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ABSTRACT

Generally, a social network is mainly concernedwaittors, the actions of actors, and the
interactivities among actors in a community. Engpig graph theory to represent overall social
network structure, this study develops a Studehb8IcAttendance System (SSAS) evaluation
model to provide a frame work in order to underdtand assess the impacts of unsupervised
Out-of-School (OOS) Suspensions on dropout, truaany the overall attendance performance
of students and proposes a new attendance categggrvised out-of-school suspension. In
recent years, there has been a dramatic increagesenile delinquency and student dropout
rates. This research examines the impacts ofrerdu®OS suspension program which is devoid
of any form of supervision or monitoring systemn Urief, the school transfers the problem
student from the school to the street without amgpsrt mechanism. To examine and assess
OOS, this research develops a model that represamnnt student attendance states paradigms
considering student interaction by assimilatingrie@ay coefficients and threshold values for
connectivity between peers. The study further emam student attendance for supervised

versus unsupervised OOS.

This research employs a Stochastic Markov Chaircd2® that considers the random
events of the student school attendance phenomendihe SSAS model represents a
comprehensive state diagram of student schooldstere categories based on graph theory and
defines relevant parameters and variables. Theehmtcess begins with formulation of the

initial transition probability and calculation otimulative and steady state probabilities. The



student school attendance states are determinesd bas random numbers and ranges of
cumulative probability distributions applying thealkov Chain Memory-Less property. The
next day student attendance probability computatonsiders the influence of friends by
integrating a threshold value for dynamic connéigtiand the fitness of the learning coefficient

as the interaction influential factor among student

In addition, the SSAS model explores in three wtys development of the initial
transition probability. The first model employgare random process by generating the initial
transition probability of the student school attamcke in a random selection scheme. The second
model provides a controlling mechanism by providittte initial transition probability
distribution for student school attendance via @gmranged input value data table. The third
model provides a controlling mechanism as wellhasstability in the system by implementing a
pre-arranged output value look-up table which ismidlated based on attendance data to
generate the initial transition probability. Fuetimore, the model also exploits the connectivity
between the peers in three different ways: Mediamnectivity, Virtual Connectivity, and

Hybrid Connectivity.

As a result of the SSAS model simulation, the Rmanged Output Value model
generated the most stable system among all thregelswavith 1.4% error. In terms of
connectivity, Virtual Connectivity produced the rma@snnections between peers. In the SSAS
model student school attendance assessment therabmat 22% improvement in the number of
students promoted to the next grade/graduated fhigh school under supervised OOS
suspensions in comparison to unsupervised OOS msigps. Among three types of

connectivity, Virtual Connectivity produced the masmprovement in the number of students



succeeding at school. In conclusion, the SSAS msulecessfully rejects the null hypothesis
“Implementation of Supervised Out-of-School Suspams will have no effect on students’

attendance and graduation rate.”
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1. INTRODUCTION

Nowadays, cutting edge technology and the pervassg&and ubiquitous access to the Internet
affect all aspects of our society. The youngeregation in particular is sculptured with new
revolutionary technologies, impetuously establighinnew era of culture. Quite often, it seems
having our young children in-tune with their cehgme or I-pod in a general public place is a
part of our every day life style. This new lifg/lst of our younger generation brings enormous
ongoing challenges to parents, educators, and l&ersa Daily, each school district faces the
immense task of trying to meet those challengesver@helmingly, in spite of efforts to
accommodate those challenges, according to thenadtstatistics, the student attendance rate in
middle school and high school is at an all time [8&, 40]. Moreover, in recent years, there has
been a dramatic increase in juvenile crime anchtbke school dropout rate [38]. In response to
the alarming statistical data and intricate isssegounding this young population, the U.S.
Department of Justice established the Office ofedile Justice and Delinquency Prevention
(OJJIDP). Since 1974, it has provided a suppoitesydo decrease the incidence of juvenile
delinquency of young students [38]. The main roissof the OJJDP is to provide various
resources to protect children and prevent juveddénquency. The OJJDP website reads in
part: “OJJDP supports statesd communities in their efforts to develop andlenpent effective
andcoordinated prevention and intervention prograngstarimprove the juvenilgistice system

so that it protects public safety, holds offendacsountable, angrovides treatment and

rehabilitative services tailored to the needs ekpilesand their families” [38]. In addition,



national data based on the Statistical Briefing lB(BB) reflects the magnitude of the problem
and the seriousness related to juvenile crime [38¢cording to the SBB report, in the year
2004, there were 1,571,230 juvenile related criava$ 1,593,661 for year 2005. The SBB data
synopsis indicates that among the age group froo 17 the most prevalent age for juvenile
crime is at age 16, which accounted for approxiige884,000 crimes, the quarter percentile of
the total number. Furthermore, the data from tlepddtment of Education shows the national
level for the high school graduation rate is aeeord low, which is around 73 percent [40, 41].
The high school graduation rate for the State obrGi@ and the City of Columbus, Muscogee
County is around 70 percent [35, 36]. Consequegatiyoss the board, each school district faces
the monumental responsibility to improve studeriawgor and academic performance of the

students in an increasingly complex and multi-fadetchool environment.

Subsequently, those students identified withinatiask ages of 12 to 17, were found to have a
high drop-out rate, low achievement in school penfnce, and a high incidence of juvenile
delinquency. This realization is evidenced by 888 statistics, where the enormous numbers
of young children are committing crimes, and failgraduate from high school according to the
Department of Education. The negative impact oflsnts’ unsuccessful school experience and
the consequences of students’ not attending ctassmie much further than merely failing the
class or missing instruction. A student’s notradiag class could result in his or her becoming a
dropout and increase in the possibility of invohemin juvenile delinquency. This research
examines the problem associated with the curretabischool suspension program. In general,
the current out-of-school suspension program da¢seaguire monitoring of the out-of-school
suspended student to ascertain whether or not keeokeeps up with school assignments or the

class work during out-of-school suspension peri®@].[ Out-of-school suspension is usually



considered an unexcused absence and the studesitestitied to “make up” the missed grades
during the suspension period. Therefore, schoaoleither obligated nor mandated to provide
academic materials to the students who are sutgeatit-of-school suspension. Consequently,
these at-risk students fall further behind in sd¢tasoa result of an out-of-school suspension. To
examine the correlation between the high dropotgsraand the number of out-of-school
suspensions, this research develops a model tkatiles the various student attendance states
and identifies relevant parameters and variablasaddition, the model integrates the threshold
value for the connectivity and learning coefficientaccommodation of the interactions with

their peers during the school day.

Comprehensively, this research examines the coatpticdynamic student school attendance
phenomenon in regard to interactions among peeadmgans. The main objective of this
research is to develop an evaluation model for estudschool attendance performance
considering the social interactions with their fids at the school. The model distinguishes
student attendance categories and employs a stmcl@scess with the Markov Chain’s
memory-less property assuming that the possibilitthe student’'s coming to school tomorrow
is solely based on today’s activity. The intei@ts of the students with their peers are modeled
using social network and graph theory. Overalls ttesearch presents a Student School
Attendance System (SSAS) model which can be useddtate the student school attendance

paradigms.

In particular, this research focuses on assesspfetite impacts of the current out-of-school
suspension program which is devoid of any formugdesvision or monitoring program by the

school system. Currently, the school transfersptisblem student from the school to the street



without any support or monitoring mechanism. Tdrads the inevitable and yet often ignored
catastrophic problem resulting from suspending gshelent from school without any support
system, the underlying impact must be identified assessed. The main premise of the research
in order to address the complexity of the studehbsl social network is: the state of the student
school attendance and the interactions with thegrp in accommodation of the influential

factor.

The subsequent chapters are organized as foll@tsipter 2 presents the statement of research
objectives. Chapter 3 includes a review of therditure and back ground study. Chapter 4
introduces the formal representation of the SSASleho Chapter 5 explains the methods and
procedures of the model. Chapter 6 illustratestiinee different types of the SSAS models.
Chapter 7 provides the results and the data asaly3hapter 8 draws the conclusions and future

research areas.

1.1. Background

In January 2009, the City of Columbus, Georgiaaldsghed the “Mayor's Commission on
Crime Prevention” in order to establish a basetimeeduce the crime rate with the goal of
making the city a safer place. The main initiadie# the commission were outlined by the Chief
Executive of the City to research the underlyingues associated with criminal activity, study
the possible enhancement of existing programs itlyraddressing these issues, and evaluate
new alternatives or new systems to reduce andéwvept deviant and illegal activity throughout
the community. Members of the commission represkrntrious segments of the city and had
diverse backgrounds and experiences, such as aledbéate Representative in the General

Assembly, bankers, lawyers, educators, pastorsrtssptirector, social workers, and law



enforcement officers. Such diversity allowed toenmission to be more creative and to openly
brainstorm ideas and suggestions in order to reacbnsensus on which ideas and objectives
should be adopted to meet the main goal to “redbeecrime rate in the city.” The Mayor
mandated total cooperation from the Police Chiek Sheriff, and the Marshall. Each
department provided factual statistical data to matthe areas of the city with the highest crime
rates, identify the most frequent times for patacwerimes, and demographics of the offenders.
The Commission discovered that the age groups stk in criminal activity are young
offenders between ages 16 to 23, with most dewaahavior being committed after school hours
between 3:00pm and 2:00am. Specifically, age 16 tha prevalent age of the offender. Based
on these statistics, each commission member wageth#o submit a proposal and initiative that
would address the underlying causes of juvenilmesi and reduce the opportunities for young
people to become involved in criminal activity. $8d on these statistics, the essential attention
in juvenile crime is substantial because one wagrevent future adult offenders is to prevent

juvenile crimes.

1.2. Motivation

As a member of the Mayor's Commission on Crime Bn¢éion, and in response to the Mayor’s
charge to the commission, | evaluated and submatguoposal to aim toward the high-risk
group, which is closely linked to truancy and isaah high indicator of juvenile delinquency.
This group involves students enrolled in the pubtbool system who are subject to discipline
through the “Out-Of-School Suspension Program.”esehstudents, subjected to out-of-school
suspension, are usually marginal students to begim In most cases, they are simply sent

home without supervision or any structured follopvqorocedures by the school system. The



student attendance data from the Muscogee Countpdbdistrict in Columbus, Georgia,
provided the appalling realization that there wapeut 28,000 out-of-school suspension student
days that took place during year 2008 between tbetims of January through December. Of
180 student school days, the maximum acceptablensdss days a student can miss per year is
15 [36]. The out-of-school suspension period issidered as an absence albeit an involuntary
action of the student not coming to school. Inegah the privilege of coming to school is taken
from these students usually due to their miscondudthen the student reaches the magic
number of 15 absences, he or she fails the gradasannable to be promoted. The statistics
from the School District of Muscogee County alsaligated that the most out-of-school
suspensions took place with students enrolleddérffrgrade level at ages 15 and 16. This is the
transition period from middle to high school whergoung person is most vulnerable. These
data correlate with national statistics, SBB ofgnNe delinquency where the most crime took
place at age 16 [39]. As a result, the CommissBuiool Board, and Mayor’s Office became
very alarmed and motivated to provide a reinforaginsgstem for the problems associated with

the out-of-school suspensions.

Generally, students who are subjected to out-obskclsuspensions are at home without
supervision possibly wandering around the neightadhor local mall, become idle, bored, and
easily influenced by others on the street. Perhifey may join gangs, become unruly at home,
run away, and eventually may commit deviant behawio other serious juvenile offenses.

Nowadays, 47 percent of our children live withigiagle parent home according to Families and
Lives by the U.S. Census Bureau [41]. Many of ¢hasildren living with a single parent are left

alone and vulnerable to mischievous conduct sineariother or father is working elsewhere for

long hours to support the family instead of beimgnle with the children. In addition, some



parents lack parenting skills or the education takensound decisions, especially for those
impressionable at-risk youth, much less make dmtssior a whole family [41]. Regrettably,
there is a lack of mechanism to examine the liwsitgation or follow-up the progress of the
students who are subjected to the current outdeb@csuspension program. Therefore, the
students are sent home or to the street with ntuatan of their living environment or the
conditions thereof, or any method to measure thgaots of such suspensions on their future
school performance, or means to measure the pageof juvenile delinquency cases while on

out-of-school suspensions.

Considering the current 70 percent high school gmtdn rate in the state of Georgia and the
staggering number of the days in out-of-school snospn, the underlying impact of Out-Of-
School suspension is detrimental [36]. How manthote students just give up and never come
back or fall so far behind in their studies thatHiail to graduate? In basic terms, the 70 percen
high school graduation rate reflects the 30 pertahire rate, and the loss of 30 percent of the
resources [36]. This overwhelming number of a &dcent high school failure rate causes
apprehension for parents, educators, and lawmalkersociety as a whole, the responsibility lies
upon everyone to identify the causes of such a pegbentage of student school dropout rate and
juvenile delinquency. It is everyone’s obligatitmexamine the problem and endeavor to find
solutions to maximize the student school successl land reduce the student population
committing crimes at an early age, thereby prewgntinem from circulating through the judicial

system for the rest of their lives.



2. STATEMENT OF RESEARCHOBJECTIVES

School absenteeism is detrimental to students-estdem and reduces the opportunity for
graduation or being promoted to the next gradesighificantly affects their overall achievement
in their personal and professional endeavors, ditiath to hampering their future employment
potential. Subsequently, students will fall behihdir peers in the classroom if they continue to
miss school voluntarily or involuntarily such adraancy or out-of-school suspension. Each
absence could affect the students unconstructivaigaging both their grade point average and
their self-esteem. In addition, such a situatiounld result in an antagonistic environment due to
lack of self-esteem or could cause the studentbetskeptical about self-worth which will
increase the likelihood that students may eventugile up, drop out, and/or be expelled from
school entirely. The current school system ishegitmandated nor required to evaluate the
consequences or the impacts on the students doet4of-school suspensions. Therefore, the
main theme of this research is to develop a mddgldan be used to evaluate the impacts of the

current out-of-school suspension program.

The model examines student school attendance psitterassess the impacts of out-of-school
suspensions in relation to the dropout rate andatlvstudent failure rate. This model can be
used as an evaluation tool to examine and investidpe overall impacts of the existing out-of-
school suspension system and identify a more pestirection which would promote the
success of the student in the future. Furthermetedying the impacts of out-of-school

suspensions is necessary and vital for the juvenieinal justice system also, since there are so



many young students on the street during the salfeplithout any supervision, possibly as a
result of the existing OOS suspension program. yManthose students suspended may have
committed crimes during their out-of-school suspamgperiod. The model can estimate and
measure the associated impacts of the out-of-schugpension in an attempt to improve the
program for the young population and to reduce nigedelinquency and/or enhance the
rehabilitation program for young offenders. Thesearch develops the evaluation model that
measures the impacts of unsupervised out-of-schugpensions in terms of student attendance
and success at school in order to examine the nggthallenges of having high dropout rates

and criminal activities among the young population.

2.1. Goals and Problem Statement

The main goal of this research is to develop aestidchool attendance model in an attempt to
examine the impact of out-of-school suspensions, tii@ existing suspension program in
particular. The model can be used as a decisippastisystem to a) measure the student school
attendance paradigms such as the in-school suspensiut-of-school suspensions, and truancy
and b) evaluate the relationship between the ostbbol suspensions, the dropout rate,
graduation rate, and truancy. The students witin lsibsentee records will most likely fail to
graduate and dissipate all the resources alloctatedhat child. The ultimate goal of this
dissertation is to provide a tool that can be usedvaluate the student school attendance
performances and overall impacts of out-of-schapsnsions. In addition, the output of the
model can be used to encourage programs that redecgudent failure rate and the number of
juvenile delinquents, and subsequently guide theestts toward a positive and productive future

at an early age.



2.2. Objectives and Contributions

The objective of this research is to develop aruat®mn model which can be used to quantify
student school attendance paradigms and therebyirgahe student failure rate as a result of
out-of-school suspensions and the related impadtrttay negatively affect society as a whole.
Significantly, the outcome of this research canused to help prevent at-risk students from
falling into the exclusive category of low achieweand high involvement in criminal activity
which may lead them to become life-long repeat rafégs circulating through the criminal
justice system. The main purpose for developind S8 to respond to the need for analytical
tools that can be used to evaluate student schtidance paradigms and therefore facilitate
amendments to the malfunctioning programs and, fatipeto reduce the number of our young

student population that may become victims of timproductive system.

An impact on one child can have an impact on theleth Providing a practical model to
evaluate the student school attendance paradigmgdwme a significant asset for school
administrators in amending programs to promoteghdr graduation rate, ensure a successful
school year, enhance education, and facilitateighter future for the child. The fundamental

objectives of this research include:

1) Develop a simulation model that represents theestudchool attendance phenomenon
and the interrelationships of attendance statestwiniclude: in-school suspensions, out-
of-school suspensions without supervision, outetfe®l suspensions with supervision,
truancy, and excused absences. The main purposigisomodel is to simulate and

guantify student school attendance categories &sdsa the performance correlation
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2)

3)

between attendance states during the school yEae. associated attendance states are
quantified through a transition probability matrxhich is used in estimating the
distribution of the student attendance states. hEstudent school attendance state is

represented by probabilities associated with stusiemool attendance paradigms.

Model the student interactions with their friendsséd on ad hoc mobile networking
concepts. The model considers the random envirohmed the influence among the
students in the development process. The friepdshie exhibited as the connections
between the students, and the influences of thes @@e implemented through a learning
coefficient. The model provides a learning coéint to integrate the influential factor

resulting from the student interactions. The dyitcanof the connections between the

students are assimilated based on a random numéehi@eshold value.

Evaluate the effects of supervised out-of-scho@psusions and unsupervised out-of-
school suspensions, and their impacts on dropaes rand overall student school
attendances. The SSAS model examines and andlyzesverall student dropout rate
due to a result of the unsupervised out-of-schospensions. This model can assist
school officials and community leaders in measuramgl assessing the relationship
between supervised out-of-school suspensions andupenvised out-of-school

suspensions in terms of the student attendanceunatdigh school graduation rate. The
model can assist in re-evaluating the current su@pe programs, particularly the out-of-
school suspension program, which may contributého high student drop out rate,

truancy, or juvenile criminal activity.

11



4) Verify and validate the model. Sensitivity anatysind heuristic testing are used to
verify the procedures and validate the data. Téwfigation method for this research
employs the normal standard error procedure. Talate the model, this research
applies heuristic normal testing which comparessthmilation results with actual student
attendance data from the Muscogee County SchodfidjsColumbus Georgia. The
model validation and verification process considaysthe student school attendance
information such as normal attendances, in-schogpansions, out-of-school
suspensions, unexcused and excused absences, kadimédays if any, b) the internal

dropout rates, and c) the high school graduatiten ra
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3. LTERATURE REVIEW

3.1. Introduction

The social network represents the interactive bienalvstructure between numerous actors such
as individuals, organizations, or other socialtesgi The social network involves interactions
through friendships, kinships, professional asgesiaand many others. Generally, the social
network studies actors and their interactivitiesl aelationships in a given community. The
network is equivalent to complexity theory and eyss theory which are interdisciplinary areas
where many traditional fields correspond. Examphetude: a) anthropology that accentuates
social relationships, b) mathematics which providasictured algorithms and c) psychology
which concentrates on our social structure baseahoindividual's perception [21]. The typical
social network analysis is the study of social gre and its effects. It conceives social
structure as a social network, that is, a set tdraqnodes) and a set of relationships (edges)
connecting pairs of these actors. Its basic presishat knowledge about the structure of social
relationships enriches explanations based only mowledge about the attributes of actors.
Overall, the social network consists of two majomponents: actors and relationships between
them. In order to understand the social networBnynresearchers have studied a pattern of
social relationships in a graphical representatmmnalyze and quantify them. The graph or
mathematical representation was used to betterrstaghel and evaluate behavioral patterns of a
given community. The actors are described by thdernwhich also represents various entities

such as groups, individuals, or organizations. @dhge between the nodes, which is the line that
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connects the node, represents the relationship eleetwhe actors where it can describe

dependence, information exchange platform, contmperation, and competition [6, 21, 30].

The students’ school attendance performances areesult of daily influences from multiple
factors. Whether the student comes to school eaghigda purely random and unpredictable
discrete event. Events, whether the student cdmeshool and is subject to suspension in-
school or out-of-school, are purely discrete outeem This research considers the unique
properties of the random events and employs thehagtic process which effectively represents
the characteristics of randomness in the givenrenment. In brief, stochastic is a synonym for
random which involves probabilistic behavior anchjesture or guesswork. The process of
stochastic is to index the unknown parametersriedb numbers using a probability distribution.
Furthermore, the possibility of the student comingschool tomorrow is based on today’s
activities. Therefore, this study applies the MarlkChain memory-less process to present the
independence from past history of student schdehdance paradigms during the school year.
The attempt to evaluate student school attendasmeeerely based on guess work, especially
concerning the complexity that is associated wiftuences from peers. This chapter introduces
the relevant topics in modeling techniques forghelent school attendance phenomenon of the
SSAS. The topics included in this chapter aresdgial networking, 2) a brief description of

graph theory, 3) the stochastic process, and 4yidr&ov Chain memory-less properties.

3.2. Social Networking

Social network theory is based on the intuitiveigrothat the patterns of social interactions are
essential elements to each individual who exhibggain behavior. It can be stated that the

influence and behavior of an individual heavily de@s on how he or she interacts with others
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and how each is tied to a specific social netwolk.addition to individual behavior, network
theorists believe that the success or failure cfeties or organizations often depends on the
internal interaction patterns among actors. Besitle theoretical essence, social network theory
is also characterized as a distinctive methodokgyircling the pattern of certain behavior [6].
Hence, the social network encompasses the worldhamnsists of actors and the connections
between them. The actors can be represented &s raod the connectivity from one node to
another is the relationship between them. Thisneotivity between the actors and the ties
between the nodes represent a type of relatiorsich as kinship or friendship between the
actors, and they describe a particular patterrcbm that an actor performs. Subsequently, the
different types of ties will generate different degs of social networks and represent the

different types of functionality [19, 21].

The study of social networking begins with an ustierding of the structure which is the way
the society is organized and mapped into rathetigtable relationships. Mainly, the aspect of a
social structure considers three components: @rscb) the actions of the actor, and c) the
interactions of the actors. Social actors reprieenstatic concept relatively with emphasis on
issues such as position, roles, and status. Thwsaas individuals, are intermingled in a
particular social platform, hence, their actiong aactivities are heavily influenced by the
connections among them. Generally, social intemactan be defined as the way in which
people respond to one another. To some degreepdktierns of these interactions are

independent of the individual who creates the paité certain behavior [19, 21, 30].

