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Abstract 

 

 

 The growing demand of continuous filters in portable electronic equipment, wireless 

receivers and continuous-time (CT) analog-to-digital converters (ADCs) has spawned a strong 

research interest from industry and academia. Gm -C filters are one of the most widely used 

continuous time filters because Gm -C filters are one of the fastest active integrators and enable 

low-power operation and tuning of the filter characteristics at higher frequencies. However 

issues concerning non-idealities which are parasitic conductance and capacitance in OTA and 

lossiness in reactance elements are less addressed. In this thesis a novel predistortion technique 

for synthesizing OTA-C filters is presented. The synthesis algorithm makes it possible to design 

a Butterworth or Chebychev filter which offsets non-idealities of the OTA. This approach 

substantially relieves the complexity of existing lossy ladder synthesis algorithms, and makes the 

synthesis of lossy ladder filters more reliable for practical applications. 
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Chapter 1 

Introduction 

 

Design of filters using passive ladder filters as a prototype for active filters, such as 

operational transconductance amplifiers and capacitors (OTA-C), has become more and more 

popular in recent years. OTA-C integrators are one of the fastest active integrators, with minimal 

or even zero number of internal nodes [23]. Therefore they are a suitable option in realizing high 

bandwidth integrators. The conventional way to design OTA-C filters is to design a passive 

ladder filter prototype and using signal flow graph methodology, transforming the prototype 

filter into GmC filter is easily obtainable. However, it is assumed that the reactance elements 

used to build passive ladder prototype and active OTA-C filter are lossless, i.e. Q (quality 

factor=0), and it is not possible to achieve this requirement.  Every reactance element has 

considerable amount of lossy (finite vale of the Q-factor) and this lossiness significantly affects 

the frequency response of the filter. Existing classical synthesis algorithms [1, 3, 6, 9, 10, and 11] 

of ladder reactance filter do not consider lossiness of reactance elements. As a result frequency 

response of real filter differs from ideal prototype filter. Until recently [2] an algorithm has been 

proposed which considers the lossiness of reactance elements but it has experienced limited 

success due to computation complexity with respect to order of the filter and is the case with 

many other existing lossy synthesis algorithms [23,27, 28 and 29]. It is the purpose of this work 
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to reduce the computation complexity when solving the problem of lossiness in the reactance 

element of ladder circuits using an algorithm proposed in chapter 3. 

Although the proposed algorithm solves the lossy ladder circuit element values to achieve 

the prototype filter frequency response, when these ladder circuits are implemented using 

transconductance amplifiers, due to non-idealities associated with the Gm amplifiers such as 

finite output resistance, intrinsic input, output and Miller capacitances limits the performance of 

the filter at higher frequencies and high DC gain of the filter is difficult to achieve. Using the 

predistortion technique proposed in this work, it is however possible to map those non-idealities 

of the transconductance amplifier to achieve accurate DC gain of the filter. 

1.1 Thesis Outline: 

An overview of existing classical ladder synthesis algorithms is offered in Chapters 2. It 

includes a review of relevant concepts and brief look at most widely used algorithm. A novel 

algorithm for synthesizing lossy ladder filters is introduced in Chapter 3. The details of the 

algorithm are presented along with some experimental data. Transforming ladder circuits into 

OTA-C implementation using state equations is described in Chapter 4. The transconductance 

amplifier design process and its limitations is presented in Chapter 5. The OTA design will be 

developed in SPICE using CMOS 0.5 μm technology. The analysis of the filter is presented in 

Chapter 6, taking into account the non-ideal effects caused by parasitic capacitances and finite 

output impedances of the OTA. Finally, the thesis is concluded in Chapter 7.
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Chapter 2 

Ladder Prototype Synthesis  

2.1 Background 

Analog filters play a very significant role in every electronic system. There is a growing 

interest in continuous time filters, applications include hard disk read write systems [19, 20], 

digital video applications [21] and ultra wide band devices [22]. There are two different ways to 

implement analog filters. The first one uses cascade connection of second-order circuits. These 

types of filters are easy to design, but they are relatively sensitive to the tolerance of elements. 

The second method uses passive ladder prototypes and practical VLSI implementation of these 

prototypes need a series of integrators. This type of design is much sensitive to the tolerance of 

elements, but also it is more difficult to design. 

Ladder filter structures are important for filter designs with modern circuit elements. 

Modern filter designs such as OTA-C filters, Switched Capacitor filters and Switched Current 

filters use LC ladder prototypes. An LC ladder prototype filter is build up of inductors and 

capacitors arranged series and shunt alternately, or of series or parallel tuned LC circuits. 

Predominantly, filters with Butterworth, Chebychev, inverse Chebychev and Cauer frequency 

responses are used. The classical synthesis process of ladder reactance filter begins with 

designing a low-pass prototype. For the most popular sorts of prototype low-pass filters, the 

values of elements have been derived and put into tables [7]. Thus, when designing a filter, there 
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is no need to start from the desired frequency response and to recalculate them anew. Therefore, 

synthesis of a ladder reactance filter is very simple and requires relatively less computation, 

particularly when using tables of element values to obtain the prototype filter. There are several 

ways of implementation of such ladder filters.  

The implementation of analog filter design requires calculation of poles, zeros and 

transfer function for that filter. All the necessary equations for calculating poles, zeros and 

transfer function for low-pass prototype filters are explained in the Chapter 2.  For each type of 

approximation, poles and zeros are placed differently in s-plane. For high pass, band pass and 

band stop filters, given specifications are transformed to low-pass and low-pass prototype filter is 

again transformed to its original type. Quality factor and natural frequency of each complex 

conjugate poles are calculated. 

2.2 Design of Low-Pass Prototype without Zeros: 

The synthesis method begins by first transforming the filter specifications to a low-pass 

prototype, then synthesizing the low-pass prototype, and finally doing element transformations to 

get the proper filter form. Because low-pass transfer functions that have equal numerator and 

denominator orders are not implementable in a ladder form, special frequency transformations 

are added to the transfer function development. In order for a filter to be realizable, the order of 

the denominator must be greater than the order of the numerator. A special frequency 

transformation transforms the largest conjugate zero pair to infinity, thus reducing the order of 

the numerator by two and allowing the simulation of even order filters. For transfer functions 

without zeros, such as Butterworth, Chebychev and Bessel-Thompson, the approach used to 
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determine the element values is the classical continued fraction expansion. This procedure is well 

documented [1] and is straight forward. 

The algorithm follows a classical approach for Butterworth and Chebychev type filters. 

This involves using an auxiliary function [1] to find input impedance and then continued 

fractions to find the values of the elements. 

Active circuit design of filters gives the transfer function of the required filter. Let T(s) be 

the transfer function. Auxiliary function [A(s)] found from transfer function and following 

sequence steps gives impedance function [Z(s)] of the circuit: 

     
         

      
 

1. Find             and             

2. Find Auxiliary function A(s)A(-s) 

             
       

           
          

Where,     = input resistance and  

      = output resistance 

3. Find A(s) from A(s)A(-s) 

     
     

     
 

      is found by taking roots of A(s) A(-s) which lie in left half of plane. 
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4. Find Z(s) 

        

      

      
 

The impedance function      gives the total impedance looking from the input terminal of the 

ladder circuit. Once impedance function is calculated, L and C values can be derived using 

classical continued fraction method. 

