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Recent studies involving a tethered satellite system(s) (TSS) have increased due 

to the importance of accurately identifying and analyzing the motion of a TSS.  If the 

motion of a tethered satellite is not accurately identified, the satellite could be mistaken 

as a ballistic threat.  Standard orbit determination methods used today are unable to 

identify a tracked satellite as part of a TSS, due to the non-Keplerian nature of its motion. 

Accurate identification of a TSS becomes more complicated with the need to 

perform this process quickly using a small set of observational data.  Once this �quick-

look� identification process is performed, it is necessary to calculate the critical orbit 

determination parameters used for future TSS tracking and prediction. 

An extended Kalman filter (EKF) has been developed to perform both the state 

estimation and quick-look identification processes for a tethered satellite not known        



 vi

a priori as being part of a TSS.  In the application of the EKF to a TSS, both, manual 

tuning and adaptive tuning methods were used.  The adaptive tuning method used is 

based upon ridge-type filtering techniques involving the computation of a biasing 

parameter that is used as input into the process noise matrix, which is required in tuning 

the EKF.   

The overall performance of the EKF is presented for varying tether lengths, tether 

orientation, and observation noise levels.  The results obtained from the adaptively-tuned 

EKF are presented in this thesis and are compared to those obtained from a batch filter 

and manually-tuned EKF presented in recent studies.
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1. INTRODUCTION 

 

A tethered satellite system (TSS) refers to a system that includes two or more 

satellites, or space bodies, which are connected by a tether, or cord.  One idea behind 

tethered satellites is to control the motion of one satellite by attaching it to another 

satellite.  In a two-bodied TSS, the primary satellite is generally the larger of the two and 

is referred to as the �parent� satellite.   The second satellite, usually smaller than the 

parent satellite, is referred to as the �daughter� satellite.  Either satellite may be located in 

a higher or a lower orbit with respect to the system�s center-of-mass or they can be in the 

same orbit.  A two-bodied TSS model is shown in Fig. 1 below. 

 

 

FIG. 1.  Tethered Satellite System (TSS) Model 

 

The study of tethered satellites originated in the late 1800�s and has continued on 

through today with actual �in space� applications.  In general, tethered satellites can offer 

many important uses, such as:  providing power between satellites or other space vehicles 

for transfer of energy or momentum purposes, providing support to astronauts during an 

Earth Surface

Parent

Daughter
Tether
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Extra-Vehicular Activity (EVA) maneuver, which connects them to the spacecraft, or 

providing aid in the control of a space vehicle�s motion.  It has only been recently that 

studies have addressed the orbit determination problem of tethered satellites.  In one 

study, a satellite, which was a member of a TSS, was incorrectly identified to be a re-

entry object�s trajectory [1].  This is due to the tether force perturbing the motion of the 

tracked satellite and causing it to behave differently than the motion of an untethered 

satellite [2]. 

The orbit determination of any space object involves the ability to accurately 

track, identify, and predict the motion of the object of interest.  The need to perform a 

proper orbit determination analysis of a TSS has increased, since its future use has 

become important to both the private and public industries.  If a TSS is inaccurately 

analyzed, its motion could result in a tethered satellite being incorrectly identified as a 

possible threat, resulting in many unnecessary and costly measures being taken to 

counteract the threat. 

It is possible for this type of scenario to occur since tethered satellites behave 

differently than untethered ones.  This is due to the force present in the tether, which acts 

on all satellites connected to the tether.  Each satellite in the TSS is perturbed by the 

tether force, causing it to vary from the Keplerian-type motion, typically found in 

untethered satellites [1,2].  When a tethered satellite is stationed in a higher orbit than the 

center-of-mass of the TSS, its velocity will be larger in magnitude than the results 

predicted by classical Keplerian motion due to the presence of the tether force.  Likewise, 

if a tethered satellite is in a lower orbit than the center-of-mass of the TSS, its velocity 

will be smaller than that indicated from classical Keplerian motion due to the tether force. 
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Classical orbit determination methods are not capable of distinguishing between a 

tracked tethered satellite and an untethered satellite; therefore the satellite may be 

incorrectly identified as an untethered one if the classical methods are used.  Incorrect 

identification will also result in an inaccurate prediction of the satellite�s future motion.        

In order to prevent a TSS from being incorrectly identified, the need to quickly 

perform the identification process is very important.  This process of identification, 

referred to as �quick-look� identification, is performed by processing measurements of 

the satellite�s motion made from tracking stations.  These measurements are acquired by 

the use of radar, infrared, radio and/or optical techniques and include parameters of the 

observed satellite, such as:  range, range-rate, azimuth, elevation, azimuth-rate and/or 

elevation-rate.  The measurements are then used in the orbit determination process to 

estimate the satellite�s orbit.  The first few measurements obtained are used in the 

preliminary orbit determination (POD) procedure in order to establish a set of initial 

conditions, which will then be used in the filtering process.  In order to more accurately 

determine the set of initial conditions, a larger set of observational measurements, 

accumulated from one or more tracking stations, must then be processed.   

The need to accurately estimate the state of a tethered satellite, which can include 

parameters, such as: position, velocity, dynamical constants, etc., involves the differential 

correction process.  Once the POD provides the set of initial conditions, the differential 

correction process improves the accuracy of the solution acquired by the POD procedure.  

These improvements are made by processing all of the observational data available in the 

filtering process.  There are several filtering techniques available to use in the differential 

correction process.  The three most commonly used are batch-type filters, Kalman (or 



 

 4

sequential) filters, and extended Kalman (or extended sequential) filters.  Batch-type 

filters process an entire set of observational data at once in order to estimate the state for 

a specified epoch.  Kalman and extended Kalman filters process observations as they are 

received.  A Kalman filter provides the estimate of the satellite�s state at each observation 

time where an extended Kalman filter updates the reference trajectory at each observation 

to reflect the best estimate of the true trajectory.  Each filter has its distinct advantages 

and disadvantages; however this study will utilize the extended Kalman Filter (EKF) and 

compare its results to previous studies using batch-type and sequential estimators. 

A POD method was recently developed [3,4] for the use of both tethered and 

untethered satellites.  Following this method, several different batch-type filters for the 

estimation of the state of a tethered satellite were presented and their performances were 

compared [5].  In this study a two-dimensional dynamical model of a TSS was 

considered.  The model maintained a vertical orientation and as a result did not possess 

the capabilities to include out-of-plane motion of the system, or any apparent oscillatory 

motion of the TSS.  There have been additional studies where out-of-plane libration of a 

TSS was modeled, in an enhanced batch filter [6].   

The accuracy of quick-look TSS identification was improved by the use of ridge-

type estimation methods [7].  Once a satellite is identified as being a tethered satellite, 

more sophisticated models of a TSS [8-12] can then be used to predict its long-term 

motion.  When long arcs of observational data are available, these enhanced dynamical 

models and filtering techniques are more useful.  

A more recent presentation involved a method that combined all of the desired 

characteristics needed in both the quick identification and the prediction of long-term 
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motion of a TSS.  The three-stage TSS identification and orbit determination 

methodology [13] included:  a 1st Stage POD procedure, a 2nd Stage ridge-type filter, and 

a 3rd Stage long-term prediction filter.  The performance of this methodology was 

demonstrated using a series of simulated cases with varying TSS geometry and 

observation noise levels, as well as on real TSS data obtained from the Tether Physics 

and Survivability Experiment (TiPS) [14].   

An extended Kalman filter (EKF) was recently developed in order to address the 

TSS identification problem using extended sequential processing of the observational 

data [15].  The primary emphasis is on the quick-look aspects of tethered satellite 

identification rather than on the long-term orbit prediction aspects referred to in [13].  

The manually-tuned EKF utilizes the POD results from [13] as initial conditions, and 

short arcs of observations are processed in order to determine the best estimate of the 

satellite�s state.  The performance of the EKF is evaluated through the analysis of 

simulated data using differing tether lengths, tether orientations, observational error 

levels, and observation arcs.   

An adaptive or automated tuning methodology, used in angles-only tracking and 

intercept problems [16], was applied to the EKF to improve overall filter performance 

and to make the entire filtering process less tedious.  The tuning method involves the use 

of a biasing parameter that is computed within the EKF.  The biasing parameter is an 

integral part of ridge-type estimation techniques, which have shown improved accuracy 

in batch and sequential solutions of ill-conditioned orbit determination problems.  The 

biasing parameter provides a measure of the overall solution error and is input into the 

process noise matrix for tuning the EKF.  The performance of the filter depends on 
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correct propagation of the covariance matrix added with the a priori covariance, the 

observational covariance, and the process noise [16].  A �tuned� extended Kalman filter 

means that the best possible filter performance is achieved.   