In the past, most research on social interactiomlgndocused on how individuals actually

communicated with one another in a given specificirenment. These studies concentrate on
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such issues as the patterns of interaction, thesrahd ethics to guide the interaction, the
motivation for the way of interaction, and the effef those interaction patterns which impact
the behavior as an individual and the performanseth® group. These issues begin by
guestioning what might be the interaction pattera ispecific social setting, thereby addressing

one of the main themes of this research: understgride dynamics of social interaction [19].

Social network activity analysis incorporates tloeial dimensions and the challenges of the
adequate behavioral underlying theory. The paradidj the social network mainly concerns

understanding on how social structures facilitatel @onstrain opportunities, behaviors, and
cognitions. Therefore, it involves designing ampliementing a reliable and quantifiable data
collection method, and performing an informativelssis of the main behavioral elements [6].

Theoretically, the core values of social networkes the attributes and the structural knowledge
of social interrelationships and extended rati@adions solely based on information about the
characteristics of actors. Behavior is defined addiressed by attributes, constraints, and
opportunities which have a personal as well asciabaspect. Hence, the structure of social
characteristics which represents the interactwiimmong the members in a given social network

is the core source of addressing behavioral pattern

Furthermore, the social network analysis consigtdhe methods and techniques for data
collection, mathematical and statistical analyaig] a visual and graphical description. Usually,
this process is referred to as the social netwogtyais, an essential procedure when studying
the cohesiveness of the social network. Since rttzén characteristic of social activity

constitutes the social dimension, an analysis ©opérformance is based on the vitality of the

personal interactions and the one-on-one connectmmong actors. The complementary
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perspective element for the social network analgsi®nds to the attractiveness between the
actors at their destined social activity patter@onceptually, this interaction among the actors
generates the accessibility to one another embgdtim influential characteristics. There are
intrinsic challenges in terms of the social netwarlalysis due to unspecified social dimensions
and intangible human behavior. The stochastic gg®ceffectively formalizes the social

interactions by its unique properties; therefordee tehavior or the certain structure of a

particular social network can be quantified aneésssd [19, 21, 29].

3.3. Basic Graph Theory

In order to understand the social network, manyeasshers studied patterns of social
relationships in a graphical representation toyaehnd quantify. The graph or mathematical
representation was used to better understand ardafst such patterns for unknown futuristic
probability. In most cases, the social networldéscribed in either a directed or undirected
graph. Using the graplt; (Node, Edgejhe node represents the social context or communit
which has the embedded entities. The edge repse$iem contact, interaction, influence, or
communication from one entity to another entityhivitthe given community. In turn, social
scientists study and analyze the correspondinghgtapforecast and understand the social
patterns, property, and behavior of the communitiie size of the social network, therefore, can
be determined by the number of nodes which can dry large representing a massive
community such as the Internet or very few repridsgra small circle of friends. Each social
network also has its own property embedded in thaerthat represents the application area or
the specific type of the social community. Thetfapplication of digraph to describe the social

community was proposed by Leinhardt in 1977. Titea of graphical representation became
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popular in other research areas such as e-leamauglers and network designers [19, 29, 30,

34].

v

v
v

A) B) C)
Figure 1. Examples of Undirected Graphs of Sdde&tlvork: A) Complete connections, B)

Partial connections, and C) Hybrid connections

Overall, a social network graphical representatmovides specific fundamental structural
properties which distinguish it from other typesratworks or graphs. Designing the graph
leads to an understanding of real life in a comnyuwnihich in turn can be used to study the
correlation and overall changes in a given peridtle graphs included in Figure 1 are the basic
types of graphs which describe the connectivity mgntihe nodes and the characteristics of the
given community through the line which reflects tmkage between the nodes: A) represents
the community that has complete ties among thesgdB) represents partial connections and the
partial separations between the actors, and Cadtw completely isolated from the community.
Graph C features the isolated node which could dmsidered in a situation where a new
member enters into a community social networkthls case, as presented in the graph, an actor

may not have any connection within the community @mnoted as an isolated node.
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By examining these structural properties of thelrahe overall patterns of the particular social
network can be analyzed and evaluated. Most aofitengraph theory can be used to compare the
two distinct communities to predict and study thettér performance. One of the main
properties is the type of connectedness betweemdtoes such as centrality of actors having
dense degree, connectivity between the pair indigaeciprocity, links between the source and
actor stating reach-ability, and the sub-divisiéractor having a strongly connected component.
Mitra presented the extensive form structural defin and the study on cycles and nested cycles
in his paper “Design of a Data Model for Social Wetk Application.” Mitra stated that to
study the degree of cohesiveness in a community,sttb-division of actors into a cycle of
nested cycles is very vital for a structure of temmunity because the size, number, and
connections among the sub-division in a community lkey factors for understanding the
characteristics of the network as a whole and titesty behavior. In the paper “The dynamics
of social balance,” Moody stated, “While we revelthe diversity of social settings, a primary
motivation for social theory is to explain commaatures across settings and account for social
differentiation endogenously” [20]. Generally, Edcscientists focus on the connectivity of the
network and how the structure is molded into smaiji®ups over an identified period. This
fundamental idea has been applied to other setlingsding the referral system and web

community [21].

3.4. Stochastic Procedures

Stochastic is a synonym for random which involvesbpbilistic behavior and conjecture of
guesswork for the entity or the system. Thereftite,stochastic process is known as a random

process that deals with possibilities and probdslito study how future process might be
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revolutionized in a given time using a probabilidystribution. Application of statistical

probability models has been widely used by mangaeders to understand the nature of social
network structures since the late 1930s [33]. $tozhastic statistical model has been very
popular as a research method in computer sciertt¢hanfields of engineering, healthcare, and
social study areas because of its unique charsiitervhich can be used to simulate the

performance of a dynamic system that is subjeantertainty.

3.4.1. Property of Random Event Process

By definition, Heyman stated “A stochastic procesa collection of random variables that are
all defined on the same probability space and iaddxy a real parameter.” The similar random
variables that are defined in a given sample spageollected over time in stochastic process.
Stochastic process is formally described X&) t 1T}, where theX(t) is X-process, the valued
random variables at timewhich indicates time parameter amdndicates the range of times
parameter set. Whehis finite or countableT represents discrete-time stochastic process with
{0, 1, ...}; otherwiseT is continuous-time stochastic process with 4§ and the formal
description is ¥(t), t=0}. State space, takes all the possible values of the random bégithat
the X(t) can undertake The process is discrete stochastic wisecontains countable finite
numbersS ={0, 1,....,i} and theT is a set of integerX;, X;...., X,; otherwise the process is
continuous stochastic. X(t) =i for any timetT and forany stata[1S then the process is in
statei at timet [2, 9, 13, 18, 22] The detailed properties of discrete and contisustochastic

processes are outlined in the following sections.

3.4.2. Stochastic Process and Exponential Digtah
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The student attendance events, whether or notttiderst coming to school, are discrete events.
In order to represent the school attendance staestudent over a given period, a Markov Chain

is suitable to model the process.

3.5. Markov Chain Phenomenon

Markov Chain was developed by a Russian matheraatiéhdrey Andreyevich Markov who is
well known for work on the theory of stochastic ggsses. Markov Chain method has been
widely used because it satisfies the property bhear equation system which is amenable to
numerical solution methods based on the finite Bmited probability distributions [4]. A
discrete Markov Chain is a stochastic process withscrete state and discrete time that has a
probability distribution of the next state of theopess which depends solely on the last state of
the process. Therefore, the future state only mi#gpen the current state and the process does
not consider the past history. The stochasticess(cX(t); tLI T} is a Markov process with given
integeri with time intervals off wheret;<t,<...<t,<tn.1, and the set of stat&where the formal
representation is,

PXn1= X | X0 = Xn, +.., X =N1) = Pr (Xns1= X | Xn = Xn).
The sequence of random variablés X, Xs, ..., X is represented with the Markov unique
property where the given present state along wiéhftture and past states are independent of
each other since the past history of the processngpletely summarized by the present state. In
other words, the student’s attendance tomorrowlysalepends on today’s activity and is not
compounded by a whole week’s or month’s activitid$e set of state space can be formulated

by the possible values & which also can be described through graph thepplyag the
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probability from one state to the other state om ¢ldge [1, 13]. Markov Chains with time-
homogeneous transition probabilities are formadfirced by

Pr(Xni=X|Xa=y) = Pr (X,= x| X1 =y) for all n.
3.5.1. Characteristics of the Markov Chain

The Markov Chain process provides unique propettiasenable the classification of the states
which include irreducibility, periodicity, and erdicity. The irreducibility of the Markov Chain
Process is where the state space is a communicetimgonent. In an irreducible Markov
Chain, for example, one can get to any state froynadher state. If a process started in state
that has some chance of probability to move irategt then the statgis accessible from a state

i (i =j) formally Pr (X,=j | Xo = i)= p™; > 0 wheren=0. For some instances, =0, every
state isaccessible from itself where one can move intoottller states. These phenomena
provide the ability for a stateto communicate with stateand if every pair of states in a given
sample domaircommunicates with each other, the states are ctilecommunicating class
There are three properties for communicating staag® self-communicate Whel?&,- = P{X,=i

| Xo = i}=1; b) if statei communicates with, thenj also communicates with statevhere the
exchange of information is possible from one totheqg c) if state communicates witl andj
communicates wittk, theni communicates withk also creating triangular connectivity and

information exchange platform.

The state could be a recurrent state if the procasgjo back to the original state. For example,
if statei is accessible to stajandj is also accessible tovhere the process can go back to state
i, then state is a recurrent state that the process can revistwever, the state is transient if

statei is accessible tpbut j is not accessible towhere the process can not go back to state
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and state is transient because the process can not be exlisithe formal representation is to
setT; as the random variable that first return timet&des then, T, =inf{ n>1: X, =1 | Xo=i}

with Pr(T; = «) > 0, state is the transient state. The state is called aorbbyg) state if the

process never leaves the state. The state isreattljfz p"i = wand if state is unable to
n=0

leave this state, then the state an absorbing staié p; = 1 andp; = 0 fori#j. In any instance,
every state is either transient or recurrent andatiostates can be transient in the finite-state
Markov Chain process. In the finite-state Markdva@, if all states are irreducible then all the
states are also recurrent. The sufficient scerfarithe Markov Chain is to have all states to be
accessible to each other communicating wipgre0 for alli andj. However in the real world

there is no guarantee such a system exists.

A Markov Chain also provides the periodicity whatatei has period if any return to state
takes place it time steps. Periodicity is formally representsd a gcd{n: Pr (Xp,=1| Xo =)

> 0} wheregcdrefers to “greatest common denominator.” In agiperiodt, the process may
be unable to reach the statetisteps, thus the resulting state is called aperiadiich occurs
whent =1, otherwise the state is called periodic wher&. Every state within a communicating
class should have the same period. Ergodicity rgcailnen staté is aperiodic and positively
recurrent. The finite state irreducible Markov @he ergodic if the states are aperiodic [1, 2,

18, 22, 31].
3.5.2. The Long-Run Behavior of Finite-State MariChain
In addition to those properties presented in tlwipus section, Markov Chain provides another

significant feature, steady state probability. Rekably, the Markov Chain process produces an
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identical probability distribution after a largember of iterations. This is also called limiting
probability where the system remains in a certtatesafter a large number of iterations which is
independent of the initial probabilityy,. The unique property of a long-run finite state

Markov Chain is formally stated as

M M
§=> §p; forj=0,1,..M  where > §-1.
i=0 i=0

Here & are the Markov Chain steady-state probabilitiescivrare also called the stationary
probabilities. After a rather large number of atigwns of the transition probability, the system
will be in particular state producing the identipabbability distributionsg; that are independent

of the initial transition probability distribution.

The steady state hdd + 2 equations foM + 1 unknowns in order to satisfy the unique soluti
Having one extra equation, the system can utilizasi redundant which can be disregarded
leaving the final equation to produce the apprdgeriprobability distribution. A simple
illustration of steady state equation for four uokms using five equations can be expressed as
follows:

0o =0 Poo+ Or Pro+ Oz Paor BzPa
0 =00 Por+ OrPur+ Q2P+ OzPas
02 =00 Poz+ O Pro+ Oz P BsP:
0: =00 Poz+ Ot Pra+ Oz P2s+ OsP
1=3+3+3%+ 8

In this example, thép, 61, &;, and d; are the four unknowns having five equations. Swwihe
above equations, one can obtain the valuefad; d, and d; rather easily. One important

aspect of the steady-state probability is thataihdj are a recurrent state but belong to different
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classes, the probability of finding the processtitej is zero; formallyp™; = 0 for alln [18, 22,

33).

The steady state probabilifycan be used to compute the long-run average vauarpt of time
called expected average value per given unithdfd is the value functiod associated with a

given example, the expected average value canrbputed by using the equation

E(x) :i 3X().

i—0
For more complicated problems where the state a&gedcwith a value that is also affected by
the random variables, then the equation must censid additional parametgrwhere X(A:1,

Si), A1 represent the number of itemdfor day, andSis the sale demand, for example. The
total value for day is a function ofA.; andSwhereX(A.1, Si)). Expected value can be computed

by using the following equation:

E(X) :i yiX(j) wherey; = E[X(j, Sy).

i=0
Therefore, the central concentration of the givstribution can be measured by computing the
expectation valu€(x) to evaluate and analyze the problem and undefshencharacteristics for

the given domain or system [9, 10].
3.6. Chapter Remarks and Summary

In a social network, actors represent the staticept with emphasis on issues such as position,
roles, and status relatively. The actors are nmiggled in the social network setting and their
actions and activities are heavily influenced bg ttharacteristics of the connections and the
density of connectivity among them. Generally,ialoioteraction can be identified as the way in

which people respond to one another and it desctifbe characteristics of influence upon their
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neighbors. The dynamics of the interaction amdrgactors also needs to be considered, albeit
the environment encompasses randomness, by meamehatbility distribution with a learning
coefficient fithess value. Nowadays, the socialivoek represents every day life from the small
circle of colleagues to the large group web comityunihere there is a massive multiplayer

group thereby forming the connections together.

A stochastic process can effectively model a sauéalvork over time since it comprehends the
randomness of the system. Generally, a stochpsitess describes the social network through
a mathematical representation formally. The atiend state whether the student comes to
school or not, is affected by random events. Theee a stochastic process can be used to
represent student school attendance over a giveadpe The connections between actors are
also affected by random events. The connectivily be integrated dynamically based on a
fitness value and a random number. The stochBsiov Chain considers the discrete state
and discrete time processing through linearly engblremarkable properties such as
irreducibility, periodicity, and ergodicity. The d&kov Chain process is one of the most
powerful tools available to construct a model thansists of a discrete stochastic process. The
Markov Chain properties are very useful becausg ttwaild yield results for both the steady
state of the system and time dependent evolutiaheiystem. Therefore, the Markov Chain
process effectively assimilates the random vamatfor student school attendance states.
Overall, this chapter provides supporting materialgtionalization of the modeling techniques

for the student school attendance phenomenon.
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4. MODEL FORMULATION

In brief, the SSAS model considers the complexitihe social network and attempts to describe
the student school social network; it applies ttapprties of graph theory to represent the school
attendance states of the student. The modelingedtwe considers the random environment and
therefore employs the stochastic characteristick the memory-less property of the Markov

Chain to assimilate the student school attendaacadmms. In essence, the model rationalizes
the random environment and the intricate pattefribe student-attending-school phenomenon.
This chapter provides the modeling techniques &edformal representations of the student
school attendance paradigms that include: the madslimptions, parameters and variables,
attendance state diagrams, mathematical represstatomputation method for the student

attendance probabilities, dynamic connectivity, Hralinteractivities of the students.

4.1. Introduction

In the development of the SSAS, the procedure maiohcentrated on two areas: a) the student
attendance state and b) the interactions with {e@rs. This research investigates the out-of-
school suspension state closely and further catagoit into two distinct states: a) supervised
out-of-school suspensions and b) unsupervised festfmol suspensions. Therefore, the SSAS
model provides six different students’ school at@emce classifications: 1) normal class
attendance, 2) in-school suspension, 3) superwsgef-school suspension, 4) unsupervised

out-of-school suspension, 5) truancy the unexcadseénce, and 6) an excused absence. Figure
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2 below describes the general overview of assatismgut or output values and parameters of

SSAS model.

In order to model the multi-dimensional studentaggmetwork, the SSAS considers undirected

edge where the direction of the influence is diardgd among the peers.

Inputs Paramete Outputs
Number of Students Transition Probabilities ilee Rates
Number of Attendanceg  Interaction Probabilities SussdRates

Steady States Probabilitie

Figure 2. Overview of Inputs, Outputs, and Patanseof the SSAS

The model assumption in the subsequent chapterduntes the detailed reasoning behind this
concept. Applying the graph theory, the model @nés nodes which describe each student with
his or her own attendance probability distributiocsupled with learning coefficient and
threshold value for connectivity. The nodes arke db communicate with each other in the
school social network, since the students are rastipited from having contacts with their peers
at their school, and therefore they have knowlemlgeut each other. Friendships are described

in the model as the connections between the stsident

Furthermore, the SSAS considers a learning coefftcin realization of the influences through
friendships among the students that may affectowerall behavior of the student including
school attendance. The SSAS model employs pedhsénces by providing a fitness value for
the learning coefficient. The initial probabilitistributions of the student school attendance are
either provided or generated according to the impubhe output probability distribution table. In

order to update the next day probability of thedetu attendance, the model calculates the next
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day attendance probability based on four factojsthg student’s current probability, 2) the
student’s learning coefficient, 3) the connectedrpeprobability, and 4) the learning coefficient
of the connected friends. Subsequently, the nayt student attendance state is constructed
based on the memory-less property of the MarkovirChaplying today’s student attendance

state as tomorrow’s student attendance state.

4.2. Model Assumptions

A multi-faceted social network encapsulates peiptgpxiuman behavior and therefore it is very
difficult to understand since the subject matteintangible, whether it represents a small circle
of friends or the large Web community. In an apéno understand and assess the student
school attendance paradigms, this research séleztsiain areas to overcome the complexity of
the student school social network: a) the stateéhef student school attendance and b) the
interaction with their peers accommodating the gemfluential factor. In general, young
children are more prone to develop friendships witier children without considering the other
person’s class, per se. They tend to look at gqikeple as to who they are and not what they
are. The status and the background of the persem s10t to matter. This can be seen easily on
any play ground or in any nursery. Most of theetnyoung children will play with other
children who are physically closer to them regagsllef their status. In comparison, adults
typically pursue a relationship based on a persagahda or some type of motivation for a
connection with others, mostly for their own betefiomfort, similarity, and many other
reasons. Therefore, there will be an apparenttitire between the relationships whether it is
one-way or both-ways and this direction can be rlesd either positively or negatively.

However, generally, young children do not have genda in mind for pursuing a relationship.
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Young children have a tendency to develop relahigpsswith others in the surrounding area and
can be easily influenced by those people who argeclto them, especially from closer friends.
The direction of the relationship, therefore whethiee way or both ways or negative or positive,
is rather ambiguous. For this rationalization, tlewelopment of SSAS applies the undirected
graph theory in describing the relationship betwpeers as presented in Figure 1. Nonetheless,
the relationship between the school attendancessttte direction from one attendance state to
the other, can be easily identified as to whetharad a student can go from normal class state to
in-school-suspension or vise versa. Therefore, 38BAS applies the directed graph theory to
describe the relationship of the student schoehdtince states and undirected graph theory for
the connectivity with their peers. The directedgr procedure between the attendance states is

presented in section 4.3.1.

As introduced previously, in order to model thdestaf student school attendance paradigms and
the random nature of the friendships among peérs,research employs the Markov Chain
process to generate the discrete attendance stammsintegrate learning coefficients to
accommodate the influence among peers. The mdsteleanploys the random number with a
threshold value in connection range to determinetidr or not connectivity exists between the
peers. Overall, the development procedure of tI8ASS model considers the unique
characteristics and properties of the StochastiokMa Chain Process and assumes the
following:

* Atthe first day =1), every student starts at the current skate

* The student can only be at one state at a timeidennsy the discrete state and discrete

time events.

* The length of student’s attendance or absence tinenslass is mutually independent.
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» After an absence, the student returns to the nochass with a certain probability.

» The true underlying process of the length of stidésences is exponentially distributed.

* The connectivity between the nodes is determinesgdb@n probability distribution and
the learning coefficient.

* The student school attendance states are goveynedflarkov Chain.

» The students are connected with their peers thrangimdirected graph.

* The connectivity between students is determine@das probability distributions and
the learning coefficient.

* The student school attendance state and the ititeraowvith their peers are the main

premise.

4.3. Student School Attendance Model

4.3.1. Background Introduction

Most of the current school systems categorize studzEhool attendance and absentee
characteristics into five areas or classificatiod3: normal class attendance, 2) in-school
suspension, 3) out-of-school suspension, 4) unextaksence, and 5) excused absence. The
unexcused absence represents truancy where thenstwilfully misses school without any
valid reason or excuse. As presented, the SSASelmiother indentifies student school
attendance categories into six classificatidqs ¢lividing the current out-of-school suspensions
into two areas: supervised and unsupervised. B&SSmodel classifies a total of six student

school attendance states as:

S: student with a normal in-class status (Normal),

31



Si: student with in-school suspension (IS),

S: student with out-of-school suspension with suggmm (SOS),
Ss: student with out-of-school suspension withoutesusion (OS),
S;: student with unexcused absence (Truancy, T), and

S;: student with an excused absence (Exe, E).

The existing out-of-school suspension program rezadkom the student the privilege of coming
to school without any support mechanism for theadsemic work or follow-up procedure by the
school or affiliations. Apparently, the studentsjected to out-of-school suspension will fall
further behind under the current suspension programan attempt to evaluate the impacts of
this apparent problem, the SSAS model distinguidietareen the unsupervised out-of-school
suspensions (OS) and proposes a new attendancgomatdhe supervised out-of-school

suspensions (SOS).

