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Abstract 
 

 
 This thesis examines the validity of asymptotic critical values for a Recursive Mean 

Adjustment (RMA) based Augmented Dickey-Fuller (ADF) unit root test. Cheung and Lai show 

that critical values for the Ordinary least square (OLS) based ADF test depend substantially on 

the lag order in finite samples. The present article extends their work to a newly proposed RMA-

based unit root test, which is more powerful than the OLS-based test. Our Monte Carlo 

simulation results show that asymptotic critical values for the test with the deterministic terms 

are valid only when the lag order is one. When lag order is greater than one, the RMA based test 

with asymptotic critical values tends to be overall over-sized. I also provide finite sample critical 

values for an array of lag-order and sample size pairs.    

 
 
 

 
 
 
 
 



 iii

 
 
 
 
 

Acknowledgments 
 
 

 First and foremost, I would like to thank my advisor, Dr. Hyeongwoo Kim. Without his 

direction, his patience and encouragement, this thesis would not have been possible. I sincerely 

appreciate invaluable academic and personal support I have received from him throughout this 

thesis. 

I would also thank the rest of my thesis committee members: Dr. John Jackson and Dr. 

Randy Beard for their valuable feedbacks and suggestions that helped me to improve the thesis. 

I also respectfully acknowledge Dr. Barry Burkhart, Chair, Department of Economics at 

AU for giving me his valuable time. I thank Dr. Jackson for admitting me to Master of Science 

program to pursue higher education. 

I thank you all for teaching me and guiding me. 

Finally, my further gratitude goes to my family: my husband Xueyi, my son Kaishuo, My 

parents, and my sister Zhixin. Thanks for your love, support, encouragement and patience. 

 

 
 
 
 
 
 
 
 
 
 
 
 



 iv

 
 
 
 
 

Table of Contents 
 
 

Abstract ......................................................................................................................................... ii 

Acknowledgments........................................................................................................................iii  

List of Tables ............................................................................................................................... vi  

List of Figures .............................................................................................................................vii  

List of Abbreviations .............................................................................................................…viii 

Chapter 1 Introduction ................................................................................................................. 1 

Chapter 2  ADFols Root Test and ADFRMA  Test........................................................................... 4 

 2.1 ADF unit root test  ..................................................................................................... 4 

 2.1.1 Autoregressive Unit Root Test  ........................................................................... 4 

 2.1.2 Three cases under alternative hypothesis............................................................. 6 

 2.1.3 Dickey-Fuller ( ADF) unit root test ..................................................................... 8 

 2.2 Recursive Mean Adjusted ADF unit root test (ADFRMA)  ......................................... 9 

 2.2.1 Recursive mean adjusted based ADF unit root test (ADFRMA)  ......................... 9 

 2.2.2 Recursive trend adjusted based ADF unit root tests (ADFRTA) ........................ 11 

Chapter 3 Experimental Designs for Response Surface Methodology....................................... 13 

 3.1 Response surface literature review ........................................................................... 13 

 3.2 Response surface method and experimental design ................................................. 13 

Chapter 4 Simulation Results and analysis................................................................................. 17 

Chapter 5 Conclusion.................................................................................................................. 27 



 v

References  ................................................................................................................................. 28 

Appendix………………………………………………………………………………………. 31 



 vi

 
 
 
 
 

List of Tables 
 
 

Table 1 Response surface estimation of Critical values for the ADFRMA statistic ..................... 18 

Table 2 Lag Order and Finite-sample Critical Values ................................................................ 19 

Table 3 Lag Order and Finite-sample Critical Values (for constant) .......................................   20 

Table 4 Lag Order and Finite-sample Critical Values (for time trend)…………………………21   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 
 



 vii

 
 
 
 
 

List of Figures 
 
 

Figure 1 Distribution of ADF t statistics..................................................................................... 14 

Figure 2 Plots of Monte Carolo-Estimated critical values for various RMA based ADF test.... 22 

Figure 3 RMA based critical value as a function of (a) T and (b) K in the case of constant 
no trend for 1%, 5%, and 10% test .............................................................................. 25 

Figure 4 RMA based critical value as a function of  (a) T and (b) K in the case of constant 
and trend  for 1%, 5%, and 10% test............................................................................ 26 

 

 

 

 

 

 

 

 

 

 
 
 
 



 viii

 
 
 
 
 

List of Abbreviations 
 
 

ADF Augmented Dick-Fuller 

AR Autoregressive 

CV Critical Value 

DF Dickey -Fuller 

DGP Data Generating Process 

GDP gross domestic product  

OLS  Ordinary Least Squares 

RMA Recursive Mean Adjustment 

RSM Response Surface Methodology 

RTA          Recursive Trend Adjustment 
 
 

 

 

 

 
 
 
 
 
 
 
 
 



 1

 

Chapter 1  

Introduction 

 

The analysis of unit root nonstationarity has been one of the major areas of research in time 

series econometrics over the last two decades. Stationararity or nonstationarity of macro-

economic time series is quite important to investigate statistically because (a) macro economic 

time series are known to exhibit persistence in their intertemporal behavior, (b) Spurious 

regression problems can lead to misleading inference, (c) conventional statistical analyses may 

be invalid when applied to regressions with nonstationary variables. Early motivation for a unit 

root test was to help determine whether to use forecasting models expressed in differences or 

levels in particular applications (e.g. Dickey, Bell, and Miller, 1986). Nowadays, unit root tests 

are useful to test certain hypotheses such as purchasing power parity (e.g. Rogoff, 1996), the 

efficient market hypothesis (e.g. Balvers et al ,2000), and the natural rate of unemployment or 

hysteresis hypothesis (e.g. Blanchard and Summers,1987), just to name a few. Generally, the 

major problem when working with nonstationarity results from the breakdown of conventional 

asymptotic distribution theory under nonstationarity. Standard statistical inferences become 

invalid, and many test statistics developed for nonstationarity converge to nonstandard 

distributions. Therefore, unit root tests are important. 

