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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.21 Creep Curves for MIX 10-90 for Aging from 0-60 Days 
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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.22 Creep Curves for MIX 30-70 for Aging from 0-60 Days 
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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.23 Creep Curves for MIX 50-50 for Aging from 0-60 Days 
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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.24 Creep Curves for MIX 70-30 for Aging from 0-60 Days 
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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.25 Creep Curves for MIX 90-10 for Aging from 0-60 Days 
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(a) Aging at T = 25 °C 

 

 

 

 

 

 

 

 

 

(b) Aging at T = 100 °C 

Figure 7.26 Creep Curves for 63Sn-37Pb for Aging from 0-60 Days 
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(a) Original Creep Curves (No Aging) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Secondary Creep Strain Rates (No Aging) 
 

Figure 7.27 Evolution of Creep Response with 63Sn-37Pb Content (No Aging)  
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        The effects of aging on the creep behavior of mixed formulation solders can be better 

seen by plotting the extracted secondary creep rates versus the aging time for each alloy.  Based 

on the empirical mathematical creep model described in Chapter 5 (Eq. 5.1 and 5.2), the 

evolution of secondary creep strain rate vs. aging time are demonstrated in Figure 7.28 (a) and 

(b) for room and elevated temperature respectively.  On each graph, every single data point 

represents the averaged creep strain rate of 5 specimens tested at a given set of aging conditions. 

The four material constants, namely, C0, C1, C2, and C3 are listed in Appendix III.  

   It is observed from the Figures that the maximum increase in the creep rate occurred in 

the first 10 days, after that the strain rate increased in a linear manner for the alloys.  Within the 

60-day time frame, there was no indication that an aging saturation would be reached when the 

creep strain rate started to stabilize.  Also, the higher the aging temperature was, the faster the 

alloys would creep.  The comparison between the numerical values of the secondary creep strain 

rates of non-aged specimens and the values of the creep strain rates of the specimens aged for 60 

days at 100 °C is shown in Table 7.2, where SAC305 and MIX 30-70 had the greatest change in 

creep strain rate (27X and 22X) and MIX 10-90 the smallest (only 8.6X).   

        The creep strain rates of 63Sn-37Pb are found to fall into a very narrow range of values 

between ε&  = 2 x 10-5 and ε&  = 3 x 10-5.  However, the aging induced changes in the creep strain 

rates of other mixed formulation alloys are much larger under the same stress level.  At both 

aging temperatures, the mixed formulation solders and SAC305 began with creep rates much 

lower than 63Sn-37Pb.  As aging progressed, the creep strain rates of these alloys increased 

continuously.  If given enough time (e.g. up to one year), they would approach the creep strain 

rates of 63Sn-37Pb.  By then, they would creep faster and bear less creep resistance than eutectic 

63Sn-37Pb, especially for MIX 90-10 due to its high 63Sn-37Pb content.     
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(a) Aging at T = 25 °C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Aging at T = 100 °C 

Figure 7.28 Comparison of Creep Strain Rates of Mixed Formulation Solders 
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Table 7.2 Increase in Creep Strain Rate with Aging (60-days at 100 °C) 

 

 
 
 

  

 

 

 

 

 

 

          
 

Solder Secondary Strain Rate
(with no aging)  

Maximum Strain Rate  
(aging for 60 days at 100 °C) Increase Ratio

SAC 305 9.98E-09 2.69E-07 27.0X 

MIX 10-90 5.00E-08 4.28E-07 8.6X 

MIX 30-70 2.00E-08 4.36E-07 21.9X 

MIX 50-50 4.01E-08 7.15E-07 17.8X 

MIX 70-30 5.00E-08 6.05E-07 12.1X 

MIX 90-10 4.67E-07 8.33E-06 17.8X 
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7.8       Discussion and Conclusions 

        In this chapter, aging effects on mechanical properties and creep behavior of a series of 

mixed formulation solder alloys were examined by performing tensile and creep tests with a full 

aging matrix at two different aging temperatures.  There were totally 7 types of mixed 

formulation solders (including two extreme cases: pure SAC305 and pure 63Sn-37Pb) with 

different 63Sn-37Pb content under investigation.  All test specimens were isothermally aged for 

up to 60 days at room (25 °C) and elevated (100 °C) temperatures after being water quenched. 