On any given school day, an ordinary student hasptissibility of being absent from school,
either voluntarily or involuntarily. In generahd most typical involuntary absence or excused
absence could be the result of natural causesasusitkness, personal issues, field trips with the
class, a death in the family, and many others. v€otional and habitual causes of voluntary
absences, students who have unexcused absencés,mlgde students trying to avoid school
work, peer pressure concerning their appearanaelationships, conflicts with a teacher, or
simple laziness, which all fall into the categofytrmancy, being absent from school without a
valid excuse. The SSAS provides a state diagrathenfollowing section that describes the
interrelationships of the student attendance sfaesenting the six distinct categories of student

school attendance paradigms.
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4.3.2. State Transition Diagram of the Studem¢®dance Paradigms

In the graphical representation in Figure 3, tixensimbers of nodes indicate six possible student
attendance states adapting the five states froncuhent school system and employing a new

proposed state, the supervised out-of-school sggpen

&Poo

Figure 3. State Diagram Representation of StuSehbol Attendances
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As noted in the assumptions, any student can fat any other state on any given day
throughout the school year. Application of theedied graph for attendance shows the overall
performance of the student attendance can be dgdliend understood by examining the
characteristics such as the patterns of the stsdschool attendance. In Figure 3 below, the
graph displays a corresponding directed grapheklains the interrelationship between the six
student school attendance states. Each node egpsesach attendance state and contains the
state probability for each student. The directdgeebetween the nodes describes the flow of
attendance between the states. In this figureptbeess begins with sta$, the initial state
supporting the assumption that the students with&@o school on the very first day of school.
Also this is the only state which has the accesalltdhe other five states as the arrow line

illustrates.

4.3.3. State Probability Distribution

StateS in Figure 3 represents a typical student attendimgprmal class at school. Today, the
students in this state attending class may alséire@nto be in this state tomorrow which is
represented by 0. In general, the students in st&eattend classes and conduct a satisfactory
behavior by continuing the normal school perforneanblonetheless, students who attend school
on a regular basis possibly could also fall inte af the five other states on any given school
day. The interrelationships among six attendatates are illustrated in Figure 3 by the directed
arrow line going from stat&, to all the other five attendance states. Thethope state§ S
andS; in Figure 3 that are enclosed in the small doltex], are subject to suspensions either in-
school or out-of-school. In these three states,stindent is subject to the decisioX$ iy the

school administrators concerning his or her suspanstatus: the duration or the types of the
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suspension. When students are suspended, theyn fathong three state§ S or S with
probability X;Po, X2Po, and XsPg respectively. The&; denotes the decisions that are made by the
school officials in determining the suspensiongestawherei= 1 (1S), 2 (SOS), and 3(0S). The
next day, as illustrated in Figure 3, studentshiesé three categories can either remain in their
suspension state with probabilities BE s Psos sos Pos,os respectively, or go back to their
original class, the sta® upon the completion of their suspensions. ThaerafX; is dependent

on school officials to determine the suspensidmsXi for the in-school suspensions to compute
X1Pis, X2 for the out-of-school suspensions with supervigmrromputeX;Psos and Xs for the

out-of-school suspensions without supervision tmgoteXsPos

Furthermore, the students can also fall into tis¢ tavo states, th& and S which refer to
truancy, the unexcused absence and excused absEne&; state is the truancy state where the
student is absent from school without any excudee S; state is the state where the student has
a valid excuse for the absence. Most of theseestusthool attendances depend on their own
circumstantial preferences where flerepresents the student making the decision fonmaya
with the probabilityusPr. TheusPe represents the probability that the student igadbgom the
school with a valid excuses. The students subjetiestatess, and S also have the probability
of not returning to school for an extended peritidraa prolonged suspension period and make
excuses or simply avoid coming to school basecddividual choices. Therefore tifa 4 (Pr 1)
represents the probability of the student repedtiegruancy the next day aRgs (Pg ) for the

student continuing the excused absence the next day

In SSAS model, each student is represented bynaiti@ probability matriX?. The transition

probability matrixP between the transient states is represented tiggsstateSto be a Markov
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Chain process in the sample space {S: &, S, S S, S, S} The stochastic proces&
{Sn: n = 0} represents the discrete time process with disstate spaces: &, S, S, S, S,
S} describing the six distinct student attendancee giatadigms. The discrete time process with

time indext=0, 1, 2..., represents the number of days. Thesitian probability matrixp, is

p1,1 p1,2 plj
P = pf'l p:2,2 p:” >0, where the row represents the current state and the
pi,l p,z F?d-

columnj represents the state corresponding to the nexindiapjet. Each row has the property

D P=1

jOX

The student’s attendance state for tomorrow isres@guence of today’s attendance state. The
matrix of transition probability at timé is P(t) which represents that the probabil®yis a
function of timet. For example, the students’ out-of-school suspessstate will not remain for
more than a specific period. The probability efdents’ changing their state from out-of-school
suspension to attending class will vary everydapugh the school year for all students. In
addition, a factor of influence from peers whiclfieafs the student attendance varies over the
time during school year. Therefore, the eventstoflent school attendance are functions of the

time given school days.
4.4. The Student Interaction Model

As stated in the assumption, the model considatsathstudents will come to school on the first
day of the school year. In general, studentsamitinect with one another developing friendships
that may affect the outlook of the student, inahgdischool attendance. For this reason, the

SSAS model implements the connections betweendbespmplying that the students will be in
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contact with one another once they come to schdal.general, once the students develop
friendships, those friendships will continue fomsoreasonable time which raises a concern in
applying the same value for the connectivity thtomgt school days from the very first day of
the school to the very last day of the school ydastantiating the connection between peers on
the first day of the school will not be applicalbdethe remaining days of the school year, since
the students have developed friendships which noairue for sometime. Therefore, in this

chapter, the SSAS provides three different appresth investigate this phenomenon.

Another concern is the interactivity between therpend the resulting influences thereof. Once
students develop friendships with one another ethvel be influence factoring between them.
As explained in the previous chapter, the directbrthe influence between students has been
disregarded based on the assumption that chilérehto develop friendships with closer people
regardless of their background. An attempt to asoodate the influence between the peers, the
SSAS presents mechanisms to compute the futurasitican probabilities of student school

attendance paradigms employing a learning coefficie

4.4.1. The Graph Representation of Student |otierss

The SSAS model assumes the undirected graph tif@oitye student interactions, not specifying
the directions of the relationship based on the igndus nature of characterizing their
friendships. In addition, the student relationshipe described using the matrix representation.
For example, the following table includes 6 studemind explains their relationships.
lllustrations in Table 1 matrix, the values 1, D,jndicate connections, no connections, and self-

connections respectively among 6 students. Rafertd student number 4, this student is
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connected with 3 other students, student numb&, And 6 which is notated with 1 but not

connected with the other 2 students, student nubed 5 which is notated with O.

Student 1 | 2 | 3| 4| 5| 6
1 -1 1 1 1 0 1
2 1,-1| 1 0| 0] 1
3 1| 1] -1 1, 0o 1
4 1 0 1] -1 O 1
5 O| 0| O O] 1] ©
6 11| 1| 1| 0] -1

Table 1. The Matrix Representation of the Retaiops of 6 Students

Student number 5 represents the isolated studemtisvhot connected to any other students in

this example. The matrix is illustrated using timelirected graph in Figure 4 below.

y

A

0.8

0.6

Probability

0.4

0.2

v
X

1 2 3 4 5 6
Student

Figure 4. Undirected Graph Representation ofugl&its and their Relationships

In Figure 4 x indicates the student agds the corresponding probabiliBs of the student.
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4.4.2. Assessment of the Interaction betweenesitisd

4.4.2.1. Initial Student Attendance State Prdbats

The model formulates the initial probability diswitions of the student school attendance states
in two ways: 1) utilize the pre-arranged input @bitity distribution table or 2) generate the
probability based on the pre-arranged output lodialgle. The SSAS imports the external file
that contains the pre-arranged input probabilisgrdbution or to simulate the relevant attendance

probability distribution based on the pre-arrangezbability output lookup table.

4.4.2.2. Distribution of the Student Attendantat&s

As stated, SSAS employs the one-way data tabléote she subsequent values throughout the
process. In determining the attendance state eofstbdent, the model generates the random
number and compares that number to the first roth@fcumulative probability distribution. As
presented in Table 1 that explains how to compweransition probabilities, the very first state
S is the only state that is reachable from any oshetie. The reasoning behind the assumption is
that students, whether they are suspen@gd, Ss) or absent$%, &, S5) from school, will go
back to their original class upon returning to sioom suspension or absence. For example, if
the student is suspended, either in-school suspepsiout-of-school suspension, the student has
the right to go back to the same class upon completMoreover, if a student is absent, he or
she will attend their original class once they decio come back to school instead of going
straight to suspension. Therefore, the SSAS datesrihe student attendance state considering

the random number and the cumulative probabilisgrdiution of the student.
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4.4.2.3. Interactivity of the Students and LeagnCoefficient

In calculating the next day attendance probabithig, model considers four significant areas: 1)
the student’s current probability, 2) the studetd’arning coefficient, 3) the connected peers’
probability, and 4) the learning coefficient of tleennected friends. Therefore, influential
factors between the peers are implemented throdgheusimulation. The information about
each student, their current attending state prdéibabistributions and the learning coefficients
of the students are assumed known. The followqgagon provides the mechanism to compute
the next day attendance probability of the studemtherea is the learning coefficient and
represents the realization of the influences thinofsgendships among the students which may

affect the overall behavior of the students inatgdiheir school attendance.
PA(t+1) = (a* PY; (1)) + (1- 0)* (Average ofP, (t) of connected peers)

Specifically, the next day probabilif of the student attendance st&alepends on the current
state probability with the learning coefficient saloted (or added) by the average probabiity
of the linked friends. The model computes the Wed-average probability of linked friends as
(1- a)* (Average of P"y(t) of connected peers). And if their weighted-agergrobability is
greater than the student’s current probabiit*,, which is interpreted as a positive influence,
then the student’s current state probability witrease. However, the average probability of
peers is less than the student’s current stateapiiity which reflects a negative influence, then

the student’s current probability will decrease.

Overall, student friendships are represented agraotdd vertices and the links between the

nodes are instantiated dynamically based on a rars#ection. The node represents a student
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and characteristics associated with that studsntisol attendance. The undirected link between
the nodes represents the inter-relationship witierostudents in the school social network.
Formally, it is defined a&; = (N;, Ly) whereG refers to graphiN for node (the actor) anld for

the link between the nodes. SSAS employs the ile@qrcoefficient ) to model the level of

influence between peers.

4.4.3. Three Dynamic Modes of the Connectivitineen the Peers

The linkages between students are instantiateddb@asehe random selection with a threshold
value,= 0.5 specifically for this research. SSAS gereraandom numbers through the Monte
Carlo Simulation to determine the connectivity betw students. In essence, the connections
are instantiated based on 1 or O, either yes arespectively. Taking into account the initial
connectivity between the students on the firstalagchool, SSAS generates the random number
and provides the threshold to instantiate the coinig between the peers. The SSAS model
assumes that, if the random number is greaterualeq 0.5, there will be a connection between
the students which will be displayed in the ma&sx1 and 0O for the disconnection. Throughout
the model simulation process, the resulting conoestof the students are presented in two
different ways: a) displayed on the chart and lspldiyed in the matrix form to verify and
validate the correctness of the connectivity amahgdents. Fundamentally, the link or
connectivity between students exists if the randmmber is greater than or equal to 0.5.
Otherwise they are disconnected and there is rowihich will be displayed on the chart
between the nodes. SSAS produces the charts amdcesato illustrate and verify the
connections between the peers throughout the diimmilgprocess of the student school

attendance phenomenon.
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The next day connection between the peers constberstronghold and bond as a result of
friendships. In general, if students have a tigie@ndship today, to a greater extent they will
have that strong relationship tomorrow. Subsedyemihe connectivity no longer can be
rationalized with a threshold value equal to OTherefore, the SSAS updates the connectivity in
three different modes. The three modes for thosemiics are: a) Median Connectivity, b)

Virtual Connectivity, and c) Hybrid Connectivity.

a) The median connectivity refers to the proceslun¢roduced previously which is the main
linkage process of the SSAS model. This methoeiggaes random numbers and generates the

link between the nodes that are determined byhteshold valug formally as,

1 ifp>05 ..... the connectivity between studieandj exists
lg.j = {
0

otherwise, ......... the connectivity does not exis

b) The virtual connectivity targets the connecsi@mong peers #= 0.95 from the very first
day of school to the end of the school year. Stheditness point for this scheme is rather high
at 0.95, it virtually links everyone in the networkrhe virtual connectivity can be presented
formally as,
1 ifp>0.95, .... the connectivity between studerind]j exists
lg.j = {
0

otherwise, ..... the connectivity does not exist.

c) The hybrid connectivity combines both methodsedian and virtual connectivity.
Connections between peers are implemented usiny fraicesses. The first day of school
student connectivity proceeds through the mediaimectivity scheme. Subsequently, if there is

a connection between two students, the virtual eotivity scheme is applied. Hybrid
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connectivity promotes the idea of preserving thesterg friendships between the students. If
students are connected, the friendships will cometiand there would be little possibility of

breaking up daily.

4.4.4. Interaction Probability Computation

4.4.4.1. Initial Student Attendance State Prdbats

As introduced, the SSAS considers the learning fiobefit in realization of the influences
through friendships among the students which mésgctathe overall behavior of the students
including their school attendance. The SSAS medgbloys the peers’ influences in regard to
attending school by providing the threshold valoe the learning coefficient & = 0.7. The
model formulates the initial probability distribatis of the student school attendance states in
two ways: 1) read the pre-arranged input probabidiistribution table or 2) generate the
probability based on the pre-arranged output lodialgle. The SSAS provides the algorithm to
read the external file that contains the pre-ardnigput probability distribution or to simulate
the relevant attendance probability distributiorsdzh on the pre-arranged probability output

lookup table. The process stores those values@parate data table for future reference.

4.4.4.2. Determination of the Student Attenda®tzdes

SSAS modeling employs the one-way data table tee dte subsequent values throughout the
process. In determining the attendance state eofstbdent, the model generates the random
number through the Monte Carlo Simulation, and carap that number to the first row of the
cumulative probability distribution. The very firstateS, is the only state that undergoes

revolution and the other five stat€g, &, &, &, andS;, are fixed and, therefore, remain the
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same. The reasoning behind this assumption isthdents, whether they are suspen&dx,

S;) or absent$s, &, S) from school, will go back to their original clagpon returning to school
from suspension or absence. For example, if thelest is suspended either in-school
suspension or out-of-school suspension, the stutksthe right to go back to their same class
upon completion. Additionally, if a student is ab§ he or she will attend the original class once
they decided to come back to school instead ofggsiraight to suspension from absence. Table
2 explains how to compute the transition probaesiin detail. Overall, the SSAS determines
the student attendance state considering the randamber and the cumulative probability

distribution of the student.

4.5. The Student School Attendance Simulatiol’A&SViodel

45.1. Introduction

The SSAS model considers the pre-set initial cotivigc which undergoes dynamic changes
during the simulation based on the valug.oln SSAS, each student is represented as a node as
described previously. Briefly, the connectionswestn the students are instantiated by
generating a random number during simulation terteine connectivity based on the value of
p. SSAS creates the connections between the stidigméamically considering the random
number and the specified connection range withenititerval [0, 1]. As stated in the model
assumption, the students can be subjected to aegdance states on any given school day.
Additionally, this research selects two main area®vercome the complexity of the student
school social network: a) the state of the studehbol attendance and b) the interactions with
their peers to accommodate the influential fact@verall, the SSAS model considers the

influence among peers by integrating the threskialde of the learning coefficient and random
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selection connections. The next day student attecel probability is computed based on their

own probability and the connected peers’ probabddupling with the learning coefficient.
4.5.2. The Model

In the development procedure in formalizing theck#stic process of the student school
attendance phenomenon, as introduced, the SSASI|matitenalizes the complexity of the
problem by focusing on two main areas: a) the studehool attendance states and b) the

interactions with their peers. This chapter introgs the relevant nomenclature of the model.
The SSAS model parameters include:

[\ is the set of nodes (students) at tay

N is the total number of nodes at day N |.

St is the state school attendance of studteattdayt.

L: is the set of links (friendship) between nodedaatt.

li,pc is the link between nodeand] at dayt (1 if the link exist, O otherwise).

o is the learning coefficient.

p is the threshold to determine the connectivity aghnpeers. The SSAS model sets
the initial connectivity threshold #& = 0.5 ands = 0.95 for the subsequent days
of the connections between the students.

Pki,,-‘t is the transition probability of stateto j of the studenk at dayt wherep;; =
P[S(t+1) 5 | S(t)=i] for all i, andjX.

Ps is the probability of the statg@ where the studethas in-school suspension (1S).
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P SOSs

POS

Py

Pe

el

is the probability of the sta® where the studerk has out-of-school suspension
with supervision (SOS).
is the probability of the sta® where the studerk has out-of-school suspension

without supervision (OS).

is the probability of the stat®, where the studerk has an unexcused absence,
(Truancy, T).

is the probability of the stafg where the studemthas an excused absence (E).

is anepoch, a particular day at which studkmeturned to attend a normal class
earning grades following an absence.

is the number of days that have elapsed s#foe studenik.

is the number of school days the student must @tterme promoted or graduate
which is the number required by the current sclsgsetemg=165.

is the possibility that a student is suspended fitoenschool.

is the possibility that a student is absent butsagpended from the school,

p=y-1.

The SSAS model includes the following variablesomder to evaluate and assess the student

school attendance states during the school year:

nat
ma

nt<,

is the time in days for school year (1, 2,...., 180)
is the total number of days a studkmtas absent in time
is the summation of number of days of absencelfat@dents in a given peridd

is the number of times studdnstarted his/her absence period.
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PKO is the probability of the sta® where a normal class attending studers going

to other stat¢

As introduced, the SSAS model considers 5 diffetemtsition probabilitieSF{o,.s, PKo,sos PKO,OS,

PKO,T, PKO,E) where the state (&) is the only state that the student transits ®dther 5 states
and undergoes changes during the simulation procasd=igure 3, there are 2 distinct areas

where the student transitions from the normal ctatsndance sta® with probabilityP,. The
top portion of the dotted box represents all typésuspensionsP(o,us, PKO,sog PKo,OS) and the

dotted box at the bottom represents the absendarstts:cPKo,T, PKO,E) who decided to stay out of
school (1). It is assumed that the proportion of student® \move form state 0 to any of the
suspended states ys When a student is suspended, the school offidakcide whether the
student is suspended in state IS, SOS, or OS. pfidportion of students that are suspended in
state IS, SOS, and OS is denoted by the varigkles, and X3 respectively. Similarly, a
student who is absent could be in state T or Ee Vdriablegis andps denote the proportion of
students with an unexcused absence, truancy andsexXcabsence respectively. SSAS
distinguishes the absence state from the suspessid@ because the sole dependency of the

suspension is by the school officials and consite¥gollowing decision variables:

X1 represents the probability that a suspended studentstate 1S. This value is
determined by school officials.

Xz represents the probability that a suspended stugléntstate SOS. This value is
determined by school officials.

X3 represents the probability that a suspended studéantstate OS. This value is

determined by school officials wheXg= 1-X;+X, which impliesX;+Xp+X3= 1.
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Accordingly, in order to compute the next day piulbiy of student school attendance, the

SSAS model implements the following equations:

o Poot) = Poot+l) = (a* PR(D) + (1- a)* (Average ofP¥y(t) of connected peers) ... (4.1)
Equation 4.1 computes the next day probabilityhef student if he or she remains in state
which indicates the student attending normal clegstinuously. Computation of this

equation applies the same as introduced in thaquesection.

o Plos) = AP %, (4.2)
Equation 4.2 computes the probability where thedestti changes attendance state from
normal attendanc& with probabilityPy to in-school suspensidiis with probabilityPis. X
represents the value determined by the schooliaffic terms of in-school suspension of the

students.

e Posodt) = (1P%ed®) % e (4.3)
Equation 4.3 computes the probability where theestti changes attendance state from the
normal attendanc& to an out-of-school suspension with supervistags with probability
Psos Xz represents the value determined by the schooliaifiic terms of supervised out-of-

school suspension of the students.

e Poodt) = (1P 0o 1% (4.9)
Equation 4.4 computes the probability where thedestti changes attendance state from
normal attendanc®, to an out-of-school suspension without supervi§eswith probability
Pos Xsrepresents the value determined by the schoolialfic terms of supervised out-of-

school suspension of the students.

o Por®) = AP @Y e, (4.5)
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Equation 4.5 computes the probability where thedestti changes attendance state from
normal attendanc®, to truancy which is an unexcused abs&nwith probabilityPr. Thep,
represents the student’s preference in not attgngtthool without any valid excuse. SSAS

provides fixed value fou, in order to provide coherency during the simulatio

o Por® = AP @Y s,
Equation 4.6 computes the probability where thedestti changes attendance state from
normal attendanc& to an excused absenfe Thep, represents the student being absent
from school with valid excuse. SSAS provides fixemlue for ps in order to provide

coherency during the simulation.

The procedure of computing the transition probgbdistributions of the six school attendance
states are presented in Table 2 below. The statdéh@ only state which undergoes changes as
explained earlier. The state from 1 to 5 has twtoas for each student: either remain in the

same state or go back to a normal class.

Statg 0 (Po)| 1 (IS) 2 (SOS) 3 (0S) 4 (T, Tru) 5 (E, Exe)

0| Proo(t) | (1-Poc(t))yXa| (1-Poc(t))yXe| (1-Pfoc(t))yXs| (1-P'oc(®)(Lp)ua | (1P oc())(1)ps
1 | 1P PNus - - - -

2 | 1P - P sosso - - -

3 | 1P% - - P os s - -

4 | 1P - - - Pt -

5 | 1P¢ - - - - Pee

Table 2. Procedures of Transition Probability @aiation
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These values are no longer time dependent sincédtemination whether to return to their

class is made by the school official regardleshefschool days or the peer’s influences.

X1 : Pis
’ > X2 > | Psos

=<

7

E H
al IS
\ 4 \ 4
H H
m -

Figure 5. Procedures of the Next Day TransitiorbBbility Computation

To illustrate the computation procedures of thet miayy student school attendance probabilities,
the diagrams in Figure 5 present the relevanceeptobability distribution between the states.
The SSAS process generates the relevant probafigitsibutions of the student throughout the

given period for each student and records thosgegah a separate file for future reference.

