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Flywheels are used to store kinetic energy through the rotation of an inertial mass, 
which usually rotates at very high speeds.  Generally, that energy can be extracted (using a 
motor-generator system) in the form of electricity.  For space applications, where most 
advanced designs are used, weight is a major consideration. Storing as much energy as 
possible in as little mass as possible is a fundamental requirement for such systems.  
Rotational speeds for certain designs may exceed 60,000 RPM, which introduce very high 
stress levels into the hub and rim.  Failure of the structure can result in an almost explosive 
disintegration, which can prove deadly to anyone in the vicinity of such a disaster.  
Accordingly, two major and often contradictory challenges in flywheel design are improved 
energy storage density and operational safety. In order to address these challenges, a new 
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approach to strengthen rotating structures with additional reinforcement in the radial 
direction, along with the typical hoop direction reinforcement, which is called multi-
direction composites (MDC), has been developed. This work explores basic issues of safety 
and energy storage density with specific application to the MDC approach. Specifically, the 
goals of this research effort were to: 
 
? Develop a methodology to optimize the design, based upon maximizing the 
energy storing density (ESD) of the complete flywheel system (including 
shaft, hub, and rim). 
? Design and evaluate a prototype configuration consisting of a steel shaft, a 
multiple-layer domed hub and a multi-directional composite rim. 
?  Develop and evaluate a health monitoring methodology for such systems 
based upon variations in imbalance level.  
? Investigate the application of the Gabor analysis technique, a joint time-
frequency method, as a vibration analysis tool for crack identification.  
? Investigate the natural frequency variations due to the presence of the cracks 
in a composite disk rotor system, both experimentally and numerically. 
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 
 
Flywheels have been used for thousands of years in many fields, but until the 
1970?s flywheels had not been used mostly as energy storage devices. The energy stored 
in flywheel usually is the kinetic energy and is proportional to the square of the rotational 
speed, so flywheels can be used as energy storage sources for space vehicles, satellite 
devices, etc., typically rotate at relatively high speeds in order to store as much energy as 
possible. A major milestone occurred during the 1960?s and 70?s when NASA sponsored 
programs, which proposed energy storage flywheels as possible primary sources for 
space missions. 
With the development of composite material manufacturing technology, multi-
directional composites (MDC) with a layered structure can be used in flywheels for space 
vehicles. The use of composite materials provides numerous advantages over metals, 
such as reduced weight and increased strength, as reported by Gowayed and Flowers 
(2002). There are two principles about the light weight for a high speed rotational 
flywheel: one advantage is that the bearing support system gets ultra-low friction, and 
another advantage is that the inertial inference and thermal loading which causes stress 
concentration in the material at high rotational speeds are minimized. High strength is 
needed to achieve maximum rotational speed. Figure 1.1 shows the structure of a typical 
layered MDC flywheel. The thin layers are made of radial reinforcement composite 
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materials whereas the thick layers are made of hoop reinforcement composite materials. 
The hoop reinforcement layer and radial reinforcement layer are assembled alternately in 
order to form a composite structure reinforced in both hoop and radial directions. This 
approach helps remedy the classical problem of radial crack propagation in thick, 
filament wound flywheels and eliminates kinks that can drastically reduce hoop strength. 
The MDC flywheel also allows the tip speed to be increased, thus enhancing the energy 
capacity by allowing more radial tensile stress distributions.    
In order to maximize both the energy storage capacity and the energy storage 
density (ESD), it is necessary to optimize the design by applying our understanding of the 
static and dynamic behaviors of MDC flywheel systems rotating at high speeds. In this 
study, understanding the distribution of the stress, the deformation of the geometry, is 
critical in order to decide the optimum structure, geometry, parameters and rotational 
speeds for a flywheel system. 
Cracks and voids are common defects in high-speed rotating flywheel systems 
and are a precursor to fatigue-induced failure. Another goal of this study is to investigate 
the initiation and propagation of the cracks both numerically and experimentally. Cracks 
are often initiated in or near the regions where have very high local stresses distribution. 
When stresses increase to some threshold level or failure point, the leading edge of the 
crack (crack tip) starts to propagate. Cracks could cause localized flexibility in the 
structure of the rotor and thereby, affect the dynamic behavior to some extent. There are 
two basic kinds of cracks: transverse cracks and torsion cracks, which depend on the 
types of stress fields. In most rotor systems, bending stress tends to be dominant. 
Accordingly, the present study considers only transverse cracks.  
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1.1 History of the Flywheel 
The flywheel is one of the mankind?s earliest inventions and has been widely used 
for a long time. In ancient China, the four wooden flywheels made the earliest fight 
vehicles. In Egyptians, about 2,500 years ago, people created the earliest chariot by using 
wooden flywheels. Flywheel systems were widely used in everyday life (Genta 1985): 
water wheels for pumping water and wind driven flywheels that generated power. The 
historical development of flywheels and their uses has largely been dependent on 
advances in both materials and machine technology, coupled with opportunity or 
necessity (Horner, et al., 1996). The first great advances were made in the 18
th
 century 
during the Industrial Revolution. The use of flywheels in stream engines and the 
widespread use of metal instead of wood in the construction of machines were two 
important developments. Flywheels built of cast iron, with the greater density of material, 
could combine a greater mass and moment of inertia in the same space and structure. 
There are numerous applications of flywheels; one modern application is the use of 
automotive flywheels to keep electric cars running smoothly.  
 
1.2 Use of Flywheel Technology for Mechanical Energy Storage 
The origins and use of flywheel technology for mechanical energy storage began 
several hundred years ago, and was developed throughout the whole Industrial 
Revolution. A flywheel is a unique rotating machine in that the design purpose is to store 
energy by the combined effects of speed and mass (Bowler, 1997). It is universally 
appreciated as a kinetic form of stored energy. Because the flywheel rotor rotating at a 
high-speed stores a large mount of inertia, the flywheel system can be used in many 
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applications that use stored inertia in the flywheel rotor to balance fluctuations in the 
velocity of a rotational machine caused by inertia and external forces (Genta, 1985). One 
example of this application is the flywheel rotor in steam engines. 
A compactly sized and lightweight component with a large amount of energy 
storage storing density is very important for a spacecraft. Space vehicle programs 
consistently effort to reduce satellite rim mass to increase payload capacity and/or reduce 
launch and fabrication costs. At the same time, performance demands on satellite systems 
or spaceship continue to increase, creating a challenge for space vehicle technology 
development. Although chemical batteries have been used long time in spacecraft design, 
mechanical batteries such as flywheels offer significant weight and life benefits. 
Flywheel battery systems have the potential to store more amounts of energy with very 
little weight compared to chemical batteries and they can be used as attitude control 
actuators to replace reaction flywheel assemblies and control moment gyros. Flywheel-
based systems provide both high energy storing density and attitude control functionality, 
and solve both of these issues.  
Until recent times, the development of flywheels has been limited by a lack of 
suitable materials and useful technologies. Steel has been used for a long time in the past 
but has limitations on speed/weight ratio and safety for the spaceship project. With the 
development of modern fibers and resins, a new range of exciting materials has become 
available for the engineer and designer. This has led to many studies in the 1970?s and 
80?s on the general concept of a flywheel energy storage system.  
In the 1990?s, with the developments in strong lightweight composite materials, 
magnetics bearings and solid state electronic devices, new designs are now significantly 
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performing all earlier facts in several important respects, which can be summarized as 
follows (Horner (1996)): 
? Quick energy recovery 
? High efficiency 
? Low maintenance and long service life 
? High stored energy vs. small volume 
? High output power levels 
? High stored energy vs. light weight 
? Low product and operational costs 
 
In 2000, Truong et al., introduced the Flywheel Energy Storage Demonstration 
Project, initiated at the NASA Glenn Research Center, as a possible replacement for the 
Battery Energy Storage System on the International Space Station. In 2000, Fausz et al., 
reported that the Flywheel Attitude Control, Energy Transmission and Storage 
(FACETS) system should combine all or parts of the energy storage, attitude control, and 
power management and distribution (PMAD) subsystems into a single system, thus 
significantly decreasing flywheel mass (and volume).  
 
1.3 The Use of Composite Materials for Flywheels 
When a flywheel energy storage system is rotating at high speed, the stress 
distribution in thin rims is mainly concentric (or hoop), so composite materials with the 
high unidirectional strength of their fibers can be used to advantage. A composite 
5 
 
 
 
 
 
 
flywheel rotor was designed and developed by Potter and Medicott (1986), as part of a 
program to develop a flywheel energy storage system, which used in vehicle applications. 
In the following decade, advanced composite flywheels have been developed in order to 
meet the demands for energy storage systems with both a high energy density and long 
life. In the study of Curtiss, et al., (1995), it was shown that the composite Carbon fiber-
Epoxy disk rotor is capable of a 38% higher rim speed or 91% greater rotor energy 
density, than a comparable rotor built of high strength weight ratio isotropic Titanium or 
steel alloys. 
Generally, the flywheel energy storage system consists of a flywheel rotor, a 
supporting device, a charge/discharge device, and a safety device. Composite flywheel 
energy storage technologies currently compete with advanced electro-chemical batteries 
in applications, which require high specific energy and power. 
Many investigators in the field have advanced new designs and manufacturing 
technologies to increase the storing density and ensure the safety operation of the 
flywheel. Among them, technological advances in high strength, low-density composite 
materials have been interested in increasing the energy storing density.  
Kojima, et al., (1997), proposed a carbon fiber reinforced plastic (CFRP) 
flywheel. The study results show that a flywheel, with high-modulus graphite/epoxy 
filament wound composites that are designed for better stress distribution, is able to rotate 
at a higher speed. In 1999, Huang tested a polar woven flywheel design; this dual 
function capability provides weight savings and an improvement in life and reliability of 
the total spacecraft system. The life expectancy of a satellite flywheel system is at least 
10 years, during which it is expected to undergo 50,000 cycles (charge/discharge) while 
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supplying 3 to 5 kW-h of usable energy. In 2002, a new approach to strengthen flywheels 
with additional reinforcement in the radial direction along with the typical hoop direction 
reinforcement?Multi-Direction Composite (MDC) flywheel systems?was reported by 
Gowayed and Flowers.  
 
1.4 Structure Optimization of a Flywheel Energy Storage System 
       The efficiency of flywheel energy storage not only depends on the wheel 
materials, but also on the connecting and driving devices. Another essential issue in the 
design of the flywheel rotor is how the permanent magnet for the motor/generator is 
attached to the hub that is connected to the flywheel rotor. The optimum structural design 
of rotating flywheels has fascinated many investigators. Published reports of such 
investigations date back to as early as 1912. During the 1960?s and 1970?s, with the 
development of computers, a number of computational schemes appeared in the literature 
for the optimum design of rotating flywheels. However, it was not until the 1990's when 
microelectronics, magnetic bearing systems and high power density motor-generators 
became available, that flywheel energy storage systems became really practical. During 
the past few decades, the structure optimal design and control for the flywheel energy 
storage system has been widely studied and many articles on the optimal design and 
structure development of the flywheel energy storage system provide an overview of the 
current technologies [Lashley et al., 1989; Niemeyer et al., 1989; Jee and Kang 2000; 
Sahin et al., 2001; Zheng and Fabien 2002; Shen et al., 2003; Swett et al., 2005; Zheng et 
al., 2005].  
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1.4.1 Terms of Flywheel Energy Storage System 
Through a series of workshops and meetings, the aerospace flywheel community 
has defined some common terms as they appear to high performance (i.e., high specific 
energy) flywheels. From the NASA space flywheel program, the following definitions 
have been agreed upon:   
? Flywheel System (a.k.a.: flywheel unit, or simply "flywheel): All 
mechanical and electrical components required to charge or discharge 
power. 
? Rotor: The complete rotating assembly, include rim, hub, shaft and other 
device parts. 
? Rim: The main rotating mass of the flywheel rotor system. Rim is 
contained in the most of the stored energy  
? Hub: The part of the rotor that connects the rim to the shaft. Because the 
hub mass contributes minimally to the total stored energy for the flywheel 
system, it should be as light as possible.  
? Shaft: The shaft is rotating axial part that lies on the spin axis of the rotor 
and is the rotor interface connection to the portions of the magnetic 
bearings and motor generators. Some flywheel rotor systems may not 
require a shaft.  
? Flywheel Energy Storage (FES): A flywheel-based system used only for 
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charge and discharge of energy. For spaceship or satellite applications, this 
implies the use of at least two flywheels in a counter-rotating 
configuration. 
? Total Stored Energy (TSE): The TSE of the flywheel system is the total 
energy stored in the rotor of the flywheel system (as defined above).  
? Energy Storing Density (ESD): Energy stored divided by mass.  
 
1.4.2 Flywheel Energy Storage System Optimal Design 
The optimization design of a flywheel energy storage system is a very 
complicated and time costing process, which must include consideration of shape, stress 
distribution, rotor dynamic characteristics, safety operation and cost, etc. The important 
issues to be considered in the optimization design of a flywheel energy storage system are 
listed by Horner (1996): 
? Power transfer and discharge 
? Flywheel shape and dimension 
? Energy losses 
? Suspension system connection and operation 
? Manufacture and product 
? Failure management and detection 
 
A reasonable approach to the design is essential to make sure that an efficient 
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system is realized. Many investigations have been conducted to optimize the flywheel 
system design. Especially with the development of high strength composite materials and 
simulation software skills, a number of computational schemes and methodologies for the 
design of flywheel system have been reported in the literature.  
The shape or dimension of an energy storage flywheel is generally chosen in a 
way to maximize the energy storing density (ESD). Structural shape optimization is a 
very important subject in engineering today. Difficulties persist in the effective use of 
optimization techniques; some caused by the complexities of structure, some caused by 
the conflicting criteria that needs to be taken into account between the high cost and low 
life. 
Among them, Grudkowski et al., (1996), described the major design 
considerations for a composite flywheel. For composite rotor design, it is critical to note 
that the stress allowable for the boundary conditions of operation must be used. The 
purpose to maximize flywheel energy storing density is affected by the hoop and radial 
design values obtained. Therefore, high-strength, low-density fibers are preferred, and 
multiple ring structural designs have been used as one approach to overcome the low 
strength in the radial direction.  
In 1998, Ha et al., (1999), developed one type of technological advancement in 
high-strength, low-density composite material that has been influential in increasing the 
energy storage capability. Ha?s method of increasing the total energy storage is to 
fabricate the hybrid rotor in multiple rims of different composite materials. This design of 
the hybrid composite rotor can reduce the tensile stress in the radial direction, thus 
overcoming the low strength in that direction without reduction of the hoop directional 
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strength. Ha et al., (1999), also used optimal design methods to select the dimensions of a 
hybrid composite flywheel rotor and permanent magnet. That flywheel rotor design 
consists of multiple rims of advanced composite materials with a permanent magnetic 
rotor attached inside the flywheel rim. In this way, the centrifugal forces of the magnet 
rotating together with the composite flywheel rotor act to reduce the tensile stress in the 
radial direction. As a result, designs using the hybrid composite rims have significantly 
reduced the stresses in rotors and flywheels that have incorporated this design. They have 
attained about twice the total storage energy of those that use either material on its own. 
The present optimization approach can be used to develop an efficient flywheel rotor for 
various applications. Ha also used this multiple rings structure for his thick-walled 
composite ring design (1998), and his hybrid-rim-type composite flywheel rotor design 
(2001). 
To maximize the specific energy storage of a flywheel rotor system, Emerson and 
Bakis (2000), suggested that it is desirable to maximize the top rotational speed of the 
?charged? rotor. A maximum energy storage flywheel design is reached when the 
stresses, due to the various loads (rotational, interference fit, thermal load), match the 
rotor material strength. Today, most composite flywheel rotor designs have been based 
on anisotropic elasticity equations (Lekhnitskii, 1968), and experimentally measured 
material stress strengths. Most design variables are chosen from rotor geometries and 
composite material properties for maximizing the storing energy. Such designs may 
depend on the different application requirements, but almost always include a rotor with 
one or multiple concentric rings containing hoop-oriented or radial-oriented fibers. 
Arnold et al. (2002), and Portnov et al. (2005), presented their studies with multiple rims 
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or disks to meet the flywheel operation requirements. 
Another successful example was presented by Gowayed and Flowers (2002). 
With the use of high performance magnetic bearings, high strength composite materials, 
and improved power and electronics technologies, there has evolved enabling 
technologies of flywheel energy storage systems in spacecraft applications. Recent years 
have seen a rapid growth of heterogeneous product fabrication techniques, many as a 
result of the development of layer manufacturing processes or prototyping. 
  In 2002, Gowayed and Flowers presented a new approach to MDC flywheel 
optimum design. The rotor is assembled from layers of pure radial or hoop 
reinforcements, as shown in Figure 1.2. This approach helps to solve the problems due to 
radial crack initiation and growth in filament wound flywheels and eliminates crimp that 
can reduce hoop strength. It also allows the designer to increase the tip speed by safely 
allowing an even distribution of radial tensile stress, significantly increasing the service 
lifetime. Figure 1.3 presents the geometrical dimensions and material properties of a 
typical MDC flywheel system.  
Thielman and Fabien (2000) studied a similar approach. They proposed a stacked-
ply composite flywheel with alternating plies of tangential reinforcement and radial 
reinforcement ply. It was shown that the performance of the flywheel could be improved 
by optimizing the orientation of the fibers in the radial reinforcement ply. 
Huang and Fadel (2000) demonstrated how Kumar and Dutta?s modeling 
techniques could be applied to two different kinds of heterogeneous flywheel rotor 
systems. One approach consists of using a finite number of distinct materials and the 
other of using two or more materials with continuous volume fraction variation. 
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1.4.3 Flywheel Energy Storage System Optimal Procedure 
The process of finding an optimum design for composite flywheel rotors in 
general is very complex and time consuming. It involves in optimizing a large number of 
parameters, including rotational speed, critical speed, dynamic mode shapes, flywheel 
geometry, material characteristics, material lay-up, and stress distribution, etc. 
The optimization procedures are dependent on objective functions, constraints and 
model types. To judge whether a flywheel design is good, criteria or state constraints first 
need to be established and results critiqued for performance satisfaction. Common 
optimization design cycles of the flywheel energy storage system can be formulated as a 
minimization (or maximization) problem in the following form (Ebrahimi, 1988): 
 
Min (Max)  
F(x) (Objective function) 
Subject to: 
I
i
(x) ? 0; i=1,?,m (Inequality constraints) 
E
k
(x) = 0; k=1,?,n (equality constraints) 
where: 
  ; j=1,?,l (side constraints, x is the n-dimensional design 
vector) 
k
jj
i
j
xxx ??
 
Design variables are usually geometric parameters such as length of the shaft, 
thickness of the hub, radius of the rim, material property orientations, and rotating speed 
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or even node coordinates. Limits on design variables are called side constraints, the full 
set of design variables is called as the design vector. 
Stress distributions, displacement deformations, temperature variations and 
natural frequency changes are typical state variables. Limits placed on state variables are 
termed behavior constraints and act to limit design variables response and define design 
model feasibility. An optimal design problem subjected to constraints is known as a 
constraints problem. If no limits are imposed, it is known as an unconstraint problem. 
When a design result satisfies the constraints (limits), it is a feasible design model; 
otherwise, it is an infeasible design.  
Typically, weight, volume, cost or energy storage density can be the design 
characteristic desired as an objective function. Of course, when all of state variables are 
chosen to below the allowable limits, this design is acceptable, and all of the design 
variables are simultaneously optimized to achieve the ?best? and most satisfied design.  
 
1.4.4 Design Optimization using Finite Element Analysis 
With the development of FEA technology, numerical investigations of flywheel 
energy storage systems became possible and have been widely used since the early 
1970?s. Muller et al., (1996) introduced some basic optimal design procedure of ANSYS 
software. The model of ANSYS optimization procedure is suitable for any analysis and 
simulation types with its finite element approximation. ANSYS model can accept the 
predefined variables with analytical constraints. The method is well fitted to shape 
optimization because ANSYS optimization model regards the geometric dimension, load 
types, and the boundary conditions as parameterized design variables and objective 
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functions. 
As long as the analytical sensitivities are not big and necessary problem for the 
ANSYS approximate optimization model, this method can be used in a wide variety of 
finite element analysis options and response quantities, such as material property non-
linearities, geometry or dimension non-linearities, large strain and displacement, user or 
customer predefined constraints and dynamic load response are solvable with the ANSYS 
approximate optimization method, detail reports could be found in Muller et al., (1996)?s 
paper. 
Hauser (1997), gave an example of using the ANSYS model to do the shape 
optimization of a flywheel rotor. He used the finite element program (ANSYS) to 
conduct a flywheel system. With that model, the calculation and optimization of the 
flywheel were presented, and the results verified by comparing them with experimental 
results. In his study, an existing flywheel system was calculated and the first suggestions 
for its geometric optimization were made by the FEA. The aim of his development was to 
obtain a powerful tool for the calculation and optimization of the flywheel design. This 
procedure was used in part in our own study. Abdi et al. (1994), tried a shape 
optimization of a complex shell under complex criteria associated with the cost, the 
fatigue life and the weight of the structure. All finite element and shape optimization 
computations were achieved with the ANSYS program. 
 
1.5  Safe Operation of a Flywheel Energy Storage System 
  The safe operation of a flywheel energy storage system is the main bottleneck in 
energy storage technology, especially if the flywheels are being considered for serious 
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space applications. Usually, the rotors are exposed to extreme loading conditions by high 
centrifugal forces and partially superposed elevated temperatures due to an integrated 
electrical machine, bearings or friction. A flywheel energy storage battery usually 
operates at very high speed.  
A detailed composite rotor failure analysis of a sophisticated fail-safe design has 
been reported experimentally by Fischer et al., (2002). The tests allowed the rotor to fail 
catastrophically. The different flywheel tests were made with catastrophic rotor burst, and 
the significant harm to the environment is explained in their study.  
As in most high speed rotating machinery, there are several flaw types that could 
occur in flywheel systems, such as worn bearings and bowed/cracked shafts. Cracks are 
always hidden risks in rotational machinery, especially in a rotational flywheel rotor. 
Under fatigue load operating conditions, the crack may be produced as a result of the 
inherent flaws or manufacturing defects in the materials. As a consequence, many 
practical rotordynamic systems contain shaft/rotor elements that are highly susceptible to 
transverse cross-sectional cracks caused by fatigue.  For composite flywheels, 
progressive damage, like delamination of composite, deboned between rim and hub, etc., 
is another common type of fault. For this reason, methods of making early detection and 
diagnosis of cracks have been the subject of flywheel energy storage system 
investigations. Critical questions for a cracked rotor investigation are: (1) ?How does 
crack initiation and propagation affect the dynamic characteristics of a high-speed 
rotating rotor system?? and (2) ?What is a good way to detect and monitor the crack 
behavior in a timely fashion??. 
There are two main methods used for the crack investigation of the flywheel 
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energy storage system: one is experimentation and the other is numerical analysis and 
finite element simulation. These two methods can be used individually or combined. 
 
1.6 Experimental Crack Investigations of the Flywheel Energy Storage System 
  Vibration measurements have been used widely in machinery condition 
monitoring.  In the 1990?s, several researchers reported experimental investigations of 
incipient failure and dynamic behaviors. Simpson et al., (1990), utilized ultrasound to test 
the energy storage flywheels that were fabricated with S2 glass-epoxy composites. The 
experiment was design to study changes in the ultrasonic properties as a function of strain 
history and identified possible predictors of incipient failure. Tension specimens of the 
flywheel material were loaded uniaxially, and the ultrasonic properties (the shear and 
longitudinal wave velocities and the attenuation) were measured as a function of strain. 
The velocities were found to be excellent indicators of the maximum strain incurred at 
each point of the flywheel, and the attenuation delineates the region in which the stress is 
high enough to initiate micro cracking in the matrix. 
Zheng et al. (1997), tested the input-output stability of the cracked rotor system. It 
was suggested that fatigue crack is an important reason for the existence of low frequency 
vibration components and a small fatigue crack may drive a system to instability in a very 
short time. Wu and Huang (1998), evaluated crack flexibility for a shaft-disk rotor with 
crack energy released.  From the FFT analysis of the displacement responses, the second 
harmonic component was extracted and served as a good index to detect the crack 
properties. Bachschmid et al. (2000), carried a model-based diagnostic approach to 
identify a transverse cracked rotor vibrations with 1X, 2X and 3X rev. components. 
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Darpe et al. (2003), investigated the steady state response of a cracked rotor 
experimentally. They proposed that the response of the rotor to axial impulse excitation 
could be used for diagnosis of rotor cracks, because spectral response of the cracked rotor 
with and without axial excitation is found to be distinctively different. Also, in their 
(2002) study paper, it was shown that the spectral responses to periodic multiple axial 
impulses were present in the bending natural frequency as well as in the side bands 
around impulse excitation frequency and its harmonics. 
Green and Casey (2003) investigated the dynamics of a rotating shaft with 
transverse cracks extensively. The second harmonic component of the system response 
was shown to be the primary response characteristic resulting from the introduction of a 
crack. 
 