Then, at different time intervals, aged specimens were tested on the MT-200 testing system with 

a constant strain rate 001.0=ε&  for tensile test and a constant stress level σ = 15 MPa for creep 

test at ambient temperature.  For every specific aging condition, i.e. a specific combination of 

aging time and temperature, 10 specimens were tensile tested and the obtained raw stress-strain 

data were fitted by using a two-function empirical mathematic model.  The mechanical 

properties such as elastic modulus, yield strength and UTS were then determined from the model 

fitted curve for each alloy.  Also, for every specific aging condition, 5 specimens were creep 

tested and the averaged secondary creep strain rates were fitted by using a four-constant 

empirical mathematic model.  The comparison between aging effects on the creep resistance of 

mixed formulation solders was then conducted based on the model fitted creep strain curves.  

         The evolution of mechanical properties under the influence of aging exhibited nonlinear 

pattern to various degrees for different mixed formulation solders.  Some general conclusions 

can be drawn based on the test results and corresponding analysis.  

         Firstly, as aging time increases, the mechanical strength decreases.  It can be found that 

at both room and elevated temperatures, compared with the relatively stable elastic modulus, 

yield strength and UTS dropped rapidly in the first a few days of aging and then gradually 
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leveled off.  Elastic modulus, yield strength and UTS of pure 63Sn-37Pb had very limited change 

over the aging process, especially under room temperature condition.  In contrast, pure SAC305 

experienced the maximum loss in its mechanical properties with aging. 

         Secondly, the content of 63Sn-37Pb influences the mechanical properties of mixed 

formulation solders in a complicated manner.  Under room temperature aging, yield strength and 

UTS decreased as the content of 63Sn-37Pb increased from pure SAC305 all the way to MIX 50-

50 and then bounced back up rapidly to its peak values at MIX 70-30.  Under elevated 

temperature (100 °C), similar trends in yield strength and UTS were found with the peak 

mechanical strength values occurring at MIX 90-10. 

         Finally, as aging temperature increases, yield strength and UTS of all mixed formulation 

solders unanimously decreases and the extent of decrease depends on the content of 63Sn-37Pb. 

Under elevated temperature, it took less time for the mechanical properties to become stabilized, 

and meanwhile, yield strength and UTS dropped towards a level as low as that of 63Sn-37Pb.  

         The distinctive microstructure of mixed formulation solders, as shown in Chapter 6, can 

work as a predictor for the mechanical properties of these alloys.  For example, the needle-

shaped precipitates in SAC305 play a dual role, i.e. strengthening material as hard precipitations 

but also causing material failure by providing source and path for crack initiation and 

propagation.  Similarly, the precipitates in mixed solders under MIX 50-50 are more crack 

source provider than material strengthener due to their bone-like shape and soft particle nature 

compared with Ag3Sn in SAC305.  In general, this type of precipitate is detrimental to 

mechanical properties.  However, as 63Sn-37Pb content exceeds 50 wt.%, the coarsening process 

took place and the precipitates changed from bone-shaped particles into pie-shaped particles. 

Even though these particles are not as strong as that in SAC305, their unique morphology 
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hinders the formation of crack and retards its spread across the matrix so as to improve the 

mechanical properties.  

 Fractography analysis of failed mixed formulation solder specimens showed transition in 

failure mode (from transgranular to intergranular) during aging.  Compared with non-aged 

specimens that exhibited typical ductile fracture characteristics, all solders failed more or less in 

a ductile way, but the transgranular characteristics became less evident in fractured specimens 

and a trend from ductile fracture to brittle fracture emerged, which was more significant for 

solder alloys with less 63Sn-37Pb content (except for pure SAC305).  Moreover, higher aging 

temperature seemed to accelerate the transition in failure mode.   

             Analysis of aging effects on creep behavior of mixed formulation solders shows that the 

maximum change in creep strain rate occurred in the first 10 days of aging, after that the strain 

rate increased in a linear manner for all the alloys.  The higher the aging temperature was, the 

faster the alloys would creep.  Within 60 days, there was no indication of aging saturation when 

the creep strain rate started to stabilize.  