As an example, consider the following one-stepsitaon probability matrix? where the process

change from stateto statg in one time step has been introducegyas P[X(t+1) 5 | X(t)=i]

and the transition probability defines the row wecasp = (p;;i UX) whereillX, z pi= 1.

ios
Sequentially, the student’s attendance state footmow is a consequence of today’s attendance

state where the matrix of transition probabiftyt stage is Pi(t) = pj: with p;i;=0.
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If the next day probabilityDKo,o(t) changes from 0.9 to 0.85 (i.E}fo,o(t+1) =0.85) with given

value ofy= 0.6,X;= 0.6,X,= 0.2,X3= 1- X3- X; = 0.2,4= 0.6, andus= 1- uu= 0.4, the next day

transition probabilities are updated as follows:

Pos(t+1) = (1P 0o(t+1))*X1 = (1- 0.85) x (0.6)*(0.6) = 0.054,

P osodt+1) = (1P o(t+1))*%, = (1- 0.85) x (0.6)*(0.2) = 0.018,

Posdt+1) = (1P o o(t+1))*yXs = (1- 0.85) x (0.6)*(0.2) = 0.018,

Por(t+1) = (1P o(t+1))(19)e= (1- 0.85) x (1- 0.6)*(0.6) = 0.036,

Pog(t+1) = (1P oft+1))(19)Hs= (1- 0.85) x (1-0.6)*(0.4) = 0.024.

Notice that these probabilities are the sum to.0 Afew one-step transition probability matrix

P of the next dayt+1 is

0.70
0.70
0.70
0.70
0.99

0.3

o O O o

0 0 0
0.3 0 0
0 0.3 0

0 0 0.3

0.85 0.054 0.018 0.018 0.036 0.0f

0

o 0 0 001
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The simulation of SSAS will yield the following quit matrices:

S represents the number of successful students dthengchool year. The model
computess by adding promoted/graduated and makeup/repeatirtsts as the

passing students during the school year.

f represents the number of failing students.

v represents the number of promoted students.

y represents the number of students who completechéikeup or repeat in order to
meetg=165.

z represents the number of dropout students.

As introduced, the student coming to school tomeris mainly based on today’s activity.

Therefore the model applies the memory-less prgpdrthe Markov Chain process to generate
the next day attendance state applying the cortbaptoday’s attendance state is the tomorrow’s
attendance state. The model simulates the stactasttion of student attendance over time
and examines the correlations, especially the itspafcthe supervised or unsupervised out-of-
school suspension, and measures the overall sttalkme as the result of the unsupervised out-

of-school suspension.

The following chapter introduces the procedure @tednining the connections between the
students and computing the subsequent probabilglyilsition of the student attendance. In
addition, in the SSAS development process, the imcaldigures in several different ways to
implement the best fitted procedure for the inteosss and the connections between the peers.

The relevant variations of the modeling techniquiethe SSAS are presented in the Chapter 6.
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4.6. Chapter Remarks and Summary

The SSAS model considers the complexity of the adawetworking aspects of school social
network and concentrates on two main areas in thgeiing process: a) the student attendance
phenomenon and b) the interactions with their peefee development of the SSAS model
begins with constructing the comprehensive stadgrdim that represents the current existing
school system’s five attendance stat§sgnd the model proposes a new category, supervised
out-of-school suspensions. Students’ social nédimgrin regard to the school attendance is
strategized considering the fundamentals of gréwglory properties: the node that represents
students as the actors and their relationships etliers applying the edges between the nodes.
The state of students attending school are presgevith six different options: 1) student with a
normal in-class status (Normal, Po), 2) studenhwitschool suspension (IS), 3) student with
out-of-school suspension with supervision (SOS),stt)jdent with out-of-school suspension
without supervision (OS), 5) student with unexcuabdence (Truancy, T), and 6) student with

an excused absence (Exe, E).

The model considers the random environment andiexpfthe stochastic process of Markov
Chain properties to integrate the random and discegents of the student school attendance
phenomenon. The students’ coming to school antcjgating in the attendance states are
discrete and mutually exclusive events. The impletation of random environment is the

rationalization of understanding the unpredictalelents’ school attendance from day to day.

The student school attendance events for each rdagnadeled as a discrete state and discrete
time process where the student can be presentlynome state either absent or present at any

time. The SSAS model presents the attendance aff stdent in a distribution pattern by
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computing the transition probability. Thereforack state of the student school attendance is

organized into a transition probability and caltesathe steady state probabilities accordingly.

The SSAS assumes that the students will devel@ndships while attending school. The
friendships between students are considered thrabhghimplementation of the learning
coefficient. In addition, the model considers thgnamic interactions among students using
connectivity threshold values. Overall, each sti@ddtending school categories are presented in
distributions through the transition probabilitydatihe cumulative probability. The state of the
student attendance is determined based on thosalpliies and the random number. The
SSAS employs the memory-less property of Markovikhehere the current state is based

entirely on yesterday’s value and not on the previdata.

Overall, the SSAS model presents the function chestudent’s probability®) and associated
influences of their friends that may affect ovetildent attendance. The model applies the
stochastic process to consider a randomness emérnand employs the learning coefficient

to integrate the influential factors between therpe In order to create the connectivity between
the students, the model generates a random numbbr avdefinite threshold range for
connectivity. Once the students exhibit connestjvihe probability of student attendance
considers differentiated threshold.  This chapter provides the formal mathematical

representation of the SSAS and the relevant assomspiparameters and equations.
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5. METHODS ANDPROCEDURES OFSSASMODEL

5.1. Introduction

This chapter provides detailed modeling procedaf&&SAS implementation. Mainly, the SSAS

algorithm consists of two significant parts: 1 teimulation of the student school attendance
phenomenon and 2) the assessment of student satientiances. The first part of the model
algorithm includes multiple processes in simulatihg overall procedures presented in the

previous chapters:

a) initialize the number of students and the numbescbiool days,

b) set parameters such as learning coefficient andidacvariables,

c) set matrix notation for the connectivity,

d) read the input or output pre-arranged file fromeexal source,

e) get random number and evaluate against the pragadaable,

f) allocate appropriate probability distribution rarageordingly,

g) calculate the transition probability distributiombte for all§ for each student, and
save those values in a separate file,

h) calculate the cumulative probability distributiabte for all§ for each student based
on the transition probability distribution, and eatose values in a separate file,

i) determine the corresponding current student atteredatatesS accordingly, and

save those values in a separate file,
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J) formulate the connections between the pegraising random number and fitness,
summarize those results, save the data in a segddeat

k) calculate steady state probability, save the valuasseparate file,

[) display the connections in the Matrix and the Cliartall N, save those data in a
separate file,

m) get the random number and evaluate it against itise fow of the cumulative
probability distributions,

n) calculate the next day attendance probabiligt+1), considering correlated learning
coefficient and the average probability of the axtad friends coupling with their
learning coefficient, save those values in a s¢pdila,

0) determine the next day state of the student atterd&(t+1) based on today’s
attendance state, save those values in a sepigeasnt

p) repeat the process for the all school days for sadatent.

The second part of the SSAS algorithm is designesssess attendance data from the first part

of the simulation which includes:

g) setthe counters,

r) define the absent and present states,

s) set the makeup attendance parameters,

t) define the student status such as promoted or dtppo

u) count each attendance states foNakkave the values in a separate file,

v) summarize the probabilities for the students, sheesalues in a separate file,

w) calculate present and absent days, save the valaeseparate file,
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x) calculate promoted, dropout, or makeup number wdesits, save the values in a
separate file, and
y) summarize the success and failure of the studeuatgut the values in a separate file.

The corresponding pseudocode for the simulatigmasented in this chapter.

5.2. Procedures, Algorithms, and Model Verifioas

5.2.1. Development of Initial Transition Prob#iDistribution Table

Implementation of the SSAS model begins with thebpbility distribution table that describes

the probability for each student attendance statgeherate the initial transition probability. For

example, the conceptual data and the probabilggridution of the students are described in the
following Table 2. The purpose of constructingsttistribution table is to provide the baseline

to compute the transition probabilities for eaaldsnt for the remaining school days. Table 3
below describes six students with six distinct gatees of their school attendance states and its
distribution of the probabilities for each studenthe table presents six classifications of the
student school attendance paradigms: 1) normad elésndance, Po, 2) in-school suspension, IS,
3) supervised out-of-school suspension, SOS, 4)persised out-of-school suspension, OS, 5)
unexcused absence, Truancy Tru, and 6) an excumssh@, Exe. Examining the Student 1
probability distribution, the student coming to sohand attending the normal class (N) is 90%

for this particular example.

Student 1 can also have a chance of being in sdhatobuspended (1S) for 3% of the time,
suspended out-of-school with supervision for 1.5%he time, suspended out-of-school with no

supervision for 1.5% of the time, not showing uphet school without any valid reason for 1%
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of the time, and excused absence for 3% of the. tikgain, this is a conceptual distribution and

for this particular example, this student comesadbool and attends class for 90% which is a

very good student compared to Student 6 who hadug wf 65% for the same category.

Students
Name of StatesStatesStudent 1Student 2Student 3Student 4Student 5Student 6
Po 0 0.900 0.850 0.800 0.75( 0.700 0.650
IS 1 0.030 0.040 0.050 0.06( 0.070 0.080
SOS 2 0.015 0.030 0.030 0.04( 0.050 0.060
0S 3 0.015 0.030 0.030 0.04( 0.050 0.060
Tru 4 0.010 0.020 0.030 0.04( 0.050 0.060
Exe 5 0.030 0.030 0.060 0.07( 0.080 0.090
Total 6 1 1 1 1 1 1

Table 3. Example of an Input Data Table for thiédl Transition Probability Distribution

Applying the probability distribution guidelinesgsented in Figure 2 in arranging the initial

transition probability, the distribution of the dnt attendance state probabilities are organized

based on the following assumptions:

The states, is accessible to itself and is the only state h@at the accessibility to all the

other five sates.

The state5; has the accessibility to itself | and to the stat&,.

The states; has the accessibility to itsel] and to the stat§,.

The states; has the accessibility to itsels) and to the stat,.

The states, has the accessibility to itsel] and to the stat&.

The statess has the accessibility to itsels) and to the stat,.
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For example, in reference to Student 2 from thelé8bthe probability distribution of Student
2’s school attendance can be arranged as in Tab&od#v which is the exact scheme explained

in matrix P in the previous chapter.

Stateg 0 (Po)| 1(1S) |2 (SOS) 3 (0S) |4 (T, Tru)/5 (E, Exe
0 0.85 0.04 0.03 0.03 0.02 0.03
1 0.7 0.3 - - - -

2 0.7 - 0.3 - - -
3 0.7 - - 0.3 - -
4 0.7 - - - 0.3 -
5 0.9 - - - - 0.1

Table 4. Transition Probability Distribution dfet Attendance States for Student 2

As illustrated in Figure 2 state diagram, the statepresents a Student 2 attending a normal
class which is 85% for this case, indicates thethsghe is relatively a good student in terms of
attendance where the probability Bfo = 0.85. In reference to the state diagram, thie §a
could fall into five states and those five statas only come back to a normal claSspr repeat
their status. The four stat€}, S, S;, andS; which represent IS, SOS, OS, and Tru respectively
contain the same fixed probability. All four sere fixed with 0.7 probability of returning to a
normal classroonty and 0.3 for repeating their state stasS, S5, andS;. A student with an
excused absence, the st&echas 0.9 probability of returning to a normal ctassn and 0.1
possibility of remaining an excused absence. Titeame of four state students returning to
their normal classroom upon the completion of sosjgms or absence remains on these fixed
probabilities for each state. Therefore, the steden S, to S applies the same probability
distributions and the stat® is the only state to undergo changes throughaustmulation for

every student in this school social network.
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The SSAS model presents three different ways tstooct the initial transition probability: 1)

PIOV model constructs transition probability basedrandom number purely, 2) PAIV model
employs the pre-arranged input data table to géméh@& transition probability, and 3) PAOV
mode which composes the transition probability ediog to the pre-arranged output table.

Chapter 6 is devoted to explaining these three mdstin detail including the algorithms for each

type.

5.2.2. Cumulative Probability and the Range déAdance States

In Table 3, the initial transition probability digtutions for students can be transformed into the
cumulative probability distribution for each stutlenin particular, Table 5 describes the

cumulative distribution probabilities for student2] 3, and 4.

State§ Studentl | Student2 | Student 3 Student 4
Po,0| O 0.9 0 0.85 0 0.8 0 0.7
IS,1| 09| 093 08% 089 08 085 0./5 0,81
SOS, 20.93]| 0.945 0.89| 0.92| 0.85 0.88 0.81 0.85
0OS, 3/0.945/ 0.96| 0.92| 0.95 0.88 091 0.85 0.89
Tru, 4| 0.96| 0.97| 095 097 091 094 0.89 093
Exe, 5 0.97 1 0.97 1 0.94 1 0.98 1

Ol

Table 5. Examples of Cumulative Probability Disttion Table

The same procedure and method in formulating thautative probability according to the
transition probability applies for every studentim network. Table 6 includes the cumulative
probabilities that are derived from Table 3 ford&mt 1 and 2. As the table illustrates, for each
student, the probability begins with 0 and end$vitand reveals the range for each attendance

state between the interval [0, 1] and organizessthisequent attendance state for each interval.
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The SSAS simulates this procedure of constructimg ¢umulative probability distribution
according to the transition probability distributifor each student throughout the process. The
following tables explain the corresponding formbthe cumulative probability computation that

the SSAS generates.

Student 1
States| O 1 2 3 4 5
0 0.9 | 0.93] 0.9450.96| O.
0.7 1 1 1
0.7 0.7 1 1
0.7 0.7 0.7 1
0.7 0.7 0.7 0.7
0.99| 0.99] 099 099 0.99 1

gl bW N |-

Student 2

States| O 1 2 3 4 5
0 0.85| 0.89] 0.92 0.95 0.97 1
0.7 1 1 1 1
0.7 0.7 1 1 1
0.7 0.7 0.7 1 1
0.7 0.7 0.7 0.7 1
0.99| 0.99) 0.99 0.99 0.99 1

ol Ll Ll

gk |wWw N |-

Table 6. Cumulative Probability Distribution Taldbr Student 1 and 2

The examples of Student 1 and 2 in Table 6 shovetineulative probability distribution format
that the SSAS produces. The table clearly definesstatess,, S, S5, S;, andSs according to
Table 2 that illustrates how to compute transitigobabilities for each state during the
simulation process. Overall, the transition proligbfrom state S is the only probability that

changes throughout the process presented on thdingtrow of the matrix in Table 6.
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For this research, constructing the appropriate utative probability distribution is a very
significant procedure. It provides the definit@lpability distribution range, and therefore, the
interval for each attendance state. The main fonality of the cumulative probability is to
provide the guideline to allocate the appropridter@lance state throughout the iterations. The
stochastic process effectively models the recoghizendom variation within the given
environment sample space. This random variatiométuded in the modeling process by
generating the random numbers. The generated mandonbers are evaluated against the
cumulative distribution as the lookup table andedte its proper range or interval in order to
determine the corresponding state. Specificatlg,random number is measured up to the very
first row of the cumulative distribution as intramkd in Table 5. Generally, in determining the
attendance state for students, the process séhectery first row of the cumulative probability
distributions of each student. Overall, the SSABstructs a cumulative probability distribution
table according to the transition probability usiihg computation procedures of Table 2 that
defines how to calculate the transition probabitifythe student during the simulation process.
The determination process of student attendante istaaccomplished through random number
generation and those random numbers are evalugdsa the first row of the cumulative
probability distributions. For instance, if thendmm number is 0.87, the corresponding
attendance state for Student 1 is 0 which refetedstudent who attends a normal class (80),
and attendance state for the Student 2 is 1 whatdrs to a student who is in the in-school-
suspension (1S) th& category. Determination of the next day studehbsl-attendance state is
a more complicated process than the initial dayefschool. The following chapter explains the

detailed procedures.
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5.2.3. Transition from Current State to Next &tat

The unique property of the Markov Chain featurescidite state and discrete time processes.
Applying this concept, the student can only bene state at a time and the attendance states are
mutually exclusive. Basically, the student cameaitbe absent or present at any time and the
student only can participate in one attendance stiah time. Therefore, student attendances are
mutually exclusive and discrete events. Furtheentite Markov Chain provides the memory-
less property. The past history of the proceswitonger considered nor has any effect on the
next event. The only event that affects the negheis the current event and not the events from
a week ago or month before. This notion allows kgt day student attendance state to be

dependent of just today’s current attendance state.

An example for this concept is illustrated in Table In this table, “CState” refers to current
state (today’s attendance state) and “NState” sdfethe next state (next day attendance state)
for each student. Additionally, the “Rand ( )"fa& random number and “Days” expresses the
number of school days. In determining a futureratance state, the model generates the random
numbers which can be seen in the second columherable and selects the first row of the
cumulative probability distribution table for eadtudent and allocates the corresponding
attendance state. In examining Table 7, consiabter5 that describes cumulative probability
distribution for four students; Student 1, 2, 3da# (“CState” = 0) which supports the
assumption of having every student coming to sclaadthe very first day of school. The next
day state (“NState”) of student attendance statkeis/ed from today’s current attendance state.
To explain in detail, for Student 1 on school d&, the “NState” is determined as 1 and

examining the cumulative distribution table of thssudent, the range of the probability
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distribution between 0.9 (90%) to 0.93 (93%) fafisthis state, the in-school suspension state
(SI). The generated random number for this day.946 therefore, on day 16, the Student 1 is

determined to be at state “1” which verifies theqadure.

Student 1 Student 2 Student 3 Student 4

Days Rand () |CStatg NStatg CStatg NStatg CState NStatg CState NState
1 0.2537232 0 0 0 0 0 0 0 0
2 0.7249950 0 0 0 0 0 0 0 0
3 0.1142639 0 0 0 0 0 0 0 0
4 0.7962289 0 0 0 0 0 0 0 1
5 0.5666119 0 0 0 0 0 0 1 0
6 0.8353732 0 0 0 1 0 1 0 2
7 0.4690057 0 0 1 0 1 0 2 0
8 0.7372688 0 0 0 0 0 0 0 0
9 0.3610402 0 0 0 0 0 0 0 0
10 0.7353362 0 0 0 0 0 0 0 0
11 0.8518764 0 0 0 1 0 2 0 3
12 0.1922290 0 0 1 0 2 0 3 0
13 0.5153358 0 0 0 0 0 0 0 0
14 0.8400221 0 0 0 0 0 1 0 2
15 0.5534624 0 0 0 0 1 0 2 0
16 0.9160283 0 1 0 2 0 4 0 4
17 0.0046494 1 0 2 0 4 0 4 0
18 0.1388602 0 0 0 0 0 0 0 0
19 0.3402275 0 0 0 0 0 0 0 0
20 0.6339770 0 0 0 0 0 0 0 0
21 0.1430599 0 0 0 0 0 0 0 0
22 0.0597933 0 0 0 0 0 0 0 0
23 0.4045422 0 0 0 0 0 0 0 0
24 0.9356192 0 2 0 3 0 5 0 5
25 0.7857365 2 0 3 0 5 0 5 1

Table 7. The Current State and Next State Aliooat
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The exact methods and procedures apply to theofdbe entire student population throughout
the simulation process of the SSAS. The SSAS teesransition probabilities and cumulative
probabilities to determine the next day state efdtudent attendance. Table 7 clearly illustrates
that each student starts with st&e Figure 6 provides the pseudocode to determiaadxt day

of the student school attendance state.

The Pseudocode in Determining the Attendance States
/lupon calculation of cumulative probatyili

for set the first current state to O;
end

get randNum
set tempRow

() /lget random number to be eatal
()

: /Iselect the rovbe used to

fori=6to 1
{ if randNum < cumStudent
state 0,
else randNum < cumStudent(i)
state i, i= 6-1;
} end for loop

write current state to an external file ();

Figure 6. The Pseudocode in Determining the Afd@ce States

The following chapter provides the relevant procedun computing the next day attendance

probability distributions for the students.

5.2.4. Formation of the Connectivity betweenReers
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Up to this point, the computation process has baémer simple because the majority of the
procedure was focused on how to initialize the gsscappropriately and compute the first day
outlook of the student attendance paradigms coorelipgly. Once the students come to school,
the SSAS model assumes that they will interminglé wheir peers and therefore make friends
which are described as the connections betweesttltents. In addition, the model assumes
there will be an influential factof playing a roll in the phenomenon of the studeritost

attendance. Therefore, the model attempts to erba@ connections between the students that

may affect the overall aspects of the student datendance.

Studenty Random # Logic Matrix | Connectivity
1 0.702646 0.703>0.5 1 Yes
2 0.934999 0.935>0.5 1 Yes
3 0.881752 0.882>0.5 1 Yes
4 0.500214 0.500=0.5 1 Yes
5 0.355652 0.356<0.5 0 No
6 0.786445 0.786>0.5 1 Yes

Table 8. The Rationale in Formulation of the Gaxtivity among the Students

The next day connection between the peers constberstronghold and bond as a result of
friendships. Initially, the SSAS generates thedman numbers and provides the threshold value
for the connectivity. The model sets the connectlweshold value tg= 0.5. Fundamentally,

the SSAS forms the connections between the studletits random number is greater than or
equal to 0.5; otherwise they are disconnected harktis no link exhibited between the nodes.
Table 8 describes the rationale in how to formutage connectivity between the students. In
Table 8, the second column consists of the randombers that are assigned to each of six

students. At third column in the table, the “Ldgicesents the reasoning that the SSAS employs
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in the modeling process which provides the threskalue of the connectivity #= 0.5 and the
process evaluates the random numbers accordinghe model generates the matrix for the
connectivity and exhibit 1 for the student who igjible, for instance since 0.7 > 0.5, to be
connected with other students in the network itatsd in the fourth column of Table 8. In
addition, the model forms the line on the charteen the students who exhibit 1 in the matrix.
Refer to Table 8 and Figure 6 for 6 students’ cetimigy analysis. In this table and figure,
Student 1, 2, 3, 4, and 6 are connected but natestu5; this student is isolated from the
network. The SSAS provides the corresponding dueaxterify the matrix of the connectivity
between the students. This chart displays the exiioms between the students described in
Table 8 and presented in Figure 6 below. For cimaFRigure 6,x-axis represents the student
number andy-axis the attendance probability. As stated, thenection is exhibited between
Student 1, 2, 3, 4, and 6 but not with StudentSsudent 5 is isolated from the network in this

example.

