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Abstract 
 

 

As data accumulates at a speed significantly faster than can be processed, data 

preprocessing techniques such as feature selection become increasingly important and beneficial.  

Moreover, given the well-known gains of feature selection, any further improvements can 

positively affect a wide array of fields and applications.  So, this research explores a novel 

feature selection architecture, Class-specific Ensemble Feature Selection (CEFS), which finds 

class-specific subsets of features optimal to each available classification in the dataset.  Each 

subset is then combined with a classifier to create an ensemble feature selection model which is 

further used to predict unseen instances.  CEFS attempts to provide the diversity and base 

classifier disagreement sought after in effective ensemble models by providing highly useful, yet 

highly exclusive feature subsets.  CEFS is not a feature selection algorithm, but rather, a unique 

way of performing feature selection.  Hence, it is also algorithm independent, suggesting that 

various machine learners and feature selection algorithms can benefit from the use of this 

architecture.  To test this architecture, a comprehensive experiment is conducted, implementing 

the architecture under two different classifiers, three different feature selection algorithms, and 

under ten different datasets.  The results of this experiment shows that the CEFS architecture 

outperforms the traditional feature selection architecture in every algorithmic combination and 

for every dataset.  Moreover, the presence of high-dimensional datasets suggests that CEFS will 

scale up.  Finally, the feature results obtained from the experiment suggest that vital class-

specific information can be lost if feature selection is performed on the entire dataset as a whole, 

as opposed to a class-specific manner. 
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Chapter 1 

 

Introduction 

 

 

As data acquisition has become increasingly easier and data storage has become 

increasingly inexpensive, the usage and storage of exceedingly larger databases has become 

widespread.  This has caused a dramatic shift in the mindset of data storage and acquisition; a 

shift which considered a one-megabyte database as being very large in 1989 to numerous multi-

terabyte databases being mined regularly by the year 2000 [1].  In fact, approximately 15 

petabytes of new data are created every day worldwide, more than eight times the amount of data 

contained in all U.S. libraries [2].  As a result, many routine information technology problems 

such as inventory management and systems automation have given way to multi-dimensional 

problems of analysis such as genomic research, deciphering global trade patterns from foreign 

exchange flows, or predicting disease states [2] [3]. 

Unfortunately, data processing has not kept up with data acquisition.  That is, as 

computer and database technologies continue to improve, data accumulates in a speed 

significantly faster than the capacity of data processing [4].  Such data accumulation produces 

significantly large databases.  These databases can be large due to a high number of instances
1
, a 

high number of features
2
, or a combination of both.  An example of a high-instance database is 

Google index, which reported having indexed one billion unique URLs by 2000 and one trillion 

                                                 
1
 For the remainder of this work, instances may also be referred to as “cases”, “vectors”, “samples”, or 

“observations”. 
2
 For the remainder of this work, features may also be referred to as “variables”, “dimensions”, “attributes”, or 

“genes” (in case of microarray data). 
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by 2008 [5].  On the other hand, microarray datasets present a fitting example of high-

dimensional datasets, often containing a small number of instances but each with thousands of 

attributes [6].  This research will focus solely on the issue of high-dimensional data as it pertains 

to classification tasks within supervised learning.  More specifically, it will do so through the use 

of feature selection, a technique which can reduce the cost of recognition and often provide 

better classification accuracy by reducing the number of features [7].   

Traditionally, feature selection has been carried out on the entire dataset at once, 

assuming that the most salient features for learning will be uniform among all instances, 

regardless of classification (i.e. class label).  Research recently conducted in [8], however, has 

shown that classification accuracy can be improved when feature selection is conducted in a 

class-specific manner and organized in an ensemble machine for final classification.  The 

research further states that the potential for improvement rests largely on how the ensemble’s 

modules are recombined when they face disagreement [8].  Based on the aforementioned 

research, the hypothesis explored in this research contains four parts: 

1. There exists a recombination technique such that, when applied to a Class-

specific Ensemble Feature Selection (CEFS) architecture, it will allow the 

system to outperform a traditional feature selection architecture in terms of 

prediction accuracy. 

 

2. The same CEFS architecture will scale up by continuing to outperform the 

traditional feature selection architecture when the number of features are 

increased, as well as, when the number of class labels are increased. 

 

3. The union of the set of relevant
3
 class-specific features may not be inclusive 

of the set of relevant features found traditionally for the entire dataset.   

 

4. Conversely, the set of relevant features found traditionally for the entire 

dataset may not be inclusive to the union of the set of relevant features for 

each class label. 

 

 

                                                 
3
 The formal definition of relevance as it pertains to features will be detailed in Section 3.6 of this work. 
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Although all parts of the hypothesis revolve around exploring the notion of a class-

specific feature selection architecture, each part will provide useful insight into the benefits 

afforded by such a system.  Parts 1 and 2 of the hypothesis will explore the realization and 

development of a more accurate and scalable learning system through CEFS.  Parts 3 and 4 will 

investigate the potential information that may be gained by CEFS, and conversely, information 

which may be missed or lost through the use of a traditional feature selection architecture.   

 Moreover, the combination of class-specific optimal features and an ensemble machine 

will allow the system to take advantage of the well documented benefits of ensemble methods 

[9] [10] [11] by providing the data diversity and classifier disagreement necessary for ensemble 

systems to succeed, thereby increasing prediction performance (better accuracy).  Allowing each 

classification to have its own set of class-specific optimal features, and thus each its own 

ensemble classifier, will create an ensemble system that should allow for more accurate 

classification of unseen instances.  As an added benefit, new information may be learned as to 

the relevance of certain features on certain classifications, information that may have been 

otherwise unknown due to performing feature selection on all instances, and thus, all 

classifications at once.  This would be of particularly good use in problems such as cancer 

prediction [12] [13], where certain features may be optimal in detecting certain types of cancer, 

but irrelevant in other types. 

 

1.1 Motivation 
 

 

According to [14], a learning algorithm is good if it produces hypotheses that do a good 

job of predicting classifications of unseen examples.  With that in mind, the primary goal of this 

research is to increase prediction accuracy, thereby creating a better learning algorithm.  Note, 
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however, that the focus here is not on the learning algorithm itself, but rather on the pre-

processing methodology used to prepare the training data for optimal learning.  The first reason 

is because the architecture presented here is algorithm independent and can be combined with 

just about any learning algorithm.  The second reason is research suggests that much of the 

power in classification comes not from the specific learning method, but from proper formulation 

of the problems and crafting the representation to make learning tractable [15].  In addition, the 

same research suggests that performance is roughly equivalent between various learning 

algorithms, across many domains.  In other words, the preparation and representation of the data 

is of the utmost importance given that no single learning algorithm outperforms all others on 

every domain.  In a nutshell, this represents the well-known theorems of “No Free Lunch” [16]. 

Although a dataset may be well prepared and represented, it may also fall victim to 

Belman’s “curse of dimensionality”, a problem which often plagues high-dimensional datasets.  

The curse of dimensionality refers to the exponential growth of hypervolume as a function of 

dimensionality [17].  That is, the more dimensions in a dataset, the more representation needed 

by the predicting model.  For classification, this can mean that there are not enough data objects 

to allow the creation of a model that reliably assigns a class to all possible objects [18].  

Moreover, when the set of features in the data is sufficiently large, many induction algorithms 

become simply intractable [19].  In the context of Neural Networks (NN), for example, the curse 

of dimensionality causes networks with irrelevant inputs to behave badly: the dimension of the 

input space is high, and the network uses almost all its resources to represent irrelevant portions 

of the space [20].  In [21], Silverman illustrates the difficulty of kernel estimation in high 

dimensions.  As shown in Table 1, even at a small dimensionality of 10, roughly 840,000 

samples are required to estimate the density at 0 with a given accuracy [21].    
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Table 1: Required Sample Size for given Number of Dimensions [21] 
 

Dimensionality Required Sample Size 

1 4 

2 19 

5 786 

7 10,700 

10 842,000 

 

In 2003, research conducted by Guyon and Elisseeff reported on gene expression datasets 

up to 60,000 variables wide, and text classification datasets 15,000 variables wide and nearly 1 

million instances deep [22].  Those numbers continue to grow daily, as well as in other fields 

such as satellite imagery, hyperspectral imagery, financial data, consumer data, and etc [23].  In 

fact, the UCI Machine Learning Repository, where many of the datasets used in this research are 

attained from, contains two datasets 100,000 features wide and one dataset spanning over 3 

million features [24].  Improving prediction accuracy within problems of high data 

dimensionality is the primary motivation for using feature selection.   

Feature selection can also significantly improve the comprehensibility of resulting 

classifier models, generated rules, or relationships among features.  For instance, methods such 

as ID3 [25] or C4.5 [26] can create very complex tree structures on high-dimensional datasets, 

making it almost impossible to comprehend with the naked eye.  By removing many of the 

unnecessary and noisy features, the resulting structure will be simpler and comprehensible, 

allowing for a better understanding of the problem domain and the relationships between 

features. 

The key benefit of feature selection is that it directly targets the curse of dimensionality, 

since it can eliminate irrelevant and redundant features and reduce noise in the dataset.  

Moreover, as the dimension of the feature space increases so does the probability of over-fitting, 
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and as shown by [27], feature selection provides a powerful means to avoid over-fitting.  Feature 

selection can also lead to a more understandable model, allow the data to be more easily 

visualized, and with a reduction in dimensionality, can decrease the amount of time and memory 

required by learning algorithms [18].  The motivation for this research, however, goes deeper 

into the methodology of feature selection, a topic that will be further explored later in this work.   

 

1.2 Problem Description 
 

 

Although there are a plethora of feature selection algorithms, all differing in some shape 

or form, they all share a commonality; they all attempt to reduce the number of features by 

selecting an optimal subset of the original feature set.  This subset, however, almost always 

contains features that are assumed to be optimal to the entire dataset. This then leads to the 

assumption that the most optimal features to the dataset must be optimal for instances across all 

classifications.  Therein lays the problem and thus the basis for this research.   

The hypothesis presented in this work is based on the notion that by allowing the feature 

selection algorithm to focus its attention on the prediction accuracy of a single classification at a 

time, the algorithm will produce a separate subset of features optimal to each classification, and 

thus create a more robust system, one better fit to classify unseen instances.  These class-specific 

subsets can then be utilized to create separate classification models, thereby taking advantage of 

another technique proven to improve classification accuracy; ensemble learning (or in this case, 

ensemble feature selection).  In summary, this research will attempt to improve on the problem 

of prediction accuracy by successfully developing and analyzing a class-specific ensemble 

feature selection architecture. 
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1.3 Goals and Contributions 

 

 
As is the case with most novel learning systems, the primary goal of this research is to 

improve prediction accuracy.  This will be done through the development and analysis of the 

aforementioned ensemble feature selection architecture.  Accordingly, this research will attempt 

to achieve the following detailed goals through the use of a Class-specific Ensemble Feature 

Selection (CEFS) architecture: 

• Find an effective recombination technique for disagreeable occurrences between the 

ensemble classifiers 

 

• Improve prediction accuracy over baseline traditional feature selection methods 

 

• Examine scalability of CEFS in terms of number of features and number of 

classifications 

 

• Explore the inclusiveness/exclusiveness between feature subsets attained through 

CEFS versus the ones attained though traditional feature selection methods 
 

The immediate contribution of this research will be in the introduction of a novel 

architecture to the areas of feature selection, ensemble learning, and machine learning.  

Additionally, as dataset sizes continue to grow in every discipline, the proposed architecture can 

further contribute in a much more widespread manner as it is data and algorithm independent.  

Given its class-specific design, the architecture may also have far reaching implications to fields 

in science, medicine, vision, finance, security, biometrics, etc.   

 

1.4 Organization 
 

 

The outline of this thesis first began with a brief introduction on the disciplines and 

methods explored in this research.  The remainder of this thesis is organized as described below. 
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Chapter 2 begins by discussing classification tasks as part of supervised learning.  The 

chapter provides a brief background on classification, as well as, a general procedure for 

conducting classification tasks.  It then details classifier performance metrics and presents a 

variety of classification algorithms.  It further provides a brief discussion of overfitting within 

supervised learning tasks and concludes the chapter with key background information on 

ensemble learning machines. 

Chapter 3 explains feature selection in detail.  Following a brief introduction and 

background on feature selection, a general procedure for feature selection is provided.  Then, the 

chapter describes embedded feature selection methods and provides various other feature 

selection algorithms.  Sections on common misconceptions, and relevance and optimality of 

features are also presented.  The use of feature selection in unsupervised and supervised learning 

is then discussed, concluding with thorough explanations of the different types of feature 

selection algorithms and existent work in ensemble feature selection. 

Chapter 4 provides an in depth explanation of the methodology behind Class-specific 

Ensemble Feature Selection (CEFS).  This chapter includes the theoretical, architectural, and 

algorithmic frameworks necessary for the design and implementation of CEFS. 

Chapter 5 presents an implementation of the suggested architecture, along with results 

attained from an experiment spanning several algorithms and ten datasets.  Moreover, 

experiment parameters, analysis, and conclusions are discussed.  Lastly, Chapter 6 concludes 

with final observations and analysis of the conducted research, and possible future work. 
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Chapter 2 

 

Supervised Learning: Classification

 

 

The field of machine learning is often divided into three general disciplines: supervised, 

unsupervised, and reinforcement learning.  Supervised learning involves learning a function from 

examples of its inputs and outputs.  Unsupervised learning involves learning patterns in the input 

when no specific output values are supplied.  Reinforcement learning is typically the broadest of 

the three; rather than being told what to do by a teacher, a reinforcement learning agent must 

learn from reinforcement, often including the subproblem of learning how the environment 

works [14].   

Supervised learning can further be divided based on the function’s output values.  

Learning a function with continuous output values is called regression learning; conversely, 

learning a discrete valued function is called classification learning [14].  The architecture 

presented in this research will concentrate on classification learning only.  Accordingly, this 

chapter will be organized as follows.  First, background information on classification learning is 

provided.  Next, a general process for classification tasks is detailed, followed by common 

metrics for evaluating classifier performance.  Then, an algorithmic framework for classifiers is 

presented, describing a variety of different classifiers.  The chapter will then discuss model 

overfitting and conclude with general information regarding ensemble learning methods. 
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2.1 Background 
 

 

Classification is a well studied and thoroughly researched pervasive problem which 

encompasses many diverse applications.  Examples include cancer prediction based on MRIs, 

galaxy classification based on galaxy shapes, and flower species categorization based on petal 

size and shape [18].  The input data in classification tasks is a collection of records or instances.  

Each instance is represented by a tuple (x, y) where x is the feature set and y is the target output 

or class label.  Formally, classification is defined as the task of learning a target function f that 

maps each feature set x to one of the predefined class labels y.  The target function can also be 

referred to as a classification model [18].  Table 2 displays a sample dataset used for predicting 

whether or not to play tennis based on weather outlook, temperature, humidity, and wind.  

 

Table 2: Play Tennis dataset [26] 

 

 

 
Day Outlook Temperature Humidity Wind Play Tennis? 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild Normal Weak Yes 

D5 Rain Cool High Strong Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Weak Yes 

D8 Sunny Mild High Strong Yes 

D9 Sunny Cool Normal Weak No 

D10 Rain Mild Normal Weak No 

 

Classification also requires that the class labels be of a categorical nature.  Although 

target values are most often already finite and discrete, they can also sometimes be continuous.  

In that case, a process called discretization must be performed to transform the output values 

from continuous to categorical.  In this process, the continuous range of output values is typically 

Class Label Features 

In
st

an
ce

s 



divided into a fixed set of intervals, each then represented by a discrete class label.  Additionally, 

classification methods are best suited for predicting datasets with unordered nominal or binary 

class labels.  They are less effective in predicting ordered categories (e.g., classifying humidity 

as high, medium, or low), as they do not consider implicit ordering among the categori

 

2.2 General Classification Process
 

Most classification techniques follow a similar progression of steps when performing 

classification tasks.  This progression is shown in 

(i.e. classifier) is a systematic approach

with known target outcomes.  The training set is first sent to the classifier so that induction can 

take place.  The classifier then builds a model 

data’s feature set and its target outcomes.  The finished model then receives a test set for 

deduction and final performance validation.  

 

Figure 
 

 

It is also of vital importance that the model generated by the classifier fits both the 

training data and correctly predicts the class labels of the test data.  Thus, a key objective of the 
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divided into a fixed set of intervals, each then represented by a discrete class label.  Additionally, 

best suited for predicting datasets with unordered nominal or binary 

class labels.  They are less effective in predicting ordered categories (e.g., classifying humidity 

as high, medium, or low), as they do not consider implicit ordering among the categori

General Classification Process 

Most classification techniques follow a similar progression of steps when performing 

classification tasks.  This progression is shown in Figure 1.  The classification technique itself 

(i.e. classifier) is a systematic approach, which builds classification models from a training set 

with known target outcomes.  The training set is first sent to the classifier so that induction can 

take place.  The classifier then builds a model that best fits the relationship between the training 

data’s feature set and its target outcomes.  The finished model then receives a test set for 

deduction and final performance validation.   

Figure 1: General classification process 

It is also of vital importance that the model generated by the classifier fits both the 

training data and correctly predicts the class labels of the test data.  Thus, a key objective of the 

divided into a fixed set of intervals, each then represented by a discrete class label.  Additionally, 

best suited for predicting datasets with unordered nominal or binary 

class labels.  They are less effective in predicting ordered categories (e.g., classifying humidity 

as high, medium, or low), as they do not consider implicit ordering among the categories.   

Most classification techniques follow a similar progression of steps when performing 

.  The classification technique itself 

which builds classification models from a training set 

with known target outcomes.  The training set is first sent to the classifier so that induction can 

best fits the relationship between the training 

data’s feature set and its target outcomes.  The finished model then receives a test set for 

 

It is also of vital importance that the model generated by the classifier fits both the 

training data and correctly predicts the class labels of the test data.  Thus, a key objective of the 
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classifier is to build models that generalize well, i.e., models that accurately predict unseen 

instances.  Models that fail to provide this generalizing capability are said to overfit the data.  A 

more thorough discussion of overfitting will be provided in Section 2.5 of this chapter. 

 

2.3 Performance Evaluation 
 

Evaluation of the performance of the model is based on the number of instances correctly 

and incorrectly classified by the model [18].  These counts are organized into a table known as a 

confusion matrix.  Table 3 displays a confusion matrix for a two-class (i.e. binary) classification 

problem.  Each entry fij in Table 3 represents the number of instances from class i classified as 

class j.  Based on these entries, the total number of correct predictions by the model is (f11 + f00), 

and conversely, the total number of incorrect predictions is (f10 + f01). 

 

Table 3: Confusion Matrix for a two-class prediction problem (with class labels) 

 

 
Predicted Class 

Class = 1 Class = 0 

Actual 

Class 

Class = 1 f11 f10 

Class = 0 f01 f00 

 

Although a confusion matrix provides the necessary information to gauge performance, it 

is much more useful to have a single measure which can summarize the matrix’s information, 

even more so on problems containing a higher number of classifications.  Performance metrics 

such as accuracy and error rate, as defined below, provide this useful measure of performance. 

 
 �������� = 	
��� �� ������ ����������

����� �
��� �� ���������� = �������
���������������

 (Eq. 1) 

 

 

 ����� �� ! = 	
��� �� �������� ����������
����� �
��� �� ���������� = �������

���������������
  (Eq. 2) 
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A slightly different representation of the confusion matrix is displayed in Table 4.  

Although similar information is provided, it is important to note the different terminology as it 

can be prevalent in machine learning research.  Moreover, certain classification tasks, such as 

cancer prediction, may actually measure performance not solely based on accuracy or error rate, 

but also on the number of false negatives.  For example, diagnosing an individual with cancer 

when they in fact they don’t have it (false positive) will certainly bring emotional pain and 

anguish, however, diagnosing an individual as cancer free when in fact they have the disease 

(false negative) may very well cost that individual’s life.  Hence, many classification tasks often 

attempt to minimize the number of false negatives, also known as Type II Error.  Conversely, the 

number of false positives is also known as Type I Error. 

 

Table 4: Confusion Matrix for a two-class prediction problem (statistical representation) 

 

 
Prediction 

YES NO 

Actual 

YES 

tp 

(true positive) 

fn 

(false negative) 

*Type II Error 

NO 

fp 

(false positive) 

*Type I Error 

tn 

(true negative) 

 

Although a variety of other performance metrics exist (e.g. Balanced Error Rate or Area 

under the ROC [28]), two other important metrics must be further defined, as they are discussed 

later in this document.  These two metrics are precision and recall.  Precision can be seen as a 

measure of fidelity, whereas recall is a measure of completeness.  In a classification task, a 

precision score of 1.0 for a class C means that every item labeled as belonging to class C does 

indeed belong to class C (but does not specify the number of items from class C that were not 

labeled correctly).  Conversely, a recall score of 1.0 suggests that every item from class C was 
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labeled as belonging to class C (but says nothing about how many other items were also 

incorrectly labeled as belonging to class C).  Often, the two have an inverse relationship, where 

an increase of one will cost the reduction of the other.  Precision and recall are formally defined 

below through Eqs. 3 and 4, respectively [29] [28]. 

 

 "�!�#$#�% = ����� �
��� �� ��
 ������&�
����� �
��� �� ������� ������&� = ��

����� (Eq. 3) 

 

 

 '!��(( = ����� �
��� �� ��
 ������&�
����� �
��� �� ���
�� ������&� = ��

����� (Eq. 4) 

 

 

2.4 Algorithmic Framework 

 

 
Given the plethora of induction algorithms existent within the machine learning canon, a 

complete and detailed assessment of the algorithmic framework in classification is outside the 

scope of this research.  However, with the extensibility and flexibility of the CEFS architecture, 

it is important to provide a broad collection of learners which adequately represent the discipline.  

Accordingly, the remainder of this section will discuss logic based algorithms (i.e. Decision 

Trees and other rule-based classifiers), perceptron based algorithms (i.e. Neural Networks), 

statistical based algorithms (i.e. Naïve Bayes classifiers), instance based algorithms (i.e. k-

nearest neighbor), and Support Vector Machines. 

 

2.4.1 Logic based Algorithms 

 

2.4.1.1 Decision Trees 
 

 

Decision Trees (DT) [30] [25] [26] are perhaps one of the two most recognizable 

classification algorithms (Neural Networks being the other).  They are trees which classify 
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instances by sorting them based on feature values, where each node in the tree represents a 

feature in an instance to be classified, and each branch represents a value which the node can 

assume.  The feature best dividing the training data becomes the root node of the tree.  The next 

best feature becomes an internal node, if it contains outgoing branches, or a leaf node, if it 

contains no outgoing branches.  There are numerous ways of measuring how well features divide 

the training data (e.g. Information Gain [31] or GINI [30]).  Instances are then classified 

beginning at the root node and sorted based on their feature values [32].  Figure 2 depicts a 

decision tree generated using an ID3 implementation [25], and based on the Play Tennis dataset 

shown previously on Table 2.  As seen, the biggest advantage of DTs is their comprehensibility. 

 

 

 

 

 

 

 

Figure 2: ID3 Decision Tree 

 

 
Using the decision tree displayed in Figure 2, the instance (Overlook = Rain, 

Temperature = Hot, Humidity = Normal, and Wind = Weak) would be classified as “Yes”.  Also 

note that the Temperature feature is not part of the generated tree.  This can often be due to 

techniques such as pruning, which removes nodes to prevent overfitting and reduce tree 

complexity [32].  It may also be the case that Temperature just does not offer any further 

discriminating power than what’s already on the tree, thus it is not included.   

Outlook 

Sunny Rain 
Overcast 

Yes Humidity Wind 

Weak Strong Normal High 

No No Yes Yes 
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The problem of constructing optimal binary decision trees is an NP-complete problem.  

