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Abstract 

 

 

 This dissertation presents a solution for embedded neural networks across many 

types of hardware and for many applications.  The software package presented here 

allows the user to develop a neural network for a desired application, train the network, 

embed it on most platforms, and verify its functionality.  This software supports 

advanced and very powerful types of neural networks including cascade, fully, and 

arbitrarily connected networks.  It also supports several different training algorithms both 

first and second order.  This system automates the process of transforming the trained 

neural network to an embedded neural network on most microcontrollers with a C 

compiler.  There is also an assembly language neural network highly optimized for speed 

based on an inexpensive 8-bit PIC microcontroller.  Software for testing and verifying 

functionality of the embedded neural networks is also included.  Several neural network 

examples are also shown being calculated on the embedded system.   
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1. Review of Embedded Neural Networks 

 Neural networks have become a growing area of research over the last few 

decades and have affected many branches of industry.  The concept of neural networks 

and a few types of their applications in industrial electronics are summarized in [1].  In 

the field of industrial electronics alone there are several applications for neural networks, 

some include motor drives [2-9] and power distribution problems dealing with harmonic 

distortion [10-23].   These papers show how valuable neural networks are becoming in 

industry.  Due to the nonlinear nature of neural networks, they have become an integral 

part of the field of controls [24-26].  On a parallel note, embedded applications are also 

becoming exponentially more prevalent [27-33].  However, even though these two 

independent topics are continually growing there is not a significant amount of research 

being done on embedded neural networks.  This dissertation proposes a solution for 

implementing neural networks on microcontrollers for many embedded applications.   

 Many people have a predisposition about neural networks, one being that they 

require significant computing power.  One researcher stated, "most embedded 

microprocessor cores lack the performance for running neural networks"  [34].  Many 

researchers have implemented neural networks on sophisticated hardware; for example, 

creating dedicated Application-Specific Integrated Circuits (ASICS) as in [34-39].  

Others have used Field Programmable Gate Arrays (FPGAs) to perform the neural 

network calculations for embedded tasks [40-46].  High-end digital signal processors 
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(DSPs) are also commonly used to implement neural networks because they are typically  

designed with floating point hardware.  They also have multiply and accumulate registers 

which are helpful when processing neural network applications.  A few examples of DSP 

implementations are described in [47-54].  Because DSPs and FPGAs have more 

computing power, they tend to be very expensive. However, this large amount of power 

is not necessary for implementing neural network tasks that can easily be done on an 

inexpensive microcontroller.   

  There is no current solution for implementing neural networks into an embedded 

environment other than for a few specific applications.  The above-mentioned articles 

validate the utility of neural networks.  Technology as a whole is becoming more portable 

which leaves a need for a portable neural network solution.  This dissertation discusses a 

solution for embedding any neural network on a microcontroller.  It also offers methods 

for implementing Multi Layer Perceptron (MLP) and arbitrarily connected networks 

(ACN), discussed in the next section, on a microcontroller.    

1.1. Neural Network Critical Components 

 Neural Networks are made up of several critical components.  The largest 

component is the neuron itself which is the triangle component in Figure 1.  A neural 

network is made up of one or more neurons connected in any configuration.  The 

connecting lines represent weights.  Selecting these weights determines how the neural 

network will respond to particular input patterns.  Training neural networks is the method 

of selecting weights to give the desired output with a given set of inputs.  Neural 
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networks gain their nonlinear properties from their activation function which is 

represented by the signal passing through the neuron.  Neural networks can take on many 

shapes and sizes and be arranged in an infinite number of ways.  Some of the most 

common networks will be discussed in this dissertation.    

Weight 1

Weight 3

Weight 2

Input 1

Input 2

+1





inputs

n

nn winNet
0

Output=Activation(Net)

Output

 

Figure 1: A single neuron neural network with two inputs and one output.   

  

1.2. MLP Versus Arbitrarily Connected  Networks 

 Much of embedded neural network research has involved using Multi Layer 

Perceptron (MLP) networks.  Little research, however, entails neural networks with 

arbitrarily connected networks on the embedded system level.  This is unfortunate 

because these neural networks are superior to traditional MLP networks in several ways.  
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These networks are faster, more reliable to train, more efficient because less neurons are 

needed to solve similar problems, and they can solve more difficult problems that are 

nearly impossible for MLP networks to solve[55-62].  One common benchmark for 

training neural networks is the Parity-N problem.  For example, if an MLP network is 

used with one hidden layer with ten neurons then the largest parity problem that can be 

solved is parity-9.  However, if the same ten neurons are used in arbitrarily connected 

cascade architecture then the network would be capable of solving parity-1023 [63].  The 

MLP and arbitrarily connected cascade architectures can be seen in Figure 2 and Figure 3 

respectively.   

 Despite the drawbacks of using MLP networks, neural network research is still 

exclusively done using them. As stated earlier, arbitrarily connected networks are 

superior.  Unfortunately, people seldom utilize the latter because they do not have the 

software to train them.  This dissertation offers a solution to train these networks. 
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Figure 2:  Ten hidden neuron MLP network for solving parity-9. 
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1023

Out

Figure 3:  Fully connected cascade neural network with ten hidden neurons for 

calculating parity-1023. 

1.3. Activation Functions 

 The most common neural network activation function is tangent hyperbolic (tanh) 

which is defined in Equation 1 and shown in Figure 4.  Much research on embedded 

neural networks uses some approximation of tanh and most training software trains 

neural networks based on the activation function tanh.  One of the simplest 

approximations is a linear approximation with saturation points as shown in Figure 5  

[64].  A piecewise linear activation function approximation of tanh is shown in Figure 6 

[65].  All of these linear approximations are based on the tanh activation function and 
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allow for quick, simple linear calculations, however at the expense of decreasing 

accuracy.  Tanh is defined in Equation 1. 

 
     

     

     
 (1)  

 There are other nonlinear approximations that are easier to calculate than tanh but 

more accurate than the linear versions shown here.  One very common activation function 

is the sigmoid function [66-67].  The sigmoid function is shown in Equation 2 and Figure 

7.  This sigmoid function has a similar shape as tanh but it ranges from zero to one rather 

than negative one to positive one.  This needs to be taken into consideration when the 

neural network is trained because commercially available neural network training 

software may not include the sigmoid activation function; thereby, creating difficulty for 

the user to train the network with the same activation function the hardware is going to 

use.    

 
     

 

     
 (2)  

 The Elliott function is another nonlinear activation function used by [68].  This 

function is between negative one and positive one but its shape is not as steep as tanh 

requiring the network to also be trained using the Elliot function.  This function can be 

seen in Equation 3 and Figure 8. 

      
 

     
 (3)  

 The final common activation function is a simple lookup table.  The lookup table 

can have a variety of different layers of accuracy but this accuracy is exponentially 

proportional to the number of data points that must be stored.  This approach was used in 
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[69] and stored 256 values, which is not enough resolution.  The problem with this 

method is a vast amount of memory must be dedicated to storing the values.     

 

 

 

Figure 4:  Tangent Hyperbolic function used for neural network activation function. 
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Figure 5:  Linear activation function with saturation. 

 

Figure 6:  Piecewise linear activation function. 
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Figure 7:  Sigmoid function non-linear tanh approximation 

  

Figure 8:  Elliott function non-linear tanh approximation. 
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1.4. Analog implementation 

 The analog implementation of neural networks becomes a broad category of 

methodologies of using neural networks.  Most people's renditions work for their specific 

cases but are not general solutions for analog neural networks.  The different ways to 

implement neural networks in an analog system are as diverse as the applications for 

neural networks.  Every researcher has their own method and approach which is most 

appropriate for their need and resources.  Some researchers make every network on the 

ASIC level while others have created an ASIC for a single neuron that they can use in 

different applications [37, 70-73]. 

Many different activation functions are used from simple threshold functions that 

are essentially a digital 1 or 0 output to full tanh approximations.  An activation function 

that can easily be implemented in VLSI without the need of resistors is demonstrated in 

Figure 9 [72].  This activation function is made up of two CMOS coupled differential 

pairs.  These circuits are biased by IH and IL which also become the higher and lower 

limits of the sigmoid function.  The right half of the circuit is a voltage reference that is 

biased at ground.  This centers the sigmoid around zero.   The output of the circuit can be 

seen in Figure 10. 
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Figure 9:  Sigmoid activation function with an input voltage and output current. 

 

Figure 10:  Analog sigmoid circuit output. 
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 Analog neural network implementations offer incredible speed of calculation but 

not without a price.  Probably the single largest deterrent for analog networks is the cost.  

Application Specific Integrated Circuits (ASICS) are very expensive and time consuming 

to produce making them not practical for most neural network applications.   

 Analog neural networks also have other pitfalls such as accuracy of the 

fabrication process affecting the accuracy of the network output.  It is hard to produce 

very accurate resistive material which is typically used for the weights.  It is also difficult 

to account for circuit variation from temperature dependant components.  Moreover, it is 

very difficult to create accurate analog neural networks.   

 Finally, with integrated analog circuits it is not possible to modify the network 

once it is finished.  This prevents the network from being retrained or even slightly tuned 

to be more accurate.  Overall, analog neural networks simply are not a feasible solution 

for the majority of neural network applications.   