The elements of the process noise covariance and measurement noise covariance 

matrices need to be properly determined through the tuning process in order to improve 

the filter�s ability to provide accurate state estimates.  The results from the adaptively-

tuned EKF are presented in this study and are compared to the results obtained using the 

batch filter from the 2nd Stage of the TSS methodology presented in [13]  along with 

those results from the manually-tuned EKF presented in [15].  Conclusions for their use 

are also provided. 
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2. QUICK-LOOK ORBIT DETERMINATION METHOD DESCRIPTION 

 

 The suggested orbit determination method for TSS involves two different 

dynamic models.  The first stage of the methodology is a POD strategy that uses a simple 

dynamic model, while an enhanced dynamic model is used in the EKF of the second 

stage quick-look identification process.  The related TSS models are specifically designed 

for those stages in order to yield the most accurate results for a given span of 

observations.   The 1st Stage uses only a few observations in its process where the results 

are used as input into the 2nd Stage.  The 2nd Stage performs an adaptive, sequential 

analysis using up to 15 minutes of the observational data.  Each stage, along with their 

models, is described in more detail in the following paragraphs.   

 

2.1 Preliminary Orbit Determination (POD, 1st Stage) 

 The TSS model used in the POD stage consists of a �daughter� satellite, m, and a 

�parent� satellite, mp, where both are considered to be point masses.  These satellites are 

connected by a massless tether, as illustrated in Fig. 2.  Also shown in Fig. 2, is the 

effective tether force that acts upon the daughter satellite.  The radial and tangential force 

components, Fr and Ft, respectively, which make up the tether force, are shown acting on 

the daughter satellite, since its motion is the one being observed.  Depending on where 

the satellites are located in their orbit and in relation to each other, their velocities will be 

affected due to the change in acceleration imposed by the force components.  For 
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example, the radial force component will create a radial acceleration, ar, which acts on 

the daughter satellite, and will cause its velocity to decrease if it lies in a lower orbit than 

the parent satellite, but will cause its velocity to increase if it lies in a higher orbit than 

the parent satellite.  Likewise, the tangential force component will create a tangential 

acceleration, at, on the daughter, causing its velocity to decrease if it precedes the parent, 

but causing its velocity to increase if it trails the parent.  In the case where the parent 

satellite is being observed, the opposite of these dynamical characteristics will be true. 

 

 
FIG. 2. TSS Model with Force Components and Libration Angle 

 

One satellite preceding or �leading� another satellite depends on the in-plane 

libration angle, α, as shown in Fig. 2.  The value of α will also determine the directions 

of the tether force components, where the positive radial direction is defined from the 

center of Earth toward the daughter satellite and the positive tangential direction is that of 

the direction of orbital motion.  

 The radial acceleration of a satellite�s motion can be obtained using a POD 

method along with other information, including the gravitational parameter, µ.  

Earth

α
Fr

Ft

orbit 
direction r

t

m

mp



 

 9

Specifically, a modified gravitational parameter, µ*, can be calculated during the POD 

process by a relationship between the parameters µ and ar, which is presented in [3,4] as: 

2* rar−= µµ          (2.1) 

Where, r, is the distance from the center of the Earth to the daughter satellite.  Upon 

obtaining µ*, it can be used to find an approximate value of the distance from the 

daughter satellite to the center-of-mass of the TSS, which is designated by, ρcm, and 

illustrated in Fig. 3..   

 

FIG. 3. TSS Center-of-Mass and Tether Length Measurements 

 

This distance is measured along the tether length and can illustrate whether the daughter 

satellite is above or below the parent satellite.  When libration is present in the TSS, ρcm 

will represent the projection of the tether length (to the center-of-mass) in the radial 

direction and will be denoted by the parameter, ρcm*, and is presented in [3,4] as:  

( ) rcm 







+
−=

*2
**

µµ
µµρ                                                (2.2) 

Earth

CM

mp

 m

ρcm

ρcm*
α
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If ρcm* is positive, then the daughter satellite is below the parent and µ* < µ.  If it is 

negative, then the daughter is above the parent satellite where µ* > µ, which indicates 

that the satellite being observed is above the parent satellite.  In addition, the value of ρcm 

will approach the actual tether length as the ratio of the point masses, m/mp, approaches 

zero.   

 Several classical POD methods were modified to include the capabilities to 

determine µ* for a TSS and were presented in [3,4].  Due to superior convergence 

characteristics, the 9th order f and g series method proved to perform best and those 

results were used in this study.  The calculated value of µ* can be used quickly to 

determine whether the observed satellite is part of a TSS due to the few observations that 

are used in the POD process.  The output from the 1st Stage POD method, in the form of 

position, velocity, and ar, is used as input into the 2nd Stage Extended Kalman Filter.  The 

POD results provide no information regarding at, therefore at is initially assumed to be 

zero.   

 

2.2 Identification Using an Extended Kalman Filter (2nd Stage) 

  The enhanced dynamical TSS model used in the �quick-look� identification 

process, presented in [6], is similar to the model presented in the 1st Stage, but includes 

additional dynamical effects.  The model for the 2nd Stage considers the tether to be 

inextensible and allows for oblate Earth effects, as well as, in-plane libration in the TSS 

dynamics.     

 To determine the dynamical TSS characteristics, including: acceleration 

components, libration angle, etc., a batch-type filter has been used [5] to generate an 
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estimation of the daughter satellite�s state vector.  This state vector includes the satellite�s 

position and velocity components and the acceleration components due to the tether 

force.  The acceleration components, ar and at, are both assumed to be constant over short 

observation arcs.  This implies that the libration angle will remain constant through the 

observation arc as well.  Since these parameters are tether-specific, including them in the 

filter allows for the satellite to be identified as tethered or untethered.  A satellite is found 

to be untethered when its acceleration components are determined to be zero.  This means 

that there is no tether force perturbing the acceleration components.  Likewise, nonzero 

acceleration terms indicate that the satellite being observed is tethered.  No other forces, 

such as:  thrust, drag, which creates orbit decay, etc. are considered in this study.  Once 

the acceleration terms are obtained, they can be used to calculate the libration angle of the 

TSS.   

 In order to perform the 2nd Stage process in a sequential manner, an extended 

Kalman filter (EKF) is used to quickly identify the observed satellite with a short arc of 

observational data.  Classic EKF equations are used in this study and are explained in 

more detail below.  To better describe the EKF, it is appropriate to summarize the process 

of the Kalman (or sequential) filter first and then provide a comparison.  Swerling 

originally developed the sequential algorithm in 1958 [17], yet Kalman and Bucy have 

been recognized more for their work with the algorithm since 1961 [18].  The most 

important difference between the two filters is that the sequential algorithm processes 

observational data as it is received, while the EKF does the same and in addition, updates 

the reference trajectory after each observation is processed.  The disadvantage of the 

sequential algorithm is the significant amount of errors due to neglecting higher order 



 

 12

terms in the linearization procedure.  The EKF is used to decrease the effects of those 

errors, which allows for more rapid convergence.    When using the sequential algorithm, 

if the true trajectory and the reference trajectory are too far apart, which is often the case 

at the beginning of a simulation, the estimation process may diverge due to the errors 

from the linearization process, previously described.  The benefit in using the EKF is that 

the best estimate of the state will be reached more quickly.  Below is a description of the 

EKF algorithm: 

1. Given the following:  

- 1−

∧

kX , the estimate of the state vector at tk-1, (n x 1); 
- Pk-1, covariance matrix at time tk-1, (n x n); 
- Yk, p-vector of observations taken at time tk, (p x 1); 
- Rk, observation covariance at time tk, (p x p); 
 

2. Integrate from tk-1 to tk, 

( )ttXFX ),(=& , ( ) 11 −
∧

− = kk XtX    (2.3) 

      ( ) ( )
)(
),(

tX
ttXFtA

∂
∂=      (2.4) 

)()()( 11 tQtAPPtAP T
kkk ++= −−

&     (2.5) 

where )(tX  is the updated state vector (n x 1), F( )(tX , t) is the system dynamics 
function (n x 1), A(t) is the state sensitivity matrix (n x n), and where Q(t) is the 
process noise matrix (n x n). 

 
3. Compute, 

( )
)(
),(

k

kk
k tX

ttXG
H

∂
∂

=      (2.6) 

( ) 1−
+= k

T
kkk

T
kkk RHPHHPK     (2.7) 
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( ) kkkk PHKIP −=      (2.8) 

( )kkkk ttXGYy ),(−=     (2.9) 

kkk yKx =
∧

     (2.10) 

kkk xXX
∧∧

+=     (2.11) 

where Hk is the measurement sensitivity matrix (p x n), ( )kk ttXG ),(  is the 
observation-state relationship vector (p x 1), Kk is the Kalman gain (n x p), Pk is 
the covariance matrix (n x n) associated with the best estimate of the (n x 1) state 

vector kX
∧

, yk is the observation residual vector (p x 1), Yk is the current 

observation, and kx
∧

 is the state correction vector (n x 1).  All variables are 
computed at time tk. 
 

