that the inclusion of the MicroBlaze logic increased the size of the first
compressed configuration file size by 2100 kB (which is approximately constant for all devices).
The additional 2100 kB of configuration data is larger than the next five partial reconfiguration
files combined, and, assuming Boundary Scan configuration, increases the time for initial
configuration by 336 ms. While it is possible to improve the timing for internal reconfiguration
of the resources under test, there is no way to improve timing for the first compressed
configuration download.
The potential for savings in test time does exists for systems which require fault
diagnosis, and, therefore, read back of ORA contents at the end of each test phase. In this case,
the embedded approach provides a speed-up of 5.4 times during read back of ORA results versus
read back via Boundary Scan, as can be seen in Figure 7.5.
122

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Te
st
Ti
me
 (s
ec
on
ds
)
5 Partial Reconfigurations
1 Compressed Config

Figure 7.4: Contribution to embedded processor-based CLB BIST test time by initial external
configuration and by five internal partial reconfigurations

0
10
20
30
40
50
60
70
OR
A
Re
ad
ba
ck
 T
im
e (
ms
)
Boundary Scan
Embedded Processor

Figure 7.5: Comparison of CLB BIST ORA read back times with embedded processor-based
approach and external Boundary Scan interface
123
7.4 Future Improvements
The overall reconfiguration times for the embedded processor-based BIST approach can
be reduced by modeling a custom processor for reconfiguration and test control. When a full
custom embedded fault injection approach was compared to the MicroBlaze based fault injection
presented in this work, a speed-up factor of almost 12 was observed for the FSM hardware-only
approach versus the general-purpose processor-based approach. However, a hardware only
implementation requires a different hardware configuration for every device and BIST session,
as reported in [20]. Ultimately, with custom hardware, the reconfiguration time could approach
the minimum achievable test time for the 100 MHz, 32-bit SelectMAP or ICAP configuration
interface. This best case timing occurs when one word is read or written on each active edge of
the clock, as is the case for configuration from a dedicated memory. The best case timing for
CLB BIST east or west configurations is shown in Figure 7.6 (doubling the time shown in the
figure yields the total test time for all CLBs in SliceL mode). However, these times should not
be directly compared to those in Figure 7.4 for the embedded processor-based approach, because
Figure 7.4 assumes initial configuration from the Boundary Scan interface. Another possibility
is to clock the MicroBlaze at a frequency greater than 100 MHz, using a divided clock equal to
100 MHz for the ICAP and portions of the ICAP interface logic. This will, however, require the
development of a custom ICAP interface. Based on timing analysis, clock frequencies around
150 MHz are attainable in the MicroBlaze processor when constrained to one-half of the FPGA.
Therefore, a speed-up of approximately 1.5 times could be achieved using a multiple clock
approach.
124

0
2
4
6
8
10
12
14
16
LX
20T
LX
30T
LX
50T
LX
85T
LX
110
T
SX3
5T
SX5
0T
SX9
5T
Tim
e (
ms
)
Readback
Execution
Configuration

Figure 7.6: 32-bit, 100 MHz interface test time for full chip CLB west or east with one full
compressed configuration and five partial reconfigurations
7.5 Other Applications
An approach similar to the embedded processor-based BIST could be applied to an
external processor or microcontroller connected to the SelectMAP 32-bit configuration interface.
Conceptually, the approach is similar to the approach for Atmel SoCs [3][4], except that the
processor and FPGA are integrated at the board level, rather than at the chip level. The only
overhead required above that for the traditional BIST approach is processor downtime for the
test, additional circuit board interconnections, additional processor I/O, and a portion of the
processor program memory (16,558 Bytes for one session of CLB BIST) for storing the
embedded BIST software and reconfiguration data. The impact to the system could be
minimized by performing tests of the FPGA as a low priority, background task, at the expense of
increased test time. The approach could provide the 5.4 times speed-up of the embedded
processor during reconfiguration and read back using the 32-bit, 100 MHz SelectMAP
configuration interface without the penalty incurred by testing the FPGA in two sessions, one for
125
each half. The size of the initial download is also reduced when compared to the embedded
processor-based approach due to the highly optimized structure of the BIST circuitry.
Furthermore, the memory required to store the BIST configurations can be reduced at the
expense of some additional program memory in the hard processor.
The embedded processor-based BIST approach for Virtex-5 FPGAs is directly applicable
to Virtex-4 FPGAs [21] with some modification to the BIST specific software (including device
specific subroutines such as algorithmic resource under test frame address generation) and stored
configuration data. Differences between the Virtex-4 and Virtex-5 ICAP interfaces, such as
byte-swapping on the Virtex-5 ICAP, are accounted for during synthesis of the MicroBlaze and
associated ICAP interface circuitry based on the targeted device family. The frame address
register is also arranged differently in Virtex-4 and Virtex-5, but this can be accounted for in
software [22][23]. The overall test times for Virtex-4 relative to external reconfiguration closely
match those results obtained in Virtex-5.
7.6 Conclusions
We have presented the results of a case study which implements the first soft-core
embedded processor-based BIST approach. The approach is applicable to any FPGA with
write/read access to the configuration memory from within the FPGA fabric and with sufficient
configurable resources to implement both the soft-core processor and the BIST circuitry. The
number of external configurations of the FPGA during any BIST session is reduced to a
maximum of two (one for each half of the array) and internal reconfiguration of the resources
under test are performed at the maximum allowable clock frequency and data width. Read back
of ORA contents and diagnosis of faulty resources under test can be performed by the embedded
soft-core processor when fault diagnosis is desired, for fault-tolerant applications for example,
126
providing a speed-up of 5.4 versus readback via the Boundary Scan interface. The approach can
significantly decrease the overall test time in systems with a relatively slow external
configuration interface, as was the case for the previous implementation of embedded processor-
based BIST using a dedicated hard-core processor [4].
The soft-core processor approach was implemented in Virtex-5 FPGAs using the
MicroBlaze processor for BIST reconfiguration, control of execution, fault injection, and fault
diagnosis. Reconfiguration of the resources under test is achieved via the ICAP port in the
FPGA fabric. When implemented in Virtex-5, the approach requires more testing time when
compared with optimized external reconfiguration using compressed partial reconfiguration
bitstreams. This is primarily due to the fact that the overall BIST approach has been architected
for optimum configuration file compression. This includes orienting the BIST architecture with
the configuration memory for maximizing the effectiveness of compressed download files with
multi-frame write features, partial reconfiguration of the resources under test by maintaining
constant placement and routing between test phases, and a single pass/fail indication to avoid
partial configuration memory read back for BIST results. This is a testament to the advanced
state of FPGA BIST techniques as well as the features and capabilities offered by FPGA
manufacturers to decrease configuration times.
However, the soft-core processor approach is significantly faster than configuration with
full or compressed configuration bitstreams alone. Only two downloads are required for each
BIST session when the embedded processor-based approach is used, compared to six
configurations for CLB east/west tests and nine for SerDes tests for example. BIST control,
execution and fault diagnosis implemented in the embedded processor eliminate the need for
complex external test equipment for manufacturing testing and intelligent external BIST
127
controllers for in-system testing and diagnosis in fault-tolerant applications. The architecture is
applicable to any BIST for Virtex-4 and Virtex-5 FPGAs without modification of the embedded
processor hardware; only the MicroBlaze program memory contents need to be changed.
7.7 Acknowledgements
The contents of this chapter are accepted for publication in Proc. IEEE Southeastern
Symposium on System Theory, 2010. Prof. Charles Stroud is a co-author on the paper. A
majority of the actual research and the writing of the published paper represents the efforts of the
primary student author and not collaborators, and the research represents work performed while
in the graduate program at Auburn University.
7.8 References
[1] B. Dutton and C. Stroud, ?Soft-core Embedded Processor Based Built-In Self-Test of
FPGAs,? Proc. IEEE Int. Symp. On Defect and Fault Tolerence in VLSI Sys., pp. 29-37,
2009.
[2] Virtex-5 FPGA User Guide, UG190(v4.2), Xilinx, 2008.
[3] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, San Francisco,
CA: Morgan Kaufmann, 2007.
[4] S. Toutounchi and A. Lai, ?FPGA Test Coverage,? Proc. IEEE Int. Test Conf., pp. 1248-
1257, 2003.
[5] M. Abramovici and C. Stroud, ?BIST-Based Test and Diagnosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 159-172, 2001.
[6] C. Stroud, J. Nall, M. Lashinsky and M. Abramovici, ?BIST-Based Diagnosis of FPGA
Interconnect,? Proc. IEEE Int. Test Conf., pp. 618-627, 2002.
[7] C. Stroud and J. Bailey, ?Bridging Fault Extraction from Physical Design Data for
Manufacturing Test Development, Proc. IEEE Int. Test Conf., pp. 760-769, 2000.
[8] C. Stroud, K. Leach and T. Slaughter, ?BIST for Xilinx 4000 and Spartan Series FPGAs:
A Case Study, Proc. IEEE Int. Test Conf., pp. 1258-1267, 2003.
128
[9] C. Stroud, S. Garimella and J. Sunwoo, ?On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devices,? Proc. ISCA Int. Conf. on
Computers and Their Applications, pp. 308-313, 2005.
[10] J Sunwoo and C. Stroud, ?Built-In Self-Test of Configurable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguration,? Proc. Int. SoC Design Conf., pp. 174-
177, 2005.
[11] S. Vemula and C. Stroud, Built-In Self-Test for Programmable I/O Buffers in FPGAs and
SOCs, Proc. IEEE Southeastern Symp. on System Theory, pp. 534-538, 2006.
[12] S. Dhingra, S. Garimella, A. Newalkar and C. Stroud, ?Built-In Self-Test for Virtex and
Spartan II FPGAs Using Partial Reconfiguration,? Proc. IEEE North Atlantic Test
Workshop, pp. 7-14, 2005.
[13] D. Milton, S. Dhingra and C. Stroud, ?Embedded Processor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGAs,? Proc. Int. Conf. on Embedded
Systems and Applications, pp 87-93, 2006.
[14] B. Garrison, D. Milton, and C. Stroud, ?Built-In Self-Test for Memory Resources in
Virtex-4 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Apps., pp. 63-68, 2009.
[15] M. Pulukuri and C. Stroud, ?Built-In Self-Test of Digital Signal Processors in Virtex-4
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 34-38, 2009.
[16] J. Yao, B. Dixon, C. Stroud and V. Nelson, ?Built-In Self-Test of Programmable
Interconnect in Virtex-4 FPGAs,? Proc. IEEE Southeastern Symp, on System Theory, pp.
29-33, 2009.
[17] B. Dutton and C. Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
[18] B. Dutton and C. Stroud, ?Built-In Self-Test of Programmable Input/Output Tiles in
Virtex-5 FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 235-239, 2009.
[19] MicroBlaze Processor Reference Guide, UG081(v.9.0), Xilinx, 2008.
[20] B. Dutton and C. Stroud, ?Embedded Processor Based Fault Injection and SEU
Emulation for FPGAs,? Proc. Int. Conf. on Emb. Systems and Apps., pp. 183-189, 2009.
[21] Virtex-4 FPGA User Guide, UG070 (v2.5), Xilinx, 2008.
[22] Virtex-4 FPGA Configuration User Guide, UG071(v1.1), Xilinx, 2008.
[23] Virtex-5 FPGA Configuration User Guide, UG191(v2.7), Xilinx, 2008.
[24] R. Rajsuman, ?Testing a System-On-Chip with Embedded Microprocessor,? Proc. IEEE
Int. Test Conf., pp. 499-508, 1999.
129
Chapter Eight. On-line Single Event Upset Detection and Correction in Field
Programmable Gate Array Configuration Memories
Larger field programmable gate array (FPGA) configuration memories and shrinking
design rules have raised concerns about single event upsets (SEUs), especially for high-
reliability, high-availability systems that use FPGAs. We present a design for the on-line
detection and correction of SEUs in the configuration memory of Xilinx Virtex-4 and Virtex-5
FPGAs. The design corrects all single-bit errors and detects all double-bit errors in the
configuration memory at maximum speed and with minimal overhead and power dissipation. A
method for SEU emulation in the configuration memory of FPGAs is presented which enables
the experimental verification of the approach. The results of SEU emulation in Xilinx FPGAs
are discussed.
8.1 Introduction
The increased use of field programmable gate arrays (FPGAs) for implementing digital
logic applications over the past two decades has been accompanied by increased concern about
radiation effects, and, in particular, the effects of single event upsets (SEUs). In addition to
memory elements such as flip-flops, look-up tables (LUTs), and random access memory (RAM)
cores, FPGAs contain a large static random access memory (SRAM), referred to as the
configuration memory, which establishes the overall system application performed by the FPGA.
An SEU induced bit-flip in the SRAM configuration memory can therefore alter the functionality
of the FPGA. This, coupled with the large size of the configuration memory, makes SEUs of
significantly more concern in FPGAs than in traditional application specific integrated circuits
130
(ASICs). In Xilinx Virtex-5 FPGAs, for example, the configuration memory alone represents
greater than 99% of all memory elements in a given device, as summarized in Table 8.1, where
the LX30T represents one of the smallest FPGAs in the Virtex-5 family and the LX330T
represents one of the largest [26][27].
Table 8.1: Memory resources in two Virtex-5 FPGAs
 Number of Memory Elements
Memory Type LX30T % of Total LX330T % of Total
Flip-Flops 19,200 0.2% 207,360 0.25%
LUT RAM Bits 327,680 3.5% 3,502,080 4.22%
Block RAM Bits 1,327,104 14.1% 11,943,936 14.41%
Configuration Bits 9,362,432 99.8% 82,687,488 99.75%
Total 9,381,632 100.00% 82,894,848 100.00%