The above procedure of designing low-pass prototype is implemented in MATLAB (code 

attached in appendix) and the results are shown below in various steps of the synthesis. 

Example: Design of 5
th

 order Chebychev filter: 

In order to design a 5
th

 order Chebychev filter ladder prototype, transfer function of the 

filter is calculated when necessary input parameters, as mentioned in Chapter 2, are provided.  

With    =3dB,   = 1rad/sec,    =50dB and   = 2rad/sec, the transfer function of 5
th

 order low 

pass filter is, 

     
          

                                                                  
 

And the impedance function: obtained from the simulation is, 

     
                                      

                                            
 

Once calculating the impedance function, classical continued fraction is used to calculate the 

ladder element values. Element values can be scaled when frequency scaling is needed. The 

values obtained from the simulation are,  
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Element Capacitance 

L1 3.4816 F 

C2 0.7619 F 

L3 4.5375 F 

C4 0.7618 F 

L5 3.4814 F 

Rin 1 

Rout 1 

 

Table 2.1: Element values for a 5
th

 order low-pass Chebychev filter 

The circuit implementation in SPICE is shown in Figure 2.1. 

 

Figure 2.1: Ladder circuit implementation of 5
th

 order low-pass Chebychev filter 
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Figure 2.2: Frequency response of 5
th

 order low-pass Chebychev filter 

 

2.3 Design of Low-Pass Prototype with Zeros: 

 

In the presence of zero, another transformation is introduced for filter without a 

maximum at zero, for example even order Cauer and Chebychev filters. For these filters, the first 

maximum, on the frequency scale is transformed to zero. The second transformation allows the 

synthesis of even-order Cauer and Chebychev filters with equal terminating resistance. The 

importance of this transformation comes from the fact that ladders with equal termination 

resistances are least sensitive to individual tolerances. 

A special frequency transformation will transform the largest conjugate zero pair,  

             for s=jz to infinity, thus reducing the order of the numerator by 2, while still 

maintaining the same basic response. The normalization frequency    maps to the same 

frequency on both the   –axis and the  -axis; 
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                                                     (2.1) 

 

In the case of even-order Cauer and Chebychev filters, this transformation moves, 

eqn(next) the frequency of the first maximum (  ) to zero and allows the design of even-order 

Cauer and Chebychev filter with equal terminating resistances: 

 

                                                                     
  

    
 

     
 

                                                     (2.2) 

A generalized ladder circuit in presence of zeros is shown in Figure 2.3. Each zero pair 

(z) is represented by a resonant circuit consisting of inductor and capacitor in parallel. Resonant 

circuit with shunt capacitor (   ) constitutes complex conjugate pole and conjugate zero pair. 

 

Figure 2.3: A generalized ladder circuit in presence of zeros 
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For extracting ladder circuit elements, following procedure to calculate elements from the 

impedance function. 

1. Choose a value of zero (z) to be eliminated from impedance function. 

2. Find value of    solving equation,  

 

3. Choose a different zero and repeat steps 1 and 2 if the value of    is not practically 

feasible. 

4. Remove shunt capacitor and obtain   . 

5. Determine values   and      from equations below. 

 

6. Find value of     and   . 
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7. Above steps are repeated for all resonant circuits (all zeros) and remaining circuit 

elements (like      ) are found using classical continued fraction method. 

Example: Low-Pass Elliptic filter with    =1dB,   = 1rad/sec,    =40dB and   = 2rad/sec, 

L&C element values obtained from the simulation are, 

Element Capacitance 

L1 3.4816 F 

C2 0.7619 F 

L3 4.5375 F 

C4 0.7618 F 

L5 3.4814 F 

Rin 1 

Rout 1 

 

Table 2.2: Element values for a 5
th

 order low-pass Elliptic filter 

The circuit implementation in SPICE is shown in Figure 2.4. 

 

Figure 2.4: Ladder circuit implementation of 5th order low-pass Elliptic filter 
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Figure 2.5: Frequency response of 5
th

 order low-pass Elliptic filter 

2.4 Transformation from Low-Pass to other type filters: 

To obtain a high-pass, bandpass, or bandstop filter function from a low-pass prototype, 

the individual circuit elements of the prototype are replaced by other elements or sub-circuits as 

shown in Figure 2.6. Next, the values of all filter elements are scaled. There are two main 

purposes of scaling: to produce more practical values of filter elements, e.g. load resistance 

(magnitude scaling) and/or to move the filter passband towards the required range of frequencies 

(frequency scaling). This method is more useful in passive filter designs.  

 LP HP BP BS 

Z 

 
  

 

Y 

  

  

Figure 2.6: Filter transformation from low-pass to other type filters 
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Another approach of filter transformation is by transforming transfer function of the low-

pass prototype into the required form of the desired filter. Then a circuit is chosen to realize the 

new filter function. The approach is straight forward and explained detail in [9].
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Chapter 3  

Synthesis of Lossy Ladder Filters 

3.1 Predistorting LC Ladder Networks 

 

In all the existing algorithms of ladder filter synthesis [1, 3, 6, 9, 10, and 11], it is 

assumed that the reactance elements used to build passive ladder prototype are lossless, and it is 

not possible to achieve this requirement since actual reactance elements are lossy.  Every 

reactance element has considerable amount of lossy and this lossiness significantly affects the 

frequency response of the filter. To determine the lossiness of the reactance element, the quality 

factor (Q-factor) is used. The use of the term lossiness means series resistance, measured in 

ohms, for inductors and leakage conductance, measured in siemens, for capacitors, as shown in 

Figure 3.1. The greater the lossiness of reactance elements used to build a filter, the greater the 

difference between the frequency response of the filter and the frequency response that the filter 

was intended to have. 

 

Figure 3.1: Models of real capacitor and real inductor.
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A bulk of research has been dedicated to algorithms of ladder filter synthesis [1, 3, 6, and 

9]. This research is done with the idea that reactance elements are ideal and lossiness of the 

reactance have no effect on the frequency response of the filter. One problem with this 

assumption is that it is impossible to accomplish ideal reactance elements. Another problem with 

this approach is that the lossiness of the reactance elements changes the location of poles on the 

complex plane, and this implies the deformation of the magnitude response of the filter. As a 

result the frequency response of the designed filter differs from the frequency response of the 

real filter. The greater the lossiness of reactance elements used to build a filter, the greater the 

difference between the frequency response of the filter and the frequency response that the filter 

was intended to have.  Figure 3.2 and Figure 3.3 shows the comparison of magnitude Bode plots 

and poles location on the complex plane for a seventh-order Chebychev low-pass prototype filter 

and its realization with real, lossy elements.  