0.8

0.6

0.4

0.2

v
X

Figure 7. Initial Iteration for the Connectivigynong 6 Students

67



The edges between the nodes are undirected asswawergone is influencing one another
through their connectivity. Nonethelegs, 0.5 is only applicable for the connectivity beeme
the students on the first day of school becauseSIBAS integrates the influential factar
between the students the next day of school. S86&el provides modification in creating the
connection between peers and several schemes lyirgpthe connectivity at different parts of

the simulation.

Subsequently, the next day connection between pmarsiders the stronghold and bond as a
result of the friendships between the students.gdneral, if students have a tight friendship
today, they will probably continue that relationstomorrow also. Therefore, the connectivity
no longer can be rationalized wift®> 0.5 which may create instant breakup daily. ONjettze
SSAS provides a dynamic connectivity in three défe ways: a) Median Connectivity, b)

Virtual Connectivity, and c) Hybrid Connectivity.

First, the median connectivity refers to the prased introduced previously where the

connectivity is determined by the following guicdhds:

1 ifp>05, ... the connectivity between the studetdj exists
lg.j = {
0

otherwise, .......... the connectivity does exist.

The median connectivity name comes from havingtlineshold value at half point between the
interval [0, 1]. The pseudocode for median conimggtin Figure 7 contains the only part that

differs from the other connectivity.
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The Pseudocode for Median Connectivity
..................................................... /lupon the determination thfe next state
def peers;
sn =s+1;
int matrix average = 0;
int sum of neighbor student’s probability = O;
int number of neighbor students = 0;
for (counterSN = 1: NumberOfStudents -1) //
{ { if sn > NumberOfStudents
sn = sn -NumberofStudents;
}end
tempRand = rand(); /I get random nenfbr connectivity
{if n==
{ if conn(s, sn) <0 && tempRand >=0.5 //initial day connection
conn (s, sn) = 1; /I connection set$ in the matrix
conn (sn, s) = 1;
elseif conn (s, sn) conn(s, sn) < 0 &&< temp&k& 0.5
conn (s, sn) =0; /I connectiots $e 0 in the matrix
conn (sn, s) =0;
}end
elseifn>1
{ if conn(s, sn) <0 && tempRand < 0.5 //folng days connectior
conn (s, sn) = 1; /lconnection set$ in the matrix
conn (sn, s) = 1;
elseif conn (s, sn) conn(s, sn) < 0 &&< temp&k& 0.0
conn (s, sn) =0; /[lconnectiots $e O in the matrix
conn (sn, s) =0;
}end
} end
sn =sn +1;
}endforloop .......cooeeveiiiiiciiii i e e llcontinue m@aining simulation

Figure 8. Pseudocode for Median Connectivity

Second, virtual connectivity forms the connectiatg > 0.95. Since the threshold point for this
mode is much higher than the median mode With0.5, it virtually connects everyone in the

network. This virtual connectivity can be presenfigmally as:
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1 ifp>095 ... the connectivity between the studeaj exists
lg.j = {
0

otherwise, ....... the connectivited not exist.

For example referencing Table 8, all 6 studentammected in this connectivity, whereas, there
were only 5 students connected in the median motieerefore, this mode virtually connects

everyone in the network and has only 0.05 possilli disconnecting the students.

Finally, the hybrid connectivity method combinesttbahe median and virtual connectivity
methods. Therefore the connections between thes pe implemented using both modes.
Initially, the hybrid connectivity mode applies theedian connectivity which is on the first day
of school. After the first day of school, if cormiens exist between the students, the virtual
connectivity scheme is applied. Overall, the hgbdonnectivity recognizes the existing
friendships between the students and the influefaciors thereof. In essence, if the students
are connected and are friends today, they willrteads tomorrow also and there would be little
possibility of breaking up daily. The SSAS modehsiders this theory and applies the hybrid

connectivity mode to accommodate the ongoing fiséius between the students.
5.2.5. Interaction Probability Computation

In calculating the next day attendance probabithig, SSAS simulation integrates the influential
factor to compute interaction probability once #tedents are connected to each other which it
applies from the second day of the school year.psented earlier, the next day probability
consists of four elements: 1) the student’s curpgmbability, 2) the student’'s learning
coefficient, 3) the connected peers’ probabilityd &) the learning coefficient of the connected

friends. The model assumes the information abauh estudent; the probabilities and the
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learning coefficients of the students are known.he Tmechanism to compute interaction

probability is presented in equation 5.1.

Student 1 Student 2 Student 3 Student 4
S: 0.9 &a L S 0.8 &a S 0.7 &a S 0.65 &a

= N/

if r =0.823, all connected

[ Day 2 ] Po(t+1) = (o* P* (1)) + (1- o)* (Average ofP* (t) of connected peers

!

[ Compute new *Lrow of Matrix P ]

Figure 9. Flow Chart in Computing the Interactinobability among the Students

The next day probability of the studeﬁfo(t+l) is the difference of the probability between the
student probability and the average of the linkeérp’ probability coupled with the learning
coefficient. If linked peers’ probability is greatthan the student’s current probabilitg P, (t)

then there will be an increase in the student'serurstate probabilityPo(t+1) = (a* P%, (1)) +

(1- a)* (Average ofP (t) of connected peers). Howeverthie average probability of peers is
less than the student’s current state probabititgn the student’s current probability will
decrease. The flow chart in Figure 9 illustratee procedure using four studentd)(in
estimating the next day attendance probabilityhef $students. As stated, the SSAS uses the
fithess value of the learning coefficientaat 0.7. For example using the data in Figure 9, in
calculating the next day probability for the Studén the first step is to find the difference

between Student 1 and other students where (0®10.25) = - 0.55, (0.8 -0.9 =-0.1,0.7 -0.9 =
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- 0.2, and 0.65 -0.9 = - 0.25). Since the calanfatesults in a negative number, the process will
decrease Student 1’s probability applyiagy P%, (t)) + (1- «))* (Average ofP%, (t) of connected
peers) where (0.9*0.7) + ((0.8 + 0.7 + 0.65)/3)*&.3.63 + 0.2155 = 0.8455. Applying the
same method, the next day probability calculatmmStudent 4, the difference between Student
4 and other students is 0.45, therefore the proedissicrease the peers’ probability of Student

4 which results in 0.695, (0.65*0.7) + ((0.9 + 8®7)/3)*0.3 = 0.695.

The detailed development procedures are includederprevious section throughout the model
simulation process. The transition probability dimel cumulative probability are presented in the
tables. The SSAS produces the charts and matricétustrate and verify the connections
between the peers throughout the process. The Invedées the connectivity between the
students by comparing the connectivity in the clhad the matrix notations represented by 1 or
0. Initially, the link or connectivity between tlséudents exists if the random number is greater
than or equal to 0.5; otherwise they are discomueand no link will be displayed on the chart

between the nodes.

5.4. Chapter Remarks and Summary

School attendance states are discrete and mutiallysive events. The SSAS model considers
two main areas in the modeling process: the studge@ndance phenomenon and interactions
with their peers. The model constructs the comgmeive state diagram to represent the current
existing school system’s five attendance staBsa(d a new category, the supervised out-of-
school suspensions. The model presents the gréphttve node that represents students and
their relationship with others with edges betwdenriodes. In addition, the model considers the

random environment and generates the random nurtiberggh the Monte Carlo Simulation.
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The SSAS model presents the attendance of the s@ckent in a distribution pattern by
computing the transition probability. Thereforack state of the student school attendance is
organized into a transition probability and caltesathe cumulative transition probability
distribution and steady state probabilities acawlyi. Furthermore, the model considers the
friendships between the students and implementsaenihg coefficient. The connections
between the students are created dynamically usingectivity fitness values. Each student-
attending-school category is presented in distigmst through the transition probability and the
cumulative probability. The state of the studetieradance is determined based on those
probabilities and the random number. The SSAS eyspthe Memory-less property of the
Markov Chain where the current state is a residetiasolely on yesterday’s value and not on the

previous data.

Overall, the SSAS model presents the function chestudent’s probability®) and associated
influences of their friendszP*) that may affect overall student attendance. foelel applies
the stochastic process to consider randomnessoanvimt and employs the learning coefficient
to integrate the influential factors between therpe In order to create the connectivity between
the students, the model generates a random numitterawdefinite threshold range for the
connectivity. Once the students exhibit the cotinigg, the probability of student attendance
considers the influential factor. This chaptervides the mathematical formal representation of

the SSAS and the relevant assumptions, parameterscastraints.
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6. THREEDIFFERENTTYPES OF THESSASMODEL

6.1. Introduction

The stochastic process comprehends random evéetgby selecting an actor, action of the
actor, and the interactivities of the actors in abitrary method. In the previous chapter
introduction of the procedures and methods, theahloegins with the computation of the initial
transition probability distribution table. The SSAxplores the alternative ways to develop the
evaluation model and presents three different aggtres: 1) PIOV that applies a pure random
selection, 2) PAIV that uses a pre-arranged ingloiet and 3) the PAOV that uses a pre-arranged
output look-up table. A Pure Input Output Valued®bconsiders the pure randomness of the
given community where students’ relationships wvitieir peers are random events combined
with unknown outlook in regard to school attendandée PAIV model incorporates the pre-
arranged probability distribution table that canused as the lookup table to allocate the range
of the distribution, thereby determining the cop@sding student attendance state categories. In
pre-arranged probability distributions for eachtled student attendance states, the range of the
state can be organized through the cumulativeiloligion table. The random events of students’
attending states and the interaction with theirp@ee considered in the model as explained in
the introduction of SSAS. The overall processeslationship to probabilities are presented in

Figure 10.
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C Initial Transition Probabilit >

v Interactivity
C Cumulative Probabilit > D Learning Coefficienty
m Connectivity Threshold}

CAttendance State Determinat>

Figure 10. Process Overview of SSAS Model

In the PAOV model, the formulation of probabilitysttibutions look-up table is based on the
actual students’ attendance data set. The pre®®t@¥ model implementation is solely based
on random selection, and the PAIV model providedbilty through the pre-arranged lookup
table of the probability distribution as the inputlues. The PAOV model differs in that the
initial probability distribution and depiction ofi¢ current student attendance state are based on
the pre-arranged output look-up table designed filmenactual existing school attendance data
set. Therefore, the PAOV is most useful and féagitthe student attendance data are known
and available. However, the pre-arranged outpoibadility distribution look-up table also can

be designed arbitrarily if the actual student atterte data set is unavailable. The following

three sections of this chapter describe the detailecedures for each model.

6.2. Pure Input Output Value (PIOV) Dynamic Model

The SSAS PIOV model precedes the probability ofstinelent and the interactions with peers by
purely a random selection process without a preakte of the student attendance probability
thereby selecting the transition probability rantioriNote that in the probability computation of

state 0% is the only state which undergoes changes thraughe simulation and the stafg
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S, S, &, andSs remains the same as presented in Table 4, follothiagrocedure introduced in

Table 2. The process of PIOV is introduced in lletahe following section.

6.2.1. Procedures and Methods of PIOV Model

Initially, the PIOV model generates the random namisingrand (') function and the generated

random number becomes the value of curptobability of the student.

[ calculate transition & cumulative probabilitie%

A 4
determineS

A

A

selectlj randomly (O or 1)

\ 4
computeP*y(t+1)

determineS 1)

Figure 11. Procedures of the PIOV SSAS Model
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For example, if the random number is 0.8521, thelestit has a current probability of 0.852
(85%) for states) of the student attendance. This number is usdatieadirst day, the current
probability of the studen®y . The initial attendance transition distributiorolpability is then

arranged based on the input file that definesdkie for the five remaining states.

The cumulative probability and the next day traosifprobability computations are the same as
presented in the introduction. The learning coédfit also uses the exact valae,0.7. Briefly,

the flow chart in Figure 11 describes the overadcpdures of the PIOV simulation method.
6.2.2. Algorithms of PIOV Model

In order to simplify, the algorithm included in shthapter is limited to the section that has been
modified from the other types of the model and shbsequent algorithms can be found in the
basic algorithm for the SSAS mode. The processdniced here includes the main areas where

the PIOV model is differentiated and the subsequedatvant 7 processes:

a) generate a random number and set it as thedysprobability Po,

b) read the fixed state distribution input filatlsets the range for the other states,
c) calculate transition probability and cumulatprebability for allN,

d) determine the current states based on firstafosumulative probabilityS,

e) create the linkage among peéyshased on threshold> 0.5,

f) compute théy(t+1) with correlated learning coefficieat0.7, and

g) determine the next day attendance s&te,.

Mainly, the PIOV future outcome is solely basedaarmndom selection process.
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The Modified Portion of Pseudocode for PIOV Model

def school days, number of student, parametedschart style;
set external input file to be read and exterraltb output;

for each student n
write studentID into the external file;
end

read fixed state probabilities;
read preset range for the state;

for each day
get random number;
set random number as initial probability;
determine the appropriate state based on the peesgp for the state;
for each num in cumulative probability (1-nth)
if rand< first num in cumprob
get state O
else compare to the nth # in cumprob n: 1-6
if rand > nth # in cumprob
state = n
end
end
end
/[continue remainingimulation

Figure 12. Pseudocode of the PIOV Model

6.3. Pre-Arranged Input Value (PAIV) Dynamic Mbde

The PAIV model generates the student attendante Isésed on the input data set which is the
pre-arranged probability distribution table desogbthe pre-set attendance data range for the
student attendances. The students’ interactiotispeiers are determined by a similar method as

described in the previous chapters. The calculapoocedure includes the corresponding
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transition probability and cumulative probabilityisglibutions coupled with the associated

learning coefficient.

6.3.1. Procedures and Methods of PAIV Model

( ente )

A 4

< set probabilitiesP; >

h 4

< getr, rand () >

v
[ calculate transition & cumulative probability dibtition ]

>

v

[ predictS usingpe of cumulative probability & ]

A

[ determind;; based on fitness]

[ computeP*y(t+1) ]

determineSt+1)

Figure 13. Procedures of the PAIV SSAS Model
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Unlike the PIOV model, the PAIV model generates shi@dent attendance status by the pre-
arranged input probability distribution table foveey student. This is a similar procedure
presented in the introduction of the SSAS implemgoh procedures. In this development
process, the distribution table is pre-composed separate file and the processor reads those
pre-arranged values during the simulation in gdmegahe initial probability distribution of the
student’s school attendance. Similarly, the PAIddel also considers random events and
generates the random number which compares witre-ampanged probability distribution to
allocate the appropriate probability distributicange, thereby determining the current state of

the student attendance.

Therefore, the PAIV model exploits the student sthaitendance category based on the pre-
arranged probability distribution table as inputada This model is designed to provide a
mechanism to control the input probability disttibn and the range of probability dispersion.
The flow chart in Figure 13 presents the overadcpss of the PAIV dynamic procedures. PAIV
is a more constructive model in that the pre-areangrobability distribution for the attendance
state provides some stability in determining therent state of the student. The next day
probability, P*,(t+1) of the student is computed using a similar metls described in the

introduction. The exact value of learning coe#idi also applies in the PAIV model.
6.3.2. Algorithms of PAIV Model

The procedures and algorithm of the PAIV model @né=d in this section are the portions that

differ from other models and the process relatettiéomodification which includes:
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a) set the probability distribution table for & for each student, and save it in a
separate file,

b) generate the random number,

c) read the file,

d) calculate the transition probability and cumulatprebability for allN,

d) determine the current states based on firstafoeumulative probabilityS,

The Modified Portion of Pseudocode for PAIV Model

def school days, number of student, parametedschart style;
set external input file to be read and exterrialth output;

for each student n
write studentID into the external file;
end

set the attendance probabilities for the exterifel f

read the probability from input file;
for each student
generate random #;
for each num in cumprob (1-nth)
if rand < first num in cumprob
get state 0O;
else compare to the nth# in cumpob
if rand > nth# in cumprob
state = n;
end
end
end
end
//continue remaining simulatior]

Figure 14. Pseudocode of the PAIV Model

e) create the linkage among peéyshased on threshold> 0.5,
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f) compute théy(t+1) with correlated learning coefficieat0.7, and

g) determine the next day attendance stte,.
The modified area of the PAIV algorithm is presenteFigure 14.
6.4. Pre-Arranged Output Value (PAOV) Dynamic Mbd

The PAQV process calculates the transition proliglahd cumulative probability distributions
corresponding to the pre-arranged output probgbdistribution as a look-up table. The
interactivities of the students are calculated ginailar manner as in the POIV and PAIV models

usingf = 0.5 anda = 0.7 as the threshold value and the learningficteit respectively.
6.4.1. Procedures and Methods of the PAOV Model

The PAOQV process begins with defining the attendapiobability distribution look-up table
based on the student attendance data set fronp#u#fis school district. Therefore, the initial
probability, § is determined by the pre-arranged probability distion look-up table. The
process estimates the probability of student schtiehdance by evaluating the random number
against this pre-arranged look-up table which sigieed based on the attendance data set. The
student attendance state is also allocated acgtydas the pre-arranged output look-up table
distribution range. See Table 9 for the pre-areangrobability distributions as the output look-
up values. For instance, if the student comeshoda for 100% to 95% of the time and attends
a normal class, the student can be in the stateafcy for 1%, an excused absence for 4%, and
0% for in-school suspension or out-of-school susmen Based on Table 9, in case the student

comes to school 70% of the school days and attelads, the student possibly could be in in-
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school suspension for 5%, out-of-school suspen$wn4%, truancy for 7%, and excused

absence for 14%.

Po IS OS |Truancy| Excused
0 1 3 4 5
0.95 0.00 0.00 0.01 0.04
0.90 0.01 0.00 0.03 0.06
0.85 0.02 0.01 0.04 0.08
0.80 0.03 0.02 0.05 0.10
0.75 0.04 0.03 0.06 0.12
0.70 0.05 0.04 0.07 0.14
0.65 0.06 0.05 0.08 0.16
0.60 0.07 0.06 0.09 0.18
0.55 0.08 0.07 0.10 0.20
0.50 0.09 0.08 0.11 0.22
0.45 0.1 0.09 0.12 0.24
0.40 0.11 0.10 0.13 0.26
0.35 0.12 0.11 0.14 0.28
0.30 0.13 0.12 0.15 0.30
0.25 0.14 0.13 0.16 0.32
0.20 0.15 0.14 0.17 0.34

Table 9. Pre-Arranged Output Probability Disttibn Look-Up Table

Notice that Table 9 omits student school attendaste#e 2, the supervised out-of-school
suspension (SOS), because this category does igit iexthe current school system. The
supervised out-of-school suspension state is acad®gory which this study proposes in order to
reduce the failure rate of students due to excesalsences. The attendance assessment
between supervised and unsupervised out-of-schusplesisions and their impacts on students is

presented in Chapter 7.4.4 in detail.

As described in Figure 15, the process begins uattmulating the output pre-arranged

probability distribution table. Using the actudaldents’ attendance data set, the table is
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organized for each student attendance categorys t@hle is used as a look-up table in setting

the initial transition probability and allocatiniget corresponding attendance state.

( ente )

A 4
[ formulate look-up probability distribution table, via data set]

A 4

< set probabilitiesp; >
A 4
< generate, rand () >

A 4

[ calculate transition & cumulative probability dibtition ]

A 4
[ determineS usingpe of cumulative probability & ]

A 4
[ createl; based on threshofl ]

A

[ computeP*(t+1) witha ]

determineSi+1)

Figure 15. Procedures of the PAOV SSAS Model
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The computations of interactivities among peers@ed as the procedure in the PIOV and PAIV
models. In addition, the PAOV model applies thensavalue as the other models for the
learning coefficient,a= 0.7, and threshold valugg= 0.5 for connectivity. The transition
probability and the cumulative probability compudat procedures are also the same as in the

PIOV and PAIV models.
6.4.2. Algorithms of the PAOV Model

The modified part of the PAOV model algorithm ahe televant calculation thereof consists of

8 major processes:

a) formulate the probability distribution look-up talfior allS for each student based on
the data set, and save it in a separate file,

b) read the file,

c) generate random number and allocate appropriateran

d) calculate initial transition probability and cumiN@ probability for allN,

e) determine the corresponding current student atteredatatesS accordingly based
on first row of cumulative probability and outputopability distribution look-up
table,

e) create the linkage among peéysbased on thresholg> 0.5,

f) compute théy(t+1) with correlated learning coefficieat 0.7, and

g) determine the next day attendance sgts).

The pseudocode for PAOV model is explained in FadL6.
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The Modified Portion of Pseudocode for PAOV Model

def school days, number of student, parametedschart style;
set external input file to be read and exterrialth output;

for each student n
write studentID into the external file;
end

formulate the attendance probability look-up tafteendDistribution;

read external file, AttendDistribution file;
get the size for the AttendDistribution;
read the FixedState from input file;

for each student
generate random #;
for each num in cumprob (1-nth)
if rand < first num in cumprob
get state O;
else compare to the nth# in cumpob
if rand > nth# in cumprob

state = n;
for (s=1:NumOfStudents)
{ InitialProb{s}=0;

InClassProb=NumOfAttend(s)/Period;
for (i=1:row )
get other initial probabilities;
end
end
end
end

for each student n
write studentID into the external file;
end /lcontinue simulation

Figure 16. Pseudocode of the PAOV Model
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6.5. Chapter Remarks and Summary

The SSAS model provides three modifications in $atmg the student school attendance
phenomenon: PIOV, PAIV, and PAOV. Considering thedom environment of the student
school attendance and the interaction with peerschaool, the PIOV implements the unique
attributes of the stochastic process very effityeby using a random number to generate the
initial transition probability distribution. In & PIOV development process, the simulation
focuses on the main concept, the random selectioceps for the initial probabilityy, for the
stateS of the student school attendance. The connechbehseen the peerk; j are selected
randomly also with threshold valyés 0.5. The next day probability and the attendastate of
the students are then determined by consideringléheing coefficient,a= 0.7 and the
calculation procedures introduced in Table 2 andldd4. The overall procedure and algorithms

of the PIOV model are presented in Figure 11 agdiei 12.

