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Abstract 

 

 

A GPS based automated convoy strategy to duplicate the path of a lead vehicle is 

presented in this dissertation.  Laser scanners and cameras are not used; all information 

available comes from GPS or inertial systems.  An algorithm is detailed that uses GPS 

carrier phase measurements to determine relative position between two moving ground 

vehicles.  Error analysis shows the accuracy is centimeter level.  It is shown that the time 

to the first solution fix is dependent upon initial relative position accuracy, and that near 

instantaneous fixes can be realized if that accuracy is less than 20 centimeters.  The 

relative positioning algorithm is then augmented with inertial measurement units to dead 

reckon through brief outages. Performance analysis of automotive and tactical grade units 

shows the twenty centimeter threshold can be maintained for only a few seconds with the 

automotive grade unit and for 14 seconds with the tactical unit. 

Next, techniques to determine odometry information in vector form are discussed.  

Three methods are outlined: dead reckoning of inertial sensors, time differencing GPS 

carrier measurements to determine change in platform position, and aiding the time 

differenced carrier measurements with inertial measurements.  Partial integration of a 

tactical grade inertial measurement unit provided the lowest error drift for the scenarios 

investigated, but the time differenced carrier phase approach provided the most cost 

feasible approach with similar accuracy. 
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Finally, the relative position and odometry algorithms are used to generate a 

reference by which an automated following vehicle can replicate a lead vehicle's path of 

travel.  The first method presented uses only the relative position information to 

determine a relative angle to the leader.  Using the relative angle as a heading reference 

for a steering control causes the follower to drive at the lead vehicle, thereby creating a 

towing effect on the follower when both vehicles are in motion.  Effective use of this 

method is limited to short following distances, or line of sight operation, similar to vision 

based following approaches.  The following vehicle turns about a smaller radius than the 

lead vehicle, and this effect intensifies as following distance increases. 

The second path duplication method allows for non line of sight operation by 

combining the vector odometry with the relative position to create a virtual leader to 

follow.  The actual difference between the vehicles could be in excess of 100 meters, but 

the perceived distance is reduced to a predetermined value based on vehicle speed by re-

generating the lead vehicle's position at a previous instance in time with the relative 

position and odometry information.  Performance curves of path duplication accuracy 

versus following distance using different odometry techniques show that the partially 

integrated tactical unit provides the best performance, but the time differenced carrier 

approach offered very similar performance for a lower total system cost. 

Both following methods were implemented on an unmanned ground vehicle.  

Tests showed following accuracy for the line of sight method was within 50 centimeters 

on straight sections, though the reference accuracy was centimeter level.  The non line of 

sight method predicted the virtual leader position to within 5 centimeters for following 

distances ranging from 10 to 120 meters.  
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Chapter 1  

Introduction 

The pinnacle for automated systems in the transportation field is a fully autonomous 

ground vehicle (AGV), also known as an unmanned ground vehicle (UGV).  The UGV 

concept is fairly simple.  Upon receiving a desired location from either human or 

machine, the UGV self sufficiently travels to that location.  The potential increase in 

efficiency, productivity, performance, and safety to the transportation system is almost 

difficult to realize.  Imagine a highway system with no traffic lights or stop signs.  

Imagine working, watching a video, or even sleeping while in the driver's seat.  Imagine 

traffic accidents being an anomaly.  Imagine never even learning how to drive! 

Humans have devised means to automate many tasks for centuries, but a reliable 

and trustworthy UGV has proven to be elusive.  Leonardo da Vinci is credited with 

designing one of the first UGVs around 1495.  His open loop design was clock-like in 

that a system of gears and springs were used to propel and steer the vehicle.  General 

Motors and RCA teamed in the 1950s and 1960s to develop an electronic highway 

system.  Steering automation was made possible by a guidance cable on the road.  Speed 

control was managed by a vehicle detection system embedded in the road that broadcast 

speed commands to passing vehicles.  In recent times, the Global Positioning System 

(GPS) has enabled UGVs to operate independently of installed infrastructure. Research in 
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the UGV arena exploded in the 1990s due to GPS and the availability of computer chips 

that were exponentially decreasing in size and increasing in computational ability.   The 

Defense Advanced Research Projects Agency (DARPA), in response to a Congressional 

mandate stating one third of the operational combat vehicles be automated by 2015, 

hosted three events in 2004, 2005, and 2007 to spur the growth of UGV technology.  The 

technological growth was obvious over the course of the three events.  No teams finished 

the 2004 Grand Challenge, which took place in a relatively benign desert environment.  

In fact, the furthest any team traveled was 7 out of 150 miles.  However, five teams 

finished in the 2005 Grand Challenge, which took place in a similar, but slightly more 

challenging environment.  The 2007 Urban Challenge, hosted at a public airport 

(formerly George Air Force Base), presented the robotic contestants with traffic scenarios 

encountered in everyday driving.  All UGVs were on the course simultaneously with a 

number of manned automobiles.  Despite the significant increase in the presented 

challenges, six teams finished. 

 Further refinement needs to occur before UGVs operate interactively with 

humans on a regular basis to minimize the risk to human safety.  The military provides 

practical scenarios to test components of UGV technology, often while keeping them 

under some form of human control or supervision.  UGVs have been successfully used to 

locate and destroy mines and bombs, perform surveillance missions, or guard a perimeter. 

UGVs have even been weaponized, though the use of force remains under human control 

and is tele-operated. 

Automated vehicle following systems are expected to help refine UGV 

technology while interacting with humans on a basic level.  The concept is to get a UGV 
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to duplicate the path of a lead vehicle.  Both the military and civilian market have current 

interest in the technology for automated ground vehicle convoys for the transportation of 

equipment, supplies, and even people.  However, determining the path of travel of a lead 

vehicle is not a simple matter.  This dissertation focuses on the use of GPS based relative 

position measurements as a reference to enable ground vehicles to duplicate the path 

driven by a lead vehicle. 

1.1 GLOBAL POSITIONING SYSTEM 

GPS is a satellite based radio navigation system that provides worldwide position, 

navigation, and time (PNT) information to military and civilian users.  The GPS satellite 

constellation consists of a nominal 24 SVs, or space vehicles.  Each SV transmits ranging 

and navigation data on at least two L band carrier frequencies.  The L1 carrier is centered 

at 1575.42 MHz and the L2 carrier is centered at 1227.60 MHz [43].  A third frequency 

named L5 and centered at 1176.45 MHz is being introduced to the constellation, with the 

first SV being launched on March 24, 2009 [18].  The transmitted GPS signal is 

generated using binary phase shift keying (BPSK) and contains several codes modulated 

onto the carrier signal. An example of the signal structure is shown in Figure 1.1. 

Periodic ranging codes are modulated onto each carrier and are specific to the 

broadcasting SV.  These codes, or binary sequences, have the autocorrelation and cross-

correlation properties of white noise but remain deterministic.  These sequences are 

referred to as pseudo-random noise (PRN) sequences.  Both a civilian code, known as the 

C/A-code (Clear or Coarse Acquisition) code, and a military code, known as the P(Y)-

code (an encrypted version of the Protected code, or P-code) are modulated onto the L1 

carrier frequency with designated PRN numbers [37].  PRN numbers 1-32 are assigned to 
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GPS SV's according to GPS-ICD200c [38].  Each C/A-code sequence consists of 1023 

bits, or chips, and is repeated in one millisecond intervals.  The transmission frequency, 

also known as the chipping rate, is 1.023 MHz or megachips per second.  The P-code is 

extremely long relative to the C/A-code at 6.1871x10
12

 chips.  The P-code is modulated 

with an encryption sequence known as the W-code to form the encrypted P(Y)-code, 

which is broadcast ten times faster than the C/A-code at 10.23 MHz.  Most satellites 

broadcast only the encrypted P(Y)-code on the L2 frequency, but modernization efforts 

are incorporating a civilian L2C-code to aid in atmospheric error reduction and enhance 

accuracy [27].  Receivers cannot directly track the P(Y)-code without an encryption key, 

but semi-codeless techniques have been developed that allow civilian receivers to track 

the P(Y) code without the key. 

A navigation message is also embedded into the carrier signal broadcast by each 

SV.  This message contains ephemeris data to determine the position and velocity of the 

SV, clock parameters to remove range error due to the SV clock drift, SV health 

information, and almanac data to compute rough positions for all SVs in the GPS 

 
Figure 1.1: The broadcast BPSK GPS signal contains several signals modulated onto the 

carrier signal. 

Broadcast Signal

Navigation Data

PRN Code

Carrier
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constellation.  The data is contained in five 300 bit subframe messages and transmitted at 

50 bits per second.  The ephemeris data is repeated in 30 second intervals, and the 

almanac data is repeated in 12.5 minute intervals [27,37]. 

The ranging codes are used to determine a user to satellite range using a time of 

arrival (TOA) technique.  Each range and knowledge of the SV position provides a 

directional constraint on the user position. Theoretically, three ranges from three different 

SVs should be sufficient to determine a three dimensional position solution.  However, a 

minimum of four satellites is typically necessary to determine a three dimensional 

position solution and a bias in the receiver clock. 

The GPS signal is corrupted by various error sources, both when it is generated 

and as it propagates through the Earth's atmosphere.  Additional error is induced by the 

environment surrounding the receiver when the signal is being tracked.  These error 

sources distort the true range between the user and SV, and the resulting measured range 

is referred to as a pseudorange. 

The bias and noise in the clock onboard the SV creates the initial error in the 

transmitted signal.  An erroneous time of transmission will lengthen the pseudorange if 

the clock is retarded, or it will shorten the pseudorange if it is advanced.  However, bias 

effects can be reduced by using the clock correction terms contained in the navigation 

data.   

The receiver clock errors corrupt the receiver in a similar manner.  The difference 

is the receiver clock errors are common across all tracking channels (i.e. the same error is 

added to all pseudorange measurements).  The clock bias and bias drift are estimated in 

parallel with the user's position. 
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The atmosphere is a dominant error source because it alters the signal propagation 

speed.  These errors are dependent on SV elevation relative to the user as the signal 

travels greater distances through the atmosphere when the SV is near the horizon. The 

ionosphere causes a delay in the data modulated onto the carrier while simultaneously 

causing an advance of equal proportion on the phase of the carrier.  This delay lengthens 

the perceived range measured by the receiver.  The magnitude of the ionospheric error 

also depends on the user's latitude and the level of ionospheric activity.  Ionospheric 

activity is cyclical, where cycles correlate with a 24 hour period, seasons, and the solar 

cycle. Water content in the troposphere also contributes to a delay in the signal (both in 

the modulated signal and the carrier phase), which lengthens the pseudorange.  Models 

are available to reduce the pseudorange error caused by ionospheric and tropospheric 

interference.  If a dual frequency receiver is available, the ionospheric delay can be 

determined by differencing the arrival times of the L1 and L2 signals [27]. 

Environmental errors are multipath 

and shadowing.  Multipath is due to the 

reflection of the signal before it reaches the 

user's antenna.  Therefore, the signal 

propagates over an unnecessarily long 

distance, and the pseudorange is increased.  

Multipath error can vary from centimeters 

to tens of meters.  Shadowing occurs when 

the signal travels through an obstructing medium, such as foliage.  The signal can be 

significantly attenuated, potentially causing the receiver to track a stronger multipathed 

 
Figure 1.2: The GPS antenna on the truck receives a 

shadowed and multipathed signal. 
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signal.  These effects are depicted in Figure 1.2 where the attenuated shadowed signal is 

shown by a dashed line and the multipath signal is being reflected off a nearby building. 

Ephemeris errors, which translate to an error in the projected SV position, are the 

last major error source.  The SV paths are continuously monitored by stations located 

around the world.  Ephemeris parameters are generated at these ground stations and 

uploaded to the SVs to enable the end user to predict the SV position at a future time.  

The parameters essentially provide a curve fit to the orbiting path of the SV.  Errors 

between the predicted and true path increase as the ephemeris parameters age.  The SVs 

broadcast their ephemeris parameters every 30 seconds, but the parameter set is only 

updated by the ground stations every few hours. 

A standard error budget is given in [43] and listed in Table 1.1 containing the user 

equivalent range error (UERE) due to atmospheric, clock, and environmental effects on 

the GPS signal.  Typically, the UERE for both the code and carrier is 1% to 2% of the 

signal's wavelength [37]. A C/A-code based range measurement is expected to be slightly 

less accurate than a P(Y)-code based range because the ionosphere has a larger influence 

on the C/A code.  A user's expected positional accuracy can be obtained by multiplying 

the UERE by the dilution of precision (DOP), which is a unitless numerical parameter 

describing the satellite geometry relative to the user. 

Table 1.1 

The standard GPS error budget for individual range errors and the user 

equivalent range error  

Error Source C/A Range Error, 1𝝈 (m) P(Y) Range Error, 1𝝈 (m) 

Satellite Clock 2.1 2.1 

Receiver Clock 0.5 0.5 

Ionosphere 4.0 1.2 

Troposphere 0.7 0.7 

Multipath 1.4 1.4 

Ephemeris 2.1 2.1 

UERE 5.25 3.6 
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 Differential GPS (DGPS) techniques were developed in the 1980s and 1990s to 

take advantage of the spatial error correlation in the broadcast GPS signal.  Two receivers 

in close proximity will be hampered by very similar atmospheric errors, while the SV 

clock and ephemeris errors will be identical.  However, the multipath and shadowing 

effects are usually different at two locations.    Using two receivers, a user can effectively 

difference out a portion of the error contained in the signal to improve position accuracy.   

A satellite based augmentation system (SBAS) is one system used to determine a 

DGPS solution.  The GPS signal is recorded from the SVs at many well surveyed 

locations, and vector clock, ephemeris, and ionosphere corrections corresponding to each 

SV are computed.  These corrections are uploaded to geostationary satellites, which then 

transmit the data to the end user  [44].  The Wide Area Augmentation System (WAAS) is 

an SBAS system supported by the Federal Aviation Administration (FAA) and is publicly 

available.  Most receivers are capable of using the WAAS system to improve the 

positioning accuracy down to 3 to 10 meters.  The Department of Defense (DoD) 

supports Wide Area GPS Enhancement (WAGE) SBAS system for the military.  Some 

private companies operate their own infrastructure for SBAS that boast better accuracies 

over WAAS.  For example, John Deere operates the StarFire system, and Fugro operates 

the OmniSTAR system. 

A ground based augmentation system (GBAS) can be set up to achieve one to 

three meter positioning accuracy. A radio or cellular modem is used to broadcast scalar 

corrections from a well surveyed location to the end user.  The error correlation is 

typically higher in a local area, therefore better accuracies can usually be achieved over a 

system like WAAS [44].  A differential carrier phase based GBAS technique known as 
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Real Time Kinematic (RTK) positioning, originally developed for surveying purposes, 

can achieve centimeter level accuracy [34].  These accuracies are achievable because a 

carrier phase UERE is significantly smaller than a code UERE.  However, complication 

is increased because ambiguities in the carrier phase measurements must be precisely 

determined before an RTK solution can be produced. 

1.2 AUTOMATED VEHICLE FOLLOWING 

Automated vehicle following is a phrase describing a system where an automated vehicle 

replicates the trajectory of a designated lead vehicle.  It is alternatively known as robotic 

following, automated convoying, or leader-follower.  The designated lead vehicle is 

typically referred to as the leader, and the vehicles duplicating the leader's path are called 

followers.  The leader can be a human operated vehicle, but some situations might require 

that a follower track the path driven by another automated vehicle. 

The ability to precisely follow another vehicle with large separation distances 

would have an immediate impact on ground vehicle systems operated by the military and 

future automated civilian vehicle systems.  Replacing the human operator of the 

following vehicle with a control system can increase following accuracy, operation time, 

and the overall safety to humans and the surrounding environment.  A convoy of UGVs 

could be controlled by a single driver, as shown 

in Figure 1.3, and operational efficiency would 

be improved by freeing more personnel to 

handle other tasks.  In high risk scenarios, such 

as traveling through a mine field, safety could 
 

Figure 1.3: A convoy of UGVs could be 

controlled by a single human operator. 

Human 

Operated 

Vehicle

UGV
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be improved by having a fleet of vehicles replicate the path driven by a mine clearing 

vehicle. 

The United States (US) Army has put forth a concerted effort to develop and 

operate UGV convoys under the Future Combat Systems (FCS) initiative.  FCS was an 

extensive program started in 2003 to modernize the Army.  The Obama administration 

ended the FCS ground vehicle modernization effort and canceled FCS in 2009, but the 

leader-follower program survived with other former FCS programs under the Brigade 

Combat Team (BCT) Modernization.  The leader-follower concept has been integrated 

into two large scale projects: the Robotic Convoy Experiment (RCX) and the Convoy 

Active Safety Technology (CAST) program. The RCX is a series of tactical 

demonstrations to test the capabilities of the BCT Autonomous Navigation System 

(ANS) and leader-follower capabilities.  The effort is led by General Dynamics Robotic 

Systems (GDRS) and strives to develop an integrated approach to the leader-follower 

problem [49].  The CAST program is headed by the US Army Tank Automotive 

Research Development and Engineering Center (TARDEC), and a low cost, vehicle 

independent kit is being developed to enable driver assisted leader-follower capability 

[53]. 

Multiple goals exist from the military's effort, some of which will be beneficial in 

the civilian sector as well.  A robotic convoy can automatically determine inter-vehicle 

spacing to maximize efficiency or safety while traveling.  A high speed convoy would 

save fuel by maintaining short following distances to reduce air drag, while a convoy 

traveling through a dangerous area with potential for attack could reduce risk to multiple 

vehicles by increasing the following distances.  A single person would have the capability 
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to move multiple vehicles in a leader-follower system which would provide more time 

for persons in the following vehicles to perform other tasks.  For example, persons in the 

following vehicles could rest, they could focus a greater portion of their attention on the 

surrounding environment rather than driving to detect hazards, or they could plan a 

mission.  Fewer people are necessary to operate continuously as only a single driver 

needs to be rotated.  Finally, safety can be increased in situations demanding accurate 

path duplication, such as driving through a mine field or over a makeshift bridge, because 

the robotic follower can outperform human following ability. 

1.3 PRIOR WORK 

The leader-follower method presented in this dissertation uses GPS based relative 

position measurements to provide a means for the robotic following vehicle to replicate 

the path of a human driven lead vehicle.  Therefore, previous works from the relative 

positioning field and the automated vehicle following field are independently listed in the 

following subsections. 

1.3.1 GPS Relative Positioning 

GPS can be used to obtain relative position information with exceptional accuracy by 

utilizing the carrier phase measurements.  Carrier differential techniques were first 

developed for static surveying purposes in the late 1970s [7,36].  The techniques were 

expanded a few years later to include kinematic, or non-static surveys with centimeter 

level accuracy [51].  This work made Real Time Kinematic (RTK) surveying possible.  In 

the 1990s, researchers at Delft University of Technology made significant strides in 

solving the carrier integer ambiguity problem by decorrelating the cycle ambiguities to 

determine a more feasible search space.  Their algorithm is the Least Squares Ambiguity 
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Decorrelation Adjustment, which is more commonly known as the LAMBDA method 

[10].  A detailed summary of the LAMBDA method and other related ambiguity 

resolution algorithms is given in [58]. 

The success achieved by the FAA and Stanford University with the Local Area 

Augmentation System (LAAS) demonstrated the potential for using carrier differential 

techniques.  LAAS is a high integrity automated aircraft landing system that utilizes data 

from a static base station at an airport to mitigate measurement errors in the aircraft's 

GPS receiver [13,34,45].  Continuation of the work lead to the Joint Precision Approach 

and Landing System (JPALS), which is split into two categories for land and sea based 

applications.  Shipboard Relative GPS (SRGPS) is a landing system used for landing on 

naval vessels, and Local area DGPS (LDGPS) is a landing system that can be temporarily 

and quickly setup in terrestrial environments [12,16,46].  Difficulties addressed by the 

JPALS system is the lack of a surveyed base station, a non-static base station, and the 

threat of jamming. 

Researchers have also applied carrier based relative positioning to formation 

flight and automated aircraft refueling (AAR).  Flying in formation can lower operating 

costs by saving fuel due to decreased air drag, and AAR improves safety by removing 

human error.  A relative positioning algorithm for formation flight is described in [6].  

The experimental testing was conducted using golf carts, and static accuracies for wide 

lane, L1 only, and narrow lane solutions were 4.26, 3.65, and 3.71 centimeters, 

respectively.  An algorithm for AAR was developed with focus on solution integrity in 

[30].  An ambiguity observable was created by subtracting a pseudorange in units of 
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carrier cycles from the measured carrier phase, and then passing the difference through a 

moving average filter.  The algorithm was validated in real time flight tests. 

1.3.2 Inertial Relative Positioning 

Many navigation systems couple inertial measurements with GPS measurements to 

improve output rate and performance.  Inertial sensors can be used to filter noise in the 

GPS data and provide a solution that degrades gracefully when GPS becomes 

unavailable.  Benefits of inertial measurements to RTK techniques have been 

demonstrated in the past.  A tactical grade inertial measurement unit (IMU) was 

integrated into an RTK system with a static base station to improve carrier phase 

ambiguity resolution after GPS outages in  [48] and [52].  Both works showed a decrease 

in the average time to fix the ambiguities to their integer values when using an IMU. 

Relative inertial navigation requires the IMUs on each platform to be aligned with 

respect to one another before relative information can be determined.  Relative inertial 

measurements were combined with non-differential GPS pseudorange measurements for 

a formation flight application in [15].  The IMUs were considered to be aligned because 

the vehicles were operating in formation.  Researchers at QinetiQ offer a high level 

discussion on coupling GPS and IMU information to produce relative information for 

shipboard landing with focus on solution availability in the presence of GPS outages or 

jamming and solution integrity [23,41].  Relative inertial measurements were combined 

with vision based relative range measurements for aerial vehicles in [17].  A platform 

relative approach was taken, where the relative information is expressed in the body 

frame of one vehicle.  However, the angular acceleration of one body about the other is 

required for this approach. Researchers from the Illinois Institute of Technology removed 
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the need for angular acceleration measurements in [3] and [33].  Both still employ a 

platform relative approach, and they use carrier differential GPS to determine high 

accuracy relative position between a ship and approaching aircraft. 

1.3.3 Automated Vehicle Following 

The concept of an automated vehicle convoy is not new; it can be traced back to the 1939 

World’s Fair [57].  Original designs were not specifically intended for automated 

following as they utilized a rail or wire attached to the road to guide a vehicle and keep it 

in a lane.  Much work was done in the vehicle platooning area in the 1990s and early 

2000s by the California PATH (Partners for Advanced Transit and Highways) program, 

which has conducted successful tests on public highways. Magnets were embedded into 

public roadways, and magnetometers on each vehicle provided the vehicle with 

knowledge of its position in the lane [42,57].  Recently, German engineers have 

developed and implemented an advanced driver assistance system to automate heavy 

trucks using a similar approach.  Vision systems were used to track lane markings and 

keep the trucks in the lane. Successful tests were recently performed on German 

highways [50].   

Most current solutions for true vehicle following require vehicles to maintain line-

of-sight (LOS) between one another so perception sensors can "see" the lead vehicle 

[8,40,55].   Recognizable objects are on the back of the lead vehicle are tracked, and a 

laser scanner [4,32,40], camera [28], or combination [8] can be used to determine relative 

position and orientation from the following to lead vehicle.  Control references can be 

generated by treating the following vehicle as a trailer and steering the following vehicle 

towards the leader [40].  The obvious limitation of perception based approaches is non-
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line-of-sight (NLOS) following cannot occur as the lead vehicle's position and orientation 

cannot be determined. 

GPS is an additional tool that can be used for robotic following.  However, 

standalone positioning accuracy is not sufficient for many applications.  Research by 

General Motors has shown that simple position differencing cannot provide high 

accuracy range and bearing information using low cost receivers.  Even expensive, high 

end receivers were only capable of providing one meter accurate information [29].  

Therefore, GPS is typically used as a secondary sensor in robotic following algorithms.  

However, carrier phase DGPS can be used to provide a reference in which an automated 

vehicle can trail a lead vehicle.  Feasibility of using carrier DGPS for maintaining 

longitudinal spacing was shown in [61], and proof of concept for platoon control was 

shown in [2]. 

1.4 CONTRIBUTIONS 

The goal of the research described in this dissertation was to develop and implement a 

path duplication routine to enable an autonomous vehicle to track the path of a man 

driven lead vehicle using GPS based relative position information.  Several contributions 

were made during the course of the research.  These contributions are subsequently 

summarized. 

A real time, Dynamic base Real Time Kinematic (DRTK) algorithm was 

developed and implemented.  The algorithm uses carrier phase DGPS techniques to 

accurately and precisely estimate the relative position between two moving platforms.  

Centimeter level accuracy is available when the phase biases are resolved.  Versions of 



16 

 

the algorithm are being integrated into the FCS ANS software for use in the RCX and in 

the CAST system.  The algorithm is described in Chapter 2. 

An architecture was developed to combine inertial data with the DRTK 

algorithm.  Two IMUs on separate vehicles were aligned in a common navigation frame 

to form relative inertial measurements.  These measurements were integrated with the 

DRTK algorithm to aid ambiguity estimation though filtering by providing higher order 

information about the relative motion.  Also, a dead reckoning with the measurements 

provides graceful solution degradation when GPS signals partially or completely lost.  It 

is shown that the dead reckoned solution can aid relative solution reacquisition for a short 

period of time.  The aided DRTK algorithm is described in Chapter 3. 

The use of inertial and time differenced GPS carrier measurements as a 

means to generate vector odometry information was assessed.  Extraction of change 

in position using inertial measurements, time differenced carrier measurements, and time 

differenced carrier measurements aided with inertial measurements is discussed in 

Chapter 4.  The accuracy of the change in position in a two dimensional North-East plane 

yielded by each measurement was determined.  The time differenced carrier method was 

implemented on a real time platform. 