Finding an accurate measurement of the susceptibility of SRAM configuration memories
to SEUs has been the focus of much research, including that in [15], [18], [24] and [30].
Accelerator testing conducted with Xilinx 4000 series FPGAs indicates the SEU frequency
increased by a factor of 4.74 when design rules decreased from 600nm to 350nm with a
corresponding reduction in power supply voltage from 5V to 3.3V [18]. On the other hand,
90nm Xilinx Virtex-4 FPGAs are reported to have SEU FIT (failures in 109 hours) rates of 246
per 106 bits of configuration memory, while 65nm Virtex-5 FPGAs have a lower SEU FIT rate
of 151 per 106 bits (adjusted for sea-level in New York, NY) [6][15]. The FIT rate per Mb of
configuration memory in Xilinx FPGAs has actually been decreasing since the Virtex-II series in
the year 2000. This reduction in SEU FIT rate by a factor of about 3.5 from Virtex-II to Virtex-
5, despite drastic reductions in feature size and supply voltage, indicates that Xilinx is
incorporating architecture dependent SEU hardening techniques in the design of the
configuration memory. This trend can be seen in Figure 8.1, where the SEU rate for each Xilinx
FPGA family is plotted along with the initial release year and minimum feature size. According
131
to [16], since 2002 Xilinx has designed the configuration memory to be more robust in an
attempt to reduce soft failure rates even as the size and density of the FPGA grows. That this
attempt has been successful is supported by the fact that the FIT rates reported for Xilinx FPGAs
are low when compared to typical SRAMs [18]. A more robust SRAM design is possible
because the SRAM configuration memory remains static a majority of the time, in contrast to
typical SRAM memories which are designed to be as small and as fast as possible [5][18].
0
50
100
150
200
250
300
350
400
450
500
Virt
ex
Virt
ex-
E
Virt
ex-
II
Virt
ex-
II P
ro
Spa
rtan
-3
Virt
ex-
4
Spa
rtan
-3E
Virt
ex-
5
FI
T/
Mb
 C
on
fig
 M
em
ory