1.7 Numerical Investigations of the Influence of a Crack on the Vibration Flywheel 
Energy Storage System 
To predict accurately the response of a system to the presence of a transverse 
crack, an appropriate numerical model is essential. Once the crack is included in the 
system model, unique characteristics of the system response can be identified and 
attributed directly to the presence of the crack. These predicted indicators then serve as 
target observations for monitoring systems. 
So far, many researchers have studied numerical and simulation investigations of 
the dynamic behaviors of a cracked shaft and crack detection. Lee and Ng (1994), studied 
the natural frequencies and mode shapes of cracked, simply supported beam based on the 
Rayleigh-Ritz principle. El-Dannanh and Farghaly (1994), applied Dimarogonas? crack 
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model to compute the modal frequency parameters of stationary shafts for different crack 
locations. Chen and Chen (1995), adopted a finite element model of a Timishenko beam 
to study the stability of a rotating cracked shaft subjected to an end load. It was shown 
that the influences of the crack are significant for the dynamic behavior of the system; as 
the depth of the crack reaches certain values, it makes the forward whirling frequencies 
of a shaft to become less than the backward ones. 
 Tsai et al., (1996, 1998), studied the shafts with a transverse open crack or multi-
crack (1997). The crack was modeled as a joint of a local spring and the transfer matrix 
method was employed. Based on their work, the position of crack can be predicted by 
comparing the fundamental mode shapes of the shaft with or without a crack. Takahashi 
(1998), also presented an analysis for the vibration and stability of a non-uniform shaft 
with a crack by use of the transfer matrix approach. Information about the effects of 
cracks was provided in their paper.  
Sekhar et al., (2000), discussed the effects of crack on rotor system instability. 
The FEM method was used and it has been observed that the instability speed was 
reduced considerably with increase in crack depth. He et al. (2001), proposed and 
described a genetic algorithm? based method for shaft crack detection. Using genetic 
algorithms avoids some of the weaknesses of traditional gradient-based analytical search 
methods, and according to the results, it is possible to predict the shaft crack location and 
configuration. 
 Sinou et al., (2003), presented both numerical and experimental tools to predict 
the first critical speed of an engineering machine. Altstadt et al., used strain based 
damage model to simulate the crack propagation. Guo et al. (2003), explored the 
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influence of one or more cracks on the natural frequencies and different models of a 
rotating shaft with transverse cracks by FEM methods. 
 
1.8 The Structure of the Dissertation 
This dissertation consists of six Chapters. 
 A review of the literature on flywheel structure optimal design and rotor crack 
detection is presented in Chapter1. Chapter 2 discusses a design optimization 
methodology for multi-directional composite (MDC) flywheel hubs using Finite Element 
Analysis Method. Chapter 3 presents a health monitoring methodology for MDC 
flywheel systems based upon variations in imbalance eccentricity level, proposing a 
relationship between the crack propagation and the imbalance eccentricity of the mass 
center U
m
. Chapter 4 presents a Gabor technique as a tool for the vibration analysis and 
health monitoring of cracks in rotor systems. Chapter 5 includes the investigations on the 
natural frequency variations caused by the presence of the cracks in a composite disk 
rotor system, made both experimentally and numerically. Chapter 6 covers the 
conclusions of this study and also recommendations for future research. 
 
1.9 Conclusions 
For all of the structural optimal design and development in the previous 
mentioned flywheel energy storage system studies, the materials are mostly homogenous 
and only a few are made to optimize the design through selectively placing different 
materials at different locations. One of major contributions of this study is the 
development of a more comprehensive approach and methodology to obtain optimized 
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structures for MDC flywheel systems. The shape and material distribution were 
considered and a specific optimized design for a MDC flywheel system was 
demonstrated.  
MDC flywheel systems to be used in spacecraft must be designed to operate 
safely. The existence and propagation of cracks are one of the most common failures 
found in high rotation speed flywheel systems. Understanding how cracks propagate is 
also very important. The development and evaluation of a health monitoring 
methodology for such systems based upon variations in imbalance eccentricity level is 
another major challenge to the present research. Three post-processing software products 
were developed; two are used to calculate the critical speeds of the flywheel systems 
from the ANSYS FEA model, while the third is used to calculate the mass center 
imbalance eccentricity due to the data from the FEA model. 
The above investigations into the change of dynamics devoted to diagnosing the 
cracked shafts are almost always based on a qualitative knowledge of cracked rotor 
behavior. All the efforts contribute positively to detection work on cracked shafts, but 
these works are still not developed enough for practical applications. Another major 
contribution of this study is that developed an experimental method to detect the dynamic 
behaviors of cracks using Gabor analysis techniques. A study of the application of Gabor 
analysis techniques in the detection and monitoring of lateral cracks in rotor shafts has 
been conducted.  
A more sophisticated finite element (FEA) model should be built to further 
explore the relationship between natural frequencies and the crack properties and to 
verify the results from the experiment study. Following a simplified theoretical model 
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developed for the cracked disk, and the stiffness variations associated with crack depths 
and locations of the disk are the investigations into a series of parametric studies using 
Matlab.  
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Figure 1.1 MDC flywheel with assembled layers 
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Figure 1.2 MDC flywheel stress distribution direction 
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Figure 1.3  Geometrical dimensions of the MDC flywheel system     
(Unit: mm) 
 
 
25 
 
 
 
 
 
 
 
 
 
CHAPTER 2 DESIGN OPTIMIZATION METHODOLOGY FOR MULTI-
DIRECTIONAL COMPOSITE FLYWHEEL HUBS 
 
An optimum design has been performed to maximize the energy storing density 
(ESD) of a particular type of multi-direction composite flywheel rotor with a domed-hub 
attached inside the rim for an energy storage system. The flywheel rotor consists of a 
steel shaft, a multiple layered domed hub and a multiple direction composite rim. The 
optimal design obtained in this study shows that the ESD of the flywheel rotor can be 
significantly increased by properly fabricating the hub shape using the optimal thickness t 
and ratio of a/b.  
 
2.1 Introduction 
Flywheel energy storage systems have presented the potential to store very large 
amounts of energy with minimum weight when compared to the traditional chemical 
battery systems. However, high energy storing density (ESD) flywheel is needed to 
obtain a lightweight design that is competitive with a chemical battery system. Also, 
there are major concerns regarding the safety of operation and the structural integrity of 
some critical components, such as the rim, hub and shaft. The stresses at high speeds (up 
to 60,000 RPM) can be very high and can cause fiber breakage, micro-cracking, 
debonding, and delamination, which can lead to premature failure of the flywheel design, 
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as studied by Fisher, C., et al., (1999). The consequences of failures of the flywheel 
systems are a major concern that could affect the flywheel energy storing systems of a 
spacecraft system or satellite. Therefore, an optimal design approach of the flywheel 
system is very important in order to ensure failure-safe operation. 
In order to increase the energy storing density (ESD) of the flywheel, appropriate 
rotor material and reasonable structure are needed. Due to their high specific strength and 
the possibility they provide for creating a load-adapted property profile, composite 
materials are ideally suited for such purposes.  
Compared with isotropic materials, the flywheel with the composite orthotropic 
material has evident advantages, such as high stress strength, lightweight, long lifetime 
and high energy storing density, as reported by Gowayed and Flowers (2002). They 
developed a composite flywheel made with reinforcement in the hoop and radial 
directions (Multiple Direction Composites MDC) to investigate the optimal structure 
design. The rotor is assembled from layers of pure hoop or radial reinforcements.  That 
approach could reduce the classical problem of radial crack propagation in thick, filament 
wound wheels and eliminate kinks or crimp and let the designer increase the tip speed, 
thereby enhancing the specific energy of the wheel by safely allowing radial tensile stress 
distributions.  The multiple layer structure breaks through the restriction of the ratio of 
inner radius and outer radius, which could evidently improve the distribution of the shear 
stress and increase the flywheel energy storing density (ESD), as indicated by Li, W., et 
al., (2001). 
Usually, engineering design is an iterative process that subject to obtain a best or 
optimal design. The optimal design is one that satisfies the design requirements with a 
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minimum expense of the certain factors such as cost and weight. The usual method 
towards the optimal design is a traditional one. The desired objective function and 
boundary condition performance of the design are first defined. Then a model is 
developed with the constraints of requiring the objective function and performance 
requirements. Next, an analysis of the optimal procedure is obtained and the results 
evaluated by applying the design requirements. The design configuration is then created 
in a way to better archive the design needs. Within the optimal design procedure, the 
simulation model is built, analyzed, evaluated and recreated through a series of 
improving design loops until the criteria were satisfied.  
Optimum shape design of rotating disks is a concept that has attracted many 
investigators. With the development of computers, a number of computational schemes 
for design of rotating flywheel systems appeared in literature. Sandgren, E., et al., (1983) 
developed the disk contour by a general thickness functional form. The resulting stress 
analysis problem can be solved numerically. Ebrahimi, N., (1987) reported how to design 
a rotating flywheel with a continuously differentiable thickness function and introduced a 
defined objective function for the flywheel design problem.  
Fully integrated optimization requires software features such as an analysis and 
optimization database with solid and parametric modeling. Solid models are prerequisites 
for efficient shape optimization so that even 3-D models can be described with the 
minimum of variables. ANSYS (Version 7.0) optimization capability encompasses these 
features. For the structural analysis, a four nodes axi-symmetric finite element is used to 
build the numerical model. The maximum shear stress criterion for the stress analysis is 
used to determine the failure for each element. For an elliptical shaped hub, the thickness 
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of the hub port t and the ratio of the long radius to the short radius, a/b, are chosen as the 
design variables. 
 
2.2 Analysis 
In this study, the main objective of the flywheel energy storing system 
optimization procedure is to develop and test a domed elliptical shaped hub for the 
composite MDC flywheel based on the work done by Gowayed and Flowers (2002). A 
multi-directional composite (MDC) flywheel rotor with a box-section hub has been 
introduced, with a hub that is flexible for in-plane deformation. The hub is flexible where 
needed, and rigid for out-of-plane shear load that is generated from the out-of-plane 
vibration mode shapes. The goal for the hub design is to modify the shape of the hub, 
increase the maximum shear stress and deformation of the hub in the limited space, 
estimate the maximum energy storing density, and practice a reasonable optimal 
approach for this specific problem. 
As the hub lies in the heart of the flywheel structure, the shear stress distribution 
for the hub was essential when the system is in high-speed rotational mode. The domed 
hub connects the shaft and rim, and is required for the high tensile and compressive inter-
laminar strength is lightweight and the shape specific to protect if a crack occurred, with 
maximum energy density and minimum deflection. From this study, they tried to test a 
new hub design with an unusual compressive-braced domed hub. An ingenious 
combination of dome hub designs, with lightweight, clear span advantage of a tensegrity 
dome. So the hub design is the critical issue in this study.  
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2.2.1 Configuration 
The configuration of the domed hub is shown in Figure 2.1.  This figure only 
shows the 2-D half domed-hub structure since the hub is symmetric about the rotational 
axis. The half domed-hub includes one port and two elliptical radii. The distance from the 
center coordinate to the outside of the port hub is constant, which is equal to 115.0 mm. 
The thickness of the port is denoted as t. The long radius of the elliptical radius is denoted 
as a, whereas the short radius is denoted as b.  The calculation of the hub parameters, 
such as thickness t, and the ratio of a/b, will be discussed in details.  
The volume of the hub V
hub
 changes with the variations of the thickness t and the 
ratio of a/b. Hence, the energy storing density (ESD) varies with the design variables. 
The aim of this study was to get a calculation tool for the calculation and optimization of 
the domed hub-rim-shaft flywheel systems. This study has tried to identify the 
remarkable advantages of the flywheel systems that can be gained by using an optimized 
elliptical shaped hub in comparison to a constant thickness box-section shaped hub. 
Figure 2.2 shows a 3-D configuration of the shaft, domed-hub and rim for the 
flywheel system. The inner part is a steel shaft and the outer part is a multiple directional 
composite (MDC) rim. A domed-hub connects the shaft and rim. The radius of the shaft 
is fixed (r
s
 = 19.05mm) and the inner and outer radii of the rim r
i
 and r
o
 are equal to 
115mm and 165mm, respectively. So the volume of shaft (V
s
) and rim (V
rim
) are constant. 
 
2.2.2 Coordinate Systems 
A global cylindrical (R, ?, Z components) coordinate system shown in Figure 2.3 
is introduced. R or X is the radial direction, ? or Y is the hoop direction, and Z is the 
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axial direction. The geometry items (keypoints, lines, areas, volumes, etc.) are built in the 
space of global coordinate system. The components of the domed hub are modeled as a 
series of blocks with different composite material properties. Since the structural aspects 
of the hub are made from composite orthotropic material, a different coordinate system is 
required to assign the material properties for every block of the hub. Another local shell 
element coordinate system is then used to establish the orientation of material properties. 
Right-handed orthogonal systems were applied to all element coordinate systems, as 
illustrated in Figure 2.3.  
In this study, a C++ code (listed in Appendix A) was used to create the composite 
material properties, thickness and length of the each domed hub segment. The ANSYS 
software was used to create the geometric model, apply the material properties, boundary 
conditions and rotational speed, obtain stress distribution and produce the optimization 
design, which was presented in Appendix B. 
 
2.3 Optimization Design Approach 
This study deals with the optimization of a domed-hub shape for shaft-hub-rim 
flywheel system case under high rotating conditions. The optimal structure is that with 
minimum weight and maximum storing energy (in other words, maximum energy storing 
density ESD) and without any rotor failure behavior such as fiber breakage, debonding, 
etc. The design variables are the various thicknesses of the hub flat t and the ratio of the 
two-elliptical radii a/b. The formulation of the above criteria is the maximum shear stress 
limit of the composite materials. All finite element and optimization computations have 
been made using the ANSYS program; the shape optimization of the domed-hub has 
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been achieved using an axi-symmetric version of this structure.  
 
2.3.1 Design Variables  
Design variables represent those aspects of the design that can be varied to obtain 
a maximum/minimum objective function. Design variables should be independent 
variables. The thickness t of the port of the hub and the ratio a/b of two elliptical radii are 
considered design variables. 
 
2.3.2 State Variables 
State variables represent the response of the design to loading and boundary 
conditions, and to changes in geometry. Every state variable is a function of one or more 
design variables. The maximum shear stress of the hub ?
max
 (in plane ? 0.45 GPa) is 
imposed to prevent the design variables from reaching unacceptable values reported by 
Gowayed and Flowers (2002). Maximum stresses are compared with experimentally 
measured stresses after fatigue data using a Hill polynomial criterion and employing a 
factor of safety. Hill?s failure criterion is a generalization of the Von Mises-Hencky 
maximum distortion energy theory and can be applied to anisotropic materials. 
 
2.3.3  Constraint Requirements 
If the hub expansion is less than that of the rim at any rotational speed level, it 
results in a hub/rim separation. As a result, the hub expansion is set to be higher than that 
of the rim inner radius with a constant fraction to be determined by the designer. In this 
study, the maximum deformation (expansion) is greater than the preset interference 
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(5.08e-3 mm) between the hub and rim. The rim and hub can be connected with 
CONTACT element through a preset interference. 
 As the flywheel rotor is applicable in the space ship and for the benefit of the 
maximum ESD, the high rotational speed is required. In the design process, the rotating 
speed of 60,000 RPM is used in all optimal designs. 
 
2.3.4 Objective Function 
The objective function is a single variable that characterizes the aspect to be 
maximum/minimum. It is a function of one or more of the design variables. In this study, 
the maximum energy storing density (ESD) is taken into the optimization design. 
 
2.3.5 Governing Equations for Optimization Processing 
 
The total stored energy (TSE) in the flywheel is given as: 
 
2
2
1
?ITSE =  ,                                                                                                              (2-1) 
 
where:  
I = the mass moment of inertia of the rotor about the spin axis. 
? = the angular speed of the rotor system. 
 
For the shaft-hub-rim flywheel system, the overall total stored energy (TSE) can 
be written in terms of the inner radius r
i
, outer radius r
o
 and ratio of r
i
/r
o
 of each 
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component, shaft, hub, and rim: 
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where:  
? = density of components for the shaft, hub or rim, to be calculated from the rule of  
mixtures and the knowledge of fiber and matrix densities, total and relative fiber  
volume fractions (Gowayed and Flowers (2002)). 
? = the rotational speed of the flywheel system. 
r
o
 = the outer radius of the shaft, hub or rim. 
? = the ratio of the inner radius/outer radius for shaft, hub or rim. 
ex = the shape factor, ex=0 means a constant section shaft, rim or hub, any other shape  
        can be embedded within a mathematical formulation (Gowayed and Flowers  
        (2002)). 
h = the height of the shaft, hub or rim. 
 
The energy storing density (ESD) is defined as the total stored energy (TSE) 
devided by the total mass of the flywheel system: 
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where: 
V = the volume of the flywheel system, V
shaft, 
 V
hub  
or V
rim.
 
2.3.6 Design Optimization Cycles 
The optimization for a domed hub-shaft-rim flywheel is thus formulated as 
follows:                                                                                               
Maximize  ESD 
Subjected to  ? 
max  
? ? 
crit 
Find  ESD, thickness t, and ratio a/b 
(2-4) 
In order to solve the nonlinear optimization problem formulated in equation (2-4), 
a parametric model was built and optimization analysis was performed. The procedure of 
optimum design, together with the structural analysis, is shown in Figure 2.4. Most 
importantly, as in the procedure, the effect of the optimization function flowchart is 
shown in Figure 2.5.  
To start, the composite material properties and initial geometric parameters were 
calculated from the C++ code, then these parameters were input to ANSYS Parametric 
Design Language, using these data and ANSYS optimization operation system, a model 
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was generated parametrical, and the optimization procedure was run to test how well the 
fitted ESD matched the state variables with the design variables varying. Finally, a 
FORTRAN code (Appendix C) was used to calculate the maximum energy storing 
energy using the output file of ANSYS as the input. 
 According to Muller et al., (1996)?s paper and ANSYS?s optimization design 
program, the procedure is introduced as follow: For each design loop, the results from the 
last loop were used as the starting point, and the new design variables are obtained from 
the modified old design model. As the new deign model built, another finite element 
analysis is performed. An improved approximate sub-problem is performed which allows 
a new design to be obtain. This loop or procedure continues until either convergence 
reaches or the problem stops. Convergence is defined to achieve when all constraints on 
design variables and state variables are satisfied and the changes in all design variables 
and the objective function is within the criterion between al loops. 
Although the above numerical methods, which are used in the maximum of the 
approximate sub-problem, can?t be considered as the real state, they present a reliable 
way to reach the maximum of the energy storing density (ESD) approximation. 
 
2.4 Results and Discussion 
For this specific domed-hub optimal problem, several optimization techniques 
were applied. A two-dimensional, axi-symmetric model was used in the FE, and due to 
the symmetry, only one-quarter of the flywheel rotor was presented in the following 
discussion. The design variables are interactive and that the one parameter that can?t be 
optimized independent of the other parameters, usually starts with the primary variable; 
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then the second one, then next, until gets all parameters fit the optimal design(s).  
In this work, for the sake of the minimum weight of the flywheel rotor system, the 
thickness of the hub port t is the primary variable within the two design variables; as long 
as the hub can support the rim and the whole rotor system; a smaller thickness value is 
recommended. The first step of the hub optimal design is to find out the logical range of 
the port thickness of the hub, then based on the reasonable thickness values, decide the 
associated best fitting a/b variable.  
 
2.4.1 Domed-hub Model Results 
To illustrate the procedure of deciding the thickness t of the port of the hub, 
Figure 2.6 shows a 2-D domed hub model built with ANSYS. According to Gowayed and 
Flowers (2002) and other constraint requirements, the manufactured range of the hub port 
thickness t is from 3.0 mm to 9.0 mm with 0.6mm increment change, the ratio of the two 
elliptical radii a/b is from 1.95 to 2.05 with 0.1 increment change. 
Starting with the thickness of hub port as t = 3.0 mm, and the ratio of two 
elliptical radii a/b = 2.0 as the initial values, Figure 2.6 is the element mesh plot view. 
Different colors of each segment represent different composite material properties. All 
the material properties come from the C++ code [Gowayed and Flowers (2002)]. 
 For the boundary conditions, the two ends of hub are fixed, and the rotational 
speed 60,000 RPM is applied. The expansion-matching criterion of the rotor is imposed 
by comparing the expansion within the hub to the expansion at the inner radius of the 
rim. After running static cases, it is found that the thickness of the hub port t must be 
equal to or greater than 4.8 mm to reach the constraint requirement.  
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The stress and deformation distributions of the thickness t = 4.8 mm case are 
illustrated in Figures 2.7~2.10. From these plots, it is shown that the maximum 
deformation lies in the hub port in x-direction, in which direction the rim is added, since 
the maximum deformation (1.3685 mm) is greater than the preset interference (5.08e-3 
mm) between the hub and the rim. Through the preset interference, the rim and the hub 
can be connected with CONTACT element.  The maximum shear stress lies in the outer 
side of the domed edge; the value is 0.22 GPa, which is less than the criterion shear stress 
?
max 
0.45 GPa. So, in this simple hub case, the model is satisfied with the basic 
requirements of optimization. It can be continued for the following optimization design to 
find the maximum EDS by increasing the rotational speed till the maximum stress values 
reach the constrain conditions. 
 
2.4.2 Optimization Results of 2-D Domed Hub-Shaft-Rim Model with the Thickness of 
the Hub Port at 4.8 mm and 6.0 mm 
Figures 2.11 ~ 2.14 and Figures 2.15 ~ 2.17 show the results of the optimization 
design when the thickness t of the hub port is 4.8 mm and 6.0 mm, respectively. After 
adding the steel shaft and the composite rim, the whole model was developed. The 
CONTACT elements were applied to the connection of shaft/hub and hub/rim, 
respectively. The maximum shear stresses in both cases are in the inner side of the domed 
hub edge. The results of the two different thickness of the hub port 4.8 mm, 6.0 mm 
cycles are listed in Tables 2.1 and 2.2, respectively. In all cases, dynamical stability was 
monitored as design variable changed. 
From the Figures 2.11 ~ 2.14 and Table 2.1, it is shown that the shaft/hub/rim 
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flywheel model with the thickness t of the hub port equal to 4.8 mm can?t satisfy the 
criterion shear stress (0.45GPa) as long as it rotating at 60,000 RPM within the a/b value 
range studied. The maximum value of the shear stress for every case exceeds the criterion 
shear stress. It implies the thickness t of the hub port should be increased properly in 
order to meet all constrains we have. 
Figures 2.15 ~ 2.17 and Table 2.2 show the optimal design results of another t 
value of the hub port. When the thickness t equals to 6.0 mm, as the a/b value changes, 
there are two cases that can be run in the 60,000 RPM safely while the maximum shear 
stress is less than the criterion stress value. When the ratio of the elliptical radii a/b 
equals to 1.99 or 2.0, the allowable tip speeds reach 61,115 RPM and 61,306 RPM, 
respectively. The energy storing density (ESD) is 0.7312059 (kWhr/kg) for case a/b = 
1.99, which is a little bit greater than that of case a/b = 2.0 with ESD = 0.7297543 
(kWhr/kg). The two possible solutions were found for the optimal design task, and 
significantly, the tip speeds and the energy storing density could exceed the design 
requirements.  
 