Many methods for unit root tests have been developed. Among them, the Augmented Dick-

Fuller (ADF) test is by far the most popular. This test examines the null hypothesis of 

nonstationarity against stationary alternatives. Asymptotic critical values for the test were 
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tabulated by Dickey-Fuller (1976). Despite of its popularity, it is well known that the ADF test 

has a low power to find stationarity, especially when the sample size is small. 

In order to improve the power of unit root tests, many new methods have been put forward. 

For example, Zilliott, Rothenberg and Stock (1992) proposed a simple modification of the ADF 

test, referred to as the DF-GLS test, which is shown to have higher power by Cheung and Lai 

(1995b). Recently, an ADF unit root test based on recursive mean adjustment (RMA) has been 

put forth by So and Shin (1999) and Shin and So (2001), which showed significant power 

improvement according to their Monte Carlo studies.1 Shin and So (2001) derived the limiting 

distribution of the test with a constant. Their asymptotic critical values for the test with a 

constant are tabulated for some sample sizes based solely on AR(1) processes.  

Cheung and Lai (1995a) showed that finite sample critical values are determined by lag order 

in addition to sample size. It is crucial to correcting for the lag order impact in implementing a 

RMA based ADF test (ADFRMA), for critical values that ignore the dependence of lag order can 

be misleading. Kim et al (2009) showed that the RMA based ADF test outperformed the DF-

GLS and standard ADF tests in their study for G7 stock markets. Despite its power and 

convenience to implement, this method is largely overlooked in the financial literature.  

The purpose of this study is to examine the validity of asymptotic critical values for a 

Recursive Mean Adjustment based Augmented Dickey-Fuller test. Our Monte Carlo simulation 

results suggest that asymptotic critical values (e.g. Shin and So(2001)) computed based on k=0 ) 

for the test with the deterministic terms are valid only when the lag order is one .When the lag 

                                                 
1 The logic behind RMA method is to use partial mean instead of global mean: ttttt YYYY εα +−=− −−− )( 111 , tε  is 

uncorrelated to the recursive mean adjusted regressor 11 −− − tt YY  ,which results in biased reduction RMA estimator, while LS 

estimator is to estimate ,)( 1 ttt YYYY εα +−=− − , tε  is correlated to regressor YYt −−1  ,which is biased. See chapter 2 

for details. 
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order is greater than one, the test with asymptotic critical values tends to be overall over-sized 

even when the sample size is fairly big.2 .  

 Response surface analysis has been used by Mackinnon (1991) to obtain approximate finite 

sample critical values for the traditional ADF unit root test. In his method, lag order is assumed 

to be fixed and equal to 1 for ADF test. Cheung and Lai (1995a) extended the response surface 

analysis and showed that although the asymptotical ADF test may not depend on the lag 

parameter, lag order can be important in finite samples. Employing their ideas by properly 

accounting for the effect of lag order, our study provides improved estimation of lag-adjusted 

critical values for the ADFRMA test. Our experimental design generalizes Mackinnon’s method 

(1991) by including lag order but still omits those other nuisance parameters as in Cheung and 

Lai (1995a). Finite-sample correction for the nuisance parameter, although is desirable, is hard to 

make, given the potential size of the parameter space of these unknown parameters, it is 

plausible to omit them.   

This thesis is organized as follows: In chapter 2, conventional ordinary least square (OLS) 

DF and ADF unit root tests (ADFols) are described, and compared to the RMA based ADF test 

(ADFRMA). Chapter 3 discusses the methodology of response surface analysis and our 

experimental design. Chapter 4 reports and analyzes response surface estimation of the critical 

values of ADFRMA , and provides finite sample critical value Tables for the ADFRMA test. Finally 

in Chapter 5 we offer conclusions. 

                                                 
2 A test is oversized when the actual size with asymptotic critical value is greater than the nominal size. That is, such 
tests tend to reject the null hypothesis too often. 
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Chapter 2  

ADF Unit Root Tests  

 

2.1 OLS-based ADF unit root test 

Why people worry about unit root? Most macroeconomic time series are known to exhibit 

high persistence, possibly nonstationarity, in their intertemporal behavior. Conventional 

statistical inferences may be invalid when the true data generating process is nonstationary 

Therefore, unit root tests are important. A widely used unit root is the Augmented Dickey-fuller 

or ADF test (Dickey and Fuller, 1979). The test typically examines the null hypothesis (random 

walk without a drift) of nonstationarity against three stationary forms of alternatives.    

2.1.1 Autoregressive Unit Root Test  

To illustrate the important statistical issues associated with an autoregressive unit root test, 

we considered the following simple AR (1) model  

ttt YY εα += −1                                                                                                                        (1) 

Where tε  is white noise. The hypotheses of interest are  

H0:    1=α (unit root in θ=0)3, )1(IYt →   

H1:        ,1|| <α  )0(IYt →  

                                                 
3 The AR(1) model may be re-written as ttt YY εθ +=∆ −1 ,where θ = 1−α , testing 1=α  is equivalent to testing 0=θ , 
unit root tests are often computed using this alternative regression 
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One may use a test statistic, 
)ˆ(
1ˆ

1 α
α

α se
t −

== , where α̂ is the least squares estimate and )ˆ(αse is the 

associated OLS standard error estimate. The test is a one-sided left tail test. Under the alternative 

hypothesis, {Yt} is stationary ( ,1|| <α ), and it can be shown that the following holds. 