Figure 8.1: FIT rate (corrected for sea-level New York, NY) versus Xilinx device family, initial
release year, and minimum feature size [6] where the center line represents the nominal value
and the span of the line represents the upper and lower 95% confidence levels
However, even the relatively low FIT rates of Xilinx FPGAs can become problematic
when considering the design of high reliability, high availability systems or systems which
operate at high altitude or in space. The largest commercially available Xilinx FPGAs currently
have configuration memories with more than 80 Mb [27] and in the next generation of devices
the largest available FPGAs will include configuration memories of over 160 Mb in size [28].
For the 80 Mb Virtex-5 device, the FIT rate per device is 10,960 failures in 1 billion hours, or
?98 ?99 ?00 ?01 ?02 ?03 ?04 ?05 ?06 year
250 180 150 130 90 90 90 65 nm
132
mean time between failure (MTBF) of (114,155 years/10,960 FIT) = 10.4 years at sea level. At
the 95% confidence level, the FIT rate is between 100-183, or MTBF between 7.8-14.3 years.
However, it should be noted that an SEU in the configuration memory does not always
correspond to a failure of the system. It is estimated that only between 10% [21] and 40% [24]
of the configuration bits used in any given design actually affect the design functionality.
Therefore, for a more accurate estimate of the MTBF the sensitivity of the design based on
analysis of ?care? versus ?don?t care? configuration bits should be taken into account.
Nevertheless, for SRAM FPGAs to be adopted for critical avionics and space applications where
little or no risk is acceptable, an effective SEU mitigation plan must be implemented. In
addition, systems operating in high-radiation environments may require an SEU mitigation plan
even if some risk is tolerable. As an example of the variance of SEU occurrence with altitude,
consider that the neutron flux density increases by a factor of 383 at the typical commercial flight
cruising altitude of 36,000 ft (relative to sea-level New York, NY) [9].
Techniques for hardening digital circuits against SEUs can be categorized as architecture
dependent or architecture independent. An architecture dependent technique is one that requires
a modification to the physical design of an integrated circuit; for example, high reliability
systems can employ hardware redundancy in latches [3]. In FPGAs, however, architecture
dependent SEU hardening techniques are only available if implemented by the FPGA
manufacturer. Therefore, for a typical SRAM FPGA, any SEU hardening implemented by the
user must be one that is architecture independent. One widely known architecture independent
technique used in FPGAs is triple modular redundancy (TMR). The TMR approach triplicates
all of the user logic and adds majority voters at the inputs to all flip-flops and on all primary
outputs. By eliminating all single point failures, the design can be guaranteed to tolerate an SEU
133
in any of the three circuit copies. However, the overhead for a TMR approach can be prohibitive
because it is greater than 200%. Therefore, to implement a TMR approach, the required size of
the FPGA (in terms of resources) would necessarily be more than three times the size of the
original, non-TMR design. TMR also consumes more power (approximately three times as
much) and incurs a performance penalty. The implementation of TMR for designs in Xilinx
FPGAs can be entirely automated using the Xilinx TMR Tool, which guarantees full SEU and
single-event transient (SET) immunity [29]. However, without some additional form of
configuration memory scrubbing, the accumulation of multiple SEUs over time can cause system
failure even in designs with full TMR [23][29].
Another architecture independent method, configuration memory scrubbing, periodically
refreshes the contents of the configuration memory without attempting to determine if an SEU
has occurred. Power-cycling is essentially the simplest form of configuration memory scrubbing
because the entire configuration memory can be refreshed each time the FPGA is power-cycled
if the FPGA is set in master configuration mode [1]. A more intelligent approach is to externally
read back words of configuration memory contents, comparing each word to a copy in a
?golden? configuration bitstream. This approach has the advantage of being able to detect any
number of SEUs in the configuration memory (when compared to error correcting codes). Any
mismatch between the ?golden? copy and the configuration memory contents should cause the
erroneous configuration memory to be overwritten by the ?golden? configuration data.
However, both approaches require a radiation hardened external configuration management unit
(microprocessor or ASIC) and a radiation hardened ?golden? copy of the configuration data.
The second approach also doubles the required amount of memory, because both the ?golden?
134
bitstream and a mask file, which is used to mask configuration bits which are subject to change
during normal system operation, must be stored in the system [1].
Some FPGAs, including Virtex-4 and Virtex-5, incorporate a Hamming error correction
code (ECC) in the configuration memory. The ECC, in conjunction with some additional user-
accessible dedicated logic can be used to detect SEUs in the configuration memory. With
additional user-defined circuitry in the FPGA core, erroneous configuration memory bits that
result from SEUs can be not only detected, but also corrected [12]. It is this method that is the
focus of this chapter where we present an efficient SEU correction circuit that works in
combination with existing SEU detection mechanisms in Virtex-4 and Virtex-5 FPGAs to correct
SEUs in the FPGA configuration memory. This circuit can be synthesized and incorporated with
any user-defined digital application in any Virtex-4 or Virtex-5 FPGA for detection and
correction of SEUs during normal on-line system operation. We begin with an overview of
existing SEU detection mechanisms in Section 8.2 along with an overview of previous work in
on-line SEU detection and correction in Virtex-4 FPGAs. The operation and architecture of the
proposed SEU detection and correction circuit are presented in Sections 8.3 and 8.4,
respectively. Experimental results and analysis from the actual implementation of the SEU
detection and correction circuit in Virtex-4 and Virtex-5 FPGAs are presented in Sections 8.5
and 8.6 along with a comparison to prior work. The chapter concludes with a summary in
Section 8.7.
8.2 Background
Like any other RAM, the configuration memory of an FPGA is partitioned into words,
also called frames, which represent the smallest addressable unit of the memory for write and
read operations. Virtex-4 and Virtex-5 frames consist of 1,312 bits [25][26]. Each frame
135
includes a 12-bit field of eleven Hamming bits and an overall parity bit for the frame data. The
eleven Hamming bits provide the potential for single error correction (SEC), and the overall
parity bit enables double error detection (DED) over the frame data. The parity and Hamming
bits are generated external to the FPGA by the configuration bitstream generation software and
are subsequently downloaded with the application specific configuration data (an internal CRC
check verifies the integrity of the downloaded data). However, system memory data subject to
change during the operation of the FPGA, such as the contents of block RAMs and look-up
tables (LUTs) used as distributed RAMs, are not covered by the parity and Hamming bits [4].
Virtex-4 and Virtex-5 provide a specialized core, called Frame ECC, for detection and
identification of single and double-bit errors in the frame data [25][26]. For each frame read
from the configuration memory, the Frame ECC module calculates the Hamming bits as well as
the overall parity for the frame data, and compares these bits with the Hamming bits and parity
for that frame stored in the configuration memory. Based on this comparison, the Frame ECC
module produces indications for no error, single-bit error, and double-bit error conditions in
addition to a syndrome indicating the location of single-bit errors. The error conditions for the
Frame ECC core are summarized in Table 8.2. System memory contents?block RAMs and
LUT RAMs, for example?are masked from the internal parity and Hamming calculation by the
Frame ECC.
Table 8.2: Frame ECC error codes [25][26]
Error Type Condition (syndromevalid = 1)
No bit error Hamming match, no parity error
1-bit correctable error (SEC) Hamming mismatch, parity error
2-bit error detection (DED) Hamming mismatch, no parity error

136
The Frame ECC function is performed each time a frame is read from the external serial
Boundary Scan interface or parallel SelectMAP configuration interface [25][26]. In addition to
these external configuration interfaces, Virtex-4 and Virtex-5 include a 32-bit internal
configuration access port (ICAP), illustrated in Figure 8.2, that provides write/read access
to/from the configuration memory from within the FPGA core. As is the case with the external
interfaces, the Frame ECC function is performed each time a frame is read via the ICAP.
Because the Frame ECC does not provide circuitry to perform error correction, some additional
logic must be implemented in the FPGA fabric that uses the ICAP and Frame ECC modules to
cycle through all frames of the configuration memory to detect SEUs and to correct those SEUs.
Virtex-5 FPGAs also include dedicated circuitry in the FPGA that can automatically detect SEUs
using built-in cyclic redundancy check (CRC) circuitry [26]. When Readback CRC is enabled
(by setting the POST_CRC configuration option to ENABLE), the contents of the configuration
memory are continuously read back in the background of the user design operation to calculate
and check the CRC of the configuration memory contents. An SEU anywhere in the
configuration memory will cause the re-calculated CRC to disagree with the stored CRC. The
mismatch is signaled by asserting the CRC Error output of the Frame ECC (only present in
Virtex-5 and not shown in Figure 8.2). Optionally, the external INIT_B output pin of the FPGA
may also be driven low when the error is detected [26]. The Readback CRC will begin to run
automatically upon a successful configuration of the FPGA and will continue to run as long as no
configuration interfaces are in use; a configuration interface is considered to be in use after the
synchronize (SYNC) command is decoded and until the de-synchronize (DESYNC) command is
decoded [26]. Similar background CRC read back circuitry has been incorporated in recent
Altera [21] and Lattice [14] FPGAs to support SEU detection.
137

Figure 8.2: Frame ECC and ICAP primitives
An implementation of internal SEU detection and correction using the Frame ECC and
ICAP logic in Virtex-4 devices was reported in [12]. The design uses an 8-bit PicoBlaze [19]
soft-core processor with additional circuitry and RAM in the FPGA fabric for interfacing to the
ICAP to read and write the configuration memory. The design can operate in a detection only
mode, or can detect and correct single-bit errors. The design was later implemented in triple
modular redundancy (TMR) [10]. While both [10] and [12] are applicable only to Virtex-4, the
approach in [12] was recently extended in [5] to support Virtex-5 FPGAs.
8.3 Operation of SEU Detect and Correct
Our SEU detect and correct circuit, or SEU controller as it is referred to in this chapter, is
designed to be integrated into any existing VHDL-based user design with minimal effort. At the
top level, there are only two inputs?clock and reset?and one output? error. The VHDL
component declaration for the SEU controller is given in Figure 8.3.
 component seu_controller is
 generic(device : string(1 to 6));
 port(rst : in std_logic;
 clock : in std_logic;
 error : out std_logic);
 end component seu_controller;

Figure 8.3: SEU controller VHDL component declaration
The generic device is a text string that specifies the device in which the SEU controller
will be implemented, such as ?LX330T? for example. All Virtex-4 and Virtex-5 devices are
ICAP_OUT[31:0]
BUSY
ICAP
CLK_EN
ICAP_IN[31:0]
WRITE
CLK ERROR
Frame
ECC
SYNDROME[11:0]
SYNDROMEVALID
138
supported such that only this generic need be specified by the user to indicate the target FPGA
for synthesis. The error output is asserted when the first multiple-bit error is detected, and
should trigger a reconfiguration of the FPGA from a reliable external memory since multiple bit
errors cannot be corrected by the SEU controller. The clock input is directly connected to the
ICAP clock and the SEU controller. It is limited by the maximum ICAP clock frequency of 100
MHz, but can operate at any frequency below 100 MHz. In Virtex-5 devices, the ICAP and SEU
controller clock can be supplied by an internal 50 MHz oscillator [26]. The synchronous active
high reset input forces the SEU controller into an inactive state, releasing the configuration
interface for use by other applications. Asserting the reset input also resets the frame address to
the first frame of configuration memory and clears the error output. When reset is released, the
SEU controller will resume normal operation from the first frame of the configuration memory
on the next rising edge of clock. The reset input may be tied to logic 0 for free-running SEU
detection and correction in user designs that do not require access to the configuration memory
during normal system operation. The operation of the SEU controller consists of the following
steps:
1. A 1312-bit frame of configuration memory is read through the ICAP as forty-one 32-bit
words and the frame data is stored in a block RAM.
2. If an error is indicated by the outputs of the Frame ECC primitive, the type of error is
determined as shown in Table 8.2. If the error indicates a double-bit error, the error
output of the SEU controller is latched high and read back continues with the next frame
of configuration memory. If a single-bit error is indicated, the location of the bit is
determined from the syndrome and the erroneous bit is corrected (i.e. inverted) in the
frame data stored in the block RAM.
139
3. If a single-bit error was indicated in Step 2, the repaired frame is now written back into
the configuration memory at the same frame address from which it was read.
4. If a single-bit error was indicated in Step 2, read back resumes with the first frame in the
configuration column containing the newly repaired frame.
5. When a configuration column has been completely read and repaired (as determined by
no single-bit error indications for any frames in for that configuration column), the SEU
controller advances to the next configuration row/column in the array and repeats the
process starting at Step 1.
This SEU controller behavior is summarized by the pseudocode of Figure 8.4.
Load starting frame address
while (reset == 0) {
 Read single frame from configuration memory
 Read Frame ECC outputs
 if (single bit error is detected) {
 Translate syndrome to bit index in frame
 Read erroneous bit
 Write inverted (corrected) bit to same location
 Write frame back to configuration memory
 break
 }
 else if (double bit error is detected) {
 Assert ERROR output
 }
 Increment Frame Address
}