A path duplication strategy was developed and implemented to develop both 

LOS and NLOS following.  The technique revealed in Chapter 5 uses both spatial and 

temporal relative position measurements, specifically those mentioned in Chapter 2 and 

Chapter 4, to determine the position of a virtual lead vehicle.  The NLOS ability allows 

the lead vehicle to travel more complicated paths and at greater distances ahead of the 

following vehicles.  The number of scenarios in which the technology can be used is 
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expanded by removing the need for a additional infrastructure, such as an RTK base 

station.  An autonomous vehicle was programmed to use the approach to follow the path 

of a man driven lead vehicle.  Analysis reveals path following error of the LOS and 

NLOS methods as a function of following distance and vehicle speed when using the 

DRTK and odometry measurements. 
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Chapter 2  

DRTK 

2.1 INTRODUCTION 

GPS can be used to obtain relative position information with exceptional accuracy by 

utilizing the carrier phase measurements.  Most GPS receivers use the code modulated 

onto the carrier to determine the pseudorange between the receiver antenna and satellite.  

However, phase measurement accuracy is significantly better than the pseudorange 

accuracy.  Centimeter level positioning accuracy can be achieved when using carrier 

phase based DGPS techniques because the phase can be measured to within 1% to 2% of 

the carrier wavelength.  The L1 carrier wavelength is 19 centimeters, therefore the 

resulting range measurement is accurate to the millimeter level [37].  The phase 

measurement is also more robust to multipath error [25].   

Using the phase measurements for positioning is difficult because carrier phase 

measurements contain an unknown bias corresponding to the number of carrier cycles 

between the SV and user's antenna when the receiver begins tracking.  In order to use the 

phase measurements to obtain higher accuracy position estimates, this integer number of 

cycles between the user and satellite must be resolved.  This value is commonly known as 

the integer ambiguity, or N.  The integer ambiguities cannot be determined with a single 
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receiver without processing many epochs of static data that can be hours long.  The error 

sources present in the signal due to the atmosphere, clocks, ephemeris parameters, and 

multipath, prevent the bias from being easily determined. 

The errors present in signals received by multiple receivers at nearby locations are 

highly correlated.  Figure 2.1 shows the computed position output from two static 

receivers.  Clearly, an underlying trend exists that is common to both solutions.  This 

trend is due to the high error correlation in the received signals.  The error correlation is 

the premise upon which SBAS and GBAS are based.  DGPS solutions are formed by 

broadcasting error corrections from known locations to remote users, or by broadcasting 

the raw observables to the remote users. 

An RTK system is a form of DGPS that utilizes the phase accuracy by 

differencing out common mode errors between GPS receivers in close proximity (<20 

km) to determine the relative phase ambiguities, and therefore obtain a high accuracy 

position solution.  Typically, a static receiver is placed at a known location with some 

type of transmitter.  This setup is often referred to as a base station.  Observables 

 

Figure 2.1: Error correlation in the calculated position from two static receivers 500 meters apart causes the 

individual positions to drift.  The separation distance was removed for clarity. 
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measured at the base station are broadcast to a 

remote GPS receiver, as shown in the schematic in 

Figure 2.2.  The remote receiver, which can be 

dynamic, uses the base station observables to 

difference out correlated error in its observables and 

determine a high accuracy absolute position.  

A Dynamic base RTK (DRTK) system 

removes the requirement of installing a base station.  

An accurate relative position vector (RPV) can be determined between multiple receivers, 

but accurate global position information can no longer be computed. The DRTK 

algorithm operates in principle like a typical RTK algorithm; errors correlated in time and 

across space are differenced out using multiple receivers to determine the relative 

position between those receivers.   

The DRTK algorithm is a multi-stage process that can be briefly described by its 

three fundamental stages.  First, a combination of the pseudorange and carrier phase 

measurements from multiple locations are used in a discrete, linear Kalman filter [20] to 

estimate the relative ambiguities between receivers.  An attempt is then made to fix the 

ambiguities to integer values.  Once the ambiguities are fixed, the now unambiguous 

phase measurements are used in a least squares routine to estimate the baseline vector 

between receivers.  

 
Figure 2.2: An RTK base station 

broadcasts its observables to a remote 

GPS receiver to obtain a centimeter 

accurate absolute position. 



21 

 

2.2 OBSERVABLES 

2.2.1 Undifferenced Signal Models 

To understand the subsequent derivation and appreciate the accuracies achieved by RTK 

and DRTK algorithms, mathematical models of the code and carrier based range 

measurements, as defined by [37], are given:  

𝜌𝐴
𝑗

=  𝒓𝑨
𝒋
 + 𝑐 𝛿𝑡𝐴 − 𝛿𝑡𝑗  + 𝜆 𝑇𝑗 + 𝐼𝑗  + 𝑀𝜌 + 𝜖𝜌

𝑗
 (2.1)  

𝜙𝐴
𝑗

=  𝒓𝑨
𝒋
 + 𝑐 𝛿𝑡𝐴 − 𝛿𝑡𝑗  + 𝜆 𝑇𝑗 − 𝐼𝑗 + 𝑁𝑗  + 𝑀𝜙 + 𝜖𝜙

𝑗
 (2.2)  

The variables are defined in Table 2.1. 

Table 2.1 

GPS range and phase measurement variable definitions  

Variable Description Unit 

𝝆𝑨
𝒋

 Measured range (pseudorange) from receiver A 

to satellite j 

m 

𝝓𝑨
𝒋

 Measured carrier signal phase from receiver A to 

satellite j 

m 

𝒄 Speed of light through a vacuum: 299,792,458  m/s 

𝒓𝑨
𝒋

 True range from receiver A to satellite j m 

𝝀 Wavelength of the carrier (L1: 0.1902; L2: 

0.2442) 

m 

𝑰 Ionospheric delay/advancement cycles 

𝑻 Tropospheric delay cycles 

𝜹𝒕𝑨 Receiver clock errors s 

𝜹𝒕𝒋 Satellite clock errors s 

𝑵𝑨
𝒋

 Integer number of cycles from receiver A to 

satellite j 

cycles 

𝑴 Multipath effects m 

𝝐 Measurement noise m 
 

Technically, the range expressed in Equation (2.2) is the difference between the 

receiver generated phase at time of reception and the transmitted phase at the time of 

transmission plus the cycle ambiguity, as shown in Equation (2.3). 
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 𝒓𝑨
𝒋
 = 𝜆 𝜙𝐴 𝑡 − 𝜙𝑗  𝑡 − 𝜏 + 𝑁𝑗   (2.3)  

However, this notation is dropped in the following sections for simplicity. 

The nondeterministic component contained in the signals is the system noise.  All 

other nonparametric components can be sufficiently modeled or estimated to reduce the 

measurement error when necessary.  The noise can be statistically quantified by 

determining the accuracy of the delay lock loop (DLL) and phase lock loops (PLL) in the 

receiver as a function of the carrier to noise ratio, C/N0.  Both pseudorange and carrier 

phase measurement accuracy degrade as the C/N0 decreases, as shown in Figure 2.3.  

Standard formulas for the DLL and PLL accuracy are given in the following equations 

[27,37]. 

𝜍𝜖𝜌 = 𝜆𝑐 
4𝑑2𝐵𝑛𝜌
𝐶/𝑁0

 2 1 − 𝑑 +
4𝑑

𝑇𝑠𝐶/𝑁0
  (2.4)  

𝜍𝜖𝜌 =
𝜆

2𝜋
 
𝐵𝑛𝜙
𝐶/𝑁0

 1 +
1

𝑇𝑠𝐶/𝑁0
  (2.5)  

 

Figure 2.3: Pseudorange and carrier phase measurement accuracy can be expressed as a function of the C/N0. 
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Tracking loop parameters are receiver dependent, but approximations were used in this 

work based on those given in [27]. Values are listed in Table 2.2. 

Table 2.2 

Tracking loop parameters  

Parameter Description Value Unit 

𝑩𝒏𝝆 Code loop noise 

bandwidth 

2 Hz 

𝑩𝒏𝝓 Carrier loop noise 

bandwidth 

18 Hz 

𝑪/𝑵𝟎 Carrier to noise ratio variable Hz 

𝒅 Correlator spacing 0.5 chips 

𝝀 Carrier wavelength L1: 0.1902 

L2: 0.2442 

m 

𝝀𝒄 Code chip width C/A: 

293.05 

m 

𝑻𝒔 Predetection integration 

time 

0.005 S 

  

2.2.2 Single Differenced Signal Models 

A single differenced observable is formed by subtracting time synchronized 

measurements from two receivers observing the same satellites.  If the receivers are in 

close proximity, an assumption can be made that the atmospheric errors observed at the 

two stations are the same.  It is important to note that some situations, such as high 

ionospheric activity or severe weather, can potentially falsify this assumption [35].  

Single differences for the range measurements can be calculated using the signal models 

given in Equations (2.1) and (2.2), where Δ denotes a single differenced value (note 

multipath effects are assumed to be negligible in the following equations). 

Δ𝜌𝐴𝐵
𝑗

= 𝜌𝐵
𝑗
− 𝜌𝐴

𝑗
=  𝒓𝑩

𝒋
 −  𝒓𝑨

𝒋
 + 𝑐𝛿𝑡𝐴𝐵 + 𝜖Δ𝜌

𝑗
 (2.6)  

Δ𝜙𝐴𝐵
𝑗

= 𝜙𝐵
𝑗
− 𝜙𝐴

𝑗
=  𝒓𝑩

𝒋
 −  𝒓𝑨

𝒋
 + 𝑐𝛿𝑡𝐴𝐵 + 𝜆Δ𝑁𝐴𝐵

𝑗
+ 𝜖Δ𝜙

𝑗
 (2.7)  



24 

 

The resulting range information is the difference in ranges from each location to the 

satellite.  However, the relative distance between locations can be extracted with 

knowledge of the system geometry. 

𝑮𝒋𝒓𝑨𝑩 =  𝒓𝑩
𝒋
 −  𝒓𝑨

𝒋
  (2.8)  

The matrix 𝑮 is known as the geometry matrix and contains the three dimensional unit 

vectors from location A to each satellite.  A row of 𝑮 corresponding to satellite 𝑗 is 

represented as follows: 

𝑮𝒋 =  
𝑟𝐴𝑥
𝑗

 𝒓𝑨
𝒋
 

𝑟𝐴𝑦
𝑗

 𝒓𝑨
𝒋
 

𝑟𝐴𝑧
𝑗

 𝒓𝑨
𝒋
 
  (2.9)  

Note that 𝐺𝐴
𝑗
≈ 𝐺𝐵

𝑗
 because the receivers are very close relative to their respective 

distances to the SV. 

Since the single difference operation is linear, a transformation matrix, 𝑪𝒖𝒅
𝚫 , can 

also be constructed to transform a vector of 𝑛 undifferenced range or phase 

measurements to its single differenced counterpart.  Equation (2.10) shows this 

relationship, where  ∙  denotes a pseudorange or carrier phase measurement. 

 
Δ ∙ 𝐴𝐵

𝑗

⋮
Δ ∙ 𝐴𝐵

𝑚
 

𝑛×1

=  −𝑰𝑛×𝑛 𝑰𝑛×𝑛 

 
 
 
 
 
 
  ∙ 𝐴

𝑗

⋮
 ∙ 𝐴
𝑚

 ∙ 𝐵
𝑗

⋮
 ∙ 𝐵
𝑚 
 
 
 
 
 
 

2𝑛×1

  

𝚫 ∙ 𝑨𝑩 = 𝑪𝒖𝒅
𝚫  

 ∙ 𝑨
 ∙ 𝑩

  (2.10)  
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Notice the atmospheric terms have been removed, but the noise has been 

increased.  Momentarily assume the variances on the undifferenced measurements are 

equal, and a single measurement variance is denoted by a generic variable, 𝜍2.   

𝑅Δ = cov 𝚫𝝐 ∙  = 𝑪𝒖𝒅
𝚫 cov 𝝐 ∙  𝑪𝒖𝒅

𝚫𝑻 = 𝜍2𝑪𝒖𝒅
𝚫 𝑪𝒖𝒅

𝚫𝑻 = 2𝜍2𝑰𝒏×𝒏 (2.11)  

Therefore, the noise does remain uncorrelated after the single difference operation is 

performed. 

The noise on the single differenced observables can be statistically quantified by 

determining the accuracy of the delay and phase lock loops in the receiver.  Under the 

assumption that the ionospheric and satellite clock errors were removed, the single 

differenced measurement error variance can be calculated by summing the tracking loop 

error variances from each receiver.  These values can be adjusted for situational specific 

operation (i.e. operating in areas known for high multipath).   

Figure 2.4 shows an example of single differenced observables for a static and 

dynamic platform.  These observables contain baseline information, satellite motion, 

receiver clock error, and noise.  The pseudorange single difference observable is 

absolute, and the effect of the integer ambiguity is seen as a bias on the phase observable.  

Note that the difference between observables changes in the first plot.  This is due to 

noise and multipath effects present on the pseudorange measurements, and also 

demonstrates the difficulty in determining the carrier phase bias. 
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2.2.3 Double Differenced Signal Models 

The result of a single difference is a range measurement between receivers associated 

with one satellite. The remaining error terms are receiver clock biases, an increased noise, 

and the ambiguity on the phase measurement. Note the new ambiguity is a function of the 

two original receiver to satellite ambiguities. 

One single difference measurement, preferably of high quality and likely to 

remain in sight, is selected as a base measurement (denoted by 𝑘). Often this will be 

 

 

Figure 2.4: A single differenced observable for a static (top) and dynamic (bottom) platform are shown. 
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referenced to the SV nearest to the zenith.  From it, each of the other time synchronized 

single differenced measurements are subtracted to form a double differenced 

measurement, denoted by ∇Δ.  

∇Δ𝜌𝐴𝐵
𝑗𝑘

= Δ𝜌𝐴𝐵
𝑘 − Δ𝜌𝐴𝐵

𝑗
=  𝑮𝒌 − 𝑮𝒋 𝒓𝑨𝑩 + 𝜖∇Δ𝜌

𝑗𝑘
 (2.12)  

∇Δ𝜙𝐴𝐵
𝑗𝑘

= Δ𝜙𝐴𝐵
𝑘 − Δ𝜙𝐴𝐵

𝑗
=  𝑮𝒌 − 𝑮𝒋 𝒓𝑨𝑩 + 𝜆∇Δ𝑁𝐴𝐵

𝑗𝑘
+ 𝜖∇Δ𝜙

𝑗𝑘
 (2.13)  

This action removes the receiver clock bias error because it is common among all 

received signals on a receiver.  The double difference operation is also linear, and a linear 

transformation matrix, 𝑪𝚫
𝛁𝚫, can be constructed to perform the operation on a vector of 

single differenced observations.  Assuming 𝑘 is the base satellite results in 

 
∇Δ ∙ 𝐴𝐵

𝑗𝑘

⋮
∇Δ ∙ 𝐴𝐵

𝑚𝑘

 

𝑛−1×1

=  

−1 1 0 0 0
0 1 −1 0 0
⋮ ⋮ ⋱
0 1 0 0 −1

 

𝑛−1×𝑛  
 
 
 
 Δ ∙ 𝐴𝐵

𝑗

Δ ∙ 𝐴𝐵
𝑘

⋮
Δ ∙ 𝐴𝐵

𝑚  
 
 
 
 

𝑛×1

  

𝛁𝚫 ∙ 𝑨𝑩 = 𝑪𝚫
𝛁𝚫

 
 
 
 
 Δ ∙ 𝐴𝐵

𝑗

Δ ∙ 𝐴𝐵
𝑘

⋮
Δ ∙ 𝐴𝐵

𝑚  
 
 
 
 

= 𝚫 ∙ 𝑨𝑩 (2.14)  

An analysis similar to Equation (2.11) can be performed to determine the impact 

of the double difference operation on the noise. 

𝑅∇Δ = cov 𝛁𝚫𝝐 ∙  = 𝑪𝚫
𝛁𝚫cov 𝚫𝝐 ∙  𝑪𝚫

𝛁𝚫𝑻 = 𝑪𝚫
𝛁𝚫2𝜍2𝑰𝒏×𝒏𝑪𝚫

𝛁𝚫𝑻

= 2𝜍2𝑪𝚫
𝛁𝚫𝑪𝚫

𝛁𝚫𝐓
 

(2.15)  

The result of Equation (2.15) is the undifferenced variance, 𝜍2, multiplied by a matrix 

with four in the diagonal elements and two in the remaining elements.  Therefore, the 

noise on each double difference observable is correlated with the noise on all double 
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difference observables formed.  The correlation is due to the difference of the common 

base satellite from all other single difference observables. 

The covariance matrix associated with the double differenced observables can be 

constructed using the thermal DLL and PLL variances from Equations (2.4) and (2.5).  

The single differenced covariance matrix is constructed by summing the variances from 

the receivers with respect to each SV, and placing the sums in the diagonal elements of a 

matrix.  The double differenced covariance matrix can be determined using 𝑪𝚫
𝛁𝚫. 

𝑹𝛁𝚫 = 𝑪𝚫
𝛁𝚫𝑹𝚫𝑪𝚫

𝛁𝚫𝐓 (2.16)  

Double differenced pseudorange and carrier phase observables are shown in 

Figure 2.5.  The integer ambiguity is clearly present in the dynamic example.  The 

ambiguity was removed in the static example to highlight the superior measurement 

accuracy of the phase observable over the pseudorange observable.  Also, notice the 

effects due to clock error are gone.  The remaining information contained in the signal is 

the baseline, satellite motion, and noise.  The slope in the plot of static double differenced 

observables is due to SV motion. 
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2.2.4 Other Notable Observables 

Linear combinations of L1 and L2 observables can be created to alter the observable 

wavelength and accuracy.  A longer wavelength reduces the search space for the 

ambiguity resolution routines as a lower number of carrier cycles is needed to define a 

distance.  Alternatively, a shorter wavelength provides an increase in the phase 

measurement precision. An observable with a longer wavelength, or widelane observable, 

is created by subtracting the L2 observable from the L1 observable. 

 

 

Figure 2.5: Double differenced observables for a static (top) and dynamic (bottom) platform are shown. 
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 ∙ 𝑊𝐿 =  
 ∙ 𝐿1

𝜆𝐿1
−
 ∙ 𝐿2

𝜆𝐿2
 𝜆𝑊𝐿 (2.17)  

The widelane wavelength is 86.19 centimeters and significantly longer than the L1 (19.03 

centimeters) and L2 (24.42 centimeters) wavelengths.  A narrow-lane observable with a 

shorter wavelength is created by adding the L1 and L2 observables.  

 ∙ 𝑁𝐿 =  
 ∙ 𝐿1

𝜆𝐿1
+
 ∙ 𝐿2

𝜆𝐿2
 𝜆𝑁𝐿  (2.18)  

The narrow-lane observable has a shorter wavelength at 10.7 centimeters.  Noise is 

increased with both new observables, but the benefit to ambiguity resolution in the case 

of widelaning and the increase in accuracy in the case of narrow-laning is greater than the 

drawback of noise amplification.  Figure 2.6 shows the relative difference in wavelength 

among the L1, L2, widelane, and narrow-lane observables. 

 

Figure 2.6: The widelane observable has a much longer wavelength than the L1 and L2 observables, which 

benefits ambiguity resolution.  However, the narrow-lane observable has a much shorter wavelength and 

increases measurement precision. 
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Though noisy, a widelaned ambiguity observable can also be formed by 

combining a widelaned carrier observable with a narrow-laned pseudorange observable 

[30].  Single and double differenced versions of the ambiguity observable can also be 

created. 

𝑁 𝑊𝐿
𝑗

=
1

𝜆𝑊𝐿
 𝜙𝑊𝐿

𝑗 − 𝜌
𝑁𝐿

𝑗
  (2.19)  

The observable must be passed through a moving average or sliding window filter before 

being used because the pseudorange noise obscures the true ambiguity.  Figure 2.7 shows 

a single differenced ambiguity observable and its filtered counterpart. 

2.3 CYCLE SLIP DETECTION 

A cycle slip is a sudden change in the cycle ambiguity caused when the PLL momentarily 

loses lock on the carrier signal.  Loss of signal, severe multipath, or low C/N0 values can 

induce cycle slips.  Figure 2.8 shows an instantaneous change in the carrier phase, or a 

cycle slip.  Cycle slips must be detected for carrier based navigation techniques to be 

reliable.  Otherwise, the solution is subject to often large deviations from its true value. 

 

Figure 2.7: The ambiguity observable must be filtered with a sliding window or moving average filter to remove 

the obstructing pseudorange noise. 
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The approach used in this work was to monitor the change in an ambiguity from 

epoch to epoch.  This method is relatively simple and does not require much 

computational effort.  A time difference of the ambiguity is formed by subtracting a time 

differenced carrier measurement from a time differenced range measurement and 

dividing the total by the carrier wavelength.  

𝑑Δ𝑁 
𝑗

=
1

𝜆
  Δ𝜌

𝑘

𝑗
− Δ𝜌

𝑘−1

𝑗
 −  Δ𝜙

𝑘

𝑗
− Δ𝜙

𝑘−1

𝑗
   (2.20)  

The absolute value of 𝑑Δ𝑁  is monitored, and the measurement is discarded for the 

current epoch when the value is beyond a threshold.  Figure 2.9 shows a cycle slip 

detected by this approach.  The threshold has units of cycles, and the value chosen for 

this work was one.  Note that noise on the pseudorange measurement can cause 

significant fluctuations in this observable creating a non zero probability of missed 

detection and probability of false alarm.    Note that a more rigorous test might be 

required for some applications, but this method was sufficient for this work. 

 

Figure 2.8: A cycle slip can be seen in the single differenced phase observable at the discontinuity around 1406 

seconds. 
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It is possible to detect and repair cycle slips.  A repair involves estimating the 

change in phase ambiguity due to the loss of lock and applying the estimate to the 

measurement.  Double differenced observables are usually necessary to better estimate 

the amount of slip because the remaining receiver clock bias in the single differenced 

observables can cause inaccuracies in the slip estimate.  Cycle slip repair techniques 

increase the number of computations in the algorithm and therefore were not developed 

for this work. 

2.4 SINGLE DIFFERENCED INTEGER ESTIMATION 

A Kalman filter can be used to determine floating point estimates of the integer 

ambiguities.  This subsection describes an estimation algorithm that utilizes the single 

differenced observables shown in Equations (2.6) and (2.7).   Estimates of the 

ambiguities can be used to determine the RPV between two dynamic receivers.  

However, the full accuracy of the carrier phase measurements will not be utilized as the 

 

Figure 2.9: Most cycle slips can be clearly seen by monitoring the change in the measured phase ambiguity.  If a 

cycle slip is detected, the change in ambiguity exceeds a predefined threshold and the measurement is thrown 

out.  A cycle slip is detected around 1406 seconds and is well beyond the threshold of one. 
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estimates are not fixed to their true, integer values.  Therefore, this algorithm only 

produces low precision estimates of the RPV. 

2.4.1 Estimator Overview 

The single differenced observables can be arranged in a 2𝑚 × 1 vector, where 𝑚 is the 

number of SVs being tracked on each channel (e.g. 𝑚 = 8 when eight L1 signals are 

tracked, and 𝑚 = 13 when eight L1 signals and five L2 signals are tracked).  The 

observable models in Equations (2.6) and (2.7) can then be rewritten in a vector/matrix 

format, where 𝒓  𝑨𝑩 is the RPV. 

 
𝚫𝝆
𝚫𝝓

 
2𝑚𝑥1

= 𝑮 𝟐𝒎𝒙𝟒  
𝒓  𝑨𝑩
𝑐𝛿𝑡𝐴𝐵

 
4𝑥1

+  
𝟎𝒎𝒙𝒎
𝜆𝑰𝒎𝒙𝒎

 𝚫𝑵𝒎𝒙𝟏 (2.21)  

where  

𝑮 =  
𝑮 𝟏
𝑮 𝟏

  (2.22)  

The goal of this estimator is to determine single differenced ambiguity estimates.  

Therefore, the RPV, receiver clock biases, and geometry are unnecessary at this stage.  

The left null space of 𝑮  can be used to uncouple the unneeded information from the 

model.  This technique has been previously used in [30,34].  The left null space is defined 

as follows: 

𝑳𝑮 = 𝟎 (2.23)  

Equation (2.21) can be rewritten with the unnecessary terms removed, 

𝑳  
𝚫𝝆
𝚫𝝓

 = 𝑳  
𝟎
𝜆𝑰
 𝚫𝐍 (2.24)  

which fits the 𝒛 = 𝑯𝒙 form required by the Kalman filter.  The measurement covariance 

is also updated using the left null matrix. 
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𝑹 = 𝑳𝑹𝚫𝑳
𝑻 (2.25)  

Equations (2.24) and (2.25) are used in the measurement update of the Kalman filter, 

which is given in Equations (2.26) through (2.28). 

𝑲 = 𝑷𝒌
−𝑯𝑻 𝑯𝑷𝒌

−𝑯𝑻 + 𝑹 −1 (2.26)  

𝒙 𝒌
+ = 𝒙 𝒌

− + 𝑲 𝒛 −𝑯𝒙 𝒌
−  (2.27)  

𝑷𝒌
+ =  𝑰 − 𝑲𝑯 𝑷𝒌

− (2.28)  

The estimated state vector 𝒙  consists of estimates of the single differenced L1 or L1 and 

L2 integer ambiguities. 

𝒙 = 𝚫𝑵𝑳𝟏     or     𝒙 =  𝚫𝑵𝑳𝟏
𝑻 𝚫𝑵𝑳𝟐

𝑻  𝑇 (2.29)  

The time update is relatively simple; no dynamics are associated with the 

ambiguity states, and the process noise is uncorrelated among the ambiguities.  

Therefore, the state transition matrix is an 𝑚 × 𝑚 identity matrix. 

𝚽 = 𝑰𝒎×𝒎 (2.30)  

The process noise contains small values along the diagonal to prevent the filter gain from 

settling to zero.  A value of 10−6Δ𝑡 was used for this work, where Δ𝑡 is the sample rate 

of the range measurements. 

𝑸 = 10−6Δ𝑡𝑰𝒎×𝒎 (2.31)  

The time update step in the Kalman filter propagates the state vector and estimated 

covariance forward in time using knowledge of the system's dynamics and uncertainty 

associated with the dynamics. 