       The creep strain rates of 63Sn-37Pb did not vary much under aging and fell into a very 

narrow range of values.  However, the aging induced changes in the creep strain rates of other 

mixed formulation solders were much larger under the same stress level.  At the beginning of 

aging process, the mixed formulation solders and SAC305 crept much slower than 63Sn-37Pb, 

but as aging progressed, the creep strain rates of these alloys increased continuously and would 

end up with much higher values if given enough time.  By then, mixed formulation solders 

would possess less creep resistance and creep faster than eutectic 63Sn-37Pb. 
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Chapter 8 
Conclusions 

 
8.1       Literature Review  

            Aging has been identified as one of the main causes for the existence of large 

discrepancies in the property database of soldering materials.  Especially given the high 

homologous temperatures at which solder alloys work, aging affects not only their mechanical 

properties but also their microstructure.  In electronic packages, aging effects take place on bulk 

solder and solder joints in different ways and to different extent.   

             The mechanical response of solder joints to external loading can be dramatically 

different from that of bulk solders under the same aging condition due to the distinctive features 

that solder joints have such as interfacial intermetallic compounds (interfacial IMCs), fine 

microstructure and mechanical constraint jointly imposed by substrate and bulk solder.  Usually, 

solder joints have higher strength than bulk solder. 

             In contrast to the IMC coarsening, coalescing and dispersing in bulk solder, the 

microstructure evolution of solder joints under aging turns can be much more complicated and 

requires consideration of such factors as solder bump/solder compositions, the passivation 

technology or bond-pad metallization in use and the thermal profile of reflow soldering process. 

The thickness of interfacial IMC layer at solder joints is found to increase by following a square 

root time law regardless of solder types and substrate surface finishes.  Formation of Kirkendall 

voids can be widely observed in solder joint interface on Cu pad with various surface finishes 

under solid state thermal aging condition. 
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             To increase the thermal aging resistance of bulk solder and solder joints, metallurgical 

strengthening approaches, which aim to reinforce not only solder matrix but also 

matrix/intermetallic interface, are able to offer a solution and can be achieved by adding an 

alloying element or by using a doping element, e.g. Si, Ti, Cr, Mn, Ni, B or rare earth elements. 

             The CTE mismatch between the PCB and the IC components generates high mismatch 

cyclic deformations, which produce complex stress/strain conditions and eventually lead to the 

failure of solder joints.  Therefore, it is necessary to establish reliable constitutive models to 

describe solder behavior under certain work condition in order to accurately analyze solder joint 

stress/strain state and predict solder joint life.  

             The classical elastic-plastic-creep constitutive model consists of four components, 

namely, elastic, plastic, time-dependent primary (transient) creep, and steady-state creep strain 

components.  Starting from this model, study on constitutive modeling of material behavior of 

solder alloys has been vastly performed and various stress-strain curve models and constitutive 

models of creep deformation have been proposed by researchers so far.   

             Anand viscoplastic model, which was developed for describing the rate-dependent 

deformation of metals at high temperatures, has been adopted successfully to represent the 

viscoplastic behavior of solders alloys.  This constitutive model unifies both rate-dependent 

creep behavior and rate-independent plastic behavior occurring concurrently in solder alloys. 

             Solder joint reliability modeling and life prediction are very important in evaluating the 

intended application of electronic packages at early stage of product design.  Over past two 

decades, enormous efforts have been taken to study the life prediction of solder joints with 

different solder alloys and various packaging techniques.  As a result, a number of modeling 

methods have been brought into real application in the electronics packaging industry. 
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8.2       Specimen Preparation and Experimental Procedures 

            A unique specimen preparation method is introduced for the purpose of eliminating 

specimen variation and ensuring microstructure uniformity.  Compared with other specimen 

making approaches, this method has two unique features: (1) Small specimen dimensions that 

minimize the waste of solder alloys; (2) Net shape technique that requires no further machining 

operations on specimen. 

           All solder test specimens are formed in Pyrex glass tubes with high precision rectangular 

cross-section using an induction melting + vacuum suction specimen preparation system.  The 

typical specimen dimensions are length (80) x width (3) x thickness (0.5) mm.  Water quenching 

and controlled reflow oven cooling are used before aging treatment and test. 

           Uniaxial tension and creep tests are carried out on a multifunctional tension/torsion 

thermo-mechanical test system to determine the material properties of solder alloys of interest. 

Moreover, a two-function empirical mathematical model based on truncated stress-strain curves 

is developed to characterize the stress-strain response of solder alloys. 