Figure 8.4: SEU controller behavioral pseudocode
In Virtex-5 devices, the SEU controller may utilize the Read Back CRC feature of the
Frame ECC module for the initial detection of an SEU with a small modification to the design.
By enabling the Read Back CRC (in the design constraints file) and using the complement of the
140
CRC Error output of the Frame ECC circuit as the reset input to the SEU controller, the SEU
controller will remain idle (held in active high reset) with the CRC Read Back circuit operating
in the background (at the frequency of the ICAP input clock [26]). When a CRC mismatch is
detected, the CRC Error output of the Frame ECC circuit is asserted, de-asserting the reset input
to the SEU controller. The SEU controller will begin normal operation, cycling through the
configuration memory detecting and correcting all single-bit errors. However, after the last
frame of configuration memory is reached, the SEU controller will return to the reset state and
wait for a falling edge on the reset input before resuming operation. By entering the reset state
and releasing the ICAP configuration interface via a DESYNC command, the internal CRC Read
Back will resume. This approach has the disadvantage of doubling the cycle time in the worst
case since both the CRC Read Back circuit and SEU controller may require a complete cycle to
detect and then repair the SEU. As observed in [5], however, this approach may offer some
additional immunity to SEUs in the detection phase because the CRC Read Back circuit is
implemented as dedicated logic at the physical circuit level, as opposed to the SEU controller,
which is implemented in configurable resources. The INIT_B signal could be used to externally
verify the correction of the SEU by ensuring the INIT_B output pin of the FPGA does not
remain low longer than a predetermined time period (approximately three complete scan cycles
of the FPGA configuration memory). If, however, the INIT_B remains low or the error output of
the Frame ECC is asserted, the error is not repaired and the configuration memory should be
refreshed from a radiation hardened ?golden? copy.
8.4 SEU Detect and Correct Architecture
Our SEU controller is implemented entirely in configurable logic blocks (CLBs) and one
18 Kb block RAM in the FPGA fabric. It is constructed primarily around the ICAP and Frame
141
ECC primitives [25][26]. The operation of the SEU controller, described in the previous section,
is managed with a finite state machine (FSM) implemented in CLB logic slices. The FSM
initiates reads and writes to the FPGA internal configuration memory and control registers via
the 32-bit ICAP interface. A set of sixty-four 32-bit instructions are stored in a 32?64-bit read-
only memory (ROM) formed in 32 LUTs (6-inputs each) in Virtex-5 and 128 LUTs (4-inputs
each) in Virtex-4. The 32?64-bit LUT ROM is addressed by a counter that is enabled by
combinational logic from the FSM current state. The FSM also generates the frame address for
reads and writes of the configuration memory. All reads from and writes to the configuration
memory are 32-bits. The logic for the frame address counter is device dependent since every
device has different numbers of rows and/or columns. Furthermore, the arrangement of different
types of columns (e.g. CLB, DSP, RAM, etc.) can vary depending on the device. The generic
device (shown in Figure 8.3) is used to determine and synthesize the correct frame address logic
for the target device.
The central component of the SEU controller architecture is the dual-port block RAM (at
least two columns of 18 Kb block RAMs are included in every Virtex-4 and Virtex-5 device). A
single block RAM is used to store each frame as it is read from the configuration memory. The
A port of the block RAM is configured for 32-bit read/write access, and the B port is configured
for 1-bit read/write access, as illustrated in Figure 8.5. The data inputs of the A port are
connected directly to the outputs of the ICAP, and the A port data outputs are connected to the
ICAP inputs via a 32-bit 2-to-1 multiplexer.
142

Figure 8.5: SEU controller block diagram
The A port address inputs are controlled by a counter in the FSM. Every frame that is
read from the ICAP is stored in the first forty-one 32-bit words of the block RAM. Single-bit
errors are corrected via the 1-bit B port interface. The B port address inputs are connected to
combinational logic which provides the bit offset of the bit in error based on the Frame ECC
syndrome outputs. The 1-bit B port data output is inverted connected to the 1-bit B port input.
The B port write enable is controlled by combinational logic from the syndromevalid and ECC
error Frame ECC outputs in conjunction with the FSM. The location of single-bit errors within
the frame is indicated by the syndrome[10:0] outputs of the Frame ECC primitive, however some
additional combinational computational logic is required to determine the exact bit-offset of the
error within the configuration frame. An equation for determining the bit-offset of the error in
the range 0-1311 is given by:
BRAM
DINA
DOUTA
WEA
ADDRB
WEB
DINB
DOUTB
ADDRA
12
32
syndromevalid
32
SEU
Controller
Logic &
Instruction
ROM
32
Frame
ECC
Clock
Reset
ICAP
Error
11
16
ECC error
143
 offset = {S[10:5] ? 6'd22 ? S[10], S[5:0]} (8.1)
where S[10:0] are the Frame ECC syndrome outputs [25][26]. Otherwise, if the binary value of
syndrome[10:0] is 0 or a power of 2, then the error is located in one of the Hamming bits, in
which case the location of the bit error is determined as shown in Table 8.3. The output of the
syndrome combinational logic is tied to the B port address inputs. In this manner, the erroneous
bit, as indicated by syndrome[11:0], is inverted when the block RAM B port write enable is
asserted. The repaired frame is then written back into the configuration memory via the A port
32-bit output to the ICAP.
Table 8.3: Hamming bit error diagnosis [25][26]
syndrome[11:0] offset syndrome[11:0] offset
100000000001 640 100001000000 646
100000000010 641 100010000000 647
100000000100 642 100100000000 648
100000001000 643 101000000000 649
100000010000 644 110000000000 650
100000100000 645 100000000000 651

A rare, but potentially problematic situation can arise when an odd number of bit errors
occur in a single frame of configuration memory. These errors will cause both a syndrome
mismatch and overall parity mismatch, which aliases as a correctable single-bit error (refer to
Table 8.2). However, in this case, the syndrome outputs do not necessarily indicate the location
of any of the actual errors, and can erroneously point anywhere in the range 0 to 211?1 (2047).
Since the actual frame data only exists in the range 0 to 1311, the following two scenarios are
possible.
First, the odd-multiple bit error aliases as a single-bit error with the syndrome outputs
pointing in the valid range of the frame data 0 to 1311. In response to the single-bit error
144
indication, the SEU controller will invert the frame-bit pointed to by the syndrome, which may
satisfy the Hamming code by creating a valid distance code word, and the modified frame will be
written back into the configuration memory. The SEU controller will resume read back at the
start of the configuration column containing the still damaged frame. When the erroneous frame,
now containing an even number of multiple errors, is read, the valid code word will cause a
Hamming code match and an overall parity-bit match such that a ?no bit error? indication is
obtained. However, by incorporating the CRC Read Back mechanism with the SEU controller,
as described in Section 8.3, this multiple bit error can be detected because the CRC will continue
to indicate a CRC Error with the SEU controller indicating no error.
In the second scenario, when the frame containing an odd number of errors greater than
one is read, the syndrome indicates an error bit location in the range from 1312 to 2047. This
range, while a valid address in the larger block RAM, lies outside of the range of valid frame
data. Therefore, if events are allowed to proceed as in the first scenario, unmodified frame data
would be written back into the configuration memory, effectively creating an infinite loop, since
the same frame would be continually read from and written to the configuration memory without
modification. Our solution is to include a greater-than comparator in the SEU controller which
detects when the syndrome points outside of the range of valid frame data (0 to 1311). When
this condition occurs, the SEU controller ignores the syndrome and asserts the error output,
indicating the existence of a multiple-bit error and that the FPGA configuration bitstream data
should be reloaded from a reliable external memory.

145
8.5 Implementation Results
The greatest benefit of our SEU controller when compared to other approaches is the
relatively high speed at which errors are detected and corrected. SEUs should be corrected with
a minimum amount of latency so that errors in the programming of the user logic persist for the
shortest possible period of time. Figure 8.6 shows the time required for one full cycle of single-
bit error correction and double-bit error detection in Virtex-4 devices for the Xilinx SEU
controller described in [12] and our SEU controller, where a cycle is defined as the time to
perform the operation over every configuration memory frame in the device, excluding frames
containing block RAM contents. The cycle time also corresponds to the maximum amount of
time that one SEU can persist in the configuration memory.
The Xilinx Virtex-4 SEU controller can operate in two modes: single and double-bit error
detection only mode, and single-bit error correction and double-bit error detection mode [12].
As shown in Figure 8.6, the Xilinx ?detect only? cycle time is nearly identical to our detect and
correct mode. However, when single-bit error correction is enabled, the total cycle time for the
Xilinx Virtex-4 SEU controller increases to about 20 times that of our normal detect and correct
cycle time. On average, our SEU controller reduces the total cycle time for SEC and DED with
respect to the Xilinx SEU controller by 94.7%. Figure 8.7 shows the total cycle time for our
SEU controller in Virtex-5 devices. The cycle time is increased by an average of 17 ?s for each
SEU detected and corrected. The repair time for one frame is negligible. However, the cycle
time would double if there were one SEU present in every configuration column.
146

Figure 8.6: SEU controller LOG cycle time vs. Virtex-4 device
110
10
0
10
00
LX
15
LX
25
LX
40
LX
60
LX
80
LX
100
LX
160
LX
200
SX
25
SX
35
SX
55
FX
12
FX
20
FX
40
FX
60
FX
100
FX
140
C y c l e T i m e (m s)
De
te
ct
an
d
Co
rre
ct
Xi
lin
x
De
te
ct
On
ly
Xi
lin
x
De
te
ct
an
d
Co
rre
ct
147