1.5. Microcontroller Implementations 

 There have been few papers published [66, 74-79] on microcontroller-based 

neural networks on a comparable level to the one used in this dissertation.  These papers 

will be discussed in the following section.  However, they are lacking in several 

categories which is the main motivation for this work.  These categories are neural 

network architectures, activation function, and training algorithms.  Neural networks are 

great for approximating systems with limited training points but are exposed to a large 



14 

 

variety of input patterns.  Neural networks do a great job of predicting the outputs 

between the data points.  In a large portion of the research, neural networks are used to 

solve digital type problems with a limited number of inputs and outputs.  These problems 

are not well suited for neural networks but could be solved simply using logic gates.  In 

these applications all possible scenarios are specifically trained.  This situation does not 

utilize the full power of the neural network.   

1.5.1. Embedded Neural Network for Fire Classification Using an 

Array of Gas Sensors 

 Bashyal et al. at Missouri University of Science and Technology created an 

embedded neural network for fire classification [66].  This application does not require 

the system to be able to continuously process data in real-time since once a fire is 

detected and classified, its work is finished.  Even if the calculations required several 

seconds, this is acceptable for this application.  This network is very large relative to the 

simplicity of the problem to be solved.  It has seven inputs and three outputs with the 

configuration shown in Figure 11.   
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Figure 11:  Network used by Bashyal et al. in "Embedded Neural Network for Fire 

Classification Using an Array of Gas Sensors". 

 

 Each of the seven inputs is one individual sensor and the three outputs represent 

the three types of fires to be classified: No Fire, Class A, and Class B.  This work appears 
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to questionable due to the data used for training the network.  The table containing the 

training data displays the seven sensor readings for different types of materials burning. 

Of the seven sensors, however, only one sensor is needed to classify the difference 

between Class A and Class B fires.  The other six inputs become irrelevant.  Based on the 

this data, a neural network of this size is not needed to analyze the data.   The sensor in 

the far right column accurately distinguishes the differences between the items burnt once 

the temperature level is elevated.  The training set here is shown in Table 1.  

 

Table 1:  Training data used by Bashyal et al. in "Embedded Neural Network for Fire 

Classification Using an Array of Gas Sensors".  The authors labels the six sensor readings 

TGS but do not number each sensor. 

 

 Looking at the training data of Bashyal et al., it can be assumed that most of the 

neurons in the network shown in Figure 11 are not actually contributing to the correct 

classification of the fires.  It seems that the designer is unaware of their system, so it can 
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be very difficult to detect whether the entire network is working or a small number of 

neurons are carrying the load.  The network configuration [66] is inefficient for this 

dataset because a neural network will train to the simplest distinguishing characteristic; in 

this case it was the last sensor and the temperature sensor and the other data need not be 

used.  

 Bashyal et al. also only used integers and not fractional math which is a limiting 

factor of the work.  The authors used Error Back Propagation (EBP) for training, which 

they admit is another limitation of the system.  The authors also mention that the 

embedded network was manually converted from the computer based network to an 

embedded network and that it would be optimal to have an automated system for this 

implementation.  This dissertation addresses all unsolved issues of [66]: arbitrary 

architectures, training algorithms, and completely automated embedded implementation.   

1.5.2. Microcontroller Based Neural Network Controlled Low Cost 

Autonomous Vehicle 

 Farooq et al. from the University of The PunJAb Lahore in Pakistan developed a 

neural network to control a model remote control car [79].  The neural network had three 

sensor inputs and four outputs for the motor control.  The inputs have only two bits of 

precision for a sonar sensor.  The network is shown in Figure 12 and again this network is 

much larger than needed for this problem.  This network should not require as many 

neurons in the hidden layer.  Since the author trained with EBP, more neurons were 

required to solve the same problem because of the limitations of the first order gradient 

approach for minimizing the error.  If the authors had used arbitrarily connected networks 
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and trained with a second order algorithm, this network could have been greatly reduced 

in size possibly to a point of completely removing the hidden layer neurons entirely.   

 The authors of [79] are not using the neural network to its full potential as 

discussed previously because all possible input and output patterns are trained.  In this 

case, the model car can only do one of four possible directions: Back, Forward, Right, or 

Left.  This system could be redesigned so that there are only two output neurons, one for 

each motor.  This way, the car’s output can be analog, based on simple inputs.  Ideally, 

the input sensors should be analog or at least high resolution digital inputs; for example 

8-bits instead of two.  The network could then be trained with sample patterns like the 

digital ones used for their example and allow the network to extrapolate the data between 

points.  This would create a smooth turning car opposed to very rigid all-or-nothing 

movement.   



19 

 

 

 

 

 

 

 

 

Figure 12:  Neural network from Farooq's" Microcontroller based Neural Network 

Controlled Low Cost Autonomous Vehicle". 

 

 Farooq et al. also used a piecewise linear approximation of tanh for his activation 

function.  A similar activation function can be seen in Figure 6.  This activation function 

is very simple to calculate but it degrades the accuracy of the neural network, especially 

with more layers because each error is amplified by the next layer.   

 Overall their work did not implement a reasonable application of a neural network 

that is used to its fullest potential.  The outputs are rounded to such a broad 4-bit result 

that it would not be difficult to achieve with many types of control systems.   

 

 



20 

 

1.5.3. Control Sensor Linearization Using a Microcontroller-Based 

Neural Network 

 Dempsey et al. from Bradley University in Peoria, IL created an embedded neural 

network used for sensor linearization [77].  This application is a much more practical use 

of neural networks because it utilizes the nonlinear properties of the network.  However, 

it is a very simple MLP network trained with EBP.  The author optimized the architecture 

and eliminated weights that were approximately zero to decrease the number of 

calculations for the processor.  The network is shown in Figure 13.  The authors of [77] 

even specify that the entire network is simplified to five multiplications and three 

additions.  The activation function used is a lookup table so the calculations on the 

microcontroller are very limited and are acceptable for this specific network and 

application.  However, this work cannot be translated to general applications because the 

network is customized and simplified for this application.  This work is also done on an 

8-bit microcontroller, the Intel 87C51, which is slightly more sophisticated than the one 

used in this dissertation because it contains a hardware divider. 

 

Figure 13:  Neural network for "Control Sensor Linearization Using a Microcontroller-

Based Neural Network" by Dempsey et al. 
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 Dempsey et al. discusses how the neural network degrades some of the 

characteristics of the controller they were using.  They attributes these errors to several 

things.  First, the errors are rounded to one decimal place which makes the network a 

crude approximation of a potentially very accurate control device.  Secondly, they 

contribute to the error by using a lookup table for the activation function. The final 

significant loss of data is the truncation of intermediate calculations of the neural 

network.   

 All of the errors that Dempsey et al. note in [77] are addressed in this dissertation.  

The second order tanh activation approximation is more accurate than the lookup table.  

The use of 16-bit and 32-bit pseudo floating point numbers to prevent truncation at 

intermediate calculations increase accuracy.  Also, the storing of 16-bit pseudo floating 

point weights drastically reduces the round-off error created by their design.  This will 

come at a cost of slightly more calculations, but in a very similar calculation time based 

on a slightly faster clock speed.   

1.5.4. A Solar-powered Battery Charger with Neural Network 

Maximum Power Point Tracking Implemented on a Low-Cost 

PIC-microcontroller 

 Petchjatuporn et al. from the University of Technology in Thailand used a small 

neural network to control the power point on a solar charger[64].  This is a great 

application of an embedded neural network because it is a simple but very nonlinear 

control problem.  However, the author’s approach can be improved in a few ways. First, 

the activation function is a piecewise function with two saturation points at the limits but 
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then in the "linear" region, as the author describes, the output is simply the input.  The 

activation function does not require calculations between 0 and 1.  This heavily limits the 

neural network because the network gets its nonlinearity from the activation function, 

and, in this case, that nonlinearity is removed.  The next problem with this network is the 

architecture and training of the network.  The network can be seen in Figure 14.  

 

Figure 14:  Neural Network implemented in Petchjatuporn's work on "A Solar-powered 

Battery Charger with Neural Network Maximum Power Point Tracking Implemented on 

a Low-Cost PIC-microntroller". 

 

The input neuron really is not a neuron at all; it is a specific power calculation based on 

duty cycle shown in Equation 4.     

       
     

       
 (4)  

 The weights for the entire network are designed and actually remove the nonlinear 

properties of the network. In the first layer, they are +1 and -1.   In the second layer, the 

weights are chosen to make the middle layer linear between -1 and +1 without the use of 

an activation function.  This network could be more powerful if it were trained.  The 

purpose of neural networks is to use nonlinearities to the designer’s advantage and train 

them to solve the application needed.  In this case, the author simply linearized the 
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network and designed it to do what was desired.  However, in doing so, this defeats the 

purpose of using a neural network.  This application could also benefit from using an 

arbitrarily connected network and removing at least one neuron if not more while 

obtaining better results.  The application warrants a neural network but the 

implementation used prevents the network from operating at its full potential. 

1.6. Current Research Summary 

 The current research on embedded neural networks in low end microcontrollers 

does not fully utilize the neural networks to their potential.  Most of the work modifies 

the neural networks to simplify calculations to make them easier to implement, or 

simplifies the data to make their training work easier.  The networks are all converted 

manually from a PC based network to the embedded network.  None of the current work 

uses arbitrarily connected neural networks but instead only MLP networks. All of the 

previously published networks that are trained are trained using EBP which greatly limits 

the ability to train the networks.  These neural network implementations used integer 

math or single digit fixed point math to achieve their results. 