           Microstructure analysis is conducted on Epoxy potted specimens.  Various techniques 

such as OM, SEM, EPMA, are employed in order to obtain high quality micro-images of solder 

alloys.  Other analytical methods in use are DSC, EDX, etc.       

 

8.3       Aging Effects on Mechanical Properties of SAC Alloys 

       Aging effects on mechanical properties of SAC solder alloys were examined by 

performing tensile tests based on a full test matrix of aging time, temperature and solder alloys. 

The mechanical properties such as Elastic modulus, yield strength and UTS were determined 

from model fitted curves for each SAC alloy.  The microstructure evolution of SAC alloys as 
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well as its influence on the mechanical properties and failure behavior during aging was studied. 

Analogous experiments were performed with 63Sn-37Pb specimens for comparison purposes. 

            The mechanical properties of SAC alloys decreased with increasing aging time and 

temperature.  High Ag content SAC alloys were found to have better aging resistance.  The 

change of elastic modulus can be described by a 3-parameter exponential model                        

(Eq. 4.1) for SAC alloys, but the elastic modulus of 63Sn-37Pb basically remained unchanged 

across the entire aging matrix and can be characterized by a narrow range.  The change of yield 

strength and UTS of both SAC and 63Sn-37Pb can be depicted by a 3-parameter hyperbolic 

model (Eq. 4.2 and Eq. 4.3).  Compared with SAC, 63Sn-37Pb showed better aging resistance. 

The aging induced microstructure coarsening is the fundamental reason behind the 

mechanical property deterioration of solder alloys.  Increase in grain size and phase structure will 

lead to reduction in tensile strength because coarsened grains and second phase particles will lose 

their effectiveness in blocking dislocation movement due to fewer grain boundaries and weaker 

precipitation pinning effect in SAC alloys.  For 63Sn-37Pb, the eutectic structure does not 

contain any second phase, but the solder experienced significant loss in its tensile strength too. 

The precipitation of β-Sn out of the supersaturated Pb-rich phases during aging is considered to 

be one important reason for the softening of this alloy.  

            Silver content plays an important role in determining the mechanical properties and 

microstructure evolution of SAC alloys during aging.  The difference in microstructure indicates 

that the Ag content affects the Ag3Sn IMC dispersion and β-Sn grain size.  For high Ag content 

solder alloy, the microstructure has finely dispersed IMC and fine β-Sn grain size, which help to 

suppress the plastic deformation of solder alloy and therefore strengthen the material.  In general, 

higher Ag content alloys have better mechanical properties and greater aging resistance.  
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8.4       Aging Effects on the Creep Behavior of SAC Alloys 

       Aging effects on SAC solder creep behavior were examined by performing creep tests 

according to a full test matrix of aging time, temperature and solder alloys with different Ag 

content and constant Cu content.  63Sn-37Pb was also tested for comparison purpose.  Secondary 

creep strain rate data were extracted from original creep curves and averaged for model fitting by 

using a 4-constant empirical model.  The model-fitted curve is called creep strain rate curve.  

            All SAC alloys experienced dramatic increases in their creep rates for elevated 

temperature aging (T > 50 °C) compared with room temperature aging and large changes 

occurred during the first month of aging.  For the 6-month creep data, creep strain rates 

maintained increasing trend and showed no sign of aging saturation.  In contrast, the aging 

induced changes in the creep strain rates of the conventional eutectic 63Sn-37Pb solder were 

much smaller and could be defined within a very narrow range of values.  By comparing this 

range with the creep strain rate curves for each SAC alloy, it could be found that even though 

63Sn-37Pb solder crept faster at the beginning of aging, the creep strain rates of SAC alloys 

increased at much higher rate and after certain duration of aging, cross-over points would occur 

between creep strain rate curves of SAC alloys and the narrow creep strain rate range of 63Sn-

37Pb, indicating worse creep property of SAC alloys from the time forward.  

           Silver content was observed to have considerable influence on SAC creep strain rate and 

aging effects.  Higher silver content SAC alloy has lower creep strain rate and is less affected by 

aging.  The explanation lies in the finer and more Ag3Sn particles formed in higher silver content 

SAC alloys, which can effectively block dislocation movement then strengthen the materials.    