))1(,0()ˆ( 2ααα −→− NT d  

Or ))1(1,(ˆ 2ααα −→
T

NA  

Under the null hypothesis, however, the above results give 

)0,1(ˆ NA→α  

This clearly doesn’t make any sense because it has a degenerating asymptotic distribution. The 

problem is that under the unit root null hypotheses, {yt} is neither stationary nor ergodic, and the 

usual sample moments do not converge to fixed constants. Instead, Phillips (1987) showed that 

the sample moments of {Yt} converge to random function of Brownian motion4: 

drrWYT
T

t

d
t ∫∑

=
−

−

→
1

0
1

1
2
3

)(α  

drrWYT
T

t

d
t ∫∑

=
−

− →
1

0

22

1

2
1

2 )(α  

)()(
1

0

2

1
1

1 rdWrWYT
T

t

d
tt ∫∑

=
−

− → αε  

where )(rW denotes a standard Brownian motion (Wiener process) defined on the unit interval. 

Using the above results Phillips derived the asymptotic distributions of the two test statistics 

under the unit root null 0H : 1=α  

                                                 
4 A Wiener process W(.) is continuous-time stochastic process, associating each data )1,0(∈r , a scalar random variable that 

satisfies 1)W(0)=0; (2) any dates. 1...0 1 ≤≤≤ ktt , the changes )()(),.....()( 112 −−− kk tWtWtWtW  are independent normal 

with W(s)-W(t)∼N(0,s-t); (3) W(s) is continuous in s. 
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2/1
21

0

1

0
1

)()(

)()(

rdrW

rdWrW
t d

∫
∫→=α  

)()(

)()(
)1ˆ( 21

0

1

0

rdrW

rdWrW
T d

∫
∫→−α  

The above yields the following results: 

(1) α̂  is super-consistent; that is αα →pˆ  at rate T instead of usual rate of 2/1T  

(2) α̂  is not asymptotically normally distributed and 1=αt  is not asymptotically standard 

normal.  

(3) The limiting distribution of 1=αt  is called the Dickey-fuller (DF) distribution and does not 

have a closed form representation. Therefore, critical values must be computed by approximation 

or by simulation. 

(4) Since )1ˆ( −αT  has a well defined limiting distribution that does not depend on nuisance 

parameter. It can also be used as a test statistic for null hypothesis H0: 1=α   

2.1.2 Three cases under alternative hypothesis 

When testing for a unit root, it is important to specify the null and alternative hypotheses. 

Practically, the common null hypothesis is a random walk without a drift, while alternative 

hypotheses can be written as the three regression equations below.  

tY  is stationary with no deterministic terms: 1||1 <+= − αεα ttt YY                                    (2) 

tY  is stationary with a constant   1||1 <++= − αεα ttt YcY                                                 (3) 

tY  is stationary with a constant and a time trend. 1||1 <+++= − αεαδ ttt YtcY                 (4) 
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We should appropriately specify different alternative hypothesis to characterize the trend 

properties of the data at hand. For instance, if our observed data doesn’t show an increasing or 

decreasing trend (e.g., the real exchange rate), our regression equation alternative hypothesis 

should reflect this property. If our observed data clearly exhibits an increasing or decreasing 

trend, (e.g., real GDP), our alternative hypothesis should also reflect it. The trend properties of 

the data under the alternative hypothesis will determine the form of the test regression used. 

Moreover, the type of deterministic terms in the test regression will influence the asymptotic 

distribution of the unit root test statistics. The two most common cases are constant only (3) and 

constant with a time trend (4). Since most macro variables have non-zero means, the regression 

(2) is hardly used.   

Case I: Constant only 

The test regression equation is ttt YcY εα ++= −1                                                                                                (3’) 

 and includes a constant to capture the nonzero mean under the alternative. The hypotheses  

H0:    1=α   ,  )1(IYt →   without drift. 

H1:        ,1|| <α     )0(IYt →  with an intercept. 

This formulation is appropriate for non-trending financial series such as the interest rate or 

exchange rate. The least square estimateα̂  is computed from the above regression (3’).The test 

statistic is 
 )ˆ(

1ˆ
1 α

α
α se

t −
==  

Case II: Constant and Time Trend 

The test regression is Yt=c+δt+αYt-1+ tε                                                                                                                   (4’)   

 includes a constant and a deterministic time trend to capture the deterministic trend under 

the alternative. The hypotheses to be tested are:   
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H0:     1=α   ,  )1(IYt →   without drift. 

H1:        ,1|| <α     )0(IYt →  with an intercept and deterministic time trend. 

This formulation is appropriate for trending time series such as asset prices or level of 

macroeconomic aggregates such as real GDP. The least square estimateα̂  is computed from the 

above regression (4’).The test statistic is
 )ˆ(

1ˆ
1 α

α
α se

t −
==   

2.1.3  Dickey-fuller( ADF) unit root tests 

The unit root tests described above are valid if the time series tY   is well characterized by an 

AR(1) process with white noise errors only. In practice, many economic variables are better 

described by AR(P) (where P>1) when the error term tε  is serially correlated. Consequently, 

Said and Dickey (1984) developed a test, known as augmented Dickey-Fuller (ADF) test. This 

test is conducted by “augmenting” the preceding three equations with the lagged values of the 

differenced dependent variable tY . To be specific, we use form (4). The ADF test here consists of 

estimating the following regression: 

t

K

j
jtjtt YYtCY εβαδ +∆+++= ∑

=
−−

1
1

5                                                                                    (5)         
                