Figure 3.2: Magnitude Bode plots of the fifth-order low-pass Chebychev ladder filter  
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Figure 3.3: Pole location of the fifth-order low-pass Chebychev ladder filter transfer function  

With some additional assumptions it is however possible to modify the values of 

capacitance and inductance of the reactance elements so as to move the poles back into place. A 

new method of predistorting LC ladder networks to offset the effect of resistive losses occurring 

in real components is described in this research work. Less research is devoted to this concept, 

and as such it is the crux of this work.  

3.2 Methodology for Lossy ladder filter synthesis 

The synthesis algorithm introduced in this chapter makes it possible to design a passive 

ladder, Butterworth or Chebychev filter with the use of lossy reactance elements. The filter 

obtained in this way can have exactly the same frequency response as the non-feasible prototype 

filter.  

The lossy ladder synthesis algorithm follows three steps, 
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1. Determining the transfer functions for ideal, real and lossy ladder filters. 

2. Estimating the error function. 

3. Minimizing error function using optimization techniques. 

One can easily write the transfer function of the circuit shown in Figure 3.4 using 

symbolic variables or in some other form in MATLAB and get the resulting transfer function 

coefficients at the output. The disadvantage using this approach is that the symbolic variable in 

state equations (3.4) affects the performance and as a result the time taken for computation 

process is increased. This case might even worsen as we go for higher order filters as more 

symbolic variables are used for the state equations.  A new approach to write the transfer 

function without using symbolic variables or writing state equations is illustrated in this chapter. 

After the transfer function of the ladder circuit is calculated, one can easily observe that 

the coefficients of the transfer function of any ladder prototype filter are made up of L&C 

elements of that circuit. Therefore, any change in L&C element values changes the transfer 

function of the ladder filter which in turn changes the location of poles of that transfer function. 

As shown in Figure 3.3, the poles of real filter do not match with that of the poles of ideal filter. 

If the poles of the real filter can be pushed towards and matched closely with the poles of 

prototype filter, then ideal filter response can be achieved in real filters. This concept is the 

backbone for the algorithm developed for lossy ladder synthesis. The optimization method 

described later in this chapter tries to reduce the error between the poles of real and prototype 

filters and gives the optimized L&C values that can be used in real filters to obtain ideal 

frequency response.   
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3.2.1 Calculating the transfer function of the ladder circuit 

To calculate the transfer function of the real filter, consider a third order low-pass 

Chebychev filter shown in Figure 3.4.                                                                         

 

 

Figure 3.4: A third-order low-pass Chebychev ladder filter with real reactance elements. 

 

State equations for the above circuit are,  

RoVI out /3   

            (3.1) 

 

out

out

VRoRRosL

VRsLIV

)/1/( 33

3332





 

 

 

outVRoRoRosRoCL

IGsCVI

))G/R+(1+1]/GL+)C/R+(1[/s( 23232323

2

32221





 

 

  21111121111 VRIsLIIVRsLIIVin 
 

 

Equation set (3.1) gives the relationship between state variables and reactance elements. These 

equations are arranged in a table such that each state variable is related to variable outV
as shown 
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in table 3.1. The coefficients of the transfer function are calculated using tri-diagonal matrix 

system shown in table 3.1, 3.2 and 3.3. 

 

 

Table 3.1: Relationship between the state variables I3, V2, I1 and Vin with outV  

From Table 3.1, we find a relationship between the coefficients of one state variable with 

the coefficients of its previous variable. By using this relationship between the coefficients, a 

matrix can be formed with values same as coefficients shown in Table 3.1. Using this approach, 

state variables use for calculating transfer function is avoided and this approach has proved faster 

than other methods and efficient way when used in optimization process. 

It can be observed that each row after the first two rows depends on the previous rows 

and the relationship between these rows can be derived as follows.   

The process consists of three steps, 

 S
3 

S
2 

S
1 

S
0 

I3 0 0 0 1/Ro 

V2 0 0 L3/Ro 1+R3/Ro 

I1 0 L3C2/Ro (1+R3/Ro)C2+L3G2/Ro 1/Ro +(1+R3/Ro)G2 

Vin L3C2 1L

/Ro 

((1+R3/Ro)C2+L3

G2) 1L + 

( L3C2/Ro)R1+ 

(L3C2Rin/Ro) 

(1+(1+R3/Ro)G2) 1L + 

((1+R3/Ro)C2+L3G2/Ro)RinR1

+ 

L3/Ro+Rin((1+R3/Ro)C2+ 

L3G2/Ro) 

(1/Ro+(1+R3/Ro)G2)RinR1

+ 

(1+R3/Ro)+ 1/Ro 

+(1+R3/Ro)G2 
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Step 1: 

Initialize first two rows of the matrix with the coefficients of I3, V2, as shown below, 



























0000

0000

3
1

3
00

1
000

Ro

R

Ro

L

Ro

 

 And from the third row to end of the row, the process contains two steps. 

Step 2: 

From third row to the end of the matrix, any coefficient of I1 is equal to the sum of, 

 1. Shifted coefficient of the previous variable (i.e. V2) multiplied by active 

element of the previous variable (i.e. C2 in this case) and, 

2.  Coefficient of variable before the previous variable (I3) and coefficient of the 

previous variable (i.e. V2) multiplied by lossy element of the previous variable (i.e. G2 in 

this case). 

i.e., 

First case shown in Table 3.2,  







































0000

02
3

1
23

0

3
1

3
00

1
000

C
Ro

R

Ro

CL

Ro

R

Ro

L

Ro

 

Table 3.2: Shows the relationship between third row and second row. 
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and second case is shown in Table 3.3,  
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Table 3.3: Shows the relationship between third row and first and second row. 

step 2 is evaluated until all the row elements of the matrix are calculated. 

Step 3: 

After all the element values of the matrix are calculated using step 2, additional 

coefficients (Rin) need to be added to the last row of the matrix so that the coefficients 

accurately match with the table 3.1. The code for the transfer function calculation is written in 

MATLAB. See appendix A for the code. 

 

Experimental Results: 

For a third order Chebychev ladder filter, a 4 by 4 matrix is obtained (Table 3.4). 

active_element = [3.348741 0.7117 3.348741]; r_loss=0.1; Rin=1; Ro=1 

 

0 0 0 1.0000 

0 0 3.3487 1.1000 

0 2.3833 1.1177 1.1100 

7.9811 6.3647 8.2954 2.3210 

 

Table 3.4: Coefficients of state variables 
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As from the table 3.1, last row gives the coefficients of transfer function for Figure 3.1. 

Hence, last row of the matrix gives the coefficients of transfer function.  

This process can be used for any higher order filter and transfer function coefficients can 

be easily obtained with less computation time. 

 

3.2.2 Error function 

As stated before, the concept behind the algorithm is to reduce the distance between poles 

of real and poles of prototype filter so that poles of the real filter will be very close to the 

prototype filter. For the lossy ladder synthesis program, the error function measures the 

difference of distance between each of the actual and real poles and finds the mean square value 

of these differences (as shown in Equation (3.2 & 3.3) ) and passes this value to optimization 

technique for minimizing the distance between the poles of actual and real filter. 