4. Replace k with k-1, return to step 2 and substitute.  Repeat until all observations 
have been read. 

 
The algorithm above assumes that the process noise matrix, Q(t), is known.  This will be 

discussed in more detail in the following section.   

 The state vector, kX
∧

, used in the 2nd Stage process will include the observed 

satellite�s position, velocity, and tether acceleration components.  Upon obtaining the 

initial estimate of the state vector at each observation time, several determinations can be 

made relative to the tether acceleration components [13], such as: 

1. If the values of ar and at are found to be zero, it can be assumed that the observed 
satellite is an untethered one and standard techniques can be used to analyze its 
motion. 

 
2. If the values of ar and at are nonzero, then the following applies: 

a. The libration angle, α, can be calculated from, 









= −

r

t

a
a1tanα     (2.12) 
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  where the signs of ar and at will determine the appropriate quadrant for α. 

b. The magnitude of the acceleration due to the tether force can be calculated 
from,  

    ( )22
tr

T aa
m
F

+=     (2.13) 

c. The value of ρcm
*, the radial projection of the tether length to the center-

of-mass of the TSS, can be approximated through the use of ar and 
Equations 2.1 and 2.2. 

 
3. In the case where one of the acceleration components is equal to zero and the 

other is not, then the following applies: 
 

a. For at = 0 and ar ≠ 0, the satellite will be tethered and the system�s 
orientation will be vertical.  This will be the case when α = 0° and ar > 0 
or when α = 180° and ar < 0.  

 
b. For ar = 0 and at ≠ 0, the satellite will be tethered and the system�s 

orientation will be horizontal.  This will be the case when α = 90° and at > 
0 or when α = 270° and at < 0. 

 

The methodology from the 2nd Stage process combined with the implementation of the 

tuning method described in the following section will complete the quick look 

identification method. 

 

2.3 Adaptive Tuning Method using a Biasing Parameter 

Before describing the adaptive tuning algorithm it is appropriate to stress the 

importance of �tuning� an EKF in general.  An EKF must be properly tuned in order to 

prevent filter divergence.  This is achieved by adding adequate values of the a priori 

covariance and the observational covariance, if known, to the propagation of the 

covariance to properly generate the filter�s performance envelope; any �process noise� is 

also added.  A major disadvantage to tuning an EKF is that the results are usually 
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achieved manually, which is very tedious and allows for significant error.  These 

problems present the need for an aid which �automatically� tunes an EKF.  In this 

presentation, an adaptive tuning method presented by Cicci [16], typically used in angles-

only tracking and intercept problems, was applied to the EKF described in the previous 

section; yielding an adaptively-tuned EKF. 

The adaptive tuning method used in this study is based upon ridge-type estimation 

methods and requires the calculation of a biasing parameter, which represents the overall 

error in the solution and is used as input into the process noise matrix.  The process noise 

matrix, Q(t), defined above in the 2nd Stage description, is necessary to successfully tune 

the EKF and can be expressed as a function of the biasing parameter and written as Q(k), 

as described by Cicci [16].  The biasing parameter provides the following advantages to 

the EKF: 

1. The diagonal terms of the process noise matrix are updated after each 
observation time as opposed to remaining constant for all of the 
observations. 

 
2. Adaptive tuning allows the user to define how the biasing parameter is 

implemented at the beginning of the simulation, eliminating manual 
changes to the process noise.   

 
The form of the biasing parameter, k, is determined through converting the batch solution 

into a sequential solution, described in [16].  The sequential form of the biasing 

parameter, k, is presented below: 

( ) ( ) ( )[ ]
( ) [ ] xHIRDDRDDDHx

xHIRDDRDDDHxRDDtr
k

mmmmmm
TT

mmmmmm
TT

mm

��
�2�

22

222

+
++

=             (2.14) 

where Dm is a normalizing diagonal matrix (p x p) and its ith diagonal term is defined as: 
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Tm
HPH

D 1=                                                     (2.15) 

As stated in [16], the inspection of equation 2.14 above shows that k will always be 

greater than one.  As the covariance matrix, P , decreases with each processed 

observation, the biasing parameter, k, also decreases in value and approaches one.  As 

described before, k represents the overall error in the solution and Q(t) represents the 

process noise, therefore k is used to compute the Q(k) matrix, which includes the effects 

of k-biasing.  With each observation k is computed and then used to update the 

appropriate Q(k) terms.  Only those Q(k) terms that will effect the acceleration terms of 

the propagated covariance matrix [16] will be updated with the biasing parameter, since 

that is where most of the error exists.    

 In summary, the description of the biasing parameter and its use within the EKF 

concludes the quick-look orbit determination process.  Implementation of the process, 

test cases and results are described in the following sections.  
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3. PROCEDURE DESCRIPTION 

 

 At this point it is necessary to expand on the methods previously explained by 

summarizing the overall procedure that was implemented in this thesis study.  Beginning 

with the POD (1st Stage) process, only the output data obtained from the POD 

presentations referenced in [3,4] was used as input into the adaptive EKF (2nd Stage); no 

additional POD processes were considered.   The output data from the POD process 

provides a reference trajectory for the tracked satellite with results in the form of the 

position vector, R , velocity vector, V , and µ*, which includes the standard gravitational 

parameter, µ, and the radial acceleration tether force component acting on the satellite.  

Using equation 2.1, this radial acceleration component, ar, can be calculated since the 

remaining variables are known.  With the zero tangential acceleration component, at, 

these parameters form the starting state vector for the daughter satellite which is used as 

input into the EKF (2nd Stage).   

 To implement the adaptive EKF in this study, the FORTRAN program developed 

for [15] was modified to include the adaptive parameters.  The entire estimation process 

used in this study will be described in the paragraphs below, however the form that the 

state vector assumes for this study, must be explained first.  The state vector includes the 

parameters from the POD process, satellite position, velocity, and acting tether 
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acceleration force.  The state variables related to the dynamics of the satellite�s motion 

are defined in equation 2.16, below: 
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The equation of motion, including perturbation effects acting on the satellite, used in this 

study and those being compared to this study, is provided in equation 2.17.  Definitions 

of the perturbation forces, p , which represents the effects of oblateness, and, tF , which 

represents the tether acceleration effects on the satellite, are provided in equations 2.18 

and 2.19, respectively.  

tFp
R

RR ++−= 3

µ&&     (2.17) 





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
−= 2

2
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2
2 31

2 R
z

R
RJ

p eµ
   (2.18) 

V
Va

R
Ra

F tr
t +=     (2.19) 

In equation 2.18, 2J  is the oblateness constant coefficient, eR  is the radius of the earth, 

and z is the z-component of the satellite�s position.  In equation 2.19, ra  and ta  

represents the satellite�s radial and tangential tether force acceleration terms, respectively.  

R and V are the magnitudes of the satellite�s position and velocity, respectively.   
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 Take the time derivative of the state vector dynamics to find X&  and substitute 

equations 2.17-2.19; yielding equation 2.20, where X&  is a function of the state variables. 
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The observation vector, y, as defined in equation 2.9 requires the use of an observation-

state relationship vector, ( )( )ttXG , , defined here in equation 2.21. 
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In equation 2.9, Y, represents the current observation�s range, azimuth, and 

elevation values of the satellite as measured relative to the tracking station.  In equation 

2.21, θ is equal to the ωE at the current observation time.  Xs, Ys, and Zs are the known 

position parameters (in Earth-Centered Earth Fixed, ECEF) for the tracking station 

location.  The latitude and longitude of the tracking station, also known, are φ and λ, 

respectively.  The observation vector equations include the transformations between the 

tracking station�s local coordinate frame and the ECEF coordinate frame.   
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The equations provided for X&  and the observation vector, y, were also used in 

presentations [3,4,15].  They are used in this study to provide consistency for comparing 

results from test cases. 

After explaining the forms of the state and observation vectors, the simulation 

description proceeds.  Initially, the diagonal values for the a priori covariance and 

process noise matrices are given to begin the quick-look EKF analysis.  The values for 

the a priori covariance matrix used in this thesis will be explained in more detail in the 

Test Cases section. 

1. First, the state estimate found from the POD results are read into the 
program.  Processing one observation at a time, in 5 second intervals and 
up to 15 minutes of data, the range, azimuth, and elevation defining the 
satellite�s location relative to the tracking station is recorded.  Also 
processed is the observation covariance. 

 
2. Compute EKF equations 2.5 through 2.10 and calculate the predicted state 

vector and covariance matrix (with process noise and the k-biasing 
function). 