Moreover, decision trees are typically univariate and do not perform well on problems which 

require diagonal partitioning.  They also tend to perform better in problems dealing with 

discrete/categorical features [32], as continuous valued features must go first through 

discretization in order to be utilized in the algorithm.  For further and more complete reviews of 

Decision Trees, refer to [33] or [34]. 

 

2.4.1.2 Other rule-based systems 
 

 

Although decision trees can create a set of rules by traversing down each branch of the 

tree, rule sets can also be directly induced from a variety of rule-based algorithms.  Rules come 

in the form if antecedent, then consequence.  The antecedent contains values taken from the 

feature set, whereas the consequence contains the target outcome [35].  The difference between 

the heuristics for decision trees and most other rule-based learners is that the former evaluate the 

quality of disjoint sets, while the latter evaluate the quality of the set of instances covered by 

each candidate rule.  Thus, it is important for rule-based systems to generate rules which have 

high predictability or reliability.  It is also important to build the smallest rule set that is 

consistent with the training data, as a large number of rules is often a sign that the algorithm is 

attempting to “remember” the training data, thereby not generalizing well (i.e. overfitting) [32].  

RIPPER [36], a well-known rule-based algorithm, forms rules through repeated growing 

and pruning.  In the growing phase, rules are made more restrictive in order to fit the training 

data as closely as possible.  Conversely, in the pruning phase, rules are made less restrictive in 

order to avoid overfitting.  Much like DTs, the most appealing characteristic of rule-based 

systems is their easy comprehensibility.  For more on rules based systems, please refer to [37]. 
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2.4.2 Perceptron-based Algorithms 

 

As aforementioned, perceptron-based algorithms (e.g. Neural Networks) are among the 

most well known and often implemented classification algorithms.  A single layered perceptron 

can be described as follows: 

If x1 through xn are input feature values and w1 through wn are connection weights between 

the values and the predicted output, then the output of the perceptron is computed by its 

weighted sum, i.e., ∑ *�+�
�
� , followed by an adjustable threshold function.  If the sum is above 

the threshold, the output is 1, otherwise it’s 0 [32].   

Single layer perceptrons are limited, however, in that the algorithm can only properly 

classify problems which are linearly separable [14].  In an attempt to solve this problem, 

multilayered perceptrons (i.e. Artificial Neural Networks) were devised [38].  Multilayer 

artificial neural networks employ the addition of hidden units between the input and output units.  

The advantage of adding hidden layers is that it enlarges the hypotheses space which the network 

can represent.  These hidden units can be thought of as a perceptron that represents a soft 

threshold function in the input space.  Then, think of the output as a soft-threshold linear 

combination of several functions [14].  Figure 3 displays a common multilayer neural network 

with one hidden layer and four inputs. 

 

 

 

 

 

 

Figure 3: Multilayer Neural Network with one hidden layer and four inputs 

Output Units

Hidden Units

Input Units

xi 

wj,i 

xj 

wk,j 

xk 
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Many variations can be implemented in neural networks.  For example, any given 

implementation can have a different number of hidden units, a different number of connections, 

extra neurons, a different number layers, different activation functions, and beyond.  Moreover, 

the weights between each layer have to be trained before classification can take place.  A wide 

variety of weight training techniques also exist (e.g. back propagation [14] or training weights 

using Genetic Algorithms [39]).  Although Neural Networks can be trained to be great learners, 

given all of its varying characteristics, its biggest drawback becomes its training time.  A more in 

depth review of Neural Networks can be found in [40]. 

 

2.4.3 Statistical-based Algorithms 

 

Statistical learning algorithms are unique in that they provide a probability that an 

instance belongs to each class, rather than simply predicting a specific classification.  Maximum 

Entropy, for instance, works on the notion that when nothing is known, the distribution should be 

as uniform as possible.  In this technique, training data is used to derive a constraint set for the 

model which calculates the class-specific expectations for the distribution.  Likely the most well 

known statistical learning algorithm is a Bayesian Network [32]. 

Bayesian systems are based first on the notion of conditional probabilities.  The notation 

used for conditional probabilities is P(a|b) where a and b are any propositions.  They are defined 

in Eq. 5.  From this definition, a Bayes rule (Eq. 6) can be derived.  This simple rule underlies all 

modern AI systems for probabilistic inference and is the second basis for Bayesian systems [14]. 

 

 ",*|�. = /,0∧2.
/,2. . (Eq. 5) 

 

 

 ",�|*. = /,0|2./,2.
/,0. . (Eq. 6) 
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A Bayesian Network is then made up of a structural model and a set of conditional 

probabilities. The model is a directed graph with nodes representing features and arcs 

representing feature dependencies. These dependencies are quantified by conditional 

probabilities for each node given its parents [41].   

So, first assume that A1, A2, …, An are n features in the training set.  An example E can be 

represented by < a1, a2, …, an >, where ai is the value of Ai.  Also, let C represent the class label in 

the training set.  So, c can be used to represent the value that C takes and c(E) to denote the class 

of E.  The classifier represented by a general Bayesian network can then be defined according to 

Eq. 7.  Furthermore, assume that all features are independent given the class (assumption of 

conditional independence), and the resulting classifier is a Naïve Bayes (Eq. 8) [41]. 

 

 �,�. = ��34�* 
� ∈ 6 ",�.",�7, �9, … , ��|�. (Eq. 7) 

 

 �,�. = ��34�* 
� ∈ 6 ",�. ∏ ",��|�.�

�<7  (Eq. 8) 

  

Simply put, the conditional independence assumption assumes that each variable in the 

dataset is conditionally independent of each other.  Given the assumption of conditional 

independence, instead of computing the class-conditional probability of every combination of a, 

the algorithm needs only to estimate the conditional probability of each ai, given c.  This 

approach is more practical since it does not require a large training set to obtain a good estimate 

of the probability [18].  However, this approach is also what often makes the algorithm less 

accurate than many of its counterparts (e.g. Neural Networks) [32].  This is because most 

domains exhibit dependent relationships within their features, breaking down the foundation of 

conditional independence among variables, and thus negatively affecting the classifier. 
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2.4.4 Instance-based Algorithms 

 

Instance-based algorithms typically differ from other learning algorithms in that no 

training phase is necessary and no explicit model of the training data is created.  That is, an 

instance-based learner reuses the training set each time a new instance needs to be classified.  

For this reason, instance-based learners are also called lazy learners, as the training data is stored 

at training time and the learning is delayed until classification time [42] [43].  

Perhaps the most unique characteristic of an instance-based algorithm is its use of a 

proximity measure [18].  This measure determines how close (distance) or how similar one 

instance is to another.  The most common way to measure this is by calculating the Euclidean 

distance, which is the distance between two points in n-dimensional space.  Instance-based 

algorithms are implemented under the assumption that unseen instances will be similar to the 

classification of other instances that are nearby in Euclidean space [42].  The standard Euclidean 

distance d (x, y) between instances x and y in n-dimensional space is defined as follows [43]: 

 

 =,*, �. = >∑ ,*� − ��.9 �
�<7 . (Eq. 9) 

 

Based on the aforementioned assumption of distance, the basic approach of a k-nearest 

neighbor (kNN) classifier [44] is to calculate the distance (or similarity) between each test case           

z = (x', y') and all of the training cases (x, y) Є D to determine its nearest neighbor list, Dz [18].  

Then from Dz (which contains the k closest training instances to z) the classification of the new 

instance is computed.  In other words, the outcome of the k-nearest training instances will 

determine the outcome of the new instance that needs to be classified.   

Perhaps the most common way of determining the final output is by majority voting, also 

known as Discrete kNN.  The Discrete k-nearest neighbor algorithm specifies that the most 



21 

common outcome of the k-nearest instances will be used as the outcome for the new instance.  In 

other words, whichever outcome occurs most frequently, will be the outcome for the instance to 

be classified.  Once Dz is obtained, the outcome of the test case is based on the majority vote of 

its nearest neighbors, which is formally defined as: 

 

 � ′ =  ��34�* 
@ ∑ A,@ = ��.,0B,2B.∈CD . (Eq. 10) 

 

In Eq. 10, v represents all of the possible outcomes (classes), yi represents the class label 

for one nearest neighbor and I(·) is an indicator function that returns the value one (1) if its 

argument is true and zero (0) if not.  The class with the highest value is then chosen as the 

outcome. Using majority voting, each neighbor affects the classification equally [18]. The 

majority voting approach is applied solely to the Discrete kNN algorithm. 

 

2.4.5 Support Vector Machines 

 

A considerable amount of attention has been afforded to Support Vector Machines 

(SVM) recently.  In part, this is because SVMs work so well with high-dimensional data by 

avoiding the curse of dimensionality [18].   

SVMs revolve around the concept of a maximal margin hyperplane.  That is, if the 

dataset is linearly separable, then there exists a hyperplane such that all of the instances from one 

class can be separated from all instances of another.  An example of this is shown in Figure 4 

[32].  However, as also seen from this example, there exists an infinite number of hyperplanes 

with the same property.  Moreover, although their training errors are zero, there is no guarantee 

that the hyperplanes will perform as well at test time.  So, the algorithm searches for the 

hyperplane which can offer the greatest class separation, i.e., the maximum margin hyperplane. 
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Figure 4: Maximum Margin Hyperplane 
 

 

The rationale of choosing the hyperplane with the largest margin is that decision 

boundaries with large margins tend to generalize better than those with small margins.  

Intuitively, if the margin is small, any slight changes in the decision boundary can significantly 

affect the system’s performance.  Hence, classifiers that produce decision boundaries with small 

margins are more susceptible to poor generalization and overfitting.  Linear separability is not a 

requirement for SVMs however.  A soft margin approach allows SVMs to construct a linear 

decision boundary even in situations where the classes are not linearly separable [18].  More 

information on SVMs can be found in [45] or [46]. 

 

2.5 Overfitting 
 

Errors committed by a classifier can be categorized as either training or generalization 

errors.  Training errors are instances misclassified during training and generalization errors are 

unseen instances misclassified during test time.  As aforementioned, it is important for a model 

Optimal 

hyperplane 

Other 

hyperplanes 

Maximum 

Margin 
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to not only fit the training data well, but to also accurately classify unseen records.  When a 

classifier creates a model that fits the training data too well, essentially just “remembering” the 

training data, it can result in poor generalization.  This is known as overfitting [18]. 

On the path to understanding model overfitting, note that the training error can typically 

be reduced by simply increasing the model complexity.  For instance, the leaf nodes of a decision 

tree can be expanded until they perfectly fit the training data.  Such a tree would yield a training 

error of zero, but at the cost of a much more complex tree and the high likelihood of a significant 

increase in generalization error.  This is due to the addition of nodes which accidently fit noise 

points in the training data, thus degrading generalization performance [18]. 

Overfitting can occur for a variety of reasons: noise in the training set, lack of 

representative samples, etc.  However, there are also steps for decreasing the chances of 

generating an overfit model.  Perhaps the most prevalent step is to reduce model complexity (e.g. 

pruning).  The system can also use a separate validation set for calculating its training error 

instead of the training set itself.  Regardless of the technique, model overfitting is a problem 

which must be carefully watched in any classification task. 

 

2.6 Ensemble Methods 
 

 

The main goal of an ensemble is to construct multiple classifiers from the original data 

and then aggregate their predictions when classifying unknown instances.  Figure 5 shows a 

basic view of an ensemble method [18].  As depicted, three main steps exist: training set 

generation, learning, and integration.  Step 1 begins with the original training set D.  From this 

training set, t data subsets are created (D1, D2, …, Dt).  Bagging and boosting are common ways 

to accomplish this step [18].  Then in Step 2, t base classifiers are generated (C1, C2, …, Ct).  
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These classifiers may all be the same, all different, or contain any combination of the same or 

different classifiers.  Each classifier Ci is trained using the subset Di.  Finally in Step 3, the 

prediction of each classifier is combined in a predetermined way to produce the resulting 

classification. 

 
Figure 5: A logical view of the ensemble learning method [18] 

 

 

Two primary approaches exist to the integration phase: combination and selection.  In the 

combination approach, the base classifiers produce their class predictions and the final outcome 

is composed using those predictions.  In the selection approach, one of the classifiers is selected 

and the final prediction is the one produced by it [47].  The simplest and most common 

combination method is voting, also known as majority voting.  In voting, the classification 

predicted by a base classifier is counted as a vote for that particular class value.  The class value 

with the most votes becomes the final classification [47].  A simple and popular selection method 

is cross-validation majority (CVM) [48], which estimates the accuracy of each base classifier 

using cross-validation and selects the classifier with the highest accuracy.  Although CVM is a 



25 

selection method which chooses one classifier for the whole data space, more sophisticated 

selection methods which estimate local accuracy [49] or meta-level classifiers do exist [50].  

Perhaps the most commonly used integration techniques are voting [9], simple and weighted 

averaging, and a posteriori [51] [52].   

According to [53], the main objective when building the base classifiers is to maximize 

the coverage of the data, which is the percentage of the instances which at least one base 

classifier can classify correctly.  Reaching coverage greater than the accuracy of the best 

classifier, however, requires diversity among the base classifiers [11] [51] [52].  Although 

research is always ongoing on new approaches to increase diversity, some methods include 

training on different subsets of the training set, using different learning algorithms, injecting 

randomness, and training on different sets of input features [54].  The latter is where ensemble 

feature selection is successfully applied. 

 

 

 

 

 

 

 

 

 

 

  



26 

Chapter 3 

 

Feature Selection 

 

 

Recall from Chapter 1 that research has shown that much of the power in classification 

comes not from the specific learning method, but from proper formulation of the problems and 

crafting the representation to make learning tractable.  This suggests that the preparation and 

representation of the data is of the utmost importance for successful learning, given that many 

learning algorithms perform similarly on most domains [15].  In the context of machine learning, 

the formulation and transformation of data prior to learning is known as data preprocessing. 

Data preprocessing is itself a broad research area consisting of a number of different 

strategies and techniques interrelated in complex ways.  These include techniques such as 

aggregation, sampling, and variable transformation.  The key commonality within these and 

other data preprocessing techniques is that they all seek to improve learning with respect to time, 

cost, and quality.  Simply put, data is of high quality if it is suitable for its intended use [18].  

This is analogous to statistics and experimental sciences, where emphasis is especially enforced 

on the careful design of experiments to collect data relevant to the specific proposed hypothesis.  

Similarly, data preprocessing techniques improve the quality and representation of data so that 

classification tasks can be more efficient and effective.  Perhaps one of the most studied and 

explored data preprocessing techniques is feature selection. 

The remainder of this chapter is organized as follows.  First, background information is 

provided on feature selection, followed by an in depth explanation of the general feature 



selection process.  Next, feature se

algorithmic framework and common feature selection misconceptions are addressed next.  Then, 

a thorough discussion on the subject of relevance and optimality as it pertains to feature selection 

is presented.  Next, brief sections

follow.  Finally, previous research conducted in ensemble feature select

explained, as it pertains highly to the 

 

3.1 Background 
 

 

Feature selection can be described as a technique which finds a 

original input features under some objective measure, such as prediction accuracy, structure size, 

or minimal use of input features.  Consistent with notions such as O

description length [56], and minimum message length

structures which correctly predict unseen instances, yet are not so complex that they overfit the 

data [58]. Within the general classification process, previously show

selection occurs just prior to induction between the training data and the classifier (

 

Figure 6: Feature Selection within general classification process
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Furthermore, by extracting irrelevant and redundant information from a given dataset, 

significant computing time can be saved and models that generalize better to unseen points can 

be built [59].  Formally, feature selection can be defined as follows [7]: 

 

Definition 1 (feature selection) Let Y be the original set of features, with cardinality n.  Let d 

represent the desired number of features in the selected subset X, X ⊆ Y.  Let the feature selection 

criterion function for the set X be represented by J(X).  Without lost of generality, let us consider 

a higher value of J to indicate a better feature set.  Formally, the problem of feature selection is 

to find a subset X ⊆ Y such that |X| = d and  

 

 F,G. = maxK⊆L,|K|<� F,M.. (Eq. 11) 

 

 

The relationship between feature selection and the performance of a learning algorithm, 

however, depends largely on whether or not the assumption of monotonicity holds, i.e. 

 F,� ∪ O. ≥ F,�.           ∀ �, O ⊆ R. (Eq. 12) 

 

This assumption implies that additional features always provide additional discriminating power, 

thus improving the performance of a learning algorithm [60].  It also assumes that the full 

distribution of the data is known to the learning algorithm.  The optimal Bayes rule, for example, 

is monotonic; adding features cannot decrease the accuracy.  In this case, feature selection would 

not be recommended.  In the vast majority of practical and real world scenarios, however, 

monotonicity does not hold, often because learning algorithms are not given access to the 

underlying distribution [61].  In addition, noisy features can increase noise in training examples, 

making it difficult for the learning algorithm to separate useful signal from noise [60]. 

In fact, many supervised learning algorithms, including decision tree algorithms such as 

ID3 [25], C4.5 [26], and CART [30], and instance-based algorithms, such as IBL [62] [63], are 

known to lose prediction accuracy when faced with many features unnecessary for predicting the 

output, i.e. irrelevant features [61].  These are features that contain almost no useful information 
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for the learning task at hand.  For example, students’ ID numbers are irrelevant for predicting 

students’ GPAs [18].  Conversely, algorithms such as Naïve-Bayes [64] [65] [66] are robust with 

respect to irrelevant features, but their performance may degrade quickly if correlated features, 

i.e. redundant features, are added [61].  Such features duplicate much or all of the information 

contained in one or more other features.  For instance, the purchase price of a product and the 

amount of sales tax paid contain much of the same information [18].   

In the context of machine learning, irrelevant and redundant features typically serve no 

purpose except to increase induction time.  In fact, such features may also cause other problems 

as they can confuse the learning algorithm by helping to obscure the distributions of the small set 

of truly relevant features for the task at hand [19].  Feature selection targets those very problems 

as it is a technique that reduces the number of features and removes irrelevant, redundant or 

noisy data by selecting a subset of the original feature set [4].   

Although optimal feature selection is typically intractable [61] and many problems 

related to it have been shown to be NP-hard [67] [68], some feature selection algorithms have 

proved to be significantly more stable than others [69] [70].  Furthermore, feature selection has 

been shown to yield benefits such as facilitating data visualization and data understanding, 

reducing measurement and storage requirements, reducing training and utilization times, and 

defying the curse of dimensionality to improve prediction performance [22].  As a result, it can 

be found in many areas of research such as bioinformatics [71] [72] [73] [74], machine learning 

[71] [75] [76] [19], text classification/mining [77] [78] [79] [80] [81], case-based reasoning [82], 

statistics [83] [84] [85], security [79] [86], pattern recognition [7] [72] [87] [88], data mining 

[59] [89] [90], and various others.  In addition, numerous reviews and comparative studies on 

existing feature selection algorithms have been conducted [4] [91] [92] [93] [94].   
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3.2 General Feature Selection Process 
 

 

Most feature selection methods follow a four step process: subset generation, subset 

evaluation, stopping criterion, and result validation (Figure 7) [91].  Beginning with subset 

generation, the selected search strategy produces candidate feature subsets.  Each subset is then 

evaluated and compared to others according to a given evaluation criterion.  The best subset is 

kept and this process is repeated until a stopping criterion is reached, at which point, the selected 

subset is validated using the pre-selected classifier.  The subsequent subsections will provide 

detailed explanations of each step. 

 

 

Figure 7: Feature Selection Process [91] 
 

 

3.2.1 Subset Generation 
 

 

Subset generation is essentially a heuristic searching problem, with each location in the 

search space signifying a candidate subset for evaluation.  Furthermore, it can largely be 

determined by answering two basic questions: where to start and how to search [4]. 

First, a starting point (or points) must be selected.  Some algorithms start with an empty 

set and incrementally add features (i.e. forward), some start with a full set and incrementally 

remove features (i.e. backward), or some start with both ends and add and remove features 

simultaneously (i.e. bidirectional).  Other algorithms may start with a predetermined number of 

randomly selected subsets in order to avoid being trapped by local optima [86].   
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Second, the algorithm must specify its searching strategy.  Since a dataset with N features 

has 2
N
 unique candidate subsets, exhaustive search is typically not feasible and thus rarely 

considered or used.  So, three main strategies have been previously studied: complete, sequential, 

and random search [4]. 

 

3.2.1.1 Complete Search 
 

 

Perhaps the biggest advantage of a complete search strategy is that it is guaranteed to find 

the optimal feature subset based on the evaluation criterion.  While an exhaustive search is 

complete, a strategy does not have to be exhaustive in order to be complete [4].  In fact, 

algorithms such as beam search [86] and branch-and-bound (BB) [95], can find the optimal 

subset much more quickly than exhaustive search. However, such algorithms are impractical for 

problems with large feature sets as the worst case complexity is still exponential.  Moreover, 

methods like BB require the feature selection criterion to be monotonic, although [96] has shown 

that BB can still work well even in cases where the feature selection criterion is nonmonotonic.   

 

3.2.1.2 Sequential Search 

 

 
Although sequential strategies tend to be much faster than complete strategies, the loss of 

completeness can also mean the loss of optimality as it is no longer a guarantee that the optimal 

solution will be found.  These strategies are deterministic and iteratively add or remove features 

until a stopping criterion is reached.  Most sequential search strategies will follow a greedy hill-

climbing approach, such as sequential forward selection (SFS) [7] [87], sequential backward 

selection (SBS) [7] [87], or bidirectional selection [93].  The pseudo-code for SFS and SBS are 

provided in Figure 8 and Figure 9, respectively.  These strategies are the most commonly used 
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methods for performing feature selection given that they are simple to implement and fast in 

producing results as the order of the search space is typically O(N
2
) or less [4]. 

 

                

Figure 8: Pseudo-code for Sequential 

Forward Selection (SFS) Algorithm  

Figure 9: Pseudo-code for Sequential 

Backward Selection (SBS) Algorithm  

 

 

3.2.1.3 Random Search 
 

 

Random strategies begin with a collection of randomly chosen candidate subsets.  Then, 

the strategy can follow in one of two directions: sequential or stochastic search.  Examples such 

as random-start hill-climbing and simulated annealing follow a deterministic sequential search 

pattern to generate subsequent candidate solutions, while also injecting randomness throughout 

the process [86].  Stochastic methods generate new candidate subsets in a completely random 

manner (i.e. new subsets do not grow or shrink based on deterministic or sequential changes to 

previous subsets).  Examples such as the Las Vegas algorithm [97] and LVW [98] use the aid of 

randomness to help escape local optima, allowing it to more adequately search for the global 

GS = TRU          V = 0 

*∗ = arg max
0∈[\

]F^G_ − *`a 

G_�7 = G_ − *∗ 

Sequential Backward Selection (SBS) 

//Step 1 - Initialize candidate subset 

 

//Step 2 - Find next feature greedily  

//     based on evaluation metric 

 

//Step 3 - Update next feature subset 

 

//Step 4 - Check stopping criterion 

If V < =  

Then V = V + 1 and go to Step 2 

Else 

Return G_ 

GS = T∅U          V = 0 

*∗ = arg max
0∉[\

]F^G_ + *`a 

G_�7 = G_ + *∗ 

Sequential Forward Selection (SFS) 

//Step 1 - Initialize candidate subset 

 

//Step 2 - Find next feature greedily  

//     based on evaluation metric 

 

//Step 3 - Update next feature subset 

 

//Step 4 - Check stopping criterion 

If V < =  

Then V = V + 1 and go to Step 2 

Else 

Return G_ 
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optima [4]. LVW, for instance, uses a probabilistic approach to explore high-order relationships 

among features. It guarantees the optimal solution(s) at the (k + 1)th experiment with probability 

l / (2
D
 – k) where D is the number of original features and l is the number of optima [98]. 

Perhaps the most applied and studied stochastic strategy, is that of a Genetic Algorithm 

(GA) driven structure [99] [100] [101].  Popularized by Holland and Goldberg, GAs have shown 

to be effective in searching complex high-dimensional spaces [102] [103].  Moreover, the use of 

crossover and mutation operators allows GAs to efficiently traverse the search space without 

getting trapped in local optima.  First combined with feature selection by [99], in a GA approach, 

candidate subsets (i.e. “chromosome”) are represented as binary strings of length N, where N is 

the number of features in the dataset.  Each position in the binary string contains a zero or a one 

representing the absence or the presence of the corresponding feature.   