2.4.3 Discussion 
A plot of the allowable maximum rotating speeds for each case is shown in Figure 
2.18. The dotted line represents the all tip speeds results for the cases of the thickness t = 
4.8 mm, the solid line represents the top speeds for the cases of the thickness t = 6.0 mm, 
and the straight line represent the rotating speed of 60,000 RPM that is the requirement 
speed for the shaft/hub/rim flywheel system of this study. One can see that the maximum 
rotating speeds of two cases (a/b = 1.99 or 2.0 with the thickness t = 6.0 mm) are above 
39 
 
 
 
 
 
 
60,000 RPM.  
Figure 2.19 shows the distribution of the maximum shear stress vs. the ratio of a/b 
while the rotating speed is 60,000 RPM. Like the previous plot, the dotted line represents 
the maximum shear stress results for all cases with the thickness t = 4.8 mm, the solid 
line represents the maximum shear stress for all cases of the thickness t = 6.0 mm, and 
the straight line represents the shear stress of 0.45 GPa that is the criterion stress for the 
shaft/hub/rim flywheel system in this study. The shear stress of two cases (a/b = 1.99 or 
2.0 with the thickness t = 6.0 mm) is less than the criterion stress, which means the fiber 
will not fail at the rotating speed of 60,000 RPM.  
Figure 2.20 shows the energy storing density (ESD) versus the ratio of a/b. The 
max ESD is obtained at a/b = 2.01 and 1.99 when the thickness is 4.8 mm and 6.0 mm, 
respectively.  
Finally, the optimization design consequence is the case with the thickness of the 
hub port t equals to 6.0 mm, and the ratio of the elliptical radii of a/b = 1.99. For this 
case, the maximum shear stress is less than the criterion shear stress (0.45GPa) and the 
ESD is 0.7312059 (kWhr/kg), which is listed in the Table 2.2. 
From the above discussion, it is implied that increasing the hub port thickness and 
adjusting the a/b value, the energy storing energy ESD could increase and the maximum 
shear stress of the domed hub may decrease. 
  
2.5 Conclusions 
By taking the advantage of the symmetric structural, a quarter model can be 
implemented. The finite element method is applied to the study by using a commercial 
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finite element code. ANSYS is employed to obtain the static and dynamic behavior of the 
flywheel.  The shaft, domed-hub and rim were modeled by solid brick four nodes 
axisymmetric element and a special contact-target element was used to account for the 
connection between the separate bodies, such as shaft and hub, hub and rim. The proper 
interference was applied to each pair contact-target element. Static and transient analyses 
were conducted to obtain the deformation and the stress distribution of the flywheel. By 
changing the thickness of hub t and the values of a/b, a parametric study was performed 
to investigate the shear stress response when the flywheel is rotating at a very high speed 
(up to 60,000 RPM). The results of this study confirmed the proposed developed model 
might be used for the optimization of the future design. 
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Figure 2.1 2-D configuration of the domed-hub for the flywheel system 
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Figure 2.2 3-D configuration of the shaft/domed-hub/rim for the flywheel system 
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Figure 2.4 Optimization design procedure for a composite domed hub-shaft-rim 
flywheel system 
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Figure 2.5  Flowchart of ANSYS optimization procedure 
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the thickness of the hub port t = 4.8 mm and the ratio of the elliptical radii a/b = 2.01
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Figure 2.17 S
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 stress distribution of 2-D domed hub-shaft-rim model with the 
thickness of the hub port t = 6.0 mm and the ratio of the elliptical radii a/b = 1.99 
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Table 2.1 Optimization of the flywheel rotor with the thickness of the hub port  
t = 4.8 mm (rotating speed ?= 60,000 RPM) 
 
 
(a/b) ESD 
(KWhrs/Kg) 
V
tot
 (m
3
) ?
max
(GPa)
 
1.98 0.607058 0.003294787 0.524e9 
1.99 0.5998307 0.003303771 0.528e9 
2.0 0.6699522 0.003210075 0.480e9 
2.01 0.7071015 0.003151479 0.462e9 
2.02 0.6947668 0.003174478 0.467e9 
2.03 0.6746069 0.003208308 0.476e9 
2.04 0.5735387 0.003382578 0.588e9 
2.05 0.6726946 0.003223103 0.477e9 
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Table 2.2 Optimization of the flywheel rotor with the thickness of the hub port 
 t = 6.0 mm (rotating speed ?= 60,000 RPM) 
 
 
(a/b) ESD 
(KWhrs/Kg) 
V
tot
 (m
3
) 
?
max
(GPa)
 
1.98 0.6730617 0.00345878 0.462e9 
1.99 0.7312059 0.003372043 0.434e9 
2.0 0.7297543 0.003416068 0.440e9 
2.01 0.5517544 0.003767504 0.543e9 
2.02 0.604307 0.003620698 0.502e9 
2.03 0.6890825 0.003472563 0.452e9 
2.04 0.6563657 0.003547441 0.469e9 
2.05 0.6193641 0.003616594 0.466e9 
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CHAPTER 3 HEALTH MONITORING METHODOLOGY FOR MDC FLYWHEEL 
SYSTEMS BASED UPON VARIATIONS IN IMBALANCE ECCENTRICITY LEVEL 
 
MDC flywheel systems to be used in spacecraft must be designed to operate 
safely. A certain level of safety should be assured with a sufficiently high probability.  
The occurrence of cracks is one of the most common failures found in high rotation speed 
flywheel systems. Understanding what causes cracks to occur and how they propagate is 
also very important, as well as static analysis and modal dynamic analysis. Fractures of 
composite laminates and multi-layer structures have been widely studied by Chudnovsky, 
A. and Li, R. S., (1995). The analysis of the crack tip field is a fundamental topic that has 
received significant attention. 
An investigation was undertaken to study the damage initiation behavior in a 
layered structure composite rim subjected to a radial or hoop direction crack in different 
layers. The focus of this research effort was to develop an understanding of the crack 
propagation behavior and the calculation procedures of the mass center imbalance 
eccentricity related to the existence of cracks.  
 
3.1 Computational Procedure 
3-D models for an MDC layered flywheel with cracks in various directions were 
developed.  The displacement at every node was computed via a series of steady-state 
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cases. 
The crack is closed when the speed of flywheel is zero, but starts to open when 
the flywheel starts to rotate. In order to simulate the crack in the FEA model, special 
treatment is introduced for the nodes within the crack area. There are two nodes at the 
points on the crack and these two nodes can separate when the flywheel is rotating. 
Figures 3.1 and 3.2 illustrate hoop-direction and radial-direction cracks, respectively. 
Figure 3.1 (a) is the initial section view for the hoop-direction crack area. The crack area 
is marked with a small rectangle, showing where the crack was created. Within this area 
there are two grid points superimposed at each of the points marked with a filled circle. 
In order to simulate a hoop direction crack, these two points are not connected to each 
other. One grid point belongs to the left cell, while the other grid point belongs to the 
right cell. Thus, these two points can move in opposite directions when the flywheel 
starts to rotate at high speed. This is shown in Figure 3.1 (b). Similarly, the illustration of 
the occurrence of radial direction crack is shown on Figures 3.2 (a) and (b). Again, 
initially there are actually two grid points superimposed at each point in the crack area 
marked, one of which belongs to the top cell and the other to the bottom cell. 
As mentioned in Chapter 2, the flywheel has a sandwich-like structure. One layer 
is made of hoop-reinforcement composite material and the other layer is made of radial-
reinforcement composite materials. Thus, the crack can grow in two directions: the hoop 
direction and the radial direction, as shown in Figure 3.3. This produces four different 
types of crack: 
1) Radial-direction crack that develops in a hoop reinforcement material layer. This is 
refereed to (hoop-radial) crack, where the first word represents the attribution of the 
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layer, and the second word indicates the direction of the crack. 
2) Radial-direction crack develops in a radial reinforcement material layer (radial-
radial); 
3) Hoop-direction crack that develops in a hoop reinforcement material layer (hoop-
hoop); 
4) Hoop-direction crack that develops in a radial reinforcement material layer (radial-
hoop); 
Figures 3.4 and 3.5 present the 3-D layered structure model developed for crack 
analysis. In order to simplify the computation, only the rim was considered and the shaft 
and hub were replaced by 32 evenly-spaced springs which were connected with the rim. 
The mass of these springs was taken to be negligible, and the spring constants of these 
springs were assumed to be very large. 
The rim was made of two different kinds of composite materials. The material 
properties are listed in Table 3.1. Different colors represent different materials. The 
STATIC mode was set for all the cases and the mesh was generated by a sweep method. 
The computation domain was divided into 48 parts evenly in the hoop direction. A 
20
z
?19
x
 grid system was adopted in every section. Since the number of grid points 
increased for the 3-D simulation, the computational time also increased dramatically. 
The boundary conditions were as follows: At the center of every spring, a DOF 
Ux, Uy, Uz=0 constraint is applied. Where the end  of each spring was connected with 
the rim, Uz=0 constraints were applied. The rotational speed was varied from 10,000 
RPM to 60,000 RPM. 
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3.2 The Calculation of Imbalance Eccentricity of the Mass Center (U
m
) 
Due to the imperfect geometry and the occurrence of the crack, the rotating 
flywheel generates a mass imbalance force. This force is a function of the square of the 
rotating speed, and therefore grows rapidly with large increases in speed. This makes 
balancing the rotor a critical element in the development of the flywheel. The imbalance 
eccentricity of the mass center calculation is one of the most important steps in the entire 
rotor balancing procedure. In this chapter, it is assumed that the material is consistent and 
the shape is perfect. Any mass imbalance force present is produced only by the 
occurrence of the crack. The numerical simulation results for a flywheel with a crack 
provide the displacement at every grid point. Based on this information, the imbalance 
eccentricity 
Um 
of the center of mass can be calculated. 
Since FEA analysis only provides the displacement at every grid point, the 
equivalent mass of each node cell  has to be calculated in order to get the imbalance 
eccentricity of the center of mass. Usually the mass center of every cell is located in the 
center of the cell. The best way to weight the equivalent mass for every grid point 
depends on the weighting criteria. The calculation of the imbalance eccentricity in the 
center of mass involves the first moment of the inertia about the rotational axis. The 
weighting criteria are defined as follows: 
i
m
The first moment of inertia should remain consistent regardless of whether the 
center of mass is assumed to be located in the center of the cell or the mass of the cell is 
divided between all its grid points. Notice that the first moment of inertia is defined as 
follows: 
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?= dmrS .                                                                                                                 (3-1) 
 
It is necessary to introduce the node mass distribution factor (NMDF) for every 
node. The equivalent mass at each node from one cell can be calculated from the product 
of the NMDF and the total mass of the cell. The NMDF is defined as the ratio of the 
equivalent mass of the node and the total mass of the cell. The derivation of the NMDF 
can be obtained through the weighting criteria mentioned above. 
Referring to Figure 3.6, the mass m? of the small area between inner radius  
and the random radius 
i
r
r is given as: 
 
hdrrm ????=? ??2 .                                                                                                    (3-2) 
 
The total mass of the area between two concentric circles  and is given as: 
t
M
i
r
o
r
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.                                                                                              (3-3) 
 
It is assumed that the total mass of the cell is centralized on two nodes, node 1 and 
node 2. The ratio of mass centralized on node 1 and the total mass, NMDF of node 1, is x 
whereas the ratio of mass centered on node 2 and the total mass, NMDF of node 2, is 1-x. 
Thus we have: 
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The first moment of inertia of the area between the two centric circles is: 
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The first moment of inertia, assuming the mass is only centered at node 1 and node 2, is 
given as: 
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The weighting criterion requires: 
 
21
SS = .                                                                                                                          (3-7) 
So we have: 
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Eliminating constants? , , h? ?  from both sides of the equation, we have: 
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Evaluating the integration on the left-hand side of Equation (3-9), we get: 
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Solving for x, we get: 
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where , . Thus, given the radii of the inner edge and the outer edge of the area, 
the NMDF of node 1 (at the inner edge) can be calculated from Equation (3-11) and the 
NMDF of node 2 (at the outer edge) is simply equal to 1-x. 
oi
rr < 0>x
With the aid of the above process, the mass that is centered at the cell center can 
be transformed into a series of masses centered at every grid point, consist with the first 
moment of inertia. Combined with the displacement at every grid point, the imbalance 
eccentricity of the center of mass thus can be calculated. 
The original coordinates of grid point i are ,  and the displacements of grid 
point i are ,  when the flywheel rotating at high speed. Then the new coordinates, 
, , are given as: 
i
x
i
y
i
ux
i
uy
'
i
x
'
i
y
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The first moment of inertia of the flywheel when it is stationary is given as: 
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If we assume that the geometry of the flywheel is perfect, we have: 
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It is obvious that the cells will deform if the flywheel is rotating at a high speed 
and the geometry of the flywheel will no longer be perfect. We assume that the 
equivalent mass at every grid point is not going to change with the deformation of the 
cell. Thus, the first moment of inertia of the deformed flywheel is given as: 
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Substituting Equation (3-12) and Equation (3-14) into Equation (3-15), we have: 
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The total mass of the flywheel can then be calculated as: 
 
?
=
iT
mM .                                                                                                                (3-17) 
 
Thus, the imbalance eccentricity of the center of mass in the x and y directions are given 
as: 
t
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where : the imbalance eccentricity of the center of mass of the rim in the X direction, 
mc
x
mc
y : the imbalance eccentricity of the center of mass of the rim in the Y direction. 
Thus, the overall imbalance eccentricity of the center of mass is given as: 
 
22
mcmcm
yxU += .                                                                                                        (3-20) 
 
A FORTRAN code based on the procedure above is presented in Appendix D. 
this can be used to calculate the imbalance eccentricity of the center of mass using the 
 
 
 
 
 
 
output file of ANSYS as the input. 
 
3.3 Results and Discussion 
3.3.1 Relationship between U
m
 and Rotation Speed 
Figure 3.7 presents the relationship between U
m
 and rotation speeds. For all the 
cases, the distance between the middle of a hoop crack and the axis of rotation 
equals . The distance between a radial crack center and the axis of rotation 
also equals .  
0.2/)(
inout
rr +
0.2/)(
inout
rr +
Rotational speed can have a significant effect on the crack behavior. A series of 
cases were tested for four different of cracks. The rotation speeds are varied from 10,000 
RPM to 60,000 RPM. For every case, the imbalance eccentricity in the center of mass 
was calculated using the new post-processing software developed. The results are 
summarized in Table 3.2 and plotted in Figure 3.7. Referring to Figure 3.7, the imbalance 
eccentricity of the center of mass U
m
 grows as the speed of rotation increases. The 
imbalance eccentricity of a flywheel with a crack developing in the hoop reinforcement 
material is larger than that of a flywheel with a crack developing in the radial 
reinforcement material, regardless of the direction the crack is developing in, both in the 
hoop and radial directions. Notice that the layer of hoop reinforcement material is thicker 
than the layer of radial reinforcement material. This implies the multi-layered structure 
can be used to successfully impede the propagation of the crack. For the direction in 
which the crack is developing, the imbalance eccentricity of a flywheel with a crack 
developing in the radial direction is greater than with a crack developing in the hoop 
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direction, even if the length of the crack developing in the hoop direction is greater than 
the length of the crack developing in the radial direction in our models. This implies that 
a crack developing in the radial direction generates a bigger imbalance mass force than 
does a crack developing in the hoop direction. This phenomenon can be explained as 
follows: 
For a crack developing in the hoop direction, the displacement of the points 
between the crack and the outer radius increases the mass imbalance eccentricity. 
However, the displacement of the points between the crack and inner radius decreases the 
mass imbalance. For a crack developing in the radial direction, the displacements of the 
points on both sides of the crack increase the mass imbalance eccentricity. Thus, a crack 
developing in the radial direction is more harmful than a similar crack developing in the 
hoop direction.          
 
3.3.2 Relationship between U
m
 and Various Material Properties 
Figure 3.8 presents the relationship between imbalance eccentricity U
m
 and the 
ratio of modulus of elasticity values. Material properties are another factor that can affect 
imbalance, so a series of cases with different ratios of the modulus of elasticity value of 
the material to the modulus of elasticity value of a standard material were tested for radial 
and hoop direction cracks in the hoop reinforced layer.  The ratios of the modulus of 
elasticity values were 10, 8, 5, 2, 0.5, 0.2, 0.125, and 0.1. The rotational speed was 
60,000 RPM. For every case, the imbalance eccentricity U
m
 in the center of mass was 
calculated using the new post-processing software that had been developed. The results 
are summarized in Table 3.3 and plotted in Figure 3.8. Referring Figure 3.8, the flywheel 
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made of a material with a small value for the modulus of elasticity produced a greater 
imbalance U
m
, whereas the flywheel made of a material with a large value for the 
modulus of elasticity produced a smaller imbalance eccentricity U
m
. The linearity 
exhibited in Figure 3.8 implies that the relationship between the imbalance eccentricity 
U
m
 and the ratio of the modulus of elasticity and the standard modulus of elasticity is an 
exponential function.  
 
3.3.3 Relationship between U
m
 and Crack Size 
A series of cases modeling a flywheel with different lengths of cracks developing 
in the hoop direction were tested.   Table 3.4 lists the results showing the amount of 
imbalance eccentricity U
m
 observed for various sizes of cracks. Figure 3.9 shows the 
relationship between imbalance eccentricity U
m
 and crack length. The cracks were 
located in the hoop-reinforced layers (hoop-hoop). The rotation speed of the flywheel 
was 60,000 RPM. As the crack length increased, the imbalance eccentricity U
m
 increased 
when the crack was shorter than half of the circumference, then Um decreased when the 
crack was longer than half of the circumference. The imbalance eccentricity Um, reached 
a maximum value when the crack was half as long as the circumference. The curve 
presented in Figure 3.9 also exhibits a symmetric about l/c =0.5.  
 
3.3.4 Relationship between U
m
 and ? 
? is defined as the ratio of the inner diameter to the outer diameter. If the outer 
radius remains constant then ? increases as the inner radius increases. Only the flywheels 
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with a crack developing in the radial direction were considered. The cracks were in the 
hoop reinforcement material layer. The ? values were 0.2, 0.4 and 0.6. The height of the 
flywheel remains constant. The effect of the crack length was also investigated. The 
distance between the middle of the crack and the rotational axis is . Table 
3.5 lists the imbalance eccentricity for every case. Figure 3.10 shows the relationship 
between the imbalance eccentricity U
0.2/)(
inout
rr +
m
 and the ratio of the crack length and the 
difference between the outer radius and the inner radius. Figure 3.10 shows that with the 
same ? value, the imbalance eccentricity U
m
 also increases as the ratio of the crack length 
and the difference between the outer radius and the inner radius increases. With the same 
length of crack, the imbalance eccentricity U
m
 increases as ? increases. This implies that 
a flywheel with small ? can reduce the imbalance eccentricity in the center of mass. On 
the other hand, a flywheel with small ? also lowers the storage efficiency. The design of a 
flywheel in a spacecraft usually requires high-energy storage density. Thus, a flywheel 
with small ? is not a good choice for a flywheel to be used in a spacecraft.   
 
3.4       Conclusions 
The assumptions used in the calculations and the principles governing the 
imbalance eccentricity in the center of mass were presented in this chapter. Post-
processing software for the calculation of imbalance eccentricity U
m
 based on the output 
of ANSYS was developed and used to study the relationship between the imbalance 
eccentricity of the center of mass U
m
 and rotational speed, variations in the material 
properties, variations in the crack size and variations in ?.  The results can be 
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summarized as follows: 
(1) The imbalance eccentricity of the center of mass U
m
 increases as the speed of 
rotation increases.  
(2) A crack developing in the radial direction is more harmful for a flywheel. 
(3) For a flywheel with a crack developing in the hoop direction, as the crack 
length increases, the imbalance eccentricity U
m
 increases up to the point 
where the crack is shorter than half the circumference, and then decreases 
once the crack is longer than half the circumference. It reaches its maximum 
value when the crack length equals half the circumference. 
(4) A flywheel with small ? can reduce the imbalance eccentricity in the center of 
mass, but this lowers the energy storage efficiency.  
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(a) 
(b)
Figure 3.1  Illustration of hoop-direction crack. 
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(a) 
(b) 
Figure 3.2  Illustration of radial-direction crack. 
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(b) Radial direction crack 
 
(a) Hoop direction crack 
 
Figure 3.3   Top view of crack model 
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Figure 3.4  3-D model 
 
 
Figure 3.5  3-D model
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Figure 3.6 Configuration of nodal mass distribution 
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Figure 3.7  Relationship between U
m
 and rotation speed 
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Figure 3.8  Relationship between U
m
 and different material properties 
(Rotation speed: ? = 60,000 RPM) 
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 Figure 3.9 Relationship between U
m
 and crack length   
(l: length of crack, c: circumference, rotation speed: ? = 60,000 RPM) 
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Figure 3.10  Relationship between U
m
 and ? in hoop layer radial crack  
(Rotation speed: ? = 60,000 RPM) 
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Table 3.1 Material properties of the 3-D rim model 
 
 
 Young?s Modulus Density Poisson?s Ratio 
PaeE
x
1217802.0=  288013.0 ?= eU
xy
 
PaeE
y
1060262.0= 42648.0=
yz
U  
 
Rim radial 
layer 
PaeE
z
1060262.0=  
 
3
1520.0 /kg m? =  
288013.0 ?= eU
xz
 
PaeE
x
1060262.0=  42648.0=
xy
U  
PaeE
y
1060262.0= 26000.0=
yz
U  
 
Rim hoop 
layer 
PaeE
z
1217802.0=  
 
3
1520.0 /kg m? =  
26000.0=
xz
U  
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Table 3.2      The U
m
 at different rotational speeds in different layers 
Rotation speed U
m
 (?m) 
(RPM) Hoop-radial Radial-radial Hoop-hoop Radial-hoop 
10,000.00 7.752445E-01 3.079648E-03 1.763526E-01 4.335275E-04 
20,000.00 3.402593E-00 1.358098E-02 7.721130E-01 2.388601E-03 
30,000.00 7.654059E-00 3.137149E-02 1.740034E-00 4.425180E-03 
40,000.00 1.496168E+01 6.014105E-02 3.395000E-00 5.964242E-03 
50,000.00 2.125401E+01 8.624395E-02 4.817300E-00 1.059468E-02 
60,000.00 3.060827E+01 1.229544E-01 6.948030E-00 1.946457E-02 
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Table 3.3      The U
m
 due to different material properties 
(Rotation speed: ? = 60,000 RPM) 
 
U
m
 (?m) 
 Ratio of modulus 
of elasticity 
(E/Es) 
Hoop-radial Hoop-hoop 
10.0 2.729340E-00 6.667237E-01 
8.0 3.423327E-00 8.124267E-01 
5.0 6.245662E-00 1.360854E-00 
2.0 1.438898E+01 3.545602E-00 
1.0 3.060827E+01 6.948030E-00 
? 6.824654E+01 1.443283E+01 
1/5 2.178154E+02 3.255985E+01 
1/8 4.111557E+02 5.537692E+01 
1/10 5.588994E+02 6.419068E+01 
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Table 3.4      The U
m
 observed for different crack sizes of hoop layer hoop 
cracks (Rotation speed: ? = 60,000 RPM) 
 
Crack Nodes Crack Sizes 
U
m
  (m) (?m) 
1-node 0.015118914 1.469620E-00
3-node 0.045356743 3.501807E-00 
5-node 0.075594572 5.505914E-00
7-node 0.105832401 7.387419E-00 
9-node 0.136070229 9.195531E-00
11-node 0.166308058 1.080063E+01 
13-node 0.196545887 1.229428E+01
15-node 0.226783716 1.339638E+01 
17-node 0.257021545 1.446539E+01
19-node 0.287259373 1.534829E+01 
21-node 0.317497202 1.570897E+01
23-node 0.347735031 1.597986E+01 
25-node 0.37797286 1.603758E+01
27-node 0.408210688 1.567029E+01 
29-node 0.438448517 1.507164E+01
31-node 0.468686346 1.425701E+01 
33-node 0.498924175 1.320116E+01
35-node 0.529162004 1.187100E+01 
37-node 0.559399832 1.048380E+01
39-node 0.589637661 8.588857E-00 
41-node 0.61987549 6.841281E-00
43-node 0.650113319 4.903017E-00 
48-node 0.725707891 8.009648E-03
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Table 3.5      The U
m
 due to different values of ? for a hoop layer radial crack 
(Rotation speed: ? = 60,000 RPM) 
Crack 
ratio (%) 
U
m
 (?m) 
?=0.6 
Crack 
ratio 
(%) 
U
m
 (?m) 
?=0.2 
Crack ratio 
(%) 
U
m
 (?m) 
?=0.4 
0 9.869918E-03 0 2.755247E-03 0 5.642903E-03 
16.67 4.613105E-02 8.33 5.113679E-03 22.22 2.397524E-02 
33.33 2.647962E-01 25 1.608824E-02 44.44 1.327298E-01 
50 7.711860E-01 41.67 3.970804E-02 55.56 3.097230E-01 
66.67 1.941827E-00 58.33 8.969170E-02 66.67 5.963567E-01 
83.33 3.882489E-00 75 2.982346E-01 77.78 9.657845E-01 
100.0 5.848550E-00 91.67 6.583967E-01 88.89 1.490675E-00 
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CHAPTER 4 GABOR TECHNIQUES AS A TOOL FOR THE VIBRATION 
ANALYSIS AND HEALTH MONITORING OF CRACKS IN ROTOR SYSTEMS 
 
