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Abstract 
 
 
The exponential growth in the number of transistors on very large scale integration 
(VLSI) integrated circuits (ICs), coupled with increasing device interface bandwidth and new 
surface mount and low profile packaging technologies, have made testing of ICs increasingly 
difficult and costly at all levels of the testing process.  Field programmable gate arrays (FPGAs) 
pose a particularly difficult problem for test engineers due to their programmable nature, overall 
size and complexity, limited number of inputs/outputs (I/O), and large number and variety of 
embedded cores.  In addition to manufacturing defects, ?soft? errors due to single event upsets 
(SEUs) have become a serious problem because of the increasing size of the configuration 
memory in FPGAs and shrinking design rules, even in fault-tolerant systems operating at ground 
level.  Building on previous work, this thesis uses built-in self-test (BIST) as a solution to the 
testing problem for Xilinx Virtex-5 FPGAs.  BIST configurations are presented for the 
configurable logic blocks (CLBs), I/O Tiles, and SEU detection/correction cores in Xilinx 
Virtex-5 FPGAs.  In addition, this thesis presents a novel approach to BIST that uses a soft-core 
processor configured in the fabric of the device under test to perform reconfiguration of the 
resources under test, control the BIST execution, and perform fault diagnosis.  This approach is 
particularly useful for in-system testing of FPGAs in fault-tolerant or high-reliability systems 
because it greatly reduces the amount and complexity of external hardware required for test.  To 
combat the problem of ?soft? errors due to SEUs that can occur in the FPGA configuration 
memory during normal operation, an approach for on-line detection and correction of SEUs in 
iii 
the configuration memory of Xilinx Virtex-4 and Virtex-5 FPGAs is also presented.  While not 
entirely immune to SEU effects, this approach greatly reduces the probability of an SEU induced 
failure in the user logic, and no single error from an SEU can cause a complete system failure. 
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Chapter One.  Introduction 
Moore?s law, which predicts a doubling of integrated circuit (IC) transistor density every 
18 to 24 months, has been an accurate predictor of the exponential growth in the number of 
transistors in ICs since it was first observed by Gordon Moore in 1965 [1].  According to the 
most recent International Technology Roadmap for Semiconductors (ITRS) report, minimum 
feature size is expected to continue to decrease by a factor of two (e.g. transistor density will 
increase by a factor of two) every two years until 2022 [2]. With very large-scale integration 
(VLSI) circuits already surpassing the one billion transistor mark in 2008, this report, in 
accordance with Moore?s law, predicts that the number of transistors on a single IC of 
comparable physical area will exceed 128 billion by 2022. 
Increasing transistor count and density and increasing device interface bandwidth, 
coupled with new surface mount and low profile packaging technologies, have made testing of 
integrated circuits increasingly difficult and costly at all levels of the testing process [3] [4].  In 
addition, larger device sizes and smaller feature sizes have increased both the number and type of 
faults that can occur [4].  Testing embedded resources in VLSI devices is especially difficult 
because their embedded nature makes them difficult to control and observe from the external 
chip I/O; furthermore, the number of external I/O is continually decreasing in proportion to the 
number of transistors on a single die [4].  While the number of I/O has increased by an order of 
magnitude for most VLSI devices, the number of transistors on a single die increased by more 
than 4 orders of magnitude over the same time period [4].  (This trend is commonly called Rent?s 
Rule, for E. F. Rent of IBM, who was the first to investigate a relationship between the number 
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of I/O and the number of internal logic blocks in 1960 [5]).  Due to the limited number of 
external I/O in proportion to the number of transistors on a chip, and without the inclusion of any 
additional test circuitry, the controllability and observability of most VLSI designs are severely 
limited during testing. 
Another factor affecting testing of VLSI ICs is the cost of automatic test equipment 
(ATE).  While the cost of manufacturing transistors in VLSI circuits has continued to decrease 
with each new technology node, the cost of testing has increased both in absolute terms and in 
proportion to overall manufacturing cost.  In fact, the cost of testing a single transistor already 
exceeds its cost of production [3], and due to the ever increasing density and bandwidth of 
integrated circuits, testing costs will continue to rise.  It is expected that by the year 2014, the 
cost of a leading edge VLSI test machine will exceed twenty million dollars [4].  Consequently, 
design for testability (DFT) methods, which incorporate additional test circuitry during the 
design phase to increase circuit controllability and observability during testing, are included in 
some form in virtually every VLSI design.  Two of the most common DFT techniques are scan 
design and built-in self-test (BIST).  Another DFT method, known as Boundary Scan or JTAG 
(Joint Test Action Group) [6], is usually included to facilitate board-level testing of systems with 
high pin-count and surface mount components [3] [7].  A recent offshoot of Boundary Scan, 
IEEE standard 1500-2005 [8], describes a scalable wrapper architecture and control mechanism 
for testing embedded cores in System-on-Chip (SOC) devices and the interconnect between 
cores [3].  The primary focus of this thesis will be on BIST as a solution for testing VLSI ICs. 
1.1  Overview of Built-In Self-Test 
BIST was introduced around 1980 as a way to test embedded cores in VLSI devices [4].  
The basic idea of BIST is to incorporate extra circuitry and functionality in the device under test 
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such that the circuit can test itself [3] [4].  This implies that the circuit is capable of generating 
test patterns and compacting output responses.  Therefore, BIST, in contrast to other techniques 
such as scan design which relies on externally applied test patterns, does not require costly ATE 
hardware.  In addition, many BIST techniques are applicable at every level of the testing process, 
from wafer-level manufacturing test to board-level and in-system test.  Another advantage of 
some BIST approaches when compared to scan-based test techniques is that patterns can be 
applied to the circuit under test and the output responses monitored at system speeds, which 
facilitates the detection of delay and coupling faults [4] [9]. 
A simple BIST architecture, shown in Figure 1.1, consists of a test pattern generator 
(TPG), output response analyzer (ORA), circuit under test (CUT), and some additional control 
circuitry [3] [4].  For system-level use of BIST, input isolation circuitry and a dedicated BIST 
controller must be included.  The BIST controller can be used to initiate the BIST, initialize the 
CUT, activate the input isolation circuitry, and provide an indication when the test is complete.  
During off-line tests, the TPG generates a set of test patterns which are applied to the circuit 
under test (CUT) to sensitize potential fault sites, and the ORA compacts the output response of 
the CUT.  At the conclusion of the test, the results are determined by examination of the ORA 
contents (generally, by comparison to the fault-free circuit ?signature?) [4]. 
 
Figure 1.1:  Basic BIST architecture [3] 
Test Pattern 
Generator (TPG) 
Output Response 
Analyzer (ORA) 
Circuit 
Under Test 
(CUT) 
Input 
Isolation 
Circuit System 
Inputs 
Pass/Fail 
System 
Outputs 
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There are some costs associated with BIST that must be taken into consideration.  In 
ASICs, BIST requires additional circuitry and functionality that results in area and performance 
penalties.  This additional circuitry is shown in gray in Figure 1.1.  Typically, the performance 
penalty is minimal, amounting to no more than a multiplexer delay in the primary input data path 
and additional fan-out in the primary output data path of the circuit under test.  The area penalty 
varies depending on the exact BIST architecture used (which is, in turn, usually a function of 
desired fault coverage and the type of circuit under test).  This additional area is disadvantageous 
because larger chip areas result in fewer chips per wafer, and, therefore, higher cost per chip due 
to lower yield [4].  Also, some additional I/O pins may be required for activation of the BIST 
circuitry and results retrieval [4].  The inclusion of BIST also increases the design effort and risk 
to the project, because, on top of designing the system function, the BIST circuitry must also be 
designed and verified.  However, most case studies have found that the benefits of BIST usually 
outweigh the costs (including addition design time and overhead) when included in a project [4], 
and many computer-aided design (CAD) tools now support automatic insertion of pre-
engineered BIST circuitry during the design phase, which reduces the design effort and risk to 
the project. 
1.2  Introduction to Field Programmable Gate Arrays (FPGAs) 
Field Programmable Gate Arrays (FPGAs) are pre-fabricated semiconductor devices that 
can be programmed (i.e. configured) after manufacturing to perform complex sequential or 
combinational logic functions.  Compared to standard-cell or custom ASIC designs, FPGAs 
provide lower non-recurring engineering costs and faster time-to-market [10].  The non-recurring 
engineering costs associated with the design and manufacture of FPGAs are initially absorbed by 
the manufacturer and are passed to the customer in the form of a higher price-per-part.  This cost, 
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coupled with the cost of the additional logic required for programming of the device, makes the 
recurring costs of designs with FPGAs higher than those with ASICs.  For these reasons, FPGAs 
are commonly used for rapid prototyping of designs prior to first silicon and in low-volume, 
highly-specialized digital systems (where the FPGA is used in lieu of an ASIC).  An illustration 
of the total cost (i.e. recurring plus non-recurring costs) as a function of volume (number of 
parts) for a design implemented as a standard-cell ASIC, as a custom ASIC, and in an FPGA is 
shown in Figure 1.2 [10]. 
 
Figure 1.2:  Typical custom ASIC, standard cell ASIC, and FPGA cost vs. volume 
Due to the programmable nature of FPGAs, area, power and performance penalties are 
incurred for designs implemented in FPGAs when compared to the same design implemented as 
an ASIC.  For several benchmark circuits implemented in both a 90 nm FPGA and 90 nm 
standard-cell ASIC, the FPGA implementation required between 18 and 35 times greater silicon 
area, and the critical path delay of the circuit increased by 3 to 4 times versus the ASIC 
implementation [11]. 
A typical FPGA is composed of an array of programmable logic blocks (PLB) (also 
called configurable logic blocks, or CLB) and input/output (I/O) cells connected by a 
Custom 
ASIC 
Standard-Cell 
ASIC 
FPGA 
Number of parts 
Total cost 
FPGA & Standard 
Cell ASIC break-
even point 
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programmable interconnect network, as illustrated in Figure 1.3 [12].  Most modern FPGAs also 
include ?hard? cores such as reduced instruction set computer (RISC) or complex instruction set 
computer (CISC) processors, digital signal processors (DSPs), random access memories 
(RAMs), and high-speed serializer/deserializer (SERDES) input/output (I/O) cells.  These ?hard? 
cores can perform certain common functions, such as multiply/accumulate or 
serialization/deserialization, with greater efficiency than can be achieved by implementing the 
same function in CLBs, which helps to reduce the performance/area penalties when compared 
with ASICs [11]. 
 
Figure 1.3:  Typical FPGA architecture [12] 
The front-end of the FPGA design process is identical to that for a standard-cell ASIC.  
However, the post synthesis design flow is much less complex for FPGA implementations.  After 
behavioral simulation and functional verification, computer aided design (CAD) tools (usually 
supplied by the FPGA manufacturer, but also available through third parties) translate the digital 
designs in Hardware Description Language (HDL) or schematic form to a device specific netlist 
which maps the design into the FPGA?s configurable logic and programmable routing network.  
PLB 
PLB 
PLB 
PLB 
PLB 
PLB 
PLB 
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PLB 
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PLB 
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PLB 
PLB 
PLB 
Input/Output 
Cell (I/O Cell) 
Programmable 
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A configuration bit-file is generated from this netlist and downloaded to the configuration 
memory of the FPGA to implement the desired user function. 
1.3  Overview of Virtex-5 FPGAs 
This body of work is primarily concerned with Xilinx Virtex-5 FPGAs.  Virtex-5 FPGAs 
are fabricated in a 1.0 V, 65 nm CMOS copper process with 12 metal layers [13].  The number of 
flip-flops and LUTs in a single Virtex-5 device ranges from 12,480 up to 207,360.  As many as 
1,200 user I/O are available in the highest pin-count package [13].  The configuration memory in 
all Virtex-5 devices is a large static random access memory (SRAM), ranging in size from 4.94 
Mb (4,935,744 bits) to 82.7 Mb (82,687,488 bits) [14]. 
Each CLB in an FPGA consists of one or more basic logic elements.  The Virtex-5 basic 
logic element, illustrated in Figure 1.4, comprises a six-input look-up table (LUT), a 
configurable flip-flop/latch (FF/LAT), a multiplexor to control the combinational output, and a 
multiplexor to control the registered output (FF/LAT input) [15]. 
 
Figure 1.4:  Simplified basic logic element 
Additional dedicated carry logic is included to perform special logic and arithmetic 
functions.  In some slices, the LUT can be configured as a small RAM, called a free RAM or 
LUT RAM, with an independent read and shared write address input.  Four such logic elements 
LUT/ 
RAM 
Carry 
Logic 
FF/ 
LAT 
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are grouped to form a slice, and two slices are grouped to form a complete configurable logic 
block (CLB), as illustrated in Figure 1.5.  The logic blocks are replicated and tiled in columns 
and rows, as in Figure 1.4, and are connected via programmable switch-boxes to local and global 
routing resources.  Larger devices include more CLBs, but the structure of the CLB is identical 
across all devices in the FPGA family [15]. 
 
Figure 1.5:  Virtex-5 configurable logic block [15] 
The LUTs in Virtex-5 devices are designed with two outputs each.  The primary output 
can utilize the full 64-bit LUT to implement any six variable Boolean function.  The second 
output can be used to control the carry chain, or both outputs can implement two five variable 
Boolean functions for five shared inputs.  Both outputs can be selected by the multiplexors for 
the registered or combinatorial CLB output paths.  A block diagram of the Virtex-5 6-input LUT 
is shown in Figure 1.6 [16]. 
Select slices also support RAM and shift register modes of operation. Each LUT can be 
configured as a simple 64 x 1-bit or 32 x 2-bit RAM.  Dynamic multiplexors in each slice allow 
for Shannon expansion of the four slice LUTs to form a 256 x 1-bit RAM.  Additionally, the four 
slice LUTs can share address inputs to form a 32 x 8-bit RAM.  Each LUT can also form a single 
32-bit or two 16-bit shift registers.  The four LUTs in the slice can be cascaded to form a 128-bit 
shift register or can operate in parallel form a 16 x 8-bit shift register in a slice [15] [16]. 
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Figure 1.6:  Virtex-5 6-Input LUT [16] 
In addition to CLBs, every device in the Virtex-5 family includes DSP and Block RAM 
?hard? cores.  Each DSP core can perform 25 x 18 2?s complement multiplication, and includes 
an adder/subtractor/accumulator block.  The DSP can also perform bit-wise logic operations 
including NOR, OR, AND, NAND, XNOR, and XOR.  Up to five pipeline registers may be 
configured for use in the data path for increased throughput (up to 550 MHz) in high 
performance applications [17].  Each Block RAM core is 36 Kbit in size, with true dual-port 
read/write access to each memory element.  Each of the read and write ports are configurable, 
such that the address and data bus widths can vary from 32K x 1-bit to 1K x 72-bit.  In addition, 
the Block RAM can operate in a FIFO mode (with configurable data width and programmable 
almost-full and almost-empty flags) and/or in an error correction code (ECC) mode [15].  Some 
devices in the Virtex-5 family also include other ?hard? cores such as gigabit transceivers, 
Ethernet MACs, PCI Express blocks, and/or Power PC processors [13]. 
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1.4  BIST for FPGAs 
Testing FPGAs is difficult when compared to testing ASICs because of their 
programmable nature and overall complexity [9].  Each of the programmable resources must be 
tested in all modes of operation to achieve high fault coverage.  This implies that multiple re-
configurations of the device are required during testing.  Because the total test time is usually 
dominated by the time spent configuring the device under test, the size of FPGA configuration 
memories is also a factor in testing [9].  FPGAs are, in general, not well-suited for scan-based 
testing methods.  However, the programmable nature of FPGAs allows for the creation of test 
circuitry in the programmable logic during testing.  In addition, the regular structure of FPGAs 
makes pseudo-exhaustive test methods highly efficient [4] [9] [17] [18] [19]. 
BIST for FPGAs exploits the re-programmability of FPGAs to create BIST circuitry in 
the FPGA fabric during manufacturing and system-level off-line testing [4] [9] [17] [18] [19].  
The only overhead is the external memory required to store the BIST configurations along with 
the time required to download and execute the BIST.  No area overhead or performance penalties 
are incurred in the user function because the BIST logic is replaced by the intended system 
function after testing is complete.  The BIST configurations are applicable to all levels of testing 
because they are independent of the intended system function and require no specialized external 
test fixture or equipment.  Most research and development in BIST for FPGAs has focused on 
reducing the number of test configurations, reducing the size of test configuration files, and 
decreasing BIST execution time [4] [7] [8] [23].  Other research has focused on developing BIST 
techniques for the complex embedded cores included in many modern FPGAs, such as DSPs 
[24] and RAMs [3] [5].  This thesis presents new BIST approaches for the CLBs, I/O Tiles, and 
SEU detection cores in Virtex-5 FPGAs. 
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This thesis also presents a new approach to BIST for FPGAs that utilizes a soft-core 
processor configured in the fabric of the FPGA under test to execute the BIST sequence, 
including retrieval and analysis (fault diagnosis) of BIST results and reconfiguration of the 
FPGA for subsequent BIST configurations.  The approach reduces the required number of 
configurations for BIST of any logic resource to a maximum of four, and by moving the complex 
BIST controller logic into the FPGA fabric, the external hardware requirements for BIST of 
FPGAs is greatly reduced.  This approach is particularly useful in high-reliability and fault-
tolerant applications, especially when fault-diagnosis is required. 
1.5  Single Event Upsets in FPGAs 
BIST is typically targeted at detecting manufacturing defects or ?hard? faults that appear 
during normal operation.  However, ?soft? errors, known as Single Event Upsets (SEUs), are 
known to affect the configuration memory and other memory elements of FPGAs during normal 
operation.  These errors are caused when charged particles, such as heavy ions or protons, travel 
through the FPGA, as illustrated in Figure 1.7 [27].  These particles can alter the state of any 
static memory element, resulting in an SEU [27] [28] [29].  While SEUs occur more frequently 
in high radiation environments such as space, they have also been experimentally observed in 
FPGAs at ground level [28] [29] [30].  Because the configuration memory of an FPGA 
establishes the overall system function performed by the FPGA, an SEU in the configuration 
memory can alter the FPGA functionality.  This, coupled with the large size of the configuration 
memory, makes SEUs a significantly greater concern in FPGAs than in typical ASICs [31]. 
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Figure 1.7:  Illustration of a single-event effect in a CMOS inverter 
Several methods exist to mitigate the effects of SEUs in FPGAs.  The most common 
methods include power cycling, triple modular redundancy, redundant devices, and active 
configuration memory scrubbing [27].  Power cycling is essentially the simplest form of 
configuration memory scrubbing, because the entire configuration memory is refreshed (from a 
radiation hardened memory) each time that power is cycled off and on.  When a power cycling 
mitigation scheme is employed, SEUs can persist in memory elements for a period of time equal 
to the power-cycling period.  This approach is usually sufficient for non-critical applications in 
low radiation environments [27]. 
Triple modular redundancy creates three identical copies of the user function in the 
FPGA fabric and adds majority voters on the inputs to all flip-flops and on all primary outputs of 
the circuit [32].  This approach is very robust: any single SEU cannot cause the circuit to 
malfunction, and multiple SEUs must alter the same flip-flop input or primary output in two 
circuit copies on the same clock cycle in order for the error to propagate.  However, the area 
penalty for any TMR approach is greater than 200% of the original circuit size, which increases 
system cost and power requirements.  Also, circuit performance can be adversely impacted due 
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to the increased size of the circuit and inclusion of majority voters in critical paths [27].  
Duplicating the user function in multiple FPGAs and performing voting on the outputs of the 
FPGAs in a radiation hardened device is the most robust from of SEU mitigation.  However, 
designing systems with multiple FPGAs is both costly and difficult, and requires special design 
considerations such that the FPGAs remain synchronized after an SEU is repaired in any one of 
the devices [27]. 
Active configuration memory management (also called active configuration memory 
scrubbing) utilizes error correction code (ECC) stored with configuration data in the 
configuration memory to actively detect and repair SEUs [14].  The ECC, in conjunction with 
some additional user-accessible dedicated logic, can be used to detect SEUs in the configuration 
memory [15].  This approach incurs minimal area overhead, and SEUs persist for only a small 
window of time.  The configuration management hardware may be hosted on an external 
radiation hardened FPGA, microprocessor, ASIC, or in the FPGA itself.  However, in the latter 
case, the circuitry responsible for the repair of SEUs is also susceptible to SEUs [31].  Therefore, 
the area of the detection and repair circuitry should be minimized to decrease the probability of 
an SEU in that logic.  An active configuration memory management approach for Xilinx Virtex-
4 and Virtex-5 FPGAs that requires no additional external hardware is described in this thesis. 
1.6  Verification by Fault Injection 
During the development of BIST approaches for FPGAs, it is necessary to verify the fault 
coverage of the BIST configurations.  It is difficult to find actual faulty devices and their 
usefulness is limited due to the fixed nature of the faults.  Physical faults can be created by 
etching the packaged device and creating opens or shorts in routing resources that lie at the top 
level of interconnect metal for example, but once again the usefulness of these devices is limited.  
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A more efficient approach is to manipulate the configuration memory bits to emulate physical 
faults in the device [33] [34] [35] [36].  For example, a stuck-at fault in a look-up table (LUT) bit 
can be emulated by overwriting the particular configuration memory bit and setting it to the 
desired stuck-at fault value.  SEUs, on the other hand, can be emulated by flipping the value of 
bits in the configuration memory.  Shorts and opens in the interconnect network can be emulated 
along with almost any fault in the logic resources that can be controlled by configuration 
memory bits.  An approach for the emulation of stuck-at faults and SEUs in the configuration 
memory of Virtex-4 and Virtex-5 FPGAs is presented in this thesis. 
1.7  Thesis Statement 
Testing FPGAs is difficult due to their high complexity, the limited observability and 
controllability of embedded cores, and their programmable nature.  Also, the increasing density 
and large size of the configuration memory has made transient and on-line faults due to SEUs 
more common and of greater concern, even in fault-tolerant applications that operate at ground 
level.  This work considers both ?hard? faults due to manufacturing defects and device ageing as 
well as transient or ?soft? faults induced by SEUs in Virtex-5 FPGAs.  Furthermore, this work 
considers ?hard? faults that may affect the detection and correction of SEUs by corrupting the 
dedicated SEU detection hardware in Virtex-5 FPGAs, and presents BIST approaches for this 
hardware.  Other BIST methods are proposed as a solution to detect ?hard? faults and 
manufacturing defects that can affect the configuration memory and programmable resources in 
Virtex-5 FPGAs, including the CLBs and I/O Tiles.  A novel BIST approach for FPGAs that 
utilizes a soft-core processor configured in the fabric of the FPGA under test to perform complex 
functions such as reconfiguration of resources under test and fault diagnosis is also presented.  
Finally, a method for active detection and correction of temporary or ?soft? errors by active 
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configuration memory management and without the requirement of additional external hardware 
is presented for Xilinx Virtex-4 and Virtex-5 FPGAs. 
1.8  Thesis Format 
This thesis is written in ?publication format? as suggested by the Auburn University 
Graduate School Electronic Thesis and Dissertation Guide, and consists of conference and 
journal papers that were published (or accepted for publication) during the course of research 
conducted by the author while in the graduate program at Auburn University.  A majority of the 
actual research and the writing of all published papers included in this thesis represents the 
efforts of the primary student author and not collaborators.  Each paper is presented ?as 
published?, with the exception of an acknowledgments section at the end of each chapter that 
provides the name, location, and date of publication of the original paper along with any 
information regarding relevant published papers that do not appear in this thesis.  The papers are 
reformatted to comply with the guidelines set forth by the Graduate School.  References are 
organized as follows:  Each chapter in the body of the thesis contains its original list of 
references (numbered consecutively beginning at 1), such that the chapter may stand-alone and 
as it appears in the original published paper.  In addition, a cumulative bibliography of all 
references cited in the thesis is included at the end of the thesis. 
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Chapter Two.  Built-In Self-Test of Configurable Logic Blocks in Virtex-5 FPGAs 
A Built-In Self-Test (BIST) approach is presented for the configurable logic blocks 
(CLBs) in Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs).  A total of 17 
configurations were developed to completely test the full functionality of the CLBs, including 
distributed RAM modes of operation.  These configurations cumulatively detect 100% of stuck-
at faults in every CLB.  There is no area overhead or performance penalty and the approach is 
applicable to all levels of FPGA testing (wafer, package, and in-system).  A novel output 
response analyzer (ORA) design, which is efficiently implemented in FPGAs, provides both an 
overall single-bit pass/fail result and optimal diagnostic resolution when faults are detected.  The 
implementation of the BIST approach in all Virtex-5 FPGAs and experimental results are 
discussed. 
2.1  Introduction And Background 
Built-In Self-Test (BIST) for Field Programmable Gate Arrays (FPGAs) is typically 
targeted at manufacturing defects and operational faults that can appear at any point in the 
product life-cycle.  As a result, BIST for FPGAs employs a defect-oriented test strategy [1].  
Ideally, a BIST approach would be applicable to all levels of testing, from manufacturing test to 
in-system test, and would be entirely independent of the end user function.  Additionally, the 
BIST would achieve maximal stuck-at fault coverage and would be executed at-speed to provide 
high fault coverage for a variety of fault models.  When possible, high diagnostic resolution of 
detected faults is desired for fault-tolerant applications.  This chapter presents a BIST approach 
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for the configurable logic blocks (CLBs) in Virtex-5 FPGAs that represents the culmination of 
over 15 years of work in FPGA BIST to address these concerns. 
The first BIST for the configurable logic in FPGAs was proposed in [2].  The approach 
exploits the re-programmability of FPGAs to create BIST circuitry in the FPGA fabric during 
off-line testing.  The only overhead is the external memory required to store the BIST and 
system function configurations along with the time required to download and execute the BIST.  
No area overhead or performance penalties are incurred since the BIST logic ?disappears? after 
the test session.  Furthermore, the tests are applicable at all levels of testing since they are 
independent of the system function and require no external test fixture or equipment.  The basic 
idea for the BIST is to configure some of the CLBs as Test Pattern Generators (TPGs) and 
Output Response Analyzers (ORAs) while configuring other CLBs as blocks under test (BUTs).  
The BUTs are repeatedly configured until they have been tested in every mode of operation [1].  
These tests achieve maximal fault coverage by applying pseudo-exhaustive test patterns such that 
each sub-circuit of the BUT is exhaustively tested [2]. 
Several examples of BIST for the CLBs in FPGAs have been published, with each 
offering some improvement over the previous approach.  Reference [3] introduced Boundary 
Scan as a means of controlling the BIST sequence.  Xilinx engineers, in [4], introduced a set of 
iterative array logic tests with similarities to the approach presented in [2] and [3].  The general 
BIST approach, which is independent of the CLB array size, can also be adapted for on-line 
BIST techniques, as discussed in [5].  Previous examples of the implementation of this BIST 
approach on Xilinx 4000, Spartan, Virtex-I, Spartan-II and Atmel FPGAs are contained in [6], 
[7], and [8].  Partial reconfiguration was used in [9] to reduce the overall download and test 
times as well as system down time. 
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The BIST approach for Virtex-5 FPGAs builds primary on the previous work in [2], [3], 
[8], and [10].  However, our approach offers an improved ORA architecture and fewer total test 
configurations.  We also improve the accuracy of the fault simulation models and add 
verification of the configurations on the target device via configuration memory bit fault 
injection.  The remainder of this chapter is organized as follows.  Section 2.2 gives an overview 
of the CLB architecture in Virtex-5 FPGAs.  Section 2.3 describes the BIST approach and 
implementation specific to Virtex-5 FPGAs.  Section 2.4 describes the experimental result and 
verification of the BIST.  Section 2.5 summarizes and concludes the chapter. 
Table 2.1:  List of acronyms 
Acronym Definition Acronym Definition 
CLB Configurable Logic Block BUT Block Under Test 
BIST Built-in Self-test LUT Look-Up Table 
ORA Output Response Analyzer SliceL Logic Slice 
TPG Test Pattern Generator SliceM Memory Slice 
 
2.2  Overview of Virtex-5 CLBs 
The basic Virtex-5 logic element, illustrated in Figure 2.1, is composed of a 6-input look-
up table (LUT), a configurable flip-flop/latch, and multiplexers to control the combinational 
logic output and the registered output (flip-flop/latch input).  Additional dedicated fast carry 
logic is included to perform special logic and arithmetic functions.  In some slices, the LUT can 
be configured as a small RAM, called a distributed RAM or LUT RAM, or as a shift register 
[11].  Four such basic logic elements are grouped to form a slice, and two slices are grouped to 
form a complete CLB, as shown in Figure 2.2 [11].  Each CLB is connected by a switch matrix 
to local and global programmable routing resources.  Identical CLBs are tiled in columns and 
rows with larger devices including more columns and/or rows of CLBs.  Additionally, the 
structure of the CLB is identical across all devices in the Virtex-5 family.  The 6-input LUTs are 
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designed with two outputs each.  The primary output, O6, can utilize the full 64-bit LUT to 
implement any 6-variable Boolean function.  The secondary output, O5, can be used to initialize 
the carry chain, or both the O5 and O6 output can implement an independent 5-variable Boolean 
function for five shared inputs.  Either LUT output can be selected by the configuration 
multiplexers for the registered or combinatorial CLB output paths [11]. 
 