As described by the pseudo-code provided in Figure 10, a predetermined number of 

chromosomes (i.e. “population”) is first generated randomly and then updated through each 

iteration (i.e. “generation”) until a stopping criterion is reached.  In every generation, each 

chromosome is assigned a fitness value based on the predetermined evaluation criterion.  This 

value often determines how likely that chromosome is to survive and breed into the next 

generation.  New chromosomes (i.e. “offspring”) are then created in one of two ways: crossover 

and/or mutation.  In crossover, two existing chromosomes are selected as parents and their binary 

strings are mixed to create new chromosomes.  In mutation, random bits (“genes”) of a single 

parent or a newly created child are mutated by simply flipping the binary value, thus creating a 

new chromosome.  Once the new chromosomes have been generated, a new population is 

selected for the next generation and the process begins all over again.  Note that depending on 

selection strategy, old and new chromosomes may or may not survive each generation. 
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Figure 10: Pseudo-code for GA driven Feature Selection Algorithm 

 

 

3.2.2 Subset Evaluation 
 

 

As aforementioned, each new candidate subset needs to be evaluated by an evaluation 

criterion to determine the goodness of the subset.  Since a great number of different evaluation 

techniques exist, it should first be pointed out that although a candidate subset may be optimal or 

near optimal under one criterion, it may or may not be considered optimal under others.  The 

following three major groups of evaluation criteria exist and will be discussed in subsequent 

sections: independent, dependent, and hybrids. 

 

3.2.2.1 Independent Criteria 
 

 

Independent criteria are used to evaluate candidate solutions based on intrinsic 

characteristics of the features themselves, such as distance, information, dependency, and 

consistency measures [104] [105] [106] [93].  Distance measures (i.e. separability, divergence, or 

GA driven Feature Selection 

 

  = 0    //initialize generation counter 

G�g = hGS, G7, … , Gij  //randomly generate initial µ chromosomes (population) 

 k�� = �@�(,G�g.   //assign fitness values by evaluating population 

  

While (Not Done)   //continue until stopping criterion is reached 

{ 

 "� =  l!(!� _"��!% $^G�g, k��`  //select parents for procreation 

 n� = "����!� !,"�.    //create offspring 

 k�o = �@�(,n�.    //assign fitness values to offspring 

 G��7
g = l!(!� _l��#@��$,G�g, k�� , n�, k�o. //select next generation 

  =  + 1     //increment counter 

} 
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discrimination) try to find features that can separate the dataset’s class labels as far as possible.  

For example, in a two class problem, a feature X is preferred over feature Y if X generates a 

greater difference between the two class conditional probabilities than Y.  Information measures 

normally quantify the information that can be gained from each feature.  For example, the 

information gain from feature X is determined by the difference between the prior uncertainty 

and expected posterior uncertainty using X.  Dependency measures (i.e. correlation or similarity) 

gauge a feature’s ability to predict the value of one variable from the value of another.  For 

instance, feature X is chosen over feature Y if the association between feature X and class C is 

higher than the association between feature Y and class C.  Consistency measures rely on class 

information feature bias in selecting subsets.  These measures try to find a minimum number of 

features which separate classes as consistently as the full set of features can [4]. 

Independent criteria are typically used in, and most widely referred to as, filter methods.  

Coined by John, Kohavi and Pfleger in [58], filter methods have their name because they filter 

out irrelevant features before induction occurs, using a predefined metric.  The process uses 

general characteristics of the training set to select some features and exclude others.  As 

displayed in Figure 11, filter methods evaluate candidate subsets through metrics independent of 

the induction or learning algorithm and select the best subset accordingly.  Since filtering 

methods do not involve the use of a learning algorithm to evaluate candidate sets, they can be 

combined with any learning algorithm after the filtering is complete.  Moreover, they are a 

computationally effective form of data pre-processing, especially when compared to wrapper 

methods (which use dependent criteria) [74] [107].  Filter methods rely on abstract metrics of 

features, which indicate important properties of promising features such as orthogonality, large 

variance, multi-modality of marginal distributions, high kurtosis, low entropy, etc [60].  As such, 
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filter methods do not inherit bias from learning algorithms and are also more computationally 

efficient than wrapper methods [4].   

 

 

 

 

 

 

 

Figure 11: Filter approach to feature selection 

 
Figure 12 describes a generalized form of a filter algorithm, provided by [4].  Given 

dataset D, begin with a given subset S0 (an empty set, a full set, or any randomly selected subset) 

and search through the feature space using a particular search strategy.  Each generated subset S 

is evaluated by an independent measure M and compared with the previous best.  If better, it’s 

regarded as the current best subset.  The search iterates until a predefined stopping criterion is 

reached.  The algorithm outputs the last current best subset Sbest as the final feature subset [4].  

 

 

Figure 12: Generalized Filter Algorithm [4] 
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One of the simplest filtering processes is to evaluate each feature individually based on 

its correlation with the target function and then select the k features with the highest values.  This 

method has been shown to achieve good results in text categorization tasks [108] [109] [110], 

often used in combination with either a Naïve-Bayesian classifier or a nearest neighbor classifier 

[107].  Other widely used metrics include Information Gain, Odds Ratio, Chi-Squared [77], Log 

Probability Ratio [77], FOCUS [111], RELIEF [112] [113], Potential Difference [114], Pearson 

Correlation Coefficient [115], etc.  RELIEF, for instance, assigns a “relevance” weight to each 

feature, which represents the relevance of the feature to the target concept.  It samples instances 

randomly and updates the relevance values based on the difference between the selected instance 

and the nearest instances of the same and opposite class (“near-hit” and “near-miss”) [61].  The 

algorithm does require the problem to only contain two classes however.  Another example, 

FOCUS, looks for minimal combinations of attributes that perfectly discriminate among the 

classes.  It begins by looking at each feature individually, goes on to pairs of features, triples, and 

so forth, stopping only when it finds a combination which generates pure partitions of the 

training set.   

There are some drawbacks to filter methods however.  First, most filtering methods 

require the pre-selection of a set number of features to be chosen.  If the number is too high, 

irrelevant features will be kept and accuracy may suffer.  If the number is too low, useful 

features may not be selected, once again affecting accuracy.  Some remedies to this problem 

include using a hold-out set to test for the best k, or to use a hill-climber or some other 

evolutionary computation algorithm to find an optimal k.  These solutions, however, will 

negatively impact what is perhaps the biggest benefit of a filtering algorithm, its relative speed.  

A second drawback is that filtering algorithms may miss features that would otherwise be useful 
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to the learning algorithm which will predict unseen instances.  Since the algorithm bases its 

selection purely on feature metrics, it may miss features deemed useful by some learning 

algorithms but irrelevant in others.  This is why wrapper methods are widely known to 

outperform filter methods (in terms of prediction accuracy) [4] [74]. 

 

3.2.2.2 Dependent Criteria 
 

 

Dependent criteria primarily involve the use of a learning algorithm to assess the 

goodness of candidate subsets.  In most cases, predictive accuracy, or some variation of it, is 

used as the evaluation criterion.  Accordingly, methods that utilize dependent criterion as its 

subset evaluation criterion are also known as wrapper methods.  These methods occur outside the 

basic learning algorithm, but also use said learning algorithm as a subroutine, rather than just as a 

post-processor.  For this reason, John, Kohavi, and Pfleger [58] refer to them as wrapper 

methods.  As displayed in Figure 13, each candidate feature subset is evaluated by running the 

selected training or validation data through the learning algorithm and using the estimated 

accuracy of the algorithm as its evaluation metric.  As aforementioned, the biggest benefit to 

using wrapper methods is their tendency to outperform (in terms of prediction accuracy) their 

filter counterparts.  The general argument is that the learning algorithm, which uses the feature 

subset, should provide a better estimate of accuracy than a separate metric that may have an 

entirely different bias [107].  Whereas a filter method will use metrics to determine the 

usefulness of each feature, wrapper methods will use the learning method to determine the 

usefulness of a candidate set of features for the learning method itself.  At the end of the process, 

not only will the algorithm produce an optimal set of features, but one which will perform most 

optimally under the aforementioned learning method.   



39 

 

 

 

 

 

Figure 13: Wrapper approach to feature selection 

 
Although wrapper methods have shown to be more computationally expensive than filter 

methods due to their repeated calls to the learning algorithm for evaluation, research has shown 

that wrapper methods tend to give superior performance as feature subsets are better suited to the 

predetermined learning algorithm [4].  They have been shown to significantly boost predictive 

performance in classifiers such as C4.5 and Naïve-Bayes [61] and on instance based algorithms 

such as nearest-neighbor, as they would otherwise always use all available features for 

classification [116]. 

Figure 14 provides the pseudo-code for a generalized wrapper algorithm [4], which is 

quite similar to the generalized filter algorithm (Figure 12 – Section 3.2.2.1) except that it uses a 

learning algorithm A instead of an independent measure M for the evaluation of each candidate 

subset.  For each generated subset S, the algorithm evaluates its goodness by applying the 

learning algorithm to the data with subset S and evaluating the accuracy.  Thus, different learning 

algorithms may produce different feature selection results.  Varying the search strategies via the 

function generate(D) and learning algorithms (A) can result in different wrapper algorithms.  
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Figure 14: Generalized Wrapper Algorithm [4] 

 

Just as variations can be found to many wrapper methods, they can also be found in the 

learning algorithm.  Variations of Neural Networks, Bayesian networks, and SVMs are often 

applied on different wrapper problems [117].  Research done in [90] also discusses overfitting 

and dynamic search in regards to wrapper methods.  Finally, wrapper methods have also been 

widely used in unsupervised classification, typically using measures such as cluster compactness, 

scatter separability, or maximum likelihood as evaluation criterion [118] [59]. 

 

3.2.2.3 Hybrid Criteria 
 

 

Hybrid feature selection algorithms combine the use of filter and wrapper methods in an 

attempt to exploit the benefits of both.  By combining both techniques at different stages, hybrids 

are able to take advantage of the speed of a filter method and the accuracy of a wrapper method 

[73] [119].  Other implementations may also include the use of an embedded method, such as a 

decision tree, instead of a wrapper method [120] [121].  Similar to the generalized algorithms 

previously provided, Figure 15 describes the pseudo-code for a generalized hybrid algorithm [4].  
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The algorithm first uses a filter method to find the best subset for a given predetermined 

cardinality and then uses the learning algorithm to select the final best subset among the best 

subsets across different cardinalities.   

 

 

Figure 15: Generalized Hybrid Algorithm [4] 

 

The algorithm begins with a given subset S0 (typically an empty set in sequential forward 

selection) and iterates to find the best subsets at each increased cardinality. In each round for a 

best subset with cardinality c, it searches through all possible subsets of cardinality c + 1 by 

adding one feature from the remaining features. Each newly generated subset S with cardinality  

c + 1 is evaluated by an independent measure M and compared with the previous best.  If S is 

better, it becomes the current best subset Sqrst
g  at level c + 1.  At the end of each iteration, a 

learning algorithm A is applied on Sqrst
g  at level c + 1 and the quality of the mined result is 

compared with that from the best subset at level c.  If Sqrst
g  is better, the algorithm continues to 



42 

find the best subset at the next level; otherwise, it stops and outputs the current best subset as the 

final best subset. The quality of results from a learning algorithm provides a natural stopping 

criterion in this model [4]. 

As a hybrid method, the method presented in [117] begins by pre-processing the dataset 

by using two different filter methods, F-score and Information Gain.  The separate feature 

subsets are then combined and processed through a Sequential Floating Wrapper method, which 

yields the final feature subset.  A Support Vector Machine (SVM) then utilizes the resulting 

feature subset to compute the classification accuracy. 

 

3.2.3 Stopping Criterion 
 

 

A preselected stopping criterion determines when the feature selection process needs to 

stop.  There is often little variation in the stopping criterion used for most feature selection 

methods.  The subsequent list, provided by [4], details a few of the most frequently used ones. 

1. The search completes 

 

2. A given bound is reached, such as a minimum number of features or a 

maximum number of iterations 

 

3. Subsequent addition or deletion of any feature does not produce and better 

subset 

 

4. A sufficiently good subset is found (e.g., the classification error rate for a 

candidate subset is less than the allowable error rate for a particular task). 

 

 

3.2.4 Result Validation 
 

 

Given the case that prior knowledge about the data is available (e.g. synthetic data), then 

a simple way to validate the selected subset is by comparing it to the known optimal subset.  

Knowledge about irrelevant and redundant features can also aid in validation as those features 
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are not expected to be selected.  In most applications, however, such prior knowledge is not 

available.  In such settings, the validation task typically falls to the comparison of the learner’s 

error rate on the full set of features versus the error rate on the selected set of features [4] [93].   

 

3.3 Embedded Methods 
 

 

Embedded methods follow a slightly different feature selection pattern than the general 

process discussed in Section 3.2, so they are presented here separately.  Such methods perform 

feature selection as part of the learning algorithm itself.  That is, within the process of the 

learning algorithm, the algorithm decides which attributes to use and which to ignore [18].  

Decision Trees are perhaps the most well known example of embedded methods [25] [26] [30]. 

Much like wrapper methods, embedded methods interact directly with a specific learning 

algorithm.  In other words, the feature selection algorithm is embedded into the classifier model 

itself rather than using the model to evaluate candidate feature sets. Moreover, these methods 

have the advantages that they interact directly with the classifier while also being less 

computationally expensive than wrapper methods [74].  A generalized form of this technique is 

not provided here as embedded methods may be highly different in implementation depending 

on the learning algorithms encompassing them (e.g. decision tree vs. SVM).   

Mao, Mohiuddin, and Jain, for instance, use a multilayer feedforward Neural Network 

with back propagation to simultaneously develop both an optimal feature set and an optimum 

classifier [122].  They define and utilize a “node saliency” measure to prune the least salient 

nodes thus reducing the complexity of the network after it has been trained.   

Recursive partitioning methods such as decision trees [25] [26] [30], employ a greedy 

search through the space of decision trees, at each stage using an evaluation function to select the 
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feature which has the best ability to discriminate among the classes. They partition the data based 

on this feature and repeat the process on each subset, extending the tree downward until no 

further discrimination is possible. Other embedded methods include Separate-and-Conquer for 

decision lists [123] and Support Vector Machines of Recursive Feature Elimination [71]. 

 

3.4 General Algorithmic Framework 
 

 

Given the previously provided general procedure for feature selection algorithms, it is 

now possible to discuss an algorithmic framework.  Accordingly, this chapter will present a 

general feature selection taxonomy (Figure 16) and a categorical table (Table 5) which portrays 

many of the existent feature selection algorithms.  Moreover, although the categorical table of 

algorithms is by no means exhaustive, it does provide a vast and broad representation of 

proposed and studied feature selection algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Taxonomy of Feature Selection Algorithms 
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As mentioned, a broad taxonomy of feature selection algorithms is presented in Figure 

16.  As shown, feature selection is first divided into stand-alone and embedded methods.  Stand-

alone methods are then split according to their respective guarantees of optimality (optimal and 

suboptimal).  Suboptimal methods are further divided into those using sequential search and ones 

using random search.  A final distinction is then made of random methods, dividing them into 

methods that search in a stochastic manner and methods that begin randomly, but then follow a 

sequential pattern for search.  Also note that all leaf nodes include at least one example of an 

existent method related to its category.  It should be stated that although the taxonomy does not 

mention subset evaluation methods such as filter, wrapper, and hybrid methods, it does not do so 

because the majority of these methods are structured so that they may be combined with most 

stand-alone methods. 

Subsequently, Table 5 provides an in depth categorical table of existing feature selection 

methods [4].  The table is divided by two dimensions (Search Strategies and Evaluation Criteria), 

as these are the two most dominating factors in feature selection algorithms.  Within Search 

Strategies, algorithms are categorized as Complete, Sequential, and Random.  Under Evaluation 

Criteria, algorithms are categorized into Filter, Wrapper, and Hybrid.  Filter algorithms are 

further divided into Distance, Information, Dependency, and Consistency.  Although most of the 

algorithms listed in this section are not implemented in this research it is noteworthy to mention 

that the CEFS architecture proposed in this work is structured in such a way that most, if not all, 

of the listed algorithms can utilize it and benefit from it.  This is an important aspect which 

speaks to the wide extensibility of the proposed methodology and architecture of CEFS. 
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Table 5: Categorical Framework of Feature Selection Algorithms [4] 

 
 

Search Strategies 
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Distance 
B&B [95] 

BFF [124] 

RELIEF [112] 

RELIEFF [113] 

RELIEFS [125]  

SFS [126] 

Segen’s [127] 

 

Information MDLM [128] 

DTM [129] 

Koller’s [19] 

SFG [93] 

FCBF [130] 

 

Dependency Bobrowski’s [131] 

CFS [106] 

RRESET [132] 

POE+ACC [133] 

DVMM [134] 

 

Consistency 

Focus [111] 

ABB [135] 

MIFESI [136] 

Schlimmer’s [137] 

Set Cover [138] 

LVI [93] 

QBB [93] 

LVF [139] 
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Predictive 

Accuracy 

BS [86] 

AMB&B [140] 

FSLC [141] 

FSBC [142] 

SFS-SPLASH 13 

WSFG [143] 

WSBG [143] 

BDS [86] 

PQSS [86] 

RC [144] 

SS [145] 

Queiros’ [146] 

SA [86] 

RGSS [86] 

LVW [98] 

RMHC-PF [147] 

GA [100] [101] 

RVE [148] 

ELSA [60] 
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y
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Filter 

+ 

Wrapper 

 
BBHFS [119] 

Xing [73] 
 

 

 

3.5 Common Misconceptions 
 

 

Techniques such as dimensionality reduction, feature extraction, feature construction, 

feature weighting, feature creation and others are often misused as synonymous to feature 

selection.  It should be pointed out that feature selection strictly selects a subset of the existing 

feature set, without the creation of new features [61] [149] [150].  However, to better understand 

feature selection, a brief explanation of some of the aforementioned techniques is noteworthy. 
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The first two techniques, dimensionality reduction and feature extraction, go hand in 

hand as various algorithms are often interchangeably characterized under both.  Tan et al 

comments that dimensionality reduction commonly uses techniques from linear algebra to 

project the data from a high-dimensional space into a lower-dimensional space [18].  Similarly, 

Jain et al describes feature extraction algorithms as algorithms which create new features based 

on transformations or combinations of the original feature set [7].  For example, Principal 

Component Analysis (PCA) finds new attributes which are linear combinations of the original 

attributes, are orthogonal to each other, and capture the maximum amount of variation in the data 

[18].  In other words, PCA is an orthogonal transformation of the coordinate system, which is 

obtained by projection onto the principal components, or features, of the data.  Since a small 

number of principal components are often sufficient, a reduction in dimensionality occurs [151].  

Further reviews of PCA literature can also be found at [152] and [153].   

Consider another example; suppose you have a set of photographs, where each 

photograph is to be classified as to whether or not it contains a human face.  By using a feature 

extraction algorithm, pixels can be transformed to provide higher-level features, such as edges 

and areas highly correlated with the presence of human faces.  Other examples include applying 

a Fourier transform to times series data to identify underlying frequencies in order to detect 

certain periodic patterns [18] and using Independent Component Analysis (ICA) in conjunction 

with Support Vector Machines (SVM) in order to improve prediction accuracy in series 

forecasting [154].   

Other techniques such as feature weighting [18] and feature construction [22] also 

provide similar distinctions, but for the brevity of this research, will not be discussed at this time.  

In summary, feature selection is not to be confused with other techniques which go beyond the 
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original feature set, creating new features; that is, feature selection algorithms always yield a 

direct subset of the original feature set. 

 

3.6 Relevance and Optimality of Features 
 

 

Relevance, as it pertains to feature selection, is a bit of a loaded term.  Defining it is not 

trivial nor is it widely agreed upon.  In fact, numerous authors have provided a number of 

different definitions for relevance.  A brief summary of some of these definitions will be 

provided in the subsequent paragraphs.  Detailed explanations and further definitions of 

relevance can be found in works such as [61] by Kohavi and John, [107] by Blum and Langley, 

[72] by Nilsson et al, and most recently in [155] by Bell and Wang. 

 Although the word relevance is often used casually and without formal definition in most 

feature selection studies, its definition is as important as its use.  At the heart of this matter lies 

the question of relevance vs. usefulness.  Selecting only the most relevant features will often 

produce suboptimal results, especially if the features are redundant.  Conversely, a subset of 

useful features may leave out many redundant, yet relevant, features [22].  In other words, the 

relevance of a feature does not imply that it should be in the optimal feature subset, while 

irrelevance does not imply it should not be in the optimal feature subset [61].  For clarification 

purposes, provided next are some formal definitions acquired from [61], [72], and [107] which 

may aid in understanding the role of relevance in feature selection.   

 

Definition 2 (conditional independence) A variable Xi is conditionally independent of a 

variable Y given (conditioned on) the set of variables l ⊂ G iff it holds that  

 

 "^v,R|G�, l. = v,R|l.` = 1. (Eq. 13) 

 

This is denoted R ⊥ G�|l. 
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Conditional independence is a measure of irrelevance, but it is difficult to use as an operational 

definition since it depends on the conditioning set S [72].  The definitions of strong and weak 

relevance, defined next, will help refine what it means for a feature to be considered irrelevant. 

 

Definition 3 (strong relevance) A feature Xi is strongly relevant iff there exists some xi, y, and si 

for which p( Xi = xi, Si = si ) > 0 such that  

 

 p( Y = y | Xi = xi, Si = si ) ≠ p( Y = y | Si = si ). (Eq. 14) 

 

 

Definition 4 (weak relevance) A feature Xi is weakly relevant iff it is not strongly relevant and 

there exists a subset of features l�
gof l� for which there exists some xi, y, and $�

g with  

p( Xi = xi, l�
g = $�

g
 ) > 0 such that  

 

 p( Y = y | Xi = xi, l�
g = $�

g) ≠ p( Y = y | l�
g = $�

g ). (Eq. 15) 

 

 

In other words, a feature X is strongly relevant if the removal of X alone will yield a decrease in 

the performance of an optimal classifier.  Conversely, a feature X is weakly relevant if it is not 

strongly relevant and there exists a subset of features, S, such that the performance of a classifier 

on S is worse than the performance on S ∪ {X}.  Thus, a feature is relevant if it is either weakly 

or strongly relevant, otherwise it is irrelevant [61].  The importance lies not only with its 

definition, but research completed in [156] has also shown that algorithms such as C4.5 tend to 

generate deeper decision trees with lower performances when weakly relevant features are not 

deleted.  Figure 17 provides a useful visual representation of the feature subset space divided into 

irrelevant, weakly relevant and strongly relevant feature subsets [61]. 
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Figure 17: Feature Subset Space [61] 

 

A Bayes classifier, for instance, must use all strongly relevant features and possibly some 

weakly relevant features (but recall that such classifiers are monotonic and have access to the 

underlying distribution).  Classifiers induced from data, however, are likely to be suboptimal as 

they have no access to the same distribution.  Accordingly, such induction algorithms may 

benefit from the omission of features, including strongly relevant ones [61].  Thus, it is important 

to define what it means for a feature subset to be optimal. 

 

Definition 5 (optimal feature subset) Given a learning algorithm L and a dataset D, an optimal 

feature set, S
*
, is a subset of features such that the predictive accuracy of D is highest under L. 

 

 

As previously mentioned, however, relevant features do not imply that they are optimal, and 

conversely, optimal features do not imply that they are relevant.  This is shown through 

Examples 1 and 2, acquired from [61]. 