4.1 Introduction 
The dynamics and diagnostics of cracked rotor have been gaining importance in 
recent years. Although rotors can be carefully designed for fatigue loading and high level 
of safety by using high-quality composite materials and precise manufacturing 
techniques, failures of rotors as a result of cracks occur often, particularly in high-speed 
rotating machines. Cracks often initiate in or near the regions with high local stresses. 
When stresses increase to some threshold level, the leading edge of the crack (crack tip) 
starts to propagate. Cracks cause localized flexibility in the structure and therefore affect 
the dynamic behavior to some extent. There are two basic kinds of cracks: transverse 
cracks and torsion cracks due to different stress types. In most rotor systems, bending 
stress tends to be dominant. Accordingly, the present study considers only transverse 
cracks.  
With the growth of a crack, the bending stiffness of the shaft decreases, the 
unbalance level changes, producing changes in both the amplitudes and the phases of the 
1X (first fundamental harmonic component) and higher harmonic components. The 
natural frequencies are also affected by the change of the stiffness, depending on the rotor 
mode shape and the location of the crack. Some modes are more strongly affected than 
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others.  
Harmonic analysis is one of the most popular and useful analysis methods or tools 
for engineers and scientists. First, what is the meaning of ?harmonic?? Usually when one 
uses the term ?harmonic?, one means that the measured frequency values are integer (or 
fractional) multiples of a fundamental frequency or rotating speed, as explained by Shao 
H., et al., (2003). By measuring and analyzing of the different harmonic components of 
the signal sets (plotting or calculating the amplitudes and phases of each component), 
engineers can determine whether or not the rotor system is operating normally. Typically, 
the traditional harmonic analysis methods, such as the Fourier transform, are used for 
constant (or near constant) rotor speed operation, so that the fundamental frequency does 
not change appreciably with time. However, when the rotor speed is increasing or 
decreasing significantly, the harmonic components may overlap. For such cases, the 
traditional power spectrum methods are not able to distinguish and extract the vibration 
signals caused by differing excitation sources.  
In the present study, Gabor analysis, or a joint time-frequency method, is 
evaluated as a signal analysis technique for crack detection and health monitoring.  Gabor 
analysis is a special set of time-varying harmonic analysis. From the concept of 
expansion and series, Dennis Gabor (1900-1979), introduced the idea of that expanding a 
signal into a set of weighted frequency modulated Gaussian functions, the details of this 
method could be found in  Qian (2002). 
Historically, accomplishing crack detection using conventional analysis methods 
is a very challenging task. Fourier methods are generally often not sufficiently sensitive 
to allow for observing subtle changes in primary frequency components; so many 
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researchers have modeled and studied the dynamic response of cracked rotors using 
different approaches. Bicego, V., et al., (1999), Bertholet, Y., Qu, J. and Jacobs, L., et al., 
(2000), Harmon, L. and Baaklini, G. (2000), used ultrasonic equipment to detect the 
crack effects. Kim and Kim (2003), used the Newmark time integration method and the 
fast Fourier transform (FFT) to study the effects of various parameters, such as the crack 
depths and crack positions. Adewusi and Al-Bedoor (2001), presented the dynamic 
response of an overhang rotor with a transverse crack using the discrete wavelet 
transform (DWT) analysis technique. Shekhar and Prabhu (1998), studied the transient 
response of a cracked rotor passing through its critical speed. In their extended study 
(2001) and (2003), they reported that the continuous wavelet transform (CWT) could be 
applied to extract feathers of transverse cracks from the time-domain signals of rotor-
bearing systems. They concluded that crack propagating produces changes in vibration 
amplitudes of frequency scale levels corresponding to 1X, 2X and 4X harmonics. Gentile 
and Messina (2003), also used the continuous wavelet transform (CWT) to detect cracks. 
Green, I., et al., (2003), developed an asymmetry crack model to show that a 2X 
harmonic component is a primary response characteristic resulting from the introduction 
of a crack. 
The archived literature also includes applications of the Gabor transform for 
detecting crack characteristics. Liu, G., et al., (1998), studied crack edge-reproduced 
wave. In their work, crack edge-reproduced wave (ultrasonic signals) had been detected 
by using the Gabor transform of time-frequency analysis. Quek, S.K., et al., (2001), 
examined the sensitivity of wavelet technique in the detection of cracks in beam 
structures. The results show that the Gabor wavelet transform is a useful tool in detection 
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of cracks in beam structures. Li, Zheng and Sia, S., et al., (2004), considered the 
continuous Gabor wavelet transform to be applied to analyzing flexural waves in a 
cantilever beam with an edge crack. The results show that it is an effective damage 
detection method and can be extended to detect the damage of complicated structures. 
Peng, G., et al., (2004), presented an active monitoring method, based on Lamb wave and 
wavelet transform, to determine damage locations. It is concluded that the wavelet 
transform, using the Gabor wavelet, effectively decomposes the differential signal into its 
time-frequency components, and the peaks of the time-frequency distribution near the 
center frequency of the exciting signal indicate the arrival times of waves. By the 
calculation of time delays between the arrival of the differential and exciting signals, the 
damage localization points can be obtained. However, the author did not find in the 
literature that Gabor analysis techniques have been used for rotating shafts or flywheel 
disk systems.
     In this work, Gabor analysis is then used to examine the characteristics of the 
respective frequency components over time in order to develop a methodology for the 
identification of crack properties based upon this information. First, a discussion of the 
basics of Gabor analysis is presented. Experimental data obtained from a laboratory test 
rig is used for this purpose.  The characteristics of a vibration signal from a rotating shaft 
with a transverse crack are examined. From the study, one can see that the Gabor analysis 
is not only more robust and easier to implement, but also offers more insight into the 
physical process. 
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4.2  Gabor Analysis 
4.2.1 FFT Drawbacks 
The Fourier transform (FFT) is the most widely used signal processing method. 
However, it is only strictly applicable for stationary signals. For signals involving run-up 
or run-down, the FFT-based spectrum cannot precisely distinguish the frequency 
components. 
There are three main drawbacks of the Fourier transform. First, FFT may lose 
time information. For example, the basis functions of the Fourier transform, pure sinusoid 
functions, last from negative infinite to positive infinite in time. Thus, for a specific 
frequency, the spectrum describes the total energy of this frequency in the time domain. 
Also, the spectrum cannot indicate how these frequencies evolve over time. Figure 4.1 
shows that the two different time domain signals (a) linear chip signals; (b) reversed 
linear chip signals; get the same spectrum distribution in Figure 4.1(c) plot by using FFT 
transform.  
Second, the traditional FFT-based spectrum can only be used to analyze stationary 
signals and cannot track the change of frequency. For example, in the spectrum of the 
chirp signal in Figure 4.1, the frequency bandwidth of signals is proportional to the rate 
of the frequency change.  In Figure 4.2, the spectrums of the two-chirp signals overlap, 
while the Gabor transform can distinguish them.  
Third, another problem of the Fourier transform is that the length of the data 
limits the resolution of the FFT. The frequency resolution of FFT is defined as: 
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dataofnumber
spanfrequency
f =?
.                                                                                             
(4-1) 
 
As a result, long time signals have to be obtained for better resolution.  
 
4.2.2 Discrete Gabor Expansion 
 In the present study, Gabor analysis and the modal-based spectrum are used to 
overcome these drawbacks. 
For a given discrete time sequence , the corresponding discrete Gabor 
transform can be computed with the basis functions, which are the modulated and shifted 
version of
][kx
][k? :  
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where  
C
m,n
 = the Gabor coefficients 
T = the discrete time sampling interval 
N = the total number of frequency lines  
 
  ][
~
kx  is the preprocessed data of . The reason for the use of ][kx ][
~
kx  originates 
from the artificial jumps at the beginning and at the end of the input signal, because the 
analysis window ?[k] oversteps the boundaries and causes some information to be missed. 
97 
 
 
 
 
 
 
An empirical solution is to extend the data samples at the beginning and the end 
according to the length of the analysis window. Although there are several methods to 
achieve this, such as zero padding, symmetric, periodic and spline extensions, our results 
show that symmetric extension and spline extension are more suitable because the signals 
extended by the two methods are smooth at the boundaries.  
In Equation (4-3), since a basis function is concentrated in a region on the time-
plane, the Gabor coefficients can describe how the frequency contents change in the time 
domain. The Gabor spectrogram can thus be calculated based on the Gabor coefficients 
as  
],[],[
'
,','
''
,
kiWVDCCkiGS
hhnm
Dnnmm
nmD ?
??+?
=  ,                                                          (4-3) 
 
where WVD
h,h'
[i,k] is the cross Wigner-Ville distribution of the frequency-modulated 
Gaussian functions. The order of the Gabor spectrogram, D, controls the degree of 
smoothing from Qian (2002). Figures 4.6 to 4.8 illustrate the run-up and steady-state 
signals, respectively, and their Gabor spectrograms are where all the components can be 
clearly seen. The abscissa is time, the ordinate is frequency and the intensities of the 
color represent the magnitudes of the coefficients. 
After computing the Gabor coefficients by using Eq. (4-2), one can reconstruct 
the components using a time-varying filter, which is actually a two-dimensional binary 
mask function, to modify the Gabor coefficient as  
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The component of interest can then be extracted.  
As long as some requirements are satisfied in Qian (2002), the component can be 
reconstructed as  
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where h[k] is called the synthesis function and the integer M represents the total number 
of time points give by . In reference Qian (2002), it is shown that if the 
functions h[k] and ?[k] are identical, the Gabor coefficients of the resulting waveform in 
the time domain will be optimally close to , in the sense of least square error. This 
process is called orthogonal-like Gabor transformation, by Qian (2002). 
TLM /=
nm
C
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4.2.3 Comparison of Wavelet and Gabor Analysis 
Some previous works done by wavelet analysis have been introduced. Wavelet 
and Gabor analyses are two sorts of joint time-frequency analyses. The continuous 
Wavelet and Gabor transforms of a time signal x(t) are defined as 
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respectively, where                                     
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and * denotes the complex conjugate. 
Comparison of Equations (4-4) and (4-5) show that they are similar, but that the 
elementary functions are different. The wavelet transform uses the dilated and translated 
version of the mother wavelet ?(t) to decompose the signal, while the Gabor transform 
uses the modulated and shifted copy of g(t). Because the basis functions are concentrated 
at a region (b, ?) on the time-frequency plane, the Gabor transform can indicate how the 
frequency changes over time.  
It is shown that the bandwidth of the elementary functions in the wavelet 
transform varies with its center frequency, while the bandwidth of the elementary 
functions in the Gabor transform does not. This difference leads to the fact that the time-
frequency resolutions of these two transforms are different. The wavelet transform has 
high time-resolution but low frequency-resolution at high frequency, and high frequency-
resolution but low time-resolution at low frequency.  
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Figure 4.4 illustrates a typical run-up signal of a cracked rotating shaft, and its 
wavelet scalogram. In Figure 4.4 (b), although the magnitude is displayed in decibels, 
only the component associated with 1X rotating speed can be seen. All the other 
components become blurred in the scalogram. However, as Qian (2002) explained that 
the Gabor transform has a constant time-frequency resolution once the analysis window 
is determined. 
Although both wavelet and Gabor transforms can describe how the frequency 
components change with time, the wavelet transform is more suitable for transient 
signals, such as engine knocks, because the basis functions in the wavelet transform have 
finite-duration. On the other hand, with the Gabor coefficients, the basis functions have to 
be long enough to cover a certain number of oscillations. Since the signals obtained from 
the cracked rotors are still relatively stationary in a short time, the Gabor transform is 
more applicable. 
 
4.3 Experimental Results 
An experimental facility is used to obtain data for analysis in this study. It 
consists of a ? inch diameter shaft held vertically by two ball bearings and a motor 
coupling, as shown in Figures 4.5(a) and 4.5(b). Proximity probes affixed to the bearing 
supports are used to measure the vibration signals. A National Instruments PCMCIA 
6036E card and LABVIEW software are used for data acquisition and analysis. Cracks 
are deliberately introduced into the shaft for various depths and axial locations using a 
metal cutting saw.  
For a steel shaft, E=200*10
9
 Pa, ?=7850 kg/m
3
. The diameter of the shaft used is 
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0.015875m, the length of the shaft between the two bearings is 0.365m. Then the 
fundamental natural frequency is:  
 
  
0
4
236
2
EI
f
mL
?
==Hz.                                                                                              (4-8) 
 
 
4.3.1 Natural Frequency Measurements 
First, the natural frequencies are measured for shafts with a variety of cracks 
depths and locations. For each case, the shaft was inserted into the support bearings and 
vibratory responses were excited using an impulse hammer. The resulting data was 
analyzed using the covariance method to extract the natural frequencies. Table 4.1 shows 
sample results for an intact rotor and for two rotor shafts with 5 mm depth cracks at 
separate locations. For each sample, 20 hammer tests were conducted and the results 
averaged to obtain the resulting value. The measured natural frequency of intact shaft is 
226 Hz, about 4% less than the fundamental natural frequency, which means the 
measured value is reliable. 
As expected, the natural frequency of the intact shaft is higher than either of those 
with transverse cracks.  Interestingly, the cracks acted to lower the effective stiffness of 
the shaft.  The sample with the mid-span crack has a lower natural frequency than that of 
the shaft with the crack near to its end, which is also an expected result. Similar results 
were obtained for configurations with other crack depths.  It should be noted that there 
are two basic parameters that influence natural frequency changes that occur as a result of 
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transverse crack development, crack depth and crack axial location. 
 
4.3.2 Rotor Vibration Analysis 
Next, a series of tests was conducted for the purpose of identifying differences 
between the vibration signatures of intact and cracked rotor shafts. Tests were conducted 
for a variety of rotor speeds and conditions, including run-up and steady-state operation. 
Figure 4.6 shows the time responses and Gabor spectrograms for the vibration 
measurements from an intact shaft and from a shaft with a 5 mm depth crack at its center. 
As mentioned earlier, the shafts were mounted vertically so as to remove the effects of 
gravity from the test rotors.  The rotor speed was increased in a linear fashion up to 4500 
RPM over 10 seconds and then held steady for an additional 8 seconds.  
Figure 4.6(b) shows the Gabor spectrogram for the intact shaft. The synchronous 
vibration associated with the rotor imbalance eccentricity is readily observed. There are 
also a variety of multi-synchronous components present in this spectrogram. The 2X, 3X, 
and 4X components are quite distinct for all running speeds and the 5X and 6X can also 
be observed for the higher running speeds. After the running speed reaches 4500 RPM 
(75 Hz), there is a noticeable widening of the spectrogram associated with the 3X 
component (225 Hz).  This is due to the presence of the rotor natural frequency close to 
this component (at about 226 Hz).   
  The Gabor spectrogram for the cracked shaft can be seen in Figure 4.6(d). Again, 
the synchronous component (1X) is readily discernible for all running speeds, as is the 
2X component. However, the higher harmonics are not nearly as clearly defined as for 
the intact shaft.  In addition, the natural frequency of the cracked shaft appears when the 
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running speed reaches about 35 Hz and is visible for the remainder of the test. Sideband 
frequencies for several of the harmonics of the running speed can also be seen.   
In order to obtain more detailed insights into the basic features of the 
spectrograms for the two shafts, additional testing was conducted at a fixed running speed 
of 4500 RPM. Figure 4.7 shows the FFT-based power spectrum and Gabor spectrograms 
for the intact shaft. The order of the Gabor spectrogram is four. Figure 4.7 (a) shows the 
frequency range up to 256 Hz. The first three harmonics of the running speed can be seen 
clearly, with the magnitudes of the three harmonics decreasing with their orders. This 
indicates that the energy is concentrated in the first harmonic of the running speed. Figure 
4.7 (b) through (d) show the Gabor spectrograms of the first three harmonics separately.  
There is no indication of any sidebands associated with any of these harmonics. 
The FFT-based power spectrum and the Gabor spectrograms for the cracked shaft 
are shown in Figure 4.8. In contrast to the spectrograms for the intact shaft, here the 
magnitudes of the 2X and 3X vary periodically in the time domain. In addition, the 
magnitude of the fundamental bending natural frequency is even higher than the second 
and third harmonics of the running speed. This is probably due to the fact that it is close 
to the 3X component. Twenty Hz sideband components also appear for the first and 
second harmonics (1X and 2X) of the running speed. 
 
4.4 Conclusions 
A study of the application of Gabor analysis techniques to the detection and 
monitoring of lateral cracks in rotor shafts has been conducted. Experimental vibration 
data generated from a laboratory test rig was analyzed, with comparisons made between 
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results for an intact shaft and for a sample shaft with a machined crack. As expected, the 
stiffness of the shaft decreases as the crack depth increases and when the location of the 
crack is more toward the shaft center. The rotor-speed run-up results also show that the 
crack reduces the critical speed of the rotor systems. Comparisons of the spectrograms for 
the intact and cracked shafts show distinctive differences between the relative magnitudes 
of the various major frequency components.  These include the prominence of the rotor 
natural frequency and the presence of sidebands in the cracked shaft results. From this 
study, the Gabor expansion based analysis is shown to be a good and achievable tool for 
the current work. 
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Linear chirp 
 Reversed linear chirp 
 FFT Spectrum
(c) 
(b) 
(a) 
Figure 4.1 Drawbacks of the Fourier Transform ---- lose time information 
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Figure 4.2 Drawbacks of the Fourier Transform ---- can?t track frequency 
change 
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Figure 4.3 Gabor analysis used for frequencies distribution. 
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(c) 
(b) 
(a) 
Figure 4.4 Comparisons of the wavelet analysis and Gabor analysis 
(a) A typical run-up signal of a cracked rotating shaft; (b) The wavelet 
scalogram; (c) The Gabor spectrogram. 
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(a) (b) 
Figure 4.5 Experimental setup for crack detection. 
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Figure 4.6 Comparison of the run-up signals of intact (a) and cracked (c) 
shafts and their corresponding spectrograms (b,d) 
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(e) 
Figure 4.7  The Gabor coefficients of an intact shaft 
(a) Overall frequency range; (b) the fundamental frequency; (c) the second 
harmonic; (d) the third harmonic; and  (e) the FFT-based power spectrum
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sidebands 
(d) 
sidebands 
2X, 151 Hz 
1X, 75.5 Hz 
the fundamental natural frequency, 207 Hz 
3X, 227 Hz 
Figure 4.8  The Gabor coefficients of a shaft with a 5 mm deep crack in the middle. 
(a) Overall frequency range; (b) the fundamental frequency and the sideband components; 
(c) the second harmonic of the running speed; (d) the FFT-based power spectrum. 
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Table 4.1  Measured natural frequencies for the intact and cracked shafts 
 
 
 
 
5 mm crack at the mid-span 5 mm crack at the end  
 
Intact 
shaft 
In-crack 
direction 
Off-crack 
direction 
In-crack 
direction 
Off-crack 
direction 
Natural frequency 
(Hz) 
226.28 
209.619 214.12 212.989 215.792 
Standard deviation 
(Hz) 
1.824 
0.9172 1.1226 0.8941 1.1301 
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CHAPTER 5 VIBRATION ANALYSIS AND HEALTH MONITORING OF CRACKS 
IN COMPOSITE DISK ROTOR SYSTEMS 
 
Cracks are general defects in rotating systems and are a precursor to fatigue-
induced failure. Identifying the presence and growth of cracks is a critical concept for the 
health monitoring and diagnostics of such systems. A combined computational and 
experimental study of the vibration characteristics of a composite hub flywheel rotor 
system with a cracked hub disk is presented.   
 
5.1 Introduction 
High-speed flywheel energy storage systems offer the potential for substantially 
improved energy storage densities as compared to conventional chemical batteries and 
are seriously being considered for advanced satellite applications. To improve energy 
storage densities, the rotor hub (providing the shaft/rim interface in a flywheel rotor) is an 
attractive candidate for reducing rotor mass. The hub tends to lie close to the shaft and 
contributes little to the overall energy storage capacity while adding to the system mass. 
Some candidate designs use composite materials and allow significant flexibility.  
However, to date there has been little work specifically directed at understanding the 
influence of cracks in composite hub flywheel systems.  It is critical that reliable health 
monitoring strategies be developed for these systems if they are to be a successful 
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technology. 
Accordingly, the present work investigates the influence of cracks on the dynamic 
characteristics of composite-disk hub flywheel systems.  An experimental model was 
tested and the results used to validate a finite element analysis model, which was then 
used to examine the basic characteristics of such a system. A simplified rotor model with 
a flexible hub was developed based upon insights from these investigations. Using this 
model, a detailed parametric study was conducted in order to investigate the relationship 
between natural frequency and rotational speeds with and without a crack. 
 
5.2 Experimental Investigation 
In order to gain some initial insights into the influence of cracks on the dynamic 
characteristics of a flexible hub rotor system and to provide validation data for a finite 
element analysis (FEA) study, the natural frequencies of a basic test article were 
experimentally determined.  This includes measurement in the ?in-crack? and ?off crack? 
directions for both in-plane and out-of-plane vibration modes. 
 
5.2.1 Testing Sample 
A schematic diagram of the basic test article used in this study is shown in Figure 
5.1 and photographs are shown in Figure 5.2. The test article consists of a steel shaft 
supporting a thin composite disk with an attached steel rim. This test article is intended to 
simulate a flywheel system with a fairly flexible composite hub and a relatively massive 
rim (for energy storage).  The outer radius is R
o
 = 76.2 m and the inner radius is R
i 
= 7 
mm. The hub disk thickness is t = 3.53 mm. The two sides of the rim are attached to the 
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sample disk as shown in the diagram.  The total thickness of the rim is 60 mm. The 
difference between the inner radius and the outer radius of the rim is 32 mm.  The testing 
points for the out-of-plane and in-plane vibration measurements are marked with the 
symbols:  
? Representing the testing point in the plane of the disk for out-of-plane direction testing 
? Representing the testing point in the plane of the disk for in-plane direction testing 
  The material properties for the composite disk are summarized in Table 5.1. The 
steel rim has a mass of 9.09Kg.  
 
5.2.2 Testing Rig 
The experimental set-up used in this study is shown in Figure 5.2. It consists of 
the test article clamped in block supports attached to the slip table of a vibratory shaker. 
A data acquisition system and two accelerometers affixed to the rotor system are used to 
obtain and record the vibration signals. A hoop direction crack is deliberately introduced 
into the composite disk during the lay-up of the disk. There are two testing 
configurations, one for the out-of-plane direction and another for the in-plane direction, 
as shown in Figures 5.2(a) and 5.2(b), respectively.  
 
5.2.3 Experimental Results and Discussions  
Using this setup, a series of experimental tests were conducted in order to identify 
differences between the vibration signatures of the ?in-crack? and ?off-crack? directions 
and to determine the natural frequencies in both directions. Tables 5.2 and 5.3 show some 
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sample results for the out-of-plane direction tests.   Four points located in the plane of the 
disk were picked as the testing points, as shown in Figure 5.1. Point ?a? lies in ?in-crack? 
direction, points ?b? and ?d? are each located 90
o 
from ?a? in the ?off-crack? directions, 
and point ?c? is located 180
o
 degrees from ?a?.  
Similarly, sample results for the in-plane direction tests are summarized in Table 
5.4. Locations for four points are all on the outer edge of the rim. Point ?1? lies in the ?in-
crack? direction, points ?2? and ?4? are each located 90
o 
degrees from point ?1? in the 
?off-crack? directions, and point ?3? is located 180
o
 degrees from point ?1?.  
As expected, the natural frequencies associated with the ?off-crack? directions are 
higher than those associated with the ?in-crack? direction, both for the out-of-plane and 
the in-plane tests.   This is due to the decrease in effective stiffness of the rotor in the ?in-
crack? directions associated with the presence of the crack.   
 