Figure 2.1:  Simplified basic logic element 
 
Figure 2.2:  Virtex-5 configurable logic block [11] 
Some slices (specifically the lower slice in every other column of CLBs and both 
columns to the left of a digital signal processor column) also support RAM and shift register 
modes of operation.  The LUT RAMs in each slice have independent read address inputs and 
share a set of write address inputs.  The independent read inputs facilitate the construction of 
dual-port RAMs within a slice.  Each LUT can be configured as a simple 64?1-bit or 32?2-bit 
RAM.  Dynamically controlled multiplexers in each slice allow the four LUTs to form a 256?1-
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bit RAM.  Additionally, the four LUTs can share five read address inputs and utilize eight 
independent data inputs to form a 32?8-bit RAM.  Each LUT can also form a single 32-bit or 
two 16-bit shift registers.  The four LUTs can be cascaded to form a 128-bit shift register or can 
operate in parallel form a 16?8-bit shift register bank [11]. 
2.3  BIST Approach And Architecture 
The BIST approach takes advantage of the regular structure of FPGAs by using 
comparison-based ORAs to compare the outputs of multiple identical BUTs.  This detects all 
faults affecting any combination of BUTs (since all fault-free BUTs must produce the same 
pattern) so long as all of the BUTs compared by a set of ORAs do not fail identically and at the 
same time [3].  Since a faulty TPG could cause a faulty BUT to escape detection, multiple 
identical TPGs are used to drive alternating BUTs.  This eliminates the assumption that the TPGs 
are fault-free because, with multiple identical TPGs, a faulty TPG will cause the outputs of some 
of the BUTs to disagree, resulting in ORAs reporting failures. 
The CLB BIST architectures can be divided into two categories based on the slice mode 
being tested.  The first set of configurations tests every CLB in the FPGA in SliceL (logic) mode 
of operation.  The second set of configurations tests every SliceM.  Only those slices which 
support SliceM (memory) mode are tested during the second set of configurations. 
In SliceL BIST architecture, alternating columns of CLBs are configured as ORAs and 
BUTs, as illustrated in Figure 2.3.  The set of BIST configurations is repeated twice with the 
roles of the CLBs reversed such that every CLB serves both as ORA and as BUT.  Two outputs 
of each BUT are compared by an ORA with the outputs of two adjacent identically configured 
BUTs in the same row, as shown in Figure 2.4.  A mismatch of two identically configured BUT 
outputs latches a logic 0 in the ORA flip-flop.  Otherwise, a logic 1 is retained in the ORA and is 
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interpreted as a passing result at the end of the test sequence.  Traditionally, the results of the 
BIST are recovered via partial configuration memory readback where the contents of every ORA 
are retrieved from the configuration memory.  However, we use a new ORA design that utilizes 
the dedicated carry logic in the CLB to form an iterative-OR of the ORA outputs.  In each ORA, 
a passing result of logic 1 selects the Carry-in input, which is the Pass/Fail result of the previous 
ORA. 
 
Figure 2.3:  Circular comparison architecture 
The Carry-in input of the first ORA in the iterative-OR chain is connected to Boundary 
Scan Test Data In (TDI), with the output of the last ORA connected to Test Data Out (TDO).  If 
any ORA in the chain registers a failure, a logic 0 on the output of that ORA will select the logic 
1 input of the carry chain multiplexer which translates to a logic 1 on TDO.  Otherwise, TDO 
passes the state of TDI such that by toggling TDI and observing TDO, the integrity of the 
iterative-OR chain can be verified at the end of the BIST sequence.  If the output of the OR chain 
indicates a failure (TDO is a logic 1 regardless of the state of TDI), the contents of the ORAs can 
be retrieved via partial configuration memory readback to determine the location(s) of the failing 
BUT(s).  This facilitates the single-bit pass/fail indication for faster test time without sacrificing 
diagnostic resolution for fault-tolerant applications. 
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Figure 2.4:  Equivalent ORA architecture 
In Virtex-5 FPGAs, the carry-in of the bottom CLB and the carry-out of the top CLB in 
each column are not connected.  To continue the carry chain, the carry-out of the top ORA in one 
column is connected to the D output and is routed to the AX input of the bottom ORA in an 
adjacent column.  The AX input is selected as the carry-chain input in the bottom ORA in each 
column.  In the ORA, each LUT is programmed with the hexadecimal value 
0x90090000FFFFFFFF.  By tying the A6 LUT input to logic 1, the O6 LUT output reads only 
the upper 32-bits of the LUT which implements the comparison ORA equation shown in 
Equation 2.1, while the O5 output reads only the lower 32-bits of the LUT (which controls the 
carry chain multiplexer for the iterative-OR chain). 
 5)43()21(6 ?????????=O  (2.1) 
The architecture of the Virtex-5 CLBs requires a minimum of six configurations to test 
each of the 6 inputs to the flip-flop input multiplexers, (A-C)FFMUX.  The first five of these 
configurations can also test the 5 inputs to the combinational logic output multiplexers (A-
D)OUTMUX.  Alternating XOR and XNOR functions in the LUTs detects every LUT stuck-at 
fault in two BIST configurations.  Multiple identical TPGs are implemented in a column of 
embedded digital signal processors (DSPs) and drive alternating columns of BUTs.  This reduces 
loading on the TPGs in large devices and eliminates the assumption that the TPG is fault-free.  
The DSPs are configured to accumulate a large prime number placed on the DSP inputs.  This 
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j outputy 
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number, 0xCA6691, was shown in [12] to produce an exhaustive sequence of 12-bit test patterns 
in 212 clock cycles with a relatively high number of transitions in the most significant bits of the 
accumulator output.  Virtex-5 CLBs require at least 12 TPG lines for pseudo-exhaustive testing, 
and, therefore, 4,096 clock cycles for the exhaustive set of test patterns to be produced by the 
accumulator.  Six of the TPG outputs fan out to the inputs of each of the four LUTs.  Adjacent 
LUTs are alternately programmed with XOR and XNOR functions such that adjacent LUTs will 
produce opposite logic values.  Another six TPG lines exercise the AX, BX, CX, DX, CE, and 
SR slice inputs with pseudo-exhaustive test patterns.  A total of 12 SliceL BIST configurations 
are generated, such that every CLB is a BUT for six configurations and an ORA for another six 
configurations.  A summary of the SliceL BIST configurations is given in Table 2.2. 
Table 2.2:  SliceL logic BIST configurations 
ConFigure# A-D LUTs FF/Latch CYINIT CLKIINV 
#1 XOR/XNOR FF INIT1 #OFF CLK 
#2 XNOR/XOR FF INIT0 AX CLK 
#3 XOR/XNOR FF INIT0 0 CLK 
#4 XNOR/XOR LAT INIT1 1 CLK 
#5 XOR/XNOR FF INIT0 0 CLK 
#6 XNOR/XOR FF INIT1 AX CLK_B 
ConFigure# A-D FFMUX A-D MUX 
#1 O6, O6, O6, O6 CY, CY, CY, CY 
#2 O5, O5, O5, O5 XOR, XOR, XOR, XOR 
#3 AX, BX, CX, DX O5, O5, O5, O5 
#4 XOR, XOR, XOR, XOR O6, O6, O6, O6 
#5 CY, CY, CY, CY F7, F8, F7, CY 
#6 F7, F8, F7, DX F7, F8, F7, CY 
 
Every other CLB column contains a SliceM.  In addition, the CLB column to the left of a 
DSP column contains a SliceM and, in SX devices, the second CLB column to the right of a DSP 
column contains a SliceM.  In columns containing SliceMs, only the bottom slice in each CLB is 
a SliceM.  Therefore, every SliceM can be tested simultaneously since there is at least one SliceL 
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for every SliceM (located in the same CLB) that can serve as an ORA.  The ORAs for the 
SliceM BIST architecture are the same as those used in the SliceL BIST architecture, including 
the iterative-OR chain.  However, the circular comparison chain is formed along each column 
containing SliceMs by comparing the outputs of each BUT with the identically configured BUT 
in an adjacent row.  A 2048?18-bit block RAM, effectively configured as a ROM, is used to 
store deterministic test patterns and, in conjunction with a DSP configured as an address counter, 
forms a TPG.  Multiple identical TPGs are configured to drive alternating rows of BUTs.  The 
SliceM BIST configurations are summarized in Table 2.3.  To test the LUT RAMs in single-port 
modes (configurations #1 and #2), the block RAMs are initialized with the test patterns for a 
March Y test algorithm.  A March Y RAM test requires 8N test patterns, where N is the number 
of address locations [10] [13].  For the remaining configurations, the block RAMs are initialized 
with test patterns for a dual-port RAM test algorithm [1] [6]. 
Table 2.3:  SliceM BIST configurations 
ConFigure# RAM mode DI1MUX WEMUX FFMUX 
#1 SPRAM64 DX CE O6 
#2 SPRAM32 A-DX CE O6 
#3 DPRAM32 DX WE O5 
#4 SRL32 MC31 WE MC31 
#5 SRL16 A-DX WE O6 
ConFigure# OUTMUX WA8used WA7used BIST CCs 
#1 O6 0 0 2,048 
#2 O6 #OFF #OFF 2,048 
#3 O6 #OFF #OFF 2,048 
#4 O6 #OFF #OFF 2,048 
#5 MC31 #OFF #OFF 2,048 
 
2.4  Experimental Results 
The BIST configurations were developed using accurate gate-level models of the Virtex-
5 CLB.  The SliceL and SliceM were modeled separately for fault simulation.  For both SliceL 
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and SliceM, the BIST configurations and their associated fault coverage were first optimized 
using these gate-level models.  The single stuck-at gate-level fault coverage for SliceL and 
SliceM BIST configurations obtained from fault simulations of these models are summarized in 
Figure 2.5 and Figure 2.7, respectively. 
The BIST configurations were then verified on Virtex-5 LX30T and SX35T devices via 
configuration memory bit fault injection.  Using the fault injection approach, configuration 
memory bits can be manipulated to emulate physical faults in the FPGA core including shorts 
and opens in programmable interconnect as well as almost any fault in logic resources controlled 
by a configuration memory bit.  Configuration bits controlling the SliceLs and SliceMs were 
injected with faults and the BIST configurations were executed with the faulty configuration on 
the device.  The BIST results of the faulty configuration are retrieved via partial configuration 
memory readback.  The fault injection results show that the 17 BIST configurations cumulatively 
detect every configuration memory bit fault in every CLB.  The results of the fault injection for 
SliceL BIST are shown in Figure 2.6.  The similarity of the fault injection results and fault 
simulation results serve as a good indicator of the accuracy of the gate-level fault models, which 
include every stuck-at fault in the CLB (including configuration memory bits).  Figure 2.7 and 
Figure 2.8 summarize the fault simulation results and the results of configuration memory bit 
fault injection, respectively, for the SliceM BIST configurations.  It should be noted that three of 
the SliceM faults are detected by SliceL configurations. 
There are two methods by which the results of the BIST sequence can be obtained.  First, 
the single bit pass/fail result can be determined via the TDO output of the ORA iterative-OR 
chain.  However, the location of failing BUTs cannot be determined using this method.  Another 
option is to perform a partial configuration memory readback to determine the contents of each 
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ORA at the end of the BIST.  By this method, the location of the failing BUT(s) can be easily 
determined with diagnostic resolution of LUT or flip-flop.  To minimize test time and achieve 
maximum fault resolution, a combination of the two methods is used.  First, the pass/fail status 
of the BIST is determined by observing TDO.  If TDO presents a logic 1 regardless of the state 
of TDI, at least one ORA has observed a failure.  Partial configuration memory readback can 
then be used to obtain the locations of the failing ORA(s) and, thereby, determine the location(s) 
of the faulty BUT(s). 
We have developed two C programs that automatically generate the 17 BIST 
configurations for all Virtex-5 LX, LXT, SXT, and FXT devices.  Table 2.4 summarizes the total 
download file size for the 17 BIST configurations, the maximum BIST clock frequency, and the 
total number of BIST clock cycles for full chip tests on several Virtex-5 devices.  The total full 
chip test time for serial and parallel configuration interfaces is summarized in Figure 2.9 and 
Figure 2.10.  The calculated test time assumes a 40 MHz BIST clock for all configurations and 
devices.  However, on most devices, the BIST configurations can operate at higher clock 
frequencies. 
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Figure 2.5:  SliceL fault coverage (simulation) 
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Figure 2.6:  SliceL fault coverage (fault injection) 
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Figure 2.7:  SliceM fault coverage (simulation) 
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Figure 2.8:  SliceM fault coverage (fault injection) 
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Figure 2.9:  Boundary Scan interface test time 
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Figure 2.10:  32-bit parallel interface test time 
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In early FPGAs, all LUTs were able to function as small RAMs such that the first BIST 
configuration applied typically tested the LUTs in the RAM mode of operation.  Using this 
approach, the first BIST configuration was able to detect most faults that could affect the LUT 
[2].  When combined with a simultaneous test of the flip-flop, the first BIST configuration was 
able to achieve around 80% fault coverage.  A similar characteristic can be observed in the first 
SliceM BIST configuration in Figure 2.7, which achieves greater than 70% fault coverage.  
However, current FPGAs, such as Virtex-4 and Virtex-5, limit the number of LUTs that can 
function as small RAMs.  Therefore, two BIST configurations are required (with alternate XOR 
and XNOR programming) to detect most of the faults in all LUTs.  This can be observed in 
Figure 2.5, where the cumulative fault coverage after the first configuration reaches 51% and 
after two configurations exceeds 92%. 
Table 2.4:  CLB BIST totals (17 configurations) 
Device 
Total ConFigure 
Size (kB) 
Max. BIST 
Clock Freq. BIST  CCs 
LX20T 1,762 90.7 MHz 59,392 
LX30T 2,630 74.0 MHz 59,392 
LX50T 3,930 74.4 MHz 59,392 
LX85T 6,265 58.2 MHz 59,392 
LX110T 8,837 58.0 MHz 59,392 
SX35T 3,378 59.2 MHz 59,392 
SX50T 5,041 61.1 MHz 59,392 
SX95T 8,818 44.7 MHz 59,392 
 
2.5  Summary And Conclusions 
A BIST approach for testing the CLBs in Virtex-5 FPGAs was presented.  A total of 17 
test configurations were developed to achieve 100% stuck-at fault coverage in every CLB.  
Twelve of these configurations pseudo-exhaustively test every SliceL and every SliceM in the 
SliceL mode.  Another five configurations test every SliceM in their RAM and shift register 
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modes of operation.  The BIST configurations were developed using accurate gate-level fault 
models of the CLB and verified using configuration memory bit fault injection.  A novel ORA 
design provides a single bit pass/fail result for each BIST sequence and is independent of the 
configuration interface.  Optional partial configuration memory readback provides optimal 
diagnostic resolution for fault-tolerant applications when the pass/fail output indicates failures.  
As a result, the BIST approach is applicable to all levels of FPGA testing including 
manufacturing testing and in-system testing for fault-tolerant applications.  We modified SliceL 
BIST to support FXT devices by creating two circular comparison chains across rows directly 
above the PowerPC core because CLBs above the PowerPC have no carry-in routing.  We have 
also applied this approach to Virtex-4 devices resulting in 20 and 5 BIST configurations for 
SliceL and SliceM tests, respectively, compared to 31 total configurations for Virtex-4 CLBs 
reported in [8].  Our Virtex-4 CLB BIST also includes the new ORA design for single bit 
pass/fail indication. 
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Chapter Three.  Built-In Self-Test of Programmable Input/Output Tiles in Virtex-5 FPGAs 
A Built-In Self-Test (BIST) approach is presented for the logic resources in the 
programmable input/output (I/O) tiles in Virtex-5 field programmable gate arrays (FPGAs).  A 
total of 15 BIST configurations were developed to test the I/O cell programmable logic resources 
in all modes of operation.  The approach utilizes dedicated I/O buffer bypass routing in the I/O 
tile such that the BIST is package independent and applicable to all levels of testing from wafer-
level to system-level.  The approach offers control of BIST execution and maximal diagnostic 
resolution of faulty I/O tiles for device and package independent testing.  Either the Boundary 
Scan interface or a simple system-level interface may be used for BIST execution, control, and 
diagnosis independent of the configuration interface.  Experimental results are presented 
including fault detection capabilities. 
3.1  Introduction 
The input/output (I/O) buffers of JTAG compliant devices are typically tested using the 
Boundary Scan EXTEST feature [1].  However, field programmable gate arrays (FPGAs) have a 
significant amount of configurable logic resources associated with the I/O buffers that cannot be 
tested in this manner.  These configurable logic resources typically include multiplexers and flip-
flops/latches, as illustrated in Figure 3.1, for improving system timing specifications such as set-
up and hold times as well as clock-to-output delay.  Additional logic resources are included to 
support single data rate (SDR) and double data rate (DDR) transmission and reception as well as 
for serialization/de-serialization (SerDes) modes of operation.  In Xilinx Virtex-5 FPGAs, for 
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example, there are at least 32 multiplexers and 47 flip-flops included in the configurable logic 
associated with each I/O cell to support various modes of operation.  The Boundary Scan 
INTEST feature can be used to test the configurable logic resources in an I/O cell [1].  However, 
the INTEST feature is supported by few FPGA manufacturers.  While there has been some prior 
work in testing I/O cells [2][3][4][5], previous work in Built-In Self-Test (BIST) for FPGAs has 
largely overlooked I/O cells and their associated logic resources.  However, it has been observed 
that the programmable logic in unused or un-bonded I/O cells is sometimes used by FPGA 
synthesis tools for implementing system logic functions [5]. 
The work presented in this chapter builds primarily on the prior work in [5], in which an 
I/O cell BIST architecture was proposed and implemented for Atmel AT40K series FPGAs and 
Atmel AT94K series programmable system-on-a-chip (SoC) [6].  However, this chapter offers 
several improvements over that previous BIST approach.  In addition, this chapter describes the 
actual implementation, operation, and verification of BIST configurations developed for Virtex-5 
FPGAs [7] whose I/O cells are much more complex than those found in the AT40K and AT94K 
devices [6].  The BIST configurations presented here test the full functionality of logic resources 
included in the Virtex-5 I/O cells including input logic (ILOGIC), output logic (OLOGIC), as 
well as input and output Serializer/Deserializer (SerDes) operation.  The chapter begins with an 
overview of the prior work in I/O cell BIST in Section 3.2, followed in Section 3.3 by an 
overview of Virtex-5 I/O tiles.  The overall BIST approach is described in Section 3.4, and 
details of the specific BIST configurations are discussed for Logic and SerDes modes in Sections 
3.5 and 3.6, respectively.  We present experimental results from actual implementation in Virtex-
5 FPGAs in Section 3.7. Section 3.8 discusses a BIST approach for the configurable I/O buffers 
before the summary and conclusion in Section 3.9. 
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Figure 3.1:  Simplified programmable I/O cell  
3.2  Prior Work 
There has been limited prior work in the area of testing I/O cells in, or applicable to, 
FPGAs [2] [3] [4] [5].  In [5], a system-level BIST architecture is presented for the I/O cells of 
Atmel FPGAs.  The overall BIST approach was similar to that used for configurable logic 
resources in the FPGA core [8].  The BIST architecture in [5] consists of a single TPG 
implemented in configurable logic blocks (CLBs) sourcing test vectors to the I/O cells under test.  
A single TPG was implemented under the assumption that internal FPGA resources had already 
been tested and found to be fault-free.  The I/O cells under test are identically configured with 
bidirectional I/O buffers such that the output responses are sent back into the FPGA internal 
resources.  However, for in-system testing, this requires that all connecting devices be tri-stated 
during testing.  The output responses of the I/O cells are monitored by CLBs configured as 
comparison-based output response analyzers (ORAs).  While presenting a general architecture 
applicable to any FPGA or configurable SoC with an FPGA core and bidirectional I/O buffers, 
[5] implemented 27 BIST configurations applicable to the Atmel AT94K SoC and AT40K 
FPGA only.  
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3.3  Overview of Virtex-5 I/O Tiles 
The I/O cells in Virtex-5 FPGAs include an output logic block (OLOGIC), input logic 
block (ILOGIC), I/O delay block, and a bidirectional I/O buffer, as illustrated in Figure 3.2 [7]  
The number of I/O cells in Virtex-5 ranges from 360 to 1,200 depending on the size of the 
particular FPGA. 
 
Figure 3.2:  Virtex-5 programmable I/O tile 
Each OLOGIC includes registers for improving system clock-to-output timing and 
supporting SDR and DDR transmission of data.  The OLOGIC can also perform parallel-to-serial 
conversion of output data for widths between 2 and 6-bits when operating in SerDes mode.  The 
ILOGIC includes registers for improving system set-up and hold times and supporting SDR and 
DDR reception of data. It can also perform serial-to-parallel conversion of input data for widths 
between 2 and 6-bits when operating in SerDes mode.  The ILOGIC also incorporates a Bitslip 
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sub-module for synchronizing serial interfaces that include a training pattern.  Invoking the 
Bitslip input re-orders the data on the parallel outputs of the input logic block in a barrel-shifter 
operation [7].  In Virtex-5 FPGAs, two I/O cells are grouped to form an I/O tile, as illustrated in 
Figure 3.2.  Each I/O tile includes dedicated shift routing to support expanded SerDes data 
widths.  In master/slave mode, two I/O cells in the same I/O tile are connected via the dedicated 
shift routing to support data widths of 7, 8 and 10-bits [7].  Each I/O cell also includes dedicated 
routing (also shown in Figure 3.2) directly from the OLOGIC to the ILOGIC that bypasses the 
I/O buffer. 
3.4  Overview of BIST Architecture 
Our BIST approach for I/O tiles is similar to other BIST approaches that we have 
developed for testing CLBs in Virtex-4 and Virtex-5 FPGAs [9].  A set of deterministic test 
patterns is stored in 36-kbit block random access memories (RAMs) in the FPGA fabric.  The 
outputs of the block RAMs are connected directly to the inputs of alternating rows of I/O tiles 
under test.  One block RAM is configured for every 5 rows of I/O tiles under test.  One digital 
signal processor (DSP) per block RAM is configured as a counter to sequentially address the 
block RAM.  Collectively, one 36-kbit block RAM and one DSP form the TPG for every I/O tile 
BIST configuration.  However, the block RAM contents are modified for some configurations to 
target specific resources/functions under test.  The advantage of configuring multiple TPGs is 
twofold: first, multiple TPGs reduce loading, thereby maximizing the BIST execution frequency 
in large devices, and, secondly, configuring multiple identical TPGs eliminates the assumption 
that the TPG logic resources are fault-free.  Any fault affecting the behavior of a TPG will be 
detected by the comparison-based ORAs monitoring the I/O cells at the boundaries of any faulty 
and fault-free TPG. 
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BIST of I/O cells is well suited for circular comparison-based ORAs since many identical 
I/O cells are tested simultaneously.  The outputs of each I/O cell under test are monitored by two 
ORAs and compared with the outputs of two other identically configured I/O cells in an adjacent 
row, as shown in Figure 3.3.  To complete the circular comparison, I/O cells in the top row of the 
test area are compared with I/O cells under test in the bottom row of the test area. 
 