𝒙 𝒌
−

= 𝚽𝒌,𝒌−𝟏𝒙 𝒌−𝟏
+  (2.32)  

𝑷𝒌
− = 𝚽𝒌,𝒌−𝟏𝑷𝒌−𝟏

+ 𝚽𝒌,𝒌−𝟏
𝑻 + 𝑸 (2.33)  
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Computational savings can be realized because the state transition matrix is an identity 

matrix.  Equation (2.32) can be skipped, and the propagation of 𝑷𝒌−𝟏
+  can be simplified as 

follows: 

𝑷𝒌
−

= 𝑷𝒌−𝟏
+ + 𝑸 (2.34)  

Numerical limitations can cause the estimated covariance matrix to become non-

symmetric.  Problems can occur in the integerization step if 𝑷 is non-symmetric.  A 

simple operation can be performed periodically to maintain the symmetrical properties of 

the matrix.   

𝑷 =
1

2
 𝑷 + 𝑷𝑻  (2.35)  

2.4.2 Initialization 

The state vector can be initialized two ways.  The single differenced ambiguities can be 

approximated with the difference between the range and phase measurements. 

𝒙 𝟎 = 𝚫𝑵 =
1

𝜆
 𝚫𝝓− 𝚫𝝆  (2.36)  

Alternatively, a priori knowledge of the baseline vector between the two GPS antennas 

can also be used to approximate the initial integer ambiguities.  

𝒙 𝟎 = 𝚫𝑵 =
1

𝜆
 𝚫𝝓− 𝑮𝒓  𝑨𝑩  (2.37)  

Such information could be obtained from a laser scanner, vision system, inertial 

navigation system (INS), or other radio ranging system.  Also, the two platforms could 

start at known points.  Note that a RPV must be used to determine the initial ambiguities.  

Knowledge of the baseline magnitude, with no orientation, does not provide the 

necessary constraints to predict the single differenced ranges.  However, such 

information, perhaps coming from ultra-wideband ranging, sonar, or odometry, could be 
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included in the measurement update of the estimator, or used as a metric for ambiguity 

validation. 

The covariance is initialized with the approximate variance of the initial 

ambiguity estimates.  Correlation among the ambiguities is ignored initially.  For this 

work it was determined that a standard deviation of half a cycle (𝜍 = 0.5) produced the 

best filter performance.  The thermal variance from the DLL could also be used to 

initialize the covariance matrix, however undesirable behavior was observed using the 

thermal variance when a satellite was repeatedly coming in and out of view of the 

receiver.  

2.4.3 Constellation Changes 

The estimated state vector and estimated covariance must be altered before the next 

iteration of the Kalman filter equations in the event of a constellation change (i.e. when 

the receiver begins tracking a new SV or loses lock on an existing SV).  The single 

differenced ambiguity estimator is naturally set up such that little complexity is needed to 

handle any changes.  Having a base SV, as in a double differenced ambiguity estimator, 

increases the complexity as changes of the base SV requires a transformation of the 

ambiguities. 

Loss of an SV requires a relatively straight forward modification to the state 

vector and covariance.  The element in the state vector, and the row and column of the 

covariance matrix, associated with the lost satellite are simply removed.  This operation 

is best illustrated with an example.  If L1 PRNs 4, 16, and 28 are tracked at time 𝑡𝑘−1, the 

estimated state and estimated covariance would consist of the following data: 
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𝒙 𝒌−𝟏 =  Δ𝑁 4 Δ𝑁 16 Δ𝑁 28 𝑇 (2.38)  

𝑷𝒌−𝟏 =  

𝜍Δ𝑁 4
2 𝜌𝑁4 ,𝑁16𝜍Δ𝑁 4𝜍Δ𝑁 16 𝜌𝑁4 ,𝑁28𝜍Δ𝑁 4𝜍Δ𝑁 28

𝜌𝑁4 ,𝑁16𝜍Δ𝑁 4𝜍Δ𝑁 16 𝜍
Δ𝑁 16 2 𝜌𝑁16 ,𝑁28𝜍Δ𝑁 16𝜍Δ𝑁 28

𝜌𝑁4 ,𝑁28𝜍Δ𝑁 4𝜍Δ𝑁 28 𝜌𝑁16 ,𝑁28𝜍Δ𝑁 16𝜍Δ𝑁 28 𝜍Δ𝑁 28
2

  (2.39)  

Now suppose that L1 PRN 16 is obstructed by a building at 𝑡𝑘 .  The second element of 

the state vector needs to be removed, along with the second row and column of the 

covariance matrix.  

𝒙 𝒌−𝟏 =  Δ𝑁 4 Δ𝑁 28 𝑇 (2.40)  

𝑷𝒌−𝟏 =  
𝜍Δ𝑁 4

2 𝜌𝑁4 ,𝑁28𝜍Δ𝑁 4𝜍Δ𝑁 28

𝜌𝑁4 ,𝑁28𝜍Δ𝑁 4𝜍Δ𝑁 28 𝜍Δ𝑁 28
2   (2.41)  

The addition of a new SV requires the stretching of the state vector and 

covariance matrix to accommodate the new data.  A matrix can be created to perform the 

task of adding the elements.  The matrix starts out as an identity matrix with  𝑚 − 𝑝 2 

elements, where 𝑚 is the number of observations at 𝑡𝑘  and 𝑚 − 𝑝 is the number of 

observations at 𝑡𝑘−1, before data from 𝑝 new SVs was available.  Rows containing zeros 

in all elements are added where they correspond to the location of the new data.  

Continuing with the example above, L1 PRN 16 is tracked again at the next epoch.  The 

𝑚 × 𝑚 − 𝑝 transformation matrix, 𝑪𝒎−𝒑
𝒎 , is constructed as follows: 

𝑪𝒎−𝒑
𝒎 =  

1 0
0 0
0 1

  (2.42)  

The estimated state vector and estimated covariance matrix are multiplied by the 

transformation matrix to make the appropriate number of elements to contain the new 

estimates. 

𝒙 𝒌−𝟏 = 𝑪𝒎−𝒑
𝒎 𝒙 𝒌−𝟏 =  Δ𝑁 4 0 Δ𝑁 28 𝑇 (2.43)  
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𝑷𝒌−𝟏 = 𝑪𝒎−𝒑
𝒎 𝑷𝒌−𝟏𝑪𝒎−𝒑

𝒎 𝑻
=  

𝜍
Δ𝑁 

4
2

0 𝜌
𝑁4,𝑁28𝜍

Δ𝑁 
4𝜍

Δ𝑁 
28

0 0 0

𝜌
𝑁4 ,𝑁28𝜍

Δ𝑁 
4𝜍

Δ𝑁 
28 0 𝜍

Δ𝑁 
28

2
  (2.44)  

The new elements are then initialized using the techniques described in Section 2.4.2. 

2.5 FLOATING PRECISION BASELINE ESTIMATION 

The floating point ambiguity estimates can be used to determine the RPV between 

antennas.  Although the RPV estimate will not be as precise as one calculated using 

integer ambiguities, it might be useful for some applications or to provide a solution 

when the integers have not been fixed.  A simple weighted least squares estimator is used 

to determine the RPV with the floating point ambiguity estimates. 

Double differenced ambiguity estimates must be formed from the single 

differenced ambiguity estimates to determine an exact integer value [34].  This double 

differenced vector is formed by choosing a "base" ambiguity and subtracting all others 

from it, as shown in Equation (2.13) or using the technique described in Equation (2.14).  

The measurement covariance is be formed by calculating single differenced PLL 

variances for each channel and using Equation (2.16) to transform them to double 

differenced variances.  Weighted least squares is then used to estimated a three 

dimensional RPV using the double differenced phase measurements and double 

differenced floating ambiguity, as shown below: 

𝒓𝑨𝑩 =  𝑮𝛁𝚫
𝑻𝑹𝜵𝜟𝝓

−𝟏 𝑮𝛁𝚫 
−𝟏
𝑮𝛁𝚫

𝑻𝑹𝜵𝜟𝝓
−𝟏  𝛁𝚫𝝓𝑨𝑩 − 𝝀𝑰𝛁𝚫𝑵   (2.45)  

where 

𝑮𝛁𝚫 = 𝑪𝚫
𝛁𝚫𝑮 (2.46)  
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2.6 AMBIGUITY INTEGERIZATION 

The integer value of each cycle ambiguity is required to achieve the highest 

possible precision.  However, simple rounding of the ambiguity estimates is not sufficient 

because the high correlation among the estimates will lead to one or multiple ambiguities 

being fixed to incorrect values.  The LAMBDA method has been proven to provide the 

highest probability of acquiring the correct set of integer ambiguities among many integer 

ambiguity acquisition algorithms [10].  The floating double differenced ambiguities, 

∇Δ𝑁 , and their associated covariance from the Kalman filter, 𝑃∇Δ𝑁 , are necessary to use 

the LAMBDA algorithm.  Residual errors from the receivers' clocks are consistent in all 

ambiguities, and therefore can lead to incorrect fixes, but they are removed with the 

double difference operation. 

The LAMBDA method decorrelates the ambiguity estimates to produce a 

minimized search space and outputs the candidate integerized solution sets, ∇Δ𝑁  , 

contained within that space [26].  A volume preserving, integer transformation matrix, 𝑍, 

is created to decorrelate the estimates [56]. 

𝑵 𝒁 = 𝒁𝛁𝚫𝑵  (2.47)  

𝑷𝒁 = 𝒁𝑷𝛁𝚫𝑵 𝒁
𝑻 (2.48)  

The high correlation in the estimated ambiguities is indicated by large off 

diagonal terms in the estimated covariance matrix.  Once decorrelated, the diagonal of 𝑃𝑍  

is larger relative to the off diagonal terms.  Figure 2.10 is a visual representation of the 

decorrelation.  Warm colors represent large relative differences between the values in the 

cell and surrounding cells, and cool colors represent similar values among neighboring 
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cells.  The muddled plot on the left shows the highly correlated 𝑃∇Δ𝑁 , and the plot on the 

right with the distinguishable diagonal elements shows the decorrelated 𝑃𝑍 . 

The decorrelated ambiguity estimates and covariance are then used in a sequential 

least squares routine to determine candidate sets of integer ambiguities, denoted by 𝑁 𝑍.  

A common method to determine the correct ambiguity set is a ratio test between the 

square norm of the first two candidate sets of integer ambiguities, where the best set is 

deemed correct if the ratio is above some value, 𝜅 [6].  In the equation below, a ratio of 

the best set to the second best set is calculated.  

 𝛁𝚫𝑵 𝟐 − 𝛁𝚫𝑵  𝑷𝛁𝚫𝑵 
−𝟏  𝛁𝚫𝑵 𝟐 − 𝛁𝚫𝑵  

𝑇

 𝛁𝚫𝑵 𝟏 − 𝛁𝚫𝑵  𝑷𝛁𝚫𝑵 
−𝟏  𝛁𝚫𝑵 𝟏 − 𝛁𝚫𝑵  

𝑇 ≥ 𝜅 (2.49)  

Note that the candidate sets were transformed back to the original domain using the 

integer transformation matrix. 

𝛁𝚫𝑵 = 𝒁−𝟏𝑵 𝒁 (2.50)  

 

Figure 2.10: The LAMBDA method takes the estimated covariance (left) and decorrelates it (right) to create a 

more favorable and efficient ambiguity search space. 
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The value for 𝜅 for this work was three, and it was chosen by assessing the time to fix 

and number of incorrect fixes with data from a variety of operating environments.  

Candidates below the threshold were thrown out, while candidates above the threshold 

were retained and used to determine a high precision RPV.  New candidate sets can be 

created periodically, where the rate is selected by the user.  Higher rates require more 

computation time, but this was not an issue for this work.  A candidate set was generated 

every epoch.  

2.7 HIGH PRECISION RPV ESTIMATION 

A least squares procedure is used to determine a precise RPV once the integer 

ambiguities have been correctly determined.  The procedure is the same as the one listed 

in Section 2.5 with the exception that the integer ambiguities are used in lieu of the 

floating point ambiguity estimates.  The measurement vector consists of only the double 

differenced carrier measurements with the integer ambiguity removed.   

𝒓𝑨𝑩 =  𝑮𝛁𝚫
𝑻𝑹𝜵𝜟𝝓

−𝟏 𝑮𝛁𝚫 
−𝟏
𝑮𝛁𝚫

𝑻𝑹𝜵𝜟𝝓
−𝟏  𝛁𝚫𝝓𝑨𝑩 − 𝝀𝑰𝛁𝚫𝑵   (2.51)  

Care must be taken to ensure the correct integer ambiguities are paired with the 

double differenced phase measurements.  Mismatches occur when the integer set is not 

updated (due to failing a validation test or running the integerization routine at a lower 

rate) and the base satellite changes.  However, the integer set can easily be transformed to 

reflect the base satellite change by subtracting the integer associated with the new base 

satellite from the integer ambiguity vector.  For instance, if 𝑘 is the new base satellite, the 

following operation would transform the ambiguities: 

𝛁𝚫𝑵 = 𝛁𝚫𝑵 − ∇Δ𝑁 𝑘 (2.52)  
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In scalar form, where 𝑗 denotes the old base satellite and 𝑚 is an arbitrary, non-base 

satellite, the above equation can be written as follows: 

∇Δ𝑁𝑚𝑘 = ∇Δ𝑁𝑚𝑗 − ∇Δ𝑁𝑘𝑗 (2.53)  

This operation comes from the linear combination of single and double differenced 

measurements.  The relationship can be clearly seen by isolating the double differenced 

operation to just the ambiguities. 

∇Δ𝑁𝑚𝑘 = Δ𝑁𝑘 − Δ𝑁𝑚  

= Δ𝑁𝑘 − Δ𝑁𝑚 + Δ𝑁𝑗 − Δ𝑁𝑗   

=  Δ𝑁𝑗 − Δ𝑁𝑚 +  Δ𝑁𝑘 − Δ𝑁𝑗   

∇Δ𝑁𝑚𝑘 = ∇Δ𝑁𝑚𝑗 + ∇Δ𝑁𝑗𝑘  (2.54)  

Noting that  

∇Δ𝑁𝑗𝑘 = −∇Δ𝑁𝑘𝑗  (2.55)  

Equation (2.53) can be realized. 

2.8 EXPERIMENTAL RESULTS 

Two NovAtel PropakV-3 dual frequency receivers were mounted in two vehicles. A 

Septentrio PolaRx2e dual frequency receiver and radio modem installed at the base 

station provided corrections to the NovAtel receivers.  The receivers calculated an RTK 

position, which was used only for ground truth.  The RANGECMP and GPSEPHEM 

messages from the ProPakV-3 were logged at 5 Hz and processed in the DRTK algorithm 

to determine the RPV between vehicles.  The DRTK RPV was compared to the 

difference in RTK positions of the two vehicles in the Earth Centered, Earth Fixed 

(ECEF) frame.  Note that the error between the DRTK RPV and the computed RTK RPV 
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will be small when the ambiguities are fixed to integer values because residual error in 

the separate RPV solutions will be correlated.  Therefore, the following error analysis 

validates the DRTK algorithm by exposing the similarity in the solutions. 

Static tests were performed to assess accuracy as a function of baseline and 

number of observations.  Figure 2.11 shows the total magnitude of the error as the 

separation distance between receivers increases from 8 meters to 604 meters.  The red 

dots mark the one sigma bounds centered about the mean.  Similarly, Figure 2.12 shows 

the baseline error as the number of satellites used to compute a solution ranges from five 

to ten.  Error for the two tests consistently remained at a sub-centimeter level.  Specific 

values of the mean error and standard deviation pertaining to the difference between RTK 

and DRTK solutions for the respective tests are given in Table 2.3 and Table 2.4.  Table 

2.5 contains the error on the RTK and DRTK solutions after their respective means were 

removed. 

 

Figure 2.11: Baseline error from static tests was 

consistent across a range of separation distances. 

 

Figure 2.12: The baseline error remained consistent as 

the number of observed satellites changed. 
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 Table 2.5: 

RTK and DRTK error versus baseline.  

 

Baseline (m) Type 𝝈𝑿 (cm) 𝝈𝒀(cm) 𝝈𝒛(cm) 

8.85 
RTK 0.29 0.48 0.42 

DRTK 0.25 0.39 0.44 

111.16 
RTK 0.18 0.36 0.40 

DRTK 0.17 0.35 0.42 

363.99 
RTK 0.21 0.37 0.36 

DRTK 0.23 0.30 0.34 

604.05 
RTK 0.30 0.67 0.36 

DRTK 0.25 0.53 0.35 

 Dynamic tests were also performed 

to assess performance of the DRTK 

algorithm.  The following plots show the 

results from a single dynamic test where two 

vehicles traveled along a path in opposite 

directions for approximately fifteen minutes.  

The path is shown in Figure 2.13.  Individual 

vehicle speeds ranged from 5 to 25 meters 

per second (approximately 10 to 50 mph).  

Separation distance ranged from 5 to over 

500 meters, as shown in Figure 2.14. 

Table 2.3 

Error between RTK and DRTK solutions  as a 

function of baseline  

Baseline (m) 𝝐  (cm) 𝝈𝝐 (cm) 

8.85 0.11 0.1 

111.16 0.12 0.07 

363.99 -0.2 0.13 

604.05 -0.50 0.22 
 

Table 2.4 

Error between RTK and DRTK solutions as a 

function of observations  

Obs 𝝐  (cm) 𝝈𝝐 (cm) 

5 -0.63 1.03 

6 0.24 0.46 

7 0.42 0.17 

8 0.33 0.25 

9 -0.14 0.30 

10 -0.10 0.22 

  

 

Figure 2.13: The vehicle paths from the dynamic 

test. 
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Figure 2.15 compares the low and high precision DRTK solutions to the 

differenced RTK solution using the fixed base station.  The low precision solution is 

shown in green, the high precision solution is shown in blue, and the black dots are the 

"true" RPV computed with the RTK solutions.  The low precision solution does not use 

the integerized ambiguities, and the highest precision and accuracy is not realized.  

However, the high precision solution does use the integer ambiguities, and it is in 

agreement with the true RPV.  

 

Figure 2.14: The baseline between the vehicles varied from 5 to over 500 meters as the vehicles traveled in 

opposite directions along a path. 

 

Figure 2.15: The DRTK low and high precision outputs in the ECEF X direction are shown.  Black dots 

represent the RPV obtained by differencing the RTK solutions. 
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Figure 2.16 is a more revealing description of the RPV error.  The ECEF X, Y, 

and Z components of the error are shown for both the low and high precision solution.  

Again, the low precision solution is shown in green, and the high precision solution is 

shown in blue.  Error statistics of the data in the plot are given in Table 2.6, where the 

similarity between the high precision DRTK solution and the RTK based RPV is seen in 

the millimeter level standard deviation. 

Table 2.6 

DRTK error statistics for the dynamic test  

 LP HP 

 𝝐  (cm) 𝝈𝝐 (cm) 𝝐  (cm) 𝝈𝝐 (cm) 

X -21.49 9.22 0.09 0.31 

Y 28.84 21.21 -0.07 0.92 

Z 6.88 6.98 0.18 0.47 

 

 

Figure 2.16: Low and high precision RPV are decimeter and centimeter level accurate, respectively. 
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The DRTK output was translated to the East, North, Up (ENU) frame.  A relative 

orientation with respect to the ground plane can be determined with the ENU RPV, 

therefore it is useful to note the error in this frame.  Figure 2.17 shows the dynamic error 

of the low and high precision solutions expressed in the East-North plane.  The low 

precision solution is shown in green and is within half a meter in both directions.  Note 

that the low precision solution can have meter level error due to excessive noise or 

multipath on the pseudorange observables.  The high precision solution is shown in blue, 

with a close up view displayed on the right.  Figure 2.18 shows the density of the high 

precision solution error.  The error is normally distributed with a standard deviation of 

3.5 and 3.2 millimeters in the East and North directions, respectively. 

 

 
Figure 2.17: North and east components of the low and high precision solution error are shown. 
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2.9 CONCLUSION 

An algorithm to determine the relative position between two moving receivers has been 

described in detail.  Formulation of different observables and their incorporation into a 

Kalman filter was explained.  Also, methods were described to detect cycle slips and 

handle constellation changes.  This algorithm was implemented in real time in C++ using 

the L1 and L2 observables, and versions of it are currently being integrated into the FCS 

ANS software for the RCX and TARDEC's CAST system.   

Error analysis showed the algorithm's high precision output is in agreement with 

the differenced RTK solution.  Therefore, it can be extrapolated that the DRTK accuracy 

 
Figure 2.18: Analysis of the north and east error components shows the difference between the DRTK and RTK 

solutions is millimeter level. 
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is of the same order and level of magnitude as RTK accuracy when ambiguities are fixed 

to integer values, which is typically two centimeters for baselines less than 20 kilometers.  

This result was anticipated as the carrier measurements are processed in a similar manner 

in the DRTK and RTK algorithms when the ambiguities are fixed. 
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Chapter 3  

DRTK/INS 

3.1 INTRODUCTION 

The prevalence and persistence of challenges presented by the ground vehicle operational 

environment create difficulties when determining an accurate and consistent GPS based 

navigation solution. The challenges are enhanced when attempting to simultaneously 

process measurements from multiple non-colocated receivers as the local environment 

around each receiver is unique. Effects such as shadowing and multipath obfuscate the 

independently received signals and the resulting accuracy of the measurements, reducing 

the ability to estimate the ambiguities with sufficient accuracy for integer fixing. The low 

elevation of the antenna increases the likelihood and frequency of objects obscuring the 

lines of sight between it and satellites. Therefore, partial outages can be common. Also, 

consistency of observations is not guaranteed. A receiver might track four satellites, but it 

might not track the same four from epoch to epoch. The probability of two receivers 

observing the same satellites, which is necessary to obtain a DRTK solution, can be low 

in such situations. 

Frequent outages also reduce the feasibility of some techniques used to enhance 

the accuracy of the ambiguity estimate. For instance, the JPALS algorithm as described 
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in [30] computes a geometry-free wide-lane observable, which is also shown in Equation 

(2.19). This observable is inherently noisy, but it is very stable.  It is passed through a 

moving average filter before insertion into the estimation algorithm to remove the noise. 

This computation results in a very stable, multipath free ambiguity measurement. 

However, this is not feasible on a ground vehicle because many operational environments 

create frequent outages that would reduce the effectiveness of the moving average filter. 

Figure 3.1 displays the L1 observations and associated C/N0 of a single NovAtel 

PropakV-3 receiver on a passenger vehicle in a typical suburban environment. The 

vehicle was static for the first 100 seconds, where the receiver consistently tracked nine 

satellites and the C/N0 was reasonably high (between 45-48 dB-Hz). Once the vehicle 

started traveling, it traveled under overhanging trees, signs, and by buildings of up to four 

 

Figure 3.1: The number of signal observations and signal quality can fluctuate significantly when driving in a 

typical suburban environment. 
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stories. The vehicle came to rest between several two story buildings. The number of 

observations fluctuated between three and ten satellites as the vehicle traveled the route. 

Also, the reported signal quality for many of the satellites was quite poor, with 

only three observations having a C/N0 above 40 dB-Hz at the end of the run. Large 

pseudorange errors can arise in such situations. A result is a reduction in the accuracy of 

ambiguity estimates which decreases the probability of correctly fixing the integer phase 

ambiguities. 

The following sections of this chapter discuss an integration architecture that 

combines inertial measurements from two platforms with a DRTK algorithm to overcome 

some of the availability and signal quality problems, especially those observed on ground 

vehicles.  GPS/INS integration with a complementary filter is outlined, then the 

DRTK/INS algorithm is presented with discussion on re-initialization benefits provided 

by and the dead reckoning performance of relative inertial measurements.  

3.2 INS INTEGRATION OPTIONS 

A natural addition to aid the fluctuations in the GPS range measurements are inertial 

measurements. GPS and inertial systems are often fused together to produce a high rate, 

smooth navigation solution capable of dead reckoning through short GPS outages. The 

same idea can be employed to combat the environmental impact on relative GPS 

measurements; relative inertial measurements can dead reckon through intermittent 

outages and smooth jumps in the RPV solution created by frequently changing 

observations. The GPS and INS data can be fused using several methods, so 

consideration to multiple methods was given to determine the most efficient integration 

routine.  



54 

 

Combining the raw inertial data with the GPS relative range data poses a problem 

because inertial data from each vehicle will be non-coincident. The data must be aligned 

before it can be differenced to produce relative inertial data. Furthermore, the relative 

inertial data must be expressed in the navigation frame before it can be integrated to 

produce relative velocity and position information. Pre-processing the inertial data on 

each vehicle can calibrate and rotate the inertial data into a navigation frame common 

among all vehicles.  

Three integration strategies are 

defined in [44]: uncoupled, loosely coupled, 

and tightly coupled integration. Uncoupled 

and loosely coupled schemes fuse inertial 

data with position and velocity data 

computed by the receiver to form a 

navigation solution.  A block diagram of an 

uncoupled system is shown in Figure 3.2 

These two techniques are relatively simple to implement. The difference between the two 

methods is loose coupling provides feedback into the INS to correct errors. Loose 

integration can also feedback the solution into the receiver to aid its tracking loops. The 

inherent drawback to these methods is the rejection of information when the GPS 

receiver is incapable of producing a solution. Often, the receiver is still tracking some 

satellites, but range information is not utilized because the estimator uses only the 

calculated position solution from the receiver. 

 

Figure 3.2: An uncoupled system blends inertial 

measurements with the navigation output 

computed by the GPS receiver. 
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A tightly coupled system processes the inertial data with range measurements to 

each satellite and aids the receiver tracking loops with the position solution. A derivative 

of this fusion method known as a closely coupled system was implemented. A closely 

coupled system does not aid the tracking loops but still processes the inertial and range 

data to produce a navigation solution. 

Figure 3.3 is a block diagram 

depicting a closely/tightly coupled system. 

The IMU is mechanized and produces 

measurements in a navigation frame before 

being combined with GPS data. The dashed 

line represents feedback to the receiver 

tracking loops, which was not implemented 

in this work. The closely coupled routine was 

chosen to pre-process the inertial data on each vehicle prior to forming any relative 

measurements. The measurements are placed in a common navigation frame, which was 

chosen to be the Earth centered, Earth fixed (ECEF) frame, in the mechanization process. 

An added benefit is the availability of a high rate, robust position solution to each vehicle 

and its subsystems.  