  As seen from the Figure 3.6, poles of real filter are wide apart from prototype filter. Aim 

of the lossy ladder synthesis algorithm is to push the poles of the real filter close to the prototype 

filter. To monitor the distance between these poles, an error function is written that computes the 

difference of poles between real and prototype filters and passes the mean square value of the 

poles to nelder-mead method for optimization process. 
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Figure 3.5: Pole locations of 5
th
 order real and prototype Chebychev filter 

 

Error between actual and displaced poles can be found by, 

Assume pl2 – poles of real filter and  

pl1 – poles of prototype filter. 

e= (pl2-pl1)              (3.2) 

And sum of mean squares of the error is,  

E= (e'*e)                (3.3) 

 

The value E is passed as weight input to nelder-mead function which is an optimization 

technique that minimizes the error value, E, by choosing different possible values of L&C 

elements. See appendix B for the code. 
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3.2.3 A Numerical Optimization Technique: Nelder-Mead method 

The Nelder-Mead finds a local minimum of a function (in this case error function) of 

several variables and gives the optimized values of variables that contributed to minimum value 

of a function. For lossy ladder synthesis program, nelder-mead finds the minimum point of error 

function using simplex method. The Nelder_Mead [4] algorithm seeks to solve the classical 

unconstrained optimization problem of a nonlinear function of several variables without 

derivatives. The algorithm is easy to visualize. The user supplies an initial set of points that 

represent solution estimates. The number of points supplied is one greater than the spatial 

dimension, so they form a "simplex" - in 2D, this is simply a triangle. Simplex is defined as a 

polyhedron which has one vertex more than the number of variables, which used in optimization. 

Each simplex vertex, correspond with a possible answer. Simplex algorithm tries to replace the 

worst vertex (vertex with greatest objective function value), with a better vertex which must be 

found. During the search, simplex performs four possible movements: reflection, expansion, 

contraction and shrinkage to find a vertex with a better value. New iterations continue until a 

termination criterion is obtained. Termination criterion is a simplex with a sufficient value or 

sufficiently small variations in objective function value. 

Initial triangle is formed by evaluating given three vertices of a triangle from the function 

g(p,q) and reordering the subscripts such that   =(p1,q1) is worst vertex,   =(p2,q2) is best 

vertex and   =(p3,q3) is next best vertex. As shown in fig 3.6 a test point x‟ that is obtained by 

reflecting the triangle through the side            is chosen. To determine x‟, the midpoint of the side 

           is found and a line segment from    to x‟ is drawn. If the function value at x‟ is smaller 

than the function value at    then we have moved in the correct direction toward the minimum. 

The minimum may be a bit farther than the point x‟. To find the new minimum, extend the line 
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segment through „mid‟ and x‟ to the point x‟‟. The distance from x‟ to x‟‟ is same as „mid‟ to x‟. 

If the function value at x‟‟ is less than the function value at x‟, then a new vertex x‟‟ better tha x‟ 

gives the minimum of the function. 

 

Figure 3.6: Reflection and Expansion: Triangle        and point x‟ and extended point x‟‟ 

Another point to be tested if the function values at R and W are same is by considering the 

midpoint of the line segment               as shown in figure3.7. 

 

Figure 3.7: Contraction point for Nelder-Mead method 
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The Nelder-Mead algorithm is easy to understand and is well documented [5]. The 

Nelder-Mead method frequently gives significant improvements in the first few iterations and 

quickly produces quite satisfactory results. Also, the method typically requires only one or two 

function evaluations per iteration, except in shrink transformations. The method is often faster 

than other methods, especially those that require at least n function evaluations per iteration. See 

appendix C for nelder-mead optimization technique. 

3.3 Simulation Results 

3.3.1 Third Order Chebychev filter 

 Let us take into consideration a third order Chebychev low-pass prototype filter with 

specifications given in Table 3.5, 

Element Values 

   1 dB 

   30 dB 

   1rad/sec 

   2rad/sec 

 

Table 3.5: 3
rd

 order low-pass filter specifications 

Having the filter designed using the classical synthesis algorithm without considering the 

reactance elements‟ lossiness, schematics as in Fig. 3.7 can be drawn with element values shown 

in table 3.6. 
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Element Values 

   2.023593 

   0.994102 

   2.023593 

    1 

     1 

 

Table 3.6: 3
rd

 order low-pass filter element values 

 

Figure 3.8: 3
rd

 order low-pass ladder filter prototype 

In order to include the lossiness, all of the inductors and capacitors in the schematic have 

to be replaced by their real models from Figure 3.8. In this way a circuit shown in Figure 3.9 can 

be obtained. Let us now set the example value of the lossiness RL1= RL2=GC2=0.1, although 

this value can be different for each element.  

Element Values 

   2.0133 

   1.5656 

   0.97438 
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    1 

     0.26841 

 

Table 3.7: Lossy element values of 3
rd

 order LPF with Q=10% 

 

Figure 3.9: Ladder circuit of Fig. 3.5 with lossy elements 

As shown in figure 3.10, using the proposed algorithm, one can easily obtain lossy element 

values for ladder circuits which gives a frequency response that matches exactly with that of 

ideal frequency response. Figure 3.11 shows the pole locations of ideal and real filters. The poles 

of the real filter are pushed towards the ideal filter until the optimization technique finds the 

minimum distance between poles. New element values obtained (table 3.7) using this method 

replaces ideal element values with lossy element values. 
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Figure 3.10: Magnitude Bode plots of 3
rd

 order low-pass Chebychev ladder filter 

 

 

Figure 3.11: Pole locations of 3
rd

 order real and prototype Chebychev filter 
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3.3.2 Fifth Order Chebychev Filter (1db pass-band ripple) 

Another example of lossy ladder synthesis of a 5
th

 order chebychev filter. The value of the 

lossiness chosen is RL1=RL3=RL5=GC2=GC4=0.1and specifications of the filter are shown in 

table 3.8. 

Element Values 

   1 dB 

   30 dB 

   1rad/sec 

   2rad/sec 

 

Table 3.8: 5
th

 order low-pass filter specifications 

Ideal prototype ladder filter is shown in figure 3.12. The element values are obtained using the 

classical ladder synthesis approach (see appendix) 

 

Figure 3.12: 5
th

 order low-pass ladder filter prototype 

Element Value 1 Value 2 Value 3 

   1.6864     1.6445     1.6583     

   1.5955     1.5530     1.5634     
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   2.5121     2.4023     2.4293     

   1.6376     1.5695     1.5821     

   1.0003     1.1405     1.1065     

    1 1 1 

     0.0210 0.0120 0.0163 

Table 3.9: Lossy element values of 5
th

 order LPF with Q=10% 

Different element values are obtained each time the program is executed in MATLAB, as 

shown in table 3.9 and these different values give the same magnitude response as of ideal filter 

response. The magnitude response for figure 3.13 is shown in figure 3.14 and figure 3.15 shows 

the pole locations of real and prototype filter. 