Figure 3.3:  Column oriented circular comparison 
The circular comparison approach does not suffer from aliasing effects as long as all of 
the BUTs being compared do not fail identically and at the same time.  Furthermore, circular 
comparison improves diagnostic resolution [4].  An output response mismatch between two 
identically configured I/O cell outputs is latched as a logic 0 in the ORA flip-flop for the 
duration of the test session.  Otherwise, logic 1 is retained in the ORA and is interpreted as a 
passing result at the conclusion of the BIST sequence.  In previous implementations of the 
comparison-based ORA, the dedicated carry logic and routing resources in the ORA CLBs were 
un-used [4].  However, in all BIST configurations that we have developed for Virtex-5 FPGAs, 
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these resources are utilized to form an iterative-OR chain of every ORA in the test area.  In each 
ORA, a passing result of logic 1 selects the Carry-in input to the CLB, which is the Pass/Fail 
result of an adjacent ORA.  The carry-in input of the first MUX in the iterative-OR chain is 
connected to a system input, with the carry-out of the last ORA connected to a system output.  If 
any ORA in the chain records a failure (e.g. mismatch), a logic 0 on the output of that ORA will 
select a logic 1 as the input to the carry MUX, as illustrated in Figure 3.4. 
 
Figure 3.4:  Virtex-5 equivalent ORA architecture 
If no failure is observed in the ORA, the carry-in input is propagated through the CLB.  If 
no ORAs in the iterative-OR chain observe failures, the carry-in input to the first ORA in the 
chain will propagate through every ORA slice to the carry-out output of the final ORA such that 
an overall pass/fail result is obtained without reading back the configuration memory to obtain 
the contents of the ORA flip-flops.  By toggling the OR-chain input and observing the OR-chain 
output at the end of each BIST sequence, the integrity of the iterative OR-chain is verified.  If the 
output of the iterative OR-chain indicates failures were detected, the contents of the ORAs can 
be retrieved via partial configuration memory readback for precise fault diagnosis. 
Another important difference between our I/O tile BIST architecture and the prior work is 
in the configuration of the I/O tiles under test.  Previous approaches have relied on bidirectional 
I/O buffers to provide the return path for test patterns exiting the output logic and returning to the 
ORAs via input logic [5] [10].  However, the reliance on bi-directionally configured I/O buffers 
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severely limits the applicability of this type of BIST for in-system testing.  With every I/O buffer 
configured in the path of the logic under test, we required that all connecting devices be tri-stated 
during in-system testing.  Connecting passive devices, such as termination resistors or light 
emitting diodes (LEDs), introduce another problem since these devices cannot be disconnected 
or tristated during in-system tests.  In [9], the authors observed that, at certain frequencies, LEDs 
connected to I/O buffers under test caused the comparison ORAs to erroneously report failures 
for otherwise fault-free I/O tiles. These failures were observed at frequencies as low as 325 kHz 
[9], which is unacceptable for an at-speed test of the logic resources.  As a result, the generality 
of the BIST is compromised.  Fortunately, the I/O tiles in Virtex-4 and Virtex-5 FPGAs include 
dedicated routing from the OLOGIC to the ILOGIC that bypasses the I/O buffer [7].  Using this 
feedback routing instead of the I/O buffer means that no signals from the FPGA under test can 
reach, and therefore be influenced by, external devices.  Furthermore, bypassing the I/O buffer 
does not sacrifice fault coverage in the I/O tile logic resources.  With the I/O buffers removed 
from all tests for logic resources, these tests may be applied without concern for the external test 
environment, thus making our approach applicable to all levels of FPGA testing.   
The obvious disadvantage of this approach is that it does not concurrently test the I/O 
buffer.  However, we have developed a stand-alone BIST architecture for the I/O buffers that is 
applicable to device and wafer-level testing.  This architecture tests the programmable analog 
features of the I/O buffers in every bidirectional mode of operation.  Additionally, the Boundary 
Scan EXTEST feature may be used for in-system tests of the I/O buffers in their system mode of 
operation. 
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3.5  Configurations for I/O Logic Modes 
Six test configurations are required to fully test the I/O tile logic resource in all 
ILOGIC/OLOGIC modes of operation.  The I/O delay module is concurrently tested in these I/O 
Logic mode tests in two of three modes of operation.  Feedback routing from the OLOGIC to the 
ILOGIC has two possible routes: one through the I/O delay module and one dedicated route 
which bypasses the I/O delay module.  The route through the I/O delay module allows for testing 
of the output delay functionality in all supported delay modes (fixed delay, variable delay, and 
default).  However, testing delay of input and output signals simultaneously is not possible 
without configuring the I/O buffers in bidirectional mode.  Three of the six I/O logic BIST 
configurations test the DDR transmit and receive modes of operation, including, in the OLOGIC, 
opposite-edge, same-edge, and same-edge pipelined output modes.  The fourth and fifth 
configurations test the flip-flop and latch functionality of the primary registers.  In the sixth and 
final configuration, the combinatorial (un-registered) path through the I/O tile logic resources is 
tested.  Programmable initialization values, set/reset values, and synchronous/ asynchronous 
reset/toggle inputs are concurrently tested.  The number of clock cycles for BIST execution is 
2048 for all I/O Logic BIST configurations. 
3.6  Configurations for I/O SerDes Modes 
A total of nine configurations are required to fully test the I/O tile logic resource in the 
SerDes modes of operation.  Six of these configurations test the I/O SerDes logic configured for 
data widths of 2, 3, 4, 5, and 6-bits.  Two configurations are included for the 4-bit data width to 
test the programmable active level on the tri-state inputs of the OLOGIC.  Another three 
configurations test the master/slave SerDes modes for data widths of 7, 8, and 10-bits.  Two of 
the nine configurations test the SerDes in DDR mode, with the other seven configurations testing 
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SDR modes of operation.  SerDes operations require two clocks: a high speed clock for serial 
data and a divided clock for the FPGA fabric.  The amount of clock division is an integer equal 
to the data width when testing SDR modes, and is half of the data width when testing DDR 
modes.  We use regional clock buffers with integrated clock division, called BUFRs [7], to 
provide the divided clock for the ORAs and TPGs in SerDes configurations.  The BUFR has 
programmable clock division, from 1 to 8, and BYPASS modes.  There are also clear (CLR) and 
clock enable (CE) inputs to the BUFR.  We connect the CLR and CE inputs of every BUFR to 
the TPGs to achieve a simultaneous test of the BUFRs and the I/O SerDes logic.  Concurrent 
testing of the BUFRs is beneficial since they would likely be used in conjunction with SerDes.  
Since each BUFR clocks only one adjacent clock region, a faulty BUFR will cause failures in the 
ORAs along at least one boundary of an adjacent clock region. As with the I/O tiles under test, a 
faulty BUFR can only escape detection if every BUFR in the test area fails identically and on the 
same clock cycle(s). 
One addition to the BIST architecture for SerDes mode testing stems from the need for 
synchronization of the serial bit streams before executing the BIST sequence.  In SerDes mode, 
the positioning of deserialized data on the parallel side of the OLOGIC is initially indeterminate.  
Due to the nature of comparison-based ORAs, data on the parallel outputs of every I/O cell under 
test must be synchronized.  To ensure identical alignment of deserialized test patterns, the 
SerDes BIST architecture adds a Bitslip synchronizer circuit, illustrated in Figure 3.5.  Upon 
download of any SerDes mode configuration, the ORAs are held disabled and the TPGs are held 
in reset.  A training pattern, stored in the programmable set/reset values of the block RAM output 
registers, is presented to the inputs of the I/O cells under test.  The training pattern positions a 
single zero in a field of ones on the parallel side of the output logic block.  The Bitslip 
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synchronizer circuit monitors the Q2 parallel I/O tile output and one-shots the Bitslip control line 
until the zero is shifted into the Q2 position.  As a result of the clock division and Bitslip latency, 
synchronization will be obtained in no more than 4N2?4N clock cycles, where N is the SerDes 
data width for the configuration.  Each I/O cell has a dedicated Bitslip synchronizer circuit that 
will continue to one-shot the Bitslip control line until the training pattern is positioned with the 
single zero at the Q2 output, thereby identically aligning the test patterns for the comparison-
based ORAs.  The synchronizer is then disabled by the TPG during the BIST execution. 
 
Figure 3.5:  Bitslip synchronizer circuit 
For SerDes configurations, the number of BIST clock cycles is equal to 1024 times the 
amount of clock division used during that configuration plus the worst case synchronization time 
for the data width being tested.  It should also be noted that the number of BIST clock cycles is 
independent of the size of the array, and independent of the number of I/O cells under test. 
3.7  Experimental Results 
All of the BIST configurations are automatically generated for any size and family of 
Virtex-5 FPGAs by a set of ANSI C programs that we have developed.  Two programs are used 
to generate the six configurations for the I/O logic modes of operation described in Section 3.5.  
Another set of two programs generates all nine of the configurations to test the I/O SerDes 
modes of operation described in Section 3.6.  Our first program in each set generates a template 
BIST configuration in Xilinx Description Language (XDL) and then converts the template to 
to ISERDES 
BITSLIP 
from 
ISERDES 
Q2 
CLKDIV 
Synchronizer Enable 
TPG Bitslip 
test pattern 
X Y Z 
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Native Circuit Description (NCD) format using Xilinx?s conversion tool, XDL.exe.  The BIST 
template is routed by Xilinx?s place and route software, PAR.exe, before conversion back to 
XDL format.  Our second program modifies the routed XDL file to produce the various BIST 
configurations, and converts those files back to NCD format.  The final download configuration 
files are created using Xilinx?s bitstream generation software, BitGen.exe. 
Table 3.1 summarizes the total size of the 15 I/O BIST configuration files, the maximum 
BIST clock frequency, and the total number of BIST clock cycles for all Virtex-5 LXT and SXT 
devices.  Note that the total number of BIST clock cycles is device-independent due to 
concurrent testing of I/O cells by the BIST architecture.  The totals shown in Table 3.1 were used 
to calculate the best- and worst-case total test times, which are dependent on the configuration 
interface.  The total test time for Boundary Scan and SelectMap 32-bit parallel configuration 
interfaces are shown in Figure 3.6 and Figure 3.7, respectively.  A 50 MHz BIST clock is 
assumed for all configurations and all devices.  Readback time is for partial configuration 
memory readback of the ORA contents after every configuration for diagnosis of failing BIST 
configurations.  However, when diagnosis is not required, or there are no failures, the single bit 
pass/fail result can be determined via the ORA iterative-OR chain.  To minimize the test time 
and achieve maximum fault resolution, a combination of the two methods is used.  First, the 
pass/fail status of the BIST is determined by observing the output of the ORA iterative-OR 
chain.  If the OR chain indicates failures, partial configuration memory readback can be used to 
obtain the locations of the failing ORA(s) and, thereby, determine the location(s) of the failing 
I/O Tile(s). 
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Figure 3.6:  50 MHz Boundary Scan configuration interface test time 
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Figure 3.7:  100 MHz 32-bit parallel configuration interface test time 
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Table 3.1:  I/O tile BIST totals (15 configurations) 
Device 
Total Config. 
Size (kB) 
Max. BIST 
Clock Freq. 
BIST  
CCs 
LX20T 862 102.8 MHz 47112 
LX30T 1482 89.38 MHz 47112 
LX50T 2186 102.4 MHz 47112 
LX85T 2726 73.96 MHz 47112 
LX110T 3641 74.40 MHz 47112 
LX155T 4181 66.10 MHz 47112 
LX220T 4706 58.75 MHz 47112 
LX330T 6985 56.17 MHz 47112 
SX35T 1740 91.19 MHz 47112 
SX50T 2511 75.17 MHz 47112 
SX85T 3923 69.59 MHz 47112 
 
3.8  BIST for Programmable I/O buffers 
In addition to the BIST approach presented for I/O Logic and SerDes modes of operation, 
we have developed a stand-alone BIST approach for the I/O buffers in FPGAs.  The approach 
tests the I/O buffers in all bidirectional modes of operation and associated I/O standards, 
requiring 77 configurations for Virtex-5 FPGAs.  The approach is directly applicable to device 
and wafer-level testing, and is applicable to in-system testing with some customization of 
configurations.  The bidirectional buffers configured during in-system tests can be expected to 
have different load characteristics in the system, depending on the way they are terminated and 
whether they are normally an input, output, or bidirectional port during system operation.  For 
example, we would expect the I/O buffers that are connected to large external loads to fail if they 
are tested at a high frequency.  For in-system testing, all of the I/O buffers can be tested at a 
single low frequency that is guaranteed to be sufficiently slow to allow fault-free I/O buffers to 
pass.  However, this may result in faulty I/O buffers escaping detection in the case of delay 
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faults.  Alternatively, the I/O buffers can be grouped together by loading characteristics to be 
tested independently and at different frequencies. 
3.9  Conclusions 
A BIST approach for testing the programmable logic resources of I/O cells in FPGAs was 
presented including the actual development for and implementation in Xilinx Virtex-5 FPGAs.  
Six BIST configurations were developed to test the input and output logic resources in ILOGIC 
and OLOGIC modes.  Another nine configurations test the SerDes functionality of the I/O logic 
resources for all supported data widths.  By testing the I/O buffers separately, the logic resources 
in the I/O tiles may be tested in-system in all modes of operation.  The BIST configurations are 
package independent because they can test I/O tiles with both bonded and unbonded I/O buffers.  
This is important since FPGA synthesis tools sometimes use I/O logic and routing resources to 
implement the system function.  All of these BIST configurations have been generated, 
downloaded, and verified on LX30T, LX50T, SX35T, and SX50T FPGAs.  Due to similarities in 
architectures, features, and operational modes of the I/O cells in Xilinx Virtex-4 and Virtex-5 
FPGAs, we have also applied the BIST approach described in this chapter to Virtex-4 FPGAs 
where a total of five I/O Logic, nine I/O SerDes, and 76 I/O buffer BIST configurations were 
developed, downloaded, and verified on LX60, SX35, and FX12 FPGAs.  The iterative-OR ORA 
provides a simple interface for BIST results retrieval that is very fast relative to partial 
configuration memory readback and is independent of the configuration interface.  However, for 
fault-tolerant applications, maximal diagnostic resolution of faulty I/O tiles can still be obtained 
via partial configuration memory readback.  The BIST configurations can detect faults in the 
configuration memory bits associated with I/O tile logic and routing excluding the I/O buffer.  
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Clocking at system speeds during testing could potentially improve parametric fault coverage in 
the I/O delay element. 
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Chapter Four.  Built-In Self-Test of SEU Detection Cores in Virtex-4 and Virtex-5 FPGAs 
A Built-In Self-Test (BIST) approach is presented for the Internal Configuration Access 
Port (ICAP) and Frame Error Correcting Code (ECC) logic cores embedded in Xilinx Virtex-4 
and Virtex-5 Field Programmable Gate Arrays (FPGAs).  The Frame ECC logic facilitates the 
detection of Single Event Upsets (SEUs) in the FPGA configuration memory.  The ICAP 
provides read and write access to the configuration memory from within the FPGA fabric, 
enabling embedded dynamic reconfiguration and fault-tolerant applications with memory 
scrubbing.  Therefore, the fault-free operation of the ICAP and Frame ECC logic is critical for 
space and fault-tolerant applications that require detection and repair of SEUs.  The BIST 
approach presented is applicable to all Virtex-4 and Virtex-5 FPGAs for both manufacturing and 
system-level testing of the ICAP and Frame ECC logic.  The actual implementation of the BIST 
approach in Virtex-4 and Virtex-5 FPGAs and associated experimental results are discussed. 
4.1  Introduction 
The increased use of Field Programmable Gate Arrays (FPGAs) for implementing digital 
logic applications over the past two decades has been accompanied by increased concern about 
radiation effects; in particular, the effects of Single Event Upsets (SEUs).  In addition to memory 
elements, such as flip-flops and random access memories (RAMs), the contents of the static 
random access memory (SRAM) used as the configuration memory to establish the overall 
application performed by the FPGA is also susceptible to SEUs.  An SEU induced bit-flip in the 
SRAM configuration memory can alter the functionality of the FPGA.  This makes SEUs of 
significantly more concern in FPGAs than in traditional application specific integrated circuits 
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(ASICs).  Radiation experiments indicate the SEU rate in FPGAs increased by a factor of 4.74 
when design rules decreased from 600nm to 350nm with a corresponding reduction in Vcc 
supply voltage from 5V to 3.3V [1].  Xilinx Virtex-4 FPGAs are reported to have SEU FIT 
(failures in 109 hours) rates of 246 per million bits of configuration memory, and only 151 in 
Virtex-5 FPGAs [2].  This reduction in SEU FIT rate from Virtex-4 to Virtex-5 indicates that 
Xilinx is designing FPGA configuration memories to be more robust, as suggested in [3].  
However, the largest FPGAs currently have configuration memories with up to 160 million bits 
[4].  As a result, some recent FPGAs, like Virtex-4 and Virtex-5, have incorporated additional 
logic that enables the detection of SEUs in the configuration memory.  This logic can be used in 
conjunction with user-defined circuitry in the FPGA core to correct erroneous configuration 
memory bits that result from SEUs [5].  Approaches for on-line SEU detection and correction for 
Virtex-4 FPGAs have been proposed in [5] and [6] and for Virtex-5 FPGAs in [6] and [7].  All of 
these approaches assume that the embedded specialized cores for SEU detection, including the 
Internal Configuration Access Port (ICAP) and Frame Error Correcting Code (ECC) modules, 
are fault-free. 
This chapter presents an off-line BIST approach which completely tests the internal 
hardware mechanisms used for SEU detection and correction in the configuration memory of 
Xilinx Virtex-4 and Virtex-5 FPGAs.  Since the FPGA is reconfigured for BIST only when 
testing is desired or required, there is no area or performance penalty incurred by the system 
application(s) normally executed in the FPGA.  The only overhead for the BIST approach is the 
memory required to store one additional configuration used to configure the target device for 
BIST.  The BIST approach is VHDL-based and is applicable to all production Virtex-4 and 
Virtex-5 devices.  Furthermore, the BIST can be used for both manufacturing and system-level 
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testing of the ICAP and Frame ECC logic.  The chapter begins with an overview of the ICAP 
and Frame ECC circuitry included in Virtex-4 and Virtex-5 FPGAs in Section 4.2.  The test 
algorithm employed by the BIST approach to detect faults in parity-based ECC circuits is 
described in Section 4.3.  Section 4.4 describes the method for generating and applying the test 
patterns to the ICAP and Frame ECC logic as well as the method used for output response 
analysis.  Section 4.5 describes the actual implementation of the BIST approach in the fabric of 
Virtex-4 and Virtex-5 FPGAs along with experimental results.  The chapter is summarized and 
concludes in Section 4.6. 
4.2  Frame ECC and ICAP Logic 
Like any RAM, the configuration memory of an FPGA is partitioned into words, also 
referred to as frames, which represent the smallest addressable unit of the configuration memory 
for write and read operations.  Virtex-4 and Virtex-5 frames consist of 1,312 bits [8]-[11].  Each 
frame includes a 12-bit field of 11 Hamming bits and an overall parity bit for to provide the 
potential for single error correction (SEC) as well as double error detection (DED) in the frame 
data.  The parity and Hamming bits are generated external to the FPGA by the configuration 
bitstream generation software and are subsequently downloaded with the application specific 
configuration data to the FPGA configuration memory.  An overall cyclic redundancy check 
(CRC) performed on the device during the download verifies the integrity of configuration data 
during download.  However, system memory data subject to change during the operation of the 
FPGA, such as contents of block RAMs and look-up tables (LUTs) used as distributed RAMs, 
are not covered by the overall parity and Hamming bits. 
Virtex-4 and Virtex-5 FPGAs provide a specialized core, called Frame ECC, for 
detection and identification of single-bit errors and detection of double-bit errors in the frame 
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data [9][11].  The Frame ECC primitive, illustrated in Figure 4.1, has 11 syndrome outputs, an 
error output, and syndrome valid output.  Each time that a frame is read from the configuration 
memory the Frame ECC module calculates the Hamming bits as well as overall parity for the 
frame data, and compares these bits with the Hamming bits and parity stored for that frame in the 
configuration memory.  Based on this comparison, the Frame ECC module produces indications 
for no error, single-bit error, and double-bit error in addition to a syndrome indicating the 
location of single-bit errors.  System memory element contents (for example, block RAMs, LUT 
RAMs, and flip-flops) are masked from the internal parity and Hamming calculation by the 
Frame ECC.  The error codes for the Frame ECC are summarized in Table 4.1. 
Table 4.1:  Frame ECC codes 
Error Type Condition (when syndromevalid = 1) 
No bit error Hamming match w/ no parity error 
1-bit correctable error (SEC) Hamming mismatch w/ parity error 
2-bit error detection (DED) Hamming mismatch w/ no parity error 
 
A Hamming mismatch with an overall parity error indicates that a single-bit correctable 
error has occurred.  In this case, the bit-wise exclusive-OR of the stored Hamming code and the 
regenerated Hamming code, which is called the syndrome, gives the location of the single-bit 
error.  A Hamming mismatch (non-zero syndrome) and no overall parity error indicate a non-
correctable double-bit error has occurred.  In the case of a double-bit error, the frame data must 
be repaired with data from a reliable external source.  Single-bit errors in the configuration 
memory can be repaired with additional user logic implemented in the FPGA fabric to flip the bit 
in error as was done in [5], [6], and [7]. 
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Figure 4.1:  Frame ECC and ICAP primitives 
The SYNDROMEVALID output is asserted for one clock cycle per frame during a frame 
read operation to indicate that the SYNDROME and ERROR outputs are valid for the current 
frame [9][11].  The most significant bit of the SYNDROME[11:0] bus is the overall parity error 
indication.  The ERROR output is asserted when a single-bit or double-bit error is detected.  To 
distinguish between single-bit correctable errors and double-bit non-correctable errors, the user 
must add logic to determine the result based on the scenarios in the last two entries in Table 4.1. 
The ICAP provides access to status and control registers as well as to the configuration 
memory from the FPGA fabric [9][11].  The ICAP works like the external SelectMAP 
configuration interface except that it has separate 32-bit read and write buses, as opposed to a 
bidirectional 32-bit bus.  The maximum operating frequency of the ICAP is 100 MHz, and it 
supports 8-bit, 16-bit, and 32-bit word sizes.  Every device includes two ICAPs.  However, both 
ports cannot be used simultaneously.  A bit in a control register is used to select whether the 
upper or lower ICAP is the active port. 
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4.3  Test Algorithm 
Hamming bits are parity calculated over a certain subset of bits in the configuration frame 
data.  For example, the Hamming parity matrix in Table 4.2 can be extended to any number of 
data bits (D#) where the Hamming bits (H#) occupy the power-of-2 number locations in the 
counting sequence.  Each Hamming bit is calculated by exclusive-ORing the data bits that have a 
logic 1 in the same row as that Hamming bit, yielding the logic equations shown in the lower 
half of the table for this example. 
Table 4.2:  Hamming parity matrix example 
H1 H2 D1 H3 D2 D3 D4 H4 D5 D6 D7 D8 D9 D10 D11 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
H1 = D1 ? D2 ? D4 ? D5 ? D7 ? D9 ? D11 
H2 = D1 ? D3 ? D4 ? D6 ? D7 ? D10 ? D11 
H3 = D2 ? D3 ? D4 ? D8 ? D9 ? D10 ? D11 
H4 = D5 ? D6 ? D7 ? D8 ? D9 ? D10 ? D11 
 