Once the relative inertial data is obtained, one must decide how to best couple it 

with the relative range measurements to aid the relative position solution. The same two 

basic options are presented: loose or close coupling. A loose coupling algorithm would 

combine the output of the DRTK algorithm with the relative inertial data to provide some 

filtering and a high rate RPV. However, this approach does not contribute to the integrity 

 

Figure 3.3: Close and tight integrations blend 

inertial measurements with the range 

measurements from a GPS receiver. 
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of the ambiguity estimates as only the corrupted range measurements are available in the 

DRTK algorithm. A close coupling approach provides more information about the 

motion of the two vehicles, so emphasis on potentially degraded relative range 

measurements can be lowered. This has a direct impact on the ambiguity estimates. Also, 

the close coupling approach can offer a graceful solution degradation in the event of a 

severe or full outage. 

3.3 GPS/INS INTEGRATION 

The algorithm in this section will utilize all outputs from an IMU (three accelerations and 

three rotational rates) and combine them with GPS measurements.  The complementary 

filtering approach shown in Figure 3.4 will be used.  First, IMU measurements will be 

mechanized to form an INS position, velocity, and attitude solution.  The INS solution 

will be used to form predicted GPS measurements.  The predicted measurements will be 

compared with GPS measurements, and the result will be used in an error state Kalman 

filter.  The Kalman filter estimates INS error and IMU biases, and also GPS error states 

in the closely coupled implementation.  

 

Figure 3.4: A complementary filter estimates position, velocity, and attitude error to correct the INS. 
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3.3.1 IMU Mechanization 

A strap down IMU must be mechanized before integration with the GPS measurements.  

The IMU's acceleration and turning rate measurements will be in the IMU frame, which 

will be assumed to be perfectly aligned with the platform body frame.  The navigation 

frame and inertial/body frame are usually non-coincident, therefore the inertial 

measurements must be transformed from the frame of measurement to the navigation 

frame.  An Euler angle based approach is presented, and while fairly intuitive, caution 

must be taken because a singularity exists when the pitch angle is 90 degrees.  If this 

presents a problem, an alternative method, such as a quaternion based approach, should 

be sought. 

The algorithm presented in this section uses the ECEF frame as the navigation 

frame.  Therefore, the Euler angles (𝜙, 𝜃, 𝜓) correspond to the three rotations necessary 

to rotate inertial measurements from the IMU frame to the ECEF frame.  The inertial 

frame is assumed to be coincident with the body frame, so the body (𝑏) to ECEF (𝑒) 

frame angles can be expressed as 𝜙𝑏
𝑒 , 𝜃𝑏

𝑒 , and 𝜓𝑏
𝑒 .  The notational style to express data 

with respect to different frames follows that defined in [22].  A generic variable can be 

expressed as 

𝒙𝜶𝜷
𝜸

 (3.1)  

where the vector 𝒙 is the kinematic relationship from the 𝛼-frame to the 𝛽-frame 

expressed in the  𝛾-frame. 

A coordinate transformation matrix is constructed in order to express the IMU 

accelerometer measurements in the ECEF frame.  It consists of operations on the sine and 
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cosine of the angles.  The notation 𝑠(∙) and 𝑐(∙)  denote the sine and cosine of an angle, 

respectively. 

𝑪𝒃
𝒆 =  

𝑐𝜃 𝑐𝜓 −𝑐𝜙 𝑠𝜓 + 𝑠𝜙 𝑠𝜃 𝑐𝜓 𝑠𝜙 𝑠𝜓 + 𝑐𝜙 𝑠𝜃 𝑐𝜓
𝑐𝜃 𝑠𝜓 𝑐𝜙 𝑐𝜓 + 𝑠𝜙 𝑠𝜃 𝑠𝜓 −𝑠𝜙 𝑐𝜓 + 𝑐𝜙 𝑠𝜃 𝑠𝜓
−𝑠𝜃 𝑠𝜙 𝑐𝜃 𝑐𝜙 𝑐𝜃

  (3.2)  

Knowledge of the vehicle’s original position and orientation is necessary to initialize this 

matrix. 

The accelerometer output is denoted by the vector 𝑓, and it contains the three 

measurements about the local X, Y, and Z axes.   

𝒇𝒊𝒃
𝒃 =  𝑓𝑖𝑏𝑋

𝑏 𝑓
𝑖𝑏𝑌

𝑏 𝑓
𝑖𝑏𝑍

𝑏
 
𝑇
 

(3.3)  

This variable is chosen to reflect the fact that the accelerometer is technically outputting a 

measurement of specific force.  Forces that move the accelerometer bend or move a proof 

mass, and the output is a ratio of the measured force to the proof mass.  A superscript 

denotes the frame in which the measurement is expressed.  For instance, 𝑓𝑒denotes the 

specific force measurement expressed in the ECEF frame, and 𝑓𝑏  denotes the specific 

force measurement in the body frame.  The information can also be expressed in skew 

symmetric form. 

𝑭𝒊𝒃
𝒃 =

 
 
 
 
 0 −𝑓

𝑖𝑏𝑍

𝑏 𝑓
𝑖𝑏𝑌

𝑏

𝑓
𝑖𝑏𝑍

𝑏
0 −𝑓

𝑖𝑏𝑋

𝑏

−𝑓
𝑖𝑏𝑌

𝑏 𝑓
𝑖𝑏𝑋

𝑏
0  

 
 
 
 

 

(3.4)  

Rotational rate vectors are expressed using the vector ω.  The IMU measures both 

the body and Earth rotation, but these two can be separated.  The body frame rotation 

vector about the inertial (𝑖) frame expressed in the body frame is defined as follows:  
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𝝎𝒊𝒃
𝒃 =  𝑝 𝑞 𝑟 𝑇 (3.5)  

where p, q, and r are the body roll, pitch and yaw rates.    Alternatively, the rotational 

information can be contained in skew symmetric form.  

𝛀𝒊𝒃
𝒃 =  

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

  

(3.6)  

The Earth rotation vector about the inertial frame expressed in the ECEF frame is defined 

as follows:  

𝝎𝒊𝒆
𝒆 =  0 0 𝜔𝑒 

𝑇  (3.7)  

where ωe is 0.00007292115 rad/s.  A skew symmetric form of the Earth rotation can be 

also be written.  

 𝝎𝒊𝒆
𝒆  × = 𝛀𝒊𝒆

𝒆 =  
0 −𝜔𝑒 0
𝜔𝑒 0 0
0 0 0

  

(3.8)  

The specific force expressed in the ECEF frame is integrated to produce the 

ECEF velocity and ECEF position.  The measurement is corrected for gravitational, 

centripetal, and Coriolis effects so only the specific force corresponding to the 

translational motion of the receiver is integrated.  

𝒇𝒊𝒃𝒌
𝒆 = 𝑪𝒃

𝒆𝒇𝒊𝒃𝒌
𝒃 + 𝑮𝒓 𝒓𝒆𝒃𝒌−𝟏

𝒆  − 2𝛀𝒊𝒆
𝒆 𝒗𝒆𝒃𝒌−𝟏

𝒆  (3.9)  

The middle term represents the gravity model.  This accounts for the gravitational 

and centripetal effects.  Various gravity models based on the user’s location and altitude 

can be implemented.  A simple model using the standard Earth gravitational parameter, 

GM, where GM = 398,600,441,800,000 m
3
/s

2
, is shown below.  

𝑮𝒓 𝒓   𝒆𝒃
𝒆
 = −

𝐺𝑀

 𝒓𝒆𝒃
𝒆  

3
𝒓𝒆𝒃
𝒆 −𝛀𝒊𝒆

𝒆 𝛀𝒊𝒆
𝒆 𝒓𝒆𝒃

𝒆  
(3.10)  
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Once the specific force at time k is determined in the navigation frame, the 

position, velocity, and coordinate transformation matrix can be discretely propagated 

using the sample rate, Δ𝑡.   

𝒓𝒆𝒃𝒌
𝒆 = 𝒓𝒆𝒃𝒌−𝟏

𝒆 +𝒗𝒆𝒃𝒌−𝟏
𝒆 Δ𝑡 + 𝒇𝒊𝒃𝒌

𝒆 Δ𝑡2

2
 

(3.11)  

𝒗𝒆𝒃𝒌
𝒆 = 𝒗𝒆𝒃𝒌−𝟏

𝒆 + 𝒇𝒊𝒃𝒌
𝒆 Δ𝑡 (3.12)  

𝑪𝒃𝒌
𝒆

= 𝑪𝒃𝒌−𝟏
𝒆

 𝑰𝟑×𝟑 +𝛀𝒊𝒃
𝒃 𝚫𝒕 −  𝛀𝒊𝒆

𝒆 𝑪𝒃𝒌−𝟏
𝒆

 𝚫𝒕 (3.13)  

3.3.2 Inertial Error Propagation 

The IMU mechanization with resulting INS output given by Equations (3.11) through 

(3.13) is an open loop process. Any initial error or error within the inertial measurements 

will propagate through the INS and corrupt its output.  However, these errors can be 

estimated and used to augment the INS to enhance performance.   

Inertial sensors produce erroneous measurements due to noise, biases, scale 

factors, misalignment, and non-orthogonality.  Misalignment and  non-orthogonal effects 

are constant in most strap down INS systems, and therefore can be calibrated offline.  

Scaling factors will be treated with the same manner in this work, although in reality they 

can vary slightly during operation.  A reduced inertial sensor error model can be 

constructed where the error is driven by white noise and a drifting bias.  An 

accelerometer is used in the following description, but the same model is applicable to 

rate gyroscopes.  Error can be expressed in the body frame as the difference between the 

true and measured acceleration. 

𝒇𝒊𝒃
𝒃 = 𝒇 𝒊𝒃

𝒃
+ 𝛿𝒇𝒊𝒃

𝒃      ↔      𝛿𝒇𝒊𝒃
𝒃

= 𝒇𝒊𝒃
𝒃 − 𝒇 𝒊𝒃

𝒃
 

(3.14)  
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Sensor error is a combination of normally distributed zero mean white noise, 

𝑤𝑓
𝑏~𝑁 0,  2𝜋Δ𝑡 2𝜍𝑓

2 , and a drifting bias, 𝑏𝑓
𝑏 , where both are in the body frame. 

𝛿𝒇𝒊𝒃
𝒃 = 𝒃𝒇

𝒃 + 𝒘𝒇
𝒃 (3.15)  

The bias drift is often modeled as a first order Gauss-Markov process, where the drift has 

some time constant, 𝜏𝑓 , and is driven by zero mean white noise, 𝑤𝑏𝑓~𝑁  0, 2
Δ𝑡

𝜏𝑓
𝜍𝑏𝑓

2  . 

𝒃𝒇𝒌
𝒃 = 𝑒−Δ𝑡 𝜏𝑓 𝒃𝒇𝒌−𝟏

𝒃 + 𝒘𝒃𝒇𝒌
𝒃   (3.16)  

Values for 𝑤𝑓
𝑏 , 𝑤𝑏𝑓

𝑏 , and 𝜏𝑓  vary with sensor quality.  Noise values decrease and 

time constants increase as sensor quality improves.  Parameters characterizing sensor 

error can be identified through autocorrelation and Allan variance analysis [59].  

Parameters for automotive and tactical grade IMUs were determined in [19] and are listed 

in Table 3.1. 

It is necessary to estimate the INS errors and the biases to enhance the INS 

solution.  The error propagation effect on position, velocity, and attitude output from an 

INS as a function of time is derived in [22].  The result, expressed in continuous time and 

where 𝛿 denotes an error quantity, is shown in the following equations: 

𝛿𝒓 𝒆𝒃
𝒆 = 𝛿𝒗𝒆𝒃

𝒆  (3.17)  

𝛿𝒗 𝒆𝒃
𝒆 = −𝑭𝒊𝒃

𝒆 𝛿𝒂𝒆𝒃
𝒆 − 2𝛀𝒊𝒆

𝒆 𝛿𝒗𝒆𝒃
𝒆 + 𝑮𝒓 𝛿𝒓𝒆𝒃

𝒆 + 𝑪𝒃
𝒆𝒃𝒇

𝒃 (3.18)  

Table 3.1 

Stochastic parameters for inertial sensor error  

Quality Accelerometer Rate Gyroscope 

 
𝝈𝒇   

𝒎 𝒔𝟐 

 𝑯𝒛
  𝝉𝒇 (𝒔) 𝝈𝒃𝒇   

𝒎

𝒔𝟐
  𝝈𝝎   

𝒓𝒂𝒅 𝒔𝟐 

 𝑯𝒛
  𝝉𝝎 (𝒔) 𝝈𝒃𝝎   

𝒓𝒂𝒅

𝒔𝟐
  

Automotive 1.0e-2 60 1.2e-2 2.4e-7 100 8.7e-4 

Tactical 5.0e-3 100 5.0e-4 8.2e-9 300 1.7e-6 
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𝛿𝒂 𝒆𝒃
𝒆 = −𝛀𝒊𝒆

𝒆 𝛿𝒂𝒆𝒃
𝒆 + 𝑪𝒃

𝒆𝒃𝝎 (3.19)  

The variable 𝑭𝒊𝒃
𝒆  is the skew symmetric form of the ECEF specific force measurements 

( 𝒇𝒊𝒃
𝒆  ×) contained in 𝒇𝒊𝒃

𝒆  from Equation (3.9).  The variable 𝑮𝒓  is a tensor of gravity 

gradients [47]. 

𝑮𝒓 =
𝐺𝑀

 𝒓𝒆𝒃
𝒆  

3

 
 
 
 
 
 
 
 
 𝑟𝑒𝑏𝑋

𝑒 2

 𝒓𝒆𝒃
𝒆  

2 − 1
𝑟𝑒𝑏𝑋
𝑒 𝑟𝑒𝑏𝑌

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑋
𝑒 𝑟𝑒𝑏𝑍

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑋
𝑒 𝑟𝑒𝑏𝑌

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑌
𝑒 2

 𝒓𝒆𝒃
𝒆  

2 − 1
𝑟𝑒𝑏𝑌
𝑒 𝑟𝑒𝑏𝑍

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑋
𝑒 𝑟𝑒𝑏𝑍

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑌
𝑒 𝑟𝑒𝑏𝑍

𝑒

 𝒓𝒆𝒃
𝒆  

2

𝑟𝑒𝑏𝑍
𝑒 2

 𝒓𝒆𝒃
𝒆  

2 − 1
 
 
 
 
 
 
 
 
 

+ 𝑰𝜔𝑖𝑒
𝑒 2

 

(3.20)  

Finally, the variable 𝒂𝒆𝒃
𝒆  is a vector of body to navigation frame Euler angles, and the 

error in 𝒂𝒆𝒃
𝒆 , or 𝛿𝒂𝒆𝒃

𝒆 , is the angular misalignment. 

𝒂𝒆𝒃
𝒆 =  𝜙𝑏

𝑒 𝜃𝑏
𝑒 𝜓𝑏

𝑒 𝑇  (3.21)  

The error model must be expressed in a state space representation for use in a 

Kalman filter.  The errors and biases are collected in a fifteen state vector with three 

dimensional position error, velocity error, and attitude error.  Note the navigation states 

are in the navigation frame, but the bias states are in the local body frame. 

𝒙 =  𝜹𝒓𝒆𝒃
𝒆 𝜹𝒗𝒆𝒃

𝒆 𝜹𝒂𝒆𝒃
𝒆 𝒃𝒇

𝒃 𝒃𝝎
𝒃  

𝑇
 

(3.22)  

The dynamic equations listed in Equations (3.17) through (3.19), along with continuous 

time expressions of Equation (3.16) for the accelerometer and rate gyroscope biases, are 

differentiated with respect to the state vector to form the dynamics matrix, 𝐅. 
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𝐅 =

 
 
 
 
 
 
 
𝟎 𝑰 𝟎 𝟎 𝟎
𝑮 −2𝛀𝒊𝒆

𝒆 −𝑭𝒊𝒃
𝒆 𝑪𝒃

𝒆 𝟎

𝟎 𝟎 −𝛀𝒊𝒆
𝒆 𝟎 𝑪𝒃

𝒆

𝟎 𝟎 𝟎
1

𝜏𝑓
𝑰 𝟎

𝟎 𝟎 𝟎 𝟎
1

𝜏𝜔
𝑰 
 
 
 
 
 
 

 

(3.23)  

Next, the driving noise sources are collected in a single vector. 

𝒘 =  𝒘𝒇
𝒃 𝒘𝝎

𝒃 𝒘𝒃𝒇
𝒃 𝒘𝒃𝝎

𝒃  
𝑇

 
(3.24)  

The process noise covariance matrix is determined by calculating 𝐸 𝒘𝒘𝑇 .  The noise 

sources are assumed to be uncorrleated, such that 𝐸 𝑤𝑖𝑤𝑗  = 0 for 𝑖 ≠ 𝑗.  Therefore, the 

process noise matrix is a diagonal matrix with noise variances along the diagonal.  Again, 

these values vary with sensor quality.  The process gain matrix is computed by 

differentiating the dynamic equations with respect to the noise vector. 

𝚪 =

 
 
 
 
 
𝟎 𝟎 𝟎 𝟎
𝑪𝒃
𝒆 𝟎 𝟎 𝟎

𝟎 𝑪𝒃
𝒆 𝟎 𝟎

𝟎 𝟎 𝑰 𝟎
𝟎 𝟎 𝟎 𝑰 

 
 
 
 

 

(3.25)  

Finally, the continuous state space model can be formed. 

𝒙  = 𝐅𝒙 + 𝚪𝒘 (3.26)  

A discrete model was utilized for implementation.  The discrete state transition 

matrix, 𝚽, can be approximated with a first order Taylor series expansion, assuming the 

sample rate is sufficiently small (Δ𝑡 < 1 second). 

𝚽 = 𝑰 + 𝐅Δ𝑡 (3.27)  

The discrete process covariance matrix can also be approximated with the small sample 

rate assumption [14]. 
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𝑸 = 𝚪𝐸 𝒘𝒘𝑇 𝚪𝐓Δ𝑡 (3.28)  

The discrete state transition matrix and process covariance are used to propagate 

the estimated error state vector and the associated covariance estimate in a Kalman filter.  

𝒙 𝒌
− = 𝚽𝒌,𝒌−𝟏𝒙 𝒌−𝟏

+  (3.29)  

𝑷𝒌
− = 𝚽𝒌,𝒌−𝟏𝑷𝒌−𝟏

+ 𝚽𝒌,𝒌−𝟏
𝑻 + 𝑸 (3.30)  

3.3.3 GPS Measurement Update 

Available measurements are modeled as a function of the state vector plus additive white 

noise, 𝜈~𝑁(0, 𝜍𝜈
2). 

𝒛𝒌 = 𝑕 𝒙𝒌 + 𝝂 (3.31)  

The INS system is used to form a predicted measurement, 𝒛 .  This prediction is compared 

to a GPS based measurement, and the difference or residual,𝛿𝒛, is multiplied by the 

Kalman gain to determine the values by which each estimate is appropriately adjusted.   

𝛿𝒛𝒌 = 𝒛𝒌 − 𝒛 𝒌 (3.32)  

The measurement covariance is determined by taking the expectation of the square of the 

measurement noise. 

𝑹 = 𝐸 𝝂𝝂𝑇  (3.33)  

This information is used in the measurement update of a Kalman filter, which updates the 

estimated state vector and covariance with information contained in the GPS 

measurements. 

𝑲 = 𝑷𝒌
−𝑯𝑻 𝑯𝑷𝒌

−𝑯𝑻 +𝑹 −1 (3.34)  

𝒙 𝒌
+ = 𝒙 𝒌

− + 𝑲𝛿𝒛 (3.35)  

𝑷𝒌
+ =  𝑰 − 𝑲𝑯 𝑷𝒌

− (3.36)  
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Once the measurement update is carried out, the INS solution is updated with the 

estimated error vector, and the error terms are reset to zero [22]. 

𝒓𝒆𝒃
𝒆 = 𝒓𝒆𝒃

𝒆 + 𝛿𝒓𝒆𝒃
𝒆  (3.37)  

𝒗𝒆𝒃
𝒆 = 𝒗𝒆𝒃

𝒆 + 𝛿𝒗𝒆𝒃
𝒆  (3.38)  

𝑪𝒃
𝒆

=  𝑰 +  𝛿𝒂𝒆𝒃
𝒆  × 𝑪𝒃

𝒆 (3.39)  

 

A loose coupling compares the INS predicted measurements to the computed 

navigation solution from the GPS navigation filter.  A close coupling compares INS 

predicted measurements to GPS measurements of pseduorange and pseudorange rates.  

Both implementations are briefly described. 

Loose Integration 

A loosely coupled approach is relatively straightforward, especially if the GPS receiver 

outputs its measurements in the desired navigation frame.  A measurement error vector is 

determined by computing the difference between the GPS measurements and INS 

predicted measurements. Typically, a GPS receiver is capable of providing position and 

velocity measurements.  Therefore, a direct relationship exists between the measurements 

and INS states, so the measurement matrix is easily formed.  Assuming the receiver 

outputs position and velocity in the ECEF frame, the measurement matrix is written as 

follows: 

𝑯 =  
𝑰 𝟎 𝟎 𝟎 𝟎
𝟎 𝑰 𝟎 𝟎 𝟎

  
(3.40)  

Measurement variance is based on the quality of the receiver's output.  This information 

is provided by the receiver manufacturer or output with the measurements.  The 

measurement covariance assumes no correlation between any measurements provided by 
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the GPS receiver, which is technically not true.  However, the correlation information is 

not available without greater access to the internal navigation filter in a GPS receiver, so 

a simplified covariance matrix was used. 

𝑹 =  
𝜍𝑟𝑒𝑏

𝑒
2 𝑰 𝟎

𝟎 𝜍𝑣𝑒𝑏
𝑒

2 𝑰
  

(3.41)  

Close Integration 

A close integration increases the complexity of the system by adding two additional 

states to be estimated and requiring larger matrices in the measurement update.  The 

benefits to the approach are the ability to individually weight measurements from each 

satellite and the availability of some information to reduce inertial error growth when less 

than four GPS signals are tracked. 

Range and range-rate information are used to aid the INS in a close integration 

architecture.  The GPS pseudorange model was given in Equation (2.1), and it contained 

a multitude of error sources.  However, atmospheric error models can be used to decrease 

atmospheric error, and a clock model is used with parameters broadcast in the navigation 

message to reduce the SV clock error.  A reduced pseudorange model from receiver 𝐴 to 

satellite 𝑗 containing only the true range, receiver clock error, and noise can be 

constructed. 

𝜌𝐴
𝑗

=  𝒓𝑨
𝒋
 + 𝑐𝛿𝑡𝐴 + 𝜖𝜌

𝑗
 

(3.42)  

A pseudorange rate measurement is formed by using the Doppler measurement, 𝑓𝐷, to 

determine the user to satellite relative velocity.  However, the receiver clock drift term is 

present in the measurement. 
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𝜌 
𝐴
𝑗 = −𝜆𝑓𝐷𝐴

𝑗
=  𝒓 𝑨

𝒋
 + 𝑐𝛿𝑡 𝐴 + 𝜖𝑓

𝑗
 (3.43)  

The estimated state vector of the closely coupled filter must be appended to 

remove effects from the receiver clock error and error drift.  The oscillator driving the 

receiver clock will have a phase and frequency error, which produces a bias and drift in 

the clock output.  Two states are added to the vector to contain these states, bringing the 

total number of elements to seventeen.  It is numerically advantageous to estimate the 

impact of the clock effects on the range distance rather than the actual clock errors, 

therefore the speed of light constant, 𝑐, is present in the estimates.  

𝒙 =  𝜹𝒓𝒆𝒃
𝒆 𝜹𝒗𝒆𝒃

𝒆 𝜹𝒂𝒆𝒃
𝒆 𝒃𝒇

𝒃 𝒃𝝎
𝒃 𝑐𝛿𝑡 𝑐𝛿𝑡  

𝑇
 

(3.44)  

The measurement model for pseudoranges is nonlinear because the measurements 

contain the vector magnitude of distance and speed while the estimated states are the 

vector components.  However, a linearized model is commonly used for pseudorange 

rates.  Both use the GPS clock error estimates appended to the state vector.  The two 

models for ranges to satellite 𝑗 are contained in the following vector field. 

𝑧 =  
𝜌 

𝜌  
 =  

  𝑟𝑒𝑗𝑥
𝑒 − 𝑟𝑒𝑏𝑥

𝑒  
2

+  𝑟𝑒𝑗𝑦
𝑒 − 𝑟𝑒𝑏𝑦

𝑒  
2

+  𝑟𝑒𝑗𝑧
𝑒 − 𝑟𝑒𝑏𝑧

𝑒  
2

+ 𝑐𝛿𝑡

𝑮𝒋 𝑣𝑒𝑗𝑥
𝑒 − 𝑣𝑒𝑏𝑥

𝑒 𝑣𝑒𝑗𝑦
𝑒 − 𝑣𝑒𝑏𝑦

𝑒 𝑣𝑒𝑗𝑧
𝑒 − 𝑣𝑒𝑏𝑧

𝑒
 
𝑇

+ 𝑐𝛿𝑡 

  

(3.45)  

Note the slight change in nomenclature from Chapter 2.  The satellite is treated as an 

additional body 𝑗 and appropriately referenced in the subscript.  The measurement matrix is 

as follows: 

𝑯 =  
𝑮 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝑮 𝟎 𝟎 𝟎 𝟎 𝟏

  
(3.46)  

The variable 𝐺 contains the unit vectors to each satellite as indicated by Equation Error! 

eference source not found.Error! Reference source not found..  Technically, coupling 



68 

 

between the position and velocity states appears in the first column of the second row of 𝑯, 

but the terms are small and can be safely neglected. 

Measurement accuracy can be determined by computing the thermal variance in 

the tracking loops.  The DLL variance is computed using Equation (2.4).  The frequency 

lock loop (FLL) tracks the Doppler shift, and its variance is representative of the noise in 

the pseudorange rate signal. 

𝜍𝜖𝜌 =
𝜆

2𝜋𝑇𝑠
 

4𝐵𝑛𝜌

𝐶/𝑁0 
 1 +

1

𝑇𝑠𝐶/𝑁0
 +

𝑓𝑒
3

 

(3.47)  

Values for the variables in the above equation are listed in Table 2.2.  The variable 𝑓𝑒  is 

the dynamic stress error; a value of three meters per second was used in this work.  The 

measurement covariance matrix is a diagonal matrix containing the pseudorange and 

pseudorange rate variances. 