 

Example 1 (relevance does not imply optimality) Let all possible instances be {0, 1}
3
, that is, 

three Boolean features, say X1, X2, X3.  Let the distribution of instances be uniform, and assume 

the target concept is f (X1, X2, X3) = (X1 ˄ X2) ˅ X3.  Under any reasonable definition of 

relevance, all features are relevant to this target function.  If the hypothesis space is the space of 
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monomials, i.e., conjunctions of literals, the only optimal feature subset is {X3}.  Moreover, the 

accuracy of the monomial X3 is 87.5%, the highest accuracy achievable within this space and 

adding another feature to the monomial will simply decrease its accuracy.  Therefore, this 

example shows that relevance, even strong relevance, does not imply that a feature should be in 

an optimal feature subset. 

 

 

Example 2 (optimality does not imply relevance) Assume feature Xi is always set to the value 

of 1.  Under all definitions of relevance described above, this feature is irrelevant.  Now consider 

a limited Perceptron classifier that has an associated weight with each feature and then classifies 

instances based upon whether the linear combination is greater than zero.  Also assume that the 

threshold = 0.  Given that Xi is always set to 1, the limited Perceptron is equivalent in 

representation power to the regular Perceptron.  However, removal of all irrelevant features 

would remove that crucial feature.  Since cases such as this are believed to be rare in practice, it 

still holds true that irrelevant features should generally be removed. 

 

 

Recall, however, that an objective measure still needs to be selected in order to 

implement and deploy a feature selection algorithm.  So, for the scope of this research, the 

usefulness of a feature set will provide the necessary objective function for subset comparison 

and selection.  As such, the following definition derived from [157] provides this criteria. 

 

Definition 6 (incremental usefulness) Given a sample of data D, a learning algorithm L, and a 

feature set S, feature xi is incrementally useful to L with respect to S if the accuracy of the 

hypothesis that L produces using the feature set {xi} ∪ S is better than the accuracy achieved 

using just the feature set S.  

 

 

Accordingly, the definition of incremental usefulness will be the focal point for determining 

whether or not a feature should be included in the optimal feature subset.  This is further 

apparent given the fact that the proposed algorithm later described in this research will employ a 

wrapper method, which tailors directly to the learning algorithm used to evaluate each feature 

subset.  Therefore, features will be assessed according to their usefulness with respect to the 

learning algorithm rather than their overall relevance. 
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As a final illustration on the issue of relevance vs. usefulness, refer to an example 

provided in [61].  One of the artificial datasets (m-of-n-3-7-10) represents a symmetric target 

function, implying that all features should be ranked equally by any filtering method.  However, 

Naïve-Bayes improves if a single feature (any one of them) is removed.  Consequently, that is 

the precise motivation behind the selection of a wrapper method over a filter method in the 

implementation of the proposed architecture in this research (Chapter 4).  Note, however, that 

relevance according to these definitions does not imply membership in the optimal feature 

subset, and that irrelevance does not imply that a feature cannot be in the optimal feature subset 

[61].  The underlying purpose among any of this is to design the architecture in such a way that it 

is allowed to choose usefulness over relevance. 

 

3.7 Feature Selection in Unsupervised Learning 
 

 

Although the use of feature selection in unsupervised learning will not be implemented in 

this research, a brief discussion of the subject is important given the amount of attention it has 

received [4] [158] [118] [159] [160].  Unsupervised learning, more specifically clustering [161] 

[162], groups instances based on the information describing the instance or based on their 

relationships.  The goal is to obtain groups with instances similar or related to one another and 

different from instances in other groups.  The greater the similarity (or homogeneity) within a 

group and the greater the difference between groups, the better the clustering [158]. 

Wrapper methods used in conjunction with clustering, evaluate the goodness of a feature 

subset by the quality of the clusters resulted from applying the clustering algorithm on the 

candidate feature subset.  A number of heuristic measures exist for estimating the quality of 

clustering results, such as cluster compactness, scatter separability, and maximum likelihood [4].  
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Further work on developing dependent criteria in feature selection for clustering can also be 

found in [59], [118], and [159].  Since filter methods don’t depend on the use of a separate 

learning algorithm for evaluation, the methodology for using filter feature selection in 

unsupervised learning does not differ from that of supervised learning.  Given the infancy of this 

research area, advances continue to occur.  

 

3.8 Feature Selection in Supervised Learning 
 

 

It has been shown that CART [30], ID3 [25], C4.5 [26], and nearest neighbor [44] 

algorithms suffer in the presence of irrelevant features.  Naive Bayesian classifiers [163] [65], 

which assume independence of features given the instance label, also degrade when using 

correlated and redundant features [60].  Even learners such as SVMs, which are considered more 

robust in high-dimensional settings, can improve classification performance when combined 

with feature selection techniques [164] [80].  Feature selection is also of particular interest when 

using nonparametric classification methods such as k nearest neighbor [165], Parzen’s windows 

[166], or more generally methods based on geometrical models that have a reputation for having 

high computational and storage costs [167]. 

Feature selection algorithms have also been widely combined with evolutionary 

computation algorithms in supervised leanring tasks.  The research conducted in [168], for 

example, combines a Genetic Algorithm and a k-Nearest Neighbor method to identify genes 

which can jointly discriminate between different classes of cancer.  This and many other 

applications of feature selection on supervised learning tasks, such as text categorization [108] or 

Parkinsonian sleep analysis [169], are extensively available but outside the scope of this 

particular project. 
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3.9 Ensemble Feature Selection  
 

 

Feature selection methods discussed up to this point employ the use of a single classifier.  

An ensemble system, on the other hand, is composed of a set of multiple classifiers and performs 

classification by selecting from the predictions made by each of the classifiers [18].  Since wide 

research has shown that ensemble systems are often more accurate than any of the individual 

classifiers of the system alone [9] [10] [11], it is only natural that ensemble systems and feature 

selection would be combined at some point. 

An effective way of generating a diverse, yet accurate, ensemble of base classifiers is to 

use ensemble feature selection [47].  To recall, theoretical and empirical research has shown that 

an efficient ensemble should consist not only of high accuracy classifiers, but classifiers which 

also err in different parts of the input space [9].  Providing different feature subsets allow base 

classifiers to make their classification errors in different subareas of the instance space.  While 

feature selection algorithms attempt to find an optimal feature subset for the learning algorithm, 

ensemble feature selection has the additional goal of finding a set of feature subsets which will 

promote disagreement among the base classifiers [47] [170].  This is perhaps the most important 

point in understanding the motivation and goals of the research presented in this work.  The 

approach proposed in Chapter 4 will attempt to provide the aforementioned disagreement among 

the base classifiers, but with a set of highly optimal class-specific feature subsets.  The results are 

believed to be higher prediction accuracy and better domain understandability. 

Various successful attempts have been made at implementing ensemble feature selection.  

In [171], Ho proposes a technique called Random Subspace Method (RSM), which randomly 

selects a predetermined number of features from the original feature set.  This is repeated n times 

to create n feature subsets that are used to generate the n base classifiers used in the ensemble.  
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Ho goes on to show that RSM ensembles can reach effective results presumably because the lack 

of accuracy in the ensemble members is compensated for by the diversity created by the RSM 

[171].  In another implementation, Optiz begins by using RSM to generate an initial population 

of feature subsets, which he then uses and optimizes in his Genetic Algorithm (GA).  Optiz uses 

GAs in conjunction with Neural Networks (NN) as a wrapper method to find optimal feature 

subsets, which he then uses as training data to build an ensemble model of NNs.  Optiz 

comments that the initial population, acquired through RSM, was surprisingly good and 

produced better ensembles on average than the popular and power ensemble approaches of 

bagging and boosting [170].  Other ensemble feature selection studies have included 

implementations such as a Hill-Climber and Bayesian Classifiers with cross-validation 

integration [47], GA and k Nearest Neighbor classifiers [172] [173], sequential-search-based 

strategies and Bayesian Classifiers [174], and comparative ensemble feature selection studies 

such as [175].   

Perhaps the most related work to the architecture proposed in this research is the work 

done by Vale et al in [176].  In that study, the authors implement a filter method with an 

emphasis on class-based feature selection to generate the feature subsets used by each base 

classifier.  The use of a filter method is perhaps the most evident shortcoming of the 

implementation as wrapper methods have often shown to provide more accurate results.  In 

addition, the authors implement a combination based ensemble integration technique, although 

the specific details of the combination technique are not provided.  Depending on the specific 

combination technique, further improvement can be seen here as well. 
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Chapter 4 

 

Class-specific Ensemble Feature Selection  

(CEFS) 

 

 

The approach presented and explored in this research, Class-specific Ensemble Feature 

Selection (CEFS), provides a novel methodology in which to perform feature selection.  

Specifically, CEFS takes advantage of the notion that features found to be resilient for 

classifying each classification separately, may be different than the features found to be resilient 

for the overall dataset.  This difference is crucial as there exists features that are optimal for 

classifying a specific classification, but which may not have been included in the overall best 

feature set.  This loss of information becomes vital in classification tasks. 

By performing feature selection in a class-specific manner, the algorithm becomes more 

robust, more effective, and more informative.  Moreover, one of the key aspects of CEFS is its 

extensibility and flexibility in regards to machine learners and feature selection algorithms.  In 

other words, CEFS is designed in such a way that most, if not all, machine learners and feature 

selection algorithms can be coupled with it. 

The CEFS algorithm will focus mainly on improving prediction accuracy in classification 

problems.  As an added benefit, the class-specific design will select features optimal to each 

separate classification, thereby providing more information and understanding in regards to the 

most useful features to each classification and to the model.  To better understand the theory and 

design behind CEFS, the remainder of this chapter will provide the theoretical, architectural, and 

algorithmic frameworks for CEFS. 
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4.1 Theoretical Framework 

 

Let R = TR7, R9, … , R�U represent the original set of features, with cardinality n, and let 

A = TA7, A9, … , A�U represent the original training set of instances, with cardinality m.  Let             

 = T 7,  9, … ,  �U represent the set of known target outcomes (i.e., classifications) for I.  Then, 

A_ = h#7, #9, … , #�,  _j represents the j
 th

 instance in I, as an assignment of values projected onto Y 

and with target outcome  _.  Moreover, let d represent the desired number of features in a 

candidate subset X, such that G ⊆ R.  Now, let the feature selection evaluation criterion for the 

set X be denoted by J(X) and be measured with respect to I.  Without loss of generality, consider 

a higher value of J to indicate a better feature set.  Then, traditional feature selection seeks to 

find a subset G ⊆ R, such that |G| = = and  

F,G. = maxK⊆L,|K|<� F,M.. 

Now, let  ′ = T ′7,  ′9, … ,  ′yU represent the set of distinct known target outcomes for I, 

where  ′ ⊆   and z ≤ 4.  Furthermore, ∀ ′y ∈  ′ let =�|
}  represent the desired number of features 

in the corresponding subset G�|
} , such that G�|

} ⊆ R.  Then, let the feature selection evaluation 

criterion for G�|
}  be denoted by F′ ~G�|

} �, but be measured w.r.t. to A�|
} = �A�|

} ,7, A�|
} ,9, … , A�|

} ,�� with 

cardinality p, where A�|
} ⊆ A, A�|

} ,_ = �#�|
} ,_,7, #�|

} ,_,9, … , #�|
} ,_,�,  �|

} ,_�, and A�|
} ,_ ∈ A�|

}  ⟺  �|
} ,_ =  ′y.  

Without loss of generality, consider a higher value of F′ to indicate a better feature set.  Then, 

class-specific feature selection seeks to find a subset G�|
} ⊆ R, such that �G�|

} � = =�|
}  and  

F′ ~G�|
} � = maxK}⊆L,�K}�<��|

} F′,M′., ∀ ′y ∈  ′. 

Now, let 6,�. represent a learning classifier 6 using feature set �.  Moreover, let 

�^6,�.` represent the generalization evaluation criterion of 6 using feature set �.  Without loss 
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of generality, consider a higher value of � to indicate better generalization for feature set � 

under classifier 6.  Also, let � = �6 ~G�|
} � , 6 ~G�|

} � , … , 6 ~G�|
} �� represent a class-specific 

ensemble learning machine which predicts according to 6 ~G�|
} � when the classifiers all agree 

and 6,G. when there is disagreement.  Research has already shown that generally �,G. ≥ �,R. 

and |G| < |R|.  The goal of this research is to show that generally �,�. ≥ �,G., and that for                                

G�} = �G��} ∪ G�o} ∪ … ∪ G�|
} �, G�} ⊈ G and G�} ⊉ G. 

 

4.2 Architectural Framework 

 

Presented next is the procedural design of CEFS (Figure 18).  First, assume dataset D, 

which contains n different classifications.  CEFS will use an all-purpose subset generation 

method such as Sequential Backward Selection (SBS) [82] or a Genetic Algorithm (GA) [170] to 

produce candidate subsets.  These subsets will then be evaluated using a dependent (i.e., 

wrapper) subset evaluation criterion to evaluate each candidate subset.  Note that independent 

methods of evaluation are also applicable if chosen for use.  This process is repeated until an 

optimal class-specific feature subset if found for each of the n distinct classifications in D.   

In other words, the feature selection algorithm will be run n times, each time searching 

for the subset of features which will maximize the classification accuracy, not of the entire 

dataset D, but of one of the n classifications, thus producing n optimal class-specific subsets.  

This is done by evaluating the prediction accuracy of the classifier on a single classification at a 

time, instead of the prediction accuracy of the classifier on the entire test set (which groups all 

classifications together).  To clarify, the training set and test set do not ever change, they still 

contain all of the instances as though the algorithm is going to predict as normal.  The facet that 



59 

changes is the evaluation criterion.  By using only the prediction accuracy of a single 

classification at a time, the algorithm is able to find an optimal set of class-specific features. 

The n optimal class-specific feature subsets are coupled with the same type of classifier, 

and all are combined to form an ensemble machine.  New and unseen instances are then sent to 

the ensemble machine for classification.  If all class-specific classifiers agree on the 

classification of an instance, then that instance is classified accordingly.  If any classifier 

disagrees with the remaining classifiers, the algorithm classifies the instance using the overall 

best feature subset for the entire dataset.   

The notion behind this approach is that class-specific feature sets have superior 

discriminating power in classifying instances when in agreement, but have inferior 

discriminating power when in disagreement.  Hence, a feature set that can generalize well to the 

entire dataset is used in such instances. 

 

Figure 18: CEFS Procedure 
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4.3 Algorithmic Framework   

 

It should first be noted that CEFS itself is not a feature selection algorithm, but rather 

procedural framework in which to conduct feature selection in classification tasks.  Thus, it is 

classifier and feature selection algorithm independent.  So, although a broad range of machine 

learning and feature selection algorithms can be utilized in a class-specific architecture, this 

section will discuss the algorithms which are implemented to test the hypothesis presented in this 

research. 

Three different techniques are tested and used to generate candidate subsets for CEFS: 

Sequential Backward Selection (SBS), Sequential Forward Selection (SFS), and Genetic 

Algorithm (GA).  The first two are greedy, sequential search algorithms, and are chosen because 

they follow a strictly deterministic pattern, so results are easily reproducible.  However, for 

sufficiently large datasets, SBS and SFS are unfeasible in regards to run time.  So, a third 

algorithm, a GA, is implemented to handle such datasets.  GAs begin with a random sampling of 

the feature space and typically proceed in a stochastic manner, attempting to converge on an 

optimal solution.  The implementation of a GA is not added solely for its scalability, however.  It 

is of interest to this research to test the aforementioned CEFS architecture under two sets of 

structurally different subset generation techniques (greedy/deterministic vs. random/stochastic).  

Additionally, two classifiers are implemented in this research to evaluate candidate 

feature subsets: a Naïve Bayesian Classifier (NBC) and a Discrete k-Nearest Neighbor Algorithm 

(kNN).  Both classifiers are described in detail in Chapter 2 of this work.  The implementation of 

these algorithms is well suited for this research as lazy learners tend to benefit greatly from 

feature selection [177].  Additionally, this implementation of CEFS evaluates candidate subsets 

using a wrapper method.  Specifically, the subset evaluation criterion is the leave-one-out (LOO) 
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validation error from the classifier using the training set.  In other words, suppose dataset D 

contains m instances, then the LOO validation error is the average error across m runs, where in 

each run, one of the m instances is removed from the training set to become the validation set, 

and then returned to the training set to be part of the training data for the next run.  It is important 

to note that the classifier is retrained for each of the m runs, preventing the classifier model from 

having prior knowledge of the instance in the validation set.  This approach has the advantage of 

utilizing as much data as possible for training (i.e., m – 1 instances).  In addition, test sets are 

mutually exclusive and they effectively cover the entire dataset [18].   

Once again, it is of the utmost importance to understand that CEFS is classifier and 

feature selection algorithm independent.  Moreover, that the emphasis of this research is not on 

the robustness or efficiency of the feature selection algorithm or of the classifier, but rather on 

the notion that any chosen combination of the two can perform better when implemented in a 

class-specific architecture than when implemented in a traditional feature selection architecture.  

One of the reasons that SBS, SFS, NBC, and kNN are chosen is because they are all 

deterministic algorithms that provide an easier setting for reproducible results.  Furthermore, 

kNNs are equipped to handle both discrete and continuous input data, allowing for a more 

thorough and diverse collection of datasets to be tested.  Conversely, the GA is chosen so high-

dimensional datasets could be handled and so that a stochastic method could also be tested under 

CEFS. 

 

 

 

 

  



62 

Chapter 5 

 

Implementation 

 

 

In order to gauge the usefulness and effectiveness of the CEFS framework and to test the 

aforementioned hypothesis in this text, an implementation of a Class-specific Ensemble Feature 

Selection architecture is presented here.  As mentioned in Section 4.3, this implementation is 

tested using three different feature selection subset generators (SBS, SFS, and GA) and two 

different classifiers (NBC and kNN).  Moreover, the implementation is tested over 10 datasets, 

varying in the number of instances, features, and classifications.  It must be noted, however, that 

the NBC is only combined with the SBS algorithm and only tested over three of the ten datasets.  

This is due to the fact that the NBC/SBS combination is used mainly as a preliminary experiment 

to ascertain the potential performance benefits of CEFS and to begin exploring the difference in 

optimal feature sets between CEFS and traditional feature selection. 

One of the other goals of this chapter is to show a proof of concept in regards to class-

specific feature selection.  That is, if the CEFS architecture can outperform a traditional feature 

selection architecture on different learners and under different selection algorithms, then it can be 

generalized that similar performance trends can be seen under any learner and any feature 

selection algorithm, making the CEFS architecture, algorithm independent. 

So to achieve these goals, the remainder of the chapter will be arranged as follows.  First, 

a brief reiteration of the proposed hypothesis is provided.  Next, experimental data, tools, and 

procedure, algorithms, algorithmic specifications and algorithmic constraints are discussed.  
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Finally, the chapter concludes by presenting and detailing results regarding the performance and 

domain understandility of this experiment.  Also, note that throughout the revealing of the 

experimental results, the aforementioned hypothesis will be discussed. 

 

5.1 Proposed Hypothesis 

 

As the implementation presented in this chapter will seek to test the hypothesis proposed 

earlier in Chapter 1, it is worthwhile to first revisit the aforementioned hypothesis.  Recall that 

the following four part hypothesis is suggested: 

1. There exists a recombination technique such that, when applied to a Class-

specific Ensemble Feature Selection (CEFS) architecture, it will allow the 

system to outperform a traditional feature selection architecture in terms of 

prediction accuracy. 

 

2. The same CEFS architecture will scale up by continuing to outperform the 

traditional feature selection architecture when the number of features are 

increased, as well as, when the number of class labels are increased. 

 

3. The union of the set of relevant class-specific features may not be inclusive of 

the set of relevant features found traditionally for the entire dataset.   

 

4. Conversely, the set of relevant features found traditionally for the entire 

dataset may not be inclusive to the union of the set of relevant features for 

each class label. 

 

 

5.2 Experiment 

 
The experiment conducted here implements a CEFS architecture using the 

aforementioned feature selection and classification algorithms and compares it against a 

traditional feature selection architecture utilizing the same algorithms.  The subsequent sections 

describe the details surrounding this experiment. 
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5.2.1 Data 

 
A wide variety of datasets are tested in this experiment.  These datasets range in the 

number of instances (i.e., depth), number of features (i.e., width), number of classifications, and 

in whether or not they are missing values.  Moreover, some datasets include strictly discrete 

input data, some strictly continuous input data, and some contain mixed input data.  The notion 

behind the selection of datasets is to provide a collection that represents many varying dataset 

characteristics, thereby testing the algorithm under several possible scenarios.  Table 6 contains 

the descriptive information specific to each dataset.  A few additional comments need also be 

stated regarding the preparation of each dataset: 

1. Each dataset is randomly sampled, based on a predetermined size, to create a 

training set and a test set.  This task is completed 15 times for each dataset, 

thus creating 15 sets of randomly sampled data.  The training sets are balanced 

such that they contain an equal number of instances from each classification
4
.  

For example, the Congressional Voting training set contains 268 instances, 

which can be classified as either “republican” or “democrat”.  This means that 

134 instances have a classification of “republican” and 134 have a 

classification of “democrat”.  This is especially important since some of the 

algorithms implemented here have a strong statistical emphasis that could be 

negatively and unfairly affected by an unbalanced training set. 

 

2. A leave-one-out validation scheme (as described in Section 4.3) is used during 

training to evaluate candidate k values for the kNN algorithm and to evaluate 

candidate feature subsets under each classifier. 

 

3. Datasets with missing values were typically handled by replacing the missing 

values with the median feature value (if feature is discrete) or the mean 

feature value (if the feature is continuous).  Further information specific to 

each dataset is provided in subsequent sections. 

 

4. Most continuous datasets were normalized.  In other words, each value in a 

feature was divided by the maximum absolute value in that feature.  This 

normalizes all values between -1 and 1, if negative values exist, and between 

0 and 1, if only positive values exist.  Further information is also provided in 

subsequent sections. 

                                                 
4
 The Arrhythmia dataset is the only one containing an unbalanced training set, as the number of instances in 

one of the three classifications was simply too small for proper training. 
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Table 6: Dataset characteristics 

 

Dataset 

Name 

Total Number 

of Instances 

Number of 

Features 

Number of 

Class labels 

Instances in 

Training 

Instances in 

Testing 

Missing  

Values 

Breast Cancer 286 9 2 136 150 No 

Wine 178 13 3 114 64 No 

Credit 

Approval 
690 15 2 490 200 Yes 

Congressional 

Voting 
435 16 2 268 167 Yes 

Alabama 

County 
340 16 2 188 152 Yes 

Musk v1 476 166 2 248 228 No 

Arrhythmia 452 279 3 235 217 Yes 

Madaleon 2600 500 2 194 2404 No 

Colon Cancer 62 2000 2 36 26 No 

Lymphoma 42 4026 2 34 8 Yes 

 

5.2.1.1 Breast Cancer Dataset 

 

The Breast Cancer dataset is acquired from the UCI Machine Learning Repository [24].  

It was originally created by Matjaz Zwitter and Milan Soklic of the Institute of Oncology at the 

University Medical Center, in Ljubljana, Yugoslavia.  It contains 286 instances with two possible 

classifications:  “recurrence” (85 instances) and “no-recurrence” (201 instances).  Furthermore, it 

contains nine nominal features: age bracket, menopause, tumor-size bracket, inv-nodes, node-

caps, deg-malig, breast side, breast-quad, and irradiat.  Although it contains missing values, the 

dataset is left as is and classified as such. 

 

5.2.1.2 Wine Dataset 

 

The Wine dataset is acquired from the UCI Machine Learning Repository [24], however, 

it originates from [178].  It contains 178 instances with three possible classifications: “class 1” 

(59 instances), “class 2” (71 instances), and “class 3” (48 instances).  Moreover, it contains 13 
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continuous attributes: alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols, 

flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 of 

diluted wines, and proline.  The dataset does not contain missing values. 