As a result, the Frame ECC logic consists mainly of parity generators.  A parity generator 
is simply an exclusive-OR tree, and can be arranged in linear tree or balanced tree forms; both 
arrangements are C-testable with four test patterns if and only if the exact parity tree construction 
and interconnections are known for every gate in the tree [13][14].  However, for cases where the 
parity tree structure is unknown, a pseudo-exhaustive test set to detect all gate level single and 
multiple stuck-at faults is: 1) walk a single one through a field of zeros, and 2) all combinations 
of two ones in a field of zeros [15].  This set of test patterns also detects all bridging faults in the 
Hamming generation circuit and overall parity generation circuit [16].  Therefore, the number of 
test vectors, NTV, required in terms of the number of inputs, N, to test any parity generator 
(regardless of structure) is given by: 
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2 NN
NN +=+??
?
?
???
?  (4.1) 
For the Virtex-4 and Virtex-5 Frame ECC logic, which calculates Hamming and parity 
over 1312-bits, the number of test patterns required by Equation 4.1 is NTV = 861,328. 
It is interesting to note that the parity calculations could be performed sequentially (32-
bits at a time), as opposed to in parallel based on the entire 1312-bit frame.  This leads to a 
significant reduction in the amount of logic for the calculation of Hamming code bits and overall 
parity.  By masking appropriate bits from the parity trees (forcing bits to logic 0 using a mask 
LUT in conjunction with AND gates) the entire set of calculations can be performed 
sequentially, one 32-bit word at a time, as illustrated in Figure 4.2.  The sequential Hamming 
generator requires twelve 32-input parity trees (one for each Hamming bit and one for the overall 
parity bit) with the cumulative parity calculations stored in 12 flip-flops.  The Hamming and 
overall parity bits stored in the middle word of the frame are latched for comparison with the 
regenerated bits to produce the syndrome and overall parity error.  This sequential parity 
generation would require only about 372 XOR gates and 352 AND gates for the masks.  Parallel 
calculation over the entire 1312 frame bits, on the other hand, would require approximately 
8,516 XOR gates. 
It is possible that the number of test vectors for the sequential Hamming and parity bit 
calculation circuit might be reduced from that given by Equation 4.1.  However, the set of test 
vectors described previously will also ensure complete testing of the word counter, masking 
circuit, and flip-flops/latches used to perform the sequential Hamming calculation.  This means 
the test pattern sequence is independent of the actual architecture of the Frame ECC circuit.  In 
addition, the walking patterns in the set of test vectors will detect stuck-at and bridging faults in 
the ICAP. 
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4.4  BIST Approach 
Our approach to testing the Frame ECC logic is to implement a customized embedded 
core in the FPGA fabric that will repetitively write and read a single frame of configuration 
memory via the ICAP with the set of test patterns described in Section 4.3.  The target frame for 
the BIST is arbitrarily located in the programmable interconnect network to avoid any 
configuration memory bits that are masked from the Frame ECC circuitry as a result of 
potentially legitimate changes to LUT-RAMs and flip-flop contents [9][11].  The basic 
procedure is as follows:  (1) Write a configuration memory frame with a test pattern via the 
ICAP.  (2) Read the frame containing the test pattern, compacting the ICAP output response.  (3) 
Compact the output response of the Frame ECC when the syndrome is valid.  (4) Generate the 
next test pattern and repeat Steps 1 through 3 for all 861,328 test vectors. 
Even using the 32-bit ICAP interface, this test sequence is time-intensive because each 
frame write and read requires a significant amount of overhead in terms of clock cycles.  In our 
implementation of the BIST, there are 318 clock cycles of overhead for each of the 861,328 test 
patterns.  Therefore, the actual test time is 318 times the number of test patterns (as will be 
discussed in Section 4.1), or 273,902,304 clock cycles.  However, the amount of logic that is 
tested is not insignificant, and the Frame ECC logic is critical for space and fault-tolerant 
applications that rely on the detection and correction of SEUs during on-line operation. 
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Figure 4.2:  Sequential Hamming bit calculation 
4.4.1  Test Pattern Generator 
The test pattern generator (TPG) used to generate the parity tree test patterns is the largest 
component of the BIST architecture.  It requires two 1,312-bit shift registers, 1,312 two-input 
OR gates, and a 32-bit 64-to-1 multiplexor array (the TPG is identical for both Virtex-4 and 
Virtex-5).  In all, the TPG occupies about 1000 slices in Virtex-5 ? 90% percent of all of the 
resources occupied by the BIST circuitry.  Virtex-4 and Virtex-5 FPGAs incorporate several 
configuration registers to provide write/read access to the configuration memory.  The Frame 
Address Register (FAR) stores the memory address to/from which frame data is written/read.  
The Frame Data Register Input (FDRI) and Frame Data Register Output (FDRO) registers 
facilitate input/output data to/from the configuration memory.  There are other registers such as 
the status (STAT) register, the cyclic redundancy check (CRC) register, and the command 
(CMD) register which stores the next register operation to perform such as ?Write FAR? or 
?Read FDR0?.  To write/read to/from the configuration memory, a combination of these registers 
must be used.  In Virtex-4 and Virtex-5, the frame write and read instructions for the BIST are 
stored in a single 512?32-bit block RAM.  The complete set of write and read instructions utilize 
about 10% of the Block RAM.  The procedure for writing/reading to/from the configuration 
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memory in the context of the BIST is illustrated in the pseudocode of Figure 4.3 and Figure 4.4, 
respectively. 
Write_Test_Pattern (Test_Pattern, FRAME_ADDR){ 
 Write to Command RESET_CRC 
 Write to ID Register DEVICE_ID  
 Write to Command WCFG WRITE_CONFIG_MEM 
 Write to Frame Address FAR FRAME_ADDR 
 Write to Frame Data Input FDRI 82 words 
 for(i=0; i<41; i++){ 
  Write word(i) of Test_Pattern 
 } 
 for(i=0; i<41; i++){ 
  Write pad word 0x00000000 
 } 
 Write NO-OP 
 Write NO-OP 
 Write to CRC 0x0000DEFC 
} 
Figure 4.3:  Test pattern write sequence via ICAP interface 
Read_Test_Pattern (FRAME_ADDR){ 
 Write to Command READ_CONFIG_MEM WCFG 
 Write to Frame Address FAR FRAME_ADDR 
 Read Frame Data Output FDRO 82 words 
 for(i=0; i<41; i++){ 
  // Discard pad frame 
 } 
 for(i=0; i<41; i++){ 
  // Enable MISR to compact output 
  // of FrameECC and ICAP 
 } 
 Write NO-OP 
 Write NO-OP 
} 
Figure 4.4:  Test pattern read sequence via ICAP interface 
In both Virtex-4 and Virtex-5, the frame address selected as the write/read destination for 
the test patterns cannot contain LUT-RAM or flip-flop configuration bits because these bit 
locations are masked in the Frame ECC logic during read back (due to the fact that these bits can 
change after configuration if the capture command is decoded via the configuration interface or 
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if the capture input to the capture primitive is asserted) [9][11].  Additionally, no BIST logic or 
routing resources can be located in the target reconfiguration memory region.  Otherwise, the test 
logic could overwrite and modify parts of its own architecture.  To eliminate the risk of 
overwriting the configuration of BIST logic or routing, the target configuration memory frame is 
located in the routing resources in the leftmost column of I/O Tiles (however, any frame 
containing only routing resources and not utilized for the BIST logic could be used).  In Virtex-4, 
the target configuration frame is arbitrarily located in the leftmost column of I/O Tiles in the 16 
rows below the center line.  In Virtex-5, the target configuration frame is arbitrarily located in 
the lower 20 rows of the leftmost column of I/O Tiles.  To avoid the target frame resources, the 
BIST logic is physically constrained to the right half of the target device during placement and 
routing.  Additionally, before synthesizing the BIST, the Block RAM contents may require a 
minor modification.  The Block RAM contents are device dependent, since the correct device ID 
must be written to the ID register before data can be written to the configuration memory via the 
ICAP.  This is to ensure that a configuration file formatted for one device is not written, by 
mistake, to the wrong device. 
4.4.2  Output Response Analyzer 
Since only one Frame ECC component is included in every Virtex-4 and Virtex-5 device, 
comparison-based output response analysis of identical blocks under test (BUT) is not possible.  
Furthermore, comparison with stored good circuit output responses is not practical, since the 
861,328 12-bit syndromes could not be stored on the device.  Instead, a 32-bit multiple input 
signature register (MISR) with internal feedback and primitive characteristic polynomial is 
employed to compact the Frame ECC output responses into a final signature.  The MISR 
characteristic polynomial, P(x), is given by: 
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At the conclusion of the BIST, the signature in the MISR is compared with the known 
good circuit signature stored in the BIST logic, producing a single-bit pass/fail output.  
Additionally, the MISR is configured in a scan chain such that the signature can be retrieved via 
Boundary Scan for comparison with the good circuit signature.  Any mismatch of the good 
circuit signature and the signature obtained by the BIST indicates a faulty circuit response.  It 
should be noted that all MISRs have some probability of signature aliasing and fault escape.  
Signature aliasing occurs when a faulty circuit produces the same signature as the fault-free 
circuit.  However, signature aliasing is extremely unlikely for properly designed MISRs.  The 
classical approximation for the probability of fault aliasing is 2-n, where n is the degree of the 
MISR?s primitive polynomial [17].  Therefore, the probability of signature aliasing is 
approximately 1 in 4.3 billion for the 32-bit MISR described by Equation 4.2. 
The ICAP is tested by adding another identical 32-bit MISR to observe the ICAP outputs 
during the BIST sequence.  This MISR, which is enabled when the ICAP read input is asserted, 
will detect any stuck-at faults as well as any bridging faults in the ICAP inputs and outputs.  The 
MISR used to detect faults in the ICAP uses a similar on-chip comparison with the known good 
ICAP signature to produce a pass/fail output that is logically ORed with the pass/fail output of 
the Frame ECC MISR and comparison circuit, as illustrated in Figure 4.5.  A simultaneous test 
of the ICAP and Frame ECC is logical since the ICAP would almost certainly be used for any 
space or fault-tolerant application that actively detects and corrects SEUs.  However, because 
each device includes two ICAPs, only one of the ICAPs may be tested per BIST configuration in 
our current approach.  Both ICAPs can be tested by simply generating, downloading, and 
executing two BIST configurations that alternate between the two ICAPs.  It may also be 
possible to modify the BIST architecture such that both ICAPs are tested during the same 
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configuration by using the top ICAP for the first half of the BIST sequence and switching to the 
bottom ICAP during the remainder of the BIST sequence, for example.  This would require two 
additional instructions to write a logic 1 to the ICAP_SELECT bit in the control register, 
enabling access via the lower ICAP.   
4.4.3  Additional Logic 
In addition to the TPG and MISRs, the BIST architecture includes a custom soft-core 
embedded processor to control the BIST sequence execution.  The processor is modeled in 
VHDL and is implemented entirely in configurable logic blocks.  It controls the ICAP read/write 
signal and clock enable, the TPG/Block RAM multiplexor select inputs, and the TPG clock 
enable.  The processor also includes three counters for addressing the instruction Block RAM, 
the TPG multiplexor, and for frame read timing.  A block diagram of the ICAP and Frame ECC 
BIST architecture, including (from left to right) the TPG, circuits under test (CUT) and MISR 
output response analyzers, is shown in Figure 4.5.  The input/output behavior of the architecture 
is discussed in Section 4.5. 
4.5  Implementation Results 
The entire BIST circuit is implemented in VHDL, and only one configuration download 
is required for the BIST application.  Some minor architectural differences between Virtex-4 and 
Virtex-5 devices require changes to the VHDL model for the two families of devices.  First, 
before writing to the configuration memory, a device ID check must be performed by writing the 
correct device ID to the IDCODE register.  This prevents accidental configuration with a 
bitstream formatted for another device.  Any attempt to write the configuration memory without 
a successful device ID check will cause the FPGA to attempt a fallback reconfiguration [9][11].  
The device IDs are kept in a look-up table specific to Virtex-4 or Virtex-5 and are synthesized 
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with the design as a constant.  Second, the frame address register is formatted differently for 
Virtex-4 and Virtex-5, requiring a modification to the stored target frame address.  Finally, the 
input/output ordering for the ICAP in Virtex-5 is byte-swapped, compared to the Virtex-4 ICAP.  
Therefore, we maintain two VHDL BIST models, one for Virtex-4 and one for Virtex-5 with 
each model supporting all devices within that particular family. 
 
Figure 4.5:  ICAP and Frame ECC BIST architecture. 
There are six primary inputs and three primary outputs for the BIST architecture.  The 
VHDL component declaration illustrating these primary inputs and outputs of the BIST 
configuration is given in Figure 4.6.  It should be noted that the four inputs associated with the 
MISR scan chain, Scan_Clock, Scan_Mode, Scan_In, and Scan_Out, are included only for 
design verification.  Therefore, only three primary inputs and two primary outputs are required 
for a typical application. 
The Clock input can be a free-running system clock or can be supplied by the Boundary 
Scan interface via TCK (DRCK internally).  The maximum BIST clock frequency when the 
clock is supplied externally is 100 MHz, which corresponds to the maximum ICAP clock 
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frequency.  When the clock is supplied by Boundary Scan, the maximum BIST clock frequency 
is limited to 50 MHz which corresponds to the maximum TCK clock frequency.  It should be 
noted, however, that the BIST logic in the FPGA fabric can actually operate well above the 
maximum configuration frequency of 100 MHz in all Virtex-4 and Virtex-5 devices based on 
timing analysis of the synthesized and routed design. 
 
Figure 4.6:  BIST VHDL component declaration. 
The Start signal is an active-high, asynchronous signal which enables the execution of the 
BIST sequence. The Start signal should be asserted for a minimum of three cycles of Clock to 
begin the BIST sequence, but then may be de-asserted or may be left asserted.  The BIST will 
start and run automatically to completion after download by tying the Start signal to logic 1 in 
the top-level VHDL model.  Toggling the Start signal low and then high after the completion of 
the BIST will clear the MISRs and cause the entire BIST sequence to repeat.  This feature can be 
used to check for reproducible BIST results during design verification.  The Scan_Mode input 
places both MISRs in a scan mode.  With Scan_Mode asserted, the Scan_In input is an optional 
input to the MISR scan chain, which can be used in conjunction with Scan_Out (the output of the 
MISR scan chain) for loading and retrieving signatures during design verification.  The input 
TDI and output TDO provide a single-bit pass/fail result for the BIST.  As illustrated in Figure 
component Frame_ECC_BIST is 
port(       Clock : in  std_logic; 
                TDI : in std_logic; 
              Start : in  std_logic; 
            Scan_In : in std_logic; 
          Scan_Mode : in std_logic; 
         Scan_Clock : in std_logic; 
                TDO : out std_logic; 
               Done : out std_logic; 
           Scan_Out : out std_logic); 
end component Frame_ECC_BIST; 
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4.6, TDI is one input to a 3-input OR gate, with the other two inputs coming from the outputs of 
the MISR signature comparators.  When both MISRs contain the good circuit signatures, TDO 
(the output of the OR gate) will equal TDI.  However, if either MISR does not contain the good 
circuit signature, the output of the functional OR will be logic 1, regardless of the state of TDI.  
The Done output is asserted when the BIST sequence is complete.   When the Done signal is 
asserted, the pass/fail result is valid on the TDO output.  The BIST sequence, after download 
(and without tying Start to logic 1), is as follows:  (1) Assert the Start input.  (2) Wait for the 
Done signal to be asserted.  (3) Drive TDI low, poll TDO (should be logic 0).  (4) Drive TDI 
high, poll TDO (should be logic 1).  The BIST is interpreted as passing if the TDO output 
presents a logic 0 in Step 3 and a logic 1 in Step 4.  This ensures that the TDO output is not stuck 
in the fault-free state due to a fault in the FPGA.  Optionally, the contents of the two 32-bit 
MISRs may be scanned out and verified by external comparison to the known good circuit 
signatures. 
The total execution time for the BIST with an external 100 MHz clock is 2.739 seconds.  
The BIST has been downloaded, executed and verified on Virtex-4 FX12, SX35, and LX60 
devices and on Virtex-5 LX30T, LX50T, SX35T, and SX50T devices using both Boundary Scan 
and external clock and control.  Due to the differences in the configuration interfaces, Virtex-4 
and Virtex-5 produce different good circuit signatures, as reflected in Table 4.3.  Figures 4.7 and 
4.8 show the ICAP and Frame ECC BIST implemented in the smallest Virtex-4 (FX12) and 
Virtex-5 (LX20T) devices, respectively.  As can be seen in both figures, the BIST circuitry easily 
fits in programmable logic resources in the right hand half of the array.  This shows that the 
BIST can be implemented in all other Virtex-4 and Virtex-5 devices, all of which have larger 
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arrays than those illustrated in Figures 4.7 and 4.8.  The target configuration frame areas that 
should be avoided by constraining the design placement are also illustrated in the figures. 
 
 
Figure 4.7:  Virtex-4 FX12 with ICAP/Frame ECC BIST 
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Figure 4.8:  Virtex-5 LX20T with ICAP/Frame ECC BIST 
Table 4.3 summarizes the actual implementation of BIST circuitry in Virtex-4 and 
Virtex-5 FPGAs. This includes the number of slices occupied by the BIST circuitry, the number 
of lines of VHDL code for the complete BIST circuit, and the total test time (excluding initial 
configuration time) at the maximum operating frequency of 100 MHz.  The primary reason for 
the difference in the number of logic slices is due to the fact that Virtex-5 incorporates four 6-
input LUTs and four flip-flops per slice while Virtex-4 slices incorporate only two 4-input LUTs 
and two flip-flops.  As a result, a Virtex-5 slice has twice the logic of a Virtex-4 slice ? hence, 
Virtex-4 requires at least twice the number of slices.  The smaller LUTs in Virtex-4 account for 
the additional slices.  The 32-bit good circuit signatures for the Frame ECC and ICAP modules 
are also included in Table 4.3. 
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Table 4.3:  ICAP and Frame ECC BIST summary 
 Virtex-4 Virtex-5 
# of logic slices 2546 1010 
# lines of VDHL 1125 1125 
Total test time 2.739 sec. 2.739 sec. 
Frame ECC signature 0x9BC92CDB 0x969C47DD 
ICAP signature 0xB3FFB18B 0x31D989BD 
 
4.6  Conclusions 
This chapter has presented a BIST approach for the ICAP and Frame ECC modules in 
Virtex-4 and Virtex-5 FPGAs.  These modules are critical components used for SEU detection 
and correction in the configuration memory of FPGAs for space and fault-tolerant applications.  
The BIST approach was developed in VHDL and is applicable to all Virtex-4 and Virtex-5 
devices, and the only overhead is the memory required to store the BIST configuration and 
downtime for the test application.  The total test time is independent of the size of the FPGA.  
However, when using compressed configuration bitstream files, the download time can vary with 
the size of the FPGA depending on the physical constraints applied during synthesis.  The BIST 
can be periodically downloaded and executed in systems which rely on the Frame ECC and 
ICAP logic for on-line detection and correction of SEUs to guarantee the fault-free operation of 
these resources.  The approach has been implemented, downloaded, and verified on a variety of 
Virtex-4 and Virtex-5 devices. 
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Chapter Five.  Embedded Processor Based Fault Injection and SEU Emulation for FPGAs 
Two embedded processor based fault injection case studies are presented which are 
applicable to Field Programmable Gate Arrays (FPGAs) and FPGA cores in configurable 
System-on-Chip (SoC) implementations.  The case studies include embedded hard core and soft 
core processors which manipulate configuration memory bits to emulate physical and transient 
faults in the FPGA core including shorts and opens in programmable interconnect and many 
different faults in logic resources.  The emulated faults are used to evaluate fault detection 
capabilities of Built-In Self-Test (BIST) approaches, including fault identification capabilities of 
diagnostic procedures, and to evaluate the effect of Single Event Upsets (SEUs), including their 
detection and correction.  Embedded processor based approaches provide significant 
improvement over previous fault injection techniques and, in turn, enable a more thorough 
analysis of BIST, diagnosis, and SEU mitigation. 
5.1  Introduction and Background 
There are a number of Field Programmable Gate Array (FPGA) applications that can 
make use of the presence of physical faults.  These applications include Built-In Self-Test 
(BIST) of the FPGA itself [1], some fault-tolerant design techniques [2], and Single Event Upset 
(SEU) detection/correction techniques for FPGA configuration memories [3].  These 
applications target FPGA devices as well as FPGA cores in configurable System-on-Chip (SoC) 
implementations.  Verification, analysis, and evaluation of these applications can be performed 
with the ability to inject or emulate physical faults in the FPGA. 
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It is difficult to find actual faulty devices and their usefulness is limited due to the fixed 
nature of the fault [1].  Physical faults can be created by etching the packaged device and 
creating opens in routing resources that lie at the top level of interconnect metal for example, but 
once again the usefulness of these devices is limited.  A more efficient approach is to manipulate 
the configuration memory bits to emulate physical faults in the device [4].  For example, a stuck-
at fault in a look-up table (LUT) bit can be emulated by overwriting the particular configuration 
memory bit and setting it to the desired stuck-at fault value.  SEUs on the other hand can be 
emulated by flipping the value of bits in the configuration memory.  Shorts and opens in the 
interconnect network can be emulated along with almost any fault in the logic resources that can 
be controlled by configuration memory bits.  When downloading the intended system 
configuration, the faults to be emulated can be injected in the configuration data just prior to the 
actual download process [1].  Alternatively, the intended configuration can be downloaded with 
subsequent partial reconfiguration used to inject and emulate the fault. 
One of the first FPGA applications to use fault injection emulation was hardware 
acceleration techniques for fault simulation [4].  However, the download time for fault injection 
detracted from the hardware acceleration to the extent that the manipulation of configuration bits 
was abandoned and replaced by fault emulation circuitry that was modeled and downloaded with 
the circuit to be simulated [5][6].  The overhead of the additional fault emulation circuitry and its 
associated routing was significant but acceptable in the case of fault simulation [7].  The 
additional circuitry and routing was not acceptable in the case of BIST approaches since the goal 
was to maximize the resources under test in any given configuration such that there are no 
remaining resources available to emulate faults.  As a result, fault injection via configuration 
memory bit manipulation has been used extensively to debug, verify, and analyze development 
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of BIST configurations and diagnostic procedures for FPGAs [1][8].  Similarly, analysis of the 
affects of SEUs [3] as well as SEU detection and correction in FPGA configuration memories [9] 
can use manipulation of configuration memory bits and has been shown to be effective in 
emulating 97% of the SEUs induced and observed in radiation chamber experiments [3]. 
In this chapter, we present two case studies of embedded processors used to manipulate 
FPGA configuration memory bits for FPGA BIST and SEU detection/correction applications.  
The first case study uses a hard core embedded processor that has dedicated program and data 
memories with write access to the configuration memory of an FPGA core in a configurable 
SoC.  In this case study, described in Section 5.2, the device is the Atmel AT9K series Field 
Programmable System Level Integrated Circuit (FPSLIC).  The second case study uses a soft 
core embedded processor in an FPGA for manipulation of configuration memory bits via an 
internal configuration access port (ICAP).  The soft core processor is downloaded with the 
application to be injected with faults.  In this case study, described in Section 5.3, the devices 
include Xilinx Virtex-4 and Virtex-5 FPGAs.  Each case study includes an overview of the 
device architectures, description of the fault injection emulation technique, and experimental 
results of the actual implementation.  The chapter is summarized and concludes in Section 5.4. 
5.2  Hard Core Processor Case Study 
The Atmel AT94K series configurable SoC consists of an FPGA core, various RAM 
cores, and an 8-bit Advanced Virtual RISC (AVR) microcontroller core as shown in Figure 5.1 
[10].  Three types of memory resources include [10]: 1) many small 32?4-bit RAMs distributed 
throughout the FPGA core, 2) a 4-Kbyte to 16-Kbyte dual-port data RAM shared by AVR 
microcontroller and the FPGA core, and 3) a 20-Kbyte to 32-Kbyte program memory accessible 
only by the AVR microcontroller and used for storing machine code. 
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The AVR core is an 8-bit RISC architecture with 32 general purpose registers including a 
number of peripherals like watchdog timer, UART, etc [10].  There are two 8-bit bi-directional 
general purpose I/O ports.  An 8-bit bi-directional data bus between the FPGA and AVR 
(controlled by the AVR) provides communications between the two cores.  Whenever 8-bit data 
is written to (or read from) the data bus by the AVR, a strobe signal to the FPGA core is 
generated on FPGAIOWE (or FPGAIORE) along with one of 16 decoded select lines to the 
FPGA.  There are four external interrupts to the AVR along with 16 interrupts from the FPGA. 
 
Figure 5.1:  AT94K series SoC architecture 
The FPGA core is constructed as a symmetrical N?N array of programmable logic blocks 
(PLBs), where N=48 for the AT94K40 device (the largest AT94K series SoC) [10].  Each PLB 
contains two 3-input LUTs, a D flip-flop, and additional multiplexers/gates.  Every PLB has 
dedicated diagonal (X) and orthogonal (Y) local routing resources to its neighboring PLBs, as 
shown in Figure 5.2a [10].  As shown in Figure 5.2b, the vertical and horizontal global routing 
resources associated with each PLB traverse a total of four PLBs (?4 lines) and eight PLBs (?8 
lines).  Vertical and horizontal bus repeaters are placed at the boundaries of every 4?4 array of 
PLBs (shown in Figure 5.2c for the horizontal bus) to prevent signal degradation in lengthy 
and/or heavily loaded signal nets.  The repeaters also facilitate connections between ?4 and ?8 
lines as seen in Figure 5.2d. 
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Figure 5.2:  AT94K routing architecture 
The AVR microcontroller core can write to (but not read from) the FPGA core 
configuration memory such that the FPGA can be dynamically reconfigured (either fully or 
partially) by the AVR core during normal system operation [10].  The FPGA configuration 
memory access is via a 24-bit address bus and 8-bit data bus.  The address bus is partitioned into 
three 8-bit components referred to as FPGAX, FPGAY, and FPGAZ.  FPGAX and FPGAY 
correspond to horizontal and vertical location of the programmable resource in the array while 
FPGAZ corresponds to specific logic/routing resources within the specified programmable 
resource.  A write to the 8-bit data bus, FPGAD, results in a write cycle to a byte of the FPGA 
configuration memory. 
Sets of BIST configurations were developed to test the various programmable resources 
in the FPGA core including PLBs, RAMs, and the programmable interconnect network with 
horizontal and vertical repeaters [11].  During the verification and analysis of the sets of BIST 
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configurations, every configuration bit associated with the specified resource under test was 
injected in turn with a stuck-at-0 fault and a stuck-at-1 fault.  For each fault injected, the BIST 
configurations that target that resource were applied (with the injected fault present).  The BIST 
results indicate which BIST configurations, if any, detected the emulated fault.  Because of the 
large number of faults to be emulated (twice the number of configuration bits) for each BIST 
configuration, injecting the faults in the configuration download file prior to each download 
takes considerable time as indicated by the ?download run time? in Table 5.1.  Note that bank 
clock and set/reset lines are associated with the vertical repeaters, hence, the larger number of 
configuration bits when compared to the horizontal repeaters and associated routing. 
Table 5.1:  Embedded fault injection run time analysis for AT94K40 
Resource BIST Configs Config Bits Total Faults Download Run Time Processor Run Time 
PLB with 
flip-flops 8 81 162 
4 hr 
29 min 
4 min 
34 sec 
Vertical 
Repeaters 20 71 142 
3 hr 
55 min 
4 min 
1 sec 
Horizontal 
Repeaters 20 65 130 
3 hr 
36 min 
3 min 
40 sec 
Free RAM 3 4 8 13 min 14 sec 
 