 This dissertation addresses most of these shortcomings of the listed work.  It first 

offers a wide variety of training algorithms for training neural networks, including first 

and second order algorithms.  An automated system was created to convert the newly 

trained network to an embedded network.  The embedded networks are all configured 

using any feed-forward architecture.  The embedded neural network also uses a pseudo 

floating point algorithm for exceptional accuracy on a limited system.  In addition to the 
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pseudo floating point mathematics is a second order approximation of tanh.  This is a 

very accurate and nonlinear approximation to maintain the integrity of the nonlinear 

neural network.  In addition to creating this specialized neural network for the PIC 18F 

series microcontroller, the software also generates a C version of the network that can be 

easily transferred to any microcontroller with a C compiler.  This will only require minor 

changes to such things as headers and initial addressing.   
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2. Neural Network Training  

The Neural Network Trainer (NNT) was originally developed as a tool for training 

neural networks for use on a PC or comparable computing machine.  NNT originally 

produced for the user an array of weights that corresponded to the weights in a neural 

network architecture designed by that user.  From this point, it is was the user's 

responsibility to create a neural network that could utilize these weights [80].  This 

dissertation transforms this original tool into a complete neural network implementation 

package for microcontrollers.  This software package includes the trainer, an assembly 

language based generic neural network for the PIC 18 series microcontroller, 8-bit neural 

network simulator, a microcontroller communication interface for testing embedded 

neural networks, and a C implemented neural network for any microcontroller with a C 

compiler.  These features work together to create a total package that can be used not 

only to implement a neural network for one case but a very wide variety of neural 

network applications.  This software is the only published embedded neural network 

software that uses arbitrarily connected neural networks. 

In addition, this software allows the user to create, train, test, and implement a neural 

network on a microcontroller for his purpose in an automated process.  The tools, steps, 

and details of the process will be discussed in the sections following. 
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2.1. Neural Network Trainer 

The user interface for the Neural Network Trainer is shown in Figure 15.  The user 

will first notice there is an empty plot on the left side of the trainer where the iterations 

versus means squared error are displayed as well as training parameters on the right hand 

side.  The user must follow a few simple steps before training a network.  He must 

prepare an input file that contains the training data and an architecture file that describes 

the network connections, and then set the training parameters.   

 

 

Figure 15:  Front end of Neural Network Trainer (NNT) 
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2.1.1. Training Data 

The user must create a training file with all the data sets required to train the neural 

network.  This data may be created in various ways such as by hand, spreadsheet, or 

directly through Matlab.  A simple parity-3 problem will be used for demonstration 

purposes.  This demonstration will use bipolar neurons so the extremes for data will be 

+1 and -1.  The training data for parity-3 is represented by the following matrix: 

 

In1 In2 In3 Out1 

-1 -1 -1 -1 

-1 -1 1 1 

-1 1 -1 1 

1 -1 -1 -1 

1 -1 1 1 

1 1 -1 -1 

1 1 1 1 

 

As with any parity-N problem there are    possible outcomes.  As the top row indicates 

the first three columns are the inputs and the last column is the output for that row.  The 

top row of the matrix is for demonstration purposes only but is not needed in the actual 

data file.  This data is then copied to a text file and saved with the file extension .dat.  

Delimiters other than white space are not required.  Once the data file is finished it can be 

referenced by numerous architecture input files. 
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2.1.2. Input File 

The input file contains the network architecture, neuron models, data file reference, 

and optional initial weights.  Each input file will be unique to a specific architecture but 

not necessarily to each data set.  In other words, the same data set can be used for several 

different architectures simply by creating a new input file.  The input file contains 3 

sections: the architecture, model parameters, and data file definition.   The following is an 

example of an input file for the parity-3 problem discussed in the previous section.   

\\ Parity-3 input file (parity3.in) 

n 4 mbip 1 2 3  

n 5 mbip 1 2 3 

n 6 mbip 1 2 3 4 5 

 

W   5.17  20.08 -10.01   -4.23 

W   1.0   10.81   2.20   19.84  

 

.model mbip fun=bip, der=0.01 

.model mu   fun=uni, der=0.01 

.model mlin fun=lin, der=0.05 

 

datafile=parity3.dat 

 

The first line is a comment.  Either a double backslash, as in C, or a percent sign, as 

in Matlab, is acceptable as a comment delimiter.  After the comment comes the network 

architecture for a 3-neuron fully-connected network as shown in Figure 16. 
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Figure 16: Three Neuron architecture for parity-3 problem. 

 

The neurons are listed in a net list type of layout that is very similar to a SPICE 

program. This way of listing the layout is node based.  The first nodes are reserved for 

the input nodes. The first character of the line is an N to signify that this line describes a 

neuron.  The N is followed by the neuron output node number.  Looking at Figure 16, the 

first neuron is neuron 4 because it is the first available number after the three inputs, and 

it is connected to nodes 1, 2, and 3, which are inputs.  The same is true for neuron 5 or 

the second neuron, which is also connected to all three inputs.  The output node is slightly 

different but it follows the same concept.  It is connected to all three inputs as well as to 

the output of the first two neurons.  Based on this it should be straightforward to see the 

connection between the input file listed above and Figure 16. 

 Also, listed on the line of each neuron is the model of the neuron, which allows 

the user to specify a unique model for each neuron.  This network is designed to solve a 

parity-3 problem using three bipolar neurons.  This is not the minimal architecture for 
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this problem, but it serves as a good demonstration of the tool.   

 Following the architecture of the network are the optional starting weights.  If no 

starting weights are given the trainer will choose random weights.  The weights need to 

be listed in the same format as the architecture.  Each line of weights starts with the 

capital letter W.  The biasing weight goes in place of the output node of the neuron.  In 

other words, the first weight listed for a particular neuron is the biasing weight followed 

by the remaining input weights in their respective order.  See the input file for an 

example.  

The user specifies a model for each neuron and these models are defined on a single 

line. The user has the ability to specify the activation function and neuron type (unipolar, 

bipolar or linear) for each model. The user may include neurons with different activation 

functions in the same network.  The final line of the input file includes a reference to the 

data file.  This line simply needs to read datafile followed by the file name.  In this 

example, it is parity3.dat which can be seen on the last line of the example input file.  

2.1.3. Training Parameters 

Once the network architecture has been decided and the input files created the next 

step is to select the training algorithm and parameters.  When NNT is loaded there is an 

orange panel full of adjustable parameters on the right side of the window.  These 

parameters change for each algorithm so they will be addressed accordingly in the 

following section.  There are several independent algorithms that can be used for training 

neural networks.  The algorithms themselves are explained in more detail in[80], but first 

the user should select the input file just created. 
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Implemented algorithms 

The algorithm is chosen from the pull down menu in the training parameters.  Four of 

the parameters are the same for all algorithms.  They are: Print Scale, Max. Iterations, 

Max. Error, and Gain.  The Print Scale refers to how often the mean squared error is 

printed to the Matlab command window.  This can be important because in certain 

situations the longest calculation time is that of displaying the data, so increasing this 

number can significantly decrease training time.  Max iterations is the number of times 

the algorithm will attempt to solve the problem before it is considered a failure.  An 

iteration is defined as one adjustment of the weights, which includes calculating the error 

for every training pattern and adjusting at the end.  The Max Error is the mean squared 

error that the user considers to be an acceptable value.  When this number is reached the 

algorithm stops calculating and displays the final weights.   

Error Back Propagation (EBP) 

This algorithm is the traditional EBP with the ability to handle fully connected neural 

networks.  The Alpha parameter is the learning constant.    This value is a multiplier that 

acts as the numerical value of the step size in the direction of the gradient.  If alpha is too 

big the algorithm can oscillate instead of reducing the error.  However, if alpha is too 

small the algorithm can move toward the solution too slowly and prematurely level off.  

This parameter should be adjusted by the user until an optimal value is found which has 

some oscillation that diminishes while the error continues to decrease. 

Neuron By Neuron (NBN) 

NBN is a modified Levenberg-Marquardt algorithm [81] for arbitrarily connected 

neural networks. The NBN algorithm is briefly described in [58].  It has two training 
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parameters,   and   Scale.  The learning parameter of the LM algorithm is µ.  Its use can 

be seen in Equation 5.  In Equation 5 the w describes the weights, the J is the Jacobian 

matrix, and the I is the identity matrix.   

            
        

  
  
    (5)  

 

If     then the algorithm becomes the Gauss-Newton method.  For very large 

values of   the algorithm becomes the steepest descent method or EBP.  The   parameter 

is automatically adjusted at each iteration to insure convergence.  The amount it is 

adjusted each time is   Scale which is the last parameter for the NBN algorithm.   

Self Aware (SA) 

The SA algorithm is a modification of NBN. It evaluates the progression of the 

algorithm's training and determines if the algorithm is failing to converge. If the 

algorithm begins to fail, the weights are reset and another trial is attempted. In this 

situation the program displays its progress to the user as a dotted red line on the display 

and begins again. The algorithm continues to attempt to solve the problem until either it 

is successful or the user cancels the process.  The SA algorithm uses the same training 

parameters as NBN.  

Enhanced Self Aware algorithm (ESA) 

ESA is also a modification of the NBN algorithm and is used in order to increase 

chances for convergence. The modification was made to the Jacobian matrix in order to 

allow the algorithm to be much more successful in solving very difficult problems with 
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deep local minima. The algorithm also is aware of its current solving status and will reset 

when necessary.  

The ESA algorithm uses a fixed value of 10 for the   Scale parameter and allows the 

user to adjust the LM parameter. The LM parameter is essentially a scale factor applied to 

the Jacobian matrix before it is used in calculating the weight adjustment. This scale 

factor is typically a positive number between 1 and 10 or possibly greater. The more local 

minima the problem has, the larger the LM factor should be. 