Understanding the lack of stability in the randonvieonment of the student school social
networking, the PAIV model considers a controllimgchanism by providing the pre-arranged
initial transition probability distribution for thetudent school attendance states. The pre-
arranged initial transition probability distributiotable provides significant stability in
determining the attendance state of students sirsets the pre-arranged attendance range for
each state for every student. A similar procedymglies in calculating the transition probability
and cumulative probability as described in Tabé@ Table 4. The next day probability and the
application of threshold valugz 0.5 for the connectivity and the learning coedint, o= 0.7 for

the interactivity, are also applied in a similarrmar as in the previous model. The PAIV model

87



flow chart in Figure 13 presents the overall praszedand Figure 14 describes the algorithms for

the model.

The main concept of the PAOV features the use ef phe-arranged output probability
distribution look-up table that is formulated basedstudent school attendance data. The initial
transition probability is generated based on tisributions in the look-up table and calculates
the cumulative probability thereof. Subsequerttig, corresponding student attendance state is
determined accordingly also. The learning coedfitia= 0.7 for interactions and threshold
value, ands= 0.5 for connectivity among peers, are considenethe same manner as in the

PIOV and PAIV models.

Models Similarities Differences

PIOV Learning coefficient threshold= 0.7 | randomly selects initi& &
Transition & cumulative computation
States determination §f

Interaction computation wigh> 0.5

PAIV same as above pre-arranged inpué tial Py &

controlling mechanism for ITP

PAOV same as above output lopkable folPy &

stability for ITP

Figure 17. Comparison of the PIOV, PAIV, and PAGdels

The PAOV model is most useful when the student sichtiendance data set is available. The

PAOV model provides significant stability by empiog a pre-arranged output probability
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distributions look-up table for each student atterad state. Furthermore, this modeling is
applicable in the case where the attendance dats s@available by composing an arbitrary
output probability distribution look-up table andrgerating initial transition probability based on
the range that look-up table provides. An ovesalhmary is provided in Figure 16 comparing

all three models of the SSAS: PIOV, PAIV, and PAOV

Exploiting the different procedures to accommoddie random environment, the stochastic
process provides an effective tool to index theapeaters using statistical probability
distributions. Chapter 6 introduces three distingblementations in arrangement of the initial
transition probability for the SSAS. It begins wthe PIOV model, the most vulnerable method
where the initial transition probability is detemad purely based on random events, followed by
the PAIV model that provides a controlling mechaniby employing an input table which
consists of pre-arranged initial transition proligbdistributions. Lastly, in the PAOV model,
the formulation of a pre-arranged output look-upddhas the probability distribution based on a
data set which provides a controlling mechanisiwel$ as significant stability in estimating the
student school attendance disseminations. In,bFigfure 17 describes the similarities and

differences of three models of the SSAS.
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7. EXPLOITATION RESULTS ANDANALYSIS
7.1. Introduction

As stated previously, in the development of the SSihe model consists of multiple processes:
random selection attachment; computation of tremsitumulative, and steady state probability
distribution; determination of the students’ schaitendance states; creation of dynamic
connectivity, learning coefficient integration, aattendance assessments. This research also
presents three models of the SSAS: PIOV, PAIV, 84DV which are differentiated in
generation of the initial transition probabilitits the student school attendance states. For all
three models, the next day probabiliBfy(t+1) of the student attendance state is determiged b
computing the difference of probability between thierent student and the average of the linked
peers probabilities considering positive and negaitifluences as well as the threshold value of

the connectivity and learning coefficient for irgetions.

The connectivity between students is constructededaon the threshold value of the
connectivity,f = 0.5. In addition, the SSAS model also providese methods for creating the
connectivity between students: Median Connectivityirtual Connectivity, and Hybrid
Connectivity. This chapter presents results fromthree SSAS models and the three dynamic

connections between the students.

7.2. Simulation Results of the SSAS Models
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The simulation of the SSAS model evaluates 100Qestis for the 180-day school year. Table
10 includes overall results from all three SSAS eledPIOV, PAIV, and PAOV. Examining

the results according to data in Table 10 indicdbed the PIOV model generated the least
number of students for the attendance categonhé& student attending normal class with 642

students out of 1000 students.

Attendance PIOV PAIV PAOV

States Number | % | Number] %| Number 9

N 642 0.64 711 0.71 702 0.70

IS 82 0.08 67 0.07 68 0.07

OS 67 0.07 54 0.05 56 0.06
Tru 101 0.10 89 0.09 91 0.09
Exe 108 011 79 0.08 83 0.08
Total 1000 1 1000 1 1000 1

Table 10. Simulation Results of the SSAS Models

However, the PIOV model generated the highest numobstudents for all the other categories:
82 students for in-school-suspension (IS), 67 sttgdéor out-of-school suspension (OS), 101
students for unexcused absences (Tru), and 10&rg8idor excused absence (Exe). On the
other hand, the PAIV generated the highest numbstudents attending class, category N with
711 students and the least number of studentdlftiveaother five categories: 67 students for in-
school-suspension (IS), 54 students for out-of-sthospension (OS), 89 students for unexcused
absences (Tru), and 79 students for excused alsé¢Bge). Interestingly, the PAOV model
generated the middle range between the POIV and/ MAddels for all five categories: 702
students for normal attendance (N), 68 studentsrt@chool-suspension (IS), 56 students for

out-of-school suspension (OS), 91 students for cureed absences (Tru), and 83 students for

excused absences (Exe).
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Further examination of the results in Table 11 @nés an assessment in terms of error or the
correctness of the data. Standard errors arelatdduby subtracting the resulting data from the
original data and dividing it by the original ddtamally, m-n/m For example, where th¢
original data was 699 and the resulting data wad, @de error can be measured by (699-
642)/699. Based on this table, the resultant ereme the PIOV model with 16.97 %, PAIV
model with 3.57%, and PAOV model with 1.4%. Consagly, the correctness of the system is
83.03% for the PIOV model, 96.43% for the PAIV midend 98.6% for the PAOV model.
This research applies the standard acceptable fangeror from 0 to 0.5 which is used by most
testing procedures. In other words, the accep&fdEm should not produce error at higher than

5% and the correctness of the system should be thane95%.

Attendance States,|  PIOV PAIV PAQV
Number of Students| Error % Error % Error %
N, 699 8.155 1.717 0.429
IS, 69 18.841 2.899 1.449
0OS, 57 17.544 5.263 1.754
Tru, 93 8.602 4,301 2.151
Exe, 82 31.707 3.659 1.220
Average Error, % 16.970 3.568 1.401
Correctness, % 83.030 96.432 98.59

Table 11. Measurements of the Errors and thegCoress of the SSAS Models

Applying this range, the POIV model is an unacceletanodel since it produced the most error
out of all three models at 0.1697%. This modelnky feasible at about 83% which is much less
than the acceptable norm of 95%. PAIV and PAOWIted in 96.4% and 98.6% correctness

respectively which are better than the 95% of atatde correctness of the system. Therefore,
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the data results and the assessments thereofcasebon only two models, PAIV and PAQV of

the SSAS in the following chapters.

7.3. The Connectivity in between Three Types ofifizctions

As introduced, the SSAS simulation exploits thréféedent ways to implement the dynamic
connectivity between the peers: a) Median Connigtils) Virtual Connectivity, and ¢) Hybrid
Connectivity. These three types of connectivitg sgsted using the PAOV model since this
model resulted in significant stability and proddidbe best result with 98.6% correctness. The
results of three connectivity types are includethim table below. In this table, the school days
are organized in intervals of five days for the -0y school year. For easy assessment of
connections among the students, the resulting idattae table are also divided into two areas:
the number of students per class size of 30 andhuhgber of students per grade size of 1000.
These numbers for the size of class and graderhiteaay figures and apply to this table only.
The table also includes the average number, meafiamonnections and the mode, the most

frequently appearing numbers of connections.

In examining the results, the following reasonisgbased on a class size of 30 students for
simplicity. To begin, the second column of TabRdepicts the number of connections of the
median connectivity (MC). In this connectivity etiprocess generates the random number and
the connection between the students is determingd&.5 as introduced earlier. The median
connectivity forms the link between the studenthwinis premise throughout the process. The
very first day of the link created starts out with connections and ends with 15 connections.

The mean number of connections was 14, with 15eciions appearing most frequently.
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Class Size of 30 Grade Size of 1000

Number of Friends Number of Friends
Days | MC VC HC MC VC HC
1 16 28 17 533 933 567
5 17 28 19 567 932 633

10 13 27 18 432 899 601
15 19 25 20 632 831 667
20 13 27 19 433 901 634
25 15 29 20 501 967 667
30 15 29 20 499 966 665
35 12 27 22 399 901 733
40 15 29 21 500 967 700
45 15 29 20 499 967 667
50 18 25 20 602 833 665

55 11 29 21 367 967 701
60 11 29 22 365 967 733
75 11 27 22 366 900 732
80 14 27 21 467 901 701
85 10 29 21 333 967 700
90 15 27 23 500 900 767
95 9 28 21 300 933 700

100 13 27 20 433 900 667
105 15 27 20 501 901 664
110 15 27 24 503 900 800
115 12 28 25 401 933 833
120 17 29 25 567 967 833
125 19 29 23 633 967 767
130 16 27 21 533 900 701
140 16 28 19 532 933 633
145 11 27 19 367 900 632
150 16 28 20 533 933 667
155 17 26 20 567 867 666
160 16 26 18 531 867 599
165 16 25 17 533 833 567
170 15 27 17 531 901 569
175 13 27 18 530 897 606
180 15 26 19 532 933 533
Median 14 27 20 486 917 676
Mode 15 27 20 533 967 667

Table 12. The Number of Connectivity in a FiveyDaterval for School Year
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The third column of the table depicts the resutrfrthe virtual connectivity simulation which
targets the connections among peeys=a0.95 throughout the process. This connectivityame
with 28 connections initially and ended with 26zéhnections less than initial connections. The
average and the mode for this connectivity wereo@% of 30 students virtually having all
students connected. Lastly, the hybrid connegtiedmbines both methods of the median and
virtual connectivity. Connections between peess iatplemented using both processes. The
first school day of student connectivity procedu®tuigh the median connectivity scheme which
usesp > 0.5 andg > 0.95 for those students who are already conneckygbrid connectivity
promotes the idea of continuing existing friendshipf students are connected and are friends,
more than likely the friendships will continue witrery little possibility of an immediate
breakup. The hybrid connectivity started with bhmections and ended with 19 connections.

The median and mode of the connectivity were e@cst@dents.

Overall, there were fewer connections resultingthe median and virtual of connectivity
compared to the initial connection: 1 connecti®s|eesulted in median connectivity (16-15 = 1)
and 2 connections less resulted in virtual conui#gt{28-26 = 2) and the hybrid connectivity
generated 2 connections more (17-19 = -2). Thelrexpectation of the median connectivity
was that it would produce about half the numbercafnections, virtual connectivity would
connect almost everyone, and hybrid would have rtteaa half the connections but fewer than
virtual connectivity. In conclusion, the SSAS slation resulted as expected having MC with
14 connections out of 30 and 486 connections o060 which is almost half the connectivity
among the population; VC with 27 connections ouB@f&and 917 connections out of 1000 which

is almost all of the population; and HC with 20 neations out of 30 and 676 connections out of
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1000 which is more than half but fewer than in ¥altConnectivity. Figure 18 below illustrates

the difference in average number of connectionsrantioe three types of connectivity.

1000
800
600 -
400
200 -+

Number

MC VvC HC

Connection Typ

Figurel8. The Average Number of Connectivity ilASSViodels

7.4. Attendance Assessment between Supervisedm@supervised OOS

The SSAS model attempts to assess the overall stsdbool attendance in all three types of
connectivity using the PAOV model which includegable 13 with Median Connectivity, Table
14 with Virtual Connectivity, and Table 15 with Hytb Connectivity. For the first simulation,
we consider the student attendance assessment d&gugan Connectivity.  Under the
unsupervised out-of-school suspension program,ethgere 637 students promoted, 160
repeated, and 203 dropped out from the group 00 Bdddents. Hypothetically, if we use this
1000 student group as the senior year in high dchnd consider promoted and repeated
categories as successful students, there weret288ms failed and 797 students graduated from
high school. Under the supervised out-of-schogspsuasion program, there were 897 students

promoted, 47 repeated, and 57 dropped out. Irdtngr this data using the group of 1000
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students in high school, 943 students graduatedS&nstudents were unable to graduate from

high school.

Status of |Unsupervised OOSSupervised OOS
Attendance Number % Numbel %
Promoted 637 0.636[7 870 0.8700
Repeated 160 0.16Q00 47 0.0467
Drop-Out 203 0.2033 57 0.0567
Total 1000 1 1000 1

Status of |Unsupervised OQSSupervised OOS
Student | Number % Numbel %
Graduate 797 0.7967 943 0.9433
Failed 203 0.2033 57 0.0567
Total 1000 1 1000 1

Table 13. Student Attendance Assessment Usingavi€donnectivity

Second, considering student attendance assessmserg Wirtual Connectivity, under the
unsupervised out-of-school suspensions programe tiveere 493 students promoted, 71

repeated, and 436 dropped out from group of 100destts.

Status of |Unsupervised OQSSupervised OOS
Attendance Number % Numbel %
Promoted 493 0.4933 844 0.8443
Repeated 71 0.0700 53 0.0533
Drop-Out 436 0.4367 102 0.1023
Total 1000 1 1000 1

Status of |Unsupervised OQSSupervised OOS
Student | Number % Numbel %
Graduate 564 0.5643 898 0.8977
Failed 436 0.4357 102 0.1023
Total 1000 1 1000 1

Table 14. Student Attendance Assessment Usingali@onnectivity
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Examining this data for the senior year with 100@dshts, 564 students graduated and 436
students were unable to graduate from high schobinder the supervised out-of-school

suspension program, there were 844 students prdmbt repeated, and 102 dropped out.
Applying this data to the senior year of high sdheith 1000 students, 898 students graduated

and 102 students were unable to graduate fromsagbol.

Third, the simulation considers the student atteceassessment using Hybrid Connectivity.
Under the unsupervised out-of-school suspensiogram, there were 528 students promoted,
113 repeated, and 359 dropped out from the tothD00 students. Considering this data for the
senior year of high school with 1000 students, $ditlents graduated and 359 students were
unable to graduate. Under the supervised outtodedcsuspension program, there were 786
students promoted, 61 repeated, and 153 droppeddnge more, applying this data for the
senior year of high school with a group of 100@stus, 847 students graduated and 153

students were unable to graduate.

Status of |Unsupervised OOSSupervised OOS
Attendance Number % Numbel %
Promoted 528 0.526]7 786 0.7857
Repeated 113 0.1133 61 0.0610
Drop-Out 359 0.3600 153 0.1533
Total 1000 1 1000 1

Status of |Unsupervised OQSSupervised OOS
Student | Number % Numbel %
Graduate 641 0.6400 847 0.8467
Failed 359 0.3600 153 0.1533
Total 1000 1 1000 1

Table 15. Student Attendance Assessment UsingitHglmmnectivity
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The difference in graduates between unsupervised @@Supervised OOS in three types of

connectivity is illustrated in Figure 19.

1000
800 —
600
400 ~
200 —

MC | VC | HC | MC | VC | HC

Unsupervised O0OS Supervised O0S

Figure 19. The Number of Student Graduates of Sigeel and Unsupervised OOS

7.5. Correlation of Supervised and Unsupervisattd@d School Suspensions and Dropouts

In an attempt to evaluate the success and failes rof the student school attendance, Table 16
includes the difference in the number of studemtgirty supervised out-of-school suspension
that is considered as class attendadcsatus instead of absence, as the current schistans
applies. The difference in the table below is tienber of students in unsupervised out-of-
school suspension subtracted from the number irersiged out-of-school suspension. The
negative number indicates the decrease in the nueihe the positive number indicates an

increase.

Under supervised out-of-school suspension, thers wma average of 284 more students
promoted, 56 fewer that repeated, and 229 fewer dngpped out. In addition, Table 16

indicates that there were 229 more students graduat average. Therefore, the highest student
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success rate was achieved with supervision beiogiged during an out-of-school suspension

Status of Difference in Number of Students
Attendance | Median Co/ Virtual Co.| Hybrid Co. | Average| % Average
Promoted 241 351 260 284 0.284
Repeated -36 -18 -113 -56 -0.056
Drop-Out -206 -333 -147 -229 -0.229
Change in Graduate 147 333 206 229 0.229

Table 16. The Difference in Number of Student Gedesiin Three Types of Connectivity
7.6. Chapter Remarks and Summary

This chapter presents the results of three typeSSAS model simulations. The simulation
consists of random selection attachment, computatfdransition, cumulative, and steady state
probability distribution, determination of the sands’ school attendance states, connectivity
integration, learning coefficient integration, amattendance assessments. In addition, this
research presents three different models, PIOV,VPANd PAQV, in generating the initial
probabilities for student school attendance. Thet day probability,P,(t+1) of the student
attendance state is determined by computing tHerdifce of probability between students and
the average probabilities of the linked peers whieflect a positive and negative influence

coupled with the threshold value for the connettiaind the learning coefficient for interactions

between peers.

Furthermore, the SSAS model provides three differetays to create the connection
dynamically between students. The SSAS simulatmmmg$ the connectivity between the

students based on the random number evaluatingsaghe threshold value of the connectivity
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atf > 0.5 for the initial connectivity. The subsequeonmectivity considerg > 0.5 and/op >
0.95. The Median Connectivity uses thresholdsof 0.5 throughout the process, Virtual
Connectivity useg > 0.95 throughout the process, and Hybrid Connegtivsess > 0.5 for the

initial connections and > 0.95 for the connected peers thereof.

This chapter also provides an assessment of stuttanidance. Assessments between the
unsupervised and supervised out-of-school suspensace compared to estimate the overall

success or failure of the student in referenceadugating from high school.
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8. GONCLUSIONS ANDFUTURE RESEARCH

Based on the low percentage of 70% to 73% natiandllocal high school graduation rates, the
notion is that if action is not taken for our yoemnggeneration and/or their educational
environment, especially for at-risk children, hrgtavill continue to repeat itself with higher
dropout, truancy, and juvenile delinquency ratem)scig a negative impact on the student
individually and on society as a whole. Considgrihis appalling circumstance, this research
presents the SSAS model that can be used to esalieg student school attendance
phenomenon. In particular, this research rigogoursiestigates the option of implementing a
better program to decrease the dropout and truaateg. In doing so, the SSAS presents a new
approach, “Supervised Out-of-School Suspensiorstesd of continuing the unsupervised out-
of-school suspension program which is currently iatstered by the school system. The SSAS
model presents the student attendance phenomerdento assess the student school success
rates, which have been low as a result of havidg onsupervised out-of-school suspensions.
The model presents three different ways to comgueséransition probability distributions of the

student school attendance phenomenon.

The development of the SSAS explored the differesthiods of organizing and calculating the
initial transition probability: 1) The PIOV modamploys the pure random selection by
generating the initial transition probability ofetilstudent school attendance in a random process.
2) The PAIV model provides a controlling mechanism froviding the initial transition

probability of the student school attendance thhoagpre-arranged input data table. 3) The
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PAOV model provides controlling mechanism as wedl the stability of the system by
implementing the pre-arranged output look-up tablgenerate the initial transition probability.
The model forms the connectivity between the stugldyith dynamically and randomly.
Furthermore, the connectivity between the studentexplored in three different ways: 1)
Median Connectivity that creates the link betwdengeers witl# > 0.5, 2) Virtual Connectivity
which forms the connection #t> 0.95, and 3) Hybrid Connectivity that appliés> 0.5 for
initial connection ang > 0.95 for connected students thereof. The simulatesults are

described in the following section.

8.1. Remarks and Recommendations

In the results of the SSAS model simulation, theOR/Amodel generated the most stable system
among all three models with 1.4% error; the POI\sWae most unstable which resulted in 17%
error; and PAIV model exhibited 3.6% error. Imterof connectivity, first Median Connectivity
created 486 connections, Virtual Connectivity aedathe 917 links, and Hybrid Connectivity
created 676 connections out of 1000. The simulaiquiores the connectivity for a class size of
30 where Median Connectivity resulted in 14, VittGannectivity 27, and Hybrid Connectivity
20 connections out of 30. In terms of student etlattendance assessment, under supervised
out-of-school suspensions, Virtual Connectivity guoed improvement in number of students
graduating from high school with 333 students, g@flents from Hybrid Connectivity, and 147
students from Median Connectivity. Overall, thevere 229 more students graduated with

supervised OOS in comparison to unsupervised OOS.

There are several major issues directly resultiognfthe current unsupervised out-of-school

suspension. First, unsupervised suspension leadsitlent failure with students misbehaving
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further in an attempt to mask their inability toekeup, and finally convinced they will never be
able to catch up. Obviously, this is a viciousleywhere too many of our at-risk students find
themselves caught at a very young age. Then, thedhsupervision leads the child to the
streets. As the national report from police departt statements, juvenile crime spikes when
students are not in school, making a case forrignadiew and creative ways to engage our youth
in constructive activities. Additionally, drop sukead to complete loss of financial resources
and negative impact on the economy. In the cusehnool system, the student failure rate is not
taken into consideration during the budget proceldse budget is based on the total number of
students at full enrollment. Economic analysis teslato the out-of-school suspension is

addressed in a following section.

8.2. Future Research

First, this research can be further advanced bynmphg the use of the SSAS model. Young
children are pre-assigned to a specific class tviaes. The location of the student is well
defined at school or at home. Therefore, the SSA&leincan be explored further by
concentrating on the position of the student. Phdicle swarm optimization algorithm is a
stochastic process used to optimize the populdtased discrete and continuous problem. Itis a
method of swarm intelligence techniques which isdolaon social and psychological principles
in order to provide the social behavior insightsedmnms of engineer perspectives [15]. In a given
situation, the particle swarm simulates social [@ois to evaluate a proposed solution
dynamically. A social network is defined by assimgninteraction with neighbors for each
individual. Groups of these individuals form thepplation and they are defined as a random

probability in a given sample space with positiofidie optimal candidate solution is achieved
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by studying these individuals. These individuaks lanown as the particles. Then, the motion is
specified as best fitness throughout the iterapik@cess to improve these particles candidate
solutions. During the iterative evaluation procele particles remember the point at which they
had the best of the candidate successful solutidnmsh refers to particle best or local best. This
information is available to their neighbors and stheach particle has access to neighbors’
information whether they have a successful solubomot. Ultimately, the number of these
successful solutions controls the flow of the moegatrin the search space of the social setting.
Each particle refers to an individual containing pigsition and velocity creating the swarm
population and moving dynamically through out thgdrspaceR. A particle contains two
pieces of critical information: 1) its best positimemory and 2) the neighbor’s or global best
position. Therefore, each particle searches fatebgositions in the swarm hyperspace by
communicating good positions to each other andsaidg their own position and velocity based
on that information. This optimization is applicaldbr the SSAS model since it deals with a

similar stochastic process environment and thereliscnature of student school attendance

phenomena.