BIST configurations can also be generated and executed by the embedded AVR 
processor [11].  In this case, fault injection emulation is somewhat more difficult since the 
processor core has write-only access to the FPGA configuration memory.  If the processor core 
could also read the configuration memory, it could perform a read-modify-write (RMW) 
operation to inject a fault at any desired configuration memory bit.  With write-only access, one 
must also know the normal BIST configuration data for each configuration memory byte in order 
to inject a single fault without disturbing the other seven bits of configuration data; otherwise, we 
could be injecting eight faults at a time.  When the embedded processor is generating the BIST 
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configuration, the information is contained within that resident program.  As a result, the fault 
injection emulation can more realistically be performed from the embedded processor, although 
the development effort is greater without the RMW capability.  Table 5.1 gives the run time 
when using the embedded processor core to perform fault injection emulation along with the 
BIST configuration generation and execution.  A speed-up of almost a factor of 60 is obtained 
when the embedded processor core performs the fault injection emulation analysis including 
BIST configuration generation, BIST sequence execution, and BIST results retrieval. 
5.3  Soft Core Processor Case Study 
The configuration memories of Virtex-4 [12] and Virtex-5 [13] FPGAs are partitioned 
into frames, where each frame has a fixed length of 1,312 bits, or forty-one 32-bit words.  A 
frame is the smallest addressable segment of the configuration memory; therefore all memory 
write/read operations must be performed on whole frames.  In Virtex-4 devices, a frame contains 
the configuration data for 16 rows of configurable logic blocks (CLBs) and input/output (I/O) 
tiles, or four rows of block random access memories (RAMs) and digital signal processors 
(DSPs) tiles in the same column [12].  In Virtex-5 devices, a frame covers 20 rows of CLBs and 
I/O tiles or five rows of block RAMs and DSPs tiles [13].  This means that individual FPGA 
resources cannot be reconfigured without also providing explicit configuration data for other 
FPGA resources that occupy the same frame. 
Virtex-4 and Virtex-5 FPGAs incorporate several configuration registers to provide 
write/read access to the configuration memory.  The Frame Address Register (FAR) stores the 
memory address to/from which frame data is written/read.  The Frame Data Register Input 
(FDRI) and Frame Data Register Output (FDRO) registers facilitate input/output data to/from the 
configuration memory.  There are other registers such as the status (STAT) register, the cyclic 
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redundancy check (CRC) register, and the command (CMD) register which stores the next 
register operation to perform such as ?Write FAR? or ?Read FDR0?.  To write/read to/from the 
configuration memory, a combination of these registers must be used.  These registers are 
accessible from both Boundary Scan and SelectMAP configuration interfaces as well as the 
internal configuration access port (ICAP) located in, and accessible from, the FPGA fabric. 
Emulated SEUs, or faults injected for BIST, require the reconfiguration of a single 
configuration memory bit after system configuration, or each BIST configuration, is 
downloaded.  Furthermore, the contents of the frame, which configure multiple rows of 
resources, must be preserved during reconfiguration for emulated SEU/fault injection.  Our 
approach takes advantage of partial reconfiguration and read back capabilities of Virtex-4 and 
Virtex-5 FPGAs to implement RMW for bit-level partial reconfiguration. 
5.3.1  Overview of Approach 
The basic approach begins with locating the frame containing the target bit for fault or 
SEU emulation.  The frame is read in its entirety and stored.  Next, the target bit is located within 
the frame, and overwritten with the desired stuck-at value in the case of a fault.  This approach 
also supports emulation of SEUs by simply inverting the target bit.  Finally, the modified frame 
is written back to the same location in the configuration memory from which it was read.  
Optionally, a subsequent read back of the frame can be used to verify the frame RMW results.  
The frame address and index of the bit targeted for fault/SEU emulation are stored in a list of 
faults/SEUs to be emulated.  For each fault in the list, the BIST configuration is downloaded, 
executed with the fault on the device, and the results retrieved.  If any of the output response 
analyzers (ORAs) record a failure, indicating a faulty block under test (BUT), the fault has been 
detected [9].  However, most tests of a specific FPGA resource require multiple BIST 
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configurations to test its programmability and achieve high fault coverage.  Given N BIST 
configurations and M faults in the fault list, the total number of downloads, executions, and 
retrievals of BIST results is N?M.  The main reason why this many downloads are required is 
that there is no way to reset the ORAs once a fault is detected such that failures are latched until 
a new configuration is downloaded.  Partial reconfiguration can be used to reduce download 
time, but it does not reset the ORAs between two consecutive BIST configurations.  Therefore, 
once a fault is detected, the ORAs return failure indications for the remaining BIST 
configurations that may not detect the fault.  Even though ORA failure indications imply a fault 
was detected, it is not clear which configuration detected the fault for proper evaluation. 
Since the BIST approach pseudo-exhaustively tests multiple identically configured 
BUTs, the fault coverage in one BUT may be assumed to be the overall fault coverage for all 
BUTs.  This assumption greatly reduces the number of faults, M, that need to be emulated to 
obtain accurate fault coverage.  For example, consider Figure 5.3, which shows the simulated 
individual and cumulative single stuck-at fault coverage for our BIST configurations for Virtex-5 
CLBs in SliceL mode of operation.  The simulation results are based on gate-level models of the 
CLB.  The simulation results show that six BIST configurations are required to cumulatively 
detect 100% of single stuck-at faults in the CLB in SliceL mode of operation.  However, as 
discussed in [14], the SliceL configurations must be applied twice such that every CLB serves 
both as a BUT and an ORA. 
A total of 3,006 collapsed stuck-at faults were found for the SliceL and another 8,462 
faults for SliceM, all of which were cumulatively detected in fault simulation.  These 
comprehensive fault lists include all faults affecting the CLB, including configuration memory 
bit stuck-at faults.  Therefore, by using fault injection to emulate a subset of the complete fault 
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list (specifically, those faults affecting the configuration memory bits), both the quality of the 
BIST configurations and the accuracy of the gate-level fault simulation models can be gauged.  
Less than 100% fault coverage from fault injection would suggest inaccuracies in the simulation 
model and potentially lower fault coverage than the fault simulations suggest.  Of the 3,006 
faults in the SliceL, 614 represent configuration memory bit stuck-at faults.  These faults were 
emulated using the RMW approach previously described, with results shown in Figure 5.4.  
Using fault injection, 100% of the configuration memory bit faults affecting the SliceL mode of 
operation were detected, confirming the simulation results in Figure 5.3.  Furthermore, the 
similarity of the fault coverage trends in Figures 5.3 and 5.4 helps to verify the accuracy of 
simulation models. 
The biggest drawback of prior fault injection approaches is the large number (N?M) of 
downloads required to emulate a sufficient sample of configuration memory bit faults.  To obtain 
the results shown in Figure 5.4, a total of 614?6 = 3,684 downloads, fault injections, BIST 
executions, and results retrievals were required.  Additionally, any revision to a BIST 
configuration requires the complete fault list be run again to ensure that the modified 
configuration does not jeopardize fault detection capabilities.  The total time required for fault 
injection can be calculated by multiplying the test time for the set of BIST configurations by the 
number of faults in the fault list.  Figure 5.5 shows the total test time for the set of all CLB BIST 
configurations using compressed downloads via a 50MHz Boundary Scan interface.  Consider 
the set of CLB BIST configurations for the mid-sized LX50T, which requires 3,147 ms using the 
50 MHz Boundary Scan interface from Figure 5.5.  For the complete list of 698 configuration 
memory bit faults (which includes SliceM mode configuration bits), the fault injection time is 
698?3.147 = 2,197 seconds.  The more realistic fault injection time that we experienced, using a 
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333 kHz PC parallel port interface to Boundary Scan, was approximately 150?2,197 = 81,666 
seconds, or 91.53 hours.  This lengthy application time prompted us to develop the embedded 
soft core processor based fault injection approach which greatly improves the test time by both 
increasing the achievable configuration interface frequency and by increasing the configuration 
interface word size using the ICAP. 
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Figure 5.3:  SliceL simulation stuck-at fault coverage 
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Figure 5.4:  SliceL fault injection stuck-at fault coverage 
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Figure 5.5:  Total CLB test time via Boundary Scan 
The ICAP provides access to configuration registers and the configuration memory 
internally from the FPGA fabric.  The ICAP works like the external SelectMAP interface except 
that it has separate 32-bit write and read buses, as opposed to a bidirectional 32-bit bus.  The 
maximum operating frequency of the ICAP is 100 MHz, and it supports 8-bit, 16-bit, and 32-bit 
word sizes [12][13].  Every device includes two ICAPs; however, both ports can not be used 
simultaneously.  A configuration bit in the configuration interface control register selects 
between the upper and lower ICAPs.  The basic idea of an embedded fault/SEU emulation 
approach is to embed all of the logic required for frame RMW operations in the FPGA with the 
BIST or SEU controller configuration, using the ICAP to access the configuration memory.  The 
benefit of embedded fault/SEU emulation approach is a minimum 32 times speed up over the 
external Boundary Scan configuration interface operating at the same frequency.  In addition, 
configuration frequencies of 100 MHz are achievable within the FPGA fabric. 
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5.3.2  Architecture and Operation 
In our embedded fault/SEU emulation approach, a configuration containing both the 
BIST and SEU controller architecture and some additional logic is downloaded to the device.  A 
list of fault/SEU sites (configuration memory address and bit indexes) is loaded into the 
embedded fault/SEU emulation logic in the FPGA either with the download or via an external 
interface after download.  The embedded system proceeds by reading the configuration frame 
containing the first fault/SEU site.  The frame is temporarily stored in the FPGA fabric while the 
target bit is located and the fault/SEU injected.  Next, the frame is written back into the 
configuration memory and the BIST is allowed to execute as normal.  When the BIST has run to 
completion, a single-bit pass/fail result for the configuration is stored.  Normally, using the 
external interface, the BIST would proceed to the next configuration.  However, the embedded 
logic can correct the previously injected fault, reset the ORAs, and then inject the next fault in 
the fault list, as can be seen in the flowchart in Figure 5.6.  This approach has been implemented 
in Virtex-4 and Virtex-5 FPGAs.  The implementation is discussed in the remainder of this 
section. 
 
Figure 5.6:  Frame read-modify-write flowchart 
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The embedded fault/SEU emulation core is entirely implemented in CLBs and two block 
RAMs in the FPGA fabric.  A central component of the architecture is the dual port 18-kbit 
block RAM.  Block RAMs have two independently configurable read and write ports (A port and 
B port); only the stored data is shared [12][13].  One block RAM is used to temporarily store 
frames during the RMW procedure.  To accomplish the RMW, the B port is configured for 32-bit 
reads/writes and the B port input data bus is connected directly to the ICAP 32-bit data output 
bus.  The B port data output bus is connected to the ICAP inputs via a 32-bit 2-to-1 multiplexor.  
A frame read is initiated at the configuration memory frame address specified by the current fault 
and as the frame is read it is stored in the first forty-one 32-bit words in the block RAM.  Next, 
the A port, configured for 1-bit read/write operations, is used to locate the target bit in the 
location specified by the fault list entry.  In the case of a stuck-at 1/stuck-at 0 fault, a 1/0 is 
written at the specified bit.  However, for SEU emulation, the contents of the specified bit 
address are read, inverted, and then written back to the same address.  Finally, the modified 
frame is written back to the same address from which it was read via the 32-bit B port output 
data bus. 
The fault list is stored in a second dual-port 18-kbit block RAM.  The block RAM is 
configured with independent 512?36-bit read and write ports.  The write port is connected to a 
Boundary Scan user access register with some additional logic for controlling the address bus; 
namely, a 32-bit shift register and address counter.  The read port output bus of the block RAM 
is connected to the embedded fault/SEU injection logic and state machine.  This block RAM 
structure allows a fault list to be written into the block RAM after the device is configured, and 
the list is immediately accessible by the fault/SEU injection logic and state-machine.  However, 
the block RAM contents can also be initialized with a fault list in the VHDL model, eliminating 
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the need to shift in the fault list via the Boundary Scan user access register.  The block RAM is 
capable of storing up to 512 faults. 
The core must be capable of facilitating any length fault list up to the maximum of 512 
faults.  Therefore, an end-of-file delimiter is required.  Each 32-bit word in the block RAM has 
four parity bits which we use to store the file delimiters as well as control bits for stuck-at faults 
and bit-flips (SEU emulation).  The ability to inject multiple faults simultaneously is also 
desirable.  This requires the inclusion of a ?pause? delimiter in addition to the ?end-of-file? 
delimiter.  Our solution is to use the two least significant bits of the parity word to encode the 
fault type (stuck-at 1, stuck-at 0, or bit-flip) and to use the two most significant parity bits to 
store delimiters.  The encoding scheme for these bits is shown in Table 5.2, and the overall fault 
list format for the 32-bit data word and 4-bit parity word is shown in Table 5.3. 
Table 5.2:  Parity bit encoding, where X = don?t care 
Parity[3:2] Description Parity[1:0] Description 
00 Continue to next fault 00 Stuck-at zero 
01 Pause at fault 01 Stuck-at one 
1X End-of-file (EOF) 1X Bit-flip (SEU) 
 
Table 5.3:  Embedded fault list format 
35:34 33:32 32:21 20:0 
Delimiters Fault Code Bit Index Frame Address 
 
The other significant component of the architecture is a 40?256-bit ROM implemented in 
LUTs in the FPGA fabric.  This ROM is used to store all 32-bit ICAP instructions required for 
the frame RMW process.  Another eight control bits control the ICAP write and clock enable 
inputs, and serve as inputs to the state machine logic.  Instructions are stored in the ROM in the 
order in which they are written to the block RAM such that the block RAM may be sequentially 
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addressed to initiate new frame reads and writes.  The two block RAMs, instruction ROM, and 
ICAP are connected by an assortment of glue logic, including the large 32-bit 2-to-1 multiplexor.  
A block diagram of the overall embedded fault/SEU injection core appears in Figure 5.7.   
 
Figure 5.7:  Block diagram of fault injection core 
5.3.3  Implementation Results 
The total number of slices used in Virtex-4 and Virtex-5 FPGAs is shown in Table 5.4.  
The primary reason for the difference in the number of logic slices is due to the fact that Virtex-5 
incorporates four 6-input LUTs and four flip-flops per slice while Virtex-4 slices incorporate 
only two 4-input LUTs and two flip-flops.  As a result, a Virtex-5 slice has twice the logic of a 
Virtex-4 slice ? hence, Virtex-4 requires at least twice the number of slices.  The smaller LUTs 
in Virtex-4 account for the additional slices. 
Table 5.4:  Embedded fault injection core resources 
Attribute Virtex-4 Virtex-5 
# lines of VHDL ~950 ~950 
# block RAMs 2 2 
# slices 228 67 
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The entire embedded fault/SEU emulation core is modeled in VHDL.  For VHDL-based 
designs to be faulted, the fault/SEU emulation core may be instantiated in the top level of the 
design and synthesized with the intended system function to be faulted.  Our BIST 
configurations are not modeled in VHDL, and in this case the fault injection core is added later 
in the design flow.  Because our BIST configurations are modeled in Xilinx Design Language 
(XDL), the fault/SEU emulation core is synthesized and converted to XDL.  The XDL of the 
embedded core and the BIST can then be combined and the design flow continued.  In either 
case, it will be necessary to constrain the placement of the design to an area of the FPGA not 
targeted for fault injection.  For example, if the fault injection core is embedded with a block 
RAM BIST configuration [15], the two fault injection core block RAMs must be constrained to 
an area of the device away from the BIST configuration.  Furthermore, the fault list must not 
contain the address of fault sites located in the embedded fault/SEU emulation core?s block 
RAMs.  If any configuration memory frame addresses in the fault list happen to correspond with 
any of the embedded core?s resources, the core could overwrite a bit controlling the functionality 
of its own resources, resulting in likely failure.  An example of a properly constrained design is 
shown in Figure 5.8.  In the figure, a partial array of test pattern generators ORAs and CLBs 
under test is placed in the left half of the device with the embedded fault injection core is 
constrained to the right half of the device.  The embedded fault injection core is loaded with fault 
addresses residing only in the left half of the array. 
The component declaration for the embedded fault/SEU injection core is shown in Figure 
5.9.  There are two primary inputs and two primary outputs for the model, as well as a generic 
which specifies the device.  It should be noted that the Boundary Scan access to the fault list 
block RAM is embedded in the VHDL model, so these I/O do not appear in the top level 
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component declaration.  While the top level component declaration is identical for Virtex-4 and 
Virtex-5, we maintain separate VHDL models for Virtex-4 and Virtex-5 because of some minor 
architectural differences between the device families.  First, before writing to the configuration 
memory, a device ID check must be performed by writing the correct device ID to the IDCODE 
register.  (This prevents accidental configuration with a bitstream formatted for another device.)  
The device IDs are kept in a LUT specific to Virtex-4 or Virtex-5 and are synthesized with the 
design as a constant; all Virtex-4 and Virtex-5 devices are supported.  The generic device in the 
top level model is used to locate the correct device ID in the VHDL LUT.  Second, the frame 
address register is formatted differently for Virtex-4 and Virtex-5, requiring small changes in the 
ordering of the fault list block RAM data output bus.  Finally, the input/output ordering for the 
ICAP in Virtex-5 is byte-swapped, compared to Virtex-4 ICAP. 
 
Figure 5.8:  Routed embedded fault inject core (right) with half-array of routed CLB BIST (left) 
in Virtex-5 LX20T 
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Table 5.5:  Fault/SEU injection core I/O descriptions 
Name Direction Description 
CLK Input Clock input up to 100MHz (ICAP max) 
GO Input Digital 1-shot input asserted to start injection of 1 or more faults separated by ?pause? delimiters. 
PAUSED Output Asserted to indicate injection of 1 or more faults separated by ?pause? delimiters is complete. 
EOF Output End-of-file asserted when end of fault list is reached. 
 
 
Figure 5.9:  Fault inject core component declaration 
The details of the primary inputs and outputs of the embedded core are summarized in 
Table 5.5.  The normal embedded fault injection process with a free running system clock (up to 
100 MHz) is as follows:  (1) Download BIST configuration with embedded fault injection core.  
(Optionally load fault list via Boundary Scan user access register).  (2) Toggle the GO input.  
Fault injection begins and runs to completion or until a ?pause at fault? is encountered.  (3) 
Monitor the PAUSED and EOF outputs.  When PAUSED is asserted, execute the BIST 
configuration and record results.  Repeat steps 2 and 3 until both PAUSED and EOF are asserted, 
then go to step 4.  (4) Execute the BIST for a final time and record results.  The end of fault file 
is reached and fault injection is complete. 
The embedded fault injection core has been verified on Virtex-4 and Virtex-5 devices.  
The core was initially verified by synthesizing only the core, loading a fault list, and executing 
the fault injection.  To verify the injection of faults and bit-flips, the contents of the configuration 
memory were read back via the Boundary Scan interface and compared line-by-line to the 
component fltinject is 
generic(DEVICE : string(1 to 6):="LX110T"); 
port(       GO : in std_logic; 
           CLK : in std_logic; 
           EOF : out std_logic; 
        PAUSED : out std_logic); 
end component fltinject; 
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original configuration download file.  The core is capable of injecting stuck-at faults and SEU 
bit-flips anywhere in the configuration memory except block RAM contents.  It is possible, 
however, to modify the architecture to support injection of faults in block RAM contents.  
Transient faults can be emulated by back-to-back SEU bit-flips such that the fault exists for a 
minimum of 3 ?s - the minimum RMW time for a single frame.  By incorporating two back-to-
back bit-flips with a ?pause? delimiter, the user can control a transient fault for longer periods. 
5.4  Summary and Conclusions 
We have presented case studies for two embedded processor approaches for SEU and 
fault injection emulation in FPGA and FPGA cores in reconfigurable SoCs.  In the first case, a 
dedicated hard core processor was used to inject emulated faults in the FPGA core configuration 
memory via a write-only interface.  The lack of read access to the configuration memory 
increased the development effort and difficulty for use in the evaluation and analysis of BIST 
configurations for the FPGA.  In the second case, a soft core processor was developed which was 
capable of read-modify-write access to the FPGA configuration memory.  This facilitates the 
emulation of single and multiple stuck-at faults as well as bit-flipping for emulation of single and 
multiple SEUs.  Hence, the embedded SEU/fault emulation processor supports a wide variety of 
fault types with no download penalty for more efficient and thorough evaluation of BIST and 
SEU mitigation.  It should be noted that the fault injection is used in a fault-free device to 
analyze SEU detection/correction and BIST development and is not part of the manufacturing or 
system-level operation or test. 
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Chapter Six.  Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs 
This chapter presents the first implementation of Built-In Self-Test (BIST) of Field 
Programmable Gate Arrays (FPGAs) using a soft core embedded processor for reconfiguration 
of the FPGA resources under test, control of BIST execution, retrieval of BIST results, and fault 
diagnosis. The approach was implemented in Xilinx Virtex-5 FPGAs but is applicable to any 
FPGA that contains an internal configuration memory access port 
6.1  Introduction 
Built-In Self-Test (BIST) for Field Programmable Gate Arrays (FPGAs) exploits the re-
programmability of FPGAs to create BIST circuitry in the FPGA fabric during manufacturing 
and system-level off-line testing [1]. The only overhead is the external memory required to store 
the BIST configurations along with the time required to download and execute the BIST. No area 
overhead or performance penalties are incurred in the user function because the BIST logic is 
replaced by the intended system function after testing is complete. The BIST configurations are 
applicable to all levels of testing because they are independent of the intended system function 
and require no specialized external test fixture or equipment. Most research and development in 
BIST for FPGAs has focused on reducing the number of test configurations, reducing the size of 
test configuration files, and decreasing BIST execution time [2]-[8]. But the ever increasing 
complexity and level of integration in FPGAs has, with few exceptions, resulted in longer test 
times, more downloads, and more memory required for storing BIST configurations for each 
new generation of FPGA. However, the increasing size and complexity of FPGAs have also 
created opportunities for innovation in FPGA testing. 
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This chapter presents the first implementation of BIST for FPGAs using a soft core 
embedded processor synthesized into the fabric of the FPGA under test. The approach reduces 
the number of configuration files required for BIST by exploiting the regularity of BIST 
structures to significantly compress and store partial configuration data in the embedded 
processor?s program memory. The embedded processor controls and executes the BIST 
sequence, including retrieval and analysis (fault diagnosis) of BIST results, and reconfiguration 
of the FPGA for subsequent BIST configurations. This embedded processor based BIST 
approach is possible for two reasons: first, the growing size and complexity of FPGAs facilitates 
the inclusion of complex circuitry that only occupies a small percentage of the total configurable 
resources, leaving adequate area for BIST logic; and, secondly, the ability to access the 
configuration memory from inside the FPGA fabric has made possible internal reconfiguration 
and read back. The approach has been successfully implemented in Xilinx Virtex-5 but is 
applicable to any FPGA with internal configuration memory access. 
6.2  Background 
A number of BIST approaches have been developed for the configurable logic and 
memory resources in FPGAs [1]. Due to the programmable nature of resources to be tested, all 
BIST approaches for FPGAs require multiple configurations in order to obtain high fault 
coverage. Generally, a BIST approach is organized into test sessions and phases [2]. Each test 
session consists of a set of test phases (test configurations) for a particular resource under test in 
order to test that resource in all modes of operation. For example, BIST of configurable logic 
blocks (CLBs) requires two test sessions. In the first test session, half of the CLBs are configured 
as blocks under test (BUTs), with the remaining half serving as comparison-based output 
response analyzers (ORAs) and test pattern generators (TPGs). In recent CLB BIST approaches, 
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the TPGs are implemented in non-CLB resources freeing CLBs to function as additional ORAs 
such that circular comparison can be implemented, as illustrated in Figure 6.1, where the outputs 
of each BUT in a row or column are monitored by two ORAs and compared to the outputs of 
two other identically configured BUTs [1]. This circular comparison in conjunction with 
multiple identically configured TPGs provides high diagnostic resolution with low probability of 
fault escape [1]. In the second test session, the positions of the BUTs and ORAs are swapped, 
such that every CLB is configured as a BUT in one test session and as ORA in the other test 
session. 
 