Forward-Enhanced Self Aware (F-ESA) 

F-ESA is another modification of the NBN algorithm developed by J. Hewlett [57] 

where an alternative method for calculating the Jacobian matrix is used. The calculation 

of Jacobian is unique in the sense that only feed-forward calculations are needed. This 

approach is then paired with the Enhanced Self-Aware LM algorithm.  The F-ESA 

algorithm uses the same training parameters as the ESA algorithm.  

Evolutionary Gradient 

Evolutionary Gradient is a newly developed algorithm, which evaluates gradients 

from randomly generated weight sets and uses gradient information to generate a new 

population of weights. This is a hybrid algorithm which combines the use of random 

populations with an approximated gradient approach. Like standard methods of 

evolutionary computation, the algorithm is better suited for avoiding local minima when 

compared to common gradient methods such as EBP. What sets the method apart is the 

use of an approximated gradient which is calculated with each population. By generating 

successive populations in the gradient direction, the algorithm is able to converge much 
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faster than other forms of evolutionary computation. This combination of gradient and 

evolutionary methods essentially offers the best of both worlds. The training parameters 

are very different than the LM based algorithms previously discussed.  They include 

Alpha, Beta, Min. Radius, Max Radius, and Population. This algorithm was written by 

Joel Hewlett and details regarding these parameters may be found in [82]. 

Training 

Once the user selects the appropriate training algorithm the parameter boxes will 

change to the corresponding parameters and default values will fill the boxes.  After the 

user sets the parameters, there are two other boxes that can be selected.  The clear plot 

box when checked will overwrite any existing plot with the new one, but if it is left 

unchecked then the subsequent plots will be drawn on the axis with all of the previous 

drawings.  The last option is the external plot which draws the plots inside NNT and in a 

separate figure allowing for easy printing or modifying the plot.  The train button begins 

the training process, which prints the error to the Matlab Command Window as it is 

training.  At any time the process can be halted and the results plotted by pressing the 

cancel button.   

2.2. NNT Adaptations 

The trainer was adapted to aid in the process of creating neural networks on the 

embedded level.  NNT trains the neural network as it would any neural network and then 

the embedded network verifications begins.  The trainer then makes a forward calculation 

on the network using the 8-bit neural network simulator, which will be described in more 
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detail in section 2.2.2.   It essentially does all of the arithmetic that the neural network 

would do for one pattern.  At every step of the way it rounds all of the digits in the same 

way the 8-bit microcontroller does.  This calculation is performed as a sanity check and 

debugging step for the system.  Step by step results from beginning to end of the network 

calculation are stored in hex and decimal format in an organized text file for the user.    

After the training process, the trainer generates the weights, the architecture, and 

other parameters into assembly and C files for microcontroller implementation.  These 

files can be directly copied and pasted into the microcontroller IDE and then immediately 

assembled or compiled, respectively.  These files will be discussed in Section 2.2.3. 

The trained and verified network can then be further tested on the embedded level 

using the neural network communication software.  This software is used to communicate 

via a serial port with the microcontroller.  This allows the user to simulate data that the 

neural network would receive from an external source, like an analog to digital converter.  

The microcontroller then performs the network forward calculation and sends the data 

back through the serial port for verification, simulating a network output such as a value 

for a pulse width modulation module.  At this step the user can test as many test patterns 

as necessary to validate proper performance with hardware in the loop simulation.  This 

software's features will be discussed in Section 2.2.2. 

2.2.1.   Neural Network Weight Scaling 

 The assembly language version of the neural network implementation uses a 

custom pseudo floating point algorithm.  This algorithm requires a weight scaling process 

to be performed off chip.  This process allows for the largest number of significant digits 
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to be used for each neuron, and this process scales all the weights for a particular neuron 

to use the maximum number of digits possible.  This scale factor is then saved as an 

attribute for the particular neuron.  However this process is completed as another 

automated section before generating the assembly file.  The details of this scaling process 

are shown in the following code.    

scale=ones(1,nn) 

for i=1:nn    % Weights for each neuron. 

    w=ww(iw(i):iw(i+1)-1);  

    max_value=max(w); 

    if max_value>=128 

        while max(w)>127 

            w=w/2; 

            scale(i)=scale(i)/2; 

        end 

    else 

        while (max(w))<63.5 

            w=w*2; 

            scale(i)=scale(i)*2; 

        end 

    end 

 

The previous code shows that the largest weight is scaled to be as close to, but not 

exceeding 127 which is the largest positive number that can be represented using this 

protocol.  As a consequence of the scaling the largest weight uses almost all of the 16-bits 

of the mantissa.    These scaled weights are then the weights used for generating the 

assembly file. 

2.2.2.   8-Bit Neural Network Simulator 

The simulator is written in Matlab to operate in the same fashion as an 8-bit 

microcontroller.  The simulator introduces rounding errors in the appropriate places to 

function in the same manner as the microcontroller.  This was accomplished by creating a 
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set of functions that operate identically to the PIC microcontroller.  These instructions 

include commands that round, multiply, add, subtract, and perform the tanh 

approximation, all using the pseudo floating point arithmetic.  There are also special 

instructions to detect any overflows. 

One example, rnd8bit function, takes any decimal number and rounds it to 8-bits of 

fractional data.  The Matlab code can be seen below.   

function y=rnd8bit(x) 

y=fix(256*x)/256; 

return 

 

The rnd8bit function operates by shifting the fraction portion of the number into the 

integer portion by 8-bits, truncating the fractional part, and then shifting the bits back into 

place.  This step is done any time a Matlab command is used that could possibly generate 

more decimal digits.  

Another example of how the simulator works is a routine setup to multiply in the 

same fashion as the microcontroller.  This function is called mul and is shown below.   

function p=mul(x,y) 

 

x1=x; 

y1=y; 

  

if x>=128 | y>=128 ; 

disp(x); 

disp(y);  

error('x=%d and y= %d Overflow!!!',x,y);  

end ; 

 

if x<0 & x>-128 ; x1=256-abs(x); end 

if y<0 & y>-128 ; y1=256-abs(y); end 

  

x1=rnd8bit(x1); 

y1=rnd8bit(y1); 
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x1; 

y1; 

 

a=floor(x1);      %whole number 

b=x1-a  ;         %fractional portion 

b=b*256; 

  

c=floor(y1); 

d=y1-c; 

d=d*256; 

 

p=(a*c*256^2+256*(a*d+b*c)+b*d)/256^2; 

p=floor(p*256^2)/256^2; 

  

 if x<0  

     p=p-c*256-d; 

 end 

 if y<0 

     p=p-a*256-b; 

 end 

 if p<-16384 

     p=p+65536; 

 end 

 p=floor(256^2*p)/256^2; 

 return  

 

This function, first of all, checks to make sure that neither of the two parameters to be 

multiplied is outside the range of valid numbers.  This check is redundant and probably 

not necessary but the extra layer of protection against overflow errors was desired.  If 

either number is outside the range the function displays the values and halts the process.  

Next the 8-bit multiplication is completed in the same manner as on the microcontroller.  

This process only operates on positive numbers and then converts a negative result back 

to two's-complement at the end.  The final and intermediate results are rounded to ensure 

accurate introduction of error.  Several other custom functions were necessary for the 

simulator as well as the creating of the assembly and C files.   
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Matlab does not have a way of converting decimal numbers to hexadecimal.  In order 

to work with both hex and base ten numbers, functions were required to go between 

them.  One of these functions is the frac2hex function that can be seen below.   

function out=frac2hex (x) 

     

    if x==0; out='0000'; return; end; 

     

    if x>0 

        conv=Fr_dec2bin(x); 

        conv=num2str(conv); 

        [whole,frac]=strtok(conv,'.'); 

        whole=dec2hex(bin2dec(whole)); 

        frac=strcat(frac,'00000000'); 

        frac=dec2hex(bin2dec(frac(2:9))); 

    else 

        x=abs(x); 

        x=256-x; 

        conv=Fr_dec2bin(x); 

        conv=num2str(conv); 

        [whole,frac]=strtok(conv,'.'); 

        whole=dec2hex(bin2dec(whole)); 

                 

        frac=strcat(frac,'00000000'); 

        frac=dec2hex(bin2dec(frac(2:9))); 

        

    end 

     

    if size(whole,2)==1 

        whole(2)=whole; 

        whole(1)='0'; 

    end 

     

    if size(frac,2)==1 

        frac(2)=frac; 

        frac(1)='0'; 

    end 

     

    out=strcat(whole,frac); 
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This process requires several steps because the input is a decimal number that is first  

converted to an integer and a fraction.  Next, the two pieces are operated on separately by 

using some of Matlab's built in functions.  It was effective to convert to binary and then 

to hex from binary.  This function has to take into account positive as well as negative 

numbers.  The output is a four character string of hexadecimal numbers and letters to 

represent the 16-bit fractional number.   

These custom instructions are just a few of many required to make the simulator 

function properly.  These functions were written and verified before the assembly code 

for the microcontroller was started.  The assembly code was written step by step to follow 

each process of the Matlab code.  The two processes were then tested and debugged until 

their results matched for all test cases.  This was the only feasible way to construct a 

system of this size.   The assembly code is approximately 1500 lines of code or 30 pages.  

The code had to be written in sections that could be tested individually and based on 

something that could verify each piece independent of the rest of the system.   

2.2.3. Generated Files 

The trainer was adapted to automatically generate an assembly and C file for the 

user to use for implementing the system.  This was motivated by two main factors. 

Automating the process removed the ability to add human error when converting the 

weights to hexadecimal numbers and also the process simply took too long to do by hand.  