           According to test results under different stress levels, creep strain rates of SAC alloys 

were strongly influenced by change in applied stress, especially for elevated temperature aging, 
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while 63Sn-37Pb exhibited limited variation in its creep behavior as stress level increased. 

Hence, SAC alloys are more sensitive to change of stress level than 63Sn-37Pb under aging. 

                             

8.5       Preparation and Microstructure of Mixed Formulation Solders 

        Totally, 7 mixture solders with different mixing ratios between 63Sn-37Pb and SAC305 

were carefully prepared.  DSC analysis showed that the melting point of these solders decreases 

as the 63Sn-37Pb content increases and levels off beyond 30 wt.%.  Pasty range is wide when the 

composition is close to pure SAC305 or 63Sn-37Pb and narrow between 30 wt.% and 70 wt.%. 

        Microstructure evolved dramatically with the chemical composition.  As the 63Sn-37Pb 

content increased from 10% to 90%, the precipitates in the mixed formulation solders evolved 

from thin bone-shaped to thick bone-shaped to coarse bone-shaped to pie-shaped, and finally, to 

coarse pie-shaped particles.  Eventually, as the content reached 100%, the typical eutectic 

structure was observed.  EDX analysis indicates that these precipitates are rich in Ag and Pb. 

Generally speaking, the distinctive microstructure of these mixed formulation solder alloys will 

play a dominant role in determining their mechanical properties.  

            Microstructure of BGA solder joints in real electronics package was observed by using 

Nomarski optical microscopy.  Specimens under investigation were treated with different reflow 

profiles differing in their peak temperatures and dwelling times above the melting points of both 

Pb-free and Sn-Pb solders.  It is found that the higher the reflow peak temperature is, the longer 

the dwelling times are, the finer and more homogeneous microstructure will form in the solder 

joint.  Nonetheless, a target reflow profile exists, which takes both homogeneity of 

microstructure and other aspects of solder joint reliability into consideration.   
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8.6       Aging Effects on the Tensile and Creep Behavior of Mixed Formulation Solders 

       The mechanical properties and creep behavior of mixed formulation solders continuously 

evolved and exhibited nonlinear pattern to various degrees for different mixing ratios under the 

influence of isothermal aging.   

         At both room and elevated temperatures, the mechanical strength decreased as aging 

time increased.  Compared with the relatively stable elastic modulus, yield strength and UTS 

dropped rapidly in the first a few days of aging and then gradually leveled off.  Elastic modulus, 

yield strength and UTS of pure 63Sn-37Pb had very limited change over the aging process, 

especially under room temperature condition.  In contrast, pure SAC305 experienced the 

maximum loss in its mechanical properties with aging. 

         The content of 63Sn-37Pb influenced the mechanical properties of mixed formulation 

solders in a complicated manner.  Under room temperature, yield strength and UTS decreased as 

the content increased from pure SAC305 all the way to MIX 50-50 and then bounced back up 

rapidly to its peak values at MIX 70-30.  Under elevated temperature, similar trends in yield 

strength and UTS were found with the peak mechanical strength values occurring at MIX 90-10.  

          As aging temperature increases, yield strength and UTS of all mixed formulation solders 

unanimously decreases and the extent of decrease depends on the content of 63Sn-37Pb.  Under 

elevated temperature, it took less time for the mechanical properties to become stabilized, and 

meanwhile, yield strength and UTS dropped towards a level as low as that of 63Sn-37Pb.  

          Fractography analysis of failed mixed formulation solder specimens showed transition 

in failure mode (from transgranular to intergranular) during aging.  Compared with non-aged 

specimens that exhibited typical ductile fracture characteristics, all solders failed more or less in 

a ductile way, but the transgranular characteristics became less evident in fractured specimens 
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and a trend from ductile fracture to brittle fracture emerged, which was more significant for 

solder alloys with less 63Sn-37Pb content (except for pure SAC305).  Also, higher aging 

temperature seemed to accelerate the transition in failure mode.   

             The maximum change in secondary creep strain rate of mixed formulation solders 

occurred in the first 10 days of aging, after that the strain rate increased in a linear manner for all 

the alloys.  The higher the aging temperature was, the faster the alloys would creep.  Within 60 

days, there was no indication of aging saturation when the creep strain rate started to stabilize.  