5.3 Numerical Simulation Using Finite Element Analysis 
5.3.1 3-D Model 
For the next stage of this effort, a finite element model was developed using 
ANSYS.  The same geometry and material properties of the experimental test article are 
used for this model.  Figure 5.3(a) shows a drawing of the model rotor system. 
Cylindrical coordinates are used, with x representing the radial direction, y representing 
the hoop direction, and z is the axial direction. The hoop direction is also the fiber 
direction. Figure 5.4 is the top view of hoop direction crack for disk model. 
 
 
118 
 
 
 
 
 
 
5.3.2 Grid Independence Study 
The finite element method is a numerical analysis technique for obtaining 
approximate solutions to a wide variety of engineering problems. It envisions the solution 
region as built up of many small, interconnected subregions or elements. A finite element 
model gives a piecewise approximation to the governing equations, and a solution region 
can be analytically modeled or approximated by replacing it with an assemblage of 
discrete elements. The accuracy of a numerical solution heavily depends on the grid size, 
which is used for the given problem. In order to determine the proper grid size for this 
study, the grid independency test was conducted to see how the choice of grid affects the 
value of the natural frequency for this model. The test was mainly focused on grid size 
along three directions: the disk hoop direction, the disk thickness direction and the radial 
direction. Graphs n
?, 
n
z
 and n
R
 represent the total element numbers divided along the 
hoop circumference direction, disk thickness direction, and disk radial direction, 
respectively. The natural frequencies of first, second, fourth, fifth and sixth mode are 
commonly used as a sensitivity measure of the accuracy of the solution. 
For a given model with n
z
 = 4, n
R
 = 24 and a hoop crack lies in the middle radius 
with an angle of 60?, six different grid sizes are tested:  n
? 
= 36, 48, 60, 72, 84 and 120. 
Figure 5.5 shows the dependence of natural frequencies of five modes on the grid size n
?
. 
Comparison of the natural frequencies of second mode among six different simulation 
cases reveals that finer grid densities give rise to smaller predicted values in an 
asymptotic fashion, while the natural frequencies of the rest modes monitored (first, 
fourth, fifth and sixth mode) increases as the grid becomes finer and finer. For the natural 
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frequencies of all the modes monitored, the two grid distributions n
? 
= 84 and 120 gave 
nearly identical results. 
Similar tests were performed in order to decide the proper grid sizes along disk 
thickness and radial directions. Figure 5.6 shows the variation of natural frequencies with 
the grid size in disk thickness direction, n
z
. According to the results among the five cases 
we tested (n
z
 = 1, 2, 4, 6 and 8), one can see that the results from n
z
 = 6 and 8 are almost 
identical. Results from Figure 5.7 imply that natural frequencies are not sensitive to n
R
 
when n
R
 is greater than 24. 
Considering both the accuracy and the computational time, the following 
calculations of this study were all performed with n
? 
= 84, n
z
 = 6 and n
R
 = 24. 
 
5.3.3 Comparison of the Results between the Experimental and Simulation  
Configurations with and without a crack in the composite hub were investigated 
using this model. The location of the crack is the same as in the experimental test article 
in order to do a close comparison between numerical simulation results and experimental 
results. Some example results are shown in Table 5.5. 
For the cracked case, the first two modes are axis-symmetric bending modes, with 
two distinct frequencies associated with the ?in-crack? and ?off-crack? directions.   The 
third mode is a torsional mode, which we are not interested in for this study. The fourth 
mode is an umbrella-type bending mode, with the associated natural frequency of 52.5 
Hz, as shown in Figure 3(b).  The fifth and sixth modes are in-plane stretching modes, 
with two distinct frequencies associated with the ?in-crack? and ?off-crack? directions, 
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respectively, as shown in Figures 5.3(c) and 5.3(d). 
A comparison of the results from the experimental testing and finite element 
simulation is shown in Table 5.5. The natural frequencies associated with all the modes 
of the cracked case are smaller than those for the cases without a crack. This implies that 
the presence of a crack noticeably influences the natural frequencies for the primary 
modes.  It can also be observed that the frequency values for the ?in-crack? direction are 
consistently smaller than those for the ?off-crack? direction. 
 
5.3.4 Parameters of Numerical Simulations 
Furthermore, a parameter variation study was conducted in order to deeply 
examine the influence of crack length and crack position on the different natural 
frequency.  To simplify description, physical modes are replaced by number-mode and 
are listed in Table 5.7. For example, the first mode is the mode for out-of-plane 1
st
 
bending axis-symmetric mode in-crack direction, the second is the mode for out-of-plane 
1
st
 bending axis-symmetric mode off-crack direction; the third is the 1
st
 torsional mode, 
and is not of concern in this study and therefore ignored. The fourth is the out-of-plane 
2
nd
 bending umbrella mode, the fifth is the 1
st
 in-plane stretching mode in-crack direction, 
and the sixth is the 1
st
 in-plane stretching mode off-crack direction. 
The parameter studies are as follows: 
? Crack length growing along the disk hoop direction 
? Crack length moving along the disk radial direction 
? Crack length growing along the disk radial direction 
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5.3.5 Numerical Simulation Results and Discussions 
5.3.5.1 Natural Frequencies Variation with a Variable Length Crack along the Disk Hoop  
Direction 
Figure 5.8 shows the crack?s location and its growing direction which is 
investigated in this study. The crack is located along the hoop direction at the middle 
radius of the disk sample, the starting point P
1
 is unchanged and the crack length varies 
from 0% to 97% (0?~330?) of the disk circumference. The case with 0% of the disk 
circumference means no crack, while the case with 97% of the disk circumference 
implies that there is a long crack along the circumference.    
Figure 5.9 shows the variation of the natural frequencies associated with the five 
different modes, respectively. The y-axis is the natural frequency F
cj
 normalized by F
nj
, 
where F
cj
 is the natural frequency for the model with the crack, and F
nj
 is the natural 
frequency for the case without the crack. The x-axis is the length of crack L
c
 normalized 
by C
r
, where C
r
 is the circumference of the middle radius r of the disk model.  
Based on these figures, it is observed that all the natural frequencies decrease 
when the crack length increases.  Figures 5.9 (a) and (b) show the variation of natural 
frequencies associated with first and second modes, respectively. Upon comparing (a) 
and (b), one can see that the natural frequencies of out-of-plan 1
st
 bending mode decrease 
faster in ?in-crack? direction than in ?off-crack? direction. The variation of natural 
frequencies of in-plane 1
st
 stretching mode in both  ?in-crack? and  ?off-crack? directions 
with the increasing of crack length are shown in Figures 5.9 (d) and (e), respectively. 
Similar trend also can be observed in Figures 5.9 (d) and (e).   For a given crack length, 
natural frequencies in ?in-crack? direction are always smaller than that in ?off-crack? 
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direction, both for out-of-plane and in-plane modes. It implies that the existence of crack 
has more remarkable effects on the stiffness in the ?in-crack? direction than in the ?off-
crack? direction. 
The variation of the natural frequencies (shown in Figure 5.9(c)) associated with 
the fourth mode exhibit a different trend compared with the others in Figure 5.9. The 
natural frequency decreases slowly as the ratio of L
c
 / C
r 
reaches 0.5.  It corresponds to 
the sector angle of crack length equals to ?. It indicates a phase change for the mode 
shape. This is because the fourth mode is the 2
nd
 out-of-plane bending mode, also referred 
to as the umbrella type. A crack has more influence on axial direction or z-axis than in-
crack or off-crack direction. As the crack length increases, the imbalance eccentricity 
center of mass U
m
 moves down towards off-crack direction when the crack length is less 
than half of the circumference. When the crack length is greater than half of the 
circumference, U
m
 moves up back to the disk center.   
Figure 5.10 shows normalized natural frequency variations with the crack length 
growing along the disk hoop direction for all five modes. Again, with the increase of 
crack length, the relative change of natural frequencies associated with the first mode is 
greater than any other modes. The min value of F
cj
 / F
nj 
is about 0.2. It implies the crack 
length (size) along the hoop direction in a disk has more noticeable effects on the low 
modes. 
 
5.3.5.2 Natural Frequencies Variation with a Constant Length Crack at Different  
Locations along the Disk Radial Direction  
In order to evaluate how the location of crack affects the natural frequencies, a 
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series of cases are generated in this study. Figure 5.11 shows the schematic diagram of 
the parameter change. A crack located along the radial direction has a fixed length of 
1/8
th
 of ?R. The center of the crack locates seven points that are evenly spaced between 
the inner and outer radius of the disk. Natural frequencies associated with the first six 
modes are obtained from the 3-D finite element model for the above seven cases.  
Figure 5.12 shows the variation of the natural frequencies associated with the five 
different modes, respectively. Similarly, the y-axis is F
cj
 normalized by F
nj
 while the x-
axis is R
cc
 normalized by R
o
. 
Based on these figures, it is observed that the natural frequencies change when the 
crack position changes. Examining curves for the first mode (shown in Figure5.12a), 
second mode (shown in Figure 5.12b), fifth mode (shown in Figure5.12d) and sixth mode 
(shown in Figure5.12e), one can conclude that the natural frequencies associated with the 
?in-crack? direction are more sensitive to the location of crack than those for the ?off-
crack? direction. As shown in Figure 5.12a, the natural frequencies associated with the 
first mode increase, as the crack is closer to the outer side of the disk. In other words, a 
crack closer to the inner side of the disk has more remarkable effects on natural 
frequencies associated with the first mode. Also, one can see that the whole curve is 
below 1.0. This means that the natural frequencies associated with the first mode with a 
crack are always smaller than that without a crack. Figure 5.12d shows the natural 
frequencies associated with the fifth mode. The natural frequency reaches its minimum 
when R
cc
 / R
o
 = 0.5.  
Although the imbalance eccentricity center of mass U
m
 doesn?t change as long as 
the crack length is constant, the moment of the centrifuge about the axial direction 
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changes when the crack location moves from the inner radius to outer radius. Figure 
5.12(c) shows the variation of the natural frequencies associated with the fourth mode. It 
is very different from other modes; the maximum decrease of the frequency is at the outer 
disk edge, and then increases gradually as the crack moves toward the inner disk side. 
This implies that a crack close to the outer disk side exhibits its most notable effects on 
the natural frequency associated with the fourth mode.  
The natural frequencies variation with location of cracks for all five modes is 
plotted in Figure 5.13. For the case studied, all the curves are within a band with 0.96 < 
Fc/Fn < 1.0. This implies that the crack position that changes along the radial direction in 
a disk does not have important effects on the natural frequency.   
From the above results, it can be noted that the change in the different modes 
associated with the natural frequencies can be used to pinpoint the crack location. 
 
 5.3.5.3 Natural Frequencies Variation with a Variable Length Crack along the Disk  
Radial Direction 
The parametric study was repeated for the same disk rotor systems by considering 
the crack to be lengthened in the disk radial direction. Figure 5.14 shows the crack?s 
positions and lengths that we studied. The crack?s center is kept at point P
1, 
which lies in 
the middle of radius r. the two ends of crack extend to the disk inner side and outer side, 
respectively. Six different lengths of crack are studied: 17.14%, 34.29%, 51.43%, 68.57% 
and 85.7% of ?R, where ?R is the difference between the outer and the inner radius of 
the disk).   
Figure 5.15 shows the variation of the natural frequencies associated with the five 
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different modes, respectively. The y-axis is F
cj
 normalized by F
nj
, where F
cj
 is the natural 
frequency for the model with the crack, and F
nj
 is the natural frequency for the case 
without the crack. The x-axis is L
c
 normalized by ?R, which is the ratio of the crack 
length and the difference between the outer and the inner radius of the disk model.  
It is observed that all the natural frequencies decrease as the crack length 
increases along the disk radial direction. After comparing the first mode (shown in 
Figure5.15a) with the second mode (shown in Figure 5.15b), the fifth mode (shown in 
Figure5.15d) with the sixth mode (shown in Figure5.15e), and one can see that the 
natural frequencies associated with the ?in-crack? direction decrease faster than the 
corresponding values for the ?off-crack? direction. It is also observed that the change of 
the natural frequencies associated with the lower modes is greater than that of the higher 
modes as the crack length increases. Figure 5.15 (c) shows the variation of the natural 
frequencies associated with the fourth mode, the natural frequencies monotonously 
decrease as the crack length increases. This is because the imbalance eccentricity center 
of mass U
m
 moves down towards the off-crack direction with the increasing of the crack 
length. This is the noticeable difference as compared with Figure 5.9 (c).  
Figure 5.16 shows the natural frequency variation as the crack length increases 
along the disk radial direction for all five modes. Similarly, with the increase of the crack 
length, the natural frequencies associated with the first mode decrease faster than any 
other modes. The minimum value of F
cj
 / F
nj 
is about 0.68. This implies that the natural 
frequencies associated with the lower modes are more sensitive to the crack length along 
the radial direction than at the higher modes. This is very similar to what we have 
observed for the cases with crack length changing in the hoop direction. 
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5.4 Simplified Rotor Model and Simulation 
Based upon these results, the analytical study was expanded to consider the 
combined effects of rotor speed and crack size on natural frequency characteristics. A 
schematic diagram of a simplified model developed for this purpose is shown in Figure 
5.17. This model is meant to capture the characteristics of the primary in-plane modes (5 
and 6). It consists of a rigid massless shaft and a flexible hub attached to discrete masses 
representing the rigid rim. The shaft is symmetrically supported by springs of stiffness, 
k
x
, k
y
 and viscous damping elements, C
x
, and C
y
 at both ends. The flexible disk and rim 
are simulated by four identical mass elements m
1
, m
2
, m
3
, and m
4,
 with the associated 
deformations, ?
1
, ?
2
, ?
3
, and ?
4
. The spring elements that connect the mass elements to the 
shaft are k
1
, k
2
 k
3
, and k
4
. ? is the rotational speed and is assumed to be constant.  
 
5.4.1 Positions of the Disk Masses 
The equations of motion are developed in the following manner.  First, the 
location of the i
th
 disk mass is denoted as: 
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5.4.2 Velocities of the Disk Masses 
The velocity of each disk mass is then obtained by differentiating the 
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corresponding position vector with respect to time, yielding: 
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5.4.3 Kinetic and Potential Energy of the Rotor 
The kinetic energy of the rotor consists of two parts, the kinetic energy of the disk 
and the kinetic energy of the shaft, and is represented as: 
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Assume all the discrete masses are identical and equal to m, substitution of the 
equations (2) into equations (3) gives: 
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The potential energy of the complete rotor system is the total energy stored in all 
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of the spring elements and is represented as: 
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5.4.4 Equations of Motion of the Rotor 
Substitution of equations (4) and (5) into Lagrange?s equations, produces the 
equations of motion.         
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Only symmetric supports are considered, k
x
 and k
y 
are set with the same value, 
EOM are converted to a constant coefficient form by transforming the support 
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coordinates (X, Y and Z) to the rotating frame ( X , Y and Z ), Eigen-analysis is then used 
to analyze the resulting set of equations. 
The transform relationship between space-fixed coordinate and shaft-fixed 
coordinate system is shown Figure 5.18. The transform equations are: 
 
cos( ) sin( )XX tY t? ?=?,                                                                                     (5-7.a) 
sin( ) cos( )YX tY t? ?=+,                                                                                        (5-7.b)  
 
where X, Y are coordinates for the space-fixed frame, and X ,Y are coordinates 
for the shaft-fixed frame, Z and Z are in the coincident direction. 
Substitution of equations (5-7.a , b) into equations (5-6), results in the EOM based 
on shaft-fixed frame: 
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5.4.5 Study of Numerical Simulation 
The model represented by the equations of motion 5-8(a-c) was used to simulate 
and analyze the system behavior for a variety of parametric configurations. Due to the 
additional flexibility of the crack, the stiffness in the crack direction is softer than that of 
off-crack direction. Thus, the presence of a crack is modeled as a smaller stiffness 
coefficient, k
i
, associated with the quadrant in which the crack is located.  By using same 
parameters as the test sample, the Matlab codes (Appendix E) are run to simulate the 
spectrum distribution of the cracked disk model. The parameters for the rotor model are 
summarized in Table 5.8.  
 
5.4.6 Results and Discussions 
Figure 5.19 shows the rotational frequencies of the same rotor system both with 
and without a crack. Forward and backward whirling frequencies for cases with and 
without a crack are shown as dotted and solid lines, respectively. One can see that both 
the solid and the dotted lines converge to a point when the rotational speed is zero. As 
expected for both cases with and without a crack, the forward whirling frequency 
increases as the rotational speed increases, while the backward whirling frequency 
decreases as the rotational speed increases. However, there is a noticeable difference in 
both the forward and backward frequencies between cases with a crack and without a 
crack as the rotational speed increases. This implies that the presence of a crack has a 
more remarkable influence for greater rotational speeds.   
In addition, the relationship between the stiffness ratio and natural frequency is 
studied. The coefficient k
c
 stands for the spring stiffness simulating the rotor quadrant 
131 
 
 
 
 
 
 
with the crack. The case without a crack corresponds to k
1
/k
c
 = 1. For a case with a crack, 
k
1
/k
c
 is always greater than one, as the crack results in a smaller effective k
c
. The 
magnitude of k
c
 decreases as the crack size increases. Inspection of Figure 5.20 shows 
that:  
(1) As the stiffness ratio increases (the crack size increases) both the forward and 
backward natural frequencies decrease;  
(2) When the rotational speed is zero, the fundamental frequency does not show a marked 
change as the stiffness ratio increases; 
(3) As the rotational speed increases, the frequency drops substantially as the stiffness 
ratio increases, which is in agreement with the results shown in Figure 5.18. From 
Figure 5.20, when the crack size grows, the possible tip rotating speed of the model 
will decrease quickly. This is because the rotational speed can have a significant 
effect on the crack behavior. The imbalance eccentricity of the center of mass U
m
 
grows as the speed of rotation increases even the crack size doesn?t change. This part 
is discussed in details at Chapter 3.3.1 and Figure.3.7. 
(4) The maximum stiffness ratio is smaller for higher rotational speeds. Obviously, this 
indicates that the allowable crack size for a stable system decreases as the rotational 
speed increases. The centrifugal effect of the operating speed acts as a negative 
stiffness, reducing the effective stiffness of the overall system until catastrophic 
failure occurs. Both the forward natural frequency (Figure 5.20(a)) and backward 
natural frequency (Figure 5.20(b)) show similar tendencies.  
A comparison of the results from the finite element analysis and theoretical model 
simulation is shown in Table 5.9. One set data is from the ANSYS simulation parameter 
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study case (variations of the mode 5 in-plane 1
st
 stretching mode as the crack grows along 
the disk radial direction) and one from the simplified model case (variations of the 
fundamental natural frequency as the stiffness ratio changes when the rotating speed is 
zero). 
From these two data sets, it is indicated that there is no big change for the 
frequency value as the crack grows along the radial direction; both sets shows the same 
tendency as the rotating speed is zero.  
 
5.5 Conclusions 
It is well known that the natural frequencies decrease due to the presence of a 
crack. An investigation of the effects of a hoop-direction crack on the dynamic 
characteristics of a flexible-composite-hub/rigid-rim rotor system has been presented. 
This work has consisted of an experimental study, which was used to benchmark and 
validate a finite element model.  Using that model, a parameter variation study was 
extended to examine the effects of crack length on the natural frequencies of the in-plane 
and the out-of-plane vibration modes, as well as differences between similar modes for 
the ?in-crack? and ?off-crack? directions. Finally, a simplified model for the primary in-
plane mode (a stretching mode) was developed and used to evaluate the effect of 
operating speed on the frequency characteristics. Based upon the results of these studies, 
insights into vibration characteristics that are potentially useful for the purposes of rotor 
health monitoring were obtained. Specifically, it was observed that the presence of a 
crack serves to reduce the effective natural frequency of the rotor system and this effect is 
magnified as operating speeds increase.  In addition, there is a directional dependence of 
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these frequency characteristics due to this softening effect arising from a crack.  The 
frequencies associated with the ?in-crack? direction are generally smaller than those 
associated with the ?off-crack? direction.  
Based on these results, it suggested that the changes of the natural frequencies 
could be used for crack detection and the monitoring of rotor systems.  
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Figure 5.1  Schematic diagram of the experimental test article 
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(b) 
(a) 
Figure 5.2 Experimental setup for the frequency measurement of the composite crack 
disk with heavy rim. (a) Out-of-plane direction test setup; (b) In-plane direction test setup.
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Figure 5.3 FEA model (a) Drawing and grid system; (b) Fourth mode shape with the
associated frequency 52.5 Hz for the crack case; (c) Fifth mode shape with the associated
frequency 315 Hz (in-crack direction); (d) Sixth mode shape with the associated frequency 321
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 Crack in hoop direction  
 
Figure 5.4   Top view of disk crack model 
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Figure 5.8  The path of a crack growing in the hoop direction. 
(The crack start point P
1
 is fixed, the other end extends along the middle radius  
( r = ? (Ri+Ro) ) circumference C
r
, until reaches point P
2.
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Figure 5.9 Natural Frequencies variation with a variable crack length along the 
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Figure 5.10 Natural Frequency variation with the variable crack length 
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Figure 5.11  The path for crack moving in radial direction. 
(The crack length is fixed, the crack center position starts from point P
2
, moves to P
3.
)
145 
 
 
 
 
 
 
0.95
0.96
0.97
0.98
0.99
1. 0 0
1. 0 1
0 0.2 0.4 0.6 0.8 1
Rcc / Ro
 Fc2 / Fn2
Second mode
(b) 
0.95
0.96
0.97
0.98
0.99
1. 0 0
1. 0 1
0 0.2 0.4 0.6 0.8 1
Rcc / Ro
Fc1 / Fn1
First mode
(a) 
0.95
0.96
0.97
0.98
0.99
1. 0 0
1. 0 1
0 0.2 0.4 0.6 0.8 1
Rcc / Ro
Fc4 / Fn4 Fourth mode
0.95
0.96
0.97
0.98
0.99
1. 0 0
1. 0 1
0 0.2 0.4 0.6 0.8 1
Rcc / Ro
Fc5 / Fn5
Fifth mode
(d) 
(c) 
0.95
0.96
0.97
0.98
0.99
1. 0 0
1. 0 1
0 0.2 0.4 0.6 0.8 1
Rcc / Ro
 Fc
6
 / Fn6
Sixth mode
(e) 
Figure 5.12 Natural Frequency variation with a constant length crack at different 
locations along the disk radial direction 
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Figure 5.14  The path for crack growing in radial direction. 
 (The crack center is fixed at point P
1
, the two ends of crack extend to P
2
 and P
3
.) 
 