An example of the output file for the network previously discussed in Figure 16 can be 

seen below. 
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;IO data: #Inputs, #Outputs  

IO Data 0x0003, 0x0001  

Weights Data 0x000B 

Data  0x000A, 0x9E6A, 0x6196, 0x9E6A, 0xFFEF, 0x9F4B, 

0x60B5, 0x9F4B, 0x001A, 0xC969, 0x5B66  

  

;Inputs Data 0x03, 0x4000, 0xC000, 0xC000, 0x06,  

;The output for this particular input should be 1 and 

0x0100 

  

Neurons Data 0x03 

Data  0x05, 0x03, 0x04, 0x01, 0x02, 0x03 

Data  0x08, 0x03, 0x05, 0x01, 0x02, 0x03 

Data  0x03, 0x02, 0x06, 0x04, 0x05 

   

 

The assembly file is made up of three parts.  The first part is a few general network 

parameters and the scaled weights.  The first line is a comment to clarify for the user 

what is shown.  The second line is the number of inputs followed by the number of 

outputs for the network.  The next line is the number of weights followed by the weights 

themselves.  The weights are stored in their scaled form.  This means all the weights for a 

particular neuron are scaled up or down appropriately to use the maximum number of bits 

possible.  This scale factor is then stored in the topography section for each neuron.  The 

next two lines are comments and are simply for the user as a sanity check.  They show 

random inputs to the system and the correct output for those particular inputs.  This way 

the user always has a valid network input and output pair available.  The last section of 

the file is the neural network architecture and is actually read from program memory by 

the system as needed.  These values act as indexes of which location in the architecture 

array to use next.   

This file is specifically designed to be placed at the end of the microcontroller code 

and is automatically read using indirect addressing.  This file will change based on the 



42 

 

network being used but it will always follow this basic format.  This file is all that is 

needed to change neural network architectures or weights.  A similar file is generated in 

C and can be seen below.   

rom far float const ww[11] = { 5.0967435373381891e+000, 

4.1913570939474143e+000, -3.3389689751411735e+000, 

3.3500760230887412e+000,  

 -1.3919747593993528e+000, -3.1527033887270779e+000, 

3.0337819562494110e+000, -3.1133953328418693e+000, 

1.7645099960474910e+000,  

 -3.2695061817728570e+000, -2.0549280802763907e+000 }; 

  

unsigned char const ni = 3;  

  

unsigned char const topo[14]={ 3, 4, 1, 2, 3, 

3, 5, 1, 2, 3, 

2, 6, 4, 5}; 

  

float nodes[7];  

  

unsigned char nn=3;  

 

The C file contains very similar data as the assembly file including the network 

inputs, outputs, weights and architecture.  The C file goes at the top of the code and 

basically is the initialization for the neural network.  It prepares the arrays and sets all of 

the indexes and allows everything to be read as needed.  This C code is mostly platform 

independent except for the very first line.  Depending on the amount of available ram, the 

weights will most likely need to be stored in program memory and accessed one at a 

time.  This memory initialization line may vary from platform to platform.   
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2.3. PIC Simulator Software (PicSim) 

The simulator and verification tool designed was just as important to this overall 

project as the microcontroller implementation itself.  The simulator engine was 

previously described but this section will discuss how that engine is interfaced with the 

user as well as the microcontroller.  The PicSim software was generated before the 

assembly version to verify that is was possible to use the 8-bit math and obtain useable 

results.  The software user interface is shown in Figure 17.   

 

Figure 17:  PicSim software for simulating and verify embedded neural networks. 
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 The software is designed to plot a two-input system with one or more outputs.  

PicSim has two main input requirements: a network architecture and a weight array text 

file.  To simplify the process for the user PicSim reads the same input file used by NNT 

for the training process and the weight file generated by NNT.  The user simply has to 

point the software to these files.  There are four graphs displayed in the user interface.  

The figures in the top left corner is always the network being used as the reference and 

the top right is the network being calculated.  The bottom two figures are the differences 

between the top two surfaces.  The one on the left is on the same scale as the top two and 

the one on the right is a tighter axis to show the more specific location of the error.   

The user has a few other options as far as what type of network to simulate.  The first 

option is the ideal neural network, which is a neural network on a PC using standard 

IEEE 754 floating point precision.  This allows the user to compare the quality of the 

trained network to that of the training patterns before any error from the microcontroller 

is introduced.  The user can simulate the error produced by the microcontroller by 

selecting the simulation button.  This then compares the simulated network to the ideal 

network.  The simulator engine discussed previously uses a configurable number of 

patters for testing.  At this point any possible overflows or other errors should be caught 

before hardware is introduced. 

The last option is the hardware in the loop setup.  This option is the final stage of 

testing for the embedded neural network.  It allows the user to program the 

microcontroller and test it but still use the features of Matlab for verifying the data.  
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Matlab still produces the test patterns and then sends them via the serial port to the 

microcontroller.  This simulates data the microcontroller would gain from another source 

like the analog to digital converter.  Once the embedded network has all of the inputs it 

needs it then does the neural network forward calculations and produces one or more 

outputs.  These outputs would typically drive an external source such as a pulse width 

modulator, but in this instance are transmitted back to the PC via the serial port.  This 

allows the user to send and receive data from the microcontroller in real time.  In addition 

the user can verify the hardware calculations and the amount of time being required.  The 

data can easily be verified by using Matlab's graphing tools.  This mode can be used for 

embedded networks using assembly or C.  The difference is the format of the test data 

being sent and received, but both operate under the same principle.  This is the final step 

before the microcontroller is configured to operate in its embedded application with real 

inputs and outputs but at this point the neural network operation has been thoroughly 

verified.   

The tools created to build the neural network on the microcontroller resulted in an 

equally challenging project as the embedded network.  However, creating and debugging 

the assembly version of the neural network would never have been possible without the 

tools.  Now with the automated system almost any trained network can be implemented 

on the microcontroller in a matter of seconds.   
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3. Hardware Implementation 

 Implementing neural networks on an 8-bit microcontroller with limited computing 

power presents several programming challenges.  In order for the network to perform as 

quickly as possible, creating the software at the assembly level was chosen.  Writing the 

software in assembly allows a level of customization that cannot be achieved with C.  

However, the need for hardware portability was also a motivating factor and a more 

generic C implementation was also created.  It was also very important to manually 

manage the very limited amount of data memory.   Several assembly routines were 

created with this purpose in mind.  A pseudo floating point arithmetic protocol was 

created exclusively for neural network calculations along with a multiplication routine for 

multiplying large numbers.  A tanh compatible activation function was also needed.  The 

final procedure is capable of implementing any neural network architecture on a single 

operating platform.  This robust base removes the need to modify the structure of the 

software to make network architecture changes. 

3.1. Pseudo Floating Point 

 The first method was to use 16 bits to represent the weights, nodes, and inputs for 

the neural network.  These 16-bits are all significant digits in this pseudo floating point 

protocol.  The 16 bits consist of an 8-bit signed integer and an 8-bit fraction fractional 

part.  The nonconventional part of this floating point routine is the way the exponent and 
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mantissa are stored.  Essentially all sixteen bits are the mantissa and the exponent for the 

neuron is stored elsewhere.  This has several advantages.  It allows more significant digits 

for every weight using less memory.  This pseudo floating point protocol is tailored 

directly to the needs of the neural network forward calculations.  This solution requires 

the analysis of the weights of each neuron and scales them accordingly and assigns an 

exponent for the entire neuron.  A similar process is used for the inputs so the entire 

range will share a single scale factor.  This scaling is done off chip before programming 

in order to save valuable processing time on each and every forward calculation. 

 Scaling does two things, first it prevents overflow by keeping the numbers within 

operating regions, and secondly automatically filters out inactive weights.  For example, 

if a neuron has weights that are several orders of magnitudes larger than others it will 

automatically round the smallest weights to zero.  These weights being zero allow the 

calculations to be optimized, unlike using traditional floating point arithmetic.  However, 

if all of the weights are the same magnitude they are all scaled to values that preserve 

maximum precision and significant digits.  In other words, the weights are stored in a 

manner that minimizes error on a system with limited accuracy.  Thus far, all of these 

decisions for scaling the weights are made before the network is programmed on the 

microcontroller.  This process has been automated for ease of use.  The Neural Network 

Trainer [8] was modified to automatically scale the weights and inputs after it trains the 

network.  This is done in Matlab and an example of the scaling process can be seen 

below.  
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3.2. Multiplication 

 The Pic18F45J10 microcontroller has an 8-bit by 8-bit unsigned hardware 

multiplier.  Considering that the hardware multiplier cannot handle floating point values 

or negative numbers, a routine was needed to allow fast multiplication of fractional 

values.  The multiply routine is passed two sixteen bit numbers, consisting of an eight-bit 

integer and an eight bit fraction portion.  The routine returns a 32-bit product.  The result 

of the multiplication routine is a 32-bit fixed point result shown in Figure 18.   

I1 I2
x

I1 F2
x

F1 I2
x

F1 F2I2I1
x

I1.F1 x I2.F2 =IP.FP

F1 F2
x

IPH

. .

.

1

2

3

4

Result
IPL FPH FPL

 

Figure 18:  Implementation of 16-bit fixed point multiplication using 8-bit hardware 

multiplier.  Steps 1-4 are summed with place holders to give the final product on the 

result line. Abbreviations: Integer (I) Fractional (F) Product (P) Lower-Byte (L) Higher-

Byte (H). 