 
3. Update the state estimate and a priori covariance matrix. 

 
4. Calculate the Root Mean Square (RMS). 

 
5. Calculate ρcm* using equation 2.2. 

 
6. Begin processing the next observation with the updated state estimate and 

process noise matrix and continue until all observations are processed. 
    

 Once the k-biasing parameter is calculated using equation 2.14 it is used in a 

biasing function to update the appropriate terms of the process noise matrix for use in the 

next observation.  The Root Mean Square (RMS) is also calculated at each observation to 

measure any process error, which aids in identifying the convergence of the best solution.  

The projection of the tether length (to the center-of-mass) in the radial direction, ρcm*, is 
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then calculated.  The next observation is processed using the updated process noise 

matrix (with biasing included) and the best estimate of the state vector.  This procedure 

continues until all observations are processed. 

In this study, those terms in the process noise matrix that effect the tether 

acceleration components will be the only terms considered.  These terms are functions of 

the k-biasing parameter used to automatically tune, or adjust, the propagation of the state 

covariance matrix. 

 As mentioned before, the process noise matrix, Q(k), is updated with functions of 

the k-biasing parameter.  Only the acceleration terms of the matrix will be updated as 

shown in the following form. 
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The functions used for f1(k) and f2(k) are dependent upon the types of scenarios that are 

being analyzed.  There are no limitations to the types of function that can be used, but 

some effort may need to be put forth at the beginning of the analysis to make sure the 

appropriate functions are chosen to use.  For instance, in angles-only tracking intercept 

problems, the functions should be chosen so that larger values of the process noise are 

provided to the components that contain high levels of error [16].  Other cases may not 

include levels of error that are significantly high; requiring a biasing function to yield 

smaller values.   
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 Using the biasing function in the process noise matrix, which is updated at each 

observation, should provide faster tuning results to the EKF.  This allows the EKF to 

perform more powerfully and with high confidence of the best converging solution. 



 

 23

4. TEST CASES 

 

 Many different scenarios were considered in this thesis study to illustrate the 

adaptive EKF�s performance when identifying whether the observed satellite is tethered 

or untethered.  In the end, over 2,000 scenarios were generated to test the EKF.  This 

involved scenarios, limited to the data provided from simulated data acquired from a 

previous study [3], with varying tether lengths, orientations, observation noise levels, and 

observation arcs; specific values and levels are summarized in Table 1 below.   

TABLE 1.  Parameter Variations for Scenarios 

Tether Lengths (ρ) 0 km, 1 km, 10 km, 50 km, and 1 km UP 

Orientation:  In-Plane Libration Angle (α) 0°, 5°, 10° (N/A for 0 km cases) 

Observation Noise Levels  LOW (5 m/0.002°), MEDIUM (25 
m/0.01°), and HIGH (50 m/0.02°) 

Observation Arcs 5, 10, and 15 minutes 

 

The simulated data was generated using a baseline circular orbit [3].  The orbital 

elements for this circular orbit are provided in Table 2 below. 

TABLE 2. Baseline Orbit for Data Generation 
Orbital Elements 

a 6621 km 
e 0.00 
i 5.73 deg 
Ω 5.73 deg 
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Each test case scenario used as input the a priori covariance matrix found with the 

best manually-tuned results from the EKF presented in [15].  The idea behind this is to 

provide commonality among both filters for comparison purposes and to ultimately 

determine which filter yielded faster and more accurate results. 

As mentioned when describing the procedure for implementing all presented 

methodology in this study, many combinations for the k-biasing function, used in the 

process noise matrix, Q(k), were also considered.  Some of the functions used were taken 

from [16], in order to provide a common foundation for comparing results to the adaptive 

EKF.  A description of the combinations used in the k-biasing functions is presented in 

Table 3 below. 

TABLE 3.  Varying Combinations of the Biasing Function 

Functions used for both, f1(k) & f2(k) 

k and k2, from [16] nk
1 , where n = 1, 2, 3, 4, �21 

(k-1) and (k-1)2, from [16] nk )1(
1
− , where n = 1, 2, 3, 4, �9 

(k+1) and (k+1)2 nk )1(
1
+

, where n = 1, 2, 3, 4, �21 

 

 The results from the two best biasing functions from [16] and two from the 

remaining combinations from Table 3 are presented for all test case scenarios in 

Appendix A.  The same function is not ideal for all test cases due to observation, process, 

and user errors.  Out of the four cases presented for each test case scenario, the case 

yielding the best solution represents optimum results found from the adaptive EKF for 

that test case.
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5. RESULTS 

 

From the results presented for each test case in Appendix A, a variety of different 

combinations of biasing functions were used to acquire the end results for this study.  The 

best solutions from these test cases were taken and compared to the best solutions from 

the batch filter presented in [13] and the manually-tuned EKF presented in [16].  Tables 4 

through 16 organize this information from all three studies so that appropriate 

conclusions may be drawn.   

Overall the adaptive EKF produced the most accurate results within 15 minutes of 

observed data for all tether lengths and k-biasing functions presented.  The tables of data 

provided observe the adaptive EKF�s performance at three different time spans (5, 10, 

and 15 minutes); this provides the opportunity to monitor whether or not a test case 

converges sooner than the anticipated 15 minute time span.  Where this occurred, which 

was in very few cases, it was determined that the early convergence was due to the proper 

selection of the biasing function.  Additionally, the rapid divergence that was found in the 

following time span, for these cases, demonstrated that the best solution had already 

occurred for the test case.   

The adaptive EKF was able to produce the best results for the no tether cases 

within 10 minutes of data and to match those of the manually-tuned EKF.  The cause for 
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this result illustrates the ability to choose the biasing function to achieve the desired 

results.  In these cases, the process noise matrix values were zero for the manually-tuned 

EKF, therefore the biasing function used in the adaptive EKF needed to provide small 

values for the process noise so that the solutions would be similar when compared.  This 

means that the value of k needed to be larger when using a function similar in form to 

( ) nk −+1 , where n is larger; the output from this biasing function is driven to the expected 

limit, or floor, more quickly.   

The adaptively-tuned EKF was more sensitive to observation error and libration 

levels than those results found from the manually-tuned EKF.  Results from the adaptive-

tuned EKF for test cases with high noise levels performed better than the low and 

medium noise level cases for some tether lengths.  In the cases where low levels of noise 

were present the results varied depending on the amount of libration present.  Higher 

amounts of libration provided better results (i.e. RMS closest to 1 and ρcm
* closest to 

desired value) for these cases. 

Results from the adaptively-tuned EKF became more accurate with higher tether 

lengths, which did not seem to have an affect in either the batch filter or manually-tuned 

EKF processes.  In all three filter cases, there was commonality among the no tether 

cases diverging as observation noise increased. 

The amount of error the input conditions and process noise are expected to 

contain, aids in selecting the �best� biasing function to use.  Varying the k-biasing 

function provided a unique look into the overall convergence to the best solution for each 

case.  Because many biasing functions were considered for each scenario in this study, 

selecting the biasing function that provided the best solution to each test case was simple.  
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As verification that the best solution had been achieved, the very next variation of the 

biasing function used in the scenario, and any thereafter, provided an immediate and 

significant divergence.  This pattern provided confidence throughout the entire 

adaptively-tuned EKF analysis that the best solution for each test case had been 

determined.   

The RMS values calculated at each observation and recorded for all three time 

spans provided good results in most of the cases.  Where the RMS values were 

significantly higher than the ideal value of one, the conclusion is that the adaptively-

tuned EKF procedure required more observations, than either the batch or manually-

tuned EKF processes needed, to find the best converged solution.  