Second, the SSAS model can be expanded to andlgzeconomic impact of students failing
from school. The current school system formulatesmnual budget based on the total number
of school age children available to enroll into fhublic school system [8, 11, 26]. However, the
student’s school attendance performance is nabredtinto the budgeting process or used as any
indicator of future resource requirements or thedach might be misdirected to failing
academic procedures. The decision variab{gsX,, andXz and the output variables that SSAS
model provides in this study along with the steatdfte probability that enable us to compute the

expected cost can be used to study the expenditumelation between the supervised and
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unsupervised Out-of-School suspensions. Providudjtional expenditures for alternatives to
putting the student unsupervised out-of-school #manaintaining some type of educational
setting during suspension is still a positive appto economically. This process will also
decrease juvenile crime if the supervised out-test suspension is in place. The student is
then able to return to the school current on cowsek without any difficulties. In addition,
more resources for court related expendituresratiesi future if the students end up in trouble on
the street due to out-of-school suspension. A moade be used to evaluate the financial loss
due to unsupervised out-of-school suspension ®rcity leaders and school system officials in
examining the current unsupervised out-of-schospsuasion instead of continuing the program
without supervision, structure, and substance.réfbee, an economic cost-effect analysis would
be very useful in estimating and measuring the chpé the out-of-suspension on the school

budget and local economy.

There is no silver bullet to eradicate student teyaor dropouts. However, supervised out-of-
school suspension will reduce the drop-out ratetaachumber of juvenile crimes which in turn

will save innumerable dollars. Understanding tbasequences of unsupervised out-of-school
suspension used for years throughout the U.S. lmadubsequent financial loss, this research
provides a baseline model to evaluate the impaanetipervised out-of-school suspension. The
results of the SSAS model indicated that there didnal a significant improvement and impacts
on the problem related to student school attend#@nde OOS is structured and supervised.
Also, the results of the model simulation indicathdt the current unsupervised out-of-school
suspensions produce a higher dropout rate anddaiaie in comparison to a “Supervised Out-
of-School Suspension.” Therefore, SSAS providesseauation model for school official,

administrators, and others involved in the decisimaking process in our schools and
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communities in improving the student success nateeims of attendance. Overall, the SSAS
model provide a frame work for understanding arskssing the impacts of unsupervised out-of-
school suspensions and to propose a new attendeategory, supervised out-of-school
suspensions, which would reduce the dropout ancathstudent failure rate. In addition, failure
from school at an early age greatly diminishes pé&ential earning capacity in later years
resulting in society as a whole being affectedhwyearly failures of the few. Optimistically, the
SSAS model would provide opportunities to encouragkfferent approach to address the issue
related to OOS, thereby bringing new action to againg problem, to ensure the success of

each student instead of continuing the past fapolicies and practices.
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Appendix 1. SSAS MATLAB ODE WITHHYBRID CONNECTIVITY

clearall
clc

aMin=0; /ldefine parameters
aMax=0.7,

afix=0.999;

g=0.6;

m=1-g;

m4=0.6;

m5=1-m4,

x1=0.6;

x2=1-x1,

MatrixLine=1;

Year=180;
Semester=90;
Week=5;

Period=180;
startCol=2;
iterCol=3;

color=[b''qg,'r','c,/m"'y','w; [/set colors for first seven students to be displayhe chart
NumOfStudents=input{lumber of students);'

mycell={'Unsupervised;

for i=1:NumOfStudents
xlswrite(result;mycell,Present&Absenfchar(xlIsColNum2Str(4*(i-
1)+2)),char(num2str(2))]);

end

mycell={'Supervised,

for i=1:NumOfStudents
xlswrite(result;mycell,Present&Absenfchar(xlIsColNum2Str(4*(i-
1)+4)),char(num2str(2))]);

end
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mycell={'Presen};
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(2))]);

mycell={'Absent};
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(8))]);

mycell={'Total};
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(7))]);
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(11))]);

mycell={'In Clasg;
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(3))]);

mycell={'ISS};
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(4))]);

mycell={'O0S},
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(6))]);
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(9))]);

mycell={'Truancy};
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(10))]);

mycell={'Excused;
xlswrite(result;mycell,Present&Absenfchar(A"),char(num2str(5))]);

%user inputs attendance

for i=1:NumOfStudents
NumOfAttend(i)=input(Number of attendances for studenum2str(i); 1);
mycell={['Studentnum2str(i)]};
xlswrite(result;mycell;mresult[char(xIsColINum2Str(3*(i-1)+2)),char(num2str(1))])
xlswrite(result;mycell,Attendancegchar(xlIsColNum2Str(3*(i-
1)+1)),char(num2str(1))]);
xlswrite(result;mycell,Present&Absenfchar(xlsColNum2Str(4*(i-
1)+2)),char(num2str(1))]);

end

AttenDist=xlIsread(lodelStudent.xIsAttendDistribution'B8:F27);
[row,column]=size(AttenDist);
FixState=xlsread{lodelStudent.xlsDatalnOutput'F28:F38);

for s=1:NumOfStudents
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AbsencesProb{s}=0; %AbsencesProb is the Interaction Probability
InClassProb=NumOfAttend(s)/Period;

for i=1:row %get the first line of the Probability
if InClassProb-AttenDist(i,1)<0.0501&&InClassProb-&iDist(i,1)>0
AbsencesProb{s}(1,1)=InClassProb;
AbsencesProb{s}(1,2)=(1-InClassProbYeaDist(row,2)/sum(AttenDist(row,2:5));
AbsencesProb{s}(1,3)=(1-InClassProb}&hDist(row,3)/sum(AttenDist(row,2:5));
AbsencesProb{s}(1,4)=(1-InClassProbYeaDist(row,4)/sum(AttenDist(row,2:5));
AbsencesProb{s}(1,5)=(1-InClassProb}&hiDist(row,5)/sum(AttenDist(row,2:5));

break
end
end
for i=2:5 %get the other lines probabilities
for j=[1,i]
if j==1
AbsencesProb{s}(i,j)=FixState((2}1);
else
AbsencesProb{s}(i,j)=FixState((i*2}2);
end
end
end
end
for s=1:NumOfStudents %set the first current state to 0
currentState(s)=0;
end
student=AbsencesProb; %get a copy of AbsencesProb
for i=1:NumOfStudents %calculate the steady state probability
steadyState{i}=student{i}*100;
xlswrite(result;steadyState{i}Steady Statgchar(xlsColNum2Str(6*(i-
1)+1)),char(num2str(2))]);
end

%get user input for the dgydumOfDays=input('Number of School days: ");
NumOfDays=180;

for n=1:NumOfDays
result(n,1)=n; %set the # of Day in the result set
for s=1:NumOfStudents
graphProbability(s)=student{s}(1,1);
end
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if n<=20||mod(n,5)==0
figure();
hold on;
c=1,
title([Day ;num2str(n)]);
xlabelGtuden);
ylabelProbability);

for s=1:NumOfStudents
if c>7
text(s,graphProbability(s), num2six(
else

plot(s,graphProbability(s)s’, LineWidth',2, MarkerEdgeColoyk', MarkerFaceColojcolor(c),M
arkerSizeb);
c=c+1;
end
end
end
%initialize the connectivity of students to -1 winimeans not calculateet
for i=1:NumOfStudents
for j=1:NumOfStudents
conn(i,j)=-1,
end
end

%every student using the studentCopy{s}(1,1)same raumber in the result set
randNum=rand(1);
for s=1:NumOfStudents
result(n,startCol+iterCol*(s-1))=randNum;
result(n,startCol+iterCol*(s-1)+1)=curretdf(s);
xlswrite(result;student{s},InteractionProbability{char(xIsColINum2Str((s-
1)*6+1)),char(num2str(MatrixLine))]);

cumStudent=student{s}; % the cumulative probability
fori=1:5

for cumState=2:5

cumsStudent(i,cumState)=cumStudgnifn State-1)+student{s}(i,cumState);

end
end
xlswrite(result,cumStudentCumulativeProbabilityfchar(xIsColNum2Str((s-

1)*6+1)),char(num2str(MatrixLine))]);
%determine the next state and change the curaetatcording to the matrix

tempRow=result(n,startCol+iterCol*(s-1)+1)+
fori=1:5

if randNum<cumStudent(tempRow,1)
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result(n,startCol+iterCol*(s-1)+2)=
currentState(s)=result(n,startCeirol*(s-1)+2);
break
end
if result(n,startCol+iterCol*(s-1))>cumStudent(tempkRe-i)
if i==1
result(n,startCol+iterCol*(s+R)=4;
else
result(n,startCol+iterCol*(s+R)=6-i;
end
currentState(s)=result(n,startCelrcol*(s-1)+2);
break
end
end

sn=s+1; %s neighbor student: sn
matrixAverage=0;
sumNP=0;
numOfNP=0;
for counterSN=1:NumOfStudents-1
if sn>NumOfStudents
sn=sn-NumOfStudents;
end
tempRand=rand(1);
if n==1
if conn(s,sn)<0&&tempRand>=0.5
conn(s,sn)=1;
conn(sn,s)=1;
if n<=20||mod(n,5)==0
plot([s,sn],[graphProbatyils),graphProbability(sn)]);
end
elseifconn(s,sn)<0&&tempRand<0.5
conn(s,sn)=0;
conn(sn,s)=0;
end
elseifn>1
if conn(s,sn)<0&&tempRand>0.05
conn(s,sn)=1;
conn(sn,s)=1;
if n<=20||mod(n,5)==0
plot([s,sn],[graphProbatyils),graphProbability(sn)]);
end
elseifconn(s,sn)<0&&tempRand<=0.05
conn(s,sn)=0;
conn(sn,s)=0;
end
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end

if conn(s,sn)==1
matrixAverage=matrixAverage-+studen}(1,1)-student{s}(1,1);
sumNP=sumNP+student{sn}(1,1);
NUMOFfNP=numOfNP+1,;
end
sn=sn+1,
end

studentCopy{s}=student{s};

if numOfNP==0
studentCopy{s}(1,1)=afix*student{s}(2;1

elseifmatrixAverage>=0
studentCopy{s}(1,1)=afix*student{s}(DA(1-afix)*sumNP/numOfNP/n;

else
studentCopy{s}(1,1)=afix*student{s}(D;{1-afix)*sumNP/numOfNP/n;
end
TempStudentl=studentCopy{s}(1,1); % using look up table
for i=1:row %get the first line of the Probability

if TempStudentl-AttenDist(i,1)<0.05
studentCopy{s}(1,2)=(1-TempStudehgtXl;
studentCopy{s}(1,3)=(1-TempStudergtx2;
studentCopy{s}(1,4)=(1-TempStudentlig)*m4;
studentCopy{s}(1,5)=(1-TempStudehnittgum(studentCopy{s}(1,1:4);
break
end
end

disp([num2str(s),num2str(n),sumNP numOfNP MatrixAveragp;'
disp([num2str(sumNP),num2str(numOfNP),,num2str(matrixAverage)));
end

disp(conn); %print the connectivity table for each day

student=studentCopy;
%close the figure configuration

if n<=20||mod(n,5)==0

holdoff;
end
MatrixLine=MatrixLine+8;
end

%output the total counts for each state
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%start from column 3 which is the current state
for s=3:iterCol:startCol+iterCol*(NumOfStudents-1)+3

counter0=0;
counter1=0;
counter2=0;
counter3=0;
counter4=0;
for j=1:NumOfDays
if result(j,s)==0
counterO=counter0+1;
elseifresult(j,s)==1
counterl=counterl+1;
elseifresult(j,s)==2
counter2=counter2+1;
elseifresult(j,s)==3
counter3=counter3+1;
else
counter4=counter4+1;
end
end
studentlD=(s-3)/iterCol+1;
StateCouter(1,(studentlD-1)*3+1)=counterO;
StateCouter(2,(studentlD-1)*3+1)=counterl;
StateCouter(3,(studentlD-1)*3+1)=counter2;
StateCouter(4,(studentlD-1)*3+1)=counter3;
StateCouter(5,(studentlD-1)*3+1)=counter4;
StateCouter(6,(studentlD-1)*3+1)=sum(State Cqits, (studentlD-1)*3+1));

StateCouter(1,(studentlD-1)*3+2)=counterO/Numeys;
StateCouter(2,(studentlD-1)*3+2)=counterl/Num@ys;
StateCouter(3,(studentlD-1)*3+2)=counter2/Numeys;
StateCouter(4,(studentlD-1)*3+2)=counter3/Num@ys;
StateCouter(5,(studentlD-1)*3+2)=counter4/NuiDéys;
StateCouter(6,(studentlD-1)*3+2)=sum(State Cqitb, (studentID-1)*3+2));

StateCouter(1,(studentlD-1)*3+3)=AbsencesPral{entID}(1,1);

StateCouter(2,(studentlD-1)*3+3)=AbsencesPrigent|D}(1,2);

StateCouter(3,(studentlD-1)*3+3)=AbsencesPrual{entID}(1,3);

StateCouter(4,(studentlD-1)*3+3)=AbsencesPragent|D}(1,4);

StateCouter(5,(studentlD-1)*3+3)=AbsencesPrual{entID}(1,5);

StateCouter(6,(studentlD-1)*3+3)=sum(State Cqits, (studentlD-1)*3+3));
end

%Calculate Present and Absent number of days asvbel
for s=1:NumOfStudents
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Present(1,(s-1)*4+1)=StateCouter(1,(s-1)*3+1);
Present(1,(s-1)*4+2)=StateCouter(1,(s-1)*3+2);
Present(1,(s-1)*4+3)=StateCouter(1,(s-1)*3+1);
Present(1,(s-1)*4+4)=StateCouter(1,(s-1)*3+2);
Present(2,(s-1)*4+1)=StateCouter(2,(s-1)*3+1);
Present(2,(s-1)*4+2)=StateCouter(2,(s-1)*3+2);
Present(2,(s-1)*4+3)=StateCouter(2,(s-1)*3+1);
Present(2,(s-1)*4+4)=StateCouter(2,(s-1)*3+2);
Present(3,(s-1)*4+1)=StateCouter(5,(s-1)*3+1);
Present(3,(s-1)*4+2)=StateCouter(5,(s-1)*3+2);
Present(3,(s-1)*4+3)=StateCouter(5,(s-1)*3+1);
Present(3,(s-1)*4+4)=StateCouter(5,(s-1)*3+2);
Present(4,(s-1)*4+1)=0;

Present(4,(s-1)*4+2)=0;
Present(4,(s-1)*4+3)=StateCouter(3,(s-1)*3+1);
Present(4,(s-1)*4+4)=StateCouter(3,(s-1)*3+2);
Present(5,(s-1)*4+1)=sum(Present(1:4,(s-1)*%+1)
Present(5,(s-1)*4+2)=sum(Present(1:4,(s-1)*%+2)
Present(5,(s-1)*4+3)=sum(Present(1:4,(s-1)*%+3)
Present(5,(s-1)*4+4)=sum(Present(1:4,(s-1)*}+4)

Absent(1,(s-1)*4+1)=StateCouter(3,(s-1)*3+1);
Absent(1,(s-1)*4+2)=StateCouter(3,(s-1)*3+2);
Absent(1,(s-1)*4+3)=0;

Absent(1,(s-1)*4+4)=0;
Absent(2,(s-1)*4+1)=StateCouter(4,(s-1)*3+1);
Absent(2,(s-1)*4+2)=StateCouter(4,(s-1)*3+2);
Absent(2,(s-1)*4+3)=StateCouter(4,(s-1)*3+1);
Absent(2,(s-1)*4+4)=StateCouter(4,(s-1)*3+2);
Absent(3,(s-1)*4+1)=sum(Absent(1:2,(s-1)*4+1));
Absent(3,(s-1)*4+2)=sum(Absent(1:2,(s-1)*4+2));
Absent(3,(s-1)*4+3)=sum(Absent(1:2,(s-1)*4+3));
Absent(3,(s-1)*4+4)=sum(Absent(1:2,(s-1)*4+4));

end

if NumOfDays==180
%read the Make-Up lookup table
MakeUpTable=xIsread(odelStudenfAttendDistribution'D59:D108);

mycell={Unsupervised;
xlswrite(result;mycell, AttendAssmi'B1);
xlswrite(result;mycell,AttendAssm{'H1));

mycell={Supervised,

xlswrite(result;mycell,AttendAssmi'D1);
xlswrite(result;mycell, AttendAssmi'J1);
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mycell={student IC};
xlswrite(result;mycell,AttendAssmi'A2");

mycell={statug;

xlswrite(result;mycell, AttendAssmi'B2Y);
xlswrite(result;mycell,AttendAssmi{'D2);
xlswrite(result;mycell,Attend Assmi'G2);

mycell={Promoted;
xlswrite(result;mycell, AttendAssmi'C2);
xlswrite(result;mycell,Attend Assmi'E2);

xlswrite(result,{'Number}, 'AttendAssmi'H2);
xlswrite(result;' %', Attend Assmt'12);
xlswrite(result,{'Number}, '‘AttendAssm{'J2);
xlswrite(result;'%','Attend Assm{'K2');

xlswrite(result,{'Promoted, 'AttendAssmi'G3);
xlswrite(result,{'Repeated, 'AttendAssmi'G4);
xlswrite(result,{'Drop-Out}, 'AttendAssmi'G5);
xlswrite(result,{ "Total Promoted, 'AttendAssmi{'G6);

%initial the counter for both unsupervised and suged
UnsuperPromoted=0;
UnsuperMakeup=0;
UnsuperDropout=0;

SuperPromoted=0;
SuperMakeup=0;
SuperDropout=0;

for i=1:NumOfStudents
xlswrite(result{[ 'Student,char(num2str(i))]}AttendAssmi['A',char(numz2str(i+2))]);
TempRandom=rand(1);
if Present(5,(i-1)*4+1)>=165
UnsuperPromoted=UnsuperPromoted+1;
xlswrite(esult;{'Promoted, 'AttendAssmi['B',char(numz2str(i+2))]);
xlswritel(esult,{"Yes}, 'AttendAssmi['C',char(num2str(i+2))]);
else
if TempRandom<=MakeUpTable(Absent(3,(i-1)*4+1)-15,13/
UnsuperMakeup=UnsuperMakeup+1;
xlswritéfesult,{'Make Up}, '‘AttendAssmi['B',char(num2str(i+2))]);
xlswrité(esult,{"Yes}, 'AttendAssmi['C',char(num2str(i+2))]);
else
UnsuperDropout=UnsuperDropout+1;
xlswritéfesult,{'Drop Out}, 'AttendAssmi['B’,char(num2str(i+2))]);
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xlswrité(esult;{'No%, 'AttendAssmi['C',char(numz2str(i+2))]);
end
end
if Present(5,(i-1)*4+3)>=165
SuperPromoted=SuperPromoted+1;
xlswrite(esult,{'Promoted, ‘AttendAssmi['D’,char(num2str(i+2))]);
xlswrite(esult;{'Yes}, 'AttendAssmi['E',char(hum2str(i+2))]);
else
if TempRandom<=MakeUpTable(Absent(3,(i-1)*4+3)-15,137/
SuperMakeup=SuperMakeup+1;
xlswrité(esult,{'Make Up}, 'AttendAssmi['D’,char(num2str(i+2))]);
xlswrité(esult,{ 'Yes}, AttendAssmi['E',char(num2str(i+2))]);
else
SuperDropout=SuperDropout+1;
xlswrité(esult,{'Drop Out}, 'AttendAssmi['D’,char(num2str(i+2))]);
xlswrité(esult,{'No}, 'AttendAssmi['E',char(num2str(i+2))]);
end
end
end
UnsuperGraduate=UnsuperPromoted+UnsuperMakeup;
SuperGraduate=SuperPromoted+SuperMakeup;

AssmtVector(1,1)=UnsuperPromoted;
AssmtVector(1,2)=UnsuperPromoted/NumOfStudents;
AssmtVector(2,1)=UnsuperMakeup;
AssmtVector(2,2)=UnsuperMakeup/NumOfStudents;
AssmtVector(3,1)=UnsuperDropout;
AssmtVector(3,2)=UnsuperDropout/NumOfStudents;
AssmtVector(4,1)=UnsuperGraduate;
AssmtVector(4,2)=UnsuperGraduate/NumOfStudents;

AssmtVector(1,3)=SuperPromoted:;
AssmtVector(1,4)=SuperPromoted/NumOfStudents;
AssmtVector(2,3)=SuperMakeup;
AssmtVector(2,4)=SuperMakeup/NumOfStudents;
AssmtVector(3,3)=SuperDropout;
AssmtVector(3,4)=SuperDropout/NumOfStudents;
AssmtVector(4,3)=SuperGraduate;
AssmtVector(4,4)=SuperGraduate/NumOfStudents;

xlswrite(result;AssmtVectorAttendAssmi{'H3);
end
xlswrite(result;resultmresult'A2";
xlswrite(result,StateCouterittendancegA2’);
xlswrite(result;PresentPresent&AbsentB3);
xlswrite('result’,Absent,'Present&ADSENT,'BO'); .o vennenienienie it e e e e
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Appendix 2. HE ATTENDANCE STATES OF THESTUDENTS