Figure 6.1:  Configurable logic block (CLB) BIST architecture 
BIST control, including downloading the initial BIST configuration, executing the BIST 
sequence, retrieval of results, fault diagnosis based on failing results, and reconfiguration of 
subsequent BIST phases, has traditionally been achieved via interface to an external BIST 
controller. However, the increased complexity of FPGAs, large number of test configurations 
associated with various programmable resources, and speed limitations of external download 
interfaces result in long manufacturing test times and limit practicality of system-level testing. 
Various approaches have been investigated to reduce the overall test time while achieving high 
quality tests. Beyond minimizing the number of test phases, partial reconfiguration reduces test 
time by reconfiguring only the resources under test for various modes of operation once the 
TPG TPG 
BUT 
ORA 
TPG 
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overall test structure has been downloaded into the device. BIST configurations that have been 
recently developed for Virtex-4 and Virtex-5 FPGAs include a single-bit pass/fail output to 
eliminate retrieval of ORA contents for passing test phases or when fault diagnosis is not desired 
[5]-[8]. When failures are observed, partial configuration memory read back can be used to 
obtain the ORA contents to diagnose the faulty resource(s) for fault tolerant applications. Beyond 
these techniques, the only new development in FPGA BIST has been introduction of embedded 
processor based approaches. 
Prior work in embedded processor based BIST includes system-on-chip (SoC) testing 
with hard core microprocessors [9] but did not address testing of FPGAs or FPGA cores in SoCs. 
The first embedded processor based BIST approach for FPGAs was developed to minimize test 
time, number of downloads, and complexity of the external BIST controller by relocating BIST 
reconfiguration, control, and diagnosis to the dedicated hard core embedded processor in the 
Atmel AT94K series configurable SoC [3][4]. The device consists of an FPGA core, various 
RAMs, and an 8-bit Advanced Virtual RISC (AVR) microcontroller [10]. Sets of BIST 
configurations were developed to test each of the various programmable resources in the FPGA 
core including CLBs, RAMs, IOBs, and programmable routing network [3][4]. The embedded 
processor was used to configure the FPGA for each test session, execute the BIST sequence, 
retrieve BIST results from the ORAs, and perform diagnosis based on failing BIST results. This 
embedded processor based BIST approach achieved a total test time speed-up of about 43.5 over 
the tradition approach of downloading each BIST configuration [4]. External memory 
requirements for storing BIST configurations were reduced by a factor of about 158 because only 
a single program needed to be downloaded into the AVR program memory, from which all BIST 
configurations were generated and executed. 
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While this embedded processor based BIST approach was practical for system-level 
testing, the approach was developed specifically for AT94K devices such that application to 
other FPGAs is limited due to reliance on the hard core processor with dedicated program 
memory. Some hardcore processors (such as the PowerPC in Virtex-4 and Virtex-5 FX series 
FPGAs) do not have a dedicated program memory and must use programmable resources in the 
FPGA. Soft core processors, on the other hand, can be implemented in most FPGAs such that a 
soft core processor based approach would be applicable to a wider range and variety of FPGAs 
and applications. The primary requirement is that the FPGA include an internal configuration 
access port (ICAP) to provide processor access to the configuration memory. 
The configuration memories of Virtex-4 [11] and Virtex-5 [12] FPGAs are partitioned 
into frames, where each frame has a fixed length of 1,312 bits, or forty-one 32-bit words. A 
frame is the smallest addressable segment of the configuration memory; therefore all memory 
read/write operations must be performed on whole frames. This means that individual FPGA 
resources cannot be reconfigured without also providing explicit reconfiguration data for other 
FPGA resources that occupy the same frame. In Virtex-5, a frame contains the configuration data 
for 20 rows of CLBs and (I/O) tiles, or 5 rows of block RAMs and DSPs tiles in the same 
column. In Virtex-4, a frame contains configuration data for 16 rows of CLBs and I/O tiles, or 4 
rows of block RAMs and DSP tiles. 
Both Virtex-4 and Virtex-5 FPGAs include several configuration registers to access the 
configuration memory, including Frame Address Register (FAR), Frame Data Register Input 
(FDRI), and Frame Data Register Output (FDRO) which facilitate writing/reading data to/from a 
specific frame of configuration memory. There are other registers for functions such as status 
(STAT), cyclic redundancy check (CRC), command (CMD), etc. To access the configuration 
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memory, a combination of these registers must be used. These registers are normally accessible 
from both Boundary Scan and SelectMAP configuration interfaces but are also accessible via the 
ICAP located inside fabric. The ICAP works like the external SelectMAP configuration interface 
except that it has separate 32-bit write and read buses, as opposed to a bidirectional 32-bit bus. 
The maximum ICAP clock frequency is 100 MHz. 
6.3  Embedded BIST Architecture 
The soft core embedded processor based BIST approach for FPGAs incorporates 
additional logic in the FPGA fabric along with the BIST logic to perform tasks typically assigned 
to an external BIST controller or computer. The embedded BIST approach offers several 
advantages over the external BIST approach. First, the 32-bit ICAP configuration interface is 
used for reconfiguration, eliminating the test time penalties associated with the lower speed serial 
Boundary Scan interface. Secondly, the total number of external download configurations is 
reduced to one per test session. In addition, all control of the BIST configurations and sequences 
can be implemented in the embedded controller. Diagnostic procedures can also be performed by 
the embedded BIST controller, further reducing the complexity of the external BIST controller in 
fault tolerant applications and providing considerable speed-up when compared to Boundary 
Scan based read back and diagnosis. 
The implementation of the embedded processor BIST approach in Virtex-5 FPGAs 
incorporates elements of both hardware and software design to achieve an architecture that is 
general enough for any Virtex-5 device as well as for any BIST approach for the resources in 
Virtex-5 FPGAs. The design is applicable to any Virtex-5 device with only minor modifications 
to system software and no modifications to system hardware. Furthermore, the design can easily 
be extended to Virtex-4 devices for similar improvements in test time. To minimize the number 
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of external downloads per test session, the embedded processor based BIST hardware must fit in 
one half of the smallest supported device. The embedded processor core must also be capable of 
storing configuration data for all of the subsequent test phases for each test session in memory in 
the FPGA fabric using Block RAMs or distributed RAMs. Finally, the core must support 
interfaces for connecting with the ICAP and BIST circuitry. There are a variety of designs which 
can be used for the embedded processor ranging from fast, full-custom register transfer level 
(RTL) designs, to highly configurable general purpose soft core microprocessors. While RTL 
level designs are useful for simple repetitive tasks, this approach is not very efficient for 
supporting multiple device architectures of a variety of BIST approaches. Such an approach 
requires a different hardware configuration for each device and for each BIST session, which 
requires a significant amount of hardware development time when compared with other, more 
general purpose software based approaches. Another option is to use a general purpose processor 
in the form of a ?soft? intellectual property (IP) core. One of the simplest and most efficient 
general purpose architectures available for Xilinx FPGAs is the PicoBlaze 8-bit microcontroller 
[13]. The PicoBlaze occupies one block RAM and approximately 50 slices in Virtex-5 FPGAs ? 
much less than half of an array in the smallest Virtex-5 device. The PicoBlaze is supported by a 
simple assembler and software simulator. However, the program memory in the PicoBlaze is 
limited to 1024 stored instructions and scratch-pad memory is limited to 64 Bytes. The 8-bit 
architecture also creates timing penalties when interfacing with the 32-bit ICAP port because 
each ICAP write requires a minimum of four PicoBlaze instructions of two clock cycles each. To 
improve timing for ICAP operations, a 32-bit architecture is best for embedded BIST 
applications in Virtex-4 and Virtex-5 devices. One IP core that meets the requirement for a BIST 
controller is the MicroBlaze soft core processor, which is a highly configurable 32-bit general 
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purpose RISC microprocessor for Xilinx FPGAs [14]. The MicroBlaze also includes an optional, 
pre-engineered, interrupt driven ICAP hardware interface. The MicroBlaze can be configured 
with up to 64 kB of combined program and initializable data memory in Virtex-5 FPGAs that is 
implemented in the FPGA fabric in Block RAMs. The processor can be modified by the addition 
of custom peripherals on the processor local bus (PLB). These features led to selection of 
MicroBlaze as the embedded processor in our implementation. 
The basic architecture for the embedded processor BIST approach is illustrated in Figure 
6.2 for CLB BIST where half of the FPGA array is used for processor and additional hardware 
resources and the other half of the array contains the CLB BIST configuration. Custom memory-
mapped registers are included in the MicroBlaze VHDL model for interfacing with the BIST 
circuitry. The processor interfaces directly with the ICAP for reconfiguration of the BIST array 
and read back of BIST results. To test all CLBs in the FPGA, a second configuration is generated 
with locations of BIST logic and embedded processor swapped, as shown in Figure 6.2b. For 
some resources, such as I/O tiles or CRC modules, it is possible to test all of the resources 
simultaneously by placing the MicroBlaze around the BIST circuitry. 
One memory mapped write-only (WO) register, shown in Table 6.1, is included for 
control of the BIST circuitry and sequence. The outputs of the register are connected directly to 
inputs to the BIST logic, but not all of the register bits are utilized in any one BIST session. One 
read-only (RO) register, also shown in Table 6.1, is included at the same memory-mapped 
address as the output register. The inputs to this register are connected directly to outputs of the 
BIST logic. Each register is general enough to be applicable to all BIST configurations that have 
been developed for Virtex-5. 
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Because many BIST configurations must be executed for a different minimum number of 
clock cycles to achieve the intended fault coverage, there is the need for a hardware timer for 
BIST execution. Therefore, a 16-bit down counter is included in addition to the RO and WO 
BIST control registers. The counter is initialized by writing to the lower 16-bits of the BIST 
control register. The counter automatically counts down to zero, setting the cnt_eq bit when zero. 
The cnt_eq bit is used to enable the BIST logic and can be polled in software to determine when 
the BIST is complete. The counter clock and BIST clock can share the MicroBlaze clock or can 
be clocked independently at a higher clock frequency by connecting the BIST clock input and 
16-bit counter clock to an independent BIST clock source. 
 
 
Figure 6.2:  Embedded soft core processor based BIST architecture 
Table 6.1:  BIST control registers 
Write-only register Read-only register 
31:24 23:21 20 19 18 17 16 15:0 31:3 2 1 0 
control reserved done reset start tdi clk_en cnt_init reserved (read as 0) cnt_eq BIST_done tdo 
 
 
 
(a) session #1 (b) session #2 
BIST Area 
MicroBlaze Soft core Processor 
WO Register RO Register ICAP 
RO Register WO Register ICAP 
MicroBlaze Soft core Processor 
BIST Area 
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6.4  Software Development 
One important feature of this BIST approach stems directly from the generality of the 
embedded processor. Namely, that only the software changes from one BIST session to the next; 
the hardware remains unchanged for any and all BIST sessions. The software can be efficiently 
constructed in a manner that exploits the regularity of BIST configurations, and only the code for 
a particular BIST session need be compiled and programmed in the MicroBlaze program 
memory since a new download is performed at the start of each test session. Each BIST for a 
specific resource is composed of a set of phases, with each phase corresponding to a 
reconfiguration of the resources under test. Each phase comprises writes of entire set of frames 
of data to configuration columns that control the resources under test. Therefore, only certain 
portions of the partial reconfiguration files must be stored because the array-half, row, and 
column locations of the resources under test can be determined algorithmically based on the 
particular device in which BIST is implemented. The algorithm for the embedded BIST 
reconfiguration process is shown in Figure 6.3. The algorithm for frame address generation using 
multi-frame write operations, given configuration row and destination minor address for frame 
data previously written to FDRI, is also shown in Figure 6.3. 
No modification to the MicroBlaze hardware is required for support of other BIST 
approaches such as DSP and Block RAM BIST [5][6]. However, the control bits [31:24] of the 
WO BIST register are used during these test sessions to control the TPG mode. The outputs of 
these register bits are connected directly to the mode control inputs of the TPG when the 
MicroBlaze hardware and BIST hardware are merged. Block RAM and DSP embedded BIST 
architectures are otherwise arranged identically to the CLB BIST architecture shown in Figure 
6.2 with the BIST circuitry occupying one-half of the device. 
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Reconfiguration files are generated in a manner that allows full or partial reconfiguration 
from an external memory without the need for an ?intelligent? controller. While ideal for 
systems containing only non-volatile memory and an FPGA, the partial reconfiguration files are 
too large to be directly stored in the program or data memory of an embedded processor. For 
example, the total size of the 5 partial reconfiguration files for CLB BIST in half of an array of a 
small Virtex-5 device (LX30T) is 41,360 Bytes ? exceeding the maximum 32 kB of data 
memory that can be allocated for MicroBlaze. Partial reconfiguration files are also device 
dependent since the size of the reconfiguration file is proportional to the device size. Hence, 
compression of partial reconfiguration files is required for the embedded processor. 
Overall BIST algorithm Addressing algorithm w/ multi-frame write 
for all test phases do for all configuration columns do 
  for all configuration rows in BIST half do   if column is block under test then 
    for all frames in reconfiguration structure do     for all minor addresses in compressed config do 
      construct configuration frame       multi-frame write to row, column, & minor 
      muti-frame write to all RUTs in half & row     end for 
    end for   end if 
  end for end for 
  execute BIST phase  
  get BIST results  
end for  
set done bit in WO control register  
Figure 6.3:  Embedded processor BIST algorithms 
Our compression scheme exploits four features of Virtex-5 partial reconfiguration files to 
compress the data for storage in the embedded processor program memory and eliminate device 
dependencies. First, each configuration file contains certain instructions, such as those for multi-
frame writes to the configuration memory, which are repeated many times during download. 
Since, in the embedded processor BIST approach, the download is executed under the control of 
the embedded processor, ICAP instructions can be stored once and regenerated when needed. 
Second, multi-frame writes can only occur in one configuration row in Virtex-5 devices. For 
BIST configurations, which create identical configurations in BUTs and ORAs in every 
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configuration row, the overhead of multi-frame write instructions can be eliminated by storing 
frame data only once for one configuration row; the structure of the partial reconfiguration file 
can be regenerated by repetitively writing the frame data and frame addresses to the ICAP inside 
of a software loop for all configuration rows. Third, because one frame of configuration data 
spans 20 rows of identical resources under test, 2 to 4 words of frame data are repeated 10 to 20 
times (in a repeating sequence) in each 41-word frame for BIST. Therefore, only 2 to 4 words of 
configuration data need to be stored for each frame in the partial reconfiguration file. The frame 
can be reconstructed in its entirety from the smallest repeating set of 32-bit words. Finally, the 
partial reconfiguration file includes the addresses of every frame to which frame data must be 
written for each configuration row. Again, due to the regularity of the BIST structure, only the 
minor addresses in the first BUT column for each configuration frame need to be stored. The 
remaining addresses can be regenerated algorithmically (Figure 6.3) given the locations of 
resources under test in the FPGA fabric. We constructed a program to automatically extract only 
the essential data from every partial reconfiguration files for any BIST session using the 
compression methods described above. The program generates a C header file with a data 
structure containing only essential data from the compressed partial reconfiguration file. The 
data structure declaration is shown in Figure 6.4, where the constant NRECONFIG is the number 
of test phases for the BIST session. 
When the compression program was used to compress the 5 partial reconfiguration files 
for a CLB BIST session in a Virtex-5 LX30T, the total size of the files reduced from 41,360 
Bytes to 820 Bytes. Table 6.2 shows the size of the original compressed partial reconfiguration 
files and the size of the essential data in compressed form for different BIST sessions for Virtex-
5. The original file size given in the table is for an LX30T and the size of the file will increase in 
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proportion to the number of configuration rows in a given device. However, the size of the 
essential data in compressed format is independent of the device size. Figure 6.5 illustrates these 
device dependencies of reconfiguration file sizes for the smallest and largest devices in each 
Virtex-5 family of devices (LXT, SXT, FXT, and TXT). 
 
 
struct framedata { 
   unsigned int numword;        //# of words 
   unsigned int word[MAXWORD];  //config data 
   unsigned int numminor;       //# of addresses 
   unsigned int minor[MAXMINOR];//minor addr  
}; 
struct partialconfig { 
   unsigned int numframe;           //# frames 
   struct framedata frame[MAXFRAME];//frames 
} config[NRECONFIG] = { 
  //compressed frame data placed here by program 
}; 
Figure 6.4:  Compressed BIST partial reconfiguration structure in C 
Table 6.2:  Compressed partial reconfiguration data size 
BIST 
Session 
Number of 
BIST Sessions 
Number of BIST 
Reconfigurations 
Original File 
Size (Bytes) 
Compressed 
Size (Bytes) 
CLB East 2 5 41,360 820 
CLB West 2 5 41,360 820 
LUT-RAM 2 4 10,944 1,232 
I/O Logic 1 5 11,308 1,236 
I/O SerDes 1 8 94,432 2,680 
CRC 1 1 4,716 184 
DSP 1 9 28,836 1152 
Block RAM 2 5 285,040 4920 
ECC RAM 2 2 19,384 1200 
FIFO 2 3 29,076 1800 
FIFO ECC 2 1 9,692 600 
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Figure 6.5:  Original reconfiguration file sizes and compressed data structure sizes for one CRC 
BIST and a set of 5 I/O Logic BIST partial reconfigurations 
Read back and diagnosis of BIST phases is performed by software in the embedded BIST 
processor when fault diagnosis is desired for a given application. The basic idea is to read back 
every frame of configuration memory containing an ORA flip-flop. The ORA flip-flop contents 
are then stored in an array in the processor data memory. An ORA contains a logic 0 when a 
failure is detected, otherwise a logic 1. Since the locations of ORAs are known for every BIST 
session in any device, the frame addresses of ORA flip-flops can be generated algorithmically 
during read back. The diagnostic algorithm [1] for circular comparison is easily implemented in 
the embedded processor to identify faulty resources. When combined with the 32-bit parallel 
access to the configuration memory, read back and diagnosis via the embedded processor 
provides a substantial improvement in test time when compared to serial access via Boundary 
Scan. 
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6.5  Design Flow and Implementation Results 
The embedded BIST processor design flow, illustrated in Figure 6.6a, is more complex 
than the traditional BIST design flow due to the inclusion of the MicroBlaze processor and BIST 
session specific software. Generating the embedded processor based BIST configurations 
requires inputs from three sets of source files. First, the C source file for the specific BIST 
approach (e.g. CLB, DSP, block RAM, etc.) is compiled to an executable linkable file (ELF) 
format. The MicroBlaze hardware is modeled in VHDL and synthesized using the Xilinx ISE 
design flow. The placement of the MicroBlaze logic is constrained to one half of the device. The 
placed, unrouted design is then converted to Xilinx Design Language (XDL) format. The BIST 
logic is generated concurrently by the BIST generation program which produces an unrouted 
XDL description of the BIST circuitry. The BIST array is constrained to the other half of the 
FPGA. The BIST XDL description and the MicroBlaze XDL description are merged by 
concatenating the two XDL files and connecting primary inputs and outputs of the BIST logic to 
the WO and RO BIST control registers included in the MicroBlaze logic to form the complete 
unrouted embedded processor based BIST configuration in XDL format. Finally, the complete 
hardware portion of the design is converted to an NCD format and routed, from which the 
bitstream configuration file is generated using the Xilinx BitGen program. At this point, the 
compiled software in ELF format is translated into Block RAM initialization values in the 
bitstream download file using the Xilinx Data2Mem program. 
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(a) design and verification process         (b) implementation in LX30T device 
Figure 6.6:  Embedded processor BIST design implementation 
The embedded processor based BIST approach has been successfully implemented for 
BIST in Virtex-5 FPGAs. The unrouted embedded processor based BIST configuration for the 
CLBs implemented in the top of a Virtex-5 LX30T is shown in Figure 6.6b. Two such 
configurations are implemented to fully test the CLBs with the locations of the BUTs and ORAs 
swapped, and another two configurations are required to test the bottom half CLBs. For the 
purpose of embedded BIST, the MicroBlaze processor is configured with a hardware integer 
multiplier, five stage pipeline, and 64 kB of on-chip program and data memory (configured in 
Block RAMs). In Virtex-5 devices, the MicroBlaze with ICAP interface and BIST control 
registers occupies three DSPs, 16 block RAMs, and 400 CLBs. The percentage of utilized 
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resources is less than 50% in the smallest Virtex-5 device (LX20T). Timing analysis indicates 
that the maximum operating frequency of the MicroBlaze processor when constrained to one-
half of a device is greater than 100 MHz in all Virtex-5 devices. Therefore, all ICAP operations 
can be performed at the maximum frequency of 100 MHz. 
6.6  Conclusions 
We have presented the first embedded soft core processor based FPGA BIST approach. 
The approach reduces the number of external configurations of the FPGA during any BIST 
session to a maximum of two (one for each half of the array); however, many resources can be 
tested in a single BIST session. The embedded processor performs reconfiguration of the 
resources under test at the maximum allowable clock frequency and data width. Read back of 
ORA contents can be performed when fault diagnosis is desired for fault-tolerant applications. 
The soft core processor approach was implemented in Virtex-5 FPGAs using the MicroBlaze 
processor. However, the overall approach is applicable to any FPGA with internal write and read 
access to the configuration memory. 
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Chapter Seven.  Soft-Core Embedded Processor-Based Built-In Self-Test of FPGAs Case 
Study 
This chapter presents the results of a case study which investigates the use of an 
embedded soft-core processor to perform Built-In Self-Test (BIST) of the logic resources in 
Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs).  We show that the approach reduces 
the complexity of an external BIST controller and the number of external reconfigurations, 
making it particularly appealing for in-system testing of high-reliability and fault-tolerant 
systems with FPGAs.  However, the overall test time is not improved due to an increase in the 
size of the required configuration files as a consequence of the inclusion of the soft-core 
embedded processor logic, whose relative irregularity results in less effective compression of 
configuration data files. 
7.1  Introduction 
This chapter presents the results of the first implementation of Built-In Self-Test (BIST) 
for Field Programmable Gate Arrays (FPGAs) using a soft-core embedded processor synthesized 
into the configurable fabric of the FPGA under test.  The approach, as originally proposed in [1], 
reduces the number of configuration files required for BIST by exploiting the regularity of BIST 
architectural structures to significantly compress and store partial configuration data in the 
embedded processor?s program memory.  The embedded processor controls and executes the 
BIST sequence, including retrieval and analysis (fault diagnosis) of BIST results, and performs 
partial reconfiguration of the FPGA for subsequent BIST test phases [1].  This embedded 
processor-based BIST approach is possible for two reasons: first, the growing size and 
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complexity of FPGAs facilitates the inclusion of complex circuitry that only occupies a small 
percentage of the total configurable resources, leaving adequate area for BIST logic and routing; 
and, secondly, the ability to access the configuration memory from inside the FPGA fabric has 
made possible internal reconfiguration and read back of FPGA logic and routing resources. 
The approach was successfully implemented in Xilinx Virtex-5 [2] but is applicable to 
any FPGA with internal configuration memory access.  The remainder of the chapter is 
organized as follows:  Section 7.2 presents an overview of BIST for FPGAs and the previously 
proposed soft-core processor-based BIST technique.  Section 7.3 presents the results of our 
implementation of soft-core embedded processor-based BIST in Virtex-5 FPGAs, including test 
time analysis and comparisons with other BIST approaches for FPGAs.  Section 7.4 discussed 
ways in which the proposed approach might be improved, with Section 7.5 covering other 
potential applications of the approach.  The chapter is summarized in Section 7.6. 
7.2  Background 
BIST for FPGAs exploits the re-programmability of FPGAs to create test circuitry in the 
FPGA fabric during off-line testing [3].  The only overhead is the external memory required to 
store the BIST configurations along with the time required to download and execute the 
numerous BIST configurations.  No area overhead or performance penalties are incurred because 
the BIST logic is reconfigured with the intended system function after testing is complete.  The 
BIST configurations are applicable to all levels of testing because they are independent of the 
end-user system function and require no specialized external test fixture or equipment.  Over the 
past 15 years, a number of BIST approaches have been developed for the configurable logic and 
routing resources in FPGAs.  Due to the programmable nature of FPGAs, all BIST approaches 
for FPGAs require multiple configurations of the resources under test in all of their modes of 
115 
operation in order to obtain high fault coverage.  Some of these BIST approaches are 
summarized in Table 7.1, where the number of BIST configurations is given for each type of 
resource including configurable logic blocks (CLBs), input/output (I/O) tiles, random access 
memories (RAMs), digital signal processors (DSPs), and programmable routing resources. 
Table 7.1:  Test configurations developed for various FPGAs 
FPGA CLBs Routing I/O RAMs DSPs References 
ORCA 2C 9 27 - 0 0 [5][6] 
ORCA 2CA 14 41 - 0 0 [5][6] 
Delta 39K 20 419 - 11 0 [7] 
4000/Spartan 12 128 - 0 0 [8] 
4000XL/XLA 12 206 - 0 0 [8] 
AT40K/AT94K 4 56 27 3 0 [9] - [11] 
Virtex/Spartan-2 12 283 7 5 0 [11][12] 
Virtex-4 10+5 84 14 15 5 [13] - [17] 
Virtex-5 6+5 ? 15 16 11 [17][18] 
 
Most research and development in BIST for FPGAs has focused on reducing the number 
of test configurations, reducing the size of test configuration files, and decreasing BIST 
execution time [2]-[8].  But the ever increasing complexity and level of integration in FPGAs 
has, with few exceptions, resulted in longer test times, more downloads, and more memory 
required for storing BIST configurations for each new generation of FPGA.  However, the 
increasing size and complexity of FPGAs has also created opportunities for innovation in FPGA 
testing.  In [1], we proposed an embedded processor-based approach which exploits some of 
these features of current FPGAs in an attempt to improve test time and reduce the complexity of 
BIST.  The soft-core embedded processor-based BIST approach for FPGAs incorporates 
additional logic in the FPGA fabric along with the BIST logic to perform tasks typically assigned 
to an external controller or computer.  The new approach offers several advantages over the 
traditional external BIST approach.  First, the 32-bit internal configuration access port (ICAP) is 
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used for reconfiguration of the resources under test, eliminating the test time penalties associated 
with the lower speed, serial Boundary Scan interface.  Secondly, the total number of 
configurations that are downloaded via the external configuration interface is reduced to one per 
test session.  In addition, all control of the BIST configurations and test procedures can be 
implemented in the embedded processor.  Finally, fault diagnosis procedures can also be 
performed by the embedded processor, further reducing the complexity of the external BIST 
controller in fault-tolerant applications and providing considerable speed-up when compared to 
Boundary Scan based readback and diagnosis. 
The basic architecture of the embedded BIST approach for CLBs is illustrated in Figure 
7.1 [1].  In this particular BIST approach, one-half of the FPGA array is configured with the 
BIST circuitry, including multiple Test Pattern Generators (TPGs), comparison-based Output 
Response Analyzers (ORAs), and the Blocks Under Test (BUTs).  The TPGs are constructed 
from CLBs or other logic resources such as DSPs, RAMs, etc.  The TPGs provide identical test 
patterns to alternating rows or columns of identically configured BUTs whose outputs are 
monitored by two ORAs and compared with the outputs of two other BUTs in a circular 
comparison arrangement, as shown in Figure 7.1.  The ORAs are constructed from CLBs such 
that only half of the CLBs can be BUTs in a given test session, and the positions of the BUTs 
and ORAs must be swapped during a subsequent test session in order to test all of the CLBs in 
half of the array. 
The second half of the FPGA array is reserved for a MicroBlaze soft-core processor and 
any additional hardware resources associated with the processor [19].  Custom memory-mapped 
registers are included in the MicroBlaze VHDL model for interfacing with the BIST circuitry.  
One memory mapped write-only (WO) register is included for control of the BIST circuitry.  The 
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outputs of the register are connected directly to all inputs to the BIST logic.  One read-only (RO) 
register is included at the same memory-mapped address as the output register.  The inputs to 
this register are connected directly to the outputs of the BIST logic.  Each register is general 
enough to be applicable to all BIST configurations that we have developed for Virtex-5.  Finally, 
the MicroBlaze interfaces directly with the FPGAs ICAP for partial reconfiguration of the BIST 
array and for read back of output responses.  To test all of the resources in the FPGA, a second 
configuration is generated with the location of the BIST logic and embedded processor swapped.  
For BIST of some resources, such as input/output (I/O) tiles and cyclic redundancy check (CRC) 
circuits, it is possible to test all of the target resources simultaneously by placing the MicroBlaze 
around the BIST circuitry.   
 