 

Figure 3.13: Ladder circuit of Fig. 3.11 with lossy elements 

Very few algorithms take the lossiness introduced by the reactive elements into 

consideration for the synthesis process. Most of these algorithms are very complex to understand 

and these synthesis techniques become less effective as order of the filter is increased. Recently, 

[2] proposed a method to solve the problem of lossiness and derive the lossy element values. The 

method uses numerical analysis to solve the set of non linear equations (3.4) in order to 

determine the transfer function of the ladder circuit and tries to reduce the difference between 

coefficients of ideal and lossy transfer function. Disadvantage using that   method is that as order 

of the filter increases it is difficult to solve those set of equations and obtain transfer function as a 
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result complexity and computation time is increased. Using the algorithm proposed in this thesis 

one can easily obtain the lossy element values without regard to the order of the filter as a result 

complexity and computation time is improved.  

   
 

               
         

   
 

       
        

   
 

         
        

   
 

       
        

   
 

                
     

 

 

Figure 3.14: Magnitude Bode plots of 5
th

 order low-pass Chebychev ladder filter 

(3.4) 
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Figure 3.15: Pole locations of 5
th

 order real and prototype Chebychev filter 

3.4 The relationship between the amount of lossiness and positive value of resistance R2: 

The limitation to the algorithm is the amount of lossiness that can be introduced in the 

synthesis process. Table 3.10 shows the relationship between order of the filter and amount of 

lossiness that can be introduced in the ladder circuit. For example for a 3
rd

 order filter with 0.1 

dB pass band ripple maximum amount of lossiness that can be introduced is Q=0.3. Beyond this 

value the lossy synthesis shows negative resistances. In order to get positive element values one 

has to limit their lossiness as given in table 3.10. 
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 3
rd

 (order) 4
th

  5
th

  7
th

  

0.1dB (pass band 

ripple) 

30% 25% 16% 10% 

1dB 20% 16% 10% 6% 

3dB 15% 10% 6% 1% 

 

Table 3.10: Relationship showing order of filter and amount of lossiness 

From table 3.10, the value of Q decreases as the order of filter increases and similarly Q 

decreases as the value of pass band ripple is increased.  
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Chapter 4 

Synthesis of OTA-C Filters Using Ladder Filter Prototype 

4.1 Background 

Transconductance filters (OTA-C) gained wide popularity due to its wide range of uses in 

the field of analog filters and the need for high quality analog filters implemented on standard 

CMOS integrated circuit made them have an edge over classical amplifier design. Because of its 

ease of use [11, 23] and advantages over classical amplifier design, given the ladder circuit of 

any order, an equivalent OTA-C filter can be easily synthesized.  

There are two main techniques to transform a ladder circuit into its OTA-C 

implementation. The first technique known as element replacement, involves using capacitors 

directly and substituting inductors with an equivalent circuit thus has inductive input impedance. 

The other method is referred to as operational simulation, or signal flow graph method. In 

operational simulation, the node voltages and mesh currents of the ladder circuit are simulated by 

summations and the ladder elements are simulated by integration operators. 
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4.2 Low Pass filter Synthesis 

4.2.1 LC Ladder Circuit 

 

Figure 4.1: Low pass filter LC implementation 

The implementation of a fifth order Chebychev filter designed for minimum capacitance 

is shown in Figure 4.1. For simplicity values for the passive elements are chosen to set the cut-

off frequency at 1Hz and are shown in table 4.1  

Element Capacitance 

L1 3.4816 F 

C2 0.7619 F 

L3 4.5375 F 

C4 0.7618 F 

L5 3.4814 F 

 

Table 4.1: Capacitor values for low pass filter prototype 

The element values were calculated using the software mentioned in Chapter 2. 
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4.2.2 OTA-C Transformation: 

From Figure 4.1, one can easily write the state space equation for this particular circuit 

using current and voltage conventions defined in the figure.  

   
 

       
         

   
 

   
        

   
 

   
        

   
 

   
        

   
 

        
   

If the equations set (4.1) are used to implement an OTA-C filter, the circuit would be as shown in 

Figure 4.2.  

 

Figure 4.2: OTA-C filter implementation  

(4.1) 
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Analyzing the circuit in Figure 4.2 with the OTA output voltages as state variables, the state 

equations become those shown in equation set (4.2) assuming an equal transconductance for each 

OTA. 

   
  

         
         

   
  

   
        

   
  

   
        

   
  

   
        

   
  

          
   

From comparing equations (4.1) and (4.2), the passive component values (capacitors) must be 

scaled by the value of gm and the resistive component values (Rin and Rout) must be scaled by 

the value of 1/gm to achieve the same filter critical frequency as shown in (4.3).  

  R=R*rm    (4.3) 

C=C*gm 

Figure 4.2 shows the OTA-C circuit. Using ideal components in SPICE, the frequency response 

of the circuit is exactly same as the LC ladder response shown in Figure 4.3. 

 

(4.2) 
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Figure 4.3: Frequency response of 5
th

 order prototype Chebychev LPF using ideal OTA‟s. 
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Chapter 5  

Implementing OTA’s in VLSI 

5.1 Background 

The OTA capacitor (OTA-C) filters have several advantages over the more typical 

operational amplifier configurations. These advantages include: electronic filter tuning, high 

frequency of operation and fully integrated filter design. Electronic tuning is necessary to 

overcome process variations. A generally filter design can be used in many applications if the 

filter‟s center frequency can be varied over a wide band of frequencies without actually scaling 

the reactance element values. In OTA-C filters, electronic filter tuning can be achieved by 

changing the parameter transconductance (gm) of an OTA. Since transconductance of the filter is 

proportional to current or voltage bias level, frequency response can be modified by changing the 

bias level of the OTA.  

High frequency OTA design can be achieved more easily than a high frequency 

operational amplifier. This is due to the output stage of a typical operational amplifier is not 

required in OTA.  However, high frequency filter tuning in OTA-C filter is not achieved due to 

limitation in the OTA design and also due to the reactance elements are lossy. Additional 

research needs to be done in this area to analyze the effect of these limitations in order to achieve 

high frequency tuning.
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Despite their advantages, OTA-C filters are often perceived as hard to design because 

literature on the subject is often unnecessarily complicated. A bulk of research has been 

dedicated to lower order OTA-C filter structures [12] – [13]. Due to loss of generality and 

sensitivity of element values, this approach will have serious impacts on the filter response. A 

better approach is to develop equations for the circuit to be implemented and match those 

equations with only the OTA and capacitors as building blocks. Less research is devoted to this 

concept [14] – [15], until recently a simplified approach to design any order filters has been 

proposed [16]. 

5.2 Approach 

 In practical applications, OTA have non-ideal characteristics which in turn affects the 

performance of the filter. In order to decrease the non-ideal characteristics of the OTA, it is 

important to consider the end use of the circuit. In the case of the filter application, the finite 

output resistance of the OTA can seriously degrade the shape of the desired filter, especially at 

higher quality factors [17]. Due to this fact, high output impedance must be a focus in the OTA 

design process. 

5.3 Implementation 

5.3.1 OTA with current mirrors: 

 A cascode structure gives higher output impedance without sacrificing transconductance 

when compared to that of a two input differential pair OTA. The OTA is shown in Figure 5.1. 