𝑅 =  
𝜍𝜌

2𝑰 𝟎

𝟎 𝜍𝜌 
2𝑰
  

(3.48)  

Finally, the state transition and process covariance matrices must be modified to 

accommodate the additional states. The INS error states and SV clock error states are 

independent in the time propagation step, therefore they can be partitioned. 

𝚽 =  
𝚽𝑰𝑵𝑺 𝟎
𝟎 𝚽𝑪𝑳𝑲

                  𝑸 =  
𝑸𝑰𝑵𝑺 𝟎
𝟎 𝑸𝑪𝑳𝑲

  
(3.49)  

Equation (3.27) defines 𝚽𝑰𝑵𝑺 and Equation (3.28) defines 𝑸𝑰𝑵𝑺.  The clock noise model 

was derived in[1,43].  It assumes both the bias and drift exhibit a random walk over time, 

and that the drift drives the bias state.   The state transition matrix using the derived 

model is defined as follows: 



69 

 

𝚽𝑪𝑳𝑲 =  
1 Δ𝑡
0 1

  
(3.50)  

Knowledge of the clock quality is required to determine the spectral variance of the bias 

and drift. 

𝑠𝑏 = 2𝜋2𝑕−2𝑐
2 (3.51)  

𝑠𝑑 =
𝑕0

2
𝑐2 

(3.52)  

Values for 𝑕0 and 𝑕−2 can be obtained from an Allan variance plot of the clock output.  

Values listed in [1] for several clocks of varying quality are listed in Table 3.2.  This 

work assumed a compensated crystal clock type.  The discrete process noise covariance 

matrix is constructed once clock model parameters have been chosen. 

𝑸𝑪𝑳𝑲 =

 
 
 
 𝑠𝑏Δ𝑡 + 𝑠𝑑

Δ𝑡3

3
𝑠𝑑
Δ𝑡2

2

𝑠𝑑
Δ𝑡2

2
𝑠𝑑Δ𝑡  

 
 
 

 

(3.53)  

It is worth noting that fault detection techniques, such as those described in [5], 

can be used to improve the close integration solution.  Also, the techniques could be used 

to identify erroneous range measurements and exclude them from the DRTK algorithm. 

3.3.4 Initialization 

The filter must be initialized with knowledge of the platform position, velocity, and the 

Euler angles going from the platform body frame to the ECEF frame.  Initial knowledge 

Table 3.2 

Power spectral density coefficients for various clocks  

Clock Type 𝒉𝟎 𝒉−𝟐 

Compensated Crystal 2 x 10
-19

 2 x 10
-20

 

Ovenized Crystal 8 x 10
-20

 4 x 10
-23

 

Rubidium 2 x 10
-20

 4 x 10
-29
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can be obtained by starting at a known point facing a known direction, or by processing 

GPS data to determine position and velocity and infer orientation.  Alternatively, an IMU 

can be used to establish initial orientation by executing a static alignment procedure, 

where the gravity vector and Earth's rotation are measured over a period of time.  

However, this procedure requires a tactical grade or higher IMU ($20,000+ USD), and 

therefore is not feasible for many applications. 

Initial orientation data is usually observed in the body frame.  These angles, 𝜙𝑖𝑏
𝑏 , 

𝜃𝑖𝑏
𝑏 , and 𝜓𝑖𝑏

𝑏 , respectively, define the body roll and pitch with respect to flat ground and 

yaw (heading) with respect to north and follow SAE J670e to define positive rotation.  

This convention defines 𝑥 forward, 𝑦 to the right, and 𝑧 down for ground vehicles [21].   

Body roll and pitch angles can typically be assumed to be zero for initialization purposes 

on ground vehicle platforms.  The body to ENU frame rotation matrix is a simple series 

of rotations to align the body and ENU frames.  First, a series of functions defining 

rotation matrices about arbitrary 𝑥, 𝑦, and 𝑧 axes are described to simplify the notation, 

where the input argument (∙) is a rotation angle. 

𝐶𝑥(∙) =  

0 0 0
0 𝑐(∙) 𝑠(∙)
0 −𝑠(∙) 𝑐(∙)

  

(3.54)  

𝐶𝑦(∙) =  
𝑐(∙) 0 −𝑠(∙)

0 0 0
𝑠(∙) 0 𝑐(∙)

  

(3.55)  

𝐶𝑧(∙) =  
𝑐(∙) −𝑠(∙) 0
𝑠(∙) 𝑐(∙) 0

0 0 0

  
(3.56)  

The body to ENU transformation is defined as follows: 

𝑪𝒃
𝒍

= 𝐶𝑧 𝜓𝑖𝑏
𝑏  𝐶𝑧  −

𝑝𝑖

2
 𝐶𝑥 𝜋  

(3.57)  
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The ECEF to ENU coordinate transformation is defined with knowledge of the vehicle's 

latitude (𝜆𝐿𝐴𝑇) and longitude (𝜙𝐿𝑂𝑁).   

𝑪𝒆
𝒍

= 𝐶𝑥   90 − 𝜆𝐿𝐴𝑇 ∗
180

𝜋
 𝐶𝑧   90 + 𝜙𝐿𝑂𝑁 ∗

180

𝜋
  

(3.58)  

Noting that 𝐶𝑙
𝑒 = 𝐶𝑒

𝑙 𝑇 , the rotation matrix can be initialized. 

𝑪𝒃
𝒆

= 𝑪𝒍
𝒆𝑪𝒃

𝒍  (3.59)  

3.3.5 Close Integration Solution 

Data was collected on a vehicle traveling through a typical suburban environment using 

an automotive grade IMU and a GPS receiver.  GPS data was logged at 5 Hz, and IMU 

data was logged at 50 Hz.  Figure 3.5 shows the vehicle position plotted in an ENU frame 

of reference.  The 50 Hz position estimate from the closely coupled system is superior to 

the 5 Hz GPS only solution as jumps in the position are eliminated as the vehicle travels  

between three story buildings.   
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A high rate, three dimensional velocity estimate is also provided by the closely 

coupled system.  Figure 3.6 depicts the vehicle velocity in the ECEF frame.  Figure 3.7 

shows the Euler angles from the body frame to the ECEF frame as estimated by the 

closely coupled algorithm. 

 

Figure 3.5: The closely coupled position solution filters out erroneous GPS measurements in a suburban 

environment. 
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3.4 DRTK/INS INTEGRATION 

A block diagram of the DRTK/INS 

architecture is shown in Figure 3.8.  Each 

vehicle produces its own navigation solution 

with the GPS and inertial measurements. The 

lead vehicle then transmits its specific force 

measurement with any available range 

measurements to other vehicles, where the 

RPV is then computed.  A double differenced 

DRTK algorithm is used to remove effects 

from receiver clock errors in the relative 

range measurements.  Also, the relative state 

estimates are left in the estimated state 

 

Figure 3.6: The closely coupled integration using a full 

IMU produces 3D velocity estimates. 

 

Figure 3.7: Euler angle estimates from the closely 

coupled system are used to translate motion from a 

platform to navigation frame. 

 

Figure 3.8: The DRTK/INS architecture processes 

range and inertial data on individual vehicles to 

align the inertial measurements. 
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vector, therefore the left null space of the geometry matrix is not necessary. 

3.4.1 Estimator Overview 

The closely coupled system on board each vehicle processes pseudo-range and pseudo-

range rate data with inertial data to produce a position solution. The specific force 

expressed in the navigation frame is a by-product of the coupling routine, and it can be 

combined with specific force measurements from other locations if they are in the same 

frame. The result is the relative acceleration between multiple points in the navigation 

frame, or the second derivative of the RPV with respect to time (derived in Appendix A). 

𝒗 𝒆𝑨𝑩
𝒆 = 𝒇𝒆𝑩

𝒆 − 𝒇𝒆𝑨
𝒆  (3.60)  

The estimated state vector contains the relative states and double differenced 

phase ambiguity estimates. 

𝒙 =  𝒓𝒆𝑨𝑩
𝒆 𝒗𝒆𝑨𝑩

𝒆 𝛁𝚫𝑵 𝑇 (3.61)  

The equations of motion for the relative states are the integration of the relative 

acceleration. 

𝒓𝒆𝑨𝑩
𝒆

𝒌
= 𝒓𝒆𝑨𝑩

𝒆
𝒌−𝟏

+ 𝒗𝒆𝑨𝑩𝒌
𝑒 Δ𝑡 + 𝒇𝒆𝑨𝑩

𝒆
𝒌

Δ𝑡2

2
 

(3.62)  

𝒗𝒆𝑨𝑩
𝒆

𝒌
= 𝒗𝒆𝑨𝑩

𝒆
𝒌−𝟏

+ 𝒇𝒆𝑨𝑩
𝒆

𝒌
Δ𝑡 (3.63)  

The state transition matrix and input matrix are constructed to discretely propagate the 

states. 

𝚽 =  
𝑰 Δ𝑡𝑰 𝟎
𝟎 𝑰 𝟎
𝟎 𝟎 𝑰

  
(3.64)  

𝐆 =  
Δ𝑡2

2
𝑰 Δ𝑡𝑰 𝟎 

𝑇

 
(3.65)  
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𝒙 𝒌 = 𝚽𝒙 𝒌−𝟏 + 𝐆𝒇𝒆𝑨𝑩𝒌
𝒆  (3.66)  

The process noise covariance matrix was hand tuned.  Values corresponding to the 

ambiguity states were those used in Equation (2.31).   Estimated covariance of the states 

was propagated as follows: 

𝑷𝒌
− = 𝚽𝑷𝒌−𝟏

+ 𝚽𝑻 + 𝑸 (3.67)  

An alternative implementation could utilize the difference between ECEF 

velocities from the individual navigation systems (i.e. 𝒗𝒆𝑨𝑩𝒌
𝑒 = 𝒗𝒆𝑩𝒌

𝑒 − 𝒗𝒆𝑨𝒌
𝑒 ).  This 

would remove the relative velocity  state from the estimated state vector. 

𝒙 =  𝒓𝒆𝑨𝑩
𝒆 𝛁𝚫𝑵 𝑇 (3.68)  

The equations of motion would be first order, integrating only the relative velocity. 

𝒓𝒆𝑨𝑩
𝒆

𝒌
= 𝒓𝒆𝑨𝑩

𝒆
𝒌−𝟏

+ 𝒗𝒆𝑨𝑩𝒌
𝑒 Δ𝑡 (3.69)  

The state transition matrix would be an identity matrix, and the input matrix would lose 

the first row.  Process noise on the relative position states would be determined by 

summing the individual estimated covariances associated with the estimated velocities. 

The measurement update occurs at a reduced interval when GPS range data is 

available.  Double differenced pseudorange and carrier phase combinations are used in 

order to remove receiver clock effects. 

𝒛 =  𝛁𝚫𝝆 𝛁𝚫𝝓 𝑇  (3.70)  

The measurement matrix contains the differenced geometry matrix from Equation 

(2.46) in columns corresponding to the relative position states and the carrier 

wavelengths in the elements relating the phase ambiguity to their phase measurement. 

𝑯 =  
𝑮𝛁𝚫 𝟎 𝟎
𝑮𝛁𝚫 𝟎 𝜆𝑰

  
(3.71)  
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A single differenced measurement covariance matrix is constructed using the DLL and 

PLL thermal noise variance, and then it is transformed to a double differenced covariance 

matrix with 𝐶Δ
∇Δ , as in Equation (2.16).  The Kalman filter measurement update sequence 

is executed once 𝒛, 𝑯, and 𝑹 are computed. 

𝑲 = 𝑷𝒌
−𝑯𝑻 𝑯𝑷𝒌

−𝑯𝑻 + 𝑹 −1 (3.72)  

𝒙 𝒌
+ = 𝒙 𝒌

− + 𝑲 𝒛 −𝑯𝒙 𝒌
−  (3.73)  

𝑷𝒌
+

=  𝑰 − 𝑲𝑯 𝑷𝒌
− (3.74)  

The estimated ambiguities are fixed to integer values at this point in the algorithm 

using the same approach described in Section 2.6. However, the focus of this chapter 

remains on the improvements to the floating solution by providing the ability to 

accurately reinitialize after an outage.  Future work should assess the contribution, if any, 

to ambiguity integerization. 

3.4.2 Initialization 

The DRTK/INS estimator is initialized in the same manner as presented in Section 2.4.2.  

However, re-initialization can be handled differently because the inertial data provides a 

means of dead reckoning through partial or full outages.  The time necessary to determine 

a high precision solution can be reduced if the RPV is re-initialized with sufficient 

accuracy. 

Figure 3.9 shows the mean time to first fix (TTFF) of the DRTK algorithm for a 

range of initialization error across four different baselines.  The TTFF is defined as the 

time necessary to fix the ambiguities to integer values.  Although variability exists due to 

the dependence on other factors such as signal quality and satellite geometry, the general 

trend is a growing mean TTFF as the error on the initial RPV increases.   
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Figure 3.10 shows the number of fixes used to calculate the mean TTFF for each 

error level.  The decreasing trend is due to fewer fixes because of the higher TTFF.  The 

bump in the curves is caused by running the Monte Carlo simulation  more times with the 

higher error standard deviation levels. 

Figure 3.11 is a close up of Figure 3.9 for small initialization errors.  The TTFF is 

near instant (<2 seconds) over all baselines tested for initialization errors equal to or less 

than the GPS carrier wavelength.  Therefore, one should expect fast initialization times if 

the RPV can be sufficiently defined after a partial or total outage. 

 

Figure 3.9: The time to first fix increases with the uncertainty of the initial baseline. 
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A Monte Carlo simulation was run to determine relative inertial error growth 

when using both automotive grade and tactical grade IMUs.  The total error magnitude is 

plotted for a five minute simulation in Figure 3.12.  Each INS was simulated using the 

stochastic inertial error parameters listed in Table 3.1 with the nonlinear propagation 

given by Equation (3.9) through Equation (3.13).  The two platforms were moving in a 

straight line traveling 10 meters per second. 

Figure 3.13 and Figure 3.14 show the automotive and tactical error growth for the 

period of time it takes each INS to reach twenty centimeters.  The tactical units vastly 

outperforms the automotive units, but this is expected given the cost difference between 

the two types of units.  The relative error reaches twenty centimeters in 0.45 and 14.5 

seconds for the automotive and tactical INS, respectively.  Although this error plot is for 

one specific motion profile, the quick error growth exhibited by the automotive units 

indicates that units of similar quality will only provide a minimal increase in system 

robustness during outages. 

 

Figure 3.10: The number of ambiguity fixes used to 

determine the mean TTFF for each initial error.  

 

Figure 3.11: The TTFF is near instant if the RPV 

error is within a GPS carrier wavelength or less. 
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3.4.3 Constellation Changes 

A preliminary step that checks and accounts for a change in the base satellite is necessary 

before techniques described in Section 2.4.3 can be used.  A transformation must be 

applied to the estimated state vector and covariance matrix when the base satellite 

 

Figure 3.12: The relative inertial error growth using tactical and automotive grade INS for two ground vehicles 

traveling straight at 10 meters per second. 

 

Figure 3.13: The relative error reaches 20 centimeters 

in 0.45 seconds with the automotive INS. 

 

Figure 3.14: The relative error reaches 20 centimeters 

in 14.5 seconds with the automotive INS. 
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changes.  A transformation matrix is defined in the same vein as Equation (2.52).  An 

identity matrix is used in the upper right subset to maintain the relative state estimates.  

The subset pertaining to the ambiguity states contains ones along the diagonal with 

negative ones inserted into the column corresponding to the old base satellite. 

𝑪𝑏𝑎𝑠𝑒 =  

𝑰 𝟎 𝟎 𝟎
𝟎 𝑰 −𝟏 𝟎
𝟎 𝟎 ⋮ 𝟎
𝟎 𝟎 −𝟏 𝑰

  

(3.75)  

The state vector and its covariance are transformed as follows: 

𝒙 = 𝑪𝒃𝒂𝒔𝒆𝒙  (3.76)  

𝑷 = 𝑪𝒃𝒂𝒔𝒆𝑷𝑪𝒃𝒂𝒔𝒆
𝑻  (3.77)  

Note that the transformation matrix should be square, and the transformation should be 

completed before any elements are added or removed to accommodate new or lost 

satellites.  Once the transformation is applied, the procedure described in Section 2.4.3 is 

followed. 

3.5 EXPERIMENTAL RESULTS 

Two NovAtel PropakV-3’s and Crossbow 

IMU440’s were mounted separately in two 

vehicles. A Septentrio PolaRx2e dual frequency 

receiver and radio modem installed at the base 

station provided corrections to the NovAtel 

receivers. The range and inertial data were recorded for post processing, and the RTK 

position of each vehicle was logged at 1 Hz to serve as a truth measurement. The vehicles 

were driven in a convoy formation around Auburn University’s National Center for 

Asphalt Technology (NCAT) 1.7 mile test track. Speeds started at 20 mph and increased 

 
Figure 3.15: Auburn University's NCAT 1.7 

mile oval test track. 
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in 10 mph increments to 50 mph after the completion of each lap around the course. 

Figure 3.15 is a plot of the test path. 

The data was processed in the DRTK/INS algorithm to produce a 50 Hz RPV. 

Figure 3.16 displays the estimated and measured RPV between the vehicles as they 

traveled around the track. The ECEF frame served as the navigation frame; blue is the 

relative distance in X, green is the relative distance in Y, and red is the relative distance 

in Z.  The baseline between the vehicles is shown in Figure 3.17. The RTK positions of 

the vehicles were differenced to determine a “true” RPV between the vehicles.  

 
Figure 3.16: Processing the inertial measurements gives the DRTK/INS solution a higher output rate over 

processing only GPS measurements. 
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Figure 3.17: Vehicle separation distance fluctuated throughout the test. 

Detailed versions of Figure 3.16 and Figure 3.17 are given in Figure 3.18 and 

Figure 3.19. It can be seen that the RPV estimate using the floating point ambiguities 

tracks the relative motion of the vehicles, indicated by the differenced RTK positions, 

when GPS is available.  Figure 3.19 shows a 20 second simulated GPS outage that started 

at 328 seconds, which illustrates that a total denial of GPS signals leads to a graceful 

degradation of the solution. 
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Figure 3.18: The DRTK/INS floating point solution 

tracks the RTK solution with the same accuracy as the 

DRTK solution. 

 

Figure 3.19: The DRTK/INS solution drifts during a 

simulated complete outage starting at 328 seconds; 

accuracy suddenly increases when GPS is available. 

 

Figure 3.20: The time for the error to drift 20 cm was recorded during one thousand simulated full GPS outages. 

Full GPS outages were simulated at one thousand arbitrarily chosen times during 

separate trials using the same data as the above plots. The time taken for the solution to 

drift beyond twenty centimeters was recorded. As shown in Figure 3.20, the drift time 

was inconsistent between outages, which was to be expected due to the nonlinearities in 

Equations (3.9) through (3.13). The clump of data with a relatively higher drift time 
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corresponding to the first one hundred outages was  measured when both vehicles were 

static.  The shortest time recorded was 0.64 seconds, and the longest time was 25.24 

seconds. The mean time to drift twenty centimeters was 5.51 seconds, which given the 

fact the Crossbow IMU440 is an automotive grade IMU, and measurements from two 

IMUs were combined, is in line with the results presented in [47], where a single tactical 

grade IMU was integrated with a traditional RTK system and the mean time to twenty 

centimeter error drift was approximately 14 seconds.  The results are better than those 

predicted in Figure 3.13 because the Crossbow IMU440 is a higher quality automotive 

IMU that employs DSP technology and temperature compensation to improve its output. 

3.6 CONCLUSION 

An architecture to combine inertial measurements from two non-coincident platforms 

with a DRTK algorithm was described.  Individual IMUs were aligned by a 

mechanization process that placed them in a common navigation frame.  Relative inertial 

measurements were formed and used to propagate the relative position and velocity states 

in the DRTK algorithm.  A form of the DRTK algorithm using double differenced 

measurements was described, including a method to alter the estimated state and 

covariance when the base satellite changes. 

It was shown that the DRTK algorithm's TTFF of integer ambiguities increased 

with uncertainty in the initial position.  INS error drift between two tactical and two 

automotive grade IMUs demonstrated the re-initialization capability when using inertial 

measurements to dead reckon through brief GPS outages.  Experimental results using 

automotive grade IMUs showed better performance than predicted in Figure 3.13.  This 

improvement was due to two factors: the quality of the IMU, although still automotive 
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grade, was better than the one used in the simulation, and the motion profile during the 

experiments varied whereas the predicted error growth charts depict only one motion 

profile. 
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Chapter 4  

Odometry 

4.1 INTRODUCTION 

Odometry is the measure of change in platform position, or perhaps better stated as the 

distance traveled from some nominal starting point.  Odometers are used to measure the 

distance traveled, and the most common form of odometers provide the measurement by  

accumulating a number of counts which correspond to a distance interval.  Encoders are 

commonly used on ground vehicles to measure full or partial revolutions of a wheel or 

track.  Knowledge of the wheel's radius or track length is used to transform the number of 

revolutions measured into a distance traveled.  Similarly, pedometers are used on 

ambulated platforms to measure the number of steps taken.  Knowledge of the gait 

distance is used to convert the counts to distance. 

The two common odometers mentioned provide a measurement of distance 

magnitude.  A use for distance traveled in vector form has been identified for robotic 

following strategies.  Inertial sensors and GPS can both be used to provide this 

information.  An INS inherently provides vector odometry information by integrating the 

accelerations and turning rates measured by an IMU.  GPS also provides distance 

traveled information by simply differencing current position from a nominal starting 
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position.  However, processing range measurements, specifically the GPS carrier signal, 

for odometry information can offer a significant error reduction. 

The following chapter discusses the use of an IMU and GPS as an odometer that 

provides a vector change in platform position.  Three techniques will be demonstrated to 

determine the information: a full and partial INS system, a time differenced carrier phase 

(TDCP) routine, and an integrated solution using the INS and TDCP measurements.  An 

error analysis will determine and compare the systems' performance.  The odometry 

information will be combined with the DRTK RPV in Chapter 5 in an ENU frame, so 

only two dimensional error in the East-North plane is of interest. 

4.2 INS 

The full IMU mechanization to produce an INS was presented in Section 3.3.1.  The 

procedure is briefly repeated here, starting with the rotation of the measured specific 

force into a navigation frame, denoted by 𝑛, and the subsequent removal of gravity, 

Coriolis, and centripetal effects. 

𝒇𝒊𝒃𝒌
𝒏 = 𝑪𝒃

𝒏𝒇𝒊𝒃𝒌
𝒃 + 𝑮𝒓 𝒓𝒏𝒃𝒌−𝟏

𝒏  − 2𝛀𝒊𝒆
𝒏 𝒗𝒏𝒃𝒌−𝟏

𝒏  (4.1)  

𝑮𝒓 𝒓   𝒏𝒃
𝒏
 = −

𝐺𝑀

 𝒓𝒏𝒃
𝒏  

3
𝒓𝒏𝒃
𝒏 −𝛀𝒊𝒆

𝒏 𝛀𝒊𝒆
𝒏 𝒓𝒏𝒃

𝒏  
(4.2)  

Next, the specific force expressed in the navigation frame is integrated to determine 

position and velocity, and the measured body frame rotational rates are used to propagate 

the rotation matrix. 

𝒓𝒏𝒃𝒌
𝒏 = 𝒓𝒏𝒃𝒌−𝟏

𝒏 +𝒗𝒏𝒃𝒌−𝟏
𝒏 Δ𝑡 + 𝒇𝒊𝒃𝒌

𝒏 Δ𝑡2

2
 

(4.3)  

𝒗𝒏𝒃
𝒏 = 𝒗𝒏𝒃𝒌−𝟏

𝒏 + 𝒇𝒊𝒃𝒌
𝒏 Δ𝑡 (4.4)  



88 

 

𝑪𝒃𝒌
𝒏

= 𝑪𝒃𝒌−𝟏
𝒏

 𝑰𝟑×𝟑 +𝛀𝒊𝒃
𝒃 𝚫𝒕 −  𝛀𝒊𝒏

𝒏 𝑪𝒃𝒌−𝟏
𝒏

 𝚫𝒕 (4.5)  

A full INS uses all available inertial information to determine three dimensional 

platform position, velocity, and orientation.  Altitude information is useful on an aerial 

platform.  The orientation information can be useful on some ground vehicles employing 

rollover prevention control or perception stabilization algorithms.  However, the ground 

vehicle will be constrained to the ground and body roll and pitch will typically be under 

five degrees under all but the most extreme scenarios.   

Altitude, roll, and pitch information can be disregarded in an attempt to improve 

the INS accuracy.  Rather than integrating six measurements with their individually 

combined bias and noise, a subset of inertial measurements can be used to indicate basic 

vehicle velocity, position, and orientation.  The reduction in error sources directly leads 

to reduced error at the expense of having less information about all vehicle states.  

Specifically, vehicle state information is limited to speed over ground, direction of travel, 

and two dimensional ground position.  However, this information is sufficient for most 

ground platforms intended for automation. 

The navigation frame of the partial INS system will be a local tangent ENU frame 

for the following derivation and denoted by 𝑙.  Longitudinal acceleration and yaw rate are 

the only body frame inertial measurements necessary.  With a nominal starting point, 

integration reveals the platform's speed and direction of travel, or heading. 

𝑣𝑖𝑏𝑘
𝑏 = 𝑣𝑖𝑏𝑘−1

𝑏 + 𝑓𝑖𝑏𝑥𝑘
𝑏 Δ𝑡 (4.6)  

𝜓
𝑏𝑘

𝑙 = 𝜓
𝑏𝑘−1

𝑙 + 𝜔𝑖𝑏𝑘
𝑙 Δ𝑡 (4.7)  

Position is determined by integrating north and east velocities, which are created using 

the velocity and heading from Equations (4.6) and (4.7). 
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𝑟𝑙𝑏𝐸𝑘
𝑙 = 𝑟𝑙𝑏𝐸𝑘

𝑙 + 𝑣𝑖𝑏𝑘
𝑏 sin  𝜓𝑏𝑘

𝑙
 Δ𝑡 (4.8)  

𝑟𝑙𝑏𝑁𝑘
𝑙 = 𝑟𝑙𝑏𝑁𝑘

𝑙 + 𝑣𝑖𝑏𝑘
𝑏 cos  𝜓𝑏𝑘

𝑙
 Δ𝑡 (4.9)  

Note that the system can be expressed in the form of Equations (4.1) through (4.5) with 

minor alteration if desired. 