 

5.2.1.3 Credit Approval Dataset 

 

The Credit Approval dataset is also acquired from the UCI Machine Learning Repository 

[24], however, the original source is proprietary and confidential.  It contains 690 instances with 

two possible classifications: “+” (307 instances) and “-” (383 instances).  It also spans 15 

features, six that are continuous and nine that are discrete.  Feature names are also proprietary.  

The missing values in discrete features are replaced by the median value in the feature, whereas 

the missing values in continuous features are replaced by the mean value in the feature.  All 

continuous features are normalized as previously mentioned in this chapter. 

 

5.2.1.4 Congressional Voting Dataset 

 

The Congressional Voting Records dataset is acquired from the UCI Machine Learning 

Repository [24] and originates from [179].  It contains 435 instances separated by two 

classifications: “republican” (168 instances) and “democrat” (267 instances).  It also contains the 

following 16 Boolean valued (yes or no) features: handicapped-infants, water-project-cost-

sharing, adoption-of-the-budget-resolution, physician-fee-freeze, El-Salvador-aid, religious-

groups-in-schools, anti-satellite-test-ban, aid-to-Nicaraguan-contras, mx-missile, immigration, 

synfuels-corporation-cutback, education-spending, superfund-right-to-sue, crime, duty-free-

exports, and export-administration-act-South-Africa.  Missing values are denoted by “?” and are 

not replaced by anything. 
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5.2.1.5 Alabama County Jails Dataset 

 

The Alabama County Jails dataset is a proprietary dataset acquired from a Regional 

County Corrections Department in Alabama.  It is first introduced and described in [42].  The 

data obtained from the Alabama County Corrections Program consists 340 instances spanning 18 

discrete attributes, which include the offender’s personal information and current and previous 

charges and convictions.  The end result, or predicted outcome, is determined by whether or not 

the individual completes the program (represented by a one signifying completion – 222 

instances, or a negative one signifying failure to complete the program – 118 instances).  Missing 

values are left as is and classified accordingly. 

 

5.2.1.6 Musk (version 1) Dataset 

 

The Musk v1 dataset is obtained from the UCI Repository [24], although it originates 

from the AI Group at Arris Pharmaceutical Corp., in San Francisco, CA.  The dataset contains 

476 conformations of molecules and it is divided into two classifications: 0 => “non-musk” (269 

instances) or 1 => “musk” (207 instances).  The instances are described by 166 features, all 

continuous and normalized as previously mentioned. No values are missing in this dataset. 

 

5.2.1.7 Arrhythmia Dataset 

 

The Arrhythmia dataset is acquired from the UCI Repository [24], but originally owned 

by Guvenir, Acar, and Muderrisoglu, and reported first on [180].  It contains 279 features, of 

which 206 are continuous and 73 are discrete.  Although the original dataset is comprised of 16 

different classifications, the classifications are organized such that they can be condensed to 

three.  Class 01 refers to 'normal' ECG, classes 02 to 15 refer to different classes of arrhythmia, 
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and class 16 refers to the rest of unclassified instances.  So, the adjusted dataset contains three 

classifications: “N” (245 instances), “A” (185 instances), and “U” (22 instances).  Moreover, 

missing values in discrete features are replaced by the median value in the feature, whereas the 

missing values in continuous features are replaced by the mean value in the feature.  Continuous 

features are then normalized as previously described.  It is also noteworthy to mention that this is 

the only dataset without a balanced training set.  Since there exists only 22 instances classified as 

“U”, a balanced training set would prove inappropriate for training as the number of instances 

would be far too few.  So, the training set is comprised of 111 instances classified as “N”, 111 

classified as “A”, and 13 classified as “U”.  The remaining instances are placed in the test set. 

 

5.2.1.8 Madelon Dataset 

 

Although the Madelon dataset is also acquired from the UCI Repository [24], it stems 

from the Feature Selection Challenge at the 2003 Neural Information Processing Systems 

Conference.  The data is synthetic and generated by conference organizers.  The dataset contains 

2600 instances with binary classification: “-1” (1300 instances) and “1” (1300 instances).  All 

500 features are continuous and normalized, and there are no missing values. 

 

5.2.1.9 Colon Cancer Dataset 

 

The Colon Cancer dataset originates from [13] as a well known microarray dataset.  It 

contains the expression of 2000 genes (i.e., features) across the 62 tissues (i.e., instances).  The 

identity (i.e., classification) of each instance is represented by either a -1 => “no cancer” (40 

instances) or a 1 => “cancer” (22 instances).  No values are reported missing and all 2000 

features are continuous, and thus normalized according to the previously mentioned process. 
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5.2.1.10 Lymphoma Dataset 

 

The B-Cell Lymphoma dataset stems from [181] and can be acquired from 

http://llmpp.nih.gov/lymphoma.  It is comprised of gene expression data utilized to diagnose 

Diffuse large B-cell lymphoma (DLBCL).  The disease is an aggressive malignancy of mature B 

lymphocytes, with an annual incidence of over 25,000 cases, accounting for roughly 40% of 

cases of non-Hodgkin's lymphoma.  The dataset contains 42 instances which can be classified as 

“GC_B-Like” (21 instances) or “Activated_B-like” (21 instances).  Moreover, instances are 

described across 4026 continuous features.  The original data is first “filtered” and log-

transformed (base 2) [181].  Then, the data is standardized so that the mean and standard 

deviation are 0 and 1, respectively [168].  Missing values are replaced with the feature’s mean 

value to keep column’s mean and standard deviation intact. 

 

5.2.2 Tools 

 

The datasets used in this experiment are stored and accessed using SQL Maestro for 

MySQL.  The CEFS algorithm is written using Java JDK 1.6 as the programming language of 

choice and jGRASP as the IDE. 

 

5.2.3 Procedure 

 

This section will present the procedural organization of this experiment beginning from a 

high-level and ending with low-level details. As aforementioned, the available classifiers for this 

experiment are NBC and kNN, and the available feature selection subset generators are SBS, 

SFS, and GA.  The experimental process then begins by separating each dataset into 15 

randomly sampled sets of training and testing data, as described in Section 5.2.1.  As the first 
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phase of testing, three of the ten datasets (Breast Cancer, Credit Approval, and Congressional 

Voting) are deployed using the NBC/SBS combination.  This is due, in part, to the reasons 

previously mentioned in the beginning of this chapter, but also because these three datasets 

contain strictly discrete input values, thus bypassing the need for discretization for the NBC.   

Given the positive results attained from the first phase of testing, five of the ten datasets 

are then tested under kNN/SBS and kNN/SFS combinations.  The five datasets include the 

aforementioned three used with NBC/SBS plus the Wine and Alabama County Jails datasets.  

These datasets are added because they contain discrete and continuous input data, and because 

the Wine dataset contains more than two distinct classifications. 

Following further promising results from the second phase of testing, the remaining five 

datasets (Musk v1, Arrhythmia, Madelon, Colon Cancer, and Lymphoma) are added to the 

previous five and are all tested under the kNN/GA combination.  Note that these five remaining 

datasets are not tested under SBS or SFS frameworks because the feature cardinality of each 

dataset makes runtime simply unfeasible.  Conversely, the addition of these five datasets allows 

CEFS to be tested under medium and high-dimensional data, thereby testing the scalability of the 

framework. 

In terms of lower level processing tasks, each run begins by selecting the dataset and the 

classifier.  Once this is complete, the classifier is trained and a classification model is typically 

built.  In the case of a NBC or a kNN, no formal model is built as they are both lazy learners.  

Instead, a kNN will take this time to find an optimal k for the classifier, using a leave-one-out 

validation scheme to measure performance.  The available k values are discussed in the 

Algorithmic Constraints section of this chapter.  Once the classifier is ready, the baseline 

accuracy is measured by applying the test set to the classifier.   
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The feature selection subset generator is then chosen.  Using the traditional feature 

selection architecture, the overall best feature set is then found.  Another measure of accuracy is 

then taken, but this time, using the overall best feature set.  The class-specific ensemble machine 

then begins to be built. 

First in the ensemble is the allocation of the same classifier used above for each ensemble 

module.  Just as before, each module also searches for an optimal k if using a kNN classifier.  

However, the performance of each k is measured by the leave-one-out class-specific accuracy 

instead of the leave-one-out overall accuracy of the training set.  Once the classifiers are ready, 

each ensemble module then uses the same feature selection subset generator to find an optimal 

class-specific feature subset.  Just as before, this means measuring the performance of each 

candidate subset by calculating the accuracy of the class-specific instances only.  As soon as all 

class-specific subsets have been found, the system is ready to classify the test set. 

Each instance in the test set is then sent to the ensemble machine.  Each ensemble module 

classifies the instance separately and sends its classification to the decision phase.  If all modules 

classify the instance the same way, the ensemble machine uses that as its classification.  If any 

module disagrees with the others, the test instance is sent back out to the classifier using the 

traditionally acquired overall best feature subset for the tie-breaker.  The instance is then 

classified according to the latter classifier.  The three test set accuracies are then printed and 

compared, along with the overall best feature subset and the class-specific best feature subsets. 

 

5.2.4 Procedure Validation 

 

Two steps are taken to validate the procedure and algorithms mentioned in the previous 

section.  First, each algorithmic combination implemented in this experiment is traced, step by 
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step, using the Play Tennis dataset (Table 2).  This is possible through the use of the java 

debugger (also implemented in jGRASP), and due to the fact that the Play Tennis dataset is 

sufficiently small to warrant manual calculations.  Accordingly, all calculations are first 

processed by hand and then validated through the IDE’s debugger. 

The second step also requires the use of the IDE’s debugger.  This step randomly selects 

instances from the training and test sets and once again computes and compares the manual 

calculations to the ones provided by the algorithm at runtime.  Although this step is conceptually 

similar to the first step, recall that the Play Tennis dataset is strictly discrete, so this step allows 

for instances which are strictly continuous or of a mixed combination to also be validated. 

 

5.2.5 Algorithms 

 

As previously detailed in Section 4.3, two classifiers (NBC and kNN) and three feature 

selection subset generators (SBS, SFS, and GA) are implemented in this work.  Although the 

NBC, SBS, and SFS algorithms have been sufficiently described to allow reproducible results, 

the other two algorithms, kNN and GA, need further description in regards to specific 

implementation details in order to warrant the similar results. 

 

5.2.5.1 Algorithm Procedural Specifications 

 

As commonly seen in most k Nearest Neighbor implementations, the algorithm 

implemented here utilizes the Euclidean distance to measure likeness between instances.  

Specifically, the distance between two points for a continuous feature is computed as described 

in Section 2.4.4 of this work.  Conversely, the distance between two points for a discrete feature 

is computed as either 0 (if the values are the same) or 1 (if the values are different).  Moreover, 
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the normalization or standardization of continuous features ensures that the calculated distance in 

those features also ranges between 0 and 1.  Finally, it should be noted that if the classifier 

encounters a tie in the k nearest classifications, the final prediction is selected as the 

classification of the closest instance to the test/validation instance. 

Several notes need to also be made in regards to the specifications of the GA.  First, the 

initial randomly sampled population is generated based on percentages of the overall number of 

features.  In other words, 1/5 of the initial population contains roughly 10% of the features, 1/5 

contains 20%, then 40%, 60%, and 80%, respectively.  This creates a higher amount of diversity 

in the initial population as the number of features ranges broadly.  Second, candidate feature 

subsets with a higher leave-one-out validation accuracy (LOOVA) are deemed to be better (i.e., 

more fit).  Moreover, if two candidate subsets yield the same LOOVA, then the one with the 

smaller number of features is deemed to be better. 

Parent selection is implemented using binary tournament selection, where two different 

candidate parents are randomly selected and the more fit of the two becomes one of the parents 

chosen for procreation.  This occurs µ  times, where µ  represents the number of candidate subsets 

in the population.  Offspring are then created using crossover and mutation based on the 

probabilities detailed in the subsequent section.  Finally, a generational selection approach is 

implemented, where the newly created offspring replace the parents.  It should also be noted that 

the highest ranking parent can survive each generation based on the probability for elitism also 

detailed in the next section. 
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5.2.5.2 Algorithm Constraints 

 

Two of the algorithms implemented in this experiment, kNN and GA, require constraints 

to be set or optimized before the algorithm is ready to be deployed.  In the case of the kNN, a k 

value is optimized for the overall classifier and a different one is optimized for each class-

specific ensemble module.  During the preliminary stages of this research, the potential list of k 

values were as follows: 

k: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 0.25*n, 0.5*n, and 0.75*n  

   (where n is the number of instances in the dataset and such that k < n) 

However, it was observed that some of the class-specific ensemble modules were selecting k 

such that the classifier simply became a recaller, with no regards for precision.  In other words, 

the class-specific ensemble modules exhibiting this trend classified every instance as its class-

specific classification, highly overfitting its training data and poorly generalizing to test data.  To 

adjust for these occurrences, k values greater than 10 were removed from the list of potential k 

for class-specific modules. 

Genetic Algorithms (GA) also require the optimization of constraints in order to perform 

at its peak capability.  Most importantly in a GA, or in any Evolutionary Computation algorithm, 

is that candidate solutions converge toward a global optimum instead of getting trapped in local 

optimum or just jumping around the search space with little to no improvement.  So, as a starting 

point, the following constraints were acquired from [101]: 

Population size (i.e., number of instances): 50 

Number of generations (i.e., number of runs): 20 

Probability of crossover: 0.6 

Probability of mutation: 0.001 

Probability of selection of highest ranked individual (i.e., elitism): 0.6 
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However, the above settings did not allow for successful convergence in the majority of datasets.  

So, the constraints were modified until convergence was observed.  For all datasets, except 

Colon Cancer and Lymphoma, the new constraints were as follows: 

Population size (i.e., number of instances): 20 

Number of generations (i.e., number of runs): 40 

Probability of crossover: 0.6 

Probability of mutation: 0.001 

Probability of selection of highest ranked individual (i.e., elitism): 0.8 

 

It was observed that the algorithm needed less diversity in the initial population and more time to 

explore the search space to converge on a near optimal solution.  Moreover, the higher elitism 

rate yielded greater selection pressure which also aided in convergence.   

Given the significantly larger search space of the Colon Cancer and Lymphoma datasets, 

the population size is doubled and the elitism rate is raised to 0.9.  Although the number of 

features in both datasets would normally make this unfeasible in terms of time, the small number 

of instances in the dataset allows for it to be implemented. 

 

5.2.6 Results 

 

The results in this section provide a basis for comparative analysis in two areas: 

performance and domain understandability.  The results are also utilized to test the hypothesis 

previously presented in this text.  Individual run results are provided in Appendices A and B. 

 

5.2.6.1 Performance 

 

The central performance metric utilized to compare architectures in this study is the 

average prediction accuracy obtained from the 15 randomly sampled test sets of each dataset.  

The average values are presented in subsequent tables and figures in this section.  Refer to 
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Appendix A for a full list of accuracy values for each individual run.  The first set of measures 

are provided in Table 7 and depicted in Figure 19.  They contain the average accuracies using the 

NBC/SBS combination for classification.  For these, and the remaining results in this section, a 

higher accuracy represents better performance.  Note that CEFS outperforms traditional feature 

selection in all three datasets.  Although this trend continues throughout the remaining results, 

these results already show proof that part 1 of the hypothesis can be accepted.  Specifically, an 

effective recombination technique has been found which allows the CEFS architecture to 

outperform a traditional feature selection architecture in terms of prediction accuracy.   

 

Table 7: Tabularized comparison of feature selection architectures based  

on dataset accuracy averages (under NBC/SBS algorithms) 
 

Dataset 
No Feature 

Selection 

Traditional 

Feature Selection 
CEFS 

BREAST CANCER 66.44 68.89 69.20 

CREDIT APPROVAL 85.33 83.77 84.23 

CONGRESSIONAL VOTING 89.74 94.49 94.61 

 

 

 

Figure 19: Graphical comparison of feature selection architectures based  

on dataset accuracy averages (under NBC/SBS algorithms) 
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Also, note that the accuracy of the Credit Approval dataset under the architecture without 

feature selection is actually higher than either architecture containing feature selection (Table 7 

and Figure 19).  Although this is not common and happens rarely in this study, it is a clear 

reminder that there is no silver bullet in machine learning and that there are certain cases where 

feature selection can actually hinder performance.  As will be repeatedly shown in this study, 

however, this is much more the exception than the norm. 

Presented next in Table 8 and Table 9, and in Figure 20 and Figure 21, are the results 

from the combinations of a kNN/SBS and a kNN/SFS.  Much like the previous results, the CEFS 

architecture continues to outperform the traditional feature selection architecture in all datasets. 

 

Table 8: Tabularized comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/SBS algorithms) 

 

Dataset 
No Feature 

Selection 

Traditional 

Feature Selection 
CEFS 

BREAST CANCER 77.20 78.44 81.64 

WINE 94.06 93.44 93.75 

CREDIT APPROVAL 74.40 84.47 85.50 

CONGRESSIONAL VOTING 91.30 94.01 94.53 

MONTGOMERY COUNTY 49.52 62.37 63.42 

 

Table 9: Tabularized comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/SFS algorithms) 

 

Dataset 
No Feature 

Selection 

Traditional 

Feature Selection 
CEFS 

BREAST CANCER 77.20 80.89 83.64 

WINE 94.06 91.56 92.92 

CREDIT APPROVAL 74.40 84.23 85.20 

CONGRESSIONAL VOTING 91.30 94.13 94.49 

MONTGOMERY COUNTY 49.52 66.36 67.50 
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Figure 20: Graphical comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/SBS algorithms) 
 

 

Figure 21: Graphical comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/SFS algorithms) 
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10 datasets.  Additionally, the accuracy improvements seen on the five large datasets and the two 

multi-classification datasets suggest that part #2 of the hypothesis can also be accepted.  In other 

words, CEFS may successfully scale up using the framework presented here. 

 

Table 10: Tabularized comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/GA algorithms) 

 

Dataset 
No Feature 

Selection 

Traditional 

Feature Selection 
CEFS 

BREAST CANCER 77.20 79.96 81.24 

WINE 94.06 94.69 95.42 

CREDIT APPROVAL 74.40 85.20 85.50 

CONGRESSIONAL VOTING 91.30 93.93 94.09 

ALABAMA COUNTY 49.52 62.37 64.17 

MUSK V1 78.77 80.06 80.18 

ARRHYTHMIA 67.10 68.36 69.59 

MADELON 61.32 62.40 62.82 

COLON CANCER 65.90 67.69 68.97 

LYMPHOMA 75.83 75.00 77.50 

 

 

Figure 22: Graphical comparison of feature selection architectures based  

on dataset accuracy averages (under kNN/GA algorithms) 
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As shown by the results in this section, choosing an effective recombination technique for 

the ensemble system allows CEFS to become a better performing architecture than existent 

architectures.  Moreover, the performance improvements on datasets ranging from 9 features to 

over 4000 features show that CEFS can scale up.  These findings support the validity of the first 

two parts of the hypothesis presented in this research.  The next section will explore the 

remaining two parts. 

 

5.2.6.2 Domain Understandability 

 

One of the great advantages of feature selection is the improved data domain 

understandability afforded from removing irrelevant and redundant features.  This key benefit 

allows domain experts to shift their focus strictly to the most resilient and discriminating features 

while also reducing model complexity.  However, parts 3 and 4 of the hypothesis suggest that 

traditional feature selection methods may actually miss crucially relevant data, when all 

classifications are considered at once.  To test parts 3 and 4, the best found subset was recorded 

after each run and for each dataset.  The detailed list of these subsets is found in Appendix B. 

So, consider the best found subsets for run #1 of the kNN/SFS algorithms, using the 

Congressional Voting dataset, and tabularized in Table 11.  The feature subset data from this run 

alone provides the necessary information to accept parts 3 and 4 of the hypothesis.  As shown, 

the best overall feature set includes features 4, 7, and 12.  Conversely, the union of the class-

specific best feature sets includes features 4, 5, 7, and 11.  Since feature 11 is included in the 

union of the class-specific sets but not in the overall best set, it follows that the union of the 

class-specific subsets is not inclusive of the overall best set, thereby proving part 3 of the 

hypothesis.  On the other hand, feature 12 is included in the best overall set, but not in the union 
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of the class-specific sets, thus showing that the overall best set is not inclusive of the union of the 

class-specific best sets and therefore proving part 4 of the hypothesis.   

  

Table 11: Best found subsets for run #1 of kNN/SFS (using Congressional Voting dataset) 

 

Class label F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16 

Overall 0 0 0 X 0 0 X 0 0 0 0 X 0 0 0 0 

republican 0 0 0 X 0 0 X 0 0 0 0 0 0 0 0 0 

democrat 0 0 0 X X 0 0 0 0 0 X 0 0 0 0 0 

 

 

If a feature is included in the overall best feature set, it should intuitively follow that the 

feature is relevant to predicting at least one of the classifications in the dataset.  The proof and 

acceptance of part 4 of the hypothesis clearly disproves this notion.  On the other hand, a feature 

relevant to a single classification should intuitively be relevant enough to appear in the overall 

best feature set.  Once again, this notion is rejected as part 3 of the hypothesis is accepted. 

The question then becomes of whether this improves or diminishes the understandability 

of the data domain.  The answer is that compelling arguments can be made for both cases.  On 

one hand, the union of the best class-specific subsets will generate a higher number of features as 

features relevant for one classification may be significantly different than the features relevant to 

another.  This may in turn increase model complexity and decrease understandability.   

On the other hand, by performing feature selection in a class-specific manner, features 

can be isolated to individual classifications, thus highly increasing and improving classification 

understandability, a characteristic not available on traditional feature selection architectures.  

Moreover, certain classification tasks may wish to focus on one classification over another, a 

task that can be implemented in a CEFS architecture, but not in a traditional feature selection 

architecture.  
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Chapter 6 

 

Conclusion 

 

 

As discussed in Chapter 1: Introduction, the significant growth in data storage and the 

widening disparity between data processing and data acquisition have produced ample reasons to 

employ feature selection techniques when performing machine learning tasks.  By effectively 

removing irrelevant and redundant features from the dataset, such techniques provide essential 

benefits such as improved learner accuracy, improved domain understandability, decreased 

model complexity, decreased training time, decreased required storage, etc.  As the potential for 

increased benefit is significant, the research subsequently provides in depth discussions on 

Classification and Feature Selection in Chapters 2 and 3, respectively.   

Given the clear motivation and objectives presented in Chapters 1 – 3, a novel class-

specific ensemble feature selection architecture is proposed and comprehensively presented in 

Chapter 4.  This architecture builds an ensemble of models, each with feature subsets optimized 

with respect to a distinct classification and under a specific base classifier.  The proposed method 

seeks to outperform (in terms of prediction accuracy) a traditional feature selection architecture 

by providing an approach which brings sought after diversity and disagreement to the ensemble 

model while supplying the same model with feature subsets containing highly useful features to 

the base classifiers themselves.   

So, to test the effectiveness of the aforementioned architecture and the hypothesis 

surrounding the potential benefits of such a design, a comprehensive experiment is constructed.  
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This experiment is presented in detail in Chapter 5 and consists of two classifiers, three feature 

selection subset generators, and ten datasets.  The results obtained from the experiment solidify 

the potential benefits of a class-specific feature selection architecture and allow for the 

acceptance of the four part hypothesis proposed at the beginning of this study.  In summary, a 

strong case is made for the implementation of a class-specific architecture when performing 

feature selection tasks. 

Plenty of work remains to be completed however.  One of the main drawbacks to a class-

specific architecture is the ease in which an ensemble module can overfit the training data.  This 

problem is exacerbated by the fact that the module can sometimes become a pure recaller, with 

no regards for precision (essentially classifying every instance it sees as the class-specific 

classification).  Given the greedy nature of choosing the best performing class-specific subset, 

100% recall means 100% prediction for that particular classification, which can clearly be a 

problem.  So, the class-specific subset evaluation criterion must be balanced in the future, as 

precision must also be taken into account.   

It should also be noted that although the CEFS architecture outperformed on average the 

traditional feature selection architecture, it most often did not do so with statistical significance.  