Figure 8.7: SEU controller cycle time vs. Virtex-5 device
04812162024 L
X30

LX
50

LX
85
 L
X11
0
LX
155

LX
220

LX
330

LX
T20

LX
T30

LX
T50

LX
T85
 L
XT
110
LX
T15
5
LX
T22
0
LX
T33
0
SX
T35

SX
T50

SX
T95

C y c l e T i m e (m s)
Ov
er
he
ad
Fr
am
e
Re
ad
148
To increase the reliability of the Xilinx SEU controller, the authors of [10] used the
Xilinx TMR Tool [29] to implement the Xilinx Virtex-4 SEU controller with full TMR.
However, as the results in [10] show, this approach may be impractical for some applications
because of its high area overhead. A comparison of the device utilization for the Xilinx SEU
controller [12], the Xilinx SEU controller with TMR [10], and our approach implemented in
Virtex-4 is summarized in Table 8.4. While the Xilinx approach uses 23 fewer slices, we use
one less block RAM and complete each cycle of the configuration memory an average of 20
times faster. The Xilinx Virtex-4 SEU controller with TMR utilizes 1,308 logic slices and 6
block RAMs [10] ? a 770% increase in area versus the non-TMR SEU controller.
Table 8.4: SEU controller resource utilization in Virtex-4 devices
Resource Xilinx [12] Xilinx TMR [10] SEU Controller
Slices 149 1308 182
Block RAMs (18 Kb) 2 6 1
Avg Cycle (ms) 105.5 105.5 5.603
Lines VHDL 3656 -- 1051

A comparison of our SEU controller with the recently proposed Xilinx Virtex-5 SEU
controller [5] is given in Table 8.5. Our approach uses one less block RAM and 30 fewer slices.
The cycle time for the Xilinx Virtex-5 SEU controller approach was not reported. However, due
to the similarity of the Virtex-4 [12] and Virtex-5 [5] SEU controller architectures, our Virtetx-5
SEU controller is likely to have a speed-up factor similar to that observed in Virtex-4.
Table 8.5: SEU controller resource utilization in Virtex-5 devices
Resource Xilinx [5] SEU Controller
Slices 95 65
Block RAMs (18 Kb) 2 1
Average Cycle Time (ms) -- 9.338
Lines VHDL 2625 945

149
Our SEU controller could also be implemented using the Xilinx TMR Tool to mitigate
the risk of failure due to an SEU, as was done in [10] for the Xilinx Virtex-4 SEU controller
TMR design. This approach would essentially allow two error-free SEU controllers to correct an
SEU affecting the third SEU controller. However, the configurable routing resources
surrounding the ICAP and Frame ECC cores could still be vulnerable to SEUs since these
modules and their interfaces cannot be replicated.
8.6 Experimental Results
Our SEU controller has been synthesized for all Virtex-4 and Virtex-5 FPGAs.
Furthermore, the SEU controller has been downloaded and verified on Virtex-4 FX12, SX35,
and LX60 devices as well as Virtex-5 LX30T, LX50T, SX35T, SX50T, FX30T and FX70T
devices. The number of utilized CLB logic slices has been observed to vary by ?3 slices in both
Virtex-4 and Virtex-5 devices depending on the device and the area optimization used with the
place and route software. During synthesis, the SEU controller logic and block RAM may be
constrained to any area of the FPGA or may be left unconstrained for automatic placement with
the user?s system function. The routed SEU controller in a Virtex-5 LX30T device is shown in
Figure 8.8 where its location was constrained to the area shown. The dynamic power dissipation
of the SEU controller was measured on both Virtex-4 and Virtex-5 FPGAs and found to be less
than 5 mW at 100 MHz. Power requirements for the previous approaches in [5], [10] and [12]
were not reported.
150

Figure 8.8: Routed SEU controller implemented in Virtex-5 LX20T device
For design verification and analysis, we developed an approach to emulate SEUs in the
configuration memories of Virtex-4 and Virtex-5 FPGAs using a configuration memory read-
modify-write process [8] similar to the approach described in [11]. The read-modify-write
process is executed by an external computer connected to the FPGA via the Boundary Scan
configuration interface. A list of configuration bit addresses is generated by software we
developed to select random locations for SEU injection. Our SEU list generation software also
allows for control of the locations of the SEUs to either a specific region or the entire
configuration memory. Additionally, a rectangular area of the FPGA can be masked such that
SEUs are randomly located outside of the mask area. Our approach is capable of injecting any
151
number of errors in the configuration memory, simultaneously or individually, as determined by
the length of the SEU target list [8]. This SEU emulation approach was shown in [11] to
reproduce 97% of actual SEU and SET induced faults in radiation chamber experiments.
Furthermore, because the entire configuration memory is accessible, greater than 99% of all
possible SEUs in the configuration memory of a given Virtex-5 FPGA can be emulated with this
approach (refer to Table 8.1).
The analysis process begins by configuring the target device with the error-free SEU
controller configuration. The SEU controller is held in reset while the SEUs are injected into the
configuration memory via the Boundary Scan interface. For each SEU in the list, the
corresponding frame of configuration memory is read back from the target device to the external
computer. The SEU emulation bit in the frame is inverted, and the frame is written back to the
same location in the configuration memory. After injection of the SEU(s), the SEU controller is
released from reset and executed for one or more complete cycles. The number of single-bit and
multiple-bit errors reported by the SEU controller are recorded by internal counters included for
analysis and verification only, and these count values are read via the Boundary Scan interface at
the end of the error detection/correction cycles. The success of the SEU controller is determined
by comparing the values in the counters to the number of SEUs contained in the original list.
Emulated configuration memory SEUs are classified in two categories. The first category
includes all SEUs that are detected and corrected normally, as verified by a comparison of the
retrieved count values and the original SEU list. The second category encompasses any SEU
that affects the operation of the SEU controller such that either the SEU cannot be detected and
corrected or the values contained in the counters are incorrect or cannot be retrieved for
verification. Note that a slight penalty is incurred for the inclusion of the counters, which are
152
susceptible to SEUs, and could produce a failing pattern despite the correction of the emulated
SEU. A total of 8,000 randomly generated SEUs were individually injected in the configuration
memory of a Virtex-5 LX50T and the result of each trail was recorded. Our trials showed that,
of the 8,000 random SEUs, all but 178 were detected and corrected in the first full execution
cycle, yielding a probability of detection and correction of 97.78%. Considering the SEU
locations to be randomly distributed, independent samples, the lower bound for the probability of
correction of SEUs at the 99% confidence level is 97.30% [22]. Therefore, the likely probability
of detection and correction of any number of simultaneous SEUs greater than one is given by:
 Pr(correction) = [1?Pr(failure)]N
where N is the number of simultaneously occurring SEUs. The results of SEU emulation for
1000 SEUs in four Virtex-5 devices are shown in Table 8.6. In our trials, 100% of SEUs that lie
outside of the area of the configuration memory that controls the functionality of the SEU
controller are corrected. The experimental success rates for [10] and [12] were not reported.
Table 8.6: SEU emulation results
Device Slice Count Pop. Size (Mb) Corrected/Injected
Pr(correction)
99% Confidence
LX30T 59 7.29 950/1000 93.22%
SX35T 60 9.26 955/1000 93.46%
LX50T 59 10.9 980/1000 96.86%
SX50T 60 13.9 967/1000 94.96%
LX50T 59 10.9 7822/8000 97.35%

In general, the percentage of correctable SEUs is positively correlated to the size of the
configuration memory of the given device because the number of configuration bits affecting the
SEU controller functionality are fixed in relation to the total size of the configuration memory.
According to the data provided in [5], the adjusted FIT rate, considering only the vulnerable bits
which implement the SEU controller functionality, may be approximately calculated based on
153
the number of resources in use by the SEU controller and the number of configuration bits
affecting the programming of each type of resource (shown in Table 8.7). For the Xilinx Virtex-
5 SEU controller, the approximate number of sensitive configuration bits was reported to be
113,365 bits, or 0.108 Mb, yielding a nominal FIT rate of 16.33, or MTBF of approximately
6,992 years [5]. For our SEU controller, which utilizes less logic resources in Virtex-5, there are
approximately [(65 ? 1,181) + (1 ? 585)] = 77,350 bits, or 0.0738 Mb, that are sensitive to SEUs.
Therefore, the adjusted FIT rate for our SEU controller is 11.14, or MTBF of approximately
10,247 years. As was observed in the SEU emulation results, the adjusted FIT rate for designs
protected by the SEU controller is independent of the device size because the size of the SEU
controller is approximately device independent.
Table 8.7: Approximate number of configuration bits for common resources [5]
Resource Approximate number of configuration bits
Logic Slice 1,181
Block RAM (36 Kb) 1,170
Block RAM (18 Kb) 585
I/O Tile 2,657
DSP48E Slice 4,592