 
 
TABLE 4.  Comparisons for No Tether cases, ρcm = 0 m 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

σ ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

low 5 min: 1.021 -116 0.243 -2416 0.2431 -2416 
 10 min: 1.025 310 0.443 -39 0.4433 -39 
 15 min: 1.006 152 0.686 92 0.6862 92 

med 5 min: 1.042 4246 0.233 -6559 0.2329 -6559 
 10 min: 1.021 624 0.363 320 0.3631 320 
 15 min: 1.011 708 0.709 685 0.7086 685 

high 5 min: 1.033 4613 0.188 -9622 0.1879 -9622 
 10 min: 1.021 1400 0.362 551 0.3622 551 
 15 min: 1.009 1493 0.706 1297 0.7059 1297 
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TABLE 5.  Comparisons for 1 km cases, ρcm = 909 m, LOW noise 
  Batch Filter [13] Manually-tuned 

EKF [16] 
Adaptively-tuned EKF

with k-biasing 
α ∆t RMS ρcm

*(m) RMS ρcm
*(m) RMS ρcm

*(m) 
0° 5 min: 1.022 277 13.211 -233381 16.03 30885 
 10 min: 1.022 991 3.218 9275 7.760 30051 
 15 min: 1.007 1077 0.570 1227 4.507 1082 

5° 5 min: 1.022 230 21.458 -343299 19.65 29076 
 10 min: 1.022 943 4.320 10599 7.835 16121 
 15 min: 1.008 1028 0.599 810 4.837 -492 

10° 5 min: 1.021 260 0.620 9537 1.884 -13500 
 10 min: 1.021 956 0.487 2668 0.842 697 
 15 min: 1.010 979 0.669 1006 0.785 1024 

 
TABLE 6.  Comparisons for 1 km cases, ρcm = 909 m, MEDIUM noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.020 -1318 6.831 693696 8.238 613209 
 10 min: 1.021 1001 4.017 -39847 11.36 104116 
 15 min: 1.008 1521 0.952 1423 3.638 566 

5° 5 min: 1.020 -1364 13.007 910863 6.816 203867 
 10 min: 1.021 950 3.101 58191 3.533 56500 
 15 min: 1.008 1472 0.800 970 2.489 6855 

10° 5 min: 1.021 3381 13.075 918297 6.842 204010 
 10 min: 1.021 1236 3.115 58121 3.541 56510 
 15 min: 1.010 1416 0.799 840 2.491 6734 

 
TABLE 7.  Comparisons for 1 km cases, ρcm = 909 m, HIGH noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.015 -892 0.473 20009 2.342 -8226 
 10 min: 1.023 840 0.677 7081 1.273 2355 
 15 min: 1.006 1003 0.594 1502 0.9346 963 

5° 5 min: 1.020 -1432 8.636 1743440 4.763 -157130 
 10 min: 1.021 1096 2.381 90619 4.373 119816 
 15 min: 1.009 1950 0.680 1533 3.238 930 

10° 5 min: 1.021 -8401 8.756 1784948 4.787 -161501 
 10 min: 1.022 1509 2.386 91278 4.380 119851 
 15 min: 1.011 2196 0.679 1458 3.238 744 
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TABLE 8.  Comparisons for 10 km cases, ρcm = 9091 m, LOW noise 
  Batch Filter [13] Manually-tuned 

EKF [16] 
Adaptively-tuned EKF

with k-biasing 
α ∆t RMS ρcm

*(m) RMS ρcm
*(m) RMS ρcm

*(m) 
0° 5 min: 1.022 8423 17.910 -591062 6.060 -217109 
 10 min: 1.025 9192 1.382 22633 0.4890 8391 
 15 min: 1.010 9339 0.637 10154 0.6134 9632 

5° 5 min: 1.021 7948 11.251 26732 11.77 53852 
 10 min: 1.025 8714 5.229 14630 5.429 13736 
 15 min: 1.065 8845 1.755 9770 2.720 12807 

10° 5 min: 1.021 7444 35.889 -1443476 12.54 551718 
 10 min: 1.195 8406 0.370 27736 1.721 13200 
 15 min: 1.028 8267 0.604 9959 1.747 8343 

 
TABLE 9.  Comparisons for 10 km cases, ρcm = 9091 m, MEDIUM noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.020 6801 0.544 -2396 0.6496 9091 
 10 min: 1.022 9179 0.472 19235 0.5880 15966 
 15 min: 1.008 9787 0.657 12817 1.050 22614 

5° 5 min: 1.020 6341 4.986 -360337 14.66 1506834 
 10 min: 1.021 8708 2.010 21618 7.127 68631 
 15 min: 1.010 9294 0.780 10351 2.398 6134 

10° 5 min: 1.020 5842 4.986 -360842 14.24 1383031 
 10 min: 1.022 8274 2.010 20967 9.143 115028 
 15 min: 1.016 8855 0.779 9671 2.926 4684 

 
TABLE 10.  Comparisons for 10 km cases, ρcm = 9091 m, HIGH noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.015 7211 0.380 25179 0.2834 10359 
 10 min: 1.023 8992 0.478 14181 0.3606 10416 
 15 min: 1.006 9225 0.529 10105 0.4563 9186 

5° 5 min: 1.020 6301 18.581 1603925 6.635 -1426637 
 10 min: 1.021 8888 0.997 148312 0.8132 71679 
 15 min: 1.010 9791 0.758 10630 0.6790 10518 

10° 5 min: 1.020 5811 18.580 1603099 6.634 -1427007 
 10 min: 1.021 8450 0.996 147601 0.8133 71021 
 15 min: 1.011 9355 0.758 10014 0.6795 9873 
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TABLE 11.  Comparisons for 50 km cases, ρcm = 45455 m, LOW noise 
  Batch Filter [13] Manually-tuned 

EKF [16] 
Adaptively-tuned EKF

with k-biasing 
α ∆t RMS ρcm

*(m) RMS ρcm
*(m) RMS ρcm

*(m) 
0° 5 min: 1.022 44523 7.125 -255455 3.986 -64684 
 10 min: 1.027 45385 1.066 51432 0.4422 45428 
 15 min: 1.023 45659 0.890 46422 0.6646 44962 

5° 5 min: 1.017 42148 76.441 1804829 2.504 59790 
 10 min: 1.035 42994 12.660 -20485 1.207 43754 
 15 min: 1.844 43146 4.399 42729 1.220 45149 

10° 5 min: 1.016 39625 270.15 -5901658 3.873 46189 
 10 min: 1.105 40795 14.464 33030 1.976 42401 
 15 min: 3.202 40910 0.503 46430 1.725 40072 

 
TABLE 12.  Comparisons for 50 km cases, ρcm = 45455 m, MEDIUM noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.021 42789 5.219 -302465 13.13 648210 
 10 min: 1.022 45482 0.619 43857 9.663 194554 
 15 min: 1.008 46154 0.653 49841 4.583 44944 

5° 5 min: 1.019 40517 0.534 -138322 12.87 1202841 
 10 min: 1.021 43138 0.696 62693 8.772 144106 
 15 min: 1.054 43703 0.540 48204 3.384 43042 

10° 5 min: 1.019 38056 0.345 -217184 1.432 -691193 
 10 min: 1.022 40931 0.693 58296 0.5688 45995 
 15 min: 1.178 41358 0.540 44817 0.7569 44486 

 
TABLE 13.  Comparisons for 50 km cases, ρcm = 45455 m, HIGH noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.020 42834 2.775 1758469 6.549 -1435114 
 10 min: 1.022 45584 0.732 142976 0.8103 107429 
 15 min: 1.009 46644 0.518 50734 0.6709 48181 

5° 5 min: 1.019 40629 3.369 2836331 19.21 3636757 
 10 min: 1.021 43221 0.771 169977 0.9604 77643 
 15 min: 1.022 44137 0.519 48170 0.8773 45485 

10° 5 min: 1.019 38232 5.070 5227532 153.7 7650025 
 10 min: 1.022 41013 0.938 203335 39.36 -1267781 
 15 min: 1.058 41908 0.528 46766 31.57 30505 
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TABLE 14.  Comparisons for 1 km UP cases, ρcm = -909 m, LOW noise 
  Batch Filter [13] Manually-tuned 

EKF [16] 
Adaptively-tuned EKF

with k-biasing 
α ∆t RMS ρcm

*(m) RMS ρcm
*(m) RMS ρcm

*(m) 
0° 5 min: 1.022 -1532 65.567 1254150 15.31 18527 
 10 min: 1.022 -833 5.161 -50243 7.075 26939 
 15 min: 1.006 -761 0.903 -1122 4.110 118 

5° 5 min: 1.022 -1484 21.456 -344736 19.65 27320 
 10 min: 1.022 -785 4.320 8959 7.835 14476 
 15 min: 1.006 -712 0.600 -804 4.835 -2144 

10° 5 min: 1.022 -1532 21.456 -344685 19.65 27378 
 10 min: 1.022 -740 4.320 9024 7.835 14542 
 15 min: 1.007 -688 0.600 -736 4.836 -2069 

 
TABLE 15.  Comparisons for 1 km UP cases, ρcm = -909 m, MEDIUM noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.020 -3121 3.225 654906 0.8382 108676 
 10 min: 1.021 -809 4.278 -40633 8.219 138718 
 15 min: 1.008 -318 0.943 -1744 8.659 -20563 

5° 5 min: 1.020 -3074 8.911 638134 10.39 763366 
 10 min: 1.021 -757 3.134 33660 9.381 94157 
 15 min: 1.008 -269 0.833 -624 3.203 -606 

10° 5 min: 1.020 -3025 8.911 638192 10.39 763419 
 10 min: 1.021 -709 3.134 33726 9.381 94216 
 15 min: 1.008 225 0.833 -624 3.203 -540 

 
TABLE 16.  Comparisons for 1 km UP cases, ρcm = -909 m, HIGH noise 

  Batch Filter [13] Manually-tuned 
EKF [16] 