Specifically, p-values ranged from 0.04 to 0.91 using two-tailed t-tests.  This was especially true 

as the search space of features scaled up.  In other words, the stability of the architecture 

decreased as the number of features increased.  Creating a more stable architecture would likely 

positively affect the overall performance, thus providing statistically significant results.  Finally, 

it is important to continue to extend CEFS to other classifiers and other feature selection 

algorithms so that the architecture can be tested on a wider base of techniques and so that further 

benefits can be explored. 
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Appendices 

 

 

Appendix A: Performance during Individual Runs 

Note: the table headings for Appendix A are as follows: 

• NBC – Naïve Bayesian Classifier 

• kNN – k Nearest Neighbor algorithm 

• SBS – Sequential Backward Selection 

• SFS – Sequential Forward Selection 

• GA – Genetic Algorithm 

• No FS – Use of classifier alone, with no feature selection 

• Trad. FS – Use of classifier with traditional feature selection architecture 

• CEFS – Use of classifier with CEFS architecture 

• Diff – Performance Difference between traditional feature selection architecture 

and CEFS architecture. 

 

Lymphoma Dataset 
 

LYMPHOMA (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 62.5 62.5 75 12.5 

2 62.5 75 62.5 -12.5 

3 75 87.5 87.5 0 

4 87.5 100 100 0 

5 62.5 75 87.5 12.5 

6 87.5 87.5 87.5 0 

7 75 62.5 50 -12.5 

8 87.5 75 87.5 12.5 

9 75 75 75 0 

10 87.5 87.5 87.5 0 

11 75 62.5 62.5 0 

12 62.5 75 75 0 

13 75 62.5 75 12.5 

14 87.5 62.5 75 12.5 

15 75 75 75 0 

Avg 75.833 75 77.5 2.5 

Colon Cancer Dataset 
 

COLON CANCER (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 53.846 57.692 61.538 3.846 

2 61.538 69.231 69.231 0 

3 61.538 73.077 73.077 0 

4 76.923 69.231 73.077 3.846 

5 57.692 61.538 61.538 0 

6 73.077 76.923 76.923 0 

7 61.538 57.692 61.538 3.846 

8 73.077 76.923 73.077 -3.846 

9 76.923 73.077 73.077 0 

10 61.538 65.385 69.231 3.846 

11 69.231 69.231 65.385 -3.846 

12 61.538 69.231 76.923 7.692 

13 57.692 57.692 61.538 3.846 

14 76.923 73.077 73.077 0 

15 65.385 65.385 65.385 0 

Avg 65.897 67.692 68.974 1.282 



97 

Madelon Dataset 
 

MADELON (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 60.973 62.677 64.256 1.579 

2 59.85 61.347 62.594 1.247 

3 61.056 58.811 60.973 2.162 

4 62.968 62.053 63.342 1.289 

5 60.058 62.677 64.713 2.036 

6 60.432 59.933 61.513 1.58 

7 60.64 60.515 62.677 2.162 

8 61.388 62.51 62.427 -0.083 

9 60.848 66.874 63.425 -3.449 

10 62.469 61.264 61.139 -0.125 

11 59.518 60.682 61.305 0.623 

12 61.222 63.549 63.092 -0.457 

13 62.843 63.716 61.929 -1.787 

14 62.552 66.002 64.381 -1.621 

15 62.926 63.342 64.589 1.247 

Avg 61.316 62.397 62.824 0.426867 

 

Musk (version 1) Dataset 
 

MUSK V1 (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 82.018 81.579 80.263 -1.316 

2 77.193 77.193 75 -2.193 

3 80.263 82.456 80.702 -1.754 

4 81.14 79.825 84.211 4.386 

5 75.877 79.386 77.193 -2.193 

6 79.386 84.211 85.526 1.315 

7 78.509 82.018 82.018 0 

8 76.316 79.825 81.14 1.315 

9 73.684 77.193 79.385 2.192 

10 78.947 84.211 82.456 -1.755 

11 75 78.07 77.632 -0.438 

12 77.193 75 75.439 0.439 

13 83.772 80.702 83.333 2.631 

14 79.825 78.07 77.193 -0.877 

15 82.456 81.14 81.14 0 

Avg 78.772 80.059 80.175 0.1168 

Arrhythmia Dataset 
 

ARRHYTHMIA (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 68.203 64.977 66.359 1.382 

2 68.203 73.272 74.194 0.922 

3 65.899 66.359 70.968 4.609 

4 67.742 69.585 69.585 0 

5 68.203 67.281 67.742 0.461 

6 66.82 65.438 66.359 0.921 

7 63.134 63.134 64.977 1.843 

8 64.977 68.203 68.203 0 

9 70.507 67.742 70.507 2.765 

10 64.977 70.046 70.968 0.922 

11 64.055 61.751 64.977 3.226 

12 70.968 72.811 73.733 0.922 

13 68.664 73.733 75.115 1.382 

14 70.507 71.429 70.507 -0.922 

15 63.594 69.585 69.585 0 

Avg 67.097 68.356 69.585 1.228867 
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Montgomery County Jails Dataset 

 

MONTGOMERY COUNTY (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 50.658 44.737 55.263 10.526 

2 46.053 84.211 71.711 -12.5 

3 50 65.132 65.132 0 

4 50.658 36.184 54.605 18.421 

5 50 84.211 84.211 0 

6 50 19.079 35.526 16.447 

7 42.105 84.211 83.553 -0.658 

8 40.789 36.842 48.684 11.842 

9 50 65.789 54.605 -11.184 

10 50 76.316 75 -1.316 

11 56.579 73.684 73.684 0 

12 56.579 59.211 66.447 7.236 

13 44.079 57.895 43.421 -14.474 

14 46.053 63.816 66.447 2.631 

15 59.211 84.211 84.211 0 

Avg 49.518 62.369 64.167 1.798067 

 

 

MONTGOMERY COUNTY (kNN - SFS) 

Run No FS Trad. FS CEFS Diff 

1 50.658 73.684 79.605 5.921 

2 46.053 84.211 82.237 -1.974 

3 50 65.132 65.132 0 

4 50.658 57.895 68.421 10.526 

5 50 84.211 84.211 0 

6 50 84.211 78.947 -5.264 

7 42.105 84.211 84.211 0 

8 40.789 36.842 41.447 4.605 

9 50 49.342 43.421 -5.921 

10 50 73.026 71.053 -1.973 

11 56.579 73.684 73.684 0 

12 56.579 59.211 59.211 0 

13 44.079 23.684 32.237 8.553 

14 46.053 63.158 65.789 2.631 

15 59.211 82.895 82.895 0 

Avg 49.518 66.360 67.500 1.140267 

 

 

MONTGOMERY COUNTY (kNN - SBS) 

Run No FS Trad. FS CEFS Diff 

1 50.658 64.474 69.737 5.263 

2 46.053 69.737 66.447 -3.29 

3 50 65.132 55.921 -9.211 

4 50.658 65.132 75 9.868 

5 50 84.211 84.211 0 

6 50 55.263 57.895 2.632 

7 42.105 71.711 68.421 -3.29 

8 40.789 36.842 43.421 6.579 

9 50 50.658 42.105 -8.553 

10 50 59.868 60.526 0.658 

11 56.579 57.237 68.421 11.184 

12 56.579 59.211 59.211 0 

13 44.079 48.684 50 1.316 

14 46.053 63.158 67.105 3.947 

15 59.211 84.211 82.895 -1.316 

Avg 49.518 62.369 63.421 1.052467 
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Congressional Voting Dataset 

 

CONGRESSIONAL VOTING (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 89.222 92.814 94.012 1.198 

2 90.419 91.617 91.617 0 

3 88.623 94.012 94.611 0.599 

4 92.216 94.012 95.21 1.198 

5 92.216 95.808 94.611 -1.197 

6 91.018 92.216 91.018 -1.198 

7 91.018 94.012 94.012 0 

8 93.413 94.611 95.21 0.599 

9 92.814 94.012 95.808 1.796 

10 95.21 97.605 95.808 -1.797 

11 92.216 95.21 94.012 -1.198 

12 90.419 93.413 94.012 0.599 

13 92.216 92.814 94.611 1.797 

14 91.617 94.611 94.611 0 

15 86.826 92.216 92.216 0 

Avg 91.298 93.932 94.092 0.159733 

 

 

CONGRESSIONAL VOTING (kNN - SFS) 

Run No FS Trad. FS CEFS Diff 

1 89.222 94.012 94.611 0.599 

2 90.419 95.21 94.611 -0.599 

3 88.623 94.012 94.012 0 

4 92.216 95.21 95.21 0 

5 92.216 94.611 94.611 0 

6 91.018 89.82 89.82 0 

7 91.018 93.413 95.21 1.797 

8 93.413 95.21 95.21 0 

9 92.814 95.808 95.808 0 

10 95.21 98.204 98.204 0 

11 92.216 95.21 94.611 -0.599 

12 90.419 94.611 94.012 -0.599 

13 92.216 91.617 94.012 2.395 

14 91.617 93.413 94.012 0.599 

15 86.826 91.617 93.413 1.796 

Avg 91.298 94.132 94.491 0.359267 

 

 

CONGRESSIONAL VOTING (kNN - SBS) 

Run No FS Trad. FS CEFS Diff 

1 89.222 92.216 94.611 2.395 

2 90.419 94.012 94.611 0.599 

3 88.623 94.012 94.611 0.599 

4 92.216 95.21 95.808 0.598 

5 92.216 94.611 94.611 0 

6 91.018 90.419 91.018 0.599 

7 91.018 94.012 94.012 0 

8 93.413 95.21 95.21 0 

9 92.814 95.808 97.006 1.198 

10 95.21 96.407 95.808 -0.599 

11 92.216 92.216 94.012 1.796 

12 90.419 94.611 94.012 -0.599 

13 92.216 92.216 93.413 1.197 

14 91.617 95.808 95.808 0 

15 86.826 93.413 93.413 0 

Avg 91.298 94.012 94.531 0.518867 

 

 

CONGRESSIONAL VOTING (NBC - SBS) 

Run No FS Trad. FS CEFS Diff 

1 88.024 94.611 94.611 0 

2 89.222 94.012 94.012 0 

3 88.024 94.012 94.611 0.599 

4 89.82 95.21 95.21 0 

5 90.419 93.413 93.413 0 

6 88.623 94.611 95.808 1.197 

7 87.425 94.611 94.611 0 

8 91.617 95.808 95.808 0 

9 91.617 96.407 96.407 0 

10 92.814 97.006 97.006 0 

11 94.012 93.413 93.413 0 

12 89.82 94.012 94.012 0 

13 87.425 94.012 93.413 -0.599 

14 89.82 93.413 94.012 0.599 

15 87.425 92.814 92.814 0 

Avg 89.740 94.491 94.611 0.119733 
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Credit Approval Dataset 

 

CREDIT APPROVAL (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 76 84 83 -1 

2 74 85 84.5 -0.5 

3 79.5 88.5 89 0.5 

4 72.5 92 90.5 -1.5 

5 77 80.5 80 -0.5 

6 69.5 88.5 86.5 -2 

7 67.5 82.5 85 2.5 

8 75.5 83.5 89 5.5 

9 75.5 86.5 85.5 -1 

10 75.5 86 87 1 

11 75.5 80.5 81 0.5 

12 75.5 86 86 0 

13 73.5 85.5 84.5 -1 

14 73.5 83 82.5 -0.5 

15 75.5 86 88.5 2.5 

Avg 74.4 85.2 85.5 0.3 

 

 

CREDIT APPROVAL (kNN - SFS) 

Run No FS Trad. FS CEFS Diff 

1 76 86.5 85.5 -1 

2 74 79.5 83 3.5 

3 79.5 88.5 89.5 1 

4 72.5 87.5 89 1.5 

5 77 81 83 2 

6 69.5 84 84.5 0.5 

7 67.5 82 82.5 0.5 

8 75.5 89.5 88 -1.5 

9 75.5 83 83 0 

10 75.5 82.5 83 0.5 

11 75.5 80 82 2 

12 75.5 86 86.5 0.5 

13 73.5 84.5 85.5 1 

14 73.5 85 87.5 2.5 

15 75.5 84 85.5 1.5 

Avg 74.4 84.233 85.2 0.966667 

 

 

CREDIT APPROVAL (kNN - SBS) 

Run No FS Trad. FS CEFS Diff 

1 76 85 85 0 

2 74 84.5 83 -1.5 

3 79.5 83.5 87 3.5 

4 72.5 87.5 86 -1.5 

5 77 83 84 1 

6 69.5 79.5 83 3.5 

7 67.5 81.5 84 2.5 

8 75.5 89 88 -1 

9 75.5 82.5 85.5 3 

10 75.5 84.5 86.5 2 

11 75.5 84.5 85.5 1 

12 75.5 86 84.5 -1.5 

13 73.5 84 85 1 

14 73.5 84.5 87 2.5 

15 75.5 87.5 88.5 1 

Avg 74.4 84.46667 85.5 1.033333 

 

 

CREDIT APPROVAL (NBC - SBS) 

Run No FS Trad. FS CEFS Diff 

1 85 85.5 85 -0.5 

2 83 80.5 83 2.5 

3 85 83.5 83.5 0 

4 89 88 89 1 

5 83 81.5 81.5 0 

6 87 88.5 88.5 0 

7 81.5 80.5 80.5 0 

8 87 88 88.5 0.5 

9 85 84.5 84.5 0 

10 87 82 83.5 1.5 

11 84 81.5 81.5 0 

12 87.5 85.5 85.5 0 

13 85.5 84 83.5 -0.5 

14 85.5 80.5 81 0.5 

15 85 82.5 84.5 2 

Avg 85.333 83.767 84.233 0.466667 
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Wine Dataset 

 

WINE (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 96.875 93.75 96.875 3.125 

2 92.188 95.313 95.313 0 

3 92.188 95.313 93.75 -1.563 

4 96.875 93.75 95.313 1.563 

5 90.625 90.625 90.625 0 

6 96.875 93.75 93.75 0 

7 93.75 96.875 98.438 1.563 

8 95.313 89.063 90.625 1.562 

9 95.313 95.313 95.313 0 

10 95.313 98.438 100 1.562 

11 90.625 93.75 93.75 0 

12 92.188 98.438 98.438 0 

13 92.188 89.063 92.188 3.125 

14 95.313 98.438 98.438 0 

15 95.313 98.438 98.438 0 

Avg 94.063 94.688 95.417 0.729133 

 

 

WINE (kNN - SFS) 

Run No FS Trad. FS CEFS Diff 

1 96.875 92.188 92.188 0 

2 92.188 81.25 92.188 10.938 

3 92.188 90.625 90.625 0 

4 96.875 89.063 90.625 1.562 

5 90.625 89.063 92.188 3.125 

6 96.875 93.75 95.313 1.563 

7 93.75 96.875 100 3.125 

8 95.313 89.063 90.625 1.562 

9 95.313 92.188 93.75 1.562 

10 95.313 95.313 95.313 0 

11 90.625 93.75 90.625 -3.125 

12 92.188 92.188 92.188 0 

13 92.188 95.313 95.313 0 

14 95.313 87.5 87.5 0 

15 95.313 95.313 95.313 0 

Avg 94.063 91.563 92.917 1.354133 

 

 

WINE (kNN - SBS) 

Run No FS Trad. FS CEFS Diff 

1 96.875 96.875 96.875 0 

2 92.188 93.75 95.313 1.563 

3 92.188 95.313 95.313 0 

4 96.875 93.75 93.75 0 

5 90.625 92.188 92.188 0 

6 96.875 87.5 87.5 0 

7 93.75 96.875 96.875 0 

8 95.313 96.875 96.875 0 

9 95.313 95.313 95.313 0 

10 95.313 98.438 96.875 -1.563 

11 90.625 89.063 89.063 0 

12 92.188 87.5 89.063 1.563 

13 92.188 90.625 92.188 1.563 

14 95.313 92.188 93.75 1.562 

15 95.313 95.313 95.313 0 

Avg 94.063 93.438 93.750 0.312533 
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Breast Cancer Dataset 

 

BREAST CANCER (kNN - GA) 

Run No FS Trad. FS CEFS Diff 

1 80.667 80.667 81.333 0.666 

2 70.667 84 86.667 2.667 

3 77.333 74.667 84 9.333 

4 82 79.333 65.333 -14 

5 84.667 82 83.333 1.333 

6 78 81.333 81.333 0 

7 82.667 82.667 79.333 -3.334 

8 79.333 88.667 88.667 0 

9 74.667 85.333 88.667 3.334 

10 78.667 75.333 84 8.667 

11 71.333 72 72.667 0.667 

12 80 76.667 83.333 6.666 

13 65.333 80.667 80.667 0 

14 78 80 81.333 1.333 

15 74.667 76 78 2 

Avg 77.20007 79.9556 81.2444 1.2888 

 

 

BREAST CANCER (kNN - SFS) 

Run No FS Trad. FS CEFS Diff 

1 80.667 79.333 78.667 -0.666 

2 70.667 84 86.667 2.667 

3 77.333 77.333 85.333 8 

4 82 88.667 80.667 -8 

5 84.667 84.667 84.667 0 

6 78 81.333 83.333 2 

7 82.667 82.667 84 1.333 

8 79.333 88.667 88.667 0 

9 74.667 78 88.667 10.667 

10 78.667 75.333 88 12.667 

11 71.333 80 81.333 1.333 

12 80 78 82.667 4.667 

13 65.333 80.667 81.333 0.666 

14 78 80 78 -2 

15 74.667 74.667 82.667 8 

Avg 77.200 80.889 83.645 2.7556 

 

 

BREAST CANCER (kNN - SBS) 

Run No FS Trad. FS CEFS Diff 

1 80.667 74.667 76 1.333 

2 70.667 82 87.333 5.333 

3 77.333 77.333 87.333 10 

4 82 78.667 80 1.333 

5 84.667 88 88.667 0.667 

6 78 82 80 -2 

7 82.667 81.333 88 6.667 

8 79.333 88.667 85.333 -3.334 

9 74.667 78 80 2 

10 78.667 75.333 88 12.667 

11 71.333 72 71.333 -0.667 

12 80 86.667 87.333 0.666 

13 65.333 65.333 72.667 7.334 

14 78 71.333 74.667 3.334 

15 74.667 75.333 78 2.667 

Avg 77.200 78.444 81.644 3.2 

 

 

BREAST CANCER (NBC - SBS) 

Run No FS Trad. FS CEFS Diff 

1 67.333 68 68.667 0.667 

2 70 62 62.667 0.667 

3 61.333 71.333 74 2.667 

4 70.667 73.333 74.667 1.334 

5 72.667 71.333 73.333 2 

6 68.667 78 70.667 -7.333 

7 64.667 75.333 73.333 -2 

8 71.333 70.667 71.333 0.666 

9 62 72 69.333 -2.667 

10 67.333 65.333 66 0.667 

11 67.333 68 69.333 1.333 

12 64 65.333 65.333 0 

13 57.333 63.333 70 6.667 

14 62.667 64.667 64.667 0 

15 69.333 64.667 64.667 0 

Avg 66.444 68.889 69.200 0.3112 
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Appendix B: Best found overall and class-specific feature subsets per individual runs 
 

Note 1: a zero value represents a feature that was not used, whereas, a non-zero value 

represents the index of a used feature. 

 

Note 2: the best found subsets for the five larger datasets (Musk v1, Arrhythmia, Madelon, 

Colon Cancer, and Lymphoma) are not provided here as they are extremely large. 

 

Breast Cancer Dataset 

(NBC/SBS) 
Overall: 0 0 0 0 5 6 0 0 0  

no-recurrence-events: 0 2 0 0 5 0 0 0 0  

recurrence-events: 1 2 3 0 0 6 0 0 9  

 

Overall: 0 0 3 4 0 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 1 0 3 0 0 6 0 0 0  

 

Overall: 0 0 0 0 0 6 0 8 0  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 3 0 0 6 0 8 9  

 

Overall: 0 2 0 4 0 6 0 0 9  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 1 0 3 4 0 6 0 0 9  

 

Overall: 0 0 0 4 0 0 0 8 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 3 0 0 6 0 8 9  

 

Overall: 0 0 0 0 0 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 0 4 5 6 0 0 0  

 

Overall: 0 2 0 0 0 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 2 3 0 5 0 0 0 9  

 

Overall: 0 2 0 4 0 6 0 0 9  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 3 0 5 6 0 0 9  

 

Overall: 0 2 0 0 0 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 1 2 0 0 0 6 0 0 0  
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Overall: 0 0 0 0 5 6 7 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 1 2 3 0 0 6 0 0 9  

 

Overall: 0 0 0 0 5 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 1 0 3 0 5 6 7 8 0  

 

Overall: 0 0 0 4 5 6 0 0 0  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 4 5 6 0 0 0  

 

Overall: 0 0 0 4 5 6 0 8 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 3 4 0 0 0 0 9  

 

Overall: 0 0 3 0 5 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 3 4 0 6 0 0 0  

 

Overall: 0 2 0 0 0 6 0 0 9  

no-recurrence-events: 0 0 0 0 0 0 0 0 9  

recurrence-events: 0 0 0 4 0 6 0 8 9 

 

(kNN/SBS) 
Overall: 1 2 3 0 0 6 7 8 9  

no-recurrence-events: 1 2 3 4 0 6 7 8 9  

recurrence-events: 0 2 3 0 5 6 7 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0  

no-recurrence-events: 0 0 0 4 0 0 7 8 0  

recurrence-events: 0 2 3 0 0 6 0 8 0  

 

Overall: 1 0 0 0 5 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 7 0 9  

recurrence-events: 0 2 0 4 5 6 0 8 9  

 

Overall: 0 0 0 0 5 6 7 0 0  

no-recurrence-events: 1 0 3 4 5 0 0 0 0  

recurrence-events: 0 0 0 0 5 6 0 0 0  

 

Overall: 1 0 3 4 5 6 7 8 9  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 0 5 0 0 0 0  
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Overall: 0 0 0 4 0 0 0 0 0  

no-recurrence-events: 0 0 0 4 0 0 7 8 9  

recurrence-events: 0 0 3 0 0 0 7 0 0  

 

Overall: 1 2 0 0 5 6 7 0 0  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 0 2 3 0 5 6 0 8 9  

 

Overall: 0 0 0 0 0 6 0 0 0  

no-recurrence-events: 1 2 0 4 0 6 7 8 9  

recurrence-events: 0 0 0 0 0 6 0 8 9  

 

Overall: 1 2 3 4 5 6 0 8 9  

no-recurrence-events: 0 0 0 4 0 0 0 0 0  

recurrence-events: 1 0 3 0 5 6 0 8 0  

 

Overall: 0 2 0 0 0 6 0 0 0  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 0 5 0 0 0 0  

 

Overall: 1 2 3 0 5 6 7 8 9  

no-recurrence-events: 1 2 3 4 5 6 7 8 9  

recurrence-events: 1 0 3 0 5 0 0 0 0  

 

Overall: 1 0 0 4 0 0 0 0 0  

no-recurrence-events: 0 0 0 0 0 0 0 0 9  

recurrence-events: 0 2 3 4 5 6 7 0 0  

 

Overall: 0 2 3 0 5 6 7 0 9  

no-recurrence-events: 0 0 0 4 5 0 0 8 0  

recurrence-events: 1 2 3 4 0 6 7 0 9  

 

Overall: 1 2 0 0 5 6 7 0 0  

no-recurrence-events: 1 0 0 4 5 0 7 8 0  

recurrence-events: 0 2 3 0 0 6 7 8 0  

 

Overall: 0 0 0 4 5 6 0 8 9  

no-recurrence-events: 0 0 0 4 0 0 0 8 0  

recurrence-events: 0 0 0 0 0 6 0 0 0 

 

(kNN/SFS) 
Overall: 1 0 3 4 5 6 7 8 0  

no-recurrence-events: 0 0 0 0 5 6 0 0 0  

recurrence-events: 0 0 0 4 5 0 0 0 9  
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Overall: 0 0 0 4 0 0 0 0 0  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 0 0 6 0 0 0  