Figure 7.1:  Simplified soft-core processor-based BIST architecture 
 
(b) BIST session #2 
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(a) BIST session #1 
RO Register WO Register ICAP 
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7.3  Results of Implementation in Virtex-5 
The embedded processor-based BIST approach was implemented for BIST of Virtex-5 
FPGAs using the MicroBlaze soft processor [19].  The unrouted embedded processor-based 
BIST configuration for the top CLBs implemented in the Virtex-5 LX30T is shown in Figure 
7.2.  Note that two such configurations are implemented to fully test the top CLBs with the 
locations of the BUTs and ORAs swapped, and another two configurations are required to test 
the bottom half CLBs.  For the purpose of embedded BIST, the MicroBlaze processor is 
configured with a hardware integer multiplier, five stage pipeline, and 64 KB of on-chip program 
and data memory (configured in Block RAMs).  In Virtex-5 devices, the MicroBlaze with ICAP 
interface and BIST control registers occupies three DSPs, 16 block RAMs, and 400 CLBs.  The 
percentage of utilized resources is less than 50% in the smallest Virtex-5 device such that the 
approach works for all FPGAs in the Virtex-5 family.  Timing analysis indicates that the 
maximum operating frequency of the MicroBlaze processor when constrained to one-half of a 
device is greater than 100 MHz in all Virtex-5 devices.  Therefore, all ICAP operations can be 
performed at the maximum ICAP configuration clock frequency of 100 MHz. 
For accurate measurements of test time and to obtain experimental results with the 
MicroBlaze processor, an additional 32-bit hardware timer/counter was included in the 
MicroBlaze VHDL model.  By starting the timer/counter at the beginning of a test phase, and 
stopping it at the end of the test phase, the exact number of clock cycles for reconfiguration of 
the resources under test, test execution, and ORA read back can be determined.  To extract the 
value in the timer/counter at the end of each test, the MicroBlaze performs a read of the 
timer/counter value and reports this number via a UART interface to a connected PC, where it is 
displayed and logged in a terminal program. 
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Figure 7.2:  Unrouted embedded processor-based BIST configuration for top configurable logic 
blocks (CLB) in Virtex-5 LX30T viewed in FPGA Editor 
Figure 7.3 shows the total test time for one session of CLB testing in several Virtex-5 
devices for external configuration with full compressed configuration and partial compressed 
reconfiguration bitstreams downloaded and controlled via the 50 MHz Boundary Scan 
configuration interface and for the MicroBlaze embedded processor approach.  These test times 
120 
take into account all of the configurations required to achieve 100% fault coverage in the CLB in 
SliceL mode, as reported in [7], which used traditional external reconfiguration techniques.  
However, these times double to achieve 100% fault coverage in every CLB, because a second set 
of identically sized configurations are required with the locations of the BUTs and ORAs 
swapped.  The optimized external reconfiguration provides the fastest overall test time when 
compared with the other two approaches since the entire array is tested concurrently.  This 
approach is about three times as fast as the embedded processor approach on average, but is 
device dependent, as can be seen in Figure 7.3.  However, the embedded approach is 
significantly faster than external configuration with full or compressed bitstream download files. 
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Figure 7.3:  CLB BIST test time for external configuration (full compressed and partial 
compressed bitstreams) and embedded processor test time 
By studying the configuration file sizes for the two BIST approaches, the cause for the 
increase in test time for the embedded processor approach becomes clear.  Consider Figure 7.4, 
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which shows the contributions to test time for one session of CLB BIST with the embedded 
processor approach.  The contribution from the initial compressed full configuration download 
(using the 50 MHz external Boundary Scan configuration interface) is shown on bottom and the 
contribution from the five subsequent partial reconfigurations by the embedded processor (using 
the 100 MHz 32-bit ICAP) is shown on top.  The overall test time is dominated by the initial 
download time.  This is due, in part, to the slower serial Boundary Scan configuration interface; 
however, the main contributor to the overall test time is an increase in the size of the initial 
configuration file (relative to the traditional BIST approach).  The cause of the size increase is 
due to the inclusion of the MicroBlaze configuration data in the configuration file, the 
irregularity of which reduces the effectiveness of the configuration file compression (see Figure 
7.2).  We observed that the inclusion of the MicroBlaze logic increased the size of the first 
compressed configuration file size by 2100 kB (which is approximately constant for all devices).  
The additional 2100 kB of configuration data is larger than the next five partial reconfiguration 
files combined, and, assuming Boundary Scan configuration, increases the time for initial 
configuration by 336 ms.  While it is possible to improve the timing for internal reconfiguration 
of the resources under test, there is no way to improve timing for the first compressed 
configuration download. 
The potential for savings in test time does exists for systems which require fault 
diagnosis, and, therefore, read back of ORA contents at the end of each test phase.  In this case, 
the embedded approach provides a speed-up of 5.4 times during read back of ORA results versus 
read back via Boundary Scan, as can be seen in Figure 7.5. 
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Figure 7.4:  Contribution to embedded processor-based CLB BIST test time by initial external 
configuration and by five internal partial reconfigurations 
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Figure 7.5:  Comparison of CLB BIST ORA read back times with embedded processor-based 
approach and external Boundary Scan interface 
123 
7.4  Future Improvements 
The overall reconfiguration times for the embedded processor-based BIST approach can 
be reduced by modeling a custom processor for reconfiguration and test control.  When a full 
custom embedded fault injection approach was compared to the MicroBlaze based fault injection 
presented in this work, a speed-up factor of almost 12 was observed for the FSM hardware-only 
approach versus the general-purpose processor-based approach.  However, a hardware only 
implementation requires a different hardware configuration for every device and BIST session, 
as reported in [20].  Ultimately, with custom hardware, the reconfiguration time could approach 
the minimum achievable test time for the 100 MHz, 32-bit SelectMAP or ICAP configuration 
interface.  This best case timing occurs when one word is read or written on each active edge of 
the clock, as is the case for configuration from a dedicated memory.  The best case timing for 
CLB BIST east or west configurations is shown in Figure 7.6 (doubling the time shown in the 
figure yields the total test time for all CLBs in SliceL mode).  However, these times should not 
be directly compared to those in Figure 7.4 for the embedded processor-based approach, because 
Figure 7.4 assumes initial configuration from the Boundary Scan interface.  Another possibility 
is to clock the MicroBlaze at a frequency greater than 100 MHz, using a divided clock equal to 
100 MHz for the ICAP and portions of the ICAP interface logic.  This will, however, require the 
development of a custom ICAP interface.  Based on timing analysis, clock frequencies around 
150 MHz are attainable in the MicroBlaze processor when constrained to one-half of the FPGA.  
Therefore, a speed-up of approximately 1.5 times could be achieved using a multiple clock 
approach. 
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Figure 7.6:  32-bit, 100 MHz interface test time for full chip CLB west or east with one full 
compressed configuration and five partial reconfigurations 
7.5  Other Applications 
An approach similar to the embedded processor-based BIST could be applied to an 
external processor or microcontroller connected to the SelectMAP 32-bit configuration interface.  
Conceptually, the approach is similar to the approach for Atmel SoCs [3][4], except that the 
processor and FPGA are integrated at the board level, rather than at the chip level.  The only 
overhead required above that for the traditional BIST approach is processor downtime for the 
test, additional circuit board interconnections, additional processor I/O, and a portion of the 
processor program memory (16,558 Bytes for one session of CLB BIST) for storing the 
embedded BIST software and reconfiguration data.  The impact to the system could be 
minimized by performing tests of the FPGA as a low priority, background task, at the expense of 
increased test time.  The approach could provide the 5.4 times speed-up of the embedded 
processor during reconfiguration and read back using the 32-bit, 100 MHz SelectMAP 
configuration interface without the penalty incurred by testing the FPGA in two sessions, one for 
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each half.  The size of the initial download is also reduced when compared to the embedded 
processor-based approach due to the highly optimized structure of the BIST circuitry.  
Furthermore, the memory required to store the BIST configurations can be reduced at the 
expense of some additional program memory in the hard processor. 
The embedded processor-based BIST approach for Virtex-5 FPGAs is directly applicable 
to Virtex-4 FPGAs [21] with some modification to the BIST specific software (including device 
specific subroutines such as algorithmic resource under test frame address generation) and stored 
configuration data.  Differences between the Virtex-4 and Virtex-5 ICAP interfaces, such as 
byte-swapping on the Virtex-5 ICAP, are accounted for during synthesis of the MicroBlaze and 
associated ICAP interface circuitry based on the targeted device family.  The frame address 
register is also arranged differently in Virtex-4 and Virtex-5, but this can be accounted for in 
software [22][23].  The overall test times for Virtex-4 relative to external reconfiguration closely 
match those results obtained in Virtex-5. 
7.6  Conclusions 
We have presented the results of a case study which implements the first soft-core 
embedded processor-based BIST approach.  The approach is applicable to any FPGA with 
write/read access to the configuration memory from within the FPGA fabric and with sufficient 
configurable resources to implement both the soft-core processor and the BIST circuitry.  The 
number of external configurations of the FPGA during any BIST session is reduced to a 
maximum of two (one for each half of the array) and internal reconfiguration of the resources 
under test are performed at the maximum allowable clock frequency and data width.  Read back 
of ORA contents and diagnosis of faulty resources under test can be performed by the embedded 
soft-core processor when fault diagnosis is desired, for fault-tolerant applications for example, 
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providing a speed-up of 5.4 versus readback via the Boundary Scan interface.  The approach can 
significantly decrease the overall test time in systems with a relatively slow external 
configuration interface, as was the case for the previous implementation of embedded processor-
based BIST using a dedicated hard-core processor [4]. 
The soft-core processor approach was implemented in Virtex-5 FPGAs using the 
MicroBlaze processor for BIST reconfiguration, control of execution, fault injection, and fault 
diagnosis.  Reconfiguration of the resources under test is achieved via the ICAP port in the 
FPGA fabric.  When implemented in Virtex-5, the approach requires more testing time when 
compared with optimized external reconfiguration using compressed partial reconfiguration 
bitstreams.  This is primarily due to the fact that the overall BIST approach has been architected 
for optimum configuration file compression.  This includes orienting the BIST architecture with 
the configuration memory for maximizing the effectiveness of compressed download files with 
multi-frame write features, partial reconfiguration of the resources under test by maintaining 
constant placement and routing between test phases, and a single pass/fail indication to avoid 
partial configuration memory read back for BIST results.  This is a testament to the advanced 
state of FPGA BIST techniques as well as the features and capabilities offered by FPGA 
manufacturers to decrease configuration times. 
However, the soft-core processor approach is significantly faster than configuration with 
full or compressed configuration bitstreams alone.  Only two downloads are required for each 
BIST session when the embedded processor-based approach is used, compared to six 
configurations for CLB east/west tests and nine for SerDes tests for example.  BIST control, 
execution and fault diagnosis implemented in the embedded processor eliminate the need for 
complex external test equipment for manufacturing testing and intelligent external BIST 
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controllers for in-system testing and diagnosis in fault-tolerant applications.  The architecture is 
applicable to any BIST for Virtex-4 and Virtex-5 FPGAs without modification of the embedded 
processor hardware; only the MicroBlaze program memory contents need to be changed. 
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Chapter Eight.  On-line Single Event Upset Detection and Correction in Field 
Programmable Gate Array Configuration Memories 
Larger field programmable gate array (FPGA) configuration memories and shrinking 
design rules have raised concerns about single event upsets (SEUs), especially for high-
reliability, high-availability systems that use FPGAs.  We present a design for the on-line 
detection and correction of SEUs in the configuration memory of Xilinx Virtex-4 and Virtex-5 
FPGAs.  The design corrects all single-bit errors and detects all double-bit errors in the 
configuration memory at maximum speed and with minimal overhead and power dissipation.  A 
method for SEU emulation in the configuration memory of FPGAs is presented which enables 
the experimental verification of the approach.  The results of SEU emulation in Xilinx FPGAs 
are discussed. 
8.1  Introduction 
The increased use of field programmable gate arrays (FPGAs) for implementing digital 
logic applications over the past two decades has been accompanied by increased concern about 
radiation effects, and, in particular, the effects of single event upsets (SEUs).  In addition to 
memory elements such as flip-flops, look-up tables (LUTs), and random access memory (RAM) 
cores, FPGAs contain a large static random access memory (SRAM), referred to as the 
configuration memory, which establishes the overall system application performed by the FPGA.  
An SEU induced bit-flip in the SRAM configuration memory can therefore alter the functionality 
of the FPGA.  This, coupled with the large size of the configuration memory, makes SEUs of 
significantly more concern in FPGAs than in traditional application specific integrated circuits 
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(ASICs).  In Xilinx Virtex-5 FPGAs, for example, the configuration memory alone represents 
greater than 99% of all memory elements in a given device, as summarized in Table 8.1, where 
the LX30T represents one of the smallest FPGAs in the Virtex-5 family and the LX330T 
represents one of the largest [26][27]. 
Table 8.1:  Memory resources in two Virtex-5 FPGAs 
 Number of Memory Elements 
Memory Type LX30T % of Total LX330T % of Total 
Flip-Flops 19,200 0.2% 207,360 0.25% 
LUT RAM Bits 327,680 3.5% 3,502,080 4.22% 
Block RAM Bits 1,327,104 14.1% 11,943,936 14.41% 
Configuration Bits 9,362,432 99.8% 82,687,488 99.75% 
Total 9,381,632 100.00% 82,894,848 100.00% 
 
Finding an accurate measurement of the susceptibility of SRAM configuration memories 
to SEUs has been the focus of much research, including that in [15], [18], [24] and [30].  
Accelerator testing conducted with Xilinx 4000 series FPGAs indicates the SEU frequency 
increased by a factor of 4.74 when design rules decreased from 600nm to 350nm with a 
corresponding reduction in power supply voltage from 5V to 3.3V [18].  On the other hand, 
90nm Xilinx Virtex-4 FPGAs are reported to have SEU FIT (failures in 109 hours) rates of 246 
per 106 bits of configuration memory, while 65nm Virtex-5 FPGAs have a lower SEU FIT rate 
of 151 per 106 bits (adjusted for sea-level in New York, NY) [6][15].  The FIT rate per Mb of 
configuration memory in Xilinx FPGAs has actually been decreasing since the Virtex-II series in 
the year 2000.  This reduction in SEU FIT rate by a factor of about 3.5 from Virtex-II to Virtex-
5, despite drastic reductions in feature size and supply voltage, indicates that Xilinx is 
incorporating architecture dependent SEU hardening techniques in the design of the 
configuration memory.  This trend can be seen in Figure 8.1, where the SEU rate for each Xilinx 
FPGA family is plotted along with the initial release year and minimum feature size.  According 
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to [16], since 2002 Xilinx has designed the configuration memory to be more robust in an 
attempt to reduce soft failure rates even as the size and density of the FPGA grows.  That this 
attempt has been successful is supported by the fact that the FIT rates reported for Xilinx FPGAs 
are low when compared to typical SRAMs [18].  A more robust SRAM design is possible 
because the SRAM configuration memory remains static a majority of the time, in contrast to 
typical SRAM memories which are designed to be as small and as fast as possible [5][18]. 
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Figure 8.1:  FIT rate (corrected for sea-level New York, NY) versus Xilinx device family, initial 
release year, and minimum feature size [6] where the center line represents the nominal value 
and the span of the line represents the upper and lower 95% confidence levels 
However, even the relatively low FIT rates of Xilinx FPGAs can become problematic 
when considering the design of high reliability, high availability systems or systems which 
operate at high altitude or in space.  The largest commercially available Xilinx FPGAs currently 
have configuration memories with more than 80 Mb [27] and in the next generation of devices 
the largest available FPGAs will include configuration memories of over 160 Mb in size [28].  
For the 80 Mb Virtex-5 device, the FIT rate per device is 10,960 failures in 1 billion hours, or 
?98       ?99       ?00       ?01       ?02       ?03       ?04       ?05       ?06       year 
250      180      150                   130        90        90        90         65       nm 
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mean time between failure (MTBF) of (114,155 years/10,960 FIT) = 10.4 years at sea level.  At 
the 95% confidence level, the FIT rate is between 100-183, or MTBF between 7.8-14.3 years.  
However, it should be noted that an SEU in the configuration memory does not always 
correspond to a failure of the system.  It is estimated that only between 10% [21] and 40% [24] 
of the configuration bits used in any given design actually affect the design functionality.  
Therefore, for a more accurate estimate of the MTBF the sensitivity of the design based on 
analysis of ?care? versus ?don?t care? configuration bits should be taken into account.  
Nevertheless, for SRAM FPGAs to be adopted for critical avionics and space applications where 
little or no risk is acceptable, an effective SEU mitigation plan must be implemented.  In 
addition, systems operating in high-radiation environments may require an SEU mitigation plan 
even if some risk is tolerable.  As an example of the variance of SEU occurrence with altitude, 
consider that the neutron flux density increases by a factor of 383 at the typical commercial flight 
cruising altitude of 36,000 ft (relative to sea-level New York, NY) [9]. 
Techniques for hardening digital circuits against SEUs can be categorized as architecture 
dependent or architecture independent.  An architecture dependent technique is one that requires 
a modification to the physical design of an integrated circuit; for example, high reliability 
systems can employ hardware redundancy in latches [3].  In FPGAs, however, architecture 
dependent SEU hardening techniques are only available if implemented by the FPGA 
manufacturer.  Therefore, for a typical SRAM FPGA, any SEU hardening implemented by the 
user must be one that is architecture independent.  One widely known architecture independent 
technique used in FPGAs is triple modular redundancy (TMR).  The TMR approach triplicates 
all of the user logic and adds majority voters at the inputs to all flip-flops and on all primary 
outputs.  By eliminating all single point failures, the design can be guaranteed to tolerate an SEU 
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in any of the three circuit copies.  However, the overhead for a TMR approach can be prohibitive 
because it is greater than 200%.  Therefore, to implement a TMR approach, the required size of 
the FPGA (in terms of resources) would necessarily be more than three times the size of the 
original, non-TMR design.  TMR also consumes more power (approximately three times as 
much) and incurs a performance penalty.  The implementation of TMR for designs in Xilinx 
FPGAs can be entirely automated using the Xilinx TMR Tool, which guarantees full SEU and 
single-event transient (SET) immunity [29].  However, without some additional form of 
configuration memory scrubbing, the accumulation of multiple SEUs over time can cause system 
failure even in designs with full TMR [23][29]. 
Another architecture independent method, configuration memory scrubbing, periodically 
refreshes the contents of the configuration memory without attempting to determine if an SEU 
has occurred.  Power-cycling is essentially the simplest form of configuration memory scrubbing 
because the entire configuration memory can be refreshed each time the FPGA is power-cycled 
if the FPGA is set in master configuration mode [1].  A more intelligent approach is to externally 
read back words of configuration memory contents, comparing each word to a copy in a 
?golden? configuration bitstream.  This approach has the advantage of being able to detect any 
number of SEUs in the configuration memory (when compared to error correcting codes).  Any 
mismatch between the ?golden? copy and the configuration memory contents should cause the 
erroneous configuration memory to be overwritten by the ?golden? configuration data.  
However, both approaches require a radiation hardened external configuration management unit 
(microprocessor or ASIC) and a radiation hardened ?golden? copy of the configuration data.  
The second approach also doubles the required amount of memory, because both the ?golden? 
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bitstream and a mask file, which is used to mask configuration bits which are subject to change 
during normal system operation, must be stored in the system [1]. 
Some FPGAs, including Virtex-4 and Virtex-5, incorporate a Hamming error correction 
code (ECC) in the configuration memory.  The ECC, in conjunction with some additional user-
accessible dedicated logic can be used to detect SEUs in the configuration memory.  With 
additional user-defined circuitry in the FPGA core, erroneous configuration memory bits that 
result from SEUs can be not only detected, but also corrected [12].  It is this method that is the 
focus of this chapter where we present an efficient SEU correction circuit that works in 
combination with existing SEU detection mechanisms in Virtex-4 and Virtex-5 FPGAs to correct 
SEUs in the FPGA configuration memory.  This circuit can be synthesized and incorporated with 
any user-defined digital application in any Virtex-4 or Virtex-5 FPGA for detection and 
correction of SEUs during normal on-line system operation.  We begin with an overview of 
existing SEU detection mechanisms in Section 8.2 along with an overview of previous work in 
on-line SEU detection and correction in Virtex-4 FPGAs.  The operation and architecture of the 
proposed SEU detection and correction circuit are presented in Sections 8.3 and 8.4, 
respectively.  Experimental results and analysis from the actual implementation of the SEU 
detection and correction circuit in Virtex-4 and Virtex-5 FPGAs are presented in Sections 8.5 
and 8.6 along with a comparison to prior work.  The chapter concludes with a summary in 
Section 8.7. 
8.2  Background 
Like any other RAM, the configuration memory of an FPGA is partitioned into words, 
also called frames, which represent the smallest addressable unit of the memory for write and 
read operations.  Virtex-4 and Virtex-5 frames consist of 1,312 bits [25][26].  Each frame 
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includes a 12-bit field of eleven Hamming bits and an overall parity bit for the frame data.  The 
eleven Hamming bits provide the potential for single error correction (SEC), and the overall 
parity bit enables double error detection (DED) over the frame data.  The parity and Hamming 
bits are generated external to the FPGA by the configuration bitstream generation software and 
are subsequently downloaded with the application specific configuration data (an internal CRC 
check verifies the integrity of the downloaded data).  However, system memory data subject to 
change during the operation of the FPGA, such as the contents of block RAMs and look-up 
tables (LUTs) used as distributed RAMs, are not covered by the parity and Hamming bits [4]. 
Virtex-4 and Virtex-5 provide a specialized core, called Frame ECC, for detection and 
identification of single and double-bit errors in the frame data [25][26].  For each frame read 
from the configuration memory, the Frame ECC module calculates the Hamming bits as well as 
the overall parity for the frame data, and compares these bits with the Hamming bits and parity 
for that frame stored in the configuration memory.  Based on this comparison, the Frame ECC 
module produces indications for no error, single-bit error, and double-bit error conditions in 
addition to a syndrome indicating the location of single-bit errors.  The error conditions for the 
Frame ECC core are summarized in Table 8.2.  System memory contents?block RAMs and 
LUT RAMs, for example?are masked from the internal parity and Hamming calculation by the 
Frame ECC. 
Table 8.2:  Frame ECC error codes [25][26] 
Error Type Condition (syndromevalid = 1) 
No bit error Hamming match, no parity error 
1-bit correctable error (SEC) Hamming mismatch, parity error 
2-bit error detection (DED) Hamming mismatch, no parity error 
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The Frame ECC function is performed each time a frame is read from the external serial 
Boundary Scan interface or parallel SelectMAP configuration interface [25][26].  In addition to 
these external configuration interfaces, Virtex-4 and Virtex-5 include a 32-bit internal 
configuration access port (ICAP), illustrated in Figure 8.2, that provides write/read access 
to/from the configuration memory from within the FPGA core.  As is the case with the external 
interfaces, the Frame ECC function is performed each time a frame is read via the ICAP.  
Because the Frame ECC does not provide circuitry to perform error correction, some additional 
logic must be implemented in the FPGA fabric that uses the ICAP and Frame ECC modules to 
cycle through all frames of the configuration memory to detect SEUs and to correct those SEUs.  
Virtex-5 FPGAs also include dedicated circuitry in the FPGA that can automatically detect SEUs 
using built-in cyclic redundancy check (CRC) circuitry [26].  When Readback CRC is enabled 
(by setting the POST_CRC configuration option to ENABLE), the contents of the configuration 
memory are continuously read back in the background of the user design operation to calculate 
and check the CRC of the configuration memory contents.  An SEU anywhere in the 
configuration memory will cause the re-calculated CRC to disagree with the stored CRC.  The 
mismatch is signaled by asserting the CRC Error output of the Frame ECC (only present in 
Virtex-5 and not shown in Figure 8.2).  Optionally, the external INIT_B output pin of the FPGA 
may also be driven low when the error is detected [26].  The Readback CRC will begin to run 
automatically upon a successful configuration of the FPGA and will continue to run as long as no 
configuration interfaces are in use; a configuration interface is considered to be in use after the 
synchronize (SYNC) command is decoded and until the de-synchronize (DESYNC) command is 
decoded [26].  Similar background CRC read back circuitry has been incorporated in recent 
Altera [21] and Lattice [14] FPGAs to support SEU detection.  
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Figure 8.2:  Frame ECC and ICAP primitives 
An implementation of internal SEU detection and correction using the Frame ECC and 
ICAP logic in Virtex-4 devices was reported in [12].  The design uses an 8-bit PicoBlaze [19] 
soft-core processor with additional circuitry and RAM in the FPGA fabric for interfacing to the 
ICAP to read and write the configuration memory.  The design can operate in a detection only 
mode, or can detect and correct single-bit errors.  The design was later implemented in triple 
modular redundancy (TMR) [10].  While both [10] and [12] are applicable only to Virtex-4, the 
approach in [12] was recently extended in [5] to support Virtex-5 FPGAs. 
8.3  Operation of SEU Detect and Correct 
Our SEU detect and correct circuit, or SEU controller as it is referred to in this chapter, is 
designed to be integrated into any existing VHDL-based user design with minimal effort.  At the 
top level, there are only two inputs?clock and reset?and one output? error.  The VHDL 
component declaration for the SEU controller is given in Figure 8.3. 
  component seu_controller is 
  generic(device : string(1 to 6)); 
  port(      rst : in std_logic; 
           clock : in std_logic; 
           error : out std_logic); 
  end component seu_controller; 
 
Figure 8.3:  SEU controller VHDL component declaration 
The generic device is a text string that specifies the device in which the SEU controller 
will be implemented, such as ?LX330T? for example.  All Virtex-4 and Virtex-5 devices are 
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supported such that only this generic need be specified by the user to indicate the target FPGA 
for synthesis.  The error output is asserted when the first multiple-bit error is detected, and 
should trigger a reconfiguration of the FPGA from a reliable external memory since multiple bit 
errors cannot be corrected by the SEU controller.  The clock input is directly connected to the 
ICAP clock and the SEU controller.  It is limited by the maximum ICAP clock frequency of 100 
MHz, but can operate at any frequency below 100 MHz.  In Virtex-5 devices, the ICAP and SEU 
controller clock can be supplied by an internal 50 MHz oscillator [26].  The synchronous active 
high reset input forces the SEU controller into an inactive state, releasing the configuration 
interface for use by other applications.  Asserting the reset input also resets the frame address to 
the first frame of configuration memory and clears the error output.  When reset is released, the 
SEU controller will resume normal operation from the first frame of the configuration memory 
on the next rising edge of clock.  The reset input may be tied to logic 0 for free-running SEU 
detection and correction in user designs that do not require access to the configuration memory 
during normal system operation.  The operation of the SEU controller consists of the following 
steps: 
1. A 1312-bit frame of configuration memory is read through the ICAP as forty-one 32-bit 
words and the frame data is stored in a block RAM. 
2. If an error is indicated by the outputs of the Frame ECC primitive, the type of error is 
determined as shown in Table 8.2.  If the error indicates a double-bit error, the error 
output of the SEU controller is latched high and read back continues with the next frame 
of configuration memory.  If a single-bit error is indicated, the location of the bit is 
determined from the syndrome and the erroneous bit is corrected (i.e. inverted) in the 
frame data stored in the block RAM. 
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3. If a single-bit error was indicated in Step 2, the repaired frame is now written back into 
the configuration memory at the same frame address from which it was read. 
4. If a single-bit error was indicated in Step 2, read back resumes with the first frame in the 
configuration column containing the newly repaired frame. 
5. When a configuration column has been completely read and repaired (as determined by 
no single-bit error indications for any frames in for that configuration column), the SEU 
controller advances to the next configuration row/column in the array and repeats the 
process starting at Step 1. 
This SEU controller behavior is summarized by the pseudocode of Figure 8.4. 
Load starting frame address 
while (reset == 0) { 
 Read single frame from configuration memory 
 Read Frame ECC outputs 
 if (single bit error is detected) { 
  Translate syndrome to bit index in frame 
  Read erroneous bit 
  Write inverted (corrected) bit to same location 
  Write frame back to configuration memory 
  break 
 }  
 else if (double bit error is detected) { 
  Assert ERROR output 
 } 
 Increment Frame Address 
} 
 