Adaptively-tuned EKF
with k-biasing 

α ∆t RMS ρcm
*(m) RMS ρcm

*(m) RMS ρcm
*(m) 

0° 5 min: 1.020 -3194 11.369 277325 2.556 -2158 
 10 min: 1.021 -683 2.465 124955 2.705 204906 
 15 min: 1.009 -155 0.764 -1779 3.004 112275 

5° 5 min: 1.020 -3149 7.018 2823610 4.762 -158748 
 10 min: 1.021 -637 0.728 67245 4.373 118088 
 15 min: 1.009 203 0.612 -1209 3.237 -1239 

10° 5 min: 1.020 -3100 7.073 1424384 5.194 198245 
 10 min: 1.021 -593 2.486 71591 4.528 144550 
 15 min: 1.008 246 0.679 -901 3.265 -836 
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6. CONCLUSIONS  

 

 In summary, this study generated interesting and unique results for the quick-look 

identification methodology presented for identifying a satellite as being a member of a 

TSS using an EKF.  The 2nd Stage TSS identification method used for both the manually-

tuned EKF [15] and the adaptive EKF provided correct and quick identification of the 

tracked satellite.  Both EKFs were sufficient in producing accurate results within the 15 

minute time span.  Where at least 15 minutes of data is processed, identification of a 

tethered satellite as part of a TSS can almost certainly be made. 

 One major disadvantage to using either EKF is that the results are very sensitive 

to the filter tuning parameters.  Specifically, the choice of the a priori covariance and 

process noise parameters greatly affect the accuracy of the outcome of the filter.  For the 

manually-tuned EKF cases, both parameters were manually-tuned which contributed to 

the difficulty of achieving acceptable filter performance.  The adaptive EKF�s filter 

tuning was slightly more automated with the addition of the biasing function and took 

advantage of using the a priori covariance found in the best manually-tuned cases.  This 

required that only the process noise matrix be determined for the adaptively-tuned cases. 

 Finding the appropriate biasing function to use for tuning adaptive EKF cases 

depends on the level of error expected during process noise; and in this study, how 

accurately tuned the a priori covariance was from the manually-tuned cases.  Selecting 

the appropriate biasing function form and variation of the form can be tedious, but 
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through experience with filter tuning the appropriate function can more easily be 

determined.  Once the proper biasing function is selected, it is more advantageous when 

compared to the manually-tuned EKF because the process noise is updated each time an 

observation is processed in the adaptive EKF, rather than remaining constant throughout 

the analysis when using a manually-tuned filter. 

Comparing the results of both EKFs to those of the batch filter, shows that a batch 

filter can be used to identify a tethered satellite more quickly than the EKFs can.  

Although the EKFs provided more accurate results than those found in the batch filter, 

the EKFs required more observations to do so.   

Several recommendations can be made for future use of EKFs in identifying a 

satellite as a member of a TSS.  In addition to using the most accurate data available to 

achieve optimum results, it is highly advised that at least 15 minutes of observation data 

be used in the 2nd Stage identification process.  This observation data should be recorded 

as often as possible, since observations are processed by the adaptive EKF at each time 

step.   

With the application of the adaptive EKF in this study, satisfying results were 

achieved; however additional analysis can be performed to streamline the entire tuning 

process.  An iterative tuning process can be established when an EKF is required or 

desired for use in any study.  This can be achieved by establishing an iteration procedure 

for any parameters needing to be tuned, such as the a priori covariance, the biasing 

function form and variation or any other parameter requiring tuning.  Critical output 

values can be monitored within defined tolerances so that the desired filter performance 

can be achieved. 
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An iterative tuning procedure would benefit in the use of EKFs since it would 

alleviate the need for a trial and error process, which has traditionally been the means for 

tuning an EKF.  However, extensive analysis must be performed early in the study when 

defining the iteration details.  More effort may be required in the setup of an iterative 

process of this nature, but the caliber of the results achieved along with the ease of the 

tuning process would produce a useful and effective software solution where the 

application of EKFs are needed. 
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APPENDIX A: TEST CASE DATA 
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TABLE 17.  Test Case Data: No Tether (ρcm = 0) 
Noise Level f(k) ∆t RMS ρcm

*(m)
LOW (k-1)2 5 min. 1.948E+7 -7408104

  10 min. 26720 -1.358E+9 
  15 min. 15512 -1.227E+8 
 k 5 min. 9508 -4.909E+10 
  10 min. 536754 -3.489E+7 
  15 min. 776503 -1.381E+7 
 1/(k+1)20 5 min. 0.2431 -2416 
  10 min. 0.4431 -39 
  15 min. 0.6860 93 
 1/(k+1)21 5 min. 0.2431 -2416 
  10 min. 0.4433 -39 
  15 min. 0.6862 92 

MEDIUM (k-1) 5 min. 1.010E+8 -3.033E+9
  10 min. 304318 -4.504E+9 
  15 min. 20177 -1.558E+9 
 k 5 min. 145829 -8.204E+8 
  10 min. 7.976E+7 -1.397E+9 
  15 min. 5595 -1.013E+9 
 1/(k+1)20 5 min. 0.2329 -6559 
  10 min. 0.3631 320 
  15 min. 0.7086 686 
 1/(k+1)21 5 min. 0.2329 -6559 
  10 min. 0.3631 320 
  15 min. 0.7086 685 

HIGH (k-1) 5 min. 0.1572 258513
  10 min. 0.2502 556325 
  15 min. 0.4262 613046 
 k 5 min. 0.1531 31660 
  10 min. 0.2779 1264131 
  15 min. 0.8096 473790 
 1/(k+1)19 5 min. 0.1879 -9622 
  10 min. 0.3622 551 
  15 min. 0.7058 1297 
 1/(k+1)20 5 min. 0.1879 -9622 
  10 min. 0.3622 551 
  15 min. 0.7059 1297 
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TABLE 18.  Test Case Data:  ρ = 1 km (ρcm = 909 m), LOW noise 
α f(k) ∆t RMS ρcm

*(m)
0° k2 5 min. 79246 -2.629E+7
  10 min. 54037 -6.210E+9 
  15 min. 15664 -1.004E+9 
 (k-1) 5 min. 9.770 185433 
  10 min. 18598 -8.038E+9 
  15 min. 90578 -8320845 
 1/(k+1)8 5 min. 11.18 63636 
  10 min. 5.368 12295 
  15 min. 3.782 1397 
 1/k8 5 min. 16.03 30885 
  10 min. 7.760 30051 
  15 min. 4.507 1082 

5° k 5 min. 1.582E+7 -3.289E+10
  10 min. 844865 -4796600 
  15 min. 34161 -4.853E+8 
 k2 5 min. 208974 -1.162E+8 
  10 min. 1.429E+7 -4.033E+8 
  15 min. 5381568 -2.482E+7 
 1/(k+1)6 5 min. 16.25 31850 
  10 min. 6.801 24515 
  15 min. 4.047 -766 
 1/(k+1)8 5 min. 19.65 29076 
  10 min. 7.835 16121 
  15 min. 4.837 -492 

10° (k-1) 5 min. 41970 -1.039E+10
  10 min. 3316391 -8.432E+9 
  15 min. 1190777 -1.641E+8 
 k 5 min. 0.9509 -3578792 
  10 min. 9710738 -1.894E+8 
  15 min. 860739 -3.679E+7 
 1/(k+1)19 5 min. 2.055 -14873 
  10 min. 2.096 -662 
  15 min. 0.697 1027 
 1/(k+1)18 5 min. 1.884 -13500 
  10 min. 0.842 697 
  15 min. 0.785 1024 
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TABLE 19.  Test Case Data:  ρ = 1 km (ρcm = 909 m), MEDIUM noise 
α f(k) ∆t RMS ρcm

*(m)
0° k 5 min. 103.1 1818062
  10 min. 0.4188 46684 
  15 min. 105657 -4.427E+8 
 (k-1) 5 min. 22.26 -2.336E+7 
  10 min. 2.181 -84327 
  15 min. 5230 -2.208E+8 
 1/k6 5 min. 4.723 161874 
  10 min. 4.876 74596 
  15 min. 3.059 506 
 1/(k+1)13 5 min. 8.238 613209 
  10 min. 11.36 104116 
  15 min. 3.638 566 

5° k 5 min. 5.621 250947
  10 min. 3.045 325449 
  15 min. 28066 -6080792 
 (k-1) 5 min. 5.628 358120 
  10 min. 2.998 449543 
  15 min. 1.092 486845 
 1/(k+1)5 5 min. 7.538 -225738 
  10 min. 3.755 44240 
  15 min. 2.625 7176 
 1/(k+1)4 5 min. 6.816 203867 
  10 min. 3.533 56500 
  15 min. 2.489 6855 