304|031 ]1[|3]|3|2|2]1|1]2|2|3|3]1]1

»0/4/0/0/0|0|0|0|O0|0|O0]0O|0O0]0]0O|0O]O0O]1

»0/2/0/0/0]|0|0]|0|0|0|O0]|0|0O]0O|0O]0O]0O]O

»0/1/0/0/0|0|0|0|0|0|O0]|0|0O0]0O|0O]0O]0O]O

30/4/0/0/0|/0|/0|0O]0O|0O|O|0O]0O|O|0O|O|0O|O

0.00782 40/0/0/0]0|0]0]|0O|0]|0O|O|0O|O|0O|0O]0O]O0

0.87345 4/0]0)1]1/3|3|0|/0]|0|0]2|2]|3]|3|0]1

e
y

b
4

b
4

b
4

e
y

DaysRandom #Stud1| Stud2 Stud3 Stud4 Stud5 Stud6 Stud7| Stud8 Stud9

1 10.8147240/4|/0/0|0|0|0|O0]|0O|0]|0O|0O]0O]|0O|0O]|O|O]|O

2

3 10.1865710|/1]/0|0|0|0|0|O]|0O|0O|0O|0O|0O]|O]|O]|O]|O]|O

4 | 0.74849 11/0(0/0]|0|0]0|0]|0O]|0O|0O|0O|O|0O|0O]0O]O0

5 |0.3775121/0/0/0|0]0]0]|0]|0O|0O|0O|O|0O|0O]|0O|0O]0O]O0

6 10.9629590/4/0/0|0|1)/0|3]|0[4]|0/0|0]2]|0]|3]|0|4

7 10.78925640/0]0)1]1]3/3|4/0]|0|0]|2|2]|3|3]4]|0

8

9 10.9352344|/0/0]0]1]1/3|3]0]2]|0|0|2]2|3[3]|1]|1

10 /0.9710350|/4]/0]0(1]|1|3|3|2|2|0]1]2]2|3|3|1]|1

11 1 0.944107/4|/0]0]0(1]|1|3|3|2|2|1]1|2|2]|3|3|1]|1

12 1 0.98128

13/0.1946484/0]3|/0(1]0(3|0|2|0/2]0|2]0]3]|0]1]0

14 1 0.88451

1510.3237874/0|0|0/0|0]0|0O|O|0O0|0O]0O]|0O]|0O|0O|0O|1 |0

16 |0.781287Y0/4/0]/]0/0|0(0|0|O0|0|O0]|0O|0O]0O|0O]0]0O]O

17/0.8742014/0]0]/0/0]|0|0|0O0|O0O]|0O|O0]|0O|0]|0O]|0O|0O]O0O]1

18 | 0.2505160|2|0|0/0|0]|0|0|0O|0|0O]|0O]|0O|0O|0O|0O|2 |0

19 1 0.4990742/0]0]0/0|0(0|0|O0|0|O0]|0O|0O]0O]0O]0O]0O]O

20 | 0.36404

21 10.2429642|/0/0/0]|0|0]0O|0O|0O]|O]|0O|0O|0O|0O|0O]O|O]O

22 10.5016710/3|0/0|0|0|0|O]|0O|O0]|0O|0O]|0O]|0O|0O]|O|O]|O

2310.6421843/0/0/0|0|0|0|O0]|0O|O0]0O|0O]|0O]|0O|0O]|O|O]|O

2410.1712140/1/0/0]|]0|0|0O|0O0|0O]|0O]|0O|0O|0O|0O|0O]O|O]O

25[0.8134981/1/0/0|0|0|0|O0]|0O|O0]|0O|0O]|0O]|0O|0O]|O|O]|O

26 10.1022771/0/0/0|0|0O|0O0|O]|0O|O]|0O|0O]|O]|O|O]|O|O]|O

2710.1785970|1|/0/0]|0|0O]O|0O|O]|O]|O|O|0O|0O|0O]O|O]O

28 10.3421041/0/0/0|0|0|0|O0]|0O|0O0]|0O|0O]|0O]|0O|0O]|O|O]|O

29| 0.61555 Q4/0/0|0|0|0O|O]|0O|O]0O|0O]|O]|0O|O]|O|O]|O

30 | 0.5944264/0/0/0]|0|0]0O|0O|0O]|0O]|0O|0O|0O|0O|0O]O]|O]O

31 [0.11423

320.293887r1/0/0/0|0|O0|0O0|O]|O0O|O0]|0O|0O]|O]|O|O]|O|O]|O

33 | 0.70089

34 10.4071634/0/0/0|0|0|0|O0]|0|O0]|0O|0O]|0O]|0O|0O]|O|0O]|O

35[10.97232%50]/4/0/3[/0/4]0/4/0/4]/0]3]0]4/0]4|0]4
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»4/0/0/0(1]0]2]|0|3|0|0]0]2]|0|2]|0|3]0

»410/0/1/0]2|0]|3|0|3(0]1]|0]|2|0|3|0]4

Ve
4

0.5405| 40[4/0]4/0/4]/0(4[0/4|0/4]|/0)4/0]4]|0

Ve
4

DaysRandom #Studl Stud2 Stud3 Stud4| Stud5 Stud6 Stud7| Stud8 Stud9

36 |0.5749374/0|3/0]4|0]4/0/4/0]|3|0]4|/0]4]|0]4]0

37 10.74324%50/4|/0/0]0|0]0|/0|0]|0O]|0O|0O|0O|0O|0O]O|O]O

38 10.3334474/0/0/0|0|0|0|O0]|0|O0]0O|0O]|0O]|0O|0O]|0O|O]|O

39| 0.06737, g1]0/0/0O|jO|/O|0O]|0O]|O|O|0O]|O]|O|O|O|O]|O

40| 0.09843 10|/0|0]0]0Oj0O|jO|0O|0O|0O]0O]|0O]|0O|0O]0O]0O]O0

411 092828 94/0/0/0]1|/0]2]|0(3[0(0|0|2]|0|2]0]3

42 1 0.12591

43 10.7182080/4/0|/0|0|0|0O0|0O|0O|0O|O|0O|0O]|O|0O]|O]|O]|O

44 10.2816194|0/0]/0/0]0|0]|0]|0|0|0O|0O|0O|0O]|0O|0O]0]O0

45/0.8006910|4|0|0]0|0|0O|0O|0O|0O|0O]0O]|0O]|0O|0O]0O]0O]O

46 | 0.0097534|/0|/0|0]0]0|0|0|0O|0O|0]0O]|0O]|0O]|0O]0O]0O]O0

47 10.0759590(1/0]/0/0]0|0]|0]0O|0O|0O|0O|0O|0O]|0O|0O]0]O0

48 | 0.28207, j0,0|0|0|0|0O|0O|0O|0O|0O|0O|0O]|O|0O]|O]|O]|O

49 10.1473080/1/0|0|0|0|0O|O|0O|0O|O|0O|0O]|O|0O]|O]|O]|O

50[0.6917191/0/0/0|0|0|0|O0]|0O0|O0]|0O|0O]|0O]0O|0O]|O|O]|O

51]0.2310210|2|0|0]|0|0]O0O|0O|0O]|O]|O|0O|0O|0O|0O]O|O]O

52 0.3117612|0/0|0]0|0]O0O|/O|O]|O]|0O]|O|O|0O|0O]O|O]O

53[0.9705240/410/4/0/4]0/4/0/4/0]4/0]4/0[4|0]4

54 10.8234554/0/4/0]4|0]4/0/4/0]4]|0]4|/0]4]/0]4]0

5510.9748950/4/0/4/0[4]/0/4/0]4/0]4|/0/4/0]4|0]4

56

57 10.9636490/4|/0/3]0[{4]/0/4/0]4]/0]|3|/0/4/0]4|0]4

58 10.8357814|/0|3/3]4(0]4/0/4/0]|3|3|4/0]4]|0]|4]0

5910.6441640/4/3/0/0|0|0|0]|0|0O0|3]|0]|0]|0O|0O]|0O|0O]|O

60 | 0.92914

61099925804 |1/1]|2|2|3|3|3|3]1|1|]2|2|3|3|4]|4

6210.19939%4/0/1/0[2|0|3|0]|3|/0]1]/0]2]|0(3][0|4]|0

63 | 0.59568%0/4/0/0/0|0/0|0]0O]|0O|0O|0O]0O]|0O|O|O|O]|O

64 | 0.7346834/0/0/0]0|0]0O|/0O0|O]|0O]|0O|0O|0O|0O|0O]O|O]O

65|0.0615140/1/0/0|0|0|0|O0]|0|O0]|0O|0O]|0O]|0O|0O]|O|0O]|O

66 | 0.1324091/0/0/0]|0|0|0O|0O|O]|O]|0O|0O|0O|0O|0O]O|O]O

67 |0.5002030/3]0/0/0jO0|/0|0]0O]|0O|0O|0O]O]0O|0O|O|O]|O

68 | 0.6568373/0/0/0|0|0|0|O0]|0|O0]|0|0O]|0O]|0O|0O]|O|0O]|O

69 10.9623170/4|/0/3]0[4]/0/4/0]4]|/0]4|/0/4/0]4|0]4

7010.7188914(0|3/3/4]/0{4]0/4/0/4]/0]4]/0/4|/0]4]0
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»3/0/0/0|/0|0|0|0O]0O]|0O|O]|0O]O]|O|0O|O|0O]O

Ve
4

DaysRandom #Studl Stud2 Stud3 Stud4| Stud5 Stud6 Stud7| Stud8 Stud9

7110.9722490[413/3(0]4|0]4/0/4/0]4|0]4|/0/4/0]4

72/0.1001814|0|3/0({4]/0[4]0/4/0/4/0]4]|0/4|/0]4]0

73] 0.74716). Q4|0/0|0)/0]|0|0]0O|0]|0O]|0O|O]|O|O]|O|O]|O

74 10.56604%54|0/0/0|0]0|0|0O|0O|0O|0O]|0O|0O]|0O|0O|0O|0O]O

7510.13402%50|1/0/0|0]0|0]|O|O|0O|O]|0O|0O]|0O|0O|0O|0O]O

76 10.80342%1/1|{0/0|0|/0]|0|0]0|0]|0O|0O|O]|O|O]|O|O]|O

77 10.9545661[1/0/3/0]4|0]4/0/4/0]3|0]|4|/0/4/0]4

78 10.2553841|0|3/0(4/0[4|0/4/0(3]0[4]0/4|/0]4]0

79 10.421467Y0|/3|0|/0|0|0]|0|0]0O|0]|0O|0O|O]|0O|0O]|O|0O]|O

80 | 0.34371

81/0.1783180/1/0/0]0|0|O0O|/O0|O]|O]|0O|O|O|0O|0O]O|O]O

821094905 11/0/3[0|3|{0/4/0/4/0/3]|0]4/0[4|0]4

83/0.1170841/0|3/0]3|0]4/0/4/0]|3|0]4|/0]4]/0]4]0

84 10.9719460/4/0/4/0[4]/0/4/0]4]/0]4|/0/4/0]4|0]4

85[0.3608794/0/4/0[{4/0[4|/0][4/0]4|/0]4]0(4]/0/4]|0

86 0.9176570/4|/0/1]0]|2|0/3|/0]3]0]2|0|3|0|3|0]3

87 10.13236%4/0/1/0]2|0|3/0|3]0]2]|0|3|0|3]|0|3]0

88 10.4715830/3|0/0|0|0|0|O0]|0|O0]|]0|0O|0O]|0O|0O]|O|0O]|O

89 /10.38211y3|0]0|0/O0jO|/O|0O|0O]|0O|0O|0O]O]|0O|O|O|O]|O

90 |0.9708660/4/0/4]0[4]/0/4/0]4]/0]4|/0/4/0]4|0]4

91 0.13601%4/0/4/0[{4/0[4|/0]4/0]4/0]4]0(4]0/4|0

92 10.7129460/4|/0/0]|]0|0]0|0O0|0O]|0O]|0O|0O|0O|0O|0O]O|O]O

93 |0.2047044/0/0|0]0|0O]0O|/0O|0O]|O]|0O|O|0O|0O|0O]|O|O0O]O

94| 0.81021 g4/0/0|0/0|0|O0|0O0|O0|0|O0]|0O|0O0]0O]0O|0]1

95]0.43750714/0/0/0]|0|0O]0O|0O|0O]|O]|0O|0O|0O|0O|0O]O|1]O0

96 1 0.0437860]/1/0/0/0jO0)/0|0]0O]|0O0|0O|0O]0O]O|0O|O|O]|O

97| 0.03557, 10/0/0|0|0O|0O0|O]|0O|O]|0O|0O]|0O]|O|0O]|O|O]|O

98 10.9251340/4|/0/2]0(3]0/3|/0]3]0]2|0|3|0|3|0]4

991 0.79837] 40|2]2|3|3]|3|3|3|3]2|2|3|3|3|3[4]|0

100/0.0393240(1(2|0|3|0|3]0|3|0|2|0[|3|0|3|0]0]|0

101{0.8580341/1/0|0|0|0|0|1|0|1]|0|/0|0O]1]|0[1]0|2

102|0.88953¢1(1|/0|1|0|21 |11 |1|1|0j2 |2 |21 ]1]|1]2|2

103/0.6117431|0(1|{0}2|0)2]0)2/0|1|0]|1|0|1|0]|2]|0

104/0.6363040/4|/0|0|0]0]0|0O|jO|O|0|0O]|0O]|0O]|O]0O]0O]O

105/0.4777044/0]/0|0|0|0|0O]O|0O]|0O]O|0O|O]O]|O]O]|O]O
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10/0/0/0|0]0]|0|0|0O0|O0|0O|0O0]0O|0O0]0O]0O]O

DaysRandom #Studl Stud2 Stud3 Stud4| Stud5 Stud6 Stud7| Stud8 Stud9

106/0.95148710/4]/0[{4/0/4/0]4]|0[4]/0/4/0]4|0]4/0/4

107/0.9917354 |4 (4 (4|44 |4|4|14|4|4(4(4|4|4|4]|4)|4

108/0.7475894|0(4[0/4[0/4/0/4/0]4/0]4|0]4|/0]4]|0

109|/0.7405320/4|/0|0|0|/0|0|0O|0O|0O]|0O|0O|0O]0O|O]|0O]|0O]|O

110{0.3292434/0]/0|0|0|/0|0O0|0O|0O|0O]|0O|0O|0O]0O|0O]|O]|O]|O

111/0.9210940[4/0(2|/0[3|/0]3|0(3|0(3|[0|3|0|3]|0/4

112|0.6304234/0]2|0|3/0|3]0|3|0]3|0(3]0[3]|0|4]|0

113| 0.36277| 02|0|0|0/0|O0]|O|0O|0O]O|0O|0O]O|O]|O]|O]|O

114/0.5120322|0/0|0/0|0|/0]0|0|0O|0O|O|0O|O|0O|0O]0O]|O

115/0.7810060/4]/0|0|0|/0|0O0|0O|0O|0O]0O|0O|0O]O|0O]|0O]|O]|O

116{0.9575334/0]/0({4/0/4/0]4]|/0[{4]/0/4/0]4]|0]4/0/4

117/0.7188020[4(4[{0/4[0/4/0/4/0]4/0[4|0]4|/0]4|0

118/0.0018744/0]/0|0|0|/0|0]|0O|0O|0O]0O|0O|0O]O|O]|O]|O]|O

119/0.42202 0| 3|0|0|0|/0|0|0O|0O|0O]|0O|0O|0O]0O|0O]|0O]|O]|O

120/0.3465433|0/0|0/0|0|/0]0|0|0O|0O|O|0O|O|0O|0O]0O]|O

121/0.0993660/1/0|{0|0]0]0|0jO0|O|0|0]|0O]|0O]|O]0O]0O]O

122|0.6852731/0/0|0|0/0|O0]|0O|0O]|0O]0O|0O|0O]O|O]|O]|O]|O

123/0.8914030[4/0(1/0|2/0]3|0(3|0(2]|0|2]|0|3]0|3

124/0.4565414/0]1|0|2|/0|3]0|3[|0]2|0(2]0|3]|0|3]|0

125|0.1747840/1]/0|0|0|/0|0|0O|0O|0O]0O|0O|0O]0O|O]|O]|O]|O

126| 0.3021

127|0.2024890(/2|0|0|0|/0|0|0|0O|0O]0O|0O|0O]0O|0O]|0O]|0O]|O

128/0.0491692|/0]/0|0|0|/0|0O0|O0O|0O|0O]0O|0O|0O]0O|O]|O]|O]|O

129/0.9938810[4(0{4/0[4/0]4|/0/4|/0(4|0/4]|0/4]|0/4

130{0.5379534/0]/4|0[4/0[/4/0][4]|0]4|/0(4]/0]4]0/4|O0

131| 0.10516| 0/1|0|0|O0|/0O0|0O|O|0O|0O]|0O|0O|0O]0O|O]|O]|O]|O

132| 0.15506| 1j0/0|0|/0|0|/0]0O|0|0O|0O|O|0O|O|0O|0O]0O]O

133|0.2286140(2]0|0|0|/0|0|0O|0O]|0O]0O|0O|0O]O|O]|O]|O]|O

134/0.5261582|0]/0|0|0|/0|O0|0O|0O]|0O]O|0O|0O]O|O]|O]|O]|O

135/0.9204980[4(0({3/0[3/0]3|0(4|0(3|[0|3]|0/4]|0/4

136/0.3972634/0]/3|0|3/0|3]0][4][0]3|/0(3]0[|4]|0/4|O0

137/0.2879130/2]|0|0|0|/0|O0|0O|0O|0O]0O|0O|0O]0O|O]|O]|O]|O

138/0.2373132|0/0|0/0|0|/0]0|0|0O|0O|O|0O|O|0O|0O]0O]O

139/0.0546750(1]|0|0|0|/0|0|0O|0O]|0O]0O|0O|0O]O|O]|0O]|O]|O

140{0.9401141/1]/0[{4]/0/4(/0]4]/0[4]/0/4/0]4]|0]4]/0/4
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DaysRandom #Studl Stud2 Stud3 Stud4| Stud5 Stud6 Stud7| Stud8 Stud9

141/0.0298251/0][4|(0[4/0(4/0][4]|0]4|/0(4]/0]4]0/4|O0

142|0.4707040/3|0|0|0|/0|0|0O|0O|0O]O|0O|0O]0O|O]|O]|O]|O

143| 0.82201 3 3/0|{0|0|0O0|J0O]|1/0]1|/0]|0|0J1]|0f1|0]|2

144/0.4410183|0]|0|0|0|0O|21|0|1|0]|0O|0Of21|0|1]|0|2]|O0

145/0.6761890/4]/0|0|0|/0|0O0|0O|0O]|0O]|0O|0O|0O]0O|O]|O]|O]|O

146/0.5123934|0/0|0/0|0|0]0|0|0O|0O|O|0O|O|0O|0O]0O]|O

147/0.2455350(2|0|0|0|/0|0|0|0O|0O]0O|0O|0O]0O|0O]|0O]|0O]|O

148/0.1514482|/0]/0|0|0|/0|0O0|0O|0O|0O]|0O|0O|0O]0O|O]|0O]|O]|O

149/0.5733030|3/0|0/0|0|/0]0|0|0O|0O|O|0O|O|0O|0O]0O]|O

150{0.1024433|/0]0|0|0|/0|0|0O|0O|0O]|]0O|0O|0O]0O|0O]|0O]|0O]|O

151/0.07079340/1|0|0|0|/0|O0]|O|0O|0O]|O|0O|0O]0O|O]|O]|O]|O

152/0.447441|0/0|0/0|0|0]0|0|0O|0O|0O|0O|O|0O|0O]0O]O

153/0.0606530|1|/0|0|0]0]0O|0OjO|O|0|0O]|0O]|0O|O]0O]0O]O

154/0.110281/0|0|0|0O|/0|O0|0O|0O|0O]0O|0O|0O]0O|O]|O]|O]|O

155/0.9563130[4(0{4/0[4/0]4|/0/4|/0(4|0/4]|0/4]|0,4

156]/0.4464544/0]/4|0[4/0/4/0]4]|0]4/0(4]/0]4]0/4|O0

157| 0.48195| 03|0|0|O0|/0O0|O|O|0O|0O]O|O|0O]0O|O]|O]|O]|O

158 0.14739| 30/0|0/0|0|/0]0|0|0O|0O|O|0O|O|0O|0O]0O]O

159/0.6216840/4]/0|0|0|/0|0|0|0O|0O]0O|0O|0O]0O|O]|0O]|O]|O

160|0.7738244/0/0|0|0|/0|0|0|0|0|0O|0O0|0O]|O0]|0O[|0]0O]|12

161/0.4555230|3/0|0/0|0|/0]0|0|0O|0O|0O]|0O|O|0O|O]1]O

162| 0.09305| 3 0/0|0|0]0O]0OjOjO|O|0O|0O]|0O]|O]|O]0O]0O]O

163/0.5406150|3|0|0]0]0]0/0j0|JO0|0|0]|0O]|0]|O]0O]0O]O0

164/0.9748113|3(0{4/0[4/0]4|/0/4|/0(4]|/0/4]|0/4]|0,4

165/0.3878453/0]/4|(0[4/0(4/0][4][0]4|/0(4]/0]4]0/4|O0

166|/0.7665630/4/0|/0|0/0|0|0|0|0|O0|0|0O0]|O0]|0O[0]0O]|12

167/0.2972824|0/0|{0/0|0)/0]0|0|0O]|0O|0O]|0O|O|0O|0O]1]O

168/0.3881110|3|0|0|0]0]0|0jO0|O|0|0]|0O]|0O]|O]0O]0O]O

169| 0.25183| 3 0/0|0|0]0]0/0jO0|JO0|0|0]|0O]|0]|O]0O]0O]O

170/0.9572810[4(0[{4/0[4/0]4|/0/4|/0(4]|/0/4]|0/4]|0/4

171{0.0917494/0]4|0]4/0[/4/0]4]|0]4|/0(4]/0]4]|0]4|0

172|0.4902940/3|0|0|0|/0|0|0O|0O|0O]O|0O|0O]0O|O]|O]|O]|O

173| 0.58907| 30/0|0/0|0)/0]0|0|0O|0O|O|0O|O|0O|0O]0O]O

174{0.4949920/3|0|0|0|/0|0]|0O|0O]|0O]|0O|0O|0O]0O|O]|0O]|0O]|O

175[0.7925793|3]|]0|0|0|0|0O|1|0[1]|0|/0|0O]O]|O]1]0]2
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DaysRandom #Studl Stud2 Stud3 Stud4| Stud5 Stud6 Stud7| Stud8 Stud9
176/0.8666473|3(0(2|0|2|1|1|1]|1|0]2|0|2]|1|1|2]|2
177/0.6781893|0]2|0|2|0(1]/0|1]|0|2|0(2]|0|1]|0|2]|O0
178/0.5898480(4|0|0|0|/0|0|0|0|0O]|0O|0O|0O]|0O|O]|O]|O]|O
179/0.2209154|/0|0|0|0|0|0|0|0O|0O]|0O|0O|0O]|0O|0O]|0O]|0O]|O
180(0.16772340(1]|0|0|0|/0|0|0O|0O|0O]|0O|0O|0O]0O]|O]|0O]|O]O
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