 
 
148 
 
 
 
 
 
 
149 
 
 
 
 
 
 
 
0.6
0.7
0.8
0.9
1
1. 1
0 0.2 0.4 0.6 0.8 1
Fc6  /  Fn6
Sixth mode
Lc / RLc / ?R 
 
(e) 
0.6
0.7
0.8
0.9
1
1. 1
0 0.2 0.4 0.6 0.8 1
L
Fc1  /  Fn1
First mode
c / DRLc / ?R 
 
(a) 
0.6
0.7
0.8
0.9
1
1. 1
0 0.2 0.4 0.6 0.8 1
 Fc2  /  Fn2
Second mode
Lc / R
Lc / ?R 
 
(b) 
0.6
0.7
0.8
0.9
1
1. 1
0 0.2 0.4 0.6 0.8 1
L
Fc4 /  Fn4
Fourth mode 
c / RLc / ?R
 
(c) 
0.6
0.7
0.8
0.9
1
1. 1
0 0.2 0.4 0.6 0.8 1
Fc5  /  Fn5
Fifth mode
Lc / RLc / ?R 
 
(d) 
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Figure 5.18  Coordinate systems for support frame and rotating shaft frame
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Figure 5.19  Influence of a crack on forward and backward whirling 
natural frequencies 
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Table 5.1 Material properties of the composite disk 
 
Ex 6.67 GPa 
Ey 140 GPa 
Ez 6.67 GPa 
Gxy 3.20 GPa 
Gxz 2.39 GPa 
Gyz 3.19 GPa 
Nuxy 0.260 
Nuyz 0.260 
Nuxz 0.395 
? 
1520 kg/m
3
 
 
155 
 
 
 
 
 
 
Table 5.2  Measured Natural Frequencies for Out-of-Plane 1
st
 Bending Mode 
 
Test Point Natural Frequency (Hz) 
a 16.3 
b 17.0
c 16.3 
d 17.0
 
 
 
156 
 
 
 
 
 
 
Table 5.3  Measured Natural Frequencies for Out-of-Plane 2
nd
 Bending Mode 
 
Test Point Natural Frequency (Hz) 
a 53.0 
b 53.3 
c 53.0 
d 53.3 
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Table 5.4  Measured Natural Frequencies for the 1
st
 In-Plane Mode 
 
Test Point Natural Frequency (Hz) 
1 300 
2 316
3 312 
4 316
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Table 5.5 Natural frequencies and mode shapes from finite element analysis
 
Natural Frequency 
 (Hz) 
 
Mode 
Without Crack With Crack 
16.5 
 (in-crack direction) 
1
st
 Bending 
axis-symmetric 
mode 
16.9 
16.8  
(off-crack direction) 
 
Torsional mode 
43.7 43.6 
2
nd
 Bending 
umbrella mode 
53.6 52.5
315  
 (in-crack direction) 
1
st
 In-plane 
stretching mode 
325 
321 
 (off-crack direction) 
 
 
 
 
 
 
 
 
 
 
 
 
159 
 
 
 
 
 
 
Table 5.6 Comparison of natural frequencies from finite element 
analysis and experimental testing 
Mode Simulation 
(Hz) 
Experiment 
 (Hz) 
Error (%) 
(In-crack 
direction) 
16.5 16.3 1.2  
Out-of-
plane 
1
st
 
Bending 
(Off-crack 
direction) 
16.8 17.0 1.2 
Out-of-plane 
2
nd
 Bending 
52.5 53.2 1.4 
(In-crack 
direction) 
315  300 4.6 1
st
  
In-plane 
(Off-crack 
direction) 
321 
  
314 2.2 
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Table 5.7 Explanation of terms used to describe modes 
Number-Mode in FEA model 
 
Physical Modes 
In-crack direction Off-crack direction 
Out-of-plane 
1
st
 bending 
axis-symmetric mode
First mode Second mode 
1
st
Torsional mode 
 
Third mode (not interested) 
Out-of-plane 
2
nd
 bending 
Umbrella mode 
Fourth mode 
In-plane 
1
st
 Stretching mode 
Fifth mode Sixth mode 
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Table 5.8 Parameters of the simple rotor disk model  
 
 Balanced case Unbalanced Case
Damping factor for the support 
C
x
, Cy 
0.8 0.8
Damping factor for the mass  
c
1
 c
2
 c
3 
c
4
0.5 0.5 
System support spring  
k
x
 k
y 
(Kg/m
3
) 
5.0e7 5.0e7 
The element spring of Mass 
 k
1
 k
2
 k
3
 k
4 
(Kg/m
3
) 
5.0e7 k
2
 k
3
 k
4
 =5.0e7 
k
1
 changes from 5.0e7 to 5.0e2
 
Mass of the disk  
m
1  
m
2
 m
3
 m
4 
(Kg) 
2.45 2.45 
Mass of the hub  
m
h 
(Kg) 
0.2 0.2 
Radius of the hub  
R (m) 
0.076 0.076 
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Table 5.9 Comparison of natural frequencies from finite element analysis and 
theoretical model simulation 
ANSYS Model       
Rates(Lc / ?R) 0 0.1714 0.3429 0.5143 0.6857 0.857  
Fc/Fn 1 0.998543 0.994824 0.988718 0.979543 0.96482
Crack length grows along the disk radial direction (Data for the mode 5 in-plane 1
st
 
stretching mode) 
 
Matlab Model       
Kc/K1 0 0.1 0.01 0.001 0.0001 0.00001 0.000001
Fc/Fn 1 0.995944 0.97965 0.978678 0.978703 0.977838 0.977838
When the rotating speed is zero, the variations of natural frequency  
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 
 
 A study aimed at developing (i) an effective optimal design methodology for 
advanced composite rotors, and (ii) evaluating dynamic characteristics and developing 
insights for health monitoring has been presented.  The major contributions of this work 
are: 
1. In order to obtain the optimization design of a particular MDC flywheel with 
the maximum energy storing density (ESD), a flywheel optimization algorithm has been 
proposed and implemented. First, a methodology was developed to present an optimal 
design procedure for the structure of MDC flywheel systems. To solve the nonlinear 
optimization problem, a parametric model was built and optimization analysis was 
performed by using finite element software ANSYS. Second, a specific optimal structure 
design was successfully demonstrated of a domed hub-shaft-rim flywheel rotor. A 
parametric study was performed by changing the thickness, t, of the hub port, the value of 
the ratio a/b, and the maximum energy storing density (ESD) of the flywheel rotors was 
calculated while the shear stress response of the model was recorded for each speed of 
vibration. A specific optimized design for a MDC flywheel system was demonstrated and 
a prototype fabricated. The results of this study confirmed the proposed model developed 
might be useful for the optimization of future designs. 
2. For safety issues of the MDC flywheel systems, the initiation and propagation 
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of a crack is one of the most important failures found in high rotation speed flywheel 
systems. To understand the crack propagation behavior, general observations of the crack 
propagation mechanism are presented in detail from the numerical investigations. The 
relationships between the imbalance eccentricity of the mass center (U
m
) and the 
variations in rotation speeds, crack growth size, material properties of the modulus of 
elasticity, and the radii ratio ? (ratio of inner radius and outer radius) were studied 
extensively using finite element analysis. The imbalance eccentricity of the center of 
mass U
m
 increases when the rotating speed is increasing. A crack lying in the radial 
direction is more harmful than that that in the hoop direction for a flywheel.  As a crack 
length varies along the hoop direction, the imbalance eccentricity U
m
 increases as the 
crack length increases, where the crack is shorter than half the circumference. Then the 
imbalance eccentricity U
m
 decreases once the crack is longer than half the circumference. 
It reaches its maximum value when the crack length equals half the circumference. A 
flywheel with a small value of ? can reduce the imbalance eccentricity of the center of 
mass, but this will lower the energy storage efficiency.  
3. To obtain further insight into the influence of cracks in a flywheel system, more 
experimental and simulation work were conducted.  
First, a methodology to detect the dynamic behavior of a shaft rotor with cracks 
using Gabor?s analysis techniques was developed. The application of a joint time-
frequency method, or Gabor analysis, as a tool for crack identification and health 
monitoring in rotating machinery was investigated.  Experimental vibration data was 
generated for a set of sample shafts with different crack depths and locations.  Gabor 
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analysis was then used to examine the characteristics of the respective frequency 
components over time in order to develop a methodology for the identification of crack 
properties based upon this information.  From the study, one can see that the Gabor 
analysis is not only robust and easy to implement, but also offers more insight into the 
physical process. There is a significant agreement between the experimental results and 
the theoretical calculations. 
Next, the presence and growth of crack characteristics of a composite hub 
flywheel rotor system with a cracked hub disk were studied. Experimental testing of both 
in-plane and out-of-plane vibration characteristics, using a rotor with a composite disk 
hub supporting a relatively massive rim, was conducted. A crack was deliberately 
introduced into the hub disk during fabrication. Then, a finite element (FEA) model was 
developed to explore further the relationship between natural frequencies and crack 
properties. Finally, a simplified theoretical model for the primary in-plane vibration mode 
was developed and used in a series of parametric studies. The analytical model was 
validated by experimental measurements. It was observed that the presence of a crack 
tends to affect both the magnitudes and distribution of the rotor natural frequencies. 
Certain primary frequencies for rotors with a crack are smaller than for those without a 
crack. In addition, the frequency values associated with the ?in-crack? direction are 
generally smaller than those associated with the ?off-crack? direction, introducing non-
symmetry into the rotordynamics that can serve as an indicator for rotor health 
monitoring.  
The results obtained from this study should be extremely useful for optimizing the 
design and safe operation of a MDC flywheel system.  Suggestions for further work are 
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summarized as follows: 
1. For the experimental study of crack detection of the shaft rotor, only the effects 
of two cases (the crack at the mid-span and at the end) have been tested. Conducting 
additional experimental tests and examining various crack depths and axial positions will 
be very helpful to understand the crack behaviors further and will extend the conclusions 
of this present study. 
2. Due to the limitation of our experimental capability (no spin pit), rotating tests 
of the cracked disk rotor were not performed study. Extending the experimental rotating 
test of rotor disk and applying Gabor techniques for crack detection would be a useful     
extension of my Gabor analysis work. 
3. Consider the influence of non-symmetric supports on the rotor dynamic 
behavior and overall stability of the simplified rotor model. This will produce time-
periodic coefficients and require Floquet analysis.  
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c*********************************************************************** 
c APPENDIX A 
c      
c C++ CODE FOR ?CALCULATIONS OF HUB GEOMETRY AND MATERIAL PROPERTIES?  
c 
c*********************************************************************** 
// the file used for parameters output 
 
// Nov. 11 2002 
 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
 
#define MY_PI 3.141592654 
#define NUM_ELEMENTS 40 
#define NUM_LAYERS 7 
 
void calculate_geometry(float); 
void material_properties(int, double ); 
void uni(); 
void matinv(double *); 
void LeastSquare(double x[500],double y[500],double a[20],int n,int m); 
void CurveFitting(double x[500],double y[500],int n,int m); 
 
double 
alpha_d[NUM_LAYERS][NUM_ELEMENTS],dz[NUM_LAYERS][NUM_ELEMENTS],tz[NUM_LA
YERS][NUM_ELEMENTS],location[NUM_LAYERS][NUM_ELEMENTS]; 
double ef1,ef2,gf,nuf,em,gm,num,vf,vm,e1,e2,g12,nu12,nu21,alpha, 
a_over_b; 
double 
k,Cl[3][3],Cg[NUM_LAYERS][3][3],c,c2,c3,c4,s,s2,s3,s4,Ccomposite[3][3]; 
 
//--------------------H BEGIN--------------------------------------- 
 
int H_size = 0; 
double H_len[500], H_tz[500], H_e1[500], H_e2[500]; 
double H_g12[500], H_nu12[500]; 
double H_tc,H_dc,H_tcn[100]; 
double H_xi[500],H_yi[500],H_xo[500],H_yo[500]; 
double XO[500], tmpXO[500],tmptz[500]; 
float aob[100],M_Stress[100],M_Uy[100]; 
float speed[100]; 
int number = 0; 
int tnum; 
float tc=0; 
 
//--------------------H END--------------------------------------- 
 
FILE *outfile; 
 
int main(int argc, char *argv[]) 
{ 
 
char comm[50]; 
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char filename[50]; 
 
//--------------------H BEGIN------------------------------------- 
 
//open output file 
 
outfile = fopen("out.txt","w+"); 
 
// THE INTERVAL OF a_over_b 
for (int aa =1;aa<=8;aa++) 
{ 
double initial=1.99; 
a_over_b=initial+0.01*(aa-1); 
//a_over_b=1.8; 
tnum=(int)(a_over_b*100.0+0.00000000000001)+1; 
 
 //tnum=(int)(a_over_b*100.0); 
 
 
 printf("DDDDDD  TNUM=%d   a_over_b=%f    ",tnum,a_over_b); 
 
  
 
//--------------------H END-------------------------------------- 
uni(); 
 
tc=0.8; 
calculate_geometry(tc); 
 
//printf("Before Curve Fitting\n"); 
//int cf=(int)H_size*0.6; 
for(int ia=1;ia<=H_size;ia++) 
{ 
//fprintf(outfile,"XO[%d]=%d    H_tz[%d]=%f\n",ia,ia,ia,H_tz[ia-1]); 
XO[ia]=(double)ia; 
} 
 
//Curve Fitting Out Side 
 
 
CurveFitting(XO,H_tz,H_size,2); 
 
 
//fprintf(outfile,"\nAfter Curve Fitting\n"); 
fprintf(outfile,"\n"); 
for(int i=1;i<=H_size;i++) 
 { 
 
// fprintf(outfile,"\n"); 
 
 fprintf(outfile,"tz%d(%d)=%f\n",tnum,i,H_tz[i-1]/1000.); 
//fprintf(outfile,"\n"); 
} 
 
 
sprintf(filename,"%d",tnum); 
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strcpy(comm, "copy out.txt data"); 
strcat(comm, filename); 
strcat(comm, ".txt"); 
system(comm); 
 
 
 
} 
//close output file 
fclose(outfile); 
return 0; 
} 
 
//------------------------H FUNCTION------------ 
//       NAME : LeastSquare                       | 
//DESCREPTION : LeastSquare Method                | 
//       DATE : 07/13/2002                        | 
//------------------------------------------------ 
 
void LeastSquare(double x[500],double y[500],double a[20],int n,int m) 
{ 
double s[20],t[20],b[20]; 
double dt1,dt2,dt3,z,d1,p,c,d2,g,q,dt; 
int i,j,k; 
 
for(i=1;i<=m;i++) 
{ 
a[i]=0.0; 
} 
 
if(m>n) m=n; 
if(m>20) m=20; 
 
z=0.0; 
 
for(i=1;i<=n;i++) 
{ 
z=z+x[i]/n; 
} 
 
b[1]=1.0; 
d1=n; 
p=0.0; 
c=0.0; 
for(i=1;i<=n;i++) 
{ 
p=p+(x[i]-z); 
c=c+y[i]; 
} 
 
c=c/d1; 
p=p/d1; 
a[1]=c*b[1]; 
if(m>1) 
{ 
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t[2]=1.0; 
t[1]=-p; 
d2=0.0; 
c=0.0; 
g=0.0; 
 
for(i=1;i<=n;i++) 
{ 
q=x[i]-z-p; 
d2=d2+q*q; 
c=y[i]*q+c; 
g=(x[i]-z)*q*q+g; 
 
} 
 
c=c/d2; 
p=g/d2; 
q=d2/d1; 
d1=d2; 
a[2]=c*t[2]; 
a[1]=c*t[1]+a[1]; 
 
} 
 
 
for(j=3;j<=m;j++) 
{ 
s[j]=t[j-1]; 
s[j-1]=-p*t[j-1]+t[j-2]; 
if(j>=4) 
{ 
 
for(k=j-2;k>=2;k--) 
{ 
s[k]=-p*t[k]+t[k-1]-q*b[k]; 
} 
 
} 
 
s[1]=-p*t[1]-q*b[1]; 
d2=0.0; 
c=0.0; 
g=0.0; 
 
for(i=1;i<=n;i++) 
 
{ 
q=s[j]; 
for  (k=j-1;k>=1;k--) 
{ 
q=q*(x[i]-z)+s[k]; 
} 
d2=d2+q*q; 
c=y[i]*q+c; 
g=(x[i]-z)*q*q+g; 
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} 
c=c/d2; 
p=g/d2; 
q=d2/d1; 
d1=d2; 
a[j]=c*s[j]; 
t[j]=s[j]; 
 
for (k=j-1;k>=1;k--) 
{ 
a[k]=c*s[k]+a[k]; 
b[k]=t[k]; 
t[k]=s[k]; 
} 
 
} 
 
dt1=0.0; 
dt2=0.0; 
dt3=0.0; 
 
for (i=1;i<=n;i++) 
{ 
q=a[m]; 
 
for (k=m-1;k>=1;k--) 
{ 
q=q*(x[i]-z)+a[k]; 
} 
dt=q-y[i]; 
if (fabs(dt)>dt3) dt3=fabs(dt); 
dt1=dt1+dt*dt; 
dt2=dt2+fabs(dt); 
 
} 
 
return; 
 
} 
 
//------------------------H FUNCTION------------ 
//       NAME : CurveFitting                      | 
//DESCREPTION : Curve Fitting LeastSquare Method  | 
//       DATE : 07/13/2002                        | 
//------------------------------------------------ 
 
void CurveFitting(double x[500],double y[500],int n,int m) 
{ 
double z; 
int mi,ti,i,j,k; 
double tx=0.4; 
double tmp,df,min; 
double a[20]; 
double xbk[500],ybk[500],xx[500],yy[500],yyy[500]; 
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printf("Enter Curvefitting"); 
 
//Make a copy 
 
for(i=1;i<=n;i++) 
{ 
xbk[i]=x[i]; 
ybk[i]=y[i]; 
} 
 
for(i=1;i<=n;i++) 
{ 
xx[i]=x[i]*x[i]; 
yy[i]=y[i]*y[i]; 
} 
 
z=0.0; 
 
for(i=1;i<=n;i++) 
{ 
z=z+xx[i]/(double)n; 
} 
 
LeastSquare(xx,yy,a,n,m); 
 
for(i=1;i<=m;i++) 
{ 
printf(" A[%d] = %f\n",i,a[i]); 
 
} 
 
for(k=1;k<=n;k++) 
{ 
 
tx=xx[k]; 
 
df=tx-z; 
 
tmp=a[1]; 
 
for (j=1; j<=m-1; j++) 
{ 
 
tmp=tmp+a[j+1]*pow(df,j); 
 
} 
yyy[k]=sqrt(fabs(tmp)); 
 
//H_yo[k]=sqrt(fabs(tmp)); 
} 
 
 
ti=(int)(0.75*n); 
min=10000000.0; 
mi=0; 
for(i=1;i<=ti;i++) 
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{ 
tmp=fabs(yyy[i]-ybk[i]); 
//fprintf(outfile,"tmp=%f\n",tmp); 
if(tmp<min) 
{ 
min=tmp; 
mi=i; 
} 
 
} 
 
printf("mi=%d",mi); 
 
//Get the final curve fitting value 
for(i=mi;i<n;i++) 
{ 
//H_yo[i]=yyy[i]; 
H_tz[i]=yyy[i]; 
y[i]=H_tz[i]; 
} 
 
 
H_yo[n]=0.0; 
return; 
} 
 
void calculate_geometry(float tc) 
{ 
{ 
int i,j,layer,increment,k,lm; 
double tz_1,tz_2,dc,alpha_c,alpha_g,length,tz_total; 
double rs=19.05; 
//rs=0.0; 
dc = 115-rs-6.0*tc; 
//a_over_b = 2;   // the maximum value possible 
//tc = 0.5;  
 
//-----------------------------H BEGIN----------------- 
H_tc=tc; 
H_dc=dc; 
 
//-----------------------------H END------------------- 
 
for (i = 0; i < 6; i++) 
 for (j = 0; j < NUM_ELEMENTS; j++) 
 { 
 alpha_d[i][j] = 0; 
 dz[i][j] = 0;  
 tz[i][j] = 0; 
 location[i][j] = 0; 
 } 
 
i = -1; 
increment = (int ) dc/NUM_ELEMENTS; 
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for (length = 0; length < dc/a_over_b; length=length+increment) 
 { 
// fprintf(outfile,"------------ length=%lf ------------\n",length); 
 i++; 
//-----------------------------H BEGIN----------------- 
 
H_len[i] = length; 
 
//-----------------------------H  END----------------- 
 layer = -1; 
 tz_total = 0; 
 for (alpha_g = 5.0; alpha_g < 31.0; alpha_g=alpha_g+5.0) 
  { 
  layer++; 
  location[layer][i] = length;  
 
  alpha_c = alpha_g*MY_PI/180; 
  //dz[layer][i] = dc*sqrt(1 - 4*length*length/(dc*dc)); 
  dz[layer][i] = dc*sqrt(1 - 
length*length/(dc*dc/(a_over_b*a_over_b))); 
 
  if (dz[layer][i] <= dc*sin(alpha_c)) 
   { 
   tz[layer][i] = tz[layer-1][i]; 
 
   alpha_d[layer][i] = 1.56; 
   material_properties(layer,alpha_d[layer][i]); 
                        break; 
   } 
 
  tz_1 = dc*cos(alpha_c) - sqrt(dz[layer][i]*dz[layer][i] - 
dc*dc*sin(alpha_c)*sin(alpha_c)); 
  tz_2 = sqrt(dz[layer][i]*dz[layer][i] - 
dc*dc*sin(alpha_c)*sin(alpha_c)); 
  tz[layer][i] = (tz_1/tz_2 +1)*tc;  
  tz_total = tz_total + tz[layer][i]; 
 
  alpha_d[layer][i] = asin(dc*sin(alpha_c)/dz[layer][i]); 
  material_properties(layer,alpha_d[layer][i]); 
 
  //fprintf(outfile,"length = %lf, dz=%lf, tz=%lf, 
alpha_d=%lf\n",location[layer][i],dz[layer][i],tz[layer][i],alpha_d[laye
r][i]*180/MY_PI); 
 } 
// fprintf(outfile,"tz_total=%lf\n",tz_total); 
 
//-----------------------------H BEGIN----------------- 
 
 
 
 
H_tz[i] = tz_total; 
 
//-----------------------------H END ------------------- 
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 for(j=0;j<3;j++) 
  for(k=0;k<3;k++) 
    Ccomposite[j][k]= 0.0; 
 
 for (lm = 0; lm < layer+1; lm++) 
  for(j=0;j<3;j++) 
   for(k=0;k<3;k++) 
    Ccomposite[j][k]= Ccomposite [j][k] + 
Cg[lm][j][k]*tz[lm][i]/tz_total; 
 
/* fprintf(outfile,"Ccomposite --"); 
 for(j=0;j<3;j++) 
  { 
  fprintf(outfile,"\n"); 
  for(k=0;k<3;k++) 
   fprintf(outfile," %4.4lf",Ccomposite[j][k]); 
  } 
 fprintf(outfile,"\n");*/ 
 
 matinv(&Ccomposite[0][0]); 
// fprintf(outfile,"e1: %f,",1/Ccomposite[0][0]); 
// fprintf(outfile,"e2: %f,",1/Ccomposite[1][1]); 
 
// fprintf(outfile,"g12: %f, ",1/Ccomposite[2][2]); 
 
//-----------------------------H BEGIN----------------- 
 
H_e1[i] = 1/Ccomposite[0][0]; 
H_e2[i] = 1/Ccomposite[1][1]; 
 
H_g12[i] = 1/Ccomposite[2][2]; 
 
 
//-----------------------------H END------------------- 
 
 
 if (-(Ccomposite[1][0]/Ccomposite[0][0]) < 0.0) 
  Ccomposite[1][0] = - Ccomposite[1][0]; 
// fprintf(outfile,"nu12: %f\n",-
(Ccomposite[1][0]/Ccomposite[0][0])); 
 
//-----------------------------H BEGIN----------------- 
 
H_nu12[i] = -Ccomposite[1][0]/Ccomposite[0][0]; 
 
//-----------------------------H END------------------- 
 
 
 
 } 
 
//-----------------------------H BEGIN----------------- 
 
H_size = i+1; 
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//-----------------------------H END ------------------- 
 
 
 
 
 
 
 
 
} 
 
//H_len[H_size-1]=0.98*H_dc/a_over_b; 
H_len[H_size]=H_dc/a_over_b; 
fprintf(outfile,"\n"); 
fprintf(outfile,"np%d=%d",tnum,H_size); 
fprintf(outfile,"\n"); 
fprintf(outfile,"size%d=np%d\n",tnum,tnum); 
fprintf(outfile,"\n"); 
fprintf(outfile,"*dim,tz%d,,size%d\n",tnum,tnum); 
fprintf(outfile,"*dim,len%d,,size%d+1\n",tnum,tnum); 
fprintf(outfile,"*dim,xi%d,,size%d+1\n",tnum,tnum); 
 
fprintf(outfile,"*dim,yi%d,,size%d+1\n",tnum,tnum); 
fprintf(outfile,"*dim,xo%d,,size%d+1\n",tnum,tnum); 
fprintf(outfile,"*dim,yo%d,,size%d+1\n",tnum,tnum); 
fprintf(outfile,"*dim,ra%d,,size%d+1\n",tnum,tnum); 
fprintf(outfile,"*dim,am%d,,size%d\n",tnum,tnum); 
fprintf(outfile,"*dim,mex%d,,size%d\n",tnum,tnum); 
fprintf(outfile,"*dim,mey%d,,size%d\n",tnum,tnum); 
fprintf(outfile,"*dim,mgxy%d,,size%d\n",tnum,tnum); 
fprintf(outfile,"*dim,mnuxy%d,,size%d\n",tnum,tnum); 
 
fprintf(outfile,"\n"); 
fprintf(outfile,"be%d=%f",tnum,a_over_b); 
fprintf(outfile,"\n"); 
fprintf(outfile,"\n"); 
 
for (int j=1;j<H_size+1;j++) 
{ 
 
 fprintf(outfile,"mex%d(%d)=%f\n",tnum,j,H_e1[j-1]*1e9); 
 fprintf(outfile,"mey%d(%d)=%f\n",tnum,j,H_e2[j-1]*1e9); 
 fprintf(outfile,"mgxy%d(%d)=%f\n",tnum,j,H_g12[j-1]*1e9); 
 fprintf(outfile,"mnuxy%d(%d)=%f\n",tnum,j,H_nu12[j-1]); 
 fprintf(outfile,"\n"); 
} 
fprintf(outfile,"\n"); 
for( int i=1;i<H_size+1;i++) 
 { 
 