The specification of deterministic terms depends on the assumed behavior of Yt under the 

alternative hypothesis of trend stationarity as describe in the previous section. Under the null 

hypothesis, yt is I(1), which implies that ,1=α  The test statistics are based on the least square 

estimate of (5) and are given by   

)ˆ(
1ˆ
α

α
se

ADFt
−

=       
k

TADF
ββ

αα ˆˆ1
)1ˆ(

1 K−−
−

=  

                                                 
5 Alternatively t

K

j
jtjtt YYtCY εβθδ +∆+++=∆ ∑

=
−−

1
1 can be used, where 1−=αθ  

k
t

TADF
se

ADF
ββ

θα
θ
θ

ˆˆ1
)ˆ(,

)ˆ(

ˆ

1 K−−
==
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ADFt and αADF  follow the same asymptotic distribution as the Dickey-Fuller tests with 

white noise error when lag order P is selected appropriately. 

It is well-known that LS for autogressive (AR) suffers from serious downward bias in the 

persistence coefficient when the process includes deterministic. To see the bias, assume that the 

regression equations follow (3). By the Frisch-Lowell-Waugh theorem, estimating α̂  by OLS is 

equivalent to estimating the following regression with de-meaned terms. 

ttt YYYY εα +−=− − )( 1   

where ∑
=

−=
T

j
jYTY

1

1 . We see that tε  is correlated with jY , for j=t, t+1,...,T, thus it is also 

correlated with Y . Therefore, the OLS estimator for the AR(1) process with an intercept creates 

a mean-bias. The bias has an analytical representation, and as Kendall (1954) shows, the OLS 

estimator is biased downward. It is known that correcting for bias may help enhancing the power 

of the test. In what follows, we demonstrate that this is also the case for the recursive mean and 

recursive trend adjusted versions of the ADF unit root tests. 

2.2 Recursive mean adjusted (RMA) based ADF test (ADFRMA)  

The RMA-based unit root test possesses greater power than an ADFols test. Due to reduced-

bias estimation, the left percentile of the null distribution (of the test) shifts to the right, while the 

asymptotic distribution of RMA and the OLS estimator are identical under the alternative. This 

leads to an improvement in power over the ADFols (Shin and So, 2001). We will examine the 

principle behind the ADFRMA test by reviewing recursive demeaning and detrending procedures. 

 

2.2.1 Recursive mean adjusted based ADF unit root test (ADFRMA) 
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So and Shin (1999) originally introduced recursive mean adjustment in univariate 

autogression to reduce the small sample bias of the least square estimator, and Shin and So 

(2001) extended their recursive mean adjustment to a unit root test for the case of an unknown 

mean . 

Shin and So (2001) introduced the concept of recursive mean adjustment by considering the 

following AR(1) model. 

TtYY ttt ,,2,1,)( 1 LL=+−=− − εµαµ                                                                         (6) 

where tε  is zero mean stationary process. Shin and So (2001) note that when the absolute value 

of α  is less than 1, becauseµ  is unknown, therefore, µ  can be replaced by the mean of tY  

∑
=

=
T

j
jY

T
Y

1

1                                                                                                                          (7) 

Application of the ADF or DF test to the mean-adjusted observation ( YYt − ) is achieved 

using the following regression 

ttt YYYY εα +−=− − )( 1                                                                                                       (8) 

However, as Shin and So further note, replacing µ  with Y  in (6) leads to correlation 

between the regressor ( YYt −−1 ) and tε . Denoting the OLS estimator as 0α̂ , the resulting bias of 

0α̂  has been derived by inter alia, Kendall(1954), Tanaka (1984) and Shaman and Stine (1988) 

as   

tToTE εααα +++−=− −− )()31()ˆ( 11
00                                                                            (9) 

To overcome the problem of correlation between the error term and regressor, Shin and So 

(2001) propose the use of recursive mean, Yt-1, using the partial mean instead of global mean. 
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 TtY
t

Y
t

i
it ,,3,2

1
1 1

1
1 L=

−
= ∑

−

=
−                                                                  (10) 

Define 1
~

−−= ttt YYY , and 111
~

−−− −= ttt YYY . The recursive mean-adjusted version of (6) and (8) is 

then given as 

 ttt YY εα += −1
~~                                                                                                                   (11) 

In a nutshell, the logic behind RMA estimator can be seen by defining, ∑
−

=
− −
=

1

1
1 1

1 t

i
it Y

t
Y ,  so 

tε  is uncorrelated with the recursive mean adjusted regressor 11 −− − tt YY  , which results in 

substantial biased reduction for RMA estimator. 

∑

∑

=

−−

=

−−−

−

−−
= T

t
tt

T

t
tttt

RMA

YY

YYYY

2

2
11

2
111

)(

))((
α̂                                                                                        (12) 

Similarly, the extending the RMA estimation to higher order autoregressive process AR(p) 

(where p is greater than 1) is as: 

t

k

j
jtjtt YYY εβα +∆+= ∑

=
−−

1
1

~~                                                                                                (13) 

RMAα̂  can be obtained by regression (13). We control for nuisance parameters ( jβ ) by a method 

described in Kim et al (2010). 