Two assumptions are made in the above equations.  First, the body frame  and 

ENU frame 𝑧 axis are aligned such that 

𝜔𝑖𝑏
𝑏 = 𝜔𝑖𝑏

𝑙  (4.10)  

This assumption asserts that the vehicle is traveling on flat ground.  Second, platform 

dynamics are assumed to be benign enough that lateral movement can be ignored.  All 

motion is along the body frame 𝑥 axis, so any sideslip is disregarded.  Any violation of 

these assumptions will degrade the system's performance.  

4.3 TDCP 

The previous discussion in Chapter 2 on the error mitigation achieved by differencing 

carrier measurements across receivers and across satellites can now be amended to 

present another technique to reduce errors inherent in the GPS signal.  Time differenced 

carrier phase (TDCP) measurements can provide an 

accurate measure of change in position.  Differencing 

successive phase measurements yields the total 

change in phase between epochs, created by both user 

and satellite motion, as seen in Figure 4.1.  Similar to 

differencing across receivers or satellites, differencing 

across time can reduce the atmospheric and satellite 

 
Figure 4.1: The change in receiver and 

satellite position is captured in the 

difference in range measurements from 

the user to satellite. 
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clock errors to negligible values and remove the integer ambiguity.  The underlying 

stipulation is the time difference is small enough to assume all the errors are correlated. 

The carrier phase measurement model in Equation (2.2) is used as a basis for the 

algorithm derivation.  A time differenced measurement is constructed with 𝜏 representing 

the number of epochs between measurements. 

𝜙𝐴𝑘
𝑗
−𝜙𝐴𝑘−𝜏

𝑗
=  𝒓𝑨

𝒋
 
𝑘

+ 𝑐 𝛿𝑡𝐴𝑘 − 𝛿𝑡𝑘
𝑗  + 𝜆 𝑇𝑘

𝑗 − 𝐼𝑘
𝑗 + 𝑁𝑗  + 𝜖𝜙𝑘

𝑗
 (4.11)  

 − 𝒓𝑨
𝒋
 
𝑘−𝜏

− 𝑐 𝛿𝑡𝐴𝑘−𝜏 − 𝛿𝑡𝑘−𝜏
𝑗  − 𝜆 𝑇𝑘−𝜏

𝑗 − 𝐼𝑘−𝜏
𝑗 + 𝑁𝑗  − 𝜖𝜙𝑘−𝜏

𝑗
 

The TDCP measurement, assuming the time difference is sufficiently small, is 

negligibly affected by atmospheric effects, satellite clock bias, and the integer ambiguity.  

Variation in the atmosphere and clock parameters usually occurs with a time constant on 

the order of hours, therefore these terms are removed.  Even most multipath effects can 

be removed because their effect is slow compared to the measurement sample rate.  The 

remaining terms are a change in range, the receiver clock drift over the sampling interval, 

and noise.  

𝜙𝐴𝑘,𝑘−𝜏

𝑗
=  𝒓𝑨𝒋 𝑘

 −  𝒓𝑨𝒋 𝑘−𝜏
+ 𝑐 𝛿𝑡𝐴𝑘,𝑘−𝜏

 + 𝜖𝜙𝑘,𝑘−𝜏

𝑗
 (4.12)  

Noting that 

 𝒓𝑨𝒋 𝑘
= 𝑮𝒌

𝒋
𝒓𝑨𝒋𝒌 (4.13)  

and 

𝑮𝒌 ≈ 𝑮𝒌−𝝉 (4.14)  

Equation (4.12) can be rewritten as follows: 

𝜙𝐴𝑘,𝑘−𝜏

𝑗
= 𝑮𝒌

𝒋
 𝒓𝑨𝒋𝒌 − 𝒓𝑨𝒋𝒌−𝝉 + 𝑐 𝛿𝑡𝐴𝑘,𝑘−𝜏

 + 𝜖𝜙𝑘,𝑘−𝜏

𝑗
 (4.15)  
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= 𝑮𝒌
𝒋
 𝒓𝒋𝒌 − 𝒓𝑱𝒌−𝝉 − 𝑮𝒌

𝒋
 𝒓𝑨𝒌 − 𝒓𝑨𝒌−𝝉 + 𝑐 𝛿𝑡𝐴𝑘,𝑘−𝜏

 + 𝜖𝜙𝑘,𝑘−𝜏

𝑗
 (4.16)  

Finally, the change in range due to satellite motion is subtracted from the time 

differenced carrier measurement.  

𝒛𝒌 = 𝜙𝐴𝑘,𝑘−𝜏

𝑗
− 𝑮𝒌

𝒋
𝒓𝒋𝒌,𝒌−𝝉

𝒋
=  𝑮𝒌

𝒋
𝟏  

𝒓𝑨𝒌,𝒌−𝝉

𝑐 𝛿𝑡𝐴𝑘,𝑘−𝜏
 
 + 𝜖𝜙𝑘,𝑘−𝜏

𝑗
 

(4.17)  

A weighted least squares routine can be used to estimate the change in position 

and the clock drift.  A diagonal weighting matrix can be constructed using the thermal 

noise model of the PLL described in Equation (2.5).  This model incorporates the carrier 

to noise ratio, C/N0, so the degraded signals can be de-weighted.  Also, erroneous 

observations due to cycle slips must be detected and removed from the measurement 

update.  Cycle slip detection was previously discussed in Section 2.3. 

The user position can be determined relative to some reference value by 

accumulating the estimates.   

𝑟𝐴𝑘,0
= 𝑟𝐴0

+  𝑟𝐴𝑗,𝑗−𝜏

𝑘

𝑗=1

 

(4.18)  

Position error will drift over time due to the summation of the inherent noise and small 

residual biases present in the estimates.  The drift, which is quantified in a later section, is 

small for short periods of time.  The advantage to tracking position using this technique is 

a more consistent and potentially more accurate position solution that is less susceptible 

to jumps due to constellation changes and multipath when compared to  a standalone 

solution.  The improved accuracy comes from the carrier phase measurement accuracy 

combined with the mitigation of error sources present in the transmitted signal.  
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4.4 TDCP/INS 

The TDCP observations and the inertial measurements were combined in a navigation 

algorithm to determine the change in platform position.  The combination of 

measurements can provide a bridge between intermittent GPS outages, but the TDCP 

observable poses a problem because it contains states at successive instances in time.  

Successful implementations of TDCP observations with inertial aiding have been 

previously demonstrated for positioning of aerial vehicles [11,54,60]. 

A delayed state Kalman filter was implemented to handle the fact that state 

information from a previous instance in time is contained within the TDCP observable.  

This is different than the previous approaches; a Taylor series expansion was used to  

bypass the problem in [11,54], and an alternate measurement matrix is derived to handle 

the problem in [60].  An error state approach like the one described in Section 3.3 was 

used, so the INS mechanization and error state propagation remain unchanged and will 

not be repeated here.  The TDCP observable differenced across time 𝑘 and 𝑘 − 𝑛 is listed 

below. 

𝜙𝐴𝑘,𝑘−𝑛

𝑗
=   𝒓𝑨𝒋 𝑘

+ 𝑐𝛿𝑡𝐴𝑘 −   𝒓𝑨𝒋 𝑘−𝑛
+ 𝑐𝛿𝑡𝐴𝑘−𝑛  + 𝜖𝜙𝑘,𝑘−𝑛

𝑗
 

(4.19)  

The TDCP observable contains range information to a GPS SV at time 𝑘 and at the 

previous time 𝑘 − 𝑛.  The measurement model reflects the relationship between the 

TDCP observable and position state. 

𝒛𝒌 = 𝑯 𝒌𝒙𝒌 −𝑯 𝒌−𝒏𝒙𝒌−𝒏 + 𝒗𝒌 (4.20)  

The variable 𝑯  is used to denote the standard measurement matrix containing the 

geometry matrix and a column of ones corresponding to the clock error.  Note the 

measurement matrices and state vectors used correspond to the current time, 𝑘, and the  
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time of the last measurement update, 𝑘 − 𝑛, and not simply the previous time instance of 

𝑘 − 1. 

The delayed state Kalman filter measurement update using the above model was 

developed by following the procedure in [1].  First, a few properties of the state transition 

matrix are noted.  The state can be mapped forwards in time from time 𝑘 − 𝑛 to 𝑘 by 

successively multiplying the state transition matrices from the intermediate instances in 

time. 

𝚽𝒌,𝒌−𝒏 = 𝚽𝒌,𝒌−𝟏𝚽𝒌−𝟏,𝒌−𝟐⋯𝚽𝒌−𝒏+𝟏,𝒌−𝒏 (4.21)  

Also, the state can be mapped backwards in time by multiplying by the inverse of the 

state transition matrix. 

𝚽𝒌−𝒏,𝒌 = 𝚽𝒌,𝒌−𝒏
−𝟏  (4.22)  

Noting that the forward propagation of the state over a single time instance is denoted by 

𝒙𝒌 = 𝚽𝒌,𝒌−𝟏𝒙𝒌−𝟏 + 𝒘𝒌−𝟏 (4.23)  

the backwards propagation of the current state to time 𝑘 − 𝑛 is expressed as follows: 

𝒙𝒌−𝒏 = 𝚽𝒌,𝒌−𝒏
−𝟏 𝒙𝒌 −𝚽𝒌,𝒌−𝒏

−𝟏 𝒘𝒌−𝒏 (4.24)  

The measurement model can be updated with the above result to contain only the 

current state vector. 

𝒛𝒌 =  𝑯 𝒌 −𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏
−𝟏  𝒙𝒌 + 𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏

−𝟏 𝒘𝒌−𝒏 + 𝒗𝒌 (4.25)  

Now the measurement matrix contains both the new and old measurement matrices and 

the state transition matrix. 

𝑯𝒌 = 𝑯 𝒌 −𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏
−𝟏  (4.26)  

Also the measurement noise model has changed by the inclusion of process noise from a 

previous instance in time.  The original measurement covariance, 𝑹 , pertaining to the 
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carrier measurement is determined by computing the thermal variance in the PLL.  The 

original covariance is incorporated into the new measurement covariance, as shown in the 

following equation. 

𝑹𝒌 = 𝐸   𝑯 𝒌−𝟏𝚽𝒌,𝒌−𝒏
−𝟏 𝒘𝒌−𝒏 + 𝒗𝒌  𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏

−𝟏 𝒘𝒌−𝒏 + 𝒗𝒌 
𝑇
  

 

= 𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏
−𝟏 𝑸𝒌−𝒏𝚽𝒌,𝒌−𝒏

−𝟏𝑻 𝑯 𝒌−𝒏
𝑻

+ 𝑹  
(4.27)  

Since the process noise appears in the measurement model, correlation exists between the 

measurement noise and process noise.  This correlation is expressed as follows: 

𝑺𝒌 = 𝐸   𝒘𝒌−𝒏  𝑯 𝒌−𝒏𝚽𝒌,𝒌−𝒏
−𝟏 𝒘𝒌−𝒏 + 𝒗𝒌 

𝑇
  

(4.28)  

= −𝑸𝒌−𝒏𝚽𝒌,𝒌−𝒏
−𝟏𝑻 𝑯 𝒌−𝒏

𝑻
 

(4.29)  

The Kalman filter is time update iterated at a higher rate than the measurement 

update.  The state and its covariance are propagated through time at the measurement rate 

of the IMU. 

𝒙𝒌
− = 𝚽𝒌,𝒌−𝟏𝒙𝒌−𝟏

+  (4.30)  

𝑷𝒌
− = 𝚽𝒌,𝒌−𝟏𝑷𝒌−𝟏

+ 𝚽𝒌,𝒌−𝟏
𝑻 + 𝑸𝒌−𝟏 (4.31)  

The measurement update is iterated at the rate of received GPS measurements.  The 

Kalman filter gain and covariance update account for the new measurement covariance 

and process and measurement noise correlation created by the delayed state term in the 

observable. 

𝑲𝑘 =  𝑷𝒌
−𝑯𝒌

𝑻 + 𝑺𝒌  𝑯𝒌𝑷𝒌
−𝑯𝒌

𝑻 + 𝑹𝒌 + 𝑯𝒌𝑺𝒌 + 𝑺𝒌
𝑻𝑯𝒌

𝑻 
−1

 
(4.32)  

𝒙𝒌
+ = 𝒙𝒌

− + 𝑲𝒌𝛿𝒛𝒌 (4.33)  

𝑷𝒌
+ =  𝑰 − 𝑲𝒌𝑯𝒌 𝑷𝒌

− +𝑲𝒌𝑺𝒌
𝑻 (4.34)  
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Note that 𝛿𝒛 is the difference between the measured observation and the predicted 

observation using the INS position states. 

4.5 ERROR ANALYSIS 

4.5.1 INS 

A tactical and automotive grade IMU were simulated using the stochastic inertial error 

parameters listed in Table 3.1.  Both the full INS solution given by Equation (4.1) 

through Equation (4.5) and the partial INS solution given by Equations (4.6) through 

(4.9) were computed.  The platform was moving in a straight line traveling 10 meters per 

second in the simulation, as in Section 3.4.2.  Note that simulations must emulate 

anticipated maneuvers to predict performance due to the nonlinearities.  Figure 4.2 shows 

the standard deviation of position error for the full and partial tactical and automotive 

grade INS systems for the five minute simulation.  Removing unnecessary inertial 

measurements from the INS can drastically reduce the position error growth as seen by 

the partial automotive INS outperforming the full tactical INS.  However, error in the 

partial INS solution may be worse than the full INS solution if the un-modeled states of 

roll, pitch, lateral motion, and vertical motion are present. 
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4.5.2 TDCP 

Two hundred sets of GPS range data were collected at 1 Hz, 5 Hz, and 10 Hz on a static 

NovAtel Propak-V3, each in five minute intervals.  Data was processed in real time in 

C++ with the TDCP algorithm.  Figure 4.3 shows the 5 Hz and 10 Hz estimates of change 

in position.  Notice the 5 Hz estimates have a slightly larger variance than the 10 Hz 

estimates.  This is expected as the errors are time correlated. 

The accumulated error of the estimates is of primary interest since the path 

following algorithm sums the change in position to determine a baseline between the 

following vehicle at the current time and lead vehicle at a past time.  Figure 4.4 and 

Figure 4.5 show the accumulated estimates versus time and interval, respectively.  Since 

truth is zero, the accumulated estimates correspond to the accumulated error.  Although 

the data in Figure 4.3 is zero mean, the error growth is dominated by biases present in the 

short time intervals instead of white noise.  The performance improvement when using 

higher rate measurements is more evident in the accumulated measurements. 

 
Figure 4.2: Simulated inertial error growth is reduced when using a partial IMU, provided assumptions are not 

violated. 
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Quantification of the noise and residual bias effects present in the estimate are 

necessary to predict error growth and determine the impact on the path following 

algorithm. The one-sigma bounds on the noise and bias for the change in position 

estimates are given in Table 4.1, where 𝜍Δ𝑟𝑤  is the white noise standard deviation and 

𝜍Δ𝑟𝑏  is the standard deviation of the residual biases.  The error growth in the accumulated 

 
Figure 4.3: Two hundred five minute intervals of the 5 Hz and 10 Hz change in position estimates are overlaid. 

The 5 Hz estimates have a slightly higher variance. 

 
Figure 4.4: The accumulation of the 5 Hz and 10 Hz 

change in position estimates over five minute intervals 

show that error is dominated by residual biases. 

 
Figure 4.5: The total error accumulation of the 5 Hz 

and 10 Hz change in position estimates over five 

minute intervals. 
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position can be expressed as a function of the statistical quantities and the number of 

accumulations, n. 

𝜍ΣΔ𝑟𝐴 =  𝑛𝜍Δ𝑟𝑤
2 +  𝑛𝜍Δ𝑟𝑏  

2
 

(4.35)  

A trade off exists between measurement rate and accuracy.  Measurement errors 

are more correlated with higher sampling rates, therefore more of the errors will be 

removed by the time difference.  Slower sampling rates will yield less accurate results 

because of the lower error correlation between observations.  However, computational 

limitations might require a slower measurement rate. 

4.5.3 TDCP/INS 

The TDCP/INS integration was tested using dynamic data and comparing the solution to 

that of an RTK solution.  The TDCP/INS algorithm output position estimates at the rate 

of the IMU, which was 20 Hz, therefore the estimate after a measurement update was 

compared to the RTK solution.  Data from a NovAtel PropakV-3 was logged at 5 Hz, and 

inertial data from a Crossbow IMU440 was logged at 20 Hz.  The data was processed 

offline to determine a solution. 

Figure 4.6 shows the computed position estimate of the TDCP/INS algorithm in 

black, the RTK position solution in blue, and the standard positioning service (SPS) 

solution in cyan.  The green and red dots mark the beginning and end points of the test.  

The vehicle drove counterclockwise through a parking lot two times before exiting and 

coming to a stop.  

Table 4.1: Statistical quantification of the TDCP algorithm output  

Parameter 1 Hz 5 Hz 10 Hz 

𝝈𝚫𝒓𝒘  8.378 mm 1.038 mm 0.922 mm 

𝝈𝚫𝒓𝒃 8.006 mm 0.468 mm 0.181 mm 
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Figure 4.7 displays the odometry error of the TDCP/INS algorithm for the same 

dynamic test.  The top plot is the overall error, and the bottom plot is a close up to 

demonstrate the magnitude of the error after the filter transients settle out.  The position 

estimate after each measurement update was differenced with the estimate after the 

previous measurement update to determine the change in position between measurement 

updates.  This difference was then compared to the position difference of the RTK 

solution to determine the error.  The differenced RTK solution was assumed to be truth.  

After the filter settles out, the output resembles that of the TDCP algorithm with no 

inertial aiding, which is to be expected.  Statistically, there was no discernable difference 

between the outputs of the two methods after the transients had settled. 

 
Figure 4.6: North and east position (on left, with magnified portion on right) calculated with the TDCP/INS 

algorithm agrees with the RTK and SPS solutions.  
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4.6 CONCLUSION 

Techniques to determine vector components of the change in position of a platform were 

explained in this chapter.  This information is necessary in the approach outlined in the 

next chapter to enable a UGV to replicate a path traveled by a preceding vehicle.  The 

total change in position is realized by accumulating the odometry information, and 

therefore information about the error growth using each technique is necessary. 

First, inertial measurements were used to dead reckon from an initial point.  Both 

a full, six degree of freedom system (three dimensional position and three dimensional 

orientation) and a constrained, three degree of freedom system (two dimensional position 

and orientation in one dimension) were analyzed.  It is difficult to fully characterize 

inertial error growth due to nonlinear coupling of the measurements.  However, the error 

can easily be simulated if information about the platform's motion profile is known.  A 

Monte Carlo simulation was used to demonstrate performance of a tactical and 

automotive grade IMU with the full and partial system for a simple motion profile.  The 

 
Figure 4.7: The error in position difference from the TDCP/INS algorithm is comparable to the TDCP 

algorithm once the filter settles out. 
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partial INS systems showed the best performance provided the assumptions of no roll, 

pitch, lateral, and vertical motion are not violated. 

Second, a time difference of the GPS carrier measurement was used to estimate a 

three dimensional change in position of a platform.  The accuracy of the GPS carrier 

measurement translated to a millimeter level odometry estimate.  It was shown that 

higher sampling rates increasingly exploit the time correlated errors to improve estimate 

accuracy.  The algorithm was developed originally in Matlab and ported into C++ for real 

time operation.  All data shown was from the real time C++ version of the algorithm. 

Finally, the TDCP observables were aided with a full INS.  The INS and error 

state approach from Section 3.3 was recycled, but a delayed state Kalman filter was used 

because the measurement model did not fit the standard form of the Kalman filter.  Data 

from a dynamic test was pushed through the algorithm, and the output was compared to 

an RTK solution.  Odometry accuracies were consistent with the output of the unaided 

TDCP algorithm. 
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Chapter 5  

Path Duplication 

5.1 INTRODUCTION 

In order to duplicate a vehicle's path of travel, reference points for the following vehicles 

must be generated on the fly.  Perhaps the easiest method of generating reference points 

is to broadcast the lead vehicle's current global position to the following vehicles.  The 

following vehicles' control systems would compare their respective positions to the path 

traveled by the lead vehicle and issue commands to move the vehicles to the path.  Such a 

method is often referred to as "dropping breadcrumbs".  This method, however, is not 

sufficient when high accuracy path duplication is required as limitations arise due to the 

accuracy of standard positioning solutions. 

The one sigma accuracy of a standalone receiver is, at best, three meters.  Position 

error generally drifts with a bound over time when using a high quality GPS receiver.  

Vehicles following in close formation should experience similar error magnitudes from 

the various error sources, with the exception of multipath and shadowing, so accurate 

path following could conceivably occur provided the vehicles remain close to one another 

in an area with no environmental obstructions.  Accurate path following would not be 

possible when the vehicles are separated by long periods of time due to the error drift.  
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For example, waypoints marked by a lead vehicle driving down the middle of a lane 

could be perceived by the following vehicle some period of time later as shifted in the 

lane or even off the road. 

Consistency issues also exist in a standalone solution as multipath, shadowing, or 

constellation changes can cause discontinuities.  Figure 5.1 compares standalone and 

RTK solutions of a vehicle on a test track, where the GPS environment is relatively 

benign.  The offset from the RTK solution is due to error drift, and could be tolerable 

under some operational scenarios as previously mentioned.  The jumps in the standard 

solution are intolerable when high accuracies are required.  Aside from the obvious 

problem of the vehicle driving off the intended path, the jump produces a significant step 

in the reference which could lead to unstable behavior or heavy oscillation depending on 

the type of following vehicle and controller tuning.  Figure 5.2 shows the regularity of 

such jumps even in a benign environment.  Shown is the error in the change in position, 

which is determined by differencing the change in position from the standard solution 

with the change in position from an RTK solution.  This difference demonstrates the 

number and magnitude of position inconsistencies in the standalone solution. 

 
Figure 5.1: Standard position and RTK position solutions are compared to demonstrate inconsistencies in the 

standard solution that would prohibit accurate path following by dropping waypoint breadcrumbs. 
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If an RTK system is available, the breadcrumb dropping method would actually 

work well as the positional accuracy would be reduced by an order of magnitude, and 

most consistency issues would be removed (remaining issues would be non-detrimental 

to desirable operation).  However, the requirement of a fixed base station could reduce 

the feasibility of autonomous trajectory duplication in many environments.  Therefore, 

methods that do not rely simply on broadcasting and maintaining a log of lead vehicle 

position need to be developed to broaden the possible applications of automated ground 

vehicle convoys. 

Two following methods are presented in the subsequent subsections.  A LOS 

method uses the DRTK RPV to generate a reference for the following vehicle to track the 

lead vehicle's path for short following distances.  A NLOS method uses the DRTK RPV 

in conjunction with vector odometry measurements to generate an RPV to a virtual 

leader, which is the lead vehicle's position at a previous instance in time.  The newly 

perceived RPV is then used to generate a reference to track the leader's path, even when 

 
Figure 5.2: The error in change in position demonstrates the frequency and magnitude of inconsistencies in the 

reported standard position. 
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the leader is out of sight of the follower.  Also, it is shown how the NLOS method can be 

used to follow a lead vehicle's path of travel when a significant delay exists between 

leader and follower operation.  A simple proportional derivative (PD) control originally 

designed for waypoint following was used on a UGV for real time testing of the two 

methods.  Details of the experimental setup are given in Appendix B. 

5.2 LINE OF SIGHT FOLLOWING 

Given a relative position vector, the angle between a leader and follower vehicle can be 

easily calculated in a local ENU navigation frame using the relative north and east 

position (𝑟𝐿𝐹𝑁  and 𝑟𝐿𝐹𝐸 , respectively).  The relative angle is denoted by 𝜓𝑅  and is positive 

clockwise from North. 

𝜓𝑅 = atan 
𝑟𝐿𝐹𝐸
𝑟𝐿𝐹𝑁

  
(5.1)  

Commanding the following vehicle’s heading 

angle to the relative angle makes the follower 

point towards the lead vehicle.  This creates a 

towing effect without a physical link between the 

vehicles.  Figure 5.3 is a schematic demonstrating 

the concept. 

Relative angle accuracy can be expressed 

as a function of the relative position accuracy and 

the antenna separation distance.   

𝜍𝜓𝑅 = asin  
𝜍𝑟𝐿𝐹
 𝒓𝑳𝑭 

  
(5.2)  

 

Figure 5.3: A relative angle between two 

vehicles can be determined given a relative 

position vector.  The angle can then be used as 

a control reference to autonomously follow a 

lead vehicle. 
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A highly accurate relative position is required for short distance following.  Figure 5.4 

displays relative angle accuracy versus following distance for three relative positioning 

accuracies.  The DRTK algorithm can provide a suitable reference angle, but a standalone 

solution will not have sufficient accuracy for some applications using this method 

because of aberrations in the estimated positions as shown in Figure 5.1 and Figure 5.2 

(note that accuracy requirements are application specific, where some such as following a 

mine clearing vehicle require centimeter level accuracy, while others like desert driving 

would only require meter level accuracy). 

Two deficiencies exist using this short distance following method.  The following 

vehicle will not be able to track the lead vehicle path if the lead vehicle performs 

maneuvers with a turning radius shorter than the baseline length.  The constraint of short 

distance following reduces the possibility of this occurring in many operational 

environments.  The second shortcoming is the inability to replicate the lead vehicle’s 

 

Figure 5.4: Relative angle accuracy is a function of relative position accuracy and antenna separation distance. 

0 10 20 30 40 50

10
-2

10
-1

10
0

10
1

10
2

R
e
la

ti
v

e
 A

n
g

le
 A

c
c
u

ra
c
y

 (
d

e
g

)

Antenna Seperation (m)

 

 

=0.02m

=0.1m

=1m



107 

 

turning radius, which leads to a lateral path error.  The steady state error (𝑅𝜖) is a 

function of the lead vehicle turning radius (𝑅𝐿) and the baseline length. 

𝑅𝜖 = 𝑅𝐿  1 − sin  acos  
 𝒓𝑳𝑭 

𝑅𝐿
    

(5.3)  

Figure 5.5 is a plot of the anticipated error as the turning radius and baseline varies and 

demonstrates the operational region when using this concept.  A short following distance 

yields low lateral error for most turning radii, and a longer following distance requires 

larger turning radii to keep the error reasonable. 