8.7 Conclusions
The increased use of FPGAs for implementing digital systems, in conjunction with their
larger configuration memories and shrinking design rules, has raised concerns about the effects
of SEUs, particularly for high-altitude and space applications as well as for high-reliability, high-
availability applications. As a result, some FPGA manufacturers are reducing the FIT rate
through their design of the configuration memory and by incorporating modules that support
SEU detection, such as the Frame ECC and ICAP in recent Xilinx FPGAs [25][26] and CRC
background check circuitry in recent Altera [21] and Lattice [14] FPGAs. We have presented an
154
SEU controller applicable to all Xilinx Virtex-4 and Virtex-5 FPGAs that is capable of correcting
single-bit errors and detecting double-bit errors in the FPGA configuration memory, which
represents greater than 99% of all memory elements susceptible to SEUs. Note that block RAMs
account for the second largest percentage (approximately 14%) of memory elements susceptible
to SEUs. However, recent Xilinx [25][26] and Altera [21] FPGAs include RAMs cores with
user optional ECC modes of operation. The SEU controller VHDL is easily integrated with any
existing user design with minimal resource overhead and power dissipation. Our approach
detects and corrects errors in the configuration memory 20 times faster than other reported
approaches in [10] and [12]. In addition, our design is less susceptible to SEU induced failure
because it uses less logic resources, which results in a failure rate improvement of about 46.6%
for Virtex-5 FPGAs. Finally, TMR techniques can be used to prevent SEUs that occur within the
configuration bits that establish the SEU controller logic from causing the SEU controller to fail
in high-reliability, high-availability applications.
8.8 Acknowledgements
The contents of this chapter are published under the title ?On-line Single Event Upset
Detection and Correction in FPGAs Configuration Memories? in The ISCA International Journal
on Computers and Their Applications, Vol. 17, No. 2. Prof. Charles Stroud is a co-author on the
journal article. The journal article is an extended version of the work previously published in
Proceedings of the ISCA International Conference on Computers and Their Applications, 2009,
pp. 57-62, under the title ?Single Event Upset Detection and Correction in Virtex-4 and Virtex-5
FPGAs?. A majority of the actual research and the writing of the published paper represents the
efforts of the primary student author and not collaborators, and the research represents work
performed while in the graduate program at Auburn University.
155
8.9 References
[1] B. Bridgford, C. Carmichael, and C. Tseng, ?Single-Event Upset Mitigation Selection
Guide,? XAPP987 (v1.0), Xilinx Inc., March 2008.
[2] M. Caffrey, P. Graham, E. Johnson, M. Wirthlin, C. Carmichael, ?Single-Event Upsets in
SRAM FPGAs,? Military and Aerospace Programmable Logic Devices Conf., Sept.
2002.
[3] T. Calin, M. Nicolaidis, and R. Velazco, ?Upset Hardened Memory Design for
Submicron CMOS Technology,? IEEE Trans. on Nuclear Science, vol. 43, no. 6, pp.
2874-2878, Dec. 1996.
[4] C. Carmichael and C. Wei Tseng, ?Correcting SEUs in Virtex-4 Platform FPGA
Configuration Memory,? XAPP988, (v1.0), Xilinx Inc., March 2008.
[5] K. Chapman and L. Jones, ?SEU Strategies for Virtex-5 Devices,? XAPP864 (v1.0.1),
Xilinx Inc., March 2009.
[6] Device Reliability Report: Fourth Quarter 2008, UG116 (v5.3) , Xilinx Inc., Feb. 2009.
[7] B. Dutton and C. Stroud, ?Single Event Upset Detection and Correction in Virtex-4 and
Virtex-5 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 57-
62, April 2009.
[8] B. Dutton, M. Ali, J. Sunwoo and C. Stroud, ?Embedded Processor Based Fault Injection
and SEU Emulation for FPGAs,? Proc. Int. Conf. on Embedded Systems and
Applications, pp. 183-189, July 2009.
[9] ?Flux Calculation,? <http://www.seutest.com/cgi-bin/FluxCalculator.cgi>, April 2009.
[10] J. Heiner, N. Collins, and M. Wirthlin, ?Fault Tolerant ICAP Controller for High-
Reliable Internal Scrubbing,? Proc. IEEE Aerospace Conf., pp. 1-10, March 2008.
[11] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, ?Accelerator Validation
of an FPGA SEU Simulator,? IEEE Trans. on Nuclear Science, vol. 50, no. 6, pp. 2147-
2157, Dec. 2003.
[12] L. Jones, ?Single Event Upset (SEU) Detection and Correction Using Virtex-4 Devices,?
XAPP714 (v 1.5), Xilinx Inc., Jan. 2007.
[13] F. Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance Techniques for SRAM-based
FPGAs, Frontiers in Electronic Testing, Vol. 32, Dordrecht, The Netherlands, Springer,
2006.
[14] ?LatticeECP3 Soft Error Detection (SED) Usage Guide,? TN1184 (v1.0), Lattice
Semiconductor Inc., Feb. 2009.
156
[15] A. Lesea, ?Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron
Integrated Circuits,? WP286 (v1.0), Xilinx Inc., March 2008.
[16] A. Lesea and P. Alfke, ?Xilinx FPGAs Overcome the Side Effects of Sub-90 nm
Technology,? WP256 (v1.0.1), Xilinx Inc., March 2007.
[17] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, ?The Rosetta Experiment:
Atmospheric Soft Error Rate Testing in Differing Technology FPGAs,? IEEE Trans. on
Device and Materials Reliability, Vol. 5, No. 3, pp. 317-328, Sept. 2005.
[18] M. Ohlsson, P. Dyreklev, and K. Johansson, ?Neutron Single Event Upsets in SRAM-
based FPGAs,? Proc. IEEE Radiation Effects Data Workshop, pp. 177-180, July 1998.
[19] PicoBlaze 8-bit Embedded Microcontroller User Guide, UG129 (v1.1.2), Xilinx Inc.,
June 2008.
[20] H. Quinn, P. Graham, K. Morgan, M. Caffrey and J. Krone, "A Test Methodology for
Determining Space-Readiness of Xilinx SRAM-based FPGA Designs," Proc. IEEE
Automatic Test Conf. (AUTOTESTCON), pp. 252-258, Sept. 2008.
[21] ?Robust SEU Mitigation with Stratix III FPGAs,? WP-01012-1.0, Altera Inc., Jan. 2007.
[22] J. Sauro and J.R. Lewis, ?Estimating Completion Rates From Small Samples Using
Binomial Confidence Intervals,? Proc. Human Factors and Ergonomics Society, pp.
2100-2104, 2005, available at <www.measuringusability.com/wald>.
[23] L. Sterpone and M. Violante, ?A Design Flow for Protecting FPGA-based Systems
Against Single Event Upsets," Proc. IEEE Int. Symp. on Defect and Fault Tolerance in
VLSI Systems, pp. 436-444, Oct. 2005.
[24] P. Sundararajan, S. McMillan, B. Blodget, C. Carmichael, and C. Patterson, ?Estimation
of Single Event Upset Probability Impact of FPGA Designs,? Military and Aerospace
Programmable Logic Devices Conf., Sept. 2003.
[25] Virtex-4 FPGA Configuration User Guide, UG071 (v1.10), Xilinx Inc., April 2008.
[26] Virtex-5 FPGA Configuration User Guide, UG191 (v3.6), Xilinx Inc., Feb. 2009.
[27] Virtex-5 Family Overview, DS100 (v5.0), Xilinx Inc., Feb. 2009.
[28] Virtex-6 Family Overview, DS150 (v1.0), Xilinx Inc., Feb. 2009.
[29] Xilinx TRMTool User Guide: TMRTool Software Version 9.2i, UG156 (v2.2), Xilinx Inc.,
2009.
[30] C. Yui, G. Swift, and C. Carmichael, ?Single Event Upset Susceptibility Testing of the
Xilinx Virtex-II FPGA,? Military and Aerospace Programmable Logic Devices Conf.,
Sept. 2002.
157
Chapter Nine. Summary and Conclusions
This chapter concludes and summarizes the thesis. First, a summary of the work
presented in this thesis is provided, followed by suggestions for future research and any
improvements to the work.
9.1 Summary of Work
A BIST approach was presented for the CLBs in Virtex-5 FPGAs. A total of 17
configurations were used to obtain 100% stuck-at fault coverage in every CLB in any Virtex-5
device. Gate level fault simulation and configuration memory fault emulation were used for the
development and verification of test configurations and for calculating fault coverage. A new
ORA design was introduced which provides a single-bit pass/fail result for all of the resources
under test. This ORA design has since been used in every BIST configuration that has been
developed for Virtex-4 and Virtex-5 FPGAs. The overall test time is minimized by using partial
reconfiguration of the resources under test and the single-bit pass/fail indication at the conclusion
of each test session. However, for fault diagnosis, the contents of every ORA may be retrieved
via partial configuration memory readback, and the locations of faults determined
algorithmically based on the locations of the failing ORAs.
This thesis also presented a BIST approach for the I/O Tiles in Virtex-5 FPGAs. This
approach shares many features of the approach for CLBs, including pseudo-exhaustive testing of
the embedded resources and comparison-based output response analysis (using the improved
ORA design with single-bit pass/fail). One interesting difference with the I/O BIST approach is
the ability to apply a limited number of deterministic test patterns using block RAMs in the
158
FPGA fabric to store the test pattern set. For Virtex-4, 512 test patterns could be stored in a
block RAM, and in Virtex-5 the number increased to 1024. However, due to the lack of any
gate-level description of the I/O Tiles in Xilinx devices, it is difficult to evaluate the
effectiveness of the test patterns. One of the most significant contributions of this work is the
use of dedicated feedback routing in the I/O Tile to bypass the I/O buffer (and pad) during tests
of the digital logic resources in the I/O Tile. This effectively separates the digital logic portion
of the I/O tiles from the external ?analog? environment, making the approach applicable to
board-level and in-system testing. Consequently, independent tests for the I/O buffers were
developed. These BIST configurations are also package independent because they can test I/O
tiles with both bonded and unbonded I/O buffers, which is important because synthesis tools will
sometimes use the logic resources in an I/O Tile with an un-bonded I/O buffer to implement a
portion of the system function.
Next, a BIST approach was presented for the embedded cores in Xilinx Virtex-4 and
Virtex-5 FPGAs that are used for the detection and correction of SEUs in the configuration
memory of these devices. This work is related to the SEU controller that is presented later in the
thesis in that the SEU controller uses these cores for detection and correction of SEUs; therefore,
the fault-free operation of the cores is essential. One interesting difference between this BIST
approach and the approaches presented for CLBs and I/O Tiles is that this approach was
developed entirely in VHDL (as opposed to an XDL netlist). A VHDL-based approach is
possible because there is only one circuit to test, and, therefore, no redundant TPG or ORA logic
and no placement restrictions for the CUT.
Fault injection is a well known method for emulating faults or SEUs in the configuration
memory of FPGAs. However, this thesis improves upon the existing approach by performing
159
fault-injection using a soft-processor configured in the fabric of the FPGA. This approach can be
used during the development of BIST for FPGA resources or for verification of SEU mitigation
schemes (but not as part of the manufacturing or system-level test). For example, the fault-
injection core could ?inject? a list of random SEUs while monitoring the behavior of the system
function. Based upon the occurrence of errors in the system function, the actual FIT rate of the
user function in any environment could be estimated, and several different SEU mitigation
schemes could be quickly evaluated.
The next two chapters of the thesis present a new approach for BIST of FPGAs. This
approach uses a soft-core processor configured in the fabric of the FPGA under test to perform
reconfiguration of the BUTs, control the BIST sequence, and even perform fault diagnosis.
However, the irregularity of the embedded processor makes configuration files too large to
compete with the highly optimized BIST configurations. This thesis shows that the overall test
time is significantly less when performing partial reconfiguration of the full FPGA array from an
external BIST controller. However, the approach may still be useful for in-system testing,
especially in fault tolerant applications, because it significantly reduces the complexity of the
external BIST control hardware. For example, the embedded processor can perform all of the
reconfigurations of the BUTs and determine the results of the BIST, reporting a single-bit
pass/fail result to the system for all of the resources under test.
Finally, an approach for the on-line detection and correction of SEUs in the configuration
memory of Virtex-4 and Virtex-5 FPGAs is presented. This chapter shows that no external
hardware is required for the approach, because readback of configuration data and error detection
and correction are all performed by additional logic included in the FPGA fabric. While greatly
reducing the probability of an SEU, experimental results are provided to show that the approach
160
is not entirely immune to an SEU induced error. However, no single SEU can permanently
corrupt the user function, and SEUs can only persist in the user function for a period of time
equal to the cycle period of the SEU controller (i.e. the amount of time for the SEU controller to
read every frame of configuration data in a given device). The thesis also shows that the cycle
time and probability of an SEU induced failure are functions of the device size, with larger
devices having a longer cycle time and lower probability of failure. In addition, a quantitative
method for estimating the FIT rate in devices protected by the SEU controller is provided based
on an approach in the previous work.
9.2 Future Work
The BIST approaches presented for the CLBs and I/O Tiles in Virtex-5 FPGAs can be
adapted to Virtex-6 devices with few architectural modifications. The TPGs and ORAs can be
implemented in a similar manner in Virtex-6 devices (which include DSPs and Block RAMs),
but the detailed test configurations will need to be modified for the new device architectures.
The embedded BIST approach can also be updated to support Virtex-6 devices, but larger
configuration file sizes for these devices may make the approach impractical. However, in
systems with an intelligent BIST controller (embedded processor, PC, etc?) the configuration
file compression methods presented in this thesis are applicable and potentially very useful for
saving memory, especially for in-system testing.
The SEU controller is becoming more important due to the increasing size of the
configuration memory and shrinking design rules. The configuration memory size in Virtex-6
devices is on average double that of Virtex-5 devices; and because the SEU controller cycle time
is a function of the size of the configuration memory, the average cycle time can be expected to
double. Testing the Frame ECC logic is also more important in Virtex-6 devices. Due to the
161
doubling of the configuration frame size, there is more logic in the Frame ECC that must be
tested.
162