2.2.2 Recursive trend adjusted based ADF unit root tests(ADFRTA) 

Consider the following model:  ttt YTY εαγγ +++= −110                                                 (14)   

where tε  is white noise, null hypothesis to be tested is 0H :  α =1 

The model of interest includes a constant and time trend so that the vector of deterministic 

variables considered is Zt=(1,t)’, with corresponding vector of parameters to be estimated, 
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( )., 10 γγ In order to consider the recursive trend adjustment, Shin and So (2001) took an OLS 

based approach whereby the vector of estimators of the deterministic component at time t is 

given by: 

k

t

k
kk

t

k
kt yZZZ ∑∑

=

−

=

=
1

1

1
)'(~γ                                                                                                    (15) 

Thus, once the T by 2 vector of parameters of the deterministic component is estimated as in 

equation (16), following Shin and So (2001), the test regression can be set up using the following 

recursively adjusted variable, 

11
~'~

−−−= tttt ZyY γ                                                                                                                   (16) 

1111
~'~

−−−− −= tttt ZyY γ                                                                                                             (17) 

As equations (17), (18) show, only the sample mean of the observations up to time t-1 is 

considered. Where 11
~' −− ttZ γ  is the mean value of recursively trend variable. 

We have, 

ttt YY εα += −1
~~                                                                                                                      (18) 

And the relevant test statistic given as )ˆ(/1ˆ αατ se−=  , where  )ˆ(αse   is a standard error.  

Remark: In order to account for potential autocorrelation, equation model (18) can be 

augmented with lags of depended variable as in the conventional Augmented DF (ADF) test as  

t

k

j
jtjtt YYY εβα +∆+= ∑

=
−−

1
1

~~                                                                                                  (19) 

see inter, alia, Shin and So (2001) and Taylor (2002). We also control for nuisance parameter 

following Kim et al (2010). 
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Chapter 3  

Experimental Designs for Response Surface Methodology 

 

3.1 Response surface literature review 

 The response surface methodology (RSM) is important in designing, formulating, 

developing and analyzing new scientific studies. It is also efficient in improving existing studies. 

In statistic, the response surface methodology explores the relationship between several 

explanatory variables and one or more response variables. The method was introduced by Box 

and Wilson (1951). Their main idea of RSM is to use a sequence of designed experiment to 

obtain an optimal response. Box and Wilson (1951) suggested using the second degree 

polynomial model to approximate the response variable. They acknowledged that this model is 

only an approximation, not exact, but such a model is easy to estimate and apply even when little 

is known about the process. Response surface methodology has been used in many fields of 

applied statistics (Myers, Khuri and Cater, 1989) since this method was introduced by Box and 

Wilson . Researchers have applied the RSM in econometrics fields in 1970.  

Early studies that use the response surface methodology in econometrics include Hendry 

(1979), Hendry and Harrison (1974), and Hendry and Srba (1977); the references to later work 

were reviewed by Hendry(1984). Cheung and Lai (1993a) estimated finite-sample critical values 

for reduced-rank integration tests, Cheung and Lai (1995) estimated finite sample critical values 

for ADF tests by taking into account dependence on the lag order in addition to sample size.  

 

3.2 The response surface methods and experimental design 
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Figure 1 ADF distribution of ADF t-statistic 

 

Response surface analysis applies to a system where the response of some variables depends 

on a set of other variables that can be controlled and measured in experiment. Simulations are 

conducted to evaluate the effect on the response variable of designed change in control variables. 

A response surface describing the response variables as a function of control variables is then 

estimated. When there are constraints on the design data, the experimental design has to meet the 

requirements of the constraints. In general, the response surface changes can be visualized 

graphically. The graph is helpful to see the shape of the response surface, hence, the function 

f(x1,x2), where x1,x2 are control variables can be plotted versus the level of x1 and x2. The three 

Note:: itr stands for number of iterations. T is the sample size and k is the lag order parameter. This 

distribution was obtained from case of T=100, K=0, with iterations are 1000, 5000, 10000 and 50000. 

The vertical line gives 5% critical values at different itr. 
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dimensional graph shows the response from the side is called response surface plot. Sometimes, 

however, it is easier to see the response surface in two-dimensional graphs, which our study will 

provide in addition to three dimensional graphs to show how response variables are affected by 

control variables. 

In our analysis, the response variable is the finite sample critical value of the RMA based 

ADF (ADFRMA), and the control variables are the sample size (T) and the lag order parameter 

(K). Our design covers 168 different pairing of (T,K), for which T varies from 50 to 700 with an 

increment 50,  and K={0,1,2,3,4,5,6,7,8,9,10,11}. In each experiment for given (T,K), the 1 

percent, 5 percent, and 10 percent critical value are computed as corresponding percentiles of the 

empirical finite-sample distribution based on a same number of iterations. (Figure 1 shows the 

distribution in the case of T=100 and K=0 with iteration numbers 1000, 5000, 10000, 50000. The 

vertical lines give the 5% critical value at different iterations. It is found that the distributions are 

almost saturated at iteration 10000≥ . Therefore, in the following simulation study, the iteration 

number is chosen 10000. 

The data generating process considered in the simulation is a conventional random walk. 

ttt eXX += −1                                                                                                                   ( 20) 

where et is an independently distributed standard normal innovation. Sample series of Xt  are 

generated by setting an initial value x0 equal to zero, and creating T+50 observations, of which 

the first 50 observations are discarded to avoid the problem of initialization. The GAUSS 

programming language and subroutine RNDN are used to generate random normal innovations. 

The regression model given by the equations in section 2.2 is more general than the DGP 

considered. Higher-order DGP’s , for which et can be autocorrelated, is allowed for in our tests 

provided that the lag order parameter K is large enough to capture the dependence. Because if 
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the lag order is too small relative to the true lag order, the error term et in the regression will no 

longer be white noise. In this case, RMA based ADF test can be seriously biased, making 

estimates of critical values inaccurate.    