// fprintf(outfile,"\n"); 
 
 fprintf(outfile,"len%d(%d)=%f",tnum,i,H_len[i-1]/1000.); 
fprintf(outfile,"\n"); 
} 
fprintf(outfile,"len%d(%d)=%f",tnum,H_size+1,H_len[H_size]/1000.); 
fprintf(outfile,"\n"); 
 
} 
 
void material_properties(int l, double alpha_layer) 
{ 
alpha = alpha_layer; 
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c = cos(alpha); 
c2 = c*c; 
c3 = c*c*c; 
c4 = c*c*c*c; 
 
s = sin(alpha); 
s2 = s*s; 
s3 = s*s*s; 
s4 = s*s*s*s; 
 
Cg[l][0][0] = Cl[0][0]*c4 + 2*(Cl[0][1]+Cl[2][2])*s2*c2 + Cl[1][1]*s4; 
Cg[l][0][1] = (Cl[0][0]+Cl[1][1]-4*Cl[2][2])*s2*c2 + Cl[0][1]*(s4+c4); 
Cg[l][1][1] = Cl[0][0]*s4 + 2*(Cl[0][1]+2*Cl[2][2])*s2*c2 + Cl[1][1]*c4; 
Cg[l][0][2] = (Cl[0][0]-2*Cl[0][1]-2*Cl[2][2])*s*c3 + (Cl[0][1]-
Cl[1][1]+2*Cl[2][2])*s3*c; 
Cg[l][1][2] = (Cl[0][0]-2*Cl[0][1]-2*Cl[2][2])*s3*c + (Cl[0][1]-
Cl[1][1]+2*Cl[2][2])*s*c3; 
Cg[l][2][2] = (Cl[0][0]+2*Cl[1][1]-2*Cl[0][1]-2*Cl[2][2])*s2*c2 + 
Cl[2][2]*(s4+c4); 
Cg[l][1][0] = Cg[l][0][1]; 
Cg[l][2][0] = Cg[l][0][2]; 
Cg[l][2][1] = Cg[l][1][2]; 
 
/*fprintf(outfile,"\n"); 
fprintf(outfile,"----------- Cg ---------------"); 
 
for(i=0;i<3;i++) 
 { 
 fprintf(outfile,"\n"); 
 for(j=0;j<3;j++) 
  fprintf(outfile," %4.4lf",Cg[l][i][j]); 
 } 
fprintf(outfile,"\n");*/ 
} 
 
void uni() 
{ 
// T700 
ef1=230; ef2=12; gf=14; nuf=.2; 
 
//epoxy 
em=3.45; gm=1.278; num=.35; 
 
vf = 0.6;vm = 0.4; 
 
e1 = ef1*vf + em*vm; 
e2 = ef2*em/(ef2*vm+em*vf); 
g12 = gf*gm/(gf*vm+gm*vf); 
nu12 = nuf*vf + num*vm; 
nu21 = nu12*e2/e1; 
 
//fprintf(outfile,"\n-------------- uni ----------------\n"); 
//fprintf(outfile,"e1=%lf,e2=%lf,g12=%lf,nu12=%lf,nu21=%lf\n",e1,e2,g12,
nu12,nu21); 
 
k = 1-nu12*nu21; 
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Cl[0][0]=e1/k; 
Cl[0][1]=nu12*e2/k; 
Cl[1][0]=Cl[0][1]; 
Cl[1][1]=e2/k; 
Cl[2][2]=g12; 
 
 
 
} 
void matinv(double *ptr) //Matrix inversion routine 
{ 
short index[3][2], ipivot[3]; 
double pivot[3],mtxout[3][3]; 
short row, colum; 
double max; 
short i, j, k, l; 
 
for (i=0;i<3;i++) 
 for (j=0;j<3;j++) 
 mtxout[i][j] = *(ptr+i*3+j); 
  
for (j = 0; j < 3; j++) 
 ipivot[j] = 0; 
 
  
for (i = 0; i < 3; i++) { 
 max = 0.0; 
 /* Search for pivot element */ 
 for (j = 0; j < 3; j++) { 
  if ( ipivot[j] == 1) 
   continue; 
  for (k = 0; k < 3; k++) { 
   if (ipivot[k] == 1) 
    continue; 
   /* if (ipivot[k] > 1) 
    return( 0)*/ 
                                          ; 
   if (fabs(max) < fabs(mtxout[j][k])) 
    { 
    row = j; 
    colum = k; 
    max = mtxout[j][k]; 
   } 
   } 
  } 
 
 /* Row intercahnge */ 
 ipivot[colum] += 1; 
 if (row != colum) { 
   for (l = 0; l < 3; l++) { 
   max = mtxout[row][l]; 
   mtxout[row][l] = mtxout[colum][l]; 
   mtxout[colum][l] = max; 
  }   
 } 
 index[i][0] = row; 
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 index[i][1] = colum; 
 pivot[i] = mtxout[colum][colum]; 
 
 mtxout[colum][colum] = 1.0; 
 for (l = 0; l < 3; l++) 
  mtxout[colum][l] /= pivot[i]; 
 
 for (j =0; j < 3; j++) 
   if (j != colum) {     
   max = mtxout[j][colum]; 
   mtxout[j][colum] = 0.0; 
   for (l=0; l<3; l++) 
   mtxout[j][l] -= mtxout[colum][l] * max;  
  }
 } 
 
 for (i = 0; i < 3; i++) { 
 l = 3 - 1 - i; 
 if (index[l][0] != index[l][1]) { 
   row = index[l][0]; 
   colum = index[l][1]; 
   for (k=0; k<3; k++) { 
   max = mtxout[k][row]; 
   mtxout[k][row] = mtxout[k][colum]; 
   mtxout[k][colum] = max; 
  } 
  } 
} 
for (i=0;i<3;i++) 
 for (j=0;j<3;j++) 
  *(ptr+i*3+j) = mtxout[i][j]; 
} 
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!******************************************************************** 
!*  APPENDIX B 
!*      
!*  ANSYS CODE FOR ?CONSTRUCTION AND OPTIMIZATION OF  
!*  COMPOSITE SHAFT-HUB-RIM ANSYS MODEL? 
!* 
!********************************************************************* 
!*  
!* 
/filnam, hubdes 
 
be=2.000 
 
nub=31 
*dim,boo,array,nub 
 
*do,i,1,nub,1 
boo(i)=1.80+(i-1)*0.01 
*enddo 
 
*do,i,1,nub, 
*if,be,ge,boo(i),then 
*if,be,lt,boo(i+1),then 
*if,(be-boo(i)),gt,(boo(i+1)-be),then 
tempi=i+1 
*else 
tempi=i 
*endif 
tepb=boo(tempi) 
*endif 
*endif 
*enddo 
 
be=tepb 
 
/title, optimization of the hubdesign   a_ober_b=%be% 
 
*afun,rad 
 
tnum=100*tepb 
be%tnum%=tepb 
 
/input,output,txt 
 
 
/prep7 
w=4000 
pi=3.1415926 
den=1.52e3 
exo=0. 
const=3600000.0  
CON=1/10 
CON1=20 
 
!*element type 
!*  
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ET,1,PLANE42 
KEYOPT,1,1,1 
KEYOPT,1,2,0 
KEYOPT,1,3,1 
KEYOPT,1,5,0 
KEYOPT,1,6,0 
!* 
 
!*material properties 
!* 
*do,i,1,np%tnum%,1 
uimp,i,ex,,,mex%tnum%(i), 
uimp,i,ey,,,mey%tnum%(i), 
uimp,i,ez,,,mey%tnum%(i), 
uimp,i,prxy,,,mnuxy%tnum%(i), 
uimp,i,prxz,,,0.2, 
uimp,i,pryz,,,0.2, 
uimp,i,gxy,,,mgxy%tnum%(i), 
UIMP,i,GYZ,,,16.0317e9, 
UIMP,i,GXZ,,,16.0317e9, 
uimp,i,dens,,,den, 
*enddo 
!* 
 
UIMP,99,EX,,,40.4e9, 
UIMP,99,EY,,,143.6e9, 
UIMP,99,EZ,,,143.6e9, 
UIMP,99,PRXY,,,0.26, 
UIMP,99,PRYZ,,,0.26, 
UIMP,99,PRXZ,,,0.26, 
UIMP,99,GXY,,,56984126984.126984, 
UIMP,99,GXZ,,,16.0317e9, 
UIMP,99,GXZ,,,16.0317e9, 
UIMP,99,DENS,,,1.52e3, 
!============================================================= 
UIMP,100,EX,,,200e9, 
UIMP,100,PRXY,,,0.3, 
UIMP,100,GXY,,,76923076923.076920, 
UIMP,100,DENS,,,7860, 
!============================================================= 
 
!*area properties 
!* 
*do,i,1,np%tnum%,1 
am%tnum%(i)=i 
*enddo 
!* 
 
!*create the gemeotry of the model 
!* 
rs=0.01905           !radius of the shaft 
ho=0.0250     !height of half flat part 
 
tz0=tz%tnum%(1)            !thickness of the flat part 
 
li=0.115-rs-tz0    !distance  
195 
 
 
 
 
 
 
hi=li/be%tnum% 
 
!*create the coordinates of the keypoints 
!* 
xi%tnum%(1)=li 
yi%tnum%(1)=0 
 
temp1=hi*hi 
 
*do,i,1,np%tnum% 
d1=xi%tnum%(i)*xi%tnum%(i) 
d2=yi%tnum%(i)*yi%tnum%(i) 
ra%tnum%(i)=sqrt(d1+d2) 
d3=(ra%tnum%(i)+tz%tnum%(i))/ra%tnum%(i) 
 
xo%tnum%(i)=d3*xi%tnum%(i) 
yo%tnum%(i)=d3*yi%tnum%(i) 
 
yi%tnum%(i+1)=yi%tnum%(i)+len%tnum%(i+1)-len%tnum%(i) 
 
temp2=yi%tnum%(i+1)*yi%tnum%(i+1) 
 
xi%tnum%(i+1)=sqrt(abs(1.0-temp2/temp1))*li 
*enddo 
 
d1n=xi%tnum%(np%tnum%+1)*xi%tnum%(np%tnum%+1) 
d2n=yi%tnum%(np%tnum%+1)*yi%tnum%(np%tnum%+1) 
ra%tnum%(np%tnum%+1)=sqrt(d1n+d2n) 
d3n=(ra%tnum%(np%tnum%+1)+tz%tnum%(np%tnum%))/ra%tnum%(np%tnum%+1) 
 
xo%tnum%(np%tnum%+1)=d3*xi%tnum%(np%tnum%+1) 
yo%tnum%(np%tnum%+1)=d3*yi%tnum%(np%tnum%+1) 
 
 
!*coordinates transfer 
!* 
*do,i,1,np%tnum%+1,1 
xir%tnum%(i)=xi%tnum%(i)+rs 
xor%tnum%(i)=xo%tnum%(i)+rs 
yir%tnum%(i)=yi%tnum%(i)+ho 
yor%tnum%(i)=yo%tnum%(i)+ho 
*enddo 
 
 
!*create the keypoints 
!* 
*do,i,1,np%tnum%+1,1 
k,i,xir%tnum%(i),yir%tnum%(i) 
k,i+100,xor%tnum%(i),yor%tnum%(i) 
*enddo 
 
!*creat area 
!* 
J=1 
*do,i,1,np%tnum%,1 
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A,I+1+(J-1)*100,I+(J-1)*100,100*J+I,100*J+I+1 
 
 
 
 
 
 
*enddo 
!* 
 
!*assign the material properties to area 
*do,j,1,np%tnum%,1 
ASEL,ALL 
VMIN=(J-1)+1 
VMAX=J 
ASEL,S,,,VMIN,VMAX,1 
AATT,       am%tnum%(J), ,   1,       0 
*enddo 
!* 
ASEL,ALL 
MSHAPE,0,2d  
MSHKEY,1 
AMESH,ALL 
!* 
/NUMBER,1 
!* 
 
!*create the flat part 
!* 
k,998,li+rs,0 
k,999,0.115,0 
k,997,0.165,0 
k,996,0.165,ho 
 
*do,i,np%tnum%+1,np%tnum%+1 
a,998,999,101,1 
asel,all 
aatt,am%tnum%(1),,1,0 
MSHAPE,0,2d  
MSHKEY,1 
AMESH,ALL 
*enddo 
!* 
 
!*creat the rim 
a,999,997,996,101 
asel,all 
aatt,am%tnum%(1),,1,0 
MSHAPE,0,2d  
MSHKEY,1 
AMESH,ALL 
!* 
! 
!*creat the shaft 
k,1000,0,0 
k,1001,rs,0 
k,1002,0,0.08 
k,1003,rs,0.08 
k,1004,0,yir%tnum%(np%tnum%+1) 
k,1005,0,yor%tnum%(np%tnum%+1) 
!* 
a,1000,1001,np%tnum%+1,1004 
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a,1005,100+np%tnum%+1,1003,1002 
asel,all 
aatt,99,,1,0 
MSHAPE,0,2d  
MSHKEY,1 
AMESH,ALL 
EPLOT 
! 
 
 
PIVCHECK,OFF 
finish 
 
!*solution 
!* 
/SOLU 
!* 
lsel,s,loc,x,0 
dl,all,,ux,0 
dl,all,,uy,0 
allsel,all 
lsel,s,loc,y,0 
dl,all,,symm 
!dl,all,,ux,0 
allsel,all 
OMEGA,0,w,0,0 
/STATUS,SOLU 
SOLVE 
FINISH 
 
 
!*postprocessing 
!* 
/POST1 
SET,FIRST 
PLDISP,2 
PLNSOL,U,X,0,1 
PLNSOL,S,EQV 
nsort,s,eqv 
*get,smax,SORT,,MAX 
etable,evol,volu 
!etable,engd,engrd 
 
ssum 
*get,vtot,ssum,,item,evol 
!vtot=CON-vtot 
!enged=CON1-enged 
 
finish 
 
SAVE 
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!******************************************************* 
!*      
!* OPTIMIZATION OF SHAFT-HUB-RIM ANSYS MODEL 
!* 
!***************************************************** 
!*  
!* 
!********************************************************** 
!* Second Pass: Create optimization input. 
!**********************************************************  
anfile='hubde02'  
anext='inp'  
! 
!resume,hubdesign.db 
! ENTER OPT AND IDENTIFY ANALYSIS FILE 
/opt  
opanl,anfile,anext  
! 
! IDENTIFY OPTIMIZATION VARIABLES  
opvar,be,dv,1.95,2.05 ! DVs: outter radius  
 
opvar,smax,sv,,0.45e9 ! SV: Maximum equivalent stress 
!opvar,vtot,obj,,,1  ! OBJ: Total volume, tolerance = 1.0  
opvar,engv,obj,,,1 
 
! 
! RUN THE OPTIMIZATION  
opkeep,on  ! Save best design 
optype,subp  ! Subproblem approximation method  
opsave,anfile,opt0 ! Save the current opt database 
opexe  
! 
! REVIEW RESULTS  
oplist,all,,,1   ! List all design sets 
 
plvaropt,smax  ! SV smax vs. set number 
!plvaropt,enged   ! OBJ vtot vs. set number 
plvaropt,vtot 
xvaropt,be 
plvaropt,engd 
finish  
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C********************************************************************** 
C  APPENDIX C  
C 
C  FORTRAN CODE FOR ?CALCULATION OF MAXIMUM ENERGY SYORING DENSITIY? 
C  XIN HAI   
C 
C  11/23/2003 
C********************************************************************** 
 
 REAL XI(1000), YI(1000), XO(1000), YO(1000) 
C DOUBLE PRECISION H_TOP, H_BOT, TMP_IN, TMP_OUT 
C DOUBLE PRECISION X_CUR, W, STEP,X_SHAFT_OUTER 
C DOUBLE PRECISION X_RIM_INNER, X_RIM_OUTER  
C DOUBLE PRECISION V_TOT, V_HUB, V_SHAFT, V_RIM 
C DOUBLE PRECISION ENG_TOT, ENG_HUB, ENG_SHAFT, ENG_RIM, ENG_DESITY 
 
C     FILE FOR X VTALUE FOR INNER SIDE       
        OPEN(62,FILE='XI.TXT',STATUS='UNKNOWN') 
 
C     FILE FOR Y VALUE FOR INNER SIDE       
 OPEN(65,FILE='YI.TXT',STATUS='UNKNOWN') 
 
C============================================= 
C     FILE FOR X VALUE FOR OUTER SIDE       
 OPEN(72,FILE='XO.TXT',STATUS='UNKNOWN') 
 
C     FILE FOR Y VALUE FOR OUTER SIDE       
 OPEN(75,FILE='YO.TXT',STATUS='UNKNOWN') 
 
C     FILE FOR ROTATING SPEED 
      OPEN(80,FILE='W.TXT',STATUS='UNKNOWN') 
 
C============================================= 
 
      OPEN(85,FILE='RESULT.DAT',STATUS='UNKNOWN') 
 
C============================================= 
C     READ ROTATING SPEED FIRST 
      READ(80,*)W 
 
C     READ XI, YI, XO, YO HERE 
 
C============================================= 
C     READ XI 
C============================================= 
 
     NPOINT=0 
 I=0 
262  READ(62,*,END=162)TEMP 
 I = I + 1 
 NPOINT = NPOINT + 1 
 XI(I) = TEMP/1000.0 
      GO TO 262 
 
162  CONTINUE 
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C============================================= 
C     READ YI 
C============================================= 
 
      I = 0 
265  READ(65,*,END=165)TEMP 
 I = I + 1 
 YI(I) = TEMP/1000.0 
      GO TO 265 
 
 165  CONTINUE 
 
      IF (I .NE. NPOINT) THEN 
 WRITE(85,*)'DATA IS WRONG!!!' 
 WRITE(85,*)'NUMBER OF POINT IN XI.DAT IS NOT EQUAL TO YI.DAT'   
 END IF 
 
C============================================= 
C     READ XO 
C============================================= 
 
      I = 0 
272  READ(72,*,END=172)TEMP 
 I = I + 1 
 XO(I) = TEMP/1000.0 
      GO TO 272 
 
 172  CONTINUE 
 
      IF (I .NE. NPOINT) THEN 
 WRITE(85,*)'DATA IS WRONG!!!' 
 WRITE(85,*)'NUMBER OF POINT IN XI.DAT IS NOT EQUAL TO XO.DAT'   
 END IF 
 
C============================================= 
C     READ YO 
C============================================= 
 
      I = 0 
275  READ(75,*,END=175)TEMP 
 I = I + 1 
 YO(I) = TEMP/1000.0 
      GO TO 275 
 
 175  CONTINUE 
 
      IF (I .NE. NPOINT) THEN 
 WRITE(85,*)'DATA IS WRONG!!!' 
 WRITE(85,*)'NUMBER OF POINT IN XI.DAT IS NOT EQUAL TO YO.DAT'   
 END IF 
 
C     DEFINE CONSTANTS 
      PI = 3.1415926 
       FLAT_THICKNESS=6.0/1000.0 
 
201 
C     CALCULATE THE ENERGY DENSITY FOR HUB 
 
 
 
 
 
 
      NSTEP = 200 
 X_SHAFT_OUTER=19.05/1000.0 
 X_RIM_INNER=115.0/1000.0 
 X_RIM_OUTER=165.0/1000.0 
 STEP = (X_RIM_INNER-X_SHAFT_OUTER)/NSTEP 
 
C     MATERIAL PROPERTIES 
      DEN_SHAFT=7860.0 
 DEN_RIM=1520.0 
 DEN_HUB=1520.0 
 
C     ASSIGN INITIAL VALUES 
 V_HUB = 0.0 
 ENG_HUB = 0.0 
 
 DO I = 1, NSTEP 
 TMP_IN = STEP*(I-1)  
 X_CUR=X_RIM_INNER-TMP_IN 
 
 CALL INTERPOLATE(NPOINT,XI(1),YI(1),X_CUR,H_BOT) 
 CALL INTERPOLATE(NPOINT,XO(1),YO(1),X_CUR,H_TOP)   
 
 V_HUB =V_HUB+2.0*PI*X_CUR**2.0*(H_TOP-H_BOT)- 
 & 2.0*PI*(X_CUR-STEP)**2.0*(H_TOP-H_BOT) 
 TMP_IN = (X_CUR-STEP)**4.0 
 TMP_OUT = X_CUR**4.0 
 
 ENG_HUB = ENG_HUB + 2.0*PI*DEN_HUB*(H_TOP-H_BOT)* 
 & (TMP_OUT-TMP_IN)*W*W/(4.0*3600000.0) 
 END DO 
 
C     ADD FLAT PART OF HUB 
 
      V_HUB = V_HUB + 2.0*PI*(X_RIM_INNER**2.0 - 
 & (X_RIM_INNER-FLAT_THICKNESS)**2.0)*25.0/1000.0  
 
 TMP_IN = (X_RIM_INNER-FLAT_THICKNESS)**4.0 
 TMP_OUT = X_RIM_INNER**4.0 
 
 ENG_ADD = 2.0*PI*DEN_HUB*25.0/1000.0* 
 & (TMP_OUT-TMP_IN)*W*W/(4.0*3600000.0)  
 
      ENG_HUB = ENG_HUB + 2.0*PI*DEN_HUB*25.0/1000.0* 
 & (TMP_OUT-TMP_IN)*W*W/(4.0*3600000.0) 
 
C   CALCULATE ENERGY AND VOLUME FOR SHAFT 
 
      V_SHAFT = PI*X_SHAFT_OUTER**2.0*100.0/1000.0 
 ENG_SHAFT = PI*DEN_SHAFT*100.0/1000.0*X_SHAFT_OUTER**4.0*W*W 
 &  /(4.0*3600000.0)     
 
C   CALCULATE ENERGY AND VOLUME FOR RIM 
 
      V_RIM = PI*(X_RIM_OUTER**2.0-X_RIM_INNER**2.0)*50.0/1000.0 
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 ENG_RIM = PI*DEN_RIM*50.0/1000.0*(X_RIM_OUTER**4.0- 
 
 
 
 
 
 
     & X_RIM_INNER**4.0)*W*W/(4.0*3600000.0) 
 
 V_TOT = V_HUB + V_SHAFT + V_RIM 
 
 ENG_TOT = ENG_HUB + ENG_SHAFT + ENG_RIM 
 
 ENG_DESITY = ENG_TOT/(9.8*DEN_SHAFT*V_SHAFT + 9.8*DEN_HUB*V_HUB + 
 & 9.8*DEN_RIM*V_RIM) 
 
 WRITE(85,*)'VOLUME OF SHAFT = ',V_SHAFT,' m^3' 
 WRITE(85,*)'VOLUME OF HUB = ',V_HUB,' m^3' 
 WRITE(85,*)'VOLUME OF RIM = ',V_RIM,' m^3' 
 WRITE(85,*)'TOTAL VOLUME = ',V_TOT,' m^3' 
 WRITE(85,*)'ENERGY OF SHAFT  = ',ENG_SHAFT,' Kwhr' 
 WRITE(85,*)'ENERGY OF HUB  = ',ENG_HUB,' Kwhr' 
 WRITE(85,*)'ENERGY OF RIM  = ',ENG_RIM,' Kwhr'  
 WRITE(85,*)'ENG_DESITY = ',ENG_DESITY   
 WRITE(85,*)'PROGRAM FINSHED NORMALLY' 
      STOP 
      END 
 
C==================================================== 
C     LINEAR INTERPOLATION OF Y ACCORDING TO GIVEN X 
C==================================================== 
 
      SUBROUTINE INTERPOLATE(NPOINT,X,Y,X_IN_ORG,Y_OUT) 
      REAL X(NPOINT),Y(NPOINT) 
 
C DOUBLE PRECISION X_IN,Y_OUT 
C     FIND THE POSITION OF X_IN IN THE TABLE 
 
      X_IN = X_IN_ORG 
      IF (X_IN_ORG .LE. X(NPOINT)) X_IN = X(NPOINT) 
 IF (X_IN_ORG .GE. X(1)) X_IN = X(1)  
 INDEX=0 
 DO I=1, NPOINT-1 
 IF((X_IN .LE. X(I)) .AND. (X_IN .GE. X(I+1)) ) THEN 
 INDEX = I 
      GOTO 88 
 END IF 
 END DO 
 