 

Overall: 0 2 0 0 5 6 7 8 0  

no-recurrence-events: 0 0 0 4 0 0 0 8 0  

recurrence-events: 1 0 0 0 0 0 0 8 0  

 

Overall: 0 0 0 4 0 6 0 0 0  

no-recurrence-events: 0 2 0 4 0 6 7 8 9  

recurrence-events: 1 0 0 0 0 0 0 0 0  

 

Overall: 1 2 3 4 5 6 7 8 9  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 4 0 0 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0  

no-recurrence-events: 1 2 0 4 5 0 7 0 9  

recurrence-events: 0 0 0 0 0 6 0 0 0  

 

Overall: 1 2 3 4 5 6 7 8 9  

no-recurrence-events: 0 2 0 4 5 6 0 0 9  

recurrence-events: 0 0 0 0 0 6 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 0 0 5 0 0 0 9  

 

Overall: 1 0 3 0 5 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 0 0 0 0 0 0 9  

 

Overall: 0 2 0 0 0 6 0 0 0  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 0 5 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0  

no-recurrence-events: 1 2 3 4 5 6 7 8 9  

recurrence-events: 0 0 0 0 5 0 0 0 0  

 

Overall: 0 0 3 4 0 0 0 0 0  

no-recurrence-events: 0 0 0 0 0 0 7 0 0  

recurrence-events: 0 0 0 0 0 0 0 0 9  
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Overall: 0 2 0 0 5 0 0 0 0  

no-recurrence-events: 1 2 0 4 5 0 0 0 0  

recurrence-events: 1 2 3 4 5 6 7 0 9  

 

Overall: 0 0 3 0 5 0 0 0 0  

no-recurrence-events: 1 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 3 0 5 0 0 0 0  

 

Overall: 0 0 0 4 5 6 7 8 9  

no-recurrence-events: 1 0 3 4 5 0 0 0 9  

recurrence-events: 0 0 0 0 5 6 0 0 0 

 

(kNN/GA) 
Overall: 1 2 3 4 5 6 7 8 9  

no-recurrence-events: 1 2 0 4 5 6 0 8 9  

recurrence-events: 0 0 0 4 5 0 0 0 9  

 

Overall: 0 0 0 4 0 0 0 0 0  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 0 0 0 6 0 0 0  

 

Overall: 1 0 3 4 5 6 0 8 9  

no-recurrence-events: 1 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 3 0 0 0 7 0 9  

 

Overall: 1 0 0 0 5 6 0 0 0  

no-recurrence-events: 0 2 0 0 0 0 0 0 0  

recurrence-events: 0 0 0 0 5 6 0 0 0  

 

Overall: 0 0 3 0 5 6 7 8 9  

no-recurrence-events: 0 0 0 0 5 0 0 8 9  

recurrence-events: 0 0 0 4 0 0 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 2 3 0 0 6 0 0 0  

 

Overall: 1 2 0 4 0 6 0 0 9  

no-recurrence-events: 0 0 0 4 0 6 7 0 9  

recurrence-events: 0 0 0 0 0 6 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 0 0 5 0 0 0 9  
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Overall: 0 0 0 4 5 6 0 0 0  

no-recurrence-events: 0 0 0 0 5 0 0 0 0  

recurrence-events: 0 0 0 0 0 0 0 0 9  

 

Overall: 0 0 0 4 5 6 0 0 0  

no-recurrence-events: 1 0 0 4 5 0 7 8 9  

recurrence-events: 0 0 0 0 5 0 0 0 0  

 

Overall: 1 2 3 0 5 6 7 8 9  

no-recurrence-events: 1 2 3 4 5 6 7 8 9  

recurrence-events: 0 0 0 0 5 0 0 0 0  

 

Overall: 1 0 3 4 5 6 7 0 0  

no-recurrence-events: 0 0 0 0 0 0 7 0 0  

recurrence-events: 0 0 0 0 0 0 0 0 9  

 

Overall: 0 2 0 0 5 0 0 0 0  

no-recurrence-events: 0 2 0 4 5 6 0 8 9  

recurrence-events: 1 0 0 0 5 0 0 0 0  

 

Overall: 0 0 3 0 5 0 0 0 0  

no-recurrence-events: 1 0 0 4 0 0 0 0 0  

recurrence-events: 0 0 3 0 5 0 0 0 0  

 

Overall: 0 0 3 4 5 6 0 8 9  

no-recurrence-events: 1 0 3 4 5 0 0 0 9  

recurrence-events: 0 0 0 0 5 0 7 8 9 

 

 

Wine Dataset 

(kNN/SBS) 
Overall: 1 2 3 4 0 0 0 0 0 10 11 12 13  

1: 1 2 3 4 0 6 0 0 0 0 0 0 13  

2: 0 2 3 0 0 0 0 0 0 10 0 0 13  

3: 0 0 0 0 0 0 7 0 0 0 11 0 0  

 

Overall: 1 0 0 0 0 0 7 0 0 10 0 12 13  

1: 1 0 0 0 0 0 7 0 0 0 0 0 0  

2: 1 2 0 4 5 0 7 0 0 10 0 12 13  

3: 1 0 0 0 5 0 7 0 0 0 0 0 0  

 

Overall: 0 2 0 0 0 0 7 0 0 10 11 12 13  

1: 1 2 3 4 0 0 7 0 0 0 0 0 0  

2: 0 0 0 0 5 0 0 0 0 10 0 0 0  

3: 0 2 0 0 0 0 0 0 0 0 11 12 0  
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Overall: 1 2 3 4 0 0 7 0 0 10 0 0 13  

1: 1 2 3 4 0 6 0 0 0 0 0 0 13  

2: 1 2 3 4 0 0 7 8 0 10 0 12 13  

3: 1 0 3 0 0 0 7 0 9 0 0 0 0  

 

Overall: 0 2 0 4 5 0 7 8 9 10 0 0 13  

1: 1 0 0 0 0 6 0 0 0 0 0 0 0  

2: 0 0 0 4 5 0 7 0 0 0 0 0 13  

3: 0 0 0 0 0 0 7 0 0 10 0 0 0  

 

Overall: 1 0 3 4 0 6 0 0 0 0 0 12 13  

1: 1 0 3 0 0 0 7 0 0 0 0 0 13  

2: 1 0 3 4 0 6 0 0 0 0 0 12 13  

3: 1 0 3 0 0 0 7 0 0 0 0 0 0  

 

Overall: 1 2 3 0 0 0 0 0 0 10 0 12 13  

1: 1 2 0 0 0 6 0 0 0 0 0 0 13  

2: 0 2 3 0 0 0 0 0 0 10 0 0 13  

3: 0 2 0 0 0 0 7 0 0 10 0 0 0  

 

Overall: 1 2 0 0 0 0 0 0 0 0 11 12 13  

1: 1 0 0 0 0 0 7 0 0 0 0 0 0  

2: 1 0 0 0 0 0 0 0 0 10 0 12 13  

3: 0 0 3 4 0 0 0 8 9 10 0 0 0  

 

Overall: 0 2 3 4 0 0 7 8 9 10 0 12 13  

1: 1 2 3 0 0 0 7 0 0 0 0 0 0  

2: 0 0 0 0 0 0 0 0 0 10 0 0 13  

3: 0 2 0 0 0 0 7 8 0 0 0 0 0  

 

Overall: 0 2 3 4 0 0 7 0 9 10 0 12 13  

1: 1 2 3 4 0 0 7 0 0 0 0 0 0  

2: 0 2 3 0 0 0 7 0 9 10 0 0 13  

3: 0 0 3 4 0 0 7 0 0 0 0 0 0  

 

Overall: 0 2 3 0 5 0 7 8 0 10 11 0 13  

1: 1 0 0 4 5 0 7 0 0 0 0 0 0  

2: 1 2 3 0 5 0 7 0 0 10 0 0 13  

3: 1 0 0 0 5 0 7 0 0 0 0 0 0  

 

Overall: 0 0 3 0 5 6 7 0 9 0 0 0 13  

1: 1 2 3 4 0 0 7 0 0 0 0 0 0  

2: 1 2 3 0 5 6 7 0 0 10 0 12 13  

3: 1 0 0 0 5 0 7 0 0 0 0 0 0  
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Overall: 0 2 3 4 5 0 7 8 9 10 11 0 13  

1: 1 0 0 0 0 0 7 0 0 0 0 0 0  

2: 1 2 3 0 5 0 7 8 0 10 0 0 13  

3: 0 0 3 0 0 0 7 0 0 0 11 0 0  

 

Overall: 1 2 3 0 0 0 0 0 9 10 0 12 13  

1: 1 0 0 4 5 0 7 0 0 0 0 0 0  

2: 1 0 0 4 5 0 0 0 9 10 0 0 0  

3: 0 0 0 0 0 0 7 0 0 10 0 0 0  

 

Overall: 0 2 0 0 0 6 0 0 9 10 0 0 13  

1: 1 0 0 4 5 0 7 0 0 0 0 0 0  

2: 1 0 0 0 5 0 0 0 0 10 0 0 0  

3: 1 2 0 0 5 0 7 8 0 0 0 0 0 

 

(kNN/SFS) 
Overall: 1 0 3 4 0 0 7 0 0 10 11 0 0  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 2 0 0 0 0 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 0 0 0 7 0 0 0 0 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 2 3 0 0 0 0 0 0 10 0 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 0 0 6 7 0 0 10 0 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 0 5 0 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 0 5 6 7 0 0 10 0 12 0  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 0 0 6 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 2 3 0 5 0 7 0 0 0 11 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 0 3 0 5 0 7 0 0 0 11 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 3 4 0 0 7 0 0 0 11 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 2 0 0 5 0 7 0 0 10 11 12 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  
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Overall: 1 0 0 4 5 6 7 0 0 10 11 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 4 0 0 0 0 0 10 11 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 0 0 0 0 0 0 7 8 0 10 0 0 0  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 0 0 6 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 0 0 0 7 0 0 10 0 0 0  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 0 3 0 0 0 0 0 0 10 0 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 2 3 4 5 6 7 0 9 10 0 12 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 0 0 0 5 0 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 3 0 5 0 7 0 0 10 11 12 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 2 3 0 5 0 7 0 0 10 0 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 0 0 0 0 5 0 7 0 0 10 0 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 4 0 6 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 4 5 0 7 0 0 10 11 12 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 0 0 0 0 0 0 0 0 0 10 0 0 13  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 0 0 0 0 0 7 8 0 10 0 12 0  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 0 0 4 5 0 0 0 9 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Overall: 1 2 3 4 0 0 7 8 9 10 11 0 13  

1: 1 2 3 4 5 6 7 8 9 10 11 12 13  

2: 1 0 0 0 5 0 0 0 0 10 0 0 0  

3: 1 2 3 4 5 6 7 8 9 10 11 12 13 
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(kNN/GA) 
Overall: 1 0 3 4 0 0 0 0 9 10 0 12 13  

1: 0 2 3 4 0 0 0 8 9 10 0 0 13  

2: 1 2 0 4 0 6 0 8 0 10 0 12 13  

3: 0 0 0 0 0 0 0 0 9 10 0 12 0  

 

Overall: 1 2 0 4 0 0 7 0 9 10 11 12 13  

1: 1 2 0 0 0 6 0 0 9 10 0 0 0  

2: 1 2 0 4 5 0 7 0 0 10 0 12 13  

3: 0 0 0 0 0 0 7 0 9 0 0 12 13  

 

Overall: 0 2 0 0 0 0 7 0 0 10 11 12 13  

1: 1 0 3 0 0 0 0 0 0 0 11 12 13  

2: 1 0 0 0 5 0 7 0 0 10 11 0 13  

3: 0 0 3 0 0 6 7 0 0 0 0 0 0  

 

Overall: 1 2 0 0 0 0 7 8 9 10 0 12 13  

1: 1 2 0 0 5 6 7 0 0 0 0 0 13  

2: 1 2 0 4 0 0 0 8 0 10 11 12 13  

3: 0 0 0 0 5 6 7 0 9 0 11 0 0  

 

Overall: 1 0 0 4 0 6 7 0 9 10 0 12 13  

1: 0 2 0 4 5 6 0 0 0 10 11 0 0  

2: 0 0 0 4 5 6 7 0 0 10 0 0 13  

3: 1 0 0 0 0 0 7 0 9 10 0 12 13  

 

Overall: 0 2 3 0 5 0 7 0 0 10 11 12 13  

1: 0 0 3 0 0 0 7 8 0 0 0 0 13  

2: 1 2 3 4 0 0 0 0 9 10 11 0 13  

3: 1 0 3 0 5 0 7 0 9 0 0 12 0  

 

Overall: 1 0 3 4 0 0 7 0 0 10 11 0 13  

1: 0 0 0 0 0 6 0 0 0 10 0 0 13  

2: 1 0 0 4 5 0 7 0 0 10 0 12 13  

3: 0 2 0 4 5 0 7 0 9 0 0 0 13  

 

Overall: 1 0 3 0 0 6 7 0 0 10 0 12 0  

1: 1 2 0 0 5 0 7 0 0 10 11 0 0  

2: 0 0 0 4 0 0 7 0 0 10 0 0 0  

3: 0 0 0 0 0 0 7 0 9 0 0 12 13  

 

Overall: 1 2 0 0 5 6 0 0 9 10 11 12 13  

1: 0 0 3 0 0 0 7 8 0 10 0 0 0  

2: 1 2 3 0 5 6 0 0 0 10 11 12 13  

3: 0 0 0 0 5 0 7 0 9 0 0 0 13  
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Overall: 0 2 0 4 5 0 7 0 9 10 0 12 13  

1: 1 2 0 0 5 0 7 8 0 0 0 0 0  

2: 1 0 0 0 0 0 7 8 0 10 0 0 13  

3: 0 0 3 0 5 0 0 0 9 0 11 12 0  

 

Overall: 1 0 3 0 0 0 0 0 0 10 11 12 13  

1: 1 0 0 0 0 0 0 0 9 10 0 12 13  

2: 1 0 3 4 5 0 0 0 0 10 11 12 13  

3: 0 0 3 0 0 6 7 0 0 0 0 0 0  

 

Overall: 0 2 0 4 5 0 7 0 9 10 0 12 13  

1: 0 0 0 0 5 6 7 0 0 10 0 0 13  

2: 0 0 0 0 5 0 0 0 0 10 0 0 13  

3: 0 2 0 0 0 0 7 0 0 0 11 12 13  

 

Overall: 0 2 0 4 5 6 7 8 0 10 0 12 13  

1: 1 0 3 0 0 6 0 0 0 0 0 0 13  

2: 0 2 0 4 5 0 7 0 0 10 0 12 13  

3: 0 0 0 0 0 0 7 8 0 10 0 12 0  

 

Overall: 1 0 0 4 5 0 7 0 0 10 11 12 13  

1: 1 0 0 4 5 6 0 0 9 10 0 0 0  

2: 1 0 0 0 5 0 0 0 9 10 0 0 13  

3: 1 0 0 4 0 6 7 0 0 0 0 12 0  

 

Overall: 1 0 3 4 0 6 0 0 9 10 11 12 13  

1: 1 0 0 4 5 0 7 0 0 10 11 0 0  

2: 1 0 0 4 5 6 7 0 0 0 0 0 13  

3: 0 0 0 0 0 6 0 0 9 10 0 12 0 

 

 

Credit Approval Dataset 

(NBC/SBS) 
Overall: 0 0 0 4 5 0 7 0 9 10 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 2 0 4 0 0 0 0 9 10 11 0 0 0 0  

 

Overall: 0 0 0 0 0 0 7 0 9 0 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 2 0 0 0 0 0 0 9 10 11 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 1 0 0 4 5 6 7 8 9 10 11 0 13 14 15  
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Overall: 0 0 0 4 0 6 7 0 9 0 11 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 2 0 0 0 0 0 0 9 10 11 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 15  

 

Overall: 0 0 0 4 0 0 7 0 9 10 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 0  

 

Overall: 0 0 0 4 0 0 7 0 9 10 0 12 13 0 15  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 15  

 

Overall: 0 0 0 4 0 6 0 0 9 0 11 0 13 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 15  

 

Overall: 0 0 0 4 0 0 0 0 9 10 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 0  

 

Overall: 0 0 0 4 5 0 0 0 9 10 0 0 13 0 15  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 2 0 4 0 6 7 8 9 10 11 0 0 0 15  

 

Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 1 0 3 4 5 6 7 8 9 10 11 12 13 14 15  

 

Overall: 1 0 0 4 0 0 0 0 9 10 0 0 13 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 1 2 3 4 0 6 7 8 9 10 11 0 0 14 15  

 

Overall: 0 0 0 4 0 0 7 0 9 10 0 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 2 0 0 0 0 0 0 9 10 11 0 13 0 0  

 

Overall: 1 0 0 4 0 0 0 0 9 0 11 0 0 0 0  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 4 5 6 0 8 9 10 11 0 0 14 15  
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Overall: 1 0 0 0 0 0 0 0 9 10 0 0 0 0 15  

+: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

-: 0 0 0 0 0 0 0 0 9 10 11 0 0 0 0 

 

(kNN/SBS) 
Overall: 0 0 0 0 0 0 0 0 9 10 0 12 0 14 0  

+: 0 2 0 4 0 0 7 8 9 0 0 0 0 14 0  

-: 0 0 3 4 0 6 0 8 9 10 11 12 0 0 0  

 

Overall: 1 0 0 4 0 6 7 0 9 10 0 0 0 0 0  

+: 1 0 0 4 0 6 0 0 9 0 0 0 0 14 0  

-: 1 0 3 4 0 6 0 8 9 10 11 0 0 0 0  

 

Overall: 1 0 0 0 0 0 0 0 9 10 0 0 0 0 0  

+: 0 0 0 4 0 0 0 8 9 10 0 12 0 14 0  

-: 0 0 3 4 5 0 7 0 9 0 11 12 13 0 0  

 

Overall: 1 0 0 4 0 0 0 0 9 10 0 12 0 0 0  

+: 1 0 3 0 0 0 7 0 9 0 0 0 0 0 0  

-: 1 0 3 0 0 6 7 8 9 0 11 0 0 0 15  

 

Overall: 0 0 0 4 5 0 7 0 9 10 0 12 13 14 0  

+: 1 2 0 4 5 0 0 8 9 0 0 0 0 0 0  

-: 1 0 3 4 0 0 7 0 9 0 11 0 0 0 0  

 

Overall: 1 0 3 0 0 0 7 8 9 10 0 12 0 14 0  

+: 0 0 0 4 0 0 7 0 9 0 0 12 0 14 0  

-: 1 2 3 4 0 0 0 8 9 0 11 0 0 0 0  

 

Overall: 1 0 0 4 0 6 7 0 9 0 0 0 0 14 0  

+: 1 2 0 4 0 6 0 8 9 0 0 12 0 14 0  

-: 0 0 3 4 0 6 7 0 9 0 11 12 0 0 0  

 

Overall: 0 0 0 4 0 6 7 0 9 10 0 12 0 14 0  

+: 0 0 3 0 0 6 7 0 9 10 0 12 0 0 0  

-: 1 0 0 4 5 6 7 8 9 10 11 12 0 14 0  

 

Overall: 1 0 0 4 0 6 7 0 9 10 0 12 0 0 0  

+: 0 2 0 4 0 6 7 0 9 10 0 12 13 14 0  

-: 1 2 3 4 0 0 7 8 9 0 11 12 13 0 0  

 

Overall: 1 0 0 4 5 6 7 0 9 10 0 12 13 0 0  

+: 0 2 0 4 0 0 7 0 9 0 0 0 0 14 0  

-: 0 0 3 4 0 0 0 0 9 10 11 12 0 0 0  
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Overall: 0 0 0 4 0 0 7 0 9 10 0 0 0 14 0  

+: 0 2 0 4 0 6 0 0 9 10 0 12 0 0 0  

-: 1 0 3 4 5 6 0 0 9 10 11 12 13 0 0  

 

Overall: 0 0 0 4 0 6 0 0 9 10 0 0 13 14 0  

+: 0 0 0 4 0 6 7 0 9 0 0 0 0 14 0  

-: 0 0 3 4 0 0 7 8 0 0 11 12 0 0 0  

 

Overall: 0 2 0 4 0 6 7 0 9 10 0 0 13 14 0  

+: 0 2 0 0 0 6 0 0 9 0 0 0 0 14 0  

-: 0 0 3 0 0 0 0 8 9 0 11 12 0 0 0  

 

Overall: 0 0 0 4 0 6 0 0 9 10 0 0 13 14 0  

+: 0 0 0 0 0 0 7 0 9 0 0 0 0 0 0  

-: 0 0 3 0 0 0 0 8 9 0 11 12 0 0 0  

 

Overall: 1 0 0 4 0 6 0 0 9 10 0 0 13 0 0  

+: 0 0 0 4 0 6 7 0 9 10 0 12 13 14 0  

-: 1 0 3 4 0 6 0 8 9 0 11 12 0 0 0 

 

(kNN/SFS) 
Overall: 1 2 0 0 0 6 0 0 9 10 0 0 13 14 0  

+: 0 2 3 4 0 6 0 0 9 10 0 0 0 0 0  

-: 0 2 0 0 0 6 0 0 9 10 11 0 13 0 0  

 

Overall: 1 2 0 0 0 6 7 0 9 0 0 0 13 0 0  

+: 0 0 0 0 0 0 7 0 9 0 0 0 0 14 0  

-: 0 0 3 0 0 0 0 8 0 0 11 12 0 0 0  

 

Overall: 0 2 0 4 0 6 7 0 9 10 0 0 13 14 0  

+: 0 0 0 0 0 0 7 8 9 0 0 12 0 14 0  

-: 1 2 3 0 0 0 0 0 0 0 11 12 0 0 0  

 

Overall: 1 2 0 0 0 6 0 0 9 10 0 0 0 0 0  

+: 0 2 3 4 5 0 7 0 9 0 0 12 13 14 0  

-: 0 2 0 0 0 6 7 0 9 10 0 0 13 0 0  

 

Overall: 1 2 0 4 0 6 0 0 9 0 0 12 0 14 0  

+: 0 2 3 4 0 0 7 0 9 0 0 0 13 14 0  

-: 1 2 3 4 5 6 7 0 9 10 11 12 13 14 0  

 

Overall: 0 0 0 0 0 0 7 0 9 10 0 0 13 0 0  

+: 0 0 3 4 0 0 0 0 9 0 0 12 13 14 0  

-: 1 2 0 0 0 6 0 0 0 10 11 12 0 0 0  
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Overall: 1 2 0 4 0 6 7 0 9 0 0 12 13 14 0  

+: 0 2 3 4 0 0 7 0 9 0 0 0 13 14 0  

-: 0 2 3 4 0 0 0 0 0 0 11 12 0 0 15  

 

Overall: 1 2 0 4 5 6 7 0 9 10 0 12 0 14 0  

+: 0 0 3 0 0 0 7 0 9 0 0 0 13 14 0  

-: 0 2 3 4 5 6 0 0 9 10 11 12 13 0 0  

 

Overall: 1 2 0 4 0 6 0 0 9 0 0 0 0 14 0  

+: 0 0 0 0 0 6 7 0 9 0 0 0 0 14 0  

-: 0 2 3 4 0 0 0 8 0 0 11 12 0 0 0  

 

Overall: 0 2 0 4 0 6 0 0 9 0 0 0 0 0 0  

+: 0 2 0 4 5 0 7 0 9 10 0 0 13 14 0  

-: 0 2 0 4 0 6 7 0 9 10 0 0 0 0 0  

 

Overall: 0 0 3 4 0 0 7 0 9 0 0 0 13 0 0  

+: 0 2 3 0 0 0 7 0 9 10 0 0 0 14 0  

-: 0 2 0 4 0 6 0 0 9 10 0 0 13 0 0  

 

Overall: 0 0 0 4 0 6 0 0 9 10 0 0 13 14 0  

+: 0 0 0 0 0 6 0 0 9 0 0 12 13 14 0  

-: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0  

 