Selecting the functional form for response surface is not entirely arbitrary and need to be 

satisfied some restrictions. In our case here, intuitively, with a given sample size T, the choice of 

lag order parameter can effect on RMA base ADF test by determining the effective number of 

observation available and number of parameters to be estimated in the test. As the sample size 

increase to infinity, the effect of K on critical value may be diminished to zero. When sample 

size goes to infinity, the effect of sample size on critical value should also be diminished to zero.  

Taking these restrictions into consideration, we adopted the response surface polynomial 

equation by Cheng and Lai (1995a). This experimental design generalizes Mackinnon’s (1991) 

by including lag order, but omits that nuisance parameter that et contains due to autocorrelation.   

The polynomial equation is the following: 

t
j

s

j
j

i
r

i
iKT T

K
T

CV εϕττ +++= ∑∑
==

)()1(
11

0,                                                                         (21) 

where KTCV ,  is the critical value estimate for sample size of T and lag order parameter K, tε  is 

error term. r and s are respective polynomial orders for variables 1/T and K/T. The second 

summation term capture the incremental contribution from the lag order. It is obvious that K/T 

variable will be diminished to zero as value of T goes to infinity. Since both 1/T and K/T 0→  as 

,∞→T  the intercept term gives an estimate of asymptotic critical value.  

In order to find the response surface equation that fits the data well, a range of different value 

of r and s have been considered, the test values to be found in next chapter.    
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Chapter 4  

Monte Carlo Simulation Results 

    

Considering different values of r and s (r = 1,2,1/2, s = 1,2,1/2) in estimating equation (21). 

For the critical value in the tests of the constant with a trend and without a trend model, It was 

found that data fits well at r=1 and s=1, the higher orders of polynomial term do not add much 

power to the explanatory variables. So, the response surface equation can be written as: 

tKT T
K

T
CV εϕττ +++= )()1( 110,                                                                                     (22) 

Table 1 shows the results of response surface regression from equation (22). The tests with 

and without a trend are conducted at 1%, 5%, and 10% significance levels. (6 response surface 

regressions were run). 0τ  gives intercepts at three different significance levels ,which are very 

close to the asymptotic critical values that computed by Shin and So (2001) when the sample size 

is large. 1τ  is the coefficient of variable 1/T, 1φ  is the coefficient of variable K/T. Note that in  

both cases, variable 1/T showed to be statistically significant in all regressions at all three levels. 

K/T variable showed up to be even more statistically significant in all regressions at all three 

levels than the variable 1/T. This implies that the effect of lag order on critical values can be 

more sensitive than that of the sample size in the finite sample. In other words, lag order in 

addition to the sample size has a strong effect on finite sample critical values for RMA based test. 

Various measures of data fit are also computed, including goodness of fit, the standard error of 

regression and mean absolute error. The results in Table 1 show the ability of the response 

surface equation (22) to fit the data, not only the intercepts are close to asymptotic critical value, 

but also in the view of goodness of fit (R squares are high at all three significance level in all 
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regressions), and in the views of standard error and mean absolute error(both measures of 

standard error and the mean absolute error are fairly small in all six regressions).  

Table 1 Response surface estimation of Critical values for the ADFRMA statistic 

Constant no trend Constant and trend Coefficient 
& statistics 1% 5% 10% 1% 5% 10% 

-2.51033 -1.86617 -1.53426 -2.51148 -1.8583 -1.5118 
τ0 

0.00877 0.00602 0.00476 0.00497 0.00387 0.00337 

4.41123 4.24757 4.13655 7.05625 6.7304 6.17495 
τ1 

1.99228 1.36615 1.08037 1.12764 0.8787 0.76494 

-21.902 -13.7101 -10.4743 -32.536 -22.3816 -18.2898 
φ1 

0.27332 0.18742 0.14822 0.1547 0.12055 0.10494 

R2 0.98859 0.98604 0.98479 0.99832 0.99781 0.9975 

σ 0.08206 0.05627 0.0445 0.04645 0.03619 0.03151 

Mean(|ê|) 0.05901 0.0362 0.02924 0.03335 0.02393 0.01971 

Max(|ê|) 0.58802 0.41714 0.34164 0.15864 0.23551 0.22572 

notes: The response surface regression is given by equation (22). The ADFRMA , Corresponding heterorskedasticity-consistent 

standard errors for coefficient estimates are put in parentheses. δ represents the standard error of the regression. Mean  gives 

the mean absolute error of the response surface prediction against estimated critical value from simulations.   

Some finite sample critical values were estimated by Shin and So (2001) for RMA based 

ADF unit root tests based on K=0. It is interesting to compare those estimates directly with the 

response estimate of critical values obtained here as displayed in Table 2. The estimates provided 

by Shin and So (2001) are given in the third column. The first column is sample size, The second 

column is the significance level (1%, 5%, and 10%). The last four columns contain response 

surface estimates for K=0, K=4, K=7, K=10. Not unexpectedly, when K equals zero, the two 

estimates are matched very closely. However, if we look at K=4, K=7 and K=10, it is evident 

that critical values obtained (5-7 column) are different from those obtained by Shin and So 

(2001). Note that differences in those estimates decrease as sample size increase. Therefore, if 
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lag order is greater than one, using the asymptotic critical values that tabulated based on K=0 can 

be misleading, which causes one to reject nonstationarity too often. 