10° (k-1) 5 min. 5.629 250800
  10 min. 3.046 324929 
  15 min. 6938 -7375386 
 k 5 min. 5.638 358068 
  10 min. 3.001 448444 
  15 min. 1.139 486206 
 1/k7 5 min. 6.662 121095 
  10 min. 3.468 44970 
  15 min. 2.491 7993 
 1/(k+1)4 5 min. 6.842 204010 
  10 min. 3.541 56510 
  15 min. 2.491 6734 
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TABLE 20.  Test Case Data:  ρ = 1 km (ρcm = 909 m), HIGH noise 
α f(k) ∆t RMS ρcm

*(m)
0° k2 5 min. 215727 -1.252E+8
  10 min. 60705 -3.087E+8 
  15 min. 47348 -1.666E+8 
 (k-1) 5 min. 2.286E+7 -3.890E+8 
  10 min. 40120 -4.000E+8 
  15 min. 17875 -1.082E+8 
 1/k16 5 min. 1.789 -3662 
  10 min. 1.131 2921 
  15 min. 0.7322 891 
 1/k20 5 min. 2.342 -8226 
  10 min. 1.273 2355 
  15 min. 0.9346 963 

5° k 5 min. 4.319 418352
  10 min. 4.249 196265 
  15 min. 78.05 -6102592 
 (k-1) 5 min. 4.358 384777 
  10 min. 4.206 202737 
  15 min. 30.01 -724931 
 1/k5 5 min. 4.748 -259218 
  10 min. 4.354 113148 
  15 min. 3.245 3201 
 1/(k+1)3 5 min. 4.763 -157130 
  10 min. 4.373 119816 
  15 min. 3.238 930 

10° k 5 min. 4.331 417880
  10 min. 4.253 196247 
  15 min. 71.67 -6049962 
 (k-1) 5 min. 4.370 376580 
  10 min. 4.213 202907 
  15 min. 29.36 -654351 
 1/k5 5 min. 4.772 -263485 
  10 min. 4.362 113210 
  15 min. 3.245 3014 
 1/(k+1)3 5 min. 4.787 -161501 
  10 min. 4.380 119851 
  15 min. 3.238 744 
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TABLE 21.  Test Case Data:  ρ = 10 km (ρcm = 9091 m), LOW noise 
α f(k) ∆t RMS ρcm

*(m)
0° k2 5 min. 9333 -1.945E+9
  10 min. 16554 -4.025E+7 
  15 min. 16904 -5.611E+9 
 (k-1)2 5 min. 10.79 187180 
  10 min. 4.014E+7 -6.773E+7 
  15 min. 9369 -3.998E+8 
 1/k14 5 min. 34.75 -393739 
  10 min. 5.419 17539 
  15 min. 4.153 9784 
 1/k9 5 min. 6.060 -217109 
  10 min. 0.4890 8391 
  15 min. 0.6134 9632 

5° k2 5 min. 1384498 -1.951E+7
  10 min. 205806 -7.384E+8 
  15 min. 29305 -4.252E+9 
 (k-1)2 5 min. 9.251 174365 
  10 min. 27515 -7.132E+7 
  15 min. 38093 -2.057E+9 
 1/k6 5 min. 13.29 42465 
  10 min. 6.268 15103 
  15 min. 3.298 4459 
 1/k5 5 min. 11.77 53852 
  10 min. 5.429 13736 
  15 min. 2.720 12807 

10° k 5 min. 17918 -7.760E+8
  10 min. 25090 -1.508E+7 
  15 min. 211137 -2.656E+9 
 (k-1) 5 min. 46356 -1.644E+8 
  10 min. 556165 -3.057E+8 
  15 min. 24391 -1.139E+7 
 1/(k+1)9 5 min. 45.71 -1787109 
  10 min. 1.496 15401 
  15 min. 1.254 10057 
 1/(k+1)8 5 min. 12.54 551718 
  10 min. 1.721 13200 
  15 min. 1.747 8343 
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TABLE 22.  Test Case Data:  ρ = 10 km (ρcm = 9091 m), MEDIUM noise 
α f(k) ∆t RMS ρcm

*(m)
0° k 5 min. 17853 -2.590E+11
  10 min. 184594 -1.598E+8 
  15 min. 10008 -4.272E+8 
 k2 5 min. 1.557E+7 -3.012E+9 
  10 min. 157668 -1.627E+8 
  15 min. 107549 -4732578 
 1/(k+1)12 5 min. 1.006 65842 
  10 min. 0.6383 15992 
  15 min. 0.8980 10545 
 1/(k+1)6 5 min. 0.6496 9091 
  10 min. 0.5880 15966 
  15 min. 1.050 22614 

5° (k-1)2 5 min. 3.197 256493
  10 min. 17718 -8.348E+8 
  15 min. 5936 -3.960E+9 
 (k-1) 5 min. 3.191 254015 
  10 min. 1.979 802715 
  15 min. 44311 -3.185E+8 
 1/(k+1)13 5 min. 14.24 1383702 
  10 min. 9.139 115611 
  15 min. 2.928 5340 
 1/k21 5 min. 14.66 1506834 
  10 min. 7.127 68631 
  15 min. 2.398 6134 

10° k 5 min. 3.158 362342
  10 min. 2.540 836567 
  15 min. 449341 -2.630E+9 
 (k-1) 5 min. 3.191 253351 
  10 min. 2.109 1030993 
  15 min. 9.151 -1709413 
 1/k20 5 min. 15.07 1567105 
  10 min. 4.800 6979 
  15 min. 2.038 14877 
 1/(k+1)13 5 min. 14.24 1383031 
  10 min. 9.143 115028 
  15 min. 2.926 4684 
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TABLE 23.  Test Case Data:  ρ = 10 km (ρcm = 9091 m), HIGH noise 
α f(k) ∆t RMS ρcm

*(m)
0° (k-1)2 5 min. 86174 -2.786E+11
  10 min. 222068 -3.655E+8 
  15 min. 520551 -1.107E+9 
 k2 5 min. 74891 -2.003E+8 
  10 min. 46188 -7.888E+7 
  15 min. 21370 -1.053E+8 
 1/(k+1)21 5 min. 0.2406 11202 
  10 min. 0.4266 9307 
  15 min. 0.7085 8814 
 1/k15 5 min. 0.2834 10359 
  10 min. 0.3606 10416 
  15 min. 0.4563 9186 

5° k 5 min. 4.735 513295
  10 min. 2.552 250591 
  15 min. 3.387 545368 
 (k-1) 5 min. 4.336 79536 
  10 min. 2.047 375226 
  15 min. 1.050 343727 
 1/(k+1)6 5 min. 9.441 -800925 
  10 min. 0.8150 54226 
  15 min. 0.7375 11919 
 1/k10 5 min. 6.635 -1426637 
  10 min. 0.8132 71679 
  15 min. 0.6790 10518 

10° k 5 min. 4.735 512591
  10 min. 2.553 249809 
  15 min. 3.558 564122 
 (k-1) 5 min. 4.336 78918 
  10 min. 2.048 374348 
  15 min. 1.074 340145 
 1/(k+1)6 5 min. 9.441 -801358 
  10 min. 0.8149 53564 
  15 min. 0.7352 11274 
 1/k10 5 min. 6.634 -1427007 
  10 min. 0.8133 71021 
  15 min. 0.6795 9873 
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TABLE 24.  Test Case Data:  ρ = 50 km (ρcm = 45455 m), LOW noise 
α f(k) ∆t RMS ρcm

*(m)
0° (k-1)2 5 min. 5.395 231609
  10 min. 801420 -4.4474E+11 
  15 min. 1.693E+7 -2.602E+8 
 k2 5 min. 10994 -5502491 
  10 min. 16017 -1.009E+9 
  15 min. 264641 -3.167E+7 
 1/k15 5 min. 2.604 57065 
  10 min. 0.4719 44662 
  15 min. 0.8280 45715 
 1/k16 5 min. 3.986 -64684 
  10 min. 0.4422 45428 
  15 min. 0.6646 44962 

5° k2 5 min. 1.446E+8 -2.454E+11
  10 min. 193956 -3.943E+9 
  15 min. 2604 -7301015 
 (k-1)2 5 min. 5.396 228756 
  10 min. 42646 -3.877E+8 
  15 min. 51900 -5525326 
 1/k7 5 min. 2.438 64344 
  10 min. 1.186 45427 
  15 min. 1.186 49021 
 1/k8 5 min. 2.504 59790 
  10 min. 1.207 43754 
  15 min. 1.220 45149 