The current, i, at the ouput node C depends on the difference in the two input node voltages and 

the transconductance is determined by transistor M1 or M2. Equivalent model of Figure 5.1 is 

shown in Figure 5.2 with ideal OTA, parasitic capacitace and output resistance. 
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Figure 5.1: Simple OTA implementation 

 

Figure 5.2: Equivalent of Fig.5.1 with ideal OTA, parasitic capacitances and output resistance. 
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Figure 5.3: Transconductance vs. reference current for the OTA shown in Figure 5.1 

Simulating in SPICE using 0.5um process models, transconductance varies with current 

as shown in Figure 5.3. The input transistors are operated in subthreshold conduction. This is 

done to keep transconductance linearly tunable and to achieve larger output resistances. If the 

amplifier were operated outside the subthreshold conduction region, the transconductance would 

be described by equation (5.1).  

                                                                                                       (5.1) 

However, in subthreshold conduction the transconductance follows equation (5.2), where   in 

this case is around two. 

                                                                           
  

   
                          (5.2) 

The drawback is that the amplifier will not work as well at higher frequencies. However, 

to achieve higher quality factors the tradeoff is necessary. For filter design, a large 

transconductance value is not as important as a large output resistance. Figure 5.4 shows how the 

output resistance of the differential pair varies with bias current which follows equation (5.3). 

                                                                                                                         (5.3) 
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Figure 5.4: Output Resistance vs. reference current for the OTA shown in Figure 5.1 

The drawback in OTA design comes from the impact of the non-dominant poles. In this 

case, the non-dominant poles of interest are located at the input side of the current mirrors [18]. 

If the non-dominant poles are too close to the dominant pole, the filter transfer function can be 

distorted at higher quality factors or higher frequencies [17]. Figure 5.5 shows a plot of the 

transconductance verses frequency. The constant roll off shown indicates the non-dominant poles 

are very close to the dominant one. 

 

Figure 5.5: AC sweep of transconductance for OTA in Figure 5.1 
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5.4 Non-idealities in OTA 

The small-signal model of the transconductance element used in this design example is 

shown in Fig. 5.6. The model includes intrinsic input, output and Miller capacitors and also finite 

output resistance. The losses in GmC-filters are caused by the finite output resistances of the 

transconductors. The component values in the model scale linearly with the value of the 

transconductance. The OTA has no internal nodes in order to simplify the analysis and mapping 

of the GmC-filter [24]. 

 

Figure 5.6 OTA small signal model. 

 Among these non- idealities, a Gain Bandwidth product generally has the most drastic 

effect on frequency characteristics, an effect due to an excess phase shift of an integrator [25].  

And also the finite output resistance deeply effects the DC gain of the transconductance as 

shown in (5.4) 

                                             (5.4) 

As shown in [26], non-ideal amplifier input causes parasitic zeros in the filter transfer function, 

and thus imposes fundamental limitations on the realizable pole frequency.  

 All the existing predistortion techniques use complex numerical computation 

procedure to solve a system of state equations in order to find the values for reactance elements 
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of a particular filter. As the order of filter increases, these computation time involved in solving 

these state equations increases as the equations become more and more complex and limitations 

on the lossy values increases. As a result most of the existing procedures are not efficient when it 

comes to finding the reactance elements values of the GmC filters.  

 The predistortion technique presented in later chapters employ an optimization 

technique to obtain the active element for lossy ladder filters and by mapping lossy active 

element values with  OTA losses, the synthesis procedure tries to compensate the non-idealities 

in the actual filter realization as precisely as possible. As a result an accurate predistortion result 

can be achieved with the techniques proposed in this research work. 
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Chapter 6 

Predistorting OTA-C Filters 

 As illustrated in previous chapters that the lossy elements in LC ladder networks 

significantly degrades the performance of the filter prototype and as a result the frequency 

response of the real filter differs widely from frequency response that the filter was intended to 

have. The proposed (in previous chapter) lossy filter synthesis algorithm tries to offset the effect 

of resistive losses occurring in reactive components by taking lossiness of the reactance elements 

into the filter synthesis. A filter obtained this way can have exactly the same frequency response 

as the non-feasible filter designed using the classical algorithm and built with ideal reactance 

elements. 

The conventional way to implement any Gm-C filter is to design an active element 

(transconductance amplifier) with desired gain and bandwidth that the frequency response 

degradation is negligible. This way the filter is directly synthesized using the usual prototype 

synthesis methods. When implementing filters with bandwidths of hundreds of megahertz or in 

gigahertz, the requirements for active components become stringent and high DC gain is difficult 

to achieve at low supply voltage of the modern CMOS processes.  

6.1. Mapping of Non-Idealities 

 The losses in Gm-C filters are caused by the finite output resistances, intrinsic input, 

output and Miller capacitors of the transconductors (see section 5.4). These losses can be 
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compensated by designing an active component with high output resistance and high quality 

reactance elements. Designing high quality active and reactance elements takes more chip area 

and power consumption. The transconductance element has no internal nodes in order to simplify 

the analysis and mapping of the Gm-C filter. However, the small signal model of the 

transconductance element used in the design example shows the internal nodes of the 

transconductance elements and from the transfer function of the active element, mapping of the 

Gm-C filter analysis can be simplified. Transfer function and DC gain of the transconductance 

element is shown in (6.1 & 6.2) 

                                                                   
  

   
 

      

          
                                                            

                                           

and DC gain, 

                                                                 
  

  
                                            (6.2) 

Where Cm and Co are intrinsic Miller and output capacitances and Go is the output resistance of 

the transconductance element. 

To compensate the non-idealities of the actual filter realization as precisely as possible, 

accurate modeling and mapping of the different intrinsic components that influence the response 

of the filter is required.  

6.2. Output resistance of OTA as lossy element for capacitor: 

It is well known that the OTA output resistance introduce positive excess phase in the 

integrators, leading to Q degradation, and hence limiting the maximum achievable Q to be below 
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the OTA dc gain. The DC gain of the active element can be improved by minimizing all other 

losses in the filter. Assuming that the DC gain of the transconductor is set and the only way to 

improve the integrator Q-values is through scaling of source (Rin) and load (Rout) resistances.  

 

Figure 6.1: Macro model for OTA-C integrator. 

In order to compensate the effect of output resistance on DC gain of the transconductance 

element, the output resistance of OTA can be used as lossy value for the capacitor.  

i.e.,  

   Rc=Ro*gm    (6.3) 

Gc=1/Rc 

where Gc is the amount of lossiness that can be introduced in the ladder circuit elements. 

The integrator equations corresponding to the passive filter equations shown in (5.2) is derived in 

(6.4) 

   
  

          
         

   
  

      
        

   
  

      
        

(7.4) 
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 Another way to increase the OTA dc gain is by using cascades structures. The drawback with 

the topology is that it introduces at least one non-dominant high frequency pole, limiting the 

OTA‟s frequency response. For very high frequencies, these extra poles introduce negative 

excess phase on the basic integrator‟s transfer function. 

Thus far only the effect of transconductor finite DC gain has been analyzed. When realizing 

active filters the Miller capacitor of the Gm-element affects the frequency response of the filter 

by adding high-frequency zeros to the integrator. By using the Miller-theorem, the effect of 

Miller-capacitor to the integrator can be compensated.  