       The creep strain rates of 63Sn-37Pb did not vary much under aging and fell into a very 

narrow range of values.  However, the aging induced changes in the creep strain rates of other 

mixed formulation solders were much larger under the same stress level.  At the beginning of 

aging process, the mixed formulation solders and SAC305 crept much slower than 63Sn-37Pb, 

but as aging progressed, the creep strain rates of these alloys increased continuously and would 

end up with much higher values if given enough time.  By then, mixed formulation solders 

would possess less creep resistance and creep faster than eutectic 63Sn-37Pb. 
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Appendix I 
 

Empirical Models Used in Curve Fitting of Solder Mechanical Properties: 

 

 

(1)  Elastic Modulus: 
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Model Constants for SAC105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic Modulus C0 (GPa) C1 (GPa) C2 (Day-1) 
25 °C 26.17 6.52 0.0199 
50 °C 21.10 11.87 0.0365 
75 °C 18.07 14.83 0.0426 
100 °C 16.51 16.30 0.0481 
125 °C 16.39 16.33 0.0541 

Yield Strength C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 12.02 8.38 59.38 
50 °C 10.92 9.45 12.06 
75 °C 10.36 10.02 6.79 
100 °C 10.59 9.84 3.22 
125 °C 10.08 10.36 2.58 

UTS C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 19.24 6.95 11.36 
50 °C 15.71 10.47 6.27 
75 °C 14.93 11.31 3.94 
100 °C 14.74 11.53 2.81 
125 °C 14.37 11.90 2.40 
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Model Constants for SAC205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic Modulus C0 (GPa) C1 (GPa) C2 (Day-1) 
25 °C 31.05 8.41 0.0496 
50 °C 29.94 9.42 0.0563 
75 °C 28.05 11.26 0.0546 
100 °C 26.51 12.72 0.0553 
125 °C 24.62 14.65 0.0521 

UTS C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 21.41 12.19 16.51 
50 °C 21.28 12.21 7.33 
75 °C 20.04 13.42 4.82 
100 °C 18.62 14.86 3.55 
125 °C 17.85 15.65 2.56 

Yield Strength C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 19.95 8.69 9.07 
50 °C 17.01 11.54 8.79 
75 °C 16.51 12.04 4.28 
100 °C 15.62 12.93 3.53 
125 °C 15.36 13.18 2.23 
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Model Constants for SAC305 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield Strength C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 21.22 7.68 11.72 
50 °C 18.31 10.59 8.03 
75 °C 17.29 11.71 4.94 
100 °C 16.61 12.42 3.17 
125 °C 15.99 13.04 1.99 

Elastic Modulus C0 (GPa) C1 (GPa) C2 (Day-1) 
25 °C 29.77 9.90 0.0316 
50 °C 29.29 10.41 0.0473 
75 °C 27.76 11.95 0.0533 
100 °C 27.76 11.95 0.0534 
125 °C 27.03 12.61 0.0651 

UTS C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 30.92 9.81 3.73 
50 °C 26.31 14.36 3.64 
75 °C 24.43 16.27 2.28 
100 °C 23.54 17.18 1.43 
125 °C 22.59 18.13 1.25 
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Model Constants for SAC405 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic Modulus C0 (GPa) C1 (GPa) C2 (Day-1) 
25 °C 31.49 10.15 0.0377 
50 °C 31.28 10.14 0.0617 
75 °C 30.29 11.07 0.0755 
100 °C 29.42 11.92 0.0904 
125 °C 28.37 12.95 0.0873 

UTS C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 31.22 12.19 8.55 
50 °C 30.17 13.09 3.98 
75 °C 27.93 15.36 1.53 
100 °C 26.15 17.14 1.35 
125 °C 24.68 18.61 0.95 

Yield Strength C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 20.69 9.86 15.92 
50 °C 20.03 10.52 6.38 
75 °C 18.28 12.27 3.94 
100 °C 17.99 12.57 2.96 
125 °C 17.63 12.93 1.82 
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Model Constants for 63Sn-37Pb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Elastic Modulus C0 C1 C2 
25 °C 
50 °C 
75 °C 
100 °C 
125 °C 

Model cannot be applied due to the near constant 
modulus values across the entire aging matrix. 