 

 Equation 6 shows the method of using a single 8-bit multiplier to implement 16-

bit fixed point multiplication.  The hardware multiplier does the multiplication between 
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bytes in a single instruction.  The 16-bit result of I1 and I2 is placed in IPH and IPL, see 

Figure 18.  Next I1 and I2 are multiplied and the lower byte is placed in IFL the higher 

byte of the product is added to IPL.  F1 and I2 are then multiplied and the product is 

added to IPL and FPH respectively.  Finally F1 and F2 are multiplied and the 16-bit 

product is summed with the current contents of FPH and FPL.  At each step of this 

process when any of these 8-bit numbers are summed the carry bit must be added to the 

next most significant byte to maintain accuracy.   

This method does not require any shifts or division.  This simple process allows 

each neuron to quickly multiply the weights by the inputs and then use the 32-bit result as 

an accumulator for all inputs of the neuron.  Once the net value is calculated only IPL and 

FPH are required for the activation function.  If IPH is not zero or all ones (signifying a 

negative number) then the neuron is in saturation and the activation function immediately 

outputs a one or negative one.    

 

 
2

2

256

256256 DBCBDACA   (6)  

3.3. Addition and Subtraction 

 Another issue arises when two numbers need to be added but they have different 

exponents; they must be first be converted to a common scale.  This, however, is not 

necessary when using the proposed pseudo floating point protocol.  The only summation 

that is required is for the calculation of the net value of each neuron.  Even though there 

are two independent exponents these values will not change within one neuron, therefore 
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allowing all of the products to be summed in a single step.  After the summation process 

is complete the reverse scaling can be done at the final stage.  The details of this process 

will be discussed in more detail in section 3.6.  

3.4. Activation Function 

 A soft activation function was needed for the neural network.  The most common 

activation function is tanh and the definition is shown back in Equation 1. The pure 

definition tanh was not a reasonable solution for several reasons.  Specifically, the 

exponents would be very difficult to calculate accurately with the limited hardware in a 

timely fashion.  Likewise, the floating point division would have been far too time 

consuming without dedicated divide hardware.  The next possible choice for an activation 

function was Elliott’s function shown in Equation 3.  This activation function was also 

rejected.  The Elliot function does approach one hyperbolically but not at the same rate as 

tanh and therefore is not interchangeable.  Networks with the Elliot approach are less 

powerful that those with tanh.  This means the networks would have to be trained using 

the Elliott function, which was not desirable.  The other pitfall with the Elliott function is 

that it requires division.  Without dedicated hardware, division would be too slow of a 

process for the final solution. 

 A second order approximation of tanh was chosen for its accuracy as well as its 

simple arithmetic calculations.  Several features were added to the activation function 

besides simply calculating a second order approximation of tanh.  One of these features 

analyzes the inputs to the activation function and converts negative numbers to positive 
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numbers to make the internal calculations faster and reduce the number of values that 

must be stored in the lookup table.  The sign is restored at the end of the activation 

function.  Another feature is a check to see if the neuron is in saturation.  In other words, 

make sure the net value is within a given range.  In this case the second order 

approximation is skipped and the neuron is put into saturation.  These features of the 

second order approximation can be seen in better detail in Figure 19. 
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Figure 19: Logical block diagram of the activation function. 
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 The routine requires that 30 values be stored in program memory.  This is not 

simply a lookup table for tanh because a much more precise value is required.  The tanh 

equivalent of 25 numbers between zero and four are stored. These numbers, which are the 

end points of the linear approximation, are rounded off to 16-bits of accuracy.    Then a 

point between each pair from the linear approximation is stored.  These points are the 

peaks of a second-order polynomial that crosses at the same points as the linear 

approximations.  Based on the four most significant bits that are input into the activation 

function, a linear approximation of tangent hyperbolic is selected.   The remaining bits of 

the number are used in the second-order polynomial.  The coefficients for this polynomial 

were previously indexed by the integer value in the first step. 

The approximation of tanh is calculated by reading the values of yA, yB and y 

from memory and then the first linear approximation is calculated using  yA and yB. 
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The next step is the second-order function that corrects most of the error that was 

introduced by the linearization of the tangent hyperbolic function.   
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 In order to utilize 8-bit hardware multiplication, the size of x was selected as 

128. This way the division operation in both equations can be replaced by the right shift 
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operation. Calculation of y1 requires one subtraction, one 8-bit multiplication, one shift 

right by 7 bits, and one addition. Calculation of y2 requires one 8-bit subtraction, two 8-

bit multiplications and shift right by 14-bits. 

 

 

Figure 20:  Example of linear approximations (red) and parabolas between 0 and 4 

(magenta).  Tanh (green) and the approximation (blue) are also shown on the graph.   

Only 4 divisions were used for demonstration purposes. 

 

 Ideally this activation function would work without any modification, but when 

the neurons are operating in the linear region (when the net values are between -1 and 1) 
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the activation function is not making full use of the available bits for calculating the 

outputs.  This generates significant error.  Similarly to the weights and the inputs, a work-

around is used for the activation function.  Pseudo floating point arithmetic is then 

incorporated.  When the numbers are stored in the lookup table they are scaled by 32 

because the largest number stored is 4.  The net value is also scaled by 32 and if its 

magnitude is greater than 4, the activation function is skipped and a 1 or -1 is output.  

After multiplying two numbers that have been scaled, the product is shifted to remove the 

square of the scale.  Once the activation function is finished the numbers are scaled back 

to the same factor that was used to scale the inputs.  

The activation function was tested in hardware by sending a set of numbers from  

-5 to +5 and comparing them to the output of the tanh function.  The difference between 

the sets of numbers can be seen in Figure  21. 
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Figure  21. Error from tanh approximation using 16 divisions from -5 to +5. 

3.5. Memory Structures 

 The Microchip PIC 18F45J10 microcontroller was used to implement the neural 

network.  The microcontroller has only one true register that can be used for holding data, 

passing data, and ALU calculations.  It has 1 kbyte of ram memory and when the neural 

network has 255 weights this memory is nearly all utilized.  This memory is divided into 

four 256 byte banks.  Only one of these banks can be accessed directly without the use of 

extra addressing instructions.  This one bank has 128 bytes of general purpose memory 

and 128 bytes of processor configuration memory.  This general purpose memory is used 
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as global and temporary variables for calculations.  The other three banks are used for the 

weights and the individual nodes of the neural network. 

 The weights are stored as 16-bit numbers, which consist of  an 8-bit integer and 

an 8-bit fractional part.  Two banks are used to store the high and low byte of each 

weight.  This allows for 255 weights to be stored.  The zero location is not used for 

indexing reasons.  Figure 22 shows the memory mapping.   

 As the output of the neural network is calculated the output of each neuron and 

the inputs need to be stored throughout the entire calculation to allow multi-layer 

connections.   These node values are also 16-bit values.  This poses a problem because 

there is only one ram bank left and two banks are needed.  This problem is solved by 

splitting this bank into two separate banks; the low bank and high bank hold the low byte 

and high byte respectively.  Notice this adds an additional limitation to the neural 

network size.  The network may only have 127 total inputs and nodes.  This limitation 

will most likely not be the dominant factor in many cases.  Typically the weight 

limitation would be met prior to approaching the node limit.    

 This memory limitation is only relevant to this microcontroller.  This concept 

could be extended to other microcontrollers or systems with extended ram.  More ram 

could easily allow for even larger networks with greater numbers of neurons and weights.  

The C version of the software stores all weights and architecture values in program 

memory not in ram.  There simply is not enough ram for the C version to function if these 

values are in ram.   
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Figure 22.  Memory Allocation table for Pic18F45J10.  

3.6. Neuron By Neuron Computation Process 

3.6.1. Forward Calculations 

This process of forward calculations is a unique method compared to most neural 

network implementations because it uses the Neuron By Neuron method described in 

[57].  This method requires special modifications due to the fact that assembly language 

is used with very limited memory resources.  The process is written so that each neuron is 

calculated individually in a series of nested loops; see Figure 23.  The number of 

calculations for each loop and values for each node are all stored in two simple arrays in 

memory.  The assembly language code does not require any modification to change the 
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network’s architecture.  The only change that is required is to update these two arrays that 

are loaded into program memory.  These arrays contain the architecture and the weights 

of the network and are generated by NNT. 

//Weights 

Number of inputs; Number of outputs; (8-Bit)  

Number of Weights; (8-bit) 

Weight(1), Weight(2), Weight(3)....Weight(N); (16-bit) 

 

//Architecture (8-bit) 

Number of Neurons;  

//Neuron 1 

Neuron Scale, Number of Inputs, Output Node, Inputs(1-N)  

//Neuron 2 

Neuron Scale, Number of Inputs, Output Node, Inputs(1-N)  

. 

. 

. 

//Neuron N 

Neuron Scale, Number of Inputs, Output Node, Inputs(1-N)  

 

 

 The arrays are automatically generated by the NNT, as described in Section 2.2.3.  

The forward calculation steps through each node of network without regard for the 

complexity of the network.  Similar to a netlist in Spice, the topology array has the 

running list of connections and allows the user to make as many cross layer connections 

as desired, only limited by the total number of weights.   
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Figure 23 Block diagram of Neural Network forward calculations using the nested loop 

structure for cross layer connected networks. 
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 As seen in Figure 23, the network starts with an initialization block that 

configures the microcontroller by setting up the hardware for inputs and outputs.  Next 

the tables for the network are initialized.    The weights are stored in ROM or off chip and 

are loaded into RAM for faster calculations.  Finally there are numerous constants that 

are configured such as scale values and saturated neuron values. 