5.3 NON LINE OF SIGHT FOLLOWING 

A following vehicle can accurately repeat the leader's path for short following distances 

using the method mentioned in the previous subsection.  Longer following distances 

increase the likelihood of the following vehicle deviating from a driven path.  The 

 

Figure 5.5: The steady state error is a function of the lead vehicle turning radius and the baseline. 
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inability to travel about the same turning radius causes the vehicle to cut corners, which 

effectively filters the path.  The effect increases with following distance.   This effect also 

renders the method useless when intricate paths are driven by the leader.  Therefore, the 

separation distance perceived by the following vehicle must be reduced to improve 

accuracy. 

The approach in this subsection creates a virtual lead vehicle that is sufficiently 

close to the following vehicle to inherit the benefits of the short distance following 

method.  All information gathered and retained is relative to the following vehicle, so no 

global position information is necessary.  The approach hinges on the availability of 

accurate RPV measurements between vehicles and accurate measurements of the change 

in following vehicle position.  GPS based methods for determing the RPV were discussed 

in Chapter 2 and Chapter 3, and odometry techniques were discussed in Chapter 4.  If the 

change in position of the following vehicle (𝚫𝒓𝒌,𝒌−𝒏) can be accumulated, it can be 

subtracted from a previous RPV (𝒓𝑳𝑭𝒌−𝒏) to create an RPV to the virtual leader (𝒓𝑳𝑭𝒌−𝒏,𝒌
).  

This reduces the perceived baseline from the follower to the leader, and the RPV is now 

the distance between the following vehicle at the current time (𝑡𝑘) and the lead vehicle at 

 

Figure 5.6: A virtual lead vehicle is created by adding the change in follower position to a relative position 

measurement at a previous instance in time. 
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a previous time (𝑡𝑘−𝑛 ).  This notion is graphically explained in Figure 5.6, where the gray 

lines represent measurements of the RPV and change in position at previous times and 

the black line represents the shortened RPV between the leader at a previous time and 

follower at the current time.  The solid color vehicles indicate their location at the current 

time step, and the transparent vehicles are past locations. 

Sufficient knowledge of past changes in the follower's position can shrink the 

RPV to minimize trajectory duplication error using Equation (5.1) to obtain a heading 

reference. Creation of the RPV to the virtual leader is mathematically expressed as 

follows: 

𝒓𝑳𝑭𝒌,𝒌−𝒏
= 𝒓𝑳𝑭𝒌−𝒏 +  𝚫𝒓𝒋

𝑘

𝑗=𝑘−𝑛

 
(5.4)  

The vector components of change in position, 𝚫𝒓, are summed from index k-n to the 

current index k.  These values are then subtracted from the corresponding vector 

components of the RPV at index k-n to determine the RPV between the follower at time k 

and leader at time k-n.  The change in position measurements must be accumulated at a 

rate greater than or equal to the RPV measurement rate.  Higher rates result in a higher 

fidelity RPV between the following vehicle and virtual lead vehicle.   

A desired virtual following distance or "look ahead distance" must be determined 

to pick an appropriate 𝑡𝑘−𝑛  and create a virtual leader position to track.  The desired 

value for this distance is modeled after human action.  Human drivers alter how far down 

their intended path of travel they look based on the speed they are traveling.  In a parking 

lot environment, focus is placed in an area close to the vehicle.  However in a highway 

environment, the area of focus could be a hundred meters from the vehicle.  The virtual 
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following distance can be a chosen as some minimum following distance plus the scaled 

speed.  

𝑑𝑣 = 𝑑𝑚𝑖𝑛 + 𝑑𝑠𝑐𝑎𝑙𝑒 ∗ 𝑣 (5.5)  

For this work, the minimum distance is chosen to be one meter and the scaling value is 

one.  It can be seen in Equation (5.5) that a shorter following distance decreases path 

error, but it also increases the sensitivity of the reference angle to changes in vehicle 

position.  Changing the scale affects the damping in the system response; higher scaling 

values can cause the following vehicle to effectively filter out high frequency content in 

the path, while lower values increase the influence of noise on the reference value. 

The virtual following distance creates a 

circular field around the following vehicle, as 

shown in Figure 5.7.  The field is refined to a 

semicircle including the region in front of the 

vehicle by incorporating the vehicle's heading 

measurement.  This field is used to select a 

virtual leader position that is immediately 

beyond the desired following distance.  A 

search is performed using Equation (5.4).  The 

index n starts at zero and increments until the 

virtual leader location is within the region or 

behind the follower.  It is then incremented by one to place the virtual leader position at 

the first location outside of the region.  Scenarios where the follower is close to the (real) 

lead vehicle reveal no suitable candidates to the search routine, and therefore the RPV at 

 
Figure 5.7: A look ahead distance is computed, 

and the follower chooses to follow the virtual 

lead vehicle just outside of the radius. 
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the current time is used to generate the heading reference.  In other words, the method 

defaults to the short distance LOS following method described in the previous subsection. 

The vector addition of the DRTK baseline estimate and the odometer estimate 

increases the noise on the perceived RPV.  The independent variances of the two 

estimates can be added. 

𝜍𝑟𝑘,𝑘−𝑛
=  𝜍𝑟𝑘−𝑛

2 + 𝜍Δ𝑟𝑘,𝑘−𝑛

2   
(5.6)  

Error growth usually is dominated by the change in position error, as the RPV error is on 

the order of two centimeters and the odometry error quickly crosses the two centimeter 

threshold.  Using Equation (5.6), the error in the heading angle can be computed.  The 

angular error is a function of the lateral error and baseline.  This represents the difference 

in the directed angle of travel and the real angle of travel.  

𝜍𝜓𝑟 = asin   
𝜍𝑟𝑘,𝑘−𝑛

 𝒓𝑳𝑭𝒌,𝒌−𝒏
 
  

(5.7)  

This noise increase is proportional to the number of accumulated position 

changes.  Equation (5.8) expresses the maximum attainable lateral path error as a 

function of DRTK and TDCP accuracy and the number of accumulations.   

𝜍𝑟𝑘,𝑘−𝑛
=  𝜍𝑟𝑘−𝑛

2 + 𝑛𝜍Δ𝑟𝑤
2 +  𝑛𝜍Δ𝑟𝑏 

2
 

(5.8)  

A closed form analytical solution is not available for the lateral path error with the INS 

based odometry information, therefore simulations must be used to predict the INS error 

based on anticipated motion profiles [59].  Given an average speed, the number of 

accumulations of position change estimates corresponds to a following distance.  Figure 

5.8 through Figure 5.12 show lateral error growth as a function of following distance 
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using the different odometry methods for average speeds of 2.5, 5, 10, and 20 meters per 

second. 

 

Figure 5.8: Lateral error as a function of following distance and speed with a full automotive grade INS. 

 

Figure 5.9: Lateral error as a function of following distance and speed with a full tactical grade INS. 
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meaningful following distances as the error is beyond one meter at following distances of 

4.5, 9, 11, and 26 meters for each of the respective velocities. 

 

Figure 5.10: Lateral error as a function of following distance and speed with a partial automotive grade INS. 

 

Figure 5.11: Lateral error as a function of following distance and speed with a partial tactical grade INS. 
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becomes a useful tool that can provide the means to follow a path at short distances, and 

the tactical grade IMU further extends the usable range of the method. 

 

Figure 5.12: Lateral error as a function of following distance and speed with the TDCP method. 
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higher speeds, but for practical purposes it likely cannot be used as the platform 

obviously must operate at lower speeds before attaining the higher speeds which provide  

the better accuracy.  The TDCP methods provide similar accuracies to the partial tactical 

grade INS, and they are not susceptible to errors from un-modeled platform dynamics.  

However, the unaided method will not function in the event of a GPS outage, while the 

aided method can provide a level of immunity and function during intermittent outages.  

 
Figure 5.13: Lateral error as a function of following distance at five meters per second for all odometry methods.

 

Figure 5.14: Lateral error as a function of following distance at twenty meters per second for all odometry 

methods. 
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From a cost perspective, the best accuracy is obtained using the unaided TDCP method as 

carrier measurements are readily available on lower cost GPS receivers (<$500 USD), 

while a tactical grade IMU can cost upwards of $20,000 USD. 

Again, these charts represent the minimum attainable error as the errors 

correspond to the error in virtual leader position, or the difference between the computed 

leader position and where it actually was at a previous instance in time.  Beyond this step 

it is up to the vehicle controller to accurately follow the reference to maintain acceptable 

path following accuracies.  However, the method of reference point generation offers 

significant improvement over simple waypoint following, and the accuracy over 

lengthened following distances can allow for NLOS operation. 

5.4 ALTERNATE OPERATIONAL MODES 

5.4.1 Delayed Following 

An extension of the NLOS method provides the ability to re-drive a vehicle's path of 

travel at some later time.  For example, a vehicle departs the base carrying a unit of 

soldiers to some tactical environment.  A day later, a UGV carrying supplies departs from 

the base, travels the same path as the vehicle did the day before, and delivers supplies to 

the soldiers in the tactical environment.  Again, the simplest way to accomplish this task 

is to broadcast GPS waypoints to remote vehicles, but this does not provide the necessary 

precision to drive through perilous terrain or consistently remain in a designated lane of 

travel.  The NLOS method can be used without modification to offer this operational 

capability.   

The DRTK RPV is used to track the position of the mobile leader relative to the 

current position of the following vehicle.  If the follower remains stationary, the leader's 
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path is maintained relative to the following vehicle, as shown in Figure 5.15.  Therefore, 

the leader can perform its necessary maneuvers, and a precision path is known for a 

theoretically infinite period of time as long as the following vehicle does not move.  Once 

the follower is given the appropriate commencement signal, it uses the odometry 

measurements to shrink the RPV and follow each successive closest virtual leader. 

An alternative description of the process would consider the static following 

vehicle a temporary RTK base station with no surveyed location.  All position 

measurements are measured with RTK accuracy with respect to the following vehicle.  

The following vehicle then uses the odometry information to dead reckon through the 

relative path measured with the DRTK algorithm.  Use of the carrier measurements 

allows for the creation of a consistent and accurate reference path, as well as consistency 

in the dead reckoned solution if the TDCP method is used. 

 

Figure 5.15: The lead vehicle's path can be maintained relative to the follower as long as the follower remains 

stationary. 
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Practical limitations reduce the time period between vehicle operations, but 

periods of minutes, hours, days, or even weeks are feasible given the proper equipment 

and power sources.  In situations where it is not feasible to maintain a stationary 

following vehicle, the DRTK RPV can be measured to a reference point using additional 

hardware.  The following vehicle would then need to be precisely aligned with the 

reference point before starting its mission. 

5.4.2 Vehicles as Temporary Base Stations 

The vehicles can serve as temporary static base stations in some operational scenarios, 

and the DRTK RPV accuracy can be still be used for path following.  Revisit the example 

from the previous subsection where a human driven vehicle carries a unit of soldiers from 

a base to some destination.  A remote, stationary robotic follower records the vehicle's 

position relative to itself with the DRTK algorithm.  After the soldiers deploy, the 

original vehicle remains in a static state.  The follower then departs the base and traces 

the original vehicle's path of travel.  It is able to do so because it maintains 

communication with the vehicle to compute the DRTK RPV.   

The path following problem reduces to the simple GPS breadcrumb following 

approach for this scenario because the leader's path is known relative to the follower's 

initial position.  Reference path and vehicle position consistency issues are resolved by 

using the DRTK algorithm, provided sufficient GPS coverage is available.  The leader 

departs, and its position is recorded relative to the follower's static position using DRTK.  

When the robotic follower starts moving, its initial position is retained as the origin of the 

local map.  The follower can accurately determine where it is within the local map by 

using the DRTK RPV from the stationary lead vehicle.  In principle, the method of 
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operation is similar as that discussed in the previous subsection.  The distinction lies in 

the ability to use the DRTK algorithm to keep track of the follower's position as its 

traveling because the leader is serving as a static base station.  Therefore, dead reckoning 

with odometry measurements is unnecessary, and path following error is limited to 

DRTK accuracy, which is irrespective of distance traveled. 

5.5 EXPERIMENTAL RESULTS 

Experimental tests were conducted using the system described in Appendix B.  An ATV 

Corp. Prowler was converted to a UGV and served as the robotic follower, and a Hyundai 

Santa Fe was the man driven lead vehicle.  Both LOS and NLOS techniques were tested 

successfully.  Truth was recorded using a traditional RTK system. 

5.5.1 LOS Following 

Experimental tests demonstrated the effectiveness of the short distance following method 

with the DRTK RPV used as a reference.  The automated Prowler successfully trailed the 

human driven Santa Fe with following distances ranging from 5 to 50 meters with speeds 

ranging from two to nine meters per second.  Behavior was as anticipated; the Prowler 

positioned itself as if it were in-tow as it continually oriented its heading to point at the 

lead vehicle.  Results are presented for straight driving maneuvers and constant radius 

turning maneuvers to emphasis both the strengths and weaknesses of the LOS following 

method. 

 Experimental Results for Straight Driving 

Deviation from the lead vehicle’s path of travel was small, although it was nearly always 

present.  Figure 5.16 displays the positions of the two vehicles as they travelled along the 
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south portion of the track.  Note the scale of the figure due to the slight counter clockwise 

rotation of the test track.    

 
Figure 5.16: Shown are the positions of the lead and following vehicle (in gray and black, respectively) after 

multiple passes on the south portion of the track.   

Figure 5.17 shows a single pass down the straight section of the track and 

demonstrates the typical lateral path error.  Figure 5.18 contains the following distance 

during that pass.   
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Figure 5.17: Typical lateral path error while driving straight. 

 
Figure 5.18: The following distance corresponding to the lateral error in Figure 5.17. 
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slop in the steering system, a small turn on steering bias, and perturbation of the system 

from switching reference modes (if DRTK is unavailable, the reference generation 

algorithm defaults to using a position difference from position solutions computed by 

each receiver to determine relative position).   

The maximum lateral error experienced was 58 centimeters when the DRTK 

relative position was used.  The total maximum error was 1.5 meters and can be seen in 

Figure 5.16.  This error occurred when the DRTK solution was momentarily lost while 

travelling through the canyon at the southwest corner of the track, and the relative 

position was determined by differencing the non-RTK position solutions computed by 

0 20 40 60 80 100 120

-0.5

0

0.5

Time (s)

P
a
th

 E
rr

o
r 

(m
)

0 20 40 60 80 100 120

10

20

30

Time (s)

B
a
se

li
n

e
 (

m
)



122 

 

each receiver.  The lateral error, when accounting for all tests on straight sections, had a 

mean of 5 centimeters and a standard deviation of 24 centimeters.  Speed did not have a 

noticeable impact on the system's performance. 

 Experimental Results for Constant Radius Turning 

The vehicle acted as expected during the constant radius turns by turning about a smaller 

radius than the lead vehicle.  Oscillations became less persistent in the corners.  Steady 

state path error measured in the turns is listed in Table 5.1.  Interestingly, the path error 

was smaller than values predicted using Equation (5.3).  This is likely due to an inability 

to hold the following distance constant.  The theoretical path error was derived under the 

assumption that the centers of rotation for each vehicle were concentric, which is true 

when the baseline between vehicles is constant.  A time rate of change of the baseline 

invalidates the assumption, and the vehicles rotate about non-concentric points. 

Table 5.1: Steady state error during constant 150 m radius turns  

Baseline (m) Actual Error Theoretical Error 

13 0.52 0.56 

13.5 0.39 0.61 

16 0.72 0.86 

17 0.57 0.96 

  

5.5.2 NLOS Following 

The effectiveness of the NLOS method was also demonstrated by experimental tests.  

Figure 5.19 shows a test in the NCAT parking lot.  The Santa Fe was driven through and 

around the parking lot, and the automated Prowler followed behind at varying following 

distances (which are shown in Figure 5.20).  The RTK positions are plotted, where the 

circle is the leader's position and the dot is the follower's position.  The Prowler clearly 

replicated the path driven by the Santa Fe.  Some path deviation is present during a few  
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of the turns.  This is due to carrying too high of a speed into the corner and overdriving 

the desired path. 

Figure 5.21 displays the reference accuracy and actual duplication accuracy as a 

function of distance.  Reference accuracy is the accuracy in which the NLOS method 

places the virtual lead vehicle compared when compared to the actual position of the lead 

vehicle.  Multiple laps were driven around the test track to collect the data.  Error in path 

following was consistently at or below 20 centimeters, although it did rise occasionally to 

80 centimeters.  This error is primarily due to vehicle control (the controller used was a 

 
Figure 5.19: Trajectories of the lead and automated following vehicle as the lead vehicle maneuvered around a 

parking lot. 

 
Figure 5.20: Following distance along the path for the experiment shown in Figure 5.19. 
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gain scheduled, proportional derivative controller).  The reference accuracy remains 

below 5 centimeters, which agrees with the predicted values shown in Figure 5.12. 

5.6 CONCLUSION 

Two GPS based methods enabling an automated following vehicle to replicate the path 

driven by a lead vehicle were presented.  The first method allows for short distance 

following where the follower maintains LOS to the lead vehicle.  The second approach 

removes the LOS constraint, and the follower can accurately replicate the leader's path 

when the leader is hundreds of meters ahead of the follower.  The first method used only 

the DRTK RPV estimate, while the second method incorporated vector odometry 

information with the DRTK RPV. 

Error analyses of the two methods predicted the operational capability and 

exposed maneuvers and following distances where performance degrades.  The short 

distance method breaks down as following distances increase and turning radii decrease.  

 

Figure 5.21: Actual path deviation, shown in gray, was consistently below twenty centimeters, but the reference 

generated with the NLOS following method was under five centimeters. 
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The long distance following method relies on precision odometry information to shrink 

the perceived RPV.  Therefore, its capability is directly linked to odometer quality. 

Both methods were demonstrated on a physical robotic convoy.  Both unaided 

DRTK and TDCP algorithms were implemented in C++ for real time operation.  The 

UGV successfully replicated the path of the human driven lead vehicle using both 

methods, demonstrating their feasibility and capability.  Accuracies recorded were in line 

with the predicted values for both methods. 
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Chapter 6  

Conclusion 

6.1 CONCLUSION 

The research described in this dissertation developed GPS based path duplication 

strategies for automated ground vehicle convoys.  Specifically, two strategies were 

described in detail: a short distance, LOS following method, and a long distance, NLOS 

virtual leader following method.  The GPS carrier measurement was used to determine a 

high accuracy relative position vector between two dynamic vehicles.  Odometry 

information was developed from inertial sensors and from the GPS carrier measurement 

for coupling with the relative measurements to determine virtual leader positions.  Both 

the relative positioning algorithm and the GPS carrier based odometry were aided with 

inertial measurements to improve their robustness in the presence of short partial or total 

GPS outages, and to minimize the phase ambiguity reacquisition time in the case of the 

relative positioning algorithm. 

The relative positioning algorithm was akin to traditional RTK techniques.  The 

distance between two points can be measured with both accuracy and precision, but 

global position information is lost due to the removal of the RTK base station.  The lead 

vehicle serves as a dynamic base station and broadcasts its observables to following 
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vehicles.  Because of this method of operation, the algorithm was given the moniker of 

Dynamic base Real Time Kinematic, or DRTK for short.  The following vehicles use the 

leader's observables to difference out common mode errors in the GPS pseudorange and 

carrier phase measurements.  The observables are processed to estimate carrier phase 

biases known as ambiguities, which are then fixed to integer values.  The integer phase 

ambiguities are removed from the phase measurements, and the unbiased phase 

measurements are processed to determine a centimeter level accurate relative position 

between the vehicles. 

Next, the DRTK algorithm was aided with inertial measurements.  IMUs on two 

independent platforms were aligned and used to form relative inertial measurements.  The 

relative inertial measurements were input into the DRTK algorithm to provide dynamic 

information about the relative platform motion.  Dead reckoning of the inertial 

measurements provide a graceful solution degradation in the event of a partial or total 

GPS outage.  It was shown that ambiguity reacquisition times were directly related to 

initial relative position accuracy, and that the acquisition was near instantaneous (< ~2 

seconds) for initial position accuracies under 20 centimeters.  Three dimensional error 

growth profiles of relative automotive and tactical inertial measurements were developed 

to show the IMU quality needed for outages of a given duration, and experimental results 

using the DRTK/INS algorithm with automotive grade IMUs were provided. 

The virtual leader following method utilized a vector of information describing 

the change in platform position from a nominal point to translate the DRTK relative 

position from two points at some previous time to two points across time and space.  

Therefore, methods were developed to provide this odometry information to the 
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following method.  An inertial sensor was first dead reckoned to provide the change in 

position information.  Both a full and partial IMU were used, and the performance 

improvement of the partial IMU mechanization was noted, provided assumptions about 

motion constraints were not violated.  Second, the GPS carrier measurements were 

differenced across time to reduce time correlated errors present in the signal and the 

phase ambiguity.  The time differenced carrier observable was processed to form 

millimeter accurate, three dimensional odometry information.  Third, the inertial 

measurements were used to aid the time differenced carrier observables to improve 

robustness against short GPS outages.  It was shown that accuracy was the same as using 

the unaided observables after the filter settled out. 

The first path following method used only the relative position between two 

points to determine the relative orientation between two vehicles.  The relative heading 

was used as a control reference, essentially commanding the following vehicle to drive at 

the lead vehicle.  This method emulated many vision based approaches that use cameras, 

laser scanners, or a combination of both to determine range and bearing information from 

the following vehicle to the lead vehicle.  It was shown that the path following error 

increased with both an increase in following distance and a decrease in turning radius.  

Therefore, the LOS constraint necessary for the vision based approaches must be 

maintained for any practical use of the following method. 

The virtual leader following method removed the main constraint of common 

vision based following techniques that require the following vehicle to maintain LOS to 

the leader, thus providing the user a unique capability to duplicate the trajectory of a lead 

vehicle that can be utilized in two specific ways.  First, an automated vehicle can directly 
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follow a human driven vehicle while replicating its traveled path.  Following distances 

are lengthened, and complex maneuvers can be performed by the lead vehicle.  Second, 

an automated vehicle can drive the same path as a human driven vehicle minutes, hours, 

or even days later, provided the automated vehicle remains stationary during that period 

of time.  This ability comes from maintaining all information relative to the follower.  

Path duplication accuracy versus following distance was demonstrated using the three 

odometry techniques developed.  It was shown that a partial tactical grade IMU could 

offer the best performance up to a 500 meter following distance, but the time differenced 

carrier method offered the most cost feasible option by offering a similar performance.  

However, some aspects might deem the virtual leader method infeasible for some 

applications. The method is more complicated since a database of previous measurements 

is required.  A medium must be in place for inter-vehicle communication to occur.  Any 

error in the change in position measurement will accumulate, so the effectiveness of this 

method degrades with following distance.  Accuracy requirements of this measurement 

might be too stringent for some applications as the path duplication accuracy degrades 

with following distance.   

6.2 FUTURE WORK 

Several avenues of future work exist involving the research presented in this dissertation.  

A reliability metric for the DRTK algorithm is necessary to relay confidence information 

to any subsystems using its output.  Currently, the ratio test is used to validate the integer 

phase ambiguities.  However, this is simply a pass-fail test, and there is a small likelihood 

that an incorrect integer vector or a subset within the vector are incorrect despite passing 

the test.  Methods exist that can compute the probability of correctly fixing the integer 
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ambiguities, but they cannot be used with the current version of the DRTK algorithm.  

The bootstrapping methods used to estimate the probability of correct fix fail by 

providing overly optimistic values when time correlated errors are present within 

observations.  Unfortunately that is the case when processing the pseudorange and carrier 

phase measurements at higher rates.  Alternatives are to process the measurements at 

slower rates to remove effects from multipath (usually sampling rates with units of 

minutes are necessary), or to form ambiguity observables as mentioned in Section 2.2.4.  

These are not favorable alternatives on ground vehicle platforms as individual satellite 

outages can be frequent, and cycle slips resulting from the outages would effectively 

require the DRTK algorithm to reinitialize ambiguity states too often for effective use of 

the alternatives mentioned.  

A networked DRTK solution could be sought to provide additional constraints on 

the relative position solutions, and therefore the ambiguity combinations, when multiple 

vehicles are in a convoy.  This would be a computationally intensive effort requiring the 

processing of observables from all or a subset of vehicles in the convoy, but such a 

technique should improve the assurance in the DRTK solution and methods to detect 

faults in measurements from any vehicle.  The additional constraints provided by a 

vehicle convoy application might be questionable, as the system geometry is more or less 

a straight line under many operational scenarios, but the application of the networked 

approach could extend to purposes other than path following, specifically those that 

would have diverse geometry.  Potential examples are soldiers and robots distributed in a 

battlefield, or a construction site with equipment spaced around and within the perimeter 

of a site. 
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Incorporation of perception sensors would improve all elements of the research 

discussed in this dissertation.  Range and bearing information could be used to both 

initialize the DRTK algorithm and validate its output when the robotic follower is within 

LOS of the leader.  Environmental features could be detected and used to bound inertial 

error growth.  This would aid in ambiguity reacquisition when using the DRTK/INS 

algorithm, and improve inertial based odometry information.  Finally, map matching 

techniques could be used where environmental landmarks detected by the lead vehicle are 

broadcast to the following vehicles.  The following vehicles would use the information to 

determine their position and pose relative to the leader's perspective of the surrounding 

environment.  A control strategy could align the following vehicle in the environment 

based on the correlation of environmental features between the vehicles.  This subsystem 

could be combined with the DRTK to improve the accuracy of the environmental 

landmark locations, and it could also be combined with the path following methods 

presented to add robustness in the presence of GPS outages. 
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Appendix A  

Relative Acceleration 

 

Figure A.1: Point A is expressed in both the stationary i frame and the moving e frame. 

Consider the stationary inertial frame of reference, or i frame, centered at point I and the 

non stationary frame of reference, or e frame, centered at point E shown in Figure A.1.  

Point A is an arbitrary point that can be referenced with respect to both frames.  It is 

desired to know the acceleration of point A with respect to the e frame. 

Point A can be expressed in the inertial frame as the vector sum of the vector from 

point I to E in the i frame and the vector from point E to A in the i frame. 