Yield Strength C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 24.96 19.98 28.79 
50 °C 29.16 15.62 9.18 
75 °C 29.36 15.48 4.91 
100 °C 29.29 15.59 4.29 
125 °C 28.62 16.27 4.03 

UTS C0 (MPa) C1 (MPa) C2 (Day) 
25 °C 33.76 17.48 11.18 
50 °C 33.46 17.78 3.33 
75 °C 32.05 19.21 2.08 
100 °C 33.53 17.74 1.91 
125 °C 34.35 16.85 5.62 
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Appendix II 
 
 
 
Empirical Mathematical Model Used in Creep Curve Fitting: 
 
 

)1(log 3
210

tCeCtCC −−++=ε&  
 
Note: The units of C0, C1, C2, and C3 are chosen so that ε& is in sec-1 and t is in months. 
 
 
 
 
 

Model Constants for (R.T.) 25 ºC Aging 
 
 

Constants 63Sn-37Pb SAC105 SAC205 SAC305 SAC405 

C0 -13.12 -16.12 -17.09 -17.13 -17.17 

C1 0.0583 0.7795 0.3546 0.3654 0.2481 

C2 1.14 1.36 0.14 13.70 0.0989 

C3 3.53 37.41 8.36 2.42 1.37 
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Model Constants for 50 ºC Aging 
 
 

 
 
 

 
 

Model Constants for 75 ºC Aging 
 

 
 
 
 
 

Constants 63Sn-37Pb SAC105 SAC205 SAC305 SAC405 

C0 -13.12 -16.12 -17.09 -17.13 -17.17 

C1 0.1161 0.4764 0.5453 0.1919 0.2490 

C2 1.24 5.64 2.89 2.98 2.49 

C3 6.83 6.37 5.33 3.28 1.46 

Constants 63Sn-37Pb SAC105 SAC205 SAC305 SAC405 

C0 -13.12 -16.12 -17.09 -17.13 -17.17 

C1 0.0704 0.4091 0.5189 0.2314 0.2402 

C2 0.97 6.26 3.88 3.62 3.48 

C3 4.75 6.87 5.17 3.91 4.01 
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Model Constants for 100 ºC Aging 
 

 
 
 

 
Model Constants for 125 ºC Aging 

 

 
 
 
 
 
 

Constants 63Sn-37Pb SAC105 SAC205 SAC305 SAC405 

C0 -13.12 -16.12 -17.09 -17.13 -17.17 

C1 0.0819 0.3948 0.2251 0.2298 0.2212 

C2 0.49 6.81 6.03 4.41 3.80 

C3 2.05 6.61 3.97 3.02 3.55 

Constants 63Sn-37Pb SAC105 SAC205 SAC305 SAC405 

C0 -13.12 -16.12 -17.09 -17.13 -17.17 

C1 0.0942 0.3224 0.1728 0.1555 0.1929 

C2 0.38 7.42 6.96 4.96 4.23 

C3 1.86 8.80 4.78 5.78 4.51 
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Appendix III 

 
 

Empirical Mathematical Model Used in Creep Curve Fitting: 
 
 

)1(log 3
210

tCeCtCC −−++=ε&  
 

Note: The units of C0, C1, C2, and C3 are chosen so that ε& is in sec-1 and t is in months. 
 
 

Model Constants for the Creep Strain Rate vs. Aging Time Curves (25 °C) 

 
 
 

Model Constants for the Creep Strain Rate vs. Aging Time Curves (100 °C) 
 

 

Solder Co C1 C2 C3 

SAC305 -18.42 0.0086 0.31 0.46 

MIX 10-90 -16.74 0.0070 0.01 0.00 

MIX 30-70 -17.54 0.0052 -0.07 0.00 

MIX 50-50 -17.03 0.0011 -0.01 0.40 

MIX 70-30 -16.81 0.0076 0.23 0.04 

MIX 90-10 -14.57 0.0161 1.56 0.19 

63Sn-37Pb -10.45 0.0003 0.02 0.07 

Solder Co C1 C2 C3 

SAC305 -18.41 0.0152 2.37 0.16 

MIX 10-90 -16.78 0.0117 1.41 0.33 

MIX 30-70 -17.73 0.0061 2.71 0.31 

MIX 50-50 -17.03 0.0127 2.12 0.29 

MIX 70-30 -16.96 0.1237 2.40 7.64 

MIX 90-10 -14.65 0.0027 2.67 0.41 

63Sn-37Pb -10.45 0.0012 -0.44 0.56 