 After the initialization block, the Main Loop begins.  This is an infinite loop that 

keeps the network sampling new inputs and then starting the forward calculations.  With 

the next input sampled the network resets pointers and index values and enters the 

Network Loop. 

The Network Loop is essentially a for loop that executes the number of times as 

the number of neurons.  The Network is responsible for the architecture of the network as 

well as the output of the network.  It reads the scale factors and neuron connections and 

sets the corresponding values for the Neuron loop.   

 The neuron loop begins with all of its indexes and pointers correctly initialized 

and it simply begins calculations.  This loop is only responsible for calculating the output 

of a single neuron without information about the rest of the network.  It begins by 

checking to see if the current connection is the bias connection or a standard input 

connection.  Once the Net Value is calculated it passes the information to the Activation 

function.  The individual calculation process are presented in more detail in Section 3.6.2.  

The Activation Function details are presented in Section 3.6.3. 
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 After the Activation Function is finished the Network Loop determines when all 

neurons have been calculated.  The final step is to remove the scale factor and send the 

output.  The process is then repeated indefinitely.   

3.6.2. Individual Neuron Calculations 

The Neuron calculations go through several steps in order to process the pseudo 

floating point arithmetic.  The first step is the net value calculation which is shown in 

Figure 24. 
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Figure 24.  PF stands for Pseudo Floating point number.  The Numbers in brackets refer 

to the number of bits that represent that particular value. 

 



63 

 

 The inputs are multiplied by the corresponding weights and the result is stored in 

the 32-bit Net register.  This is essentially a multiply and accumulate register designed 

for this particular stage.  It is very important to keep all 32 bits in this stage for adding 

and subtracting.   Without the 32 bits of precision at this step it would be very easy for an 

overflow to occur during the summing process that would not be reflected in the final net 

value.  

The next stage is to turn the pseudo floating point number into a fixed point 

number.  This process can be seen in Figure 25. 
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Figure 25.  Pre Activation Function Routine.  The transformation between a pseudo 

floating point number to a fixed point number that the activation function can use. 

 

 The next step is to convert the pseudo floating point number into a fixed point 

number that the activation function can correctly handle.  First, the weight scale and input 

scale are summed.  If the two factors exactly cancel then there is no scaling needed; 

however, if not, the formula shown in the figure is used.  This raised to the N power is 

always the same as shift by N, because of the way the scale factors are calculated as 

described in Section 3.3.  This makes the scaling process very fast as opposed to having 

to actually execute the multiplication instructions.  Next, the sign of the net value is 
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stored and the absolute value of the net is used for the next steps.  The net value is then 

examined and a decision is made.  If the net value is too large then the tanh is 

approximately saturated and the appropriate output is assigned.  However if the now 

fixed point number is within the operating range it is clipped to 16 bits and sent to the 

activation function.   The activation function is detailed Section 3.4.   
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4. Application 

In order to demonstrate that the microcontroller neural network is performing 

correctly several example control problems were tested.  Neural networks have the 

unique ability to solve multi-dimensional problems with many inputs and many outputs, 

however these types of problems are not easy to test and verify visually.  For this reason 

the network was tested mainly with two input and one output problems in order to plot 

the output as a function of the input on a three dimensional surface.  This is not the only 

type of problem that can be solved, it is just to demonstrate.  A two input and two output 

system is also shown by graphing the outputs separately to demonstrate that other types 

of networks will work as well.   

The process is tested with the microcontroller hardware in the loop.  In other 

words, the sensor data is transmitted via the serial port from Matlab to the 

microcontroller.  The microcontroller then calculates the results and transmits this data 

via the serial port back to Matlab.  The reason for this simulation is to isolate the errors in 

the system to those produced by the microcontroller calculations.  In this test system any 

inaccuracy of the sensors can be avoided.  This also removes any possibility of errors 

entering the system from external measurement tools.  
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 To demonstrate the quality of the approximation several figures have been 

produced.  The following examples will have some or all of the images that are 

described: 

Training Data --- The training data is the data used to train the neural network.  

The number of points will vary with the application. 

Ideal Neural Network -- This refers to a neural network running on a computer 

or a system using the IEEE floating point standard.  The word ideal refers to  

most practical applications where there is no significant data loss due to the 

precision of the calculations.  However, this is still a neural network 

approximation of the training data and not an identical representation. 

PIC Based Neural Network -- This is the output of the neural network running 

on the PIC hardware.  This approximation will not be identical to the ideal neural 

network because of the approximations that are made on the microcontroller.  

Error Surfaces -- The error surfaces are differences between two of the 

previously shown surfaces.  The surfaces will give a visual description of 

differences between surfaces shown on the same scale as the original surface.  

This comparison separates the error of using an ideal neural network and using a 

neural network with on the PIC. 

Error Surfaces Tight -- These surfaces are the same as the error surfaces except 

on a much narrower scale to show what shape the errors have taken.  This allows 

the user to identify problem areas or to confirm the error is evenly distributed.  

Histograms -- The histograms show the errors of different surfaces in a numerical 

manner.  This shows the distributions of the errors, in order to identify the 
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distribution of the errors.  The X-axis is the errors and the Y-axis is the number of 

data points within the corresponding error range.  

4.1. Simple Surface 

 The following example is of a simple three dimensional control surface.  This 

surface was used in a few examples to demonstrate multiple aspects of implementing the 

neural network on the microcontroller.  The training data can be seen in Figure 26.  This 

surface is 16 data points from a smooth surface and the neural network will learn to 

produce a better, smoother surface than the data given.  This shows one of the 

fundamental advantages of neural networks opposed to other control methods.  It is not 

necessary to have perfect training data to obtain very good results.  The neural network 

inherently approximates the points in between the data points in a very smooth fashion.   
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Figure 26:  Simple surface training data. 

 

 This surface can be solved very effectively using a network with four neurons, 

which is shown in Figure 27.  This architecture approximates the surface very well with 

minimal error.  The output of the ideal network and the PIC can be seen in Figure 28 and 

Figure 29 respectively.  To the naked eye there is no visual difference between the 

surfaces.  Following the surfaces is the tight error surfaces in Figure 30 and Figure 31.  

These surfaces have a much smaller scale and they show the shapes and offset of the 

errors. 
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Figure 27: Four neuron cascade architecture for solving the simple surface.  The inputs 

are the circles on the left and the output is the last neuron on the right side.   

 

  

 

Figure 28: Ideal neural network output. 
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Figure 29:  Output of the PIC. 

 

Figure 30:  Error surface showing the difference of the training data and the ideal neural 

network. 
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Figure 31:  Error surface showing the difference of the PIC output and the ideal neural 

network. 

 

Figure 32:  Error surface showing the difference of the PIC output and the training data. 
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 These images show the error introduced by using the neural network of Figure 27 

and the show the variation from the ideal neural network to the network calculated on the 

PIC.  Figure 32 shows how the output of the PIC is a very close approximation of the 

original training data.  The majority of the points are centered around zero and have less 

than 1% error.  This data is also verified in the histograms shown in Figure 33. 

 

Figure 33:  Histogram of errors between the PIC and the training data.  The X-axis is the 

error and the Y-axis is the number of samples. 
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Figure 34.  This shows the neural network's ability to approximate points for which it was 

never trained.  From this figure it is obvious that the network produces a very reasonable 

nonlinear approximation between the training points.  The error surfaces with more 

points were omitted because they did not show any significant differences that were not 

shown in the previous figures.   

 

Figure 34:  Output of PIC with 196 test patterns. 
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network has only two neurons and produces errors typically under 10% for the entire 

system as shown in Figure 36.  The surface is not quite as nonlinear due to the number of 

neurons being reduced.  The histograms in Figure 37 and Figure 38 verify that the total 

error is larger and mostly introduced by the network and not by the PIC calculations. 

 

 

Figure 35:  Two neuron architecture for solving simple surface problem. 

 

 

Figure 36:  PIC output with 196 points on small two neuron architecture. 
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Figure 37:  Histogram of errors between the ideal neural network and the PIC.  The X-

axis is the error and the Y-axis is the number of samples. 

 

Figure 38:  Error of the PIC and the Training data compared.  The X-axis is the error and 

the Y-axis is the number of samples. 
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4.2. Matlab's Peaks Surface 

 The next example is generated by the common Matlab function peaks.  The 

surface has several peaks and valleys and is a rather complicated nonlinear control 

surface.  This complicated surface requires significantly more neurons to solve to a 

comparable accuracy.  The training surface is shown in Figure 39 and the architecture in 

Figure 40.  The network architecture is somewhat of a hybrid between the common MLP 

networks and the cascade network shown in the last example.  The architecture has two 

hidden layers but all neurons are connected directly to the inputs and all preceding layers.   

 

Figure 39:  Training data used for Matlab's peaks surface. 
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Figure 40: Eight neuron network used for solving the Matlab peaks surface. 

 

 This network was able to solve the peaks problem quite well and was 

implemented in the PIC with reasonable error.  The PIC output, shown in Figure 41, had 

some rippling artifacts that are most likely attributed to rounding errors, with so many 

calculations for this network.  However, the error is still very tolerable with no single 

point having more than 8% error and a very large percentage of points with 2% error 

centered around 0%.  This can be seen in detail in the histogram in Figure 42.  Looking at 

Figure 43 which is the error analysis of the ideal neural network it can be seen that about 

half of the large outlier errors are produced by the neural network itself and not the 

microcontroller calculations.   
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Figure 41:  Pic output for Matlab's peaks surface. 

 

 

Figure 42:  Histogram of errors between the PIC output and the training data.  The X-axis 

is the error and the Y-axis is the number of samples. 