6.3. Effect of Intrinsic and Miller Capacitors: 

 The grounded parasitic capacitors increase the load, decreasing both center frequency and 

filter bandwidth. The overlapping capacitors introduce right-hand side zeros which causes 

peaking effects [17]. The degrading effect of Miller-capacitors is largest at the pass-band corner 

frequency.  

The effect of intrinsic input, output and Miller capacitances can be compensated by 

subtracting parasitic capacitor values from the predistorted component values.  
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Results: Non-idealities of the OTA‟s are mapped accordingly and reactive elements obtained for 

a 5
th

 order chebychev filter are shown in table 6.1 and figure 6.2 shows the frequency response of 

the OTA-C filter with ideal and lossy reactance elements. As shown, by using ideal element 

values, the magnitude response offset from the response the filter intend to have. 

Element Value 1 

   2.18128     

   0.90191     

   3.37457    

   0.90191     

   2.18128     

    10 

     1 

 

Table 6.1: Lossy element values for 5
th

 order OTA-C chebychev filter 
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Figure 6.2: Magnitude bode plot of 5
th

 order OTA-C chebychev filter 

 

 

 

 

 

 

 



53 
 

Chapter 7 

Conclusion 

In this thesis, a novel algorithm for pre-distorting OTA-C filters is presented. It is shown 

that the filter response can be predistorted through the mapping of losses and Miller-capacitors in 

the active components.  

Many of the existing ladder synthesis algorithms [1, 3, 6, 9, 10, and 11] are based upon 

lossless prototype networks. However in reality inherent dissipation loss of reactance elements 

with finite „Q‟ factors manifests itself as a degradation of achievable selectivity. This case is 

apparent in a roll off of insertion loss towards the pass band edges. However the effect of loss 

can be compensated by predistorting the synthesis of ladder filters which takes into consideration 

the lossiness introduced by the reactance elements. The synthesis algorithm makes it possible to 

design a passive ladder, Butterworth or Chebychev filter with the use of lossy reactance elements 

to provide better solutions as compared to existing predistortion algorithms. The algorithm is 

demonstrated by design examples. Major existing lossy ladder synthesis algorithms [2, 23, 27, 

28, and 29] reported in the literature is summarized and advantages and disadvantages in terms 

of accuracy and practicality are also provided. 

Using SPICE a prototype OTA is developed in 0.5 μm technology which is used as a 

building block for OTA-C filter design. Special care is taken to address those issues most 

important to filtering applications. The effect of OTA output resistance on filter‟s quality factor, 
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compensating techniques to increase the filter‟s quality factor and the effects of the non-linear 

capacitors are also discussed. Applying the OTA as a building block, the design of a fifth- order 

low-pass chebychev filter is presented. 

This approach substantially relieves complexity of existing lossy ladder synthesis 

algorithms, and makes the synthesis of lossy ladder filters more reliable for practical 

applications. Further research can be done to extend the proposed synthesis algorithm and 

predistortion technique to design low-pass filters with zeros and for high-frequency filter 

applications. 
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Appendices 

A filtcoef.m 

function [coefficient] = filtcoef(active_element,r_loss) 
  
Rin=1; 
Ro=active_element(end)+1e-9; 
n = length(active_element)-1; 
lossy_element = r_loss*ones(1,n); 
coefficient = zeros(n+1,n+1); 
  
for i = 1 : n + 1 
    if i == 1   
        coefficient(i,n+1) = 1/Ro; 
    elseif i == 2 
        coefficient(i,n) = active_element(n)/Ro; 
        coefficient(i,n+1) = 1 + lossy_element(n)/Ro; 
    else 
        for j = 1 : n 
            coefficient(i,j) = coefficient(i-1,j+1)*active_element(n+2-i); 
        end; 
        for j = 1: n + 1 
            coefficient(i,j) = coefficient(i,j) + coefficient(i-2,j) + coefficient(i-1,j)*lossy_element(n+2-i); 
        end; 
        if i == n + 1 
            for j = 1: n + 1 
                 coefficient(i,j) = coefficient(i,j) + Rin*coefficient(i-1,j); 
            end; 
        end; 
    end; 
end; 
  
return 
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B filterr.m 

function [E]=filterr(active_element,r_loss,pl1) 
%% loss situation 
% Ladder model 
% ---Rin---L1--R1--|--|--L3--R3--|--|--L5--R5--| 
%                  |  |          |  |          | 
%                  C2 G2         C4 G4         Ro 
%                  |  |          |  |          | 
% ---------------  |--|--------  |--|----------| 
% 
% active_element = [C1,L2,C3,L4,Rin,Ro] 
  
%% calculation 
coefficient = filtcoef(active_element,r_loss); 
  
%% results 
%normalize parameters 
coefficient = coefficient./coefficient(end,1); 
pl2=roots(coefficient(end,:)); 
e=(pl2-pl1); 
E=e'*e; 
return 
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C nelder_mead.m 

function [BEST,f_BEST,SIMPLEX,f]=nelder_mead() 
fid = fopen('C:\filter2.txt');  % input data 
tline = fgetl(fid); 
[inp,tline]=strtok(tline,' '); 
[d_SIM,tline]=strtok(tline,' '); 
[df_min,tline]=strtok(tline,' '); 
[ite_max,tline]=strtok(tline,' '); 
fclose(fid); 
i=1; 
if ischar(inp) 
    inp=str2num(inp); 
end 
if ischar(d_SIM) 
    d_SIM=str2num(d_SIM); 
end 
if ischar(df_min) 
    df_min=str2num(df_min); 
end 
if ischar(ite_max) 
    ite_max=str2num(ite_max); 
end 
for i=1:3 
obj = @filterr2; 
x0 = inp(1,:); 
xi = inp(2,1:end-1); 
r_loss = x0(end); 
x0(end)=[]; 
n=length(x0); 
X0=ones(n,1)*x0; 
SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices 
coefficient = filtcoef2(xi,0); 
coefficient = coefficient./coefficient(end,1); 
pl1=roots(coefficient(end,:)); 
  