88 CONTINUE 
      IF(INDEX .EQ. 0) THEN 
 WRITE(*,*) 'PROGRAM FIND WRONG INDEX!!! STOP' 
 STOP 
 ELSE 
 
 Y_OUT= (Y(I+1)-Y(I))/(X(I+1)-X(I))*(X_IN-X(I))+Y(I) 
 END IF 
 END 
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c*********************************************************************** 
c APPENDIX D 
c 
c FORTRAN CODE FOR ?IMBALANCE ECCENTRICITY OF THE MASS CENTER   
c CALCULATIONS? 
c 
c XIN HAI 
c 
c*********************************************************************** 
c 
c     program to calculate the imbalance eccentricity of mass 
c     center for crack model of the rotational rim  
c 
c*********************************************************************** 
       
      program main 
 
c     n=number of nodes,nn=number of hoop-crack nodes 
c nrn=number of radial-crack nodes 
 
      parameter (n=22002,nn=0,nrn=36,n3p=0) 
      common /var/ ldown(nn),lup(nn),id(n),ldnr(nrn) 
      common /vv/ h(100),Idin(n3p,3),Idout(n3p,3) 
 
c***************************************************** 
c 
      integer itn,tid 
      real x(n),y(n),z(n) 
      real mass(n),hold 
      real ux(n),uy(n),uz(n),tux,tuy,tuz  
 double precision am,tm 
      real itx,ity 
      real itz 
      open(unit=11,file='rad-radnode.lis',status='OLD') 
      open(unit=12,file='rr6283.lis',status='OLD') 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
      open(unit=113,file='laydownhh.lis',status='OLD') 
      open(unit=114,file='layuphh.lis',status='OLD') 
      open(unit=115,file='laynr.lis',status='OLD') 
 open(unit=116,file='Inpoints.lis',status='OLD') 
 open(unit=117,file='Outpoints.lis',status='OLD') 
 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
      open(unit=21,file='nmass.dat',status='UNKNOWN') 
 open(unit=22,file='unbalance.dat',status='UNKNOWN') 
 
c     read the coordinates of node 
 
      itn=0 
      ih=0 
      i=1 
  22  read(11,*,end=23)id(i),x(i),y(i),z(i) 
      itn=itn+1 
204 
 
 
 
 
 
 
 
c-----save all different height levels in array h 
       
 ihflag=0 
      do j=1,ih 
      if(abs((z(i)-h(j))).le.0.0000000001) then 
      ihflag=1 
      endif 
      enddo 
 
c-----save new height level 
       
 if(ihflag.eq.0) then 
      ih=ih+1 
      h(ih)=z(i) 
      endif 
      i=i+1 
      go to 22 
c     write(6,*)itn 
 23  continue 
 
c-----sort array h in ascendent order 
   
      do 288 i=1,ih 
      do 288 j=1,ih-1 
      if(h(j).gt.h(j+1)) then 
      hold=h(j) 
      h(j)=h(j+1) 
      h(j+1)=hold 
      end if 
 288  continue 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c     get the hoop-crack node number 
 
      do j=1,nn 
      read(113,*) ldown(j) 
      read(114,*) lup(j) 
      end do 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
 
c     get the radial-crack node number 
 
      do j=1,nrn 
      read(115,*) ldnr(j) 
      end do 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c----get id number of 3 points group 
 
 do j=1,n3p 
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 read(116,*) Idin(j,1),Idin(j,2),Idin(j,3) 
 
 
 
 
 
 
 read(117,*) Idout(j,1),Idout(j,2),Idout(j,3) 
 enddo 
 
c     calculate the mass distribution of each node 
 
      tm=0.0 
      do i=1,itn 
      xx=x(i) 
      yy=y(i) 
      zz=z(i) 
      am=0.0 
      idd=id(i) 
      call massdt(xx,yy,zz,am,idd,ih) 
      mass(i)=am 
      tm=tm+am 
      write(21,*) id(i),mass(i) 
      end do 
      write(6,*) tm 
 
c     read the deformations of node 
 
    
25  read(12,*,end=26) tid,tux,tuy,tuz 
      iflag=0 
      do j=1,itn 
      if(id(j).eq.tid) then 
      ux(j)=tux 
      uy(j)=tuy 
      uz(j)=tuz 
      iflag=1 
      endif 
      enddo 
      if(iflag.eq.0) write(6,*)tid,' WARNING: POINTS NOT FIT!' 
      go to 25 
  26  continue 
c  
c     calculate the imbalance eccentricity 
 
      itx=0.0 
      ity=0.0 
      itz=0.0 
       
      xcm=0.0 
      ycm=0.0 
      zcm=0.0 
       
      rcm=0.0 
        
      do i=1,itn 
      uxx=ux(i) 
      uyy=uy(i) 
      uzz=uz(i) 
      um=mass(i) 
       
      itx=itx+uxx*um 
      ity=ity+uyy*um 
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      itz=itz+uzz*um 
      end do 
       
      xcm=itx/tm 
      ycm=ity/tm 
      zcm=itz/tm 
      rcm=sqrt(xcm**2+ycm**2+zcm**2) 
      write(6,*) xcm,ycm,zcm,rcm 
 write(22,*) xcm,ycm,zcm,rcm 
      stop 
      end 
 
c***************************************************** 
c 
c 
c***************************************************** 
c 
c      subroutine to calculate the mass  
c 
c***************************************************** 
 
      subroutine massdt(xx,yy,zz,am,idd,ih) 
 
c----------------------------------------------------- 
      
      parameter (n=22002,nn=0,nrn=36,n3p=0) 
      common /var/ ldown(nn),lup(nn),id(n),ldnr(nrn) 
      common /vv/ h(100),Idin(n3p,3),Idout(n3p,3) 
      double precision dhUp,dhDown,massIn,massOut 
      double precision rr,dr,x,p,r1,r2,am,small 
 
c     the number of node in each element layer 
 
      parameter (nr=48) 
      small=0.000001  
 
c     ri= inside radius of rim 
c     ro= outdise radius of rim 
 
      ri=0.066 
      ro=0.165 
 
c     zbot= bottom edge of rim 
c     ztop= top edge of rim 
 
      zbot=-0.0255 
      ztop=0.0255 
 
c     increment of r  
 
      dr=0.0055 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c     get the increment of h 
       
 do jj=2,ih-1 
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      if(abs(zz-h(jj)).le.small) then 
      dhUp=(h(jj+1)-h(jj))/2.0 
      dhDown=(h(jj)-h(jj-1))/2.0 
      endif 
      enddo 
 
c-----Modify dhUp and Dhdown value when point is on top or bottom 
 
      if(abs(zz-zbot).le.small) then 
      dhDown=0.0 
      dhUp=(h(2)-h(1))/2.0 
      endif 
      if(abs(zz-ztop).le.small) then 
      dhUp=0.0 
      dhDown=(h(ih)-h(ih-1))/2.0 
      endif 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c     material properties 
 
      den=1520.0 
      pi=3.1415926 
 
c     find the place of each node 
       
      rr=sqrt(xx**2+yy**2) 
 
c-----addjust rr 
       
 do i=0,20 
 if(abs(rr-(ri+i*dr)).le.(0.01*dr)) rr=ri+i*dr 
 enddo 
c----------------------------------------------- 
 
c     calculate mass  
 
      massIn=den*pi*(dhUp+dhDown)*(rr**2-(rr-dr)**2)/nr 
      massOut=den*pi*(dhUp+dhDown)*((rr+dr)**2-rr**2)/nr  
 
c-------------------------------------------- 
c     inside node 
 
      if (abs(rr-ri).le.(0.01*dr)) then 
      r1=rr 
      r2=rr+dr 
      call CalculateX(r1,r2,p) 
      x=p 
      am=x*massOut 
 
c     inside edge node 
 
      if ((abs(zz-zbot).le.small).or.(abs(zz-ztop).le.small)) then 
      am=am/1.0 
      end if 
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c     inside non-edge node 
 
      return 
      end if 
 
c---------------------------------------------- 
c     outside node 
 
      if (abs(rr-ro).le.(0.01*dr)) then 
      r1=rr-dr 
      r2=rr 
      p=0 
      call CalculateX(r1,r2,p) 
      x=p 
      am=(1.0-x)*massIn 
 
c     outside edge node 
       
 if ((abs(zz-zbot).le.small).or.(abs(zz-ztop).le.small)) then 
      am=am/1.0 
      end if 
 
c     outside non-edge node 
 
      return 
      end if 
 
c------------------------------------------------- 
c     non-side node 
 
      if ((abs(rr-ri).gt.(0.01*dr)).and.(abs(rr-ro).gt.(0.01*dr))) then 
      r1=rr-dr 
      r2=rr 
      call CalculateX(r1,r2,p) 
      x=p 
      am1=(1.0-x)*massIn 
      r1=rr 
      r2=rr+dr 
      call CalculateX(r1,r2,p) 
      x=p 
      am2=(x)*massOut 
      am=am1+am2 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
c     modify mass on hoop-crack nodes (laydown, layup) 
 
      do j=1,nn 
      if (idd.eq.ldown(j)) then 
      am=am1 
      end if 
 
      if (idd.eq.lup(j)) then 
      am=am2 
      end if 
      enddo 
209 
 
 
 
 
 
 
 
c-----modify mass on 3 points cases 
c-----take the points in Inside points list 
c-----treat type 1 points 
 
      do j=1,n3p 
      if(idd.eq.Idin(j,1)) then 
 am=am1 
 endif 
 
c-----treat type 2 points 
 
 if(idd.eq.Idin(j,2)) then 
 am=am2/2.0 
 endif 
 
c-----treat type 3 points 
 
 if(idd.eq.Idin(j,3)) then 
 am=am2/2.0 
 endif 
 enddo 
 
c-----take the points in Outside points list 
c-----treat type 1 points 
 
      do j=1,n3p 
 if(idd.eq.Idout(j,1)) then 
 am=am2 
 endif 
 
c-----treat type 2 points 
 
      if(idd.eq.Idout(j,2)) then 
 am=am1/2.0 
 endif 
 
c-----treat type 3 points 
 
      if(idd.eq.Idout(j,3)) then 
 
 am=am1/2.0 
 endif 
 enddo 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c     modify mass on radial-crack nodes 
 
      do j=1,nrn 
      if (idd.eq.ldnr(j)) then 
      am=am/2.0 
      end if 
      enddo 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
 
 
c     non-side and edge node 
 
      if ((abs(zz-zbot).le.small).or.(abs(zz-ztop).le.small)) then 
      am=am/1.0 
      endif 
 
c     non-side and non-edge node 
 
      return 
      end if 
      end 
 
c************************************************************ 
c 
c 
c************************************************************ 
c     subroutine to calculate the portion of distribution 
c 
 
      subroutine CalculateX(r1,r2,x) 
      double precision r1,r2,x 
      x=(2./3.*r1**2-1./3.*r1*r2-1./3.*r2**2)/(r1**2-r2**2) 
      return  
      end 
         
c************************************************************ 
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%*********************************************************************** 
% APPENDIX E 
% 
% MATLAB CODE FOR ?SIMULATION OF CRACKED DISK MODEL? 
% 
% XIN HAI 
% 
%*********************************************************************** 
 
%balanced case based on support frame equations 
function yprime=disk02(t,y) 
 
%damping factor for the support  
c=0.8; 
 
%damping factor for the mass 
c1=0.5; 
c2=0.5; 
c3=0.5; 
c4=0.5; 
 
%support spring 
kx=5.0e7; 
ky=5.0e7; 
 
%mass spring 
k1=5.0e7; 
k2=5.0e7; 
k3=5.0e7; 
k4=5.0e7; 
 
%mass of the disk and hub 
m=2.45; 
mh=0.2; 
 
%rotating speed w=0,10,30,100,200,350,500 
w=10; 
%square of the rotating speed 
ww=w*w; 
 
%radius of the hub 
R=0.076; 
 
%variables 
x=y(1); 
yy=y(3); 
v(1)=y(5); 
v(2)=y(7); 
v(3)=y(9); 
v(4)=y(11); 
 
xd=y(2); 
yd=y(4); 
vd(1)=y(6); 
vd(2)=y(8); 
vd(3)=y(10); 
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vd(4)=y(12); 
 
for i=1:4, 
    phi(i)=3.14159/2*(i-1); 
end 
 
sum1=0; 
for i=1:4,                                  
sum1=sum1+vd(i)*sin(w*t+phi(i)); 
end 
 
sum2=0; 
for i=1:4,                                  
sum2=sum2+vd(i)*cos(w*t+phi(i)); 
end 
 
sum3=0; 
for i=1:4,                                  
sum3=sum3+(v(i)+R)*cos(w*t+phi(i)); 
end 
 
sum4=0; 
for i=1:4,                                  
sum4=sum4+(v(i)+R)*sin(w*t+phi(i)); 
end 
 
yprime = zeros(12,1)'; 
 
%variable dX/dt 
yprime(1)=y(2); 
 
%variable dY/dt 
yprime(3)=y(4); 
 
%variable dV1/dt 
yprime(5)=y(6); 
 
%variable dV2/dt 
yprime(7)=y(8); 
 
%variable dV3/dt 
yprime(9)=y(10); 
 
%variable dV4/dt 
yprime(11)=y(12); 
 
%mass matrix 
mass=[mh+4*m,0,m*cos(w*t+phi(1)),m*cos(w*t+phi(2)),m*cos(w*t+phi(3)),m*c
os(w*t+phi(4))]; 
mass=[mass;0,mh+4*m,m*sin(w*t+phi(1)),m*sin(w*t+phi(2)),m*sin(w*t+phi(3)
),m*sin(w*t+phi(4))]; 
mass=[mass;m*cos(w*t+phi(1)),m*sin(w*t+phi(1)),m,0,0,0]; 
mass=[mass;m*cos(w*t+phi(2)),m*sin(w*t+phi(2)),0,m,0,0]; 
mass=[mass;m*cos(w*t+phi(3)),m*sin(w*t+phi(3)),0,0,m,0]; 
mass=[mass;m*cos(w*t+phi(4)),m*sin(w*t+phi(4)),0,0,0,m]; 
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ydd(1)=8*m*w*yd+4*m*ww*x-c*xd+4*m*w*sum1+4*m*ww*sum3-kx*x; 
ydd(2)=-8*m*w*xd+4*m*ww*yy-c*yd-4*m*w*sum2+4*m*ww*sum4-ky*yy; 
ydd(3)=2*m*w*yd*cos(w*t+phi(1))-
2*m*w*xd*sin(w*t+phi(1))+m*ww*yy*sin(w*t+phi(1))+m*ww*x*cos(w*t+phi(1))+
4*m*ww*(R+v(1))-c1*vd(1)-k1*v(1); 
ydd(4)=2*m*w*yd*cos(w*t+phi(2))-
2*m*w*xd*sin(w*t+phi(2))+m*ww*yy*sin(w*t+phi(2))+m*ww*x*cos(w*t+phi(2))+
4*m*ww*(R+v(2))-c2*vd(2)-k2*v(2); 
ydd(5)=2*m*w*yd*cos(w*t+phi(3))-
2*m*w*xd*sin(w*t+phi(3))+m*ww*yy*sin(w*t+phi(3))+m*ww*x*cos(w*t+phi(3))+
4*m*ww*(R+v(3))-c3*vd(3)-k3*v(3); 
ydd(6)=2*m*w*yd*cos(w*t+phi(4))-
2*m*w*xd*sin(w*t+phi(4))+m*ww*yy*sin(w*t+phi(4))+m*ww*x*cos(w*t+phi(4))+
4*m*ww*(R+v(4))-c4*vd(4)-k4*v(4); 
 
ypp=inv(mass)*ydd'; 
 
yprime(2)=ypp(1); 
yprime(4)=ypp(2); 
yprime(6)=ypp(3); 
yprime(8)=ypp(4); 
yprime(10)=ypp(5); 
yprime(12)=ypp(6); 
 
yprime=yprime'; 
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%clear all; 
%close all; 
 
tspan=[0,0.5]; 
 
 
for i=1:12, 
    xo(i)=0.0;   
end 
 
%variables 
%x=xo(1); 
%yy=xo(3); 
%v(1)=xo(5); 
%v(2)=xo(7); 
%v(3)=xo(9); 
%v(4)=xo(11); 
 
%xd=xo(2); 
%yd=xo(4); 
%vd(1)=xo(6); 
%vd(2)=xo(8); 
%vd(3)=xo(10); 
%vd(4)=xo(12); 
 
xo(1)=0.0000001; 
xo(2)=0.000000; 
xo(3)=0.0000001; 
xo(4)=0.000000; 
 
 
%--------------------------- 
[t1,y1]=ode45('disk02',tspan,xo); 
 
figure (2) 
grid on; 
 
subplot(3,3,1); 
plot(t1,y1(:,1)); 
title('Time Vs. X'); 
grid on; 
 
subplot(3,3,2); 
plot(t1,y1(:,3)); 
title('Time Vs. Y'); 
grid on; 
 
subplot(3,3,3); 
plot(t1,y1(:,5)); 
title('Time Vs. V1'); 
grid on; 
 
subplot(3,3,4); 
plot(t1,y1(:,7)); 
title('Time Vs. V2'); 
grid on; 
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subplot(3,3,5); 
plot(t1,y1(:,9)); 
title('Time Vs. V3'); 
grid on; 
 
subplot(3,3,6); 
plot(t1,y1(:,11)); 
title('Time Vs. V4'); 
grid on; 
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%unbalanced system program based on support frame equations 
function yprime=disk03(t,y) 
 
%damping factor for the support  
c=0.8; 
 
%damping factor for the mass 
c1=0.5; 
c2=0.5; 
c3=0.5; 
c4=0.5; 
 
%support spring 
kx=5.0e7; 
ky=5.0e7; 
 
% unbalanced mass spring 
% change k1 to simulate the crack 
% when w=0, k1 can change from 5.0e7 to 5.0e2 
% when w=100, k1 can change from 5.0e7 to 2.0e5 
% when w=300, k1 can change from 5.0e7 to 2.0e6 
% when w=500, k1 can change from 5.0e7 to 4.0e6 
%k1=5.0e6; 
k1=5.0e5; 
%k1=5.0e4; 
%k1=5.0e3; 
%k1=5.0e2; 
%k1=2.0e5; 
%k1=2.0e6; 
%k1=4.0e6; 
 
k2=5.0e7; 
k3=5.0e7; 
k4=5.0e7; 
 
%mass of the disk and hub 
m=2.45; 
mh=0.2; 
 
%rotating speed 
% for unbalanced cases, w=0,100,300,500 Hz 
%w=0; 
w=100; 
%w=300; 
%w=500; 
 
%square of the rotating speed 
ww=w*w; 
 
%radius of the hub 
R=0.076; 
 
%variables 
x=y(1); 
yy=y(3); 
v(1)=y(5); 
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v(2)=y(7); 
v(3)=y(9); 
v(4)=y(11); 
 
xd=y(2); 
yd=y(4); 
vd(1)=y(6); 
vd(2)=y(8); 
vd(3)=y(10); 
vd(4)=y(12); 
 
for i=1:4, 
    phi(i)=3.14159/2*(i-1); 
end 
 
sum1=0; 
for i=1:4,                                  
sum1=sum1+vd(i)*sin(w*t+phi(i)); 
end 
 
sum2=0; 
for i=1:4,                                  
sum2=sum2+vd(i)*cos(w*t+phi(i)); 
end 
 
sum3=0; 
for i=1:4,                                  
sum3=sum3+(v(i)+R)*cos(w*t+phi(i)); 
end 
 
sum4=0; 
for i=1:4,                                  
sum4=sum4+(v(i)+R)*sin(w*t+phi(i)); 
end 
 
yprime = zeros(12,1)'; 
 
%variable dX/dt 
yprime(1)=y(2); 
 
%variable dY/dt 
yprime(3)=y(4); 
 
%variable dV1/dt 
yprime(5)=y(6); 
 
%variable dV2/dt 
yprime(7)=y(8); 
 
%variable dV3/dt 
yprime(9)=y(10); 
 
%variable dV4/dt 
yprime(11)=y(12); 
 
%mass matrix 
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mass=[mh+4*m,0,m*cos(w*t+phi(1)),m*cos(w*t+phi(2)),m*cos(w*t+phi(3)),m*c
os(w*t+phi(4))]; 
mass=[mass;0,mh+4*m,m*sin(w*t+phi(1)),m*sin(w*t+phi(2)),m*sin(w*t+phi(3)
),m*sin(w*t+phi(4))]; 
mass=[mass;m*cos(w*t+phi(1)),m*sin(w*t+phi(1)),m,0,0,0]; 
mass=[mass;m*cos(w*t+phi(2)),m*sin(w*t+phi(2)),0,m,0,0]; 
mass=[mass;m*cos(w*t+phi(3)),m*sin(w*t+phi(3)),0,0,m,0]; 
mass=[mass;m*cos(w*t+phi(4)),m*sin(w*t+phi(4)),0,0,0,m]; 
 
 
ydd(1)=8*m*w*yd+4*m*ww*x-c*xd+4*m*w*sum1+4*m*ww*sum3-kx*x; 
ydd(2)=-8*m*w*xd+4*m*ww*yy-c*yd-4*m*w*sum2+4*m*ww*sum4-ky*yy; 
ydd(3)=2*m*w*yd*cos(w*t+phi(1))-
2*m*w*xd*sin(w*t+phi(1))+m*ww*yy*sin(w*t+phi(1))+m*ww*x*cos(w*t+phi(1))+
4*m*ww*(R+v(1))-c1*vd(1)-k1*v(1); 
ydd(4)=2*m*w*yd*cos(w*t+phi(2))-
2*m*w*xd*sin(w*t+phi(2))+m*ww*yy*sin(w*t+phi(2))+m*ww*x*cos(w*t+phi(2))+
4*m*ww*(R+v(2))-c2*vd(2)-k2*v(2); 
ydd(5)=2*m*w*yd*cos(w*t+phi(3))-
2*m*w*xd*sin(w*t+phi(3))+m*ww*yy*sin(w*t+phi(3))+m*ww*x*cos(w*t+phi(3))+
4*m*ww*(R+v(3))-c3*vd(3)-k3*v(3); 
ydd(6)=2*m*w*yd*cos(w*t+phi(4))-
2*m*w*xd*sin(w*t+phi(4))+m*ww*yy*sin(w*t+phi(4))+m*ww*x*cos(w*t+phi(4))+
4*m*ww*(R+v(4))-c4*vd(4)-k4*v(4); 
 
ypp=inv(mass)*ydd'; 
 
yprime(2)=ypp(1); 
yprime(4)=ypp(2); 
yprime(6)=ypp(3); 
yprime(8)=ypp(4); 
yprime(10)=ypp(5); 
yprime(12)=ypp(6); 
 
yprime=yprime'; 
 
219 
 
 
 
 
 
 
%clear all; 
%close all; 
 
tspan=[0,1]; 
 
 
for i=1:12, 
    xo(i)=0.0;   
end 
 
%variables 
%x=xo(1); 
%yy=xo(3); 
%v(1)=xo(5); 
%v(2)=xo(7); 
%v(3)=xo(9); 
%v(4)=xo(11); 
 
%xd=xo(2); 
%yd=xo(4); 
%vd(1)=xo(6); 
%vd(2)=xo(8); 
%vd(3)=xo(10); 
%vd(4)=xo(12); 
 
xo(1)=0.0000001; 
xo(2)=0.000000; 
xo(3)=0.0000001; 
xo(4)=0.000000; 
 
%--------------------------- 
[t1,y1]=ode45('disk03',tspan,xo); 
 
figure (1) 
grid on; 
 
subplot(2,2,1); 
plot(t1,y1(:,5)); 
title('Time Vs. V1'); 
grid on; 
 
subplot(2,2,2); 
plot(t1,y1(:,7)); 
title('Time Vs. V2'); 
grid on; 
 
subplot(2,2,3); 
plot(t1,y1(:,9)); 
title('Time Vs. V3'); 
grid on; 
 
subplot(2,2,4); 
plot(t1,y1(:,11)); 
title('Time Vs. V4'); 
grid on; 
 
220 
 
 
 
 
 
 
wol=y1(:,1);  
yol=y1(:,3); 
v1=y1(:,5);  
v2=y1(:,7);  
v3=y1(:,9);  
v4=y1(:,11);  
 
save xau.txt wol -ascii;  
save yau.txt yol -ascii;  
save v1u.txt v1 -ascii;  
save v2u.txt v2 -ascii;  
save v3u.txt v3 -ascii;  
save v4u.txt v4 -ascii;  
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