Bibliography

[1] M. Abramovici and C. Stroud, ?BIST-Based Test and Diagnosis of FPGA Logic Blocks,
IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 159-172, 2001.
[2] M. Abramovici, C. Stroud, and J. Emmert, ?Online BIST and BIST-based diagnosis of
FPGA logic blocks,? IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol.12,
no.12, pp. 1284-1294, 2004.
[3] AT94K Series Field Programmable System Level Integrated Circuit, DS1138, Atmel
Corp., 2001.
[4] J. Bailey et. al., ?Bridging Fault Extraction from Physical Design Data for Manufacturing
Test Development,? Proc. IEEE Int. Test Conf., pp. 760-769, 2000.
[5] D. Bossen, D. Ostapko, and A. Patel, ?Optimum test patterns for parity networks,? Proc.
AFIPS Fall 1970 Joint Comput. Conf., pp. 63-68, 1970.
[6] B. Bridgford, C. Carmichael, and C. Tseng, ?Single-Event Upset Mitigation Selection
Guide,? XAPP987 (v1.0), Xilinx Inc., 2008.
[7] S. Brown and J. Rose, ?FPGA and CPLD architectures: a tutorial,? IEEE Design & Test
of Computers, vol.13, no.2, pp.42-57, 1996.
[8] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, New York: Springer, 2000.
[9] M. Caffrey, P. Graham, E. Johnson, M. Wirthlin, C. Carmichael, ?Single-Event Upsets in
SRAM FPGAs,? Military and Aerospace Programmable Logic Devices Conf., 2002.
[10] T. Calin, M. Nicolaidis, and R. Velazco, ?Upset Hardened Memory Design for
Submicron CMOS Technology,? IEEE Trans. on Nuclear Science, vol. 43, no. 6, pp.
2874-2878, 1996.
[11] C. Carmichael and C. Wei Tseng, ?Correcting SEUs in Virtex-4 Platform FPGA
Configuration Memory,? XAPP988, (v1.0), Xilinx Inc., 2008.
[12] K. Chapman and L. Jones, ?SEU Stratagies for Virtex-5 Devices,? XAPP864 (v1.0.1),
Xilinx Inc., 2009.
163
[13] P. Christie, D. Stroobandt, ?The Interpretation and Application of Rent?s Rule,? IEEE
Trans. on VLSI Systems, vol. 8, no. 6, pp. 639-648, 2000.
[14] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Reorda and M. Violante, ?An FPGA-
Based Approach for Speeding-Up Fault Injection Campaigns on Safety-Critical Circuits,?
Journal of Electronic Testing: Theory and Applications, vol. 18, pp, 261?271, 2002.
[15] A. Cosoroaba and F. Rivoallon, ?Achieving Higher System Performance with the Virtex-
5 Family of FPGAs,? Xilinx Inc., 2006.
[16] Device Reliability Report: Fourth Quarter 2008, UG116 (v5.3) , Xilinx Inc., 2009.
[17] S. Dhingra, D. Milton, and C. Stroud, ?BIST for logic and memory resources in Virtex-4
FPGAs,? Proc. IEEE North Atlantic Test Workshop, pp. 19-27, 2006.
[18] S. Dhingra, S. Garimella, A. Newalker, and C. Stroud, ?Built-in self-test of Virtex and
Spartan II FPGAs using partial reconfiguration,? Proc. IEEE North Atlantic Test
Workshop, pp. 7-14, 2005.
[19] B. Dutton, M. Ali, J. Sunwoo and C. Stroud, ?Embedded Processor Based Fault Injection
and SEU Emulation for FPGAs,? Proc. Int. Conf. on Embedded Systems and
Applications, pp. 183-189, 2009.
[20] B. Dutton and C. Stroud, ?Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
[21] B. Dutton and C. Stroud, ?Built-In Self-Test of Programmable Input/Output Tiles in
Virtex-5 FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 235-239, 2009.
[22] B. Dutton and C. Stroud, ?Single Event Upset Detection and Correction in Virtex-4 and
Virtex-5 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 57-
62, 2009.
[23] B. Dutton and C. Stroud, ?Soft-core Embedded Processor Based Built-In Self-Test of
FPGAs,? Proc. IEEE Int. Symp. On Defect and Fault Tolerence in VLSI Systems, pp. 29-
37, 2009.
[24] P. Ellervee, J. Raik, K. Tammem?e and R. Ubar, ?Environment for FPGA-based Fault
Emulation,? Proc. Estonian Acad. Sci. Eng., vol. 12, pp. 323?335, 2006.
[25] ?Flux Calculation,? <http://www.seutest.com/cgi-bin/FluxCalculator.cgi>, April 2009.
[26] B. Garrison, D. Milton, and C. Stroud, ?Built-In Self-Test for Memory Resources in
Virtex-4 FPGAs,? Proc. ISCA Int. Conf. on Computers and Their Applications, pp. 63-
68, 2009.
[27] S. Gupta, J. Rajski, and J. Tyszer, ?Test pattern generation based on arithmetic
operations,? Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 117-124, 1994.
164
[28] J. Heiner, N. Collins, and M. Wirthlin, ?Fault-tolerant ICAP Controller for High-Reliable
Internal Scrubbing,? IEEE Aerospace Conf., pp. 1-10, 2008.
[29] S. Hwang, J. Hong and C. Wu, ?Sequential Circuit Fault Simulation Using Logic
Emulation,? IEEE Trans. on CAD of ICs and Systems, vol. 17, no. 8, pp. 724-736, 1998.
[30] IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-
2001, New York, 2001.
[31] IEEE Standard Testability Method for Embedded Core-Based Integrated Circuits, IEEE
Std. 1500-2005, New York, 2005.
[32] C. Jia and L. Milor, ?A BIST Solution for the Test of I/O Speed,? Proc. IEEE Int. Test
Conf., pp. 1023-1030, 2003.
[33] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, ?Accelerator Validation
of an FPGA SEU Simulator,? IEEE Trans. on Nuclear Science, vol. 50, no. 6, pp. 2147-
2157, Dec. 2003.
[34] W-B Jone and C-J Wu, "Multiple fault detection in parity checkers," IEEE Trans. on
Computers, vol.43, no.9, pp.1096-1099, 1994.
[35] L. Jones, ?Single Event Upset (SEU) Detection and Correction Using Virtex-4 Devices,?
Application Note XAPP714 (v 1.5), Xilinx Inc., 2007.
[36] F. Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance Techniques for SRAM-based
FPGAs, Frontiers in Electronic Testing, Vol. 32, Dordrecht, The Netherlands: Springer,
2006.
[37] I. Kuon and J. Rose, ?Measuring the Gap Between FPGAs and ASICs,? IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol.26, no.2, pp.203-215,
2007
[38] K. Leach et. al., ?BIST for Xilinx 4000 and Spartan Series FPGAs: A Case Study,? Proc.
IEEE Int. Test Conf., pp. 1258-1267, 2003.
[39] ?LatticeECP3 Soft Error Detection (SED) Usage Guide,? TN1184 (v1.0), Lattice
Semiconductor Inc., 2009.
[40] A. Lesea, ?Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron
Integrated Circuits,? WP286 (v1.0), Xilinx Inc., 2008.
[41] A. Lesea and P. Alfke, ?Xilinx FPGAs Overcome the Side Effects of Sub-90 nm
Technology,? WP256 (v1.0.1), Xilinx Inc., 2007.
[42] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, ?The Rosetta Experiment:
Atmospheric Soft Error Rate Testing in Differing Technology FPGAs,? IEEE Trans. on
Device and Materials Reliability, Vol. 5, No. 3, pp. 317-328, 2005.
165
[43] L. Lerner, ?Built-In Self-Test for Input/Output Tiles in Field Programmable Gate
Arrays,? M.S. thesis, Dept. of Elect. and Comput. Eng., Auburn Univ., Auburn, AL, Dec.
2007.
[44] L. Lerner, S. Vemula, and C. Stroud, ?System-Level BIST for Programmable I/O Buffers
in FPGAs and SoCs,? Proc. IEEE North Atlantic Test Workshop, pp. 1-9, 2006.
[45] MicroBlaze Processor Reference Guide, UG081(v.9.0), Xilinx Inc., 2008.
[46] D. Milton, S. Dhingra, and C. Stroud, ?Embedded Processor Based Built-In Self-Test and
Diagnosis of Logic and Memory Resources in FPGAs,? Proc. Int. Conf. on Embedded
Systems and Applications, pp. 87-93, 2006.
[47] G. Moore, ?Cramming More Components onto Integrated Circuits,? Proc. of the IEEE,
vol. 86, no. 1, pp. 82-85, 1998.
[48] S. Mourad and E. McCluskey, ?Testability of parity checkers,? IEEE Trans. on Industrial
Electronics, vol. 36, no. 2, pp. 254-262, 1989.
[49] E. Normand, ?Single Event Upset at Ground Level,? IEEE Transs on Nuclear Science,
vol. 43, pp. 2742-2750, 1996.
[50] M. Ohlsson, P. Dyreklev and K. Johansson, ?Neutron Single Event Upsets in SRAM-
Based FPGAs,? Proc. IEEE Nuclear and Space Radiation Effects Conf., pp. 177-180,
1998.
[51] PicoBlaze 8-bit Embedded Microcontroller User Guide, UG129 (v1.1.2), Xilinx Inc.,
2008.
[52] M. Pulukuri and C. Stroud, ?Built-In Self-Test of Digital Signal Processors in Virtex-4
FPGAs,? Proc. IEEE Southeastern Symp. on System Theory, pp. 34-38, 2009.
[53] H. Quinn, P. Graham, K. Morgan, M. Caffrey and J. Krone, "A Test Methodology for
Determining Space-Readiness of Xilinx SRAM-based FPGA Designs," Proc. IEEE
Automatic Test Conf. (AUTOTESTCON), pp. 252-258, 2008.
[54] R. Rajsuman, ?Testing a System-On-Chip with Embedded Microprocessor,? Proc. IEEE
Int. Test Conf., pp. 499-508, 1999.
[55] ?Robust SEU Mitigation with Stratix III FPGAs,? WP-01012-1.0, Altera Inc., Jan. 2007.
[56] J. Sauro and J.R. Lewis, ?Estimating Completion Rates From Small Samples Using
Binomial Confidence Intervals,? Proc. Human Factors and Ergonomics Society, pp.
2100-2104, 2005, available at <www.measuringusability.com/wald>.
[57] R. Sedaghat, ?Routability estimation of FPGA-based fault injection,? Electronics Letters,
vol. 41, no. 14, pp. 790-792, 2005.
166
[58] Semiconductor Industry Association, International Technology Roadmap for
Semiconductors: 2007 edition, http://public.itrs.net.
[59] T. Slaughter, C. Stroud, J. Emmert and B. Skaggs, ?Fault Injection Emulation for Field
Programmable Gate Arrays,? Proc. Int. Society for Optical Eng., vol. 4525, pp. 1-9,
2001.
[60] M. Smith, Application-Specific Integrated Circuits, Addison-Wesley, 1997.
[61] L. Sterpone and M. Violante, ?A Design Flow for Protecting FPGA-based Systems
Against Single Event Upsets," Proc. IEEE Int. Symp. on Defect and Fault Tolerance in
VLSI Systems, pp. 436-444, 2005.
[62] C. Stroud, A Designer?s Guide to Built-In Self-Test, Boston: Springer, 2002.
[63] C. Stroud, S. Konala, P. Chen, and M. Abramovici, ?Built-in self-test of logic blocks in
FPGAs,? Proc. IEEE VLSI Test Symp., pp.387-392, 1996.
[64] C. Stroud and S. Garimella, ?BIST and diagnosis of multiple embedded cores in SoCs,?
Proc. Int. Conf. on Embedded Systems and Applications, pp. 130-136, 2005.
[65] C. Stroud, S. Garimella and J. Sunwoo, ?On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-On-Chip Devices,? Proc. ISCA Int. Conf. on
Computers and Their Applications, pp. 308-313, 2005.
[66] C. Stroud, J. Harris, S. Garimella, and J. Sunwoo, ?Built-in self-test for system-on-chip: a
case study,? Proc. IEEE Int. Test Conf., pp. 837-846, 2004.
[67] C. Stroud, K. Leach, and T. Slaughter, ?BIST for Xilinx 4000 and Spartan series FPGAs:
a case study,? Proc. IEEE Int. Test Conf., pp. 1258-1267, 2003.
[68] C. Stroud, J. Nall, M. Lashinsky and M. Abramovici, ?BIST-Based Diagnosis of FPGA
Interconnect,? Proc. IEEE Int. Test Conf., pp. 618-627, 2002.
[69] P. Sundararajan, S. McMillan, B. Blodget, C. Carmichael, and C. Patterson, ?Estimation
of Single Event Upset Probability Impact of FPGA Designs,? Military and Aerospace
Programmable Logic Devices Conf., 2003.
[70] J. Sunwoo and C. Stroud, ?Built-In Self-Test of Configurable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguration,? Proc. Int. SoC Design Conf., pp. 174-
177, 2005.
[71] S. Toutounchi and A. Lai, ?FPGA test and coverage,? Proc. IEEE Int. Test Conf., pp.
599-607, 2002.
[72] A. van de Goor, Testing Semiconductor Memories Theory and Practice, Hoboken: John
Wiley and Sons, 1991.
167
[73] S. Vemula and C. Stroud, ?Built-In Self-Test for Programmable I/O Buffers in FPGAs
and SoCs?, Proc. IEEE Southeastern Symp. on System Theory, pp. 534-538, 2006.
[74] Virtex-4 FPGA Configuration User Guide, UG071 (v1.1), Xilinx Inc., 2008.
[75] Virtex-4 FPGA User Guide, UG070 (v2.5), Xilinx Inc., 2008.
[76] Virtex-5 Family Overview, DS100 (v5.0), Xilinx Inc., 2009.
[77] Virtex-5 FPGA Configuration User Guide, UG191 (v3.2), Xilinx Inc., 2008.
[78] Virtex-5 FPGA ExtremeDSP Design Considerations: User Guide, UG193 (v3.3), Xilinx
Inc., 2009.
[79] Virtex-5 FPGA User Guide, UG190(v4.2), Xilinx Inc., 2008.
[80] Virtex-6 Family Overview, DS150 (v1.0), Xilinx Inc., 2009.
[81] L-T Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures, San Francisco:
Morgan Kaufmann, 2007.
[82] L-T Wang, C-W Wu, and X. Wen, VLSI Test Principles and Architectures, San
Francisco: Morgan Kaufmann, 2006.
[83] Xilinx TRMTool User Guide: TMRTool Software Version 9.2i, UG156 (v2.2), Xilinx Inc.,
2009.
[84] XPS HWICAP Product Specification, DS586(v1.00.a),. Xilinx Inc., 2007.
[85] J. Yao et. al., ?Built-In Self-Test of Programmable Interconnect in Virtex-4 FPGAs,?
Proc. IEEE Southeastern Symp, on System Theory, pp. 29-33, 2009.
[86] C. Yui, G. Swift, and C. Carmichael, ?Single Event Upset Susceptibility Testing of the
Xilinx Virtex-II FPGA,? Military and Aerospace Programmable Logic Devices Conf.,
2002.
[87] L. Zhao, D. Walker and F. Lombardi, ?IDDQ Testing of Input/Output Resources of
SRAM-Based FPGAs,? Proc. Asian Test Symp., pp. 375-380, 1999.