for init=1:n+1 
    f(init)=feval(obj,SIMPLEX(init,:),r_loss,pl1); 
end 
init=0; 
SIMPLEX(:,end+1)=f'; 
SIMPLEX=sortrows(SIMPLEX,n+1); 
f=SIMPLEX(:,end)'; 
SIMPLEX(:,end)=[]; 
for ite=1:ite_max 
    M=sum(SIMPLEX(1:n,:))/n; 
    R=2*M-SIMPLEX(end,:); 
    f_R=feval(obj,R,r_loss,pl1); 
    if f_R<f(end-1) 
        if f(1)<f_R 
            f(end)=f_R; 
            SIMPLEX(end,:)=R; 
        else 
            E=2*R-M; 
            f_E=feval(obj,E,r_loss,pl1); 
            if f_E<f(1) 
                f(end)=f_E; 
                SIMPLEX(end,:)=E; 
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            else 
                f(end)=f_R; 
                SIMPLEX(end,:)=R; 
            end 
        end 
    else 
        if f_R<f(end) 
            f(end)=f_R; 
            SIMPLEX(end,:)=R;   
        end 
        C=(M+SIMPLEX(end,:))/2; 
        f_C=feval(obj,C,r_loss,pl1); 
        C2=(R+M)/2; 
        f_C2=feval(obj,C2,r_loss,pl1); 
        if f_C2<f_C 
            C=C2; 
            f_C=f_C2; 
        end     
        if f_C<f(end) 
            f(end)=f_C; 
            SIMPLEX(end,:)=C;   
        else 
            for i=2:n+1 
                mid(i,:)=(SIMPLEX(1,:)-SIMPLEX(i,:))/2; 
                f_mid(i)=feval(obj,mid(i,:),r_loss,pl1); 
            end 
            SIMPLEX=[SIMPLEX(1,:);mid]; 
            f=[f(1),f_mid]; 
        end 
  
    end 
    SIMPLEX(:,end+1)=f'; 
    SIMPLEX=sortrows(SIMPLEX,n+1); 
    f=SIMPLEX(:,end)'; 
    SIMPLEX(:,end)=[]; 
    out=sprintf(['%d <== current best |',... 
        '%d <== current worst| ite: %d'],f(1),f(end),ite); 
   disp(out); 
    if f(end)-f(1)<df_min, break; end 
end 
BEST=SIMPLEX(1,:); 
f_BEST=f(1); 
x0=BEST; 
i=i+1; 
if i==2, 
    inp = [x0 r_loss;xi 0]; 
    d_SIM=2; 
    df_min=1e-15; 
    ite_max=500; 
else 
    inp = [x0 r_loss;xi 0]; 
    d_SIM=2; 
    df_min=1e-17; 
    ite_max=500; 
  
end 
end 
x0=BEST; 
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xfer_calc; 
disp('Optimized L C values:'); 
return 
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D xfercalc.m 

%% transfer function calculation (optimized) 
  
fid2 = fopen('output.txt','w'); 
active_element = x0; 
Rin=active_element(end-1); 
Ro=active_element(end); 
n = length(active_element)-2; 
lossy_element = r_loss*ones(1,n); 
coefficient = zeros(n+1,n+1); 
%% calculation 
for i = 1 : n + 1 
    if i == 1   
        coefficient(i,n+1) = 1/Ro; 
    elseif i == 2 
        coefficient(i,n) = active_element(n)/Ro; 
        coefficient(i,n+1) = 1 + lossy_element(n)/Ro; 
    else 
        for j = 1 : n 
            coefficient(i,j) = coefficient(i-1,j+1)*active_element(n+2-i); 
        end; 
        for j = 1: n + 1 
            coefficient(i,j) = coefficient(i,j) + coefficient(i-2,j) + coefficient(i-1,j)*lossy_element(n+2-i); 
        end; 
        if i == n + 1 
            for j = 1: n + 1 
                coefficient(i,j) = coefficient(i,j) + Rin*coefficient(i-1,j); 
            end; 
        end; 
    end; 
end; 
%% results 
%normalize parameters 
fprintf(fid2,'\nOptimized Filter Characteristics:\n'); 
coefficient = coefficient./coefficient(n+1,1) 
fprintf(fid2,['\n   coefficients: ',num2str(coefficient(n+1,:)),'\n']); 
transfer_function = tf([1],coefficient(n+1,:)) 
pole(transfer_function) 
figure(1); clf; 
pzmap(transfer_function); 
hold on; 
figure(2); clf; 
OPT=bodeoptions; 
OPT.FreqScale='linear'; 
OPT.MagScale='linear'; 
OPT.MagUnits='abs'; 
bode(transfer_function,linspace(0,3,1000),OPT); 
hold on; 
  
active_element = xi(1:end-2); 
Rin=xi(end-1); 
Ro=xi(end); 
n = length(active_element); 
lossy_element = zeros(1,n); 
coefficient = zeros(n+1,n+1); 
%% calculation 
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for i = 1 : n + 1 
    if i == 1   
        coefficient(i,n+1) = 1/Ro; 
    elseif i == 2 
        coefficient(i,n) = active_element(n)/Ro; 
        coefficient(i,n+1) = 1 + lossy_element(n)/Ro; 
    else 
        for j = 1 : n 
            coefficient(i,j) = coefficient(i-1,j+1)*active_element(n+2-i); 
        end; 
        for j = 1: n + 1 
            coefficient(i,j) = coefficient(i,j) + coefficient(i-2,j) + coefficient(i-1,j)*lossy_element(n+2-i); 
        end; 
        if i == n + 1 
            for j = 1: n + 1 
                coefficient(i,j) = coefficient(i,j) + Rin*coefficient(i-1,j); 
            end; 
        end; 
    end; 
end; 
%% results 
%normalize parameters 
fprintf(fid2,'\nIdeal Filter Characteristics:\n') 
coefficient = coefficient./coefficient(n+1,1) 
fprintf(fid2,['\n   coefficients: ',num2str(coefficient(n+1,:)),'\n']); 
pl1=roots(coefficient(n+1,:)); 
transfer_function = tf([1],coefficient(n+1,:)) 
pole(transfer_function) 
figure(1); 
pzmap(transfer_function); 
figure(2); 
bode(transfer_function,linspace(0,3,1000),OPT); 
  
  
active_element = xi(1:end-2); 
Rin=xi(end-1); 
Ro=xi(end); 
n = length(active_element); 
lossy_element = r_loss*ones(1,n); 
coefficient = zeros(n+1,n+1); 
%% calculation 
for i = 1 : n + 1 
    if i == 1   
        coefficient(i,n+1) = 1/Ro; 
    elseif i == 2 
        coefficient(i,n) = active_element(n)/Ro; 
        coefficient(i,n+1) = 1 + lossy_element(n)/Ro; 
    else 
        for j = 1 : n 
            coefficient(i,j) = coefficient(i-1,j+1)*active_element(n+2-i); 
        end; 
        for j = 1: n + 1 
            coefficient(i,j) = coefficient(i,j) + coefficient(i-2,j) + coefficient(i-1,j)*lossy_element(n+2-i); 
        end; 
        if i == n + 1 
            for j = 1: n + 1 
                coefficient(i,j) = coefficient(i,j) + Rin*coefficient(i-1,j); 
            end; 
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        end; 
    end; 
end; 
%% results 
%normalize parameters 
fprintf(fid2,'\nLossy Filter Characteristics:\n') 
coefficient = coefficient./coefficient(n+1,1) 
fprintf(fid2,['\n   coefficients: ',num2str(coefficient(n+1,:)),'\n']); 
transfer_function = tf([1],coefficient(n+1,:)) 
pole(transfer_function) 
figure(1);  
pzmap(transfer_function); 
hold on; 
print -dpng 'pzmap.png'; 
figure(2);  
bode(transfer_function,linspace(0,3,1000),OPT); 
legend('Optimized','Ideal','Lossy') 
print -dpng 'bode.png'; 
fclose(fid2); 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