Figure 8.4:  SEU controller behavioral pseudocode 
In Virtex-5 devices, the SEU controller may utilize the Read Back CRC feature of the 
Frame ECC module for the initial detection of an SEU with a small modification to the design.  
By enabling the Read Back CRC (in the design constraints file) and using the complement of the 
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CRC Error output of the Frame ECC circuit as the reset input to the SEU controller, the SEU 
controller will remain idle (held in active high reset) with the CRC Read Back circuit operating 
in the background (at the frequency of the ICAP input clock [26]).  When a CRC mismatch is 
detected, the CRC Error output of the Frame ECC circuit is asserted, de-asserting the reset input 
to the SEU controller.  The SEU controller will begin normal operation, cycling through the 
configuration memory detecting and correcting all single-bit errors.  However, after the last 
frame of configuration memory is reached, the SEU controller will return to the reset state and 
wait for a falling edge on the reset input before resuming operation.  By entering the reset state 
and releasing the ICAP configuration interface via a DESYNC command, the internal CRC Read 
Back will resume.  This approach has the disadvantage of doubling the cycle time in the worst 
case since both the CRC Read Back circuit and SEU controller may require a complete cycle to 
detect and then repair the SEU.  As observed in [5], however, this approach may offer some 
additional immunity to SEUs in the detection phase because the CRC Read Back circuit is 
implemented as dedicated logic at the physical circuit level, as opposed to the SEU controller, 
which is implemented in configurable resources.  The INIT_B signal could be used to externally 
verify the correction of the SEU by ensuring the INIT_B output pin of the FPGA does not 
remain low longer than a predetermined time period (approximately three complete scan cycles 
of the FPGA configuration memory).  If, however, the INIT_B remains low or the error output of 
the Frame ECC is asserted, the error is not repaired and the configuration memory should be 
refreshed from a radiation hardened ?golden? copy. 
8.4  SEU Detect and Correct Architecture 
Our SEU controller is implemented entirely in configurable logic blocks (CLBs) and one 
18 Kb block RAM in the FPGA fabric.  It is constructed primarily around the ICAP and Frame 
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ECC primitives [25][26].  The operation of the SEU controller, described in the previous section, 
is managed with a finite state machine (FSM) implemented in CLB logic slices.  The FSM 
initiates reads and writes to the FPGA internal configuration memory and control registers via 
the 32-bit ICAP interface.  A set of sixty-four 32-bit instructions are stored in a 32?64-bit read-
only memory (ROM) formed in 32 LUTs (6-inputs each) in Virtex-5 and 128 LUTs (4-inputs 
each) in Virtex-4.  The 32?64-bit LUT ROM is addressed by a counter that is enabled by 
combinational logic from the FSM current state.  The FSM also generates the frame address for 
reads and writes of the configuration memory.  All reads from and writes to the configuration 
memory are 32-bits.  The logic for the frame address counter is device dependent since every 
device has different numbers of rows and/or columns.  Furthermore, the arrangement of different 
types of columns (e.g. CLB, DSP, RAM, etc.) can vary depending on the device.  The generic 
device (shown in Figure 8.3) is used to determine and synthesize the correct frame address logic 
for the target device. 
The central component of the SEU controller architecture is the dual-port block RAM (at 
least two columns of 18 Kb block RAMs are included in every Virtex-4 and Virtex-5 device).  A 
single block RAM is used to store each frame as it is read from the configuration memory.  The 
A port of the block RAM is configured for 32-bit read/write access, and the B port is configured 
for 1-bit read/write access, as illustrated in Figure 8.5.  The data inputs of the A port are 
connected directly to the outputs of the ICAP, and the A port data outputs are connected to the 
ICAP inputs via a 32-bit 2-to-1 multiplexer. 
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Figure 8.5:  SEU controller block diagram 
The A port address inputs are controlled by a counter in the FSM.  Every frame that is 
read from the ICAP is stored in the first forty-one 32-bit words of the block RAM.  Single-bit 
errors are corrected via the 1-bit B port interface.  The B port address inputs are connected to 
combinational logic which provides the bit offset of the bit in error based on the Frame ECC 
syndrome outputs.  The 1-bit B port data output is inverted connected to the 1-bit B port input.  
The B port write enable is controlled by combinational logic from the syndromevalid and ECC 
error Frame ECC outputs in conjunction with the FSM.  The location of single-bit errors within 
the frame is indicated by the syndrome[10:0] outputs of the Frame ECC primitive, however some 
additional combinational computational logic is required to determine the exact bit-offset of the 
error within the configuration frame.  An equation for determining the bit-offset of the error in 
the range 0-1311 is given by: 
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 offset = {S[10:5] ? 6'd22 ? S[10], S[5:0]} (8.1) 
where S[10:0] are the Frame ECC syndrome outputs [25][26].  Otherwise, if the binary value of 
syndrome[10:0] is 0 or a power of 2, then the error is located in one of the Hamming bits, in 
which case the location of the bit error is determined as shown in Table 8.3.  The output of the 
syndrome combinational logic is tied to the B port address inputs.  In this manner, the erroneous 
bit, as indicated by syndrome[11:0], is inverted when the block RAM B port write enable is 
asserted.  The repaired frame is then written back into the configuration memory via the A port 
32-bit output to the ICAP. 
Table 8.3:  Hamming bit error diagnosis [25][26] 
syndrome[11:0] offset syndrome[11:0] offset 
100000000001 640 100001000000 646 
100000000010 641 100010000000 647 
100000000100 642 100100000000 648 
100000001000 643 101000000000 649 
100000010000 644 110000000000 650 
100000100000 645 100000000000 651 
 
A rare, but potentially problematic situation can arise when an odd number of bit errors 
occur in a single frame of configuration memory.  These errors will cause both a syndrome 
mismatch and overall parity mismatch, which aliases as a correctable single-bit error (refer to 
Table 8.2).  However, in this case, the syndrome outputs do not necessarily indicate the location 
of any of the actual errors, and can erroneously point anywhere in the range 0 to 211?1 (2047).  
Since the actual frame data only exists in the range 0 to 1311, the following two scenarios are 
possible. 
First, the odd-multiple bit error aliases as a single-bit error with the syndrome outputs 
pointing in the valid range of the frame data 0 to 1311.  In response to the single-bit error 
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indication, the SEU controller will invert the frame-bit pointed to by the syndrome, which may 
satisfy the Hamming code by creating a valid distance code word, and the modified frame will be 
written back into the configuration memory.  The SEU controller will resume read back at the 
start of the configuration column containing the still damaged frame.  When the erroneous frame, 
now containing an even number of multiple errors, is read, the valid code word will cause a 
Hamming code match and an overall parity-bit match such that a ?no bit error? indication is 
obtained.  However, by incorporating the CRC Read Back mechanism with the SEU controller, 
as described in Section 8.3, this multiple bit error can be detected because the CRC will continue 
to indicate a CRC Error with the SEU controller indicating no error. 
In the second scenario, when the frame containing an odd number of errors greater than 
one is read, the syndrome indicates an error bit location in the range from 1312 to 2047.  This 
range, while a valid address in the larger block RAM, lies outside of the range of valid frame 
data.  Therefore, if events are allowed to proceed as in the first scenario, unmodified frame data 
would be written back into the configuration memory, effectively creating an infinite loop, since 
the same frame would be continually read from and written to the configuration memory without 
modification.  Our solution is to include a greater-than comparator in the SEU controller which 
detects when the syndrome points outside of the range of valid frame data (0 to 1311).  When 
this condition occurs, the SEU controller ignores the syndrome and asserts the error output, 
indicating the existence of a multiple-bit error and that the FPGA configuration bitstream data 
should be reloaded from a reliable external memory. 
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8.5  Implementation Results 
The greatest benefit of our SEU controller when compared to other approaches is the 
relatively high speed at which errors are detected and corrected.  SEUs should be corrected with 
a minimum amount of latency so that errors in the programming of the user logic persist for the 
shortest possible period of time.  Figure 8.6 shows the time required for one full cycle of single-
bit error correction and double-bit error detection in Virtex-4 devices for the Xilinx SEU 
controller described in [12] and our SEU controller, where a cycle is defined as the time to 
perform the operation over every configuration memory frame in the device, excluding frames 
containing block RAM contents.  The cycle time also corresponds to the maximum amount of 
time that one SEU can persist in the configuration memory. 
The Xilinx Virtex-4 SEU controller can operate in two modes: single and double-bit error 
detection only mode, and single-bit error correction and double-bit error detection mode [12].  
As shown in Figure 8.6, the Xilinx ?detect only? cycle time is nearly identical to our detect and 
correct mode.  However, when single-bit error correction is enabled, the total cycle time for the 
Xilinx Virtex-4 SEU controller increases to about 20 times that of our normal detect and correct 
cycle time.  On average, our SEU controller reduces the total cycle time for SEC and DED with 
respect to the Xilinx SEU controller by 94.7%.  Figure 8.7 shows the total cycle time for our 
SEU controller in Virtex-5 devices.  The cycle time is increased by an average of 17 ?s for each 
SEU detected and corrected.  The repair time for one frame is negligible.  However, the cycle 
time would double if there were one SEU present in every configuration column. 
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Figure 8.6:  SEU controller LOG cycle time vs. Virtex-4 device 
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Figure 8.7:  SEU controller cycle time vs. Virtex-5 device 
04812162024 L
X30
  
LX
50 
 
LX
85 
 L
X11
0 
LX
155
 
LX
220
 
LX
330
 
LX
T20
 
LX
T30
 
LX
T50
 
LX
T85
 L
XT
110
LX
T15
5
LX
T22
0
LX
T33
0
SX
T35
 
SX
T50
 
SX
T95
 
C y c l e  T i m e  ( m s )
Ov
er
he
ad
Fr
am
e 
Re
ad
148 
To increase the reliability of the Xilinx SEU controller, the authors of [10] used the 
Xilinx TMR Tool [29] to implement the Xilinx Virtex-4 SEU controller with full TMR.  
However, as the results in [10] show, this approach may be impractical for some applications 
because of its high area overhead.  A comparison of the device utilization for the Xilinx SEU 
controller [12], the Xilinx SEU controller with TMR [10], and our approach implemented in 
Virtex-4 is summarized in Table 8.4.  While the Xilinx approach uses 23 fewer slices, we use 
one less block RAM and complete each cycle of the configuration memory an average of 20 
times faster.  The Xilinx Virtex-4 SEU controller with TMR utilizes 1,308 logic slices and 6 
block RAMs [10] ? a 770% increase in area versus the non-TMR SEU controller.   
Table 8.4:  SEU controller resource utilization in Virtex-4 devices 
Resource Xilinx [12] Xilinx TMR [10] SEU Controller 
# Slices 149 1308 182 
# Block RAMs (18 Kb) 2 6 1 
Avg Cycle (ms) 105.5 105.5 5.603 
# Lines VHDL 3656 -- 1051 
 
A comparison of our SEU controller with the recently proposed Xilinx Virtex-5 SEU 
controller [5] is given in Table 8.5.  Our approach uses one less block RAM and 30 fewer slices.  
The cycle time for the Xilinx Virtex-5 SEU controller approach was not reported.  However, due 
to the similarity of the Virtex-4 [12] and Virtex-5 [5] SEU controller architectures, our Virtetx-5 
SEU controller is likely to have a speed-up factor similar to that observed in Virtex-4. 
Table 8.5:  SEU controller resource utilization in Virtex-5 devices 
Resource Xilinx [5] SEU Controller 
# Slices 95 65 
# Block RAMs (18 Kb) 2 1 
Average Cycle Time (ms) -- 9.338 
# Lines VHDL 2625 945 
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Our SEU controller could also be implemented using the Xilinx TMR Tool to mitigate 
the risk of failure due to an SEU, as was done in [10] for the Xilinx Virtex-4 SEU controller 
TMR design.  This approach would essentially allow two error-free SEU controllers to correct an 
SEU affecting the third SEU controller.  However, the configurable routing resources 
surrounding the ICAP and Frame ECC cores could still be vulnerable to SEUs since these 
modules and their interfaces cannot be replicated. 
8.6  Experimental Results 
Our SEU controller has been synthesized for all Virtex-4 and Virtex-5 FPGAs.  
Furthermore, the SEU controller has been downloaded and verified on Virtex-4 FX12, SX35, 
and LX60 devices as well as Virtex-5 LX30T, LX50T, SX35T, SX50T, FX30T and FX70T 
devices.  The number of utilized CLB logic slices has been observed to vary by ?3 slices in both 
Virtex-4 and Virtex-5 devices depending on the device and the area optimization used with the 
place and route software.  During synthesis, the SEU controller logic and block RAM may be 
constrained to any area of the FPGA or may be left unconstrained for automatic placement with 
the user?s system function.  The routed SEU controller in a Virtex-5 LX30T device is shown in 
Figure 8.8 where its location was constrained to the area shown.  The dynamic power dissipation 
of the SEU controller was measured on both Virtex-4 and Virtex-5 FPGAs and found to be less 
than 5 mW at 100 MHz.  Power requirements for the previous approaches in [5], [10] and [12] 
were not reported.   
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Figure 8.8:  Routed SEU controller implemented in Virtex-5 LX20T device 
For design verification and analysis, we developed an approach to emulate SEUs in the 
configuration memories of Virtex-4 and Virtex-5 FPGAs using a configuration memory read-
modify-write process [8] similar to the approach described in [11].  The read-modify-write 
process is executed by an external computer connected to the FPGA via the Boundary Scan 
configuration interface.  A list of configuration bit addresses is generated by software we 
developed to select random locations for SEU injection.  Our SEU list generation software also 
allows for control of the locations of the SEUs to either a specific region or the entire 
configuration memory.  Additionally, a rectangular area of the FPGA can be masked such that 
SEUs are randomly located outside of the mask area.  Our approach is capable of injecting any 
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number of errors in the configuration memory, simultaneously or individually, as determined by 
the length of the SEU target list [8].  This SEU emulation approach was shown in [11] to 
reproduce 97% of actual SEU and SET induced faults in radiation chamber experiments.  
Furthermore, because the entire configuration memory is accessible, greater than 99% of all 
possible SEUs in the configuration memory of a given Virtex-5 FPGA can be emulated with this 
approach (refer to Table 8.1). 
The analysis process begins by configuring the target device with the error-free SEU 
controller configuration.  The SEU controller is held in reset while the SEUs are injected into the 
configuration memory via the Boundary Scan interface.  For each SEU in the list, the 
corresponding frame of configuration memory is read back from the target device to the external 
computer.  The SEU emulation bit in the frame is inverted, and the frame is written back to the 
same location in the configuration memory.  After injection of the SEU(s), the SEU controller is 
released from reset and executed for one or more complete cycles.  The number of single-bit and 
multiple-bit errors reported by the SEU controller are recorded by internal counters included for 
analysis and verification only, and these count values are read via the Boundary Scan interface at 
the end of the error detection/correction cycles.  The success of the SEU controller is determined 
by comparing the values in the counters to the number of SEUs contained in the original list.  
Emulated configuration memory SEUs are classified in two categories.  The first category 
includes all SEUs that are detected and corrected normally, as verified by a comparison of the 
retrieved count values and the original SEU list.  The second category encompasses any SEU 
that affects the operation of the SEU controller such that either the SEU cannot be detected and 
corrected or the values contained in the counters are incorrect or cannot be retrieved for 
verification.  Note that a slight penalty is incurred for the inclusion of the counters, which are 
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susceptible to SEUs, and could produce a failing pattern despite the correction of the emulated 
SEU.  A total of 8,000 randomly generated SEUs were individually injected in the configuration 
memory of a Virtex-5 LX50T and the result of each trail was recorded.  Our trials showed that, 
of the 8,000 random SEUs, all but 178 were detected and corrected in the first full execution 
cycle, yielding a probability of detection and correction of 97.78%.  Considering the SEU 
locations to be randomly distributed, independent samples, the lower bound for the probability of 
correction of SEUs at the 99% confidence level is 97.30% [22].  Therefore, the likely probability 
of detection and correction of any number of simultaneous SEUs greater than one is given by: 
 Pr(correction) = [1?Pr(failure)]N 
where N is the number of simultaneously occurring SEUs.  The results of SEU emulation for 
1000 SEUs in four Virtex-5 devices are shown in Table 8.6.  In our trials, 100% of SEUs that lie 
outside of the area of the configuration memory that controls the functionality of the SEU 
controller are corrected.  The experimental success rates for [10] and [12] were not reported. 
Table 8.6:  SEU emulation results 
Device Slice Count Pop. Size (Mb) Corrected/Injected 
Pr(correction) 
99% Confidence 
LX30T 59 7.29 950/1000 93.22% 
SX35T 60 9.26 955/1000 93.46% 
LX50T 59 10.9 980/1000 96.86% 
SX50T 60 13.9 967/1000 94.96% 
LX50T 59 10.9 7822/8000 97.35% 
 
In general, the percentage of correctable SEUs is positively correlated to the size of the 
configuration memory of the given device because the number of configuration bits affecting the 
SEU controller functionality are fixed in relation to the total size of the configuration memory.  
According to the data provided in [5], the adjusted FIT rate, considering only the vulnerable bits 
which implement the SEU controller functionality, may be approximately calculated based on 
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the number of resources in use by the SEU controller and the number of configuration bits 
affecting the programming of each type of resource (shown in Table 8.7).  For the Xilinx Virtex-
5 SEU controller, the approximate number of sensitive configuration bits was reported to be 
113,365 bits, or 0.108 Mb, yielding a nominal FIT rate of 16.33, or MTBF of approximately 
6,992 years [5].  For our SEU controller, which utilizes less logic resources in Virtex-5, there are 
approximately [(65 ? 1,181) + (1 ? 585)] = 77,350 bits, or 0.0738 Mb, that are sensitive to SEUs.  
Therefore, the adjusted FIT rate for our SEU controller is 11.14, or MTBF of approximately 
10,247 years.  As was observed in the SEU emulation results, the adjusted FIT rate for designs 
protected by the SEU controller is independent of the device size because the size of the SEU 
controller is approximately device independent. 
Table 8.7:  Approximate number of configuration bits for common resources [5] 
Resource Approximate number of configuration bits 
Logic Slice 1,181 
Block RAM (36 Kb) 1,170 
Block RAM (18 Kb) 585 
I/O Tile 2,657 
DSP48E Slice 4,592 
 
8.7  Conclusions 
The increased use of FPGAs for implementing digital systems, in conjunction with their 
larger configuration memories and shrinking design rules, has raised concerns about the effects 
of SEUs, particularly for high-altitude and space applications as well as for high-reliability, high-
availability applications.  As a result, some FPGA manufacturers are reducing the FIT rate 
through their design of the configuration memory and by incorporating modules that support 
SEU detection, such as the Frame ECC and ICAP in recent Xilinx FPGAs [25][26] and CRC 
background check circuitry in recent Altera [21] and Lattice [14] FPGAs.  We have presented an 
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SEU controller applicable to all Xilinx Virtex-4 and Virtex-5 FPGAs that is capable of correcting 
single-bit errors and detecting double-bit errors in the FPGA configuration memory, which 
represents greater than 99% of all memory elements susceptible to SEUs.  Note that block RAMs 
account for the second largest percentage (approximately 14%) of memory elements susceptible 
to SEUs.  However, recent Xilinx [25][26] and Altera [21] FPGAs include RAMs cores with 
user optional ECC modes of operation.  The SEU controller VHDL is easily integrated with any 
existing user design with minimal resource overhead and power dissipation.  Our approach 
detects and corrects errors in the configuration memory 20 times faster than other reported 
approaches in [10] and [12].  In addition, our design is less susceptible to SEU induced failure 
because it uses less logic resources, which results in a failure rate improvement of about 46.6% 
for Virtex-5 FPGAs.  Finally, TMR techniques can be used to prevent SEUs that occur within the 
configuration bits that establish the SEU controller logic from causing the SEU controller to fail 
in high-reliability, high-availability applications. 
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Chapter Nine.  Summary and Conclusions 
This chapter concludes and summarizes the thesis.  First, a summary of the work 
presented in this thesis is provided, followed by suggestions for future research and any 
improvements to the work. 
9.1  Summary of Work 
A BIST approach was presented for the CLBs in Virtex-5 FPGAs.  A total of 17 
configurations were used to obtain 100% stuck-at fault coverage in every CLB in any Virtex-5 
device.  Gate level fault simulation and configuration memory fault emulation were used for the 
development and verification of test configurations and for calculating fault coverage.  A new 
ORA design was introduced which provides a single-bit pass/fail result for all of the resources 
under test.  This ORA design has since been used in every BIST configuration that has been 
developed for Virtex-4 and Virtex-5 FPGAs.  The overall test time is minimized by using partial 
reconfiguration of the resources under test and the single-bit pass/fail indication at the conclusion 
of each test session.  However, for fault diagnosis, the contents of every ORA may be retrieved 
via partial configuration memory readback, and the locations of faults determined 
algorithmically based on the locations of the failing ORAs. 
This thesis also presented a BIST approach for the I/O Tiles in Virtex-5 FPGAs.  This 
approach shares many features of the approach for CLBs, including pseudo-exhaustive testing of 
the embedded resources and comparison-based output response analysis (using the improved 
ORA design with single-bit pass/fail).  One interesting difference with the I/O BIST approach is 
the ability to apply a limited number of deterministic test patterns using block RAMs in the 
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FPGA fabric to store the test pattern set.  For Virtex-4, 512 test patterns could be stored in a 
block RAM, and in Virtex-5 the number increased to 1024.  However, due to the lack of any 
gate-level description of the I/O Tiles in Xilinx devices, it is difficult to evaluate the 
effectiveness of the test patterns.  One of the most significant contributions of this work is the 
use of dedicated feedback routing in the I/O Tile to bypass the I/O buffer (and pad) during tests 
of the digital logic resources in the I/O Tile.  This effectively separates the digital logic portion 
of the I/O tiles from the external ?analog? environment, making the approach applicable to 
board-level and in-system testing.  Consequently, independent tests for the I/O buffers were 
developed.  These BIST configurations are also package independent because they can test I/O 
tiles with both bonded and unbonded I/O buffers, which is important because synthesis tools will 
sometimes use the logic resources in an I/O Tile with an un-bonded I/O buffer to implement a 
portion of the system function. 
Next, a BIST approach was presented for the embedded cores in Xilinx Virtex-4 and 
Virtex-5 FPGAs that are used for the detection and correction of SEUs in the configuration 
memory of these devices.  This work is related to the SEU controller that is presented later in the 
thesis in that the SEU controller uses these cores for detection and correction of SEUs; therefore, 
the fault-free operation of the cores is essential.  One interesting difference between this BIST 
approach and the approaches presented for CLBs and I/O Tiles is that this approach was 
developed entirely in VHDL (as opposed to an XDL netlist).  A VHDL-based approach is 
possible because there is only one circuit to test, and, therefore, no redundant TPG or ORA logic 
and no placement restrictions for the CUT. 
Fault injection is a well known method for emulating faults or SEUs in the configuration 
memory of FPGAs.  However, this thesis improves upon the existing approach by performing 
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fault-injection using a soft-processor configured in the fabric of the FPGA.  This approach can be 
used during the development of BIST for FPGA resources or for verification of SEU mitigation 
schemes (but not as part of the manufacturing or system-level test).  For example, the fault-
injection core could ?inject? a list of random SEUs while monitoring the behavior of the system 
function.  Based upon the occurrence of errors in the system function, the actual FIT rate of the 
user function in any environment could be estimated, and several different SEU mitigation 
schemes could be quickly evaluated. 
The next two chapters of the thesis present a new approach for BIST of FPGAs.  This 
approach uses a soft-core processor configured in the fabric of the FPGA under test to perform 
reconfiguration of the BUTs, control the BIST sequence, and even perform fault diagnosis.  
However, the irregularity of the embedded processor makes configuration files too large to 
compete with the highly optimized BIST configurations.  This thesis shows that the overall test 
time is significantly less when performing partial reconfiguration of the full FPGA array from an 
external BIST controller.  However, the approach may still be useful for in-system testing, 
especially in fault tolerant applications, because it significantly reduces the complexity of the 
external BIST control hardware.  For example, the embedded processor can perform all of the 
reconfigurations of the BUTs and determine the results of the BIST, reporting a single-bit 
pass/fail result to the system for all of the resources under test. 
Finally, an approach for the on-line detection and correction of SEUs in the configuration 
memory of Virtex-4 and Virtex-5 FPGAs is presented.  This chapter shows that no external 
hardware is required for the approach, because readback of configuration data and error detection 
and correction are all performed by additional logic included in the FPGA fabric.  While greatly 
reducing the probability of an SEU, experimental results are provided to show that the approach 
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is not entirely immune to an SEU induced error.  However, no single SEU can permanently 
corrupt the user function, and SEUs can only persist in the user function for a period of time 
equal to the cycle period of the SEU controller (i.e. the amount of time for the SEU controller to 
read every frame of configuration data in a given device).  The thesis also shows that the cycle 
time and probability of an SEU induced failure are functions of the device size, with larger 
devices having a longer cycle time and lower probability of failure.  In addition, a quantitative 
method for estimating the FIT rate in devices protected by the SEU controller is provided based 
on an approach in the previous work. 
9.2  Future Work 
The BIST approaches presented for the CLBs and I/O Tiles in Virtex-5 FPGAs can be 
adapted to Virtex-6 devices with few architectural modifications.  The TPGs and ORAs can be 
implemented in a similar manner in Virtex-6 devices (which include DSPs and Block RAMs), 
but the detailed test configurations will need to be modified for the new device architectures. 
The embedded BIST approach can also be updated to support Virtex-6 devices, but larger 
configuration file sizes for these devices may make the approach impractical.  However, in 
systems with an intelligent BIST controller (embedded processor, PC, etc?) the configuration 
file compression methods presented in this thesis are applicable and potentially very useful for 
saving memory, especially for in-system testing. 
The SEU controller is becoming more important due to the increasing size of the 
configuration memory and shrinking design rules.  The configuration memory size in Virtex-6 
devices is on average double that of Virtex-5 devices; and because the SEU controller cycle time 
is a function of the size of the configuration memory, the average cycle time can be expected to 
double.  Testing the Frame ECC logic is also more important in Virtex-6 devices.  Due to the 
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doubling of the configuration frame size, there is more logic in the Frame ECC that must be 
tested. 
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