𝑟𝐼𝐴
𝑖 = 𝑟𝐼𝐸

𝑖 + 𝑟𝐸𝐴
𝑖  (A.1)  
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Alternatively, the vector from E to A can be expressed in the e frame, but must be 

multiplied by an e frame to i frame coordinate transformation matrix. 

𝑟𝐼𝐴
𝑖 = 𝑟𝐼𝐸

𝑖 + 𝐶𝑒
𝑖𝑟𝐸𝐴
𝑒  (A.2)  

The time derivative reveals the velocity of point A in the i frame. 

𝑟 𝐼𝐴
𝑖 = 𝑟 𝐼𝐸

𝑖 + 𝐶𝑒
𝑖𝑟 𝐸𝐴
𝑒 + 𝐶 𝑒

𝑖𝑟𝐸𝐴
𝑒  (A.3)  

Noting that  

𝐶 𝑒
𝑖 = 𝐶𝑒

𝑖Ω𝑖𝑒
𝑒  (A.4)  

Equation (A.2) can be rewritten, where Ω𝑖𝑒
𝑒  is a skew symmetric matrix containing the 

rotational rates of the e frame about the i frame. 

𝑟 𝐼𝐴
𝑖 = 𝑟 𝐼𝐸

𝑖 + 𝐶𝑒
𝑖𝑟 𝐸𝐴
𝑒 + 𝐶𝑒

𝑖
Ω𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒  (A.5)  

The derivative of the velocity of point A with respect to time is the point's acceleration. 

𝑟 𝐼𝐴
𝑖 = 𝑟 𝐼𝐸

𝑖 + 𝐶𝑒
𝑖𝑟 𝐸𝐴
𝑒 + 𝐶𝑒

𝑖Ω𝑖𝑒
𝑒 𝑟 𝐸𝐴

𝑒 + 𝐶𝑒
𝑖Ω𝑖𝑒

𝑒 𝑟 𝐸𝐴
𝑒 + 𝐶𝑒

𝑒Ω 𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒 + 𝐶𝑒
𝑖Ω𝑖𝑒

𝑒 Ω𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒  (A.6)  

𝑟 𝐼𝐴
𝑖 = 𝑟 𝐼𝐸

𝑖 + 𝐶𝑒
𝑖  𝑟 𝐸𝐴

𝑒 + 2Ω𝑖𝑒
𝑒 𝑟 𝐸𝐴

𝑒 +Ω 𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒 + Ω𝑖𝑒
𝑒 Ω𝑖𝑒

𝑒 𝑟𝐸𝐴
𝑒   (A.7)  

Finally, rearranging reveals the acceleration of point A with respect to the e frame. 

𝑟 𝐸𝐴
𝑒 = 𝑟 𝐼𝐴

𝑒 − 𝑟 𝐼𝐸
𝑒 − 2Ω𝑖𝑒

𝑒 𝑟 𝐸𝐴
𝑒 − Ω 𝑖𝑒

𝑒 𝑟𝐸𝐴
𝑒 − Ω𝑖𝑒

𝑒 Ω𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒  (A.8)  

Now consider the case where the i frame is the Earth Centered Inertial (ECI) 

frame, the e frame is the Earth Centered, Earth Fixed (ECEF) frame, and point A is an 

object moving within Earth's atmosphere.  The origins of the ECI and ECEF frame are 

coincident, the Z axis is shared between the two, and their respective X-Y planes are 

coplanar as shown in Figure A.2.  The Earth's rotation rate is constant, therefore Ω 𝑖𝑒
𝑒 = 0.  

Also, 𝑟 𝐼𝐸
𝑒 = 0 point E has no translational motion.   The previous equation can be further 

simplified. 



140 

 

𝑟 𝐸𝐴
𝑒 = 𝑟 𝐼𝐴

𝑒 − 2Ω𝑖𝑒
𝑒 𝑟 𝐸𝐴

𝑒 − Ω𝑖𝑒
𝑒 Ω𝑖𝑒

𝑒 𝑟𝐸𝐴
𝑒  (A.9)  

The specific force measured at point A contains the acceleration due to motion 

and the effects of gravity. 

𝑓𝑖𝐴
𝑒 = 𝑟 𝐼𝐴

𝑒 + 𝑔𝐼𝐴
𝑒  (A.10)  

Rearranging and substituting the value in for 𝑟 𝐼𝐴
𝑒  yields the same expression used in 

Equation (3.9). 

𝑟 𝐸𝐴
𝑒 = 𝑓𝑖𝐴

𝑒 − 𝑔𝐴
𝑒 − 2Ω𝑖𝑒

𝑒 𝑟 𝐸𝐴
𝑒 − Ω𝑖𝑒

𝑒 Ω𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒  (A.11)  

The focus now shifts to determining 𝑟 𝐴𝐵
𝑒 , the relative acceleration between points 

A and B expressed in the e frame.  The relative distance is expressed as the difference 

between absolute positions. 

𝑟𝐴𝐵
𝑒 = 𝑟𝐸𝐵

𝑒 − 𝑟𝐸𝐴
𝑒  (A.12)  

The second time derivative yields the expression for relative acceleration.  

 

Figure A.2: The ECI and ECEF frames share an origin and Z axis and the two points, A and B, are objects 

moving above the Earth. 
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𝑟 𝐴𝐵
𝑒 = 𝑟 𝐸𝐵

𝑒 − 𝑟 𝐸𝐴
𝑒  (A.13)  

Applying Equation (A.11) results in the following:  

𝑟 𝐴𝐵
𝑒 =  𝐶𝑏

𝑒𝑓𝑖𝐵
𝑏 − 𝑔𝐵

𝑒 − 2Ω𝑖𝑒
𝑒 𝑟 𝐸𝐵

𝑒 − Ω𝑖𝑒
𝑒 Ω𝑖𝑒

𝑒 𝑟𝐸𝐵
𝑒  

−  𝐶𝑎
𝑒𝑓𝑖𝐴

𝑎 − 𝑔𝐴
𝑒 − 2Ω𝑖𝑒

𝑒 𝑟 𝐸𝐴
𝑒 − Ω𝑖𝑒

𝑒 Ω𝑖𝑒
𝑒 𝑟𝐸𝐴

𝑒   

(A.14)  

𝑟 𝐴𝐵
𝑒 =  𝐶𝑏

𝑒𝑓𝑖𝐵
𝑏 − 𝐶𝑎

𝑒𝑓𝑖𝐴
𝑎  +  𝑔𝐴

𝑒 − 𝑔𝐵
𝑒  +  −2Ω𝑖𝑒

𝑒 𝑟 𝐴𝐵
𝑒 − Ω𝑖𝑒

𝑒 Ω𝑖𝑒
𝑒 𝑟𝐴𝐵

𝑒   (A.15)  

Note the body frame specific forces are expressed with their appropriate 

transformation matrix.  Gravity effects will be essentially identical for two platforms 

operating in the same region at similar altitudes (𝑔𝐴
𝑒 ≈ 𝑔𝐵

𝑒 ).  Therefore, gravity effects are 

differenced out.  Additionally, the square of the Earth's rotation rate is on the order of 

10−9, so the centripetal effects are negligible.  The resulting expression for relative 

acceleration is as follows: 

𝑟 𝐴𝐵
𝑒 = 𝐶𝑏

𝑒𝑓𝑖𝐵
𝑏 − 𝐶𝑎

𝑒𝑓𝑖𝐴
𝑎 − 2Ω𝑖𝑒

𝑒 𝑟 𝐴𝐵
𝑒  (A.16)  

The expression can be further simplified when relative velocities are small or when the 

last term is negated by system noise, as in the case when all but the highest of quality 

IMUs are used.  The result is the difference in the body frame accelerations after they 

have been rotated into a common frame. 

𝑟 𝐴𝐵
𝑒 = 𝐶𝑏

𝑒𝑓𝑖𝐵
𝑏 − 𝐶𝑎

𝑒𝑓𝑖𝐴
𝑎  (A.17)  
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Appendix B  

Robotic Convoy Experimental Setup 

B.1 HARDWARE 

 

Figure B.1: The robotic convoy consisted of a human driven Hyundai Santa Fe and an ATV Corp. Prowler that 

was converted to a UGV.  

Figure B.1 shows the vehicles used in the convoy experiment. A Hyundai Santa Fe was 

the man driven lead vehicle, and an automated ATV Corp Prowler was the following 

vehicle. Tests were conducted at Auburn University's National Center for Asphalt 
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Technology's (NCAT) test track, which is a closed 1.7 mile oval test course with 300 m 

diameter, 8 degree banked turns.  A picture of the test track is shown in Figure B.2. 

 

Figure B.2: The NCAT test track as seen in Google Earth. 

Each vehicle had a NovAtel PropakV-3 GPS receiver to record both raw 

measurements and an RTK position. A Crossbow IMU440, outputting inertial 

measurements at 20 Hz, was mounted on the Prowler and used in its onboard navigation 

system, which was also implemented in C++.   Two 900MHz Digi radio modems were 

used in each vehicle; one received the RTK corrections from a Septentrio PolaRx2e at the 

base station, and the other transmitted the necessary information required by the DRTK 

algorithm between vehicles. Each modem pair operated on different channels, and the 

RTK solution was only used as a measurement of truth for post processed data analysis.  

The DRTK and TDCP algorithms were both run at 5 Hz.   

B.2 OPERATION 

A proportional-derivative (PD) controller was used to steer the Prowler, with commands 

being issued at 20 Hz.  The PD gains were scheduled based on vehicle speed.  Heading 
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error was computed by differencing the reference heading from an estimate of the 

vehicle's heading.  The time derivative of the heading error is analytically expressed as 

follows: 

𝜖 𝜓 =
𝑣𝐿𝐹𝐸𝑟𝐿𝐹𝑁 − 𝑣𝐿𝐹𝑁 𝑟𝐿𝐹𝐸

𝑟𝐿𝐹𝑁
2 + 𝑟𝐿𝐹𝐸

2  
(B.1)  

From a practical standpoint, it is easier to compute the time derivative of the heading 

error by differencing the heading error across successive iterations and dividing by the 

time interval.  The heading error derivative contained large deviations corresponding to 

changes in the selected reference point.  The error derivative was filtered with a median 

filter to remove the inconsistencies and provide a smoother, more realistic representation 

of heading error rate to the controller. 

Throttle was operated manually during the tests as the purpose was to determine 

the path following capability of the trailing vehicle using the GPS based relative 

measurements as a reference.  Following distances were not maintained to specific values 

because emphasis was placed on path duplication ability.  Many scenarios require the 

following distance to fluctuate as the vehicles can be performing different maneuvers, 

especially as the separation distance increases.  For instance, the lead vehicle might be 

traveling on a straight road at a relatively high speed, while the following vehicle is still 

negotiating tight turns before entering the straight road.  It would be unreasonable to 

maintain a specific following distance in that scenario.  Also, capabilities of vehicles in 

the convoy will likely differ, and therefore speeds will differ causing separation distance 

to vary as each type of vehicle negotiates terrain or performs maneuvers. 
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B.3 UGV NAVIGATION SYSTEM 

A simple kinematic navigation system was written to provide the controller with a 20 Hz 

heading estimate, which is necessary to operate autonomously.  Other systems could be 

implemented to describe other vehicle states, as long as they provide information to the 

controller at a sufficient rate beyond that of the closed loop poles.    

Estimated states were speed, longitudinal accelerometer bias, heading, yaw rate 

gyroscope bias, and North and East position. 

𝒙 =  𝑣𝐹 𝑏𝑎𝑥 𝜓𝐹 𝑏𝜓 𝐹 𝑟𝐹𝑁 𝑟𝐹𝐸  
𝑇  (B.2)  

Inputs to the system were longitudinal acceleration and yaw rate. 

𝒖 =  𝑎𝑥 𝜓 𝐹 
𝑇 (B.3)  

The nonlinear kinematic relationships in the navigation model, with white noise driving 

the bias states, were as follows: 

𝑣𝐹𝑘 = 𝑣𝐹𝑘−1
+ Δ𝑡 𝑎𝑥𝑘 − 𝑏𝑎𝑥𝑘−1

  (B.4)  

𝑏𝑎𝑥𝑘 = 𝑏𝑎𝑥𝑘−1
 (B.5)  

𝜓𝐹𝑘 = 𝜓𝐹𝑘−1
+ Δ𝑡 𝜓 𝐹𝑘 − 𝑏𝜓 𝑘−1

  (B.6)  

𝑏𝜓 𝑘 = 𝑏𝜓 𝑘−1
 (B.7)  

𝑟𝐹𝑁𝑘
= 𝑟𝐹𝑁𝑘−1

+ 𝑣𝐹𝑘−1
cos 𝜓𝐹𝑘−1

  (B.8)  

𝑟𝐹𝐸𝑘
= 𝑟𝐹𝐸𝑘−1

+ 𝑣𝐹𝑘−1
sin 𝜓𝐹𝑘−1

  (B.9)  

GPS measurements were translated to the local ENU frame and provided the estimator 

with speed, course over ground, and North and East position information. 

𝒛 =  𝑣 𝜓 𝑟𝑁 𝑟𝐸 𝑇 (B.10)  

Course over ground was used as the heading measurement, which is a valid assumption 

when the vehicle experiences little to no sideslip under normal operation.  Note that 
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course measurement accuracy is inversely related to vehicle speed due to the method by 

which it is obtained [9]. 

An extended Kalman filter was used to accommodate the nonlinear relationships 

existing in the model.  Execution of the time updated was based on the 20 Hz output rate 

of the IMU, and the measurement update was performed at 5 Hz when GPS 

measurements were available.  The estimator output was a 20 Hz filtered solution of the 

minimum states required for autonomous operation.  However, only the heading estimate 

was used for this work. 
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Appendix C  

Towed Implement Positioning 

C.1 INTRODUCTION 

A robotic tractor-trailer system is currently being developed at Auburn University in 

conjunction with the U.S. Army Corps of Engineers and the Environmental Security 

Technology Certification Program (ESTCP) for the purpose of locating and mapping 

unexploded ordnance (UXO). It consists of a four-wheel differential drive robot (Segway 

RMP) towing a trailer, which carries various geophysical equipment such as 

magnetometers and electromagnetic sensors. The robot autonomously tows the trailer 

along a predefined path to map a given area. A picture of the robot towing a Geonics 

EM61-MK2 electromagnetic sensor is shown in Figure C.1. A detailed description of the 

system can be found in [24]. 

 

Figure C.1: A Segway RMP towing a trailer containing geophysical equipment. 
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Precise control of the position of the trailer is required in order to create an 

accurate geophysical map.  A control algorithm has been designed for the robot to guide 

the trailer along a path consisting of lines and circular arcs. Precise knowledge of the 

trailer's current position are required for this algorithm to perform properly. Currently, 

the position of the trailer is calculated from the position and orientation of the robot and 

the angle between the robot and trailer using an encoder. 

Another option for determining the trailer's position is to measure it directly using 

an RTK GPS system. Traditionally, an RTK system involves a minimum of two GPS 

receivers; one is statically stationed at a known location, and the other is allowed to roam. 

The relative position vector is then combined with the known location of the base to 

provide a global position that is accurate to within two centimeters. An RTK system is 

relatively expensive, however, and requires that a base station be placed on a known 

location.  The DRTK algorithm described in Chapter 2 removes the constraint of the 

static base while retaining the high accuracy relative position estimate.  When applied to 

the system detailed above, the trailer's position relative to the robot can be estimated 

using the DRTK method. 

In this appendix, methods are described that allow the position of the trailer to be 

determined using both an encoder and the DRTK algorithm. Experiments are carried out 

using both methods and the accuracies are compared. Results show a marginal accuracy 

improvement over a properly calibrated encoder based method, but a significant 

improvement is seen when calibration errors are present. 
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C.2 ENCODER POSITIONING 

Currently, the position of the robot is determined using a GPS/INS positioning system. 

The positioning system consists of a NovAtel DL4-Plus GPS receiver blended with a 

HG1700 IMU using the NovAtel SPAN system. The GPS receiver operates in RTK 

mode, receiving corrections from a static base station at a known location. The relative 

angle between the robot and the trailer (hitch angle) is measured using an optical encoder. 

The geometry of the system is known, so the position of the trailer can then be calculated 

from the position of the robot and the hitch angle using the following equations: 

𝑒𝑡 = 𝑒𝑟 − 𝑙𝑟 sin 𝜓𝑟 − 𝑙𝑡 sin(𝜓𝑡) (C.1)  

𝑛𝑡 = 𝑛𝑟 − 𝑙𝑟 cos 𝜓𝑟 − 𝑙𝑡 sin(𝜓𝑡) (C.2)  

𝜓𝑡 = 𝜓𝑟 + 𝜃 (C.3)  

where (𝑛𝑟 , 𝑒𝑟 ) and (𝑛𝑡 , 𝑒𝑡) are the positions of the robot and trailer, respectively, in UTM 

coordinates, 𝜓𝑟  and 𝜓𝑡  are the orientations of the robot and trailer respectively measured 

clockwise with respect to north, and 𝜃 is the hitch angle. A schematic representation of 

the system is given in Figure C.2. 
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Although the position and orientation of the robot are currently determined using 

a GPS/INS system with RTK corrections, that is not the focus of this work; only the 

accuracies in the relative measurement between the robot and trailer are examined. An 

accurate measurement of the robot's global position and heading are assumed but could 

come from GPS or other methods such as odometry, vision systems, etc. 

The use of an encoder to determine the position of a trailer towed behind a robot 

is a commonly used technique, but issues can arise that introduce errors potentially 

causing significant problems if the precise location of the trailer is desired. It was 

assumed earlier that the geometry of the system is known. This requires exact 

measurements of the hitch and trailer lengths (𝑙𝑟  and 𝑙𝑡).  Errors in measuring these 

lengths result in an inaccurate estimate of the trailer's position. An accurate robot heading 

and hitch angle measurement are also required for this method. One common source of 

error is a bias in the encoder measurement, which can result from improper alignment, 

joint backlashes, etc. The effects of these errors are studied extensively in [24].  Other 

 

Figure C.2: A schematic model of a towed-trailer system. 
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more fundamental problems with this method can also affect the accuracy of the trailer 

position. The hitch connecting the robot and trailer has three degrees of freedom (roll, 

pitch, and yaw), but only one angle (yaw) is measured. When the trailer's position is 

calculated, it is assumed that the robot and trailer are on smooth ground and therefore in 

the same plane. The majority of experimental results given in the literature focus on 

vehicles that operate on streets or in indoor environments so the assumption is generally 

valid. On more varied terrain, which would be expected when performing outdoor 

surveys, the assumption does not always hold. The hitch could be modified to allow all 

three degrees of freedom to be measured but would require a more complex and 

expensive hitch and sensing system. 

C.3 DRTK POSITIONING 

The hitch angle (𝜃) and robot heading (𝜓𝑟 ) measurements are not needed if the DRTK 

method is used to estimate the trailer position. Instead, a second GPS antenna is placed 

on the trailer. A baseline is estimated in the ECEF frame from the robot antenna to the 

trailer antenna using the DRTK algorithm. The trailer's position, 𝑟𝑡 , is then determined by 

simply adding the RPV, 𝑟𝑟𝑡 ,  to the robot's ECEF position, 𝑟𝑟 . 

𝑟𝑡 = 𝑟𝑟 + 𝑟𝑟𝑡  (C.4)  

Once the trailer's ECEF position is known, it can be translated into different coordinate 

frames that are more suitable for ground vehicle control. For this work, the resulting 

trailer positions were translated into the UTM frame for use by the controller. 

The DRTK method requires a sufficient number of GPS satellites that are visible 

to both receivers. Any significant obstruction or interference can hinder the DRTK 

algorithm if enough satellites cannot be seen by the receivers. In some environments, 
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such as forests, cities, or canyons, this could be an issue as GPS availability is limited. 

Integration of the algorithm with other sensors could improve its robustness by providing 

a lower precision baseline estimate during the outage, thus reducing the integer ambiguity 

acquisition time when the GPS signal is visible again.  

C.4 DRTK VERSUS ENCODER METHOD 

The accuracy of the trailer position estimate using the encoder based method and the 

DRTK based method were compared experimentally. A path consisting of several 

straight line segments connected by circular arcs in an S-type pattern was driven 

autonomously for the experiments. Two NovAtel Propak V-3 receivers were used to log 

the range measurements, ephemerides, and user position, which are needed by the DRTK 

algorithm. One was placed on the robot, and the other was placed on the trailer. The 

signal from the antenna on the robot was split using a GPS Networking Inc. splitter, so 

the DL4-Plus and PropakV-3 received the same signal. A Navcom 2050M was set up as a 

static RTK base station, and the corrections were broadcast via 900 MHz radio modems 

to the robot mounted DL-4 and trailer mounted PropakV-3. The RTK position of the 

trailer was used as truth for analysis of the experimental data. The position of the trailer 

was estimated using both the encoder and DRTK algorithms for each experiment. The 

trailer's position was calculated in real-time using the encoder and the position 

measurement from the DL4-Plus mounted on the robot. This measurement was used by 

the controller to guide the robot. 

The result of one experiment (with parameters 𝑙𝑟=0.83m and 𝑙𝑡=2.73 m) is 

presented in Figure C.3 and Figure C.4. The desired path, the estimated trailer position 

using both methods, and the RTK truth measurement are shown in Figure C.3 and a 
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zoomed in portion is shown in Figure C.4. It can be observed that the DRTK estimate is 

very close to the true position, while a small bias exists in the encoder estimate. 

 
Figure C.3: The test path driven by the robot, which 

was pulling a trailer. 

 
Figure C.4: Zooming in reveals the precision of both 

methods, but the DRTK position is more precise. 

 

The difference between in the trailer's estimated position (determined with both 

methods) and the truth data (from the second RTK receiver) is shown in Figure C.5. 

Approximately 10 minutes of static data was taken at the beginning of each run to allow 

sufficient time for the DRTK algorithm to converge since the algorithm was being run 

post-process and therefore the exact convergence time needed was unknown. The same 

bias that was seen in Figure C.4 can also be seen in the plot of total error (Figure C.5, 

particularly during the static data, where it appears that the bias is approximately 6-7cm. 

This bias is most likely caused by a bias in the encoder measurement. This error could 

possibly be reduced by more carefully aligning the encoder, but alignment can be a 

difficult and time consuming process.  While both methods perform well, the DRTK 

method has a noticeably smaller error than the encoder method and does not require exact 

knowledge of the robot geometry or careful encoder calibration. 
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The total estimation error was also broken into lateral and longitudinal 

components in the vehicle frame.  The lateral error is of more importance than the 

longitudinal error for the application to UXO detection. Longitudinal error will shift the 

entire survey area in one direction, but will not affect the area covered within that area. 

Errors in the lateral position, however, can cause gaps in coverage within the survey area. 

The lateral and longitudinal error components as functions of time are shown in Figure 

C.6, and a scatter plot of the lateral and longitudinal error is shown in Figure C.7. From 

Figure C.7 it can be seen that he DRTK method is very accurate with the majority of the 

points having a total error of less than 1 cm, while the errors from the encoder method are 

on average 5-6 cm and can be as large as 25 cm. 

 
Figure C.5: Total error in trailer position using the DRTK and encoder methods. 
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For the UXO system described previously, trailer lengths are varied often based 

on the type and configuration of sensor being towed. Because of this, the trailer length 

parameter (𝑙𝑡) changes often. Note that the tongue length parameter (𝑙𝑟) is determined by 

the portion of the tongue that is a part of the robot and does not change. When a new 

trailer configuration is used, the length is typically measured in the field using a tape 

measure and entered into the control software. This process is prone to errors which, 

when they occur, can significantly affect the performance of the system. An error was 

made while measuring the trailer length during one of the experimental runs performed 

for this study. The length entered was off by approximately 10 cm. The resulting lateral 

and longitudinal error are shown in Figure C.8. Since the trailer length parameter is used 

to calculate the trailer's position using Equations (C.1) and (C.2), the error in the 

 

Figure C.6: Lateral and longitudinal trailer position error. 
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parameter also appears in the trailer position estimate. While the error is easy to detect 

when truth data is available, this information is not normally available and the error 

would result in inaccurate path following and as a result an inaccurate map of the area 

being surveyed. The DRTK method, however, does not require the trailer length 

parameter and still provides an accurate measurement of the trailer position. 

 
Figure C.7: A scatter plot reveals the accuracy of the 

methods. 

 
Figure C.8: A parameter error caused a reduction in 

accuracy using the encoder method. 

C.5 TRAILER LENGTH EFFECTS 

The effect of changes in the trailer length was examined for both estimation methods. 

The error in the DRTK measurement is expected to be constant for reasonable trailer 

lengths. The error from the encoder method, however, should increase with trailer length. 

The encoder method is sensitive to errors in both the hitch angle and the robot's 

orientation. Both have the effect of biasing the trailer estimate to one side or the other of 

the actual position. The sensitivity to these errors is proportional to the hitch and trailer 

lengths; error increases with the length of the trailer.  



157 

 

The experiment described in Section C.4 was repeated for two additional trailer 

lengths (𝑙𝑡=0.91m and 𝑙𝑡=1.83m). The total, lateral, and longitudinal errors were 

calculated for both the DRTK and encoder methods for each trailer length. The mean, 𝑥 , 

and standard deviation, 𝜍𝑥 , were calculated for each error and the results are given in 

Table 1 for the DRTK method and in Table 2 for the encoder method. As expected, the 

errors using the DRTK method stayed essentially constant over the runs, while the errors 

from the encoder method increased with trailer length. 

Table C.1: Accuracy as trailer length varies 

using the encoder and DRTK methods.  

Trailer 

Length 

𝟏𝝈 Error (cm) 

Encoder DRTK 

0.91 2.49 0.81 

1.83 4.0 0.80 

2.73 6.62 0.75 
 

 

C.6 CONCLUSION 

An application of the DRTK algorithm to a robot trailer system was described. It was 

shown that the DRTK algorithm could be used to accurately determine the trailer's 

position relative to the robot. This method of trailer position determination was 

experimentally compared to a method that uses an optical encoder to measure the angle 

between the robot and trailer. 

The experimental results showed that the DRTK algorithm could provide a more 

accurate measurement of the trailer's position than the method using an encoder in areas 

where GPS coverage is sufficient. The degree of improvement over the encoder method 

is directly related to the length of the trailer. The DRTK method also eliminates the need 

for exact knowledge of the system's geometry, removing a possible source of human 

error from the system. 
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