Table 2a Lag Order and Finite-sample Critical Values 

Constant no trend Sample 
Size 

Sig. 
Level 

SS 
Estimate K=0 K=4 K=7 K=10 

10% -1.54 -1.52061 -2.2064 -2.87791 -3.70069 

5% -1.88 -1.87178 -2.8269 -3.57357 -4.71707 50 

1% -2.57 -2.53395 -4.06249 -5.43865 -6.9005 

10% -1.54 -1.52744 -1.8864 -2.17908 -2.49887 

5% -1.88 -1.89109 -2.3313 -2.76876 -3.11599 100 

1% -2.54 -2.55762 -3.32239 -3.8541 -4.52167 

10% -1.54 -1.53696 -1.70023 -1.81685 -1.90924 

5% -1.88 -1.85298 -2.0581 -2.24729 -2.35806 250 

1% -2.53 -2.47415 -2.82888 -3.07332 -3.2957 

10% -1.54 -1.54083 -1.61355 -1.66143 -1.71053 

5% -1.88 -1.86064 -1.95929 -2.04771 -2.07821 500 

1% -2.53 -2.55082 -2.67263 -2.78071 -2.93049 

note: The finite-sample critical values tabulated for the RMA based ADF test. The third column gives the estimated of critical 

values provided by Shin and so, their critical values are tabulated based on K=0. 

By comparing, we note that when lag order is greater than 1 in finite samples, the RMA 

based test with asymptotic critical values can be oversized even when the sample size is fairly 

large (e.g., T=500). Table3 and Table 4 contain the size samples for 50, 100, 150, 200, 250, 300, 

350, 400, 500 and 700. Lag order parameter for k=0, k=1,k=4, k=7, and k=10, for the constant 

with a trend and the constant without a trend case respectively.  
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Table 3 Lag Order and Finite-sample Critical Values (with constant only) 

Constant no trend Sample 
Size 

Sig. 
Level K=0 K=1 K=4 K=7 K=10 

10% -1.52061 -1.71129 -2.2064 -2.87791 -3.70069 

5% -1.87178 -2.09758 -2.8269 -3.57357 -4.71707 50 

1% -2.53395 -2.91018 -4.06249 -5.43865 -6.9005 

10% -1.52744 -1.61213 -1.8864 -2.17908 -2.49887 

5% -1.89109 -1.97353 -2.3313 -2.76876 -3.11599 100 

1% -2.55762 -2.74225 -3.32239 -3.8541 -4.52167 

10% -1.53581 -1.59643 -1.73442 -1.93768 -2.13946 

5% -1.88011 -1.95934 -2.14825 -2.40002 -2.63186 150 

1% -2.51324 -2.71848 -3.01869 -3.37777 -3.80271 

10% -1.56443 -1.61965 -1.72762 -1.85436 -1.96858 

5% -1.92177 -1.98652 -2.15246 -2.31493 -2.47407 200 

1% -2.52997 -2.66364 -2.94306 -3.2297 -3.52086 

10% -1.53696 -1.58198 -1.70023 -1.81685 -1.90924 

5% -1.85298 -1.91337 -2.0581 -2.24729 -2.35806 250 

1% -2.47415 -2.56988 -2.82888 -3.07332 -3.2957 

10% -1.54128 -1.57486 -1.67971 -1.75265 -1.81263 

5% -1.87465 -1.92166 -2.05973 -2.12496 -2.26618 300 

1% -2.58249 -2.62431 -2.80629 -2.96733 -3.1465 

10% -1.52718 -1.5624 -1.64502 -1.73164 -1.81761 

5% -1.87848 -1.91812 -2.03097 -2.14781 -2.23945 350 

1% -2.54502 -2.65563 -2.80415 -3.0574 -3.17389 

10% -1.57436 -1.59626 -1.67024 -1.71469 -1.78129 

5% -1.90003 -1.93776 -2.04227 -2.11551 -2.19669 400 

1% -2.56224 -2.62814 -2.76469 -2.93333 -3.03889 

10% -1.54083 -1.5592 -1.61355 -1.66143 -1.71053 

5% -1.86064 -1.89132 -1.95929 -2.04771 -2.07821 500 

1% -2.55082 -2.60103 -2.67263 -2.78071 -2.93049 

10% -1.54923 -1.57325 -1.60717 -1.63943 -1.67771 

5% -1.88772 -1.90553 -1.96961 -1.99999 -2.06051 700 

1% -2.49949 -2.4997 -2.5837 -2.64767 -2.76336 

 

 



 21

Table 4 Lag Order and Finite-sample Critical Values (with constant and trend) 