5
10

15
20

25

5

10

15

20

25

-0.5

0

0.5

Pic Output

-0.2 -0.1 0 0.1 0.2
0

50

100

150

200
Ideal NN Vs. Training

-0.04 -0.02 0 0.02 0.04
0

50

100

150
Ideal NN Vs. PIC

-0.1 0 0.1 0.2 0.3
0

50

100

150

200
PIC Vs. Training



79 

 

 

  

Figure 43:  Histogram of errors between the ideal neural network and the training data.  

The X-axis is the error and the Y-axis is the number of samples. 
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fixed length arms.  However, this same procedure could be adopted for varying length 

arms by simply retraining the neural network with four inputs rather than two.  The 

robotic arm simulated can be seen in Figure 44.   

 

Figure 44:  Two arm planar manipulator with variables shown. 

 

The first step of the process was to generate neural network training data.  The 

following equations were used to calculate the x and y position based on alpha and beta 

where alpha and beta are the angles shown in Figure 44.  
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)sin(2)sin(1

)cos(2)cos(1

BetaalphaRalphaRy

BetaalphaRalphaRx




 

(10)  

 The neural network was then trained using this data.  The trained network was 

tested in Matlab to confirm that it functioned correctly and can be seen in Figure 45.  

Matlab generates a set of test patterns of a user selectable size and transmits these values 

to the microcontroller via the serial port and reads the results.  Matlab is then used to test 

the output patterns and calculate the errors.  This process will introduce errors in two 

places.  First there will be the error created by using a neural network approximation 

rather than the original equations.   Then there is the error introduced between the ideal 

neural network and the network on the microcontroller.  The training data for outputs x 

and y can be seen in Figure 46 and Figure 48, respectively.  Figure 47 and Figure 49 

show the outputs of the microcontroller neural network also for both outputs.  The error 

for each output is the difference between the training data and the microcontroller output.  

These errors can be seen in Figure 50 and Figure 51.   Histograms of these errors were 

also generated and can be seen in Figure 52 and Figure 53.  These results are very 

reasonable and are expected to be less than that of the physical system.  In other words, 

the error generated by the potentiometers or by measuring the position of the arm 

manually would be comparable to the error generated by the neural network.   
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Figure 45:  Ten neuron network for solving forward kinematics problem. 
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Figure 46:  Training data output x of the two output system. 

 

Figure 47:  Output x of two output system generated by embedded neural network. 
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Figure 48:  Training data output y of the two output system. 

 

Figure 49:  Output y of two output system generated by embedded neural network. 
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Figure 50:  Error between the embedded neural network and training data of output x. 

 

 

Figure 51:   Error between the embedded neural network and training data of output y. 
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Figure 52:  Histogram of Errors between training data and PIC for output x.  The X-axis 

is the error and the Y-axis is the number of samples. 

 

Figure 53:  Histogram of Errors between training data and PIC for output y.  The X-axis 

is the error and the Y-axis is the number of samples. 
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4.4. Matlab's Peaks Surface Example In C 

 The example shown previously was repeated, except this time using a C generated 

file instead of the assembly.  The output of the PIC using C introduces an insignificant 

amount of error when compared with the error introduced by the neural network.  The 

same training data and ideal network was used from the previous example.  The original 

training data is shown in Figure 39 and Figure 55 shows the output of the network, 

written in C and implemented on the PIC.  The difference between the ideal network and 

the PIC implemented network is insignificant when compared to the error added by the 

neural network itself.  The error from the microcontroller is two orders of magnitude 

smaller than that generated by the microcontroller itself.  More details of this can be seen 

in the histograms describing the errors in Figure 55 and Figure 56.  
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Figure 54:  Output of the PIC using the C version of the embedded neural network 

software. 

 

Figure 55:  Error between the ideal neural network and the PIC output using C. 
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Figure 56:  Histogram of errors between Ideal neural network and training data.  The X-

axis is the error and the Y-axis is the number of samples. 

 

Figure 57: Histogram of errors between ideal neural network and PIC implemented 

neural network.  The X-axis is the error and the Y-axis is the number of samples. 
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4.5. Experimental Data Summary 

 After comparing the results of the two different implementations of neural 

networks, it was obvious that the C version is much more accurate; however this 

accuracy does not come without a decrease in performance.  The C version was 

significantly slower due to its complexity of calculations and its necessity to store all 

weights and nodes in program memory because they are too large to put in RAM.  The 

accuracy and speeds can be seen in Table 2:  Neural network performance comparison.. 

 

 
Surface Neurons 

Training 
Error 

Ideal & PIC 
RMS 

Ideal & 
Training RMS 

Training 
& Pic RMS Time ms 

Peaks 19 0.01 0.015005 0.010594 0.018257 1.6 

Peaks 8 0.01 0.007292 0.0253 0.026012 0.752 

Simple 4 0.001 0.005151 0.0044663 0.0068827 0.317 

Simple 2 0.001 0.0080934 0.07516 0.076336 0.163 

Peaks C  19 0.01 0.00012772 0.0089456 0.0089523 2.95 

Peaks C 8 0.01 0.00025928 0.0253 0.025301 5.87 

Simple  C 4 0.001 0.000041934 0.0044663 0.0044666 2.2 
 

Table 2:  Neural network performance comparison. 

  

 Table 2 shows the performance of the neural network in several categories.  The 

first column is the surface name as discussed in the previous sections.  The neuron 

column is the number of neurons used in the network for the given example.  The training 

error is the total error for all points summed.  This parameter is used to decide when the 

training has been completed.  The root mean squared (RMS) errors are taken for the 

difference between two of the three surfaces and then labeled in each column.  The time 
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in milliseconds is the time required for one forward calculation of the neural network.  

This time does not include the time for acquiring a sample input or using the output.    

 The C implementation time requirements are very difficult to analyze and 

virtually impossible to predict because of the sophisticated C compiler that is used.  A 

few preliminary tests were done on the C program, such as taking into account how long 

it takes to manipulate the floating point numbers.  Times were collected for memory 

reads and writes, multiplication, and the tanh calculation.  Based on these individual 

component times, estimates were made to predict how long the system would take to 

process a given number of neurons based on the number and type of calculations.  

However, this data is a reasonable approximation for small neurons with a small number 

of calculations as in the simple surface shown in the last line in Table 2.  The C version 

took approximately ten times longer than the assembly version, which was predicted 

based on number of calculations.  Due to the optimization of the compiler this does not 

hold true for larger networks as in the peaks surface.  The original estimate was 

significantly slower than it actually is.  This allows the C version to operate faster than 

anticipated and still be very accurately which makes it very valuable even on such a low 

end microcontroller.  
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5. Conclusion 

 This dissertation presents a solution for embedded neural networks across many 

types of hardware and for many applications.  The software package presented here 

allows the user to develop a neural network for a desired application, train the network, 

embed it in any platform, and verify its functionality.  This software package is a 

complete embedded neural network solution.   

 This package offers the user the ability to use far superior neural network 

architectures than in other training software.  The user has the freedom to customize his 

network for his application.  He can use traditional multi layer perceptron networks or the 

superior arbitrarily connected networks including fully connected and cascade networks.  

 Most other software and research only trains with error back propagation or other 

first order algorithms.  This dissertation gives the user their choice of traditional EBP as 

well as the faster and more efficient second order algorithms such as the Neuron by 

Neuron algorithm and the Enhanced Self Aware algorithm. 

 The software offers the user the option of installing the network on a Microchip's 

18Fxxxx series microcontroller using custom made neural network software written in 

assembly language and optimized for both the microcontroller and the neural network 

application.  This version offers a very fast and accurate solution on a very inexpensive 

microcontroller.   
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 If the user prefers to use a different platform then the C code generated can be 

used to implement the trained network on any C capable platform.  This can be used on 

other microcontrollers as well as PC based neural networks.   

 This accomplishment demonstrates that neural networks can be used to solve 

problems that in the past would require custom software programs to be written for each 

problem.  In other words, if three separate microcontrollers were needed to control three 

different processes for a single project then three unique programs would need to be 

written.  This solution offers one standard solution for controlling all three.  The user 

simply needs to train three separate networks, which is an automated process.  Then the 

user has the solutions for unique problems without having to write code for the 

mathematics.  The neural network may not be the absolute best solution for every 

problem but it is a very acceptable and easy to implement solution for an extremely large 

variety of problems. 

 Many times neural networks are not used because of lack of software for training 

and implementing.  This dissertation removes that burden and allows neural networks to 

be used in more main stream applications by allowing users to implement them in their 

applications with ease.   

 The same concepts presented here could be used to produce similar custom 

optimized assembly language hardware for other networks.  In microcontrollers with 

greater computing power this becomes easier.  The neuron by neuron approach using the 

arrays for weights and nodes can be taken to any platform and implemented in the same 

manner.   
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 The C output file could also be used to run the neural network on a computer as 

well as microcontrollers.  The only modification that would be required is the two type 

definitions which specifying that they should be stored in program memory.  This would 

not be applicable to a personal computer based network and this line would need to be 

removed.  Otherwise the files are platform independent.   

 This dissertation cannot stress enough that the proof of concept shown here opens 

the door for neural networks to be used on any platform for problems of virtually any 

kind.  The complexity of the problems can range from a simple one neuron one input one 

output system to dozens of neurons and many inputs and outputs.  This solution has 

endless problems it is capable of solving. 

 The next step in this research is to extend the C version to other microcontrollers 

and compare calculation times.  The final step would be to train the network on data 

collected for a physical system.  This would demonstrate and verify the speed of the 

neural network in a hardware application.   
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