10° k2 5 min. 3.548 447265
  10 min. 8726927 -2.807E+8 
  15 min. 3381018 -2.204E+8 
 (k-1)2 5 min. 864520 -1.155E+7 
  10 min. 4.396E+7 -3.929E+8 
  15 min. 76714 -4.701E+7 
 1/k6 5 min. 0.8651 50501 
  10 min. 0.7711 47243 
  15 min. 0.5045 47104 
 1/k10 5 min. 3.873 46189 
  10 min. 1.976 42401 
  15 min. 1.725 40072 
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TABLE 25.  Test Case Data:  ρ = 50 km (ρcm = 45455 m), MEDIUM noise 
α f(k) ∆t RMS ρcm

*(m)
0° k 5 min. 3.175 404529
  10 min. 1.878 225780 
  15 min. 22242 -1.102E+7 
 k2 5 min. 2.675 675655 
  10 min. 1315 -7.271E+7 
  15 min. 2152 -9912064 
 1/(k+1)13 5 min. 10.448 753723 
  10 min. 8.351 147276 
  15 min. 3.649 49440 
 1/(k+1)14 5 min. 13.13 648210 
  10 min. 9.663 194554 
  15 min. 4.583 44944 

5° (k-1) 5 min. 3.192 291176
  10 min. 1.655 798882 
  15 min. 2.886 892367 
 k 5 min. 3.175 401593 
  10 min. 1.569 690194 
  15 min. 6.579 469003 
 1/k20 5 min. 12.86 1324856 
  10 min. 5.037 49065 
  15 min. 2.499 52389 
 1/(k+1)13 5 min. 12.87 1202841 
  10 min. 8.772 144106 
  15 min. 3.384 43042 

10° (k-1)2 5 min. 3.184 284810
  10 min. 1.354E+7 -1.763E+9 
  15 min. 10182 -7.710E+7 
 k2 5 min. 2.455 726058 
  10 min. 515473 -7.197E+7 
  15 min. 6302 -1.803E+7 
 1/(k+1)11 5 min. 44.32 3140658 
  10 min. 2.368 -77223 
  15 min. 1.104 46131 
 1/(k+1)7 5 min. 1.432 -691193 
  10 min. 0.5688 45995 
  15 min. 0.7569 44486 
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TABLE 26.  Test Case Data:  ρ = 50 km (ρcm = 45455 m), HIGH noise  
α f(k) ∆t RMS ρcm

*(m)
0° (k-1) 5 min. 4.350 117136
  10 min. 2.048 439609 
  15 min. 51874 -3881839 
 k 5 min. 4.750 556965 
  10 min. 2.553 300542 
  15 min. 2.055 665919 
 1/k14 5 min. 41.33 3.437E+7 
  10 min. 4.218 -115323 
  15 min. 1.140 48648 
 1/k10 5 min. 6.549 -1435114 
  10 min. 0.8103 107429 
  15 min. 0.6709 48181 

5° k 5 min. 3.583 400650
  10 min. 665978 -2.094E+8 
  15 min. 3679 -9128196 
 (k-1) 5 min. 4.119 291700 
  10 min. 1.945 529531 
  15 min. 1.295 356237 
 1/k13 5 min. 15.90 2601556 
  10 min. 0.7851 95354 
  15 min. 0.9108 46854 
 1/(k+1)8 5 min. 19.21 3636757 
  10 min. 0.9604 77643 
  15 min. 0.8773 45485 

10° (k-1)2 5 min. 19.54 -2344955
  10 min. 3.616 231902 
  15 min. 26125 -4.056E+8 
 (k-1) 5 min. 8.483 -1325513 
  10 min. 34868 -1.097E+9 
  15 min. 2647 -8848180 
 1/k20 5 min. 152.9 1.221E+7 
  10 min. 40.52 -1325599 
  15 min. 33.98 20924 
 1/(k+1)12 5 min. 153.7 7650025 
  10 min. 39.36 -1267781 
  15 min. 31.57 30505 
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TABLE 27.  Test Case Data:  ρ = 1 km up (ρcm = -909 m), LOW noise 
α f(k) ∆t RMS ρcm

*(m)
0° k 5 min. 19052 -2.120E+8
  10 min. 34387 -3.174E+8 
  15 min. 21728 -9.479E+8 
 (k-1) 5 min. 12.19 186597 
  10 min. 1.384E+7 -2.584E+8 
  15 min. 50100 -5.576E+8 
 1/k15 5 min. 61.00 -255588 
  10 min. 24.29 33578 
  15 min. 14.07 -2049 
 1/(k+1)5 5 min. 15.31 18527 
  10 min. 7.075 26939 
  15 min. 4.110 118 

5° (k-1) 5 min. 12.74 187621
  10 min. 8.131E+7 -1.886E+9 
  15 min. 38714 -2.556E+8 
 (k-1)2 5 min. 11.79 177763 
  10 min. 36909 -4.148E+7 
  15 min. 1849706 -5546073 
 1/(k+1)6 5 min. 16.25 30146 
  10 min. 6.801 22862 
  15 min. 4.044 -2528 
 1/(k+1)8 5 min. 19.65 27320 
  10 min. 7.835 14476 
  15 min. 4.835 -2144 

10° k2 5 min. 174303 -5196165
  10 min. 10543 -3.563E+11 
  15 min. 43525 -1.850E+9 
 (k-1)2 5 min. 11.79 177828 
  10 min. 82339 -7.497E+8 
  15 min. 407830 -2.402E+8 
 1/(k+1)6 5 min. 16.25 30206 
  10 min. 6.801 22928 
  15 min. 4.044 -2450 
 1/(k+1)8 5 min. 19.65 27378 
  10 min. 7.835 14542 
  15 min. 4.836 -2069 
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TABLE 28.  Test Case Data:  ρ = 1 km up (ρcm = -909 m), MEDIUM noise 
α f(k) ∆t RMS ρcm

*(m)
0° k 5 min. 4.040 1711062
  10 min. 332479 -5.537E+8 
  15 min. 9223 -2.146E+8 
 (k-1)2 5 min. 9463021 -3.204E+10 
  10 min. 4138 -1.782E+9 
  15 min. 762 -5482947 
 1/k12 5 min. 4.414 426439 
  10 min. 15.24 106843 
  15 min. 53.03 -54076 
 1/(k-1)3 5 min. 0.8382 108676 
  10 min. 8.219 138718 
  15 min. 8.659 -20563 

5° (k-1) 5 min. 6.645 252247
  10 min. 3.381 232577 
  15 min. 59352 -1.100E+7 
 k 5 min. 6.614 358337 
  10 min. 3.326 337699 
  15 min. 1.071 492506 
 1/(k+1)14 5 min. 14.62 699033 
  10 min. 12.01 164880 
  15 min. 4.301 -9869 
 1/(k+1)13 5 min. 10.39 763366 
  10 min. 9.381 94157 
  15 min. 3.203 -606 

10° k2 5 min. 6.614 493022
  10 min. 766.6 -1.042E+8 
  15 min. 153437 -6506473 
 k 5 min. 6.614 358405 
  10 min. 3.326 337777 
  15 min. 1.065 492748 
 1/(k+1)4 5 min. 6.934 119266 
  10 min. 3.643 56365 
  15 min. 2.568 4557 
 1/(k+1)13 5 min. 10.39 763419 
  10 min. 9.381 94216 
  15 min. 3.203 -540 
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TABLE 29.  Test Case Data:  ρ = 1 km up (ρcm = -909 m), HIGH noise 
α f(k) ∆t RMS ρcm

*(m)
0° (k-1) 5 min. 3.266 1274895
  10 min. 2.674 1734528 
  15 min. 3874 -9.433E+7 
 k 5 min. 2.351 633480 
  10 min. 5228083 -2.215E+9 
  15 min. 6232 -5.042E+7 
 1/(k-1)4 5 min. 2.042 -8681 
  10 min. 2.923 191447 
  15 min. 3.063 101456 
 1/(k-1)2 5 min. 2.556 -2158 
  10 min. 2.705 204906 
  15 min. 3.004 112275 

5° k 5 min. 4.319 416463
  10 min. 4.250 194422 
  15 min. 208.4 -6786659 
 (k-1) 5 min. 4.358 382826 
  10 min. 4.207 200965 
  15 min. 31.04 -846237 
 1/k4 5 min. 4.599 342338 
  10 min. 4.329 140397 
  15 min. 3.207 991 
 1/(k+1)3 5 min. 4.762 -158748 
  10 min. 4.373 118088 
  15 min. 3.237 -1239 

10° k 5 min. 4.501 445663
  10 min. 4.313 195575 
  15 min. 44.87 -5428452 
 (k-1) 5 min. 4.601 386415 
  10 min. 4.246 202680 
  15 min. 29.96 -702344 
 1/k5 5 min. 5.374 -307660 
  10 min. 4.571 115868 
  15 min. 3.322 -796 
 1/k4 5 min. 5.194 198245 
  10 min. 4.528 144550 
  15 min. 3.265 -836 

  