Constant no trend Sample 
Size 

Sig. 
Level K=0 K=1 K=4 K=7 K=10 

10% -1.47205 -1.80006 -2.77986 -3.86395 -5.13153 

5% -1.84173 -2.2253 -3.39948 -4.79138 -6.25507 50 

1% -2.52754 -3.10357 -4.81799 -6.86265 -8.92842 

10% -1.49502 -1.66452 -2.15989 -2.71169 -3.27288 

5% -1.84282 -2.06463 -2.65397 -3.34345 -4.01644 100 

1% -2.5349 -2.86154 -3.73827 -4.79021 -5.74805 

10% -1.47004 -1.60452 -1.92896 -2.30694 -2.66329 

5% -1.82663 -1.97507 -2.41763 -2.8466 -3.27923 150 

1% -2.49265 -2.69174 -3.31183 -3.91968 -4.71777 

10% -1.53278 -1.62822 -1.8635 -2.1257 -2.37419 

5% -1.84629 -1.99704 -2.30306 -2.61474 -2.9213 200 

1% -2.4987 -2.66193 -3.11449 -3.68513 -4.04091 

10% -1.50982 -1.5751 -1.78759 -1.99093 -2.17857 

5% -1.83116 -1.92892 -2.21428 -2.43789 -2.69948 250 

1% -2.49963 -2.64609 -2.97453 -3.43644 -3.76817 

10% -1.51862 -1.5623 -1.73839 -1.9168 -2.07993 

5% -1.85901 -1.93811 -2.13809 -2.34395 -2.53138 300 

1% -2.47546 -2.58012 -2.88916 -3.25563 -3.53404 

10% -1.49331 -1.54098 -1.67846 -1.84522 -1.99903 

5% -1.83554 -1.90016 -2.06524 -2.26431 -2.472 350 

1% -2.473 -2.57033 -2.85746 -3.13251 -3.41309 

10% -1.52667 -1.56711 -1.69544 -1.84959 -1.95867 

5% -1.85861 -1.92469 -2.09782 -2.26432 -2.41766 400 

1% -2.55818 -2.61636 -2.84022 -3.11207 -3.33235 

10% -1.52286 -1.55684 -1.6599 -1.76309 -1.85708 

5% -1.88443 -1.92506 -2.02402 -2.16568 -2.25709 500 

1% -2.54 -2.63973 -2.75189 -2.94264 -3.17992 

10% -1.51037 -1.54111 -1.61852 -1.67488 -1.74792 

5% -1.84951 -1.88258 -1.95933 -2.04298 -2.13594 700 

1% -2.4927 -2.5482 -2.69819 -2.77213 -2.93323 
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Figure2  Plots of Monte Carlo-Estimated critical values  

 

 
 

 

 

 

 

Note: figure 2 is estimated value for various RMA based ADF test, where T is the sample size, and K is 

the lag order parameter. In each graph, the vertical axis gives the Monte-Carlo estimated values 

corresponding to different combination of T and K 
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Finally, the Monte Carlo simulation critical values are plotted as Figure 2 for various 

ADFRMA tests. Three dimensional graphs provide a sense of the numerical fluctuation in the 

critical values as a function of the lag order parameter K and sample size T. The 6 graphs are 

arranged in a 3 by 2 matrix to allow efficient comparison across types of tests and across the test 

sizes. To see how critical values are affected by sample size T and lag order K more clearly, we 

also provide two dimensional graphs (Figures 3 and 4). 

Three dimensional graphs of Figure 2 show that the presence of a signed the correction to the 

asymptotic critical value at k=0 and ∞→T . This is consistent with the fact that 1τ , which 

determines the effect of pure sample size, are positively signed in response surface. The effect of 

lags is unambiguously signed in all response surfaces. The graphs also show that critical values 

decrease (while absolute values increase) when k increases. Therefore, the test with asymptotic 

critical values is overall oversized. A comparison between graphs shows that the similar speeds 

at which finite-sample critical values approach the asymptotic levels. 

Figure 3a and 3b are two dimensional graphs for the constant only case. The color bar in 

Figure 3a represents different number of k, which varies from 0 to 11. The color bar in Figure 3b 

represents different sample sizes, which varies from 50 to 700. By observing these graphs, we 

have found that (1) given a k, critical values increase as sample sizes increase and the signs are 

consistent with 1τ  in response surface. Finite-sample critical values converge gradually to their 

asymptotic critical value; (2) given a relatively small sample size, critical values linearly 

decrease (absolute critical values increase) as k increases, which causes the test with asymptotic 

critical values to be oversized. When sample size (T) goes to infinity, critical values with k and 

without k converge to the asymptotic critical value.  
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Figure 4a and 4b are 2-D plots for the constant with a trend case. It is clear that the pattern of 

critical value as a function of T and K is very similar to that of the constant only case. The 

asymptotic critical values for both time trend and no trend case are also nearly the same. 

However, the variations of critical value in time trend case is greater than that of no trend case, 

which means the test with asymptotic critical values in constant with time trend becomes more 

oversized. 

  In summery, based on those simulation results, we found that asymptotic critical values are 

valid only when lag order is one.  
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Figure 3 RMA based critical value as a function of (a) T and (b) K in the case of constant 

without time trend. 

 

(a) 

(b) 
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Figure 4 RMA based critical value as a function of (a) T and (b) K in the case of constant and 

time trend. 

(b) 

(a) 
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Chapter 5  

Conclusion 

 

Usually the practice of applying the RMA based unit root test has largely ignored the 

sensitivity of the lag order, which is often justified by asymptotic results that the limiting 

distribution of the test is free of the lag order. Even though the lag order may not affect the 

critical values when T goes to infinity, this practice may not be valid. Cheung and Lai (1995a) 

showed that critical values for the ordinary least square (OLS) based ADF test depend on the lag 

order in finite samples. We extend their work here by examining a more powerful RMA based 

ADF unit root test. Our Monte Carlo simulation results show that asymptotic critical values for 

the test are valid only when the lag order is one (k=0). When the lag order is greater than one, the 

RMA based unit root test with asymptotic critical values tends to be overall over-sized when the 

deterministic terms are allowed. 
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Appendix: Outline for Generating Critical Values 

 

1. Given T, generate N sets of random walk observations, where N=10000. Each series is 

generated by setting initial value equals zero, and creating T+50 observations, of which the first 

50 observations are discarded to avoid problem of initialization. The GAUSS programing 

language and subrouinte are used to generate random normal innovations. 

 

2. In the case of the constant with no trend, obtain recursively adjusted mean value by equation 

(10). For the case of constant with trend, equation (15) is calculated and the recursively adjusted 

trend mean value 11
~' −− ttZ γ  is thus obtained.   

 

3. For each parameter K, test regression of equation (11) or (18) for k=0 and equation (13) or (19) 

for k>0 to estimate RMAα̂ . Then RMA based ADF t statistics are calculated.  

 

4. From N statistic for each K and for RMA based ADF test statistic, obtain α % percentile, 

α =1, 5, 10, which gives α % critical value. 

 