Overall: 1 2 0 4 0 6 7 0 9 10 0 12 13 14 0  

+: 0 0 3 0 0 6 0 0 9 0 0 0 0 0 0  

-: 0 2 0 4 5 6 7 0 9 10 0 0 13 14 0  

 

Overall: 0 2 0 4 0 6 0 0 9 10 0 0 13 14 0  

+: 0 0 0 0 0 0 7 0 9 10 0 0 13 0 0  

-: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0  

 

Overall: 0 0 3 4 0 0 7 0 9 0 0 0 13 14 0  

+: 0 0 0 0 0 0 7 0 9 0 0 0 0 14 0  

-: 1 2 3 4 5 0 7 0 9 10 11 12 13 14 0 

 

(kNN/GA) 
Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0  

+: 1 2 0 0 5 6 7 8 9 0 0 0 13 14 0  

-: 0 2 3 4 5 0 0 8 9 0 11 12 0 0 0  

 

Overall: 0 2 0 4 0 0 0 0 9 10 0 0 0 0 0  

+: 0 0 0 0 0 0 7 0 9 0 0 0 0 14 0  

-: 1 2 3 4 0 6 0 8 9 0 11 0 13 0 0  
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Overall: 1 2 0 4 0 6 0 0 9 10 0 12 13 0 0  

+: 0 2 3 0 5 0 7 0 9 0 0 0 13 14 0  

-: 1 2 3 0 0 0 0 0 9 0 11 12 13 14 0  

 

Overall: 0 0 0 0 0 0 7 0 9 10 0 0 0 14 0  

+: 0 0 0 4 5 6 7 0 9 10 0 12 0 14 0  

-: 0 0 3 0 5 0 7 8 9 10 11 0 13 0 15  

 

Overall: 1 0 0 0 5 6 0 0 9 0 0 12 13 14 0  

+: 0 0 3 4 0 0 7 0 9 0 0 12 0 14 0  

-: 0 0 3 0 5 0 7 8 0 0 11 0 0 0 0  

 

Overall: 0 2 0 4 0 6 7 0 9 10 0 12 0 0 0  

+: 0 0 3 0 5 0 0 0 9 0 0 12 13 14 0  

-: 0 0 3 4 0 0 0 8 9 0 11 12 0 14 0 

 

Overall: 0 2 0 0 0 0 7 0 9 10 0 0 0 0 0  

+: 0 2 0 0 5 0 7 8 9 0 0 0 0 14 0  

-: 0 0 3 0 5 6 0 0 9 10 11 12 13 0 0  

 

Overall: 1 0 0 0 0 0 7 8 9 10 0 12 0 0 0  

+: 0 0 3 0 0 0 7 0 9 0 0 0 13 14 0  

-: 1 0 0 4 5 6 7 0 9 10 0 12 13 14 0  

 

Overall: 0 0 0 4 5 6 7 0 9 10 0 0 0 14 0  

+: 0 2 0 4 0 6 0 0 9 10 11 12 0 14 0  

-: 0 0 3 0 0 0 0 8 9 0 11 12 13 0 0  

 

Overall: 1 0 0 4 0 6 7 0 9 10 0 0 13 14 0  

+: 0 2 0 4 0 0 7 0 9 10 0 0 13 14 0  

-: 0 0 3 4 5 0 7 0 9 0 11 12 0 14 0  

 

Overall: 0 0 3 0 5 0 0 0 9 0 0 0 0 0 0  

+: 1 0 0 0 5 0 7 8 9 0 0 0 0 0 0  

-: 0 0 3 4 0 0 0 8 9 0 11 12 13 14 0  

 

Overall: 0 0 0 4 0 6 0 0 9 10 0 0 13 14 0  

+: 1 0 0 4 5 6 0 0 9 0 0 12 13 14 0  

-: 0 0 3 0 0 0 7 8 9 0 11 12 13 0 0  

 

Overall: 0 0 0 0 0 0 0 0 9 10 0 0 0 14 0  

+: 0 2 0 0 0 6 7 0 9 0 0 0 0 14 0  

-: 1 0 3 0 5 6 7 8 9 0 11 0 0 0 0  
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Overall: 0 0 3 0 0 0 0 0 9 0 0 0 13 0 0  

+: 1 2 0 4 5 6 0 0 9 0 0 0 0 14 0  

-: 0 0 3 0 5 0 0 8 9 10 11 12 0 0 0  

 

Overall: 0 2 0 0 0 6 7 0 9 10 0 12 13 14 0  

+: 1 0 0 0 0 6 0 0 9 0 0 0 13 14 0  

-: 0 0 3 0 5 6 7 8 9 0 11 12 0 0 0 

 

 

Congressional Voting Dataset 

(NBC/SBS) 
Overall: 0 0 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 0 12 0 0 0 0  

 

Overall: 0 2 0 4 0 0 0 0 9 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

republican: 0 0 0 4 0 6 0 0 0 0 0 0 0 0 0 0  

democrat: 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 9 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 1 0 0 4 5 0 0 0 0 10 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 1 0 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 15 0  

 

Overall: 0 0 3 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 11 0 0 0 0 0  
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Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 0 8 0 0 0 12 0 0 0 0  

 

Overall: 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 1 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 7 0 0 0 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 6 0 0 0 0 0 12 0 0 0 0  

 

Overall: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 1 0 0 4 0 0 0 0 0 0 11 12 0 0 0 0 

 

(kNN/SBS) 
Overall: 0 0 0 4 0 0 0 0 0 0 11 12 13 0 0 0  

republican: 0 0 0 4 0 0 7 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 0 2 3 4 0 0 7 0 0 0 0 0 0 0 0 0  

republican: 1 0 3 4 0 6 0 0 9 0 11 12 13 14 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 8 0 0 0 0 0 14 0 0  

republican: 1 0 0 4 0 0 0 8 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 6 0 8 9 10 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 9 0 11 0 0 0 0 0  

republican: 0 0 3 4 0 0 0 0 0 0 0 0 0 14 0 0  

democrat: 1 0 0 4 5 0 0 8 0 0 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 7 0 0 0 0 0 0 0 0 0  
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Overall: 1 2 3 4 0 0 0 8 9 0 11 12 0 14 0 0  

republican: 1 0 0 4 0 0 0 8 9 0 0 0 13 14 0 0  

democrat: 1 2 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 3 4 0 0 0 8 0 0 11 0 13 14 15 0  

republican: 0 2 3 4 5 0 7 0 0 10 11 12 0 14 0 0  

democrat: 0 0 3 4 0 0 7 0 0 10 11 0 0 14 0 0  

 

Overall: 0 2 3 4 0 6 0 0 9 10 11 0 0 0 15 0  

republican: 1 0 0 4 0 0 0 8 9 0 0 0 0 14 0 0  

democrat: 0 0 3 4 5 6 7 0 0 10 0 12 0 0 15 0  

 

Overall: 0 0 3 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 7 0 9 0 11 0 0 0 0 0  

 

Overall: 0 2 3 4 0 6 7 0 9 0 11 12 13 14 0 0  

republican: 0 2 3 4 0 0 7 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 7 0 0 0 11 0 0 0 0 0  

 

Overall: 0 0 3 4 0 0 7 0 0 0 0 12 0 14 0 0  

republican: 0 2 0 4 0 0 7 0 0 0 0 0 13 0 0 0  

democrat: 0 2 3 4 0 0 7 0 0 0 0 0 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

republican: 0 0 0 4 0 0 0 8 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 1 0 3 4 5 6 0 0 9 10 11 0 13 14 0 16  

republican: 1 0 0 4 0 6 0 0 9 10 11 12 13 14 0 0  

democrat: 0 2 3 4 5 0 0 8 0 0 11 0 0 0 0 0  

 

Overall: 0 0 3 4 0 0 0 0 0 10 11 0 13 0 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 5 0 0 0 0 0 11 12 13 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 14 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 1 2 0 4 0 0 0 0 0 0 11 12 0 0 0 0 

 

(kNN/SFS) 
Overall: 0 0 0 4 0 0 7 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 7 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 11 0 0 0 0 0  
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Overall: 0 0 3 4 0 0 7 0 0 10 11 0 0 0 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 9 0 0 0 0 0 0 16  

republican: 0 0 0 4 0 0 0 0 0 10 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 7 0 0 0 11 12 0 0 15 0  

 

Overall: 0 2 0 4 0 0 0 0 0 0 11 12 0 0 0 0  

republican: 1 2 3 4 0 0 0 0 0 0 0 0 0 14 0 0  

democrat: 0 0 0 4 5 0 0 0 0 0 11 0 13 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 2 3 4 0 0 0 0 0 0 0 0 0 0 15 16  

democrat: 0 0 3 4 0 0 0 0 9 0 0 0 13 0 0 0  

 

Overall: 1 0 0 4 5 6 0 0 0 10 0 12 0 14 0 0  

republican: 1 0 0 4 5 0 0 8 0 0 0 0 0 14 0 16  

democrat: 0 0 0 4 0 0 0 0 0 10 0 0 0 0 0 0  

 

Overall: 1 2 3 4 0 6 0 0 0 0 11 0 0 0 0 0  

republican: 1 0 0 4 0 6 7 0 9 0 11 0 0 14 0 0  

democrat: 0 0 3 4 5 6 7 8 0 10 11 0 0 14 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 0  

democrat: 0 2 3 4 5 6 7 0 9 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 16  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 16  

democrat: 0 2 3 4 0 0 0 0 9 0 11 0 13 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 0 0 16  

republican: 0 0 0 4 0 0 0 0 0 10 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 7 0 0 10 11 0 0 0 15 0  

 

Overall: 0 0 3 4 0 6 7 8 0 10 0 0 0 14 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 2 3 4 0 0 0 0 0 10 0 0 0 0 0 0  
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Overall: 1 2 3 4 0 6 0 0 9 10 11 12 13 14 0 16  

republican: 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 3 4 0 0 0 0 0 0 0 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

republican: 1 2 3 4 5 6 7 0 0 0 11 12 0 14 0 0  

democrat: 1 0 0 4 5 0 0 0 9 0 11 12 0 0 0 0  

 

Overall: 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 16  

republican: 0 2 3 4 0 6 7 0 9 0 0 0 0 14 0 0  

democrat: 0 0 3 4 0 6 7 0 0 0 0 12 0 0 0 0 

 

(kNN/GA) 
Overall: 0 2 0 4 0 0 0 0 9 0 0 0 0 14 0 0  

republican: 0 0 0 4 5 0 0 8 0 10 0 0 13 14 0 0  

democrat: 1 0 0 4 0 6 7 0 0 10 11 12 0 0 0 0  

 

Overall: 0 2 3 4 5 0 7 0 0 0 0 0 13 14 0 0  

republican: 1 2 3 4 0 6 0 0 9 10 11 12 13 14 0 0  

democrat: 0 2 3 4 5 0 0 0 0 0 11 0 13 14 15 0  

 

Overall: 0 0 0 4 0 0 7 0 0 0 11 12 13 0 0 0  

republican: 0 0 0 4 0 0 0 0 9 10 0 12 0 0 0 16  

democrat: 0 0 3 4 0 6 0 0 9 10 0 12 0 0 0 0   

 

Overall: 0 0 0 4 5 6 0 0 0 0 0 0 0 14 0 0  

republican: 0 2 0 4 0 0 7 8 0 0 11 12 0 14 0 0  

democrat: 0 0 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 0 0 0 4 0 6 0 0 9 0 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0  

democrat: 0 0 0 4 0 0 0 0 0 0 0 12 13 14 0 0  

 

Overall: 0 2 3 4 0 0 0 0 0 0 0 0 0 0 15 16  

republican: 1 0 3 4 0 0 0 0 0 10 0 0 0 14 15 0  

democrat: 1 0 3 4 5 0 0 0 0 10 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 6 0 0 0 0 0 12 13 0 0 16  

republican: 0 2 3 4 0 0 0 0 9 0 0 0 0 0 15 16  

democrat: 0 0 3 4 5 0 7 8 9 10 11 0 13 14 15 0  

 

Overall: 0 0 3 4 5 0 7 8 0 10 11 0 0 14 0 0  

republican: 0 0 0 4 0 0 7 0 0 0 0 12 0 0 0 16  

democrat: 0 0 3 4 5 6 0 8 0 10 0 0 0 14 15 0  
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Overall: 1 0 3 4 5 6 7 0 0 0 11 12 0 0 15 16  

republican: 1 2 0 4 5 0 7 0 0 0 0 12 13 14 0 0  

democrat: 0 0 3 4 0 0 7 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 8 9 10 0 0 0 0 0 0  

republican: 1 2 3 4 0 6 7 8 9 10 11 12 0 0 0 0  

democrat: 0 0 3 4 5 6 7 0 0 0 11 12 0 14 15 0  

 

Overall: 0 0 0 4 0 0 0 0 0 0 0 12 0 14 15 16  

republican: 0 2 0 4 0 6 7 0 0 0 0 0 13 14 0 0  

democrat: 0 2 3 4 0 0 7 0 0 0 0 0 0 0 0 0  

 

Overall: 0 2 3 4 0 0 0 0 0 10 0 0 0 0 0 0  

republican: 0 2 3 4 0 0 7 0 0 10 0 0 13 14 15 16  

democrat: 0 0 0 4 0 0 0 8 0 0 0 12 0 0 0 0  

 

Overall: 0 0 3 4 0 6 0 0 9 10 0 12 0 0 0 0  

republican: 0 0 0 4 0 0 7 0 0 0 0 0 13 14 0 0  

democrat: 1 0 3 4 5 0 7 0 0 10 11 0 0 0 15 16  

 

Overall: 0 0 0 4 0 0 0 0 9 0 11 0 13 0 0 0  

republican: 0 0 0 4 0 6 0 0 0 10 11 0 0 0 0 0  

democrat: 0 0 0 4 5 6 0 0 0 0 11 12 0 0 0 0  

 

Overall: 0 0 0 4 0 0 0 8 9 0 11 12 13 14 0 0  

republican: 0 0 0 4 0 6 7 0 9 0 0 12 13 14 15 16  

democrat: 0 0 3 4 0 0 0 0 0 0 11 12 0 0 0 0 

 

 

Montgomery County Jails Dataset 

(kNN/SBS) 
Overall: 1 0 0 0 5 6 0 0 0 0 11 12 0 0 0 0  

-1: 0 2 3 0 5 0 0 0 0 0 11 0 0 0 15 16  

1: 0 0 0 4 5 6 0 8 0 0 0 12 0 14 0 0  

 

Overall: 0 0 0 4 5 6 0 0 0 0 11 0 13 0 0 0  

-1: 1 0 0 4 5 6 7 0 0 0 11 0 13 0 15 0  

1: 0 0 0 4 5 6 7 8 9 10 0 0 13 14 15 16  

 

Overall: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 2 3 0 5 0 0 0 0 0 11 0 13 0 15 16  

1: 0 0 0 4 5 6 0 8 0 0 11 12 0 0 0 0  

 

Overall: 0 2 0 4 5 6 7 0 0 10 11 12 13 14 0 16  

-1: 0 2 0 0 5 6 0 0 9 0 11 0 0 0 15 16  

1: 0 0 0 4 0 0 0 0 0 0 0 0 0 14 0 0  
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Overall: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0  

-1: 1 2 0 4 0 0 0 0 0 0 11 0 0 0 0 0  

1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0  

 

Overall: 1 2 0 4 5 6 7 0 0 0 0 0 0 0 15 0  

-1: 1 2 3 0 0 6 7 8 0 10 11 12 13 14 15 16  

1: 1 0 0 4 5 6 7 8 9 0 11 0 13 14 15 0  

 

Overall: 1 2 0 4 5 6 7 8 0 10 11 12 13 14 0 16  

-1: 0 0 3 0 0 6 0 0 0 10 11 0 13 0 15 16  

1: 1 0 0 4 0 0 0 8 0 0 0 12 13 14 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0  

-1: 0 2 3 0 5 6 0 0 0 0 11 0 13 0 0 0  

1: 1 2 0 4 5 0 7 8 9 10 11 0 13 14 15 0  

 

Overall: 0 2 3 4 5 6 7 0 9 10 11 0 13 14 15 16  

-1: 0 2 3 0 0 0 0 0 9 10 11 0 13 0 15 16  

1: 1 0 0 4 0 6 0 8 0 0 11 12 13 14 15 0  

 

Overall: 1 0 0 4 5 0 7 0 0 0 0 0 0 14 15 16  

-1: 0 2 3 0 5 6 0 0 0 0 0 0 0 0 0 16  

1: 1 0 0 4 5 6 7 8 0 0 11 0 13 14 15 16  

 

Overall: 1 0 0 0 0 0 0 0 0 10 0 0 13 14 0 0  

-1: 1 2 0 0 5 0 7 0 0 0 11 0 0 0 0 16  

1: 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 0 3 0 5 0 0 0 0 0 0 0 0 0 15 16  

1: 1 0 0 4 0 0 0 8 0 0 11 0 13 0 0 0  

 

Overall: 1 2 3 4 5 0 7 0 0 10 11 12 13 0 0 0  

-1: 0 2 3 0 5 6 0 0 0 0 11 0 0 0 15 16  

1: 1 0 3 4 5 0 7 8 0 10 11 12 13 14 0 16  

 

Overall: 0 2 0 0 0 0 0 8 0 0 0 0 0 0 15 0  

-1: 0 2 3 0 5 6 7 0 0 10 11 12 13 14 15 0  

1: 0 0 0 0 0 6 7 8 0 10 0 0 0 14 15 0  

 

Overall: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1: 1 2 0 0 5 6 7 0 0 10 0 12 13 0 15 16  

1: 0 2 0 0 0 6 7 8 0 10 0 0 0 14 0 0 
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(kNN/SFS) 
Overall: 0 0 0 0 5 0 0 0 0 0 11 12 0 14 0 0  

-1: 0 2 0 0 5 6 7 0 9 0 0 0 0 14 15 16  

1: 0 0 0 0 0 0 0 0 9 0 0 12 0 0 0 0  

 

Overall: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 0 0 0 0 0 0 0 0 0 11 0 0 0 15 0  

1: 0 0 0 0 5 0 0 8 0 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 2 3 0 5 6 7 0 9 10 11 12 0 0 15 16  

1: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

 

Overall: 1 2 0 0 0 6 0 0 9 0 0 12 0 14 0 0  

-1: 0 2 3 0 5 6 0 0 0 10 11 0 0 0 15 16  

1: 1 0 0 4 5 0 0 8 9 10 0 12 0 14 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0  

-1: 1 2 0 0 5 6 0 0 9 0 11 12 13 14 15 16  

1: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0  

 

Overall: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1: 1 2 0 0 0 0 0 0 9 0 11 12 0 14 15 16  

1: 1 0 0 0 5 6 0 8 9 10 0 12 0 14 0 16  

 

Overall: 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0  

-1: 0 0 3 0 0 0 0 8 9 10 0 12 13 14 15 16  

1: 0 0 0 0 5 0 0 0 0 0 0 0 0 14 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0  

-1: 1 2 3 0 5 6 7 8 9 10 11 12 13 14 15 16  

1: 1 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 0 0 12 13 14 0 16  

-1: 0 2 3 0 0 0 0 0 9 10 11 0 13 0 15 16  

1: 1 2 0 4 0 6 0 8 9 10 11 12 13 14 15 16  

 

Overall: 0 0 0 0 0 0 0 0 0 10 11 0 0 0 0 16  

-1: 0 0 0 0 0 0 7 0 0 10 11 0 0 14 15 16  

1: 0 0 0 0 5 0 7 0 0 0 0 0 0 0 0 16  

 

Overall: 0 0 0 0 0 0 0 8 9 0 0 0 0 0 0 0  

-1: 0 2 0 0 5 6 0 8 9 10 11 12 0 0 0 16  

1: 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0  
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Overall: 0 0 0 0 5 0 0 0 9 0 0 0 0 0 0 0  

-1: 0 2 3 0 5 0 0 0 9 10 11 0 13 0 15 16  

1: 0 0 0 0 5 0 0 0 9 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 8 9 0 0 0 0 14 0 0  

-1: 0 2 3 0 5 0 7 0 9 0 11 0 0 0 15 16  

1: 0 0 0 0 0 0 0 8 9 10 0 0 0 14 0 0  

 

Overall: 0 2 0 0 0 0 0 8 0 0 0 0 0 0 15 0  

-1: 1 2 3 0 5 6 7 8 9 10 11 12 13 14 15 16  

1: 0 0 0 0 0 0 0 8 9 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0  

-1: 0 0 0 0 0 0 0 8 0 10 0 0 0 0 0 0  

1: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

(kNN/GA) 
Overall: 0 0 0 0 0 0 0 0 9 0 0 12 0 14 15 16  

-1: 0 2 0 0 0 0 7 0 0 0 0 0 0 14 15 16  

1: 0 0 0 0 0 0 0 0 9 0 0 12 0 0 0 0  

 

Overall: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 2 0 0 5 0 7 0 9 0 0 0 13 0 15 16  

1: 0 0 0 0 0 0 0 8 0 0 0 0 0 14 15 0  

 

Overall: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 2 3 0 5 0 0 0 0 0 11 0 13 0 15 16  

1: 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0  

 

Overall: 1 2 0 0 0 0 0 0 0 0 0 0 0 14 0 0  

-1: 0 2 0 0 0 6 0 0 0 0 0 0 0 0 15 16  

1: 0 2 0 4 0 0 0 8 0 10 0 12 13 14 0 0  

 

Overall: 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0  

-1: 0 0 0 0 0 6 0 0 9 0 11 12 0 0 15 0  

1: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0  

-1: 0 2 0 0 0 6 0 0 9 0 11 12 0 14 15 16  

1: 0 0 0 0 0 0 0 8 9 0 0 12 0 0 15 0  

 

Overall: 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0  

-1: 0 2 0 0 5 0 7 0 0 0 11 12 0 0 15 16  

1: 0 0 0 0 0 0 7 0 9 0 0 0 0 0 0 0  
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Overall: 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0  

-1: 1 2 3 0 0 0 0 8 9 10 0 12 13 0 15 16  

1: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 15 0  

 

Overall: 1 0 0 0 0 0 0 8 0 0 0 0 13 14 0 16  

-1: 0 2 3 0 5 0 0 0 9 10 11 0 13 14 15 16  

1: 0 0 0 4 0 6 0 8 9 10 11 0 13 14 15 0  

 

Overall: 0 0 0 0 5 0 0 0 9 0 0 0 0 14 15 0  

-1: 1 2 3 0 5 0 0 8 9 10 11 0 0 0 0 16  

1: 0 0 0 0 0 0 0 0 0 10 11 0 0 0 0 16  

 

Overall: 0 0 0 0 0 0 0 8 9 0 0 0 0 0 0 0  

-1: 0 0 0 0 0 0 7 0 9 0 0 12 13 0 0 16  

1: 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0  

 

Overall: 0 0 0 0 5 0 0 0 9 0 0 0 0 0 0 0  

-1: 0 2 3 0 5 0 0 0 9 10 11 0 13 0 15 16  

1: 0 0 3 4 5 0 0 8 9 10 0 0 0 14 0 0  

 

Overall: 0 0 0 4 5 6 0 0 0 10 0 12 0 14 0 16  

-1: 0 0 3 0 5 0 0 0 9 0 0 0 13 0 15 0  

1: 0 0 0 0 0 0 0 8 9 0 11 0 0 0 0 0  

 

Overall: 0 0 0 0 0 0 0 8 0 0 0 0 0 0 15 0  

-1: 0 2 3 0 5 6 7 0 9 10 11 12 13 14 15 0  

1: 0 2 0 0 0 0 0 8 0 0 0 0 0 0 0 0  

 

Overall: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1: 0 0 0 0 0 0 0 8 0 10 0 0 0 0 0 0  

1: 0 0 0 0 0 0 7 8 9 10 0 0 0 14 0 0 

 


